
Optimizing System Design
for Rapid Development,
Fast Execution and Re-use

Application Note 1481

When developing a test system from scratch, the
test engineer has many choices of instrumentation
and software available. LAN- and USB-based rack
and stack instruments are making strides versus
their GPIB cousins. VXI and other cardcage-based
platforms remain viable too. Test Executives and
Microsoft’s® Visual Studio.NET development envi-
ronment, along with “helper” toolkits, are making
software development easier than ever. But there
are design choices that should be made up front
that can improve performance and make it easier
to adapt to new applications as they arise.

This application note explains instrumentation
speed/performance tradeoffs, test development
environments and architectural differences that
the test engineer needs to know about in order
to make the right decisions. To demonstrate the
thinking process for system design, a system
is designed from the ground up that can test an
Electronic Throttle Module (ETM) that responds
to a brake input and a PWM signal from an
accelerator and controls an electric motor which
in turn operates a butterfly valve.

CONTENTS

Overview .1

Introduction .2

Architecture .2

Composition of a Functional Test System 3

Computing .3

Instrumentation .4

Switching .9

DUT Power .9

Loads .10

Mass Interconnect .10

Test System Example .11

Architectural Choices .11

System Design .11

Write the Software .14

Conclusion .15

References .15

Microsoft is a U.S. registered trademark
of Microsoft Corporation.

2 INTRODUCTION

Functional Test Systems are a mixed blessing. The
ability to collect data on an electronic module and use
that data to improve a process or a design has made
it possible to have quality that was undreamed of just
a few years ago. But it has also resulted in pressure
to do more with less, faster. Today, the test engineer
must be able to create new systems fast, optimize
their speed of execution and adapt the system to
new modules rapidly. These are not trivial tasks. This
application note will delve into some concrete ways
to accomplish them.

ARCHITECTURE

A test system is essentially a group of subsystems that
work together to test a particular device or range of
devices. There are many decisions to be made for
every subsystem. It therefore pays to think about all
these issues before the first piece is ordered. Time
spent up-front defining the architecture of a system
saves much more time later. But without an under-
standing of the tradeoffs, the test engineer could end
up staring at a blank sheet of paper for a long time.

When an architect designs a house, what factors are
taken into account? Esthetics, safety, traffic flow, heat
gain, street view, size, snow load, cost, future expan-
sion, drainage, optimal location of rooms, and kitchen
use are typical things to be considered. Yet, when test
system hardware is designed, how often are things
thrown together and then beaten into submission?

Instead, many of the same things should be consid-
ered: esthetics, safety, I/O, heat, size, cost, future
expansion, optimal location of parts, and so on. Once
these decisions have been made, test requirements
can be used to further narrow down a system design
for the expected range of devices.

Unlike hardware, a problem of software is there are
too many possible solutions to a given problem. The
architect has to work hard to understand and inter-
pret what the software system should do. Sometimes
the architect must work through a long process of
exploration in order to determine what the precise
needs are. This can be the most difficult part of the
design to get right. Alan Cooper, a well known soft-
ware architect, says, “Real software architects do
effective planning-they do research, work with stake-
holders, distill what the real goals are. Then they
begin to synthesize a real solution and hold the hands
of the builders as they build.” [1]

A major consideration in test system architecture is
the expected use model of the system, and it’s gener-
ally different for the four stages of product testing:
R&D, Design Validation (DV), Production Validation
(PV), and Manufacturing Test. Each stage generally
requires more rigor than the last.

When the use model is understood and expressed pre-
cisely enough, the system architect switches into a
high level design mode. The hardware and software
must be partitioned into blocks or layers or compo-
nents that can work together to accomplish the desired
result. The way these parts are partitioned and the
way they communicate and interrelate has a huge
effect on the cost, performance, maintainability and
usability of the system. The architect also establishes
important standards and patterns for system-wide
behavior, such as how error handling will be done.

The key for both hardware and software design is
planning. It is far easier to optimize a well-organized
system than one that was thrown together in a hurry
to meet a deadline. Ironically, time spent planning
usually results in an overall time savings, because less
time is spent debugging software, or tracing down the
cause of faulty measurements.

Architecture

3

COMPOSITION OF A FUNCTIONAL TEST SYSTEM

A functional test system, whether it’s used for design
validation, production validation or manufacturing
test, is typically made up of six major components,
or subsystems:

• Computing (Computer, software and I/O)

• Instrumentation (All measuring and stimulus
instruments)

• Switching (Relays that interconnect system
instrumentation and loads to the DUT)

• DUT Power (Power to the Device Under Test)

• Loads (Parts connected to output pins on the DUT)

• Mass Interconnect (DUT-to-System wiring interface)

The job of the test engineer is to put these
subsystems together efficiently. But how?

Computing

Here are some of the issues one faces in the
computing subsystem:

• Embedded or external PC

• If external PC:

– Choice of control interface(s) – GPIB, LAN,
USB, IEEE-1394 (FireWire), MXI-2, MXI-3,
RS-232C

– How many PCI slots to use for instrumentation,
if any? What about serviceability of cards that
are plugged into the PCI bus?

• Graphical or Text-based software development
and runtime environment

• For manufacturing uses, buy a commercial test
executive or design one in-house

• Instrument Driver layers – VISA, SICL, Tulip
Drivers, Passport Drivers, VISA-COM, IVI-C,
IVI-COM, VXIPlug&Play (VXIPNP),
Visual Studio.NET Wrappers, C DLLs

• Operating System (O/S) versions and upgrades

• Application software upgrades

• Licensing

• IT support

• Data logging software – Excel, Access,
XML, proprietary

• Enterprise connectivity

• And many more

How does the test engineer choose reasonable solu-
tions to these problems? This paper will not attempt
to address all of these. Suffice it to say that there are
many things to think about that may not be immedi-
ately obvious. However, a few of the most pressing
issues are worthy of a closer look.

A major concern with the use of a PC in a test system
is whether or not to use an embedded PC, i.e., one
that fits inside an instrumentation cardcage, or one
that is external and is cabled to the instrumentation.
At first glance, the embedded PC seems like a good
choice. It fits inside an existing cage, so rack space is
used efficiently, and it is directly connected to the
backplane, so data transfer speeds are excellent.
Unfortunately, embedded PCs cost a lot more than
external ones and do not have the room necessary to
hold some modern peripherals. They also do not tend
to keep up with the latest PC technology, so they are
often a generation behind in processor type and
speed. Additional money can be saved by using instru-
ments that do not require special interface cards,
since a PC that has industry standard interfaces like
USB, LAN and FireWire built-in can be purchased
from many sources. This can also save money when
it comes to support, since the PC will not have to be
opened to service vendor-specific interface cards.

Another major consideration is the choice of software.
As software evolves, old code breaks. That’s a fact of
life. A simple O/S upgrade could shut a line down
while the test engineer figures out why the application
software isn’t working right anymore. Even within the
Microsoft Windows environment, one has a choice of
Windows NT, Windows 2000 or Windows XP. Patches
for these O/Ss are issued fairly often. One must be
sure that the O/S, the Application Development
Environment, the hardware drivers and other related
software continue to work together as they evolve.
It is wise to have a strategy, worked out with the IT
department, for evaluation of software upgrades.

Finally, the application development and runtime
environments are critical choices. Graphical languages
are great for R&D and Design Validation (DV), but
they can become cumbersome in manufacturing
because of the unavoidable complexity of the test
plan. In manufacturing, it is easiest to use a Test
Executive. This is a program that helps create and

Composition of a functional test system: Computing

4

sequence tests, run Graphical User Interfaces (GUIs)
for operators, log results, create failure and statistical
reports, interface to automation, and re-use previously
written measurement routines.

Microsoft’s new .NET framework provides a widely
supported environment for test and GUI development
that is rich in features and that integrates well with
instrumentation. The .NET Framework is basically a
very web-friendly set of services that allow applications
to share information via a language called XML
(Extended Markup Language), and it can be used with
Test Executives or used standalone via the Visual
Studio.NET (VS.NET) development environment.
VS.NET offers users a common development environ-
ment for Visual Basic, Visual C++ and the new Visual
C# (C-sharp) that can improve productivity markedly.
For example, the programming for the example test
system discussed later in this application note was
developed by a Visual Studio.NET novice (the author)
in about a week.

Instrumentation

Probably the hardest part of getting a test system to
work right is getting the instruments to take the read-
ings that are desired. There are five facets to this
problem, listed here in the order they are typically
encountered:

• Picking the right instruments

• Connecting the instrument to the PC
and installing drivers

• Making sure the right signal is actually
getting to the instrument

• Understanding the nuances of the
instrument to get it to take a good reading

• Getting the best speed out of the measurement

Picking the right instruments

The types of instruments needed vary widely depending
on the application. RF and optical testing is generally
very different from the low frequency testing

described in this application note. However, there are
several universal questions that must be answered in
order to select measurement and stimulus instrumen-
tation properly:

1. AC Stimulus — How many dynamic (AC) signals need
to be applied simultaneously? This determines
the number of channels of arbitrary waveform or
function/signal generator that are required. For
applications needing more than about four channels,
an instrumentation cardcage is the best solution.
For applications needing low cost, few channels
or isolated outputs, rack and stack instruments are
a better solution.

2. DC Stimulus — How many static (DC) signals need
to be applied simultaneously? This determines
the number of channels of DAC (digital-to-analog
converter) that will be required.

3. Measurements — What types of measurements need
to be made, and how many simultaneously? For
measurement of Volts, Ohms or Amps, a digital
multimeter (DMM) is needed. The accuracy and
precision that is required over the foreseen operating
temperature range of the system, as well as the
desired measurement speed helps determine the type
of DMM. Glitch detection requires a logic analyzer,
oscilloscope, digitizer or event detector. Waveform
analysis requires an oscilloscope or digitizer.

4. Protocols — Any special serial data protocols? This
determines the need for instruments to handle
things like CAN, ISO-9141, J1850, and many more.

5. Power Supplies — What power supply levels need to
be applied, and how many at once? Are leads long
enough that remote sense should be used? Choice of
supply can dramatically impact system throughput,
since waiting for power supplies to settle can be
one of the most time-consuming things in a typical
testplan. If possible, supplies should be chosen
that offer fast down-programming and accurate
output current measurement.

Composition of a functional test system: Instrumentation

5The number of measurements or stimulus that must
be applied at the same time helps to determine the
switching structure that must be used. Typically, a
4-wire bus is a good solution, as it allows the four
terminals of a DMM to be connected to the DUT for
4-wire Ohms measurements. It is also seldom neces-
sary to have more than two isolated instruments or
three single-ended instruments active at once, since
electronic modules usually contain built-in test routines
that can be activated programmatically to allow tests
on one function of the module at a time (called “DUT-
Assisted Test”). Figure 1 shows a switching structure
of this type. A fifth bus is also sometimes desirable
to allow four single-ended instruments to be used
with a common ground. Note too that “rows” can be
the vertical lines and “columns” the horizontal lines
or vice versa. Matrices can be configured in a variety
of ways. Relays are covered in more detail in the
“Switching” section.

Connecting the instrument to the PC and installing drivers

Assuming the cabling from the PC to the instruments
works as planned, the next problem is usually finding
a match between operating system, application soft-
ware and instrument driver. Although standards such
as VISA, VXIPlug & Play, IVI and IVI-COM have been
adopted, the resulting proliferation of acronyms has
become bewildering. Two of the largest providers of
instrumentation libraries, Agilent Technologies and
National Instruments (NI), worked together to try to
make their instruments work with each other’s soft-
ware. Figure 2 shows the resulting cross-connects
between NI’s “Passport” hardware drivers and

Agilent’s “Tulip” hardware drivers. The result is not
perfect, but it does indicate that it is possible to inter-
mix many types of interfaces – LAN, USB, RS-232C,
MXI, FireWire, GPIB – and still get the system to work.
As a result, it is not necessary to focus on just one
style of interface. The test engineer can now choose
the instrument that is right for the task at hand.

Making sure the right signal is actually getting
to the instrument

Common problems in test system design are ground
loops, sneak current paths, shorts, opens, signal loss
and stray capacitance. Two solutions to these prob-
lems, both of which should be used, are:

1. Create a diagnostic test plan. If the system is designed
with a relay matrix arrangement as shown in Figure 1,
it is fairly easy to route stimulus signals to measure-
ment devices, which verifies the relays, the cables and
the instruments. It is worth the time to provide a way
to run a good self-test on the system. This can help
find problem areas that prevent the right signal from
getting to the instrument, both during development
and after a system is put into regular use.

Composition of a functional test system: Instrumentation

Matrix
Relay Detail

DUT Pins

Instruments

COLUMN

ROW

Figure 1: A 4-wire instrument bus is a useful way to route instruments
to each other and to DUT pins

Figure 2: I/O layers in a typical test system with a mixture
of hardware and software vendors

VS.NET, VS, Ansi C, Labview, VEE

.NET Wrappers

NI-VXI-3.0 VXIPNP IVI-C IVI-COM

VISA-COM

NI-VISA (visa32.dll) Agilent VISA Shell (visa32.dll)

Agilent VISA (Agvisa32.dll)

Agilent SICL

NI "Passports" Agilent "Tulips"Tulip Interface

Remote VISA Serial

PXI GPIB-VXI NI-VXI
Passport
Interface

NI-488
Passport
Interface

GPIB-
PCI

USB Ethernet

GPIB-
VXI

FireWire
VXI

VXI-3.0
VXI-Pre3.0 488

Ethernet Ethernet-serial

O
ther "C" D

LLs

" VISA"
– OR –

.NET Interop

6 2. Use a "star" ground system. Instrument, power and
safety grounds should all be connected as close as
possible to the DUT’s power ground via a “star” mech-
anism as shown in Figure 3. This eliminates ground
loops and contributes to quiet readings. Note however,
that connecting grounds in this manner does not
allow for continuity measurements between ground
pins. The solution is to add relays to the ground pins
as shown in Figure 4. It is usually sufficient to pick the
highest current ground pin (Power Gnd in this case),
and reference all measurements to it once internal
continuity to the other ground pins has been verified.

Understanding the nuances of the instrument
to get it to take a good reading

It can take a while to figure out the right set of com-
mands to send to an instrument to get the fastest
reading or best source setup consistent with the
accuracy and resolution demanded by the test spec.
VXIPNP and IVI-COM drivers along with Microsoft’s
IntelliSense functionality (Figure 5) in the Visual
Studio.NET environment can make the task of
figuring out the right commands fairly easy.
IntelliSense is a command completion feature. The
programmer types the symbol name of the instrument,
such as “MyHp34401”, and then types a decimal point
(“dot”). At that point, IntelliSense pops up all the avail-
able functions that can be used with that instrument
along with a description of the function. If any parame-
ters are required, they are shown along with their data
types once the function is selected. Use of this feature
can make it unnecessary to consult instrument manuals
once the programmer is familiar with an instrument.

Getting the best speed out of the measurement

In order to make a test system execute fast, there are
several tenets that must be observed:

1. Use fast instruments. This is harder than it appears.
For example, a digitizer may be able to sample 1000
readings very fast, but if those readings are trans-
ferred to the PC over GPIB, it could take a long time.
A digitizer that can have a decision-making algorithm
downloaded into it could allow a simple go/no-go
result to be sent back to the PC, which would make
GPIB a reasonable option and may save money over a
cardcage-based solution. However, it takes extra effort
to create and download a decision algorithm into an
instrument, which may increase development time
as well as “first-run”time of the test program. Also,

Composition of a functional test system: Instrumentation

Figure 3: Star ground minimizes noise and eliminates
ground loops.

Instrument
Commons

PS

PS-Rem Sense

Earth Ground

Digital Ground

Analog Ground

RF Ground

Power Ground

Other Commons

Test System DUT

Star Ground

Figure 4: Star ground with switching through General Purpose (GP) relays to
allow continuity tests. DMM path for a 4-wire Ohms measurement between
Analog and Digital Ground is shown in bold.

Analog Gnd

Digital Gnd

RF Gnd

Power Gnd

-- Sense

--

+ Sense
+

DMM Hi
DMM Sense Hi

DMM Lo
DMM Sense Lo
"DUT Common"

DUT

GP Relays

Power Supply

Star Ground

Other
System

Grounds

Reed Relay Matrix

Figure 5: IntelliSense in the VisualStudio.NET environment helps to quickly
discover available instrument commands.

IntelliSense Help

Composition of a functional test system: Instrumentation

7inside an instrument the readings will be analyzed by
a much slower processor than the one in the PC, so
this must be factored in as well.

It is also important to look hard at the instrument speci-
fications. Often a measurement speed specification is
related to the speed per reading when thousands of
samples are taken, which is a data acquisition use
model. With a functional test model, it is far more
common to close some relays, take a measurement,
open those relays and move on to another measure-
ment. In such a case, the DMM’s single-sample reading
speed is most important and is dramatically slower
than the fastest possible multi-sample reading speeds.
Measurement speed without taking switching into
account is shown in Figure 6A and 6B. When viewed
on the same scale, as shown in Figure 6C, it is evident
just how big this difference is. At higher resolutions
(5.5 and 6.5 digits), single-sample readings are faster
with PXI DMMs than with GPIB DMMs. However, when
relay times are taken into account, the total speed of
the readings for both types of DMMs is generally less
than 10/sec, so such readings tend to be done only
when the extra resolution is absolutely necessary.
The resulting smaller number of measurements taken
at high resolution makes their contribution to overall
test time less of a factor.

2. Minimize instrument state changes. Voltage, current
and resistance measurements are so common that
manufacturers have expended a lot of effort making
the measurements as fast as possible. But even after
one chooses a fast DMM and a fast interface, random
range and function changes can still interfere with

fast tests, as these are still relatively slow. To compen-
sate for this, tests should be ordered such that AC and
DC readings on the same instrument are not inter-
mixed. It is also helpful to pick a range that gives the
needed resolution for most measurements and then
keep it there. Autozero should be set to "once" or "off",
as it doubles the measurement time. (The execution
time of a production test program at one manufactur-
ing site was once improved from 90 seconds to
60 seconds merely by changing autozero from "on"
to "once"!) This should only be done, however, if the
temperature drift in the system is minimal. Otherwise,
an autozero should be performed periodically.

3. Use fast I/O. It’s sometimes thought that GPIB is
slow and LAN is fast. But is this really true? Tests
indicate that the extra overhead of all the layers of
LAN and VISA actually make LAN slower than or
comparable to GPIB unless a lot of data are being
transferred. For the typical transactional model of
electronic functional test, LAN may not be the best
choice for measurement instruments, though it can do
nicely for stimulus and power supplies where frequent
transfer of a lot of data is not usually required. LAN
tends to run at its fastest if a direct socket connection
is made. It is also useful when remote access to an
instrument is required, because instruments with
LAN interfaces can have built-in web servers.

Figure 6: 4.5-digit transactional measurement speed of a GPIB and PXI DMM. “C” is a combination of A and B shown on the same scale.

DMM Multi-Sample
Measurement Speeds
(readings / sec)

No Switching

5000

GPIB

4.5 Digits

PXI

4000

3000

2000

1000

0

DMM Single-Sample
Measurement Speeds
(readings / sec)

No Switching

140

GPIB

4.5 Digits

PXI

120

80
100

60
40
20
0

DMM
Measurement Speeds
(readings / sec)

No Switching

5000

GPIB

4.5 Digits Single-sample
4.5 Digits Multi-sample

PXI

4000

3000

2000

1000

0

6A: 6B: 6C:

8 USB is about 3x faster than GPIB. FireWire is about
4x faster than 100Mbit LAN, so it is the best choice
for a connection to VXI. MXI is faster yet, but requires
a proprietary interface card in the PC. Table 1 shows
the relative speeds for various operations for a stimu-
lus instrument having GPIB, USB and LAN interfaces
[2]. The instrument’s internal speed clearly domi-
nates setup changes, making I/O choices seem moot,
but download speeds get much better with LAN and
USB when large amounts of data are involved.

4. Use relays wisely. Reed relays are excellent choices
to connect measurement instruments and low-current
stimulus to the DUT. They are very fast (typically
about 0.5 to 1.0 ms), although they can have a higher
thermal offset voltage than armature relays. Armature
relays (which typically switch in 10-20 ms) should be
used for higher current loads, and tests that use them
should be grouped so that they can stay connected as
long as possible.

5. Don’t use an oscilloscope to do a digitizer’s job.
Oscilloscopes are slow and have generally poor (8-bit)
resolutions, although they have high bandwidth.
Digitizers acquire data fast and have good (14-bit) res-
olution. Sometimes a DMM can be used as a digitizer.
The point is, instrumentation should be chosen based
on the required accuracy and resolution first, and the
resulting list of instruments narrowed based on execu-
tion speed. For R&D and DV applications, however, an
oscilloscope is a desirable addition, especially when
debugging the digitizer. Since oscilloscopes do not
require a trigger, they can show when a desired signal

is not present. Digitizers require a trigger, so it can be
a nuisance to figure out the correct settings unless
one can first see that the desired waveform is actually
making it to the instrument.

6. Don’t program carelessly with timing delays. The “delay”
statement has to be the most misused in all of test
programming. A slow test program is bound to have
many seconds of delays. It’s natural for test program-
mers to insert delays when debugging test routines,
but many are guilty of not removing them, or at least
of not optimizing them once the real cause of the
measurement problem is found. There are many ways
to solve this problem. The best is to use the sophisti-
cated tools that the system already has available. Most
instruments have triggering systems, or at least can
programmatically announce when they are done.
Instead of randomly tacking delays into a test routine,
the measurement should be analyzed for correctness
and the triggering system used to take a reading as
soon as the instruments are ready.

7. In a production environment, move repeatedly failing tests
to the front of a test program. If there are consistent
problems with a DUT, why wait until the rest of the
DUT has been tested before finding them? The system
should be allowed to find a DUT that is destined to
fail as soon as possible. Ideally, of course, such prob-
lems should be fed back into R&D or production engi-
neering so that they can be resolved permanently
rather than letting Manufacturing Test become a sort-
ing process for design or parts problems.

Relative I/O speeds from PC to Agilent 33220A Function Generator

NOTE: VXI-11 (non-socket) speeds are preliminary.
Data taken on HP Kayak XU800 with an 800 MHz processor running Windows XP.

Composition of a functional test system: Instrumentation

INTERFACE FREQUENCY
CHANGE

4K ARB 64K ARBFUNCTION
CHANGE

GPIB 4 ms 20 ms 330 ms99 ms

USB 1.1 5 ms 10 ms 185 ms100 ms

USB 2.0 5 ms 8 ms 100 ms99 ms

LAN-Socket
LAN-VXI-11

5 ms
6 ms

8 ms
14 ms

110 ms100 ms

Table 1: I/O Speed comparison for USB/LAN/GPIB capable instrument

9Switching

Though a test spec may not include a list of system
switches, it should. Switches are an integral part of any
test system and must be chosen carefully. Reed relays
and FETs are the best choice for high speed, and of
the two, reeds have higher voltage and current ratings.
A matrix arrangement of reed relays provides an excel-
lent way to allow any instrument to be connected to
any pin on the DUT, and it allows for easy expansion
as new instruments are added to the system or more
pins appear on the DUT. Armature relays are best used
for lower thermal noise and higher current.

It is often necessary to provide banks of general pur-
pose relays of varying current capability. Such relays
can be used to connect DUT inputs to ground or to a
supply, sometimes through resistors to simulate dirty
switches. They can also be used to provide ways of
disconnecting output loads in order to allow paramet-
ric tests on output transistors as shown in Figure 7.

While relay cards can be placed in a cardcage that is
intended for high performance instruments, it is an
enormous waste of valuable real estate. The high-
speed backplane in a modular cage is more suited
to the control of high-speed instruments, not simple
relays. If relays are placed in a separate box that’s
tuned for that purpose, it will be easier to expand the
high performance instrumentation while allowing
room separately for denser relay cards, more relay
cards or a bigger or newer switchbox. It also makes
a clearer delineation between the instrumentation
and the switching subsystems.

Placing the DUT interface panel (mass interconnect or
feed-through panels) in front of a switching subsystem
that has the plug-in cards facing the interface panel
accomplishes two goals: 1) It minimizes rack space
because the switchbox and mass interconnect are in
the same plane, and 2) It reduces wire length from the
switching to the DUT. If the chosen box has cards in
the rear, reverse-mount the switchbox using the rails
on the rear of the rack as shown in Figure 8. There are
two negatives to this approach: the front panel of the
switching instrument is not accessible from the front
of the system, and it can be harder to reach the plug-in
cards for service.

DUT power

DUT Power is an integral component of a test system
whether it is a simple bias supply or an advanced
system power source. Depending on the application,
DUTs can require anything from a few milliwatts to
many kilowatts. There are many power supplies avail-
able for providing power to a DUT. The task is more
complicated than simply picking the right voltage and
current level. A reliable system power source can
make testing the DUT a lot less frustrating by providing
a stable voltage source to power the DUT and built-in
measurement capability to verify DUT performance
under various operating conditions. Things to consider
when selecting a DUT power source are:

• Settling Time

• Output Noise

• Fast Transient Response

• Fast programming, especially down-programming
response

Composition of a functional test system: Switching / DUT power

LOAD

Switch in load
for powered
test

Current sense
resistor

Typical DUT
Output Driver

MOSFET
with Zener
protection

Measure
protection Zener

using current source

Measure
leakage current

using voltage source

R

DMM

DMM V

+

Figure 7: Switched loads allows parametric measurements. Figure 8: Rear mounting the switching subsystem
reduces rack space and minimizes cable length.

Rear mounted 3499A
switch subsystem

10 • Remote Sensing - compensate for voltage drop
in wiring

• Built-in, accurate, voltage and dc current
measurement or waveform digitization

• Small size – it’s possible to get linear performance
(low noise) out of a switcher these days, freeing up
much rack space

• Triggering options

• Programmable Output Impedance

• Multiple Outputs and Sequencing of Outputs

Loads

Many DUTs require components to be connected to
their outputs in order to adequately stress the unit.
These can take the form of resistive or reactive output
loads such as resistors, light bulbs or motors, or com-
plicated, simulated loads such as the dynamically
varying current in a camera battery. In most cases, it
is wise to provide a place to put such loads in a system,
such as a rack-mountable DC programmable load (the
size and shape of a power supply), or perhaps a slide-
out tray on which small, discrete loads can be mounted.
Such loads are often connected to the DUT through
relays to allow the DUT to be completely disconnected
from all test system resources. Figure 9 shows how a
DC programmable load can be connected to an arbi-
trary waveform generator to re-create the current
waveform previously captured from a battery.

Mass interconnect

It is tempting to leave off a mass interconnect when
using a functional test system in a design lab, since the
product design changes so much and the extra time to
rewire a fixture is not productive. It’s also not as likely
that identical measurements on large numbers of
devices will need to be made. Simple clip leads may
suffice, especially for small DUTs. However, in general
there are several good reasons for adding a relatively
expensive interface panel to a system. Here are a few
reasons, as stated by an automotive DV customer:

• "It provides a physical location for us to mount
interface components such as terminal blocks,
fuses, custom electronics/interfaces/conditioning,
etc. between the system and the DUT. We can either
mount these components to the interface frame or
to a shelf attached to the frame. Without the mass
interconnect, we would have to find somewhere
else to place these components."

• "With the use of terminal blocks on the [interface]
it allows us to very easily make wiring changes as
the DUT changes, allows easy connection of multiple
resources to common points, and provides easy test
connections when debugging...the system."

• "[It] provides a fast and robust means of changing
connections to different DUTs using the same
system."

Composition of a functional test system: Loads / Mass interconnect

DC power
source

(e.g. battery)

DC-powered product or circuit simulator
(e.g. digital camera current simulator)DUT

+

Output

–

Waveform
data

Waveform
signal

Electronic
load

+

In

–

Ext.
Prog.

In

Waveform
generatorOut Data

PC
Data

Figure 9: Method of simulation of battery current using programmable load.

11

TEST SYSTEM EXAMPLE

Architectural choices

To illustrate the concepts and issues discussed in this
application note, a test system will now be designed
from scratch that can be used to test low frequency,
low-medium pin count, low-medium power electronic
modules. These are typical of the automotive and
aerospace/defense industries.

Here are the architectural choices that will be made
for this test system:

• Use an external PC, not an embedded PC.

• Allow extra rack space. Allow about 20-30% extra
space to allow for future expansion.

• Mix modular and rack&stack (R&S) instrumenta-
tion. If there are any modular instruments, leave
either 20% expansion room in the cage, or room
in the rack for a bigger cage.

• Choose only industry standard interfaces.

• Place switching into a separate subsystem.

• Place the DUT interface panel (mass interconnect
or feedthrough panels) in front of the switching
subsystem.

• Use a matrix switching architecture for measure-
ment instruments and low current stimulus.

• Connect high current DUT pins to GP relays that
can be wired to power supplies and loads.

• Use Microsoft’s Visual Studio.NET software.

• Use a rack with a top-exhaust cooling fan.

System design

The architecture will now be applied to a real world
problem. The DUT is an Electronic Throttle Module
for an automotive throttle body. According to the
test specification, the following equipment will be
required to run the tests:

• Programmable Volt/Ohm/Ammeter

• Programmable Power Supply – 0-13.5V/0-10A

• Waveform Generator capable of Pulse Width
Modulation, 0-10VDC, 0-3 KHz

• Low current DC voltage source – 0-5VDC

• Waveform Analyzer

• CAN Interface

• Simulated or actual stepper motor load

The DUT has 14 pins total on 3 connectors.

Looking at various catalogs, and adopting the archi-
tecture specified earlier, the instruments shown in
Figure 10 are chosen: a rack-mountable arbitrary wave-
form/function generator, heavy duty power supply,
optional DMM, oscilloscope with CAN trigger module,
dedicated switching cardcage ("switchbox") and 4-slot
VXI cage. The VXI cage contains a digitizer, 16-chan-
nel DAC and high speed DMM. An RS-232C-based CAN
interface is located on a shelf behind the PC.

There are four GPIB instruments – the power supply,
switchbox, oscilloscope, and optional second DMM
(useful for debugging since it does not require use of
the PC). A USB/GPIB converter will be used for these
instruments. This means a slot in the PC for a GPIB
card will not be needed. It also provides access to
the USB in the event the GPIB cables and instruments
are eventually replaced with USB versions, thus
"future-proofing" the system.

Since there are some VXI instruments, a FireWire
interface will be used to control them. It’s a high-
speed industry standard interface.

The Arbitrary Waveform/Function Generator will be
connected to the PC’s LAN port using a "Crossover"
cable. Should more LAN-based instruments be added
in the future, a LAN hub or router can be added.
The use of LAN provides an opportunity to use the
instrument’s built-in web server to see and edit setup
information from a web browser.

Test system example: Architectural choices / System design

Figure 10: Functional test system

PC (CAN behind PC)

Optional 2nd DMM
(34401A)

Scope with CAN
trigger module (54642D)

Function generator
(33220A)

Switchbox (3499A)
located directly behind
interface panel

VXI cage (E8408A) with
FIreWire (E8491B),
Digitizer (E1563A),
DAC (E1418A) & DMM (E1411B)

Room for expansion

Power supply (6653A)

12 Many I/O interfaces will be in use – RS-232C,
FireWire, USB, GPIB, LAN. By using Visual
Studio.NET with IVI-COM and VXIPlug&Play instru-
ment drivers along with VISA I/O libraries, the control
program can communicate easily with instruments on
all of these interfaces. In fact, should an instrument’s
I/O interface ever change (say from USB to LAN),
all that will have to change in the program is the
initialization string. It is also possible to specify use
of an aliased name to eliminate the hard-coding of
I/O addresses.

Figure 11 shows how the instruments will be connected
to the switching subsystem. By using a matrix, any
instrument can be connected to any DUT pin, and
new instruments can be added easily by expanding
the number of rows and columns. All connections to
the DUT except for the CAN bus are switched, making
it possible to measure continuity from pin to pin.
A star ground is used to avoid ground loops.

A mass interconnect is an option for this system. This
particular DUT only has 14 pins, so an R&D or DV
environment may not require the flexibility provided
by such an interface. If the number of pins is small,
simply bringing them directly out of the switchbox to
DUT connectors is all that may be needed. In the
future, if the modules to be tested have more and
more pins, or if a place is needed to put other things
between the system and the DUT, a commercial mass
interconnect solution may be needed. A place directly
in front of the switchbox will therefore be provided
for such an interface.

A 5-wire measurement bus is chosen because it allows
all four leads of the DMM to be connected to different
pins on the DUT, making a 4-wire Ohms measurement
possible. By routing two matrix points to the same pin
on the DUT (as shown in Figure 11 on the Pot1 and
Pot2 Gnd pins), the resistance measurement will be
very accurate, since the remote sense location is made
right at the DUT. If two wires are not used, a 4-wire
Ohms measurement can still be made inside the relay
matrix, which in some cases may be good enough. The
fifth bus wire is connected permanently to the Star
Ground, and so it serves as a common reference for
any single ended devices, such as the oscilloscope, or
for floating devices that can be connected to ground,
such as the function generator, digitizer, DAC and
DMM. This 5-wire bus works in part because it is
rarely necessary to connect all sources and measure-
ment devices to the DUT at once. As is true of many
DUTs today, the DUT has built-in selftest capabilities
that are activated via the serial interface, in this case
a CAN interface. Thus, a command can be issued to,
say, internally measure the voltage being fed to the
Pot1 Wiper input. The DAC can generate a voltage and
feed it to that pin, and the resulting internal measure-
ment can be read back over the CAN bus. This tests
not only the Pot1 Wiper pin but the ability of the
internal processor to correctly measure pin voltages.

Multiple signal sources can be connected to the same
pin when using a matrix arrangement. It is important
not to accidentally short such sources together.
Switching routines should be carefully written to
either eliminate this possibility or offer warnings
when such conditions occur.

Test system example: System design

Figure 11: Block diagram of system

2

1
Pot2 Wiper
Pot2 Vref
Pot2 Gnd
Pot1 Wiper
Pot1 Vref
Pot1 Gnd

Brake

1a
2a

3a

4a
5a

6a
7a

1b
2b

3b

4b
5b

6b
7b

Accel

Pwr Gnd
VBatt

Mot--

Mot+

CAN Trigger Module CAN H/L

CTMCAN

DUT
Electronic

Throttle Module

Mass
Interconnect

FunctGen

Mixed Sig
Scope

VXI

Load Tray

PS

--
--Sense

+Sense
+

DAC

DMM

Digitizer

13If the DUT must be powered up and run in full func-
tional mode, it may be necessary to modify the test
system with either more instrument busses or with
more devices connected directly to the DUT. The test
engineer must carefully analyze the type of testing
that is required and plan accordingly.

Care must be observed when using the oscilloscope.
As an earth-referenced device, it requires the Star
Ground to be connected to Earth Ground. A GP relay
(1a/1b) was allocated to allow for this. In addition,
the oscilloscope can not be used to make measure-
ments of the stepper motor drive, which is a floating
H-bridge circuit. The oscilloscope can be used to
measure Mot+ or Mot– with respect to ground, but
can not be used to measure Mot+ to Mot–. This is
why an isolated digitizer is also required. In fact,
the oscilloscope is not really required for any meas-
urements. The benefit of including one, if cost is
not critical, is in fast manual debugging.

Not shown in the drawing is the optional DMM. That
DMM is used only for manual debugging. It could be
added to the switch matrix though, simply by adding
it to another set of 4 rows on the instrumentation
matrix. Other instruments can similarly be added
to the system easily.

Only one channel of DAC (High and Low leads) is
shown, although sixteen are actually available. It is
more typical to run all DAC lines to the mass inter-
connect so that individual channels can be connected
as needed to various DUT pins. However, in doing so
one loses the flexibility of routing a DAC to any pin.

It is helpful to make a wiring map that shows how the
DUT will connect to the system. Fig. 12 shows how to
make one using a spreadsheet. In the future, when it
becomes necessary to test a different DUT, all that
will have to be done is to create a new spreadsheet
and wire the new DUT accordingly. Since the system
has many resources available and they can be expand-
ed without changing the basic system architecture,
new DUTs are easily accommodated. The spreadsheet
is constructed with DUT pin names and numbers in
the rows and system resources in the columns. Since
Star Ground is physically located outside of both the
system and the DUT, it shows up in both a row and a
column. Wires are connected from the DUT pin num-
ber to the relevant system resource. For example, the
battery input, Vbatt (J1-1), has two wires attached to
it—one to GP relay 7b and one to GP relay 6b, which
puts remote sense of the power supply right at the
DUT. In addition to DUT pins, there are other internal
system connections that must be made, and they are
shown in a separate section of the spreadsheet.

Test system example: System design

Figure 12:
DUT wiring spreadsheet.

“Star Ground” appears in a row

and a column because it sits

between the DUT and the System

and is therefore external to both.

Connections are made from DUT

pins to each of the selected

System Resources using separ-

tate wires. Other connections are

made from the named resource

(e.g.; “PS+Sense”) to the

selected System Resources.

14

Write the software

In design and DV environments, engineers use both
graphical and text-based languages to develop tests.
In manufacturing, test executives are the norm, in
which test engineers often create sequences of tests
that have been developed either by themselves or by
others, in languages that can again be a mixture of
graphical and textual. In this example, we will use
Visual Basic and Visual C++ in Microsoft’s new Visual
Studio.NET development environment. This lets us
tap into the solutions provided by thousands of
engineers around the world who are creating not
only .NET itself, but also all the many tools that
work with .NET to make the test engineer’s job easier.

This test system and application software to test the
throttle module was developed in about one week
without ever consulting a manual (except for the CAN
box that did not have VISA/VXIPNP/IVI-COM drivers),
and all instruments were actually communicating in
the VB program within a few minutes of loading the
software. The RS-232C-based CAN box had to be man-
ually programmed by writing a C++ program that
made the various function calls to the box and then
declaring those routines in VB so that they could be
called from within VB. However, this was not as

painful as it was in the past because the .NET envi-
ronment lets the programmer mix C++, C# and VB
programs all in the same development environment.
That single improvement saved many hours of time.
Figure 13 shows an example of the code required to
initialize all the instruments and perform resets on
them. This code was generated automatically by
Agilent W1140A-TK1 T&M Toolkit software.

It is usually necessary to create a Graphical User
Interface (GUI) to make the task of executing a test
sequence easier. This is easily accomplished in Visual
Studio. Figure 14, (pg. 15), shows the GUI that was
created in Visual Basic.NET. Although there are
some changes in VB from Visual Studio 6.0, they did
not interfere with the quick creation of this code.
Programming in VB is straightforward. One draws the
text boxes and other objects on the screen by grabbing
them from a list and dropping them on the form,
then sizing them and editing their properties in the
Properties window. Double clicking on the object
creates a stubbed subroutine that will be executed
when the user clicks or selects that object.

Test system example: Write the software

Figure 13: Code to initialize instruments in Visual Basic.NET using VXIPlug&Play
and IVI-COM drivers. This code is automatically generated by “toolkit” software.

15

CONCLUSION

Designing a functional test system takes up-front
planning to minimize development time, maximize
throughput, and plan for future expansion. Minimizing
development time means picking software that has
good support and good Test & Measurement tools
and that is fast and easy to use. Maximizing through-
put is more complicated than simply choosing fast
instruments; the entire measurement cycle must
be considered. Designing a system that can accom-
modate more instruments, more switches and bigger,
more power-hungry DUTs in the future without a
complete re-design maximizes the re-usability of
a functional test system.

REFERENCES

[1] "Interview with Alan Cooper: The Future of
Software Development and the .NET Platform",

Fawcette Technical Publications,
www.ftpconferences.com/cooperu/future_interview.asp

[2] "Instrumentation I/O Enters a New Age: An
Introduction to GPIB, USB and LAN Interfaces",

B. Kolts,
Agilent Technologies, 2003

DATA SHEETS

3499A/B/C Switch Family
http://www.agilent.com/find/3499

34401A Digital Multimeter
http://www.agilent.com/find/34401a

33220A Function /Arbitrary Waveform Generator, 20 MHz
http://www.agilent.com/find/33220a

6653A 500W System Power Supply, 35V, 15A
http://www.agilent.com/find/6653a

54642D 2+16 Channel, 500 MHz Mixed-Signal
Oscilloscope
http://www.agilent.com/find/54642D

VXIbus products
http://www.agilent.com/find/vxi

Conclusion / References

Figure 14: Graphical User Interface developed in Visual Basic.NET

By internet, phone, or fax, get assistance
with all your test & measurement needs
Online assistance:
www.agilent.com/find/assist

Phone or Fax

United States:
(tel) 1 800 452 4844

Canada:
(tel) 1 877 894 4414
(fax) (905) 282 6495

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) (31 20) 547 2323
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115

Latin America:
(tel) (305) 269 7500
(fax) (305) 269 7599

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6836 0252
(e-mail) tm_asia@agilent.com

Product specifications and descriptions in this

document subject to change without notice.

© Agilent Technologies, Inc. 2004

Printed in the USA, January 27, 2004

5989-0154EN

www.agilent.com/find/emailupdates
Get the latest information on the products and
applications you select.

Pathways to Exceptional Test
Let Agilent help you streamline system
development and lower the true cost of test.
Our world-class measurement science and
support can get you accurate results in a hurry.
Agilent’s instruments are optimized for use in
systems, and our open industry software and
I/O standards take the hassle out of creating
test code. To see how you can get maximum
leverage from Agilent’s resources, go to
www.agilent.com/find/buildyourown

Was This Useful?
If you found the information in this application
note useful, feel free to visit these other Agilent
websites dedicated to helping the engineer who
solves difficult test problems: Visit
www.Agilent.com/find/appcentral
www.Agilent.com/find/connectivity
www.Agilent.com/find/adn

www.agilent.com

