1. IDENTIFICATION
1.1 Digital-8-14-U-Sym1.2Binary to Binary Coded Decimal Conversion
1.3 March 10, 1965

Digital-8-14-U-Sym
 Page 2

2. ABSTRACT

This subroutine provides the basic means of converting binary data to binary-coded-decimal (BCD) data for typeout, magnetic tape recording, etc.

3. REQUIREMENTS

3.1 Storage

This subroutine uses 33 (decimal) storage locations.
3.3 Equipment

Standard PDP-8.
4.

USAGE

4.2 Calling Sequence

The subroutine is called by the JMS instruction. When called, the binary number to be converted must be in the accumulator (AC).

The subroutine will return to the instruction immediately following the calling JMS with the $B C D$ result in the $A C$.
6.

DESCRIPTION
6.1 Discussion

Reference to the Flow Chart (Section 11.1) will illustrate this discussion.
On input the binary number is stored, a pointer is initialized, the link is cleared and a counter to control the number of passes through the computation loop proper is properly set.

The loop is now entered. It will be repeated eight times.
The binary equivalents of $800,400,200,100,80,40,20$, and 10 are subtracted successively from the original binary number.

After each subtraction, a test on the link is made. If the result of the test shows the link to be 0 , the next lower equivalent is subtracted from the same quantity after the contents of the links (0) are shifted into the developing BCD number (Location NUMBER).

If the subtraction leaves a negative link, the contents of the accumulator replace the binary representation currently being processed after the contents of the link (1) have been shifted into the growing BCD number.

After eight pases through the basic loop, the developed BCD representation is shifted left four bits and the "residual" least significant digit is added before exit.

6.2 Example

As an example consider the conversion of the binary equivalent of 512 decimal:

$$
001000000000
$$

Successive calculations to obtain the most significant BCD digit are as follows:

Link	Addition	
	001000000000	
	110011100000	-800
0	111011100000	
	001000000000	
	111001110000	-400
1	000001110000	
	000001110000	
	111110001000	-200
0	111111111000	
	000001110000	
	111110011100	-100
1	000000001100	

Notice that the remainder is the binary representation of 12 decimal. Writing the link bits in the order they are developed gives 0101 the BCD character denoting 5 .

6.3 Scaling

The original binary number must be no larger than 999 (decimal) which is equivalent to 1747 (octal). The binary point is assumed to be at the extreme right end of the word (to the right of bit position 11) and the decimal point is also so positioned.

In other words, this subroutine converts binary integers to BCD integers.
Note that the subroutine is designed for positive input only!

7. METHOD

7.2 Algorithm

The algorithm is straightforward and is fully described in sections 6.1, 10.4, and 11.1.

9. EXECUTION TIME

9.1 Minimum

Minimum execution time will occur when the number to be converted is from 0 to 9 inclusively. In this case, the execution time will be precisely 216.0 microseconds.

9.2 Maximum

Maximum execution time will occur when the number to be converted happens to be 7.7X (decimal where X may represent any decimal digit). This time is precisely 235.2 microseconds.
9.4 Timing Equation

Execution time for a particular BCD result may be calculated from the following formula,

$$
\text { TIME }=216.0+N \times 3.2
$$

where N represents the number of bits of the two most significant $B C D$ digits that are equal to one.

For example, the binary equivalent of the decimal number 512 (010 100010010) will take exactly

$$
216.0+3 \times 3.2=225.6 \text { microseconds }
$$

to convert.
10. PROGRAM
10.4 Program Listing

A listing of the program with $B C D$ located in 0200 appears as follows:

```
/BINARY TO BCD CONVERSION 3/6/65-DEC
/ENTER WITH BINARY NUMBER (<999(10))
/IN ACCUMULATOR; EXIT WITH THREE CHARACTER
/BCD NUMBER IN ACCUMULATOR
/AC 0-3; AC 4-7; AC 8-11 WILL CONTAIN
/THE BCD CHARACTERS ON EXIT
/WEIGHTING: AC 0-3 100
/ AC 4-7 10
/ AC 8-11 1
/STORAGE 33(10) REGISTERS
```

		/TIME=216.0-235.2 MICRO-SECONDS PDP-8 /IF INPUT >999 (10) RESULT IS UNSPECIFIED		
0200	0000	$B C D$,	0	
0201	3226		DCA INPUT	/STORE BINARY
0202	1225		TAD CONTRL	/SET UP TABLE
0203	3210		DCA POINTR	/POINTERS
0204	7100		CLL	
0205	1230		TAD COUNT	/SET BIT 7 $=1$; 8RAL'S
0206	3227		DCA NUMBER	/WILL PUT IT IN LINK
0207	1226		TAD INPUT	
0210	1231	POINTR,	TAD TABLE	/OR TABLE+1, TABLE+2, ETC.
0211	7430		SZL	/IF C(L)=1, INPUT>-TABLE
0212	3226		DCA INPUT	/IF SO: INPUT=INPUT+TABLE
0213	7200		CLA	
0214	1227		TAD NUMBER	
0215	7004		RAL	/PUT THIS BIT IN ANSWER
0216	2210		ISZ POINTR	/UPDATE TABLE POINTER
0217	7420		SNL	/IF LINK=1, ALL DONE
0220	5206		JMP POINTR.-2	
0221	7106		CLL RTL	/CONVERTED 2 BCD
0222	7006		RTL	/CHARACTERS
0223	1226		TAD INPUT	/SHIFT LEFT AND ADD
0224	5600		JMP I BCD	/THE THIRD
0225	1231	CONTRL,	TAD TABLE	
0226	0000	INPUT,	0	
0227	0000	NUMBER,	0	
0230	0020	COUNT,	0020	
0231	6340	TABLE,	-1440	/-800(10)
0232	7160		-0620	/-400
0233	7470		-0310	/-200
0234	7634		-0144	/-100
0235	7660		-0120	/-80
0236	7730		-0050	/-40
0237	7754		-0024	/-20
0240	7766		-0012	/-10

/EXAMPLE: INPUT 0726 (8)
$/ \quad$ OUTPUT 0100/0111/0000=470(10)
11.

DIAGRAM
11.1 Flow Chart

