
Programmer’s Guide

Publication number 01660-97024
First edition, November 1997

For Safety information, Warranties, and Regulatory

information, see the pages behind the Index.

 Copyright Hewlett-Packard Company 1992-1997
 All Rights Reserved

HP 1660C/CS/CP-Series Logic
Analyzers

ii

In This Book

This programmer’s guide contains general
information, instrument level commands,
logic analyzer commands, oscilloscope
module commands, pattern generator
module commands, and programming
examples for the HP 1660C/CS/CP-Series
Logic Analyzers. This guide focuses on
how to program the instrument over the
HP-IB and the RS-232-C interfaces. For
information on the Ethernet, refer to the
LAN User’s Guide.

Instruments covered by the

HP 1660C/CS/CP-Series

Programmers Guide

The HP 1660C/CS/CP-Series Logic
Analyzers are available with or without
oscilloscope measurement capabilities.
The HP 1660C-series contains only a logic
analyzer. The HP 1660CS-series contains
both a logic analyzer and a digitizing
oscilloscope. The HP 1660CP-series
contains both a logic analyzer and a
pattern generator. The HP
1660C/CS/CP-series differs from the HP
1660A/AS-series in having a hard disk
drive and optional Ethernet capability.

What is in the

HP1660C/CS/CP-Series

Programmer’s Guide?

The HP1660C/CS/CP-Series

Programmer’s Guide is organized in six
parts.

Introduction to Programming the
HP 1660C/CS/CP1

Programming Over HP-IB2

Programming Over RS-232-C3

Programming and
Documentation Conventions4

Message Communication
and System Functions5

Status Reporting6

Error Message7

Common Commands8

Instrument Commands9

SYSTem Subsystem10

MMEMory Subsystem11

INTermodule Subsystem12

MACHine Subsystem13

WLISt Subsystem14

iii

Part 1 Part 1 consists of chapters 1 through 7 and contains general
information about programming basics, HP-IB and RS-232-C interface
requirements, documentation conventions, status reporting, and error
messages.

If you are already familiar with IEEE 488.2 programming and HP-IB or
RS-232-C, you may want to just scan these chapters. If you are new to
programming the system, you should read part 1.

Chapter 1 is divided into two sections. The first section, "Talking to the
Instrument," concentrates on program syntax, and the second section,
"Receiving Information from the Instrument," discusses how to send queries
and how to retrieve query results from the instrument.

Read either chapter 2, "Programming Over HP-IB," or chapter 3,
"Programming Over RS-232-C" for information concerning the physical
connection between the HP 1660C/CS-Series Logic Analyzer and your
controller.

Chapter 4, "Programming and Documentation Conventions," gives an
overview of all instructions and also explains the notation conventions used
in the syntax definitions and examples.

Chapter 5, "Message Communication and System Functions," provides an
overview of the operation of instruments that operate in compliance with the
IEEE 488.2 standard.

Chapter 6 explains status reporting and how it can be used to monitor the
flow of your programs and measurement process.

Chapter 7 contains error message descriptions.

Part 2 Part 2, chapters 8 through 13, explains each command in the
command set for the overall logic analyzer. These chapters are organized
in subsystems with each subsystem representing a front-panel menu.

The commands explained in this part give you access to common commands,
instrument commands, system level commands, disk commands, and
intermodule measurement commands. This part is designed to provide a
concise description of each command.

Part 3 Part 3, chapters 14 through 27 explain each command in the
subsystem command set for the logic analyzer. Chapter 27 contains
information on the SYSTem:DATA and SYSTem:SETup commands for
the logic analyzer.

The commands explained in this part give you access to all the commands
used to operate the logic analyzer portion of the HP 1660C/CS/CP-Series

iv

system. This part is designed to provide
a concise description of each command.

Part 4 Part 4, chapters 28 through 36
explain each command in the subsystem
command set for the oscilloscope. The
information covered in Part 4 is only
relevant to models containing an
oscilloscope.

The commands explained in this part give
you access to all the commands used to
operate the oscilloscope portion of the
HP 1660CS-series system. This part is
designed to provide a concise description
of each command.

Part 5 Part 5, chapters 37 through 42
explain each command in the subsystem
command set for the pattern generator.
The information covered in Part 5 is only
relevant to models containing a pattern
generator.

The commands explained in this part give
you access to all the commands used to
operate the pattern generator portion of
the HP 1660CP-series system. This part
is designed to provide a concise
description of each command.

ACQuire Subsystem29

SFORmat Subsystem15

STRigger (STRace) Subsystem16

SLISt Subsystem17

SWAVeform Subsystem18

SCHart Subsystem19

COMPare Subsystem20

TFORmat Subsystem21

TRIGger {TRACe} Subsystem22

TWAVeform Subsystem23

TLISt Subsystem24

SPA Subsystem25

SYMbol Subsystem26

DATA and SETup Commands27

Oscilloscope Root Level
Commands28

v

Part 6 Part 6, chapter 43, contains program examples of actual tasks
that show you how to get started in programming the HP
1660C/CS/CP-Series Logic Analyzers. The complexity of your programs
and the tasks they accomplish are limited only by your imagination.
These examples are written in HP BASIC 6.2; however, the program
concepts can be used in any other popular programming language that
allows communications over HP-IB or RS-232buses.

vi

Index

CHANnel Subsystem30

DISPlay Subsystem31

MARKer Subsystem32

MEASure Subsystem33

TIMebase Subsystem34

TRIGger Subsystem35

WAVeform Subsystems36

Programing the Pattern Generator37

FORMat Subsystem38

SEQuence Subsystem39

MACRo Subsystem40

SYMBol Subsystem41

DATA and SETup Commands42

Programming Examples43

vii

viii

Part 1

General Information

1

Introduction to Programming
the HP 1660C/CS/CP

Introduction

This chapter introduces you to the basics of remote programming, and
is organized in two sections. The first section, "Talking to the
Instrument," concentrates on initializing the bus, program syntax and
the elements of a syntax instuction. The second section, "Receiving
Information from the Instrument," discusses how queries are sent and
how to retrieve query results from the mainframe instruments.

The programming instructions explained in this book conform to
IEEE Std 488.2-1987, "IEEE Standard Codes, Formats, Protocols, and
Common Commands." These programming instructions provide a
means of remotely controlling the HP 1660C/CS/CP-series logic
analyzers. There are three general categories of use. You can:

• Set up the instrument and start measurements

• Retrieve setup information and measurement results

• Send measurement data to the instrument

The instructions listed in this manual give you access to the
measurements and front panel features of the HP 1660C/CS/CP-series.
The complexity of your programs and the tasks they accomplish are
limited only by your imagination. This programming guide is designed
to provide a concise description of each instruction.

1–2

Talking to the Instrument

In general, computers acting as controllers communicate with the
instrument by sending and receiving messages over a remote
interface, such as HP-IB or RS-232-C. Instructions for programming
the HP 1660C/CS/CP-series will normally appear as ASCII character
strings embedded inside the output statements of a "host" language
available on your controller. The host language’s input statements are
used to read in responses from the HP 1660C/CS/CP-series.

For example, HP 9000 Series 200/300 BASIC uses the OUTPUT
statement for sending commands and queries to the HP
1660C/CS/CP-series logic analyzers. After you send a query, you can
read the response using the ENTER statement. All programming
examples in this manual are presented in HP BASIC.

Example This BASIC statement sends a command that causes the logic
analyzer’s machine 1 to be a state analyzer:

OUTPUT XXX;":MACHINE1:TYPE STATE" <terminator>

Each part of this BASIC statement is explained in this section.

1–3

Initialization

To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. BASIC provides a
CLEAR command that clears the interface buffer. If you are using HP-IB,
CLEAR will also reset the parser in the logic analyzer. The parser is the
program resident in the logic analyzer that reads the instructions you send to
it from the controller.

After clearing the interface, you could preset the logic analyzer to a known
state by loading a predefined configuration file from the disk.

Refer to your controller manual and programming language reference manual
for information on initializing the interface.

Example This BASIC statement would load the configuration file "DEFAULT " (if it
exists) into the logic analyzer.

OUTPUT XXX;":MMEMORY:LOAD:CONFIG ’DEFAULT ’"

Refer to chapter 11, "MMEMory Subsystem" for more information on the
LOAD command.

Example This program demonstrates the basic command structure used to program
the HP 1660C/CS/CP/ cp-series logic analyzers.

10 CLEAR XXX !Initialize instrument interface
20 OUTPUT XXX;":SYSTEM:HEADER ON" !Turn headers on
30 OUTPUT XXX;":SYSTEM:LONGFORM ON" !Turn longform on
40 OUTPUT XXX;":MMEM:LOAD:CONFIG ’TEST E’" !Load configuration file
50 OUTPUT XXX;":MENU FORMAT,1" !Select Format menu for machine 1
60 OUTPUT XXX;":RMODE SINGLE" !Select run mode
70 OUTPUT XXX;":START" !Run the measurement

Introduction to Programming the HP 1660C/CS/CP
Initialization

1–4

Instruction Syntax

To program the logic analyzer remotely, you must understand the command
format and structure. The IEEE 488.2 standard governs syntax rules
pertaining to how individual elements, such as headers, separators,
parameters and terminators, may be grouped together to form complete
instructions. Syntax definitions are also given to show how query responses
will be formatted. Figure 1-1 shows the three main syntactical parts of a
typical program statement: Output Command, Device Address, and
Instruction. The instruction is further broken down into three parts:
Instruction header, White space, and Instruction parameters.

Figure 1-1

Program Message Syntax

Output Command

The output command depends on the language you choose to use.
Throughout this guide, HP 9000 Series 200/300 BASIC 6.2 is used in the
programming examples. If you use another language, you will need to find
the equivalents of Basic Commands, like OUTPUT, ENTER and CLEAR to
convert the examples. The instructions are always shown between the
double quotation marks.

Introduction to Programming the HP 1660C/CS/CP
Instruction Syntax

1–5

Device Address

The location where the device address must be specified also depends on the
host language that you are using. In some languages, this could be specified
outside the output command. In BASIC, this is always specified after the
keyword OUTPUT. The examples in this manual use a generic address of
XXX. When writing programs, the number you use will depend on the cable
you use, in addition to the actual address. If you are using an HP-IB, see
chapter 2, "Programming over HP-IB." If you are using RS-232-C, see
chapter 3, "Programming Over RS-232-C."

Instructions

Instructions (both commands and queries) normally appear as a string
embedded in a statement of your host language, such as BASIC, Pascal or C.
The only time a parameter is not meant to be expressed as a string is when
the instruction’s syntax definition specifies block data. There are just a few
instructions that use block data.

Instructions are composed of two main parts: the header, which specifies the
command or query to be sent; and the parameters, which provide additional
data needed to clarify the meaning of the instruction. Many queries do not
use any parameters.

Instruction Header

The instruction header is one or more keywords separated by colons (:). The
command tree in figure 4-1 illustrates how all the keywords can be joined
together to form a complete header (see chapter 4, "Programming and
Documentation Conventions").

The example in figure 1-1 shows a command. Queries are indicated by
adding a question mark (?) to the end of the header. Many instructions can
be used as either commands or queries, depending on whether or not you
have included the question mark. The command and query forms of an
instruction usually have different parameters.

Introduction to Programming the HP 1660C/CS/CP
Device Address

1–6

When you look up a query in this programmer’s guide, you’ll find a paragraph
labeled "Returned Format" under the one labeled "Query." The syntax
definition by "Returned format" will always show the instruction header in
square brackets, like [:SYSTem:MENU], which means the text between the
brackets is optional. It is also a quick way to see what the header looks like.

White Space

White space is used to separate the instruction header from the instruction
parameters. If the instruction does not use any parameters, white space
does not need to be included. White space is defined as one or more spaces.
ASCII defines a space to be a character, represented by a byte, that has a
decimal value of 32. Tabs can be used only if your controller first converts
them to space characters before sending the string to the instrument.

Instruction Parameters

Instruction parameters are used to clarify the meaning of the command or
query. They provide necessary data, such as: whether a function should be
on or off, which waveform is to be displayed, or the search pattern. Each
instruction’s syntax definition shows the parameters, as well as the range of
acceptable values . This chapter’s "Parameter Data Types" section has all of
the general rules about acceptable values.

When there is more than one parameter, they are separated by commas (,).
White space surrounding the commas is optional.

Instruction Terminator

An instruction is executed after the instruction terminator is received. The
terminator is the NL (New Line) character. The NL character is an ASCII
linefeed character (decimal 10).

The NL (New Line) terminator has the same function as an EOS (End Of
String) and EOT (End Of Text) terminators.

Introduction to Programming the HP 1660C/CS/CP
Instruction Terminator

1–7

Header Types

There are three types of headers: Simple Command, Compound Command,
and Common Command.

Simple Command Header

Simple command headers contain a single keyword. START and STOP are
examples of simple command headers typically used in this logic analyzer.
The syntax is:

<function><terminator>

When parameters (indicated by <data>) must be included with the simple
command header, the syntax is:

<function><white_space><data><terminator>

Example :RMODE SINGLE<terminator>

Compound Command Header

Compound command headers are a combination of two or more program
keywords. The first keyword selects the subsystem, and the last keyword
selects the function within that subsystem. Sometimes you may need to list
more than one subsystem before being allowed to specify the function. The
keywords within the compound header are separated by colons. For
example, to execute a single function within a subsystem, use the following:
:<subsystem>:<function><white_space><data><terminator>

Example :SYSTEM:LONGFORM ON

To traverse down one level of a subsystem to execute a subsystem within
that subsystem, use the following:
<subsystem>:<subsystem>:<function><white_space>
<data><terminator>

Introduction to Programming the HP 1660C/CS/CP
Header Types

1–8

Example :MMEMORY:LOAD:CONFIG "FILE "

Common Command Header

Common command headers control IEEE 488.2 functions within the logic
analyzer, such as, clear status. The syntax is:
 *<command header><terminator>

No white space or separator is allowed between the asterisk and the
command header. *CLS is an example of a common command header.

Combined Commands in the Same Subsystem

To execute more than one function within the same subsystem, a semicolon
(;) is used to separate the functions:
:<subsystem>:<function><white
space><data>;<function><white space><data><terminator>

Example :SYSTEM:LONGFORM ON;HEADER ON

Duplicate Keywords

Identical function keywords can be used for more than one subsystem. For
example, the function keyword MMODE may be used to specify the marker
mode in the subsystem for state listing or the timing waveforms:

• :SLIST:MMODE PATTERN - sets the marker mode to pattern in the state
listing.

• :TWAVEFORM:MMODE TIME - sets the marker mode to time in the timing
waveforms.

SLIST and TWAVEFORM are subsystem selectors, and they determine which
marker mode is being modified.

Introduction to Programming the HP 1660C/CS/CP
Duplicate Keywords

1–9

Query Usage

Logic analyzer instructions that are immediately followed by a question mark
(?) are queries. After receiving a query, the logic analyzer parser places the
response in the output buffer. The output message remains in the buffer
until it is read or until another logic analyzer instruction is issued. When
read, the message is transmitted across the bus to the designated listener
(typically a controller).

You use query commands to find out how the logic analyzer is currently
configured. They are also used to get results of measurements made by the
logic analyzer.

Example This instruction places the current full-screen time for machine 1 in the
output buffer.

:MACHINE1:TWAVEFORM:RANGE?

To prevent the loss of data in the output buffer, the output buffer must be
read before the next program message is sent. Sending another command
before reading the result of the query will cause the output buffer to be
cleared and the current response to be lost. This will also generate a
"QUERY UNTERMINATED" error in the error queue. For example, when you
send the query :TWAVEFORM:RANGE? , you must follow that with an input
statement. In BASIC, this is usually done with an ENTER statement.

In BASIC, the input statement, ENTER XXX; Range , passes the value
across the bus to the controller and places it in the variable Range.

Additional details on how to use queries is in the section, "Receiving
Information from the Instrument" on page 1-15.

Introduction to Programming the HP 1660C/CS/CP
Query Usage

1–10

Program Header Options

Program headers can be sent using any combination of uppercase or
lowercase ASCII characters. Logic analyzer responses, however, are always
returned in uppercase.

Both program command and query headers may be sent in long form
(complete spelling), short form (abbreviated spelling), or any combination of
long form and short form.

Programs written in long form are easily read and are almost self-
documenting. The short form syntax conserves the amount of controller
memory needed for program storage and reduces the amount of I/O activity.

The rules for short form syntax are discussed in chapter 4, "Programming and
Documentation Conventions."

Example Either of the following examples turns on the headers and long form.
Long form:

OUTPUT XXX;":SYSTEM:HEADER ON;LONGFORM ON"

Short form:

OUTPUT XXX;":SYST:HEAD ON;LONG ON"

Introduction to Programming the HP 1660C/CS/CP
Program Header Options

1–11

Parameter Data Types

There are three main types of data used in parameters. They are numeric,
string, and keyword. A fourth type, block data, is used only for a few
instructions: the DATA and SETup instructions in the SYSTem subsystem
(see chapter 10); and the CATalog, UPLoad, and DOWNload instructions in
the MMEMory subsystem (see chapter 11). These syntax rules also show how
data may be formatted when sent back from the HP 1660C/CS/CP-series as a
response.

The parameter list always follows the instruction header and is separated
from it by white space. When more than one parameter is used, they are
separated by commas. You are allowed to include one or more white spaces
around the commas, but it is not mandatory.

Numeric data

For numeric data, you have the option of using exponential notation or
suffixes to indicate which unit is being used. However, exponential notation
is only applicable to the decimal number base. Tables 5-1 and 5-2 in chapter
5, "Message Communications and System Functions," list all available
suffixes. Do not combine an exponent with a unit.

Example The following numbers are all equal:

28 = 0.28E2 = 280E-1 = 28000m = 0.028K

The base of a number is shown with a prefix. The available bases are binary
(#B), octal (#Q), hexadecimal (#H), and decimal (default).

Example The following numbers are all equal:

#B11100 = #Q34 = #H1C = 28

You may not specify a base in conjunction with either exponents or unit
suffixes. Additionally, negative numbers must be expressed in decimal.

Introduction to Programming the HP 1660C/CS/CP
Parameter Data Types

1–12

When a syntax definition specifies that a number is an integer, it means that
the number should be whole. Any fractional part would be ignored,
truncating the number. Numeric parameters that accept fractional values are
called real numbers.

All numbers are expected to be strings of ASCII characters. Thus, when
sending the number 9, you send a byte representing the ASCII code for the
character "9" (which is 57, or 0011 1001 in binary). A three-digit number,
like 102, will take up three bytes (ASCII codes 49, 48 and 50). This is taken
care of automatically when you include the entire instruction in a string.

String data

String data may be delimited with either single (’) or double (") quotation
marks. String parameters representing labels are case-sensitive. For
instance, the labels "Bus A" and "bus a" are unique and should not be used
indiscriminately. Also pay attention to the presence of spaces, because they
act as legal characters just like any other. So, the labels "In" and " In" are
also two different labels.

Keyword data

In many cases a parameter must be a keyword. The available keywords are
always included with the instruction’s syntax definition. When sending
commands, either the long form or short form (if one exists) may be used.
Uppercase and lowercase letters may be mixed freely. When receiving
responses, upper-case letters will be used exclusively. The use of long form
or short form in a response depends on the setting you last specified via the
SYSTem:LONGform command (see chapter 10).

Introduction to Programming the HP 1660C/CS/CP
Parameter Data Types

1–13

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems on the same line by separating each command with a semicolon.
The colon following the semicolon enables you to enter a new subsystem.
The syntax is:

 <instruction header><data>;:<instruction header><data>
<terminator>

Multiple commands may be any combination of simple, compound, and
common commands.

Example :MACHINE1:ASSIGN2;:SYSTEM:HEADERS ON

Introduction to Programming the HP 1660C/CS/CP
Selecting Multiple Subsystems

1–14

Receiving Information from the Instrument

After receiving a query (logic analyzer instruction followed by a
question mark), the logic analyzer interrogates the requested function
and places the answer in its output queue. The answer remains in the
output queue until it is read, or until another command is issued.
When read, the message is transmitted across the bus to the
designated listener (typically a controller). The input statement for
receiving a response message from a logic analyzer’s output queue
usually has two parameters: the device address and a format
specification for handling the response message.

All results for queries sent in a program message must be read before
another program message is sent. For example, when you send the
query :MACHINE1:ASSIGN? , you must follow it with an input
statement. In BASIC, this is usually done with an ENTER statement.

The format for handling the response messages depend on both the
controller and the programming language.

Example To read the result of the query command :SYSTEM:LONGFORM? you can
execute this Basic statement to enter the current setting for the long form
command in the numeric variable Setting.

ENTER XXX; Setting

1–15

Response Header Options

The format of the returned ASCII string depends on the current settings of
the SYSTEM HEADER and LONGFORM commands. The general format is
<instruction_header><space><data><terminator>

The header identifies the data that follows (the parameters) and is controlled
by issuing a :SYSTEM:HEADER ON/OFF command. If the state of the
header command is OFF, only the data is returned by the query.

The format of the header is controlled by the :SYSTEM:LONGFORM ON/OFF
command. If long form is OFF , the header will be in its short form and the
header will vary in length, depending on the particular query. The separator
between the header and the data always consists of one space.

A command or query may be sent in either long form or short form, or in any
combination of long form and short form. The HEADER and LONGFORM
commands only control the format of the returned data, and, they have no
effect on the way commands are sent.

Refer to chapter 10, "SYSTem Subsystem" for information on turning the
HEADER and LONGFORM commands on and off.

Example The following examples show some possible responses for a
:MACHINE1:SFORMAT:THRESHOLD2? query:

with HEADER OFF:

<data><terminator>

with HEADER ON and LONGFORM OFF:

:MACH1:SFOR:THR2 <white_space><data><terminator>

with HEADER ON and LONGFORM ON:

:MACHINE1:SFORMAT:THRESHOLD2 <white_space><data><terminator>

Introduction to Programming the HP 1660C/CS/CP
Response Header Options

1–16

Response Data Formats

Both numbers and strings are returned as a series of ASCII characters, as
described in the following sections. Keywords in the data are returned in the
same format as the header, as specified by the LONGform command. Like
the headers, the keywords will always be in uppercase.

Example The following are possible responses to the MACHINE1: TFORMAT: LAB?
’ADDR’ query.

Header on; Longform on

MACHINE1:TFORMAT:LABEL "ADDR ",19,POSITIVE<terminator>

Header on;Longform off

MACH1:TFOR:LAB "ADDR ",19,POS<terminator>

Header off; Longform on

"ADDR ",19,POSITIVE<terminator>

Header off; Longform off

"ADDR ",19,POS<terminator>

Refer to the individual commands in Parts 2 through 4 of this guide for
information on the format (alpha or numeric) of the data returned from each
query.

Introduction to Programming the HP 1660C/CS/CP
Response Data Formats

1–17

String Variables

Because there are so many ways to code numbers, the HP
1660C/CS/CP-series handles almost all data as ASCII strings. Depending on
your host language, you may be able to use other types when reading in
responses.

Sometimes it is helpful to use string variables in place of constants to send
instructions to the HP 1660C/CS/CP-series, such as, including the headers
with a query response.

Example This example combines variables and constants in order to make it easier to
switch from MACHINE1 to MACHINE2. In BASIC, the & operator is used for
string concatenation.

 5 OUTPUT XXX;":SELECT 1" !Select the logic analyzer
10 LET Machine$ = ":MACHINE2" !Send all instructions to machine 2
20 OUTPUT XXX; Machine$ & ":TYPE STATE" !Make machine a state analyzer
30 ! Assign all labels to be positive
40 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’CHAN 1’, POS"
50 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’CHAN 2’, POS"
60 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’OUT’, POS"
99 END

If you want to observe the headers for queries, you must bring the returned
data into a string variable. Reading queries into string variables requires little
attention to formatting.

Example This command line places the output of the query in the string variable
Result$.

ENTER XXX;Result$

In the language used for this book (HP BASIC 6.2), string variables are case-
sensitive and must be expressed exactly the same each time they are used.

Introduction to Programming the HP 1660C/CS/CP
String Variables

1–18

The output of the logic analyzer may be numeric or character data depending
on what is queried. Refer to the specific commands, in Part 2 of this guide,
for the formats and types of data returned from queries.

Example The following example shows logic analyzer data being returned to a string
variable with headers off:
10 OUTPUT XXX;":SYSTEM:HEADER OFF"

20 DIM Rang$[30]
30 OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"
40 ENTER XXX;Rang$
50 PRINT Rang$
60 END

After running this program, the controller displays: +1.00000E-05

Numeric Base

Most numeric data will be returned in the same base as shown onscreen.
When the prefix #B precedes the returned data, the value is in the binary
base. Likewise, #Q is the octal base and #H is the hexadecimal base. If no
prefix precedes the returned numeric data, then the value is in the decimal
base.

Numeric Variables

If your host language can convert from ASCII to a numeric format, then you
can use numeric variables. Turning off the response headers will help you
avoid accidently trying to convert the header into a number.

Example The following example shows logic analyzer data being returned to a numeric
variable.
10 OUTPUT XXX;":SYSTEM:HEADER OFF"

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"
30 ENTER XXX;Rang
40 PRINT Rang
50 END

Introduction to Programming the HP 1660C/CS/CP
Numeric Base

1–19

This time the format of the number (such as, whether or not exponential
notation is used) is dependant upon your host language. In Basic, the output
will look like: 1.E-5

Definite-Length Block Response Data

Definite-length block response data, also referred to as block data, allows any
type of device-dependent data to be transmitted over the system interface as
a series of data bytes. Definite-length block data is particularly useful for
sending large quantities of data, or, for sending 8-bit extended ASCII codes.
The syntax is a pound sign (#) followed by a non-zero digit representing the
number of digits in the decimal integer. Following the non zero digit is the
decimal integer that states the number of 8-bit data bytes to follow. This
number is followed by the actual data.

Indefinite-length block data is not supported on the HP1660C/CS-series.

For example, for transmitting 80 bytes of data, the syntax would be:

Figure 1-2

Definite-length Block Response Data

The "8" states the number of digits that follow, and "00000080" states the
number of bytes to be transmitted, which is 80.

Introduction to Programming the HP 1660C/CS/CP
Definite-Length Block Response Data

1–20

Multiple Queries

You can send multiple queries to the logic analyzer within a single program
message, but you must also read them back within a single program message.
This can be accomplished by either reading them back into a string variable
or into multiple numeric variables.

Example You can read the result of the query :SYSTEM:HEADER?;LONGFORM? into
the string variable Results$ with the command:

ENTER XXX; Results$

When you read the result of multiple queries into string variables, each
response is separated by a semicolon.

Example The response of the query :SYSTEM:HEADER?:LONGFORM? with HEADER
and LONGFORM turned on is:

:SYSTEM:HEADER 1;:SYSTEM:LONGFORM 1

If you do not need to see the headers when the numeric values are returned,
then you could use numeric variables. When you are receiving numeric data
into numeric variables, the headers should be turned off. Otherwise the
headers may cause misinterpretation of returned data.

Example The following program message is used to read the query
:SYSTEM:HEADERS?;LONGFORM? into multiple numeric variables:

ENTER XXX; Result1, Result2

Introduction to Programming the HP 1660C/CS/CP
Multiple Queries

1–21

Instrument Status

Status registers track the current status of the logic analyzer. By checking
the instrument status, you can find out whether an operation has been
completed, whether the instrument is receiving triggers, and more.
Chapter 6, "Status Reporting," explains how to check the status of the
instrument.

Introduction to Programming the HP 1660C/CS/CP
Instrument Status

1–22

2

Programming Over HP-IB

Introduction

This section describes the interface functions and some general
concepts of the HP-IB. In general, these functions are defined by
IEEE 488.1 (HP-IB bus standard). They deal with general bus
management issues, as well as messages which can be sent over the
bus as bus commands.

2–2

Interface Capabilities

The interface capabilities of the HP 1660C/CS/CP-series, as defined by IEEE
488.1 are SH1, AH1, T5, TE0, L3, LE0, SR1, RL1, PP0, DC1, DT1, C0, and E2.

Command and Data Concepts

The HP-IB has two modes of operation: command mode and data mode. The
bus is in command mode when the ATN line is true. The command mode is
used to send talk and listen addresses and various bus commands, such as a
group execute trigger (GET). The bus is in the data mode when the ATN line
is false. The data mode is used to convey device-dependent messages across
the bus. These device-dependent messages include all of the instrument
commands and responses found in chapters 8 through 36 of this manual.

Addressing

By attaching the logic analyzer printers or controller to the HP-IB port, you
automatically place the HP-IB interface into "talk-only" or "talk/listen" mode.
Talk-only mode must be used when you want the logic analyzer to talk
directly to a printer without the aid of a controller. Addressed talk/listen
mode is used when the logic analyzer will operate in conjunction with a
controller. When the logic analyzer is in the addressed talk/listen mode, the
following is true:

• Each device on the HP-IB resides at a particular address ranging from 0 to
30.

• The active controller specifies which devices will talk and which will listen.

• An instrument may be talk-addressed, listen-addressed, or unaddressed by
the controller.

Programming Over HP-IB
Interface Capabilities

2–3

If the controller addresses the instrument to talk, it will remain configured to
talk until it receives:

• an interface clear message (IFC)

• another instrument’s talk address (OTA)

• its own listen address (MLA)

• a universal untalk (UNT) command.

If the controller addresses the instrument to listen, it will remain configured
to listen until it receives:

• an interface clear message (IFC)

• its own talk address (MTA)

• a universal unlisten (UNL) command.

Communicating Over the HP-IB Bus (HP 9000 Series
200/300 Controller)

Because HP-IB can address multiple devices through the same interface card,
the device address passed with the program message must include not only
the correct instrument address, but also the correct interface code.

Interface Select Code (Selects the Interface)

Each interface card has its own interface select code. This code is used by
the controller to direct commands and communications to the proper
interface. The default is always "7" for HP-IB controllers.

Instrument Address (Selects the Instrument)

Each instrument on the HP-IB port must have a unique instrument address
between decimals 0 and 30. The device address passed with the program
message must include not only the correct instrument address, but also the
correct interface select code.

Programming Over HP-IB
Communicating Over the HP-IB Bus (HP 9000 Series 200/300 Controller)

2–4

Example For example, if the instrument address is 4 and the interface select code is 7,
the instruction will cause an action in the instrument at device address 704.
DEVICE ADDRESS = (Interface Select Code) X 100 + (Instrument

Address)

Local, Remote, and Local Lockout

The local, remote, and remote with local lockout modes may be used for
various degrees of front-panel control while a program is running. The logic
analyzer will accept and execute bus commands while in local mode, and the
front panel will also be entirely active. If the HP 1660C/CS/CP series is in
remote mode, the logic analyzer will go from remote to local with any
front-panel activity. In remote with local lockout mode, all controls (except
the power switch) are entirely locked out. Local control can only be restored
by the controller.

 C A U T I O N Cycling the power will restore local control, but this will also reset certain
HP-IB states. It also resets the logic analyzer to the power-on defaults and
purges any acquired data in the acquisition memory.

The instrument is placed in remote mode by setting the REN (Remote
Enable) bus control line true, and then addressing the instrument to listen.
The instrument can be placed in local lockout mode by sending the local
lockout (LLO) command (see SYSTem:LOCKout in chapter 9, "Instrument
Commands"). The instrument can be returned to local mode by either
setting the REN line false, or sending the instrument the go to local (GTL)
command.

Programming Over HP-IB
Local, Remote, and Local Lockout

2–5

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE
488.2 defines many of the actions which are taken when these commands are
received by the logic analyzer.

Device Clear

The device clear (DCL) or selected device clear (SDC) commands clear the
input and output buffers, reset the parser, clear any pending commands, and
clear the Request-OPC flag.

Group Execute Trigger (GET)

The group execute trigger command will cause the same action as the
START command for Group Run: the instrument will acquire data for the
active waveform and listing displays.

Interface Clear (IFC)

This command halts all bus activity. This includes unaddressing all listeners
and the talker, disabling serial poll on all devices, and returning control to the
system controller.

Programming Over HP-IB
Bus Commands

2–6

3

Programming Over RS-232-C

Introduction

This chapter describes the interface functions and some general
concepts of the RS-232-C. The RS-232-C interface on this instrument
is Hewlett-Packard’s implementation of EIA Recommended Standard
RS-232-C, "Interface Between Data Terminal Equipment and Data
Communications Equipment Employing Serial Binary Data
Interchange." With this interface, data is sent one bit at a time, and
characters are not synchronized with preceding or subsequent data
characters. Each character is sent as a complete entity without
relationship to other events.

3–2

Interface Operation

The HP 1660C/CS/CP-series can be programmed with a controller over
RS-232-C using either a minimum three-wire or extended hardwire interface.
The operation and exact connections for these interfaces are described in
more detail in the following sections. When you are programming an HP
1660C/CS/CP-series over RS-232-C with a controller, you are normally
operating directly between two DTE (Data Terminal Equipment) devices as
compared to operating between a DTE device and a DCE (Data
Communications Equipment) device.

When operating directly between two DTE devices, certain considerations
must be taken into account. For a three-wire operation, XON/XOFF must be
used to handle protocol between the devices. For extended hardwire
operation, protocol may be handled either with XON/XOFF or by
manipulating the CTS and RTS lines of the RS-232-C link. For both three-
wire and extended hardwire operation, the DCD and DSR inputs to the logic
analyzer must remain high for proper operation.

With extended hardwire operation, a high on the CTS input allows the logic
analyzer to send data, and a low disables the logic analyzer data transmission.
Likewise, a high on the RTS line allows the controller to send data, and a low
signals a request for the controller to disable data transmission. Because
three-wire operation has no control over the CTS input, internal pull-up
resistors in the logic analyzer assure that this line remains high for proper
three-wire operation.

RS-232-C Cables

Selecting a cable for the RS-232-C interface depends on your specific
application, and, whether you wish to use software or hardware handshake
protocol. The following paragraphs describe which lines of the HP
1660C/CS/CP-series Logic Analyzer are used to control the handshake
operation of the RS-232-C relative to the system. To locate the proper cable
for your application, refer to the reference manual for your computer or
controller. Your computer or controller manual should describe the exact
handshake protocol your controller can use to operate over the RS-232-C
bus. Also in this chapter you will find HP cable recommendations for
hardware handshake.

Programming Over RS-232-C
Interface Operation

3–3

Minimum Three-Wire Interface with Software Protocol

With a three-wire interface, the software (as opposed to interface hardware)
controls the data flow between the logic analyzer and the controller. The
three-wire interface provides no hardware means to control data flow
between the controller and the logic analyzer. Therefore, XON/OFF protocol
is the only means to control this data flow. The three-wire interface provides
a much simpler connection between devices since you can ignore hardware
handshake requirements.

The communications software you are using in your computer/controller must
be capable of using XON/XOFF exclusively in order to use three-wire interface
cables. For example, some communications software packages can use
XON/XOFF but are also dependent on the CTS, and DSR lines being true to
communicate.

The logic analyzer uses the following connections on its RS-232-C interface
for three-wire communication:

• Pin 7 SGND (Signal Ground)

• Pin 2 TD (Transmit Data from logic analyzer)

• Pin 3 RD (Receive Data into logic analyzer)

The TD (Transmit Data) line from the logic analyzer must connect to the RD
(Receive Data) line on the controller. Likewise, the RD line from the logic
analyzer must connect to the TD line on the controller. Internal pull-up
resistors in the logic analyzer assure the DCD, DSR, and CTS lines remain
high when you are using a three-wire interface.

Extended Interface with Hardware Handshake

With the extended interface, both the software and the hardware can control
the data flow between the logic analyzer and the controller. This allows you
to have more control of data flow between devices. The logic analyzer uses
the following connections on its RS-232-C interface for extended interface
communication:

Programming Over RS-232-C
Minimum Three-Wire Interface with Software Protocol

3–4

• Pin 7 SGND (Signal Ground)

• Pin 2 TD (Transmit Data from logic analyzer)

• Pin 3 RD (Receive Data into logic analyzer)

The additional lines you use depends on your controller’s implementation of
the extended hardwire interface.

• Pin 4 RTS (Request To Send) is an output from the logic analyzer which
can be used to control incoming data flow.

• Pin 5 CTS (Clear To Send) is an input to the logic analyzer which
controls data flow from the logic analyzer.

• Pin 6 DSR (Data Set Ready) is an input to the logic analyzer which
controls data flow from the logic analyzer within two bytes.

• Pin 8 DCD (Data Carrier Detect) is an input to the logic analyzer which
controls data flow from the logic analyzer within two bytes.

• Pin 20 DTR (Data Terminal Ready) is an output from the logic analyzer
which is enabled as long as the logic analyzer is turned on.

The TD (Transmit Data) line from the logic analyzer must connect to the RD
(Receive Data) line on the controller. Likewise, the RD line from the logic
analyzer must connect to the TD line on the controller.

The RTS (Request To Send), is an output from the logic analyzer which can
be used to control incoming data flow. A true on the RTS line allows the
controller to send data and a false signals a request for the controller to
disable data transmission.

The CTS (Clear To Send), DSR (Data Set Ready), and DCD (Data Carrier
Detect) lines are inputs to the logic analyzer, which control data flow from
the logic analyzer. Internal pull-up resistors in the logic analyzer assure the
DCD and DSR lines remain high when they are not connected. If DCD or
DSR are connected to the controller, the controller must keep these lines
along with the CTS line high to enable the logic analyzer to send data to the
controller. A low on any one of these lines will disable the logic analyzer data
transmission. Pulling the CTS line low during data transmission will stop
logic analyzer data transmission immediately. Pulling either the DSR or DCD
line low during data transmission will stop logic analyzer data transmission,
but as many as two additional bytes may be transmitted from the logic
analyzer.

Programming Over RS-232-C
Extended Interface with Hardware Handshake

3–5

Cable Examples

HP 9000 Series 300

Figure 3-1 is an example of how to connect the HP 1660C/CS/CP-series to the
HP 98628A Interface card of an HP 9000 series 300 controller. For more
information on cabling, refer to the reference manual for your specific
controller.

Because this example does not have the correct connections for hardware
handshake, you must use the XON/XOFF protocol when connecting the logic
analyzer.

Figure 3-1

Cable Example

HP Vectra Personal Computers and Compatibles

Figures 3-2 through 3-4 give examples of three cables that will work for the
extended interface with hardware handshake. Keep in mind that these
cables should work if your computer’s serial interface supports the four
common RS-232-C handshake signals as defined by the RS-232-C standard.
The four common handshake signals are Data Carrier Detect (DCD), Data
Terminal Ready (DTR), Clear to Send (CTS), and Ready to Send (RTS).

Figure 3-2 shows the schematic of a 25-pin female to 25-pin male cable. The
following HP cables support this configuration:

• HP 17255D, DB-25(F) to DB-25(M), 1.2 meter

• HP 17255F, DB-25(F) to DB-25(M), 1.2 meter, shielded.

In addition to the female-to-male cables with this configuration, a
male-to-male cable 1.2 meters in length is also available: HP 17255M,
DB-25(M) to DB-25(M), 1.2 meter

Programming Over RS-232-C
Cable Examples

3–6

Figure 3-2

25-pin (F) to 25-pin (M) Cable

Figure 3-3 shows the schematic of a 25-pin male to 25-pin male cable 5
meters in length. The following HP cable supports this configuration:

• HP 13242G, DB-25(M) to DB-25(M), 5 meter

Figure 3-3

25-pin (M) to 25-pin (M) Cable

Programming Over RS-232-C
Cable Examples

3–7

Figure 3-4 shows the schematic of a 9-pin female to 25-pin male cable. The
following HP cables support this configuration:

• HP 24542G, DB-9(F) to DB-25(M), 3 meter

• HP 24542H, DB-9(F) to DB-25(M), 3 meter, shielded

• HP 45911-60009, DB-9(F) to DB-25(M), 1.5 meter

Figure 3-4

9-pin (F) to 25-pin (M) Cable

Configuring the Logic Analzer Interface

The RS-232-C menu field in the System External I/O Menu allows you access
to the RS-232-C External I/O menu where the RS-232-C interface is
configured. If you are not familiar with how to configure the RS-232-C
interface, refer to the logic analyzer’s User’s Guide.

Programming Over RS-232-C
Configuring the Logic Analzer Interface

3–8

Interface Capabilities

The baud rate, stopbits, parity, protocol, and databits must be configured
exactly the same for both the controller and the logic analyzer to properly
communicate over the RS-232-C bus. The RS-232-C interface capabilities of
the HP 1660C/CS/CP-series are listed below:

• Baud Rate: 110, 300, 600, 1200, 2400, 4800, 9600, or 19.2k

• Stop Bits: 1, 1.5, or 2

• Parity: None, Odd, or Even

• Protocol: None or Xon/Xoff

• Data Bits: 8

Protocol

NONE With a three-wire interface, selecting NONE for the protocol
does not allow the sending or receiving device to control data flow. No
control over the data flow increases the possibility of missing data or
transferring incomplete data.

With an extended hardwire interface, selecting NONE allows a hardware
handshake to occur. With hardware handshake, the hardware signals control
dataflow.

Xon/Xoff Xon/Xoff stands for Transmit On/Transmit Off. With this
mode, the receiver (controller or logic analyzer) controls data flow, and,
can request that the sender (logic analyzer or controller) stop data flow.
By sending XOFF (ASCII 19) over its transmit data line, the receiver
requests that the sender disables data transmission. A subsequent XON
(ASCII 17) allows the sending device to resume data transmission.

Data Bits

Data bits are the number of bits sent and received per character that
represent the binary code of that character. Characters consist of either 7 or
8 bits, depending on the application. The HP 1660C/CS/CP-series supports
8-bit only.

8-Bit Mode Information is usually stored in bytes (8 bits at a time).
With 8-bit mode, you can send and receive data just as it is stored,
without the need to convert the data.

Programming Over RS-232-C
Interface Capabilities

3–9

The controller and the HP 1660C/CS/CP-series must be in the same bit mode
to properly communicate over the RS-232-C. This means that the controller
must have the capability to send and receive 8-bit data.

See Also For more information on the RS-232-C interface, refer to the logic analyzer’s
User’s Guide. For information on RS-232-C voltage levels and connector
pinouts, refer to the logic analyzer’s Service Guide.

RS-232-C Bus Addressing

The RS-232-C address you must use depends on the computer or controller
you are using to communicate with the logic analyzer.

HP Vectra Personal Computers or compatibles

If you are using an HP Vectra Personal Computer or compatible, it must have
an unused serial port to which you connect the logic analyzer’s RS-232-C
port. The proper address for the serial port is dependent on the hardware
configuration of your computer. Additionally, your communications software
must be configured to address the proper serial port. Refer to your computer
and communications software manuals for more information on setting up
your serial port address.

HP 9000 Series 300 Controllers

Each RS-232-C interface card for the HP 9000 Series 300 Controller has its
own interface select code. This code is used by the controller for directing
commands and communications to the proper interface by specifying the
correct interface code for the device address.

Generally, the interface select code can be any decimal value between 0 and
31, except for those interface codes which are reserved by the controller for
internal peripherals and other internal interfaces. This value can be selected
through switches on the interface card. For example, if your RS-232-C
interface select code is 9, the device address required to communicate over
the RS-232-C bus is 9. For more information, refer to the reference manual
for your interface card or controller.

Programming Over RS-232-C
RS-232-C Bus Addressing

3–10

Lockout Command

To lockout the front-panel controls, use the Mainframe command LOCKout.
When this function is on, all controls (except the power switch) are entirely
locked out. Local control can only be restored by sending the :LOCKout
OFF command.

 C A U T I O N Cycling the power will also restore local control, but this will also reset
certain RS-232-C states. It also resets the logic analyzer to the power-on
defaults and purges any acquired data in the acquisition memory of all the
installed modules.

See Also For more information on this command see chapter 9, "Instrument
Commands."

Programming Over RS-232-C
Lockout Command

3–11

3–12

4

Programming and
Documentation Conventions

Introduction

This chapter covers the programming conventions used in
programming the instrument, as well as the documentation
conventions used in this manual. This chapter also contains a detailed
description of the command tree and command tree traversal.

4–2

Truncation Rule

The truncation rule for the keywords used in headers and parameters is:

• If the long form has four or fewer characters, there is no change in the
short form. When the longform has more than four characters the short
form is just the first four characters, unless the fourth character is a
vowel. In that case only the first three characters are used.

There are some commands that do not conform to the truncation rule by design.
These will be noted in their respective description pages.

Some examples of how the truncation rule is applied to various commands
are shown in table 4-1.

Table 4-1 Truncation Examples

Long Form Short Form

OFF OFF

DATA DATA

START STAR

LONGFORM LONG

DELAY DEL

ACCUMULATE ACC

Programming and Documentation Conventions
Truncation Rule

4–3

Infinity Representation

The representation of infinity is 9.9E+37 for real numbers and 32767 for
integers. This is also the value returned when a measurement cannot be
made.

Sequential and Overlapped Commands

IEEE 488.2 makes the distinction between sequential and overlapped
commands. Sequential commands finish their task before the execution of
the next command starts. Overlapped commands run concurrently; therefore,
the command following an overlapped command may be started before the
overlapped command is completed. The overlapped commands for the
HP 1660C/CS/CP-series are STARt and STOP.

Response Generation

IEEE 488.2 defines two times at which query responses may be buffered.
The first is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it may read the
response. The HP 1660C/CS/CP-series will buffer responses to a query when
it is parsed.

Syntax Diagrams

At the beginning of each chapter in Parts 2 through 4, "Commands," is a
syntax diagram showing the proper syntax for each command. All characters
contained in a circle or oblong are literals, and must be entered exactly as
shown. Words and phrases contained in rectangles are names of items used
with the command and are described in the accompanying text of each
command. Each line can only be entered from one direction as indicated by
the arrow on the entry line. Any combination of commands and arguments
that can be generated by following the lines in the proper direction is
syntactically correct. An argument is optional if there is a path around it.
When there is a rectangle which contains the word "space," a white space
character must be entered. White space is optional in many other places.

Programming and Documentation Conventions
Infinity Representation

4–4

Notation Conventions and Definitions

The following conventions are used in this manual when describing
programming rules and example.

< > Angular brackets enclose words or characters that are used to symbolize a
program code parameter or a bus command

::= "is defined as." For example, A ::= B indicates that A can be replaced by B in
any statement containing A.

| "or." Indicates a choice of one element from a list. For example, A | B
indicates A or B, but not both.

... An ellipsis (trailing dots) is used to indicate that the preceding element may
be repeated one or more times.

[] Square brackets indicate that the enclosed items are optional.

{ } When several items are enclosed by braces and separated by vertical bars (|),
one, and only one of these elements must be selected.

XXX Three Xs after an ENTER or OUTPUT statement represent the device
address required by your controller.

<NL> Linefeed (ASCII decimal 10).

The Command Tree

The command tree (figure 4-1) shows all commands in the HP
1660C/CS/CP-series logic analyzers and the relationship of the commands to
each other. Parameters are not shown in this figure. The command tree
allows you to see what the HP 1660C/CS/CP-series’ parser expects to receive.
All legal headers can be created by traversing down the tree, adding
keywords until the end of a branch has been reached.

Programming and Documentation Conventions
Notation Conventions and Definitions

4–5

Command Types

As shown in chapter 1, "Header Types," there are three types of headers.
Each header has a corresponding command type. This section shows how
they relate to the command tree.

System Commands The system commands reside at the top level of
the command tree. These commands are always parsable if they occur at
the beginning of a program message, or are preceded by a colon. START
and STOP are examples of system commands.

Subsystem Commands Subsystem commands are grouped together
under a common node of the tree, such as the MMEMORY commands.

Common Commands Common commands are independent of the tree,
and do not affect the position of the parser within the tree. *CLS and
*RST are examples of common commands.

Tree Traversal Rules

Command headers are created by traversing down the command tree. For
each group of keywords not separated by a branch, one keyword must be
selected. As shown on the tree, branches are always preceded by colons. Do
not add spaces around the colons. The following two rules apply to traversing
the tree:

A leading colon (the first character of a header) or a <terminator> places the
parser at the root of the command tree.

Executing a subsystem command places you in that subsystem until a leading
colon or a <terminator> is found. The parser will stay at the colon above the
keyword where the last header terminated. Any command below that point
can be sent within the current program message without sending the
keywords(s) which appear above them.

Programming and Documentation Conventions
Tree Traversal Rules

4–6

The following examples are written using HP BASIC 6.2 on a HP 9000 Series
200/300 Controller. The quoted string is placed on the bus, followed by a
carriage return and linefeed (CRLF). The three Xs (XXX) shown in this
manual after an ENTER or OUTPUT statement represents the device address
required by your controller.

Example 1 In this example, the colon between SYSTEM and HEADER is necessary since
SYSTEM:HEADER is a compound command. The semicolon between the
HEADER command and the LONGFORM command is the required <program
message unit separator> . The LONGFORM command does not need
SYSTEM preceding it, since the SYSTEM:HEADER command sets the parser
to the SYSTEM node in the tree.

OUTPUT XXX;":SYSTEM:HEADER ON;LONGFORM ON"

Example 2 In the first line of this example, the subsystem selector is implied for the
STORE command in the compound command. The STORE command must
be in the same program message as the INITIALIZE command, since the
<program message terminator> will place the parser back at the root
of the command tree.

A second way to send these commands is by placing MMEMORY: before the
STORE command as shown in the fourth line of this example 2.

OUTPUT XXX;":MMEMORY:INITIALIZE;STORE ’FILE ’,’FILE
DESCRIPTION’"

or

OUTPUT XXX;":MMEMORY:INITIALIZE"
OUTPUT XXX;":MMEMORY:STORE ’FILE ’,’FILE DESCRIPTION’"

Example 3 In this example, the leading colon before SYSTEM tells the parser to go back
to the root of the command tree. The parser can then see the
SYSTEM:PRINT command.

OUTPUT XXX;":MMEM:CATALOG?;:SYSTEM:PRINT ALL"

Programming and Documentation Conventions
Tree Traversal Rules

4–7

Figure 4-1

HP 1660C/CS/CP-series Command Tree

Programming and Documentation Conventions
Tree Traversal Rules

4–8

Figure 4-1 (continued)

HP 1660C/CS/CP-series Command Tree (continued)

Programming and Documentation Conventions
Tree Traversal Rules

4–9

Figure 4-1 (continued)

HP 1660C/CS/CP-series Command Tree (continued)

Programming and Documentation Conventions
Tree Traversal Rules

4–10

Table 4-2

Alphabetic Command Cross-Reference

Command Subsystem
ABVOLt MARKer
ACCumulate SCHart, SWAVeform, TWAVeform,

DISPlay
ACQMode TFORmat
ACQuisition STRigger, SWAVeform, TTRigger,

TWAVeform
ALL MEASure
ARM MACHine
ASSign MACHine
AUToload MMEMory
AUTorange TINTerval
AUToscale MODULE LEVEL
AVOLt MARKer
BASE SYMBol
BEEPer Instrument
BRANch STRigger, TTRigger
BUCKet OVERView
BVOLt MARKer
CAPability Instrument
CARDcage Instrument
CATalog MMEMory
CD MMEMory
CENTer SWAVeform, TWAVeform, MARKer
CESE Instrument
CESR Instrument
CLEar COMPare, STRigger, TTRigger
CLOCk SFORmat
CLRPattern SLISt, SWAVeform, TLISt, TWAVeform
CLRStat SWAVeform, TWAVeform
CMASk COMPare
COLumn SLISt, TLISt
CONDition TRIGger
CONNect DISPlay
COPY COMPare, MMEMory
COUNt ACQuire, WAVeforml
COUPling CHANNel
DATA COMPare, SLISt, SYSTem, TLISt,

WAVeform
DELay SWAVeform, TWAVeform, WLISt,

TIMebase. TRIGger

Command Subsystem
DELete INTermodule
DIGitize ROOT
DOWNload MMEMory
DSP SYSTem
ECL CHANnel
EOI Instrument
ERRor SYSTem
FALLtime MEASure
FIND COMPare, STRigger, TTRigger
FORMat WAVeform
FREQuency MEASure
GLEDge TTRigger
HAXis SCHart
HEADer SYSTem
HIGH OVERView
HISTogram SPA, MODE
HSTatistic HISTogram
HTIMe INTermodule
INITialize MMEMory
INPort INTermodule
INSert INTermodule, SWAVeform, TWAVeform,

WLISt, DISPlay
LABel SFORmat, TFORmat, DISPlay, OVERView,

HISTogram
LER Instrument
LEVel TRIGger
LEVelarm MACHine
LINE COMPare, SLISt, TLISt, WLISt
LOAD MMEMory
LOCKout Instrument
LOGic TRIGger
LONGform SYSTem
LOW OVERView
MACHine Instrument
MASTer SFORmat
MENU COMPare, Instrument
MESE Instrument
MESR Instrument
MINus DISPlay

Programming and Documentation Conventions
Tree Traversal Rules

4–11

Table 4-2 (continued)

Alphabetic Command Cross-Reference (continued)

Command Subsystem
MKDir MMEMory
MMEMory Instrument
MMODe SLISt, TLISt, TWAVeform
MODE SFORmat, TIMebase, TRIGger, SPA
MOPQual SFORmat
MQUal SFORmat
MSI MMEMory
MSTats MARKer
NAME MACHine
NWIDth MEASure
OAUTo MARKer
OCONdition TLISt, TWAVeform
OFFSet CHANnel
OMARker OVERView
OPATtern SLISt, TLISt, TWAVeform
OSEarch SLISt, TLISt, TWAVeform
OSTate SLISt, TLISt, WLISt
OTAG SLISt, TLISt
OTHer HISTogram
OTIMe TWAVeform, WLISt, MARKer
OVERlay SLISt, DISPlay
OVERshoot MEASure
OVERView SPA
OVSTatistic OVERView
PACK MMEMory
PATH TRIGger
PATTern SYMBol
PERiod MEASure
PLUS DISPlay
POINts WAVeform
PREamble WAVeform
PREShoot MEASure
PRINt SYSTem
PROBe CHANnel
PURGe MMEMory
PWD MMEMory
PWIDth MEASure
QUALifier HISTogram, TINTerval

Command Subsystem
RANGe COMPare, STRigger, SWAVeform,

SYMBol, TTRigger, TWAVeform, WLISt,
CHANnel, TIMebase, HISTogram

RECord WAVeform
REMove SFORmat, SLISt, SWAVeform, SYMBol,

TFORmat, TLISt, TWAVeform, DISPlay
REName MACHine, MMEMory
RESource MACHine
RISetime MEASure
RMODe Instrument
RTC Instrument
RUNTil COMPare, SLISt, TLISt, TWAVeform,

MARKer
SELect Instrument
SEQuence STRigger, TTRigger
SET COMPare
SETColor Instrument
SETHold SFORmat
SETup SYSTem
SHOW MARKer
SKEW INTermodule
SLAVe SFORmat
SLOPe TRIGger
SOPQual SFORmat
SOURce MEASure, TRIGger, WAVeform
SPA Instrument
SPERiod TTRIGger, TWAVeform, WAVeform
SQUal SFORmat
STARt Instrument
STOP Instrument
STORe MMEMory, STRigger
TAG STRigger
TAKenbranc STRigger, SWAVeform
TAVerage SLISt, TLISt, TWAVeform, MARKer
TCONtrol STRigger, TTRigger
TERM STRigger, TTRigger
THReshold SFORmat, TFORmat
TIMER STRigger, TTRigger
TINTerval SPA, MODE, TINTerval

Programming and Documentation Conventions
Tree Traversal Rules

4–12

Table 4-2 (continued)

Alphabetic Command Cross-Reference (continued)

Command Subsystem
TMAXimum SLISt, TLISt, TWAVeform, MARKer
TMINimum SLISt, TLISt, TWAVeform, MARKer
TMODe MARKer
TPOSition STRigger, SWAVeform, TTRigger,

TWAVeform
TREE INTermodule
TSTatistic TINTerval
TTIMe INTermodule
TTL CHANnel
TTYPe HISTogram
TYPE MACHine
UPLoad MMEMory
VALid WAVeform
VAMPlitude MEASure
VAXis SCHart
VBAse MEASure
VMAX MEASure
VMIN MEASure
VMODe MARKer
VOLume MMEMory
VOTime MARKer
VPP MEASure
VRUNs SLISt, TLISt, TWAVeform, MARKer
VTOP MEASure

Command Subsystem
VXTime MARKer
WIDTh SYMBol
WLISt Instrument
XAUTo MARKer
XCONdition TLISt, TWAVeform
XINCrment WAVeform
XMARker OVERView
XORigin WAVeform
XOTag SLISt, TLISt
XOTime SLISt, TLISt, TWAVeform, WLISt,

MARKer
XPATtern SLISt, TLISt, TWAVeform
XREFrence WAVeform
XSEarch SLISt, TLISt, TWAVeform
XSTate SLISt, TLISt, WLISt
XTAG SLISt, TLISt
XTIMe TWAVeform, WLISt, MARKer
YINCrement WAVeform
YORigin WAVeform
YREFerence WAVeform
XWINdow Instrument

Programming and Documentation Conventions
Tree Traversal Rules

4–13

Command Set Organization

The command set for the HP 1660C/CS/CP-series logic analyzers is divided
into 28 separate groups: common commands, instrument commands, system
commands and 25 sets of subsystem commands. Each of the 28 groups of
commands is described in a separate chapter in Parts 2 through 4,
"Commands." Each of the chapters contain a brief description of the
subsystem, a set of syntax diagrams for those commands, and finally, the
commands for that subsystem in alphabetical order. The commands are
shown in the long form and short form using upper and lowercase letters. As
an example AUToload indicates that the long form of the command is
AUTOLOAD and the short form of the command is AUT . Each of the
commands contain a description of the command, its arguments, and the
command syntax.

Subsystems

There are 25 subsystems in this instrument. In the command tree (figure
4-1) they are shown as branches, with the node above showing the name of
the subsystem. Only one subsystem may be selected at a time. At power on,
the command parser is set to the root of the command tree; therefore, no
subsystem is selected. The 25 subsystems in the HP 1660C/CS/CP-series logic
analyzers are:

• SYSTem - controls some basic functions of the instrument.

• MMEMory - provides access to the internal disk drive.

• INTermodule - provides access to the Intermodule bus (IMB).

• MACHine - provides access to analyzer functions and subsystems.

• WLISt - allows access to the mixed (timing/state) functions.

• SFORmat - allows access to the state format functions.

• STRigger - allows access to the state trigger functions.

• SLISt - allows access to the state listing functions.

• SWAVeform - allows access to the state waveforms functions.

• SCHart - allows access to the state chart functions.

• COMPare - allows access to the compare functions.

Programming and Documentation Conventions
Command Set Organization

4–14

• TFORmat - allows access to the timing format functions.

• TTRigger - allows access to the timing trigger functions.

• TWAVeform - allows access to the timing waveforms functions.

• TLISt - allows access to the timing listing functions.

• SYMBol - allows access to the symbol specification functions.

• ACQuire - sets up acquisition conditions for the digitize function.

• CHANnel - controls the oscilloscope channel display and vertical axis.

• DISPlay - allows data to be displayed.

• MARKer - allows access to the oscilloscope’s time and voltage markers.

• MEASure - allows automatic parametric measurements.

• TIMebase - controls the oscilloscope timebase and horizontal axis.

• TRIGger - allows access to the oscilloscope’s trigger functions.

• SPA - provides access to software profiling functions and subsystems.

• WAVeform - used to transfer waveform data from the oscilloscope to a
controller.

Program Examples

The program examples in the following chapters and chapter 43,
"Programming Examples," were written on an HP 9000 Series 200/300
controller using the HP BASIC 6.2 language. The programs always assume a
generic address for the HP 1660C/CS/CP-series logic analyzers of XXX.

In the examples, you should pay special attention to the ways in which the
command and/or query can be sent. Keywords can be sent using either the
long form or short form (if one exists for that word). With the exception of
some string parameters, the parser is not case-sensitive. Uppercase and
lowercase letters may be mixed freely. System commands like HEADer and
LONGform allow you to dictate what forms the responses take, but they have
no affect on how you must structure your commands and queries.

Programming and Documentation Conventions
Program Examples

4–15

Example The following commands all set the Timing Waveform Delay to 100 ms.

Keywords in long form, numbers using the decimal format.

OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY .1"

Keywords in short form, numbers using an exponential format.

OUTPUT XXX;":MACH1:TWAV:DEL 1E-1"

Keywords in short form using lowercase letters, numbers using a suffix.

OUTPUT XXX;":mach1:twav:del 100ms"

In these examples, the colon shown as the first character of the command is
optional on the HP 1660C/CS/CP-series. The space between DELay and the
argument is required.

Programming and Documentation Conventions
Program Examples

4–16

5

Message Communication and
System Functions

Introduction

This chapter describes the operation of instruments that operate in
compliance with the IEEE 488.2 (syntax) standard. It is intended to
give you enough basic information about the IEEE 488.2 Standard to
successfully program the logic analyzer. You can find additional
detailed information about the IEEE 488.2 Standard in ANSI/IEEE Std
488.2-1987, "IEEE Standard Codes, Formats, Protocols, and Common
Commands."

The HP 1660C/CS/CP-series is designed to be compatible with other
Hewlett-Packard IEEE 488.2 compatible instruments. Instruments
that are compatible with IEEE 488.2 must also be compatible with
IEEE 488.1 (HP-IB bus standard); however, IEEE 488.1 compatible
instruments may or may not conform to the IEEE 488.2 standard.
The IEEE 488.2 standard defines the message exchange protocols by
which the instrument and the controller will communicate. It also
defines some common capabilities, which are found in all IEEE 488.2
instruments. This chapter also contains a few items which are not
specifically defined by IEEE 488.2, but deal with message
communication or system functions.

The syntax and protocol for RS-232-C program messages and
response messages for the HP 1660C/CS/CP-series are structured very
similar to those described by 488.2. In most cases, the same structure
shown in this chapter for 488.2 will also work for RS-232-C. Because
of this, no additional information has been included for RS-232-C.

5–2

Protocols

The protocols of IEEE 488.2 define the overall scheme used by the controller
and the instrument to communicate. This includes defining when it is
appropriate for devices to talk or listen, and what happens when the protocol
is not followed.

Functional Elements

Before proceeding with the description of the protocol, a few system
components should be understood.

Input Buffer The input buffer of the instrument is the memory area
where commands and queries are stored prior to being parsed and
executed. It allows a controller to send a string of commands to the
instrument which could take some time to execute, and then proceed to
talk to another instrument while the first instrument is parsing and
executing commands.

Output Queue The output queue of the instrument is the memory area
where all output data (<response messages>) are stored until read by
the controller.

Parser The instrument’s parser is the component that interprets the
commands sent to the instrument and decides what actions should be
taken. "Parsing" refers to the action taken by the parser to achieve this
goal. Parsing and executing of commands begins when either the
instrument recognizes a <program message terminator> (defined later in
this chapter) or the input buffer becomes full. If you wish to send a long
sequence of commands to be executed and then talk to another
instrument while they are executing, you should send all the commands
before sending the <program message terminator>.

Message Communication and System Functions
Protocols

5–3

Protocol Overview

The instrument and controller communicate using <program message>s and
<response message>s. These messages serve as the containers into which
sets of program commands or instrument responses are placed. <program
message>s are sent by the controller to the instrument, and <response
message>s are sent from the instrument to the controller in response to a
query message. A <query message> is defined as being a <program
message> which contains one or more queries. The instrument will only talk
when it has received a valid query message, and therefore has something to
say. The controller should only attempt to read a response after sending a
complete query message, but before sending another <program message>.
The basic rule to remember is that the instrument will only talk when
prompted to, and it then expects to talk before being told to do something
else.

Protocol Operation

When the instrument is turned on, the input buffer and output queue are
cleared, and the parser is reset to the root level of the command tree.

The instrument and the controller communicate by exchanging complete
<program message>s and <response message>s. This means that the
controller should always terminate a <program message> before attempting
to read a response. The instrument will terminate <response message>s
except during a hardcopy output.

If a query message is sent, the next message passing over the bus should be
the <response message>. The controller should always read the complete
<response message> associated with a query message before sending another
<program message> to the same instrument.

The instrument allows the controller to send multiple queries in one query
message. This is referred to as sending a "compound query." As will be
noted later in this chapter, multiple queries in a query message are separated
by semicolons. The responses to each of the queries in a compound query
will also be separated by semicolons.

Commands are executed in the order they are received.

Message Communication and System Functions
Protocols

5–4

Protocol Exceptions

If an error occurs during the information exchange, the exchange may not be
completed in a normal manner. Some of the protocol exceptions are shown
below.

Command Error A command error will be reported if the instrument
detects a syntax error or an unrecognized command header.

Execution Error An execution error will be reported if a parameter is
found to be out of range, or if the current settings do not allow execution
of a requested command or query.

Device-specific Error A device-specific error will be reported if the
instrument is unable to execute a command for a strictly device
dependent reason.

Query Error A query error will be reported if the proper protocol for
reading a query is not followed. This includes the interrupted and
unterminated conditions described in the following paragraphs.

Syntax Diagrams

The example syntax diagram is in this chapter are similar to the syntax
diagrams in the IEEE 488.2 specification. Commands and queries are sent to
the instrument as a sequence of data bytes. The allowable byte sequence for
each functional element is defined by the syntax diagram that is shown.

The allowable byte sequence can be determined by following a path in the
syntax diagram. The proper path through the syntax diagram is any path
that follows the direction of the arrows. If there is a path around an element,
that element is optional. If there is a path from right to left around one or
more elements, that element or those elements may be repeated as many
times as desired.

Message Communication and System Functions
Syntax Diagrams

5–5

Figure 5-1

Example syntax diagram

Message Communication and System Functions
Syntax Diagrams

5–6

Syntax Overview

This overview is intended to give a quick glance at the syntax defined by
IEEE 488.2. It will help you understand many of the things about the syntax
you need to know.

IEEE 488.2 defines the blocks used to build messages which are sent to the
instrument. A whole string of commands can therefore be broken up into
individual components.

Figure 5-1 is an example syntax diagram and figure 5-2 shows a breakdown of
an example <program message>. There are a few key items to notice:

• A semicolon separates commands from one another. Each <program
message unit> serves as a container for one command. The <program
message unit>s are separated by a semicolon.

• A <program message> is terminated by a <NL> (new line). The
recognition of the <program message terminator>, or <PMT>, by the
parser serves as a signal for the parser to begin execution of commands.
The <PMT> also affects command tree traversal (Chapter 4,
"Programming and Documentation Conventions").

• Multiple data parameters are separated by a comma.

• The first data parameter is separated from the header with one or more
spaces.

• The header MACHine1:ASSign 2,3 is an example of a compound header. It
places the parser in the machine subsystem until the <NL> is encountered.

• A colon preceding the command header returns you to the top of the
command tree.

Message Communication and System Functions
Syntax Overview

5–7

Figure 5-2

<program message> Parse Tree

Message Communication and System Functions
Syntax Overview

5–8

Upper/Lower Case Equivalence

Upper and lower case letters are equivalent. The mnemonic SINGLE has
the same semantic meaning as the mnemonic single .

<white space>

<white space> is defined to be one or more characters from the ASCII set of
0 - 32 decimal, excluding 10 decimal (NL). <white space> is used by several
instrument listening components of the syntax. It is usually optional, and can
be used to increase the readability of a program.

Suffix Multiplier The suffix multipliers that the instrument will accept
are shown in table 5-1.

Table 5-1 <suffix mult>

Value Mnemonic

1E18 EX

1E15 PE

1E12 T

1E9 G

1E6 MA

1E3 K

1E-3 M

1E-6 U

1E-9 N

1E-12 P

1E-15 F

1E-18 A

Message Communication and System Functions
Syntax Overview

5–9

Suffix Unit The suffix units that the instrument will accept are shown
in table 5-2.

Table 5-2

<suffix unit>

Suffix Referenced Unit

V Volt

S Second

Message Communication and System Functions
Syntax Overview

5–10

6

Status Reporting

Introduction

Status reporting allows you to use information about the instrument in
your programs, so that you have better control of the measurement
process. For example, you can use status reporting to determine
when a measurement is complete, thus controlling your program, so
that it does not get ahead of the instrument. This chapter describes
the status registers, status bytes and status bits defined by IEEE
488.2 and discusses how they are implemented in the
HP 1660C/CS/CP-series logic analyzers. Also in this chapter is a
sample set of steps you use to perform a serial poll over HP-IB.

The status reporting feature available over the bus is the serial poll.
IEEE 488.2 defines data structures, commands, and common bit
definitions. There are also instrument-defined structures and bits.

The bits in the status byte act as summary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if
the queue is not empty. For registers, the summary bit is set if any
enabled bit in the event register is set. The events are enabled via the
corresponding event enable register. Events captured by an event
register remain set until the register is read or cleared. Registers are
read with their associated commands. The *CLS command clears all
event registers and all queues except the output queue. If *CLS is
sent immediately following a <program message terminator>, the
output queue will also be cleared.

6–2

Figure 6-1

Status Byte Structures and Concepts

Status Reporting

6–3

Event Status Register

The Event Status Register is an IEEE 488.2 defined register. The bits in this
register are "latched." That is, once an event happens which sets a bit, that
bit will only be cleared if the register is read.

Service Request Enable Register

The Service Request Enable Register is an 8-bit register. Each bit enables
the corresponding bit in the status byte to cause a service request. The sixth
bit does not logically exist and is always returned as a zero. To read and
write to this register, use the *SRE? and *SRE commands.

Bit Definitions

The following mnemonics are used in figure 6-1 and in chapter 8, "Common
Commands".

MAV - message available

Indicates whether there is a response in the output queue.

ESB - event status bit

Indicates if any of the conditions in the Standard Event Status Register are
set and enabled.

MSS - master summary status

Indicates whether the device has a reason for requesting service. This bit is
returned for the *STB? query.

RQS - request service

Indicates if the device is requesting service. This bit is returned during a
serial poll. RQS will be set to 0 after being read via a serial poll (MSS is not
reset by *STB?).

Status Reporting
Event Status Register

6–4

MSG - message

Indicates whether there is a message in the message queue (Not
implemented in the HP 1660C/CS/CP-series).

PON - power on

Indicates power has been turned on.

URQ - user request

Always returns a 0 from the HP 1660C/CS/CP-series.

CME - command error

Indicates whether the parser detected an error.

The error numbers and strings for CME, EXE, DDE, and QYE can be read from a
device-defined queue (which is not part of IEEE 488.2) with the query
:SYSTEM:ERROR?.

EXE - execution error

Indicates whether a parameter was out of range, or inconsistent with current
settings.

DDE - device specific error

Indicates whether the device was unable to complete an operation for device
dependent reasons.

QYE - query error

Indicates whether the protocol for queries has been violated.

RQC - request control

Always returns a 0 from the HP 1660C/CS/CP-series.

OPC - operation complete

Indicates whether the device has completed all pending operations. OPC is
controlled by the *OPC common command. Because this command can
appear after any other command, it serves as a general-purpose operation
complete message generator.

Status Reporting
Bit Definitions

6–5

LCL - remote to local

Indicates whether a remote to local transition has occurred.

MSB - module summary bit

Indicates that an enable event in one of the modules Status registers has
occurred.

Key Features

A few of the most important features of Status Reporting are listed in the
following paragraphs.

Operation Complete

The IEEE 488.2 structure provides one technique that can be used to find
out if any operation is finished. The *OPC command, when sent to the
instrument after the operation of interest, will set the OPC bit in the
Standard Event Status Register. If the OPC bit and the RQS bit have been
enabled, a service request will be generated. The commands that affect the
OPC bit are the overlapped commands.

Example OUTPUT XXX;"*SRE 32 ; *ESE 1" !enables an OPC service
request

Status Byte

The Status Byte contains the basic status information which is sent over the
bus in a serial poll. If the device is requesting service (RQS set), and the
controller serial-polls the device, the RQS bit is cleared. The MSS (Master
Summary Status) bit (read with *STB?) and other bits of the Status Byte are
not be cleared by reading them. Only the RQS bit is cleared when read.

The Status Byte is cleared with the *CLS common command.

Status Reporting
Key Features

6–6

Figure 6-2

Service Request Enabling

Serial Poll

The HP 1660C/CS/CP-series supports the IEEE 488.1 serial poll feature.
When a serial poll of the instrument is requested, the RQS bit is returned on
bit 6 of the status byte.

Status Reporting
Serial Poll

6–7

Using Serial Poll (HP-IB)

This example will show how to use the service request by conducting a serial
poll of all instruments on the HP-IB bus. In this example, assume that there
are two instruments on the bus: a Logic Analyzer at address 7 and a printer at
address 1.

The program command for serial poll using HP BASIC 6.2 is Stat =
SPOLL(707). The address 707 is the address of the logic analyzer in the this
example. The command for checking the printer is Stat = SPOLL(701)
because the address of that instrument is 01 on bus address 7. This
command reads the contents of the HP-IB Status Register into the variable
called Stat. At that time bit 6 of the variable Stat can be tested to see if it is
set (bit 6 = 1).

The serial poll operation can be conducted in the following manner:

1 Enable interrupts on the bus. This allows the controller to see the
SRQ line.

2 Disable interrupts on the bus.
3 If the SRQ line is high (some instrument is requesting service) then

check the instrument at address 1 to see if bit 6 of its status register is
high.

4 To check whether bit 6 of an instruments status register is high, use
the following BASIC statement: IF BIT (Stat, 6) THEN

5 If bit 6 of the instrument at address 1 is not high, then check the
instrument at address 7 to see if bit 6 of its status register is high.

6 As soon as the instrument with status bit 6 high is found check the
rest of the status bits to determine what is required.

The SPOLL(707) command causes much more to happen on the bus than
simply reading the register. This command clears the bus automatically,
addresses the talker and listener, sends SPE (serial poll enable) and SPD
(serial poll disable) bus commands, and reads the data. For more
information about serial poll, refer to your controller manual, and
programming language reference manuals.

After the serial poll is completed, the RQS bit in the HP 1660C/CS/CP-series
Status Byte Register will be reset if it was set. Once a bit in the Status Byte
Register is set, it will remain set until the status is cleared with a *CLS
command, or the instrument is reset.

Status Reporting
Serial Poll

6–8

7

Error Messages

Introduction

This chapter lists the error messages that relate to the
HP 1660C/CS/CP-series logic analyzers.

7–2

Device Dependent Errors

200 Label not found

201 Pattern string invalid

202 Qualifier invalid

203 Data not available

300 RS-232-C error

Command Errors

–100 Command error (unknown command)(generic error)

–101 Invalid character received

–110 Command header error

–111 Header delimiter error

–120 Numeric argument error

–121 Wrong data type (numeric expected)

–123 Numeric overflow

–129 Missing numeric argument

–130 Non numeric argument error (character,string, or block)

–131 Wrong data type (character expected)

–132 Wrong data type (string expected)

–133 Wrong data type (block type #D required)

–134 Data overflow (string or block too long)

–139 Missing non numeric argument

–142 Too many arguments

–143 Argument delimiter error

–144 Invalid message unit delimiter

Error Messages
Device Dependent Errors

7–3

Execution Errors

–200 Can Not Do (generic execution error)

–201 Not executable in Local Mode

–202 Settings lost due to return-to-local or power on

–203 Trigger ignored

–211 Legal command, but settings conflict

–212 Argument out of range

–221 Busy doing something else

–222 Insufficient capability or configuration

–232 Output buffer full or overflow

–240 Mass Memory error (generic)

–241 Mass storage device not present

–242 No media

–243 Bad media

–244 Media full

–245 Directory full

–246 File name not found

–247 Duplicate file name

–248 Media protected

Internal Errors

–300 Device Failure (generic hardware error)

–301 Interrupt fault

–302 System Error

–303 Time out

–310 RAM error

–311 RAM failure (hardware error)

–312 RAM data loss (software error)

–313 Calibration data loss

–320 ROM error

Error Messages
Execution Errors

7–4

–321 ROM checksum

–322 Hardware and Firmware incompatible

–330 Power on test failed

–340 Self Test failed

–350 Too Many Errors (Error queue overflow)

Query Errors

–400 Query Error (generic)

–410 Query INTERRUPTED

–420 Query UNTERMINATED

–421 Query received. Indefinite block response in progress

–422 Addressed to Talk, Nothing to Say

–430 Query DEADLOCKED

Error Messages
Query Errors

7–5

7–6

Part 2

Mainframe Commands

8

Common Commands

Introduction

The common commands are defined by the IEEE 488.2 standard.
These commands must be supported by all instruments that comply
with this standard. Refer to figure 8-1 and table 8-1 for the common
commands syntax diagram.

The common commands control some of the basic instrument
functions; such as, instrument identification and reset, how status is
read and cleared, and how commands and queries are received and
processed by the instrument. The common commands are:

• *CLS

• *ESE

• *ESR

• *IDN

• *IST

• *OPC

• *OPT

• *PRE

• *RST

• *SRE

• *STB

• *TRG

• *TST

• *WAI

Common commands can be received and processed by the HP
1660C/CS/CP-series logic analyzers, whether they are sent over the
bus as separate program messages or within other program messages.
If an instrument subsystem has been selected and a common
command is received by the instrument, the logic analyzer will remain
in the selected subsystem.

8–2

Example If the program message in this example is received by the logic
analyzer, it will initialize the disk and store the file and clear the status
information. This is not be the case if some other type of command is
received within the program message.

":MMEMORY:INITIALIZE;*CLS; STORE ’FILE ’,’DESCRIPTION’"

Example This program message initializes the disk, selects the module in slot A,
then stores the file. In this example, :MMEMORY must be sent again
to re-enter the memory subsystem and store the file.

":MMEMORY:INITIALIZE;:SELECT 1;:MMEMORY:STORE ’FILE ’,
’DESCRIPTION’"

Status Registers

Each status register has an associated status enable (mask) register.
By setting the bits in the status enable register you can select the
status information you wish to use. Any status bits that have not been
masked (enabled in the enable register) will not be used to report
status summary information to bits in other status registers.

Refer to chapter 6, "Status Reporting," for a complete discussion of
how to read the status registers and how to use the status information
available from this instrument.

Table 8-1 Common Command Parameter Values

Parameter Values

mask An integer, 0 through 255.

pre_mask An integer, 0 through 65535.

Common Commands

8–3

Figure 8-1

Common Commands Syntax Diagram

Common Commands

8–4

*CLS (Clear Status)

Command *CLS

The *CLS common command clears all event status registers, queues, and
data structures, including the device defined error queue and status byte. If
the *CLS command immediately follows a <program message terminator>,
the output queue and the MAV (Message Available) bit will be cleared. Refer
to chapter 6, "Status Reporting," for a complete discussion of status.

Example OUTPUT XXX;"*CLS"

*ESE (Event Status Enable)

Command *ESE <mask>

The *ESE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a bit to enable the
status indicators detailed in table 8-2. A 1 in any bit position of the Standard
Event Status Enable Register enables the corresponding status in the
Standard Event Status Enable Register. Refer to Chapter 6, "Status
Reporting" for a complete discussion of status.

<mask> An integer from 0 to 255.

Example In this example, the *ESE 32 command will enable CME (Command Error),
bit 5 of the Standard Event Status Enable Register. Therefore, when a
command error occurs, the event summary bit (ESB) in the Status Byte
Register will also be set.
OUTPUT XXX;"*ESE 32"

Query *ESE?

The *ESE query returns the current contents of the enable register.

Common Commands
*CLS (Clear Status)

8–5

Returned Format <mask><NL>

Example OUTPUT XXX;"*ESE?"

Table 8-2 Standard Event Status Enable Register

Bit Position Bit Weight Enables

7 128 PON - Power On

6 64 URQ - User Request

5 32 CME - Command Error

4 16 EXE - Execution Error

3 8 DDE - Device Dependent Error

2 4 QYE - Query Error

1 2 RQC - Request Control

0 1 OPC - Operation Complete

*ESR (Event Status Register)

Query *ESR?

The *ESR query returns the contents of the Standard Event Status Register.
Reading the register clears the Standard Event Status Register.

Returned Format <status><NL>

<status> An integer from 0 to 255.

Example If a command error has occurred, and bit 5 of the ESE register is set, the
string variable Esr_event$ will have bit 5 (the CME bit) set.
10 OUTPUT XXX;"*ESE 32" !Enables bit 5 of the status register

20 OUTPUT XXX;"*ESR?" !Queries the status register
30 ENTER XXX; Esr_event$!Reads the query buffer

Common Commands
*ESR (Event Status Register)

8–6

Table 8-3 shows the Standard Event Status Register. The table details the
meaning of each bit position in the Standard Event Status Register and the
bit weight. When you read Standard Event Status Register, the value
returned is the total bit weight of all the bits that are high at the time you
read the byte.

Table 8-3 Standard Event Status Register

Bit Position Bit Weight Bit Name Condition

7 128 PON 0 = register read - not in power up mode
1 = power up

6 64 URQ 0 = user request - not used - always zero

5 32 CME 0 = no command errors
1 = a command eror has been detected

4 16 EXE 0 = no execution errors
1 = an execution error has been detected

3 8 DDE 0 = no device dependent error has been detected
1 = a device dependent error has been detected

2 4 QYE 0 = no query errors
1 = a query error has been detected

1 2 RQC 0 = request control - not used - always zero

0 1 OPC 0 = operation is not complete
1 = operation is complete

Common Commands
*ESR (Event Status Register)

8–7

*IDN (Identification Number)

Query *IDN?

The *IDN? query allows the instrument to identify itself. It returns the string:

"HEWLETT-PACKARD,1660C,0,REV <revision_code>"

The model number reflects the model you issue the command to, but the
1660CS models also return 1660C. An *IDN? query must be the last query in
a message. Any queries after the *IDN? in the program message are ignored.

Returned Format HEWLETT-PACKARD,1660C,0,REV <revision code>

<revision
code>

Four-digit code in the format XX.XX representing the current ROM revision.

Example OUTPUT XXX;"*IDN?"

*IST (Individual Status)

Query *IST?

The *IST query allows the instrument to identify itself during parallel poll by
allowing the controller to read the current state of the IEEE 488.1 defined
"ist" local message in the instrument. The response to this query is
dependent upon the current status of the instrument.

Figure 8-2 shows the *IST data structure.
Returned Format <id><NL>

<id> 0 or 1

1 Indicates the "ist" local message is false.

0 Indicates the "ist" local message is true.

Example OUTPUT XXX;"*IST?"

Common Commands
*IDN (Identification Number)

8–8

Figure 8-2

*IST Data Structure

Common Commands
*IST (Individual Status)

8–9

*OPC (Operation Complete)

Command *OPC

The *OPC command will cause the instrument to set the operation complete
bit in the Standard Event Status Register when all pending device operations
have finished. The commands which affect this bit are the overlapped
commands. An overlapped command is a command that allows execution of
subsequent commands while the device operations initiated by the
overlapped command are still in progress. The overlapped commands for the
HP 1660C/CS/CP-series are STARt and STOP.

Example OUTPUT XXX;"*OPC"

Query *OPC?

The *OPC query places an ASCII "1" in the output queue when all pending
device operations have been completed.

Returned Format 1<NL>

Example OUTPUT XXX;"*OPC?"

Common Commands
*OPC (Operation Complete)

8–10

*OPT (Option Identification)

Query *OPT?

The *OPT query identifies the software installed in the HP
1660C/CS/CP-series. This query returns nine parameters. The first
parameter indicates whether you are in the system. The next two
parameters indicate any software options installed, and the next parameter
indicates whether intermodule is available for the system. The last five
parameters list the installed software for the modules in slot A through E for
an HP 16500A mainframe. However, the HP 1660C/CS/CP-series logic
analyzers have only two slots (A and B); therefore, only the first and second
parameters of the last five parameters will be relevant. A zero in any of the
last eight parameters indicates that the corresponding software is not
currently installed. The name returned for software options and module
software is the same name that appears in the field in the upper-left corner of
the menu for each option or module.

Returned Format {SYSTEM},{<option>|0},{<option>|0},{INTERMODULE|0},{<module>|0
},{<module>|0},{<module>|0},{<module>|0},{<module>|0}<NL>

<option> Name of software option.

<module> Name of module software.

Example OUTPUT XXX;"*OPT?"

Common Commands
*OPT (Option Identification)

8–11

*PRE (Parallel Poll Enable Register Enable)

Command *PRE <mask>

The *PRE command sets the parallel poll register enable bits. The Parallel
Poll Enable Register contains a mask value that is ANDed with the bits in the
Status Bit Register to enable an "ist" during a parallel poll. Refer to table 8-4
for the bits in the Parallel Poll Enable Register and for what they mask.

<pre_mask> An integer from 0 to 65535.

Example This example will allow the HP 1660C/CS/CP-series to generate an "ist" when
a message is available in the output queue. When a message is available, the
MAV (Message Available) bit in the Status Byte Register will be high.
Output XXX;"*PRE 16"

Query *PRE?

The *PRE? query returns the current value of the register.
Returned format <mask><NL>

<mask> An integer from 0 through 255.

Example OUTPUT XXX;"*PRE?"

Common Commands
*PRE (Parallel Poll Enable Register Enable)

8–12

Table 8-4 HP 1660C/CS/CP-series Parallel Poll Enable Register

Bit Position Bit Weight Enables

15 -8 Not used

7 128 Not used

6 64 MSS - Master Summary Status

5 32 ESB - Event Status

4 16 MAV - Message Available

3 8 LCL - Local

2 4 Not used

1 2 Not used

0 1 MSB - Module Summary

*RST (Reset)

The *RST command is not implemented on the HP 1660C/CS/CP-series. The
HP 1660C/CS/CP-series will accept this command, but the command has no
affect on the logic analyzer.

The *RST command is generally used to place the logic analyzer in a
predefined state. Because the HP 1660C/CS/CP-series allows you to store
predefined configuration files for individual modules, or for the entire system,
resetting the logic analyzer can be accomplished by simply loading the
appropriate configuration file. For more information, refer to chapter 11,
"MMEMory Subsystem."

Common Commands
*RST (Reset)

8–13

*SRE (Service Request Enable)

Command *SRE <mask>

The *SRE command sets the Service Request Enable Register bits. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding bit in the Status Byte Register. A zero
will disable the bit. Refer to table 8-5 for the bits in the Service Request
Enable Register and what they mask.

Refer to Chapter 6, "Status Reporting," for a complete discussion of status.

<mask> An integer from 0 to 255.

Example This example enables a service request to be generated when a message is
available in the output queue. When a message is available, the MAV
(Message Available) bit will be high.

OUTPUT XXX;"*SRE 16"

Query *SRE?

The *SRE query returns the current value.
Returned Format <mask><NL>

<mask> An integer from 0 to 255 representing the sum of all bits that are set.

Example OUTPUT XXX;"*SRE?"

Common Commands
*SRE (Service Request Enable)

8–14

Table 8-5 HP 1660C/CS/CP-series Service Request Enable Register

Bit Position Bit Weight Enables

15-8 not used

7 128 not used

6 64 MSS - Master Summary Status (always 0)

5 32 ESB - Event Status

4 16 MAV - Message Available

3 8 LCL- Local

2 4 not used

1 2 not used

0 1 MSB - Module Summary

*STB (Status Byte)

Query *STB?

The *STB query returns the current value of the instrument’s status byte.
The MSS (Master Summary Status) bit, and, not the RQS (Request Service)
bit is reported on bit 6. The MSS indicates whether or not the device has at
least one reason for requesting service. Refer to table 8-6 for the meaning of
the bits in the status byte.

Refer to Chapter 6, "Status Reporting," for a complete discussion of status.
Returned Format <value><NL>

<value> An integer from 0 through 255

Example OUTPUT XXX;"*STB?"

Common Commands
*STB (Status Byte)

8–15

Table 8-6 The Status Byte Register

Bit Position Bit Weight Bit Name Condition

7 128 0 = not Used

6 64 MSS 0 = instrument has no reason for service
1 = instrument is requesting service

5 32 ESB 0 = no event status conditions have occurred
1 = an enabled event status condition has occurred

4 16 MAV 0 = no output messages are ready
1 = an output message is ready

3 8 LCL 0 = a remote-to-local transition has not occurred
1 = a remote-to-local transition has occurred

2 4 not used

1 2 not used

0 1 MSB 0 = a module or the system has activity to report
1 = no activity to report

0 = False = Low
1 = True = High

*TRG (Trigger)

Command *TRG

The *TRG command has the same effect as a Group Execute Trigger (GET).
That effect is as if the START command had been sent for intermodule group
run. If no modules are configured in the Intermodule menu, this command
has no effect.

Example OUTPUT XXX;"*TRG"

Common Commands
*TRG (Trigger)

8–16

*TST (Test)

Query *TST?

The *TST query returns the results of the power-up self-test. The result of
that test is a 9-bit mapped value which is placed in the output queue. A one
in the corresponding bit means that the test failed and a zero in the
corresponding bit means that the test passed. Refer to table 8-7 for the
meaning of the bits returned by a TST? query.

Returned Format <result><NL>

<result> An integer 0 through 511.

Example 10 OUTPUT XXX;"*TST?"
20 ENTER XXX;Tst_value

Table 8-7 Bits Returned by *TST? Query (Power-Up Test Results)

Bit Position Bit Weight Test

8 256 Flexible Disk Test

7 128 Hard Disk Test

6 64 not used

5 32 not used

4 16 PS2 Controller Test

3 8 Display Test

2 4 Interupt Test

1 2 RAM Test

0 1 ROM Test

Common Commands
*TST (Test)

8–17

*WAI (Wait)

Command *WAI

The *WAI command causes the device to wait until completing all of the
overlapped commands before executing any further commands or queries.
An overlapped command is a command that allows execution of subsequent
commands while the device operations initiated by the overlapped command
are still in progress. Some examples of overlapped commands for the HP
1660C/CS/CP-series are STARt and STOP.

Example OUTPUT XXX;"*WAI"

Common Commands
*WAI (Wait)

8–18

9

Instrument Commands

Introduction

Instrument commands control the basic operation of the instrument
for the HP 1660C/CS/CP-series logic analyzers. The 1660C/CS-series
logic analyzers are similar to an HP 16500A logic analysis system with
either a single logic analyzer module (HP 1660C-series) or one logic
analyzer and one oscilloscope module (HP 1660CS-series) installed.

The main difference from mainframe commands for the HP
16500-series logic analysis system is the number of modules. In the
HP 1660C/CS/CP-series, module 0 contains the system level
commands, module 1 contains the logic analyzer level commands, and
module 2 contains the oscilloscope module commands (CS only).The
command parser in the HP 1660C/CS/CP-series logic analyzers is
designed to accept programs written for the HP 16500A logic analysis
system with an HP 16550A logic analyzer and/or oscilloscope modules.
The main difference is how you specify the SELECT command.
Remember, the HP 1660C/CS/CP-series is equivalent only to a
mainframe with up to two modules; therefore, if you specify 3 through
10 for the SELECT command in your program, the command parser
will take no action.

This chapter contains instrument commands with a syntax example
for each command. Each syntax example contains parameters for the
HP 1600 series only. Refer to figure 9-1 and table 9-1 for the
Instrument commands syntax diagram. The instrument commands
are:

• BEEPer • MESE
• CAPability • MESR
• CARDcage • RMODe
• CESE • RTC
• CESR • SELect
• EOI • SETColor
• LER • STARt
• LOCKout • STOP

9–2

• MENU • XWINdow

Figure 9-1

Mainframe Commands Syntax Diagram

Instrument Commands

9–3

Instrument Commands

9–4

Figure 9-1 (continued)

Mainframe Commands Syntax Diagram (continued)

Table 9-1 Mainframe Parameter Values

Parameter Values

value An integer from 0 to 65535.

module An integer 0 through 2 (3 through 10 unused).

menu An integer.

enable_value An integer from 0 to 255.

index An integer from 0 to 5.

day An integer from 1 through 31.

month An integer from 1 through 12.

year An integer from 1990 through 2089.

hour An integer from 0 through 23.

minute An integer from 0 through 59.

second An integer from 0 through 59.

color An integer from 1 to 7.

hue An integer from 0 to 100.

sat An integer from 0 to 100.

lum An integer from 0 to 100.

display name Astring containing an Internet Address and a display name,
for example, "12.3.19.1:0.0".

Instrument Commands

9–5

BEEPer

Command :BEEPer [{ON|1}|{OFF|0}]

The BEEPer command sets the beeper mode, which turns the beeper sound
of the instrument on and off. When BEEPer is sent with no argument, the
beeper will be sounded without affecting the current mode.

Example OUTPUT XXX;":BEEPER";OUTPUT XXX;":BEEP ON"

Query :BEEPer?

The BEEPer? query returns the mode currently selected.
Returned Format [:BEEPer] {1|0}<NL>

Example OUTPUT XXX;":BEEPER?"

Instrument Commands
BEEPer

9–6

CAPability

Query :CAPability?

The CAPability query returns the HP-SL (HP System Language) and lower
level capability sets implemented in the device.

Table 9-2 lists the capability sets implemented in the HP 1660C/CS/CP-series.
Returned Format [:CAPability]

IEEE488,1987,SH1,AH1,T5,L4,SR1,RL1,PP1,DC1,DT1,C0,E2<NL>

Example OUTPUT XXX;":CAPABILITY?"

Table 9-2 HP 1660C/CS/CP-Series Capability Sets

Mnemonic Capability Name Implementation

SH Source Handshake SH1

AH Acceptor Handshake AH1

T Talker (or TE - Extended Talker) T5

L Listener (or LE - Extended Listener) L4

SR Service Request SR1

RL Remote Local RL1

PP Parallel Poll PP1

DC Device Clear DC1

DT Device Trigger DT1

C Any Controller C0

E Electrical Characteristic E2

Instrument Commands
CAPability

9–7

CARDcage

Query :CARDcage?

The CARDcage query returns a series of integers which identify the cards
that are installed in the machine. The returned string is in two parts. The
first five two-digit numbers identify the card type. There are five numbers
because this command also works on the HP 16500B logic analysis system.
The identification number for the logic analyzer is 32. The identification
number for the oscilloscope is 13. A "-1" in the first part of the string
indicates nothing is installed.

The five single-digit numbers in the second part of the string indicate which
cards are installed. The card assignment for the logic analyzer will always be
1. The second number will contain a 0 unless the oscilloscope card is installed
(HP 1660CS), in which case it will return a 1. The possible values for the
card assignment are 0 and 1 where 0 indicates the card software is not
recognized or not loaded.

Returned Format [:CARDcage] <ID>,<ID>,-1,-1,-1,1,<assign>,0,
0,0<NL>

<ID> An integer indicating the card identification number.

<assign> An integer indicating the card assignment.

Example OUTPUT XXX;":CARDCAGE?"

Instrument Commands
CARDcage

9–8

CESE (Combined Event Status Enable)

Command :CESE <value>

The CESE command sets the Combined Event Status Enable register. This
register is the enable register for the CESR register and contains the
combined status of all of the MESE (Module Event Status Enable) registers
of the HP 1660C/CS/CP-series. Table 9-3 lists the bit values for the CESE
register.

<value> An integer from 0 to 65535

Example OUTPUT XXX;":CESE 32"

Query :CESE?

The CESE? query returns the current setting.
Returned Format [:CESE] <value><NL>

Example OUTPUT XXX;":CESE?"

Table 9-3 HP 1660C/CS/CP-Series Combined Event Status Enable Register

Bit Weight Enables

3 to 15 Not used

2 4 Pattern generator

2 4 Oscilloscope

1 2 Logic analyzer

0 1 Intermodule

Instrument Commands
CESE (Combined Event Status Enable)

9–9

CESR (Combined Event Status Register)

Query :CESR?

The CESR query returns the contents of the Combined Event Status register.
This register contains the combined status of all of the MESRs (Module Event
Status Registers) of the HP 1660C/CS/CP-series. Table 9-4 lists the bit values
for the CESR register.

Returned Format [:CESR] <value><NL>

<value> An integer from 0 to 65535.

Example OUTPUT XXX;":CESR?"

Table 9-4 HP 1660C/CS/CP-Series Combined Event Status Register

Bit Bit Weight Bit Name Condition

3 to 15 0 = not used

2 4 Pattern generator 0= No new status
1= Status to report

2 4 Oscilloscope 0 = No new status
1 = Status to report

1 2 Logic analyzer 0 = No new status
1 = Status to report

0 1 Intermodule 0 = No new status
1 = Status to report

Instrument Commands
CESR (Combined Event Status Register)

9–10

EOI (End Or Identify)

Command :EOI {{ON|1}|{OFF|0}}

The EOI command specifies whether or not the last byte of a reply from the
instrument is to be sent with the EOI bus control line set true or not. If EOI
is turned off, the logic analyzer will no longer be sending IEEE 488.2
compliant responses.

Example OUTPUT XXX;":EOI ON"

Query :EOI?

The EOI? query returns the current status of EOI.
Returned Format [:EOI] {1|0}<NL>

Example OUTPUT XXX;":EOI?"

LER (LCL Event Register)

Query :LER?

The LER? query allows the LCL Event Register to be read. After the LCL
Event Register is read, it is cleared. A one indicates a remote-to-local
transition has taken place. A zero indicates a remote-to-local transition has
not taken place.

Returned Format [:LER] {0|1}<NL>

Example OUTPUT XXX;":LER?"

Instrument Commands
EOI (End Or Identify)

9–11

LOCKout

Command :LOCKout {{ON|1}|{OFF|0}}

The LOCKout command locks out or restores front panel operation. When
this function is on, all controls (except the power switch) are entirely locked
out.

Example OUTPUT XXX;":LOCKOUT ON"

Query :LOCKout?

The LOCKout query returns the current status of the LOCKout command.
Returned Format [:LOCKout] {0|1}<NL>

Example OUTPUT XXX;":LOCKOUT?"

MENU

Command :MENU <module>[,<menu>]

The MENU command puts a menu on the display. The first parameter
specifies the desired module. The optional second parameter specifies the
desired menu in the module (defaults to 0). Table 9-5 lists the parameters
and the menus.

<module> Selects module or system (integer) 0 selects the system, 1 selects the logic
analyzer, and 2 selects the oscilloscope. –2, –1 and 3 to 10 unused

<menu> Selects menu (integer)

Example OUTPUT XXX;":MENU 0,1"

Instrument Commands
LOCKout

9–12

Table 9-5 Menu Parameter Values

Parameters Menu

0,0 System External I/O

0,1 System Hard Disk

0,2 System Flexible Disk

0,3 System Utilities

0,4 System Test

1,0 Analyzer Configuration

1,1 Format 1

1,2 Format 2

1,3 Trigger 1

1,4 Trigger 2

1,5 Waveform 1

1,6 Waveform 2

1,7 Listing 1

1,8 Listing 2

1,9 Mixed

1,10 Compare 1

1,11 Compare 2

1,12 Chart 1

1,13 Chart 2

2,0 Trigger (Oscilloscope)

2,1 Channel (Oscilloscope)

2,2 Display (Oscilloscope)

2,3 Auto-measure (Oscilloscope)

2,4 Marker (Oscilloscope)

2,5 Calibration (Oscilloscope)

2,0 Sequence (Pattern generator)

2,1 Format (Pattern generator)

2,2 User Macros (Pattern generator)

Instrument Commands
MENU

9–13

Query :MENU?

The MENU query returns the current menu selection.
Returned Format [:MENU] <module>,<menu><NL>

Example OUTPUT XXX;":MENU?"

MESE<N> (Module Event Status Enable)

Command :MESE<N> <enable_value>

The HP 1660C/CS/CP-series logic analyzers support the MESE command for
compatibility with older programs but do not take any action when the
command is sent. In older machines, the MESE command sets the Module
Event Status Enable register. This register is the enable register for the
MESR register. The <N> index specifies the module, and the parameter
specifies the enable value.

<N> An integer 0 through 2 (3 through 10 unused).

<enable_value> An integer from 0 through 255.

Example OUTPUT XXX;":MESE1 3"

Query :MESE<N>?

The MESE query is still supported. The query returns the current setting.
Tables 9-6, 9-7, and 9-8 list the Module Event Status Enable register bits, bit
weights, and what each bit masks for the mainframe, logic analyzer, and
oscilloscope respectively.

Returned Format [:MESE<N>] <enable_value><NL>

Example OUTPUT XXX;":MESE1?"

Instrument Commands
MESE<N> (Module Event Status Enable)

9–14

Table 9-6 HP 1660C/CS/CP-series Mainframe (Intermodule) Module Event Status Enable
Register

Bit Position Bit Weight Enables

7 128 not used

6 84 not used

5 32 not used

4 16 not used

3 8 not used

2 4 not used

1 2 RNT - Intermodule Run Until Satisfied

0 1 MC - Intermodule Measurement Complete

Table 9-7 HP 1660C/CS/CP-series Logic Analyzer Module Event Status Enable Register

Bit Position Bit Weight Enables

7 128 not used

6 84 not used

5 32 not used

4 16 not used

3 8 Pattern searches failed

2 4 Trigger found

1 2 RNT - Run Until Satisfied

0 1 MC - Measurement Complete

Instrument Commands
MESE<N> (Module Event Status Enable)

9–15

Table 9-8 HP 1660CS-series Oscilloscope Module Event Status Enable Register

Bit Position Bit Weight Enables

7 128 not used

6 84 not used

5 32 not used

4 16 Number of averages met

3 8 Auto triggered

2 4 Trigger received

1 2 RNT - Run Until Satisfied

0 1 MC - Measurement Complete

MESR<N> (Module Event Status Register)

Query :MESR<N>?

The MESR query returns the contents of the Module Event Status register.
The <N> index specifies the module. For the HP 1660C/CS/CP series, the
<N> index 0, 1, or 2 refers to system, logic analyzer, or oscilloscope
respectively.

Refer to table 9-9 for information about the Module Event Status Register
bits and their bit weights for the system, table 9-10 for the logic analyzer, and
table 9-11 for the oscilloscope.

Returned Format [:MESR<N>] <enable_value><NL>

<N> An integer 0 through 10 (3 through 10 unused).

<enable_value> An integer from 0 through 255

Example OUTPUT XXX;":MESR1?"

Instrument Commands
MESR<N> (Module Event Status Register)

9–16

Table 9-9 HP 1660C/CS/CP-series Mainframe Module Event Status Register

Bit Bit Weight Bit Name Condition

7 128 0 = not used

6 64 0 = not used

5 32 0 = not used

4 16 0 = not used

3 8 0 = not used

2 4 0 = not used

1 2 RNT 0 = Intermodule Run until not satisfied
1 = Intermodule Run until satisfied

0 1 MC 0 = Intermodule Measurement not satisfied
1 = Intermodule Measurement satisfied

Table 9-10 HP 1660C/CS/CP-series Logic Analyzer Module Event Status Register

Bit Bit Weight Condition

7 128 0 = not used

6 64 0 = not used

5 32 0 = not used

4 16 0 = not used

3 8 1 = One or more pattern searches failed
0 = Pattern searches did not fail

2 4 1 = Trigger found
0 = Trigger not found

1 2 0 = Run until not satisfied
1 = Run until satisfied

0 1 0 = Measurement not satisfied
1 = Measurement satisfied

Instrument Commands
MESR<N> (Module Event Status Register)

9–17

Table 9-11 HP 1660CS-series Oscilloscope Module Event Status Register

Bit Bit Weight Bit Name Condition

7 128 0 = not used

6 64 0 = not used

5 32 0 = not used

4 16 1 = Number of averages satisfied
0= Number of averages not satisfied

3 8 1 = Auto trigger received
0= Auto trigger not received

2 4 1= Trigger received
0= Trigger not received

1 2 RNT 1 = Run until satisfied
0 = Run until not satisfied

0 1 MC 1 = Measurement complete
0 = Measurement not complete

RMODe

Command :RMODe {SINGle|REPetitive}

The RMODe command specifies the run mode for the selected module (or
Intermodule). If the selected module is in the intermodule configuration,
then the intermodule run mode will be set by this command.

After specifying the run mode, use the STARt command to start the acquisition.

Example OUTPUT XXX;":RMODE SINGLE"

Instrument Commands
RMODe

9–18

Query :RMODe?

The query returns the current setting.
Returned Format [:RMODe] {SINGle|REPetitive}<NL>

Example OUTPUT XXX;":RMODE?"

RTC (Real-time Clock)

Command :RTC {<day>,<month>,<year>,<hour>,<minute>,
<second>|DEFault}

The real-time clock command allows you to set the real-time clock to the
current date and time. The DEFault option sets the real-time clock to 01
January 1992, 12:00:00 (24-hour format).

<day> integer from 1 to 31

<month> integer from 1 to 12

<year> integer from 1990 to 2089

<hour> integer from 0 to 23

<minute> integer from 0 to 59

<second> integer from 0 to 59

Example This example sets the real-time clock for 1 January 1992, 20:00:00 (8 PM).

OUTPUT XXX;":RTC 1,1,1992,20,0,0"

Instrument Commands
RTC (Real-time Clock)

9–19

Query :RTC?

The RTC query returns the real-time clock setting.
Returned Format [:RTC] <day>,<month>,<year>,<hour>,<minute>,<second>

Example OUTPUT XXX;":RTC?"

SELect

Command :SELect <module>

The SELect command selects which module (or system) will have parser
control. SELect defaults to System (0) at power up. The appropriate module
(or system) must be selected before any module (or system) specific
commands can be sent. SELECT 0 selects the System, SELECT 1 selects the
logic analyzer (state and timing), and SELECT 2 selects the oscilloscope
module. Select –2, –1 and, 3 through 10 are accepted but no action will be
taken. When a module is selected, the parser recognizes the module’s
commands and the System/Intermodule commands. When SELECT 0 is
used, only the System/Intermodule commands are recognized by the parser.
Figure 9-2 shows the command tree for the SELect command.

The command parser in the HP 1660C/CS/CP-series is designed to accept
programs written for the HP 16500A logic analysis system with an HP 16550A
logic analyzer module; however, if the parameters 3 through 10 are sent, the
HP 1660C/CS/CP-series logic analyzers will take no action.

<module> An integer 0 through 2 (–2, –1, and 3 through 10 unused).

Example OUTPUT XXX;":SELECT 0"

Instrument Commands
SELect

9–20

Query :SELect?

The SELect? query returns the current module selection.
Returned Format [:SELect] <module><NL>

Example OUTPUT XXX;":SELECT?"

Figure 9-2

Select Command Tree

Instrument Commands
SELect

9–21

SETColor

Command :SETColor {<color>,<hue>,<sat>,<lum>|DEFault}

The SETColor command is used to change one of the selections on the CRT,
or to return to the default screen colors. Four parameters are sent with the
command to change a color:

• Color Number (first parameter)

• Hue (second parameter)

• Saturation (third parameter)

• Luminosity (last parameter)

<color> An integer from 1 to 7

<hue> An integer from 0 to 100.

<sat> An integer from 0 to 100.

<lum> An integer from 0 to 100

Color Number 0 cannot be changed.

Example OUTPUT XXX;":SETCOLOR 3,60,100,60"
OUTPUT XXX;":SETC DEFAULT"

Query :SETColor? <color>

The SETColor query returns the luminosity values for a specified grayscale
shade.

Returned Format [:SETColor] <color>,<hue>,<sat>,<lum><NL>

Example OUTPUT XXX;":SETCOLOR? 3"

Instrument Commands
SETColor

9–22

STARt

Command :STARt

The STARt command starts the selected module (or Intermodule) running in
the specified run mode (see RMODe). If the specified module is in the
Intermodule configuration, then the Intermodule run will be started.

The STARt command is an overlapped command. An overlapped command is a
command that allows execution of subsequent commands while the device
operations initiated by the overlapped command are still in progress.

Example OUTPUT XXX;":START"

STOP

Command :STOP

The STOP command stops the selected module (or Intermodule). If the
specified module is in the Intermodule configuration, then the Intermodule
run will be stopped.

The STOP command is an overlapped command. An overlapped command is a
command that allows execution of subsequent commands while the device
operations initiated by the overlapped command are still in progress.

Example OUTPUT XXX;":STOP"

Instrument Commands
STARt

9–23

XWINdow

Command :XWINdow {OFF|0}
:XWINdow {ON|1}[,<display name>]

The XWINdow command opens or closes a window on an X Window display
server, that is, a networked workstation or personal computer. The
XWINdow ON command opens a window. If no display name is specified, the
display name already stored in the logic analyzer X Window External I/O
menu is used. If a display name is specified, that name is used. The specified
display name also is stored in non-volatile memory in the logic analyzer.

<display name> A string containing an Internet (IP) Address optionally followed by a display
and screen specifier. For example,
"12.3.47.11"

or
"12.3.47.11:0.0"

Example To open a window, specifying and storing the display name:
OUTPUT XXX;":XWINDOW ON,’12.3.47.11’"

To open a window, using the stored display name:
OUTPUT XXX;":XWINDOW ON"

To close the X Window:
OUTPUT XXX;":XWINDOW OFF"

For the HP 1660C/CS-series logic analyzer, this command only has an effect if
the LAN option is installed. The HP 1660CP-series logic analyzer comes with the
LAN installed.

Instrument Commands
XWINdow

9–24

10

SYSTem Subsystem

Introduction

SYSTem subsystem commands control functions that are common to
the entire HP 1660C/CS/CP-series logic analyzer, including formatting
query responses and enabling reading and writing to the advisory line
of the instrument. The command parser in the HP
1660C/CS/CP-series is designed to accept programs written for the
HP 16500A logic analysis system with an HP 16550A logic analyzer
module and HP 16532A oscilloscope module.

Refer to figure 10-1 and table 10-1 for the System Subsystem
commands syntax diagram. The SYSTem Subsystem commands are:

• DATA

• DSP

• ERRor

• HEADer

• LONGform

• PRINt

• SETup

10–2

Figure 10-1

System Subsystem Commands Syntax Diagram

SYSTem Subsystem

10–3

Table 10-1 SYSTem Parameter Values

Parameter Values

block_data Data in IEEE 488.2 format.

string A string of up to 68 alphanumeric characters.

pathname A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 64 alphanumeric characters for DOS in one of
the following forms:
 "NNNNNNNN.NNN" when the file resides in the present
working directory
or "\NAME_DIR\FILENAME" when the files does not reside in
the present working directory

SYSTem Subsystem

10–4

DATA

Command :SYSTem:DATA <block_data>

The DATA command allows you to send and receive acquired data to and
from a controller in block form. This helps saving block data for:

• Reloading to the logic analyzer or oscilloscope

• Processing data later in the logic analyzer or oscilloscope

• Processing data in the controller

The format and length of block data depends on the instruction being used
and the configuration of the instrument. This chapter describes briefly the
syntax of the Data command and query. Because the mainframe by itself
does not have acquired data, and the capabilities of the DATA command and
query vary for each module, the DATA command and query are described in
detail in the respective modules command section. See chapter 27, "DATA
and SETup Commands" for additional information when using the logic
analyzer, or chapter 36, "WAVeform Subsystem" when using the oscilloscope
module.

Example OUTPUT XXX;":SYSTEM:DATA" <block_data>

<block_data> <block_length_specifier><section>

<block_length_
specifier>

#8<length>

<length> The total length of all sections in byte format (must be represented with
8 digits).

<section> <section_header><section_data>

<section_
header>

16 bytes, described in the "Section Header Description" section in
chapter 27, "DATA and SETup Commands."

<section_data> The format depends on the type of data.

SYSTem Subsystem
DATA

10–5

Query :SYSTem:DATA?

The SYSTem:DATA query returns the block data. The data sent by the
SYSTem:DATA query reflects the configuration of the machines when the
last run was performed. Any changes made since then through either
front-panel operations or programming commands do not affect the stored
configuration.

Returned Format [:SYSTem:DATA] <block_data><NL>

Example See chapter 37, "Programming Examples" for an example on transferring data.

DSP (Display)

Command :SYSTem:DSP <string>

The DSP command writes the specified quoted string to a device-dependent
portion of the instrument display.

<string> A string of up to 68 alphanumeric characters

Example OUTPUT XXX;":SYSTEM:DSP ’The message goes here’"

SYSTem Subsystem
DSP (Display)

10–6

ERRor

Query :SYSTem:ERRor? [NUMeric|STRing]

The ERRor query returns the oldest error from the error queue. The optional
parameter determines whether the error string should be returned along with
the error number. If no parameter is received, or if the parameter is
NUMeric, then only the error number is returned. If the value of the
parameter is STRing, then the error should be returned in the following form:

<error_number>,<error_message (string)>

A complete list of error messages for the HP 1660C/CS/CP-series is shown in
chapter 7, "Error Messages." If no errors are present in the error queue, a
zero (No Error) is returned.

Returned Formats Numeric:
[:SYSTem:ERRor] <error_number><NL>

String:
[:SYSTem:ERRor] <error_number>,<error_string><NL>

<error_number> An integer

<error_string> A string of alphanumeric characters

Example Numeric:
10 OUTPUT XXX;":SYSTEM:ERROR?"
20 ENTER XXX;Numeric

String:
50 OUTPUT XXX;":SYST:ERR? STRING"

60 ENTER XXX;String$

SYSTem Subsystem
ERRor

10–7

HEADer

Command :SYSTem:HEADer {{ON|1}|{OFF|0}}

The HEADer command tells the instrument whether or not to output a
header for query responses. When HEADer is set to ON, query responses will
include the command header.

Example OUTPUT XXX;":SYSTEM:HEADER ON"

Query :SYSTem:HEADer?

The HEADer query returns the current state of the HEADer command.
Returned Format [:SYSTem:HEADer] {1|0}<NL>

Example OUTPUT XXX;":SYSTEM:HEADER?"

Headers should be turned off when returning values to numeric variables.

SYSTem Subsystem
HEADer

10–8

LONGform

Command :SYSTem:LONGform {{ON|1}|{OFF|0}}

The LONGform command sets the longform variable, which tells the
instrument how to format query responses. If the LONGform command is set
to OFF, command headers and alpha arguments are sent from the instrument
in the abbreviated form. If the the LONGform command is set to ON, the
whole word will be output. This command has no affect on the input data
messages to the instrument. Headers and arguments may be input in either
the longform or shortform regardless of how the LONGform command is set.

Example OUTPUT XXX;":SYSTEM:LONGFORM ON"

Query :SYSTem:LONGform?

The query returns the status of the LONGform command.
Returned Format [:SYSTem:LONGform] {1|0}<NL>

Example OUTPUT XXX;":SYSTEM:LONGFORM?"

SYSTem Subsystem
LONGform

10–9

PRINt

Command :SYSTem:PRINt ALL[,DISK, <pathname>[,<msus>]]
:SYSTem:PRINt PARTial,<start>,<end>
[,DISK, <pathname>[,<msus>]]
:SYSTem:PRINt SCReen[,DISK, <pathname> [,<msus>],
{BTIF|CTIF|PCX|EPS}]

The PRINt command initiates a print of the screen or listing buffer over the
current PRINTER communication interface to the printer or to a file on the
disk. The PRINT SCREEN option allows you to specify a graphics type. BTIF
format is black & white TIFF, version 5.0; CTIF and PCX formats are
grayscale; and EPS is a black & white line drawing. If a file extension is not
specified, one is appended automatically to the file name.The PRINT
PARTIAL option allows you to specify a START and END state number.

<pathname> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN when the file resides in the present working directory, or a
string of up to 64 alphanumeric characters for DOS in the following forms:
NNNNNNNN.NNN or \NAME_DIR\FILENAME when the file does not reside
in the present working directory.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the default flexible disk drive.

<start>, <end> An integer specifying a state number.

Example This instuctrion prints the screen to the printer:
OUTPUT XXX;":SYSTEM:PRINT SCREEN"

This instruction prints all, to a file named STATE:
OUTPUT 707;":SYSTEM:PRINT ALL, DISK,’STATE’"

This instruction prints partial data to a file named LIST.
OUTPUT 707;":SYSTEM:PRINT PARTIAL,-9,30, DISK,’list’

SYSTem Subsystem
PRINt

10–10

Query :SYSTem:PRINt? {SCReen|ALL}

The PRINt query sends the screen or listing buffer data over the current
CONTROLLER communication interface to the controller.

The print query should NOT be sent with any other command or query on the
same command line. The print query never returns a header. Also, since
response data from a print query may be sent directly to a printer without
modification, the data is not returned in block mode.

Example OUTPUT 707;":SYSTEM:PRINT? SCREEN"

SETup

Command :SYStem:SETup <block_data>

The :SYStem:SETup command configures the logic analyzer module as
defined by the block data sent by the controller. This chapter describes
briefly the syntax of the Setup command and query. Because of the
capabilites and importance of the Setup command and query, a complete
chapter is dedicated to it. The dedicated chapter is chapter 27, "DATA and
SETup Commands."

<block_data> <block_length_specifier><section>

<block_length_
specifier>

#8<length>

<length> The total length of all sections in byte format (must be represented with 8
digits)

<section> <section_header><section_data>

<section_
header>

16 bytes, described in the "Section Header Description" section in chapter 27.

<section_data> Format depends on the type of data

SYSTem Subsystem
SETup

10–11

The total length of a section is 16 (for the section header) plus the length of
the section data. So when calculating the value for <length> , don’t forget
to include the length of the section headers.

Example OUTPUT XXX USING "#,K";":SYSTEM:SETUP " <block_data>

Query :SYStem:SETup?

The SYStem:SETup query returns a block of data that contains the current
configuration to the controller.

Returned Format [:SYStem:SETup] <block_data><NL>

Example See "Transferring the logic analyzer configuration" in chapter 43,
"Programming Examples" for an example.

SYSTem Subsystem
SETup

10–12

11

MMEMory Subsystem

Introduction

The MMEMory (mass memory) subsystem commands provide access
to the disk drives. The HP 1600C-series logic analyzers support both
LIF (Logical Information Format) and DOS (Disk Operating System)
formats.

The HP 1660C/CS/CP-series logic analyzers have two disk drives, a
hard disk drive and a flexible disk drive. Refer to figure 11-1 and table
11-1 for the MMEMory Subsystem commands syntax diagram. The
MMEMory subsystem commands are:

• AUToload

• CATalog

• CD (Change Directory)

• COPY

• DOWNload

• INITialize

• LOAD

• MKDir (Make Directory)

• MSI

• PACK

• PURGe

• PWD (Present Working Directory)

• REName

• STORe

• UPLoad

• VOLume

11–2

Figure 11-1

Mmemory Subsystem Commands Syntax Diagram

MMEMory Subsystem

11–3

Figure 11-1 (Continued)

Mmemory Subsystem Commands Syntax Diagram (Continued)

MMEMory Subsystem

11–4

Figure 11-1 (Continued)

Mmemory Subsystem Commands Syntax Diagram (Continued)

MMEMory Subsystem

11–5

Table 11-1 MMEMory Parameter Values

Parameter Values

auto_file A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

msus Mass Storage Unit specifier. INTernal0 for the hard disk
drive and INTernal1 for the flexible disk drive.

name A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

description A string of up to 32 alphanumeric characters.

directory_name A string of up to 64 characters for DOS disks ending in a
directory name. Separators can be the slash (/) or the
backslash (\) character. The string of two periods (..)
represents the parent of the present working directory.

type An integer, refer to table 11-2.

block_data Data in IEEE 488.2 format.

ia_name A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

new_name A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

module An integer, 0 through 2.

MMEMory Subsystem

11–6

AUToload

Command :MMEMory:AUToload {{OFF|0}|{<auto_file>}}[,<msus>]

The AUToload command controls the autoload feature which designates a set
of configuration files to be loaded automatically the next time the instrument
is turned on. The OFF parameter (or 0) disables the autoload feature. A
string parameter may be specified instead to represent the desired autoload
file. If the file is on the current disk, the autoload feature is enabled to the
specified file.

<auto_file> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:AUTOLOAD OFF"
OUTPUT XXX;":MMEMORY:AUTOLOAD ’FILE1_A’"
OUTPUT XXX;":MMEMORY:AUTOLOAD ’FILE2 ’,INTERNAL0"

Query :MMEMory:AUToload?

The AUToload query returns 0 if the autoload feature is disabled. If the
autoload feature is enabled, the query returns a string parameter that
specifies the current autoload file. The appropriate slot designator is
included in the filename and refers to the slot designator A for the logic
analyzer or B for the oscilloscope. If the slot designator is _ (underscore)
the file is for the system.

Returned Format [:MMEMory:AUToload] {0|<auto_file>},<msus><NL>

MMEMory Subsystem
AUToload

11–7

<auto_file> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

Example OUTPUT XXX;":MMEMORY:AUTOLOAD?"

CATalog

Query :MMEMory:CATalog? [[All,][<msus>]]

The CATalog query returns the directory of the disk in one of two block data
formats. The directory consists of a 51 character string for each file on the
disk when the ALL option is not used. Each file entry is formatted as follows:

"NNNNNNNNNN TTTTTTT FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"

where N is the filename, T is the file type (see table 11-2), and F is the file
description.

The optional parameter ALL returns the directory of the disk in a
70-character string as follows:

"NNNNNNNNNNNN TTTTTTT FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
DDMMMYY HH:MM:SS"

where N is the filename, T is the file type (see table 11-2), F is the file
description, and, D, M, Y, and HH:MM:SS are the date, month, year, and time
respectively in 24-hour format.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Returned Format [:MMEMory:CATalog] <block_data>

<block_data> ASCII block containing <filename> <file_type>
<file_description>

MMEMory Subsystem
CATalog

11–8

Example This example is for sending the CATALOG? ALL query:
OUTPUT 707;":MMEMORY:CATALOG? ALL"

This example is for sending the CATALOG? query without the ALL option.
Keep in mind if you do not use the ALL option with a DOS disk, each
filename entry will be truncated at 51 characters:
OUTPUT 707;":MMEMORY:CATALOG?"

CD (Change Directory)

Command :MMEMory:CD <directory_name> [,<msus>]

The CD command allows you to change the current working directory on the
hard disk or a DOS flexible disk. The command allows you to send path
names of up to 64 characters for DOS format. Separators can be either the
slash (/) or backslash (\) character. Both the slash and backslash characters
are equivalent and are used as directory separators. The string containing
double periods (..) represents the parent of the directory.

<directory_
name>

String of up to 64 characters for DOS disks ending in the new directory name

Example OUTPUT 707;":MMEMory:CD ’CHILD_DIR’"
OUTPUT 707;":MMEMory:CD ’..’"
OUTPUT 707;":MMEMory:CD ’\SYSTEM\SOURCE_DIR\DIR’, INTernal0"

The slash (/) character in DOS path names will be automatically translated to
the backslash character (\) on the disk; therefore, any flexible DOS disk used in
the HP 1660C/CS/CP will be compatible in DOS computers.

MMEMory Subsystem
CD (Change Directory)

11–9

COPY

Command :MMEMory:COPY <name>[,<msus>],<new_name>[,<msus>]

The COPY command copies one file to a new file or an entire disk’s contents
to another disk. The two <name> parameters are the filenames. The first
pair of parameters specifies the source file. The second pair specifies the
destination file. An error is generated if the source file doesn’t exist, or if the
destination file already exists.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<new_name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example To copy the contents of "FILE1" to "FILE2:"

OUTPUT XXX;":MMEMORY:COPY ’FILE1’,’FILE2’"

MMEMory Subsystem
COPY

11–10

DOWNload

Command :MMEMory:DOWNload <name>[,<msus>],<description>,
<type>,<block_data>

The DOWNload command downloads a file to the mass storage device. The
<name> parameter specifies the filename, the <description> parameter
specifies the file descriptor, and the <block_data> contains the contents
of the file to be downloaded.

Table 11-2 lists the file types for the <type> parameter.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

<description> A string of up to 32 alphanumeric characters

<type> An integer (see table 11-2)

<block_data> Contents of file in block data format

Example

OUTPUT XXX;":MMEMORY:DOWNLOAD ’SETUP ’,INTERNAL0,’FILE CREATED FROM SETUP
QUERY’,-16115,#800000643..."

MMEMory Subsystem
DOWNload

11–11

Table 11-2 File Types

File File Type

HP 1660C/CS/CP and HP 1670A ROM Software -15599

HP 1660A/AS ROM Software -15609

HP 1660C/CS/CP and HP 1670A System Software -15598

HP 1660A/AS System Software -15608

HP 1660A/AS, HP 1660C/CS/CP, and HP 1670A System
External I/O -15605

HP 1660C/CS/CP Logic Analyzer Software -15597

HP 1660A/AS Logic Analyzer Software -15607

HP 1660A/AS and HP 1660C/CS/CP Logic Analyzer
Configuration

-16096

HP 1660CS Oscilloscope Software -15596

HP 1660AS Oscilloscope Software -15606

HP 1660AS and HP 1660CS Oscilloscope Configuration -16115

HP 1670A/AS Deep Memory Analyzer Software -15595

HP 1670A/AS Deep Memory Analyzer Configuration -16094

HP 1660C/CS/CP and HP 1670A Option Software -15594

Autoload File -15615

Inverse Assembler -15614

Enhanced Inverse Assembler -15604

DOS File (from Print to Disk) -5813

MMEMory Subsystem
DOWNload

11–12

INITialize

Command :MMEMory:INITialize [{LIF|DOS}[,<msus>]]

The INITialize command formats the disk in either LIF (Logical Information
Format) or DOS (Disk Operating System). If no format is specified, then the
initialize command will format the disk in the LIF format.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:INITIALIZE DOS"
OUTPUT XXX;":MMEMORY:INITIALIZE LIF,INTERNAL0"

 C A U T I O N Once executed, the initialize command formats the specified disk,
permanently erasing all existing information from the disk. After that, there
is no way to retrieve the original information.

MMEMory Subsystem
INITialize

11–13

LOAD [:CONFig]

Command :MMEMory:LOAD[:CONfig] <name>[,<msus>][,<module>]

The LOAD command loads a configuration file from the disk into the logic
analyzer, oscilloscope, software options, or the system. The <name>
parameter specifies the filename from the disk. The optional <module>
parameter specifies which module(s) to load the file into. The accepted
values are 0 for system, 1 for logic analyzer, and 2 for the oscilloscope. Not
specifying the <module> parameter is equivalent to performing a ’LOAD
ALL’ from the front panel which loads the appropriate file for the system,
logic analyzer, oscilloscope, and any software option.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the default flexible disk drive.

<module> An integer, 0 through 2

Example OUTPUT XXX;":MMEMORY:LOAD:CONFIG ’FILE ’"
OUTPUT XXX;":MMEMORY:LOAD ’FILE ’,0"
OUTPUT XXX;":MMEM:LOAD:CONFIG ’FILE A’,INTERNAL0,1"

MMEMory Subsystem
LOAD [:CONFig]

11–14

LOAD :IASSembler

Command :MMEMory:LOAD:IASSembler <IA_name>[,<msus>],{1|2}
[,<module>]

This variation of the LOAD command allows inverse assembler files to be
loaded into a module that performs state analysis. The <IA_name>
parameter specifies the inverse assembler filename from the desired
<msus>. The parameter after the optional <msus> specifies which machine
to load the inverse assembler into.

The optional <module> parameter is used to specify which slot the state
analyzer is in. For the HP 1660C/CS/CP-series, this is always 1. If this
parameter is not specified, the current slot is assumed.

<IA_name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

<module> An integer, always 1

Example OUTPUT XXX;":MMEMORY:LOAD:IASSEMBLER ’I68020 IP’,1"
OUTPUT XXX;":MMEM:LOAD:IASS ’I68020 IP’,INTERNAL0,1,2"

MMEMory Subsystem
LOAD :IASSembler

11–15

MKDir (Make Directory)

Command :MMEMory:MKDir <directory_name> [,<msus>]

The MKDir command allows you to make a directory on the hard drive or a
DOS disk in the flexible drive. Directories cannot be made on LIF disks.
MKDir will make a directory under the present working directory on the
current drive if the optional path is not specified. Separators can be either
the slash (/) or backslash (\) character. Both the slash and backslash
characters are equivalent and are used as directory separators. The string
containing two periods (..) represents the parent of the present working
directory.

<directory
_name>

String of up to 64 characters for DOS disks ending in the new directory name.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:MKDIR ’NEW.DIR’"
OUTPUT XXX;":MMEM:MKD ’\SYSTEM\NEW.DIR’,INT0 "

The slash (/) character in DOS path names will be automatically translated to
the backslash character (\) on the disk; therefore, any flexible DOS disk used in
the HP 1660C/CS/CP will be compatible in DOS computers.

MMEMory Subsystem
MKDir (Make Directory)

11–16

MSI (Mass Storage Is)

Command :MMEMory:MSI [<msus>]

The MSI command selects a default mass storage device.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:MSI"
OUTPUT XXX;":MMEM:MSI INTERNAL0"

Query :MMEMory:MSI?

The MSI? query returns the current MSI setting.
Returned Format [:MMEMory:MSI] <msus><NL>

Example OUTPUT XXX;":MMEMORY:MSI?"

MMEMory Subsystem
MSI (Mass Storage Is)

11–17

PACK

Command :MMEMory:PACK [<msus>]

The PACK command packs the files on the LIF disk the disk in the drive. If a
DOS disk is in the drive when the PACK command is sent, no action is taken.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:PACK"
OUTPUT XXX;":MMEM:PACK INTERNAL0"

PURGe

Command :MMEMory:PURGe <name>[,<msus>]

The PURGe command deletes a file from the disk in the drive. The <name>
parameter specifies the filename to be deleted.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:PURGE ’FILE1’"
OUTPUT XXX;":MMEM:PURG ’FILE1’,INTERNAL0"

C A U T I O N Once executed, the purge command permanently erases all the existing
information about the specified file. After that, there is no way to retrieve
the original information.

MMEMory Subsystem
PACK

11–18

PWD (Present Working Directory)

Query :MMEMory:PWD? [<msus>]

The PWD query returns the present working directory for the specified drive.
If the <msus> option is not sent, the present working directory will be
returned for the current drive.

Returned Format [:MMEMory:PWD] <directory>,<msus><NL>

<directory> String of up to 64 characters with the backslash (\) as separator for DOS and
LIF disks.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Example OUTPUT XXX;":MMEMORY:PWD?"
OUTPUT XXX;":MMEMORY:PWD? INTERNAL1"

REName

Command :MMEMory:REName <name>[,<msus>],<new_name>

The REName command renames a file on the disk in the drive. The <name>
parameter specifies the filename to be changed and the <new_name>
parameter specifies the new filename.

You cannot rename a file to an already existing filename.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

MMEMory Subsystem
PWD (Present Working Directory)

11–19

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

<new name> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN

Example OUTPUT XXX;":MMEMORY:RENAME ’OLDFILE’,’NEWFILE’"
OUTPUT XXX;":MMEM:REN ’OLDFILE’[,INTERNAL1],’NEWFILE’"

STORe [:CONFig]

Command :MMEMory:STORe [:CONfig]<name>[,<msus>],
<description>[,<module>]

The STORe command stores module or system configurations onto a disk.
The [:CONFig] specifier is optional and has no effect on the command. The
<name> parameter specifies the file on the disk. The <description>
parameter describes the contents of the file. The optional <module>
parameter allows you to store the configuration for either the system, the
logic analyzer, or the oscilloscope. 2 refers to the oscilloscope, 1 refers to the
logic analyzer, and 0 refers to the system.

If the optional <module> parameter is not specified, the configurations for
the system, logic analyzer, and oscilloscope are stored.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

<description> A string of up to 32 alphanumeric characters

<module> An integer, 0 through 2

MMEMory Subsystem
STORe [:CONFig]

11–20

Example OUTPUT XXX;":MMEM:STOR ’DEFAULTS’,’SETUPS FOR ALL MODULES’"
OUTPUT XXX;":MMEMORY:STORE:CONFIG ’STATEDATA’,INTERNAL0,
’ANALYZER 1 CONFIG’,1"

The appropriate module designator "_X" is added to all files when they are
stored. "X" refers to either an _ _ (double underscore) for the system or an _A
for the logic analyzer, or an _B for the oscilloscope.

UPLoad

Query :MMEMory:UPLoad? <name>[,<msus>]

The UPLoad query uploads a file. The <name> parameter specifies the file to
be uploaded from the disk. The contents of the file are sent out of the
instrument in block data form.

This command should only be used for HP 16550A, HP 1660C/CS/CP-series, or
HP 1670A-series configuration files.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Returned Format [:MMEMory:UPLoad] <block_data><NL>

MMEMory Subsystem
UPLoad

11–21

Example 10 DIM Block$[32000] !allocate enough memory for block data
20 DIM Specifier$[2]
30 OUTPUT XXX;":EOI ON"
40 OUTPUT XXX;":SYSTEM HEAD OFF"
50 OUTPUT XXX;":MMEMORY:UPLOAD? ’FILE1’" !send upload query
60 ENTER XXX USING "#,2A";Specifier$!read in #8
70 ENTER XXX USING "#,8D";Length !read in block length
80 ENTER XXX USING "-K";Block$!read in file
90 END

VOLume

Query :MMEMory:VOLume? [<msus>]

TheVOLume query returns the volume type of the disk. The volume types
are DOS or LIF. Question marks (???) are returned if there is no disk, if the
disk is not formatted, or if a disk has a format other than DOS or LIF.

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernal1 for the flexible disk drive.

Returned Format [:MMEMory:VOLume]{DOS|LIF|???}<NL>

Example OUTPUT XXX;":MMEMORY:VOLUME?"

MMEMory Subsystem
VOLume

11–22

12

INTermodule Subsystem

Introduction

The INTermodule subsystem commands specify intermodule arming
from the rear-panel input BNC or to the rear-panel output BNC.
Refer to figure 12-1 and table 12-1 for the INTermodule Subsystem
commands syntax diagram. The INTermodule commands are:

• DELete

• HTIMe

• INPort

• INSert

• SKEW

• TREE

• TTIMe

12–2

Figure 12-1

Intermodule Subsystem Commands Syntax Diagram

INTermodule Subsystem

12–3

Table 12-1 INTermodule Parameter Values

Parameter Value

module An integer, 1 to 10 (3 through 10 unused)

index An integer, 1 to 10 (3 through 10 unused)

setting A numeric, – 1.0 to 1.0 in seconds

:INTermodule

Selector :INTermodule

The INTermodule selector specifies INTermodule as the subsystem the
commands or queries following will refer to. Because the INTermodule
command is a root level command, it will normally appear as the first element
of a compound header.

Example OUTPUT XXX;":INTERMODULE:HTIME?"

DELete

Command :DELete {ALL|OUT|<module>}

The DELete command is used to delete a module, PORT OUT, or an entire
intermodule tree. The <module> parameter sent with the delete command
refers to the slot location of the module. The logic analyzer is slot 1 and the
oscilloscope is slot 2.

<module> An integer, 1 through 10 (3 through 10 unused)

Example OUTPUT XXX;":INTERMODULE:DELETE ALL"
OUTPUT XXX;":INTERMODULE:DELETE 1"

INTermodule Subsystem
:INTermodule

12–4

HTIMe

Query :HTIMe?

The HTIMe query returns a value representing the internal hardware skew in
the Intermodule configuration. If there is no internal skew, or if intermodule
bus is not configured, 9.9E37 is returned.

The internal hardware skew is only a display adjustment for time-correlated
waveforms. The value returned is the average propagation delay of the trigger
lines through the intermodule bus circuitry. The value is for reference only
because the value returned by TTIMe includes the internal hardware skew
represented by HTIMe.

Returned Format [:INTermodule:HTIMe]
<value_1>,<value_2>,9.9E37,9.9E37,9.9E37,<NL>

<value_1> Skew for logic analyzer (real number)

<value_2> Skew for oscilloscope (real number)

Example OUTPUT XXX;":INTERMODULE:HTIME?"

INTermodule Subsystem
HTIMe

12–5

INPort

Command :INPort {{ON|1}|{OFF|0}}

The INPort command causes intermodule acquisitions to be armed from the
Input port.

Example OUTPUT XXX;":INTERMODULE:INPORT ON"

Query :INPort?

The INPort query returns the current setting.
Returned Format [:INTermodule:INPort] {1|0}<NL>

Example OUTPUT XXX;":INTERMODULE:INPORT?"

INSert

Command :INSert {<module>|OUT},{GROUP|<module>}

The INSert command adds PORT OUT to the Intermodule configuration. The
first parameter selects the logic analyzer or PORT OUT to be added to the
intermodule configuration, and the second parameter tells the instrument
where the logic analyzer or PORT OUT will be located. A "1" corresponds to
the slot location of the logic analyzer, and a "2" corresponds to the slot
location of the oscilloscope.

<module> An integer, 1 through 10 (3 through 10 unused)

Example OUTPUT XXX;":INTERMODULE:INSERT 1,GROUP"
OUTPUT XXX;":INTERMODULE:INSERT 2,GROUP"
OUTPUT XXX;":INTERMODULE:INSERT OUT,2"

INTermodule Subsystem
INPort

12–6

SKEW<N>

Command :SKEW<N> <setting>

The SKEW command sets the skew value for a module. The <N> index value
is the module number (1 corresponds to the logic analyzer, 2 corresponds to
the oscilloscope, and 3 through 10 are unused). The <setting> parameter is
the skew setting (– 1.0 to 1.0) in seconds.

<N> An integer, 1 through 10 (3 through 10 unused)

<setting> A real number from –1.0 to 1.0 seconds

Example OUTPUT XXX;":INTERMODULE:SKEW1 3.0E-9"

Query :SKEW<N>?

The query returns the user defined skew setting.
Returned Format [INTermodule:SKEW<N>] <setting><NL>

Example OUTPUT XXX;":INTERMODULE:SKEW1?"

INTermodule Subsystem
SKEW<N>

12–7

TREE

Command :TREE <module>,<module>

The TREE command allows an intermodule setup to be specified in one
command. The first parameter is the intermodule arm value for module A,
the logic analyzer. The second parameter corresponds to the intermodule
arm value for PORT OUT. A –1 means the module is not in the intermodule
tree, a 0 value means the module is armed from the Intermodule run button
(Group run), and a positive value indicates the module is being armed by
another module with the slot location 1 to 10. A 1 corresponds to the slot
location of module A (logic analyzer), 2 corresponds to the slot location of
module B (oscilloscope) and 3 through 10 are unused in the
HP 1660C/CS-series.

<module> An integer, −1 through 10 (3 through 10 unused)

Example OUTPUT XXX;":INTERMODULE:TREE 0,-1"

Query :TREE?

The TREE? query returns a string that represents the intermodule tree. A −1
means the module is not in the intermodule tree, a 0 value means the module
is armed from the Intermodule run button (Group run), and a positive value
indicates the module is being armed by another module with the slot location
1 to 10. A 1 corresponds to the slot location of module A (logic analyzer) and
a 2 to the slot location of module B (oscilloscope), 3 through 10 are unused.

Returned Format [INTermodule:TREE] <module_1>,<module_2>,-1,-1,-1<NL>

Example OUTPUT XXX;":INTERMODULE:TREE?"

INTermodule Subsystem
TREE

12–8

TTIMe

Query :TTIMe?

The TTIMe query returns values representing the absolute intermodule
trigger time for all of the modules in the Intermodule configuration. The first
value is the trigger time for the logic analyzer, the second value is for the
oscilloscope, and the others are not applicable to the HP 1660C/CS/CP-series
logic analyzers.

The value 9.9E37 is returned when:

• The module is not time correlated; or

• A time-correlatable module did not trigger.

The trigger times returned by this command have already been offset by the
INTermodule:SKEW values and internal hardware skews (INTermodule:HTIMe).

Returned Format [:INTermodule:TTIMe] <value_1>,<value_2>,0,0,0<NL>

<value_1> Trigger time for the logic analyzer (real number)

<value_2> Trigger time for the oscilloscope (real number)

Example OUTPUT XXX;":INTERMODULE:TTIME?"

INTermodule Subsystem
TTIMe

12–9

12–10

Part 3

Logic Analyzer Commands

13

MACHine Subsystem

Introduction

The MACHine subsystem contains the commands that control the
machine level of operation of the logic analyzer. The functions of
three of these commands reside in the State/Timing Configuration
menu. These commands are:

• ASSign

• NAME

• TYPE

Even though the functions of the following commands reside in the
Trace menu they are at the machine level of the command tree and
are therefore located in the MACHine subsystem. These commands
are:

• ARM

• LEVelarm

• REName

• RESource

13–2

Figure 13-1

Machine Subsystem Syntax Diagram

MACHine Subsystem

13–3

Table 13-1 Machine Parameter Values

Parameter Values

arm_source {RUN|INTermodule|MACHine{1|2}}

pod_list {NONE|<pod_num>[,<pod_num>]...}

pod_num {1|2|3|4|5|6|7|8}

arm_level An integer from 1 to 11 representing sequence level

machine_name A string of up to 10 alphanumeric characters

res_id <state_terms> for state analyzer or
{<state_terms>|GLEDge{1|2}} for timing analyzer

new_text A string of up to 8 alphanumeric characters

state_terms {A|B|C|D|E|F|G|H|I|J|RANGE{1|2}|TIMER{1|2}}

res_terms {<res_id>[,<res_id>]...}

MACHine

Selector :MACHine<N>

The MACHine <N> selector specifies which of the two analyzers (machines)
available in the HP 1660C/CS/CP-series the commands or queries following
will refer to. Because the MACHine<N> command is a root level command, it
will normally appear as the first element of a compound header.

<N> {1|2} (the machine number)

Example OUTPUT XXX; ":MACHINE1:NAME ’TIMING’"

MACHine Subsystem
MACHine

13–4

ARM

Command :MACHine{1|2}:ARM <arm_source>

The ARM command specifies the arming source of the specified analyzer
(machine). The RUN option disables the arm source. For example, if you do
not want to use either the intermodule bus or the other machine to arm the
current machine, you specify the RUN option.

<arm_source> {RUN|INTermodule|MACHine{1|2}}

Example OUTPUT XXX;":MACHINE1:ARM MACHINE2"

Query :MACHine{1|2}:ARM?

The ARM query returns the source that the current analyzer (machine) will
be armed by.

Returned Format [:MACHine{1|2}:ARM] <arm_source>

Example OUTPUT XXX;":MACHINE:ARM?"

ASSign

Command :MACHine{1|2}:ASSign <pod_list>

The ASSign command assigns pods to a particular analyzer (machine). The
ASSign command will assign two pods for each pod number you specify
because pods must be assigned to analyzers in pairs.

<pod_list> {NONE|<pod#>[, <pod#>]...}

<pod#> {1|2|3|4|5|6|7|8}

MACHine Subsystem
ARM

13–5

Example OUTPUT XXX;":MACHINE1:ASSIGN 5, 2, 1"

Query :MACHine{1|2}:ASSign?

The ASSign query returns which pods are assigned to the current analyzer
(machine).

Returned Format [:MACHine{1|2}:ASSign] <pod_list><NL>

<pod_list> {NONE|<pod#>[, <pod#>]...}

<pod#> {1|2|3|4|5|6|7|8}

Example OUTPUT XXX;":MACHINE1:ASSIGN?"

LEVelarm

Command :MACHine{1|2}:LEVelarm <arm_level>

The LEVelarm command allows you to specify the sequence level for a
specified machine that will be armed by the Intermodule Bus or the other
machine. This command is only valid if the specified machine is on and the
arming source is not set to RUN with the ARM command.

<arm_level> An integer from 1 to the maximum number of levels specified in the
appropriate trigger menu.

Example OUTPUT XXX;":MACHINE1:LEVELARM 2"

Query :MACHine{1|2}:LEVelarm?

The LEVelarm query returns the current sequence level receiving the arming
for a specified machine.

MACHine Subsystem
LEVelarm

13–6

Returned Format: [:MACHine{1|2}:LEVelarm] <arm_level><NL>

<arm_level> An integer from 1 to 11 representing sequence level

Example OUTPUT XXX;":MACHINE1:LEVELARM?"

NAME

Command :MACHine{1|2}:NAME <machine_name>

The NAME command allows you to assign a name of up to 10 characters to a
particular analyzer (machine) for easier identification.

<machine_name> A string of up to 10 alphanumeric characters

Example OUTPUT XXX;":MACHINE1:NAME ’DRAMTEST’"

Query :MACHine{1|2}:NAME?

The NAME query returns the current analyzer name as an ASCII string.
Returned Format [:MACHine{1|2}:NAME] <machine_name><NL>

<machine_name> A string of up to 10 alphanumeric characters

Example OUTPUT XXX;":MACHINE1:NAME?"

MACHine Subsystem
NAME

13–7

REName

Command :MACHine{1|2}:REName {<res_id>, <new_text> |
DEFault}

The REName command allows you to assign a specific name of up to eight
characters to terms A through J, Range 1 and 2, and Timer 1 and 2 in the
state analyzer. In the timing analyzer, GLEDge (glitch/edge) 1 and 2 can be
renamed in addition to the terms available in the state analyzer. The
DEFault option sets all resource term names to the default names assigned
when turning on the instrument.

<res_id> <state_terms> for state analyzer
or
{<state_terms>|GLEDge{1|2}} for timing analyzer

<new_text> A string of up to 8 alphanumeric characters

Example OUTPUT XXX;":MACHINE1:RENAME A,’DATA’"

Query :MACHine{1|2}:RENAME? <res_id>

The REName query returns the current names for specified terms assigned
to the specified analyzer.

Returned Format [:MACHine{1|2}:RENAME] <res_id>,<new_text><NL>

<res_id> <state_terms> for state analyzer
or
{<state_terms>|GLEDge{1|2}} for timing analyzer

<new_text> A string of up to 8 alphanumeric characters

Example OUTPUT XXX;":MACHINE1:RENAME? D"

MACHine Subsystem
REName

13–8

RESource

Command :MACHine{1|2}:RESource <res_terms>

The RESource command allows you to assign resource terms A through J,
Range 1 and 2, and Timer 1 and 2 to a particular analyzer (machine 1 or 2).

In the timing analyzer only, two additional resource terms are available. These
terms are GLEDge (Glitch/Edge) 1 and 2. These terms will always be assigned to
the the machine that is configured as the timing analyzer.

<res_terms> {A|B|C|D|E|F|G|H|I|J|TIMer1|TIMer2|RANGe1|RANGe2|GLEDge1|
GLEDge2}

Example OUTPUT XXX;":MACHINE1:RESOURCE A,C,RANGE1"

Query :MACHine{1|2}:RESOURCE?

The RESource query returns the current resource terms assigned to the
specified analyzer.

Returned Format [:MACHine{1|2}:RESOURCE] <res_terms>[,<res_terms>,...]<NL>

<res_terms> {A|B|C|D|E|F|G|H|I|J|TIMer1|TIMer2|RANGe1|RANGe2|GLEDge1|
GLEDge2}

Example OUTPUT XXX;":MACHINE1:RESOURCE?"

MACHine Subsystem
RESource

13–9

TYPE

Command :MACHine{1|2}:TYPE <analyzer_type>

The TYPE command specifies what type a specified analyzer (machine) will
be. The analyzer types are state or timing. The TYPE command also allows
you to turn off a particular machine.

Only one timing analyzer can be specified at a time.

<analyzer_type> {OFF|STATe|TIMing|SPA}

Example OUTPUT XXX;":MACHINE1:TYPE STATE"

Query :MACHine{1|2}:TYPE?

The TYPE query returns the current analyzer type for the specified analyzer.
Returned Format [:MACHine{1|2}:TYPE] <analyzer_type><NL>

<analyzer_type> {OFF|STATe|TIMing}

Example OUTPUT XXX;":MACHINE1:TYPE?"

MACHine Subsystem
TYPE

13–10

14

WLISt Subsystem

Introduction

The WLISt subsystem contains the commands available for the
Timing/State mixed mode display. The X and O markers can only be
placed on the waveforms in the waveform portion of the Timing/State
mixed mode display. The XSTate and OSTate queries return what
states the X and O markers are on. Because the markers can only be
placed on the timing waveforms, the queries return what state (state
acquisition memory location) the marked pattern is stored in.

In order to have mixed mode, one machine must be a state analyzer with time
tagging on (use MACHine<N>:STRigger:TAG TIME) and the other must be a
timing analyzer.

The WLISt subsystem commands are:

• DELay

• INSert

• LINE

• OSTate

• OTIMe

• RANGe

• REMove

• XOTime

• XSTate

• XTIMe

14–2

Figure 14-1

WLISt Subsystem Syntax Diagram

WLISt Subsystem

14–3

Table 14-1 WLISt Parameter Values

Parameter Value

delay_value Real number between −2500 s and +2500 s

module_spec {1|2|3|4|5|6|7|8|9|10} (analyzer location; always
1 for HP 1660)

bit_id An integer from 0 to 31

label_name String of up to 6 alphanumeric characters

line_num_mid_screen An integer from −8191 to +8191

time_value Real number

time_range Real number between 10 ns and 10 ks

WLISt (Waveforms/LISting)

Selector :WLISt

The WLISt selector is used as a part of a compound header to access the
settings normally found in the Mixed Mode menu. Because the WLISt
command is a root level command, it will always appear as the first element
of a compound header.

The WLISt subsystem is only available when one or more state analyzers, with
time tagging on, are specified.

Example OUTPUT XXX;":WLIST:XTIME 40.0E −6"

WLISt Subsystem
WLISt (Waveforms/LISting)

14–4

DELay

Command :MACHine{1|2}:WLISt:DELay <delay_value>

The DELay command specifies the amount of time between the timing
trigger and the horizontal center of the the timing waveform display. The
allowable values for delay are −2500 s to +2500 s.

<delay_value> Real number between −2500 s and +2500 s.

Example OUTPUT XXX;":MACHINE1:WLIST:DELAY 100E −6"

Query :MACHine{1|2}:WLISt:DELay?

The DELay query returns the current time offset (delay) value from the
trigger.

Returned Format [:MACHine{1|2}:WLISt:DELay] <time_value><NL>

<delay_value> Real number between −2500 s and +2500 s.

Example OUTPUT XXX;":MACHINE1:WLIST:DELAY?"

WLISt Subsystem
DELay

14–5

INSert

Command :MACHine{1|2}:WLISt:INSert [<module_spec>,]
<label_name>[,{<bit_id>|OVERlay|ALL}]

The INSert command inserts waveforms in the timing waveform display. The
waveforms are added from top to bottom up to a maximum of 96 waveforms.
Once 96 waveforms are present, each time you insert another waveform, it
replaces the last waveform.

The first parameter specifies from which module the waveform is coming
from; however, the HP 1660C-series logic analyzers are single-module
instruments. Therefore, for the HP 1660C models only, this parameter is not
needed. It is described here as a reminder that programs for the HP 16500A
logic analysis system can be used. HP 1660CS models can also insert
waveforms from the oscilloscope. To insert an oscilloscope waveform you
must specify the first parameter as 2. If you do not specify "2", the analyzer is
assumed. The second parameter specifies the label name that will be
inserted. The optional third parameter specifies the label bit number,
overlay, or all. If a number is specified, only the waveform for that bit
number is added to the screen.

If you specify OVERlay, all the bits of the label are displayed as a composite
overlaid waveform. If you specify ALL, all the bits are displayed sequentially.
If you do not specify the third parameter, ALL is assumed.

<module_spec> {1|2|3|4|5|6|7|8|9|10} (3 through 10 not used)

<label_name> String of up to 6 alphanumeric characters for analyzer waveforms or
String of one character and one digit for oscilloscope waveforms (CS models
only).

<bit_id> An integer from 0 to 31

Example OUTPUT XXX;":MACHINE1:WLIST:INSERT 3, ’WAVE’,10"

WLISt Subsystem
INSert

14–6

LINE

Command :MACHine{1|2}:WLISt:LINE <line_num_mid_screen>

The LINE command allows you to scroll the state analyzer listing vertically.
The command specifies the state line number relative to the trigger that the
analyzer highlights at the center of the screen.

<line_num_mid_
screen>

An integer from −8191 to +8191

Example OUTPUT XXX;":MACHINE1:WLIST:LINE 0"

Query :MACHine{1|2}:WLISt:LINE?

The LINE query returns the line number for the state currently in the box at
center screen.

Returned Format [:MACHine{1|2}:WLISt:LINE] <line_num_mid_screen><NL>

Example OUTPUT XXX;":MACHINE1:WLIST:LINE?"

WLISt Subsystem
LINE

14–7

OSTate

Query :WLISt:OSTate?

The OSTate query returns the state where the O Marker is positioned. If data
is not valid, the query returns 32767.

Returned Format [:WLISt:OSTate] <state_num><NL>

<state_num> An integer from −8191 to +8191

Example OUTPUT XXX;":WLIST:OSTATE?"

OTIMe

Command :WLISt:OTIMe <time_value>

The OTIMe command positions the O Marker on the timing waveforms in the
mixed mode display. If the data is not valid, the command does nothing.

<time_value> A real number

Example OUTPUT XXX;":WLIST:OTIME 40.0E −6"

Query :WLISt:OTIMe?

The OTIMe query returns the O Marker position in time. If data is not valid,
the query returns 9.9E37.

Returned Format [:WLISt:OTIMe] <time_value><NL>

<time_value> A real number

Example OUTPUT XXX;":WLIST:OTIME?"

WLISt Subsystem
OSTate

14–8

RANGe

Command :MACHine{1|2}:WLISt:RANGe <time_value>

The RANGe command specifies the full-screen time in the timing waveform
menu. It is equivalent to ten times the seconds per division setting on the
display. The allowable values for RANGe are from 10 ns to 10 ks.

<time_value> A real number between 10 ns and 10 ks

Example OUTPUT XXX;":MACHINE1:WLIST:RANGE 100E −9"

Query :MACHine{1|2}:WLISt:RANGe?

The RANGe query returns the current full-screen time.
Returned Format [:MACHine{1|2}:WLISt:RANGe] <time_value><NL>

<time_value> A real number between 10 ns and 10 ks

Example OUTPUT XXX;":MACHINE1:WLIST:RANGE?"

WLISt Subsystem
RANGe

14–9

REMove

Command :MACHine{1|2}:WLISt:REMove

The REMove command deletes all waveforms from the display.

Example OUTPUT XXX;":MACHINE1:WLIST:REMOVE"

XOTime

Query :MACHine{1|2}:WLISt:XOTime?

The XOTime query returns the time from the X marker to the O marker. If
data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:WLISt:XOTime] <time_value><NL>

<time_value> A real number

Example OUTPUT XXX;":MACHINE1:WLIST:XOTIME?"

XSTate

Query :WLISt:XSTate?

The XSTate query returns the state where the X Marker is positioned. If data
is not valid, the query returns 32767.

Returned Format [:WLISt:XSTate] <state_num><NL>

<state_num> An integer

Example OUTPUT XXX;":WLIST:XSTATE?"

WLISt Subsystem
REMove

14–10

XTIMe

Command :WLISt:XTIMe <time_value>

The XTIMe command positions the X Marker on the timing waveforms in the
mixed mode display. If the data is not valid, the command performs no
action.

<time_value> A real number

Example OUTPUT XXX;":WLIST:XTIME 40.0E −6"

Query :WLISt:XTIMe?

The XTIMe query returns the X Marker position in time. If data is not valid,
the query returns 9.9E37.

Returned Format [:WLISt:XTIMe] <time_value><NL>

<time_value> A real number

Example OUTPUT XXX;":WLIST:XTIME?"

WLISt Subsystem
XTIMe

14–11

14–12

15

SFORmat Subsystem

Introduction

The SFORmat subsystem contains the commands available for the
State Format menu in the HP 1660C/CS/CP-series logic analyzers.
These commands are:

• CLOCk

• LABel

• MASTer

• MODE

• MOPQual

• MQUal

• REMove

• SETHold

• SLAVe

• SOPQual

• SQUal

• THReshold

15–2

Figure 15-1

SFORmat Subsystem Syntax Diagram

SFORmat Subsystem

15–3

Figure 15-1

SFORmat Subsystem Syntax Diagram (continued)

SFORmat Subsystem

15–4

Table 15-1 SFORmat Parameter Values

Parameter Values

<N> {{1|2}|{3|4}|{5|6}|{7|8}}

label_name String of up to 6 alphanumeric characters

polarity {POSitive|NEGative}

clock_bits Format (integer from 0 to 63) for a clock (clocks are assigned
in decreasing order)

upper_bits Format (integer from 0 to 65535) for a pod (pods are assigned
in decreasing order)

lower_bits Format (integer from 0 to 65535) for a pod (pods are assigned
in decreasing order)

clock_id {J|K|L|M|N|P}

clock_spec {OFF|RISing|FALLing|BOTH}

clock_pair_id {1|2}

qual_operation {AND|OR}

qual_num {1|2|3|4}

qual_level {OFF|LOW|HIGH}

pod_num {1|2|3|4|5|6|7|8}

set_hold_value {0|1|2|3|4|5|6|7|8|9}

value voltage (real number) −6.00 to +6.00

SFORmat Subsystem

15–5

SFORmat

Selector :MACHine{1|2}:SFORmat

The SFORmat (State Format) selector is used as a part of a compound
header to access the settings in the State Format menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the command tree.

Example OUTPUT XXX;":MACHINE2:SFORMAT:MASTER J, RISING"

CLOCk

Command :MACHine{1|2}:SFORmat:CLOCk<N> <clock_mode>

The CLOCk command selects the clocking mode for a given pod when the
pod is assigned to the state analyzer. When the MASTer option is specified,
the pod will sample all 16 channels on the master clock. When the SLAVe
option is specified, the pod will sample all 16 channels on the slave
clock. When the DEMultiplex option is specified, only one pod of a pod pair
can acquire data. The 16 bits of the selected pod will be clocked by the
demultiplex master for labels with bits assigned under the Master pod. The
same 16 bits will be clocked by the demultiplex slave for labels with bits
assigned under the Slave pod. The master clock always follows the slave
clock when both are used.

<N> {{1|2}| {3|4}|{5|6}|{7|8}} 1 through 8 for the HP 1660C/CS/CP,
1 through 6 for the HP 1661C/CS/CP, 1 through 4 for the HP 1662C/CSCP,
and
1 through 2 for the HP 1663C/CS/CP.

<clock_mode> {MASTer|SLAVe|DEMultiplex}

Example OUTPUT XXX;":MACHINE1:SFORMAT:CLOCK2 MASTER"

SFORmat Subsystem
SFORmat

15–6

Query :MACHine{1|2}:SFORmat:CLOCk<N>?

The CLOCk query returns the current clocking mode for a given pod.
Returned Format [:MACHine{1|2}:SFORmat:CLOCK<N>] <clock_mode><NL>

Example OUTPUT XXX; ":MACHINE1:SFORMAT:CLOCK2?"

LABel

Command :MACHine{1|2}:SFORmat:LABel <name>,[<polarity>,
<clock_bits>, <upper_bits>, <lower_bits>
[,<upper_bits>,<lower_bits>]...]

The LABel command allows you to specify polarity and assign channels to
new or existing labels. If the specified label name does not match an existing
label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest numbered pod assigned to the machine you’re
using. Each pod specification after that is assigned to the next highest
numbered pod. This way they match the left-to-right descending order of the
pods you see on the Format display. Not including enough pod specifications
results in the lowest numbered pod(s) being assigned a value of zero (all
channels excluded). If you include more pod specifications than there are
pods for that machine, the extra ones will be ignored. However, an error is
reported anytime when more than 13 pod specifications are listed.

The polarity can be specified at any point after the label name.

Because pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (216−1). When giving the pod assignment in binary
(base 2), each bit will correspond to a single channel. A "1" in a bit position
means the associated channel in that pod is assigned to that pod and bit. A
"0" in a bit position means the associated channel in that pod is excluded
from the label. For example, assigning #B1111001100 is equivalent to
entering "......****..**.." from the front panel.

A label cannot have a total of more than 32 channels assigned to it.

<name> String of up to 6 alphanumeric characters

SFORmat Subsystem
LABel

15–7

<polarity> {POSitive|NEGative}

<clock_bits> Format (integer from 0 to 63) for a clock (clocks are assigned in decreasing
order)

<upper_bits> Format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

<lower_bits> Format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

Example OUTPUT XXX;":MACHINE2:SFORMAT:LABEL ’STAT’, POSITIVE,
0,127,40312"
OUTPUT XXX;":MACHINE2:SFORMAT:LABEL ’SIG 1’, #B11,
#B0000000011111111,#B0000000000000000 "

Query :MACHine{1|2}:SFORmat:LABel? <name>

The LABel query returns the current specification for the selected (by name)
label. If the label does not exist, nothing is returned. The polarity is always
returned as the first parameter. Numbers are always returned in decimal
format.

Returned Format [:MACHine{1|2}:SFORmat:LABel] <name>,<polarity>
[, <clock_bits>, <upper_bits>, <lower_bits>]<NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:LABEL? ’DATA’"

SFORmat Subsystem
LABel

15–8

MASTer

Command Syntax: :MACHine{1|2}:SFORmat:MASTer <clock_id>,
<clock_spec>

The MASTer clock command allows you to specify a master clock for a given
machine. The master clock is used in all clocking modes (Master, Slave, and
Demultiplexed). Each command deals with only one clock (J,K,L,M,N,P);
therefore, a complete clock specification requires six commands, one for
each clock. Edge specifications (RISing, FALLing, or BOTH) are ORed.

At least one clock edge must be specified.

<clock_id> {J|K|L|M|N|P}

<clock_spec> {OFF|RISing|FALLing|BOTH}

Example OUTPUT XXX;":MACHINE2:SFORMAT:MASTER J, RISING"

Query :MACHine{1|2}:SFORmat:MASTer? <clock_id>

The MASTer query returns the clock specification for the specified clock.
Returned Format [:MACHine{1|2}:SFORmat:MASTer]<clock_id>,<clock_spec><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:MASTER? <clock_id>"

SFORmat Subsystem
MASTer

15–9

MODE

Command :MACHine{1|2}:SFORmat:MODE <acq_mode>

The MODE command allows you to select the acquistion mode of the state
analyzer. The modes are either full-channel with 4 Kbits of memory depth
per channel or half-channel with 8 Kbits of memory depth per channel.

<acq_mode> {FULL|DEEPmemory}

Example OUTPUT XXX;":MACHine1:SFORMAT:MODE FULL"

Query :MACHine{1|2}:SFORmat:MODE?

The MODE query returns the current acquistion mode.
Returned Format [:MACHine{1|2}:SFORmat:MODE] <acq_mode><NL>

Example OUTPUT XXX;":MACHINE1:SFORMAT:MODE?"

SFORmat Subsystem
MODE

15–10

MOPQual

Command :MACHine{1|2}:SFORmat:MOPQual <clock_pair_id>,
<qual_operation>

The MOPQual (master operation qualifier) command allows you to specify
either the AND or the OR operation between master clock qualifier pair 1 and
2, or between master clock qualifier pair 3 and 4. For example, you can
specify a master clock operation qualifer 1 AND 2.

<clock_pair_id> {1|2}

<qual_
operation>

{AND|OR}

Example OUTPUT XXX;":MACHINE1:SFORMAT:MOPQUAL 1,AND"

Query :MACHine{1|2}:SFORmat:MOPQUal? <clock_pair_id>

The MOPQual query returns the operation qualifier specified for the master
clock.

Returned Format: [:MACHine{1|2}:SFORmat:MOPQUal <clock_pair_id>]
<qual_operation><NL>

Example OUTPUT XXX;":MACHine1:SFORMAT:MOPQUAL? 1"

SFORmat Subsystem
MOPQual

15–11

MQUal

Command :MACHine{1|2}:SFORmat:MQUal
<qual_num>,<clock_id>,<qual_level>

The MQUal (master qualifier) command allows you to specify the level
qualifier for the master clock.

<qual_num> {{1|2}|{3|4}} 1 through 4 for HP 1660C/CS/CP, HP 1661C/CS/CP, HP
1662C/CS/CP; 1 or 2 for HP 1663C/CS/CP.

<clock_id> {J|K|L|M|N|P}

<qual_level> {OFF|LOW|HIGH}

Example OUTPUT XXX;":MACHINE2:SFORMAT:MQUAL 1,J,LOW"

Query :MACHine{1|2}:SFORmat:MQUal? <qual_num>

The MQUal query returns the qualifier specified for the master clock.
Returned Format [:MACHine{1|2}:SFORmat:MQUal] <qual_level><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:MQUAL? 1"

SFORmat Subsystem
MQUal

15–12

REMove

Command :MACHine{1|2}:SFORmat:REMove {<name>|ALL}

The REMove command allows you to delete all labels or any one label for a
given machine.

<name> String of up to 6 alphanumeric characters

Example OUTPUT XXX;":MACHINE2:SFORMAT:REMOVE ’A’"
OUTPUT XXX;":MACHINE2:SFORMAT:REMOVE ALL"

SETHold

Command :MACHine{1|2}:SFORmat:SETHold <pod_num>,
<set_hold_value>

The SETHold (setup/hold) command allows you to set the setup and hold
specification for the state analyzer.

<pod_num> {{1|2}|{3|4}|{5|6}|{7|8}} 1 through 8 for the HP 1660C/CS/CP,
1 through 6 for the HP 1661C/CS/CP, 1 through 4 for the HP 1662C/CS/CP,
and
1 through 2 for the HP 1663C/CS/CP.

<set_hold_
value>

An integer {0|1|2|3|4|5|6|7|8|9} representing the setup and hold
values in table 15-2 on the next page.

Example OUTPUT XXX;":MACHINE2:SFORMAT:SETHOLD 1,2"

SFORmat Subsystem
REMove

15–13

Table 15-2 Setup and hold values

For one clock and one
edge

For one clock and both
edges

For multiple clocks

0 = 3.5/0.0 ns 0 = 4.0/0.0 0 = 4.5/0.0

1 = 3.0/0.5 ns 1 = 3.5/0.5 1 = 4.0/0.5

2 = 2.5/1.0 ns 2 = 3.0/1.0 2 = 3.5/1.0

3 = 2.0/1.5 ns 3 = 2.5/1.5 3 = 3.0/1.5

4 = 1.5/2.0 ns 4 = 2.0/2.0 4 = 2.5/2.0

5 = 1.0/2.5 ns 5 = 1.5/2.5 5 = 2.0/2.5

6 = 0.5/3.0 ns 6 = 1.0/3.0 6 = 1.5/3.0

7 = 0.0/3.5 ns 7 = 0.5/3.5 7 = 1.0/3.5

N/A 8 = 0.0/4.0 8 = 0.5/4.0

N/A N/A 9 = 0.0/4.5

Query :MACHine{1|2}:SFORMAT:SETHOLD? <pod_num>

The SETHold query returns the current setup and hold settings.
Returned Format [:MACHine{1|2}:SFORmat:SETHold <pod_num>] <set_hold_value><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:SETHOLD? 3"

Even though the command requires integers to specify the setup and hold, the
query returns the current settings in a string. For example, if you send the
integer 0 for the setup and hold value, the query will return 3.5/0.0 ns as an
ASCII string when you have one clock and one edge specified.

SFORmat Subsystem
SETHold

15–14

SLAVe

Command :MACHine{1|2}:SFORmat:SLAVe
<clock_id>,<clock_spec>

The SLAVe clock command allows you to specify a slave clock for a given
machine. The slave clock is only used in the Slave and Demultiplexed
clocking modes. Each command deals with only one clock (J,K,L,M,N,P);
therefore, a complete clock specification requires six commands, one for
each clock. Edge specifications (RISing, FALLing, or BOTH) are ORed.

When slave clock is being used at least one edge must be specified.

<clock_id> {J|K|L|M|N|P}

<clock_spec> {OFF|RISing|FALLing|BOTH}

Example OUTPUT XXX;":MACHINE2:SFORMAT:SLAVE J, RISING"

Query :MACHine{1|2}:SFORmat:SLAVe?<clock_id>

The SLAVe query returns the clock specification for the specified clock.
Returned Format [:MACHine{1|2}:SFORmat:SLAVe] <clock_id>,<clock_spec><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:SLAVE? K"

SFORmat Subsystem
SLAVe

15–15

SOPQual

Command :MACHine{1|2}:SFORmat:SOPQual <clock_pair_id>,
<qual_operation>

The SOPQual (slave operation qualifier) command allows you to specify
either the AND or the OR operation between slave clock qualifier pair 1 and
2, or between slave clock qualifier pair 3 and 4. For example you can specify
a slave clock operation qualifer 1 AND 2.

<clock_pair_id> {1|2} 1 is qualifier for pair 1 and 2; 2 is qualifier for pair 3 and 4.

<qual_
operation>

{AND|OR}

Example OUTPUT XXX;":MACHine2:SFORMAT:SOPQUAL 1,AND"

Query :MACHine{1|2}:SFORmat:SOPQual? <clock_pair_id>

The SOPQual query returns the operation qualifier specified for the slave
clock.

Returned Format [:MACHine{1|2}:SFORmat:SOPQual <clock_pair_id>]
<qual_operation><NL>

Example OUTPUT XXX;":MACHiNE2:SFORMAT:SOPQUAL? 1"

SFORmat Subsystem
SOPQual

15–16

SQUal

Command :MACHine{1|2}:SFORmat:SQUal <qual_num>,<clock_id>,
<qual_level>

The SQUal (slave qualifier) command allows you to specify the level qualifier
for the slave clock.

<qual_num> {{1|2}|{3|4}} 1 through 4 for HP 1660C/CS/CP, HP 1661C/CS/CP, HP
1662C/CS/CP; or, 1 or 2 for HP 1663C/CS/CP.

<clock_id> {J|K|L|M|N|P}

<qual_level> {OFF|LOW|HIGH}

Example OUTPUT XXX;":MACHINE2:SFORMAT:SQUAL 1,J,LOW"

Query :MACHine{1|2}:SFORmat:SQUal?<qual_num>

The SQUal query returns the qualifier specified for the slave clock.
Returned Format [:MACHine{1|2}:SFORmat:SQUal] <clock_id>,<qual_level><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:SQUAL? 1"

SFORmat Subsystem
SQUal

15–17

THReshold

Command :MACHine{1|2}:SFORmat:THReshold<N>
{TTL|ECL|<value>}

The THReshold command allows you to set the voltage threshold for a given
pod to ECL, TTL, or a specific voltage from −6.00 V to +6.00 V in 0.05 volt
increments.

<N> {{1|2}|{3|4}|{5|6}|{7|8}} 1 through 8 for the HP 1660C/CS/CP, 1
through 6 for the HP 1661C/CS/CP, 1 through 4 for the HP 1662C/CS/CP, and
1 or 2 for the HP 1663C/CS/CP.

<value> Voltage (real number) −6.00 to +6.00

TTL Default value of +1.6 V

ECL Default value of −1.3 V

Example OUTPUT XXX;":MACHINE1:SFORMAT:THRESHOLD1 4.0"

Query :MACHine{1|2}:SFORmat:THReshold<N>?

The THReshold query returns the current threshold for a given pod.
Returned Format [:MACHine{1|2}:SFORmat:THReshold<N>] <value><NL>

Example OUTPUT XXX;":MACHINE1:SFORMAT:THRESHOLD4?"

SFORmat Subsystem
THReshold

15–18

16

STRigger (STRace) Subsystem

Introduction

The STRigger subsystem contains the commands available for the
State Trigger menu in the HP 1660C/CS/CP-series logic analyzers. The
State Trigger subsystem will also accept the STRace command as
used in previous HP 1650-series logic analyzers to eliminate the need
to rewrite programs containing STRace as the command keyword.
The STRigger subsystem commands are:

• ACQuisition

• BRANch

• CLEar

• FIND

• RANGe

• SEQuence

• STORe

• TAG

• TAKenbranch

• TCONtrol

• TERM

• TIMER

• TPOSition

16–2

Figure 16-1

STRigger Subsystem Syntax Diagram

STRigger (STRace) Subsystem

16–3

Figure 16-1 (continued)

STRigger Subsystem Syntax Diagram (continued)

STRigger (STRace) Subsystem

16–4

Figure 16-1 (continued)

STRigger Subsystem Suntax Diagram (continued)

STRigger (STRace) Subsystem

16–5

Table 16-1 STRigger Parameter Values

Parameter Values

branch_qualifier <qualifier>

to_lev_num integer from 1 to last level

proceed_qualifier <qualifier>

occurrence number from 1 to 1048575

label_name string of up to 6 alphanumeric characters

start_pattern "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . .
. |
{0|1|2|3|4|5|6|7|8|9} . . . }"

stop_pattern "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . .
. |
{0|1|2|3|4|5|6|7|8|9} . . . }"

num_of_levels integer from 2 to 12

lev_of_trig integer from 1 to (number of existing sequence levels − 1)

store_qualifier <qualifier>

state_tag_qualifier <qualifier>

timer_num {1|2}

timer_value 400 ns to 500 seconds

term_id {A|B|C|D|E|F|G|H|I|J}

pattern "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} .
. . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

qualifier see "Qualifier" on page 16-7

post_value integer from 0 to 100 representing percentage

STRigger (STRace) Subsystem

16–6

Qualifier

The qualifier for the state trigger subsystem can be terms A through J, Timer
1 and 2, and Range 1 and 2. In addition, qualifiers can be the NOT boolean
function of terms, timers, and ranges. The qualifier can also be an expression
or combination of expressions as shown below and figure 16-2, "Complex
Qualifier," on page 16-11.

The following parameters show how qualifiers are specified in all commands
of the STRigger subsystem that use <qualifier> .

<qualifier> {"ANYSTATE"|"NOSTATE"|"<expression>"}

<expression> {<expression1a>|<expression1b>|<expression1a> OR
<expression1b>|<expression1a> AND <expression1b>}

<expression1a> {<expression1a_term>|(<expression1a_term>[OR
<expression1a_term>]*)|(<expression1a_term>[AND
<expression1a_term>]*)}

<expression1a_
term>

{ <expression2a>|<expression2b>|<expression2c>|<expression2d>}

<expression1b> {<expression1b_term>|(<expression1b_term>[OR
<expression1b_term>]*)|(<expression1b_term>[AND
<expression1b_term>]*)}

<expression1b_
term>

{<expression2e>|<expression2f>|<expression2g>|<expression2h>}

<expression2a> {<term3a>|<term3b>|(<term3a> <boolean_op> <term3b>)}

<expression2b> {<term3c>|<range3a>|(<term3c> <boolean_op> <range3a>)}

<expression2c> {<term3d>}

<expression2d> {<term3e>|<timer3a>|(<term3e> <boolean_op> <timer3a>)}

<expression2e> {<term3f>|<term3g>|(<term3f> <boolean_op> <term3g>)}

<expression2f> {<term3h>|<range3b>|(<term3h> <boolean_op> <range3b>)}

<expression2g> {<term3i>}

<expression2h> {<term3j>|<timer3b>|(<term3e> <boolean_op> <timer3b>)}

<boolean_op> {AND|NAND|OR|NOR|XOR|NXOR}

<term3a> {A|NOTA}

STRigger (STRace) Subsystem
Qualifier

16–7

<term3b> {B|NOTB}

<term3c> {C|NOTC}

<term3d> {D|NOTD}

<term3e> {E|NOTE}

<term3f> {F|NOTF}

<term3g> {G|NOTG}

<term3h> {H|NOTH}

<term3i> {I|NOTI}

<term3j> {J|NOTJ}

<range3a> {IN_RANGE1|OUT_RANGE1}

<range3b> {IN_RANGE2|OUT_RANGE2}

<timer3a> {TIMER1<|TIMER1>}

<timer3b> {TIMER2<|TIMER2>}

Qualifier Rules

The following rules apply to qualifiers:

• Qualifiers are quoted strings and, therefore, need quotes.

• Expressions are evaluated from left to right.

• Parenthesis are used to change the order evaluation and, therefore, are
optional.

• An expression must map into the combination logic presented in the
combination pop-up menu within the STRigger menu (see figure 16-2 on
page 16-11).

Example ’A’
’(A OR B)’
’((A OR B) AND C)’
’((A OR B) AND C AND IN_RANGE2)’
’((A OR B) AND (C AND IN_RANGE1))’
’IN_RANGE1 AND (A OR B) AND C’

STRigger (STRace) Subsystem
Qualifier

16–8

STRigger (STRace)

Selector :MACHine{1|2}:STRigger

The STRigger (STRace) (State Trigger) Command is used as a part of a
compound header to access the settings found in the State Trace menu. It
always follows the MACHine Command because it selects a branch directly
below the MACHine level in the command tree.

Example OUTPUT XXX;":MACHINE1:STRIGGER:TAG TIME"

ACQuisition

Command :MACHine{1|2}:STRigger:ACQuisition
{AUTOmatic|MANual}

The ACQuisition command allows you to specify the acquisition mode for the
State analyzer.

Example OUTPUT XXX;":MACHINE1:STRIGGER:ACQUISITION AUTOMATIC"

Query :MACHine{1|2}:STRigger:ACQuisition?

The ACQuisition query returns the current acquisition mode specified.
Returned Format [:MACHine{1|2}:STRigger:ACQuisition] {AUTOmatic|MANual}<NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:ACQUISITION?"

STRigger (STRace) Subsystem
STRigger (STRace)

16–9

BRANch

Command :MACHine{1|2}:STRigger:BRANch<N>
<branch_qualifier>,<to_level_number>

The BRANch command defines the branch qualifier for a given sequence
level. When this branch qualifier is matched, it will cause the sequencer to
jump to the specified sequence level.

The terms used by the branch qualifier (A through J) are defined by the
TERM command. The meaning of IN_RANGE and OUT_RANGE is
determined by the RANGE command.

Within the limitations shown by the syntax definitions, complex expressions
may be formed using the AND and OR operators. Expressions are limited to
what you could manually enter through the State Trigger menu. Regarding
parentheses, the syntax definitions on the next page show only the required
ones. Additional parentheses are allowed as long as the meaning of the
expression is not changed. Figure 16-2 shows a complex expression as seen
in the State Trigger menu.

Example The following statements are all correct and have the same meaning. Notice
that the conventional rules for precedence are not followed. The expressions
are evaluated from left to right.

OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’C AND D OR F OR G’, 1"
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’((C AND D) OR (F OR G))’, 1"
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’F OR (C AND D) OR G’,1"

<N> An integer from 1 to <number_of_levels>

<to_level_
number>

An integer from 1 to <number_of_levels>

<number_of_
levels>

An integer from 2 to the number of existing sequence levels (maximum 12)

<branch_
qualifier>

<qualifier> see "Qualifier" on page 16-7

STRigger (STRace) Subsystem
BRANch

16–10

Example OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’ANYSTATE’, 3"
OUTPUT XXX;":MACHINE2:STRIGGER:BRANCH2 ’A’, 7"
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH3 ’((A OR B) OR NOTG)’,
1"

Query :MACHine{1|2}:STRigger:BRANch<N>?

The BRANch query returns the current branch qualifier specification for a
given sequence level.

Returned Format [:MACHine{1|2}:STRigger:BRANch<N>] <branch_qualifier>,
<to_level_num><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH3?"

Complex qualifier

Figure 16-2 is a front panel representation of the complex qualifier (a OR b)
AND (g OR h).

Example This example would be used to specify the complex qualifier.
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’((A OR B) AND
(G OR H))’, 2"

Figure 16-2

STRigger (STRace) Subsystem
BRANch

16–11

Terms A through E, RANGE 1, and TIMER 1 must be grouped together and
terms F through J, RANGE 2, and TIMER 2 must be grouped together. In the
first level, terms from one group may not be mixed with terms from the other.
For example, the expression ((A OR IN_RANGE2) AND (C OR H)) is not allowed
because the term C cannot be specified in the E through J group.

In the first level, the operators you can use are AND, NAND, OR, NOR,
XOR, NXOR. Either AND or OR may be used at the second level to join the
two groups together. It is acceptable for a group to consist of a single term.
Thus, an expression like (B AND G) is legal, since the two operands are
both simple terms from separate groups.

CLEar

Command :MACHine{1|2}:STRigger:CLEar
{All|SEQuence|RESource}

The CLEar command allows you to clear all settings in the State Trigger
menu and replace them with the default, clear only the Sequence levels, or
clear only the resource term patterns.

Example OUTPUT XXX;":MACHINE1:STRIGGER:CLEAR RESOURCE"

STRigger (STRace) Subsystem
CLEar

16–12

FIND

Command :MACHine{1|2}:STRigger:FIND<N>
<proceed_qualifier>,<occurrence>

The FIND command defines the proceed qualifier for a given sequence level.
The qualifier tells the state analyzer when to proceed to the next sequence
level. When this proceed qualifier is matched the specified number of times,
the sequencer will proceed to the next sequence level. In the sequence level
where the trigger is specified, the FIND command specifies the trigger
qualifier (see SEQuence command).

The terms A through J are defined by the TERM command. The meaning of
IN_RANGE and OUT_RANGE is determined by the RANGe command.
Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. See figure 16-2 for a detailed
example.

<N> An integer from 1 to (number of existing sequence levels −1)

<occurrence> An integer from 1 to 1048575

<proceed_
qualifier>

<qualifier> see "Qualifier" on page 16-7

Example OUTPUT XXX;":MACHINE1:STRIGGER:FIND1 ’ANYSTATE’, 1"
OUTPUT XXX;":MACHINE1:STRIGGER:FIND3 ’((NOTA AND NOTB) OR G)’, 1"

STRigger (STRace) Subsystem
FIND

16–13

Query :MACHine{1|2}:STRigger:FIND<N>?

The FIND query returns the current proceed qualifier specification for a
given sequence level.

Returned Format [:MACHine{1|2}:STRigger:FIND<N>] <proceed_qualifier>,
<occurrence><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:FIND4?"

RANGe

Command :MACHine{1|2}:STRigger:RANGE
<label_name>,<start_pattern>,<stop_pattern>

The RANGe command allows you to specify a range recognizer term for the
specified machine. Since a range can only be defined across one label and,
since a label must contain 32 or less bits, the value of the start pattern or stop
pattern will be between (232)−1 and 0.

Because a label can only be defined across a maximum of two pods, a range
term is only available across a single label; therefore, the end points of the
range cannot be split between labels.

When these values are expressed in binary, they represent the bit values for
the label at one of the range recognizers’ end points. Don’t cares (X) are not
allowed in the end point pattern specifications.

STRigger (STRace) Subsystem
RANGe

16–14

<label_name> String of up to 6 alphanumeric characters

<start_pattern> "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

<stop_pattern> "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:STRIGGER:RANGE ’DATA’, ’127’, ’255’ "
OUTPUT XXX;":MACHINE1:STRIGGER:RANGE ’ABC’, ’#B00001111’,
’#HCF’ "

Query :MACHine{1|2}:STRigger:RANGe?

The RANGe query returns the range recognizer end point specifications for
the range.

Returned Format [:MACHine{1|2}:STRAce:RANGe] <label_name>,<start_pattern>,
<stop_pattern><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:RANGE?"

STRigger (STRace) Subsystem
RANGe

16–15

SEQuence

Command :MACHine{1|2}:STRigger:SEQuence
<number_of_levels>,
<level_of_trigger>

The SEQuence command redefines the state analyzer trace sequence. First,
it deletes the current trace sequence. Then it inserts the number of levels
specified, with default settings, and assigns the trigger to be at a specified
sequence level. The number of levels can be between 2 and 12 when the
analyzer is armed by the RUN key.

<number_of_
levels>

An integer from 2 to 12

<level_of_
trigger>

An integer from 1 to (number of existing sequence levels −1)

Example OUTPUT XXX;":MACHINE1:STRIGGER:SEQUENCE 4,3"

Query :MACHine{1|2}:STRigger:SEQuence?

The SEQuence query returns the current sequence specification.
Returned Format [:MACHine{1|2}:STRigger:SEQuence] <number_of_levels>,

<level_of_trigger><NL>

<number_of_
levels>

An integer from 2 to 12

<level_of_
trigger>

An integer from 1 to (number of existing sequence levels −1)

Example OUTPUT XXX;":MACHINE1:STRIGGER:SEQUENCE?"

STRigger (STRace) Subsystem
SEQuence

16–16

STORe

Command :MACHine{1|2}:STRigger:STORe<N> <store_qualifier>

The STORe command defines the store qualifier for a given sequence level.
Any data matching the STORe qualifier will actually be stored in memory as
part of the current trace data. The qualifier may be a single term or a
complex expression. The terms A through J are defined by the TERM
command. The meaning of IN_RANGE1 and 2 and OUT_RANGE1 and 2 is
determined by the RANGe command.

Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 16-2 on page 16-11.

<N> An integer from 1 to the number of existing sequence levels (maximum 12)

<store_
qualifier>

<qualifier> see "Qualifier" on page 16-7

Example OUTPUT XXX;":MACHINE1:STRIGGER:STORE1 ’ANYSTATE’"
OUTPUT XXX;":MACHINE1:STRIGGER:STORE2 ’OUT_RANGE1’"
OUTPUT XXX;":MACHINE1:STRIGGER:STORE3 ’(NOTC AND NOTD AND
NOTH)’"

Query :MACHine{1|2}:STRigger:STORe<N>?

The STORe query returns the current store qualifier specification for a given
sequence level <N>.

Returned Format [:MACHine{1|2}:STRigger:STORe<N>] <store_qualifier><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:STORE4?"

STRigger (STRace) Subsystem
STORe

16–17

TAG

Command :MACHine{1|2}:STRigger:TAG
{OFF|TIME|<state_tag_qualifier>}

The TAG command selects the type of count tagging (state or time) to be
performed during data acquisition. State tagging is indicated when the
parameter is the state tag qualifier, which will be counted in the qualified
state mode. The qualifier may be a single term or a complex expression. The
terms A through J are defined by the TERM command. The terms
IN_RANGE1 and 2 and OUT_RANGE1 and 2 are defined by the RANGe
command.

Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. A detailed example is provided in
figure 16-2 on page 16-11.

<state_tag_
qualifier>

<qualifier> see "Qualifier" on page 16-7

Example OUTPUT XXX;":MACHINE1:STRIGGER:TAG OFF"
OUTPUT XXX;":MACHINE1:STRIGGER:TAG TIME"
OUTPUT XXX;":MACHINE1:STRIGGER:TAG ’(IN_RANGE OR NOTF)’"
OUTPUT XXX;":MACHINE1:STRIGGER:TAG ’((IN_RANGE OR A) AND E)’"

Query :MACHine{1|2}:STRigger:TAG?

The TAG query returns the current count tag specification.
Returned Format [:MACHine{1|2}:STRigger:TAG]

{OFF|TIME|<state_tag_qualifier>}<NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:TAG?"

STRigger (STRace) Subsystem
TAG

16–18

TAKenbranch

Command :MACHine{1|2}:STRigger:TAKenbranch {STORe|NOSTore}

The TAKenbranch command allows you to specify whether the state causing
a sequence level change is stored or not stored for the specified machine.
Both a state that causes the sequencer to proceed or a state that causes the
sequencer to branch is considered a sequence level change. A branch can
also jump to itself and this also considered a sequence level change. The
state causing the branch is defined by the BRANch command.

Example OUTPUT XXX;":MACHINE2:STRIGGER:TAKENBRANCH STORE"

Query :MACHine{1|2}:STRigger:TAKenbranch?

The TAKenbranch query returns the current setting.
Returned Format [:MACHine{1|2}:STRigger:TAKenbranch] {STORe|NOSTore}<NL>

Example OUTPUT XXX;":MACHINE2:STRIGGER:TAKENBRANCH?

STRigger (STRace) Subsystem
TAKenbranch

16–19

TCONtrol

Command :MACHine{1|2}:STRigger:TCONtrol<N> <timer_num>,
{OFF|STARt|PAUSe|CONTinue}

The TCONtrol (timer control) command allows you to turn off, start, pause,
or continue the timer for the specified level. The time value of the timer is
defined by the TIMER command. There are two timers and they are
independently available for either machine. Neither timer can be assigned to
both machines simultaneously.

<N> An integer from 1 to the number of existing sequence levels (maximum 12)

<timer_num> {1|2}

Example OUTPUT XXX;":MACHINE2:STRIGGER:TCONTROL6 1, PAUSE"

Query :MACHine{1|2}:STRigger:TCONTROL<N>? <timer_num>

The TCONtrol query returns the current TCONtrol setting of the specified
level.

Returned Format [:MACHine{1|2}:STRigger:TCONTROL<N> <timer_num>]
{OFF|STARt|PAUSe|CONTinue}<NL>

<N> An integer from 1 to the number of existing sequence levels (maximum 12)

<timer_num> {1|2}

Example OUTPUT XXX;":MACHINE2:STRIGGER:TCONTROL?6 1"

STRigger (STRace) Subsystem
TCONtrol

16–20

TERM

Command :MACHine{1|2}:STRigger:TERM <term_id>,
<label_name>,<pattern>

The TERM command allows you to specify a pattern recognizer term in the
specified machine. Each command deals with only one label in the given
term; therefore, a complete specification could require several commands.
Since a label can contain 32 or less bits, the range of the pattern value will be
between 232 − 1 and 0. When the value of a pattern is expressed in binary, it
represents the bit values for the label inside the pattern recognizer term.
Because the pattern parameter may contain don’t cares and be represented
in several bases, it is handled as a string of characters rather than a number.

All 10 terms (A through J) are available for either machine but not both
simultaneously. If you send the TERM command to a machine with a term
that has not been assigned to that machine, an error message "Legal
command but settings conflict" is returned.

<term_id> {A|B|C|D|E|F|G|H|I|J}

<label_name> A string of up to 6 alphanumeric characters

<pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:STRIGGER:TERM A,’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:STRIGGER:TERM B,’ABC’,’#BXXXX1101’ "

STRigger (STRace) Subsystem
TERM

16–21

Query :MACHine{1|2}:STRigger:TERM?
<term_id>,<label_name>

The TERM query returns the specification of the term specified by term
identification and label name.

Returned Format [:MACHine{1|2}:STRAce:TERM]
<term_id>,<label_name>,<pattern><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:TERM? B,’DATA’ "

TIMER

Command :MACHine{1|2}:STRigger:TIMER{1|2} <time_value>

The TIMER command sets the time value for the specified timer. The limits
of the timer are 400 ns to 500 seconds in 16 ns to 500 µs increments. The
increment value varies with the time value of the specified timer. There are
two timers and they are independently available for either machine. A timer
can only be assigned to one machine at a time, but either machine can use
both timers.

 <time_value> A real number from 400 ns to 500 seconds in increments which vary from 16
ns to 500 µs.

Example OUTPUT XXX;":MACHINE1:STRIGGER:TIMER1 100E −6"

Query :MACHine{1|2}:STRigger:TIMER{1|2}?

The TIMER query returns the current time value for the specified timer.
Returned Format [:MACHine{1|2}:STRigger:TIMER{1|2}] <time_value><NL>

<time_value> A real number from 400 ns to 500 seconds in increments which vary from 16
ns to 500 µs.

STRigger (STRace) Subsystem
TIMER

16–22

Example OUTPUT XXX;":MACHINE1:STRIGGER:TIMER1?"

TPOSition

Command :MACHine{1|2}:STRigger:TPOSition
{STARt|CENTer|END|POSTstore,<poststore>}

The TPOSition (trigger position) command allows you to set the trigger at
the start, center, end or at any position in the trace (poststore). When STARt
is specified, approximately 16 states are stored before the trigger. When
END is specified, approximately 16 states are stored after the trigger.
Poststore is defined as 0 to 100 percent. When 0 or 100 percent is specified,
the trigger is actually the first or last state respectively.

<poststore> An integer from 0 to 100 representing percentage of poststore.

Example OUTPUT XXX;":MACHINE1:STRIGGER:TPOSITION END"
OUTPUT XXX;":MACHINE1:STRIGGER:TPOSITION POSTstore,75"

Query :MACHine{1|2}:STRigger:TPOSition?

The TPOSition query returns the current trigger position setting.
Returned Format [:MACHine{1|2}:STRigger:TPOSition] {STARt|CENTer|END|

POSTstore,<poststore>}<NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:TPOSITION?"

STRigger (STRace) Subsystem
TPOSition

16–23

16–24

17

SLISt Subsystem

Introduction

The SLISt subsystem contains the commands available for the State
Listing menu in the HP 1660C/CS/CP-series logic analyzer. These
commands are:

• COLumn • RUNTil

• CLRPattern • TAVerage

• DATA • TMAXimum

• LINE • TMINimum

• MMODe • VRUNs

• OPATtern • XOTag

• OSEarch • XOTime

• OSTate • XPATtern

• OTAG • XSEarch

• OVERlay • XSTate

• REMove • XTAG

17–2

Figure 17-1

SLISt Subsystem Syntax Diagram

SLISt Subsystem

17–3

Figure 17-1 (continued)

SLISt Subsystem Syntax Diagram (continued)

SLISt Subsystem

17–4

Figure 17-1 (continued)

SLISt Subsystem Syntax Diagram (continued)

SLISt Subsystem

17–5

Table 17-1 SLISt Parameter Values

Parameter Values

module_num {1|2|3|4|5|6|7|8|9|10} (2 through 10 not used)

mach_num {1|2}

col_num Integer from 1 to 61

line_number Integer from −8191 to +8191

label_name A string of up to 6 alphanumeric characters

base {BINary|HEXadecimal|OCTal|DECimal|TWOS|
ASCii|SYMBol|IASSembler} for labels or
{ABSolute|RELative} for tags

line_num_mid_screen Integer from −8191 to +8191

label_pattern "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . .
. |
{0|1|2|3|4|5|6|7|8|9} . . . }"

occurrence Integer from −8191 to +8192

time_value Real number

state_value Real number

run_until_spec {OFF|LT,<value>|GT,<value>|INRange,<value>,
<value>|OUTRange,<value>,<value>}

value Real number

SLISt Subsystem

17–6

SLISt

Selector :MACHine{1|2}:SLISt

The SLISt selector is used as part of a compound header to access those
settings normally found in the State Listing menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the command tree.

Example OUTPUT XXX;":MACHINE1:SLIST:LINE 256"

COLumn

Command :MACHine{1|2}:SLISt:COLumn <col_num>
[,<module_num>, MACHine{1|2}],<label_name>,<base>

The COLumn command allows you to configure the state analyzer list display
by assigning a label name and base to one of the 61 vertical columns in the
menu. A column number of 1 refers to the leftmost column. When a label is
assigned to a column it replaces the original label in that column.

When the label name is "TAGS," the TAGS column is assumed and the next
parameter must specify RELative or ABSolute.

A label for tags must be assigned in order to use ABSolute or RELative state
tagging.

SLISt Subsystem
SLISt

17–7

<col_num> integer from 1 to 61

<module_num> {1|2|3|4|5|6|7|8|9|10} (2 through 10 not used)

<label_name> string of up to 6 alphanumeric characters

<base> {BINary|HEXadecimal|OCTal|DECimal|TWOS|ASCii|SYMBol|
IASSemble r} for labels
or
{ABSolute|RELative } for tags

Example OUTPUT XXX;":MACHINE1:SLIST:COLUMN 4,’A’,HEX"

Query :MACHine{1|2}:SLISt:COLumn? <col_num>

The COLumn query returns the column number, label name, and base for the
specified column.

Returned Format [:MACHine{1|2}:SLISt:COLumn] <col_num>,<module_num>,
MACHine{1|2},<label_name>,<base><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:COLUMN? 4"

CLRPattern

Command :MACHine{1|2}:SWAVeform:CLRPattern {X|O|ALL}

The CLRPattern command allows you to clear the patterns in the selected
Specify Patterns menu.

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:CLRPATTERN X"

SLISt Subsystem
CLRPattern

17–8

DATA

Query :MACHine{1|2}:SLISt:DATA?
<line_number>,<label_name>

The DATA query returns the value at a specified line number for a given
label. The format will be the same as the one shown in the listing display.

Returned Format [:MACHine{1|2}:SLISt:DATA] <line_number>,<label_name>,
<pattern_string><NL>

<line_number> integer from −8191 to +8191

<label_name> string of up to 6 alphanumeric characters

<pattern_
string>

"{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SLIST:DATA? 512, ’RAS’"

LINE

Command :MACHine{1|2}:SLISt:LINE <line_num_mid_screen>

The LINE command allows you to scroll the state analyzer listing vertically.
The command specifies the state line number relative to the trigger that the
analyzer highlights at the center of the screen.

<line_num_mid_
screen>

integer from −8191 to +8191

Example OUTPUT XXX;":MACHINE1:SLIST:LINE 0"

SLISt Subsystem
DATA

17–9

Query :MACHine{1|2}:SLISt:LINE?

The LINE query returns the line number for the state currently in the box at
the center of the screen.

Returned Format [:MACHine{1|2}:SLISt:LINE] <line_num_mid_screen><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:LINE?"

MMODe (Marker Mode)

Command :MACHine{1|2}:SLISt:MMODe <marker_mode>

The MMODe command selects the mode controlling the marker movement
and the display of marker readouts. When PATTern is selected, the markers
will be placed on patterns. When STATe is selected and state tagging is on,
the markers move on qualified states counted between normally
stored states. When TIME is selected and time tagging is enabled, the
markers move on time between stored states. When MSTats is selected and
time tagging is on, the markers are placed on patterns, but the readouts will
be time statistics.

<marker_mode> {OFF|PATTern|STATe|TIME|MSTats}

Example OUTPUT XXX;":MACHINE1:SLIST:MMODE TIME"

Query :MACHine{1|2}:SLISt:MMODe?

The MMODe query returns the current marker mode selected.
Returned Format: [:MACHine{1|2}:SLISt:MMODe] <marker_mode><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:MMODE?"

SLISt Subsystem
MMODe (Marker Mode)

17–10

OPATtern

Command :MACHine{1|2}:SLISt:OPATtern
<label_name>,<label_pattern>

The OPATtern command allows you to construct a pattern recognizer term
for the O Marker which is then used with the OSEarch criteria when moving
the marker on patterns. Because this command deals with only one label at a
time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SLIST:OPATTERN ’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:SLIST:OPATTERN ’ABC’,’#BXXXX1101’ "

Query :MACHine{1|2}:SLISt:OPATtern? <label_name>

The OPATtern query returns the pattern specification for a given label name.
Returned Format [:MACHine{1|2}:SLISt:OPATtern]

<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:OPATTERN? ’A’"

SLISt Subsystem
OPATtern

17–11

OSEarch

Command :MACHine{1|2}:SLISt:OSEarch <occurrence>,<origin>

The OSEarch command defines the search criteria for the O marker, which is
then used with associated OPATtern recognizer specification when moving
the markers on patterns. The origin parameter tells the marker to begin a
search with the trigger, the start of data, or with the X marker. The actual
occurrence the marker searches for is determined by the occurrence
parameter of the OSEarch recognizer specification, relative to the origin. An
occurrence of 0 places the marker on the selected origin. With a negative
occurrence, the marker searches before the origin. With a positive
occurrence, the marker searches after the origin.

<occurrence> integer from −8191 to +8191

<origin> {TRIGger|STARt|XMARker}

Example OUTPUT XXX;":MACHINE1:SLIST:OSEARCH +10,TRIGGER"

Query :MACHine{1|2}:SLISt:OSEarch?

The OSEarch query returns the search criteria for the O marker.
Returned Format [:MACHine{1|2}:SLISt:OSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:OSEARCH?"

SLISt Subsystem
OSEarch

17–12

OSTate

Query :MACHine{1|2}:SLISt:OSTate?

The OSTate query returns the line number in the listing where the O marker
resides (−8191 to +8191). If data is not valid, the query returns 32767.

Returned Format [:MACHine{1|2}:SLISt:OSTate] <state_num><NL>

<state_num> an integer from −8191 to +8191, or 32767

Example OUTPUT XXX;":MACHINE1:SLIST:OSTATE?"

OTAG

Command :MACHine{1|2}:SLISt:OTAG
{<time_value>|<state_value>}

The OTAG command specifies the tag value on which the O Marker should be
placed. The tag value is time when time tagging is on, or states when state
tagging is on. If the data is not valid tagged data, no action is performed.

<time_value> real number

<state_value> integer

Example :OUTPUT XXX;":MACHINE1:SLIST:OTAG 40.0E −6"

SLISt Subsystem
OSTate

17–13

Query :MACHine{1|2}:SLISt:OTAG?

The OTAG query returns the O Marker position in time when time tagging is
on or in states when state tagging is on, regardless of whether the marker
was positioned in time or through a pattern search. If data is not valid, the
query returns 9.9E37 for time tagging, or returns 32767 for state tagging.

Returned Format [:MACHine{1|2}:SLISt:OTAG] {time_value>|<state_value>}<NL>

<time_value> real number

<state_value> integer

Example OUTPUT XXX;":MACHINE1:SLIST:OTAG?"

OVERlay

Command :MACHine{1|2}:SLISt:OVERlay
<col_num>,<module_num>,
MACHine{1|2},<label_name>

The OVERlay command allows you to add time-correlated labels from other
modules or machines to the state listing.

<col_num> integer from 1 to 61

<module_num> integer 1 through 10 (2 through 10 unused)

<label_name> string of up to 6 alphanumeric characters

Example OUTPUT XXX;":MACHINE1:SLIST:OVERlay,25,5,MACHINE2,’DATA’"

SLISt Subsystem
OVERlay

17–14

REMove

Command :MACHine{1|2}:SLISt:REMove

The REMove command removes all labels, except the leftmost label, from
the listing menu.

Example OUTPUT XXX;":MACHINE1:SLIST:REMOVE"

RUNTil (Run Until)

Command :MACHine{1|2}:SLISt:RUNTil <run_until_spec>

The RUNTil command allows you to define a stop condition when the trace
mode is repetitive. Specifying OFF causes the analyzer to make runs until
either the display’s STOP field is touched, or until the STOP command is
issued.

There are four conditions based on the time between the X and O markers.
Using this difference in the condition is effective only when time tags have
been turned on (see the TAG command in the STRace subsystem). These
four conditions are as follows:

• The difference is less than (LT) some value.

• The difference is greater than (GT) some value.

• The difference is inside some range (INRange).

• The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 8 ns apart since
this is the minimum time resolution of the time tag counter.

SLISt Subsystem
REMove

17–15

There are two conditions which are based on a comparison of the acquired
state data and the compare data image. The analyzer can run until one of the
following conditions is true:

• Every channel of every label has the same value (EQUal).

• Any channel of any label has a different value (NEQual).

The RUNTil instruction (for state analysis) is available in both the SLISt and
COMPare subsystems.

<run_until_
spec>

{OFF|LT,<value>|GT,<value>|INRange,<value>,<value>
|OUTRange,<value>,<value>|EQUal|NEQual}

<value> real number from −9E9 to +9E9

Example OUTPUT XXX;":MACHINE1:SLIST:RUNTIL GT,800.0E −6"

Query :MACHine{1|2}:SLISt:RUNTil?

The RUNTil query returns the current stop criteria.
Returned Format [:MACHine{1|2}:SLISt:RUNTil] <run_until_spec><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:RUNTIL?"

SLISt Subsystem
RUNTil (Run Until)

17–16

TAVerage

Query :MACHine{1|2}:SLISt:TAVerage?

The TAVerage query returns the value of the average time between the X
and O Markers. If the number of valid runs is zero, the query returns 9.9E37.
Valid runs are those where the pattern search for both the X and O markers
was successful, resulting in valid delta-time measurements.

Returned Format: [:MACHine{1|2}:SLISt:TAVerage] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:SLIST:TAVERAGE?"

TMAXimum

Query :MACHine{1|2}:SLISt:TMAXimum?

The TMAXimum query returns the value of the maximum time between the X
and O Markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:SLISt:TMAXimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:SLIST:TMAXIMUM?"

SLISt Subsystem
TAVerage

17–17

TMINimum

Query :MACHine{1|2}:SLISt:TMINimum?

The TMINimum query returns the value of the minimum time between the X
and O Markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:SLISt:TMINimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:SLIST:TMINIMUM?"

VRUNs

Query :MACHine{1|2}:SLISt:VRUNs?

The VRUNs query returns the number of valid runs and total number of runs
made. Valid runs are those where the pattern search for both the X and O
markers was successful resulting in valid delta time measurements.

Returned Format [:MACHine{1|2}:SLISt:VRUNs] <valid_runs>,<total_runs><NL>

<valid_runs> zero or positive integer

<total_runs> zero or positive integer

Example OUTPUT XXX;":MACHINE1:SLIST:VRUNS?"

SLISt Subsystem
TMINimum

17–18

XOTag

Query :MACHine{1|2}:SLISt:XOTag?

The XOTag query returns the time from the X to the O marker when the
marker mode is time or the number of states from the X to the O marker
when the marker mode is state. If there is no data in the time mode the
query returns 9.9E37. If there is no data in the state mode, the query
returns 32767.

Returned Format [:MACHine{1|2}:SLISt:XOTag] {<XO_time>|<XO_states>}<NL>

<XO_time> real number

<XO_states> integer

Example OUTPUT XXX;":MACHINE1:SLIST:XOTAG?"

XOTime

Query :MACHine{1|2}:SLISt:XOTime?

The XOTime query returns the time from the X to the O marker when the
marker mode is time or the number of states from the X to the O marker
when the marker mode is state. If there is no data in the time mode the
query returns 9.9E37. If there is no data in the state mode, the query
returns 32767.

Returned Format [:MACHine{1|2}:SLISt:XOTime] {<XO_time>|<XO_states>}<NL>

<XO_time> real number

<XO_states> integer

Example OUTPUT XXX;":MACHINE1:SLIST:XOTIME?"

SLISt Subsystem
XOTag

17–19

XPATtern

Command :MACHine{1|2}:SLISt:XPATtern <label_name>,
<label_pattern>

The XPATtern command allows you to construct a pattern recognizer term
for the X Marker which is then used with the XSEarch criteria when moving
the marker on patterns. Since this command deals with only one label at a
time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SLIST:XPATTERN ’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:SLIST:XPATTERN ’ABC’,’#BXXXX1101’ "

Query :MACHine{1|2}:SLISt:XPATtern? <label_name>

The XPATtern query returns the pattern specification for a given label name.
Returned Format [:MACHine{1|2}:SLISt:XPATtern]

<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:XPATTERN? ’A’"

SLISt Subsystem
XPATtern

17–20

XSEarch

Command :MACHine{1|2}:SLISt:XSEarch <occurrence>,<origin>

The XSEarch command defines the search criteria for the X Marker, which is
then used with associated XPATtern recognizer specification when moving
the markers on patterns. The origin parameter tells the Marker to begin a
search with the trigger or with the start of data. The occurrence parameter
determines which occurrence of the XPATtern recognizer specification,
relative to the origin, the marker actually searches for. An occurrence of 0
places a marker on the selected origin.

<occurrence> integer from −8191 to +8191

<origin> {TRIGger|STARt}

Example OUTPUT XXX;":MACHINE1:SLIST:XSEARCH +10,TRIGGER"

Query :MACHine{1|2}:SLISt:XSEarch?

The XSEarch query returns the search criteria for the X marker.
Returned Format [:MACHine{1|2}:SLISt:XSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:XSEARCH?"

SLISt Subsystem
XSEarch

17–21

XSTate

Query :MACHine{1|2}:SLISt:XSTate?

The XSTate query returns the line number in the listing where the X marker
resides (−8191 to +8191). If data is not valid, the query returns 32767.

Returned Format [:MACHine{1|2}:SLISt:XSTate] <state_num><NL>

<state_num> integer from −8191 to +8191, or 32767

Example OUTPUT XXX;":MACHINE1:SLIST:XSTATE?"

XTAG

Command :MACHine{1|2}:SLISt:XTAG
{<time_value>|<state_value>}

The XTAG command specifies the tag value on which the X Marker should be
placed. The tag value is time when time tagging is on or states when state
tagging is on. If the data is not valid tagged data, no action is performed.

<time_value> real number

<state_value> integer

Example OUTPUT XXX;":MACHINE1:SLIST:XTAG 40.0E −6"

SLISt Subsystem
XSTate

17–22

Query :MACHine{1|2}:SLISt:XTAG?

The XTAG query returns the X Marker position in time when time tagging is
on or in states when state tagging is on, regardless of whether the marker
was positioned in time or through a pattern search. If data is not valid tagged
data, the query returns 9.9E37 for time tagging, or returns 32767 for state
tagging.

Returned Format [:MACHine{1|2}:SLISt:XTAG] {<time_value>|<state_value>}<NL>

Example OUTPUT XXX;":MACHINE1:SLIST:XTAG?"

SLISt Subsystem
XTAG

17–23

17–24

18

SWAVeform Subsystem

Introduction

The commands in the State Waveform subsystem allow you to
configure the display so that you can view state data as waveforms on
up to 96 channels identified by label name and bit number. The 11
commands are analogous to their counterparts in the Timing
Waveform subsystem. However, in this subsystem the x-axis is
restricted to representing only samples (states), regardless of
whether time tagging is on or off. As a result, the only commands
which can be used for scaling are DELay and RANge.

The way to manipulate the X and O markers on the Waveform display
is through the State Listing (SLISt) subsystem. Using the marker
commands from the SLISt subsystem will affect the markers on the
Waveform display.

The commands in the SWAVeform subsystem are:

• ACCumulate

• ACQuisition

• CENter

• CLRPattern

• CLRStat

• DELay

• INSert

• RANGe

• REMove

• TAKenbranch

• TPOSition

18–2

Figure 18-1

SWAVeform Subsystem Syntax Diagram

SWAVeform Subsystem

18–3

Table 18-1 SWAVeform Parameter Values

Parameter Value

number_of_samples integer from −8191 to +8191

label_name string of up to 6 alphanumeric characters

bit_id {OVERlay|<bit_num>|ALL}

bit_num integer representing a label bit from 0 to 31

range_values integer from 10 to 5000 (representing (10 × states/Division))

mark_type {X|O|XO|TRIGger}

percent integer from 0 to 100

SWAVeform(State Waveform)

Selector :MACHine{1|2}:SWAVeform

The SWAVeform selector is used as part of a compound header to access the
settings in the State Waveform menu. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in the
command tree.

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE 40"

SWAVeform Subsystem
SWAVeform(State Waveform)

18–4

ACCumulate

Command :MACHine{1|2}:SWAVeform:ACCumulate
{{ON|1}|{OFF|0}}

The ACCumulate command allows you to control whether the waveform
display gets erased between individual runs or whether subsequent
waveforms are displayed over the previous waveforms.

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:ACCUMULATE ON"

Query :MACHine{1|2}:SWAVeform:ACCumulate?

The ACCumulate query returns the current setting. The query always shows
the setting as the characters, "0" (off) or "1" (on).

Returned Format [:MACHine{1|2}:SWAVeform:ACCumulate] {0|1}<NL>

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:ACCUMULATE?"

ACQuisition

Command :MACHine{1|2}:SWAVeform:ACQuisition
{AUTOmatic|MANual}

The ACQuisition command allows you to specify the acquisition mode for the
state analyzer. The acquisition modes are automatic and manual.

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:ACQUISITION AUTOMATIC"

SWAVeform Subsystem
ACCumulate

18–5

Query :MACHine{1|2}:SWAVeform:ACQuisition?

The ACQusition query returns the current acquisition mode.
Returned Format [:MACHine{1|2}:SWAVeform:ACQuisition] {AUTOmatic|MANual}<NL>

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:ACQUISITION?"

CENTer

Command :MACHine{1|2}:SWAVeform:CENTer <marker_type>

The CENTer command allows you to center the waveform display about the
specified markers. The markers are placed on the waveform in the SLISt
subsystem.

<marker_type> {X|O|XO|TRIGger}

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:CENTER X"

CLRPattern

Command :MACHine{1|2}:SWAVeform:CLRPattern {X|O|ALL}

The CLRPattern command allows you to clear the patterns in the selected
Specify Patterns menu.

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:CLRPATTERN"

SWAVeform Subsystem
CENTer

18–6

CLRStat

Command :MACHine{1|2}:SWAVeform:CLRStat

The CLRStat command allows you to clear the waveform statistics without
having to stop and restart the acquisition.

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:CLRSTAT"

DELay

Command :MACHine{1|2}:SWAVeform:DELay <number_of_samples>

The DELay command allows you to specify the number of samples between
the State trigger and the horizontal center of the screen for the waveform
display. The allowed number of samples is from −8191 to +8191.

<number_of_
samples>

integer from –8191 to +8191

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:DELAY 127"

Query :MACHine{1|2}:SWAVeform:DELay?

The DELay query returns the current sample offset value.
Returned Format [:MACHine{1|2}:SWAVeform:DELay] <number_of_samples><NL>

<number_of_
samples>

integer from –8191 to +8191

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:DELAY?"

SWAVeform Subsystem
CLRStat

18–7

INSert

Command :MACHine{1|2}:SWAVeform:INSert
<label_name>,<bit_id>

The INSert command allows you to add waveforms to the state waveform
display. Waveforms are added from top to bottom on the screen. When 96
waveforms are present, inserting additional waveforms replaces the last
waveform. Bit numbers are zero-based, so a label with 8 bits is referenced as
bits 0 through 7. Specifying OVERlay causes a composite waveform display
of all bits or channels for the specified label. ALL inserts all bits individually.

<label_name> string of up to 6 alphanumeric characters

<bit_id> {OVERlay|<bit_num>|ALL}

<bit_num> integer representing a label bit from 0 to 31

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:INSERT ’WAVE’, 19"
OUTPUT XXX;":MACHINE1:SWAVEFORM:INSERT ’ABC’, OVERLAY"
OUTPUT XXX;":MACH1:SWAV:INSERT ’POD1’, #B1001"

RANGe

Command :MACHine{1|2}:SWAVeform:RANGe <number_of_samples>

The RANGe command allows you to specify the number of samples across
the screen on the State Waveform display. It is equivalent to ten times the
states per division setting (states/Div) on the front panel. A number between
10 and 5000 may be entered.

<number_of_
samples>

integer from 10 to 5000

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE 80"

SWAVeform Subsystem
INSert

18–8

Query :MACHine{1|2}:SWAVeform:RANGe?

The RANGe query returns the current range value.
Returned Format [:MACHine{1|2}:SWAVeform:RANGe] <number_of_samples><NL>

<number_of_
samples>

integer from 10 to 5000

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE?"

REMove

Command :MACHine{1|2}:SWAVeform:REMove

The REMove command allows you to clear the waveform display before
building a new display.

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:REMOVE"

TAKenbranch

Command :MACHine{1|2}:SWAVeform:TAKenbranch
{STORe|NOSTore}

The TAKenbranch command allows you to control whether the states that
cause branching are stored or not stored. This command is only available
when the acquisition mode is set to manual.

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:TAKENBRANCH STORE"

Query :MACHine{1|2}:SWAVeform:TAKenbranch?

SWAVeform Subsystem
REMove

18–9

The TAKenbranch query returns the current setting.
Returned Format [:MACHine{1|2}:SWAVeform:TAKenbranch] {STORe|NOSTore}<NL>

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:TAKENBRANCH?"

TPOSition

Command :MACHine{1|2}:SWAVeform:TPOSition
{STARt|CENTer|END|POSTstore,<percent>}

The TPOSition command allows you to control where the trigger point is
placed. The trigger point can be placed at the start, center, end, or at a
percentage of post store. The post store option is the same as the User
Defined option when setting the trigger point from the front panel.

The TPOSition command is only available when the acquisition mode is set to
manual.

<percent> integer from 1 to 100

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:TPOSITION CENTER"

Query :MACHine{1|2}:SWAVeform:TPOSition?

The TPOSition query returns the current trigger setting.
Returned Format [:MACHine{1|2}:SWAVeform:TPOSition]

{STARt|CENTer|END|POSTstore,
<percent>}<NL>

<percent> integer from 1 to 100

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:TPOSition?"

SWAVeform Subsystem
TPOSition

18–10

19

SCHart Subsystem

Introduction

The State Chart subsystem provides the commands necessary for
programming the Chart display in HP 1660C/CS/CP-series logic
analyzers. The commands allow you to build charts of label activity,
using data normally found in the Listing display. The chart’s Y axis is
used to show data values for the label of your choice. The X axis can
be used in two different ways. In one, the X axis represents states
(shown as rows in the State Listing display). In the other, the X axis
represents the data values for another label. When states are plotted
along the
X axis, X and O markers are available. Because the State Chart
display is simply an alternative way of looking at the data in the State
Listing, the X and O markers can be manipulated through the SLISt
subsystem. Because the programming commands do not force the
menus to switch, you can position the markers in the SLISt subsystem
and see the effects in the State Chart display.

The commands in the SCHart subsystem are:

• ACCumulate

• HAXis

• VAXis

19–2

Figure 19-1

SCHart Subsystem Syntax Diagram

SCHart Subsystem

19–3

Table 19-1 SCHart Parameter Values

Parameter Values

state_low_value integer from –8191 to +8191

state_high_value integer from <state_low_value> to +8191

label_name string of up to 6 alphanumeric characters

label_low_value string from 0 to 232 − 1 (#HFFFF)

label_high_value string from <label_low_value> to 232 − 1 (#HFFFF)

low_value string from 0 to 232 − 1 (#HFFFF)

high_value string from low_value to 232 − 1 (#HFFFF)

SCHart

Selector :MACHine{1|2}:SCHart

The SCHart selector is used as part of a compound header to access the
settings found in the State Chart menu. It always follows the MACHine
selector because it selects a branch below the MACHine level in the
command tree.

Example OUTPUT XXX;":MACHINE1:SCHART:VAXIS ’A’, ’0’, ’9’"

ACCumulate

Command :MACHine{1|2}:SCHart:ACCumulate {{ON|1}|{OFF|0}}

The ACCumulate command allows you to control whether the chart display
gets erased between each individual run or whether subsequent waveforms
are allowed to be displayed over the previous waveforms.

SCHart Subsystem
SCHart

19–4

Example OUTPUT XXX;":MACHINE1:SCHART:ACCUMULATE OFF"

Query :MACHine{1|2}:SCHart:ACCumulate?

The ACCumulate query returns the current setting. The query always shows
the setting as the character "0" (off) or "1" (on).

Returned Format [:MACHine{1|2}:SCHart:ACCumulate] {0|1}<NL>

Example OUTPUT XXX;":MACHINE1:SCHART:ACCUMULATE?"

HAXis

Command :MACHine{1|2}:SCHart:HAXis {STAtes,
<state_low_value>,<state_high_value>|<label_name>,
<label_low_value>,<label_high_value>}

The HAXis command allows you to select whether states or a label’s values
will be plotted on the horizontal axis of the chart. The axis is scaled by
specifying the high and low values.

The shortform for STATES is STA. This is an intentional deviation from the
normal truncation rule.

SCHart Subsystem
HAXis

19–5

<state_low_
value>

integer from −8191 to +8191

<state_high_
value>

integer from <state_low_value> to +8191

<label_name> string of up to 6 alphanumeric characters

<label_low_
value>

string from 0 to 232−−1 (#HFFFF)

<label_high_
value>

string from <label_low_value> to 232–1 (#HFFFF)

Example OUTPUT XXX;":MACHINE1:SCHART:HAXIS STATES, −100, 100"

OUTPUT XXX;":MACHINE1:SCHART:HAXIS ’READ’, ’ −511’, ’511’"

Query :MACHine{1|2}:SCHart:HAXis?

The HAXis query returns the current horizontal axis label and scaling.
Returned Format [:MACHine{1|2}:SCHart:HAXis] {{STAtes,<state_low_value>,

<state_high_value>}|{<label_name>,<label_low_value>,
<label_high_value>}}

Example OUTPUT XXX;":MACHINE1:SCHART:HAXIS?"

SCHart Subsystem
HAXis

19–6

VAXis

Command :MACHine{1|2}:SCHart:VAXis
<label_name>,<low_value>,<high_value>

The VAXis command allows you to choose which label will be plotted on the
vertical axis of the chart and scale the vertical axis by specifying the high
value and low value.

<label_name> string of up to 6 alphanumeric characters

<low_value> string from 0 to 232−1 (#HFFFF)

<high_value> string from <low_value> to 232−1 (#HFFFF)

Example OUTPUT XXX;":MACHINE2:SCHART:VAXIS ’SUM1’, ’0’, ’99’"
OUTPUT XXX;":MACHINE1:SCHART:VAXIS ’BUS’, ’#H00FF’, ’#H0500’"

Query :MACHine{1|2}:SCHart:VAXis?

The VAXis query returns the current vertical axis label and scaling.
Returned Format [:MACHine{1|2}:SCHart:VAXis] <label_name>,<low_value>,

<high_value><NL>

Example OUTPUT XXX;":MACHINE1:SCHART:VAXIS?"

SCHart Subsystem
VAXis

19–7

19–8

20

COMPare Subsystem

Introduction

Commands in the state COMPare subsystem provide the ability to do a
bit-by-bit comparison between the acquired state data listing and a
compare data image. The commands are:

• CLEar

• CMASk

• COPY

• DATA

• FIND

• LINE

• MENU

• RANGe

• RUNTil

• SET

20–2

Figure 20-1

COMPare Subsystem Syntax Diagram

COMPare Subsystem

20–3

Table 20-1 Compare Parameter Values

Parameter Values

label_name string of up to 6 characters

care_spec string of characters "{*|.}..."

* care

. don’t care

line_num integer from –8191 to +8191

data_pattern "{B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} .
. . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

difference_occurence integer from 1 to 8192

start_line integer from –8191 to +8191

stop_line integer from <start_line> to +8191

COMPare

Selector :MACHine{1|2}:COMPare

The COMPare selector is used as part of a compound header to access the
settings found in the Compare menu. It always follows the MACHine selector
because it selects a branch directly below the MACHine level in the command
tree.

Example OUTPUT XXX;":MACHINE1:COMPARE:FIND? 819"

COMPare Subsystem
COMPare

20–4

CLEar

Command :MACHine{1|2}:COMPare:CLEar

The CLEar command clears all "don’t cares" in the reference listing and
replaces them with zeros except when the CLEar command immediately
follows the SET command (see SET command).

Example OUTPUT XXX;":MACHINE2:COMPARE:CLEAR"

CMASk

Command :MACHine{1|2}:COMPare:CMASk
<label_name>,<care_spec>

The CMASk (Compare Mask) command allows you to set the bits in the
channel mask for a given label in the compare listing image to "compares" or
"don’t compares."

<label_name> A string of up to 6 alphanumeric characters

<care_spec> A string of characters "{*|.}... " (32 characters maximum)

<*> An indicator that tells the logic analyzer that it cares about this bit.

<.> An indicator that tells the logic analyzer that it does not care about this bit
(don’t care).

Example OUTPUT XXX;":MACHINE2:COMPARE:CMASK ’DATA’, ’*.**..**’"

COMPare Subsystem
CLEar

20–5

Query :MACHine{1|2}:COMPare:CMASk <label_name>?

The CMASk query returns the state of the bits in the channel mask for a
given label in the compare listing image.

Returned Format [:MACHine{1|2}:COMPare:CMASk] <label_name>,<care_spec>

<label_name> A string of up to 6 alphanumeric characters

<care_spec> A string of characters "{*|.}... " (32 characters maximum)

<*> An indicator that tells the logic analyzer that it cares about this bit.

<.> An indicator that tells the logic analyzer that it does not care about this bit
(don’t care).

Example OUTPUT XXX;":MACHINE2:COMPARE:CMASK ’DATA’?"

COPY

Command :MACHine{1|2}:COMPare:COPY

The COPY command copies the current acquired State Listing for the
specified machine into the Compare Reference template. It does not affect
the compare range or channel mask settings.

Example OUTPUT XXX;":MACHINE2:COMPARE:COPY"

COMPare Subsystem
COPY

20–6

DATA

Command :MACHine{1|2}:COMPare:DATA {<label_name>,
<line_num>,<data_pattern>|<line_num>,
<data_pattern>[, <data_pattern>]... }

The DATA command allows you to edit the compare listing image for a given
label and state row. When DATA is sent to an instrument where no compare
image is defined (such as at power-up) all other data in the image is set to
don’t cares.

Not specifying the <label_name> parameter allows you to write data
patterns to more than one label for the given line number. The first pattern
is placed in the leftmost label, with the following patterns being placed in a
left-to-right fashion (as seen on the Compare display). Specifying more
patterns than there are labels simply results in the extra patterns being
ignored.

Because don’t cares (Xs) are allowed in the data pattern, it must always be
expressed as a string. You may still use different bases although don’t cares
cannot be used in a decimal number.

<label_name> A string of up to 6 alphanumeric characters

<line_num> An integer from –8191 to +8191

<data pattern> A string in one of the following forms:
"{B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE2:COMPARE:DATA ’CLOCK’, 42, ’#B011X101X’"
OUTPUT XXX;":MACHINE2:COMPARE:DATA ’OUT3’, 0, ’#HFF40’"
OUTPUT XXX;":MACHINE1:COMPARE:DATA 129, ’#BXX00’, ’#B1101’,
’#B10XX’"

OUTPUT XXX;":MACH2:COMPARE:DATA −511, ’4’, ’64’, ’16’, 256’,
’8’, ’16’"

COMPare Subsystem
DATA

20–7

Query :MACHine{1|2}:COMPare:DATA?
<label_name>,<line_num>

The DATA query returns the value of the compare listing image for a given
label and state row.

Returned Format [:MACHine{1|2}:COMPare:DATA] <label_name>,<line_num>,
<data_pattern><NL>

<label_name> A string of up to 6 alphanumeric characters

<line_num> An integer from –8191 to +8191

<data_pattern> A string in one of the following forms:
"{B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example

10 DIM Label$[6], Response$[80]
15 PRINT "This program shows the values for a signal’s Compare listing"
20 INPUT "Enter signal label: ", Label$
25 OUTPUT XXX;":SYSTEM:HEADER OFF" !Turn headers off (from responses)
30 OUTPUT XXX;":MACHINE2:COMPARE:RANGE?"
35 ENTER XXX; First, Last !Read in the range’s end-points
40 PRINT "LINE ", "VALUE of "; Label$
45 FOR State = First TO Last !Print compare value for each state
50 OUTPUT XXX;":MACH2:COMPARE:DATA? ’" & Label$ & "’," & VAL$(State)
55 ENTER XXX; Response$
60 PRINT State, Response$
65 NEXT State
70 END

COMPare Subsystem
DATA

20–8

FIND

Query :MACHine{1|2}:COMPare:FIND?
<difference_occurrence>

The FIND query is used to get the line number of a specified difference
occurence (first, second, third, etc) within the current compare range, as
dictated by the RANGe command (see page 20-11). A difference is counted
for each line where at least one of the current labels has a discrepancy
between its acquired state data listing and its compare data image.

Invoking the FIND query updates both the Listing and Compare displays so
that the line number returned is in the center of the screen.

Returned Format [:MACHine{1|2}:COMPare:FIND] <difference_occurrence>,
<line_number><NL>

<difference_
occurrence>

integer from 1 to 8192

<line_number> integer from –8191 to +8191

Example OUTPUT XXX;":MACHINE2:COMPARE:FIND? 26"

COMPare Subsystem
FIND

20–9

LINE

Command :MACHine{1|2}:COMPare:LINE <line_num>

The LINE command allows you to center the compare listing data about a
specified line number.

<line_num> An integer from –8191 to +8191

Example OUTPUT XXX;":MACHINE2:COMPARE:LINE –511"

Query :MACHine{1|2}:COMPare:LINE?

The LINE query returns the current line number specified.
Returned Format [:MACHine{1|2}:COMPare:LINE] <line_num><NL>

<line_num> An integer from –8191 to +8191

Example OUTPUT XXX;":MACHINE4:COMPARE:LINE?"

MENU

Command :MACHine{1|2}:COMPare:MENU {REFerence|DIFFerence}

The MENU command allows you to display the reference or the difference
listing in the Compare menu.

Example OUTPUT XXX;":MACHINE2:COMPARE:MENU REFERENCE"

COMPare Subsystem
LINE

20–10

RANGe

Command :MACHine{1|2}:COMPare:RANGe {FULL |
PARTial,<start_line>,<stop_line>}

The RANGe command allows you to define the boundaries for the
comparison. The range entered must be a subset of the lines in the acquire
memory.

<start_line> integer from –8191 to +8191

<stop_line> integer from <start_line> to +8191

Example OUTPUT XXX;":MACHINE2:COMPARE:RANGE PARTIAL, –511, 512"
OUTPUT XXX;":MACHINE2:COMPARE:RANGE FULL"

Query :MACHine{1|2}:COMPare:RANGe?

The RANGe query returns the current boundaries for the comparison.
Returned Format [:MACHine{1|2}:COMPare:RANGe] {FULL | PARTial,<start_line>,

<stop_line>}<NL>

<start_line> integer from –8191 to +8191

<stop_line> integer from <start_line> to +8191

Example OUTPUT XXX;":MACHINE1:COMPARE:RANGE?"

COMPare Subsystem
RANGe

20–11

RUNTil

Command :MACHine{1|2}:COMPare:RUNTil {OFF | LT,<value> |
GT,<value> | INRange,<value>,<value> |
OUTRange,<value>,<value> | EQUal | NEQual}

The RUNTil (run until) command allows you to define a stop condition when
the trace mode is repetitive. Specifying OFF causes the analyzer to make
runs until either the display’s STOP field is touched or the STOP command is
issued.

There are four conditions based on the time between the X and O markers.
Using this difference in the condition is effective only when time tags have
been turned on (see the TAG command in the STRace subsystem). These
four conditions are as follows:

• The difference is less than (LT) some value.

• The difference is greater than (GT) some value.

• The difference is inside some range (INRange).

• The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 8 ns apart since
this is the minimum time resolution of the time tag counter.

There are two conditions which are based on a comparison of the acquired
state data and the compare data image. You can run until one of the
following conditions is true:

• Every channel of every label has the same value (EQUal).

• Any channel of any label has a different value (NEQual).

The RUNTil instruction (for state analysis) is available in both the SLISt and
COMPare subsystems.

<value> real number from −9E9 to +9E9

COMPare Subsystem
RUNTil

20–12

Example OUTPUT XXX;":MACHINE2:COMPARE:RUNTIL EQUAL"

Query :MACHine{1|2}:COMPare:RUNTil?

The RUNTil query returns the current stop criteria for the comparison when
running in repetitive trace mode.

Returned Format [:MACHine{1|2}:COMPare:RUNTil] {OFF | LT,<value> | GT,<value>
| INRange,<value>,<value> | OUTRange,<value>,<value> | EQUal
| NEQual}<NL>

<value> real number from −9E9 to +9E9

Example OUTPUT XXX;":MACHINE2:COMPARE:RUNTIL?"

SET

Command :MACHine{1|2}:COMPare:SET

The SET command sets every state in the reference listing to "don’t cares." If
you send the SET command by mistake you can immediately send the CLEar
command to restore the previous data. This is the only time the CLEar
command will not replace "don’t cares" with zeros.

Example OUTPUT XXX;":MACHINE2:COMPARE:SET"

COMPare Subsystem
SET

20–13

20–14

21

TFORmat Subsystem

Introduction

The TFORmat subsystem contains the commands available for the
Timing Format menu in the HP 1660C/CS/CP-series logic analyzers.
These commands are:

• ACQMode

• LABel

• REMove

• THReshold

21–2

Figure 21-1

TFORmat Subsystem Syntax Diagram

TFORmat Subsystem

21–3

Table 21-1 TFORmat Paramter Values

Parameter Values

size {FULL|HALF}

<N> {1|2|3|4|5|6|7|8}

name string of up to 6 alphanumeric characters

polarity {POSitive|NEGative}

pod_specification format (integer from 0 to 65535) for a pod (pods are
assigned in decreasing order)

value voltage (real number) −6.00 to +6.00

TFORmat (Timing Format)

Selector :MACHine{1|2}:TFORmat

The TFORmat selector is used as part of a compound header to access those
settings normally found in the Timing Format menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the language tree.

Example OUTPUT XXX;":MACHINE1:TFORMAT:ACQMODE?"

TFORmat Subsystem
TFORmat (Timing Format)

21–4

ACQMode

Command :MACHine{1|2}:TFORmat:ACQMode {TRANSitional
<size> | CONVentional <size> | GLITch}

The ACQMode (acquisition mode) command allows you to select the
acquisition mode for the timing analyzer. The options are:

• conventional mode at full-channel 250 MHz

• conventional mode at half-channel 500 Mhz

• transitional mode at full-channel 125 MHz

• transitional mode at half-channel 250 MHz

• glitch mode

<size> {FULL|HALF}

Example OUTPUT XXX;":MACHINE2:TFORMAT:ACQMODE TRANSITIONAL HALF"

Query :MACHine{1|2}:TFORmat:ACQMode?

The ACQMode query returns the current acquisition mode.
Returned Format [:MACHine{1|2}:TFORmat:ACQMode] {TRANSitional

<size>|CONVentional <size>|GLITch}<NL>

<size> {FULL|HALF}

Example OUTPUT XXX;":MACHINE2:TFORMAT:ACQMODE?"

TFORmat Subsystem
ACQMode

21–5

LABel

Command :MACHine{1|2}:Tformat:LABel <name>,
[<polarity>,][<pod_spec>]

The LABel command allows you to specify polarity and to assign channels to
new or existing labels. If the specified label name does not match an existing
label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest numbered pod assigned to the machine you’re
using. Each pod specification after that is assigned to the next highest
numbered pod. This way they match the left-to-right descending order of the
pods you see on the Format display. Not including enough pod specifications
results in the lowest numbered pods being assigned a value of zero (all
channels excluded). If you include more pod specifications than there are
pods for that machine, the extra ones will be ignored. However, an error is
reported anytime more than 13 pod specifications are listed.

The polarity can be specified at any point after the label name.

Because pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (216−1). When giving the pod assignment in binary
(base 2), each bit will correspond to a single channel. A "1" in a bit position
means the associated channel in that pod is assigned to that pod and bit. A
"0" in a bit position means the associated channel in that pod is excluded
from the label. For example, assigning #B1111001100 is equivalent to
entering "......****..**.." from the front panel.

A label can not have a total of more than 32 channels assigned to it.

<name> string of up to 6 alphanumeric characters

<polarity> {POSitive|NEGative}

<pod_spec> <clock_bits>, <upper_bits>,<lower_bits>
[,<upper_bits>,<lower_bits>]...

<clock_bits> integer from 0 to 63 for clock format (clocks assigned in decreasing order)

<upper_bits> integer from 0 to 65535 for pod format (pods assigned in decreasing order)

<lower_bits> integer from 0 to 65535 for pod format (pods assigned in decreasing order)

TFORmat Subsystem
LABel

21–6

Example OUTPUT XXX;":MACHINE2:TFORMAT:LABEL ’STAT’, POSITIVE,
0,127,40312"
OUTPUT XXX;":MACHINE2:TFORMAT:LABEL ’SIG 1’,
#B11,#B0000000011111111,#B0000000000000000 "

Query :MACHine{1|2}:Tformat:LABel? <name>

The LABel query returns the current specification for the selected (by name)
label. If the label does not exist, nothing is returned. Numbers are always
returned in decimal format.

Returned Format [:MACHine{1|2}:Tformat:LABel] <name>,<polarity>
[,<assignment>]...<NL>

<name> string of up to 6 alphanumeric characters

<polarity> {POSitive|NEGative}

Example OUTPUT XXX;":MACHINE2:TFORMAT:LABEL? ’DATA’"

REMove

Command :MACHine{1|2}:TFORmat:REMove {<name>|ALL}

The REMove command allows you to delete all labels or any one label
specified by name for a given machine.

<name> string of up to 6 alphanumeric characters

Example OUTPUT XXX;":MACHINE1:TFORMAT:REMOVE ’A’"
OUTPUT XXX;":MACHINE1:TFORMAT:REMOVE ALL"

TFORmat Subsystem
REMove

21–7

THReshold

Command :MACHine{1|2}:TFORmat:THReshold<N> {TTL|ECL|<value>}

The THReshold command allows you to set the voltage threshold for a given
pod to ECL, TTL, or a specific voltage from −6.00 V to +6.00 V in 0.05 volt
increments.

<N> pod number {1|2|3|4|5|6|7|8}

<value> voltage (real number) −6.00 to +6.00

TTL default value of +1.6 V

ECL default value of −1.3 V

Example OUTPUT XXX;":MACHINE1:TFORMAT:THRESHOLD1 4.0"

Query :MACHine{1|2}:TFORmat:THReshold<N>?

The THReshold query returns the current threshold for a given pod.
Returned Format [:MACHine{1|2}:TFORmat:THReshold<N>] <value><NL>

Example OUTPUT XXX;":MACHINE1:TFORMAT:THRESHOLD2?"

TFORmat Subsystem
THReshold

21–8

22

TTRigger (TTRace) Subsystem

Introduction

The TTRigger subsystem contains the commands available for the
Timing Trigger menu in the HP 1660C/CS/CP-series logic analyzers.
The Timing Trigger subsystem will also accept the TTRace selector as
used in previous HP 1650-series logic analyzers to eliminate the need
to rewrite programs containing TTRace as the selector keyword. The
TTRigger subsystem commands are:

• ACQuisition

• BRANch

• CLEar

• FIND

• GLEDge

• RANGe

• SEQuence

• SPERiod

• TCONtrol

• TERM

• TIMER

• TPOSition

22–2

Figure 22-1

TTRigger Subsystem Syntax Diagram

TTRigger (TTRace) Subsystem

22–3

Figure 22-1 (continued)

TTRigger Subsystem Syntax Diagram (continued)

TTRigger (TTRace) Subsystem

22–4

Table 22-1 TTRigger Parameter Values

Parameter Values

branch_qualifier <qualifier>

to_lev_num integer from 1 to last level

proceed_qualifier <qualifier>

occurrence number from 1 to 1048575

label_name string of up to 6 alphanumeric characters

glitch_edge_spec string consisting of {R|F|E|G|.} R, F, and E represents
rising, falling, either edge respectively. G represents a glitch
and a period (.) represents a don’t care.

start_pattern "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . .
. |
{0|1|2|3|4|5|6|7|8|9} . . . }"

stop_pattern "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . .
. |
{0|1|2|3|4|5|6|7|8|9} . . . }"

num_of_levels integer from 1 to 10

timer_num {1|2}

timer_value 400 ns to 500 seconds

term_id {A|B|C|D|E|F|G|H|I|J}

pattern "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} .
. . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

qualifier see "Qualifier" on page 22-6

post_value integer from 0 to 100 representing percentage

time_val integer from 0 to 500 representing seconds

TTRigger (TTRace) Subsystem

22–5

Qualifier

The qualifier for the timing trigger subsystem can be terms A through J,
Timer 1 and 2, and Range 1 and 2 and glitch/edges 1 and 2. In addition,
qualifiers can be the NOT boolean function of terms, timers, and ranges. The
qualifier can also be an expression or combination of expressions as shown
below and figure 22-2, "Complex Qualifier," on page 22-11.

The following parameters show how qualifiers are specified in all commands
of the TTRigger subsystem that use <qualifier> .

<qualifier> {"ANYSTATE"|"NOSTATE"|"<expression>"}

<expression> {<expression1a>|<expression1b>|<expression1a> OR
<expression1b>|<expression1a> AND <expression1b>}

<expression1a> {<expression1a_term>|(<expression1a_term>[OR
<expression1a_term>]*)|(<expression1a_term>[AND
<expression1a_term>]*)}

<expression1a_
term>

{<expression2a>|<expression2b>|<expression2c>|
<expression2d>}

<expression1b> {<expression1b_term>|(<expression1b_term>[OR
<expression1b_term>]*)|(<expression1b_term>[AND
<expression1b_term>]*)}

<expression1b_
term>

{<expression2e>|<expression2f>|<expression2g>|
<expression2h>}

<expression2a> {<term3a>|<term3b>|(<term3a> <boolean_op> <term3b>)}

<expression2b> {<term3c>|<range3a>|(<term3c> <boolean_op> <range3a>)}

<expression2c> {<term3d>|<gledge3a|(<term3d> <boolean_op> <gledge3a>)}

<expression2d> {<term3e>|<timer3a>|(<term3e> <boolean_op> <timer3a>)}

<expression2e> {<term3f>|<term3g>|(<term3f> <boolean_op> <term3g>)}

<expression2f> {<term3h>|<range3b>|(<term3h> <boolean_op> <range3b>)}

<expression2g> {<term3i>|<gledge3b>|(<term3i> <boolean_op> <gledge3b>)}

<expression2h> {<term3j>|<timer3b>|(<term3e> <boolean_op> <timer3b>)}

TTRigger (TTRace) Subsystem
Qualifier

22–6

<boolean_op> {AND|NAND|OR|NOR|XOR|NXOR}

<term3a> {A|NOTA}

<term3b> {B|NOTB}

<term3c> {C|NOTC}

<term3d> {D|NOTD}

<term3e> {E|NOTE}

<term3f> {F|NOTF}

<term3g> {G|NOTG}

<term3h> {H|NOTH}

<term3i> {I|NOTI}

<term3j> {J|NOTJ}

<range3a> {IN_RANGE1|OUT_RANGE1}

<range3b> {IN_RANGE2|OUT_RANGE2}

<gledge3a> {GLEDge1|NOT GLEDge1}

<gledge3b> {GLEDge2|NOT GLEDge2}

<timer3a> {TIMER1<|TIMER1>}

<timer3b> {TIMER2<|TIMER2>}

* = is optional such that it can be used zero or more times
+ = must be used at least once and can be repeated

TTRigger (TTRace) Subsystem
Qualifier

22–7

Qualifier Rules

The following rules apply to qualifiers:

• Qualifiers are quoted strings and, therefore, need quotes.

• Expressions are evaluated from left to right.

• Parentheses are used to change the order evaluation and, therefore, are
optional.

• An expression must map into the combination logic presented in the
combination pop-up menu within the TTRigger menu.

Example ’A’
’(A OR B)’
’((A OR B) AND C)’
’((A OR B) AND C AND IN_RANGE2)’
’((A OR B) AND (C AND IN_RANGE1))’
’IN_RANGE1 AND (A OR B) AND C’

TTRigger (TTRace) (Trace Trigger)

Selector :MACHine{1|2}:TTRigger

The TTRigger selector is used as a part of a compound header to access the
settings found in the Timing Trace menu. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in the
command tree.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TAG TIME"

TTRigger (TTRace) Subsystem
TTRigger (TTRace) (Trace Trigger)

22–8

ACQuisition

Command :MACHine{1|2}:TTRigger:ACQuisition
{AUTOmatic|MANual}

The ACQuisition command allows you to specify the acquisition mode for the
Timing analyzer.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:ACQUISITION AUTOMATIC"

Query :MACHine{1|2}:TTRigger:ACQuisition?

The ACQuisition query returns the current acquisition mode specified.
Returned Format [:MACHine{1|2}:TTRigger:ACQuisition] {AUTOmatic|MANual}<NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:ACQUISITION?"

BRANch

Command :MACHine{1|2}:TTRigger:BRANch<N>
<branch_qualifier>,<to_level_number>

The BRANch command defines the branch qualifier for a given sequence
level. When this branch qualifier is matched, it will cause the sequencer
to jump to the specified sequence level.

The terms used by the branch qualifier (A through J) are defined by the
TERM command. The meaning of IN_RANGE and OUT_RANGE is
determined by the RANGE command.

Within the limitations shown by the syntax definitions, complex expressions
may be formed using the AND and OR operators. Expressions are limited to
what you could manually enter through the Timing Trigger menu. Regarding
parentheses, the syntax definitions on the next page show only the required
ones. Additional parentheses are allowed as long as the meaning of the

TTRigger (TTRace) Subsystem
ACQuisition

22–9

expression is not changed. Figure 22-2 on page 22-11 shows a complex
expression as seen in the Timing Trigger menu.

Example The following statements are all correct and have the same meaning. Notice
that the conventional rules for precedence are not followed. The expressions
are evaluated from left to right.

OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’C AND D OR F OR G’, 1"
OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’((C AND D) OR (F OR G))’, 1"
OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’F OR (C AND D) OR G’,1"

<N> integer from 1 to <number_of_levels>

<to_level_
number>

integer from 1 to <number_of_levels>

<number_of_
levels>

integer from 1 to the number of existing sequence levels (maximum 10)

<branch_
qualifier>

<qualifier> see "Qualifier" on page 22-6

Example OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’ANYSTATE’, 3"
OUTPUT XXX;":MACHINE2:TTRIGGER:BRANCH2 ’A’, 7"
OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH3 ’((A OR B) OR NOTG)’,
1"

TTRigger (TTRace) Subsystem
BRANch

22–10

Query Syntax :MACHine{1|2}:TTRigger:BRANch<N>?

The BRANch query returns the current branch qualifier specification for a
given sequence level.

Returned Format [:MACHine{1|2}:TTRigger:BRANch<N>] <branch_qualifier>,
<to_level_num><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH3?"

Figure 22-2

Complex Qualifier

Figure 22-2 is a front-panel representation of the complex qualifier (a OR
b) And (g OR h).

Example This example would be used to specify this complex qualifier.

OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’((A OR B) AND (G OR H))’, 2"

TTRigger (TTRace) Subsystem
BRANch

22–11

Terms A through E, RANGE 1, GLITCH/EDGE1, and TIMER 1 must be grouped
together and terms F through J, RANGE 2, GLITCH/EDGE2, and TIMER 2 must be
grouped together. In the first level, terms from one group may not be mixed
with terms from the other. For example, the expression ((A OR IN_RANGE2)
AND (C OR H)) is not allowed because the term C cannot be specified in the E
through J group.

In the first level, the operators you can use are AND, NAND, OR, NOR,
XOR, NXOR. Either AND or OR may be used at the second level to join the
two groups together. It is acceptable for a group to consist of a single term.
Thus, an expression like (B AND G) is legal since the two operands are both
simple terms from separate groups.

CLEar

Command :MACHine{1|2}:TTRigger:CLEar
{All|SEQuence|RESource}

The CLEar command allows you to clear all settings in the Timing Trigger
menu and replace them with the default, clear only the sequence levels, or
clear only the resource term patterns.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:CLEAR RESOURCE"

TTRigger (TTRace) Subsystem
CLEar

22–12

FIND

Command :MACHine{1|2}:TTRigger:FIND<N>
<time_qualifier>,<condition_mode>

The FIND command defines the time qualifier for a given sequence level.
The qualifier tells the timing analyzer when to proceed to the next sequence
level. When this proceed qualifier is matched the specified number of times,
the trigger sequence will proceed to the next sequence level. In the
sequence level where the trigger is specified, the FIND command specifies
the trigger qualifier (see SEQuence command).

The terms A through J are defined by the TERM command. The meaning of
IN_RANGE and OUT_RANGE is determined by the RANGe command.
Expressions are limited to what you could manually enter through the Timing
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. See figure 22-2 on page 22-11 for
a detailed example.

<N> integer from 1 to the number of existing sequence levels (maximum 10)

<condition_
mode>

{{GT|LT}, <duration_time>|OCCurrence, <occurrence>}

GT greater than

LT less than

<duration_
time>

real number from 8 ns to 5.00 seconds depending on sample period

<occurrence> integer from 1 to 1048575

<time_
qualifier>

<qualifier> see "Qualifier" on page 22-6

Example OUTPUT XXX;":MACHINE1:TTRIGGER:FIND1 ’ANYSTATE’, GT, 10E −6"
OUTPUT XXX;":MACHINE1:TTRIGGER:FIND3 ’((NOTA AND NOTB) OR
G)’, OCCURRENCE, 10"

TTRigger (TTRace) Subsystem
FIND

22–13

Query :MACHine{1|2}:TTRigger:FIND<N>?

The FIND query returns the current time qualifier specification for a given
sequence level.

Returned Format [:MACHine{1|2}:TTRigger:FIND<N>] <condition_mode>,
<occurrence><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:FIND4?"

GLEDge

Command :MACHine{1|2}:TTRigger:GLEDge<N> <label_name>,
<glitch_edge_spec>

The GLEDge (glitch/edge) command allows you to define edge and glitch
specifications for a given label. Edge specifications can be R (rising), F
(falling), E (either), or ". " (don’t care). Glitch specifications consist of G
(glitch) or ". " (don’t care). Edges and glitches are sent in the same string
with the rightmost string character specifying what the rightmost bit will be.

The <glitch_edge_spec> string length must match the exact number of bits
assigned to the specified label. If the string length does not match the number
of bits, the "Parameter string invalid" message is displayed.

<N> {1|2}

<label_name> string of up to 6 alphanumeric characters

<glitch_edge_
spec>

string consisting of {R|F|E|G|.} [to total number of bits]

TTRigger (TTRace) Subsystem
GLEDge

22–14

Example For 8 bits assigned and no glitch:
OUTPUT XXX;":MACHINE1:TTRIGGER:GLEDGE1 ’DATA’, ’....F..E’"

For 16 bits assigned with glitch:
OUTPUT XXX;":MACHINE1:TTRIGGER:GLEDGE1 ’DATA’,

’....GGG.....F..R’"

Query :MACHine{1|2}:TTRigger:GLEDe<N>? <label_name>

The GLEDge query returns the current specification for the given label.
Returned Format [:MACHine{1|2}:TTRigger:GLEDe<N>]

<label_name>,<glitch_edge_spec><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:GLEDGE1? ’DATA’"

RANGe

Command :MACHine{1|2}:TTRigger:RANGE <label_name>,
<start_pattern>,<stop_pattern>

The RANGe command allows you to specify a range recognizer term for the
specified machine. Since a range can only be defined across one label and,
since a label must contain 32 or fewer bits, the value of the start pattern or
stop pattern will be between (232)−1 and 0.

Since a label can only be defined across a maximum of two pods, a range term
is only available across a single label; therefore, the end points of the range
cannot be split between labels.

When these values are expressed in binary, they represent the bit values for
the label at one of the range recognizers’ end points. Don’t cares are not
allowed in the end point pattern specifications.

TTRigger (TTRace) Subsystem
RANGe

22–15

<label_name> string of up to 6 alphanumeric characters

<start_pattern> "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

<stop_pattern> "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:TTRIGGER:RANGE ’DATA’, ’127’, ’255’ "
OUTPUT XXX;":MACHINE1:TTRIGGER:RANGE ’ABC’, ’#B00001111’,
’#HCF’ "

Query :MACHine{1|2}:TTRigger:RANGe?

The RANGe query returns the range recognizer end point specifications for
the range.

Returned Format [:MACHine{1|2}:STRAce:RANGe] <label_name>,<start_pattern>,
<stop_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:RANGE?"

TTRigger (TTRace) Subsystem
RANGe

22–16

SEQuence

Command :MACHine{1|2}:TTRigger:SEQuence <number_of_levels>

The SEQuence command defines the timing analyzer trace sequence. First,
it deletes the current trace sequence. Then, it inserts the number of levels
specified, with default settings. The number of levels can be between 1 and
10 when the analyzer is armed by the RUN key.

<number_of_
levels>

integer from 1 to 10

Example OUTPUT XXX;":MACHINE1:TTRIGGER:SEQUENCE 4"

Query :MACHine{1|2}:TTRigger:SEQuence?

The SEQuence query returns the current sequence specification.
Returned Format [:MACHine{1|2}:TTRigger:SEQuence] <number_of_levels>,

<level_of_trigger><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:SEQUENCE?"

TTRigger (TTRace) Subsystem
SEQuence

22–17

SPERiod

Command :MACHine{1|2}:TTRigger:SPERiod <sample_period>

The SPERiod command allows you to set the sample period of the timing
analyzer in the Conventional and Glitch modes. The sample period range
depends on the mode selected and is as follows:

• 2 ns to 8 ms for Conventional Half Channel 500 MHz

• 4 ns to 8 ms for Conventional Full Channel 250 MHz

• 4 ns for Transitional Half Channel

• 8 ns for Transitional Full Channel

• 8 ns to 8 ms for Glitch Half Channel 125 MHz

<sample_period> real number from 2 ns to 8 ms depending on mode

Example OUTPUT XXX;":MACHINE1:TTRIGGER:SPERIOD 50E −9"

Query :MACHine{1|2}:TTRigger:SPERiod?

The SPERiod query returns the current sample period.
Returned Format [:MACHine{1|2}:TTRigger:SPERiod] <sample_period><NL>

<sample_period> real number from 2 ns to 8 ms depending on mode

Example OUTPUT XXX;":MACHINE1:TTRIGGER:SPERIOD?"

TTRigger (TTRace) Subsystem
SPERiod

22–18

TCONtrol (Timer Control)

Command :MACHine{1|2}:TTRigger:TCONtrol<N> <timer_num>,
{OFF|STARt|PAUSe|CONTinue}

The TCONtrol command allows you to turn off, start, pause, or continue the
timer for the specified level. The time value of the timer is defined by the
TIMER command.

<N> integer from 1 to the number of existing sequence levels (maximum 10)

<timer_num> {1|2}

Example OUTPUT XXX;":MACHINE2:TTRIGGER:TCONTROL6 1, PAUSE"

Query :MACHine{1|2}:TTRigger:TCONTROL<N>? <timer_num>

The TCONtrol query returns the current TCONtrol setting of the specified
level.

Returned Format [:MACHine{1|2}:TTRigger:TCONTROL<N> <timer_num>]
{OFF|STARt|PAUSe|CONTinue}<NL>

Example OUTPUT XXX;":MACHINE2:TTRIGGER:TCONTROL6? 1"

TTRigger (TTRace) Subsystem
TCONtrol (Timer Control)

22–19

TERM

Command :MACHine{1|2}:TTRigger:TERM
<term_id>,<label_name>,<pattern>

The TERM command allows you to a specify a pattern recognizer term in the
specified machine. Each command deals with only one label in the given
term; therefore, a complete specification could require several commands.
Since a label can contain 32 or fewer bits, the range of the pattern value will
be between 232 − 1 and 0. When the value of a pattern is expressed in binary,
it represents the bit values for the label inside the pattern recognizer term.
Since the pattern parameter may contain don’t cares and be represented in
several bases, it is handled as a string of characters rather than a number.

All 10 terms (A through J) are available to either machine but not both
simultaneously. If you send the TERM command to a machine with a term
that has not been assigned to that machine, an error message "Legal
command but settings conflict" is returned.

<term_id> {A|B|C|D|E|F|G|H|I|J}

<label_name> string of up to 6 alphanumeric characters

<pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TERM A,’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:TTRIGGER:TERM B,’ABC’,’#BXXXX1101’ "

TTRigger (TTRace) Subsystem
TERM

22–20

Query :MACHine{1|2}:TTRigger:TERM?
<term_id>,<label_name>

The TERM query returns the specification of the term specified by term
identification and label name.

Returned Format [:MACHine{1|2}:STRAce:TERM] <term_id>,<label_name>,
<pattern><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TERM? B,’DATA’ "

TIMER

Command :MACHine{1|2}:TTRigger:TIMER{1|2} <time_value>

The TIMER command sets the time value for the specified timer. The limits
of the timer are 400 ns to 500 seconds in 16 ns to 500 µs increments. The
increment value varies with the time value of the specified timer.

<time_value> real number from 400 ns to 500 seconds in increments which vary from 16 ns
to 500 µs.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TIMER1 100E −6"

Query :MACHine{1|2}:TTRigger:TIMER{1|2}?

The TIMER query returns the current time value for the specified timer.
Returned Format [:MACHine{1|2}:TTRigger:TIMER{1|2}] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TIMER1?"

TTRigger (TTRace) Subsystem
TIMER

22–21

TPOSition (Trigger Position)

Command :MACHine{1|2}:TTRigger:TPOSition {STARt | CENTer
| END | DELay, <time_val> | POSTstore,<poststore>}

The TPOSition command allows you to set the trigger at the start, center,
end or at any position in the trace (poststore). Poststore is defined as 0 to
100 percent with a poststore of 100 percent being the same as start position
and a poststore of 0 percent being the same as an end trace.

<time_val> real number from either (2 × sample period) or 16 ns, whichever is greater, to
(1048575 × sample period).

<poststore> integer from 0 to 100 representing percentage of poststore.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TPOSITION END"
OUTPUT XXX;":MACHINE1:TTRIGGER:TPOSITION POSTstore,75"

Query :MACHine{1|2}:TTRigger:TPOSition?

The TPOSition query returns the current trigger position setting.
Returned Format [:MACHine{1|2}:TTRigger:TPOSition] {STARt|CENTer|END|DELay,

<time_val>|POSTstore,<poststore>}<NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TPOSITION?"

TTRigger (TTRace) Subsystem
TPOSition (Trigger Position)

22–22

23

TWAVeform Subsystem

Introduction

The TWAVeform subsystem contains the commands available for the
Timing Waveforms menu in the HP 1660C/CS/CP-series logic analyzer.
These commands are:

• ACCumulate • REMove
• ACQuisition • RUNTil
• CENter • SPERiod
• CLRPattern • TAVerage
• CLRStat • TMAXimum
• DELay • TMINimum
• INSert • TPOSition
• MMODe • VRUNs
• OCONdition • XCONdition
• OPATtern • XOTime
• OSEarch • XPATtern
• OTIMe • XSEarch
• RANGe • XTIMe

23–2

Figure 23-1

TWAVeform Subsystem Syntax Diagram

TWAVeform Subsystem

23–3

Figure 23-1 (continued)

 TWAVeform Subsystem Syntax Diagram (continued)

TWAVeform Subsystem

23–4

Figure 23-1 (continued)

 TWAVeform Subsystem Syntax Diagram (continued)

TWAVeform Subsystem

23–5

Table 23-1 TWAVeform Parameter Values

Parameter Value

delay_value real number between −2500 s and +2500 s

module_spec {1|2|3|4|5|6|7|8|9|10} 3 through 10 unused

bit_id integer from 0 to 31

label_name string of up to 6 alphanumeric characters

label_pattern "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X}...|
#H{0|1|2|3|4|5|6|7|8|9|A|C|D|E|F|X}...|
{0|1|2|3|4|5|6|7|8|9}...}"

occurrence integer

time_value real number

time_range real number between 10 ns and 10 ks

run_until_spec {OFF|LT,<value>|GT,<value>|INRange<value>,
<value>|OUTRange<value>,<value>}

GT greater than

LT less than

value real number

time_val real number from 0 to 500 representing seconds

percent integer from 0 to 100

TWAVeform Subsystem

23–6

TWAVeform

Selector :MACHine{1|2}:TWAVeform

The TWAVeform selector is used as part of a compound header to access the
settings found in the Timing Waveforms menu. It always follows the
MACHine selector because it selects a branch below the MACHine level in the
command tree.

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY 100E−9"

ACCumulate

Command :MACHine{1|2}:TWAVeform:ACCumulate <setting>

The ACCumulate command allows you to control whether the chart display
gets erased between each individual run or whether subsequent waveforms
are displayed over the previous ones.

<setting> { {0|OFF} | {1|ON} }

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:ACCUMULATE ON"

Query :MACHine{1|2}:TWAVeform:ACCumulate?

The ACCumulate query returns the current setting. The query always shows
the setting as the characters, "0" (off) or "1" (on).

Returned Format [:MACHine{1|2}:TWAVeform:ACCumulate] {0|1}<NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:ACCUMULATE?"

TWAVeform Subsystem
TWAVeform

23–7

ACQuisition

Command :MACHine{1|2}:TWAVeform:ACQuisition
{AUTOmatic|MANual}

The ACQuisition command allows you to specify the acquisition mode for the
state analyzer. The acquisition modes are automatic and manual.

Example OUTPUT XXX;":MACHINE2:TWAVEFORM:ACQUISITION AUTOMATIC"

Query MACHine{1|2}:TWAVeform:ACQuisition?

The ACQuisition query returns the current acquisition mode.
Returned Format [:MACHine{1|2}:TWAVeform:ACQuisition] {AUTOmatic|MANual}<NL>

Example OUTPUT XXX;":MACHINE2:TWAVEFORM:ACQUISITION?"

CENTer

Command :MACHine{1|2}:Twaveform:CENTer <marker_type>

The CENTer command allows you to center the waveform display about the
specified markers.

<marker_type> {X|O|XO|TRIGger}

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:CENTER X"

TWAVeform Subsystem
ACQuisition

23–8

CLRPattern

Command :MACHine{1|2}:TWAVeform:CLRPattern {X|O|ALL}

The CLRPattern command allows you to clear the patterns in the selected
Specify Patterns menu.

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:CLRPATTERN ALL"

CLRStat

Command :MACHine{1|2}:Twaveform:CLRStat

The CLRStat command allows you to clear the waveform statistics without
having to stop and restart the acquisition.

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:CLRSTAT"

DELay

Command :MACHine{1|2}:TWAVeform:DELay <delay_value>

The DELay command specifies the amount of time between the timing
trigger and the center of the the timing waveform display. The allowable
values for delay are −2500 s to +2500 s. If the acquisition mode is automatic,
then in glitch acquisition mode, as delay becomes large in an absolute sense,
the sample rate is adjusted so that data will be acquired in the time window
of interest. In transitional acquisition mode, data may not fall in the time
window since the sample period is fixed and the amount of time covered in
memory is dependent on how frequently the input signal transitions occur.

TWAVeform Subsystem
CLRPattern

23–9

<delay_value> real number between −2500 s and +2500 s

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY 100E−6"

Query :MACHine{1|2}:TWAVeform:DELay?

The DELay query returns the current time offset (delay) value from the
trigger.

Returned Format [:MACHine{1|2}:TWAVeform:DELay] <delay_value><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY?"

INSert

Command :MACHine{1|2}:TWAVeform:INSert [<module_spec>,]
<label_name>[,{<bit_id>|OVERlay|ALL}]

The INSert command allows you to add waveforms to the waveform display.
Waveforms are added from top to bottom on the screen. When 96 waveforms
are present, inserting additional waveforms replaces the last waveform. Bit
numbers are zero-based, so a label with 8 bits is referenced as bits 0 to 7.
Specifying OVERlay causes a composite waveform display of all bits or
channels for the specified label. If you do not specify the third parameter,
ALL is assumed.

<module_spec> {1|2} 3 through 10 unused.

<label_name> string of up to 6 alphanumeric characters

<bit_id> integer from 0 to 31

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:INSERT 1, ’WAVE’,10"

TWAVeform Subsystem
INSert

23–10

MMODe (Marker Mode)

Command :MACHine{1|2}:TWAVeform:MMODe
{OFF|PATTern|TIME|MSTats}

The MMODe command selects the mode controlling marker movement and
the display of the marker readouts. When PATTern is selected, the markers
will be placed on patterns. When TIME is selected, the markers move based
on time. In MSTats, the markers are placed on patterns, but the readouts will
be time statistics.

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:MMODE TIME"

Query :MACHine{1|2}:TWAVeform:MMODe?

The MMODe query returns the current marker mode.
Returned Format [:MACHine{1|2}:TWAVeform:MMODe] <marker_mode><NL>

<marker_mode> {OFF|PATTern|TIME|MSTats}

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:MMODE?"

TWAVeform Subsystem
MMODe (Marker Mode)

23–11

OCONdition

Command :MACHine{1|2}:TWAVeform:OCONdition
{ENTering|EXITing}

The OCONdition command specifies where the O marker is placed. The O
marker can be placed on the entry or exit point of the OPATtern when in the
PATTern marker mode.

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:OCONDITION ENTERING"

Query :MACHine{1|2}:TWAVeform:OCONdition?

The OCONdition query returns the current setting.
Returned Format [:MACHine{1|2}:TWAVeform:OCONdition] {ENTering|EXITing}<NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:OCONDITION?"

TWAVeform Subsystem
OCONdition

23–12

OPATtern

Command :MACHine{1|2}:TWAVeform:OPATtern
<label_name>,<label_pattern>

The OPATtern command allows you to construct a pattern recognizer term
for the O marker which is then used with the OSEarch criteria and
OCONdition when moving the marker on patterns. Since this command deals
with only one label at a time, a complete specification could require several
invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:OPATTERN ’A’,’511’"

Query :MACHine{1|2}:TWAVeform:OPATtern? <label_name>

The OPATtern query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the O marker for a given label. If the O marker is
not placed on valid data, don’t cares (X) are returned.

Returned Format [:MACHine{1|2}:TWAVeform:OPATtern] <label_name>,
<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:OPATTERN? ’A’"

TWAVeform Subsystem
OPATtern

23–13

OSEarch

Command :MACHine{1|2}:TWAVeform:OSEarch
<occurrence>,<origin>

The OSEarch command defines the search criteria for the O marker which is
then used with the associated OPATtern recognizer specification and the
OCONdition when moving markers on patterns. The origin parameter tells
the marker to begin a search from the acquisition beginning, from the trigger,
or from the X marker. The actual occurrence the marker searches for is
determined by the occurrence parameter of the OPATtern recognizer
specification, relative to the origin. An occurrence of 0 places a marker on
the selected origin. With a negative occurrence, the marker searches before
the origin. With a positive occurrence, the marker searches after the origin.

<origin> {STARt|TRIGger|XMARker}

<occurrence> integer from −8192 to +8192

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:OSEARCH +10,TRIGGER"

Query :MACHine{1|2}:TWAVeform:OSEarch?

The OSEarch query returns the search criteria for the O marker.
Returned Format [:MACHine{1|2}:TWAVeform:OSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:OSEARCH?"

TWAVeform Subsystem
OSEarch

23–14

OTIMe

Command :MACHine{1|2}:TWAVeform:OTIMe <time_value>

The OTIMe command positions the O marker in time when the marker mode
is TIME. If data is not valid, the command performs no action.

<time_value> real number −2.5 ks to +2.5 ks

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:OTIME 30.0E −6"

Query :MACHine{1|2}:TWAVeform:OTIMe?

The OTIMe query returns the O marker position in time. If data is not valid,
the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:OTIMe] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:OTIME?"

TWAVeform Subsystem
OTIMe

23–15

RANGe

Command :MACHine{1|2}:TWAVeform:RANGe <time_value>

The RANGe command specifies the full-screen time in the timing waveform
menu. It is equivalent to ten times the seconds-per-division setting on the
display. The allowable values for RANGe are from 10 ns to 10 ks.

<time_value> real number between 10 ns and 10 ks

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE 100E−9"

Query :MACHine{1|2}:TWAVeform:RANGe?

The RANGe query returns the current full-screen time.
Returned Format [:MACHine{1|2}:TWAVeform:RANGe] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"

REMove

Command :MACHine{1|2}:TWAVeform:REMove

The REMove command deletes all waveforms from the display.

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:REMOVE"

TWAVeform Subsystem
RANGe

23–16

RUNTil (Run Until)

Command :MACHine{1|2}:TWAVeform:RUNTil <run_until_spec>

The RUNTil command defines stop criteria based on the time between the X
and O markers when the trace mode is in repetitive. When OFF is selected,
the analyzer will run until either STOP is selected from the front panel or the
STOP command is sent. Run until X and O marker options are:

• Less Than (LT) a specified time value

• Greater Than (GT) a specified time value

• In Range (INRange) between two time values

• Out of Range (OUTRange) between two time values

End points for INRange and OUTRange should be at least 2 ns apart since
this is the minimum time at which data is sampled.

This command affects the timing analyzer only, and has no relation to the
RUNTil commands in the SLISt and COMPare subsystems.

<run_until_
spec>

{OFF | LT,<value> | GT,<value> |
INRange,<value>,<value> | OUTRange,<value>,<value>}

<value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:RUNTIL GT, 800.0E −6"
OUTPUT XXX;":MACHINE1:TWAVEFORM:RUNTIL INRANGE, 4.5, 5.5"

Query :MACHine{1|2}:TWAVeform:RUNTil?

The RUNTil query returns the current stop criteria.
Returned Format [:MACHine{1|2}:TWAVeform:RUNTil] <run_until_spec><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:RUNTIL?"

TWAVeform Subsystem
RUNTil (Run Until)

23–17

SPERiod

Command :MACHine{1|2}:TWAVeform:SPERiod <sample_period>

The SPERiod command allows you to set the sample period of the timing
analyzer in the Conventional and Glitch modes. The sample period range
depends on the mode selected and is as follows:

• 2 ns to 8 ms for Conventional Half Channel 500 MHz

• 4 ns to 8 ms for Conventional Full Channel 250 MHz

• 8 ns to 8 ms for Glitch Half Channel 125 MHz

<sample_period> real number from 2 ns to 8 ms depending on mode

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:SPERIOD 50E−9"

Query :MACHine{1|2}:TWAVeform:SPERiod?

The SPERiod query returns the current sample period.
Returned Format [:MACHine{1|2}:TWAVeform:SPERiod] <sample_period><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:SPERIOD?"

TWAVeform Subsystem
SPERiod

23–18

TAVerage

Query :MACHine{1|2}:TWAVeform:TAVerage?

The TAVerage query returns the value of the average time between the
X and O markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:TAVerage] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:TAVERAGE?"

TMAXimum

Query :MACHine{1|2}:TWAVeform:TMAXimum?

The TMAXimum query returns the value of the maximum time between the X
and O markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:TMAXimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:TMAXIMUM?"

TWAVeform Subsystem
TAVerage

23–19

TMINimum

Query :MACHine{1|2}:TWAVeform:TMINimum?

The TMINimum query returns the value of the minimum time between the X
and O markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:TMINimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:TMINIMUM?"

TPOSition

Command :MACHine{1|2}:TWAVeform:TPOSition {STARt | CENTer
| END | DELay,<time_val> | POSTstore,<percent>}

The TPOSition command allows you to control where the trigger point is
placed in memory. The trigger point can be placed at the start, center, end,
at a percentage of poststore, or at a value specified by delay. The poststore
option is the same as the User Defined option when setting the trigger
position from the front panel.

The TPOSition command is only available when the acquisition mode is set to
manual.

<time_val> real number from 0 to 500 seconds

<percent> integer from 1 to 100

Example OUTPUT XXX;":MACHINE2:TWAVEFORM:TPOSITION CENTER"

TWAVeform Subsystem
TMINimum

23–20

Query :MACHine{1|2}:TWAVeform:TPOSition?

The TPOSition query returns the current trigger setting.
Returned Format [:MACHine{1|2}:TWAVeform:TPOSition] {STARt | CENTer | END |

DELay, <time_val> | POSTstore,<percent>}<NL>

Example OUTPUT XXX;":MACHINE2:TWAVEFORM:TPOSition?"

VRUNs

Query :MACHine{1|2}:TWAVeform:VRUNs?

The VRUNs query returns the number of valid runs and total number of runs
made. Valid runs are those where the pattern search for both the X and O
markers was successful resulting in valid delta time measurements.

Returned Format [:MACHine{1|2}:TWAVeform:VRUNs] <valid_runs>,<total_runs><NL>

<valid_runs> zero or positive integer

<total_runs> zero or positive integer

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:VRUNS?"

TWAVeform Subsystem
VRUNs

23–21

XCONdition

Command :MACHine{1|2}:TWAVeform:XCONdition
{ENTering|EXITing}

The XCONdition command specifies where the X marker is placed. The X
marker can be placed on the entry or exit point of the XPATtern when in the
PATTern marker mode.

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:XCONDITION ENTERING"

Query :MACHine{1|2}:TWAVeform:XCONdition?

The XCONdition query returns the current setting.
Returned Format [:MACHine{1|2}:TWAVeform:XCONdition] {ENTering|EXITing}<NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XCONDITION?"

XOTime

Query :MACHine{1|2}:TWAVeform:XOTime?

The XOTime query returns the time from the X marker to the O marker. If
data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:XOTime] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XOTIME?"

TWAVeform Subsystem
XCONdition

23–22

XPATtern

Command :MACHine{1|2}:TWAVeform:XPATtern <label_name>,
<label_pattern>

The XPATtern command allows you to construct a pattern recognizer term
for the X marker which is then used with the XSEarch criteria and
XCONdition when moving the marker on patterns. Since this command deals
with only one label at a time, a complete specification could require several
iterations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:XPATTERN ’A’,’511’"

Query :MACHine{1|2}:TWAVeform:XPATtern? <label_name>

The XPATtern query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the X marker for a given label. If the X marker is
not placed on valid data, don’t cares (X) are returned.

Returned Format [:MACHine{1|2}:TWAVeform:XPATtern] <label_name>,
<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XPATTERN? ’A’"

TWAVeform Subsystem
XPATtern

23–23

XSEarch

Command :MACHine{1|2}:TWAVeform:XSEarch
<occurrence>,<origin>

The XSEarch command defines the search criteria for the X marker which is
then used with the associated XPATtern recognizer specification and the
XCONdition when moving markers on patterns. The origin parameter tells
the marker to begin a search with the trigger. The occurrence parameter
determines which occurrence of the XPATtern recognizer specification,
relative to the origin, the marker actually searches for. An occurrence of 0
(zero) places a marker on the origin.

<origin> {TRIGger|STARt}

<occurrence> integer from −8192 to +8192

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:XSEARCH,+10,TRIGGER"

Query :MACHine{1|2}:TWAVeform:XSEarch?
<occurrence>,<origin>

The XSEarch query returns the search criteria for the X marker.
Returned Format [:MACHine{1|2}:TWAVeform:XSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XSEARCH?"

TWAVeform Subsystem
XSEarch

23–24

XTIMe

Command :MACHine{1|2}:TWAVeform:XTIMe <time_value>

The XTIMe command positions the X marker in time when the marker mode
is TIME. If data is not valid, the command performs no action.

<time_value> real number from −2.5 ks to +2.5 ks

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:XTIME 40.0E −6"

Query :MACHine{1|2}:TWAVeform:XTIMe?

The XTIMe query returns the X marker position in time. If data is not valid,
the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:XTIMe] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XTIME?"

TWAVeform Subsystem
XTIMe

23–25

23–26

24

TLISt Subsystem

Introduction

The TLISt subsystem contains the commands available for the Timing
Listing menu in the HP 1660C/CS/CP-series logic analyzers and is the
same as the SLISt subsystem with the exception of the OCONdition
and XCONdition commands. The TLISt subsystem commands are:

• COLumn • TMAXimum
• CLRPattern • TMINimum
• DATA • VRUNs
• LINE • XCONdition
• MMODe • XOTag
• OCONdition • XOTime
• OPATtern • XPATtern
• OSEarch • XSEarch
• OSTate • XSTate
• OTAG • XTAG
• REMove
• RUNTil
• TAVerage

24–2

Figure 24-1

TLISt Subsystem Syntax Diagram

TLISt Subsystem

24–3

Figure 24-1 (continued)

TLISt Subsystem Syntax Diagram (continued)

TLISt Subsystem

24–4

Figure 24-1 (continued)

TLISt Subsystem Syntax Diagram (continued)

TLISt Subsystem

24–5

Table 24-1 TLISt Parameter Values

Parameter Values

mod_num {1|2|3|4|5|6|7|8|9|10} 3 through 10 not used

col_num integer from 1 to 61

line_number integer from −8191 to +8191

label_name string of up to 6 alphanumeric characters

base {BINary|HEXadecimal|OCTal|DECimal|TWOS|
ASCii|SYMBol|IASSembler} for labels
or
{ABSolute|RELative} for tags

line_num_mid_screen integer from −8191to +8191

label_pattern "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . .|
{0|1|2|3|4|5|6|7|8|9} . . . }"

occurrence integer from −8191 to +8191

time_value real number

state_value real number

run_until_spec {OFF|LT,<value>|GT,<value>|INRange,<value>,
<value>|OUTRange,<value>,<value>}

value real number

TLISt Subsystem

24–6

TLISt

Selector :MACHine{1|2}:TLISt

The TLISt selector is used as part of a compound header to access those
settings normally found in the Timing Listing menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the command tree.

Example OUTPUT XXX;":MACHINE1:TLIST:LINE 256"

COLumn

Command :MACHine{1|2}:TLISt:COLumn <col_num>
[,<module_num>,MACHine{1|2}],<label_name>,<base>

The COLumn command allows you to configure the timing analyzer
list display by assigning a label name and base to one of the 61 vertical
columns in the menu. A column number of 1 refers to the leftmost column.
When a label is assigned to a column it replaces the original label in that
column.

When the label name is "TAGS," the TAGS column is assumed and the next
parameter must specify RELative or ABSolute.

A label for tags must be assigned in order to use ABSolute or RELative state
tagging.

<col_num> integer from 1 to 61

<module_num> {1|2|3|4|5|6|7|8|9|10} 2 to 10 unused.

<label_name> a string of up to 6 alphanumeric characters

TLISt Subsystem
TLISt

24–7

<base> {BINary | HEXadecimal | OCTal | DECimal | TWOS | ASCii
| SYMBol | IASSembler } for labels
or {ABSolute | RELative } for tags

Example OUTPUT XXX;":MACHINE1:TLIST:COLUMN 4,1,’A’,HEX"

Query :MACHine{1|2}:TLISt:COLumn? <col_num>

The COLumn query returns the column number, instrument, machine, label
name, and base for the specified column.

Returned Format [:MACHine{1|2}:TLISt:COLumn] <col_num>,<module_num>
,MACHine{1|2},<label_name>,<base><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:COLUMN? 4"

CLRPattern

Command :MACHine{1|2}:TLISt:CLRPattern {X|O|ALL}

The CLRPattern command allows you to clear the patterns in the selected
Specify Patterns menu.

Example OUTPUT XXX;":MACHINE1:TLIST:CLRPATTERN O"

TLISt Subsystem
CLRPattern

24–8

DATA

Query :MACHine{1|2}:TLISt:DATA? <line_number>,
<label_name>

The DATA query returns the value at a specified line number for a given
label. The format will be the same as the one shown in the Listing display.

Returned Format [:MACHine{1|2}:TLISt:DATA] <line_number>,<label_name>,
<pattern_string><NL>

<line_number> integer from −8191 to +8191

<label_name> string of up to 6 alphanumeric characters

<pattern_
string>

"{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:TLIST:DATA? 512, ’RAS’"

LINE

Command :MACHine{1|2}:TLISt:LINE <line_num_mid_screen>

The LINE command allows you to scroll the timing analyzer listing vertically.
The command specifies the state line number relative to the trigger that the
analyzer highlights at the center of the screen.

<line_num_mid_
screen>

integer from −8191 to +8191

Example OUTPUT XXX;":MACHINE1:TLIST:LINE 0"

TLISt Subsystem
DATA

24–9

Query :MACHine{1|2}:TLISt:LINE?

The LINE query returns the line number for the state currently in the box at
the center of the screen.

Returned Format [:MACHine{1|2}:TLISt:LINE] <line_num_mid_screen><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:LINE?"

MMODe (Marker Mode)

Command :MACHine{1|2}:TLISt:MMODe <marker_mode>

The MMODe command selects the mode controlling the marker movement
and the display of marker readouts. When PATTern is selected, the markers
will be placed on patterns. When TIME is selected, the markers move on
time between stored states. When MSTats is selected, the markers are
placed on patterns, but the readouts will be time statistics.

<marker_mode> {OFF|PATTern|TIME|MSTats}

Example OUTPUT XXX;":MACHINE1:TLIST:MMODE TIME"

Query :MACHine{1|2}:TLISt:MMODe?

The MMODe query returns the current marker mode selected.
Returned Format [:MACHine{1|2}:TLISt:MMODe] <marker_mode><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:MMODE?"

TLISt Subsystem
MMODe (Marker Mode)

24–10

OCONdition

Command :MACHine{1|2}:TLISt:OCONdition {ENTering|EXITing}

The OCONdition command specifies where the O marker is placed. The O
marker can be placed on the entry or exit point of the OPATtern when in the
PATTern marker mode.

Example OUTPUT XXX; ":MACHINE1:TLIST:OCONDITION ENTERING"

Query :MACHine{1|2}:TLISt:OCONdition?

The OCONdition query returns the current setting.
Returned Format [:MACHine{1|2}:TLISt:OCONdition] {ENTering|EXITing}<NL>

Example OUTPUT XXX;":MACHINE1:TLIST:OCONDITION?"

OPATtern

Command :MACHine{1|2}:TLISt:OPATtern
<label_name>,<label_pattern>

The OPATtern command allows you to construct a pattern recognizer term
for the O Marker which is then used with the OSEarch criteria when moving
the marker on patterns. Since this command deals with only one label at a
time, a complete specification could require several iterations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain don’t
cares, it is handled as a string of characters rather than a number.

TLISt Subsystem
OCONdition

24–11

<label_name> string of up to 6 alphanumeric characters

<label_
pattern>

"{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:TLIST:OPATTERN ’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:TLIST:OPATTERN ’ABC’,’#BXXXX1101’ "

Query :MACHine{1|2}:TLISt:OPATtern? <label_name>

The OPATtern query returns the pattern specification for a given label name.
Returned Format [:MACHine{1|2}:TLISt:OPATtern]

<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:OPATTERN? ’A’"

OSEarch

Command :MACHine{1|2}:TLISt:OSEarch <occurrence>,<origin>

The OSEarch command defines the search criteria for the O marker, which is
then used with associated OPATtern recognizer specification when moving
the markers on patterns. The origin parameter tells the marker to begin a
search with the trigger, the start of data, or with the X marker. The actual
occurrence the marker searches for is determined by the occurrence
parameter of the OSEarch recognizer specification, relative to the origin. An
occurrence of 0 places the marker on the selected origin. With a negative
occurrence, the marker searches before the origin. With a positive
occurrence, the marker searches after the origin.

<occurrence> integer from −8191 to +8191

<origin> {TRIGger|STARt|XMARker}

TLISt Subsystem
OSEarch

24–12

Example OUTPUT XXX;":MACHINE1:TLIST:OSEARCH +10,TRIGGER"

Query :MACHine{1|2}:TLISt:OSEarch?

The OSEarch query returns the search criteria for the O marker.
Returned Format [:MACHine{1|2}:TLISt:OSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:OSEARCH?"

OSTate

Query :MACHine{1|2}:TLISt:OSTate?

The OSTate query returns the line number in the listing where the O marker
resides (−8191 to +8191). If data is not valid, the query returns 32767.

Returned Format [:MACHine{1|2}:TLISt:OSTate] <state_num><NL>

<state_num> an integer from −8191 to +8191, or 32767

Example OUTPUT XXX;":MACHINE1:TLIST:OSTATE?"

TLISt Subsystem
OSTate

24–13

OTAG

Command :MACHine{1|2}:TLISt:OTAG <time_value>

The OTAG command specifies the time value on which the O Marker should
be placed. If the data is not valid tagged data, no action is performed.

<time_value> real number

Example :OUTPUT XXX;":MACHINE1:TLIST:OTAG 40.0E −6"

Query :MACHine{1|2}:TLISt:OTAG?

The OTAG query returns the O Marker position in time regardless of whether
the marker was positioned in time or through a pattern search. If data is not
valid, the query returns 9.9E37 for time tagging, or returns 32767 for state
tagging.

Returned Format [:MACHine{1|2}:TLISt:OTAG] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:OTAG?"

REMove

Command :MACHine{1|2}:TLISt:REMove

The REMove command removes all labels, except the leftmost label, from
the listing menu.

Example OUTPUT XXX;":MACHINE1:TLIST:REMOVE"

TLISt Subsystem
OTAG

24–14

RUNTil (Run Until)

Command :MACHine{1|2}:TLISt:RUNTil <run_until_spec>

The RUNTil command allows you to define a stop condition when the trace
mode is repetitive. Specifying OFF causes the analyzer to make runs until
either STOP is selected from the front panel or until the STOP command is
issued.

There are four conditions based on the time between the X and O markers:

• The difference is less than (LT) some value.

• The difference is greater than (GT) some value.

• The difference is inside some range (INRange).

• The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 8 ns apart since
this is the minimum time resolution of the time tag counter.

<run_until_
spec>

{OFF | LT,<value> | GT,<value> | INRange,<value>,
<value> | OUTRange,<value>,<value>}

<value> real number from −9E9 to +9E9

Example OUTPUT XXX;":MACHINE1:TLIST:RUNTIL GT,800.0E −6"

Query :MACHine{1|2}:TLISt:RUNTil?

The RUNTil query returns the current stop criteria.
Returned Format [:MACHine{1|2}:TLISt:RUNTil] <run_until_spec><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:RUNTIL?"

TLISt Subsystem
RUNTil (Run Until)

24–15

TAVerage

Query :MACHine{1|2}:TLISt:TAVerage?

The TAVerage query returns the value of the average time between the X
and O Markers. If the number of valid runs is zero, the query returns 9.9E37.
Valid runs are those where the pattern search for both the X and O markers
was successful, resulting in valid delta-time measurements.

Returned Format [:MACHine{1|2}:TLISt:TAVerage] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TLIST:TAVERAGE?"

TMAXimum

Query :MACHine{1|2}:TLISt:TMAXimum?

The TMAXimum query returns the value of the maximum time between the X
and O Markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:TMAXimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TLIST:TMAXIMUM?"

TLISt Subsystem
TAVerage

24–16

TMINimum

Query :MACHine{1|2}:TLISt:TMINimum?

The TMINimum query returns the value of the minimum time between the X
and O Markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:TMINimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TLIST:TMINIMUM?"

VRUNs

Query :MACHine{1|2}:TLISt:VRUNs?

The VRUNs query returns the number of valid runs and total number of runs
made. Valid runs are those where the pattern search for both the X and
O markers was successful resulting in valid delta time measurements.

Returned Format [:MACHine{1|2}:TLISt:VRUNs] <valid_runs>,<total_runs><NL>

<valid_runs> zero or positive integer

<total_runs> zero or positive integer

Example OUTPUT XXX;":MACHINE1:TLIST:VRUNS?"

TLISt Subsystem
TMINimum

24–17

XCONdition

Command :MACHine{1|2}:TLISt:XCONdition {ENTering|EXITing}

The XCONdition command specifies where the X marker is placed. The X
marker can be placed on the entry or exit point of the XPATtern when in the
PATTern marker mode.

Example OUTPUT XXX; ":MACHINE1:TLIST:XCONDITION ENTERING"

Query :MACHine{1|2}:TLISt:XCONdition?

The XCONdition query returns the current setting.
Returned Format [:MACHine{1|2}:TLISt:XCONdition] {ENTering|EXITing}<NL>

Example OUTPUT XXX;":MACHINE1:TLIST:XCONDITION?"

XOTag

Query :MACHine{1|2}:TLISt:XOTag?

The XOTag query returns the time from the X to O markers. If there is no
data in the time mode the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:XOTag] <XO_time><NL>

<XO_time> real number

Example OUTPUT XXX;":MACHINE1:TLIST:XOTAG?"

TLISt Subsystem
XCONdition

24–18

XOTime

Query :MACHine{1|2}:TLISt:XOTime?

The XOTime query returns the time from the X to O markers. If there is no
data in the time mode the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:XOTime] <XO_time><NL>

<XO_time> real number

Example OUTPUT XXX;":MACHINE1:TLIST:XOTIME?"

XPATtern

Command :MACHine{1|2}:TLISt:XPATtern <label_name>,
<label_pattern>

The XPATtern command allows you to construct a pattern recognizer term
for the X Marker which is then used with the XSEarch criteria when moving
the marker on patterns. Since this command deals with only one label at a
time, a complete specification could require several iterations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

TLISt Subsystem
XOTime

24–19

Example OUTPUT XXX;":MACHINE1:TLIST:XPATTERN ’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:TLIST:XPATTERN ’ABC’,’#BXXXX1101’ "

Query :MACHine{1|2}:TLISt:XPATtern? <label_name>

The XPATtern query returns the pattern specification for a given label name.
Returned Format [:MACHine{1|2}:TLISt:XPATtern]

<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:XPATTERN? ’A’"

XSEarch

Command :MACHine{1|2}:TLISt:XSEarch <occurrence>,<origin>

The XSEarch command defines the search criteria for the X Marker, which is
then associated with XPATtern recognizer specification when moving the
markers on patterns. The origin parameter tells the marker to begin a search
with the trigger or with the start of data. The occurrence parameter
determines which occurrence of the XPATtern recognizer specification,
relative to the origin, the marker actually searches for. An occurrence of 0
places a marker on the selected origin.

<occurrence> integer from −8191 to +8191

<origin> {TRIGger|STARt}

Example OUTPUT XXX;":MACHINE1:TLIST:XSEARCH +10,TRIGGER"

TLISt Subsystem
XSEarch

24–20

Query :MACHine{1|2}:TLISt:XSEarch?

The XSEarch query returns the search criteria for the X marker.
Returned Format [:MACHine{1|2}:TLISt:XSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:XSEARCH?"

XSTate

Query :MACHine{1|2}:TLISt:XSTate?

The XSTate query returns the line number in the listing where the X marker
resides (−8191 to +8191). If data is not valid, the query returns 32767.

Returned Format [:MACHine{1|2}:TLISt:XSTate] <state_num><NL>

<state_num> an integer from −8191 to +8191, or 32767

Example OUTPUT XXX;":MACHINE1:TLIST:XSTATE?"

TLISt Subsystem
XSTate

24–21

XTAG

Command :MACHine{1|2}:TLISt:XTAG <time_value>

The XTAG command specifies the tag value on which the X Marker should be
placed. The tag value is time. If the data is not valid tagged data, no action is
performed.

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TLIST:XTAG 40.0E −6"

Query :MACHine{1|2}:TLISt:XTAG?

The XTAG query returns the X Marker position in time regardless of whether
the marker was positioned in time or through a pattern search. If data is not
valid tagged data, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:XTAG] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:XTAG?"

TLISt Subsystem
XTAG

24–22

25

SPA Subsystem

Introduction

This chapter provides you with information for programming the
System Performance Analysis (SPA) features.

SPA commands have subsystems, indicated by the outdented items in
the list. Indented commands must be prefaced with the outdented
command above it unless MODE was previously used to set the mode.
The SPA commands are:

• OVERView • TINTerval

• BUCKet • AUTorange

• HIGH • QUALifier

• LABel • TINTerval

• LOW • TSTatistic

• OMARker • MODE

• OVSTatistic

• XMARker

• HISTogram

• HISTatistic

• LABel

• OTHer

• QUALifier

• RANGe

• TTYPe

25–2

Figure 25-1

SPA Subsystem Syntax Diagram

SPA Subsystem

25–3

Figure 25-1 (continued)

SPA Subsystem Syntax Diagram (continued)

SPA Subsystem

25–4

Figure 25-1 (continued)

SPA Subsystem Syntax Diagram (continued)

SPA Subsystem

25–5

Table 25-1 SPA Subsystem Parameter Values

Parameter Value

bucket_num 0 to (number of valid buckets - 1)

high_patt <pattern>

label_name a string of up to 6 alphanumeric characters

low_patt <pattern>

o_patt <pattern>

x_patt <pattern>

range_num an integer from 0 to 10

range_name a string of up to 16 alphanumeric characters

min_time real number

max_time real number

start_pattern <pattern>

end_pattern <pattern>

interval_num an integer from 0 to 7

pattern "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}..
.|
{0|1|2|3|4|5|6|7|8|9}...}"

SPA Subsystem

25–6

MODE

Command :MACHine{1|2}:SPA{1|2}:MODE
{OVERView|HISTogram|TINTerval}

The MODE command selects which menu to display: State Overview, State
Histogram, or Time Interval. A query returns the current menu mode.

Example OUTPUT XXX;":MACHine{1|2}:SPA1:MODE OVERView"
OUTPUT XXX;":MACHine{1|2}:SPA2:MODE HISTogram"
OUTPUT XXX;":MACHine{1|2}:SPA1:MODE TINTerval"

Query :MACHine{1|2}:SPA{1|2}:MODE?

Returned Format [:MACHine{1|2}:SPA{1|2}:MODE] {OVERView|HISTogram|
TINTerval}<NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA1:MODE?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
MODE

25–7

OVERView:BUCKet

Query :MACHine{1|2}:SPA{1|2}:OVERView:BUCKet?
{SIZE|NUMBer|<bucket_num>}

The OVERView:BUCKet query returns data relating to the State Overview
measurement. You specify SIZE for width of each bucket, NUMBer for
number of buckets, or <bucket_num> for the number of hits in the specified
bucket number

Returned Format [:MACHine{1|2}:SPA{1|2}:OVERView:BUCKet] {SIZE|NUMBer|
<bucket_num>},<number><NL>

<bucket_num> 0 to (number of valid buckets – 1)

<number> integer number

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA2:OVERView:BUCKet? 23"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:BUCKet

25–8

OVERView:HIGH

Command :MACHine{1|2}:SPA{1|2}:OVERView:HIGH
<high_pattern>

The OVERView:HIGH command sets the upper boundary of the State
Overview measurement. A query returns the current setting of the upper
boundary.

Setting the upper boundary defaults the data accumulators, statistic
counters, and the number of buckets and their size.

<high_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":MACHine{1|2}:SPA1:OVERView:HIGH ’23394’"
OUTPUT XXX;":MACHine{1|2}:SPA2:OVERView:HIGH ’#Q4371’"

Query :MACHine{1|2}:SPA{1|2}:OVERView:HIGH?

Returned Format [:MACHine{1|2}:SPA{1|2}:OVERView:HIGH]<high_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA1:OVERView:HIGH?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:HIGH

25–9

OVERView:LABel

Command :MACHine{1|2}:SPA{1|2}:OVERView:LABel <label_name>

The OVERView:LABel command selects a new label for collecting the SPA
measurements. A query returns the name of the currently selected label.

Selecting a new label defaults the State Overview data accumulators, statistic
counters, and the number of buckets and their size.

<label_name> string of up to 6 alphanumeric characters

Example OUTPUT XXX;":MACHine{1|2}:SPA2:OVERView:LABel ’A’"

Query :MACHine{1|2}:SPA{1|2}:OVERView:LABel?

Returned Format: [:MACHine{1|2}:SPA{1|2}:OVERView:LABel]<label_name><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA2:OVERView:LABel?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:LABel

25–10

OVERView:LOW

Command :MACHine{1|2}:SPA{1|2}:OVERView:LOW <low_pattern>

The OVERView:LOW command sets the lower boundary of the State
Overview measurement. A query returns the current setting of the lower
boundary.

Setting the lower boundary defaults the data accumulators, statistic counters,
and the number of buckets and their size.

<low_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}...|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":MACHine{1|2}:SPA2:OVERView:LOW ’23394’"
OUTPUT XXX;":MACHine{1|2}:SPA1:OVERView:LOW ’#Q4371’"

Query :MACHine{1|2}:SPA{1|2}:OVERView:LOW?

Returned Format [:MACHine{1|2}:SPA{1|2}:OVERView:LOW]<low_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA1:OVERView:LOW?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:LOW

25–11

OVERView:OMARker

Command :MACHine{1|2}:SPA{1|2}:OVERView:OMARker
<o_pattern>

The OVERView:OMARker command sends the O marker to the lower
boundary of the bucket where the specified pattern is located. A request to
place the marker outside the defined boundary forces the marker to the
appropriate end bucket. A query returns the pattern associated with the
lower end of the bucket where the marker is placed.

<o_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":MACHine{1|2}:SPA2:OVERView:OMARker ’#H3C31’"

Query :MACHine{1|2}:SPA{1|2}:OVERView:OMARker?

Returned Format [:MACHine{1|2}:SPA{1|2}:OVERView:OMARker]<o_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA1:OVERView:OMARker?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:OMARker

25–12

OVERView:OVSTatistic

Query :MACHine{1|2}:SPA{1|2}:OVERView:OVSTatistic?
{XHITs|OHITs|TOTal}

The OVERView:OVSTatistic query returns the number of hits associated with
the requested statistic or returns the number of hits in the specified bucket.
XHITs requests the number of hits in the bucket where the X marker is
located. OHITs requests the number of hits in the bucket where the O
marker is located. TOTal requests the total number of hits.

Returned Format [:MACHine{1|2}:SPA{1|2}:OVERView:OVSTatistic] {XHITs|OHITs
|TOTal},<number_hits><NL>

<number_hits> integer number

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA2:OVERView:OVSTatistic? OHITs"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:OVSTatistic

25–13

OVERView:XMARker

Command :MACHine{1|2}:SPA{1|2}:OVERView:XMARker
<x_pattern>

The OVERView:XMARker command sends the X marker to the lower
boundary of the bucket where the specified pattern is located. A request to
place the marker outside the defined boundary forces the marker to the
appropriate end bucket. A query returns the pattern associated with the
lower end of the bucket where the marker is placed.

<x_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":MACHine{1|2}:SPA2:OVERView:XMARker ’#H3C31’"

Query :MACHine{1|2}:SPA{1|2}:OVERView:XMARker?

Returned Format [:MACHine{1|2}:SPA{1|2}:OVERView:XMARker]<x_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA2:OVERView:XMARker?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:XMARker

25–14

HISTogram:HSTatistic

Query :MACHine{1|2}:SPA{1|2}:HISTogram:HSTatistic?
{TOTal|OTHer|<range_number>}

The HISTogram:HSTatistic query returns the total number of samples or
returns the number of samples in the specified range. Specify TOTal for the
total number of samples, OTHer for the number of hits in "other" range, or
<range_number> for the number of hits in that range.

Depending on whether the "other" range is on or off, the statistic TOTal
includes or excludes the number of hits in the "other" range.

Returned Format [:MACHine{1|2}:SPA{1|2}:HISTogram:HSTatistic] {TOTal|OTHer|
<range_number>},<number_hits><NL>

<range_number> 0 to 10

<number_hits> integer number

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA1:HISTogram:HSTatistic? 7"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:HSTatistic

25–15

HISTogram:LABel

Command :MACHine{1|2}:SPA{1|2}:HISTogram:LABel
<label_name>

The HISTogram:LABel command selects a new label for collecting SPA
measurements. A query returns the name of the currently selected label.

Selecting a new label defaults the State Histogram range names, bucket sizes,
and hit accumulators.

<label_name> string of up to 6 alphanumeric characters

Example OUTPUT XXX;":MACHine{1|2}:SPA2:HISTogram:LABel ’A’"

Query :MACHine{1|2}:SPA{1|2}:HISTogram:LABel?

Returned Format [:MACHine{1|2}:SPA{1|2}:HISTogram:LABel] <label_name><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA2:HISTogram:LABel?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:LABel

25–16

HISTogram:OTHer

Command :MACHine{1|2}:SPA{1|2}:HISTogram:OTHer
{INCLuded|EXCLuded}

The HISTogram:OTHer command selects including or excluding the "other"
histogram bucket. A query returns data indicating whether the "other"
bucket is currently included or excluded.

Example OUTPUT XXX;":MACHine{1|2}:SPA2:HISTogram:OTHer INCLuded"
OUTPUT XXX;":MACHine{1|2}:SPA1:HISTogram:OTHer EXCLuded"

Query :MACHine{1|2}:SPA{1|2}:HISTogram:OTHer?

Returned Format [:MACHine{1|2}:SPA{1|2}:HISTogram:OTHer]{INCLuded|EXCLuded}<NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA2:HISTogram:OTHer?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:OTHer

25–17

HISTogram:QUALifier

Command :MACHine{1|2}:SPA{1|2}:HISTogram:QUALifier
<label_name>,<pattern>

The HISTogram:QUALifier command sets the pattern associated with the
specified label. The pattern is a condition for triggering and storing the
measurement. A query of a label returns the current pattern setting for that
label.

<label_name> string of up to 6 alphanumeric characters

<pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":MACHine{1|2}:SPA2:HISTogram:QUALifier ’A’,’255’"

Query :MACHine{1|2}:SPA{1|2}:HISTogram:QUALifier?
<label_name>

Returned Format [:MACHine{1|2}:SPA{1|2}:HISTogram:QUALifier]
<label_name>,<pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA1:HISTogram:QUALifier? ’A’"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:QUALifier

25–18

HISTogram:RANGe

Command :MACHine{1|2}:SPA{1|2}:HISTogram:RANGe {OFF|
<range_num>,<range_name>,<low_patt>,<high_patt>}

The HISTogram:RANGe command turns off all ranges or defines the range
name, low boundary, and high boundary of the specified range. Defining a
specified range turns on that range. For the specified range, a query returns
the name, low boundary, high boundary, and whether the range is on or off.

<range_num> 0 to 10

<range_name> string of up to 16 alphanumeric characters

<low_patt> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

<high_patt> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

Example

OUTPUT XXX;":MACHine{1|2}:SPA1:HISTogram:RANGe OFF"
OUTPUT XXX;":MACHine{1|2}:SPA2:HISTogram:RANGe 5,’A’,’255’,’512’"
OUTPUT XXX;":MACHine{1|2}:SPA1:HISTogram:RANGe 8,’DATA’,’#B0100110’,’#H9F’"

Query :MACHine{1|2}:SPA{1|2}:HISTogram:RANGe?
<range_num>

SPA Subsystem
HISTogram:RANGe

25–19

Returned Format [:MACHine{1|2}:SPA{1|2}:HISTogram:RANGe]
<range_number>,<range_name>,<low_pattern>,<high_pattern>,
<range_onoff><NL>

<range_onoff> {ON|OFF}

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA1:HISTogram:RANGe? 4"
40 ENTER XXX;String$
50 PRINT String$
60 END

HISTogram:TTYPe

Command :MACHine{1|2}:SPA{1|2}:HISTogram:TTYPe
{ALL|QUALified}

The HISTogram:TTYPe command sets the trigger to trigger on anystate or on
qualified state. A query returns the current trace type setting.

Example OUTPUT XXX;":MACHine{1|2}:SPA2:HISTogram:TTYPe ALL"

Query :MACHine{1|2}:SPA{1|2}:HISTogram:TTYPe?

Returned Format [:MACHine{1|2}:SPA{1|2}:HISTogram:TTYPe]{ALL|QUALified}<NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA1:HISTogram:TTYPe?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:TTYPe

25–20

TINTerval:AUTorange

Command :MACHine{1|2}:SPA{1|2}:TINTerval:AUTorange
{LOGarithmic|LINear},<min_time>,<max_time>

The TINTerval:AUTorange command automatically sets the Time Interval
ranges in a logarithmic or linear distribution over the specified range of time.
When the AUTorange command is executed, the data accumulators and
statistic counters are reset.

<min_time> real number

<max_time> real number

Example

OUTPUT XXX;":MACHine{1|2}:SPA2:TINTerval:AUTorange LINear,4.0E-3,55.6E+2"
OUTPUT XXX;":MACHine{1|2}:SPA1:TINTerval:AUTorange LOGarithmic,3.3E+1,8.6E+2"

TINTerval:QUALifier

Command :MACHine{1|2}:SPA{1|2}:TINTerval:QUALifier
<label_name>,<start_pattern>,<end_pattern>

The TINTerval:QUALifier command defines the start and stop patterns for a
specified label. The start and stop patterns determine the time windows for
collecting data. A query returns the currently defined start and stop patterns
for a given label.

<label_name> string of up to 6 alphanumeric characters

<start_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

SPA Subsystem
TINTerval:AUTorange

25–21

<end_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

Example

OUTPUT XXX;":MACHine{1|2}:SPA1:TINTerval:QUALifier ’A’,’#Q231’,’#Q455’"
OUTPUT XXX;":MACHine{1|2}:SPA2:TINTerval:QUALifier ’DATA’,’#H3A’,’255’"

Query :MACHine{1|2}:SPA{1|2}:TINTerval:QUALifier?
<label_name>

Returned Format [:MACHine{1|2}:SPA{1|2}:TINTerval:QUALifier]
<label_name>,<start_pattern>,<end_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA1:TINTerval:QUALifier? ’A’"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
TINTerval:QUALifier

25–22

TINTerval:TINTerval

Command :MACHine{1|2}:SPA{1|2}:TINTerval:TINTerval
<interval_number>,<min_time>,<max_time>

The TINTerval:TINTerval command specifies the minimum and maximum
time limits for the given interval. A query returns these limits for a specified
interval.

<interval_
number>

0 to 7

<min_time> real number

<max_time> real number

Example

OUTPUT XXX;":MACHine{1|2}:SPA2:TINTerval:TINTerval 4,1.0E-3,47.0E5"
OUTPUT XXX;":MACHine{1|2}:SPA1:TINTerval:TINTerval 3,6.8E-7,4.90E2"

Query :MACHine{1|2}:SPA{1|2}:TINTerval:TINTerval?
<interval_number>

Returned Format [:MACHine{1|2}:SPA{1|2}:TINTerval:TINTerval]<interval_number>,
<min_time>,<max_time><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA2:TINTerval:TINTerval? 6"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
TINTerval:TINTerval

25–23

TINTerval:TSTatistic

Query :MACHine{1|2}:SPA{1|2}:TINTerval:TSTatistic?
{TMINimum|TMAXimum|TAVerage|TOTal|TTOTal|
<interval_number>}

The TINTerval:TSTatistic query returns either the time or the number of
samples associated with the requested statistic. The statistics you can
request are:

• TMINimum - overall minimum interval time

• TMAXimum - overall maximum interval time

• TAVerage - overall average interval time

• TOTal - total number of samples

• TTOTal - overall total time of all interval samples

• <interval_number> - number of hits in given interval

If TMINimum, TMAXaximum, TAVErage, or TTOTal are not currently valid,
the real value 9.9E37 is returned.

Returned Format [:MACHine{1|2}:SPA{1|2}:TINTerval:TSTatistic] {
{ {TMINimum|TMAXimum|TAVerage|TTOTal} <time_number>} |
{ {TOTal|<interval_number>}, <number_hits>} }<NL>

<interval_
number>

0 to 7

<number_hits> integer number

<time_number> real number

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":MACHine{1|2}:SPA1:TINTerval:TSTatistic? 3"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
TINTerval:TSTatistic

25–24

26

SYMBol Subsystem

Introduction

The SYMBol subsystem contains the commands that allow you to
define symbols on the controller and download them to the HP
1660C/CS/CP-series logic analyzers. The commands in this subsystem
are:

• BASE

• PATTern

• RANGe

• REMove

• WIDTh

26–2

Figure 26-1

SYMBol Subsystem Syntax Diagram

SYMBol Subsystem

26–3

Table 26-1 SYMBol Parameter Values

Parameter Values

label_name string of up to 6 alphanumeric characters

symbol_name string of up to 16 alphanumeric characters

pattern_value "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} .
. . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

start_value "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . .
. |
{0|1|2|3|4|5|6|7|8|9} . . . }"

stop_value "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . .
. |
{0|1|2|3|4|5|6|7|8|9} . . . }"

width_value integer from 1 to 16

SYMBol

Selector :MACHine{1|2}:SYMBol

The SYMBol selector is used as a part of a compound header to access the
commands used to create symbols. It always follows the MACHine selector
because it selects a branch directly below the MACHine level in the command
tree.

Example OUTPUT XXX;":MACHINE1:SYMBOL:BASE ’DATA’, BINARY"

SYMBol Subsystem
SYMBol

26–4

BASE

Command :MACHine{1|2}:SYMBol:BASE
<label_name>,<base_value>

The BASE command sets the base in which symbols for the specified label
will be displayed in the symbol menu. It also specifies the base in which the
symbol offsets are displayed when symbols are used.

BINary is not available for labels with more than 20 bits assigned. In this case
the base will default to HEXadecimal.

<label_name> string of up to 6 alphanumeric characters

<base_value> {BINary|HEXadecimal|OCTal|DECimal|ASCii}

Example OUTPUT XXX;":MACHINE1:SYMBOL:BASE ’DATA’,HEXADECIMAL"

SYMBol Subsystem
BASE

26–5

PATTern

Command :MACHine{1|2}:SYMBol:PATTern <label_name>,
<symbol_name>,<pattern_value>

The PATTern command allows you to create a pattern symbol for the
specified label. Because don’t cares (X) are allowed in the pattern value, it
must always be expressed as a string. You may still use different bases,
though don’t cares cannot be used in a decimal number.

<label_name> string of up to 6 alphanumeric characters

<symbol_name> string of up to 16 alphanumeric characters

<pattern_value> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SYMBOL:PATTERN ’STAT’,
’MEM_RD’,’#H01XX’"

RANGe

Command :MACHine{1|2}:SYMBol:RANGe <label_name>,
<symbol_name>,<start_value>,<stop_value>

The RANGe command allows you to create a range symbol containing a start
value and a stop value for the specified label. The values may be in binary
(#B), octal (#Q), hexadecimal (#H) or decimal (default). You cannot use
don’t cares in any base.

SYMBol Subsystem
PATTern

26–6

<label_name> string of up to 6 alphanumeric characters

<symbol_name> string of up to 16 alphanumeric characters

<start_value> "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

<stop_value> "{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SYMBOL:RANGE ’STAT’,
’IO_ACC’,’0’,’#H000F’"

REMove

Command :MACHine{1|2}:SYMBol:REMove

The REMove command deletes all symbols from a specified machine.

Example OUTPUT XXX;":MACHINE1:SYMBOL:REMOVE"

SYMBol Subsystem
REMove

26–7

WIDTh

Command :MACHine{1|2}:SYMBol:WIDTh <label_name>,
<width_value>

The WIDTh command specifies the width (number of characters) in which
the symbol names will be displayed when symbols are used.

The WIDTh command does not affect the displayed length of the symbol offset
value.

<label_name> string of up to 6 alphanumeric characters

<width_value> integer from 1 to 16

Example OUTPUT XXX;":MACHINE1:SYMBOL:WIDTH ’DATA’,9 "

SYMBol Subsystem
WIDTh

26–8

27

DATA and SETup Commands

Introduction

The DATA and SETup commands are SYSTem commands that allow
you to send and receive block data between the HP
1660C/CS/CP-series logic analyzer and a controller. Use the DATA
instruction to transfer acquired timing and state data, and the SETup
instruction to transfer instrument configuration data. This is useful
for:

• Reloading measurements and configurations to the logic analyzer

• Processing data later

• Processing data in the controller

This chapter explains how to use these commands.

The format and length of block data depends on the instruction being
used, the configuration of the instrument, and the amount of acquired
data. The length of the data block can be up to 409,760 bytes in the
HP 1660C/CS/CP.

The SYSTem:DATA section describes each part of the block data as it
will appear when used by the DATA instruction. The beginning byte
number, the length in bytes, and a short description is given for each
part of the block data. This is intended to be used primarily for
processing of data in the controller.

Do not change the block data in the controller if you intend to send the block
data back into the logic analyzer for later processing. Changes made to the
block data in the controller could have unpredictable results when sent back to
the logic analyzer.

27–2

Data Format

To understand the format of the data within the block data, there are four
important things to keep in mind.

• Data is sent to the controller in binary form.

• Each byte, as described in this chapter, contains 8 bits.

• The first bit of each byte is the MSB (most significant bit).

• Byte descriptions are printed in binary, decimal, or ASCII depending on
how the data is described.

For example, the first ten bytes that describe the section name contain a
total of 80 bits as follows:

Binary 0100 0100 0100 0001 0101 0100 0100 0001 0010 0000 ... 0010 0000

Decimal 68 65 84 65 32 32 32 32 32 32

ASCII DATA space space space space space space

Byte 1 Byte 10

MSB LSB

DATA and SETup Commands
Data Format

27–3

:SYSTem:DATA

Command :SYSTem:DATA <block_data>

The SYSTem:DATA command transmits the acquisition memory data from
the controller to the HP 1660C/CS/CP-series logic analyzer.

The block data consists of a variable number of bytes containing information
captured by the acquisition chips. The information will be in one of three
formats, depending on the type of data captured. The three formats are
glitch, transitional, and conventional timing or state. Each format is
described in the "Acquisition Data Description" section later in this chapter.
Since no parameter checking is performed, out-of-range values could cause
instrument lockup; therefore, be careful when transferring the data string
into the logic analyzer.

The <block_data> parameter can be broken down into a
<block_length_specifier> and a variable number of <section>’s.

The <block_length_specifier> always takes the form #8DDDDDDDD. Each D
represents a digit (ASCII characters "0" through "9"). The value of the eight
digits represents the total length of the block (all sections). For example, if
the total length of the block is 14522 bytes, the block length specifier would
be "#800014522".

Each <section> consists of a <section header> and <section data>. The
<section data> format varies for each section. For the DATA instruction,
there is only one <section>, which is composed of a data preamble followed
by the acquisition data. This section has a variable number of bytes
depending on configuration and amount of acquired data.

<block_data> <block_length_specifier><section>

<block_length_
specifier>

#8<length>

<length> The total length of all sections in byte format (must be represented with 8
digits)

<section> <section header><section data>

DATA and SETup Commands
:SYSTem:DATA

27–4

<section_
header>

16 bytes, described in this chapter, under "Section Header Description".

<section_data> Format depends on the specific section.

Example OUTPUT XXX;":SYSTEM:DATA" <block_data>

The total length of a section is 16 (for the section header) plus the length of the
section data. So when calculating the value for <length> , don’t forget to
include the length of the section headers.

Query :SYSTem:DATA?

The SYSTem:DATA query returns the block data to the controller. The data
sent by the SYSTem:DATA query reflect the configuration of the machines
when the last run was performed. Any changes made since then through
either front-panel operations or programming commands do not affect the
stored configuration.

Returned Format [:SYSTem:DATA] <block_data><NL>

Example See "Transferring the logic analyzer acquired data" in chapter 37,
"Programming Examples," for an example.

DATA and SETup Commands
:SYSTem:DATA

27–5

Section Header Description

The section header uses bytes 1 through 16 (this manual begins counting at
1; there is no byte 0). The 16 bytes of the section header are as follows:

Byte Position

1 10 bytes - Section name ("DATA space space space space space space" in
ASCII for the DATA instruction).

11 1 byte - Reserved

12 1 byte - Module ID (0010 0000 binary or 32 decimal for the HP 1660C/CS/CP-
series)

13 4 bytes - Length of section in number of bytes that, when converted to
decimal, specifies the number of bytes contained in the section.

Section Data

For the SYSTem:DATA command, the <section data> parameter consists of
two parts: the data preamble and the acquisition data. These are described
in the following two sections.

Data Preamble Description

The block data is organized as 160 bytes of preamble information, followed by
a variable number of bytes of data. The preamble gives information for each
analyzer describing the amount and type of data captured, where the trace
point occurred in the data, which pods are assigned to which analyzer, and
other information. The values stored in the preamble represent the captured
data currently stored in this structure and not the current analyzer
configuration. For example, the mode of the data (bytes 21 and 49) may be
STATE with tagging, while the current setup of the analyzer is TIMING.

The preamble (bytes 17 through 176) consists of the following 160 bytes:

17 2 bytes - Instrument ID (always 1660 decimal for HP 1660C/CS/CP-series)

19 1 byte - Revision Code

20 1 byte - number of pod pairs used in last acquisition

DATA and SETup Commands
Section Header Description

27–6

The next 40 bytes are for Analyzer 1 Data Information.

Byte Position

21 1 byte - Machine data mode, one of the following decimal values:
−1 = off
0 = state data without tags
1 = state data with all pod pairs assigned
 (2 K memory) and either time or state tags
2 = state data with unassigned pod used to store tag data
 (4 K memory)
8 = state data at half channel (8 K memory with no tags)
10 = conventional timing data at full channel
11 = transitional timing data at full channel
12 = glitch timing data
13 = conventional timing data at half channel
14 = transitional timing data at half channel

22 1 byte - Unused.

23 2 bytes - List of pods in this analyzer, where a binary 1 indicates that the
corresponding pod is assigned to this analyzer

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

unused unused always 1 unused unused unused unused Pod 81

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Pod 71 Pod 62 Pod 52 Pod 43 Pod 33 Pod 2 Pod 1 unused

1 – also unused in the HP 1661C/CS, HP 1662C/CS, and HP 1663C/CS
2 – also unused in the HP 1662C/CS and HP 1663C/CS
3 – also unused in the HP 1663C/CS

Example xx1x xxx0 0001 111x indicates pods 1 through 4 are assigned to this
analyzer (x = unused bit).

25 1 byte - This byte returns which chip is used to store the time or state tags
when an unassigned pod is available to store tag data. This chip is available
in state data mode with an unassigned pod and state or time tags on. Byte 21
= 2 in this mode.

DATA and SETup Commands
Data Preamble Description

27–7

Byte Position

26 1 byte - Master chip for this analyzer. This decimal value returns which
chip’s time tag data is valid in a non-transitional mode; for example, state
with time tags.

5 - pods 1 and 2 2 - pods 7 and 83

4 - pods 3 and 41 1 - unused

3 - pods 5 and 62 0 - unused

– 1 - no chip

1 – also unused in the HP 1663C/CS
2 – also unused in the HP 1662C/CS and HP 1663C/CS
3 – also unused in the HP 1661C/CS, HP 1662C/CS, and HP 1663C/CS

27 6 bytes - Unused

33 8 bytes - A decimal integer representing sample period in picoseconds
(timing only).

Example The following 64 bits in binary would equal 8,000 picoseconds or
8 nanoseconds:

00000000 00000000 00000000 00000000 00000000 00000000 00011111 01000000

41 8 bytes - Unused

49 1 byte - Tag type for state only in one of the following decimal values:
0 = off
1 = time tags
2 = state tags

50 1 byte - Unused

51 8 bytes - A decimal integer representing the time offset in picoseconds from
when this analyzer is triggered and when this analyzer provides an output
trigger to the IMB or port out. The value for one analyzer is always zero and
the value for the other analyzer is the time between the triggers of the two
analyzers.

59 2 bytes - Unused

DATA and SETup Commands
Data Preamble Description

27–8

Byte Position

61 40 bytes - The next 40 bytes are for Analyzer 2 Data Information. They are
organized in the same manner as Analyzer 1 above, but they occupy bytes 61
through 100.

101 26 bytes - Number of valid rows of data (starting at byte 177) for each pod.
The 26 bytes of this group are organized as follows:
Bytes 1 and 2 - Unused
Bytes 3 and 4 - Unused.
Bytes 5 and 6 - Unused.
Bytes 7 and 8 - Unused.
Bytes 9 and 10 - Unused.
Bytes 11 and 12 contain the number of valid rows of data for pod 8 of the HP
1660C/CS/CP only. Unused in the other HP 1660C/CS/CP-series logic
analyzers.
Bytes 13 and 14 contain the number of valid rows of data for pod 7 of the HP
1660C/CS/CP only. Unused in the other HP 1660C/CS/CP-series logic
analyzers
Bytes 15 and 16 contain the number of valid rows of data for pod 6 of the HP
1660C/CS/CP and HP 1661C/CS/CP only.
Bytes 17 and 18 contain the number of valid rows of data for pod 5 of the HP
1660C/CS/CP and HP 1661C/CS/CP only.
Bytes 19 and 20 contain the number of valid rows of data for pod 4 of the HP
1660C/CS/CP, HP 1661C/CS/CP, and HP 1662C/CS/CP only.
Bytes 21 and 22 contain the number of valid rows of data for pod 3 of the HP
1660C/CS/CP, HP 1661C/CS/CP, and HP 1662C/CS/CP only.
Bytes 23 and 24 contain the number of valid rows of data for pod 2 of all
models of the HP1660C/CS/CP-series logic analyzers.
Bytes 25 and 26 contain the number of valid rows of data for pod 1 of all
models of the HP1660C/CS/CP-series logic analyzers.

DATA and SETup Commands
Data Preamble Description

27–9

Byte Position

127 26 bytes - Row of data containing the trigger point. This byte group is
organized in the same way as the data rows (starting at byte 101 above).
These binary numbers are base zero numbers which start from the first
sample stored for a specific pod. For example, if bytes 151 and 152
contained a binary number with a decimal equivalent of +1018, the data row
having the trigger is the 1018th data row on pod 1. There are 1018 rows of
pre-trigger data as shown below.

row 0
row 1
 .
 .
 .
row 1017
row 1018 – trigger row

153 24 bytes - Unused

Acquisition Data Description

The acquisition data section consists of a variable number of bytes depending
on which logic analyzer you are using, the acquisition mode and the tag
setting (time, state, or off). The data is grouped in 18-byte rows for the HP
1660C/CS/CP, in 14-byte rows for the HP 1661C/CS/CP, in 10-byte rows for
the HP 1662C/CS/CP, and in 6-byte rows for the HP 1663C/CS/CP.

The number of rows for each pod is stored in byte positions 101 through 126.
The number of bytes in each row can be determined by the value stored in
byte position 20 which contains the number of pod pairs in the instrument.
For example, if the value in byte position 20 is 4, the instrument is an HP
1660C/CS/CP. Values 3, 2, and 1 represent the HP 1661C/CS/CP,
1662C/CS/CP, and 1663C/CS/CP respectively.

DATA and SETup Commands
Acquisition Data Description

27–10

Byte Position

clock
lines

Pod 81 Pod 71 pod 62 pod 52 pod 43 pod 33 pod 2 pod 14

177 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

195 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

.

.

.

(x) 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

1 – unused in the HP 1661C/CS/CP, HP 1662C/CS/CP, and HP 1663C/CS/CP
2 – also unused in the HP 1662C/CS/CP and HP 1663C/CS/CP
3 – also unused in the HP 1663C/CS/CP
4 – The headings are not a part of the returned data.

Row (x) is the highest number of valid rows specified by the bytes in byte
positions 101 through 126 in all modes and when neither analyzer is in glitch
mode. In the glitch mode, row (x) is the larger of:

1. The highest number of valid rows specified by the bytes in byte
positions 101 through 126; or,

2. 2048 + the highest number of valid rows for the pods assigned to
the timing analyzer, when one or more glitches are detected.

The clock-line bytes for the HP 1660C/CS/CP, which also includes 2
additional data lines (D), are organized as follows:
 xxxx xxPN xxDD MLKJ

The clock-line bytes for the HP 1661C/CS/CP and HP 1662C/CS/CP are
organized as follows:
 xxxx xxxx xxxx MLKJ

The clock-line bytes for the HP 1663C/CS/CP are organized as follows:
 xxxx xxxx xxxx xxKJ

DATA and SETup Commands
Acquisition Data Description

27–11

Time Tag Data Description

The time tag data starts at the end of the acquired data. Each data row has
an 8-byte time tag for each chip (pod pair). The starting location of the time
tag data is immediately after the last row of valid data (maximum data byte +
1). If an analyzer is in a non-transitional mode, the master chip (byte 26) is
the only chip with valid time-tag data. The time tag data is a decimal integer
representing time in picoseconds for both timing and state time tags. For
state tags in the state analyzer, tag data is a decimal integer representing the
number of states.

Time Tag Block (for the HP 1660C/CS/CP)

Byte 1 through 8 (64 bits starting with the MSB) - First sample tag for pods 1
and 2.

Byte 9 through 16 (64 bits starting with the MSB) - Second sample tag for
pods 1 and 2.

.

.

.

Byte (w) through (w + 7) (64 bits starting with the MSB) - Last sample tag
for pods 1 and 2.

Byte (w + 8) through (w + 15) (64 bits starting with the MSB) - First sample
tag for pods 3 and 4.

Byte (w + 16) through (w + 23) (64 bits starting with the MSB) - Second
sample tag for pods 3 and 4.

.

.

.

Byte (x) through (x+ 7) (64 bits starting with the MSB) - Last sample tag for
pods 3 and 4.

DATA and SETup Commands
Time Tag Data Description

27–12

Byte (x + 8) through (x + 15) (64 bits starting with the MSB) - First sample
tag for pods 5 and 6.

Byte (x + 16) through (x + 23) (64 bits starting with the MSB) - Second
sample tag for pods 5 and 6.

.

.

.

Byte (y) through (y+ 7) (64 bits starting with the MSB) - Last sample tag for
pods 5 and 6.

Byte (y + 8) through (y + 15) (64 bits starting with the MSB) - First sample
tag for pods 7 and 8.

Byte (y + 16) through (y + 23) (64 bits starting with the MSB) - Second
sample tag for pods 7 and 8.

.

.

.

Byte (z) through (z+ 7) (64 bits starting with the MSB) - Last sample tag for
pods 7 and 8.

DATA and SETup Commands
Time Tag Data Description

27–13

Glitch Data Description

In the glitch mode, each pod has two bytes assigned to indicate where
glitches occur in the acquired data. For each row of acquired data there will
be a corresponding row of glitch data. The glitch data is organized in the
same way as the acquired data. The glitch data is grouped in 18-byte rows
for the HP 1660C/CS/CP. The number of rows is stored in byte positions 101
through 126. The starting byte of the glitch data is an absolute starting point
regardless of the number of rows of acquired data.

A binary 1 in the glitch data indicates a glitch was detected. For example, if a
glitch occurred on bit 1 of pod 8 in data row 1 of an HP 1660C/CS/CP, bytes
37043 and 37044 would contain:

0000 0000 0000 0010

Byte Position

clock
lines

Pod 81 Pod 71 pod 62 pod 52 pod 43 pod 33 pod 2 pod 14

37041 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

37059 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

.

.

.

(x) 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

1 – unused in the HP 1661C/CS/CP, HP 1662C/CS/CP, and HP 1663C/CS/CP
2 – also unused in the HP 1662C/CS/CP and HP 1663 C/CS/CP
3 – also unused in the HP 1663C/CS/CP
4 – The headings are not a part of the returned data.

Byte 37043 Byte 37044

Bit 15 Bit 1

DATA and SETup Commands
Glitch Data Description

27–14

SYSTem:SETup

Command :SYStem:SETup <block_data>

The SYStem:SETup command configures the logic analyzer module as
defined by the block data sent by the controller. The length of the
configuration data block can be up to 350,784 bytes in the HP 1660C/CS/CP-
series logic analyzer.

There are six data sections which are always returned. These are the strings
which would be included in the section header:
"CONFIG "
"DISPLAY1 "
"BIG_ATTRIB"

"RTC_INFO "
"SPA DATA "
"SPA VARS "

Additionally, the following sections may also be included, depending on
what’s available:
"SYMBOLS A "
"SYMBOLS B "
"INVASM A "
"INVASM B "
"COMPARE "

With the exception of the RTC_INFO section, the block data is not described.
However, the RTC_INFO section contains the real-time clock time of the
acquired data in the data block. This time information can be meaningful to
some measurements.

DATA and SETup Commands
SYSTem:SETup

27–15

<block_data> <block_length_specifier><section>

<block_length_
specifier>

#8<length>

<length> The total length of all sections in byte format (must be represented with 8
digits)

<section> <section_header><section_data>[<section_data>...]

<section_
header>

16 bytes in the following format: 10 bytes for the section name, 1 byte
reserved, 1 byte for the module ID code (32 for HP 1660C/CS/CP-series logic
analyzers), 4 bytes for the length of section data in number of bytes.

The RTC_INFO section is described in the "RTC_INFO Section Description."

<section_data> Format depends on the section.

The total length of a section is 16 (for the section header) plus the length of the
section data. So when calculating the value for <length>, don’t forget to
include the length of the section headers.

Example OUTPUT XXX;"SETUP" <block_data>

Query :SYStem:SETup?

The SYStem:SETup query returns a block of data that contains the current
configuration to the controller.

Returned Format [:SYStem:SETup] <block_data><NL>

Example See "Transferring the logic analyzer configuration" in Chapter 37,
"Programming Examples" for an example.

DATA and SETup Commands
SYSTem:SETup

27–16

RTC_INFO Section Description

The RTC_INFO section contains the real time of the acquired data. Because
the time of the acquired data is important to certain measurements, this
section describes how to find the real-time clock data.

Because the number of sections in the SETup data block depends on the
logic analyzer configuration, the RTC_INFO section will not always be in the
same location within the block. Therefore, the section must be found by
name. Once the section is found, you can find the time by using the
description in the following section:

#8<block_length>...[<section_name><section_length>
<section_data>]...

<block_length> Total length of all sections

<section_name> 10 bytes - Section name. "RTC_INFO space space"

<section_
length>

4 bytes - Length of section. 8 bytes, decimal, for RTC_INFO section.

<section_data> 10 bytes - Contains the real-time clock data described as follows:

Byte Position

1 1 byte - Year. A decimal integer that, when added to 1990, defines the year.
For example, if this byte has a decimal value of 2, the year is 1992.

2 1 byte - Month. An integer from 1 to 12.

3 1 byte - Day. An integer from 1 to 31.

4 1 byte - Unused

5 1 byte - Hour. An integer from 1 to 23.

6 1 byte - Minute. An integer from 1 to 59.

7 1 byte - Second. An integer from 1 to 59.

8 1 byte - Unused

DATA and SETup Commands
RTC_INFO Section Description

27–17

27–18

Part 4

Oscilloscope Commands

28

Oscilloscope Root Level
Commands

Introduction

Oscilloscope Root Level commands control the basic operation of the
oscilloscope. Refer to figure 28-1 for the module level syntax
command diagram. The Root Level commands are:

• AUToscale

• DIGitize

This chapter only applies to CS models.

28-2

Figure 28-1

Root Level Command Syntax Diagram

AUToscale

Command :AUToscale

The AUToscale command causes the oscilloscope to automatically select the
vertical sensitivity, vertical offset, trigger source, trigger level, and timebase
settings for optimum viewing of any input signals. The trigger source is the
lowest numbered channel on which the trigger was found. If no trigger is
found, the oscilloscope defaults to auto-trigger. The display window
configuration is not altered by AUToscale.

Example OUTPUT XXX;":AUTOSCALE"

To demonstrate a quick oscilloscope setup requires hardware. Use the AC
CAL OUTPUT signal available at the rear panel of the card. The square wave
put out by the AC CAL OUTPUT is normally used for calibration and probe
compensation.

Connect the AC CAL OUTPUT signal from the rear panel output connector to
CHAN 1, also on the rear panel. Ensure that the mainframe is connected to a
controller. Enter the program listed on the next page and execute it.

The following program expects the oscilloscope to be connected to a signal.

Oscilloscope Root Level Commands
AUToscale

28-3

Example This program selects the oscilliscope in slot B, issues an autoscale command,
waits 5 seconds for the oscilloscope to collect data, and then gets and prints
the measurement.
10 OUTPUT XXX;":SELECT 2"

20 OUTPUT XXX;":AUTOSCALE"
25 WAIT 5
30 DIM Me$[200]
40 OUTPUT ;":MEASURE:SOURCE CHANNEL1;ALL?"
50 ENTER XXX;Me$
60 PRINT Me$
70 END

The three Xs (XXX) after the OUTPUT and ENTER statements in the above
example refer to the device address required for programming over either
HP-IB or RS-232-C. Refer to chapter 1, "Introduction to Programming" for
information on initializing the interface.

For more information on the specific oscilloscope commands, refer to
chapters 29 through 36 of this manual.

Oscilloscope Root Level Commands
AUToscale

28-4

DIGitize

Command :DIGitize

The DIGitize command is used to acquire waveform data for transfer over
HP-IB and RS-232-C. The command initiates Repetitive Run for the
oscilloscope andthe analyzer if it is grouped with the oscilloscope via Group
Run. If a RUNtil condition has been specified in any module, the oscilloscope
and the grouped analyzer acquire data until the RUNtil conditions have been
satisfied.

The Acquire subsystem commands may be used to set up conditions such as
acquisition type and average count for the DIGitize command. See the
Acquire subsystem for the description of these commands.

When a count number in the average acquisition type has been specified, the
oscilloscope and grouped analyzer acquire data until these conditions have
been satisfied.

When both the RUNtil and the ACQuire:COUNt have been satisfied, the
acquisition stops.

For faster data transfer over the interface bus, display a menu that has no
waveforms on screen.

The DIGitize command is an overlap command, so ensure that all data has been
acquired and stored in the channel buffers before executing any other
commands. The MESE command and the MESR query may be used to check
for run complete or a WAIt instruction may be inserted after the DIGitize
command to ensure enough time for command execution.

Example OUTPUT XXX;":DIGITIZE"

See Also Chapter 43, "Programming Examples," for an example using the DIGitize
command.

Oscilloscope Root Level Commands
DIGitize

28-5

28-6

29

ACQuire Subsystem

Introduction

The Acquire Subsystem commands are used to set up acquisition
conditions for the DIGitize command of the oscilloscope system. The
subsystem contains commands to select the type of acquisition and
the number of averages to be taken if the average type is chosen.
Refer to Figure 28-1 for the ACQuire Subsystem Syntax Diagram. The
ACQuire Subsystem commands are:

• COUNt

• TYPE

This chapter applies only to CS models.

29-2

Figure 29-1

ACQuire Subsystem Syntax Diagram

Table 29-1 ACQuire Parameter Values

Parameter Value

count_arg {2|4|8|16|32|64|128|256}
The number of averages to be
taken of each time point.

ACQuire Subsystem

29-3

COUNt

Command :ACQuire:COUNt <count>

The COUNt command specifies the number of acquisitions for the running
weighted average. The COUNt command is only available when the
acquisition mode is AVERage. This command generates error 211 ("Legal
command but Settings conflict") if Normal acquisition mode is specified.

<count> {2|4|8|16|32|64|128|256}

Example OUTPUT XXX;":ACQUIRE:COUNT 16"

Query :ACQuire:COUNt?

The COUNt query returns the last specified count.
Returned Format [:ACQuire:COUNt] <count><NL>

Example OUTPUT XXX;":ACQ:COUN?"

ACQuire Subsystem
COUNt

29-4

TYPE

Command :ACQuire:TYPE {NORMal|AVERage}

The TYPE command selects the type of acquisition that is to take place
when a DIGitize or STARt command is executed. One of two acquisition
types may be chosen: the NORMal or AVERage mode.

In the NORMal mode, with the ACCumulate command OFF, the oscilloscope
acquires waveform data and then displays the waveform. When the
oscilloscope makes a new acquisition, the previously acquired waveform is
erased from the display and replaced by the newly acquired waveform. When
the ACCumulate command is ON, the oscilloscope displays all the waveform
acquisitions without erasing the previously acquired waveform.

In the AVERage mode, the oscilloscope averages the data points on the
waveform with previously acquired data. Averaging helps eliminate random
noise from the displayed waveform. In this mode the ACCumulate command
is OFF. When AVERage mode is selected, the number of averages must also
be specified using the COUNt command. Previously averaged waveform data
is erased from the display and the newly averaged waveform is displayed.

Example OUTPUT XXX;":ACQUIRE:TYPE NORMAL"

Query :ACQuire:TYPE?

The TYPE query returns the last specified type.
Returned Format [:ACQuire:TYPE] {NORMal|AVERage}<NL>

Example OUTPUT XXX;":ACQUIRE:TYPE?"

ACQuire Subsystem
TYPE

29-5

29-6

30

CHANnel Subsystem

Introduction

The Channel Subsystem commands control the channel display and
the vertical axis of the oscilloscope. Each channel must be
programmed independently for all offset, range, and probe functions.
When ECL or TTL commands are executed, the vertical range, offset,
and trigger levels are automatically set for optimum viewing. Refer to
figure 30-1 for the CHANnel Subsystem Syntax Diagram. The
CHANnel Subsystem commands are:

• COUPling

• ECL

• OFFSet

• PROBe

• RANGe

• TTL

This chapter applies only to CS models.

30-2

Figure 30-1

CHANnel Subsystem Syntax Diagram

CHANnel Subsystem

30-3

Table 30-1 CHANnel Parameter Values

Parameter Value

channel_number {1|2}

offset_arg a real number defining the voltage at the center of the display. The
offset range is as follows (for a 1:1 probe setting):

Vertical Sensitivity Vertical Range Offset Voltage

4 mV - 100 mV/div 16 mV - 400 mV ±2 V

>100 mV - 400 mV/div >400 mV - 1.6 V ±10 V

>400 mV - 2.5 V/div >1.6 V - 10 V ±50 V

>2.5 V - 10 V/div >10 V - 40 V ±250 V

probe_arg an integer from 1 through 1000

range_arg a real number from 16 mV to 40 V specifying vertical sensitivity.

COUPling

Command :CHANnel<N>:COUPling {DC|AC|DCFifty}

The COUPling command sets the input impedance for the selected channel.
The choices are 1MΩ DC (DC), 1MΩ AC (AC), or 50 Ω DC (DCFifty).

<N> {1|2}

Example OUTPUT XXX;":CHANNEL1:COUPLING DC"

CHANnel Subsystem
COUPling

30-4

Query :CHANnel<N>:COUPling?

The COUPling query returns the current input impedance for the specified
channel.

Returned Format [:CHANnel<N>:COUPling:] {DC|AC|DCFifty}<NL>

Example OUTPUT XXX;":CHANNEL1:COUPLING?"

ECL

Command :CHANnel<N>:ECL

The ECL command sets the vertical range, offset, and trigger levels for the
selected input channel for optimum viewing of ECL signals. ECL values are:

Range: 2.0 V (500 mV per division)

Offset: -1.3 V

Trigger level: -1.3 V

<N> {1|2}

Example OUTPUT XXX;":CHANNEL1:ECL"

To return to "Preset User", change the CHANnel:RANGe, CHANnel:OFFSet, or
TRIGger:LEVel value.

CHANnel Subsystem
ECL

30-5

OFFSet

Command :CHANnel<N>:OFFSet <value>

The OFFSet command sets the voltage that is represented at center screen
for the selected channel. The allowable offset voltage values are shown in
the table below. The table represents values for a Probe setting of 1:1. The
offset value is recompensated whenever the probe attenuation factor is
changed.

<N> {1|2}

<value> allowable offset voltage value shown in the table below.

Vertical Range Offset Voltage

16 mV - 400 mV ±2 V

>400 mV - 1.6 V ±10 V

>1.6 V - 10 V ±50 V

>10 V - 40 V ±250 V

Example OUTPUT XXX;":CHAN1:OFFS 1.5"

Query :CHANnel<N>:OFFSet?

The OFFSet query returns the current value for the selected channel.
 Returned Format [:CHANnel<N>:OFFSet] <value><NL>

Example OUTPUT XXX;":CHANNEL1:OFFSET?"

CHANnel Subsystem
OFFSet

30-6

PROBe

Command :CHANnel<N>:PROBe <atten>

The PROBe command specifies the attenuation factor for an external probe
connected to a channel. The command changes the channel voltage
references such as range, offset, trigger level, and automatic measurements.
The actual sensitivity is not changed at the channel input. The allowable
probe attenuation factor is an integer from 1 to 1000.

<N> {1|2}

<atten> An integer from 1 to 1000

Example OUTPUT XXX;":CHAN1:PROB 10"

Query :CHANnel<N>:PROBe?

The PROBe query returns the probe attenuation factor for the selected
channel.

Returned Format [:CHANnel<N>:PROBe]<atten><NL>

Example OUTPUT XXX;":CHANNEL1:PROBE?"

CHANnel Subsystem
PROBe

30-7

RANGe

Command :CHANnel<N>:RANGe <range>

The RANGe command defines the full-scale (4 × Volts/Div) vertical axis of
the selected channel. The values for the RANGe command are dependent
on the current probe attenuation factor for the selected channel. The
allowable range for a probe attenuation factor of 1:1 is 16 mV to 40 V. For a
larger probe attenuation factor, multiply the range limit by the probe
attenuation factor.

<N> {1|2}

<range> 16 mV to 40 V for a probe attenuation factor of 1:1

Example OUTPUT XXX;":CHANNEL1:RANGE 4.8"

Query :CHANnel<N>:RANGe?

The RANGe query returns the current range setting.
Returned Format [:CHANnel<N>:RANGe] <range><NL>

Example OUTPUT XXX;":CHANNEL1:RANGE?"

CHANnel Subsystem
RANGe

30-8

TTL

Command :CHANnel<N>:TTL

The TTL command sets the vertical range, offset, and trigger level for the
selected input channel for optimum viewing of TTL signals. TTL values are:

Range: 6.0 V (1.50 V per division)

Offset: 2.5 V

Trigger Level: 1.62 V

<N> {1|2 }

Example OUTPUT XXX;":CHANNEL1:TTL"

To return to "Preset User" change the CHANnel:RANGe, CHANel:OFFSet, or
TRIGger:LEVel value.

CHANnel Subsystem
TTL

30-9

30-10

31

DISPlay Subsystem

Introduction

The Display Subsystem is used to control the display of data from the
oscilloscope. Refer to Figure 31-1 for the DISPlay Subsystem Syntax
Diagram. The DISPlay Subsystem commands are:

• ACCumulate

• CONNect

• INSert

• LABel

• MINus

• OVERlay

• PLUS

• REMove

This chapter applies only to CS models.

31-2

Figure 31-1

DISPlay Subsystem Syntax Diagram

DISPlay Subsystem

31-3

Table 31-1 DISPlay Parameter Values

Parameter Value

slot_# 1 or 2 1=analyzer, 2=oscilloscope.

bit_id an integer from 0 to 31.

channel_# 1 or 2.

label_str up to five characters enclosed in single quotes making up a
label name.

label_id a string of 1 alpha and 1 numeric character for the
oscilloscope, or 6 characters for the timing modules.

ACCumulate

Command :DISPlay:ACCumulate {{ON|1}|{OFF|0}}

The ACCumulate command works in conjunction with the commands in the
Acquisition Subsystem. In the Normal mode, the ACCumulate command
turns infinite persistence on or off.

Example OUTPUT XXX;":DISPLAY:ACC ON"

Query :DISPLAY:ACCumulate?

The ACCumulate query reports if accumulate is turned on or off.
Returned Format [:DISPlay:ACCumulate] {1|0}<NL>

Example OUTPUT XXX;":DISPLAY:ACCUMULATE?"

DISPlay Subsystem
ACCumulate

31-4

CONNect

Command :DISPlay:CONNect {{ON|1}|{OFF|0}}

The CONNect command sets the Connect Dots mode. When ON, each
displayed sample dot will be connected to the adjacent dot by a straight line.
When OFF, only the sampling points will be displayed.

Example OUTPUT XXX;":DISPLAY:CONNECT ON"

Query :DISPlay:CONNect?

The CONNect query reports if connect is on or off.
Returned Format [:DISPlay:CONNect] {1|0}<NL>

Example OUTPUT XXX;":DISPLAY:CONNECT?"

DISPlay Subsystem
CONNect

31-5

INSert

Command :DISPlay:INSert {[2,]<label> | 1,<label>,<bit_id>}

The INSert command inserts waveforms into the current display.
Time-correlated waveforms from the logic analyzer may be added to the
current display. The waveforms are added just below any currently displayed
signals. Only two oscilloscope waveforms can be displayed at any time.

The first parameter is optional when inserting an oscilloscope waveform. The
parameter specifies the instrument from which the waveform is to be taken.
If an instrument is not specified, the oscilloscope is assumed. The second
parameter is the label of the waveform that is to be added to the current
display. If you specify the waveform is from the analyzer by setting the first
parameter to 1, then you must also specify which bit.

<label> string of 1 alpha and 1 numeric character enclosed by single quotes for
oscilloscope waveforms or a string of up to 6 alphanumeric characters
enclosed by single quotes for analyzer waveforms.

<bit-id> integer from 0 to 31

Example OUTPUT XXX;":DISPLAY:INSERT ’C1’"
OUTPUT XXX;":DISPLAY:INSERT 1,’WAVE’,10"

For a complete explanation of the label name and the <bit_id> for the logic
analyzer, refer to chapter 15, "SFORmat Subsystem."

DISPlay Subsystem
INSert

31-6

LABel

Command :DISPlay:LABel CHANnel<N>,<label_str>

The LABel command is used to assign a label string to an oscilloscope
channel. For single channel traces, the label string (up to five characters)
appears on the left of the waveform area of the display. Note that the label
string cannot be used in place of the channel number when programming the
oscilloscope module.

<N> {1|2}

<label_str> a string of up to five characters enclosed in single quotes

Example OUTPUT XXX;":DISPLAY:LABEL CHANNEL1,’CLK’"

Query :DISPlay:LABel? CHANnel<N>

The LABel query returns the label string assigned to the specified channel. If
no label has been assigned, the default channel identifier (single character
and single number) is returned.

Returned Format [:DISPlay:LABel] CHANnel<N>,<label_str><NL>

Example OUTPUT XXX;":DISPLAY:LABEL? CHANNEL2"

DISPlay Subsystem
LABel

31-7

MINus

Command :DISPlay:MINus [<module_number>,]<label>,<label>

The MINus command algebraically subtracts one channel from another and
inserts the resultant waveform on the display. The first parameter is an
optional module specifier, always 2 for the oscilloscope. The next two
parameters are the labels of the waveforms selected to be subtracted. The
label names are defined in the same manner as the INSert command.

You cannot subtract analyzer waveforms.

<module_
number>

Always 2

<label> string of 1 alpha and 1 numeric character enclosed by single quotes

Example OUTPUT XXX;":DISPLAY:MINUS 2,’C1’,’C2’"

OVERlay

Command :DISPlay:OVERlay <label>,<label>

The OVERlay command overlays oscilloscope waveforms. The syntax
parameters are the labels of the waveforms that are to be overlaid. A label
may be used only once with each OVERlay command.

<label> string of 1 alpha and 1 numeric character enclosed by single quotes

Example OUTPUT XXX;":DISPLAY:OVERLAY ’C1’,’C2’"

DISPlay Subsystem
MINus

31-8

PLUS

Command :DISPlay:PLUS [<module_number>,]<label>,<label>

The PLUS command algebraically adds two channels and inserts the
resultant waveform to the current display. The first parameter is an optional
module specifier, always 2 for the oscilloscope. The next two parameters are
the labels of the waveforms that are to be added.

<module_
number>

Always 2

<label> string of 1 alpha and 1 numeric character enclosed by single quotes

Example OUTPUT XXX;":DISPLAY:PLUS 2,’C1’,’C2’"

REMove

Command :DISPlay:REMove

The REMove command removes all displayed waveforms from the current
display.

Example OUTPUT XXX;":DISPLAY:REMOVE"

DISPlay Subsystem
PLUS

31-9

31-10

32

MARKer Subsystem

Introduction

The oscilloscope has four markers for making time and voltage
measurement. These measurements may be made automatically or
manually. Additional features include the run until time (RUNTil)
mode and the ability to center on trigger or markers in the display
area (CENTer) and . The RUNTil mode allows you to set a stop
condition based on the time interval between the X marker and the O
marker. When this condition is met, the oscilloscope will stop
acquiring data. Refer to Figure 32-1 for the Marker Subsystem Syntax
Diagram. The MARKer Subsystem commands are:

• AVOLt • TMAXimum

• ABVolt • TMINimum

• BVOLt • TMODe

• CENTer • VMODe

• MSTats • VOTime

• OAUTo • VXTime

• OTIMe • VRUNs

• RUNTil • XAUTo

• SHOW • XTIMe

• TAVerage • XOTime

This chapter only applies to CS models.

32-2

Figure 32-1

MARKer Subsystem Syntax Diagram

MARKer Subsystem

32-3

Figure 32-1 (continued)

MARKer Subsystem Syntax Diagram (continued)

MARKer Subsystem

32-4

Figure 32-1 (continued)

MARKer Subsystem Syntax Diagram (continued)

Table 32-1 MARKer Parameter Values

Parameter Value

channel_# {1|2}

marker_time time in seconds

lt_arg time in seconds

gt_arg time in seconds

inrange_gt time in seconds

inrange_lt time in seconds

level level in volts

outrange_gt time in seconds

outrange_lt time in seconds

V level percentage of waveform voltage level, ranging from 10 to 90 of the
Vtop to Vbase voltage, or a specific voltage level

type {ABSolute | PERCent}

slope {POSitive | NEGative}

occurrence integer from 1 to 100

MARKer Subsystem

32-5

AVOLt

Command :MARKer:AVOLt CHANnel<N>,<level>

The AVOLt command moves the A marker to the specified voltage on the
indicated channel.

<N> {1|2}

<level> the desired marker voltage level, ±(2 × maximum offset)

Example OUTPUT XXX;":MARKER:AVOLT CHANNEL1,2.75"

Query :MARKer:AVOLt?

The AVOLt query returns the current voltage and channel selection for the A
marker.

Returned Format [:MARKer:AVOLt]CHANnel<N>,<level><NL>

Example OUTPUT XXX;":MARKER:AVOLT?"

MARKer Subsystem
AVOLt

32-6

ABVolt?

Query :MARKer:ABVolt?

The ABVolt query returns the difference between the A marker voltage and
the B marker voltage (Vb – Va).

Returned Format [:MARKer:ABVolt]<level><NL>

<level> level in volts of the B marker minus the A marker

Example OUTPUT XXX;":MARKER:ABVOLT?"

BVOLt

Command :MARKer:BVOLt CHANnel<N>,<level>

The BVOLt command moves the B marker to the specified voltage on the
indicated channel.

<N> {1|2}

<level> the desired marker voltage level, ±(2 × maximum offset)

Example OUTPUT XXX;":MARKER:BVOLT CHANNEL1,2.75"

Query :MARKer:BVOLt?

The BVOLt query returns the current voltage and channel selection for the B
marker.

Returned Format [:MARKer:BVOLt]CHANnel<N>,<level><NL>

Example OUTPUT XXX;":MARKER:BVOLT?"

MARKer Subsystem
ABVolt?

32-7

CENTer

Command :MARKer:CENTer {TRIGger|X|O}

The CENTer command allows you to position the indicated marker (TRIGger,
X, or O) at the center of the waveform area on the scope display. The
CENTer command adjusts the timebase delay to cause the trace to be
centered around the indicated marker (s/Div remains unchanged).

Example OUTPUT XXX;":MARKER:CENTER X"

MSTats

Command :MARKer:MSTats {{ON|1}|{OFF|0}}

The MSTats command allows you to turn statistics ON or OFF in the auto
marker mode. When statistics is turned on, Min X-O, Max X-O, and Mean
X-O times are displayed on screen. When off, X-O, Trig-X, and Trig-O times
will be displayed on screen.

Example OUTPUT XXX;":MARKER:MSTATS ON"

Query :MARKer:MSTats?

The MSTats query returns the current setting.
Returned Format [:MARKer:MSTats]{1|0}<NL>

Example OUTPUT XXX;":MARKER:MSTATS?"

MARKer Subsystem
CENTer

32-8

OAUTo

Command :MARKer:OAUTo {MANual|CHANnel<N>,<type>,<level>,
<slope>,<occurrence>}

The OAUTo command specifies the automatic placement specification for
the O marker. The first parameter specifies if automarker placement is to be
in the manual mode or on a specified channel. If a channel is specified, four
other parameters must be included in the command syntax. The four
parameters are marker type, level, the slope, and the occurrence count.

<N> {1|2}

<type> {ABSolute | PERCent}

<level> percentage of waveform voltage level, ranging from 10 to 90 of the Vtop to
Vbase voltage or a voltage level

<slope> {POSitive | NEGative}

<occurrence> integer from 1 to 100

Example OUTPUT XXX;":MARKER:OAUTO CHANNEL1,PERCent,50,POSITIVE,5"

Query :MARKer:OAUTo?

The OAUTo query returns the current settings.
Returned Format [:MARKer:OAUTo] (MANual|CHANnel<N>,<type>

<level>,<slope>,<occurrence>}<NL>

Example OUTPUT XXX;":MARKER:OAUTO?"

MARKer Subsystem
OAUTo

32-9

OTIMe

Command :MARKer:OTIMe <O_marker_time>

The OTIMe command moves the O marker to the specified time with respect
to the trigger marker.

<O_marker
_time>

time in seconds from trigger marker to O marker

Example OUTPUT XXX;":MARKER:OTIME 1E-6"

Query :MARKer:OTIMe?

The OTIMe query returns the time in seconds between the O marker and the
trigger marker.

Returned Format [:MARKer:OTIMe]<O_marker_time><NL>

Example OUTPUT XXX;":MARKER:OTIME?"

MARKer Subsystem
OTIMe

32-10

RUNTil (Run Until)

Command :MARKer:RUNTil
{OFF|LT,<time>|GT,<time>|INRange,<time>,<time>|
OUTRange,<time>,<time>}

The RUNTil command allows you to set a stop condition based on the time
interval between the X marker and the O marker. In repetitive runs, when
the time specification is met, the oscilloscope stops acquiring data and the
advisory "Stop condition satisfied" is displayed on screen.

<time> a real number specifying the time in seconds between the X and O markers

Example OUTPUT XXX;":MARKER:RUNTIL LT,1MS"

Query :MARKer:RUNTil?

The RUNTil query will return the current Run Until Time X - O setting.
Returned Format [:MARKer:RUNTil] {OFF|LT,<time>|GT,<time>|INRange,<time>,

<time>|OUTRange,<time>,<time>}<NL>

Example OUTPUT XXX;":MARKER:RUNTIL?"

MARKer Subsystem
RUNTil (Run Until)

32-11

SHOW

Command :MARKer:SHOW {SAMPle|MARKer}

The SHOW command allows you to select either SAMPle rate or MARKer
data (when markers are enabled) to appear on the oscilloscope menus above
the waveform area.

The SAMPle rate or MARKer data appears on the channel, trigger, display,
and auto-measure menus. Marker data is always present on the marker
menu. While sample rate data is only present on the marker menu when time
markers are turned off.

Example OUTPUT XXX;":MARKER:SHOW MARKER"

TAVerage?

Query :MARKer:TAVerage?

The TAVerage query returns the average time between the X and O markers.
If there is no valid data, the query returns 9.9E37.

Returned Format [:MARKER:TAVERAGE] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MARKER:TAVERAGE?"

MARKer Subsystem
SHOW

32-12

TMAXimum?

Query :MARKer:TMAXimum?

The TMAXimum query returns the value of the maximum time between the X
and O markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MARKer:TMAXimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MARKER:TMAXIMUM?"

TMINimum?

Query :MARKer:TMINimum?

The TMINimum query returns the value of the minimum time between the X
and O markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MARKer:TMINimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MARKER:TMINIMUM?"

MARKer Subsystem
TMAXimum?

32-13

TMODe

Command :MARKer:TMODe {OFF|ON|AUTO}

The TMODe command allows you to select the time marker mode. The
choices are OFF, ON, and AUTO. When OFF, time marker measurements
cannot be made. When the time markers are turned on, the X and O markers
can be moved to make time and voltage measurements. The AUTO mode
allows you to make automatic marker placements by specifying channel,
slope, and occurrence count for each marker. Also the Statistics mode may
be used when AUTO is chosen. Statistics mode allows you to make
minimum, maximum, and mean time interval measurements from the X
marker to the O marker.

Example OUTPUT XXX;":MARKER:TMODE ON"

Query :MARKer:TMODe?

The TMODe query returns the current marker mode choice.
Returned Format [:MARKer:TMODe] <state><NL>

<state> {ON | OFF | AUTO}

Example OUTPUT XXX;":MARKER:TMODE?"

For compatibility with older systems, the MMODe command/query functions the
same as the TMODe command/query.

MARKer Subsystem
TMODe

32-14

VMODe

Command :MARKer:VMODe {{OFF|0} | {ON|1}}

The VMODe command allows you to select the voltage marker mode. The
choices are OFF or ON. When OFF, voltage marker measurements cannot be
made. When the voltage markers are turned on, the A and B markers can be
moved to make voltage measurements. When used in conjunction with the
time markers (TMODe), both "delta t" and "delta v" measurements are
possible.

Example OUTPUT XXX;":MARKER:VMODE OFF"

Query :MARKer:VMODe?

The VMODe query returns the current voltage marker mode choice.
Returned Format [:MARKer:VMODe] <state><NL>

<state> {1|0} 1 = on, 0 = off

Example OUTPUT XXX;":MARKER:VMODE?"

MARKer Subsystem
VMODe

32-15

VOTime?

Query :MARKer:VOTime? CHANNEL<N>

The VOTime query returns the current voltage level of the selected source at
the O marker.

Returned Format [:MARKer:VOTime]<level><NL>

<N> {1|2}

<level> level in volts where the O marker crosses the waveform

Example OUTPUT XXX;":MARKER:VOTIME? CHANNEL1"

For compatibility with older systems, the OVOLt query functions the same as the
VOTime query.

VRUNs?

Query :MARKer:VRUNs?

The VRUNs query returns the number of valid runs and the total number of
runs made. Valid runs are those where the edge search for both the X and O
markers was successful, resulting in valid marker time measurement.

Returned Format [:MARKer:VRUNs] <valid_runs>,<total_runs><NL>

<valid_runs> positive integer

<total_runs> positive integer

Example OUTPUT XXX;":MARKER:VRUNS?"

MARKer Subsystem
VOTime?

32-16

VXTime?

Query :MARKer:XVOLt? CHANnel<N>

The VXTime query returns the current voltage level of the selected channel
at the X marker.

Returned Format [:MARKer:VXTime]<level><NL>

<N> {1|2}

<level> level in volts where the X marker crosses the waveform

Example OUTPUT XXX;":MARKER:VXTIME? CHANNEL1"

For compatibility with older systems, the XVOLt query functions the same as the
VXTime query.

MARKer Subsystem
VXTime?

32-17

XAUTo

Command :MARKer:XAUTo {MANual|CHANnel<N>,<type>,<level>,
<slope>,<occurrence>}

The XAUTo command specifies the automatic placement specification for
the X marker. The first parameter specifies if automarker placement is to be
in the Manual mode or on a specified channel. If a channel is specified, four
other parameters must be included in the command syntax. The four
parameters are marker type, level, slope, and the occurrence count.

<N> {1|2}

<type> {ABSolute | PERCent}

<level> percentage of waveform voltage level, ranging from 10 to 90 of the Vtop to
Vbase voltage or a voltage level

<slope> {POSitive | NEGative}

<occurrence> integer from 1 to 100

Example OUTPUT XXX;":MARKER:XAUTO CHANNEL1,ABS,4.75,POSITIVE,5"

Query :MARKer:XAUTo?

The XAUTo query returns the current settings.
Returned Format [:MARKer:XAUTo] {MANual | CHANnel<N>,<type>,

<level>,<slope>,<occurrence>}<NL>

Example OUTPUT XXX;":MARKER:XAUTO?"

MARKer Subsystem
XAUTo

32-18

XOTime?

Query :MARKer:XOTime?

The XOTime query returns the time in seconds from the X marker to the O
marker. If data is not valid, the query returns 9.9E37.

Returned Format [:MARKer:XOTime]<time><NL>

<time> real number

Example OUTPUT XXX;":MARKER:XOTIME?"

XTIMe

Command :MARKer:XTIMe <X_marker_time>

The XTIMe command moves the X marker to the specified time with respect
to the trigger marker.

<X_marker
_time>

time in seconds from trigger marker to X marker

Example OUTPUT XXX;":MARKER:XTIME 1E-6"

Query :MARKer:XTIMe?

The XTIMe query returns the time in seconds between the X marker and the
trigger marker.

Returned Format [:MARKer:XTIMe]<X_marker_time><NL>

Example OUTPUT XXX;":MARKER:XTIME?"

MARKer Subsystem
XOTime?

32-19

32-20

33

MEASure Subsystem

Introduction

The commands in the Measure Subsystem are used to make automatic
parametric measurements on oscilloscope waveforms. Except for
SOURce, no commands in the MEASure subsystem set values. The
MEASure subsystem commands are:

• ALL • SOURce
• FALLtime • VAMPlitude
• FREQuency • VBASe
• NWIDth • VMAX
• OVERshoot • VMIN
• PERiod • VPP
• PREShoot • VTOP
• PWIDth
• RISetime

This chapter applies only to CS models.

33-2

Figure 33-1

MEASure Subsystem Syntax Diagram

Table 33-1 MEASure Parameter Values

Parameter Value

channel_# {1|2}

MEASure Subsystem

33-3

ALL?

Query :MEASure:[SOURce CHANnel<N>;]ALL?

The ALL query makes a set of measurements on the displayed waveform
using the selected source.

<N> {1|2}

Returned Format [:MEASure:ALL PERiod] <real number>;
[RISetime] <real number>;
[FALLtime] <real number>;
[FREQuency] <real number>;
[PWIDth] <real number>;
[NWIDth] <real number>;
[VPP] <real number>;
[VAMPlitude] <real number>;
[PREShoot] <real number>;
[OVERshoot] <real number><NL>

Example OUTPUT XXX;":MEASURE:SOURCE CHANNEL1;ALL?"

If a parameter cannot be measured, the instrument responds with 9.9E37.

MEASure Subsystem
ALL?

33-4

FALLtime?

Query :MEASure:[SOURce CHANnel<N>;]FALLtime?

The FALLtime query makes a fall time measurement on the selected channel.
The measurement is made between the 90% to the 10% voltage point of the
first falling edge displayed on screen. If a parameter cannot be measured, the
instrument responds with 9.9E37.

Returned Format [:MEASure:FALLtime] <value><NL>

<N> {1|2}

<value> time in seconds between the 90% and 10% voltage points of the first falling
edge displayed on the screen

Example OUTPUT XXX;":MEASURE:SOUR CHAN2;FALLTIME?"

FREQuency?

Query :MEASure:[SOURce CHANnel<N>;]FREQuency?

The FREQency query makes a frequency measurement on the selected
channel. The measurement is made using the first complete displayed cycle
at the 50% voltage level. If a parameter cannot be measured, the instrument
responds with 9.9E37.

Returned Format [:MEASure:FREQuency]<value><NL>

<N> {1|2}

<value> frequency in Hertz

Example OUTPUT XXX;":MEASURE:SOUR CHAN1;FREQ?"

MEASure Subsystem
FALLtime?

33-5

NWIDth?

Query :MEASure:[SOURce CHANnel<N>;]NWIDth?

The NWIDth query makes a negative width time measurement on the
selected channel. The measurement is made between the 50% points of the
first falling and the next rising edge displayed on screen. If a parameter
cannot be measured, the instrument responds with 9.9E37.

Returned Format [:MEASure:NWIDth] <value><NL>

<N> {1|2}

<value> negative pulse width in seconds

Example OUTPUT XXX;":MEASURE:SOURCE CHAN2;NWID?"

OVERshoot?

Query :MEASure:[SOURce CHANnel<N>;]OVERshoot?

The OVERshoot query makes an overshoot measurement on the selected
channel. The measurement is made by finding a distortion following the first
major transition. The result is the ratio of OVERshoot to VAMPlitude. If
either cannot be measured, the instrument responds with 9.9E37.

Returned Format [:MEASure:OVERshoot]<value><NL>

<N> {1|2}

<value> ratio of OVERshoot to VAMPlitude

Example OUTPUT XXX;":MEASURE:SOURCE CHAN1;OVER?"

MEASure Subsystem
NWIDth?

33-6

PERiod?

Query :MEASure:[SOURce CHANnel<N>;]PERiod?

The PERiod query makes a period measurement of the first complete cycle
displayed on the selected channel at the 50% level. The measurement is
equivalent to the inverse of the frequency. If a parameter cannot be
measured, the instrument responds with 9.9E37.

Returned Format [:MEASure:PERiod] <value><NL>

<N> {1|2}

<value> waveform period in seconds

Example OUTPUT XXX;":MEASURE:SOURCE CHANNEL1;PERIOD?"

PREShoot?

Query :MEASure:[SOURce CHANnel<N>;]PREShoot?

The PREShoot query makes the preshoot measurement on the selected
channel. The measurement is made by finding a distortion which precedes
the first major transition on screen. The result is the ratio of PREshoot to
VAMPlitude. If a parameter cannot be measured, the instrument responds
with 9.9E37.

Returned Format [:MEASure:PREShoot] <value><NL>

<N> {1|2}

<value> ratio of PREShoot to VAMPlitude

Example OUTPUT XXX;":MEASURE:SOURCE CHANNEL2;PRES?"

MEASure Subsystem
PERiod?

33-7

PWIDth?

Query :MEASure:[SOURce CHANnel<N>;]PWIDth?

The PWIDth query makes a positive pulse width measurement on the
selected channel. The measurement is made by finding the time difference
between the 50% points of the first rising and the next falling edge displayed
on screen. If a parameter cannot be measured, the instrument responds with
9.9E37.

Returned Format [:MEASure:PWIDth] <value><NL>

<N> {1|2}

<value> positive pulse width in seconds

Example OUTPUT XXX;":MEASURE:SOURCE CHANNEL2;PWIDTH?"

RISetime?

Query :MEASure:[SOURce CHANnel<N>;]RISetime?

The RISetime query makes a risetime measurement on the selected channel
by finding the 10% and 90% voltage levels of the first rising edge displayed on
screen. If a parameter cannot be measured, the instrument responds with
9.9E37.

Returned Format [:MEASure:RISetime] <value><NL>

<N> {1|2}

<value> risetime in seconds

Example OUTPUT XXX;":MEASURE:SOUR CHAN1;RISETIME?"

MEASure Subsystem
PWIDth?

33-8

SOURce

Command :MEASure:SOURce CHANnel<N>

The SOURce command specifies the source to be used for subsequent
measurements. If the source is not specified, the last waveform source is
assumed.

<N> {1|2}

Example OUTPUT XXX;":MEASURE:SOURCE CHAN1"

Query :MEASure:SOURce?

The SOURce query returns the presently specified channel.
Returned Format [:MEASure:SOURce] CHANnel<N><NL>

Example OUTPUT XXX;":MEASURE:SOURCE?"

MEASure Subsystem
SOURce

33-9

VAMPlitude?

Query :MEASure:[SOURce CHANnel<N>;]VAMPlitude?

The VAMPlitude query makes a voltage measurement on the selected
channel. The measurement is made by finding the relative maximum (VTOP)
and minimum (VBASe) points on screen. If a parameter cannot be
measured, the instrument responds with 9.9E37.

Returned Format [:MEASure:VAMPlitude] <value><NL>

<N> {1|2}

<value> difference between top and base voltage

Example OUTPUT XXX;":MEASURE:SOURCE CHANNEL2;VAMP?"

VBASe?

Query :MEASure:[SOURce CHANnel<N>;]VBASe?

The VBASe query returns the base voltage (relative minimum) of a displayed
waveform. The measurement is made on the selected source. If a parameter
cannot be measured, the instrument responds with 9.9E37.

Returned Format [:MEASure:VBASe] <value><NL>

<N> {1|2}

<value> voltage at base (relative minimum) of selected waveform

Example OUTPUT XXX;":MEASURE:SOURCE CHAN1;VBAS?"

MEASure Subsystem
VAMPlitude?

33-10

VMAX?

Query :MEASure:[SOURce CHANnel<N>;]VMAX?

The VMAX query returns the absolute maximum voltage of the selected
source. If a parameter cannot be measured, the instrument responds with
9.9E37.

Returned Format [:MEASure:VMAX] <value><NL>

<N> {1|2}

<value> maximum voltage of selected waveform

Example OUTPUT XXX;":MEASURE:SOURCE CHAN2;VMAX?"

VMIN?

Query :MEASure:[SOURce CHANnel<N>;]VMIN?

The VMIN query returns the absolute minimum voltage present on the
selected source. If a parameter cannot be measured, the instrument
responds with 9.9E37.

Returned Format [:MEASure VMIN] <value><NL>

<N> {1|2}

<value> minimum voltage of selected waveform

Example OUTPUT XXX;":MEASURE:SOURCE CHAN1;VMIN?"

MEASure Subsystem
VMAX?

33-11

VPP?

Query :MEASure:[SOURce CHANnel<N>;]VPP?

The VPP query makes a peak-to-peak voltage measurement on the selected
source. The measurement is made by finding the absolute maximum
(VMAX) and minimum (VMIN) points on the displayed waveform. If a
parameter cannot be measured, the instrument responds with 9.9E37.

Returned Format [:MEASure:VPP]<value><NL>

<N> {1|2}

<value> peak-to-peak voltage of selected waveform

Example OUTPUT XXX;":MEASURE:SOURCE CHAN1;VPP?"

VTOP?

Query :MEASure:[SOURce CHANnel<N>;]VTOP?

The VTOP query returns the voltage at the top (relative maximum) of the
waveform on the selected source.

Returned Format [:MEASure:VTOP] <value><NL>

<N> {1|2}

<value> voltage at the top (relative maximum) of the selected waveform

Example OUTPUT XXX;":MEASURE:SOURCE CHAN2;VTOP?"

MEASure Subsystem
VPP?

33-12

34

TIMebase Subsystem

Introduction

The commands of the TIMebase Subsystem control the Timebase,
Trigger Delay Time, and the Timebase Mode. If TRIGgered mode is to
be used, ensure that the trigger specifications of the Trigger
Subsystem have been set.

The commands of the TIMebase subsystem are:

• DELay

• MODe

• RANGe

This chapter applies only to CS models.

34-2

Figure 34-1

TIMebase Subsystem Syntax Diagram

Table 34-1 TIMebase Parameter Values

Parameter Value

delay_arg delay time in seconds, from -2500 seconds through +2500 seconds.

range_arg a real number from 1 ns through 5 s

TIMebase Subsystem

34-3

DELay

Command :TIMebase:DELay <delay_time>

The DELay command sets the time between the trigger and the center of the
screen. The full range is available for panning the waveform when acquisition
is stopped.

<delay_time> delay time in seconds, from -2500 seconds through +2500 seconds.

Example OUTPUT XXX;":TIM:DEL 2US"

Query :TIMebase:DELay?

The DELay query returns the current delay setting.
Returned Format [:TIMebase DELay] <delay_time><NL>

Example OUTPUT XXX;":TIM:DEL?"

TIMebase Subsystem
DELay

34-4

MODE

Command :TIMebase:MODE {TRIGgered|AUTO}

The MODE command sets the oscilloscope timebase to either Auto or
Triggered mode. When the AUTO mode is chosen, the oscilloscope waits
approximately 50 ms for a trigger to occur. If a trigger is not generated
within that time, then auto trigger is executed. If a signal is not applied to
the input, a baseline is displayed. If there is a signal at the input and the
specified trigger conditions have not been met within 50 ms, the waveform
display will not be synchronized to a trigger.

When the TRIGgered mode is chosen, the oscilloscope waits until a trigger is
received before data is acquired. The TRIGgered mode should be used when
the trigger source signal has less than a 20-Hz repetition rate, or when the
trigger events counter is set so that the number of trigger events would not
occur before 50 ms.

The Auto-Trig On field in the trigger menu is the same as the AUTO mode
over HP-IB or RS-232-C. The TRIGgered command is the same as the
Auto-Trig Off on the front panel.

Example OUTPUT XXX;":TIM:MODE AUTO"

Query :TIMebase:MODE?

The MODE query returns the current Timebase mode.
Returned Format [:TIMebase:MODE] {AUTO|TRIGgered}<NL>

Example OUTPUT XXX;":TIMebase:MODE?"

TIMebase Subsystem
MODE

34-5

RANGe

Command :TIMebase:RANGe <range>

The RANGe command sets the full-scale horizontal time in seconds. The
RANGE value is ten times the value in the s/Div field.

<range> time in seconds

Example OUTPUT XXX;":TIMEBASE:RANGE 2US"

Query :TIMebase:RANGe?

The RANGe query returns the current setting.
Returned Format [:TIMebase:RANGe] <range><NL>

Example OUTPUT XXX;":TIMEBASE:RANGE?"

TIMebase Subsystem
RANGe

34-6

35

TRIGger Subsystem

Introduction

The commands of the Trigger Subsystem set all the trigger conditions
necessary for generating a trigger for the oscilloscope. Many of the
commands in the Trigger subsystem may be used in either the EDGE
or the PATTern trigger mode. If a command is a valid command for
the chosen trigger mode, then that setting will be accepted by the
oscilloscope. If the command is not valid for the trigger mode, an
error will be generated. None of the commands of this subsystem
(except Mode) are used in conjunction with Immediate trigger mode.

See Figure 35-1 for the TRIGger Subsystem Syntax Diagram.

The commands of the TRIGger subsystem are:

• CONDition

• DELay

• LEVel

• LOGic

• MODE

• PATH

• SLOPe

• SOURce

This chapter applies only to CS models.

35-2

Figure 35-1

TRIGger Subsystem Syntax Diagram

TRIGger Subsystem

35-3

Figure 35-1 (continued)

TRIGger Subsystem Syntax Diagram (continued)

Table 35-1 TRIGger Parameter Values

Parameter Value

channel_# An integer from 1 to 2

count_# an integer from 1 through 32000

level_value a real number from -6.0 V to +6.0 V

time a real number from 20 ns through 160 ms

TRIGger Subsystem

35-4

CONDition

Command :TRIGger:[MODE PATTern:] CONDition {ENTer|EXIT|
GT,<time>|LT,<time>|RANGe,<time>,<time>}

The CONDition command specifies if a trigger is to be generated on entry
(ENTer) to a specific logic pattern, when exiting (EXIT) the specified
pattern, or if a specified pattern duration (LT, GT, RANGe) is met. The
specified pattern is defined by using the LOGic command.

When ENTer is chosen, the oscilloscope will trigger on the first transition
that makes the pattern specification true for every input the number of times
specified by the trigger event count (DELay command).

When EXIT is selected, the oscilloscope will trigger on the first transition that
causes the pattern specification to be false after the pattern has been true for
the number of times specified by the trigger event count (DELay command).

When RANge is selected, the oscilloscope will trigger on the first transition
that causes the pattern specification to be false, after the pattern has been
true for the number of times specified by the trigger event count (DELAY
command). The first event in the sequence will occur when the specified
pattern is true for a time greater than that indicated by the first duration
term, and less than that indicated by the second duration term. All other
pattern true occurrences in the event count are independent of the pattern
duration range time.

When GT (greater than) is selected, the oscilloscope will trigger on the first
transition that causes the pattern specification to be false, after the pattern
has been true for the number of times specified by the trigger event count
(DELAY command). The first event in the sequence will occur when the
specified pattern is true for a time greater than that indicated by the trigger
specification. All other pattern true occurrences in the event count are
independent of the pattern duration time.

TRIGger Subsystem
CONDition

35-5

When LT (less than) is selected, the oscilloscope will trigger on the first
transition that causes the pattern specification to be false, after the pattern
has been true for the number of times specified by the trigger event count
(DELAY command). The first event in the sequence will occur when the
specified pattern is true for a time less than that indicated by the trigger
specification. All other pattern true occurrences in the event count are
independent of the pattern duration time.

<time> real number between 20 ns and 160 ms

Example OUTPUT XXX;":TRIG:COND ENT"

The oscilloscope cannot be programmed for a pattern duration (GT, LT, or
RANge) trigger if it is being armed by another module via Group Run or Arm In.

Query :TRIGger:CONDition?

The CONDition query returns the present condition.
Returned Format [:TRIGger CONDition]

{ENTer|EXIT|GT,<time>|LT,<time>|RANGe,<time>,<time>}<NL>

Example OUTPUT XXX;":TRIG:COND?"

TRIGger Subsystem
CONDition

35-6

DELay

Command :TRIGger:DELay [EVENt,]<count>

The DELay command is used to specify the number of events at which
trigger occurs. The time delay (see TIMe:DELay) is counted after the events
delay. The DELay command cannot be used in the IMMediate trigger mode.

In pattern mode, the DELay value corresponds to the Count field displayed
on the TRIGger menu.

<count> integer from 1 to 32000

Example OUTPUT XXX;":TRIGGER:DELAY 5"

Query :TRIGger:DELay?

The DELay query returns the current trigger events count.
Returned Format [:TRIGger:DELay] <count><NL>

Example OUTPUT XXX;":TRIG:DEL?"

TRIGger Subsystem
DELay

35-7

LEVel

Command For EDGE trigger mode:

:TRIGger:[MODE EDGE:SOURce CHANnel<N>;]
LEVel<value>

For PATTern trigger mode:

:TRIGger:[MODE PATTern:PATH CHANnel<N>;]
LEVel<value>

The LEVel command sets the trigger level voltage for the selected source or
path. This command cannot be used in the IMMediate trigger mode. In
EDGE trigger mode, the SOURce command is used; in PATTern mode, the
trigger PATH is used for the trigger level source. The LEVel command in
PATTern trigger mode sets the high/low threshold for the pattern.

<N> {1|2}

<value> Trigger level in volts

Example For EDGE trigger mode:
OUTPUT XXX;":TRIG:MODE EDGE;SOUR CHAN1;LEV 1.0"

For PATTern trigger mode:
OUTPUT XXX;":TRIG:MODE PATTERN;PATH CHANNEL2;LEVEL 1.0"

TRIGger Subsystem
LEVel

35-8

Query For EDGE trigger mode:

:TRIGger:[MODE EDGE;SOURce CHANnel<N>;]LEVel?

For PATTern trigger mode:

:TRIGger:[MODE PATTern;PATH CHANnel<N>;]LEVel?

The LEVel query returns the trigger level for the current path or source.
Returned Format [:TRIGger:LEVel] <value><NL>

Example For EDGE trigger mode:
OUTPUT XXX;":TRIGGER:SOURCE CHANNEL1;LEVEL?"

For PATTern trigger mode:
OUTPUT XXX;":TRIGGER:PATH CHANNEL1;LEVEL?"

TRIGger Subsystem
LEVel

35-9

LOGic

Command :TRIGger:[MODE PATTern;PATH CHANnel<N>;] LOGic
{HIGH|LOW|DONTcare}

The LOGic command sets the logic for each trigger path in the PATTern
trigger mode. The choices are HIGH, LOW, and DONTcare. The trigger level
set by the LEVel command determines logic high and low threshold levels.
Any voltage higher than the edge trigger level is considered a logic high for
that trigger path; any voltage lower than the trigger level is considered a logic
low for that trigger path.

<N> {1|2}

Example OUTPUT XXX;":TRIG:PATH CHAN1;LOG HIGH"

Query :TRIGger:LOGic?

The LOGic query returns the current logic of the previously selected trigger
or path.

Returned Format [:TRIGger:LOGic] {HIGH|LOW|DONTcare}<NL>

Example OUTPUT XXX;":TRIG:MODE PATT;PATH CHAN1;LOG?"

TRIGger Subsystem
LOGic

35-10

MODE

Command :TRIGger:MODE {EDGE|PATTern|IMMediate}

The MODE command allows you to select the trigger mode for the
oscilloscope. In the IMMediate trigger mode, the oscilloscope goes to a
freerun mode and does not wait for a trigger. Generally, the IMMediate mode
is used when correlating measurements with the analyzer.

In EDGE trigger mode, the oscilloscope triggers on an edge of a waveform,
specified by the SOURce, DELay, LEVel, and SLOPe commands. If a source
is not specified, then the current source is assumed.

In PATTern trigger mode, the oscilloscope triggers when entering or exiting a
specified pattern of the two internal channels and external trigger. The
pattern is generated using the CONDition, DELay, LEVel, LOGic and PATH
commands. The CONDition command allows the oscilloscope to trigger when
entering the specified pattern or exiting the pattern. The DELay value
corresponds to the Count field displayed on the TRIGger menu. The LOGic
command defines the pattern. The PATH command is used to change the
trigger pattern and level. The path consists of two channels.

Example OUTPUT XXX;":TRIGGER:MODE PATTERN"

Query :TRIGger:MODE?

The MODE query returns the current trigger mode selection.
Returned Format [:TRIGger:MODE] {EDGE|PATTern|IMMediate}<NL>

Example OUTPUT XXX;":TRIGGER:MODE?"

TRIGger Subsystem
MODE

35-11

PATH

Command :TRIGger:[MODE PATTern;]PATH CHANnel<N>

The PATH command is used to select a trigger path for the subsequent
LOGic and LEVel commands. This command can only be used in the
PATTern trigger mode.

<N> {1|2}

Example OUTPUT XXX;":TRIGGER:PATH CHANNEL1"

Query :TRIGger:PATH?

The PATH query returns the current trigger path.
Returned Format [:TRIGger PATH] CHANnel<N><NL>

Example OUTPUT XXX;":TRIGGER:PATH?"

SLOPe

Command :TRIGger:[MODE EDGE;SOURce CHANnel<N>;]SLOPe
{POSitive|NEGative}

The SLOPe command selects the trigger slope for the specified trigger
source. This command can only be used in the EDGE trigger mode.

<N> {1|2}

Example OUTPUT XXX;":TRIG:SOUR CHAN1;SLOP POS"

TRIGger Subsystem
PATH

35-12

Query :TRIGger:SLOPe?

The SLOPe query returns the slope of the current trigger source.
Returned Format [:TRIGger:SLOPe] {POSitive|NEGative}<NL>

Example OUTPUT XXX;":TRIG:SOUR CHAN1;SLOP?"

SOURce

Command :TRIGger:[MODE EDGE;]SOURce CHANnel<N>

The SOURce command is used to select the trigger source and is used for any
subsequent SLOPe and LEVel commands. This command can only be used in
the EDGE trigger mode. It is the equivalent to the PATH command for the
PATTern trigger mode.

<N> {1|2}

Example OUTPUT XXX;":TRIG:SOUR CHAN1"

Query :TRIGger:SOURce?

The SOURce query returns the current trigger source.
Returned Format [:TRIGger:SOURce] CHANnel<N><NL>

Example OUTPUT XXX;":TRIGGER:SOURCE?"

TRIGger Subsystem
SOURce

35-13

35-14

36

WAVeform Subsystem

Introduction

The commands of the Waveform subsystem are used to transfer
waveform data from the oscilloscope to a controller. The waveform
record is actually contained in two portions; the waveform data and
preamble. The waveform data is the actual data acquired for each
point when a DIGitize command is executed. The preamble contains
the information for interpreting waveform data. Data in the preamble
includes number of points acquired, format of acquired data, average
count, and the type of acquired data. The preamble also contains the
X and Y increments, origins, and references for the acquired data for
translation to time and voltage values.

The values set in the preamble are based on the settings of the
variables in the Acquire, Waveform, Channel, and Timebase
subsystems. The Acquire subsystem determines the acquisition type
and the average count, the Waveform subsystem sets the number of
points and format mode for sending waveform data over the remote
interface and the Channel and Timebase subsystems set all the X – Y
parameters.

Refer to Figure 36-3 for the Waveform Subsystem Syntax Diagram.

The two acquisition modes are Normal or Average.

The commands of the WAVeform subsytem are:

• COUNt • TYPE
• DATA • VALid
• FORMat • XINCrement
• POINts • XORigin
• PREamble • XREFerence
• RECord • YINCrement
• SOURce • YORigin
• SPERiod • YREFerence

This chapter only applies to CS models.

36-2

Format for Data Transfer

There are three formats for transferring waveform data over the remote
interface. These formats are WORD, BYTE, or ASCII.

WORD and BYTE formatted waveform records are transmitted using the
arbitrary block program data format specified in IEEE-488.2. When you use
this format, the ASCII character string "#8 <DD...D>" is sent before the actual
data.

The <D>s are eight ASCII numbers which indicate how many data bytes will
follow.

For example, if 8192 points of data are to be transmitted, the ASCII string
#800008192 would be sent.

BYTE Format

In BYTE format, the seven least significant bits represent the waveform data.
This means that the possible range of data is divided into 128 vertical
increments. The most significant bit is not used. If all "1"s are returned in
the seven least significant bits, the waveform is clipped at the top of the
screen. If all "0"s are returned, the waveform is clipped at the bottom of the
screen (see figure 36-1).

The data returned in BYTE format is the same for either Normal or Average
acquisition types. The data transfer rate in this format is faster than the
other two formats.

Figure 36-1

Byte Data Structure

WAVeform Subsystem
Format for Data Transfer

36-3

WORD Format

Word data is two bytes wide with the most significant byte of each word
being transmitted first. In WORD format, the 15 least significant bits
represent the waveform data. The possible range of data is divided into
32768 vertical increments. The WORD data structure for normal and average
acquisition types are shown in figure 36-2. If all "1"s are returned in the 15
least significant bits, the waveform is clipped at the top of the screen. If all
"0"s are returned in the 15 least significant bits, the waveform is clipped at
the bottom of the screen.

WORD and ASCII format data are more accurate than BYTE format data.
BYTE format simply truncates the 8 least significant bits of WORD format
data.

Figure 36-2

Word Data Structure

ASCII Format

ASCII-formatted waveform records are transmitted one value at a time,
separated by a comma. The data values transmitted are the same as would
be sent in the WORD format except that they are converted to an integer
ASCII format (six or less characters) before being transmitted. The header
before the data is not included in this format.

WAVeform Subsystem
Format for Data Transfer

36-4

Data Conversion

Data sent from the oscilloscope is raw data and must be scaled for useful
interpretation. The values used to interpret the data are the X and Y
references, X and Y origins, and X and Y increments. These values are read
from the waveform preamble (see the PREamble command) or by the
queries of these values.

Conversion from Data Value to Voltage

The formula to convert a data value returned by the instrument to a voltage
is:

voltage = [(data value - yreference) * yincrement] + yorigin

Conversion from Data Value to Time

The time value of a data point can be determined by the position of the data
point. As an example, the third data point sent with XORIGIN = 16ns,
XREFERENCE = 0 and XINCREMENT = 2ns. Using the formula:

time = [(data point number - xreference) * xincrement] + xorigin

would result in the following calculation:

time = [(3 - 0) * 2ns] + 16ns = 22ns.

Conversion from Data Value to Trigger Point

The trigger data point can be determined by calculating the closest data point
to time 0.

WAVeform Subsystem
Data Conversion

36-5

Figure 36-3

WAVeform Subsystem Syntax Diagram

WAVeform Subsystem
Data Conversion

36-6

Figure 36-3 (continued)

WAVeform Subsystem Syntax Diagram (Continued)

Table 36-1 WAVeform Parameter Values

Parameter Value

channel_# {1|2}

WAVeform Subsystem
Data Conversion

36-7

COUNt?

Query :WAVeform:COUNt?

The COUNt query returns the count last specified in the ACQuire Subsystem.
Returned Format [:WAVeform:COUNt] <count><NL>

<count> {2|4|8|16|32|64|128|256}

Example OUTPUT XXX;":WAVEFORM:COUNT?"

DATA?

Query :WAVeform:[SOURce CHANnel<N>;]DATA?

The DATA query returns the waveform record stored in a specified channel
buffer. The WAVeform:SOURce command is used to select the specified
channel. The data is transferred based on the FORMAT (BYTE, WORD, or
ASCII) chosen and the RECORD specified (FULL or WINDOW). Since
WAVeform:DATA is a query, it cannot be used to send a waveform record
back to the scope from the controller. If a waveform record is saved for later
reloading into the oscilloscope, the SYSTem:DATA command should be used.

Returned Format [:WAVeform:DATA]#800008000 <block data><NL>

<N> {1|2}

Example OUTPUT XXX;":WAVEFORM:DATA?"

See Also Chapter 37, "Programming Examples," for an example using the DATA
command.

WAVeform Subsystem
COUNt?

36-8

FORMat

Command :WAVeform:FORMat {BYTE|WORD|ASCii}

The FORMat command specifies the data transmission mode of waveform
data over the remote interface. See "Format for Data Transfer" earlier in this
chapter for information on the formats.

Example OUTPUT XXX;":WAV:FORM WORD"

Query :WAVeform:FORMat?"

The FORMat query returns the current format.
Returned Format [:WAVeform:FORMat]{BYTE|WORD|ASCii}<NL>

Example OUTPUT XXX;":WAVEFORM:FORMAT?"

POINts?

Query :WAVeform:POINts?

When WAVeform RECord is set to FULL, the POINts query always returns a
value of 8000 points. When WAVeform RECord is set to WINdow, then the
query returns the number of points displayed on screen.

Returned Format [:WAVeform:POINts] <points><NL>

<points> integer

Example OUTPUT XXX;":WAVEFORM:POINTS?"

WAVeform Subsystem
FORMat

36-9

PREamble?

Query :WAVeform[:SOURce CHANnel<N>;]PREamble?

The PREamble query returns the preamble of the specified channel. The
channel is specified using the SOURCE command.

Returned Format [:WAVeform:PREamble]<format>,<type>,<points>,<count>,
<Xincrement>,<Xorigin>,<Xreference>,<Yincrement>,<Yorigin>,
<Yreference><NL>

<N> {1|2}

<format> {0|1|2} 0 = ASCII, 1 = BYTE, 2 = WORD

<type> {1|2} 1 = Normal, 2 = Average

Example OUTPUT XXX;":WAVEFORM:PREAMBLE?"

For more information on the fields in PREamble, see the commands which query
the individual fields. For example, see the FORmat command for an explanation
of the format field.

WAVeform Subsystem
PREamble?

36-10

RECord

Command :WAVeform:[SOURce CHANnel<N>;]RECord {FULL|WINDow}

The RECord command specifies the data you want to receive over the bus.
The choices are FULL or WINdow. When FULL is chosen, the entire
8000-point record of the specified channel is transmitted over the bus. In
WINdow mode, only the data displayed on screen will be returned.

Example OUTPUT XXX;":WAV:SOUR CHAN1;REC FULL"

Query :WAVeform:RECord?

The RECord query returns the present mode chosen.
Returned Format [:WAVeform:RECord] {FULL|WINDow}<NL>

Example OUTPUT XXX;":WAVEFORM:RECORD?"

SOURce

Command :WAVeform:SOURce CHANnel<N>

The SOURce command specifies the channel that is to be used for all
subsequent waveform commands.

<N> {1|2}

Example OUTPUT XXX;":WAVEFORM:SOURCE CHANNEL1"

WAVeform Subsystem
RECord

36-11

Query :WAVeform:SOURce?

The SOURce query returns the presently selected channel.
Returned Format [:WAVeform:SOURce] CHANnel<N><NL>

Example OUTPUT XXX;":WAVEFORM:SOURCE?"

SPERiod?

Query :WAVeform:SPERiod?

The SPERiod query returns the present sampling period. The sample period
is determined by the DELay and the RANGe commands of the TIMEbase
subsystem.

Returned Format [:WAVeform:SPERiod] <period><NL>

<period> time in seconds

Example OUTPUT XXX;":WAVEFORM:SPERIOD?"

TYPE?

Query :WAVeform:TYPE?

The TYPE query returns the presently acquisition type (normal or average).
The acquisition type is specified in the ACQuire Subsystem using the
ACQuire TYPE command.

Returned Format [:WAVeform:TYPE]{NORMal|AVERage}<NL>

Example OUTPUT XXX;":WAVEFORM:TYPE?"

WAVeform Subsystem
SPERiod?

36-12

VALid?

Query :WAVeform:VALid?

The VALid query checks the oscilloscope for acquired data. If a
measurement is completed, and data has been acquired by all channels, then
the query reports a 1. A 0 is reported if no data has been acquired for the
last acquisition.

Returned Format [:WAVeform:VALid] {0|1}<NL>

0 No data acquired

1 Data has been acquired

Example OUTPUT XXX;":WAVEFORM:VALID?"

XINCrement?

Query :WAVeform:XINCrement?

The XINCrement query returns the X increment currently in the preamble.
This value is the time difference between the consecutive data points.
X increment is determined by the RECord mode as follows:

• In FULL record mode, the X-increment equals the time period between
data samples (or sample period).

• In WINDow record mode, the X increment is the time between data points
on the display. The X increment for WINDow record data will be less than
or equal to the sample period.

Returned Format [:WAVeform:XINCrement]<value><NL>

<value> X increment value currently in preamble

Example OUTPUT XXX;":WAVEFORM:XINCREMENT?"

WAVeform Subsystem
VALid?

36-13

XORigin?

Query :WAVeform:[SOURce CHANnel<N>;]XORigin?

The XORigin query returns the X origin value currently in the preamble. The
value represents the time of the first data point in memory with respect to
the trigger point.

Returned Format [:WAVeform:XORigin]<value><NL>

<N> {1|2}

<value> X origin currently in preamble

Example OUTPUT XXX;":WAV:XOR?"

XREFerence?

Query :WAVeform:XREFerence?

The XREFerence query returns the current X reference value in the
preamble. This value specifies the X value of the first data point in memory
and is always 0.

Returned Format [:WAVeform:XREFerence]<value><NL>

<value> X reference value in the preamble

Example OUTPUT XXX;":WAVEFORM:XREFERENCE?"

WAVeform Subsystem
XORigin?

36-14

YINCrement?

Query :WAVeform:[SOURce CHANnel<N>;]YINCrement?

The YINCrement query returns the Y increment value currently in the
preamble. This value is the voltage difference between consecutive data
values.

Returned Format [:WAVeform:YINCrement]<value><NL>

<N> {1|2}

<value> Y increment value in preamble

Example OUTPUT XXX;":WAVEFORM:YINCREMENT?"

YORigin?

Query :WAVeform:[SOURce CHANnel<N>;]YORigin?

The YORigin query returns the Y origin value currently in the preamble. This
value is the voltage at center screen.

Returned Format [:WAVeform:YORigin]<value><NL>

<N> {1|2}

<value> Y origin value in preamble

Example OUTPUT XXX;":WAVEFORM:YORIGIN?"

WAVeform Subsystem
YINCrement?

36-15

YREFerence?

Query :WAVeform:YREFerence?

The YREFerence query returns the Y reference value currently in the
preamble. This value specifies the data value at center screen where Y origin
occurs.

Returned Format [:WAVeform:YREFerence]<value><NL>

<value> Y reference data value in preamble

Example OUTPUT XXX;":WAVEFORM:YREFERENCE?"

WAVeform Subsystem
YREFerence?

36-16

Part 5

Pattern Generator Commands

37

Programming the Pattern
Generator

Programming the Pattern Generator

This chapter provides you with the information needed to program
the pattern generator of the 1660CP-Series logic analyzer.

• Programming overview and instructions to help you get started

• Pattern Generator command tree

• Alphabetic command-to-subsystem directory

The next section contains the pattern generator commands and the
following four sections contain the subsystem commands for the
pattern generator. The final section contains information on the
SYSTem:DATA and SYSTem:SETup commands.

37–2

Programming Overview

This section introduces you to the basic command structure used to
program the pattern generator.

Example Pattern Generator Program

A typical pattern generator program includes the following tasks:

• select the pattern generator

• set program parameters

• define a pattern generator program

• run the pattern generator program

The following example program generates a pattern using two of output pods:
10 OUTPUT XXX;":SELECT 2"

20 OUTPUT XXX;":FORMAT:REMOVE ALL"
30 OUTPUT XXX;":FORMAT:LABEL ’A’,POSITIVE,127,0"
40 OUTPUT XXX;":FORMAT:LABEL ’B’,POSITIVE,0,255"
50 OUTPUT XXX;":SEQ:REMOVE ALL"
60 OUTPUT XXX;":SEQ:INSERT 0,NOOP,’#H7F’,’#HFF’"
70 OUTPUT XXX;":SEQ:INSERT 4,NOOP,’#H7F’,’#HFF’"
80 OUTPUT XXX;":RMODE REPETITIVE"
90 OUTPUT XXX;":START"
100 END

The three Xs (XXX) after the OUTPUT statement in the above example refer to
the device address required for programming over either HP-IB or RS-232-C.
Refer to your controller manual and programming language reference manual
for information on initializing the interface.

Program Comments

Line 10 selects the pattern generator

Line 20 removes all labels previously assigned

37–3

Line 30 assigns label ’A’, positive polarity and assigns the seven least
significant bits of pod 5

Line 40 assigns label ’B’ and assigns all eight bits of pod 4

Line 50 removes all program lines

Line 60 inserts a new line (after line 0) in the INIT SEQUENCE portion of the
program.

Line 70 inserts a new line (after line 4) in the MAIN SEQUENCE portion of
the program. Recall that the default MAIN SEQUENCE already has two lines
of program

Line 80 Sets the RMODE to repetitive. If the program is to be run only once,
select the :RMODE SINGLE command.

Line 90 Starts the program.

Selecting the Pattern Generator

Before you can program the pattern generator, you must first "select" it,
otherwise, there is no way to direct your commands to the pattern generator.

To select the pattern generator, use this command:

:SELect 2

Programming the Pattern Generator
Selecting the Pattern Generator

37–4

Command Set Organization

The command set for the HP 1660CP is divided into four separate
subsystems. The subsystems are: FORMat, SEQuence, MACRo, and the
SYMBol subsystem. Each of the subsystems commands are covered in their
individual sections later in this chapter.

Each of these sections contain a description of the subsystem, syntax
diagrams and the commands in alphabetical order. The commands are
shown in long form and short form using upper and lower-case letters. For
example, FORMat indicates that the long form of the command is FORMAT
and the short form is FORM. Each of the commands contain a description of
the command and its arguments, the command syntax, and a programming
example.

The following figure shows the command tree for the pattern generator.

Pattern Generator Command Tree

Programming the Pattern Generator
Command Set Organization

37–5

Table 3-1 shows the alphabetical command to subsystem directory.

Table 3-1 Alphabetical Command to Subsystem Directory

Command Where Used

BASE SYMBol

CLOCk FORMat

COLumn SEQuence

DELay FORMat

EPATtern SEQuence

INSert MACRo, SEQuence

LABel FORMat

MODe FORMat

NAME MACRo

PARameter MACRo

PATTern SYMBol

PROGram SEQuence, MACRo

RANGe SYMBol

REMove FORMat, SEQuence, MACRo, SYMBol

RESume Pattern Generator Level

STEP Pattern Generator Level

WIDTh SYMBol

Programming the Pattern Generator
Command Set Organization

37–6

Pattern Generator Level Commands

The Pattern Generator Level Commands control the operation of pattern
generator programs. The two commands are STEP and RESume.

Pattern Generator Level Syntax Diagram

count = integer from 1 to 100,000 specifying the number of vectors stepped.

37–7

STEP

Command/Query The STEP command consists of four types: the STEP Count command, the
STEP command, the the STEP query, and the STEP FSTate command.

The STEP Count command specifies the vector range for the STEP
command. The valid vector range for the STEP Count command is from 1 to
100,000. The default is 1. If <count> is greater than the number of lines in
the program, STEP will loop back to the beginning until it has stepped
through <count> number of vectors.

The STEP command causes the pattern generator to step through the
number of vectors specified by the STEP Count command. If one of the
instructions is BREAK, STEP will not stop for it.

The STEP query returns the current count.

The STEP FSTate (step first state) command outputs the first vector of the
sequence.

If the vectors have been changed since last run, they must be loaded into the
hardware with either the :START command or :STEP FSTate.

STEP command
Syntax

:STEP

Example OUTPUT XXX;":STEP"

STEP Count
command Syntax

STEP <count>

<count> an integer from 1 to 100,000 specifying the number of vectors stepped.

Example 10 OUTPUT XXX;":STEP 20"
20 OUTPUT XXX;":STEP"

This example sets the step count to 20 in line 10, then in line 20 begins the
step command through the number of lines specified in line 10.

Programming the Pattern Generator
STEP

37–8

Query :STEP?

Returned Format [STEP] <count>

Example 10 DIM Sc$[100]
20 OUTPUT XXX;":STEP?"
30 ENTER XXX;Sc$
40 PRINT Sc$
50 END

This example queries and prints the step count.

STEP FSTate
command Syntax

:STEP FSTate

Example OUTPUT XXX;":STEP FSTATE"

Programming the Pattern Generator
STEP

37–9

RESume

Command When the pattern generator encounters a BREAK instruction, program
execution is halted. The RESume command allows the program to continue
until another BREAK instruction is encountered, or until the end of the
program is reached.

Command Syntax :RESume

Example OUTPUT XXX;":RESUME"

Programming the Pattern Generator
RESume

37–10

38

FORMat Subsystem

FORMat Subsystem

The commands of the Format subsystem control the pattern generator values
such as data output rate, delay, and the channels that you want to be active.
The Format subsystem also lets you specify the clock source and allows you
to group channels together under a common, user-defined name.

Format Subsystem Syntax Diagram

label name = a string of up to 6 alphanumeric characters
chan_assignment = an integer from 0 to 255
clk_period = a real number specifying the internal clock period
delay_arg = a integer specifying the delay

38–2

CLOCk

Command/Query The CLOCk command is used to specify the clock source for the pattern
generator. The choices are INTernal or EXTernal. With an internal clock
source, the clock period must also be specified (real number value).

With an external clock source, the clock frequency range must be specified
as one of the following:

• Less than or equal to 50 MHz (LEFifty)

• Greater than 50 MHz and less than or equal to 100 MHz (GTFifty)

• Greater than 100 MHz (GTONe)

The maximum clock rate is limited by the output channel mode selected (see
FORMat:MODe command).

Command Syntax :FORMat:CLOCk INTernal,<clk_period>
:FORMat:CLOCk EXTernal,{LEFifty|GTFifty|GTONe}

<clk_period> a real number clock period that corresponds to the front-panel selectable
clock period values.

Query Syntax :FORMat:CLOCk?

Returned Format [:FORMat:CLOCk] INTernal,<clk_period>
[:FORMat:CLOCk] EXTernal,{LEFifty|GTFifty|GTONe}

Example 10 DIM Cl$[100]
20 OUTPUT XXX;":FORMAT:CLOCK?"
30 ENTER XXX;Cl$
40 PRINT Cl$
50 END

This example queries and prints the current clock settings.

FORMat Subsystem
CLOCk

38–3

DELay

Command/Query The DELay command is used to specify the clock out delay. The clock out
delay setting allows positioning of the clock with respect to the data. The
delay setting that corresponds to zero is uncalibrated and must be measured
by the user to determine the basic clock/data timing. Subsequent settings
delay the clock approximately 1.3 ns per step.

The query returns the current clock out delay value.

Command syntax :FORMat:DELay<delay_arg>

<delay_arg> integer from 0 through 9

Query syntax :FORMat:DELay?

Returned format [FORMat:DELay]<delay_arg>

FORMat Subsystem
DELay

38–4

LABel

Command/Query The LABel command inserts a new label or modifies the contents of an
existing label. If more than 126 labels are specified, and an attempt is made
to insert another new label, the last label (bottom label) will be modified.

Only 16 labels may be inserted or modified at a time. If more than 16 labels
are specified per command, you will receive an error message.

Pattern generator channels can be assigned to only one label at a time. If
duplicate assignments are made, the last channel assignments take
precedence.

The second parameter sets the channel polarity. If the polarity is not
specified, the last polarity assignment is used. The last parameters assign the
active channels for each pod.

Each assignment parameter is a binary encoding of the channel assignments
of the pod. The pods are numbered in the same order as they appear in the
format menu, with zero representing the left-most pod (pod 5) of the pattern
generator. A "1" in a bit position means that the associated channel in that
pod is included in the label. A "0" in a bit position excludes the channel from
the label. The minimum value for any pod specification is 0, the maximum
value for all pods is 255. A value of 255 includes all channels of a pod
assignment. The query must specify a label name and returns the current pod
assignments and channel polarity for that label. A maximum of 32 bits can be
assigned to a label.

In half channel mode, only pods one and three are used.

Command Syntax :FORMat:LABel <label name>,[<polarity>,]<channel
assignment>, <channel assignment>

<label name> string of up to 6 alphanumeric characters

<polarity> polarity of the channel outputs,NEGative or POSitive

FORMat Subsystem
LABel

38–5

<channel
assignment>

a string in one of the following forms:
’#B01...’ for binary
’#Q01234567..’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal.

Example Full channel mode, all bits on pods 4 and 5:
OUTPUT XXX;":FORMAT:LABEL ’DATA’,POS,255,255,0,0,0"

Example Half channel mode, all bits on pods 3 and 5:
OUTPUT XXX;":FORMAT:LABEL ’STATUS’,NEG,15,255,0"

Query Syntax: :FORMat:LABel? <label name>

Returned Format: [:FORMat:LABel] <label name>,<polarity>,<channel
assignment>, <channel assignment><NL>

Example 10 DIM La$[100]
20 OUTPUT XXX;":FORMAT:LABEL? ’A’"
30 ENTER XXX;La$
40 PRINT La$
50 END

This example queries and prints the definition of label ’A’.

FORMat Subsystem
LABel

38–6

MODe

The MODe command is used to specify either FULL or HALF channel output
mode. Half channel mode allows a higher output data rate (greater than 100
MHz), but with only 20 channels per .

Full channel output mode limits the maximum data rate to 100 MHz but
allows use of 40 channels per .

The output mode selection sets the upper limit for the clock rate (see
FORMat:CLOCk command).

Command syntax: :FORMat:MODe{FULL|HALF}

Query syntax: :FORMat:MODe?

Returned format: [FORMat:MODe]{FULL|HALF}

Assigning labels in half-channel mode erases previously-assigned labels.

FORMat Subsystem
MODe

38–7

REMove

Command The REMove is used to delete a single label, or all labels from the format
menu. If a label name is specified, it must exactly match a label name
currently active in the format menu.

Command Syntax: :FORMat:REMove {ALL|<label name>}

<label name> a string of up to 6 alphanumeric characters

Example OUTPUT XXX;":FORMAT:REMOVE ALL"

FORMat Subsystem
REMove

38–8

39

SEQuence Subsystem

SEQuence Subsystem

The commands of the Sequence subsystem allow you to write a pattern
generator program using the parameters set in the Format subsystem.

SEQuence Subsystem Syntax Diagram

39–2

SEQuence Subsystem Syntax Diagram (cont.)

column_num = an integer specifying the column that is to receive the new label
label_name = the label name that is to be removed
prog_line_num = an integer specifying the program line number
label_value = a string in one of the following forms:

’#B01...’ for binary
’#Q01234567...’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal

repeat_cnt = an integer from 1 through 20,000
macro# = an integer from 0 to 99
if_event = {IF | IMB}
wait_event = {A | B | C | D | IMB}
patter_spec = an integer from 0 to 255

SEQuence Subsystem

39–3

COLumn

Command/Query The COLumn command allows you to reorder the labels in the Sequence and
Macro menus and set the numerical base for each label. Label order in the
Format menu is not changed when the COLUMN command is used.

The first parameter of the command specifies the column number, followed
by a label name and an optional number base. If a number base is not
specified, the current number base for the label is used. The instruction field
(leftmost column on screen) cannot be moved.

The query must include a column number and returns the label in that
column and its base.

Command Syntax: :SEQuence:COLumn <column number>,’<label name>’
[,{BINary|OCTal|DECimal|HEXadecimal|ASCii|SYMBol
|TWOs}]

<column
number>

an integer specifying the column that is to receive the new label

<label name> a string of up to six alphanumeric characters specifying the label name that is
to be moved

Example OUTPUT XXX;":SEQ:COL 1,’A’,HEX"

Query Syntax: :SEQuence:COLumn? <column number>

Returned Format: [SEQuence:COLUMN] <column number>,<label name>,
{BINary|OCTal|DECimal|HEXadecimal|ASCII|
SYMBol|TWOS}

Example 10 DIM Co$[100]
20 OUTPUT XXX;":SEQ:COL? 1"
30 ENTER XXX;Co$
40 PRINT Co$
50 END

SEQuence Subsystem
COLumn

39–4

EPATtern

Command/Query The EPATtern command is used to specify the event patterns used by the
WAIT and IF commands. The pattern generator has three external input
qualifiers (WAIT2, WAIT1, and WAIT0). There are eight combinations of the
three input qualifiers that may be OR’ed together to create an event pattern
specification. Mapping of these input qualifier patterns to an event pattern
specification is shown below.

WAIT2 WAIT1 WAIT0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

MSB x x x x x x x x LSB

<pattern_spec>

The query returns the current pattern specification for the given event.
Command syntax: :SEQuence:EPATtern { A|B|C|D|IF },<pattern_spec>

<pattern_spec> an integer between 0 and 255 mapping input qualifier combinations as shown
above.

Query syntax: :SEQuence:EPATtern? { A|B|C|D|IF }

Return format: [:SEQuence:EPATtern] { A|B|C|D|IF },<pattern_spec>

See next page for an example.

SEQuence Subsystem
EPATtern

39–5

Example To specify an event pattern of (0, 1, 0) [Wait2=0, Wait1=1, Wait0=0] use a
<pattern_spec> of 4 (0000 0100).

To specify an event pattern of (0, 0, 0) use a <pattern_spec>
of 1 (0000 0001).

To specify an event pattern of (0, 1, 1) OR (1, 1, 0) OR (1, 1, 1) use a
<pattern_spec> of 200 (1100 1000).

SEQuence Subsystem
EPATtern

39–6

INSert

Command The INSert command is the basic command used to build a pattern generator
sequence. This command is used to insert (or add) a sequence statement
after the specified line number.

The first parameter is the line number. The instruction is inserted in the
sequence after the specified line number. Sequence lines with instructions
other than NOOP cannot be inserted:

• Immediately after the INIT SEQUENCE START line.

• Immediately before or after the start of an IF.

• Immediately before or after the end of an IF.

• Immediately after the MAIN SEQUENCE START line.

• After the MAIN SEQUENCE END line.

• Immediately before the MAIN SEQUENCE END line.

No sequence lines may be inserted between the INIT SEQUENCE END and
the MAIN SEQUENCE START lines.

If the line number specified is greater than the MAIN SEQUENCE END line
number, the line will be inserted at the last legal location in the main
sequence. A legal pattern generator sequence is required to have at least two
lines in the main sequence (between MAIN SEQUENCE START and MAIN
SEQUENCE END lines).

The second parameter is the instruction for this sequence line. The available
instructions are described below

The third parameter is an optional instruction argument. This parameter will
only appear when required by a specific instruction.

The last parameter(s) are the data assignments for this line. These
assignments are normally made one per label, starting with the left-most
column in the display. Note the exception described for the MACRo
instruction.

You cannot assign values to more than 16 labels per instruction.

SEQuence Subsystem
INSert

39–7

Instructions

NOOP The NOOP instruction means there is no instruction for this line.

BREak The BREak instruction causes the execution of the sequence to
stop at this line. Use the RESume command to advance to the next
sequence line.

SIGNal The SIGNal instruction is the complement of the WAIT IMB
instruction. When the pattern generator encounters a SIGNal
instruction, it will output a signal to the internal Intermodule Bus (IMB).
This signal is used to trigger the logic analyzer.

WAIT The Wait instruction causes the pattern generator to stop and
wait for the occurrence of the specified event pattern(s). The event
patterns are specified elsewhere (SEQuence: EPATtern command). The
event to be waited for by this particular command is specified by the
optional instruction argument parameter. Once the specified event
occurs, the pattern generator program proceeds to the next state.

Valid wait events are { A | B | C | D | IMB }

IF The IF instruction allows a sequence of program states to occur if a
specified condition is true. The IF event pattern can be specified
elsewhere (SEQuence:EPATtern command).

The condition to be tested by the IF instruction is specified by the optional
instruction argument parameter. If the specified condition is true, the
sequence states included in the IF (lines between IF and IF END) are
executed. If the condition is not true, the sequence states within the IF are
skipped. Valid IF events are {IF | IMB}.

Note that there are clock speed, channel count, and location restrictions on
the use of the IF instruction.

REPeat The REPeat instruction allows a group of sequence states to be
executed repetitively some number of times. The repeat count is
specified in the optional instruction argument parameter.

Inserting a REPeat instruction causes three sequence lines to be generated.
The REPeat instruction line, a data line within the body of the repeat, and an
END LOOP instruction line.

No data appears in the REPEAT and END LOOP lines. The data specified as
part of the remote control command string appears in the body of the repeat
loop. Additional data lines can be added to the body of the repeat loop by

SEQuence Subsystem
INSert

39–8

inserting lines as needed. The repeat loop is assigned a loop number by the
system and is used to connect the limits of the repeat loop.

Note that there are location restrictions on the use of the REPeat instruction.

MACRo# The MACRo# instruction is used to invoke a previously
defined user macro. The macro number is part of the instruction string
(not the optional instruction argument parameter). If the macro has
been defined to use passed-in parameters, those parameter values are
passed in via the data value fields. If no parameters are defined, a single
dummy parameter must be used (’0’). There is otherwise no data
associated with a macro instruction.

Command Syntax :SEQuence:INSert <line_number>,{NOOP|IF,<event>|
WAIT,<event>|SIGNal|REPeat,<count>|BREAK|
MACRo<#>},<data_value>,<data_value>,...

<line_number> integer where instruction/data will be inserted after

<event> { A | B | C | D | IF | IMB }

<count> integer repeat count

<#> macro number

<data_value> a string in one of the following forms:
’#B01...’ for binary
’#Q01234567...’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal

Example

10 OUTPUT XXX; " :SEQ: INS 248, NOOP, ’17’, ’34’, ’121’"
20 OUTPUT XXX; " :SEQ: INS 1786, WAIT, A,’17’, ’34’, ’121’"
30 OUTPUT XXX; " :SEQ: INS 2652, REPEAT, 26, ’17’, ’34’, ’121’"
40 OUTPUT XXX; " :SEQ: INS 3166, MACR4, ’#HABCD’"
41 !Passes a single parameter to this instance of MACRO #4.
50 OUTPUT XXX; " :SEQ: INS 3186, MACR6, ’0’"
51 !Assume no parameter defined for MACRO 6.

SEQuence Subsystem
INSert

39–9

PROGram

Command/Query The PROGram command is used to modify an existing pattern generator
sequence line.

The first parameter is the line number. The instruction to be modified is at
the specified line number. Note that some lines cannot be modified
(SEQUENCE START and END) and some instructions can have parameters
modified, but the instruction type cannot be changed (REPeat can have the
repeat count changed, but it cannot be changed to a NOOP).

The second parameter is an optional label name. The label name allows any
data values specified in the command to be assigned starting with the label
name rather than defaulting to the first label. This is useful when modifying
only a portion of the data for a sequence line.

You cannot specify more than 16 labels per PROGram command. Use the
optional label parameter if the line you want to modify has more than 16 labels.

The third parameter is the instruction. The options for this parameter are
described below.

The fourth parameter is an optional instruction argument. This parameter
will only appear when required by a specific instruction as described below.

The last parameter(s) are the data assignments for this line. These
assignments are normally made one per label, starting with the left-most
column in the display.

Note that some instructions cannot be modified. To change the instruction
type in these cases, it is necessary to first REMove the line(s) and INSert
new lines(s).

The query returns the current contents (instruction and data) for the
specified line number.

SEQuence Subsystem
PROGram

39–10

Instructions

NOOP The NOOP instruction means there is no instruction for this line.

BREak The BREak instruction causes the execution of the sequence to
stop at this line. Use the RESume command to advance to the next line
sequence.

When operating at 200 MHz you can not have two Break enents in sucession.

SIGNal The SIGNal instruction outputs a signal to the internal
Intermodule Bus (IMB). This signal is used to trigger the logic analyzer.

WAIT The WAIT instruction causes the pattern generator to stop and
wait for the occurrence of the specified event pattern(s). The event
patterns are set by the SEQuence: EPATtern command. The event to be
waited for by this particular command is specified by the optional
instruction argument parameter. Once the specified event occurs, the
pattern generator program proceeds to the next state.

When operating at 200 MHz you can not have two Wait enents in sucession.

IF The IF instruction allows a sequence of program states to occur if a
specified condition is true. The IF event pattern is specified by the
SEQuence:EPATtern command.

The IF and END IF sequence lines cannot be modified other than changing
the if condition.

The condition to be tested by the IF instruction is specified by the optional
instruction argument parameter. If the specified condition is true, the
sequence states include the IF (lines between IF and IF END) are executed.
If the condition is not true, the sequence states within the IF are skipped.

Valid IF events are {IF | IMB}.

SEQuence Subsystem
PROGram

39–11

REPeat The REPeat instruction allows a group of sequence states to be
executed repetitively some number of times. The repeat count is
specified in the optional instruction argument parameter.

The REPeat and END LOOP sequence lines cannot be modified other than by
changing the loop count.

MACRo# The MACRo# instruction is used to invoke a previously
defined user macro. The macro number is part of the instruction string
(not the optional instruction argument parameter). If the macro has
been defined to use passed-in parameters, those parameter values are
passed in via the data value fields. If there are on parameters associated
with the macro, a single dummy parameter must be used (’0’). There is
otherwise no data associated with a macro instruction.

Command Syntax :SEQuence:PROGram <line_number>, [<optional_label>,]{ NOOP |
IF,<event> | WAIT,<event> | SIGNal | REPeat,<count> | BREAK |
MACRo<#> },<data_value>,<data_value>,...

SEQuence Subsystem
PROGram

39–12

<line_number> integer where instruction/data will be modified

<optional_
label>

a string of up to 6 alphanumeric characters specifying the label where
modification begins.

<event> {A|B|C|D|IF|IMB}

<count> integer repeat count

<#> macro number

<data_value> a string in one of the following forms:

’#B01...’ for binary
’#Q01234567...’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal

Query Syntax: :SEQuence:PROGram? <line_number>

Returned Format: {IF (External Pattern = #) | END IF | WAIT
<event> | SIG IMB | START LOOP # REPEAT # TIMES |
END LOOP # | BREAK | MACRO Macro# () | INIT
SEQUENCE START | INIT SEQUENCE END | MAIN
SEQUENCE START | MAIN SEQUENCE END},<data_value>,
<data_value>, ...

Example 10 OUTPUT XXX; " :SEQ: PROG 248, NOOP, ’17’, ’34’, ’121’"
20 OUTPUT XXX; " :SEQ: PROG 1786, WAIT, A,’17’, ’34’, ’121’"
30 OUTPUT XXX; " :SEQ: PROG 2652, REPEAT, 26, ’17’, ’34’,
’121’"
40 OUTPUT XXX; " :SEQ: PROG 3166, MACR4, ’#HABCD’"
41 ! Passes a single parameter to this instance of MACRO #4.
50 OUTPUT XXX; " :SEQ: PROG 3186, MACR6, ’0’"
51 ! Assume no parameter defined for MACRO 6.

SEQuence Subsystem
PROGram

39–13

REMove

Command The REMove command allows you to remove one or several lines from the
pattern generator program. If only one parameter number is given, that line
number is deleted. If two numbers are given, the range of lines between those
two values inclusive is deleted. The command REMove ALL deletes the entire
program.

Command Syntax: SEQuence:REMove{ <program line number[,<program
line range>]|ALL>}

<program line
number>

an integer specifying the program line to be removed

<program line
range>

an integer specifying the last line number in a range of lines to remove.

Example OUTPUT XXX;":SEQ:REM 1,4"

39–14

40

MACRo Subsystem

MACRo Subsystem

The commands of the MACRo subsystem allow you to write and edit macros
for use in the pattern generator program. Up to 100 macros may be called
into the main listing program. The macros are labeled Macro0 through
Macro99.

Macro0 is always available (initial contents are START/END lines only). All
other macros are created whenever a MACRo<#> subheader that is not yet
defined is used. The new macro will then appear on all macro lists until a
MACRo<#>:REMove command is issued.

A macro can be named (MACRo<#>:NAME command) but cannot be
referenced by remote control commands using that name.

The SEQuence:COLumn command is used to define the ordering of the
sequence display listing. Macro display listings will appear in the same order
as the main sequence. Changing the display while on a macro listing will also
affect the main sequence when you return to that display listing.

The SEQuence:EPATtern command is used to define event patterns that are
shared by both the main sequence and all macros. Changing an event pattern
definition for use by a single macro will change its definition for all other
macros and the main sequence.

The command REMove ALL can be used to totally clear the contents of a
macro, but it does not remove the macro from the macro list. The macro is
still accessible from the sequence, but the macro consist of only two lines.

The command REMove MACRo can be used to totally remove all contents of
a macro as well as any external reference to that macro. Note that while
Macro0 can be totally cleared, it cannot be removed from the macro list.

40–2

MACRo Subsystem Syntax Diagram

MACRo Subsystem

40–3

MACRo Subsystem Syntax Diagram (cont.)

prog_line_num = an integer specifying the program line number
macro_name = character string up to 6 characters in length
macro_number = an integer 0 through 99 specifying macro to act on
param_name = character string up to 6 characters in length
param_number = an integer 0 through 9
repeat_count = an integer from 1 through 20000
wait_event = { A | B | C | D | IMB }
label_name = character string up to 6 characters in length
label_value = data entry in one of the following forms:

’#B01...’ for binary
’#Q01234567...’ for octal
’#H012345679ABCDEF...’ for hexadecimal
’0123456789...’ for decimal
PARameter<#> for passed in macro parameter (# = 0 through 9)

MACRo Subsystem

40–4

INSert

Command The INSert command is the basic command used to build a pattern generator
macro. This command is used to insert (or add) a macro statement after the
specified line number.

The first parameter is the line number. The instruction and/or data will be
inserted in the macro after the specified line number. You cannot insert a
line just before the last data row. Macro lines cannot be inserted after the
MACRO END line.

If the line number specified is greater than the MACRO END line number, the
line will be inserted at the last legal location in the macro.

The second parameter is the instruction for this macro line. The available
instructions are described below

The third parameter is an optional instruction argument. This parameter will
only appear when required by a specific instruction.

The last parameter(s) are the data assignments for this line. These
assignments are normally made one per label, starting with the left-most
column in the display. In addition to the normal data values, parameters
passed in with a macro call can be inserted within the body of the macro.

Instructions

NOOP The NOOP instruction means there is no operation for this line.

BREak The BREak instruction causes the execution of the sequence to
stop at this line. Use the RESume command to advance to the next
macro line.

MACRo Subsystem
INSert

40–5

SIGNal The SIGNal instruction outputs a signal to the internal
Intermodule Bus (IMB). This signal is used to trigger the logic analyzer.

WAIT The WAIT instruction causes the pattern generator to stop and
wait for the occurrence of the specified event pattern(s). The event to
be waited for by this particular command is specified by the optional
instruction argument parameter. Once the specified event occurs, the
pattern generator program proceeds to the next state.

Valid wait events are { A | B | C | D | IMB }. Their patterns are set using the
SEQuence: EPATtern command.

REPeat The REPeat instruction allows a group of states to be executed
repetitively some number of times. The repeat count is specified in the
optional instruction argument parameter.

Inserting a REPeat instruction causes three lines to be generated: the
REPeat instruction line, a data line within the body of the repeat, and an
END LOOP instruction line. No data appears in the REPEAT and END LOOP
lines. The data specified as part of the remote control command string
appears in the body of the repeat loop. Additional data lines can be added to
the body of the repeat loop by inserting lines as needed. The repeat loop is
assigned a loop number by the system and is used to connect the limits of the
repeat loop.

MACRo Subsystem
INSert

40–6

Command Syntax :MACRo<m#>:INSert <line_number>, { NOOP |
WAIT,<event> | SIGNal | REPeat,<count> | BREAK }
,<data_value>,<data_value>,...

<line_number> integer which line instruction/data will be inserted after

<event> { A | B | C | D | IMB }

<count> integer repeat count

<m#> macro number (integer 0 through 99)

<p#> parameter number (integer 0 through 9)

<data_value> a string in one of the following forms:

’#B01...’ for binary
’#Q01234567...’ for octal
’#H0123456789ABCDEF... ’ for hexadecimal
’0123456789...’ for decimal
PARameter<p#>

Example OUTPUT XXX;":MACRO4:INSERT 3, BREAK, PAR1, ’13’"

MACRo Subsystem
INSert

40–7

NAME

Command/Query The NAME command is used to specify a name for a macro. This name will
then appear in the front panel lists and displays in place of the more generic
"Macro #" string.

The name cannot be used to reference the macro in programs. It is intended
for use as a means to clarify or document sequence listings and displays.

The query returns the user-defined macro name.

Command syntax: :MACRo<#>:NAME <macro_name>

<macro_name> a string up to six alphanumeric characters in length

<#> macro number (integer 0 through 99).

Query syntax: :MACRo<#>:NAME?

Return format: [:MACRo<#>:NAME] <macro_name>

MACRo Subsystem
NAME

40–8

PARameter

Command/Query The PARameter command is used to enable and name parameters for a
macro. The parameter name is optional, and if used, is for use on displays
and listings only. When a parameter is enabled, macro calls from the
sequence can pass values to the macro. These values can then be used as
data values in the body of the macro.

The query returns the current status of a parameter and its name.

Command syntax: :MACRo<m#>:PARameter<p#> { ON | OFF }[,<name>]

<m#> macro number (integer 0 through 99)

<p#> parameter number (integer 0 through 9)

<name> string up to six alphanumeric characters in length

Query syntax: :MACRo<m#>:PARameter<p#>?

Returned format: [:MACRo<m#>:PARameter<P#>] { ON | OFF },<name>

MACRo Subsystem
PARameter

40–9

PROGram

Command/Query The PROGram command is used to modify an existing pattern generator
macro line.

The first parameter is the line number of the instruction to be modified. Note
that some lines cannot be modified (MACRO and MACRO END) and some
instructions can have parameters modified. The instruction type cannot be
changed (REPeat can have the repeat count changed, but it cannot be
changed to a NOOP).

The second parameter is an optional label name. The label name allows any
data values specified in the command to be assigned starting with the label
name rather than defaulting to the first label. This is useful when modifying
only a portion of the data for a macro line.

You can only modify 16 labels per PROGram command. To modify more than 16
labels, use the optional label name parameter.

The third parameter is the instruction. The options for this parameter are
described below.

The fourth parameter is an optional instruction argument. This parameter
will only appear when required by a specific instruction as described below.

The last parameter(s) are the data assignments for this line. These
assignments are normally made one per label, starting with the left-most
column in the display. In addition to the normal data values, parameters
passed in with a macro call can be inserted within the body of the macro.
Specifying more than 16 data assignments will cause a command error.

Note that some instructions cannot be modified. To change the instruction
type in these cases, it is necessary to first REMove the line(s) and INSert
new lines(s).

The query returns the current contents (instruction and data) for the
specified line number.

MACRo Subsystem
PROGram

40–10

Instructions

NOOP The NOOP instruction means there is no operation for this line.

BREak The BREak instruction causes the execution of the macro to
stop at this line. Use the RESume command to advance to the next line
macro.

SIGNal The SIGNal instruction outputs a signal to the internal
Intermodule Bus (IMB). This signal is used to trigger the logic analyzer.

WAIT The WAIT instruction causes the pattern generator to stop and
wait for the occurrence of the specified event pattern(s). The event to
be waited for by this particular command is specified by the optional
instruction argument parameter. Once the specified event occurs, the
pattern generator program proceeds to the next state.

Valid WAIT events are { A | B | C | D | IMB }. Their patterns are set using the
SEQuence: EPATtern command.

REPeat The REPeat instruction allows a group of macro states to be
executed repetitively some number of times. The repeat count is
specified in the optional instruction argument parameter.

The REPeat and END LOOP sequence lines cannot be modified other than to
change the loop count.

MACRo Subsystem
PROGram

40–11

Command Syntax :MACRo<m#>:PROGram <line_number>,
[<optional_label>,]{ NOOP | WAIT,<event> | SIGNal
| REPeat,<count> | BREAK }
,<data_value>,<data_value>,...

<line_number> integer specifying the line of instruction/data to be modified

<optional_
label>

a string of up to six characters specifying a label

<event> { A | B | C | D | IMB}

<count> integer repeat count

<m#> macro number (integer 0 through 99)

<p#> parameter number (integer 0 through 9)

<data_value> a string in one of the following forms:

’#B01...’ for binary
’#Q01234567...’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal
PARameter<p#>

Query Syntax: :MACRo<#>:PROGram? <line_number>

Returned Format: [:MACRo<#>:PROGram] <line_number>, { NOOP | WAIT
<event> | SIG IMB | BREAK | MACRO END | START
LOOP # REPEAT # TIMES | END LOOP # | MACRO
Macro# () },<data_value>, <data_value>, ...

MACRo Subsystem
PROGram

40–12

REMove

Command The REMove allows you to remove one or several lines from the macro. If
only one parameter is given, only that line is deleted. If two numbers are
specified, the range of lines between those values, inclusive, is deleted.

The command REMove ALL can be used to totally clear the contents of a
macro, but it does not remove the macro from the macro list. This means the
macro is still accessible from the sequence, but the macro consists of only
two lines.

The command REMove MACRo can be used to totally remove all contents of
a macro as well as any external reference to the macro. Note that while
Macro0 can be totally cleared, it cannot be removed from the macro list.

Command Syntax: :MACRo<macro number>:REMove {<program line
number>[,<program line number>]|ALL|MACRo}

<macro number> an integer, 0 through 99

<program line> an integer specifying the program line to be removed

Example OUTPUT XXX;":MACRO1:REM 1,3"

MACRo Subsystem
REMove

40–13

40–14

41

SYMBol Subsystem

SYMBol Subsystem

The SYMBol subsystem contains the commands that allow you to define
symbols on the controller and download them to the Pattern Generator.

SYMBol Subsystem Syntax Diagram

41–2

<label_name> = string of up to 6 alphanumeric characters
<symbol_name> = string of up to 16 alphanumeric characters
<pattern_value> = string of one of the following forms:

’#B01X...’ for binary
’#Q01234567X..’ for octal
’#H0123456789ABCDEFX...’ for hexadecimal
’0123456789...’ for decimal

<start_value> = string of one of the following forms:
’#B01...’ for binary
’#Q01234567..’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal

<stop_value> = string of one of the following forms:
’#B01... for binary
’#Q01234567..’ for octal
"#H0123456789ABCDEF..." for hexadecimal
’0123456789...’ for decimal

<width_value> = integer from 1 to 16

SYMBol Subsystem

41–3

BASE

Command The BASE command sets the base in which symbols for the specified label
will be displayed in the symbol menu. It also specifies the base in which the
symbol offsets are displayed when symbols are used.

Note that BINary is not available for labels with more than 20 bits assigned.
In this case the base will default to HEXadecimal.

Command Syntax: :SYMBol:BASE <label_name>,<base_value>

<label_name> string of up to 6 alphanumeric characters

<base_value> {BINary | HEXadecimal | OCTal | DECimal | ASCii }

Example OUTPUT XXX;":SYMBol:BASE ’DATA’,HEXadecimal"

SYMBol Subsystem
BASE

41–4

PATTern

Command The PATTern command allows you to specify a symbol for a pattern on the
specified label. The pattern may contain "don’t cares" in the form of XX...X’s.

Command Syntax: :SYMBol:PATTern<label_name>,<symbol_name>,<pattern_value>

<label_name> string of up to 6 alphanumeric characters

<symbol_name> string of up to 16 alphanumeric characters

<pattern_value> string of one of the following forms:

’#B01X...’ for binary
’#Q01234567X..’ for octal
’#H0123456789ABCDEFX...’ for hexadecimal
’0123456789...’ for decimal

Example OUTPUT XXX;":SYMBol:PATTern ’STAT’, ’MEM_RD’,’#H01XX’"

SYMBol Subsystem
PATTern

41–5

RANGe

Command The RANGe command allows you to create a symbol for a range of values on
a label. Note that Don’t Cares are not allowed in range symbols.

Command Syntax: :SYMBol:RANGe<label_name>,<symbol_name>,
<start_value>,<stop_value>

<label_name> string of up to 6 alphanumeric characters

<symbol_name> string of up to 16 alphanumeric characters

<start_value>
<stop_value>

string in one of the following forms:
’#B01...’ for binary
’#Q01234567..’ for octal
’#H0123456789ABCDEF...’ for hexadecimal
’0123456789...’ for decimal

Example OUTPUT XXX;":SYMBol:RANGe ’STAT’,
’IO_ACCESS’,’#H0000’,’#H000F’"

SYMBol Subsystem
RANGe

41–6

REMove

Command The REMove command deletes all symbols from the symbol menu.

Command Syntax: :SYMBol:REMove

Example OUTPUT XXX;":SYMBol:REMove"

SYMBol Subsystem
REMove

41–7

WIDTh

Command The WIDTh command specifies the number of characters displayed when
symbols are used.

Note that the WIDTh command does not affect the displayed length of the
symbol value.

Command Syntax: :SYMBol:WIDTh <label_name>,<width_value>

<label_name> string of up to 6 alphanumeric characters

<width_value> integer from 1 to 16

Example OUTPUT XXX;":SYMBol:WIDTh ’DATA’,9 "

SYMBol Subsystem
WIDTh

41–8

42

DATA and SETup Commands

Data and Setup Commands

The DATA and SETup commands are system commands that allow you to
send and receive instrument configuration, setup and program data to and
from a controller in block form. This is useful for saving block data for
re-loading the pattern generator. This chapter explains how to use these
commands.

The block data for the DATA command is broken into byte positions and
descriptions. The SETup command block data is not described in detail. No
changes should be made to the "config" section of the block data.

Definition of Block Data

Block data is made up of a block length specifier and a variable number of
sections.

<block length specifier><section 1>...<section N>

<block length
specifier>

#8<length>

<length> the total length of all sections in byte format (must be represented with 8
digits)

Example If the total length of the block (all sections) is 14506 bytes, the block length
specifier would be "#800014506" since the length must be represented with 8
digits.

Sections consist of a section header followed by the section data as follows:

<section> <section header><section data>

<section
header>

16 bytes total: 10 bytes for the section name, 1 byte reserved (always 0),
1 byte for the module ID code (25 for pattern generator),
4 bytes for the length of the data in bytes

42–2

<section data> The section data format varies for each section and may be any length.

Note that the total length of a section is 16 (for the section header) plus the
length of the section data. Thus, when calculating the length of a block of
configuration data, don’t forget to add the length of the headers.

Example 10 DIM Block$[32000] !allocate enough memory for block data
20 DIM Specifier$[2]
30 OUTPUT XXX;"EOI ON"
40 OUTPUT XXX;"SYSTEM:HEAD OFF"
50 OUTPUT XXX;"SELECT 1" !select module
60 OUTPUT XXX;"SYSTEM:DATA? !send the data query
70 ENTER XXX USING"#,2A";Specifier$!read in #8
80 ENTER XXX USING"#,8D",Blocklength !read in block length
90 ENTER XXX USING"-K",Block$!read in data

DATA and SETup Commands

42–3

SYSTem:DATA

The DATA command is used to send and receive the pattern generator main
program listings and the macro listings. The complete pattern generator data
block consists of two sections not counting the SYMBOL section. The
sections are:

Section 1 "DATA "
Section 2 "MACROS "

Command Syntax: :SYSTem:DATA <block data>

Query Syntax: :SYSTem:DATA?

Returned Format: [:SYSTem:DATA] <block data><NL>

Section 1 "DATA "

The Main Program section contains the program listing data in binary form.
The length of this section depends on the length of the program listing.

Section 2 "MACROS "

The MACROS section contains all the program listing for all the macros. The
length of this section varies depending on the length of the macro listings.

DATA and SETup Commands
SYSTem:DATA

42–4

SYSTem:SETup

The SETup command for the pattern generator is used to configure system
parameters, such as the pod and bit assignment, clock rates, and output
mode by loading saved configurations.

The "CONFIG" section consists of 4082 bytes of information which fully
describe the main parameters for the pattern generator. The total length of
the section is 4082 bytes (recall that the section header is 16 bytes).

The data in this section of the block should not be changed to ensure proper
pattern generator operation.

Command Syntax: :SYSTem:SETup <block data>

Query Syntax: :SYSTem:SETup?

Returned Format: [:SYSTem:SETup] <block data><NL>

DATA and SETup Commands
SYSTem:SETup

42–5

42–6

Part 6

Programming Examples

43

Programming Examples

Introduction

This chapter contains short, usable, and tested program examples
that cover the most asked for examples. The following examples are
written in HP BASIC 6.2.

• Making a timing analyzer measurement

• Making a state analyzer measurement

• Making a state compare measurement

• Transferring logic analyzer configuration between the logic analyzer
and the controller

• Transferring logic analyzer data between the logic analyzer and the
controller

• Checking for measurement completion

• Sending queries to the logic analyzer

• Getting ASCII data with PRINt? ALL query

• Reading a disk catalog

• Printing to the disk using PRINT? ALL

• Transferring waveform data in byte format

• Transferring waveform data in word format

• Using AUToscale and the MEASure:ALL? Query

• Using subroutines in a measurement program

43–2

Making a timing analyzer measurement

This program sets up the logic analyzer to make a simple timing analyzer
measurement. This example can be used with E2433-60004 Logic Analyzer
Training board to acquire and display the output of the ripple counter. It can
also be modified to make any timing analyzer measurement.

10 ! ****************** TIMING ANALYZER EXAMPLE ******************
20 ! for the HP 1660C/CS/CP-series Logic Analyzer
30 !
40 ! **
50 ! Select the logic analyzer.
60 ! Always a 1 for the HP 1660C/CS/CP-series logic analyzers.
70 !
80 OUTPUT 707;":SELECT 1"
90 !
100 ! **
110 ! Name Machine 1 "TIMING," configure Machine 1 as a timing analyzer,
120 ! and assign pod 1 to Machine 1.
130 !
140 OUTPUT 707;":MACH1:NAME ’TIMING’"
150 OUTPUT 707;":MACH1:TYPE TIMING"
160 OUTPUT 707;":MACH1:ASSIGN 1"
170 !
180 ! **
190 ! Make a label "COUNT," give the label a positive polarity, and
200 ! assign the lower 8 bits.
210 !
220 OUTPUT 707;":MACHINE1:TFORMAT:REMOVE ALL"
230 OUTPUT 707;":MACH1:TFORMAT:LABEL ’COUNT’,POS,0,0,#B0000000011111111"
240 !
250 ! **
260 ! Specify FF hex for resource term A, which is the default trigger term
for
270 ! the timing analyzer.
280 !
290 OUTPUT 707;":MACH1:TTRACE:TERM A, ’COUNT’, ’#HFF’"
300 !
310 ! ***
320 ! Remove any previously inserted labels, insert the "COUNT"
330 ! label, change the seconds-per-division to 100 ns, and display the
340 ! waveform menu.

Programming Examples
Making a timing analyzer measurement

43–3

350 !
360 OUTPUT 707;":MACH1:TWAVEFORM:REMOVE"
370 OUTPUT 707;":MACH1:TWAVEFORM:INSERT ’COUNT’, ALL"
380 OUTPUT 707;":MACH1:TWAVEFORM:RANGE 1E-6"
390 OUTPUT 707;":MENU 1,5"
400 !
410 ! **
420 ! Run the timing analyzer in single mode.
430 !
440 OUTPUT 707;":RMODE SINGLE"
450 OUTPUT 707;":START"
460 !
470 ! **
480 ! Set the marker mode (MMODE) to time so that time tags are available
490 ! for marker measurements. Place the X-marker on 03 hex and the O-
500 ! marker on 07 hex. Then tell the timing analyzer to find the first
510 ! occurrence of 03h after the trigger and the first occurrence of 07h
520 ! after the X-marker is found.
530 !
540 OUTPUT 707;":MACHINE1:TWAVEFORM:MMODE TIME"
550 !
560 OUTPUT 707;":MACHINE1:TWAVEFORM:XPATTERN ’COUNT’,’#H03’"
570 OUTPUT 707;":MACHINE1:TWAVEFORM:OPATTERN ’COUNT’,’#H07’"
580 !
590 OUTPUT 707;":MACHINE1:TWAVEFORM:XCONDITION ENTERING"
600 OUTPUT 707;":MACHINE1:TWAVEFORM:OCONDITION ENTERING"
610 !
620 OUTPUT 707;":MACHINE1:TWAVEFORM:XSEARCH +1, TRIGGER"
630 OUTPUT 707;":MACHINE1:TWAVEFORM:OSEARCH +1, XMARKER"
640 !
650 ! ***
660 ! Turn the longform and headers on, dimension a string for the query
670 ! data, send the XOTIME query and print the string containing the
680 ! XOTIME query data.
690 !
700 OUTPUT 707;":SYSTEM:LONGFORM ON"
710 OUTPUT 707;":SYSTEM:HEADER ON"
720 !
730 DIM Mtime$[100]
740 OUTPUT 707;":MACHINE1:TWAVEFORM:XOTIME?"
750 ENTER 707;Mtime$
760 PRINT Mtime$
770 END

Programming Examples
Making a timing analyzer measurement

43–4

Making a state analyzer measurement

This state analyzer program selects the HP 1660C/CS/CP-series logic
analyzer, displays the configuration menu, defines a state machine, displays
the state trigger menu, sets a state trigger for multilevel triggering. This
program then starts a single acquisition measurement while checking for
measurement completion.

This program is written so that you can run it with the HP E2433-60004 Logic
Analyzer Training Board. This example is the same as the "Multilevel State
Triggering" example in chapter 5 of the Logic Analyzer Training Kit.

10 ! ******************** STATE ANALYZER EXAMPLE *************************
20 ! for the HP 1660C/CS/CP-series Logic Analyzers
30 !
40 ! ****************** SELECT THE LOGIC ANALYZER **********************
50 ! Select the logic analyzer.
60 ! Always a 1 for the HP 1660C/CS/CP-series logic analyzers.
70 !
80 OUTPUT 707;":SELECT 1"
90 !
100 ! ******************** CONFIGURE THE STATE ANALYZER **********************
110 ! Name Machine 1 "STATE," configure Machine 1 as a state analyzer, assign
120 ! pod 1 to Machine 1, and display System External I/O menu of the
130 ! logic analyzer.
140 !
150 OUTPUT 707;":MACHINE1:NAME ’STATE’"
160 OUTPUT 707;":MACHINE1:TYPE STATE"
170 OUTPUT 707;":MACHINE1:ASSIGN 1"
180 OUTPUT 707;":MENU 1,0"
190 !
200 ! ******************* SETUP THE FORMAT SPECIFICATION *********************
210 ! Make a label "SCOUNT," give the label a positive polarity, and
220 ! assign the lower 8 bits.
230 !
240 OUTPUT 707;":MACHINE1:SFORMAT:REMOVE ALL"
250 OUTPUT 707;":MACHINE1:SFORMAT:LABEL ’SCOUNT’, POS, 0,0,255"
260 !
270 ! ******************* SETUP THE TRIGGER SPECIFICATION ********************
280 ! The trigger specification will use five sequence levels with the trigger
290 ! level on level four. Resource terms A through E, and RANGE1 will be

Programming Examples
Making a state analyzer measurement

43–5

300 ! used to store only desired counts from the 8-bit ripple counter.
310 !
320 ! Display the state trigger menu.
330 !
340 OUTPUT 707;":MENU 1,3"
350 !
360 ! Create a 5 level trigger specification with the trigger on the
370 ! fourth level.
380 !
390 OUTPUT 707;":MACHINE1:STRIGGER:SEQUENCE 5,4"
400 !
410 ! Define pattern terms A, B, C, D, and E to be 11, 22, 33, 44 and 59
420 ! decimal respectively.
430 !
440 OUTPUT 707;":MACHINE1:STRIGGER:TERM A,’SCOUNT’,’11’"
450 OUTPUT 707;":MACHINE1:STRIGGER:TERM B,’SCOUNT’,’22’"
460 OUTPUT 707;":MACHINE1:STRIGGER:TERM C,’SCOUNT’,’33’"
470 OUTPUT 707;":MACHINE1:STRIGGER:TERM D,’SCOUNT’,’44’"
480 OUTPUT 707;":MACHINE1:STRIGGER:TERM E,’SCOUNT’,’59’"
490 !
500 ! Define a Range having a lower limit of 50 and an upper limit of 58.
510 !
520 OUTPUT 707;":MACHINE1:STRIGGER:RANGE1 ’SCOUNT’,’50’,’58’"
530 !
540 ! ***************** CONFIGURE SEQUENCE LEVEL 1 ***************************
550 ! Store NOSTATE in level 1 and Then find resource term "A" once.
560 !
570 OUTPUT 707;":MACHINE1:STRIGGER:STORE1 ’NOSTATE’"
580 OUTPUT 707;":MACHINE1:STRIGGER:FIND1 ’A’,1"
590 !
600 ! ***************** CONFIGURE SEQUENCE LEVEL 2 ***************************
610 ! Store RANGE1 in level 2 and Then find resource term "E" once.
620 !
630 OUTPUT 707;":MACHINE1:STRIGGER:STORE2 ’IN_RANGE1’"
640 OUTPUT 707;":MACHINE1:STRIGGER:FIND2 ’E’,1"
650 !
660 ! ***************** CONFIGURE SEQUENCE LEVEL 3 ***************************
670 ! Store NOSTATE in level 3 and Then find term "B" once.
680 !
690 OUTPUT 707;":MACHINE1:STRIGGER:STORE3 ’NOSTATE’"
700 OUTPUT 707;":MACHINE1:STRIGGER:FIND3 ’B’,1"
710 !
720 ! ***************** CONFIGURE SEQUENCE LEVEL 4 ***************************
730 ! Store a combination of resource terms (C or D or RANGE1) in level 4 and
740 ! Then Trigger on resource term "E."

Programming Examples
Making a state analyzer measurement

43–6

750 !
760 OUTPUT 707;":MACHINE1:STRIGGER:STORE4 ’(C OR D OR IN_RANGE1)’"
770 !
780 ! ************************ NOTE ***********************
790 ! The FIND command selects the trigger in the
800 ! sequence level specified as the trigger level.
810 ! ***
820 !
830 OUTPUT 707;":MACHINE1:STRIGGER:FIND4 ’E’,1"
840 !
850 ! ***************** CONFIGURE SEQUENCE LEVEL 5 ***************************
860 ! Store anystate on level 5
870 !
880 OUTPUT 707;":MACHINE1:STRIGGER:STORE5 ’ANYSTATE’"
890 !
900 ! ***************** START ACQUISITION ************************************
910 ! Place the logic analyzer in single acquisition mode, then determine when
920 ! the acquisition is complete.
930 !
940 OUTPUT 707;":RMODE SINGLE"
950 !OUTPUT 707;"*CLS"
960 OUTPUT 707;":START"
970 !
980 ! ****************** CHECK FOR MEASUREMENT COMPLETE **********************
990 ! Enable the MESR register and query the register for a measurement
1000 ! complete condition.
1010 !
1020 OUTPUT 707;":SYSTEM:HEADER OFF"
1030 OUTPUT 707;":SYSTEM:LONGFORM OFF"
1040 !
1050 Status=0
1060 OUTPUT 707;":MESE1 1"
1070 OUTPUT 707;":MESR1?"
1080 ENTER 707;Status
1090 !
1100 ! Print the MESR register status.
1110 !
1120 CLEAR SCREEN
1130 PRINT "Measurement complete status is ";Status
1140 PRINT "0 = not complete, 1 = complete"
1150 ! Repeat the MESR query until measurement is complete.
1160 WAIT 1
1170 IF (Status AND 1)=1 THEN GOTO 1190
1180 GOTO 1070
1190 PRINT TABXY(30,15);"Measurement is complete"

Programming Examples
Making a state analyzer measurement

43–7

1200 !
1210 ! ************************ VIEW THE RESULTS *****************************
1220 ! Display the State Listing and select a line number in the listing that
1230 ! allows you to see the beginning of the listing on the logic analyer
1240 ! display.
1250 !
1260 OUTPUT 707;":MACHINE1:SLIST:COLUMN 1, ’SCOUNT’, DECIMAL"
1270 OUTPUT 707;":MENU 1,7"
1280 OUTPUT 707;":MACHINE1:SLIST:LINE -16"
1290 !
1300 END

Programming Examples
Making a state analyzer measurement

43–8

Making a state compare measurement

This program example acquires a state listing, copies the listing to the
compare listing, acquires another state listing, and compares both listings to
find differences.

This program is written so that you can run it with the HP E2433-60012 Logic
Analyzer Training Board. This example is the same as the "Comparing State
Traces" example in chapter 4 of the Logic Analyzer Training Kit.

10 ! *********** STATE COMPARE EXAMPLE ********************************
20 ! for the HP 1660C/CS/CP-series Logic Analyzers
30 !
40 !
50 !************** SELECT THE LOGIC ANALYZER ************************
60 ! Select the logic analyzer.
70 ! Always a 1 for the HP 1660C/CS/CP-series logic analyzers.
80 !
90 OUTPUT 707;":SELECT 1"
100 !
110 !************** CONFIGURE THE STATE ANALYZER ***********************
120 ! Name Machine 1 "STATE," configure Machine 1 as a state analyzer, and
130 ! assign pod 1 to Machine 1.
140 !
150 OUTPUT 707;":MACHINE1:NAME ’STATE’"
160 OUTPUT 707;":MACHINE1:TYPE STATE"
170 OUTPUT 707;":MACHINE1:ASSIGN 1"
180 !
190 ! **
200 ! Remove all labels previously set up, make a label "SCOUNT," specify
210 ! positive logic, and assign the lower 8 bits of pod 1 to the label.
220 !
230 OUTPUT 707;":MACHINE1:SFORMAT:REMOVE ALL"
240 OUTPUT 707;":MACHINE1:SFORMAT:LABEL ’SCOUNT’, POS, 0,0,255"
250 !
260 ! **
270 ! Make the "J" clock the Master clock and specify the falling edge.
280 !
290 OUTPUT 707;":MACHINE1:SFORMAT:MASTER J, FALLING"
300 !
310 ! **
320 ! Specify two sequence levels, the trigger sequence level, specify
330 ! FF hex for the "a" term which will be the trigger term, and store

Programming Examples
Making a state compare measurement

43–9

340 ! no states until the trigger is found.
350 !
360 OUTPUT 707;":MACHINE1:STRIGGER:SEQUENCE 2,1"
370 OUTPUT 707;":MACHINE1:STRIGGER:TERM A,’SCOUNT’,’#HFF’"
380 OUTPUT 707;":MACHINE1:STRIGGER:STORE1 ’NOSTATE’"
390 OUTPUT 707;":MENU 1,3"
400 !
410 ! **
420 ! Change the displayed menu to the state listing and start the state
430 ! analyzer in repetitive mode.
440 !
450 OUTPUT 707;":MENU 1,7"
460 OUTPUT 707;":RMODE REPETITIVE"
470 OUTPUT 707;":START"
480 !
490 ! **
500 ! The logic analyzer is now running in the repetitive mode
510 ! and will remain in repetitive until the STOP command is sent.
520 !
530 PRINT "The logic analyzer is now running in the repetitive mode"
540 PRINT "and will remain in repetitive until the STOP command is sent."
550 PRINT
560 PRINT "Press CONTINUE"
570 PAUSE
580 !
590 !***
600 ! Stop the acquisition and copy the acquired data to the compare reference
610 ! listing.
620 !
630 OUTPUT 707;":STOP"
640 OUTPUT 707;":MENU 1,10"
650 OUTPUT 707;":MACHINE1:COMPARE:MENU REFERENCE"
660 OUTPUT 707;":MACHINE1:COMPARE:COPY"
670 !
680 ! The logic analyzer acquistion is now stopped, the Compare menu
690 ! is displayed, and the data is now in the compare reference
700 ! listing.
710 !
720 !***
730 ! Display line 4090 of the compare listing and start the analyzer
740 ! in a repetitive mode.
750 !
760 OUTPUT 707;":MACHINE1:COMPARE:LINE 4090"
770 OUTPUT 707;":START"
780 !

Programming Examples
Making a state compare measurement

43–10

790 ! Line 4090 of the listing is now displayed at center screen
800 ! in order to show the last four states acquired. In this
810 ! example, the last four states are stable. However, in some
820 ! cases, the end points of the listing may vary thus causing
830 ! a false failure in compare. To eliminate this problem, a
840 ! partial compare can be specified to provide predictable end
850 ! points of the data.
860 !
870 PRINT "Press CONTINUE to send the STOP command."
880 PAUSE
890 OUTPUT 707;":STOP"
900 !
910 !**
920 ! The end points of the compare can be fixed to prevent false failures.
930 ! In addition, you can use partial compare to compare only sections
940 ! of the state listing you are interested in comparing.
950 !
960 OUTPUT 707;":MACHINE1:COMPARE:RANGE PARTIAL, 0, 508"
970 !
980 ! The compare range is now from line 0 to +508
990 !
1000 !**
1010 ! Change the Glitch jumper settings on the training board so that the
1020 ! data changes, reacquire the data and compare which states are different.
1030 PRINT "Change the glitch jumper settings on the training board so that
the"
1040 PRINT "data changes, reacquire the data and compare which states are
different."
1050 !
1060 PRINT "Press CONTINUE when you have finished changing the jumper."
1070 !
1080 PAUSE
1090 !
1100 !**
1110 ! Start the logic analyzer to acquire new data and then stop it to compare
1120 ! the data. When the acquistion is stopped, the Compare Listing Menu will
1130 ! be displayed.
1140 !
1150 OUTPUT 707;":START"
1160 OUTPUT 707;":STOP"
1170 OUTPUT 707;":MENU 1,10"
1180 !
1190 !**
1200 ! Dimension strings in which the compare find query (COMPARE:FIND?)
1210 ! enters the line numbers and error numbers.

Programming Examples
Making a state compare measurement

43–11

1220 !
1230 DIM Line$[20]
1240 DIM Error$[4]
1250 DIM Comma$[1]
1260 !
1270 ! ***
1280 ! Display the Difference listing.
1290 !
1300 OUTPUT 707;":MACHINE1:COMPARE:MENU DIFFERENCE"
1310 !
1320 ! **
1330 ! Loop to query all 508 possible errors.
1340 !
1350 FOR Error=1 TO 508
1360 !
1370 ! Read the compare differences
1380 !
1390 OUTPUT 707;":MACHINE1:COMPARE:FIND? "&VAL$(Error)
1400 !
1410 ! **
1420 ! Format the Error$ string data for display on the controller screen.
1430 !
1440 IF Error99 THEN GOTO 1580
1450 IF Error9 THEN GOTO 1550
1460 !
1470 ENTER 707 USING "#,1A";Error$
1480 ENTER 707 USING "#,1A";Comma$
1490 ENTER 707 USING "K";Line$
1500 Error_return=IVAL(Error$,10)
1510 IF Error_return=0 THEN GOTO 1820
1520 !
1530 GOTO 1610
1540 !
1550 ENTER 707 USING "#,3A";Error$
1560 ENTER 707 USING "K";Line$
1570 GOTO 1610
1580 !
1590 ENTER 707 USING "#,4A";Error$
1600 ENTER 707 USING "K";Line$
1610 !
1620 ! **
1630 ! Test for the last error. The error number of the last error is the same
1640 ! as the error number of the first number after the last error.
1650 !
1660 Error_line=IVAL(Line$,10)

Programming Examples
Making a state compare measurement

43–12

1670 IF Error_line=Error_line2 THEN GOTO 1780
1680 Error_line2=Error_line
1690 !
1700 ! **
1710 ! Print the error numbers and the corresponding line numbers on the
1720 ! controller screen.
1730 !
1740 PRINT "Error number ",Error," is on line number ",Error_line
1750 !
1760 NEXT Error
1770 !
1780 PRINT
1790 PRINT
1800 PRINT "Last error found"
1810 GOTO 1850
1820 PRINT "No errors found"
1830 !
1840 !
1850 END

Programming Examples
Making a state compare measurement

43–13

Transferring the logic analyzer configuration

This program uses the SYSTem:SETup query to transfer the configuration of
the logic analyzer to your controller. This program also uses the
SYSTem:SETup command to transfer a logic analyzer configuration from the
controller back to the logic analyzer. The configuration data will set up the
logic analyzer according to the data. The SYSTem:SETup command differs
from the SYSTem:DATA command because it only transfers the
configuration and not acquired data.

10 ! ****************** SETUP COMMAND AND QUERY EXAMPLE ********************
20 ! for the HP 1660C/CS/CP-series logic analyzers
30 !
*** ! ********************* CREATE TRANSFER BUFFER *************************
50 ! Create a buffer large enough for the block data. See page 27-6 for
55 ! maximum block length.
56 !
60 ASSIGN @Buff TO BUFFER [170000]
70 !
80 ! **************** INITIALIZE HPIB DEFAULT ADDRESS *********************
90 !
100 REAL Address
110 Address=707
120 ASSIGN @Comm TO Address
130 !
140 CLEAR SCREEN
150 !
160 ! ************* INTITIALIZE VARIABLE FOR NUMBER OF BYTES *****************
170 ! The variable "Numbytes" contains the number of bytes in the buffer.
180 !
190 REAL Numbytes
200 Numbytes=0
210 !
220 ! ************** RE-INITIALIZE TRANSFER BUFFER POINTERS ******************
230 !
240 CONTROL @Buff,3;1
250 CONTROL @Buff,4;0
260 !
270 ! *********************** SEND THE SETUP QUERY **************************
280 OUTPUT 707;":SYSTEM:HEADER ON"
290 OUTPUT 707;":SYSTEM:LONGFORM ON"
300 OUTPUT @Comm;"SELECT 1"

Programming Examples
Transferring the logic analyzer configuration

43–14

310 OUTPUT @Comm;":SYSTEM:SETUP?"
320 !
330 ! ******************** ENTER THE BLOCK SETUP HEADER *********************
340 ! Enter the block setup header in the proper format.
350 !
360 ENTER @Comm USING "#,B";Byte
370 PRINT CHR$(Byte);
380 WHILE Byte<>35
390 ENTER @Comm USING "#,B";Byte
400 PRINT CHR$(Byte);
410 END WHILE
420 ENTER @Comm USING "#,B";Byte
430 PRINT CHR$(Byte);
440 Byte=Byte-48
450 IF Byte=1 THEN ENTER @Comm USING "#,D";Numbytes
460 IF Byte=2 THEN ENTER @Comm USING "#,DD";Numbytes
470 IF Byte=3 THEN ENTER @Comm USING "#,DDD";Numbytes
480 IF Byte=4 THEN ENTER @Comm USING "#,DDDD";Numbytes
490 IF Byte=5 THEN ENTER @Comm USING "#,DDDDD";Numbytes
500 IF Byte=6 THEN ENTER @Comm USING "#,DDDDDD";Numbytes
510 IF Byte=7 THEN ENTER @Comm USING "#,DDDDDDD";Numbytes
520 IF Byte=8 THEN ENTER @Comm USING "#,DDDDDDDD";Numbytes
530 PRINT Numbytes
540 !
550 ! ******************** TRANSER THE SETUP ********************************
560 ! Transfer the setup from the logic analyzer to the buffer.
570 !
580 TRANSFER @Comm TO @Buff;COUNT Numbytes,WAIT
600 !
610 ENTER @Comm USING "-K";Length$
620 PRINT "LENGTH of Length string is";LEN(Length$)
630 !
640 PRINT "**** GOT THE SETUP ****"
650 PAUSE
660 ! ********************* SEND THE SETUP **********************************
670 ! Make sure buffer is not empty.
680 !
690 IF Numbytes=0 THEN
700 PRINT "BUFFER IS EMPTY"
710 GOTO 1170
720 END IF
730 !
740 ! ********************* SEND THE SETUP COMMAND **************************
750 ! Send the Setup command
760 !

Programming Examples
Transferring the logic analyzer configuration

43–15

770 OUTPUT @Comm USING "#,15A";":SYSTEM:SETUP #"
780 PRINT "SYSTEM:SETUP command has been sent"
790 PAUSE
800 !
810 ! ********************* SEND THE BLOCK SETUP ****************************
820 ! Send the block setup header to the logic analyzer in the proper format.
830 !
840 Byte=LEN(VAL$(Numbytes))
850 OUTPUT @Comm USING "#,B";(Byte+48)
860 IF Byte=1 THEN OUTPUT @Comm USING "#,A";VAL$(Numbytes)
870 IF Byte=2 THEN OUTPUT @Comm USING "#,AA";VAL$(Numbytes)
880 IF Byte=3 THEN OUTPUT @Comm USING "#,AAA";VAL$(Numbytes)
890 IF Byte=4 THEN OUTPUT @Comm USING "#,AAAA";VAL$(Numbytes)
900 IF Byte=5 THEN OUTPUT @Comm USING "#,AAAAA";VAL$(Numbytes)
910 IF Byte=6 THEN OUTPUT @Comm USING "#,AAAAAA";VAL$(Numbytes)
920 IF Byte=7 THEN OUTPUT @Comm USING "#,AAAAAAA";VAL$(Numbytes)
930 IF Byte=8 THEN OUTPUT @Comm USING "#,AAAAAAAA";VAL$(Numbytes)
940 !
950 ! *********************** SAVE BUFFER POINTERS *************************
960 ! Save the transfer buffer pointer so it can be restored after the
970 ! transfer.
980 !
990 STATUS @Buff,5;Streg
1000 !
1010 ! ****************** TRANSFER SETUP TO THE HP 16550 *********************
1020 ! Transfer the setup from the buffer to the HP 1660A.
1030 !
1040 TRANSFER @Buff TO @Comm;COUNT Numbytes,WAIT
1050 !
1060 ! ********************** RESTORE BUFFER POINTERS ***********************
1070 ! Restore the transfer buffer pointer
1080 !
1090 CONTROL @Buff,5;Streg
1100 !
1110 ! ******************** SEND TERMINATING LINE FEED **********************
1120 ! Send the terminating linefeed to properly terminate the setup string.
1130 !
1140 OUTPUT @Comm;""
1150 !
1160 PRINT "**** SENT THE SETUP ****"
1170 END

Programming Examples
Transferring the logic analyzer configuration

43–16

Transferring the logic analyzer acquired data

This program uses the SYSTem:DATA query to transfer acquired data to
your controller. It is useful for getting acquired data for setting up the logic
analyzer by the controller at a later time. This query differs from the
SYSTem:SETup query because it transfers only the acquired data.

This program also uses the SYSTem:DATA command to transfer the logic
analyzer data from the controller back to the logic analyzer and load the
analyzer with the acquired data. The SYSTem:DATA command differs from
the SYSTem:SETup command because it transfers both the configuration
and the acquired data.

You should always precede the SYSTem:DATA query and command with the
SYSTem:SETup query and command if the acquired data depends on a specific
configuration. If you are only interested in the acquired data for post
processing in the controller and the data is not dependent on the configuration,
you can use the SYSTem:DATA query and command alone.

10 ! ****************** DATA COMMAND AND QUERY EXAMPLE ********************
20 ! for the HP 1660C/CS/CP-series logic analyzers
30 !
40 ! ********************* CREATE TRANSFER BUFFER *************************
50 ! Create a buffer large enough for the block data. See page 27-6 for
55 ! maximum block length.
56 !
60 ASSIGN @Buff TO BUFFER [170000]
70 !
80 ! **************** INITIALIZE HPIB DEFAULT ADDRESS *********************
90 !
100 REAL Address
110 Address=707
120 ASSIGN @Comm TO Address
130 !
140 CLEAR SCREEN
150 !
160 ! ************* INTITIALIZE VARIABLE FOR NUMBER OF BYTES *****************
170 ! The variable "Numbytes" contains the number of bytes in the buffer.
180 !
190 REAL Numbytes

Programming Examples
Transferring the logic analyzer acquired data

43–17

200 Numbytes=0
210 !
220 ! ************** RE-INITIALIZE TRANSFER BUFFER POINTERS ******************
230 !
240 CONTROL @Buff,3;1
250 CONTROL @Buff,4;0
260 !
270 ! *********************** SEND THE DATA QUERY **************************
280 OUTPUT 707;":SYSTEM:HEADER ON"
290 OUTPUT 707;":SYSTEM:LONGFORM ON"
300 OUTPUT @Comm;"SELECT 1"
310 OUTPUT @Comm;":SYSTEM:DATA?"
320 !
330 ! ******************** ENTER THE BLOCK DATA HEADER *********************
340 ! Enter the block data header in the proper format.
350 !
360 ENTER @Comm USING "#,B";Byte
370 PRINT CHR$(Byte);
380 WHILE Byte<>35
390 ENTER @Comm USING "#,B";Byte
400 PRINT CHR$(Byte);
410 END WHILE
420 ENTER @Comm USING "#,B";Byte
430 PRINT CHR$(Byte);
440 Byte=Byte-48
450 IF Byte=1 THEN ENTER @Comm USING "#,D";Numbytes
460 IF Byte=2 THEN ENTER @Comm USING "#,DD";Numbytes
470 IF Byte=3 THEN ENTER @Comm USING "#,DDD";Numbytes
480 IF Byte=4 THEN ENTER @Comm USING "#,DDDD";Numbytes
490 IF Byte=5 THEN ENTER @Comm USING "#,DDDDD";Numbytes
500 IF Byte=6 THEN ENTER @Comm USING "#,DDDDDD";Numbytes
510 IF Byte=7 THEN ENTER @Comm USING "#,DDDDDDD";Numbytes
520 IF Byte=8 THEN ENTER @Comm USING "#,DDDDDDDD";Numbytes
530 PRINT Numbytes
540 !
550 ! ******************** TRANSER THE DATA ********************************
560 ! Transfer the data from the logic analyzer to the buffer.
570 !
580 TRANSFER @Comm TO @Buff;COUNT Numbytes,WAIT
600 !
610 ENTER @Comm USING "-K";Length$
620 PRINT "LENGTH of Length string is";LEN(Length$)
630 !
640 PRINT "**** GOT THE DATA ****"
650 PAUSE

Programming Examples
Transferring the logic analyzer acquired data

43–18

660 ! ********************* SEND THE DATA **********************************
670 ! Make sure buffer is not empty.
680 !
690 IF Numbytes=0 THEN
700 PRINT "BUFFER IS EMPTY"
710 GOTO 1170
720 END IF
730 !
740 ! ********************* SEND THE DATA COMMAND **************************
750 ! Send the Setup command
760 !
770 OUTPUT @Comm USING "#,14A";":SYSTEM:DATA #"
780 PRINT "SYSTEM:DATA command has been sent"
790 PAUSE
800 !
810 ! ********************* SEND THE BLOCK DATA ****************************
820 ! Send the block data header to the logic analyzer in the proper format.
830 !
840 Byte=LEN(VAL$(Numbytes))
850 OUTPUT @Comm USING "#,B";(Byte+48)
860 IF Byte=1 THEN OUTPUT @Comm USING "#,A";VAL$(Numbytes)
870 IF Byte=2 THEN OUTPUT @Comm USING "#,AA";VAL$(Numbytes)
880 IF Byte=3 THEN OUTPUT @Comm USING "#,AAA";VAL$(Numbytes)
890 IF Byte=4 THEN OUTPUT @Comm USING "#,AAAA";VAL$(Numbytes)
900 IF Byte=5 THEN OUTPUT @Comm USING "#,AAAAA";VAL$(Numbytes)
910 IF Byte=6 THEN OUTPUT @Comm USING "#,AAAAAA";VAL$(Numbytes)
920 IF Byte=7 THEN OUTPUT @Comm USING "#,AAAAAAA";VAL$(Numbytes)
930 IF Byte=8 THEN OUTPUT @Comm USING "#,AAAAAAAA";VAL$(Numbytes)
940 !
950 ! *********************** SAVE BUFFER POINTERS *************************
960 ! Save the transfer buffer pointer so it can be restored after the
970 ! transfer.
980 !
990 STATUS @Buff,5;Streg
1000 !
1010 ! ************** TRANSFER DATA TO THE LOGIC ANALYZER *****************
1020 ! Transfer the data from the buffer to the logic analyzer.
1030 !
1040 TRANSFER @Buff TO @Comm;COUNT Numbytes,WAIT
1050 !
1060 ! ********************** RESTORE BUFFER POINTERS ***********************
1070 ! Restore the transfer buffer pointer
1080 !
1090 CONTROL @Buff,5;Streg
1100 !

Programming Examples
Transferring the logic analyzer acquired data

43–19

1110 ! ******************** SEND TERMINATING LINE FEED **********************
1120 ! Send the terminating linefeed to properly terminate the data string.
1130 !
1140 OUTPUT @Comm;""
1150 !
1160 PRINT "**** SENT THE DATA ****"
1170 END

Programming Examples
Transferring the logic analyzer acquired data

43–20

Checking for measurement completion

This program can be appended to or inserted into another program when you
need to know when a measurement is complete. If it is at the end of a
program it will tell you when measurement is complete. If you insert it into a
program, it will halt the program until the current measurement is complete.

This program is also in the state analyzer example program in "Making a state
analyzer measurement" on pages 43-5 through 43-8. It is included in the
state analyzer example program to show how it can be used in a program to
halt the program until measurement is complete.

420 ! ****************** CHECK FOR MEASUREMENT COMPLETE **********************
430 ! Enable the MESR register and query the register for a measurement
440 ! complete condition.
450 !
460 OUTPUT 707;":SYSTEM:HEADER OFF"
470 OUTPUT 707;":SYSTEM:LONGFORM OFF"
480 !
490 Status=0
500 ! OUTPUT 707;":MESE1 1" ! No effect in 1660 analyzers
510 OUTPUT 707;":MESR1?"
520 ENTER 707;Status
530 !
540 ! Print the MESR register status.
550 !
560 CLEAR SCREEN
570 PRINT "Measurement complete status is ";Status
580 PRINT "0 or even number = not complete, odd number = complete"
590 ! Repeat the MESR query until measurement is complete.
600 WAIT 1
610 IF (Status AND 1)=1 THEN GOTO 630
620 GOTO 510
630 PRINT TABXY(30,15);"Measurement is complete"
640 !
650 END

Programming Examples
Checking for measurement completion

43–21

Sending queries to the logic analyzer

This program example contains the steps required to send a query to the
logic analyzer. Sending the query alone only puts the requested information
in an output buffer of the logic analyzer. You must follow the query with an
ENTER statement to transfer the query response to the controller. When the
query response is sent to the logic analyzer, the query is properly terminated
in the logic analyer. If you send the query but fail to send an ENTER
statement, the logic analyzer will display the error message "Query
Interrupted" when it receives the next command from the controller and the
query response is lost.

10 !************************ QUERY EXAMPLE ***********************
20 ! for the HP 1660C/CS/CP-series Logic Analyzers
30 !
40 ! ************************ OPTIONAL ***************************
50 ! The following two lines turn the headers and longform on so
60 ! that the query name, in its long form, is included in the
70 ! query response.
80 !
90 ! ************** NOTE ****************
100 ! If your query response includes real
110 ! or integer numbers that you may want
120 ! to do statistics or math on later, you
130 ! should turn both header and longform
140 ! off so only the number is returned.
150 ! *************************************
160 !
170 OUTPUT 707;":SYSTEM:HEADER ON"
180 OUTPUT 707;":SYSTEM:LONGFORM ON"
190 !
200 ! ***
210 ! Select the slot in which the logic analyzer is located.
220 ! Always a 1 for the HP 1660-series logic analyzers.
230 OUTPUT 707;":SELECT 1"
240 !
250 ! **
260 ! Dimension a string in which the query response will be entered.
270 !
280 DIM Query$[100]
290 !
300 ! **

Programming Examples
Sending queries to the logic analyzer

43–22

310 ! Send the query. In this example the MENU? query is sent. All
320 ! queries except the SYSTem:DATA and SYSTem:SETup can be sent with
330 ! this program.
340 !
350 OUTPUT 707;"MENU?"
360 !
370 ! **
380 ! The two lines that follow transfer the query response from the
390 ! query buffer to the controller and then print the response.
400 !
410 ENTER 707;Query$
420 PRINT Query$
430 !
440 !
450 END

Programming Examples
Sending queries to the logic analyzer

43–23

Getting ASCII Data with PRINt? ALL Query

This program example shows you how to get ASCII data from a state listing
using the PRINt? ALL query. There are two things you must keep in mind:

• You must select the logic analyzer, always SELECT 1 for the HP
1660C/CS/CP-series logic analyzers.

• You must select the proper menu. The only menus that allow you to use
the PRINt? ALL query are the listing menus and the disk menu.

10 ! ****** ASCII DATA *******
20 !
30 !
40 ! This program gets STATE Listing data from the HP 1660C/CS/CP-series
logic
50 ! analyzers in ASCII form by using the PRINT? ALL query.
60 !
70 !**
80 !
90 DIM Block$[32000]
100 OUTPUT 707;"EOI ON"
110 OUTPUT 707;":SYSTEM:HEAD OFF"
120 OUTPUT 707;":SELECT 1" ! Always a 1 for the HP 1660-series logic
130 ! analyzers.
140 !
150 OUTPUT 707;":MENU 1,7" ! Selects the Listing 1 menu. Print? All
160 ! will only work in Listing and Disk menus.
170 !
180 OUTPUT 707;":SYSTEM:PRINT? ALL"
190 ENTER 707 USING "-K";Block$
200 !
210 !**
220 ! Now display the ASCII data you received.
230 !
240 PRINT USING "K";Block$
250 !
260 END

Programming Examples
Getting ASCII Data with PRINt? ALL Query

43–24

Reading the disk with the CATalog? ALL query

The following example program reads the catalog of the disk currently in the
logic analyzer disk drive. The CATALOG? ALL query returns the entire
70-character field. Because DOS directory entries are 70 characters long,
you should use the CATALOG? ALL query with DOS disks.

10 ! ****** DISK CATALOG ******
20 ! using the CATALOG? query
30 !
40 DIM File$[100]
50 DIM Specifier$[2]
60 OUTPUT 707;":EOI ON"
70 OUTPUT 707;":SYSTEM:HEADER OFF"
80 !
90 OUTPUT 707;":MMEMORY:CATALOG? ALL" ! send CATALOG? ALL query
100 !
110 ENTER 707 USING "#,2A";Specifier$! read in #8
120 ENTER 707 USING "#,8D";Length ! read in block length
130 !
140 ! Read and print each file in the directory
150 !
160 FOR I=1 TO Length STEP 70
170 ENTER 707 USING "#,70A";File$
180 PRINT File$
190 NEXT I
200 ENTER 707 USING "A";Specifier$! read in final line feed
210 END

Programming Examples
Reading the disk with the CATalog? ALL query

43–25

Reading the Disk with the CATalog? Query

This example program uses the CATALOG? query without the ALL option
to read the catalog of the disk currently in the logic analyzer disk drive.
However, if you do not use the ALL option, the query only returns a
51-character field. Keep in mind if you use this program with a DOS disk,
each filename entry will be truncated at 51 characters.

10 ! ****** DISK CATALOG ******
20 ! using the CATALOG? query
30 !
40 DIM File$[100]
50 DIM Specifier$[2]
60 OUTPUT 707;":EOI ON"
70 OUTPUT 707;":SYSTEM:HEADER OFF"
80 !
90 OUTPUT 707;":MMEMORY:CATALOG?" ! send CATALOG? query
100 !
110 ENTER 707 USING "#,2A";Specifier$! read in #8
120 ENTER 707 USING "#,8D";Length ! read in block length
130 !
140 ! Read and print each file in the directory
150 !
160 FOR I=1 TO Length STEP 51
170 ENTER 707 USING "#,51A";File$
180 PRINT File$
190 NEXT I
200 ENTER 707 USING "A";Specifier$! read in final line feed
210 END

Programming Examples
Reading the Disk with the CATalog? Query

43–26

Printing to the disk

This program prints acquired data to a disk file. The file can be either on a
LIF or DOS disk. If you print the file to a DOS disk, you will be able to view
the file on a DOS-compatible computer.

10 ! ********* PRINTING TO A DISK FILE **********
20 !
30 !
40 ! This program prints the acquired data to a disk file. It will
50 ! print to either a LIF or DOS file using the PRINT ALL command.
60 !
70 !**
80 !
90 OUTPUT 707;":SELECT 1" ! Always a 1 for the HP 1660C/CS/CP-series logic
100 ! analyzers.
110 !
120 OUTPUT 707;":MENU 1,7" ! Selects the Listing 1 menu. Print to disk
130 ! will only work in Listing and Disk menus.
140 !
150 OUTPUT 707;":SYSTEM:PRINT ALL, DISK, ’DISKFILE’"
160 !
170 !**
180 ! Now display catalog to see that the file has been saved on the disk.
190 !
200 DIM File$[100]
210 DIM Specifier$[2]
220 OUTPUT 707;":EOI ON"
230 OUTPUT 707;":SYSTEM:HEADER OFF"
240 OUTPUT 707;":MMEMORY:CATALOG? ALL"
250 ENTER 707 USING "#,2A";Specifier$
260 ENTER 707 USING "#,8D";Length
270 FOR I=1 TO Length STEP 70
280 ENTER 707 USING "#,70A";File$
290 PRINT File$
300 NEXT I
310 ENTER 707 USING "A";Specifier$
320 END

Programming Examples
Printing to the disk

43–27

Transferring waveform data in byte format

This program sets up the oscilloscope to move oscilloscope waveform data
from the HP 1660CS-series to a controller in byte format.

10 ! Transferring Waveform Data
20 ! Byte Format
30 !
40 CLEAR 707
50 !*************** Select the oscilloscope ******I****************
60 !
70 OUTPUT 707;":SELECT 2"
80 !
90 !*************** Set EOI on and Headers Off ********************
100 OUTPUT 707;":EOI ON"
110 OUTPUT 707;":SYSTEM:HEADER OFF"
120 !
130 !*************** Set up the Oscilloscope ***********************
140 !
150 OUTPUT 707;":ACQUIRE:TYPE NORMAL"
160 OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"
170 OUTPUT 707;":WAVEFORM:FORMAT BYTE"
180 OUTPUT 707;":WAVEFORM:RECORD FULL"
190 !
200 !*************** Start Waveform Acquisition ********************
210 OUTPUT 707;":AUTOSCALE"
220 !
230 ! *************** Dimension a string for the data ***************
240 !
250 DIM Header$[20]
260 !
270 ! *************** Digitize the data and display Waveform menu ***
280 !
290 OUTPUT 707; ":DIGITIZE"
300 OUTPUT 707; ":MENU 2,3"
310 WAIT 5
320 Length=8000
330 ALLOCATE INTEGER Waveform(1:Length)
340 !
350 !*************** Transfer the waveform data ********************
360 !
370 OUTPUT 707;":WAVEFORM:DATA?"
380 ENTER 707 USING "#,10A";Header$

Programming Examples
Transferring waveform data in byte format

43–28

390 ENTER 707 USING "#,B";Waveform(*)
400 ENTER 707 USING "#,B";Lastchar
410 !
420 !*************** Print the waveform data ***********************
430 PRINT "Header = ";Header$
440 PRINT
450 PRINT "Press CONTINUE to display waveform data"
460 PRINT
470 PRINT Waveform(*)
490 PRINT
500 PRINT Lastchar
510 END

Programming Examples
Transferring waveform data in byte format

43–29

Transferring waveform data in word format

This program sets up the oscilloscope to move oscilloscope waveform data
from the HP 1660CS-series to a controller in word format.

10 ! Transferring Waveform Data
20 ! Word Format
30 !
40 CLEAR 707
50 !*************** Select the Oscilloscope ***********************
60 !
70 OUTPUT 707;":SELECT 2"
80 !
90 !*************** Set EOI on and Headers Off ********************
100 OUTPUT 707;":EOI ON"
110 OUTPUT 707;":SYSTEM:HEADER OFF"
120 !
130 !*************** Set up the Oscilloscope ***********************
140 !
150 OUTPUT 707;":ACQUIRE:TYPE AVERAGE"
160 OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"
170 OUTPUT 707;":WAVEFORM:FORMAT WORD"
180 OUTPUT 707;":WAVEFORM:RECORD FULL"
190 !
200 !*************** Start Waveform Acquisition ********************
210 OUTPUT 707;":AUTOSCALE"
220 !
230 !*************** Dimension a string for the data ***************
240 !
250 DIM Header$[20]
260 !
270 !*************** Digitize the data and display Waveform menu ***
280 !
290 OUTPUT 707;":DIGITIZE"
300 OUTPUT 707;":MENU 2,3"
310 WAIT 5
320 Length=8000
330 ALLOCATE INTEGER Waveform(1:Length)
340 !
350 !*************** Transfer the waveform data ********************
360 !
370 OUTPUT 707;":WAVEFORM:DATA?"
380 ENTER 707 USING "#,10A";Header$

Programming Examples
Transferring waveform data in word format

43–30

390 ENTER 707 USING "#,B";Waveform(*)
400 ENTER 707 USING "#,B";Lastchar
410 !
420 ! *************** Print the waveform data ***********************
430 PRINT "Header = ";Header$
440 PRINT
450 PRINT "Press CONTINUE to display waveform data"
460 PRINT
470 PAUSE
480 PRINT Waveform(*)
490 PRINT
500 PRINT Lastchar
510 END

Programming Examples
Transferring waveform data in word format

43–31

Using AUToscale and the MEASure:ALL? Query

This program uses Autoscale to acquire a waveform and the MEASure:ALL?
query to read in the measurement results from an HP 1660CS-series.

10 OUTPUT 707; ":SYSTEM:HEADER ON"
20 OUTPUT 707; ":EOI ON"
30 OUTPUT 707; ":SELECT 2"
40 OUTPUT 707; ":AUTOSCALE"
50 WAIT 5
60 DIM Me$[200]
70 OUTPUT 707; ":MEASURE:SOURCE CHANNEL1;ALL?"
80 ENTER 707 USING "#,200A";Me$
90 PRINT USING "#,200A";Me$
100 END

Programming Examples
Using AUToscale and the MEASure:ALL? Query

43–32

Using subroutines in a measurement program

This program uses subroutines in HP BASIC to make a measurement. The
program

• Initializes the interface and the oscilloscope

• Digitizes the acquired signal data

• Measures and prints the frequency and peak-to-peak voltage of the
acquired signal.

10 ! Measurement Example Using Subroutines
20 !
30 !MAIN PROGRAM
40 !
50 CLEAR SCREEN
60 PRINT "This example program will perform the following tasks:"
70 PRINT " a. initialize the interface and oscilloscope"
80 PRINT " b. digitize the signal "
90 PRINT " c. measure and print the frequency "
100 PRINT
110 PRINT "The program assumes the system is configured as:"
120 PRINT " HP-IB address = 7"
130 PRINT " Oscilloscope address = 7"
140 PRINT " Oscilloscope is in slot 1"
150 PRINT " Signal attached to channel 1"
160 PRINT
170 PRINT "If the addresses are not correct for your configuration, change"
180 PRINT "the ASSIGN statements in the Initialize function."
190 PRINT
200 PRINT "Press Continue when ready to start program, or Shift/Break to
terminate."
210 PAUSE
220 GOSUB Initialize !initialize interface and oscilloscope
230 GOSUB Get_waveform !digitize signal
240 GOSUB Measure !measure and print frequency
250 STOP
260 !
270 !INITIALIZE INTERFACE AND OSCILLOSCOPE
280 !
290 Initialize: !
300 ASSIGN @Scope TO 707 !System address
310 ASSIGN @Isc TO 7 !HP-IB address

Programming Examples
Using subroutines in a measurement program

43–33

320 CLEAR @Isc !clear HPIB interface
330 OUTPUT @Scope;":SELECT 2" !select the oscilloscope
340 OUTPUT @Scope;"*RST" !set oscilloscope to default config
350 OUTPUT @Scope;":AUTOSCALE" !AUTOSCALE
360 OUTPUT @Scope;":SYST:HEADER OFF" !turn headers off
370 CLEAR SCREEN !clear screen
380 RETURN
390 !
400 !DIGITIZE waveform to acquire data and stop oscilloscope for further
410 !measurement. Measurement is NOT displayed on the front panel.
420 !
430 Get_waveform: !
440 OUTPUT @Scope;":WAVEFORM:SOURCE CHAN1" !set source to channel 1
450 OUTPUT @Scope;":DIGITIZE" !macro to acquire data & stop
460 RETURN
470 !
480 !have oscilloscope do a frequency measurement and read results into
490 !computer.
500 !
510 Measure: !
520 OUTPUT @Scope;":MEASURE:FREQUENCY?" !FREQUENCY query
530 ENTER @Scope;Value !read from oscilloscope
540 PRINT "FREQUENCY = ";Value;"Hz"
550 OUTPUT @Scope;":MEASURE:VPP?" !Vpp query
560 ENTER @Scope;Value
570 PRINT "Vpp = ";Value;"V"
580 RETURN
590 END

Programming Examples
Using subroutines in a measurement program

43–34

Index

!

*CLS command, 8–5
*ESE command, 8–5
*ESR command, 8–6
*IDN command, 8–8
*IST command, 8–8
*OPC command, 8–10
*OPT command, 8–11
*PRE command, 8–12
*RST command, 8–13
*SRE command, 8–14
*STB command, 8–15
*TRG command, 8–16
*TST command, 8–17
*WAI command, 8–18
..., 4–5
32767, 4–4
9.9E+37, 4–4
::=, 4–5
 , 4–5
[], 4–5
{ }, 4–5
|, 4–5

A

ABVolt?, 32–7
ACCumulate, 29–5, 31–4, 31–7
ACCumulate command/query, 18–5, 19–4,
23–7
ACCumulate?, 31–4
ACQMode command/query, 21–5
ACQuire Subsystem, 29–2
acquire waveform data, 28–5
acquired data, 36–13
ACQuisition command/query, 16–9, 18–5,
22–9, 23–8
acquisition type, 29–5, 36–12
ACSII format, 36–4
adding waveforms, 31–9
ALL, 33–4
ALL?, 33–4
Analyzer 1 Data Information, 27–7
Analyzer 2 Data Information, 27–9
Angular brackets, 4–5
Arguments, 1–7
ARM command/query, 13–5
ASCII Format, 36–4
ASCII transfer, 36–3
ASSign command/query, 13–5

attenuation factor, 30–7
auto timebase mode, 34–5
AUToload command, 11–7
AUToscale, 28–3
Average mode, 29–5
averaging data points, 29–5
AVOLt, 32–6
AVOLt?, 32–6

B

BASE, 41–4
BASE command, 26–5
base voltage measurement, 33–10
Bases, 1–12
Basic, 1–3
Baud rate, 3–9
BEEPer command, 9–6
Bit definitions, 6–4, 6–5
bit_id, 31–4
Block data, 1–6, 1–20, 27–4

definition of, 42–2
Block length specifier, 27–4
Block length specifier, 10–5, 10–11
Block length specifier>, 27–16
Block length specifier>>, 27–4
Braces, 4–5
BRANch command/query, 16–10, 16–11,
22–9, 22–10, 22–11
BVOLt, 32–7
BVOLt?, 32–7
byte data structure, 36–3
BYTE format, 36–3
byte transfer, 36–3

C

Cable
RS-232C, 3–3

CAPability command, 9–7
CARDcage?, 9–8
CATalog command, 11–8
CD command, 11–9
CENTer, 32–8
CENTer command, 18–6, 23–8
center screen voltage, 30–6
CESE command, 9–9
CESR command, 9–10
channel display, 30–2
CHANnel Subsystem, 30–2
channel_number, 30–4, 31–4, 32–5, 33–3,

35–4, 36–7
chart display, 19–2
CLEar command, 16–12, 20–5, 22–12
Clear To Send (CTS), 3–5
clearing the display, 31–9
CLOCk, 38–3
CLOCk command/query, 15–6
CLRPattern command, 17–8, 18–6, 23–9,
24–8
CLRStat command, 18–7, 23–9
CMASk command/query, 20–5
CME, 6–5
COLumn, 39–4
COLumn command/query, 17–7, 24–7
Combining commands, 1–9
Comma, 1–12
Command, 1–6, 1–16

*CLS, 8–5
*ESE, 8–5
*OPC, 8–10
*PRE, 8–12
*RST, 8–13
*SRE, 8–14
*TRG, 8–16
*WAI, 8–18
ACCumulate, 18–5, 19–4, 23–7, 31–4, 31–7
ACQMode, 21–5
ACQuisition, 16–9, 22–9
ARM, 13–5
ASSign, 13–5
AUToload, 11–7
BASE, 26–5, 41–4
BEEPer, 9–6
BRANch, 16–10, 22–9
CD (change directory, 11–9
CENTer, 18–6, 23–8
CESE, 9–9
CLEar, 20–5
CLOCk, 15–6
CLRPattern, 17–8, 18–6, 23–9, 24–8
CLRStat, 18–7, 23–9
CMASk, 20–5
COLumn, 17–7, 24–7, 39–4
COMPare, 20–4
CONDition, 35–5
CONNect, 31–5
COPY, 11–10, 20–6
COUNt, 29–4
DATA, 10–5, 20–7, 27–4

Index–1

DELay, 14–5, 18–7, 23–9, 34–4, 35–7
DELete, 12–4
DOWNload, 11–11
DSP, 10–6
EOI, 9–11
FIND, 16–13, 22–13
FORMat, 36–9
GLEDge, 22–14
HAXis, 19–5
HEADer, 1–16, 10–8
HISTogram:LABel, 25–16
HISTogram:OTHer, 25–17
HISTogram:QUALifier, 25–18
HISTogram:RANGe, 25–19
HISTogram:TTYPe, 25–20
INITialize, 11–13
INPort, 12–6
INSert, 12–6, 14–6, 18–8, 23–10
LABel, 15–7, 21–6, 38–5
LEVel, 35–8
LEVelarm, 13–6
LINE, 14–7, 17–9, 20–10, 24–9
LOAD:CONFig, 11–14
LOAD:IASSembler, 11–15
LOCKout, 3–11, 9–12
LOGic, 35–10
LONGform, 1–16, 10–9
Machine, 13–4
MASTer, 15–9
MENU, 9–12, 20–10
MESE, 9–14
MINus, 31–8
MKDir, 11–16
MMODe, 17–10, 23–11, 24–10, 32–8,

32–12, 32–14, 32–15
MODE, 25–7, 34–5, 35–11
MSI, 11–17
MSTats, 32–8
NAME, 13–7
OAUTo, 32–9
OCONdition, 23–12, 24–11
OFFSet, 30–6
OPATtern, 17–11, 23–13, 24–11
OSEarch, 17–12, 23–14, 24–12
OTAG, 17–13, 24–14
OTIMe, 14–8, 23–15, 32–6, 32–7, 32–10
OVERlay, 17–14, 31–8
OVERView:HIGH, 25–9

OVERView:LABel, 25–10
OVERView:LOW, 25–11
OVERView:OMARker, 25–12
OVERView:XMARker, 25–14
PACK, 11–18
PATH, 35–12
PATTern, 26–6, 41–5
PLUS, 31–9
PRINt, 10–10
PROBe, 30–7
PURGe, 11–18
RANGe, 14–9, 16–14, 18–8,

20–11, 22–15, 23–16, 26–6, 30–8,
34–6, 41–6

RECord, 36–11
REMove, 14–10, 15–13, 17–15, 18–

9, 21–7, 23–16, 24–14, 26–7, 31–9,
38–8, 39–14, 40–13, 41–7

REName, 11–19, 13–8
RESource, 13–9
RESume, 37–10
RMODe, 9–18
RUNTil, 17–15, 20–12, 23–17,

24–15, 32–11
SCHart, 19–4
SELect, 9–20
SEQuence, 16–16, 22–17
SET, 20–13
SETColor, 9–22
SETup, 10–11, 27–15, 42–5
SFORmat, 15–6
SKEW, 12–7
SLAVe, 15–15
SLISt, 17–7
SLOPe, 35–12
SOURce, 33–9, 35–13, 36–11
SPERiod, 22–18, 23–18
STARt, 9–23
STEP, 37–8
STEP Count, 37–8
STOP, 9–23
STORe, 16–17
STORe:CONFig, 11–20
SWAVeform, 18–4
SYMBol, 26–4
SYStem:DATA, 10–5, 27–2, 27–4
SYStem:SETup, 10–11, 27–2,

27–15

TAG, 16–18
TAKenbranch, 16–19, 18–9
TCONtrol, 16–20, 22–19
TERM, 16–21, 22–20
TFORmat, 21–4
THReshold, 15–18, 21–8
TIMER, 16–22, 22–21
TINTerval:AUTorange, 25–21
TINTerval:QUALifier, 25–21
TINTerval:TINTerval, 25–23
TLISt, 24–7
TPOSition, 16–23, 18–10, 22–22,

23–20
TREE, 12–8
TTL, 30–9
TYPE, 13–10, 29–5
VAXis, 19–7
WIDTh, 26–8, 41–8
WLISt, 14–4
XAUTo, 32–18
XCONdition, 23–22, 24–18
XPATtern, 17–20, 23–23, 24–19
XSEarch, 17–21, 23–24, 24–20
XTAG, 17–22, 24–22
XTIMe, 14–11, 23–25, 32–19
XWINdow, 9–24

Command errors, 7–3
Command mode, 2–3
Command set organization, 4–14,
37–5, 37–6
Command structure, 1–4
Command tree, 4–5

SELect, 9–21
Command types, 4–6
Commands

ACCumulate, 31–4
AUToscale, 28–3, 28–4
AVOLt, 32–6
BVOLt, 32–7
CENTer, 32–8
CONDition, 35–5, 35–6
CONNect, 31–5
COUNt, 29–4
COUPling, 30–4
DELay, 34–4, 35–7
DIGitize, 28–5
ECL, 30–5
FORMat, 36–9

Index

Index–2

INSert, 31–6
LABel, 31–7
LEVel, 35–8, 35–9
LOGic, 35–10
MINus, 31–8
MODE, 34–5, 35–11
MSTats, 32–8
OAUTo, 32–9
OFFset, 30–6
OTIMe, 32–10
OVERlay, 31–8
PATH, 35–12
PLUS, 31–9
PROBe, 30–7
RANGe, 30–8, 34–6
RECord, 36–11
REMove, 31–9
RUNTil, 32–11
SHOW, 32–12
SOURce, 35–13, 36–11
TMODe, 32–14
TTL, 30–9
TYPE, 29–5
VMODe, 32–15
XAUTo, 32–18
XTIMe, 32–19

Common commands, 1–9, 4–6, 8–
2
Communication, 1–3
compare

program example, 43–9
COMPare selector, 20–4
COMPare Subsystem, 20–1, 20–3,
20–4, 20–5, 20–6, 20–7, 20–8, 20–
9, 20–10, 20–11, 20–12, 20–13
Complex qualifier, 16–11, 22–11
Compound commands, 1–8
CONDition, 35–5, 35–6
CONDition?, 35–6
Configuration file, 1–4
CONNect, 31–5
connect dots, 31–5
CONNect?, 31–5
Controllers, 1–3
Conventions, 4–5
COPY command, 11–10, 20–6
COUNt, 29–4, 29–5, 36–8
COUNt?, 29–4, 36–8

count_argument, 29–3
count_number, 35–4
COUPling, 30–4
COUPling?, 30–5

D

DATA, 10–5, 27–4, 36–8
command, 10–5
State (no tags, 27–10, 27–11

data acquisition, 29–5
Data acquisition type, 36–2
Data and Setup Commands, 27–1, 27–3,
27–4, 27–5, 27–6, 27–7, 27–8, 27–9, 27–10,
27–11, 27–12, 27–13, 27–14, 27–15, 27–16,
27–17, 42–2
Data bits, 3–9

8-Bit mode, 3–9
Data block

Analyzer 1 data, 27–7
Analyzer 2 data, 27–9
Data preamble, 27–6
Section data, 27–6
Section header, 27–6

Data Carrier Detect(DCD), 3–5
DATA command/query, 10–5, 20–7, 20–8
data conversion, 36–5, 36–6, 36–7
Data mode, 2–3
Data preamble, 27–6, 27–7, 27–8, 27–9
DATA query, 17–9, 24–9
Data Terminal Equipment, 3–3
Data Terminal Ready(DTR), 3–5
data to time conversion, 36–5
data transfer, 36–2, 36–11
data transfer format, 36–3, 36–4
data transmission mode, 36–9
data value to trigger point conversion,

36–5
DATA?, 36–8
DataCommunications Equipment, 3–3
DataSet Ready (DSR), 3–5
DCE, 3–3
DCL, 2–6
DDE, 6–5
Definite-length block response data, 1–20
DELay, 34–4, 35–7
DELay command/query, 14–5, 18–7, 23–9
DELay?, 34–4, 35–7
delay_argument, 34–3

DELete command, 12–4
delta voltage measurement, 32–7
Device address, 1–6

HP-IB, 2–4
RS-232C, 3–10

Device clear, 2–6
Device dependent errors, 7–3
DIGitize, 28–5
display of waveforms, 31–6
DISPlay Subsystem, 31–2
Documentation conventions, 4–5
DOWNload command, 11–11
DSP command, 10–6
DTE, 3–3
Duplicate keywords, 1–9

E

ECL, 30–5
edge search, 32–16
Ellipsis, 4–5
Embedded strings, 1–3, 1–6
Enter statement, 1–3
EOI command, 9–11
ERRor command, 10–7
Error messages, 7–2
ESB, 6–4
Event Status Register, 6–4
Example

Using AUToscale, 28–4
Examples

program, 43–2
EXE, 6–5
Execution errors, 7–4
Exponents, 1–12
Extended interface, 3–4

F

FALLtime, 33–5
falltime measurement, 33–5
FALLtime?, 33–5
File types, 11–12
FIND command/query, 16–13, 22–13
FIND query, 20–9
FORMat, 36–9
FORMat?, 36–9

Index

Index–3

Fractional values, 1–13
FREQuency, 33–5
frequency measurement, 33–5
FREQuency?, 33–5

G

GET, 2–6
GLEDge command/query, 22–14
greater than_argument, 32–5
Group execute trigger, 2–6

H

HAXis command/query, 19–5, 19–6
HEADer command, 1–16, 10–8
Headers, 1–6, 1–8, 1–11
HISTogram:HSTatistic query, 25–15
HISTogram:LABel command/query,

25–16
HISTogram:OTHer command/query,

25–17
HISTogram:QUALifier command/query,

25–18
HISTogram:RANGe command/query,

25–19
HISTogram:TTYPe command/query,

25–20
horizontal time range, 34–6
Host language, 1–6
HP-IB, 2–2, 6–8
HP-IB address, 2–3
HP-IB device address, 2–4
HP-IB interface code, 2–4
HP-IB interface functions, 2–2
HTIMe query, 12–5

I

Identification number, 9–8
Identifying modules, 9–8
IEEE 488.1, 2–2, 5–2
IEEE 488.1 bus commands, 2–6
IEEE 488.2, 5–2
IFC, 2–6
immediate trigger, 35–11
infinite persistence, 31–4
Infinity, 4–4
Initialization, 1–4
INITialize command, 11–13
INPort command, 12–6

Input buffer, 5–3
input impedance, 30–5
inrange_greater than, 32–5
inrange_less than, 32–5
INSert, 31–6
INSert command, 12–6, 14–6, 18–8, 23–10
Instruction headers, 1–6
Instruction parameters, 1–7
Instruction syntax, 1–5
Instruction terminator, 1–7
Instructions, 1–5
Instrument address, 2–4
Interface capabilities, 2–3

RS-232C, 3–9
Interface clear, 2–6
Interface code

HP-IB, 2–4
Interface selectcode

RS-232C, 3–10
INTermodule subsystem, 12–2
Internal errors, 7–4

K

Keyword data, 1–13
Keywords, 4–3

L

LABel, 31–7, 38–5, 38–6
LABel command/query, 15–7, 15–8, 21–6
label string, 31–7
LABel?, 31–7
label_id, 31–4
label_string, 31–4
LCL, 6–6
LER command, 9–11
less than_argument, 32–5
level, 32–5, 35–8, 35–9
LEVel?, 35–9
LEVelarm command/query, 13–6
LINE command/query, 14–7, 17–9, 20–10,
24–9
Linefeed, 1–7, 4–5
LOAD:CONFig command, 11–14
LOAD:IASSembler command, 11–15
Local, 2–5
Local lockout, 2–5
LOCKout command, 3–11, 9–12
LOGic, 35–10

logic pattern, 35–5
LOGic?, 35–10
Longform, 1–11
LONGform command, 1–16, 10–9
Lowercase, 1–11

M

Machine selector, 13–4
MACHine Subsystem, 13–1, 13–3, 13–4,
13–5, 13–6, 13–7, 13–8, 13–9, 13–10
Mainframe commands, 9–2
Marker data, 32–12
marker placement, 32–18
MARKer Subsystem, 33–2
marker to center, 32–8
marker_time, 32–5
MASTer command/query, 15–9
MAV, 6–4
maximum voltage measurement, 33–11
measurement complete program example,
43–21
Measurement parameters

Frequency, 33–2
Period, 33–2

measurement source, 33–9
measurement statistics, 32–8
MENU command, 9–12, 20–10
MESE command, 9–14
MESR command, 9–16
minimum voltage measurement, 33–11
MINus, 31–8
MKDir command, 11–16
MMEMory subsystem, 11–2
MMODe, 32–14, 32–15
MMODe command/query, 17–10, 23–11,
24–10
Mnemonics, 1–13, 4–3
MODE, 34–5, 35–11
MODE command/query, 25–7
MODE?, 34–5, 35–11
Module commands, 28–2
Module Level Commands, 37–7
moving the X marker, 32–19
MSB, 6–6
MSG, 6–5
MSI command, 11–17
MSS, 6–4
MSTats, 32–8

Index

Index–4

MSTats?, 32–8
multiple measurements, 33–4
Multiple numeric variables, 1–21
Multiple program commands, 1–14
Multiple queries, 1–21
Multiple subsystems, 1–14

N

NAME command/query, 13–7
negative width time measurement, 33–6
New Line character, 1–7
NL, 1–7, 4–5
Normal mode, 29–5, 36–2
Notation conventions, 4–5
number of averages, 29–3
Numeric base, 1–19
Numeric bases, 1–12
Numeric data, 1–12
Numeric variables, 1–19
NWIDth, 33–6
NWIDth?, 33–6

O

O Marker placement, 32–9, 32–10
O marker voltage level, 32–16
OAUTo, 32–9
OAUTo?, 32–9
occurrence, 32–5
OCONdition command/query, 23–12, 24–11
OFFSet, 30–6
offset voltage, 30–4, 30–6
OFFset?, 30–6
offset_argument, 30–4
OPATtern command/query, 17–11, 23–13,
24–11
OPC, 6–5
Operation Complete, 6–6
OR notation, 4–5
OSEarch command/query, 17–12, 23–14,
24–12
OSTate query, 14–8, 17–13, 24–13
OTAG command/query, 17–13, 24–14
OTIMe, 32–6, 32–7, 32–10
OTIMe command/query, 14–8, 23–15
OTIMe?, 32–10
Output buffer, 1–10
Output queue, 5–3
OUTPUT statement, 1–3, 28–4

outrange_greater than, 32–5
outrange_less than, 32–5
Overlapped command, 8–10, 8–18, 9–23
Overlapped commands, 4–4
OVERlay, 31–8
OVERlay command/query, 17–14
overlaying waveforms, 31–8
OVERshoot, 33–6
overshoot measurement, 33–6
OVERshoot?, 33–6
OVERView:BUCKet query, 25–8
OVERView:HIGH command/query, 25–9
OVERView:LABel command/query, 25–10
OVERView:LOW command/query, 25–11
OVERView:OMARker command/query,
25–12
OVERView:OVSTatistic query, 25–13
OVERView:XMARker command/query,
25–14
OVOLt, 32–16

P

PACK command, 11–18
Parameter syntax rules, 1–12
Parameters, 1–7
Parity, 3–9
Parse tree, 5–8
Parser, 5–3
PATH, 35–12
PATH?, 35–12
PATTern, 41–5
PATTern command, 26–6
pattern duration, 35–5
PATTern trigger, 35–7
peak-to-peak voltage measurement, 33–12
PERiod, 33–7
period measurement, 33–7
PERiod?, 33–7
PLUS, 31–9
POINts, 36–9
points on screen, 36–9
POINts?, 36–9
PON, 6–5
positive pulse width measurement, 33–8
preamble, 36–2, 36–10
Preamble description, 27–6
PREamble?, 36–10
preset user, 30–5, 30–9

PREShoot, 33–7
preshoot measurement, 33–7
PREShoot?, 33–7
PRINt command, 10–10
Printing to the disk, 43–27
PROBe, 30–7
PROBe?, 30–7
probe_argument, 30–4
PROGram, 39–10, 39–11, 39–12, 39–13,
40–10, 40–11, 40–12
program example

checking for measurement complete, 43–21
compare, 43–9
getting ASCII data with PRINt ALL query,

43–24
sending queries to the logic analyzer, 43–22
state analyzer, 43–5
SYSTem:DATA command, 43–17
SYSTem:DATA query, 43–17
SYSTem:SETup command, 43–14
SYSTem:SETup query, 43–14
timing analyzer, 43–3
transferring configuration to analyzer,

43–14
transferring configuration to the

controller, 43–14
transferring setup and data to the

analyzer, 43–17
transferring setup and data to the

controller, 43–17
transferring waveform data, 43–28, 43–30
using AUTOscale and the MEASure:ALL?

Query, 43–32
Using Sub-routines, 43–33

Program examples, 4–15, 43–2
Program message syntax, 1–5
Program message terminator, 1–7
Program syntax, 1–5
programming, 25–2
Programming conventions, 4–5
Protocol, 3–9, 5–4

None, 3–9
XON/XOFF, 3–9

Protocol exceptions, 5–5
Protocols, 5–3
PURGe command, 11–18
PWIDth, 33–8
PWIDth?, 33–8

Index

Index–5

Q

Query, 1–6, 1–10, 1–16
*ESE, 8–5
*ESR, 8–6
*IDN, 8–8
*IST, 8–8
*OPC, 8–10
*OPT, 8–11
*PRE, 8–12
*SRE, 8–14
*STB, 8–15
*TST, 8–17
ABVolt?, 32–7
ACCumulate, 18–5, 19–5, 23–7, 31–4, 31–7
ACCumulate?, 31–4
ACQMode, 21–5
ACQuisition, 16–9, 22–9
ALL, 33–4
ALL?, 33–4
ARM, 13–5
ASSign, 13–6
AUToload, 11–7
AVOLt?, 32–6
BEEPer, 9–6
BRANch, 16–11, 22–11
BVOLt?, 32–7
CAPability, 9–7
CATalog, 11–8
CESE, 9–9
CESR, 9–10
CLOCk, 15–7
CMASk, 20–6
COLumn, 17–8, 24–8, 39–4
CONDition, 35–6
CONDition?, 35–6
CONNect, 31–5
CONNect?, 31–5
COUNt, 29–4
COUNt?, 29–4, 36–8
COUPling?, 30–5
DATA, 10–6, 17–9, 20–8, 24–9, 27–5, 36–8
DATA?, 36–8
DELay, 14–5, 18–7, 23–10, 34–4, 35–7
DELay?, 34–4, 35–7
EOI, 9–11
ERRor, 10–7
FALLtime, 33–5
FALLtime?, 33–5

FIND, 16–14, 20–9, 22–14
FORMat, 36–9
FORMat?, 36–9
FREQuency, 33–5
FREQuency?, 33–5
FTIMe, 12–5
GLEDge, 22–15
HAXis, 19–6
HEADer, 10–8
HISTogram:HSTatistic, 25–15
HISTogram:LABel, 25–16
HISTogram:QUALifier, 25–18
HISTogram:RANGe, 25–19
HISTogram:TTYPe, 25–20
INPort, 12–6
LABel, 15–8, 21–7
LABel?, 31–7
LER, 9–11
LEVel, 35–9
LEVelarm, 13–6
LINE, 14–7, 17–10, 20–10, 24–10
LOCKout, 9–12
LOGic, 35–10
LOGic?, 35–10
LONGform, 10–9
MASTer, 15–9
MENU, 9–14
MESE, 9–14
MESR, 9–16
MMODe, 17–10, 23–11, 24–10, 32–14,

32–15
MODE, 25–7, 34–5, 35–11
MODE?, 34–5, 35–11
MSI, 11–17
MSTats, 32–8
MSTats?, 32–8
NAME, 13–7
NWIDth, 33–6
NWIDth?, 33–6
OAUTo, 32–9
OAUTo?, 32–9
OCONdition, 23–12, 24–11
OFFset?, 30–6
OPATtern, 17–11, 23–13, 24–12
OSEarch, 17–12, 23–14, 24–13
OSTate, 14–8, 17–13, 24–13
OTAG, 17–14, 24–14
OTIMe, 14–8, 23–15, 32–10

OTIMe?, 32–10
OVERshoot, 33–6
OVERshoot?, 33–6
OVERView:BUCKet, 25–8
OVERView:HIGH, 25–9
OVERView:LABel, 25–10
OVERView:LOW, 25–11
OVERView:OMARker, 25–12
OVERView:OVSTatistic, 25–13
OVERView:XMARker, 25–14
OVOLt, 32–7, 32–16
PATH, 35–12
PATH?, 35–12
PERiod, 33–7
PERiod?, 33–7
POINts, 36–9
POINts?, 36–9
PREamble, 36–10
PREamble?, 36–10
PREShoot, 33–7
PREShoot?, 33–7
PRINt, 10–11
PROBe, 30–7
PROBe?, 30–7
PWIDth, 33–8

PWIDth?, 33–8
RANGe, 14–9, 16–15, 18–9, 20–

11, 22–16, 23–16, 30–8, 34–6
RANGe?, 30–8, 34–6
RECord, 36–11
RECord?, 36–11
REName, 13–8
RESource, 13–9
RISetime, 33–8
RISetime?, 33–8
RMODe, 9–19
RUNTil, 17–16, 20–13, 23–17, 24–

15, 32–11
RUNTil?, 32–11
SELect, 9–21
SEQuence, 16–16, 22–17
SETColor, 9–22
SETup, 10–12, 27–16
SKEW, 12–7
SLAVe, 15–15
SLOPe, 35–13
SLOPe?, 35–13
SOURce, 33–9, 35–13, 36–12

Index

Index–6

SOURce?, 33–9, 35–13, 36–12
SPERiod, 22–18, 23–18, 36–12
SPERiod?, 36–12
STEP, 37–8
STORe, 16–17
SYSTem:DATA, 10–6, 27–5
SYStem:SETup, 10–12, 27–16
TAG, 16–18
TAKenbranch, 16–19, 18–10
TAVerage, 17–17, 23–19, 24–16,

32–12
TAVerage?, 32–12
TCONtrol, 16–20, 22–19
TERM, 16–22, 22–21
THReshold, 15–18, 21–8
TIMER, 16–22, 22–21
TINTerval:QUALifier, 25–21
TINTerval:TINTerval, 25–23
TINTerval:TSTatistic, 25–24
TMAXimum, 17–17, 23–19,

24–16, 32–13
TMINimum, 17–18, 23–20, 24–17,

32–13
TMINimum?, 32–13
TMODe?, 32–14
TPOSition, 16–23, 18–10, 22–22,

23–21
TREE, 12–8
TTIMe, 12–9
TYPE, 13–10, 29–5, 36–12
TYPE?, 29–5, 36–12
UPLoad, 11–21
VALid, 36–13
VALid?, 36–13
VAMPlitude, 33–10
VAMPlitude?, 33–10
VAXis, 19–7
VBASe, 33–10
VBASe?, 33–10
VMAX, 33–11
VMAX?, 33–11
VMIN, 33–11
VMIN?, 33–11
VMODe?, 32–15
VOTime?, 32–16
VPP, 33–12
VPP?, 33–12
VRUNs, 17–18, 23–21, 24–17,

32–16
VRUNs?, 32–16
VTOP, 33–12
VTOP?, 33–12
VXTime?, 32–17
XAUTo, 32–18
XAUTo?, 32–18
XCONdition, 23–22, 24–18
Xincrement, 36–13
XORigin, 36–14
XORigin?, 36–14
XOTag, 17–19, 24–18
XOTime, 14–10, 17–19, 23–22, 24–

19, 32–19
XOTime?, 32–19
XPATtern, 17–20, 23–23, 24–20
Xreference, 36–14
XREFerence?, 36–14
XSEarch, 17–21, 23–24, 24–21
XSTate, 14–10, 17–22, 24–21
XTAG, 17–23, 24–22
XTIMe, 14–11, 23–25
XTIMe?, 32–19
XVOLt, 32–17
YINCrement, 36–15
YINCrement?, 36–15
YORigin, 36–15
YORigin?, 36–15
YREFerence, 36–16
YREFerence?, 36–16

Query errors, 7–5
query program example, 43–22
Query responses, 1–15, 4–4
Question mark, 1–10
QYE, 6–5

R

RANGe, 30–8, 34–6, 41–6
RANGe command, 26–6
RANGe command/query, 14–9, 16–14,
16–15, 18–8, 20–11, 22–15, 22–16, 23–16
RANGe?, 30–8, 34–6
range_argument, 30–4, 34–3
raw data, 36–5
real-time clock

section data, 27–17
Receive Data (RD), 3–4, 3–5
RECord, 36–11

RECord?, 36–11
Remote, 2–5
Remote enable, 2–5
REMove, 31–9, 38–8, 39–14, 40–13, 41–7
REMove command, 14–10, 15–13, 17–15,
18–9, 21–7, 23–16, 24–14, 26–7
REN, 2–5
REName command, 11–19
REName command/query, 13–8
Request To Send (RTS), 3–5
RESource command/query, 13–9
Response data, 1–20
Responses, 1–16
RESume, 37–10
return X-O marker data, 32–19
returning preamble, 36–10
returning waveform data record, 36–8
RISetime, 33–8
risetime measurement, 33–8
RISetime?, 33–8
RMODe command, 9–18
Root, 4–6
RQC, 6–5
RQS, 6–4
RS-232C, 3–2, 3–10, 5–2
RUNTil, 32–11
RUNTil command/query, 17–15, 17–16,
20–12, 23–17, 24–15
RUNTil?, 32–11

S

sample rate data, 32–12
sampling period, 36–12
SCHart selector, 19–4
SCHart Subsystem, 19–1, 19–3, 19–4,
19–5, 19–6, 19–7
SDC, 2–6
Section data, 27–6
Section data format, 27–4
Section header, 27–6
SELect command, 9–20
Select command tree, 9–21
SELect Command/query, 37–5
Selected device clear, 2–6
SEQuence command/query, 16–16, 22–17
Sequential commands, 4–4
Serial poll, 6–7
Service Request Enable Register, 6–4

Index

Index–7

SET command, 20–13
SETColor command, 9–22
setting logic, 35–10
setting stop condition, 32–11
setting time marker mode, 32–14
setting timebase, 34–5
setting voltage marker mode, 32–15
SETup, 10–11, 27–15, 42–5
SETup command/query, 10–11, 10–12
SFORmat selector, 15–6
SFORmat Subsystem, 15–1, 15–3, 15–4,
15–5, 15–6, 15–7, 15–8, 15–9, 15–10,
15–11, 15–12, 15–13, 15–14, 15–15, 15–16,
15–17, 15–18
Shortform, 1–11
SHOW, 32–12
Simple commands, 1–8
SKEW command, 12–7
SLAVe command/query, 15–15
SLISt selector, 17–7
SLISt Subsystem, 17–1, 17–3, 17–4, 17–5,
17–6, 17–7, 17–8, 17–9, 17–10, 17–11,
17–12, 17–13, 17–14, 17–15, 17–16, 17–17,
17–18, 17–19, 17–20, 17–21, 17–22, 17–23
slope, 32–5, 35–12
SLOPe?, 35–13
slot_number, 31–4
SOURce, 33–9, 35–13, 36–11
SOURce?, 33–9, 35–13, 36–12
Spaces, 1–7
SPERiod, 36–12
SPERiod command/query, 22–18, 23–18
SPERiod?, 36–12
Square brackets, 4–5
STARt command, 9–23
state analyzer

program example, 43–5
Status, 1–22, 6–2, 8–3
Status byte, 6–6
Status registers, 1–22, 8–3
Status reporting, 6–2
STEP, 37–8, 37–9
STEP FSTate, 37–8
Stop bits, 3–9
STOP command, 9–23
stop condition, 32–11
STORe command/query, 16–17
STORe:CONFig command, 11–20

STRace Command, 16–9
STRigger Command, 16–9
STRigger/STRace Subsystem, 16–1, 16–3,
16–4, 16–5, 16–6, 16–7, 16–8, 16–9, 16–10,
16–11, 16–12, 16–13, 16–14, 16–15, 16–16,
16–17, 16–18, 16–19, 16–20, 16–21, 16–22,
16–23
String data, 1–13
String variables, 1–18
STTRace selector, 22–8
Subsystem

ACQuire, 29–1, 29–2, 29–3, 29–4, 29–5
CHANnel, 30–1, 30–2, 30–3, 30–4, 30–5,

30–6, 30–7, 30–8, 30–9
COMPare, 20–2
DISPlay, 31–1, 31–2, 31–3, 31–4, 31–5,

31–6, 31–7, 31–8, 31–9
FORMat, 38–2
INTermodule, 12–2
MACHine, 13–2
MACRo, 40–2
MARKer, 32–1, 32–2, 32–3, 32–4, 32–5,

32–6, 32–7, 32–8, 32–9, 32–10, 32–11,
32–12, 32–13, 32–14, 32–15, 32–16, 32–17,
32–18, 32–19

MEASure, 33–1, 33–2, 33–3, 33–4, 33–5,
33–6, 33–7, 33–8, 33–9, 33–10, 33–11,
33–12

MMEMory, 11–2
SCHart, 19–2
SEQuence, 39–2
SFORmat, 15–1, 15–3, 15–4, 15–5, 15–6,

15–7, 15–8, 15–9, 15–10, 15–11, 15–12,
15–13, 15–14, 15–15, 15–16, 15–17, 15–18

SLISt, 17–1, 17–3, 17–4, 17–5, 17–6, 17–7,
17–8, 17–9, 17–10, 17–11, 17–12, 17–13,
17–14, 17–15, 17–16, 17–17, 17–18, 17–19,
17–20, 17–21, 17–22, 17–23

STRigger/STRace, 16–1, 16–3, 16–4, 16–5,
16–6, 16–7, 16–8, 16–9, 16–10, 16–11,
16–12, 16–13, 16–14, 16–15, 16–16, 16–17,
16–18, 16–19, 16–20, 16–21, 16–22, 16–23

SWAVeform, 18–2
SYMBol, 26–1, 26–3, 26–4, 26–5, 26–6,

26–7, 26–8, 41–2
SYSTem, 10–2
TFORmat, 21–1, 21–3, 21–4, 21–5, 21–6,

21–7, 21–8

TIMebase, 34–1, 34–2, 34–3, 34–4, 34–5,
34–6

TLISt, 24–1, 24–3, 24–4, 24–5, 24–6, 24–7,
24–8, 24–9, 24–10, 24–11, 24–12, 24–13,
24–14, 24–15, 24–16, 24–17, 24–18, 24–19,
24–20, 24–21, 24–22

TRIGger, 35–1, 35–2, 35–3, 35–4, 35–5,
35–6, 35–7, 35–8, 35–9, 35–10, 35–11,
35–12, 35–13

TTRigger/TTRace, 22–1, 22–3, 22–4, 22–5,
22–6, 22–7, 22–8, 22–9, 22–10, 22–11,
22–12, 22–13, 22–14, 22–15, 22–16, 22–17,
22–18, 22–19, 22–20, 22–21, 22–22

TWAVeform, 23–1, 23–3, 23–4, 23–5, 23–6,
23–7, 23–8, 23–9, 23–10, 23–11, 23–12,
23–13, 23–14, 23–15, 23–16, 23–17, 23–18,
23–19, 23–20, 23–21, 23–22, 23–23, 23–24,
23–25

WAVeform, 36–1, 36–2, 36–3, 36–4, 36–5,
36–6, 36–7, 36–8, 36–9, 36–10, 36–11,
36–12, 36–13, 36–14, 36–15, 36–16

WLISt, 14–1, 14–3, 14–4, 14–5, 14–6, 14–7,
14–8, 14–9, 14–10, 14–11
Subsystem commands, 4–6
subtracting waveforms, 31–8
Suffix multiplier, 5–9
Suffix units, 5–10
SWAVeform selector, 18–4
SWAVeform Subsystem, 18–1, 18–3, 18–4,
18–5, 18–6, 18–7, 18–8, 18–9, 18–10
SYMBol selector, 26–4
SYMBol Subsystem, 26–1, 26–3, 26–4,
26–5, 26–6, 26–7, 26–8, 41–2
Syntax diagram

COMPare Subsystem, 20–3
INTermodule subsystem, 12–3
MACHine Subsystem, 13–3
MACRo subsystem, 40–3, 40–4
Mainframe commands, 9–3, 9–5
MMEMory subsystem, 11–3, 11–4, 11–6
Module Level, 37–7
SCHart Subsystem, 19–3
SEQuence Subsystem, 39–2
SFORmat Subsystem, 15–3
SLISt Subsystem, 17–3
STRigger Subsystem, 16–3
SWAVeform Subsystem, 18–3
SYMBol Subsystem, 26–3

Index

Index–8

SYSTem subsystem, 10–3
TFORmat Subsystem, 21–3
TLISt Subsystem, 24–3
TTRigger Subsystem, 22–3
TWAVeform Subsystem, 23–4, 23–5
WLISt Subsystem, 14–3

Syntax diagrams
IEEE 488.2, 5–5

System commands, 4–6
SYSTem subsystem, 10–2
SYSTem:DATA, 27–4, 27–5
SYSTem:DATA command program
example, 43–17
SYSTem:DATA query program example,
43–17
SYStem:SETup, 27–15, 27–16
SYSTem:SETup command program
example, 43–14
SYSTem:SETup query program example,
43–14

T

TAG command/query, 16–18
TAKenbranch command/query, 16–19,
18–9
TAVerage, 32–12
TAVerage query, 17–17, 23–19, 24–16
TAVerage?, 32–12
TCONtrol command/query, 16–20, 22–19
TERM command/query, 16–21, 22–20
Terminator, 1–7
TFORmat selector, 21–4
TFORmat Subsystem, 21–1, 21–3, 21–4,
21–5, 21–6, 21–7, 21–8
Three-wire Interface, 3–4
THReshold command/query, 15–18, 21–8
time, 35–4
time between markers, 32–12
time marker mode, 32–14
time measurements, 32–2
time tag data description, 27–12, 27–13
timebase mode, 34–5
TIMebase Subsystem, 34–2
TIMER command/query, 16–22, 22–21
timing analyzer

program example, 43–3
TINTerval:AUTorange command, 25–21
TINTerval:QUALifier command/query,

25–21
TINTerval:TINTerval command/query,
25–23
TINTerval:TSTatistic query, 25–24
TLISt selector, 24–7
TLISt Subsystem, 24–1, 24–3, 24–4, 24–5,
24–6, 24–7, 24–8, 24–9, 24–10, 24–11,
24–12, 24–13, 24–14, 24–15, 24–16, 24–17,
24–18, 24–19, 24–20, 24–21, 24–22
TMAXimum, 32–13
TMAXimum query, 17–17, 23–19, 24–16
TMINimum, 32–13
TMINimum query, 17–18, 23–20, 24–17
TMINimum?, 32–13
TMODe, 32–14
TMODe?, 32–14
top of waveform voltage measurement,
33–12
TPOSition command/query, 16–23, 18–10,
22–22, 23–20
Trailing dots, 4–5
transferring waveform data program
example, 43–28, 43–30
Transmit Data (TD), 3–4, 3–5
TREE command, 12–8
trigger count:See trigger , 35–11
trigger delay, 34–4, 35–7, 35–11
trigger level voltage, 35–8
trigger logic, 35–10
trigger mode, 35–11
trigger path, 35–12
trigger slope, 35–12
trigger source, 35–13
TRIGger Subsystem, 35–2
triggered timebase mode, 34–5
Truncation rule, 4–3
TTIMe query, 12–9
TTL, 30–9
TTRigger , 22–8
TTRigger/TTRace Subsystem, 22–1, 22–3,
22–4, 22–5, 22–6, 22–7, 22–8, 22–9, 22–10,
22–11, 22–12, 22–13, 22–14, 22–15, 22–16,
22–17, 22–18, 22–19, 22–20, 22–21, 22–22
TWAVeform selector, 23–7
TWAVeform Subsystem, 23–1, 23–3, 23–4,
23–5, 23–6, 23–7, 23–8, 23–9, 23–10,
23–11, 23–12, 23–13, 23–14, 23–15, 23–16,
23–17, 23–18, 23–19, 23–20, 23–21, 23–22,

23–23, 23–24, 23–25
TYPE, 29–5, 32–5, 36–12
TYPE command/query, 13–10
TYPE?, 29–5, 36–12

U

Units, 1–12
UPLoad command, 11–21
Uppercase, 1–11
URQ, 6–5
Using AUToscale and the MEASure:ALL?
Query program example, 43–32
Using Sub-routines program example,
43–33

V

VALid, 36–13
valid runs, 32–16
VALid?, 36–13
VAMPlitude, 33–10
VAMPlitude?, 33–10
VAXis command/query, 19–7
VBASe, 33–10
VBASe?, 33–10
vertical axis, 30–8
vertical range, 30–4, 30–6
vertical sensitivity, 30–4
Vlevel, 32–5
VMAX, 33–11
VMAX?, 33–11
VMIN, 33–11
VMIN?, 33–11
VMODe, 32–15
VMODe?, 32–15
voltage marker A, 32–6
voltage marker B, 32–7
voltage marker mode, 32–15
voltage measurement, 33–10
voltage measurements, 32–2
VOTime?, 32–16
VPP, 33–12
VPP?, 33–12
VRUNs, 32–16
VRUNs query, 17–18, 23–21, 24–17
VRUNs?, 32–16

Index

Index–9

VTOP, 33–12
VTOP?, 33–12
VXTime, 32–17
VXTime?, 32–17

W

waveform source, 36–11
WAVeform Subsystem, 36–2
White space, 1–7
WIDTh, 41–8
WIDTh command, 26–8
WLISt selector, 14–4
WLISt Subsystem, 14–1, 14–3, 14–4, 14–5,
14–6, 14–7, 14–8, 14–9, 14–10, 14–11
word data structure, 36–4
WORD format, 36–4
word transfer, 36–3

X

X marker placement, 32–18
X marker position, 32–19
X marker voltage level, 32–17
XAUTo, 32–18
XAUTo?, 32–18
XCONdition command/query, 23–22, 24–18
Xincrement, 36–13
Query, 36–13
XORigin, 36–14
XORigin?, 36–14
XOTag query, 17–19, 24–18
XOTime, 32–19
XOTime query, 14–10, 17–19, 23–22, 24–19
XOTime?, 32–19
XPATtern command/query, 17–20, 23–23,
24–19
XREFerence, 36–14
XREFerence?, 36–14
XSEarch command/query, 17–21, 23–24,
24–20
XSTate query, 14–10, 17–22, 24–21
XTAG command/query, 17–22, 17–23,
24–22
XTIMe, 32–19
XTIMe command/query, 14–11, 23–25
XTIMe?, 32–19

XVOLt, 32–17
XWINdow command, 9–24
XXX, 4–5, 4–7
XXX (meaning of), 1–6

Y

YINCrement, 36–15
YINCrement?, 36–15
YORigin, 36–15
YORigin?, 36–15
YREFerence, 36–16
YREFerence?, 36–16

Index

Index–10

© Copyright Hewlett-
Packard Company 1992-97
All Rights Reserved.

Reproduction, adaptation, or
translation without prior
written permission is
prohibited, except as allowed
under the copyright laws.

Restricted Rights Legend

Use, duplication, or
disclosure by the U.S.
Government is subject to
restrictions set forth in
subparagraph (C) (1) (ii)
of the Rights in Technical
Data and Computer Software
Clause in DFARS
252.227-7013.
Hewlett-Packard Company,
3000 Hanover Street, Palo
Alto, CA 94304 U.S.A.
Rights for non-DOD U.S.
Government Departments
and Agencies are set forth in
FAR 52.227-19(c)(1,2).

Document Warranty

The information contained in
this document is subject to
change without notice.
Hewlett-Packard makes

no warranty of any kind

with regard to this

material, including, but

not limited to, the implied

warranties of

merchantability or fitness

for a particular purpose.

Hewlett-Packard shall not be
liable for errors contained
herein or for damages in
connection with the
furnishing, performance, or
use of this material.

Safety

This apparatus has been
designed and tested in
accordance with IEC
Publication 348, Safety
Requirements for Measuring
Apparatus, and has been
supplied in a safe condition.
This is a Safety Class I
instrument (provided with
terminal for protective
earthing). Before applying
power, verify that the correct
safety precautions are taken
(see the following warnings).
In addition, note the external
markings on the instrument
that are described under
"Safety Symbols."

Warning

• Before turning on the
instrument, you must connect
the protective earth terminal
of the instrument to the
protective conductor of the
(mains) power cord. The
mains plug shall only be
inserted in a socket outlet
provided with a protective
earth contact. You must not
negate the protective action
by using an extension cord
(power cable) without a
protective conductor
(grounding). Grounding one
conductor of a two-conductor
outlet is not sufficient
protection.

• Only fuses with the
required rated current,
voltage, and specified type
(normal blow, time delay,
etc.) should be used. Do not
use repaired fuses or
short-circuited fuseholders.
To do so could cause a shock
of fire hazard.

• Service instructions are for
trained service personnel. To
avoid dangerous electric
shock, do not perform any
service unless qualified to do
so. Do not attempt internal
service or adjustment unless
another person, capable of
rendering first aid and
resuscitation, is present.

• If you energize this
instrument by an auto
transformer (for voltage
reduction), make sure the
common terminal is
connected to the earth
terminal of the power source.

• Whenever it is likely that
the ground protection is
impaired, you must make the
instrument inoperative and
secure it against any
unintended operation.

• Do not operate the
instrument in the presence of
flammable gasses or fumes.
Operation of any electrical
instrument in such an
environment constitutes a
definite safety hazard.

• Do not install substitute
parts or perform any
unauthorized modification to
the instrument.

• Capacitors inside the
instrument may retain a
charge even if the instrument
is disconnected from its
source of supply.

• Use caution when exposing
or handling the CRT.
Handling or replacing the
CRT shall be done only by
qualified maintenance
personnel.

Safety Symbols

Instruction manual symbol:
the product is marked with
this symbol when it is
necessary for you to refer to
the instruction manual in
order to protect against
damage to the product.

Hazardous voltage symbol.

Earth terminal symbol: Used
to indicate a circuit common
connected to grounded
chassis.

W A R N I N G

The Warning sign denotes a
hazard. It calls attention to a
procedure, practice, or the
like, which, if not correctly
performed or adhered to,
could result in personal
injury. Do not proceed
beyond a Warning sign until
the indicated conditions are
fully understood and met.

C A U T I O N

The Caution sign denotes a
hazard. It calls attention to
an operating procedure,
practice, or the like, which, if
not correctly performed or
adhered to, could result in
damage to or destruction of
part or all of the product. Do
not proceed beyond a
Caution symbol until the
indicated conditions are fully
understood or met.

Hewlett-Packard
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

Product Warranty

This Hewlett-Packard
product has a warranty
against defects in material
and workmanship for a period
of one year from date of
shipment. During the
warranty period,
Hewlett-Packard Company
will, at its option, either
repair or replace products
that prove to be defective.
For warranty service or
repair, this product must be
returned to a service facility
designated by
Hewlett-Packard.
For products returned to
Hewlett-Packard for warranty
service, the Buyer shall
prepay shipping charges to
Hewlett-Packard and
Hewlett-Packard shall pay
shipping charges to return
the product to the Buyer.
However, the Buyer shall pay
all shipping charges, duties,
and taxes for products
returned to Hewlett-Packard
from another country.
Hewlett-Packard warrants
that its software and firmware
designated by
Hewlett-Packard for use with
an instrument will execute its
programming instructions
when properly installed on
that instrument.
Hewlett-Packard does not
warrant that the operation of
the instrument software, or
firmware will be
uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall
not apply to defects resulting
from improper or inadequate
maintenance by the Buyer,
Buyer-supplied software or
interfacing, unauthorized
modification or misuse,
operation outside of the
environmental specifications
for the product, or improper
site preparation or
maintenance.

No other warranty is

expressed or implied.

Hewlett-Packard

specifically disclaims the

implied warranties of

merchantability or fitness

for a particular purpose.

Exclusive Remedies

The remedies provided herein
are the buyer’s sole and
exclusive remedies.
Hewlett-Packard shall not be
liable for any direct, indirect,
special, incidental, or
consequential damages,
whether based on contract,
tort, or any other legal theory.

Assistance

Product maintenance
agreements and other
customer assistance
agreements are available for
Hewlett-Packard products.
For any assistance, contact
your nearest Hewlett-Packard
Sales Office.

Certification

Hewlett-Packard Company
certifies that this product met
its published specifications at
the time of shipment from the
factory. Hewlett-Packard
further certifies that its
calibration measurements are
traceable to the United States
National Institute of
Standards and Technology, to
the extent allowed by the
Institute’s calibration facility,
and to the calibration
facilities of other
International Standards
Organization members.

About this edition

This is the first edition of the
HP 1660C/CS/CP-Series

Logic Analyzers

Programmer’s Guide

Publication number
01660-97024
Printed in USA.
Edition dates are as follows:
First edition, November 1997

New editions are complete
revisions of the manual.
Many product updates do not
require manual changes and
manual corrections may be
done without accompanying
product changes. Therefore,
do not expect a one-to-one
correspondence between
product updates and manual
updates.

	In This Book
	General Information
	Introduction to Programming the HP 1660C/CS/CP
	Talking to the Instrument
	Initialization
	Instruction Syntax
	Output Command
	Device Address
	Instructions
	Instruction Terminator
	Header Types
	Duplicate Keywords
	Query Usage
	Program Header Options
	Parameter Data Types
	Selecting Multiple Subsystems

	Receiving Information from the Instrument
	Response Header Options
	Response Data Formats
	String Variables
	Numeric Base
	Numeric Variables
	Definite-Length Block Response Data
	Multiple Queries
	Instrument Status

	Programming Over HP-IB
	Interface Capabilities
	Command and Data Concepts
	Addressing
	Communicating Over the HP-IB Bus (HP 9000 Series 200/300 Controller)
	Local, Remote, and Local Lockout
	Bus Commands

	Programming Over RS-232-C
	Interface Operation
	RS-232-C Cables
	Minimum Three-Wire Interface with Software Protocol
	Extended Interface with Hardware Handshake
	Cable Examples
	Configuring the Logic Analzer Interface
	Interface Capabilities
	RS-232-C Bus Addressing
	Lockout Command

	Programming and Documentation Conventions
	Truncation Rule
	Infinity Representation
	Sequential and Overlapped Commands
	Response Generation
	Syntax Diagrams
	Notation Conventions and Definitions
	The Command Tree
	Tree Traversal Rules
	Command Set Organization
	Subsystems
	Program Examples

	Message Communication and System Functions
	Protocols
	Syntax Diagrams
	Syntax Overview

	Status Reporting
	Event Status Register
	Service Request Enable Register
	Bit Definitions
	Key Features
	Serial Poll

	Error Messages
	Device Dependent Errors
	Command Errors
	Execution Errors
	Internal Errors
	Query Errors

	Mainframe Commands
	Common Commands
	*CLS (Clear Status)
	*ESE (Event Status Enable)
	*ESR (Event Status Register)
	*IDN (Identification Number)
	*IST (Individual Status)
	*OPC (Operation Complete)
	*OPT (Option Identification)
	*PRE (Parallel Poll Enable Register Enable)
	*RST (Reset)
	*SRE (Service Request Enable)
	*STB (Status Byte)
	*TRG (Trigger)
	*TST (Test)
	*WAI (Wait)

	Instrument Commands
	BEEPer
	CAPability
	CARDcage
	CESE (Combined Event Status Enable)
	CESR (Combined Event Status Register)
	EOI (End Or Identify)
	LER (LCL Event Register)
	LOCKout
	MENU
	MESE<N> (Module Event Status Enable)
	MESR<N> (Module Event Status Register)
	RMODe
	RTC (Real-time Clock)
	SELect
	SETColor
	STARt
	STOP
	XWINdow

	SYSTem Subsystem
	DATA
	DSP (Display)
	ERRor
	HEADer
	LONGform
	PRINt
	SETup

	MMEMory Subsystem
	AUToload
	CATalog
	CD (Change Directory)
	COPY
	DOWNload
	INITialize
	LOAD [:CONFig]
	LOAD :IASSembler
	MKDir (Make Directory)
	MSI (Mass Storage Is)
	PACK
	PURGe
	PWD (Present Working Directory)
	REName
	STORe [:CONFig]
	UPLoad
	VOLume

	INTermodule Subsystem
	:INTermodule
	DELete
	HTIMe
	INPort
	INSert
	SKEW<N>
	TREE
	TTIMe

	Logic Analyzer Commands
	MACHine Subsystem
	MACHine
	ARM
	ASSign
	LEVelarm
	NAME
	REName
	RESource
	TYPE

	WLISt Subsystem
	WLISt (Waveforms/LISting)
	DELay
	INSert
	LINE
	OSTate
	OTIMe
	RANGe
	REMove
	XOTime
	XSTate
	XTIMe

	SFORmat Subsystem
	SFORmat
	CLOCk
	LABel
	MASTer
	MODE
	MOPQual
	MQUal
	REMove
	SETHold
	SLAVe
	SOPQual
	SQUal
	THReshold

	STRigger (STRace) Subsystem
	Qualifier
	STRigger (STRace)
	ACQuisition
	BRANch
	CLEar
	FIND
	RANGe
	SEQuence
	STORe
	TAG
	TAKenbranch
	TCONtrol
	TERM
	TIMER
	TPOSition

	SLISt Subsystem
	SLISt
	COLumn
	CLRPattern
	DATA
	LINE
	MMODe (Marker Mode)
	OPATtern
	OSEarch
	OSTate
	OTAG
	OVERlay
	REMove
	RUNTil (Run Until)
	TAVerage
	TMAXimum
	TMINimum
	VRUNs
	XOTag
	XOTime
	XPATtern
	XSEarch
	XSTate
	XTAG

	SWAVeform Subsystem
	SWAVeform(State Waveform)
	ACCumulate
	ACQuisition
	CENTer
	CLRPattern
	CLRStat
	DELay
	INSert
	RANGe
	REMove
	TAKenbranch
	TPOSition

	SCHart Subsystem
	SCHart
	ACCumulate
	HAXis
	VAXis

	COMPare Subsystem
	COMPare
	CLEar
	CMASk
	COPY
	DATA
	FIND
	LINE
	MENU
	RANGe
	RUNTil
	SET

	TFORmat Subsystem
	TFORmat (Timing Format)
	ACQMode
	LABel
	REMove
	THReshold

	TTRigger (TTRace) Subsystem
	Qualifier
	TTRigger (TTRace) (Trace Trigger)
	ACQuisition
	BRANch
	CLEar
	FIND
	GLEDge
	RANGe
	SEQuence
	SPERiod
	TCONtrol (Timer Control)
	TERM
	TIMER
	TPOSition (Trigger Position)

	TWAVeform Subsystem
	TWAVeform
	ACCumulate
	ACQuisition
	CENTer
	CLRPattern
	CLRStat
	DELay
	INSert
	MMODe (Marker Mode)
	OCONdition
	OPATtern
	OSEarch
	OTIMe
	RANGe
	REMove
	RUNTil (Run Until)
	SPERiod
	TAVerage
	TMAXimum
	TMINimum
	TPOSition
	VRUNs
	XCONdition
	XOTime
	XPATtern
	XSEarch
	XTIMe

	TLISt Subsystem
	TLISt
	COLumn
	CLRPattern
	DATA
	LINE
	MMODe (Marker Mode)
	OCONdition
	OPATtern
	OSEarch
	OSTate
	OTAG
	REMove
	RUNTil (Run Until)
	TAVerage
	TMAXimum
	TMINimum
	VRUNs
	XCONdition
	XOTag
	XOTime
	XPATtern
	XSEarch
	XSTate
	XTAG

	SPA Subsystem
	MODE
	OVERView:BUCKet
	OVERView:HIGH
	OVERView:LABel
	OVERView:LOW
	OVERView:OMARker
	OVERView:OVSTatistic
	OVERView:XMARker
	HISTogram:HSTatistic
	HISTogram:LABel
	HISTogram:OTHer
	HISTogram:QUALifier
	HISTogram:RANGe
	HISTogram:TTYPe
	TINTerval:AUTorange
	TINTerval:QUALifier
	TINTerval:TINTerval
	TINTerval:TSTatistic

	SYMBol Subsystem
	SYMBol
	BASE
	PATTern
	RANGe
	REMove
	WIDTh

	DATA and SETup Commands
	Data Format
	:SYSTem:DATA
	Section Header Description
	Section Data
	Data Preamble Description
	Acquisition Data Description
	Time Tag Data Description
	Glitch Data Description
	SYSTem:SETup
	RTC_INFO Section Description

	Oscilloscope Commands
	Oscilloscope Root Level Commands
	AUToscale
	DIGitize

	ACQuire Subsystem
	COUNt
	TYPE

	CHANnel Subsystem
	COUPling
	ECL
	OFFSet
	PROBe
	RANGe
	TTL

	DISPlay Subsystem
	ACCumulate
	CONNect
	INSert
	LABel
	MINus
	OVERlay
	PLUS
	REMove

	MARKer Subsystem
	AVOLt
	ABVolt?
	BVOLt
	CENTer
	MSTats
	OAUTo
	OTIMe
	RUNTil (Run Until)
	SHOW
	TAVerage?
	TMAXimum?
	TMINimum?
	TMODe
	VMODe
	VOTime?
	VRUNs?
	VXTime?
	XAUTo
	XOTime?
	XTIMe

	MEASure Subsystem
	ALL?
	FALLtime?
	FREQuency?
	NWIDth?
	OVERshoot?
	PERiod?
	PREShoot?
	PWIDth?
	RISetime?
	SOURce
	VAMPlitude?
	VBASe?
	VMAX?
	VMIN?
	VPP?
	VTOP?

	TIMebase Subsystem
	DELay
	MODE
	RANGe

	TRIGger Subsystem
	CONDition
	DELay
	LEVel
	LOGic
	MODE
	PATH
	SLOPe
	SOURce

	WAVeform Subsystem
	Format for Data Transfer
	Data Conversion
	COUNt?
	DATA?
	FORMat
	POINts?
	PREamble?
	RECord
	SOURce
	SPERiod?
	TYPE?
	VALid?
	XINCrement?
	XORigin?
	XREFerence?
	YINCrement?
	YORigin?
	YREFerence?

	Pattern Generator Commands
	Programming the Pattern Generator
	Programming Overview
	Example Pattern Generator Program
	Selecting the Pattern Generator
	Command Set Organization

	Pattern Generator Level Commands
	STEP
	RESume

	FORMat Subsystem
	CLOCk
	DELay
	LABel
	MODe
	REMove

	SEQuence Subsystem
	COLumn
	EPATtern
	INSert
	PROGram
	REMove

	MACRo Subsystem
	INSert
	NAME
	PARameter
	PROGram
	REMove

	SYMBol Subsystem
	BASE
	PATTern
	RANGe
	REMove
	WIDTh

	DATA and SETup Commands
	SYSTem:DATA
	SYSTem:SETup

	Programming Examples
	Programming Examples
	Making a timing analyzer measurement
	Making a state analyzer measurement
	Making a state compare measurement
	Transferring the logic analyzer configuration
	Transferring the logic analyzer acquired data
	Checking for measurement completion
	Sending queries to the logic analyzer
	Getting ASCII Data with PRINt? ALL Query
	Reading the disk with the CATalog? ALL query
	Reading the Disk with the CATalog? Query
	Printing to the disk
	Transferring waveform data in byte format
	Transferring waveform data in word format
	Using AUToscale and the MEASure:ALL? Query
	Using subroutines in a measurement program

	Index

