
ORION Instruments

Applications Notes
for the Unilab II

8031 and 8051 piggyback

ORION Instruments, Incorporated
702 Marshall Street

Redwood City, California
94063

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 1

Contents

Features • • 3

Cable Connections • • 5

Disassembler . • • • • 8

Gaining DEBUG Control with RB •• . • • . . • 10

NMI Features • . . . • • • . . • • . . . • • . 13

Setting up IRQ for NMI Functions . • . • • • • . 15

DEBUG Operations • • . . . • . . • . . • . • . . . 16

Moving the Overlay Area • . 21

Multiple Break Points . 22

On-Line Assembler . • . . . • • 23

Demo Program • • • 26

Troubleshooting Hints . . • • . . . • • . • . . . • • 33

How DEBUG Works • • • • • . . • . • . • . . . • • 35

Glossary • . . • • • • • 36

Orion Instruments, Inc. - 8051 Application Notes
November 19, 1986 Page 2

ORION INSTRUMENTS, INC.
8051 and 8051 piggyback Application Notes

for the Uni lab II

These two software versions support the 8051 family. The DDB-51 is used with the

8051 or 8052 in the expanded mode (external rom) the 8031 and 8032, and the

80C31. The DDB-51 P supports the OKI piggyback M80C51 VS in the internal rom

mode (via the piggyback socket). The 8051 transparent DEBUG program is shipped

installed in a UniLab system file, along with the 8051 disassembler. It provides all of

the additional DEBUG functions normally supplied by microprocessor emulation

without consuming more than a few bytes of target memory at the high end of program

memory { FFCO and up in the 8031, and FCO and up in the piggyback).

The Orion DEBUG software package for the Uni Lab II provides the capabilities of

expensive hardware processor emulators with a number of additional features. It is

often the first course of action for the engineer to attack a complicated problem by

setting a breakpoint somewhere in memory. Then by examining registers, setting them

to new values, and single-stepping through the code, the source of the problem may

be isolated.

There are more direct methods available to the user of the Unilab II. If the symptom

can be described, then the analyzer can usually track down the cause of the problem

almost instantaneously. For instance, if the stack is being nested too deeply, the

analyzer can be set to trigger on a small address range just below the maximum depth

of the stack. By setting the trigger to occur at the end of the trace buffer (with NORMB),

the events leading up to the stack problem can be displayed. By setting the trigger to

happen at the top of the trace buffer (with NORMT) events after the trigger are shown.

Setting the trigger to be in the middle of the trace buffer (with NORMM) allows the

inspection of code leading up to the event as well as the course of the program flow

after it!

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 3

Illegal data values sent to 1/0, instructions occuring outside the range of program

memory, or overwriting program areas can be easily set to trigger the analyzer,

displaying the sequence of events which led up to these unexpected operations. The

flow of the program can be captured and compared with the source code. A static

image of the contents of the registers may provide only a partial view of the problem.

For this reason, it is advised that you explore the many resources available with the

UniLab II. This write-up covers all the processor-specific features of the

disassembler/DEBUG, but this is only a small portion of the potential that is available

for tracking down those difficult hardware and software bugs that creep unexpectedly

into the most carefully designed projects.

Setting breakpoints is a trial-and-error approach It is useful if you can guess at the

proper place to inspect the register contents, but it is an indirect approach when

compared to the ability to describe the symptom and then to analyze the flow of the

program leading up to the problem!

The UniLab's bus state analyzer eliminates the need for most traditional

breakpointing and single-stepping in program analysis. However, there are still times

when it is useful to see or change register contents at certain points in the program

execution. For this reason, the 8051 DEBUG makes use of the internal logic of the

UniLab's ROM emulator/analyzer to implement all of the standard DEBUG functions.

You can set breakpoints, examine and change both memory and register contents in

the target system, and single-step through your program.

The DEBUG package includes a help screen which displays both general UniLab

disassembler/DEBUG words as well as target-specific commands. Type HO to display

this on-line help screen.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 4

Cable Connections

Here are the cable connections required for the expanded (external ram) hook-up to

the UniLab (note that the low order address lines and the data ·lines are connected via

the ROM plug which is plugged into the external ROM socket):

E Cable 8031 Expanded E cable

P1B 1 48 Ucc
P11 2 39 PB8
P12 3 38 P81
P13 4 37 P82
P14 5 36 P83

V+ P15 6 35 P84
rom 1-[:>- P 16 7 34 P85

Un;Lab P17 8 33 P86
RST 9 32 P87

Analyzer RX8 18 31 EA- K2-
Cable RES- 74L514 TX 1 11 38 ALE

HnIIHT9 12 29 PSH
IltT1 13 28 P27

T04 14 27 P26
T15 15 26 P25

UR- UR6 16 25 P24
K1- RD7 17 24 P23

XT2 18 23 P22
XT2 19 22 P21

GHD Uss 28 21 P28

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 5

Here are the cable connections required to the piggyback chip from the Unilab.

The ROM cable must be plugged into the piggyback connector, A 11 must be

connected to the rom plug, and A 12 through A 15 are grounded via the 6-pin jumper

included with the Unilab.

E Cable 8051 Piggyback E cable

P18 1 48 Ucc
P11 2 39 P98
P12 3 38 P81
P13 4 37 P82
P14 5 36 P83

~~;~
6 35 P84

rom 7 34 P85
Unilab P17 8 33 P86

RST 9 32 P87
Analyzer RX8 18 31 EA-
Cable RES- 74LSl 4 TX 1 11 38 ALE K2-

nn1 IHT8 12 29 PSrt
IHT1 13 28 P27

A 11 Connected to ROM Plug
T04 14 27 P26
T15 15 26 P25

A 12~ 1 S connected to ground UR6 16 25 P24
K 1-connected to ground RD7 17 24 P23
RD-, WR- not connected (floating high) XT2 18 23 P22

XT2 19 22 P21
GHD Uss 28 21 P28

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 6

CABLE_E_
-M? 11 t I
=g~ I + + 2

8

7 U7
--3

8031 expanded
FOR & aos 1 pigggbact

-M4
3 4 J

=~~ ~I +I
-M 1 I • t 61
-M0 7

-

-GND---ig+ t 81 ·A 19-____,,..___..
·A 18 I • 10
·A 17 11 t I - I .i 12

:~~~ 13' • I
-ROD I t 14
-RES 15 • I
-NM I I ~ 16

-GND 17
• I

K2~ 118
:c7- 19· ""+ I K1=-JN° ~c6- 21 I
-WR~ • 2
-cs- i 3. "+ I
-RD I ' 24
-c4 25 t I
-A 15 I • 26

-ALE- 27 c I
-INUI- ~28
-INUO· 29 I
-DTCY 30
-ccK · 31 I
HACK' ~32
MCK' 33 I
TCY' 34
ITCY' 35 I
MTCY' I t 361

~~:~. l:N·3i
CE I 411+ 401
OEE'
C3
C2
C1
C0
A19S
A18S
A17S

A16S I 5,

t

a.---l? MISC
--13(M0A-
-· --- -14 M7 A)

18
Lt--_.. 4 11

• =+-
10 --· --__.

___ __,, _ ____. 3

4
'-------1--__. 7

2
s
6

(A17E
A19E)

11

'----S-A15
E' ANALYZER

LATCH
• roLE'
40• r-:-<E' . -~
42----0E~
• C"--------------------'
44--C7----------------~

• Cl----------------------~
46--C(il-------------------------'
• A 19~-----------------'
48e-A18~-~~~-------~
• A17~----------------------------------'
S0e-A16~----------------------'

>
To connections
on target
J-LP board

UDL Analyzer
Connector

Internal Circuitry
of UDL

UDL ANALYZER CABLE E I CONNECTOR P 1

Orion Instruments, Inc. - 8 0 51 Application Notes

Page 1

_2-~
L..:..f?E'

(ROM)

3
4

U1S U
18

A9E- 7
8

A16E)13

11

A9
(ROM)

A1
(ROM)

_!!!/1____
3't2A0

HDATA
8

us ~
(DSS-1~
D15S)14

18
11 4

(ROM)

DS
(ROM)

Disassembler

At any time you can s~itch the trace disassembly off and on by entering DASM'

for a HEX format trace display or DASM for disassembled format. You can also

disassemble directly from the emulated ROM image by entering adr n OM where

adr is the target address and n is the number of lines desired.

To disassemble from address 30 9 lines of code you just enter 30 9 DM. A

sample display is shown below:

LTARG.JMP 0030 758168 MOV SP,=lt68
0033 7412 MOV A,U2
0035 7834 MOV RO, *34
0037 7982 MOV Rl,#56
0039 7A83 MOV R2,#78
0038 7B9A MOV R3,#9A
0030 7C04 MOV R4, H
003F 04 INC A
0040 04 INC A

Note that a symbol has been defined for 0030 (L TARG.JMP) and the built-in symbol for

81 {SP) is automatically displayed when symbols are turned on.

The DM display can be made to pause by pressing any key. It will resume if you

press another key, or abort if you press a key twice in rapid succession during a pause.

Note that this is the same technique used in the MDUMP display.

The cycle types on the 8051 allow the following macros to be defined (external rem

mode required):
FETCH 70 TO 7F CONT
READ 30 TO 3F CONT (not on piggyback chip - Read shows same as Fetch)
WRITE 50 TO SF CONT

The 8051 disassembler automatically skips extra fetches which occur during

instruction execution, and pre-fetches which occur before branches. Since these extra

cycles are predictable, logic is included in the disassembler for hiding them.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 8

Remember that if the disassembler is not in sync, cycles will be hidden which are

not extras. This problem is more apparent in the piggyback version, since instruction

fetches cannot be identified by the CONT column. You can look at all cycles by turning

the disassembler off with DASM' .

To make sure the disassembler is in sync, always start the trace at least a few cycles

before the area of interest so there is time for the disassembler to fall into sync. You

can start disassembly at the correct point in the trace by entering n TN where n is the

first cycle of an instruction. You can look at all cycles by simpiy turning off the

disassembler with DASM' . External read and write cycles can be indentified in the

external rom mode. The piggyback chip, however, has no hardware indication of the

cycle type. Use n TN to start the trace display at a hidden cycle which may be the

actual first cycle of the opcode if the display looks erratic.

Don't try to trigger the analyzer on the address immediately after a conditional

branch, since that address will be pre-fetched even if the branch does occur.

(Breakpoints at that address are OK however as they will be effective only if they really

execute.)

The internal registers of the 8051 are assigned symbolic names automatically when

the symbol table is turned on (by entering SVMB, loading a symbol file, or defining a

new symbol with IS). These are local two-way symbols similar to the symbols in the

main Unilab program. The difference is the 8051 local symbols are always present,

and are not stored or saved with the Unilab main symbol file. The symbol names can .
be typed in as arguments for Unilab commands. Here are the assigned symbols:
M'1.:e:1=:1 Ram& Mdresa ~ Address Rama

so PO 81 SP S2 DPL
S3 DPH S8 TCON 89 TMOD
SA TLO SB TLl SC THO
SD THl 90 Pl 97 PCON
98 SCON 99 SBUF AO P2
AS IE BO P3 BS IP
cs +T2CN CA +RCP2L CB +RCP2H
cc +TL2 CD +TH2 DO PSW
EO ACOM FO 8REG

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 9

Establishing DEBUG Control with RB

The reset circuit on the 8051 is non-standard, so the Unilab's open-collector RES

output on the analyzer cable will not work if connected directly. We suggest that you

build the adapter circuit below, or add the components to your prototype system

(DEBUG will not work without a working automatic reset.):

From ~V+
UniLab To 8051
Analyzer RESET pin

Cable RES-

To first activate DEBUG via software you simply set a breakpoint by entering

RESET n RB where n is the address of your first breakpoint. Since this is a software

breakpoint, DEBUG insterts an opcode at that address to be executed. This address

m..ufil. be the first byte of an instruction. DEBUG uses the stack also, so don't set a

breakpoint at an instruction before initializing the stack pointer. Though you can set

breakpoints in target RAM once DEBUG control is established, the first software

breakpoint m..ufil. be in emulated ROM.

If the breakpoint is reached, you will see a display of all target register contents and

a disassembly of the next instruction to be executed (the present breakpoint address).

If the breakpoint address is never reached, you can get immedate DEBUG control by

hitting the carriage return to execute NMI (see next section). If you get an "NG"

message, see the end of this write-up. While you are stopped at a breakpoint, you

can change register contents or target memory . You can then continue to the next

breakpoint at address n by entering n RB. You can also go to another part of the

program at address m before breaking at n by entering m n GB.

If you want to exit DEBUG you can Go to location m and let the program run without

DEBUG control by entering m G. If you enter m GW (Go and Wait) the program will

resume from location m next time the analyzer is started. After you have done either of

these commands, the only way to regain DEBUG control is to use RESET n RB.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 1 O

The display below is an example of a breakpoint display. It was obtained by

entering RESET 40 RB with the LTARG program:
A=l3 PSW=Ol(cafbbv-P) R0=34 Rl=56 R2=78 R3=9A R4=04 R5=03 R6=FF R7=FF

DPTR= 0 SP=68 IE=60
/"I/"\ II ('I () l'I. vv-z.v v ~ INC A (next step) ok

Note that the flag register bits are displayed as letters just to the right of the hex

contents of the flag (PSW} register. Capital letters indicate that a flag is set while a

small letter indicates that it is reset. The register contents displayed are the contents

before the instruction at the breakpoint address is executed. Entering N (Next) will

execute the disassembled instruction at the breakpoint location (0040) and give a new

register display with the next location (0041) disassembled.

The 8 working registers and A, PSW, SP, DPTR, and IE are displayed automatically

at the breakpoint. If you are not changing register banks much, you can assign

mnemonic names to RO-R7. For example, if you enter 6 RNAME USER# the

breakpoint display will print USER# instead of R6.

The N command does a "next step" of the target program. It actually executes RB

(Resume to Breakpoint) with the breakpoint automatically set at the start of the next

instruction in sequence (just after the one which is disassembled). This is similar to

single stepping except when the next instruction is a branch. If you want to follow a

branch you must enter adr RB where adr is the address the branch will take.

If you use N to single step through a loop, you will only see one pass through the

loop, then you will see the first step after exiting the loop. This is often more convenient

than conventional single stepping and can save you time in many cases, because you

don't have to take any action to go once through status and delay loops which might

otherwise execute 1 OOO's of times.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 PCWJS 11

Another loop-related DEBUG feature feature is the LP loop command. If you are

stopped at a breakpoint which is part of a loop, simply enter LP to go around the loop

once and stop at the same point (you must not be at the last step in the loop). If you

want to resume the program when you are sitting at a breakpoint, just enter RZ and

you'll be back in the program from where you left off.

The LP command is actually a macro which executes N internally then sets a

breakpoint at the previous address. You will see the "(next step)" of the N executing to

remind you of the internal workings of the LP function. The software breakpoint

opcode used in the 8051 is actually a three-byte absolute JMP instruction. Therefore, if

the next instructions after the breakpoint are single-byte instructions, the processor

must advance far enough ahead so the the breakpoing set by LP doesn't "step on" the

next instruction to be executed. You will see the "(next step)" displayed for each

internal N that LP needs to do.

Be aware of this, since N cannot be executed at the end of a loop. If you do this, a

software breakpoint will be inserted at the address after the loop. If this is code, you

may never get back in the loop again, and LP will just wait forever. If the next byte is a

data area, you will not get DEBUG control either, since the software breakpoint will

never be executed.

Orion Instruments, Inc. • 8051 Application Notes
November 18, 1986 Page 12

The NMI Features

DEBUG control is established with RESET adr RB (via a software breakpoint) or

with the NM! command if you have the NMI connection from the analyzer connected

to the 8051 IRQ pin. Gaining DEBUG control this way is dependent upon the Uni Lab

strobing the IRQ pin of the 8051 and causing the program to vector to our own DEBUG

routines via the IRQ vector.

The 8051 DEBUG has an interrupt breakpoint feature which allows you to use this

NMI output of the analyzer as a substitute for software breakpoints. You must have the

NMI connection from the analyzer cable to one of the IRQ pins of the 8031. Make sure

that your target board has nothing connected to this pin. It is usually connected to +5

volts if unused. If you have a driver, you can connect the Unilab NMI to an input of the

driver. Make sure that no other interrupt's will occur on this pin to cause triggering on

other conditions.

You can establish breakpoint control on a working program (with functioning stack)

by just pressing the F4 function key at any time. Entering NMI or hitting the F4 again,

will cause the 8051 to advance to the next instruction. This is a true single-step mode

which will follow branches and loops. The N command can be very useful since you

can follow program flow without having to single step through every iteration of a loop.

The NMI single-step is useful if you want to follow branch or jump instructions. Single

stepping is mainly useful when a complex algorithm is being executed and you want to

keep track of register contents at each program step. Usually the analyzer gives you a

much better picture of overall program flow by showing you a "snapshot" of the actual

execution of the program in real time.

All of the other DEBUG commands such as N, RB, G can be used along with the

NMI key. If you use RB to set a breakpoint that never arrives, you can press any key to

give up waiting and the program will automatically regain breakpoint control using the

NMI signal. " -nmi- " wiH be displayed whenever this happens, or when you press the

F4 key.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 13

You can also use the power of the analyzer truth-table logic to breakpoint on

complex functions of data, address ranges, etc. To use the feature, enter RI followed

by a trigger spec, then SI will release the program till trigger occurs. For example,

RI FSOO TO F900 ADR SI

will stop the program and display the registers after an address in the range of F800 to

F900 is accessed. Note that you cannot use qualifiers or pass counts with this feature

since it uses the qualifier truth table as part of the internal workings of DEBUG.

The patches necessary for DEBUG operation are automatically patched in

whenever automatic reset occurs. You can disable this feature if it causes problems by

entering NMIVEC' and re-enable it by entering NMIVEC.

You can also use the full power of truth tables in the triggering logic to interrupt

the target processor when the analyzer enters the trigger state. You can set up your

own interrupt routine to be executed when this occurs. For example, NORMT INT

AFTER NOT FSOO TO F9FF ADA S will interrupt the target processor (via the NMl

output) one cycle after the program goes outside of the F800 to F9FF range. This can

be very useful for working on systems where program bugs can "self-destruct"

peripherals. All you have to do is write an interrupt routine which gently shuts things

down. In order to use this feature, you must disable the NMI routines of the 8051

DEBUG by entering NMIVEC'. This will allow you to set the address of your own

diagnostic routine at the IRQ vector.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 14

Setting up IRQ for NMI functions

The program loaded by L TARG has four lines of code for setting up the !RQ on the

8031. Your target program must have these lines as well in order for the NMI, RI and

SI commands to function.

Here is a fragment of the 8031 L TARG program, with the required code underlined:

Adr Opcode Mnemonic

0039 7A78 MOV R2, #78
003B 7B9A MOV R3,lf:9A
003D 7CBC MOV R4,lf:BC
003F 7DDE MOV RS,lf:DE
0041 D2B8 SEIB BS set up IP for external interruptO)
0043 D2A8 SEIB A8 enable IE for INTO)
0045 D2AE SEIB AE enable IRQ's)

0047 D288 SEIB 88 set INTO to be edge-triggered)
0049 04 INC A

There are two possible IRQ's to use on the 8031, pin 12 which is called INTO or pin 13,

INT1. The two vector addresses are at 0003 and 0013.

You can specify ITO or IT1 to choose one or the other. INTO is the default. If you

choose INT1 you will have to connect the NMI line to pin 13, and put the following four

lines into your program, in place of the four listed above:

Opcode Mnemonic

D2B8 SETB BS
D2AA
D2AF
D28A

SETB AA
SETB AF
SETB SA

enable IE for INTl)

set INTl to be edge-triggered)

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 15

DEBUG Operations

Using RB, NMI, or RI <trigger spec> SI will get DEBUG control of the 8051/31

While you are stopped at a breakpoint, you can change register contents. For

example, 12 =R3 wilf change the R3 register contents to 12. (Note that there is a

space after the 12 but no space after the equal sign.) Any of the registers shown in the

breakpoint display can be changed with similar commands. Type HO to see a list of

available 8051/31 DEBUG commands.

You can also read and write target RAM with all of the DEBUG commands normally

used on emulation memory. You can use M, MM, ORG, M!, MM!, M?, MM?, MD,

MDUMP, MMOVE, MCOMP,MFILL, MLOAD, MSAVE, MLOADN, BINLOAD,

BINSAVE, HEXLOAD, and HEXRCV, just as you would on emulator memory. See

the UniLab manual for a full explanation of these generic DEBUG functions.

Whenever these commands are used, the UniLab program checks the address to

see if it is enabled (set by the EMENABLE command) as an emulated ROM address.

If it is not enabled, it will attempt to execute the command on the target RAM. If DEBUG

is not loaded, or DEBUG is not in control, an error message will so indicate. If DEBUG

control has been established, you'll get a message:

target memory (not EMENABLEd)

to let you know that this is target memory rather than emulation memory, and that

DEBUG is doing the operation. This is not an error message. It is just a reminder that

the DEBUG function is in charge of the operation, and that this is not an exchange of

data between the host and emulation memory (which can occur even without the target

processor connected). Information can be moved back and forth between target RAM

and emulated ROM with the MMOVE command, but remember that the decision as to

which memory type is being acted upon is made only once, at the start of the operation.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 16

The Special Function Registers can be altered by entering <data> adr R! or

displayed by entering adr R?. All of the named locations such as PO, IP, THO, etc are

defined as symbols, so you can, for example, look at !P by entering IP R?. If you enter

23 PO R! you will write 23 to port 0. You should always use the specific DEBUG

commands =DPTR, =IE, etc. to change any of the special function registers that have

specific commands. This is because DEBUG uses some of these internally and if you

look at them directly with R? or try to change them with R!, you may not get proper

values.

Here is a memory map of the four memory areas available in the 8051 with the

associated Uni lab commands for examining and changing memory.

.

SpecisJ
Function
Registers

-- ~ :::::: :~ -.
\.'.. . :- : -: :~

$80 R? R!

Rom
ExtemsJ (ExtemsJ or

Ram Pigg'f'back) Top of
'-. :- :-: .; . ~ --,. -: -: . :- :- . - fv1emory
: : : : : : : ::; : : : : : : : : : : : : Space .
g;

...... " .,
0- .·.·.·.·.·. -------~:-:·:·:·:JI' - ~=·=·=·=·=~ - 0

DR?, DR! tvt>UMP I M? I MM? I
MF ILL, M, Mv1
ASM,M:OMP

Again, dont' use DR? or DR! to inspect or modify registers that have special

commands, such as =RO, and =R1. These are used internally by DEBUG and may not

show the same values as the breakpoint display. Also note that R? and R! will work

just like DR? and DR! in the area from 0 to $7F. DR? and DR! are mainly useful in

the 8032.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 17

If you have external memory, you can use all of the commands used on emulation

memory such as MDUMP, MFILL, MMOVE, M?, MM?, M!, and MM! and they will go

to external memory if the address isn't enabled for emulation. Typing TRAM will allow

you to use MDUMP, M?, MM?, MFILL, DM, M!, MM!, and MCOMP on external

ram at the same address as emulated memory.

Typing TRAM allows you to use MDUMP, M?, and MM? on any external ram

which has the same address as emulation memory. Typing TRAM' resets to normal

use of MDUMP. After entering TRAM', you can still use R?, R!, DR?, and DR! to

examine and change internal registers and memory. TRAM'S has no effect on these

commands.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 18

When DEBUG is active , a short routine is patched into the target program starting

at location FFCO (FCO on the piggyback) when the target is started up with RESET

enabled . These are the only reserved locations except for the IRQ vector at 0003 or

0012. Overlays are instailed above location FFCO and automatically restored. You

can thus use the area above FFCO but most DEBUG operations won't work properly in

the locations above this address. These bytes at the top of memory are required by

DEBUG functions for saving and restoring interrupt enable status, and returning to the

program. This memory space must be enabled by entering ALSO FFOO

EMENABLE after the EMENABLE statements you wouid normaily make foi your

system. (The memory locations used by the 8051 piggyback disassembler/DEBUG

package are at FCO to FC7.)

The DEBUG sets a breakpoint by patching a 3-byte LCALL instruction into your

program, so be aware that if the program tries to jump to or use either of the 2 bytes

following the breakpoint there will be trouble. Each time a new breakpoint is set the

previous breakpoint addresses are restored to their original contents.

The overlay area is restored at the end of each DEBUG operation but the DEBUG

commands may not work properly on data stored in the overlay area. For example,

you can generally move data blocks from the emulated ROM to the target RAM, but not

if the block includes the overlay area (FFCO-FFF8 on the 8031, FCO-FFF on the

piggyback 80C51).

The vectors in this rerved area are automatically patched when the analyzer starts

up and RESET is enabled. If you want this vector to be disabled, type ASP'. This will

make DEBUG inoperative, but allow you to use the analyzer in a completely

transparent mode, not affecting the target memory in any way. To re-enable DEBUG,

type ASP. To disable the NMI features only (and the automatic patching of the IRQ

vector), type NMIVEC'. To re-enable, type NMIVEC.

Remember that your program is essentially stopped when you are at a breakpoint,

so if you have a watchdog timer in your system it must be disabled to prevent extra

resets. Interrupts are disabled while stopped at a breakpoint but re-enabled every time

a program step is executed.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 19

The 8051 DEBUG has an "auto-breakpoint" capability. This nearly transparent

function allows you to inspect or modify registers or ram without first gaining DEBUG

control. DEBUG will assert an automatic NMI (seen by a" -nmi -"), then display ram or

register or write to ram or register, and then let the target program resume. All this is

done without having debug control asserted explicitly using RB or NMI. This feature

allows the use of all memory modification commands such as MFILL, M!, etc. It will

not work with register modifying commands such as =RO, or =DPTR.

In addition to the normal breakpoint display, you can display anything you want by

using the BPEX command. For example, if you want to automatically dump external

RAM at locations 00-3F at each breakpoint, you first define a macro that will do this by

entering the following:

: PDUMP TRAM' 0 3F MDUMP TRAM ;

If you now enter BPEX PDUMP the macro (which we called PDUMP) will

automatically execute after the register display whenever a breakpoint is reached.

The macro definition is started by entering the colon (:) , then its name is defined.

The words following the macro name (in this case PDUMP) are Unilab words just as

you would enter from the command mode. The macro is terminated by the semicolon

(;) . When the name of the macro is typed, all of the words in its definition will be

executed just as if they had been typed. A second macro can be added by defining

another word and linking it to DEBUG with BPEX2. When the macro is linked to

DEBUG with the BPEX or BPEX2 command it becomes an extension to DEBUG. If

the system is saved to disk with SAVE-SYS, this extension will be permanent. Note

that we restored the TRAM mode after the INTRAM change to allow DEBUG to work

in the normal ram space for the next DEBUG command. If you want to eliminate this

automatic memory window display, just enter BPEX NOOP to install the NOOP

command (which does nothing) in place of PDUMP.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 20

Moving the Overlay Area

The command :OVERLAY can be used to change the location of the overlay area.

it expects one address, such as

1234 :OVERLAY.

The system must be saved with SAVE-SYS <name> for the change to become

permanent.

The overlay can Q be placed at an even address. The word :OVERLAY takes

care setting this to the proper boundary

When changing the overlay area, you must EMENABLE that range of memory, and

make certain that there is enough room above this address jn emulated memory for

DEBUG code to be overlaid. The best guideline is to leave the lower 8 bits of the

existing overlay area the same and only change the upper 8 bits. For instance, if the

overlay area is default at FFCO, the user shouldn't change it to CFFO if 0000 and up is

not emulation memory. The wisest choice would be to set it anywhere from CFOO to

CFCO. Keep the overlay in a single "page" of emulation memory.

LT ARG is set up so that if the user changes the overlay area, L TARG will also

automatically EMENABLE that 2K block of memory in addition to its regular run

space.

The HO screen shows the current location of the overlay area, reflecting either the

default area or the new one changed by :OVERLAY.

=OVERLAY will initialize the Unilab, then show the new settings. If the Unilab is

not hooked up, the re-configuration will still take effect. If you hit the CTRL-BRK keys

when the unit tries to initialize, then save the system, it will be re-configured the next

time the system is started up.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 21

MULTIPLE BREAKPOINTS

Up to 8 additional breakpoints can be set by using the SMBP command. The format

of this command is adr bp# SMBP so entering 234 2 SMBP will set breakpoint

number 2 to address 234:

234 2 SHBJ? (command entered by user to set breakpoint #2 at address 1234)

1 ---- 2 0234 3 ---- 4 ---- 5 ---- 6 ---- 7 ---- 8 ---- ok

Whenever SMBP is used, all 8 breakpoints are displayed. You can display the

breakpoints with DMBP . You can clear any single breakpoint by entering bp#

RMBP, or clear all 8 with CLRMBP.

678 4 SHBP (set another breakpoint at %5678, assigning it as multiple breakpoint #4)

1 ---- 2 0234 3 ---- 4 0678 5 ---- 6 ---- 7 ---- 8 ---- ok

468 5 SHBP (•• • and assign 115 at 2468)

1 ---- 2 0234 3 ---- 4 0678 5 0468 6 ---- 7 ---- 8 ---- ok

2 2MBP ok (Remove breakpoint #2)

~ (display all current multiple breakpoints)

1 ---- 2 ---- 3 ---- 4 0678 5 0468 6 ---- 7 ---- 8 ---- ok

Use the SMBP command to set all but one of the breakpoints, then use RB or GB

to set the final breakpoint. The breakpoints set with SMBP are "sticky", unlike the

breakpoint set by RB or GB . They remain set even after you are stopped at a

breakpoint. You can use RMBP to clear the breakpoint you are stopped at and then

use RB or GB again.

You can use N after the breakpoint to single step, but it will automatically clear all

breakpoints. Using commands which start t~e analyzer such as S, STARTUP, or

NOW? will also clear all breakpoints. You can use DMBP to check the settings.

Before you decide to use multiple breakpoints, give some thought to the possibility

of using the analyzer to do the same job. Generally the analyzer is a faster, more

efficient tool for finding errors in program flow.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 22

ON-LINE ASSEMBLER

(UniLab systems only)

Using ASM or ASM-FILE you can assembie code directly into emulation ROM. You

can also assemble into target RAM after you have established breakpoint control. The

number base is always hexadecimal.

The on-line assembler uses the standard instruction set for this processor except that

we do not support the location counter symbol, "*". There must be at least one space

between opcode and operand. When using numbers, no suffixes or prefixes are

necessary since you are always in hexadecimal.

The assembler scans an instruction in the following order to solve any ambiguities.

1) register name

2) symbol

3) user defined registers

4) FORTH constant

5) number

If your instruction set uses register A and you wish to use A for a numeric value, you

should type in OA to avoid ambiguity.

Instructions can be up to 40 characters long excluding spaces. Arithmetic expression

can be 30 characters long. Symbols are limited to 16 bit numbers.

When ASM is invoked, it sets the variable for origin. Origin is the address used by M

and MM command. You can type 100 ASM and even if there is a parse error, the

origin will still be set to the new value.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 23

8051 Instruction Set

* ACAL pp INC DPTR MOVEX A,@Rl
A CALL pp reg MUL AB
ADD A, #nn nn NOP

A,@RO JBC nn,rr ORL A,#nn
A,@Rl JB nn,rr A,@RO
A, reg JC rr A,@Rl
A,nn JMP @A+DPTR A, reg

ADDC A,#nn JNB nn,rr A,nn
A,@RO JNC rr C,/nn
A,@Rl JNZ rr C,nn
A; reg JZ rr nn,#nn
A,nn + LCAL nnnn nn,A

AJMP pp LCALL nnnn POP nn
ANL A, #nn LJMP nnnn PUSH nn

A,@RO MOV @RO,#nn RET
A,@Rl @Rl,#nn RETI
A, reg @RO,A RL A
A,nn @Rl,A RLC A
C,/nn @RO,nn RR A
C,nn @Rl,nn RRC A
nn,#nn A,#nn SETB c
nn,A A,@RO nn

CJNE @RO,#nn,rr A,@Rl SJMP rr
@Rl,#nn,rr A, reg SUBB A,#nn
A,#nn,rr A,nn A,@RO
A,nn,rr C,nn A,@Rl
reg,#nn,rr DPTR,#nnnn A, reg

CLRA reg,#nn A,nn
CLRC reg,A SWAP A
CLR nn reg,nn XCH A,@RO
CPL A nn,#nn A,@Rl

c nn, @RO A, reg
nn nn,@Rl A,nn

DA A nn,A XCHD A,@RO
DEC @RO nn,C A,@Rl

@Rl nn,reg XRL A,#nn
A nn,nn A,@RO
reg MOVC A,@A+DPTR A,@Rl
nn A, @A+PC A, reg

DIV AB MOVX @DPTR,A A,nn
DJNZ reg,rr @RO,A nn,#nn

nn,rr @Rl,A nn,A
INC @RO A,@DPTR

@Rl A,@RO * same as ACALL
A + same as LCALL

#nn 8-bit immediate
nn 8-bit number
nnnn 16-bit number
rr 8-bit relative address
pp 11-bit page address
reg RO through R7

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 24

On-Line Assembler Error Messages

FILE ACCESS ERROR -- Assembler cannot find the table file. The table file has a

"8051. TBL" file extension. The assembler expects the table file to be in the directory

where ORION is set to. Have you renamed the table file?

PARSE ERROR -- Check instruction set to make sure you have right syntax. If you are

using symbols, make sure they are defined. (Try typing in the symbol name. If "not

recognized", the symbol is not defined.) Maybe the instruction or arithmetic expression

is too long.

NOT ENOUGH MEMORY -- Assembler cannot allocate a large enough segment to read

in the table file. Free up some memory using =HISTORY or :SYMBOLS.

BAD TABLE FILE --The table file is corrupted. Copy "8051.TBL" file from your

master diskette.

CAN'T R/W NON-EMULATED ADDRESS WITHOUT WORKING DEBUG CONTROL!

-- Assembler uses the M command to write to emulation memory or target RAM. Either

memory has to be enabled or DEBUG control must be established.

TARGET MEMORY NOT EMENABLED -- This is NOT an error message - just an indication

that DEBUG is doing the operation in target RAM rather than emulation memory.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 25

8051 DEMO PROGRAM

Below you will find a trace of a built-in program demonstrating the 8051 DEBUG

operation. The L TARG command enables memory and also loads the sample

program. The program simply loads known values into the registers, sets up the stack,

then increments a register for a while before jumping back to the start of the program.

Since this command also sets up all enables and DEBUG parameters correctly, you

should try using DEBUG with it if you have a problem with your own software. If

DEBUG works with the L TARG program but not with yours, try to examine the

differences between the two programs in light of the specific requirements for your

target system.

Text entered from the keyboard by the user is underlined, and comments are small

italicized remarks in parenthesis. All other display is from the Unilab program, and

should be similar to your display. After executing a command, the program usually

responds with an ok message.

Orion Instruments, Inc. - 8051 Application Notes
November 1 8, 1986 Page 26

(logon to UniLab system •..)

Uni Lab
II

Ver~ion 3.20

Copyright 1986
Orion Instruments

Redwood City1 CA

8051 disassembler installed - with DEBUG.
Emulator Memory Enable Status:

F =EMSEG
0 TO 7FF EMENABLE

ALSO F800 TO FFFF EMENABLE (note area enabled for overlay)

Initializing UniLab ...
Initialized

~ (Load in sample program, set up emulation memory)

Emulator Memory Enable Status:
F =EMSEG

0 TO 7FF EMENABLE (enable rom area)

ALSO F800 TO FFFF EMENABLE (enable overlay area)

STARTUP resetting (reset target, show first cycles of operation)

cy# CONT ADR DATA HDATA MISC
0 7F 0000 020030 LJMP 30 11111111 11111111
4 7F 0030 758168
8 7F 0033 7412
A 7F 0035 7834
c 7F 0037 7956
E 7F 0039 7A78

10 7F 003B 7B9A
12 7F 003D 7C04
14 7F 003F 04
16 7F 0040 04
18 7F 0041 04
lA 7F 0042 04
lC 7F 0043 04
lE 7F 0044 04
20 7F 0045 04
22 7F 0046 04
24 7F 0047 04
26 7F 0048 04
28 7F 0049 04
2A 7F 004A 04
2C 7F 004B 04

MOV 81,*68
MOVA, U2
MOV R0,*34
MOV Rl,#56
MOV R2,J78
MOV R3,#9A
MOV R4,it4
INC A
INC A
INC A
INC A
INC A
INC A
INC A
INC A
INC A
INC A
INC A
INC A
INC A

11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

(set stack ptr)

Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-5) ok

RESET 40 RB resetting (set a .breakpoint at address $0040, reset target
and run until we break to get DEBUG control)

A=13 PSW=Ol(cafbbv-P) R0=34 Rl=56 R2=78 R3=9A R4=04 R5=03 R6=FF R7=FF
DPTR= 0 SP=68 IE=60

0040 04 INC A (next step) ok

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 27

H (execute next program step, note A register is incremented)

A=l4 PSW=Ol(cafbbv-P) R0=34 R1=56 R2=78 R3=9A R4=04 R5=03 R6=FF R7=FF
DPTR= 0 SP=68 IE=60

0041 04 INC A (next step) ok

27 =R6 ok (Set register 6 to a new value of $2 7)

R (Display registers, note R6)

A=14 PSW=Ol(cafbbv-P) R0=34 R1=56 R2=78 R3=9A R4=04 R5=03 R6=27 R7=FF
DPTR= 0 SP=68 IE=60

0041 04 INC A (next step) ok

l'.RiH ok (switch DEBUG operations for external ram)

40 4F MDUMP target adr (not EMENABLEd) (look at external ram •• J

40 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
ok

40 ORG ok (start patching in external ram at $0040)

1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M target adr (not EMENABLEd)
(store values of 1,2,3 ••• 8 at $0040 to $0047)

40 4F MQPMP target adr (not EMENABLEd) (display results in external ram)

40 01 02 03 04 05 06 07 08 A2 A2 A2 A2 A2 A2 A2 A2

27 48 Ml 347 49 MH' target adr (not EMENABLEd)

$0049, A)

store a $27 at address $0048
and $0347 at address

40 4F MPQMP target adr (not EMENABLEd) (inspect results)

40 01 02 03 04 05 06 07 08 27 03 47 A2 A2 A2 A2 A2 •••••••• I .G

.iJ...Hl target adr (not EMENABLEd) 4 ok (look at just one byte at $0043)

44 MH? target adr (not EMENABLEd) 506 ok (inspect word at $0044, 45)

:r.BaH.!. ok (select emulation memory as normal memory area)

34 41 PR I 35 42 DR I ok (store $34 into register $41, store $35 intro register
$42)

41 DR? 34 ok (look at just one register)

40 4F MDQMP (dump it out, note inc a opcodes from emulation memory)

40 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 28

3Q lQ PM (disassemble $10 lines starting at address $30)

0030 758168 MOV 81,:#:68
0033 7412 MOVA, U2
0035 7834 MOV R0,*34
0037 7956 MOV Rl,#56
0039 7A78 MOV R2,i78
003B 7B9A MOV R3,#9A
003D 7C04 MOV R4,#4
003F 04 INC A

0040 04 INC A
0041 04 INC A
0042 04 INC A

0043 04 INC A
0044 04 INC A

0045 04 INC A
0046 04 INC A
0047 04 INC A ok

3Q lS l.l'.ABG .JMP ok (declare a symbolic name for address $30)

3Q 10 PM (disassemble again, now symbols are turned on,
and special function registers will get automatic symbolic labels)

LTARG.JMP 0030 758168 MOV SP, #68 (note SP label)

0033 7412 MOV A,#12
0035 7834 MOV R0,#34
0037 7982 MOV Rl,=#:56
0039 7A83 MOV R2,#78
003B 7B9A MOV R3,#9A
003D 7C04 MOV R4,#4
003F 04 INC A
0040 04 INC A
0041 04
0042 04
0043 04
0040 04

INC A
INC A
INC A
INC A

Orion Instruments, Inc.
November 18, 1986

- 8051 Application Notes
Page 29

NOBMT BESET SP DATA S resetting (use symbol label to set trigger spec)

cy#: CONT
-5 7F
-1 7F LTARG.JMP

3 7F
5 7F
7 7F
9 7F
B 7F
D 7F
F 7F

11 7F
13 7F
15 7F
17 7F
19 7F
1B 7F
10 7F
lF 7F
21 7F
23 7F

ADR DATA
0000 020030
0030 758168
0033 7412
0035 7834
0037 7982
0039 7A83
0038 7B9A
003D 7C04
003F 04
0040 04
0041 04
0042 04
0043 04
0044 04
0045 04
0046 04
0047 04
0048 04
0049 04

HDATA MISC
LJMP LTARG.JMP 11111111 11111111
MOV SP, *68
MOV A, U2
MOV RO, #34
MOV Rl,#82
MOV R2,#"83
MOV R3,#9A
MOV R4,#"4
INC A
INC A

INC A
INC A
INC A
INC A
INC A
INC A
INC A
INC A
INC A

11111111 11111111
11111111 11111111 (note cy# O

11111111 11111111 is in middle

11111111 11111111 of MV sp

11111111 11111111 instruction)

11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

25 7F 004A 04 INC A 11111111 11111111
27 7F 0048 04 INC A 11111111 11111111
Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-5

B (we're still stopped at a breakpoint, let's see where •••)

A=14 PSW=Ol(cafbbv-P) R0=34 R1=56 R2=78 R3=9A R4=04 R5=03 R6=FF R7=FF
DPTR= 0 SP=68 IE=60

0041 04 INC A (next step) ok

PSW R? 1 ok (examine individual special function registers •..)

.s.f_R1 68 ok

lL.R1 60 ok

PCON R? FF ok

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 30

(here's a trace of the 80C51 piggyback version)

Uni Lab
II

Version 3.20

80C51 disassembler installed - with DEBUG.
Emulator Memory Enable Status:

F =EMSEG
0 TO FFF EMENABLE

Copyright 1986
Orion Instruments

Redwood City, CA

~ (note differences from 8051 non-piggyback version)

Emulator Memory Enable Status:
F =EMSEG

0 TO FFF EMENABLE (entire 4K block enabled for piggyback rom)

S~!BTUP resetting (only difference in disassembler listing is in CONT
column)
{from top of buffer)
cy* CONT ADR DATA HDATA MISC

0 3F 0000 020030 LJMP 30 11111111 11111111 (note control

4 3F 0030 758168 MOV 81,#68 11111111 11111111
8 3F 0033 7412 MOV A,U2 11111111 11111111
A 3F 0035 7834 MOV RO, *34 11111111 11111111
c 3F 003/ 7956 MOV Rl,#56 11111111 11111111
E 3F 0039 7A78 MOV R2, #78 11111111 11111111

10 3F 003B 7B9A MOV R3, *9A 11111111 11111111
12 3F 003D 7C04 MOV R4,f4 11111111 11111111
14 3F 003F 04 INC A 11111111 11111111
16 3F 0040 04 INC A 11111111 11111111
18 3F 0041 04 INC A 11111111 11111111
lA 3F 0042 04 INC A 11111111 11111111
lC 3F 0043 04 INC A 11111111 11111111
lE 3F 0044 04 INC A 11111111 11111111
20 3F 0045 04 INC A 11111111 11111111
22 3F 0046 04 INC A 11111111 11111111
24 3F 0047 04 INC A 11111111 11111111
26 3F 0048 04 INC A 11111111 11111111
28 3F 0049 04 INC A 11111111 11111111
2A 3F 004A 04 INC A 11111111 11111111
2C 3F 0048 04 INC A 11111111 11111111
PgDn {trace resume) Home (top) n TN (from step n) T (from n=-5

BESET 40 BB resetting (operation is the same as 8031)

A=13 PSW=Ol(cafbbv-P) R0=34 R1=56 R2=78 R3=9A R4=04 R5=38 R6=0A R7=DD
DPTR= FOO SP=68 IE=60

0040 04 INC A (next step) ok

li
A=14 PSW=Ol(cafbbv-P) R0=34 R1=56 R2=78 R3=9A R4=04 R5=38 R6=0A R7=DD

DPTR= FOO $P=68 IE=60
0041 04 INC A (next step) ok

27 =RS ok

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 31

column)

R
A=14 PSW=Ol(cafbbv-P) R0=34 Rl=56 R2=78 R3=9A R4=04 R5=27 R6=0A R7=DD

DPTR= FOO SP=68 IE=60
0041 04 INC A (next step) ok

li
A=l5 PSW=Ol(cafbbv-P) R0=34 R1=56 R2=78 R3=9A R4=04 R5=27 R6=0A R7=DD

DPTR= FOO SP=68 IE=60
0042 04 INC A (next step) ok

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 32

TROUBLESHOOTING HINTS

if YOU HAVE EMULATION PROBLEMS

if your target system doesn't work normally under emulation; it probably means that

you haven't properly enabled the emulation. If you enter STARTUP and look at the

very first location to be read (location 0 on the 8051 µprocessor) you can see if the

correct data is being presented to the processor. For example, in the trace below the

program blows immediately because the data read at location O is FF.
-1 7F 0000 FF interrupted 11111111 11111111

0 7F 0001 FF interrupted 11111111 11111111

We can find out what is actually stored at location 0000, 1 by entering 0 MM?. If it is

something other than FF the emulator must not be enabled for location 0000.

Remember that the enable is a 20-bit address. The F in column 2 of the trace shows

the hex value of A 19-A 16 to be F. This is the normal case for 8-bit µprocessors where

A 19 through A 16 are not connected, so they float high. It is therefore necessary that

you enter F =EMSEG before making any EMENABLE statements. (Note that there

must be a space after the F but not after the = .) This command sets the value for the

high order address bits A 19 to A 16 which will allow the emulation memory to be

enabled. You can then enable location 0000 by entering 0 EMENABLE or 0 TO

7FF EMENABLE .

IF YOU HAVE ANAL VZER PROBLEMS

If you get a "NO ANALYZER CLOCK" message when you try STARTUP it may

mean that your processor is executing a HALT instruction. If you enter TD (dump

UniLab trace buffer) you can sometimes see the first cycles that did execute to

determine why the processor halted before the trace buffer was full. Use an

oscilloscope to check that the processor is indeed producing a clock. The UniLab

clock logic is shown on the analyzer cable diagram and in the UniLab manual. Most

target systems will confine the address decoding to the Chip Enable signal and put a

memory read strobe on Output Enable. On systems where this is not done you may

have to disconnect from the Output Enable line on the Emulator Cable (which usually

picks up the system Output Enable at the ROM socket) to a vatid system Output Enable

somewhere else on the target board.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 33

IF YOU HAVE DEBUG PROBLEMS

The 8051 DEBUG package includes a resident test program which can be loaded

by entering L TARG. Since this command also sets up all enables and DEBUG

parameters correctly, you should try using DEBUG with it if you have a problem with

your own software. If DEBUG works with the LTARG program but not with yours, try to

examine the differences between the two programs in light of the specific requirements

for your target hardware. Look closely at the startup trace, especially the addresses

and the contents of memory at those addresses. The trace display is a true "snapshot"

of the bus activity and if an address line is connected wrong, or data is wrong, the

display can be a very effective diagnostic aid in getting your target system up and

running.

If nothing happens when you try to set a breakpoint it may mean that that address is

never reached in the program. Press any key to stop the trigger search, then try a

breakpoint closer to the (reset) beginning of the program. Remember that the first

breakpoint must be in emulated memory. If the program is really reaching the

breakpoint you should be able to trigger by entering RESET n AS where n is your

breakpoint address.

If your first breakpoint results in a "NG! ... " message, it means that the proper trace

was not obtained after trigger. Usually this means one of the following:

1. The target system stack is not initialized or not working properly. (Look at the trace

of a push & pop execution to be sure that the data read back is the same as what

was written.--data not valid for piggyback, though.)

2. One or more of the target address lines are not connected or working.

3 .. One or more of the CONT inputs (C7, C6, etc.) are not connected properly. The one

that indicates data direction (read verses write) is particularly important.

4. The overlay area used by DEBUG is not EMENABLEd.

5. Target memory is getting on the bus in conflict with the emulator in the overlay area.

6. RESET from the UniLab is not resetting the target. Check th~ RESET pin of the

target µp to see that it really is going low when you type STARTUP (or hit F9)

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 34

HOW DEBUG WORKS
DEBUG makes use of the Unilab's analyzer and idle register hardware to allow all

of the normal functions of a processor emulator to be done with universal hardware.
When you enter RESET adr RB an LCALL is placed at adr and the idle register is
enabled with trigger set for the breakpoint address. A small routine for saving the
interrupt status and disabling interrupts is also patched in at the breakpoint address.

The processor then resets and the target program runs until it reaches the
breakpoint. Just after the patched-in breakpoint routine disables interrupts the idle
register begins holding the processor in a loop by feeding it jump instructions which
jump to themselves.

Next the memory contents of the overlay area is saved and a short program which
puts the contents of each register on the bus is loaded into the overlay area. The
analyzer is started again. It releases the idle loop and allows the register saving
program to execute. This program ends in a jump to the breakpoint address , again
triggering the idle loop. A host program then displays the register contents in a nice
formatted display based on the analyzers trace of the register saving program.

When you are stopped at a breakpoint you can look at a trace of what happened
before the breakpoint by entering TD. Note that the end of the trace shows the
breakpoint routine, idling, then the register save routine. The top of the trace buffer may
have old trace information in it but the region before the breakpoint is correct. (Note
that some versions filter the trace severely enough that the register saving routine will
not disassemble correctly.)

You can use the analyzer to observe a breakpoint in action by doing the following:
1. Load your program or enter L TARG to load the demo target program.
2. Enter

RSP' BPINT RESET n SBP n AS
where n is the desired breakpoint address. RSP' will disable the automatic patching of
the DEBUG routines to allow you to see the program as it goes into the UniLab DEBUG
routine. Remember to enable DEBUG again with RSP after you have used this
diagnostic.

The trace display should show the breakpoint occuring at cycle # 0. The breakpoint
should cause the program to go to the patched-in reserved memory area used by
DEBUG. If you enter RSTADR U. the correct address will be displayed. If a single
bit of the address disagrees with the correct one it probably indicates that that signal is
not correctly connected to the target processor. Also if the CONTrol bit which
distinguishes read from write cycles is wrong, DEBUG will not function properly.

The trace should also show the proper execution of the breakpoint routine, which
saves interrupt status, disables interrupts, possibly re-enables interrupts, then returns
to the instruction after the breakpoint. Note the read cycles after the return instruction
since they determine where the program will return to. You should see the same data
that was pushed at the breakpoint being read back. If the stack pointer is not pointing
to good working memory this return won't work properly causing DEBUG malfunction.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 35

8051 Disassembler/DEBUG Glossary

=A value ---

Change A register to value.

:DPTR value ---

Change DPTR to 16 bit value.

:IE value ---

Change IE register to value.

:OVERLAY address--

Set the DEBUG overlay area. This area must be in emulation ram.

:PSW value ---

Change PSW register to value.

:RO value ---

Change RO register to value.

:R1 value ---

Change R1 register to value.

:R2 value ---

Change R2 register to value.

:R3 value ---

Change R3 register to value.

:R4 value ---

Change R4 register to value.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 36

:RS value ---

Change RS register to value.

:R6 vaiue ---

Change R6 register to value.

=R7 value ---

Change R7 register to value.

ASM adr ---

Assemble into memory at adr. When ASM is invoked, it sets the origin at adr. If adr is

omitted, it will continue from the previous location used by ASM-FILE, ASM or ORG.

ASM-FILE adr start-scr# end-scr# ---

Assemble into memory at adr beginning from start-scr# and continuing to end-scr# .

When ASM-FILE is invoked, it sets the origin at adr. If adr is omitted, it will continue

from the previous address used by ASM-FILE, ASM or ORG.

BPEX --- user-macro

Word to patch in user word macro into breakpoint display. The user-macro will be

executed each time DEBUG display appears.

BPEX2 --- user-macro2

Word to patch in user word macro #2 into breakpoint display.

BPINT (no parameters)

Initialization routine for setting up DEBUG vectors and saving overlay area.

BPTRIGADR --- adr

Address of software breakpoint vector. Can be displayed by typing BPTRIGADR U.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 37

OM adr n ---

Disassemble n lines from adr.

DR? adr ---

Display contents of internal ram at adr. (adr =Oto $FF, 80 to $FF not present in 8031

chip). Mainly useful for 8032 since R! will function identically on the range $00 to $7F.

DR! byte adr ---

Store byte to internal ram at adr. (adr = 0 to $FF, 80 to $FF not present in 8031

chip). Mainly useful for 8032 since R! will function identically on the range $00 to $7F.

EXEC opcode ---

Execute opcode from current breakpoint. This allows the user to execute a one byte

opcode once DEBUG control is established.

FETCH (no parameters)

Macro definition setting up CONTrol values for fetch cycles. Not available in

piggyback version

G adr ---

Set program counter to adr, release DEBUG control, let target resume execution.

GB adr1 adr2 ---

Set program counter to adr1, continue program execution, break at adr2 with display of

registers.

HO (no parameters)

Display help screen for 8051 disassembler/DEBUG.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 38

LTARG (no parameters)

Load sample target program, set up default MSEG, and default areas for emulation

memory. This program is included to help the user in setting up the target system. The

display of the L TARG program should help in anaiyzing difficultias when running the

disassembler/DEBUG operating on the target system the first time.

LP (no parameters)

Go around a loop one time. You must have DEBUG control at a location within a loop

that is going to execute at least one more time. This command should not be executed

at the last instruction in the loop.

N (no parameters)

Execute next step in target program. This will not follow branches or jumps. Use of this

command will clear any breakpoints set be SMBP.

NMI (no parameters)

Establish immediate DEBUG control via the NMI connection to the target system.

Usually assigned to function key F4. After DEBUG control is established, this

command will cause the processor to single step, following jumps and branches.

NMIVEC (no parameters)

Enable NMI features by automatically patching vector into INTO or INT1 whenever

target system is reset and analyzer is started. This is the default condition. Type

NMIVEC' to disable this feature. NM and RI/SI will not be functional if this is

disabled.

R? n ---
Display contents of Special Function Register n. (n = $80 to $FF). Will also work on

internal ram from $00 to $7F.

R! byte n ---

Store byte to Special Function Register n. (n = $80 to $FF). Will also work on internal

ram from $00 to $7F.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 39

R (no parameters)

Display all registers at current breakpoint.

RB adr ---

Set breakpoint at adr, and gain DEBUG control when target address is reached.

Restore any previous breakpoint (except those set by SMBP). Display all registers,

flags, and next program step to be executed. DEBUG- control can only be established

by entering this command, the first breakpoint must be in emulation memory, and the

RB command must be used with RESET enabled as in RESET adr RB.

READ (no parameters)

Macro definition setting up CONTrol values for read cycles. Not available for

piggyback version

RI (no parameters)

Set up following trigger spec for SI. Usually used before trigger spec to use IRQ when

conditons are met. SI starts analyzer and when conditions occur, a breakpoint is set,

the target system is put into an idle loop, then DEBUG gains control.

RN AME (n ---)

Used to set the register name of register number n in the DEBUG display. Use is as

follows:

n RNAME USER-NAME

This sets register n to show USER-NAME in DEBUG display rather than Rn.

RSP (no parameters)

Set up automatic patching of DEBUG vectors when target system is reset and the

Unilab analyzer is started. The vectors are disabled by typing ASP'.

RSTADR --- adr

Address used by DEBUG for reserved and overlay area. Can be displayed by typing

RSTADR U.

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 40

RZ (no parameters)

Release DEBUG control, resume target program at the address of the current program

counter.

SI (no parameters)

Start the analyzer, send IRQ to target when current trigger spec is met and get DEBUG

control. Normally used with RI, and a trigger spec.

Example:

RI 40 DATA 20 ADR ALSO 1234 ADR SI

TRAM (no parameters)

Change mode to allow Unilab memory examine and modify words (MDUMP,

M?,MM?,M!, MFILL, etc.) to act on the 8051 emulation memory area. This is the

default mode. It is only useful only if the target system has external ram at the same

addresses as emulation rom.

TRAM' (no parameters)

Use memory examine/patch words on emulation memory. This is the default mode

and should normally be in effect before setting a breakpoint, or setting an address for a

DEBUG function (for G, GW, etc.) This command is only needed if these external ram

addresses are the same as emulated memory. Otherwise, DEBUG will always show

you emulated memory if the range requested is currently enabled.

WRITE { no parameters)

Macro definition setting up CONTrol values for write cycles. Not available in

piggyback version

Orion Instruments, Inc. - 8051 Application Notes
November 18, 1986 Page 41

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41

