
-f

Tajo Functional Specification

Version 6.0
Octo ber 1980

This document is for Xerox internal use only

X.EROX ..
OFFICE PROD'u'tTS DIVISION ..
SYSTEMS DEVELOPMENT DEPARTM~NT
EI Segundo / Palo Alto California

(

(

1.0INTRODUCTION AND SCOPE
1.1 Introduction to Tajo
1.2 The Tajo User Illusion

2.0 REFERENCES

Table of Contents'

3.0 BASIC CONCEPTS AND RELIGION
3.1 Windows
3.2 User Input

3.2.1 Notification
3.2.2 TypeIn

3.3 Menus
3.4 Selections
3.5 Fonns
3.6 Text
3.7 Cursors
3.8 Scroll bars
3.9 Librarian Interface

3.9.1 Property Lists
3.10 Basic precepts (The Commandments)

4.0 SOFTWARE DESIGN OVERVIEW
4.0.1 Tajo's Components
4.0.2 Tajo Naming Conventions

4.1 Subwindows
4.2 System Supplied Sub window Types

4.2.1 Form Subwindows
4.2.2 Text Sub windows

4.2.2.1 Text Sources
4.2.2.2 Text Subwindow Types

4.2.3 Message Sub windows
4.2.4 TeleType Subwindows

4.3 Client Subwindow Types
4.3.1 Implementing A Package

4.4 Tool Interface
4.4.1 Tool Creation
4.4.2 Tool States

5.0 IMPLEMENTATION COMPONENTS
5.1 Caret
5.2 CmFile

1
1
1

2

2
3
3
4
4
5

5
5
6
6
6
7
7
7

9
9
10
10
11
11
11
12
12
12
12

r 12

13
14
14
14

15
17
18

5.3 Compatibility
5.4 Context
5.5 Cursor

5.5.1 The Cursor Object
5.5.2 Manipulating the Cursor

5.6 Event
5.6.1 Items
5.6.2 Notification

5.7 FileSW
5.8 Format
5.9 FormSW

5.9.1 Conventions
5.9.2 The ItemObject

5.9.2.1 Commands
5.9.2.2 Sets

5.9.2.2.1 Booleans
5.9.2.2.2 Enumerateds

5.9.2.3 Strings
5.9.2.4 Numbers
5.9.2.5 Labels and Tags

5.9.3 Allocation of ItemObjects
5.9.3.1 Allocating an ItemObject from the Heap
5.9.3.2 Deallocating an ItemObject from the Heap

5.9.4 Sub window Global Operations
5.9.5 Operations Affecting One or Two Items
5.9.6 Errors and Abnormal Conditions

5.10 HeapString
5.11 Keys
5.12 Librarian

5.12.1 Altering the Librarian Data Base
5.12.2 Interrogating the Librarian Data Base
5.12.3 Accessing the Contents of Libjects
5.12.4 Errors and Abnormal Conditions
5.12.5 Property Lists
5.12.6 Property Lists Operations
5.12.7 Property Pair Operations

5.13 Menu
5.13.1 Simple Creation of Menus
5.13.2 The Menu Object
5.13.3 Menu Instances
5.13.4 Menu Items
5.13.5 Procedures For Setting up Menus
5.13.6 Errors

20
21
23
23
23
25-

25
26
27
29
31
31
31
34
34
34
35
36
37
39
40
40
42
42
44
45
46
47
48
48
49
50
50
51
52
52
55
55
56
56
56
57
57

5.14 MsgSW 58
5.14.1 Creation/Destruction 58
5.14.2 Output 58
5.14.3 Status Retrieval 59

5.15 Profile 60
5.16 Put 61
5.17 ScroUbar 62
5.18 Selection 63

5.18.l Selection Sources 64
5.18.2 The Trash Bin 65

5.19 StringSW 66
5.20 TajoMisc 67
5.21 TextSource 68 .

5.21.1 Basic Operations 68
5.21.2 Useful Operations on Text Sources 70
5.21.3 Disk Sources 71
5.21.4 String Sources 71
5.21.5 Errors 72

5.22 TextSW 73
5.22.l Basic Operations 73
5.22.2 Positioning and Selection Operations 74
5.22.3 Infonnation/ Alteration Operations 74
5.22.4 Activation Operations 75
5.22.5 Menu Operations 75

5.23 Tool 77
5.23.l Tool Creation 77
5.23.2 Subwindow Creation 78
5.23.3 Unique SWTypes 79
5.23.4 Destruction and Deallocation 79
5.23.5 Utilities 80
5.23.6 Errors 80

5.24 ToolDriver 81
5.25 ToolFont 82
5.26 ToolWindow 83

5.26.1 Tajo's use of Windows 83
5.26.2 Tool Windows 83

5.26.2.1 Aqjust and Limit Procedures 85
5.26.2.2 Transition Procedure 85

5.26.3 Sub windows 86
5.26.3.1 Display Procedure 87

5.26.4 Window Content Manipulation 87

5.26.5 Utilities 87
5.26.6 Errors 88

5.27TTYSW 89
5.27.1 Create/Destruction 89
5.27.2 Input and Output 90
5.27.3 Utilities 92

5.28 UserInput 93
5.28.1 Notification 93
5.28.2 Character Translation 96
5.28.3 User Typeln 96
5.28.4 Utilities 98

5.29 UserTerminal 100
5.30 Window 101
5.31 WindowFont 102

6.0 OPERATIONAL CONSIDERATIONS 103
6.1 AltoMesa version 103

.. 6.2 Pilot version 103

GLOSSARY 104

Appendix 1: A simple Tool 106

Appendix 2: A sample Tool 108

Tajo Functional Specification 1

1.0 INTRODUCTION AND SCOPE

This document describes Tajo, a collection of interfaces that provide the framework and runtime
system for the Mesa Development Environment.

Throughout this document the term user describes people who interact with Tajo via the mouse,
keyset and keyboard. The term client is used to describe programs and programmers that use the
interfaces described herein.

Terms that occur in the glossary of this document are bold the first time they are used, e.g., "Tajo"
above. All Mesa code and names of variables or types that are defined in the definitions modules
appear in this sans serif font (Mesa reserved words appear in SMALL CAPITALS). Names that are
part of the interface are in boldface when. used in the text. This small font is used for fine points.

1.1 Introduction to Tajo

Tajo is designed to facilitate the implementation and execution of a wide range of software
development programs. These programs are referred to as Tools. In the strict sense, any Mesa
program that will execute in Tajo is a Tool. However, considerably more semantics are applied to
the tenn Tool in this document

This document describes the interfaces provided by Tajo that are utilized in building Tools. It is
intended primarily for writers (programmers) of Tools. Advice and hints about how a Tool can best
use the facilities provided is also given. The documentation (not the definitions modules) is
considered to be the final word on interfaces implemented by Tajo. It is expected that clients of
Tajo will write code from this specification.

This document is a reference manual, not a· tutorial. Sec. 3 contains a motivation of why the
separate facilities of Tajo exist and explains their expected use. Sec. 4 describes in more detail the
design and philosophy of Tajo and offers some stylized patterns of use that have evolved during the
development of Tajo. The detailed descriptions of the interfaces are contained in Sec. 5. Section 6
describes some AltoMesa and Pilot operational considerations. Example programs are listed in the
appendices. The recommended easiest way for a client to become proficient with Tajo is to start
with one of these Tools and to modify it into the Tool desired.

1.2 The Tajo User Illusion

The following is a brief description of the Tajo user illusion. A complete description is found in the
Guide For Tool Users.

From the user's point of view Tajo provides uniform and consistent interaction modes for both inter
Tool and intra-Tool actions. This is accomplished by providing a user illusion that consists of
standard mechanisms and procedures for interacting with Tools. Central to Tajo is the notion of
breaking the user's interactions down into a reasonably small number of atomic actions when

2 Tajo Functional Specification

specifying parameters and commands. Long sequences and context dependent interactions are
discouraged. The goal is to make similar actions, in different contexts, have predictable results.

The user interface for Tools provides the unifying framework for Tajo. Tools utilize display windows
to present information to the user. They all receive input and commands from the user in the same
using the same mechanisms. The user is encouraged to have an arbitrary number of Tool wind,ows
on the display screen. The windows may overlap each other, some obscuring portions of others.
The user directs his actions to the Tool whose window contains the cursor. The primary command
invocation mechanisms are via menus and command items contained in forms. In addition, facilities
are provided for running new Tools and manipulating windows on the display screen.

2.0 REFERENCES

Funciional Specification. Vista: SDD Display Window Package October, 1980.

Mesa'Language Manual Version 5.0 April, 1979.

Mesa System Documentation Version 6.0 October, 1980.

DIS Software Tools Environment Functional Specification January, 1977.

The above document discusses the whole of the Development Environment and several
individual Tools from the viewpoints of both a human user and a programmer client. Where
the present document parallels the above document, the above document is to be taken as
superceded.

The Pilot Programmer's Manual Version 5.0 October, 1980

Tajo: Guide For Tool Users Version 6.0 October, 1980

SDn Software Development Procedures and Standards April, 1977.

3.0 CONCEPTS AND RELIGION

The following sections describe the fundamental facilities that are the building blocks for Tajo and
implementation of Tools. These facilties implement and make concrete the fundamental ideas and
philosophy of Tajo. These facilities are:

Windows and sub windows
User input
Menus
Selections
Forms
Text

Tajo Functional Specification 3

3.1 \Vindows

The concept of the window provides the mechanism by which Tajo insulates functions from one
another on the display. A window is operated upon without regard for the its position on the
physical display screen.

A client commonly creates a single tool window. Overlapping between a tool window and other tool
windows is ignored by the client. Usually, a client wishes to consider that the tool window is
divided into a number of rectangular areas, sub~vindows, that are to be separately acted upon.
Subwindows are used for actually displaying client data: textual information, graphical constructions
or pictures. Tajo provides appropriate primitive procedures to facilitate each of these. Although

"window" is usually a generic tenn in this document. it occasionally acquires from the surrounding context the restriction

that it be tool window.

A digression is in order here to describe the relationship between Tajo and the software package,
Vista, that it uses to implement windows. Vista implements a general tree of windows. Vista has no
notion of depth dependent window specialization within the tree (except for the top level). Thus,
Vista allows a window to be moved from any depth in the tree to any other depth.

Tajo does not preclude clients from utilizing all of Vista's generality, but it does not use all of the
generality itself. Tajo defines five types of windows corresponding to the depth of the windows in
the tree and applies specific semantics to each type. The topmost window in" the tree is called the
root window. It is the size of the bitmap, and is used to define the dimensions of what the user can
see. The next level are tool windows. The third level windows are called clipping windows and are
used to define the "inside" or clipping box of tool windows for display purposes. Usually clients
shouldn't have to deal with clipping windows. The fourth level are subwindows. All windows of
depth greater than four are treated by Tajo as other windows, with no Tajo supplied specialization.

3.2 User Input

Given that a user may be simultaneously interacting with numerous Tools, Tajo must provide a
mechanism for specifying to which Tool (or window) any particular user action (mouse, keyboard, or
keyset activity) is directed. The requirement to direct user actions to various windows has given rise
to a notification mechanism.

3.2.1 Notification

This mechanism is desig"ned to be flexible and have minimal overhead for the processing of user
input actions. The basic scheme is that a Tool may install a number of procedures, one for each
user action, to be called (notified) when a change in the user input state occurs. A Tool is allowed
to get control immediately when the state change occurs, or at a later time when other user initiated
processing has completed. The rest of this subsection can be skipped during an initial reading.

The Notification mechanism is basically split into two distinct processes: 1) a high priority process,
called the Interrupt Level, for queuing user actions, and 2) a normal priority process, called the
Notifier (or Processing Level), for the actual processing of user actions.

4 Tajo Functional Specification

The Interrupt Level gets control of the cpu every vertical retrace. This is around 50 times per second.

depending on the processor type. This level watches for changes in the hardware user state, i.e., mouse
movements or key station (paddle on the keyset, button on the mouse, or key on the keyboard)
depressions or releases. A Tool may have Stimulus Notification Routines (SNR's) that get control at
this level.

Warning: The Interrupt level of the notification mechanism is a high priority process and as such has potential
preemption difficulties (in particular it cannot cause code swapping while it is executing on the Alto). This has
serious implications and if you plan to use this facility. Please consult with Tajo implementors.

The Notifier's primary function is to call Tool supplied Processing Notification Routines (PNR's).
The Interrupt Level communicates with the N otifier via a queue. Basically, the N otifier dequeues
the head item from the queue and the appropriate PNR is called. The secondary Notifier function
is to process the queue of periodic notifiers. This is a queue of procedures that wish to run on a
periodic basis, but which do not want to execute unless the Notifier would be otherwise unoccupied.
If it is idle the Notifier WAITS on a condition variable so that other processes (e.g communications,
etc.) ~ay run.

[Note: When PNRs or periodic notifiers are executing they are extensions of the Notifier (Le. on the same call
chain). This means that notification processing is suspended or "backs up" until control is returned from the PNR.

If you intend to do some serious computing you should FORK a process and let the Notifi~r get back to its task.]

3.2.2 TypeIn

The TypeIn facility lets the client supply a procedure that will be called whenever a character is
typed. It is important to note that the client gets called upon input of a character instead of calling
a GetChar procedure for one. This has a major impact upon the control structure of Tools,
requiring more explicit program state data. The user Typeln facilities are built using the above
described notification facilities. TypeIn allows the client to essentially be free of any concern for
"how it is done".

3.3 Menus

A menu is a set of options and commands associated with a window. It is possible to have multiple
menus on a single window. When the menus associated with a sub window 'are displayed the menus
associated with its tool window are also displayed.

A menu is implemented as an array of items. Each menu item is a pair, a keyword and a menu
command routine (a procedure to be called when the keyword is chosen by the user). A new menu
instance is created each time a menu object is associated with a window. When the same menu
appears in multiple windows, the menu object itself is shared.

3.4 Selections

Tajo Functional Specification 5

An example of a selection is a text string or a graphic icon that the user has caused to become
highlighted in some way. Many commands operate on the current selection. Tajo provides a
mechanism by which windows pass around "ownership" of the current selection. A Tool may
operate upon the current selection even though it is not in its own window.

Some commands may require more than one parameter. These commands usually ga~er their
parameters through the use of forms (see Sec 3.5), instead of using the selection mechanism.

3.5 Forms

A Tool often needs to collect more than one parameter from the user, but the collection of multiple
parameters using only menus and the current selection is difficult to program, and tends to create a
clumsy (and often inconsistent) user interface. In addition, such a Tool often wishes to display both
the current parameter settings and internal program state data. It also wants to allow modification of
the parameters.

The Tajo forms package frees the Tool writer from the concerns of parameter collection, display and
modification. The package shields the Tool writer from the display management ~ks of making
selections, displaying characters, wrapping long lines and scrolling. A form also provides a uniform
and consistent way for the user to interact with many different Tools. A mode problem arises
whenever commands require multiple arguments. In most systems, each such command enters a
special mode in which the user can only perform actions that are pertinent to the collection of the
current command's parameters; the parameters themselves are often collected in a specific order that
does not allow modification of any parameter except the one currently being collected. In Tajo, this
is unacceptable because the system should not preempt the user. Thus, a form allows the user to
enter or modify any or all parameters in any order prior to command execution.

The forms package is implemented so that the Tool writer has access to various levels at which he
can be involved in the display and alteration of the fields in the form. However, the interface is
primarily aimed at two distinct clients: the Tool writer who only wants minimal control, and the
Tool writer who wishes absolute control over parameter display and alteration. Some facilities are
provided for clients that wish to be somewhere in the middle of these two positions.

3.6 Text

All text displayed by Tajo is managed by a common set of display and user input facilities. This
allows the user to have one consistent way of selecting. and modifying text. This management is
provided by two packages, a low level one that does not know about the display but which provides
the primitive operations on the concrete representation of the text (Le. disk operations for text that is
coming from flIes, string operations for text that is stored only in primary memory, etc), and a high
level package that handles the displaying of the text and interactions with the user trying to
manipulate the text.

6 Tajo Functional Specification

3.7 Cursors

The cursor management routines are a small set· of definitions and procedures which provide, in
essence, a virtual interface to the hardware cursor.

These routines provide for the setting of the 256-bit pattern which is displayed by the hardware as
the human-visible cursor. They also provide for the specification of the hot spot, the position within
the 16x16 bit cursor that is meant to indicate the screen position pointed to by the mouse. Since
hardware implements the 16x16 bit cursor shape, but does not implement a hot spot, the
implementing routines themselves contain what might be considered the hardware hot spot
coordinates.

3.8 Scrollbars

In general, rajo has no knowledge of the contents of a window or subwindow so the actual scrolling
operations (Le. moving the bits) are the responsibility of the client. rajo does provide a standard
user illusion and mechanism for the user to invoke and cause the client to perform scrolling
operations.

3.9 Librarian Interface

The Librarian Interface is the component in Tajo whose primary task is to provide a procedural
interface to a physically remote function. The Librarian Interface is the Tool writer's. access
mechanism to the contents of objects, Libjects, stored in the Librarian Data Base and under the
control of the Librarian Service Tool. It is intended to be the only method of access to these data.

The primary purpose of the Librarian Interface is to provide a uniform procedural interface to the
Librarian Service. The interface serves to define and enforce both the syntax and semantics of the
basic request/response activity. It further insulates its users from the how's and where's of Librarian
functions as well as insulating the Librarian Service from malfonned requests.

'Most Libjects are used as access locks for Mesa source files to prevent simultaneous editing. If these
files are managed by Tools that use the Librarian Interface, then the classical simultaneous
conflicting edits problem is avoided. Each time the Libject lock is acquired (checkout) and released
(checkin) a new version of the Libject is created. All versions of a Libject are kept forever, allowing
the history of a project to be traced from its conception. The type of historical data maintained
includes the who, why, what, where and when of lock operations.

3.9.1 Property Lists

The Librarian Interface needs a standard way of discussing the various elements that make up a
Libject version. This is made difficult by the fact that neither the Librarian Interface nor Librarian
Service know anything about the items that it stores, and therefore cannot, in general, "know their
TV PES or (in particular) their SIZES. The resolution of this difficulty lies in the creation of the
Property List.

Tajo Functional Specification 7

o A Propcl'tyList is an array of PropertyPairs. Each PropertyPair defines an item within a
Ubject-version.

o A PropertyPair consists of a PropertyNumber and a PropertyValue, the former serving to name
the particular item-type, and the latter serving to contain the information.

To allow the Librarian Interface to manipulate PropertyPairs without knowing about each type of
property, we assign PropertyNumbers in a manner which supplies some information about the
PropertyValue from an examination of the PropertyNumber. In particular our scheme allows
a determination of both the SIZE of the PropertyValue and whether the PropertyValue is a
LibjectiD (a Librarian Interface assigned identifier) from examination of the PropertyNumber.

3.10 Basic precepts (The Commandments)

The above facilities were designed with some specific goals in mind. These goals are a result of a
philosophy that can be summed up in the following "religious, commandments".

Clients shall not preempt the user. (Swinehart's Law)

This is Tajo's basic tenet. The user should never be forced by the clients into a situation where
the only thing that he can do is interact with only one Tool. Even stronger, the client should try

to avoid falling into a particular "mode" when interacting with the user, i.e. the Tool should try
to avoid imposing unnecessary restrictions on the permitted sequencing of user actions.

Don't cal! us, we'l! call you. (Hollywood's Law)

A client should never sieze control of the processor while getting user input, which is' exactly
what tends to happen when the client wants to use the "get a command from the user and
execute it" model of operation. Instead, the Tool should arrange for Taja to notify it when the
user wishes to communicate some evept to the Tool.

The user owns the window layout.

Although it is possible for the client to re-arrange the window tree and the positions and sizes of
the windows on the display, this is discouraged. Each user has particular and differing tastes in
the way that he wishes to layout windows on the disp.1ay, and it is not the client's role to
overide the user's decisions. In particular, clients should avoid having windows jump up and
down trying to capture the user's attention. If the user has put a window off to the side, then
he does not want to be bothered by it.

The display belol'lgs to the Notifier.

Although an attempt has been made to accommodate clients that want to use multiple processes,
the display interactions are sufficiently fragile (especially in the presence of the destruction of
windows) that the display is considered to belong to the Notifier. If some background process
(here all non-Notifier processes are referred to as background processes) wants to do something
that could affect the display, it must make sure that the routines it calls are explicitly declared to

8 Tajo Functional Specification

be callable from a background process.

9

4.0 SOFT\VARE DESIGN OVERVIEW

This section provides an overview of the interactions between rajo's major software components.
Pieces of rajo are delineated and the some of the interdependencies are described. Hints are offered
on how the client programmer might best use Tajo facilities.

Clients who are interested in writing only a simple Tool and who have some idea about how Tajo is
structured might consider skimming the following sections up to the section entitled Tool Inteiface.
This section gives an overview of the top layer of software that a client deals with when writing a
simple tool.

4.0.1 Tajo's Components

The most basic portion of Tajo deals with user input devices, specifically the keyboard, keyset and
mouse, and the display output devices, specifically the cursor and bitmap. This portion can be
changed by the client without badly affecting the rest of Tajo provided that the changes are made by
replacing the SNRs and PNRs. The interfaces of interest are Keys, Userlnput and UserTerminal
for input, Cursor and Vista's Window for output. Further routines that Tajo uses to augment the
Window and UserInput interfaces are provided by the Context and ToolWindow interfaces.

The next level of output complexity is the simple display of text. The interfaces of interest are
ToolFont, Window and WindowFont.

Continuing along the axis involving text on the display, the next level is involved with more
complicated display of text. The interfaces of interest are TextDisplay and TextSource. TextDisplay
is a private interface but some clients. particularly those contemplating creating their own subwindow types, might need to

use it. If you find this is necessary you should consult a Tajo implementor. The interfaces 'Caret, Scrollbar and
Selection are concerned with text marking and user input.

These lower level functions are used to i~plement Tajo supplied subwindow types described by the
interfaces: FileSW, FormSW, MsgSW, StringSW, TextSW and TTYSW. The Menu interface
provides simple command invocation and is required by several of the subwindow types.

The combining of subwindows within a window to make a Tool is facilitated by the Tool interface.
The FileWindow and TTY interfaces enable the creation of Tools that each contain one subwindow
of a predefined type. The same caveat applies to FileWindow that applies to TextDisplay.

To one side are STRIN~ and formatting utilities. These cannot be discarded without affecting some
of the higher levels of Tajo such as the subwindow types. The interfaces of interest are Format,
HeapString and Put.

There are several interfaces dedicated to interacting with the surrounding runtime environment, and
to informing clients of changes in that environment The interfaces of interest are CmFile, Event,
Profile and TajoMisc.

10 Tajo: Functional Specification

Implemented as a strict add-on are the routines used to converse with the remote Librarian Service:
they are' provided by Librarian.

4.0:2 Tajo Naming Conventions

Although there are many exceptions to these rules, the following are the general naming conventions
practiced in Tajo.

Procedure types have the suffix P rocType. These types always use keyword notation to name their
arguments, and when there is more than one return value they are also named. The same
convention for naming arguments in the procedure types is used for naming arguments in the
interface procedures. In general, the argument is called: window if it is a general window, sw if it
is a Tajo sub window, ss if it is a St ring.Su bString, and index if it is a CARDINAL identifying a
position in some descriptor. There is extensive use of defaults.

The p~ary object supported by an interface is a' TYPE named 0 b j ect. Secondary objects have
suffix Object. A POINTER TO 'Object has suffix Handle.

Most of the interfaces have one signal called Erro r used to note exceptional conditions (usually
client errors or failures of the runtime environment). This signal has an argument called code
which is an ErrorCode defined in the same interface as the signal. The signal cannot be RESUMEd
except when this is explicitly permitted.

Interfaces that implement sub window types have procedures named Adjust, Create, Destroy,
Islt, Sleep and Wakeup. However, note that Create and Destroy do not actually create and
destroy subwindows; rather, they add or remove specialization to existing Tajo sub windows.

Private definitions modules usually have the substring Ops appended to the name of the associated
Public definitions module. For implementing modules the suffixes are Imp/ or sA, sB, sC, etc.
Bound groups of implementing modules have suffix s.

An enumerated type is often referred to as being "open ended". This means that it is declared to be
a MACHINE DEPENDENT enumerated type, and that room has been left in the enumeration for
future expansion or to allow Tajo to generate unique, un-named elements of the type at runtime.

4.1 Subwindows

The subwindow is the fundamental object from both the user's 'and the client's points of view. This
should not be surprising since user actions are directed at specific subwindows; as a consequence
sub window handles are constantly passed back and forth between clients and Tajo. This leads to the
practice by both Tajo and clients of associating data about the user's current context with
subwindows.

Subwindows come in various degrees of complexity. A raw sub window is created by calling
TooIWindow.CreateSubwindow, which results in a Window.Handle and additional associated
data used by Tajo. These data include, but are not limited to, the subwindow's PNRs. Such a sub window is
not very interesting for it does nothing but display white bits, and either ignores or gives away all

Software Design Overview 11

user actions directed to it. Tajo supplies several interfaces that support particular styles of
sub window enhancement.

The next level of complexity is realized by replacing the subwindow's display procedure by one that
shows the state of some associated client data structure.

The higher levels of complexity affect the user input and display output facilities of the subwindow
(such as the PNRs and Stringln and StringOut routines defined in the Userlnput interface),
usually by replacing them with more powerful ones. It is not uncommon for different subwindow
types to share common input routines (a good example of this is the Menu.PNR which is often the
PNR for the yellow mouse button), or to share the marking and resolution routines (such as those
involved in the selection of text) provided by lower levels of Tajo.

4.2 System Supplied Subwindow Types

!ajo provides subwindow types which display well defined client data structures in a particular
stylized layout. Some of these types are built upon the others; however, it is not possible to
arbitrarily mix these types in a single sub' . ."indow (for instance a subwindow cannot have the
attributes of both Form and File sub window types).

The process of calling a system supplied subwindow type Create routine is usually termed·
"creation" of a system supplied sub window type. This is a misnomer, because it is actually a
differentiation process; the client must have already created the subwindow to be operated upon by
a call to ToolWindow.Create.

4.2.1 Form Subwindows

Clients of the FormSW interface need to supply a procedure that completely defines the form that is
to be presented to the user. Much of the detail of the form layout and individual item options can
be defaulted, thus permitting the direct specification of only those things that are important to the
client. Much of, the work of defining the form is accomplished by calls to F 0 rmSW . • I tern
procedures where * can be one of {Boolean, Command, Enumerated, Label, LongNumber,
Number, String, TagOnly}. In addition, the client may supply notification routines that get
called when the user alters the form items.

4.2.2 Text Subwindows

The T ext SW interface presents a set of procedures that define a top level of uniform text displaying
and editing capabilities that are used by higher level sub window types. A subwindow of this type
allows the client to present a menu to the user that allows him to search for text strings, normalize
the insertion point to the top of the display region, normalize the selection to the top of the display
region, jump to the nth character in the text, split the subwindow into separately scrollable display
regions and change the line break mode.

12 Tajo: Functional Specification

4.2.2.1 Text Sources

When a TextSW is created it is passed a TextSource.Handle. This handle contains· a set of
procedures that are used to manipulate the backing data structure, the "source", that holds the
characters displayed by the TextSW. Thus, creating a TextSW with a client defined source, the data
representation can be of any suitable fonn.

4.2.2.2 Text Subwindow Types

Two system supplied subwindow types are built directly on top of the TextSW mechanism. One of
these is defined by the F; 1 e SW interface and uses a file as the source of its characters. This
interface has procedures that do file specific operations; other operations may be found in the
TextSW interface. The StringSW interface supports a sub window type that uses a STRING as the
source.

4.2.3 . Message Subwindows

The M s 9 SW interface defines a set of procedures for posting messages to the user. The client may
direct that in addition to writing to a MsgSW he wishes the output to go to another sub window as
well. This is useful for logging error messages. MsgSWs are built on top of StringSWs. So, if the
procedure that you need isn't in the M s 9 SW interface then it might be in the S t r i n 9 SW or T ext SW
interface.

4.2.4 TeleType Subwindows

In Tajo, client programs are notified of user keystrokes; this is in contrast to teletype environments
in which the client polls some keyboard handler for type-in. Many programmers are either used to
or have code that is structured to use a teletype like interface. To accommodate this style of user
interaction there is a system supplied subwindow type defined by the TTYSW interface. TTYSWs
are built on top of FileSWs.

4.3 Client Subwindow Types

There is considerable flexibility built into the system supplied subwindows. However, radical
changes in the style of the layout of the sub window, changes in the definition of the client data
structures or the alteration of the details of the user input interactions can only be achieved by the
writing of new code. This results in client implemented sub window types. The implementors of
Tajo encourage clients that find it necessary to implement their own sub window types to do so in
the same manner in which me system supplied types are constructed; namely to have a stand alone
package, complete with a definitions module and documentation, that can be loaded as a single,
possibly bound, .bcd file into Tajo.

There are two possible approaches to implementing a new sub window type. The first is to build
upon an existing subwindow type without changing the implementation code for that type. This can
be done only by strict augmentation or by the process of interposition. By augmentation we mean

Software Design Overview 13

adding totally new facilities to a subwindow type without conflicting or modifying existing facilities.
'This is difficult to do with the Tajo supplied types because each one of them has a full complement
of user input and output features. The· more common approach is interposition;" the idea is to
replace one or more of the procedures provided or used by an existing subwindow type with client
procedures, either by changing the binding path or by replacing procedure variables. This allows the
client to detect the occurrence of the event that the replaced procedure is associated with and to do
pre- or post-processing.

An example of interposition that occurs in Tajo is. an empty String subwindow's recognition of the
escape character as a command to notice the current text in the subwindow. The implementation of
this is to replace the keyboard PNR of the String sub window with another PNR which watches all
of the keyboard input go by. When an escape is typed by the user and sent to the PNR, instead of
sending it on to the regular PNR, the interposed PNR makes the contents of the String sub window
the current selection and then looks at the text of the current selection.

[Fine point: A deliberate attempt has been made to allow interposition of any system PNR. This is accomplished by
setting up the PNR only when the subwindow is created. If it was done at any ·other time it might overwrite. an
interposing PNR. In-other-words, if the subwindow type wants a PNR to behave differently in a time-dependent manner,
it should set flags rather than changing the PNR. No such Claim is made for the interposition of a suowindow display
procedure.]

4.3.1. Implementing A Package

A sub window type that would be useful to others should implement the Adjust, Sleep and
Wakeup procedures (although they need not have those names, see Tool. RegisterSWType).
Good citizenship encourages the implementation of the Destroy and Islt procedures, while
common sense dictates that there be a C reate procedure.

A common problem that arises when implementing a subwindow type is where to keep the state
data for the sub window. System defined subwindow implementations associate the data directly with
the Window.Handle using contexts, defined' by the interface Context. The next two paragraphes can be

skipped on the first reading and should only be read after studying the Context interface.

The typical scenario for a client using contexts to keep his state data in has three phases plus a start
up transient. The transient occurs when the subwindow type implementor is first STARTed. At that
time the implementor gets a unique context type from Tajo. Then when a sub window is
differentiated by a client calling the implementor's Create procedure (the initialization phase), the
implementor creates a context with the previously obtained unique type on that subwindow. The
data argument of the context creation call is a pointer to the subwindow's state data.

Whenever Tajo calls the implementor to operate upon the subwindow (the· steady state phase), a
subwindow handle with which the implementor can get the state data is provided. Eventually, the
finalization phase is reached when either the client calls the implementor's Dest roy procedure or
Tajo decides to destroy the subwindow. When Tajo destroys the sub window, it causes all the
contexts associated with the subwindow to be destroyed. The implementor's
Context.DestroyProcType, which should free the state data, is called. The implementor's
Destroy procedure should call Context.Destroy.

14 Tajo: Functional Specification

4.4 Tool Interface

The Tool interface is designed to make the writing· of Tools with a standard user interface as easy as
possible.' It allows the client to avoid understanding many of the low level facilities provided by
Tajo in exchange for some loss in flexibility.

In windows created using the Tool interface the user has the ability to dynamically move the
horizontal boundaries between subwindows. The interface supports automatic window layout of
subwindows vertically on the screen but not horizontally across the screen.

4.4.1 Tool Creation

The client controls the number and type of sub windows available in the Tool's window. By using
the Tool.Make * SW routines the client can have Tajo create a vanilla sub window, differentiate it to
be of type * and add it to the Tool. There are routines in the Tool interface that make it possible
to include client defined subwindows in a Tooi.

4.4.2 Tool States

The state of a Tool is a result of the following user illusion projected by Tajo. A Tool can be in one
of three states: normal, in which the user has access to the full functionality and user interface
provided by the Tool; tiny, in which the Tool's window is displayed as a small, labelled icon, but in
which the algorithmic functions of the Tool are still available (but potentially not user invokable
because of the display change); and inactive, in which the Tool's window does not appear on the
display and it is not functional. The user' can cause transitions between these states by interacting
with Tajo. The Tool interface helps to shield the client from is the changes in the Tool's state
caused by the user.

It is the responsibility of the client to support the above model and to consume only those resources
necessary for a particular state. Thus, if a Tool is tiny, it should not hang on to resources needed
only for updating of th~ display since it is not being displayed (Tajo manages. displaying the icon).
If a Tool is inactive, it should additionally free all resources tied up in internal state (Le. free all
streams, tum off all communications packages, deallocate all storage from the system heap, etc).
Since many of the resources belonging to a. Tool are allocated by Tajo on the Tool's behalf, the
client must understand what those resources are so that Tajo and the client don't both deallocate the
same resource.

The Tool interface provides a degree of automation for these transition tasks. For instance, when a
Tool is made tiny the Tool interface will get each of the sub windows to free up resources that they
use only to paint on the display. When a Tool is made inactive Tajo deallocates the subwindows
and their associated data structures, destroys any menus associated with the Tool and closes streams.
The client cannot be totally oblivious to the state transitions, else it might try to use a subwindow, or
other Tajo object, that had been deallocated. The client is asked to clean up his own private data
structures.

Implementation Components 15

5.0 IMPLEMENTATION COMPONENTS

This section deals with the actual procedures and data structures that are to be used in. building
Tools that run in Tajo. There are, of course, considerably more definitions inside the interface files
than appear in this document. However, as discussed in Section 1, this document is THE
specification for writers of Tools. It is the supported external interface for Tool writers (Le., the defs
files are not!). For completeness, some interfaces are included below that are not specific to Tajo,
but which are necessary for writing Tools. They are flagged in the list below by a preceeding *.

This section is organized with each major subsection representing a definitions module. The
following is a table of contents for the Tajo Definitions modules:

Caret
CmFile
Compatibility
Context
Cursor
Event
FileSW
*Format
FormSW
HeapString
Librarian
Keys
Menu
MsgSW
Profile
Put
Scrollbar
Selection
StringSW
TajoMisc
TextSource
TextSW
Tool
ToolDriver
ToolFont
ToolMisc

Blinking caret management.
Processirg ".cm" files of the form that User.cm uses.
Provides some compatibility between Alto/Mesa and Pilot types.
State saving/retrieving associated with windows.
Altering/Setting the cursor.
Notification/Veto of significant Tajo events.
Display and editing of Files.
Data to string formatting.
Form creation and manipulation.
Additional System Heap String operations.
Librarian Interface.
The keyboard, keyset and mouse bit assignments and synonyms.
Menu creation and manipulation.
Manages message posting to the user.
User and system attributes.
Formatted text output to subwindows.
Creation and destruction of scrollbars.
Management of the current selection/trashbin.
Display and editing of strings.
Miscellaneous utilities.
Creation and manipulation of text sources.
Shared Text subwindow operations.
Simple Tool creation.
Allows Tool to be manipulated by ToolDriver package.
Font loading/initialization.
Miscellaneous routines.

16

ToolWindow
TTYSW
UserInput
*UserTerminal
*Window
*WindowFont

Tajo Functional Specification

Tajo window creation and manipulation.
Teletype like operation.
User input/notification.
Display terminal primitives.
Window contents manipulation.
Font information primitives.

(

(

Implementation Components 17

5.1 Caret

Tajo provides a simple mechanism for clients to implement and manage a blinking caret, i.e.,
insertion point. Actual positioning and marking is the clients responsibility.

First some definitions.

Action: TYPE = {clear, mark, invert, stop, reset, ... };

MarkProcType: TYPE = PROCEDURE [data: POINTER, action: Action];

To become the manager of the caret call

Set: PROCEDURE [data: POINTER, marker: MarkProcType];

data is passed back to ma rke r whenever it is called by Tajo. If a client does not want to
actually mark the display when it is the manager of the caret it can use NopMarkerProc as its
marker.

NopMarkerProc: MarkProc Type;

ActOn: PROCEDURE [Action];

This procedure allows clients to act upon the current caret without regard· to who is the current
owner.

ResetOnMatch: PROCEDURE [data: POINTER];

This procedure allows clients to relinquish control of the blinking caret if they are currently the
owner. Note that simply doing a Set with a marker that is the NopMarkerProc does not work because of race

conditions in an arbitrary pre-emption environment

UniqueAction: PROCEDURE RETURNS [Action];

This procedure allows clients to define private actions. This implies that implementors of caret
marking procedures should ignore actions they do not implement or understand.

18 Tajo Functional Specification

5.2 CmFile

Tajo ·provides a simple set of procedures for processing· "User.cm" format files. This format is
defined by the CmFile implementation as follows. A "cm" file is a sequence of sections. A section
is a title line followed by zero or more name-value pairs. A section may not have embedded blank lines

because a blank line is considered to terminate a section. The title line begins with a "[" and the section ~itle
is defined to terminate with the first succeeding "]". Each name-value pair is on a separate line; the
name can be preceeded only by white space, and must be followed by a ": ". The value can be
preceeded only by spaces. Tajo does not support the simultaneous processing of cm files by
multiple processes. If the client wishes to do such processing, the client must create a layer above
CmFile with appropriate monitoring.

If you simply want one entry from a section the following procedure will suffice.

Line: PROCEDURE [fileName, title, name: STRING] RETURNS [STRING];

If you. are planning to process multiple entries in a file you should open the file or section, process
the entries and then close file.

Open: PROCEDURE [fileName: STRING];

OpenSection: PROCEDURE [fileName, title: STRING] RETURNS [BOOLEAN];

Close: PROCEDURE [fileName: STRING];

Close must be called if either Open or OpenSection is called, even if they fail.

The following procedure will efficiently and sequentially process all the entries in a User.cm section.

Nextltem: PROCEDURE [name, args: STRING];

The STRINGS returned by Nextltem and Line are allocated from the system storage heap. The
responsibility for deallocating them is the caller's.

All the procedures mentioned thus far have equivalent procedures that have the same names
prep ended with "UserCm" that deal with the file User.em without requiring the client to pass in a
·fileName.

The following procedures are provided to aid clients in parsing lines. Note that Lop returns
Ascii.NUL when the String.SubString is exhausted.

Lop: PROCEDURE [ss: String.SubString] RETURNS [c: CHARACTER];

Similar to SAIL's Lop. Returns the first character of ss and fixes up the length and off est.

GetNextToken: PROCEDURE [source: String.SubString, token: STRING] RETURNS [valid: BOOLEAN];

GetNextTokenAsABoolean: PROCEDURE [source: String.SubString] RETURNS [b: BOOLEAN];

GetNextTokenAsANumber: PROCEDURE [source: String.SubString] RETURNS [i: INTEGER];

ReadLineOrToken reads from the stream sh until terminator is found, unless either end-of-line
or end-of-stream is encountered. The resulting iine or token is returned via buffer and the
resulting CHARACTER is the break character. If buffer is too short, ReadLineOrToken quits and

Implementation Components

the resulting CHARACTER is the character being processed when the buffer overflows.

ReadLineOrToken: PROCEDURE [

sh: Compatibility.SHandle, buffer: STRING, terminator: CHARACTER]

RETURNS [CHARACTER];

19

TitieMatch returns TRUE if and only if the contents of buffer is in the right format to be· the start
of the section specified by title.

TitleMatch: PROCEDURE [buffer, title: STRING] RETURNS [BOOLEAN];

The following SIGNAL is defined for this interface. It can be RESUMEd only if the code is
multipleOpens.

Error: SIGNAL [code: ErrorCode];

ErrorCode: TYPE = {multipleOpens, noneOpen, notOpen};

multipleOpens can be raised on ca~ls to open a file. noneOpen can be raised on calls
that read data. notOpen can be raised on calls to close a file.

20 Tajo Functional Specification

5.3 Compatibility

The type definitions in this interface provide some source level compatibility between corresponding
Alto/Mesa and Pilot types. A Tool writer must be cognizant of this interface's existence because
other Tajo interfaces use these types.

In the Alto world:

. FHandle: TYPE = SegmentDefs.FileHandle;

SHand Ie: TYPE = StreamDefs.StreamHand Ie;

In the Pilot world:

FHandle: TYPE = File.Capability;

SHand Ie: TYPE = Stream.Handle;

(

(

Implementation Components 21

5.4 Context

In. performing various functions a Tool may wish to save and retrieve state from one- notification to
the next. This is an immediate consequence of the notification scheme, for a Tool cannot keep its
state in the program counter after responding to an event without stealing the processor. Thus, it
becomes necessary for a Tool to explicitly store its state. Since most notification calls to a Tool
provide a window or sub window handle, it is natural to associate these contexts with windows. As
an alternative to the Tool having to build an associative memory to retrieve its context given a
window handle, the context mechanism is provided. The actual context implementation mechanism
is hidden from clients.

First some definitions.

Data: TYPE = POINTER TO UNSPECIFIED;

DestroyProcType: TYPE = PROCEDURE [Data, Window.Handle]

Type: TYPE = {all, first, last};

Type is an open 'enumeration.

Now the procedures that deal with contexts.

UniqueType: PROCEDURE RETURNS [Type];

If a client needs a unique Type not already in use by either Tajo or another client.

Create: PROCEDURE [type: Type, data: Data, proc: DestroyProcType, window: Window.Han~le];

Creates a new context of the specified type. The context is associated with the indicated
window. If the window already possesses a context of the specified type, the ERROR

Error[duplicateType] will be raised. The proc is supplied so that when the window is
destroyed all of the context data can be destroyed (deallocated) in a straight forward and orderly
manner.

To destroy a context of specific type on a window window call Destroy. If the context exists on
the window, this will first result in the DestroyProcType for that context being called and then
the context itself will be deallocated. To destroy all of the contexts on window call DestroyAl1.
DestroyAll can be very dangerous because Tajo keeps its window specific data in contexts on the window. DestroyAII

should not be used except in special circumstances. It is called by the routines that destroy window.

Destroy: PROCEDURE [type: Type, window: Window.Handle]

DestroyAII: PROCEDUBE [window: Window.Handle];

Find: PROCEDURE [type: Type, window: Win,dow.Handle] RETURNS [Data];

Retrieves the data field from the specified context for the window. NIL is returned if no such
context exists on the window.

22 Tajo Functional Specification

The client can change the data pointed to by the data field of a context at any time. Note that this
can lead to race conditions if multiple processes are doing Find's for the same context. It is the
client;s responsibility to MONITOR the data in such' cases. To change 'the data field itself, call Set.
Subsequent Find's will return the new data.

Set: PROCEDURE [type: Type, data: Data, window: Window.Handle];

This is a no-op if no such context exists 'on the window.

SimpleDestroyProc: DestroyProcType;

This procedure merely calls the system heap node deallocator on the data field and is provided
for clients when their context data is a simple heap node.

The only error condition detected by contexts is if you attempt to create a context of a specific type
and one of that type already exists the following ERROR is raised .

. Error:. ERROR [code: ErrorCode];

ErrorCode: TYPE = {duplicateType};

Implementation Components 23

5.S Cursor

The Cu rso r interface provides a procedural interface to the hardware mechanism that implements
the cursor on the screen. In order for these routines to be effective, all Tools must manipulate the
cursor through them, else chaos reigns.

5.5.1 The Cursor Object

The cursor facilities define a Object which is a portable representation of the data which would be
the hardware data if this cursor was the current hardware cursor:

Object: TYPE = RECORD [

info: Info,
array: UserTerminaI.CursorArray];

Handle: TYPE = POINTER TO Object;

Info: TYPE = RECORD [

type: Type,
hotX: [0 .. 16),
hotY: [0 .. 16)];

Type: TYPE = {
activate, blank, bullseye, confirm, crossHairsCircle, ftp, ftpBoxes, hourGlass, fib, menu,
mouseRed, mouseYellow, mo~seBlue, mtp, pointDown, pointLeft, pointRight, pointUp,
questionMark, retry, scrollDown, scrollLeft, scrollLeftRight, scrollRight, scrollUp,
scrollUpDown, textPointer, typeKey, last};

We draw a distinction between user and system manufactured cursors. To keep things straight we
allow clients to access system cursors only by their type.

5.5.2 Manipulating the Cursor

Cursor objects are normally created and managed by Tajo using the following routines.

Defined: TYPE == Type[activate .. typeKey];

Set: PROCEDURE [Defined];

The above procedure allows you to set the displayed cursor to be one of the system-defined
cursors.

Store: PROCEDURE [Handle];
Swap: PROCEDURE [old, new: Handle];

These procedures allows a client to store a cursor of his own design.

24 Tajo Functional Specification

Fetch: PROCEDURE [Handle];

Copies the .current cursor object into the cursor object pointed to by Handle.-

FetchFromType: PROCEDURE [cursor: Handle, type: Defined];

Copies the cursor object that constitutes type into the cursor object pointed to by Handle .

. Getlnfo: PROCEDURE RETURNS [Info];

This procedure lets you find out about the current cursor.

UniqueType: PROCEDURE RETURNS [Type];

This procedure lets clients assign a unique type to their defined cursors.

The cursors in the sub range Type[activate .. typeKey] are built-in (syst~m supplied). Some
special· notes on what the built-in cursors look· like (in general the Type names are sufficient
description):

activate - used by the Librarian interface to indicate that a libject is being activated, it says
LIB in the upper half, ACT in the lower.

ftp - used to indicate a file transfer in progress, it says FfP along the diagonal from the
upper left to the lower right, with triangles in the lower left and upper right comers.

ftpBoxes - also used to indicate a file transfer in progress, it has black quadrants in the
upper left and lower right, white quadrants elsewhere.

Ii b - used to indicate a Librarian transaction in progress, it says LIB along the diagonal from
the upper left to. the lower right, with triangles in the lower left and upper right comers.

mouseRed, mouseYellow, mouseBlue - a picture of a mouse, with the appropriate
button highlighted.

textPointer - just like the one in Bravo.

The following procedures are useful for user feedback functions. Invert makes each white bit in
the current cursor black, and vice versa. It returns TRUE if the new state of the cursor is positive.
MakePositive restores the current cursor's polarity to be as if a Set or Store had just been done,
and MakeNegative is equivalent to MakePositive followed by Invert.

Invert: PROCEDURE RETURNS [BOOLEAN];

MakeNegative: PROCEDURE;

MakePositive: PROCEDURE; •

Implementation Components 25

5.6 Event

Client programs sometimes need to be notified when certain system global events occur so that they
can perform some operation. The Event mechanism provides that facility. The implementation of
this mechanism parallels the ImageDefs Cleanup mechanism in the Mesa System with these main
differences:

Additions have been made to the list of Reasons.

The event list is run with interrupts and timeouts turned on.

For events that mean the current environment is being exited, a client can veto, i.e., cancel,
the execution of the event. The client might do this if a Tool can't properly handle the
event or there is some operation that the user should have an opportunity to perform before
the event actually takes place (e.g. saving an edited file). Vetoing is not supported in the debugger.

5.6.1 Items

The types and data structures involved with client Event procedures are:

Notifier: TYPE = PROCEDURE [why: Reason];

VetoProc: TYPE = PROCEDURE [why: EndReasons] RETURNS [BOOLEAN];

Returns TRUE when the client wants to cancel the event.

Item: TYPE = RECORD [

link: Item Handle .. NIL,

eventMask: WORD,

eventProc: Notifier,

vetoMask: WORD" NullMask,
vetoProc: VetoProc .. NIL];

ItemHandle: TYPE = POINTER TO Item;

Reason: TYPE = {

newFiles,
flushSymbols,

-- A file hasjust been retrieved to or deletedfrom the disk.
-- Any symbols cached in the debugger may no longer be valid.

newSession, -- A new debugging session is starting.
resumeSession, -- Just swappedfrom the client to the debugger & not newSession.
resumeDebuggee, -- About to swap into the client worldfrom the debugger.
abortSession, . -- User hasjust Killedfrom the debugger.
stopMesa, -- Some client is about to call ImageDejs.StopMesa.
abort, -- User has keyed Shift-Swat.
makelmage, -- About to make an image file.
makeCheck, -- About to make a checkpointfile.
startlmage, -- Havejust started an image file.
restartCheck, -- Have just started a checkpoint file.

26

continueCheck,

setDefaults

End Reasons: TYPE =

Tajo Functional Specification

-- Continuing to run after just having made a checkpoint/zle.
-- Some system global default has changed, e.g., Profile value. -- };

Reason [resumeDebuggee .. makelmage];

Masks: ARRAY Reason OF WORD = [...];
NuliMask: WORD = 08;

When the Event notification mechanism is invoked, each item is examined. If the bit corresponding
to the reason is set in item.eventMask, item.eventProc is called. To avoid unnecessary code
swapping clients should set the mask field so that their procedure is invoked only for those events
about which they wish to be notified. This also applies to item.vetoMask and item.vetoProc.
For example, if a client needed to be notified when an image file was being made or started, the
mask would be set to:

Masks[makelmage] + Masks[startlmage]

. The following procedures are used to add or remove an Item. The storage for" the Item is the .
responsibility of the client.

AddNotifier: PROCEDURE [item: ItemHandle];

DropNotifier: PROCEDURE [item: ItemHandle];

Warning: These procedures should not be invoked from inside an Event.Notifier procedure.

5.6.2 Notification

A client runs the list of Items by calling Notify, which can not be invoked from inside an
Event.Notifier procedure. The list of Items is reversed by Notify as it executes unless the why
is new Files, flushSymbols or setOefaults. A caller of Notify in which why is in
End Reason should be prepared to catch Vetoed.

Notify: PROCEDURE [why:" Reason];

Vetoed: SIGNAL;

Warning: a client that doesn't call Notify when it instigates an event may cause other Tools to fail.
However, do not call Notify with a why other than new Files or setDefaults without talking to

a Tajo implementor.

(

(

Implementation Components 27

5.7 FileSW

The interface FileSW provides the definitions and procedures to create text subwindows whose
backing storage is a disk file plus procedures that are specific to file type subwindows. All non-file
subwindow specific manipulations are contained in the interface TextS W.

First some definitions.

Access: TYPE = {read, append, edit}; --TextSource.Access;
EnumerateProcType: TYPE =

PROCEDURE [sw: Window. Handle, name: STRING, access: Access]
RETURNs[done: BOOLEAN];

Options: TYPE = TextSW.Options;
Stream: TYPE = TextSource.Stream;

defaultOptions: Options = [

access: read,
menu: TRUE,
split: TRUE,
wrap: TRUE,
scroll bar: TRUE,
flushTop: FALSE,
flush Bottom: FALSE];

The following procedure creates a disk source and a text subwindow using that disk source. If s is
NIL then a stream is automatically created on the file name. If s is not NIL then name must be the
name of the file that s is the stream on. The text is positioned so that the character specified by
position is displayed on the first line of s w.

Create: PROCEDURE [
sw: Window. Handle, name: STRING,
options: Options ,+- defaultOptions,
s: Stream +- NIL, position: TextSource.Position +- 0];

Clients can destroy a file subwindow by calling

Destroy: PROCEDURE [sw: Window.Handle];

The following procedure will enumerate all of the current file subwindows.

Enumerate: PROCEDURE [proc: EnumerateProcType];

The file name and stream that are currently in a file subwindow are returned by

GetFile: PROCEDURE [sw: Window.Handle] RETURNS [name: STRING, s: Stream];

Islt returns TRUE if and only if a win~ow is a file subwindow.

Islt: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

28 Tajo Functional Specification

A new file is loaded into a file subwindow by calling

SetFile: PROCEDURE [

sw: Window.Handle, name: STRING,

s: Stream f- NIL, position: TextSource.Position +- 0];

Clients that contruct their own menus may include the following menu command routine. It does
the standard load operation using the current selection as the file name argument.

. LoadMCR: Menu.MCRType;

Tajo provides simple file editing facilities. Clients may determine if a file subwindow is currently
editable by calling

IsEditable: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

A file subwindow is made editable by calling

MakeEditable: PROCEDURE [sw: Window.Handle] RETURNS [ok: BOOLEAN];

PutEditableFile stores the e4ited file on the new file name. If name = NIL then the old version
of the file is saved as "currentName$" and the edited file is output to currentName.

PutEditableFile: PROCEDURE [sw: Window.Handle, name: STRING];

To reset the edited file to its original state call ResetEditableFile. The file sub window is not
editable after the call.

ResetEditableFile: PROCEDURE [sw: Window.Handle];

All of the file subwindow procedures can generate one or more of the following error conditions.

ErrorCode: TYPE = {notAFileSW, isAFileSW, notEditable, accessDenied};
Error: SIGNAL [code: ErrorCode];

(

(

Implementation Components 29

5.8 Format

All the procedures in the Format interface take a procedure that can be called with a STRING, a piece
of data to be formatted and where appropriate, a format specification.

DateFormat: TYPE = {dateOnly, noSeconds, dateTime, full};

NumberFormat: TYPE = RECORD [

base: [2 .. 36],
zerofill, unsigned: BOOLEAN,

columns: [0 .. 255]];

The string produced using this record as a format specification for number formatting is
columns wide. If columns is 0 only the needed number of columns are used. Extra
columns are filled with zeros if ze rofill is true, otherwise spaces are used. The number is
treated as unsigned if unsigned is true.

LongSubStringDescriptor: TYPE = RECORD [

base: LONG STRING,

offset, length: CARDINAL];

LongSubString: TYPE = POINTER TO LongSubStringDescriptor;

StringProc: TYPE = PROCEDURE [s: STRING];

The data is formatted into a string which is passed in the call to the StringProc. The types of data
that can be formatted are reflected in the following procedures:

Char: PROCEDURE [char: CHARACTER, proc: StringProc];

Date: PROCEDURE [pt: Time.Packed, format: DateFormat, proc: StringProc];

The date format used is the Mesa sy·stem's. A fu II date is formatted into something that
looks like " 1-]un-78 14:56:01 PDT".

Decimal: PROCEDURE [n: INTEGER, proc: StringProc];

LongDecimal: PROCEDURE [n: LONG INTEGER, proc: StringProc];

LongNumber: PROCEDURE [n: LONG UNSPECIFIED, format: NumberFormat, proc: StringProc];

LongOctal: PROCEDURE [n: LONG UNSPECIFIED, proc: StringProc];

Appends a B to the string if the value is· greater than 7.

LongString: PROCEDURE [s: STRING, proc: StringProc];

LongSubStringltem: PROCEDURE [ss: LongSubS~ring, proc: StringProc];

If ss.base is large proc is called multiple times with pieces of the substring.

Number: PROCEDURE [n: UNSPECIFIED, format: NumberFormat, proc: StringProc];

Octal: PROCEDURE [n: UNSPECIFIED, proc: StringProc];

30 Tajo Functional Specification

Appends a B to the string if the value is greater than 7.

SubString: PROCEDURE [5S: String.SubString, proc: StringProc];

If ss. base is large p roc is called multiple times with pieces of the substring.

Implementation Components 31

5.9 FormSW

The client constructs a Fonn subwindow by· specifying an array of fonn item handles. Each handle
points to an item; each item is a variant record which contains a pointer to the specific data to be
displayed and altered. The item contains infonnation about how and, optionally, where it should be
displayed. When appropriate, the item also contains notification procedures that are call~d by the
Fonn subwindow to infonn the client of events affecting the item.

The client's items are displayed in a subwindow, and are alterable by the user at any time unless
explicitly prohibited by the client. The Fonn sub window supplies procedures (via the PNR
mechanism) to display, select or alter any of these items.

Clients of this interface should keep in mind that forms can't be arbitrarily large due to sizable storage requirements. The
fixed overhead in heap usage per form item is 23 words (broken down as follows: 4 words for the item record, 1 word
for the handle, 8 words for the item's TextSource plus 1 word for heap overhead, and 9 words for the item's TextDisplay
Object). The variable overhead is due to the STRINGs associated with an item (the tag for example), line tables
associated with multi-line items and the variant part of the item record.

5.9.1 Some conventions

It is important to distinguish between the user actions of choice and selection. The user is said to·
select an item (or part of an item) if that action changes the current selection, otherwise the user is
said to make a choice of (or in) the item. Note that it is often not possible to distinguish between
the two cases by simply looking at the display marking actions.

Some parts of the FormSW interface describe positions within an item. These positions are always
zero origin, starting to the left of the first character of the tag (or main body of the item, if there is
no tag).

5.9.2 The ItemObject

The Tool may specify any of the following generic types of item:
Commands
Labels
Numbers
Sets
Strings

The ltemObject is the fundamental data structure of the Form subwindow. Unfortunately, the
ltemObject is complex in order to provide sufficient flexibility to the Tool writer who wants fine
control over displaying and altering the item. Most clients should not explicitly construct an
ltemObject, but should instead use the procedures that allocate an ItemObject and take
advantage of the defaulting mechanism; see the sample Tools in the appendices for examples. In
FormSW procedure types the argument is called item if it is an ItemHandle and .items if it is an
ltemOesc ripto r.

32 Tajo: Functional Specification

ItemObject: TYPE = RECORD

tag: STRING,

place: Window.Place,
flags: Item Flags,
body: SELECT type: Item Type FROM

boolean =) [...],

command =) [...],

enumerated =) [...],

longNumber =) [...],

number =) [...],

string =) [...],

tagOnly =) [...],

ENDCASE];

Item Flags: TYPE - RECORD [

readOnly: BOOLEAN ... FALSE,

invisible: BOOLEAN ... FALSE,

drawBox: BOOLEAN ... FALSE,

hasContext: BOOLEAN ... FALSE,

clientOwnsltem: BOOLEAN ... FALSE];

ItemType: TYPE = {
boolean, command, enumerated, longNumber, number, string, tagOnly};

Item Handle: TYPE = POINTER TO ItemObject;
ItemDescriptor: TYPE = DESCRIPTOR FOR ARRAY OF ItemHandle;

BooleanHandle: TYPE POINTER TO boolean ItemObject;
CommandHandle: TYPE = POINTER TO command ItemObject;
EnumeratedHandle: TYPE = POINTER TO enumerated ItemObject;
LabelHandle: TYPE = TagOnlyHandle;
LongNumberHandle: TYPE = POINTER TO longNumber ItemObject;
NumberHandle: TYPE = POINTER TO number ItemObject;
StringHandle: TYPE = POINTER TO string ItemObject;
TagOnlyHandle: TYPE = POINTER TO tagOnly ItemObject;

nullltems: ItemDescriptor = DESCRIPTOR[NIL, 0];

nulllndex: CARDINAL = LAST[CARDINAL];

tag is a client supplied string that is displayed immediately preceeding the data associated with the
parameter (e.g. "tag: string~'). It may be NIL, in which case any trailer characterS that are usually
displayed after the tag will be suppressed (e.g. " : ").

place is the x,y position (sub window relative) where the tag and data are to be displayed if the
subwindow is of type fixed, otherwise place is ignored (see procedural interface). The array of item
pointers is required to have the places in ascending (English reading) order. If the x position is
negative, it is treated as a relative offset, where the magnitude of x specifies the number of bits to (

Implementation Components 33

leave between the end of the preceeding item and the start of the tag for this item. Note that the
use of a negative x following a string item with defaultBoxWidth results in the ERROR

ItemError[illegalCoordinate, i], where'i is the index of the offending item. Similarly, negative y
positions are interpreted specially. They are line positions, i.e. they specify position as a multiple of
the line height for the subwindow. The constants lineD through line9 can be used as y values to

speCify that the item should be on the zeroth through ninth lines in the subwindow. The procedure
lineN takes a line number and returns the appropriate negative y.

lineN: PROCEDURE [n: CARDINAL] RETURNS [INTEGER];

In addition, there are several special constants. sameLine specifies that the y position for this item
should be the same as the y position for the preceding item. If this is the first item, the ERROR

ItemError[illegalCoordinate,] results. nextLine specifies that the y position for this item
should be the next line after the y position of the preceding item.

Two special places are provided. nextPlace specifies that this item should be on the same line as
the preceding one, and should start a little past where that one left' off. This is subject to all of the

caveats mentioned for negative x's above. newline specifies that this item should start on the next line
down from the preceding item, and works even if there is no preceding item.

nextPlace: Window.Place = [·10, sameLine];
newline: Window. Place = [0, nextLine];

It is often desirable to have the items on different lines have the same horizontal positions. To
simplify this task the SetTagPlaces procedure is provided. The tabStops are in raster points if
bitTabs is TRUE, otherwise they are multiplied by the width of the digit O. A positive x is used as
a zero origin index into the tabStops array. If the place is nextPlace it means mov~ to the
next tab ·stop. Negative x's are left alone. This routine is a pre-processor that changes the items'
places; it should be called before giving the items to the FormSW package.

SetTagPlaces: PROCEDURE [

items: ItemDescriptor, tabStops: DESCRIPTOR FOR ARRAY OF CARDINAL, bitTabs: BOOLEAN];

The height of a line can be determined by calling LineHeight, which accounts for all fudge factors
added to the fontHeight.

LineHeight: PROCEDURE RETURNS [CARDINAL];

flags is a RECORD of state bits for the item. The meaning of the flags is

If readOnly is TRUE, the user cannot modify this parameter. If any modification is
attempted, the readOnlyNotifyP roc for this sub window is called.

If invisible is TRUE, the item is not displayed in the subwindow, and it is treated by Form
subwindows exactly as it is was not present, except that it is occupying an index slot.

If d raw Box is TRUE, the item is displayed enclosed within a box that is one bit thick.

If hasContext is TRUE, a client context is associated with the item. This context serves the
same function as a client context associated with a subwindow.

,- '.',:;;':', '.I

34 Tajo: Functional Specification

If clientOwnsltem is TRUE, the Form sub window will not try to deal10cate the item if the
subwindow is destroyed.

The fol1awing sections describe the feedback and actions that are associated with each generic
parameter type.

5.9.2.1 Commands

For command parameter items the character "!" is appended to the tag as an indication to the
user that this is a command item. User choice of this type of parameter item causes invocation of
the supplied client proc in a manner analogous to menu command choice. FormSW supplies
NopNotifyProc that does nothing when called.

ItemObject: TYPE = RECORD [.•.

body: SELECT type: ItemType FROM

command = > [proc: ProcType],

".];

ProcType: TYPE = PROCEDURE [

sw: Window.Handle .. NIL, item: ItemHandle .. NIL,

index: CARDINAL +- nulllndex];

NotifyProcType: TYPE = ProcType;
NopNotifyProc: NotifyProc Type;

5.9.2.2 Sets

5.9.2.2.1 Booleans

For boolean parameter items there is no special trailer appended to the tag. User choice of this
type of parameter item causes this sequence of actions: the tag is inverted on the display; the sense
of the BOOLEAN pointed to by switch is inverted; and then the supplied client proc is invoked.
FormSW supplies NopNotifyProc that does nothing when cal1ed.

ItemObject: TYPE = RECORD [".

body: SELECT type: ItemType FROM

boolean = > [

".];

switch: POINTER TO BOOLEAN,

proc: NotifyProcType],

switch is a POINTER TO BOOLEAN so that the client need not have access to the ltemObject in
order to have access to the BOOLEAN. Note that this requires that the BOOLEAN occupy its own word
in memory. This can be achieved by allocating the BOOLEAN in the client's global frame (but not in
a RECORD in the global frame unless it is a MACHINE DEPENDENT RECORD and the BOOLEAN is
specified to occupy a word) or by using the overlaid variant

WordBoolean: TYPE = RECORD

SELECT OVERLAID • FROM

f1 = > [b: BOOLEAN],

f2 => [W: WORD],

ENDCASE];

Implementation Components 35

Of these solutions, the overlaid variant tends to be the most clumsy and should be avoided.

5.9.2.2.2 Enumerateds

For enumerated parameter items the special trailer ": {" is appended to the tag. In addition, a
"}" is appended at the end of the item's display representation. User modification of this type of
parameter item causes this sequence of actions: the display is updated, in a manner that depends
upon the feedback; the UNSPECIFIED pointed to by value is updated to match the display; and
then the supplied client proc is invoked. FormSW supplies NopEnumeratedNotifyProc that
does nothing when called.

ItemObject: TYPE = RECORD [..•

body: SELECT type: ItemType FROM

...];

enumerated =) [

feedback: EnumeratedFeedback,
copyChoices: BOOLEAN,

value: POINTER TO UNSPECIFIED,

proc: EnumeratedNotifyProcType,
choices: EnumeratedDes9riptor],

EnumeratedFeedback: TYPE = {all, one};
EnumeratedNotifyProcType: TYPE = PROCEDURE

sw: Window. Handle +- NIL, item: ItemHandle +- NIL,

index: CARDINAL +- nulllndex, oldValue: UNSPECIFIED +- nuIlEnumeratedValue];
NopEnumeratedNotifyProc: EnumeratedNotifyProcType;
nuliEnumeratedValue: UNSPECIFIED = LAST[CARDINAL];

Examples of the two forms of feedback are:

all - The item displays as "tag: {a, b, c}". Choosing any item within the curly brackets
video reverses that item and sets the value in the associated record.

one - The item displays as "tag: {a}". Only· the currently chosen value is displayed.

[Note: An enumerated can never have an unknown value (unless the client is not playing by the rules). It may
have nullEnumeratedValue, in which case the display of the item has nothing between the braces.]

For both forms, the items available for choice are those STRINGS supplied by the client in the
choices. When the string from one of the choices is chosen, the corresponding value from
the Enumerated is stored into ItemObject.valuet. Depressing the menu mouse button displays
the set of strings available for choice.

36 Tajo: Functional Specification

EnumeratedDescriptor: TYPE = DESCRIPTOR FOR ARRAY OF Enumerated;
Enumerated: TYPE = RECORD [

string: STRING, value: UNSPECIFIED];

value is a POINTER TO UNSPECIFIED so that the client need not have access to the ltemObject in
order to have access to the UNSPECIFIED. This introduces the same problems that occur with the
boolean ltemObject's switch, and the same solutions and caveats apply here. value points to
an UNSPECIFIED so that its possible values can be from any type (usually an enumeration).

The copyChoices BOOLEAN is TRUE iff Form subwindow believes that the client's choices were
copied into The Heap. See 5.9.3 for further details.

Occasionally a Tool wants to display a BOOLEAN choice without using the boolean ItemObject's
display conventions. The procedure BooleanChoices and an enumerated ItemObject can be
used in this case.

BooleanChoices: PROCEDURE RETURNS [EnumeratedDescriptor];

5.9.2.3 Strings

For st ring parameter items the characters ": " are appended to the tag as an indication to the user
that this is a string item. String items give the Tool writer explicit control over the alteration of the
supplied string and over how it is to be displayed. The Tool supplied procedures are called
whenever characters are to be added to the string.

ItemObject: TYPE = RECORD [...

body: SELECT type: Item Type FROM

...];

string = > [
feedback: String Feedback,
inHeap: BOOLEAN,

string: POINTER TO STRING,

boxWidth: CARDINAL,

filterProc: FilterProcType,
menuProc: MenuProcType],

in Heap - If this BOOLEAN is TRUE, the Tajo StringEditProc will dynamically allocate and
deallocate the backing string from The Heap.

st ring - This is a POINTER TO STRING that contains the characters entered by the user. The
level of indirection is provide so that the original string may be replaced.

feed back - The characters of string are displayed on the screen as text unless feed back is
password, in which case a "*" is printed in place of each character of string.

StringFeedback: TYPE = {normal, password};

(

Implementation Components 37

box Width - This is added to the tag's width (including the supplied trailer) in order to

determine the width of the box in which the STRING is displayed. If the special value
defaultBoxWidth is used, then the box will extend to the right edge of the subwindow or
to the next item, whichever is closer.

filterProc - The client's filterProc is called whenever characters are input for a selected string
item. It is the responsibility of this procedure to actually edit the string.

FilterProcType: TYPE = PROCEDURE [
sw: Window.Handle, item: ItemHandle, insert: CARDINAL, string: STRING];

StringEditProc: FilterProcType;

st ring, which may be NIL, contains the characters to edit into the existing string at position
insert. The actual edit must be performed by calling StringEditProc in order to
maintain the consistency of the selection and insert, and in order to allow FormSW to
optimize the display updating.

menuProc - The client's menuProc is called whenever the user" selects the string item with
the menu button. This gives the client the opportunity to supply a list of strings to be
displayed in a· menu.

Hints: TYPE = DESCRIPTOR FOR ARRAY OF STRING;
FreeHintsProcType: TYPE = PROCEDURE [hints: Hints];
MenuProcType: TYPE = PROCEDURE [sw: Window.Handle, index: CARDINAL]

RETURNS [hints: Hints, freeHintsProc: FreeHintsProcType, replace: BOOLEAN];

If replace is TRUE, then when the user chooses an appropriate menu item (Le. hint) it will
replace the item's string's contents. If replace is FALSE, then when the user chooses the
menu item it will be inserted into the item's st ring just as if the user had typed the menu
string. If BASE[hints] = NIL, no prompt menu will be available to the user. This condition
holds if the menuProc is the FormSW supplied one

VaniliaMenuProc: MenuProcType; .

freeHintsProc is called to free the hints, allowing the hints to be somewhere other than
in the client's global frame. Two standard hints deallocators are FormSW supplied.
InHeapFreeHintsProc assumes that the hints are from The Heap, while
NopFreeHintsProc does nothing (appropriate if the hints are in the client's global
frame).

InHeapFreeHintsProc: FreeHintsProcType;
NopFreeHintsProc: FreeHintsProcType;

5.9.2.4 Numbers

The number and longNumber item types are identical except in some small and obvious ways.
Only the number item is discussed in detail; the differences found in longNumber are
enumerated.

38 Tajo: Functional Specification

For number parameter items the special trailer" = " is appended to the tag: The user can select
and edit a number item just like a string item, and the client can also exercise control over the
alteration and display of the item, similar to 'a string item.

ItemObject: TYPE = RECORD [...

body: SELECT type: ItemType FROM

...];

longNumber = > [
signed, notNegative: BOOLEAN,

radix: Radix,
boxWidth: CARDINAL [0 .. 256),

proc: LongNumberNotifyProcType,
default: LONG UNSPECIFIED,

value: POINTER TO LONG UNSPECIFIED,

string: STRING],

number => [
signed, notNegative: BOOLEAN,

radix: Radix,
boxWidth: CARDINAL [0 .. 128),

proc: NumberNotifyProcType,
default: UNSPECIFIED,

value: POINTER TO UNSPECIFIED,

string: STRING],

signed - FormSW needs to know whether or not to treat the value as a signed number (Le.
INTEGER). It is treated as an INTEGER iff signed is TRUE.

notNegative - The user is pennitted to enter negative values iff notNegative is FALSE.

radix - If the user does not provide a specific radix, 'D for decimal or '0 for octal, when he
enters or modifies the item, then the radix is assumed to be 10 if radix is decimal, 8 if
radix is octal.

Radix: TYPE = {decimal, octal};

boxWidth - Just as for a string item.

proc - The client's proc is called after each user edit to the item. If the client is not interested
in such notification, it can use the "do nothing" NopNumberNotifyProc.

NumberNotifyProcType: TYPE = PROCEDURE [

sw: Window.Handle ~ NIL, item: ItemHandle ~ NIL,

index: CARDINAL ~ nulllndex, oldValue: UNSPECIFIED ~ LAST[INTEGER]];

NopNumberNotifyProc: NumberNotifyProcType;

default - It is possible that the user will not w~sh to enter any value for the item. In this case,
the value is forced to default.

Implementation Components 39

value - is a POINTER TO UNSPECIFIED so that the' client need not have access to the
ItemObject in order to have access to the UNSPECIFIED. FonnSW assumes that the
UNSPECIFIED occupies a full word, hence it should not be declared by the client to be a
subrange of CARDINAL or INTEGER. value points to an UNSPECIFIED so that it can be either a
CARDINAL or an INTEGER.

string - is the string representation of valuet. It is always be convertible to valuet unless it
is empty, in which case valuet will be default.

The longNumber parameter item differs in that: boxWidth should be larger; value points to a
LONG UNSPECIFIED instead of an UNSPECIFIED; default is a LONG UNSPECIFIED instead of an
UNSPECIFIED; proc is of different type, and the FormSW supplied "do nothing" procedure is also
different.

LongNumberNotifyProcType: TYPE = PROCEDURE

sw: Window.Handle +- NIL, item: ItemHandle +- NIL,

. index: CARDINAL +- nulllndex,
oldValue: LONG UNSPECIFIED +- LAST[LONG INTEGER)];

NopLongNumberNotifyProc: LongNumberNotifyProcType;

5.9.2.5 Labels and Tags

The tagOnly item type is provided for two purposes. The first is to act as a label for some part of
the fonn; for example, a form might consist of two parts, one for specifying input parameters and
the other for output parameters. The client could distinguish the individual items by having their
tags prefixed by "Input-" or "Outp~t_", or it could have two sets of items with the same tags but
preceded by a labelling line consisting of an item whose tag was "Input parameters" or "Output
parameters". The second purpose is to substitute for the tag of a st ring item. This is useful when
the client wishes to present the illusion that the tag for an item is not on the same· line as the item's
body. It is these two styles of usage that motivate the types LabelHandle and TagOnlyHandle.

ItemObject: TYPE = RECORD [...

body: SELECT. type: Item Type FROM

tagOnly => [

...];

sw: Window.Handle,
otherltem: CARDINAL],

sw - This is the FormSW that contains the item; ~t is automatically set by C reate; clients
should ignore it.

othe rltem - This is the index of the other item which this item is acting as a tag for. If it is
nulllndex, then the tagOnly is treated as a label instead of a substitute tag. If
otherltem is not nullindex, it must be the index of a string item or the ERROR

ItemError[notStringOtherltem, i] will be generated by Create, where·i is the index of
this item.

40 Tajo: Functional Specification

In order to allow a tagOnly to act as a substitute tag, there is no special trailer appended to the tag.
When a tagOnly item is used as a substitute tag, all of the user actions directed at its tag are
redirected by FormSW to the otherltem. Due- to this redirection the notification procedures of the
target 5t ring item are called with arguments identical to the ones provided by FormSW when the
5t ring item's tag is operated on by the user.

5.9.3 ItemObject allocation and deallocation

5.9.3.1 Allocating an ItemObject from the Heap

The allocation procedures always allocate from the system Heap, using the standard facilites
provided by Storage. There is no provision made for the client to provide an alternative allocator
to FormSW. Allocation procedures always return a differentiated ItemHandle; ItemObjects allocated

this way occupy a node only big enough for the specific variant allocated.

A call to an allocation procedure looks like a record constructor, with some of the fields found in an
ItemObject omitted. Each' field is defaulted if a reasonable default exists. An allocated item
always has a FALSE clientOwn5ltem.

Boolean Item: PROCEDURE [

tag: STRING .. NIL,

readOnly, invisible, drawBox, hasContext: BOOLEAN .. FALSE,

place: Window.Place .. nextPlace,
proc: NotifyProcType .. NopNotifyProc,
switch: POINTER TO BOOLEAN]

RETURNS [BooleanHandle];

Command Item: PROCEDURE [

tag: STRING .. NIL,

readOnly, invisible, drawBox, hasContext: BOOLEAN ~ FALSE,

place: Window.Place .. nextPlace,
proc: ProcType]
RETURNS [Command Handle];

Enumeratedltem: PROCEDURE [

tag: STRING .. NIL,

readOnly, invisible, drawBox, hasContext: BOOLEAN .. FALSE,

place: Window.Place .. nextPlace,
feedback: EnumeratedFeedback .. one,
proc: EnumeratedNotifyProcType .. NopEnumeratedNotifyProc,
copyChoices: BOOLEAN .. TRUE,

choices: EnumeratedDescriptor,
value: POINTER TO UNSPECIFIED]

RETURNS [EnumeratedHandle];

Labelltem:' PROCEDURE

tag: STRING +- NIL,

Implementation Components

readOnly, invisible, drawBox, hasContext: BOOLEAN +- FALSE,

place: Window.Place +- nextPlace]
RETURNS [LabeIHandle];

LongNumberltem: PROCEDURE

tag: STRING +- NIL,

readOnly, invisible, drawBox, hasContext: BOOLEAN +- FALSE,

place: Window.Place +- nextPlace,
signed: BOOLEAN +- TRUE,

notNegative: BOOLEAN +- FALSE,

radix: Radix +- decimal,
boxWidth: CARDINAL [0 .. 256) +- 64,

proc: LongNumberNotifyProcType +- NopLongNumberNotifyProc,
default: LONG UNSPECIFIED +- LAST[LONG INTEGER],

value: POINTER TO LONG UNSPECIFIED]

RETURNS [LongNumberHandle];

Numberltem: PROCEDURE [

tag: STRING +- NIL,

readOnly, invisible, drawBox, hasContext: BOOLEAN +- FALSE,

place: Window.Place +- nextPlace,
signed: BOOLEAN +- TRUE,

notNegative: BOOLEAN +- FALSE,

radix: Radix +- decimal,
boxWidth: CARDINAL [0 .. 128) +- 64,

proc: NumberNotifyProcType +- NopNumberNotifyProc,
default: UNSPECIFIED +- LAST[INTEGER],

value: POINTER TO UNSPECIFIED]

RETURNS [NumberHandle];

Stringltem: PROCEDURE

tag: STRING +- NIL,

readOnly, invisible, drawBox, hasContext, inHeap: BOOLEAN +- FALSE,

place: Window.PI~ce +- nextPlace,
feedback: String Feedback +- normal,
boxWidth: CARDINAL +- defaultBoxWidth,
filterProc: FilterProcType +- StringEditProc,
menuProc: MenuProcType +- VanillaMenuProc,
string: POINTER TO STRING]

RETURNS [StringHandle];

41

42

TagOnlyltem: PROCEDURE [

tag: STRING .- NIL,

Tajo: Functional Specification

readOnly, invisible, drawBox, hasContext:" BOOLEAN .- FALSE,

place: Window.Place .- nextPlace,
otherltem: CARDINAL .- nullindex]
RETURNS [TagOnlyHandle];

5.9.3.2 Deallocating an ItemObject from the Heap

An item allocated by FormSW can be deallocated by calling

Freeltem: PROCEDURE [item: ItemHandle] RETURNS [ltemHandle];

If clientOwnsltem is TRUE, then the actions "taken (which differ for each item type) are:

enumerated - If copyChoices is TRUE, the choices are freed.

longNumber, number - The string is freed.

string - If inHeap is TRUE, the ItemObject.string is freed.

All other types - Nothing is freed.

If clientOwnsltem is FALSE, then the actions taken are those for when it is TRUE, but in addition
the tag and the item are also freed. The ltemHandle returned by Freeltem is NIL if
clientOwnsltem is FALSE, otherwise it is the argument.

5.9.4 Subwindow Global Operations

The Tool writer creates a Form sub window by calling

Create: PROCEDURE [

sw: Window.Handle,
clientltemsProc: ClientltemsProcType,
readOnlyNotifyProc: ReadOnlyProcType'- IgnoreReadOnlyProc,
options: Options .- [], .

initialState: TooIWindow.State'- active];

ClientltemsProcType: TYPE = PROCEDURE

RETURNS [items: ItemDescriptor, freeD esc: BOOLEAN];

ReadOnlyProcType: TYPE = ProcType;

Type: TYPE = {fixed, relative};
Options: TYPE = RECORD [type: Type .- fixed, scrollVertical: BOOLEAN .- TRUE];

Implementation Components 43

sw - the subwindow that is transfonned into a Fonn subwindow. If"the sub window is already a
Form subwindow, the ERROR Error[alreadyAFormSW] results.

clientitemsP roc - this will be called at FormSW's discretion to get the items. If the
ItemOescriptor was manufactured from The Heap, perhaps by calling
AliocateltemDescriptor, then the client can have FormSW free it by returning a TRUE
freeOesc.

AliocateltemDescriptor: PROCEDURE [CARDINAL1 RETURNS [ltemDescriptor1;

readOnlyNotifyProc - the client procedure that is called whenever the user attempts to
modify an item with a TRUE read Only flag. Two standard ReadOnlyProcTypes are
supplied by FormSW: IgnoreReadOnlyProc blinks the display when called, while
NopReadOnlyProc simply does nothing.

ReadOnlyProcType: TYPE = ProcType;
IgnoreReadOnlyProc: ReadOnlyProcType;
NopReadOnlyProc: ReadOnlyProcType;

options - a type of relative directs the Form subwindow to automatically determine where
and how the items and their associated data are displayed. If the client specifies fixed then
the client must designate a subwindow place for each item to be displayed; it is the client's .
responsibility to avoid overlapping or overwriting of items and their data. If
sc rollVertical is TRUE, a vertical scrollbar is provided.

[Note: In the relative case the parameter items are simply displayed one per line. This implies .that the height

of a subwindow that would contain all of your parameters is = n*UneHeight(].]

initialState - This determines whether the Form sub window is awake when created. If
initialState is not active, then the Form subwindow will be asleep. If initialState is
active, then the clientitemsProc is called while still in Create.

You may transform a Form sub window back into an undifferentiated subwindow by calling

Destroy: PROCEDURE [Window.Handle];

If the subwindow is not currently a Fonn subwindow, the ERROR Error[notAFormSW] results. It
is possible to test whether a subwindow is in fact a Form sub window by calling

Islt: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN);

If it is necessary to move the sub window within the parent window, or to change its size, the
adjustment is done by calling

Adjust: TooIWindow.AdjustProcType;

The current Options are changed by calling

SetOptions: PROCEDURE [SW: Window. Handle, options: Options1;

44 Tajo: Functional Specification

Display is provided to allow the Tool to re-display the contents of the sub window. Note that
Display allows the Tool to scroll, or unscroll, the items before the redisplay via the yOffset, which
specifies the number of bits to offset the ftems upwards -

Display: PROCEDURE [sw: Window.Handle, yOffset: CARDINAL +- 0];

If the Tool window is being made tiny, there is no need for its sub windows to keep state
information that is used only for display purposes. A Form subwindow can be told to discard such

. state data by calling Sleep, and to recreate the display state (when the window becomes big) by
calling Wakeup.

Sleep: PROCEDURE [Window.Handle];

Wakeup: PROCEDURE [Window.Handle];

A Tool often wishes to know how high a Form sub window should be to just display all of the items,
assuming that they are not scrolled. There are two heights of interest; the minimum height for the
subwindow is attained if none of the textual item types (Le. longNumber, number, string,
sou ree) overflow a single line; the current height is the true height .of the subwindow, accounting
for overflowing items. These are returned by the following procedure as min and eu rrent
respectively.

NeededHeight: PROCEDURE [Window.Handle]

RETURNs[min, current: CARDINAL];

Unfortunately, NeededHeight requires that the Form sub window already exist. It is occasionally
convenient to know the height a Form subwindow would need at a minimum without having it exist
yet. This number can be ascertained by calling

MinHeight: PROCEDURE [items: ItemDescriptor, type: Type] RETURNS [CARDINAL];

5.9.5 Operations Affecting One or Two Items

The following procedure is provided to allow the Tool to re-display the contents of an individual
item. Redisplaying a single item may cause other items to also be redisplayed.

Displayltem: PROCEDURE [sw: Window.Handle, index: CARDINAL];

The following procedures allow a Tool to get and set the currently selected item and the item
containing the insert point. These procedures should be used judiciously so as to not preempt the
user.

GetSelection: PROCEDURE [Window.Handle]

RETURNS [index: CARDINAL, first, last: CARDINAL];

GetTypeln: PROCEDURE [Window.Handle]

RETURNS [index: CARDINAL, position: CARDINAL];

SetCurrent: PROCEDURE [sw: Window.Handle, index: CARDINAL];

SetSelection: PROCEDURE [

SW: Window.Handle, index: CARDINAL, first, last: CARDINAL];

SetTypeln: PROCEDURE [

sw: Window.Handle, index: CARDINAL, position: CARDINAL];

Implementation Components 45

nullindex is used as an index when the client wants "nothing" selected or wants no insert point.
SetCu rrent is equivalent to SetSelection with fi rst and last selecting the non-tag and trailer
portion of. the item; it also· places the" insert point at the item's end. "

FormSW assumes that there is a unique mapping between an item and an index into the
ltemDescriptor for each sub window. The client notification procedures are called with the item,
or it's index, or both. If only one is provided, FormSW provides a way to get the other. Given an
item, it is possible to find its index by calling

Findlndex: PROCEDURE [SW: Window.Handle, item: ItemHandle] RETURNS [CARDINAL];

To go in the other direction, call

Findltem: PROCEDURE [sw: Window.Handle, index: CARDINAL] RETURNS [ltemHandle];

5.9.6 Errors and Abnormal Conditions

The following are all the ERRORS generated directly by FormSW.

Error: SIGNAL [code: ErrorCode];
ErrorCode: TYPE = {alreadyAFormSW, notAFormSW};

Item Error: SIGNAL [code: ItemErrorCode, index: CARDINAL];

ItemErrorCode: TYPE = {illegalCoordinate, notStringOtherltem, nilBacking~tore};

The index argument to ItemError is the index of the item that FormSW was processing when it
discovered the error condition.

46 Tajo: Functional Specification

5.10 HeapString

HeapString provides operations for STRINGS that are allocated from the system Heap. This
assiImption allows the procedures to provide automatic allocation of initially NIL string values and
automatic expansion or shortening when required.

AppendChar: PROCEDURE [p: POINTER TO STRING, C: CHARACTER];

Appends the character c to the string pointed to by p.

AppendExtensionlfNeeded: PROCEDURE [to: POINTER TO STRING, extension: STRING]

RETURNS [BOOLEAN];

Checks the passed string pointed to by to to see if it contains an extension (contains a period
followed by at least one character. If not; it appends extension (but does not supply a
period!)

AppendString: PROCEDURE [to: POINTER TO STRING, from: STRING, extra: CARDINAL ... ·0];

Appends the string f rom to the string pointed to by to. If the string must be expanded, it will
be expanded to the new required length plus extra.

Replace: PROCEDURE [to: POINTER TO STRING, from: STRING];

Replaces the string pointed to by to with the· string from.

Implementation Components 47

5.11 Keys

Keys defines the user input devices' key layouts. It depends heavily on the KeyStations interface
which defines the bits generated by the microcode for each key station. There are five types of key
stations: 1) typing keys such as alphanumerics, punctuation, tab, CR, etc.; 2) function keys such as
the left, right, and top function groups; 3) the mouse buttons; 4) the keyset paddles~ and 5)
diagnostic pseudo-keys for hardware diagnostic purposes.

DownUp,: TYPE = {down, UP};

KeyBits: TYPE = PACKED ARRAY KeyName OF DownUp;

Each element of the KeyName enumeration is a KeyStations.KeyStation. Refer to the
definitions files if you need to know the exact bit assigned to a particular key station.

KeyStation: TYPE = [0 .. 112);

KeyName: TYPE = MACHINE DEPENDENT {'

Keyset1, Keyset2, Keyset3, Keyset4, Keyset5,

Red, Blue, Yellow,

Five, Four, Six, E, Seven, D, U, V, Zero, K, Dash, P, Slash, BackSlash, LF, BS, Three, Two,
W, Q, S, A, Nine, I. X, 0, L, Comma, Quote, RightBracket, Spare2, Spare1, One,
ESC. TAB, F, Ctrl, C, J, B, Z, LeftShift, Period, SemiColon, Return, Arrow, DEL, FL3,
R, T, G, V, H, Eight, N, M, Lock, Space, LeftBracket, Equal, RightShift, Spare3, FL4,
FR5, R5, R9, L 10, L7, L4, L 1 L, A9, R10, AS, LS, L5, L2, R2, R7, R4, D2, D1, Key4S,
T1, T3, T 4, T5, TS, T7, TS, T10, R3, Key47 , A 10, RS};

There are some common synonyms defined for use on the Alto II keyboard.

FL 1: KeyName = DEL;
FL2: KeyName = LF;
BW: KeyName Spare1 ;

FR1: KeyName = Spare3;
Swat: KeyName· = FR 1 ;
FR2: KeyName BackSlash;
FR3: KeyName Arrow;
FR4: KeyName = Spare2;

48 Tajo: Functional Specification

5.12 Librarian

This set of procedures is the lowest level df interface to the Librarian Server.

'Procedures in this interface fall into three basic categories as follows.

Altering The Librarian Data Base
Interrogating The Librarian Data Base
Accessing the Contents of Libjects

First, some types:

Card13: TYPE = [0 .. 177778];

LibjectlD: TYPE = LONG CARDINAL;

LibjectVersionType: TYPE = {version, replacementlD, timeAndDate};
LibjectVersion: TYPE = MACHINE DEPENDENT RECORD [

type: LibjectVersionType,
" body: SELECT LibjectVersionType COMPUTED FROM

version = > [
compatablity: CARDINAL,

addition: CARDINAL,

modification: CARDINAL,

patch: CARDINAL];

replacementlD = > [
pad: Card 13,
id: LibjectlD,
zip: CARDINAL +- 0];

timeAndDate = > [
pad: Card13' .. 177768,

tod: LONG CARDINAL,

zip: CARDINAL +- 0];

LibjectUpdateType: TYPE = {compatability, addition, modification, patch};
FullLibjectlDHandle: TYPE = POINTER TO FullLibjectlD;
FullLibjectlD: TYPE = RECORD rid: LibjectlD, version: LibjectVersion];

SnapShot: TYPE = ARRAY [0 .. 1) OF FullLibjectlD
SnapShotHandle: TYPE = DESCRIPTOR FOR ARRAY OF FullLibjectlD

5.12.1 Altering The Librarian. Data Base

LibjectCreate: PROCEDURE [s: STRING] RETURNS [i~: LibjectlD];

Ensures that the supplied string is not in use or is not a hash collision in the LibjectID space,
then marks it as used and returns that LibjectID. Fine point: THE name of a Libject is its LibjectlD!

The string is associated with the Libject for annotation and other purposes.

Implementation Components 49

Callers of LibjcctCrcate should be prepared to handle the error codes AlreadyExists and
IDConflict.

The librarian data base, for any instance of a Librarian service, can grow arbitrarily. The actual
data base is maintained on a network file service, where the number and size of files is not a
problem. The Librarian service maintains, on local disk storage, a cache of the most recently
accessed Libjects. Libjects that are in the cache are said to be active. The following procedures
allow clients to explicitly activate and deactivate Libjects.

LibjectActivate: PROCEDURE rid: LibjectlD, wait: BOOLEAN +- FALSE];

LibjectDeactivate: PROCEDURE rid: LibjectlD];

Procedures that access the Librarian data base take an activate BOOLEAN. The Librarian interface
automatically activates a Libject if activate is TRUE and the error code InactiveLibject is
encountered during the execution of the procedure.

LibjE'ctCheckout: PROCEDURE [
fid: FullLibjectlDHandle, reason: STRING, activate: BOOLEAN +- FALSE];

Marks the Libject as checked-out. This is essentially a write lock with the added feature of
supplying a STRING which can be examined by other clients of the database.

LibjectCheckin: PROCEDURE [
id: FullLibjectlDHandle, updatetype: LibjectUpdateType, pi: PropertyList,

s: Compatiblity.SHandle, activate: BOOLEAN +- FALSE];

Creates a new yersion of the Libject from the supplied property list (described below). Clears
the checked-out lock. If the stream is non-NIL, then the contents of the stream will be stored at
the destination specified by the ContentsFile property (with a new version number), and the
ContentsFile property updated.

The client need not know the algorithm for updating libject versions. However, the client is
asked to specify his intended updatetype via the following enumerated set and the interface will
compute the next version number.
[Note: The stream is destroyed by the procedure.]

5.12.2 Interrogating the Librarian Data Base

LibjectFindlD: PUBLIC PROCEDURE [s: STRING, activate, wait: BOOLEAN +- FALSE]'
RETURNS rid: LibjectID];

~

Performs the string to LibjectlD conversion.

LibjectFindVersion: PROCEDURE rid: LibjectlD, s: SnapShotHandle, activate: BOOLEAN +- FALSE]
RETURNS [fid: FuIlLibjectlDHandle];

50 Tajo: Functional Specification

Will supply the right version of the Libject for the supplied snapshot.

The code used to create a snapShotHandle that means current version follows:

BEGIN OPEN Libraian;
snap: SnapShot:
snapshot: SnapShotHandle +- DESCRIPTOR[snap):
snap +- Hid: AllFromHereID. version: [version, version[tod: Time.CurrentDJ]]]:
END:

LibjectHeaderLook: PROCEDURE [

fid: FullLibjectlDHandle, pi: PropertyList, activate: BOOLEAN +- FALSE];

This is the basic question/answer procedure. It fills-in the property-values in the supplied property
list.

5.12.3 Accessing the Contents of Libjects

The term contents is used to mean the file that the libject is keeping track of (e.g. mesa source files,
text files, etc.).

LibjectContentFile: PROCEDURE [

id: FullLibjectlDHandle, localname: STRING, activate: BOOLEAN +- FALSE]

RETURNS [Compatibility.FHandle];

Gives the caller a handle to the file that contains the contents of the specific Libject-version. It
makes a copy (via some file transfer faeility) of the contents of the specified Libject on the local
volume and gives it the supplied local name.

LibjectContentStream: PROCEDURE rid: FullLibjectlDHandle. activate: BOOLEAN +- FALSE] .

RETURNS [Compatibility.SHandle];

Gives the caller a handle to a stream on the contents of the specified Libject-version. It initially
makes a copy (via some file transfer facility) of the contents of the specified Libject on the local
volume. It is not clear whether ultimately it should copy the file or page it over the network. In either case,

Tajo's local storage vanishes when the stream is destroyed.

5.12.4 Errors and Abnormal Conditions

In general, most error conditions are non-resumable and recovery should be handled by the caller
outside of a catch phrase. The responsibility of the Librarian interface is to clean up on UNWINDS.

Error: SIGNAL [code: ErrorCode, message: STRING, pi: PropertyList];

Unusual conditions encountered by the Librarian Interface are reported to the cli~nt via the
SIGNAL Error. This SIGNAL has three arguments: code, an enumerated type that is to be
interpreted by the client; an optional (may be NIL) STRING, message, to be interpreted by the
client; and an optional (may be empty) PropertyList, pi, that supplies more detailed
information about the abnormal condition (normally only of interest to the Librarian Interface).

Implementation Components 51

[Fine Point: The storage for the parameters message and pi is owned by the Librarian Interface (i.e. the Librarian
. Interface is responsible for its allocation and destruction). This means that if a client wishes to make use of the
values of these parameters outside the catching phrase he must make local copies.]

ErrorCode: TYPE = {CheckedOut, NotCheckedOut, WrongVersion, ServerDead,
InvalidServerName, AlreadyExists, UnassignedlD, IDConflict, FTPError, BufferOverFlow,
InactiveLibject, UnknownError};

5.12.5 Property Lists

The basic mechanism used for data communication (and its type information) with the Librarian
Interface (and ultimately the Librarian Data Base) is via a record called a PropertyList.
Understanding the syntax and semantics of these records and the operations upon them is essential
to conversing with the Librarian Interface. The Librarian Interface makes no effort to hide anything
from clients of P ropertyLists.

PropertyNumber: TYPE = RECORD

prefix: [0 .. 37778],
type: PropertyValueType];

with the types of the values being the enumerated type

PropertyValueType: TYPE = {
TwoWord, LibjectlD, LibjectIDARRAY, String, Record, PropertyList};

PropertyPairs are defined as a variant record as follows.

[note that all VARIANTs are three (3) words longl This is not accidental and may cau.se troubles as new
PropertyValueTypes are invented or needed].

PropertyPairHandle: TYPE = POINTER TO PropertyPair;
PropertyPair: TYPE = RECORD

empty: BOOLEAN,

pn: PropertyNumber,
body: SELECT COMPUTED PropertyValueType FROM

TwoWord = > [value: Inline.LongNumber],

LibjectlD = > [id: LibjectlD],

LibjectlDArray, Record = > [
length: CARDINAL,

ptr: POINTER],

String = > [
length: CARDINAL,-- length of storage block (words)

string: STRING],

52 Tajo: Functional Specification

PropertyList = > [pi: PropertyList],

-- add new type definitions as. needed
ENDCASE];

The BOOLEAN field empt y is useful for constructing lists of property pairs whose
PropertyNumber's are correct but whose values are incorrect or empty. This feature is used,
for example, to construct lists to be filled-in.

Finally a PropertyList is simply a descriptor for an array of PropertyPairs. [Caution: each element
in an array of variant records will be the length of the largest variant.]

PropertyList: TYPE = DESCRIPTOR FOR ARRAY OF PropertyPair;

5.12.6 Property List Operations

The following procedures are supplied for manipulating PropertyLists.·

CreatePropertyList: . PROCED~RE [n: CARDINAL] RETURNS [PropertyList];

Allocates the storage necessary for a PropertyList of LENGTH[n*SlzE[Pr~pertyPair]] and
initializes the PropertyPairs to have empty be TRUE.

DestroyPropertyList: PROCEDURE [plist: PropertyList]

Destroys a PropertyList (Le. both the PropertyList contents and actual list storage is
released). [The implementation of these two procedures uses the Mesa Heap allocation package.]

ResetPropertyList: PROCEDURE [plist: PropertyList]

Calls ResetPropertyPair for all non-emp~y values in the supplied PropertyList.

ValidatePropertyList: PROCEDURE [plist: PropertyList] RETURNS [size: CARDINAL]

Simple checking of the PropertyList is perfonned and its size in words is computed and
returned if the PropertyList is valid, otherwise the SIGNAL InvalidPropertyList is raised.

5.12.7 PropertyPair Operations

ResetPropertyPair: PROCEDuRE[pair: PropertyPairHandlel

The contents of a PropertyPair are released. [The structure of a PropertyList tree is preserved
across Reset. This means resetting a PropertyList PropertyPair does not release the PropertyList
"pointed to"]

AddPropertyPair: PROCEDURE [plist: PropertyList, pp: PropertyPair] RETURNS [CARDINAL]

Implementation Components 53

Allows you to set the values in a PropertyList. It searches the PropertyList for the first
empty PropertyPair and sets it to the passed PropertyPair.

Users of the above procedure must be prepared to handle the SIGNAL PropertyListFul1.

FindPropertyPair: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: PropertyPairHandle]

Finds the specified
P ropertyPai rHandle.

PropertyNumber in the PropertyList and returns its
If the PropertyNumber cannot be found, a NIL is returned.

GetPropertyPair: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: PropertyPairHandle]

Like FindPropertyPair but will signal PropertyNotFound instead.

The following procedures construct PropertyPairs. These procedures allocate storage and copy the
contents where necessary.

MakeEmptyPair: PROCEDURE [pn: PropertyNumber] RETURNS [PropertyPair];
MakeStringPair: PROCEDURE [pn: PropertyNumber, s: STRING] RETURNS [Pr~pertyPair];

MakeRecordPair: PROCEDURE [pn: PropertyNumber, length: CARDINAL, ptr: POINTER]

RETURNS [PropertyPair];

The following procedures are controlled LOOPHOLEs.

GetPropertylD: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: POINTERTO LibjectlD PropertyPair, id: LibjectID];

GetPropertyList: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: POINTER TO PropertyList PropertyPair, pi: PropertyList];

GetPropertyRecord: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: POINTER TO Record PropertyPair, p: POINTER];

GetPropertyString: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: POINTER TO String PropertyPair, STRING, s: STRING];

GetPropertyTwoWord: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: POINTER TO TwoWord PropertyPair, In: Inline.LongNumber];

GetPropertyValue: PROCEDURE [plist: PropertyList, pn: PropertyNumber]
RETURNS [pp: POINTER TO TwoWord PropertyPair, lowbits, highbits: UNSPECIFIED];

The following procedures will pack(unpack) a PropertyList into(from) a contiguous block of
storage of size 2+ Val.idatePropertyList words. They are useful for storing PropertyLists on
files.

BundleOfBitsFromPropertyList: PROCEDURE [plist: PropertyList, p: POINTER];

Packs the specified PropertyList into a contiguous block of storage. It is the client's responsibility
to supply a block large enough for the passed PropertyList.

54 Tajo: Functional Specification

PropertyListFromBundleOfBits: PROCEDURE [p: POINTER]

RETURNS [PropertyList];

. Unpacks a packed PropertyList. Verifies that the passed pointer really points to a packed
PropertyList and ifnotgenerates an ERROR.

Implementation Components 55

5.13 Menu

One of the primary command execution invocation mechanisms in Tajo is the menu. The Menu
Interface gives the Tool writer control over what menus the user will see and what actions an
individual menu item will perform. How menus appear to the user and how he interacts with them
is built-in and not of concern to the client of this interface.

5.13.1 Simple Creation of Menus

The following two procedures are designed to allow clients to make and free menus and menu items
simply. For those who need to know more about menus, subsequent sections explain menus and
their implementation in detail.
Make: PROCEDURE [

name: STRING,

strings: DESCRIPTOR FOR ARRAY OF STRING,

mcrProc: MCRType,

copyStrings: BOOLEAN +- TRUE,

permanent: BOOLEAN +- FALSE]

RETURNS [Handle];

Creates menu named name that has the elements contained in strings. When one of the
strings is selected the mcrProc will be called indicating the index of the string in the array.
The pe rmanent flag indicates whether the created object can subsequently be destroyed. The
copySt rings flag indicates whether st rings should be copied into the system Heap.

Free: PROCEDURE [menu: Handle, freeStrings: BOOLEAN .. TRUE];

Frees the menu, optionally freeing the copied strings.

Menus are chose~ for display based upon which window the cursor is over. This allows the
displayed menu stack to be dynamic relative to the window layout. The following two procedures
allow clients to associate menus with windows.

Instantiate: PROCEDURE [menu: Handle, window: Window.Handle];

Associates the menu with the passed window and increments a use count in menu. If this is
the first menu to be instantiated in window the system global menu(s) is also instantiated. If
menu is NIL only the system global menu is instantiated. If menu is already instantiated the
ERROR Error[alreadylnstantiated] is generated.

Uninstantiate: PROCEDURE [menu: Handle, window: Window.Handle];

56 Tajo Functional Specification

This procedure removes menu from the window and decrements its use count. Eventual
deallocation of the menu is left to the Tool to perform. If this menu is not instantiated with this
window, then the ERROR Error[notlnstaritiated] is generated. It is also possible- that the
ERROR Error[contextNotAvaiiable] will be generated; this indicates that Tajo has detected
an internal inconsistency in its data structures.

5.13.2 The Menu Object

The Object contains the normally invariant data associated with a menu.

Handle: TYPE = POINTER TO Object;
Object: TYPE = RECORD

name: STRING

items: Items

Items: TYPE = DESCRIPTOR FOR ARRAY OF ItemObject;

5.13.3 Menu Instances

An unlimited number of menus may be associated (instantiated) with the tool. window or any
subwindow. The menu mechanism maintains a ring of menu instances (pointers to associated
menus) for each subwindow (if there is at least one associated menu). One of these associated
menus is taken to be the "current" menu for that subwindow.

Some menus (at least the system global ones) want to be available from virtually every subwindow.
This could be accomplished by creating an Object for each use, but the primary memory cost of
multiple copies of an Object is large. Additionally. some users may want to dynamically alter the
items contained in menus (e.g. lists of available fonts, etc.). These requirements lead to the use of a
level of indirection. Thus Tajo never copies a client's Object. instead it always keeps a pointer
back to that Object. It is the client's responsibility to guarantee that the Object is valid as long as
Tajo has a pointer to it.

5.13.4 Menu Items

Each menu item has a keyword (a string of characters). A menu item has a Menu Command
Routine (MCR) associated with it. A MeR is a procedure that is called when the user specifies its
corresponding item. Clients have found that using one MCR per menu is useful because only one large catch phrase

need be written to handle common exception cases.

ItemObject: TYPE RECORD [keyword: STRING, mcrProc: MCRType];

Item Handle: TYPE = POINTER TO ItemObject;

MCRType: TYPE = PROCEDURE [

window: Window.Handle ... NIL, menu: Handle ... NIL, index: CARDINAL .. LAST[CARDlNAL]];

Implementation Components

lbe following two procedures allow clients to make and free menu items;

Makeltem: PROCEDURE {keyword: STRING, mcrProc: MCRType] RETURNS [ltemObject];

Freeltem: PROCEDURE [ltemObject];

5.13.5 Procedures For Setting up Menus

57

The following procedures allow the Tool to create and destroy menus, to specify which menu
selection techniques (in addition to the standard one) will be used, and to specify what procedures
will be invoked (called) when a menu item is selected. The procedures that actually do the work of
implementing how the human user sees and uses menus is not the concern of the Tool.

The following two procedures allow the Tool to create and destroy menus.

Create: PROCEDURE [items: Items, name: STRING, permanent: BOOLEAN] RETURNS [Handle];

Returns a pointer to a menu Object named name that is made up of items. The
permanent flag indicates whether the created object can subsequently be destroyed.

Destroy: PROCEDURE [Handle];

Deallocates storage for the Object pointed to by Handle. It first veri~es that the Object has
a use count = 0, if not the ERROR Error[islnstantiated] is generated. If the menu is
permanent, the ERROR Error[isPermanent] is generated.

The above procedures set up the data stuctures required for menu operations. They do not,
however, set up a specific window's PNR for invoking menus. If the window is one managed by
Tajo the standard menu PNR is already set up. If not, the client may set the standard menu PNR
by calling

SetPNR[window: Window.Handle];

If it is necessary to set the menu PNR under a different mouse button than the one used by
SetPNR, the PNR itself is accessible as PNR.

The following two procedures allow the Tool to get a handle for and to set the font used for menus.

GetFont: PROCEDURE RETURNS [font: WindowFont.Handle];
SetFont: PROCEDURE [font: WindowFont.Handle];

5.13.6 Errors and Abnormal conditions

Error: ERROR [code: ErrorCode];
ErrorCode: TYPE = {
islnstantiated, alreadylnstantiated, notlnstantiated, contextNotAvailable, isPermanent};

58 Tajo Functional Specification

5.14 MsgS\V

The MsgSW interface provides a simple way of posting messages to the user .. A MsgSW is built
upon a StringSW.

5.14.1 Creation/Destruction

'To create a MsgSW call:
Create: PROCEDURE [

sw: Window.Handle,
lines: CARDINAL'" 1,
options: TextSW.Options ... defaultOptions];

defaultOptions: TextSW.Options = [access: append, menu: TRUE, split: TRUE,

wrap: TRUE, scrollbar: TRUE, flushTop: FALSE, flushBottom: FALSE];

The lines parameter specifies the minimum number of lines that the subwindow will keep in its
backing store before discarding the oldest line. The su bwindow height controls how many lines
will be visible to the user. If the number of lines visible to the user is greater than lines, then
all the visible lines are kept in the backing store.

When the options.access parameter is anything but append an Erro r is raised with a code
of appendOnly.

The following procedure destroys the backing store and MsgSWness of the subwindow.

Destroy: PROCEDURE [sw: Window.Handle];

5.14.2 Output

A message line is delimited by a carriage return, on its end. The latest message has a severity
associated with it.

Severity: TYPE = {info, warning, fatal};

Here are the procedures for managing the contents of a MsgSW.

Post: PROCEDURE [

sw: Window. Handle,
string: STRING,

severity: Severity ... info,
prefix: BOOLEAN ... TRUE,

endOfMsg: BOOLEAN'" TRUE];

Appends string onto the latest message. The 'severity of the message is severity. If the
p refix parameter is TRUE and the message is starting a new line, a short string that depends on
severity (info: "", warning: "Warning: " or fatal: "Fatal Error: It) starts the line before the
client message. The endOfMsg parameter set to TRUE delimits the message without having to
put an AsciLCR in strin~.

PostAndLog: PROCEDURE

'sw: Window.Handle,
string: STRING,

severity: Severity .- info,

Implementation Components

prefix: BOOLEAN .- TRUE,

endOfMsg: BOOLEAN .- TRUE,

logSW: Window.Handle .- NIL];

59

Like Post but with the additional logSW parameter that enables that same message that
appears in the MsgSW to be directed to another subwindow for logging. If the value is NIL then
the output is directed to the Userlnput.GetDefauItWindow[] and the Tool's name is
prepended to the message.

AppendString: PROCEDURE [window: Window. Handle, string: STRING];

Appends st ring onto
Userlnput.StringOut.

the latest message. This
The severity is set to' info.

Clear: PROCEDURE [sw: Window.Handle];

Erases the contents of the MsgSW. The severity is set to info.

is the procedure used for

The various message posting routines impart a severity to the current message. The following
procedure sets it explicitly:

SetSeverity: PROCEDURE [sw: Window.Handle,· severity: Severity];

5.14.3 Status Retrieval

These procedures provided status information about the current message:

GetSeverity: PROCEDURE [sw: Window.Handle] RETURNS [severity: Severity];

LastLine: PROCEDURE [sw: Window. Handle, ss: String.SubString];

The parameter" ss is filled in with base, offset and length of the current message. The client
may want to copy ss and the string ss.base since this information is liable to change.

60 Tajo Functional Specification

5.15 Profile

The Profile interface provides an interface to a number of commonly accessed user and system data
iteins. Note that all these items are read only.

bitmap: READONL Y Window.Box;

The current size and position of the bitmap.

debugging: READONL Y BOOLEAN;

TRUE if debugging. Used internally by Tajo to decide whether to attempt error recovery or call
the debugger. If Tajo invokes the debugger, it may not be possible to continue the session.

librarian: READONL Y STRING;

The current name of the Librarian server being used in librarian transactions.

regis~ry: READONL Y STRING;

The currently logged in user's mail registry.

userName: READONL Y STRING;

userPassword: READONL Y STRING;

The currently logged in user's name and password strings.

Tajo provides a Tool called the ProfileTool that allows users to set or alter these values. The
TajoMisc interface provides procedures for clients to modify these items.

If a client needs to notice when one of these values has changed, either by the user or another client,
it should have an Event.Notify procedure that detects the setOefaults event.

Implementation Components 61

5.16 Put

All the procedures in the Put interface take a Window.Handle, a piece of data fo be fonnatted
and, where appropriate, a fonnat specification. The data is fonnatted by the Format mechanism and
then output by a call to the Userlnput.StringOut procedure associated with the
Window.Handle. If the Window.Handle passed into any Put procedure is NIL the output is
directed to the Userlnput.5tringOut procedure of Userlnput.GetDefaultWindow[]. See the
documentation on the Format interface for comments about actual output format of the following
procedures:

Blanks: PROCEDURE [h: Window.Handle, n: CARDINAL .. 1];

Char: PROCEDURE [h: Window.Handle, char: CHARACTER];

CR: PROCEDURE [h: Window.Handle];

CurrentSelection: PROCEDURE [h: Window.Handle];

Date: PROCEDURE [h: Window.Handle, pt: Time.Packed, format: Format.DateFormat];

Decimal: PROCEDURE [h: Window.Handle, on: INTEGER];

Line: PROCEDURE [h: Window. Handle, s: STRING];

LongDecimal: PROCEDURE [h: Window.Handle, n: LONG INTEGER];

LongNumber: PROCEDURE [

h: Window. Handle, n: LONG UNSPECIFIED, format: Format.NumberFormat];

LongOctal: PROCEDURE [h: Window.Handle, n: LONG UNSPECIFIED];

LongString: PROCEDURE [h: Window.Handle, 5: LONG STRING];

LongSubString: PROCEDURE [h: Window.Handle, ss: Format.LongSubString];

Number: PROCEDURE [h: Window. Handle, n: UNSPECIFIED, format: Format.NumberFormat];

Octal: PROCEDURE [h: Window.Handle, n: UNSPECIFIED];

SubString: PROCEDURE [h: Window.Handle, 55: String.SubString];

Text: PROCEDURE [h: Window.Handle, 5: STRING];

62 Tajo Functional Specification"

5.17 Scrollbar

The scrollbar interface does not do scrolling, i.e.~ moving of bits on the screen, but rather provides a
consistent user interface and mechanism for specifying and invoking scroll actions.

First some definitions.

Type: TYPE = {horizontal, vertical};

" Direction: TYPE = {forward, backward, relative};

Percent: TYPE = [0 .. 100];

Two types of procedures are used to perform the scroll operation. ScroliProcType procedures are
used to communicate to the client a user's scroll request. ScrolibarProcType procedures are used
to get the scrollbar data from the client in order to display them to the user.

ScroliProcType: TYPE = PROCEDURE
[window: Window.Handle, direction: Direction, percent: Percent];

ScrolibarProcType: TYPE = PROCEDURE [Windo"w.Handle]
RETURNS[box: Window.Bo.x, offset, portion: Percent];

Scrollbars may be created for vertical or horizontal scroll functions by the fo~lowing procedure.

Create: PROCEDURE
[window: Window.Handle,
type: Type,
scroll: ScroliProcType,
scrollbar: ScrolibarProc Type];

If Create is called for a subwindow that already has scrollbars of that type the following ERROR "is
generated.

Error: ERROR [code: ErrorCode];
ErrorCode: TYPE = {alreadyExists};

Scrollbars are deleted by calling

Destroy: PROCEDURE [sw: Window.Handle, type: Type];

The following procedure should be called when scollbars are to be invoked, normally when the
cursor exits a window. The Userlnput.DefaultCu rsorPNR already does this.

InvokeScrolibar: PROCEDURE [window: Window. Handle, place: Window.Place];

Implementation Components 63

5.18 Selection

The Selection interface is the mechanism used to communicate the cu"ent selection among the
various Tools. It is the responsibility of clients of this interface to provide for actual selection of text
and/or graphics within its window(s). The client window that contains the current selection is
refered to as the manager of the current selection.

Basically, any client wishing to become the manager of the current selection supplies the selection
interface with a pair of procedures.

ActOnProcType: TYPE = PROCEDURE [data: POINTER, action: Action];

ConvertProcType: TYPE = PROCEDURE [data: POINTER, target: Target] RETURNS [POINTER];

The ActOnProcType is called if someone wishes to modify the current selection. The
ConvertProcType is called if someone wants the value of the current selection.

The following procedure sets these procedures for the current selection.

Set: PROCEDURE [pointer: POINTER, ConvertProcType, actOn: ActOnProcType];

These requests are communicated to the manager of the current selection by passing an A ction or
Ta rget which are defined as follows.

Action: TYPE = {clear, delete, mark, unmark, replace};

Target: TYPE = {window, subwindoV{, string, source, length, position};

The above definitions are presented as exact enumerations when in fact the are defined as open
enumerations. The following two procedures allow clients to define their own private conversion
types.

UniqueAction: PROCEDURE RETURNS [Action]; .

UniqueTarget: P~OCEDURE RETURNS [Target];

Clients may act on the current selection, independent of who is the current owner, by calling

ActOn: PROCEDURE [Action];

The following useful specializations are also supplied.

Clear: PROCEDURE = INLINE BEGIN ActOn[c1ear]; END;

Delete: PROCEDURE = INLINE BEGIN ActOn[delete]; END;

It is some times difficult to detennine if your are the manager of the current selection. The
following procedure will clear the current selection iff you are the current own~r. You are the
current owner if pointer is equal to the latest pointer that was passed into the Set.

64 Tajo Functional Specification

ClearOnMatch: PROCEDURE [pointer: POINTER];

The following procedure .will perfonn the requested conversion and return a POINTER to the data.
The data returned for items larger that one word is is allocated out of the system Heap with the
storage ownership passed to the recipient which must deallocate it. Targets of window and
subwindow return a one word Window.Handle. A Target of string returns a STR,ING

allocated from the Heap. Targets of length and position return POINTER TO LONG CARDINAL.

Convert: PROCEDURE [Target] RETURNS [POINTER];

The manager of the current selection may chose not to implement some (or all) of the possible
conversions. In that case, it simply returns NIL.

The following special conversions are supplied as a convenience to clients. If the current selection is
not acceptable to the Mesa runtime as a number, then String.lnvalidNumber will be raised by
the runtime and allowed to propogate through. these procedures.

Number: PROCEDURE [radix: CARDINAL +- 10] RETURNS [CARDINAL];

LongNumber: PROCEDURE [radix: CARDINAL +- 10] RETURNS [LONG CARDINAL];

5.18.1 Selection Sources

The selection interface defines the Sou rce mechanism for processing textual selections that are
more than a few hundred characters in length.

Source: TYPE = POINTER TO SourceObject;

SourceObject: TYPE = RECORD [

data: POINTER TO UNSPECIFIED,

proc: SourceProc,
destroy: DestroyProc];

DestroyProc: TYPE = PROCEDURE [source: Source];

SourceProc: TYPE = PROCEDURE [data: POINTER, string: STRING];

The source mechanism works as follows:

The client asks for the current selection to be converted as a sou rce.

The owner of the current selection creates an instance of the Sou rce data structure and returns
it to the client.

The client then makes repeated calls on p roc supplying a string of arbitrary size.

The owner of the current selection fills the string with text and returns. The owner need not fill
the string completely but it must return some d~ta with each call as end-of-selection is indicated
by returning an empty string.

Implementation Components 65

When the client receives a zero length string it must call the dest roy procedure supplied in the
source object, otherwise the space allocated for the source will be lost.

5.18.2 Trash Bin

The selection interface defines an abstraction, somewhat similar to the current selection, know as the
trash bin. The trash bin is used to save the most recent text cuts for subsequent pastes. Clients may
become owners of the trash bin by calling

ClearTrashBinProcType: TYPE = PROCEDURE [data: POINTER];

SetTrashBin: PROCEDURE [

pointer: POINTER, ConvertProcType. clear: ClearTrashBinProcType];

Clients can convert the contents of the trash bin in the same manner as the current selection by
calling

ConvertTrashBin: PROCEr)URE [Target] RETURNS [POINTER];

66 Tajo Functional Specification

5.19 StringSW

The interface StringSW provides the definitions and procedures to create and manipulate text
subwindows whose backing store is a STRING. Further text sub window operations are described in
the TextS W interface.

First some definitions.

Options: TYPE = TextSW.Options;
defaultOptions: Options = [access: edit, menu: TRUE, split: TRUE, wrap: TRUE,

scrollbar: TRUE, flushTop: FALSE, flushBottom: FALSE];

A StringSW is create by calling

Create: PROCEDURE [

sw: Window. Handle, s: POINTER TO STRING ~ NIL

options: Options ~ defaultOptions];

If s is NIL or st is NIL, the subwindow will allocate and manage a heap string for the
backing store; otherwise, the client is responsible for the storage management of the string.

A sub window's StringSW properties are destroyed by calling

Destroy: PROCEDURE [sw: Window.Handle];

The current backing STRING for a string subwindow is returned by

GetString: PROCEDURE [sw: Window.Handle] RETURNS [s: POINTER TO STRING];

Clients can determine if a window is a string sub window by calling

Islt: PROCEDURE [sw: Window.Handle] RETURNS [yes: BOOLEAN];

Implementation Components 67

5.20 TajoMisc

The interface TajoMisc is a catch-all for· public and semi-public Tajo utilities that did not fit
logically into any of the other interfaces.

Part of Tajo's runtime state can be deduced from the following variable:

initialToolStateDefau It: TooIWindow.State;

This is the state in which a Tool is created if it does not override the default provided in the
Tool.Create call.

To change the values in the Profile interface the following six procedures are used. Each of these
procedures call Event.Notify[why: setDefaults]. STRINGS passed in as arguments are copied.

SetBitmap: PROCEDURE [box: Window.Box];

Actually changes the biunap to be bQx, relative to the screen. Check Profile.bitmap for the
actual box used.

SetUserName: PROCEDURE [s: STRING .- NIL];
SetUserPassword: PROCEDURE [s: STRING .- NIL];

In the AltoTajo, these procedures change OsStaticDefs.OsStatics. Also, if s = NIL.

then the Profile string is copied from OsStaticDefs.OsStatics.

SetDebugging: PROCEDURE [b: BOOLEAN];
SetLibrarian: PROCEDURE [s: STRING];
SetRegistry: PROCEDURE [s: STRING];.

The following procedure must be used rather than UserTerminal.SetState to change the state of
the display biunap because UserTerminal.SetState bypasses Tajo with disaster~us consequences.

SetState: PROCEDURE [new: UserTerminal,State] RETURNS [old: UserTerminaI.State];

The next two procedures allow a process to do a WAIT for a period of time without having to be in
a convenient MONITOR.

WaitMiIIiSecs: PROCEDURE[msec: CARDINAL];

WaitSecs: PROCEDURE[sec: CARDINAL];

If a client wishes to stop Tajo and all other Tools in a safe manner it should call Qu it. This lets the
nonnal cleanup mechanisms run which are responsible f~r making files on the disk consistent, etc.

Qu it: PROCEDURE;

To load a Tool name from the disk:

CreateTool: PROCEDURE [name: STRING];

68 Tajo Functional Specification

5.21 TextSource

The interface TextSou rce provides the primary underlying mechanism for the representation of
data that is used to implement Tajo's uniform text display, selection and editing facilities.
TextSou rce defines the standard set of operations that are sufficient for all access to a text source.
Specific implementations may use additional operations for setting or altering the state of a .text
source. Text sources transmit information in atomic units called blocks.

Position: TYPE = LONG CARDINAL;

nuliPosition: Position = LAsr[LONG CARDINAL];

5.21.1 Basic Operations

The procedures which create text sources return a Handle which is an object oriented pointer to a
record of procedures which defines the operations on a text source.

Handle: TYPE = POINTER TO Procedures;

Procedures: TYPE = POINTER TO ProceduresObject;

ProceduresObject: TYPE = RECORD [

readText: ReadTextProc,
delete Text: Delete TextProc,
insertText: InsertTextProc,
getLength: GetLengthProc,
setLength: SetLengthProc,
actOn: ActOnProc,
readBlock: ReadBlockProc];

Following are the definitions and semantics of each operation on a text source.

ActOnProc: TYPE = PROCEDURE [source: Handle, action: Action] RETURNS [ActionResult];

.Actions defined for text sources are as follows:

Action: TYPE = {destroy, mark, sleep, truncate, wakeup};

dest roy - free all storage and release all resources associated with the text source instance.

rna rk - mark the text source in some distinctive manner at its current end.

sleep - the text source will not be used for a while (hint to reduce current resources for this
text source).

truncate - truncate the text source at it's current end. This has a noticable effect only for
sources that have some representation in a file system.

wakeup - the text source is going to be used (undo what you did for sleep).

[Note: sleep and wakeup are only hints for storage and resource management purposes. This means that
implementors must be able to handle all operations on sleeping text sources.] .

Implementation Components 69

All ActionProcs return an ActionResult to indicate the status of the requested action.

ActionResult: TYPE = {ok, new, bad};

Text is deleted in a text source by invoking deleteText.

DeleteTextProc: TYPE = PROCEDURE [

source: Handle, position: Position, n: lONG CARDINAL, trash: BOOLEAN]

RETURNS [reaIPos: Position, realN: lONG CARDINAL];

The deleteText operation is a request to delete the specified range of characters. The text
source implementor may refuse to delete any (read or append) or only an initial subset of the
requested interval. In any event the returned rea IN is the actual number of characters deleted
(if any) and realPos is the index into the text source from which one should update the
display representation.

The current length of the text source is obtained by the getLength operation. This operation is
used extensively and its implementation should be efficient.

GetL engthProc: TYPE = PROCEDURE [source: Handle] RETURNS [Position];

Text is inserted into a text source by invoking the inse rtText operation.

InsertTextProc: TYPE = PROCEDURE [

source: Handle, ss: String.SubString, position: Position] RETURNS [Position];

The returned Position is the index into the text source from which one should update the
display representation.

Text is read from a text source by invoking either the readText or read Block operation.

Block: TYPE = RECORD [

base: POINTER TO PACKED ARRAY [0 .. 0) OF CHARACTER,

offset, length: CARDINAL];

Class: TYPE = {none, cr, alpha, space, other};

ReadBlockProc: TYPE = PROCEDURE [

source: Handle, position: Position, maxLength: CARDINAL, class: Class]

RETURNS [b: Block, pos: Position];

ReadTextProc: TYPE = PROCEDURE [

source: Handle, position: Position, maxLength: CARDiNAL, class: Class]

RETURNS [ss: String.SubString, pos: Position];

ss.base is not a real STRING so don't reference the length or maxlength fields in it.

The basic semantics of these two procedures is: return a sequence of text that is either maxLength
long or is terminated by a character of the specified class.

70 Tajo Functional Specification

The following additional semantic rules for reading text sources are designed to ease the job of
implementing a text source. and to facilitate the implementation of discontinuous sources.
Discontinuous sources are text sources that either have holes in them or contain sequence-s of non
textual data embedded in them (e.g. Bravo files that contain formatting).

A text source may not return more text than was requested.

A single call on read may not return text that is not contiguous in the text source's address
space (Le. it cannot concatinate two discontiguoll;s runs of text).

A text source may return less text than was requested.

A text source may only return no text (Le. length = 0) if the position is equal to the value
returned by getLength or pos is greater than position.

Clients can determine if a character is in a given class by calling
TestClass: PROCEDURE [char: CHARACTER, class: Class] RETURNS [equal: BOOLEAN];

Clients can set the length of ~ text source by calling the setLength operation. For most sources
attempting to lengthen a source by this operation is undefined and will produce unexpected results.

SetLengthProc: TYPE = PROCEDURE [source: Handle, position: Position]

RETURNS [Position];

5.21.2 Useful Operations on TextSources
To append a portion of a source to a string call
Append: PROCEDURE [string: STRING, source: Handle, start: Position, n: CARDINAL];

The following collection of procedures work for all text sources.

The following two procedures are useful for identifying words and lines in text sources.

ScanType: TYPE = {word, line};

Scan Left: PROCEDURE [source: Handle, start: Position, type: ScanType]
RETURNS [left: Position];

ScanRight: PROCEDURE [source: Handle, start: Position, type: ScanType]
RETURNS [right: Position];

The following procedure will scan a subrange of a text source looking for a string match.

T extSearch: PROCEDURE [

source: Handle, string: STRING,

start: Position +- 0, stop: Position +- LAST[LONG CARDI.NAL]]

RETURNS [lineStart, left: Position];

In the event that string is not found the following error is raised.

SearchFailed: ERROR;

Implementation Components

The following procedures are useful for processing substrings and doing simple edits such as backchar
and 'back word while typing.

CharlsEditChar: PROCEDURE [char: CHARACTER] RETURNS [BOOLEAN];

DoEdit: PROCEDURE [source: Handle, editChar: CHARACTER, editPos: Position]
RETURNS [delta: INTEGER];

71

The return argument delta is the count of the number of characters altered by the edit (e.g.
the number of characters deleted by back word).

The following two procedures are used to identify edit and control characters in ss. On the return,
ss is divided into ss (the pan of the ss before the returned character) and theRest (the part of
the original ss following the returned character).

FindEditChar: PROCEDURE [ss, theRest: String.SubString]
RETURNS [editChar: CHARACTER, found: BOOLEAN];

FindControlChar: PROCEDURE [ss, theRest: String.SubString]
RETURNS [char: CHARACTER, found: BOOLEANj;

5.21.3 Disk Sources

Disk file type text sources can be created with read or append access only. This is because mid file
modifications (direct editing) are not supported. .Disk file sources are created, with the specified
access, by calling

Access: TYPE = {read, append, edit};

Stream: TYPE = Compatibility.SHandle;

CreateDisk: PROCEDURE [name: STRING, access: Access, s: Stream f- NIL]

RETURNS [source: Handle];

If s is not NIL then it is used instead of getting a stream from the file named name.

Clients may determine the disk file name and the backing stream for a disk type text source by
calling.
Disklnfo: PROCEDURE [source:Handle] RETURNS [name: STRING, s: Stream, access: Access];

A currently existing disk source can be renamed by calling the following procedure. The current
disk source is destroyed and a disk source for the new file, with the specified access, is created.

RenameDisk: PROCEDURE [

source: Handle, newName: STRING, access: Access, newSN: BOOLEAN]

RETURNS [Handle];

5.21.4 String Sources

String type text sources can be created with read, append or edit access. String sources are created,
with the specified access, by calling.

72 Tajo Functional Specification

CreateString: PROCEDURE [ps: POINTER TO STRING, expandable: BOOLEAN]

RETURNS [source: Handle];

[Note: The current implementation of string sources requires a contiguous block of memory large enough to entirely
contain the backing string. More importantly, when the string is expanded a new larger string will be allocated and then

the string copied, requiring 2*n + delta characters of memory. Beware of LARGE string sources]

Clients may determine the backing string currently in use and its state by calling

Stringlnfo: PROCEDURE [source:Handle]
RETURNS [ps: POINTER TO STRING, expandable: BOOLEAN];

The following two procedures will edit strings.

DeleteSubString: PROCEDURE [ss: SubString, keepTrash: BOOLEAN]

RETURNS [trash: STRING];

k~epTrash indicates whether the deleted text is to be put into the global trash bin. (See
Selection interface)

InsertString: PROCEDURE [

string: POINTER TO STRING, position: CARDINAL, toAdd: SubString, extra: CARDINAL];

A string can be designated non-expandable by using the following special value for ext ra.

cannotExpand: CARDINAL = LAST[CARDINAL);

5.21.5 Errors

ErrorCode: TYPE = {fileNameError, accessError, isBad};
Error: SIGNAL [code: ErrorCode];

fileNameError - indicates either doesn't exist or bad syntax.

accessErro r - attempt to perform an operation that violates the created access option.

isBad - indicates that the source is no longer extant. This occurs on core swaps when the file
is deleted.

(

Implementation Components 73

5.22 TextS\V

The TextSubwindow Package implements a comprehensive set of facilities for" viewing text
independent of source. This package essentially takes a client created subwindow and text source,
creates the necessary data structures and then sets appropriate PNR's for viewing, scrolling, and
text selection.

The available options for text sub windows are specified via the following options record.

Options: TYPE = RECORD [
access: Access,
menu: BOOLEAN,
split: BOOLEAN,
wrap: BOOLEAN,
scrollbar: BOOLEAN,
flushTop: BOOLEAN,
flushBottom: BOOLEAN];

Access: TYPE = TextSource.Access;

If menu is TRUE, the standard text operations menu is instantiated with the sub window at create
time. If split is TRUE, the subwindow may be divided into an arbitrary number of splits or
horizontal subregions by the user. If w rap is TRUE, a line that is too long .to fit across the
subwindow will be broken at a word boundary and continued on the next line, instead of
terminating at the sub window boundary. If scrollbar is true, the subwindow will be provided
with a vertical scrollbar. The booleans flushTop and flushBottom specifiy if a standard border
is to be supplied at the top and bottom of the subwindow.

If the client does not supply the options argument at create time the following defaults will be
supplied.

defaultOptions: Options = [access: read, menu: TRUE, split: TRUE, wrap: TRUE,
scrollbar: TRUE, flushTop: FALSE, flushBottom: FALSE];

5.22.1 Basic Operations

Text sub windows are created by calling

Create: PROCEDURE [
sw: Window. Handle, source: TextSource.Handle,
options: Options +- defaultOptions, position: Position +- 0];

position indicates the initial character position in sou rce that should be displayed at the
top of the sub window.

The following procedu!e destroyes a text subwindow, freeing all data structures and setting all PNRs
to system defaults. However, the client supplied source is not destroyed.

Destroy: PROCEDURE [sw: Window.Handle];

Attempting tq destroy a non-text subwindow is a nop.

The following procedures allow the client to alter the contents of the text source currently being
displayed in the text subwindow. The text sub window and source must have either edit or append

74 Tajo Functional Specification

access to correctly. use these operations.

Delete Text: PROCEDURE [_
sw: Window.Handle, pos: Position, count: LONG CARDINAL];

Clients may insert text, at the current insertion position, by calling one of the following procedures.

InsertChar: PROCEDURE [sw: Window.Handle, char: CHARACTER];

InsertString: PROCEDURE [sw: Window. Handle, s: STRING];

. InsertSubString: PROCEDURE [sw: Window.Handle, ss: String.SubString];

5.22.2 Positioning and Selection Operations

The following procedures allow clients to obtain and alter the current state of a text subwindows
insertion, selection and "end-of-file" positions.

GetEOF: PROCEDURE [sw: Window. Hand Ie] RETURNS [Position];

Getlnsertion: PROCEDURE [sw: Window.Handle] RETURNS [Position];
GetSelection: PROCEDURE [sw: Window.Handle] RETURNS [left, right: Position];
SetEOF: PROCEDURE [sw: Window. Handle, eot: Position]; -

Setlnsertion: PROCEDURE [sw: -Window.Handle, position: Position];

SetSelection: PROCEDURE [sw: Window. Handle, left, right: Position];

The client can determine if any portion of the source is currently being displayed with the following
procedure.
PositionlsVisible: PROCEDURE [sw: Window.Handle, position: Position] RETURNS [BOOLEAN];

The following procedure enables clients to resolve window coordinates to the nearest text source
positions. It always returns a valid position.

PositionFromPlace: PROCEDURE [sw: Window. Handle, place: Window.Place]
RETURNS [position: Position];

Clients may determine the position of the first character on any line by calling.

GetPosition: PROCEDURE [sw: Window.Handle~ line: CARDINAL]
RETURNS[Position] ;

Clients can position the top of a text sub window to an arbitrary position within the text source by
calling.

SetPosition: PROCEDURE [sw: Window.Handle, position: Position];

The following procedure first finds the next line break and then does a SetPosition.

PositionToLine: PROCEDURE [sw: Window.Handle, position: Position];

5.22.3 Information/Alteration Operations

The following operations allow clients to interrogate and alter internal aspects of a text subwindow.

When a text subwindow is moved or sized clients must call.

Implementation Components 75

Adjust: T oolWindow .AdjustProc Type;

Clients can enable/disable the blinking caret for an append or edit text subwindow by calling.

BlinkingCaret: PROCEDURE [sw: Window.Handle, state: OnOff];

All output to text subwindows is buffered for efficiency purposes. To ensure all pending output has
really made it to the source clients can call.

ForceOutput: PROCEDURE [sw: Window.Handle];

The following two procedures allow clients to interrogate or alter the current options setting for a
text subwindow.

GetOptions: PROCEDURE [sw: Window.Handle] RETURNS [options: Options];

SetOptions: PROCEDURE [sw: Window.Handle, options: Options];

The following two procedures allow clients. to interrogate or alter the text source for a text
subwindow.
GetSource: PROCEDURE [sw: Window.Handle] RETURNS [source: TextSource·.Handle];

SetSource: PROCEDURE [
sw: Window. Handle, source: TextSource.Handle, position: Position .. 0, reset: BOOLEAN'" TRUE];

The reset BOOLEAN indicates whether the display/source correspondance is valid or should be .
rebuilt.

The following procedures are used internally in building the menu and split view facilities. They
are potentially useful for constructing client menu routines.

SplitView: PROCEDURE [sw: Window. Handle, key: Keys.KeyName, y: INTEGER]; ,
Split a text sub window y bits down from the top of sw. key shou~d be Yellow.

DisplayHandleFromPlace: PROCEDURE [sw: Window. Handle, place: Window.Place]
RETURNS [display: TextDisplay.Handle];

Returns the display object for the split that contains the place.

5.22.4 Activation Operations

Tajo provides facilties for notifying Tools that users are not interested in the display state of a
particular Tool (Le. make yourself tiny). The following procedures are provided to allow clients to
make a similar request of a specific text subwindow.

Sleep: PROCEDURE [sw: Window.Handle];

Requests that the text subwindow package minimize it's storage and resource requirements by
destroying all state related to the displaying of text.

Wakeup: PROCEDURE [sw: Window.Handle];

Requests that the text sub window package recompute all it's display state.

5.22.5 Menu Operations

The following procedures are used by the text sub window package to implement the TextOps

76 Tajo Functional Specification

menu. They are presented here so clients may contruct their· own menus that contain these
operations. In the following descriptions a display region is either a subwindow or one of its splits.

FindMCR: Menu.MCRType;

Implements the Find command. Uses the current selection as the argument to find. If the
current selection is contained in this display region then search from that position otherwise ~se
the current top of this display region.

NormalizelnsertionMCR: Menu.MCRType;

Position the display region such that the line containing the insertion position is at the top of
the display region.

NormalizeSelectionMCR: Menu. MCRType;

If is sub window contains the current selection, position the display region such that the line
containing the current selection is at the top.

PositionMCR: Menu.MCRType;

Convert the current selection as an octal number and position the· display region such that the
line containing that position is at the top of the display region.

SplitMCR: Menu.MCRType;

Splits the display region into two splits.

WrapMCR: Menu.MCRType;

Toggles the wrap boolean in the text subwindow options record.

(

Implementation Components 77

5.23 Tool

Many Toof writers want the user interface mechanisms of Tajo without worrying about the details of
invocation. The Tool interface reduces the client's needed knowledge of the more basic levels of
Tajo to a minimum. Refer to the Simple and Sample Tool descriptions in the appendices for
examples of Tools that uses the Tool interface.

5.23.1 Tool Creation

The first thing a Tool does is call:

Create: PROCEDURE [

name: STRING,

makeSWsProc: MakeSWsProc,

initialState: State +- default,
clientTransition: ToolWindow.TransitionProcType +- NIL,

movableBoundaries: BOOLEAN +- TRUE,

initialBox: Window.Bo~ +- TooIWindow.nuIlBox]
RETURNS [window: Window.Handle];

MakeSWsProc: TYPE = PROCEDURE [window: Window.Handle];

The name parameter is the string that appears in a Tool's black name band. From this string
are derived the strings that are used in the tiny box and inactive menu.

When the initialState is default the Tool assumes a predetennined state depending on how it
is created. The Tool is initialized to be inactive when loaded from the command line in order
to facilitate building image and checkpoint files with collections of inactive Tools. The Tool is
initialized to be active when loaded while the user is in Tajo because it is likely that he wants to
use the Tool right away.

If the clientTransition procedure is not NIL it is called before the Tool is about to change
state and before anything is done to the data managed by the Tool interface. The one exception
to this ordering rule is that FormSW.FreeAllltems is called for each FonnSW in the Tool
when the Tool is going inactive before the client's transition procedure is called. This is done
because it is common for a client's transition procedure to deallocate a record containing data
that the FreeAllltems procedure references. Thus, the data must be referenced before it goes
away. [If the client doesn't like being called in this order he could set his own procedure to be the window

transition procedure which could call Tool.Transition.]

When the mova~leBoundaries parameter is TRUE the user may select the boundary line
between sub windows and reposition it.

The initial Box parameter can be used to specify the Tool box (bitmap relative). A value of
ToolWindow.nullBox lets Tajo assign the box from the next available box slot.

78 Tajo Functional Specification

5.23.2 Subwindow Creation

At various points, depending on the initial stak of the Tool and user actions, the makeSWsProc
procedure supplied to Create is called by rajo in order to give the client the opportunity to create
sub windows and menus. In the makeSWsP roc procedure, the client may call one or more of the
following procedures to create subwindows:

MakeFileSW: PROCEDURE [

window: Window.Handle,
name: STRING,

access: TextSW.Access +- append,
h: INTEGER +- DefaultHeight]
RETURNS [sw: Window.Handle];

MakeFormSW: PROCEDURE [

window: Window. Handle,
formProc: FormSW.ClientitemsProcType, -
h: INTEGER +- DefaultHeight]

RETURNS [sw: Window.Handle];

MakeMsgSW: PROCEDURE [

window: Window.Handle,
lines: INTEGER +- 1]

RETURNS [sw: Window.Handle];

MakeStringSW: PROCEDURE [

window: Window. Handle,
access: TextSW.Acc;ess +- append,
h: INTEGER +- DefaultHeight]
RETURNS [sw: Window.Handle];

MakeTTYSW: PROCEDURE [

window: Window.Handle,

name: STRING,

h: INTEGER +- DefaultHeight]

RETURNS [sw: Window.Handle];

Clients can use above procedures succesfully with only cursory knowledge of rajo.

The client can use other methods to create sub windows and then communicate the existence of them
to the Tool interface by ·calling.

AddThisSW: PROCEDURE [window, sw: Window.Handle, swType: SWType +- predefined];

[Warning: Usually the Create call hasn't returned when the makeSWsProc procedure is called. This means that the
Window.Handle variable into which the client assigns the value returned from Create is uninitialized. Thus, the client
should not reference this variable in his makeSWsProc procedure. Instead, the client should use the window parameter
passed to the makeSWsProc procedur~].

Implementation Components 79

5.23.3 Unique SWTypes

The Tool interface can manage client defined subwindow types just as it manages the predefined
subwindow types: FonnSW, FileSW, MsgSW, StringSW and TIYSW.

SWType: TYPE = MACHINE DEPENDENT {vanilla(O), predefined(376B), last(377B)};

Defining your own subwindow type is covered in Sec. 4.3. To register a sub window type with the
Tool interface call:

RegisterSWType: PROCEDURE

adjust: ToolWindow.AdjustProcType to SimpleAdjustProc,
sleep: SWProc to NopSleepProc,
wakeup: SWProc to NopWakeupProc]
RETURNS [uniqueSWType: SWType];

The adjust procedure is called whenever the user causes the subwindow size to change or be
moved. The sleep procedure is called whenever the window in which the subwindow lives
becomes tiny. The subwindow is then expected to throwaway any data that it uses only to
display its contents. The wakeup procedure undoes what sleep did when the Tool becomes
active again.

If the client wanted to register a subwindow type that would use the SimpleAdjustP roc, the
NopSleepProc and the NopWakeupProc he could instead refer to the subwindow as vanilla.

5.23.4 Destruction and Deallocation .

Nonnally, anything that the client creates should be destroyed by him before a T~ol goes inactive,
e.g. any private data. The Tool mechanism relieves the client of the chore of destroying subwindows
and menus that were created in a standard way. In particular, menus should be created by a call to
Menu.Make, FormSW.ltemDescriptors should be created by a call to
FormSW.AllocateltemDescriptor, FormSW.ltemObjects should be created by calls to
FormSW.*ltem . procedures.

The following procedure has the side effect of calling the clientTransition procedure with a new
state of inactive before the Tool is destroyed.

Destroy: PROCEDURE [window: Window.Handle];

80 Tajo Functional Specification

5.23.5 Utilities

A Tool might want to switch one subwindow for another subwindow in a Tool. This can be done
by . a call to:

SwapSWs: PROCEDURE

window, oldSW, newSW: Window.Handle,
newType: SWType +- predefined]
RETURNS [oldType: SWType]

window is the Tool window. oidSW identifies the subwindow that is currently displayed
that will be replaced by newSW. newSW can not currently be part of the tree that makes
up the hierarchy of displayed windows. When this procedure has returned oidSW has been
removed from this tree. Error[code: swNotFound] may be raised from this procedure.

The following procedure guarrentees unique log file names among FileSWs and TTYSWs:

UnusedLogName: PROCEDURE [unused, root:· STRING];

unused~s length is set to O~ root is appended to unused~ some designation of the running
environment is appended to unused (nothing when in Tajo, 'D when in the debugger and
'I when in the internal debugger) and (if the unused is still not unique) a number is
appended to unused.

5.23.6 Errors

ErrorCode: TYPE = {notATool, unknownSWType, swNotFound, invalidWindow};
Error: SIGNAL [code: ErrorCode];

Any procedure that takes a window argument can raise invalidWindow (if window is not valid)
or notATool (if window was not created by Create). unknownSWType can be raised· by any
procedure that takes a SWType argument.

Implementation Components 81

5.24 ToolDriver

The ToolDriver interface allows a Tool to infonn the ToolDriver package of its existence, and of the
existence of its subwindows. This allows the ToolDriver package to make use of the functions
provided by a Tool on behalf of a user communicating with the package via a script file. Every
Tool should use the ToolDriver facilities if it is providing some generally useful function. Although
the ToolDriver is an add-on package (Le. it is not built into the regular Tajo), the interface routines
are available in Tajo even without the ToolDriver so that the Tool being sTARTed need not concern
itself with unbound procedures.

To announce its existence, a Tool should call

NoteSWs: PROCEDURE [tool: STRING, subwindows: AddressDescriptor];

AddressDescriptor: TYPE = DESCRIPTOR FOR ARRAY OF Address;

Address: TYPE = RECORD [name: STRING, sw: Window.Handle];

tool is whatever name the Tool wishes to go by for purposes of the ToolDriver. It need not be the
same as the name displayed in the herald of the Tool's window, and in general it will be different
because the ToolDriver imposes the restriction that tool contain only alphanumerics.
subwindows is a list of subwindows that the Tool wishes to make available to the ToolDriver.
The name for each of these must also obey the restriction to contain' only alphanumerics.

When a Tool goes inactive, unless it is prepared to be called by the ToolDriver while inactive, it
should call

RemoveSWs: PROCEDURE [tool: STRING];

Tools that register with the ToolDriver interface should have unique names in each of the menus
used by the Tool so as not to be ambiguous to the ToolDriver package.

82 Tajo Functional Specification

5.25 ToolFont

The following routines provide Tajo's interface to the more primitive Vista Window Font facilities. 0

Basically these routines provide font storage management and/or font swapping.

Create: PROCEDURE [Compatibility.FHandle] RETURNS [WindowFont.Handle];

Allocates a font object, initializes it, and provides routines to manage font swapping (if
appropriate).

Destroy: PROCEDURE [WindowFont.Handle];

Destoys the data segment and font object.

StringWidth: PROCEDURE [string: STRING, font: WindowFont.Handle ~ NIL]
RETURNS [[O .. LAST[INTEGER]]];

Computes the width of the passed string. This routine maps non°·printing characters (e.g.
control characters and etc.) into a font specific default character.

Implementation Components 83

5.26 Tool\Vindow

The Window illusion is one of the central notions of the Tajo. The ToolWindow interface provides
the functions required to implement the window illusion for Tajo and relies heavily on the interface
Window, in the Vista window package.

Most useful TYPES are copied from Window into the ToolWindow interface.

5.26.1 Tajo's use of Windows

Vista defines a window object which is a record which contains only the information necessary to

define and operate upon a window, independent of Tajo. Within this section of the specification we
will discuss only the fields within the window object that are germane to the functions provided by
ToolWindow.

Tajo implements a mechanism for associating Tool specific data with Vista window objects that is .
transparent to clients of Tajo. Such information is omitted from the following descriptions.

As mentioned earlier, Tajo specializes Vista's windows. The five defined types are:

WindowType: TYPE = {root, tool, clipping, sub, other};

In descending levels of the window tree: the root window is the bitmap, a tool window is
referred to in this document as a Tool window, a clipping window is associated with each
tool window and should be' of no concern to clients, su b windows are functional display
areas and othe r windows are all lower levels.

In the event you have a pointer to a window and you want to fmd out what type of window it is you
can call.

Type: PROCEDURE [window: Handle] RETURNS [WindowType];

A box is a rectangular part of something -- either a display screen or the bitmap or a window or a
subwindow, Vista also does the appropriate clipping required when actually putting bits into the
objects. The fields in a box's defining record are the x and y coordinates of its top left corner,
relative to the window that it is a part of, and its width and height. Note that the box can extend
"beyond" the edges of the thing that it is in.

Place: TYPE = RECORD [x, y: INTERGER];

Dims: TYPE = RECORD [w, h: INTEGER];

Box: TYPE = RECORD [place: Place, dims: Dims];

5.26.2 Tool Windows

84 Tajo Functional Specification

Several routines are provided for the creation and adjustment of the tool window and all its
children ~- that is, of the space occupied by the Tool's window, as distinct from the content within the
window.

These routines allow a Tool to create new windows. They also allow for the re-ordering of the· stack
of windows, thus altering which windows are on top of and contain others.

It is the Tajo philosophy that the (human) user of the Tools should be able to arrange the windows
on his display any way he wants. More importantly, the Tool is at the mercy of the user in tenns of
the size and position of windows. Tools should be written with this understanding.

The following routine is provided for the creation of a tool window:
Create: PROCEDURE [

name: STRING,

adjust: AdjustProcType,
transition: TransitionProcType,
box: Box .. nullBox,
limit: LimitProcType .. StandardLimitProc,
initialState: State" active,
named: BOOLEAN'" TRUE]

RETURNS [Handle];

This procedure creates a new tool window with the indicated box. A nuliBox value is used to
indicate automatic system allocation of initial position and size. If named is TRUE the window
will have a black band across the top' which displays name. The three procedures which are
passed as arguments are discussed in detail below.

Tool windows can be in one of the following states.

State: TYPE = {inactive, tiny, active};

When a tool window is inactive this is an indication to the Tool that the user is not now interested in
.any of the functions implemented by this Tool and all resources utilized by the Tool should be freed.
When the tool window is tiny this is an indication to the Tool that the user is not interested in the
display and that all resources asscoiated with the display state should be freed.

The state of a Tool window is returned from

GetState: PROCEDURE [window: Handle] RETURNS [state: State};

Tool windows can have one of the following size attributes.

Size: TYPE = {tiny, normal, zoomed};

When a Tool is tiny a small rectangular box is displayed that contains some text deriv'ed from the
name of the Tool. This text can be changed· by a call to:

Implementation Components 85

SetTinyName: PROCEDURE [window: Handle, name: STRING, name2: STRING +- NIL];

name, is the first line of text and name2 is the second.

When a Tool is inactive a menu entry whose text is derived from the name of Tool is placed on the
Inactive menu. To change the Tool name call:

SetName: PROCEDURE [window: Handle, name: STRING];

The following two procedures return heap strings' that describe the STRINGS used as names in the
various Tool states. The client must free these heap strings.

GetName, GetlnactiveName: PROCEDURE [window: Handle] RETURNS [name: STRING];

GetTinyName: PROCEDURE [window: Handle] RETURNS [name, name2: STRING];

Three client-defined procedures are supplied on a create tool window call. The functions of these
procedures are as follows:

5.26.2.1 Adjust and LimitProcedures

Although it is the user who, in general, moves windows around on the display in order to satisfy his
own ideas about a suitable arrangement, Tajo allows the individual Tools to" a) know when one of
their windows has been so adjusted and, b) exercise veto or modification rights over moves. The
latter is particularly useful in allowing a Tool to prohibit, for example, its window becoming smaller
than some certain size or being moved completly off the visible display region.

The Tool's limit procedure is of the form

LimitProcType: TYPE = PROCEDURE [window: Handle, box: Box] RETURNS [Box];

The Tool's adjust procedure is of the form

AdjustProcType: TYPE = PROCEDURE [window: Handle, box: Box, when: When];
When: TYPE = {before, after};

Whenever the system is about to adjust the window's location or size, it caIls the limit procedure. It
then uses the returned box to call the Tool's adjust procedure. The adjust procedure is called both
before and after the actual adjustment is made. The adjust procedure is also called whenever the
bitmap is altered. Unlike previous versions of Tajo it is now appropriate to manipulate subwindow boxes in the

adjust procedure by procedure calls on the Window interface.

The following procedure performs what we consider the nonnal window limiting operations.

StandardLimitProc: LimitProcType;

5.26.2.2 Transition Procedure

86 Tajo Functional Specification

The Tool is notified whenever a user action causes Tajo to change the state of the Tool.

TransitionProcType: TYPE = PROCEDURE [window: Handle, old, new: State];

A Tool's TransitionProc can be changed by a call to:

SetTransitionProc: PROCEDURE [window: Handle, proc: TransitionProcType]

RETURNS [TransitionProcType];

After a Tool window is all set up, the client should call the following procedure that causes window,
and its subtree of windows, to be displayed:

Show: PROCEDURE [window: Handle];

The following procedure removes window from the group of windows displayed on the bitmap:

Hide: PROCEDURE [window: Handle];

The following procedure is used to destroy both tool windows and subwindows.

Destroy: PROCEDURE [window: Handle];

5.26.3 Subwindows

To aid the Tool in the manipulation of the content of the window, the notion of the sub window has
been invented. A subwindow is a box (rectangle defined by an x,y and a width and height) within
the clipping window. Within is in quotes there, because although the subwindow box' is defined. in
tenns of the clipping window -- that is its coordinates are subwindow-relative, it may extend "outside"
of the actual window _. 'say if its "x" is negative or its height is greater than that of the window.

Subwindows are nonnally created by the client in order to simplify his window manipulations. For
instance, he can create a subwindow and arrange it to be the left half of his window. Then, if he
draws pictures in the subwindow, the picture~ will be truncated by the system when they reach the
right edge of his subwindow and won't overlay whatever is in the right half of the window.

The system provides three procedures to define subwindows:
CreateSubwindow: PROCEDURE [

parent: Handle,

display: DisplayProcType +- NIL,

box: Box +- nullBox,

boxesCount: BoxesCount.+- one]
RETURNS [Handle]

Creates a new sub window object with the indicated box within its (as yet unspecified)
window and enlinks it into the pa rent window's chain of subwindows.

Implementation Components 87

5.26.3.1 Display Procedure

"The display procedure is a procedure of the fonn

DisplayProcType: TYPE = PROCEDURE [Handle];

This procedure is called whenever the content of the window needs to be refreshed onto the bitmap
display. This can be required, for instance, if a window previously on top of this window is moved
out of the way.

This version of Tajo supports and encourages both partial and incremental display updating. The
Vista package documentation describes how a display procedure accomplishes partial repainting.
Therein the boxesCount parameter is explained. For all Tajo supplied subwindow types, display
procedures are automatically supplied at create time.

The following two procedures are not nonnally used, as sub windows are enlinked upon creation.

EnlinkSubwindow: PROCEDURE [parent, child, youngerSibling: Handle]

Links the subwindow into the chain in the indicated position.

DelinkSubwindow: PROCEDURE [child: Handle]

Removes the subwindow and it's children from the window structure.

5.26.4 Window Content Manipulation'

The Vista window package provides a large number of procedures for putting light and dark bits into
the window or moving them about. These procedures are only of interest to ciients who wish to
construct their own sub window types and we refer them to the Vista documentation.

5.26.5 Utilities

Inorder to detennine the Tool window of a sub window call

WindowForSubwindow: PROCEDURE [sw: Handle] RETURNS [window: Handle];

To enumerate all the sub window within a Tool win.dow call

EnumerateSWs: PROCEDURE [window: Handle, proc: EnumerateSWProcType];
EnumerateSWProcType: PROCEDURE [window, sw: Window.Handle]

RETURNS [done: BOOLEAN];

To active or deactivate a Tool window call

88 Tajo Functional Specification

Activate, Deactivate: PROCEDURE [window: Handle];

To change the Size of a Tool window call

MakeSize: PROCEDURE [window: Handle, size: Size];

To change the size and position of a Tool window call

SetBox: PROCEDURE [window: Handle, box: Box];

5.26.6 Errors and Abnormal Conditions

The ToolWindow routines generate no SIGNALs as a result of improper use or specification. In
general, the conditions that one might expect to generate a SIGNAL just do nothing. This is in line
with the philosophy that the window is really just showing the user a piece of an infinite plane -- the
Tool can (attempt to) put things anywhere on that plane; only the portion of the plane within the
window is displayed to the user.

Implementation Components 89

5.27 TTYS\V

The teletype subwindow interface enables traditional teletype interaction with a user. Other Tajo user
interaction facilities are based on the notification concept. Since many programs are already written
using a teletype-like control structure the teletype subwindow is available to clients.

5.27.1 Creation/Destruction

A Teletype subwindow is created by a call to:

Create: PROCEDURE [

sw: Window.Handle,
backupFile: STRING,

s: Stream .. NIL,

newFile: BOOLEAN" TRUE,

options: TextSW.Options .. defaultOptions];

defaultOptions: TextSW.Options = [access: append, menu: TRUE, split: TRUE,

wrap: TRUE, scroll bar: TRUE, flushTop: FALSE, flushBottom: FALSE];

The backupFile parameter specifies the name of the file on which the teletype subwindow writes.
The string is copied. However, if s is not NIL then s is the stream handle on the file used. When
new File is TRUE the length of the file is set to zero at create time else the existing length is used.

Once the teletype sub window is created the client must FORK a process to do Input. This process
should be able to handle the following SIGNALS and ERRORS:

LineOverflow: SIGNAL [s: STRING] RETURNS [ns: STRING];

Indicates that input has filled the string, S, the current contents of the string is passed as a
parameter to' the SIGNAL. The catch phrase should return a string ns with more room.

Rubout: SIGNAL;

Indicates that the DEL key was typed during TTY.GetEditedString.

Additionally these exception condition could arise:

ABORTED: ERROR;

Indicates that the Input process has been aboned.

String.lnvalidNumber: ERROR;

Indicates that the user entered an invalid number in one of the number getting procedures.

90 Tajo Functional Specification

ErrorCode: TYPE = {notATTYSW};
Error: SIGNAL [code: ErrorGode];

Indicates that a passed in subwindow is not a ITYSW.

The following procedure destroys teletype subwindow attributes of the subwindow. However, before
this procedure is called the Input process should be aborted .

. Destroy: PROCEDURE [sw: Window.Handle];

If the client wishes to destroy the teletype subwindow from within the Input process he should
instead call

DestroyFromBackgroundProcess: PROCEDURE [sw: Window.Handle];

as he returns from the Input process.

5.27.2 Input and Output

From the Input process, these are the provided input routines:

GetChar: PROCEDURE [sw: Window.Handle] RETURNS [CHARACTER];

Returns the next character typed by the user.

The following procedure is used by the remaining input procedures to get input from the user while
allowing him simple editing functions.

GetEditedString: PROCEDURE [

sw: Window.Handle, s: STRING, t: PROCEDURE [CHARACTER] RETURNS [BOOLEAN]

newstring: BOOLEAN]

RETURNS [CHARACTER];

User input is appended to the string· s. The user-supplied procedure t determines which
character terminates the string; t should return TRUE if the character c passed to it should
terminate the string. If the BOOLEAN newstring is FALSE, characters are simply appended
to s. If newstring is TRUE, the first character of input plays a deciding role: if it is the
Ascii.ESC character, the current contents of s are displayed then subsequent input
character(s) are appended to s (note: the ESC is not appended to s); however, if it is not
ESC, s is initialized to empty. The SIGNAL TIv.LineOverflow is raised if s.maxlength is
reached. The following special characters are recognized on input (and are not appended to
s): .

DEL - raises the SIGNAL TIv.Rubout
tA, tH (backspace) - delete the last character (sends tH)
tW, tQ (backword) - delete the last word (sends multiple tH)
tX - delete everything (sends multiple tH), s is set to empty
tR - retype the line (sends CR, LF, then s)
tV - quote the next character, used to input special characters

Implementation Components 91

The returned character c is the character which terminated the string; c is not echoed nor
included in the string.

The following Get * procedures all call GetEditedString passing TRUE for newstring.

GetString: PROCEDURE [

sw: Window.Handle, s: STRING, t: PROCEDURE [CHARACTER] RETURNS [BOOLEAN]]

RETURNS [CHARACTER];

The terminating character is echoed. No value is returned.

GetlD: PROCEDURE [Sw: Window.Handle, S: STRING];

Input is terminated with a space or carriage return. The terminating character is not
echoed.

GetLine: PROCEDURE [sw: Window.Handle, S: STRING];

Input is terminated with a carriage return.

These are numerial input routines:

GetNumber: PROCEDURE [sw: Window.Handle, default: UNSPECIFIED, radix: CARDINAL]

RETURNS [UNSPECIFIED];

GetiD followed by a call to String.StringToNumber. The value default will be
displayed if ESC is type. radix is a default value, use the 'B or '0 notation to force octal
or decimal. radix values. other that 8 or 10 cause unpredictable results.

GetDecimal: PROCEDURE [sw: Window.Handle] RETURNS [INTEGER];

GeUD followed by a call to String.StringToDecimal.

GetOctal: PROCEDURE [sw: Window.Handle] RETURNS [UNSPECIFIED];

GeUD followed by a call to String.StringToOctal.

Long numerial input routines are available:

GetLongDecimal: PROCEDURE [sw: Window. Handle] RETURNS [LONG INTEGER];

GetLongNumber: PROCEDURE [sw: Window.Handle, default: LONG UNSPECIFIED, radix: CARDINAL]

RETURNS [LONG UNSPECIFIED];

GetLongOctal: PROCEDURE [sw: Window.Handle] RETURNS [LONG UNSPECIFIED];

The Put interface can be used to produce formatted output to the subwindow. However, clients can
use the following output procedures:

AppendChar: PROCEDURE [sw: Window.Handle, char: CHARACTER];

AppendString: Userlnput.StringProcType; .

92 Tajo Functional Specification

5.27.3 Utilities

The following procedure returns TRUE when the· next character of output would start a new line:

Newline: PROCEDURE [sw: Window.Handle] RETURNS [BOOLEAN];

The following procedure sets the echoing mode of characters entered using GetEditedString. It
returns the previous state of the echoing mode. The default echoing mode is TRUE:

SetEcho: PROCEDURE [sw: Window.Handle, new: BOOLEAN] RETURNS [old: BOOLEAN];

Implementation Components 93

5.28 Uscrlnput

The Userfnput interface provides the client with the routines that are used to interpret user actions.
Note that this interface depends heavily upon the definitions type and data definitions contained in
Keys interface.

5.28.1 Notification

Clients who are only interested in nonnal keyboard character input should skip this section and go
directly to section 5.28.3 User TypeIn.

A Tool can get notified of a change in the user state at the Interrupt Level and the Processing Level.
Interrupt Level notifications usually take place within one vertical retrace of when the (hardware)
stimulus occurs. Processing Level notifications occur in the order in which the stimuli occured~ but
may be far removed from the stimulus in time.

Processing Level

The Processing Level is where the usual processing of user input happens. The basic notion is
embodied in the phrase "Don~t call us~ we~ll call you". The real interface here is a set of Processing
Notification Routines, or PNRs~ one for each~ Tajo defined~ interesting dev~ce or event that may
change state.

Here are the relevant type declarations for PNRs:

CursorPNRType:· TYPE = PROCEDURE [window: Window.Handle, enterExit: EnterExit];
KeyPNRType: TYPE = PROCEDURE [

key: Keys.KeyName, downUp: Keys.DownUp, window: Window. Handle, place:
Window.Place];

EnterExit: TYPE = {enter, exit};
KeyPNRClass: TYPE = {keyset, keyboard, redButton, yellowButton, blueButton}

KeyName: TYPE = Keys.KeyName;
Button: TYPE = KeyName[Red .. Yellow];
Key: TYPE = KeyName[Five .. R8];
Paddle: TYPE = KeyName[Keyset1 .. Keyset5];

We stated earlier that there is a problem in deciding which Tool should receive the notification for a
particular user action. Tools are notified of all user actions that occur when the cursor is in the
Tool's window(s) or more specifically a subwindow within the Tool's window. By associating a
context with each window object that contains the set of PNRs specific to that window~ we can
simply call the PNR associated with the specific user action.

Fine Point: The cursor is considered to be in only one window at a time. This is because windows that are "on top

or' other windows are considered to "obscure" those that are "below" them.

94 . Tajo Functional Specification

Note that Tool writers are free to use the same PNR for more than one action. Also, the same PNR
may be used in more than. one window.

Various Tajo packages and Tools implement a wide range of useful PNRs that Tool writers should
feel free (indeed, encouraged) to use. To set the PNRs for a window, the following procedures are
available.

SetCursorPNR: PROCEDURE [

window: Window. Handle, proc: CursorPNRType. +- NIL];

Sets the cursor PNR for the indicated window to be the provided procedure. The procedure
proc will be called whenever the subwindow is entered or exited. If proc is not supplied then
the system default will be used.

SetKeyPNR: PROCEDURE [window: Window.Handle, keyClass: KeyPNRClass, proc: KeyPNRType
+- NIL];

Sets the indicated key PNR for the indicated window to be the provided procedure. This
procedure will be called whenever the key(s) changes state. If p roc is not supplied then the
system default will be used.

A standard cursor PNR is

NopCursorPNR: CursorPnrType;

A call on this PNR is always a Nop.

Three Tajo supplied key PNRs are

DefaultKeyPNR: KeyPNRType;

If this PNR is called the actions are indirected to the default window:

GetDefaultWindow: PROCEDURE RETURNS [Window.Handle];

IgnoreKeyPNR: KeyPNRType;

If the PNR is called with downUp equal down, it will blink the display, otherwise the call
is a Nop.

NopKeyPNR: KeyPNRType;

A call on this PNR is always a Nop.

To set all the key PNRs for a window to be DefaultKeyPNR, IgnoreKeyPNR or NopKeyPNR,
call

Implementation Components

SetDefaultPNRs: PROCEDURE [window: Window.Handle];'

SetlgnorePNRs: PROCEDURE [window: Window.Handle];

SetNopPNRs: PROCEDURE [window: Window.Handle];

respectively. All of these procedures will set the cursor PNR to be NopCursorPNR.

95

The following procedures allow you to access useful data that is maintained by the Processing Level.

GetCurrentCursorPosition: PROCEDURE [Window.Handle] RETURNS [Window.Place];

Returns the "current" state of the Processing Level cursor position (the coordinates of the "hot
spot" of the cursor in the specified windows coordinates), i.e., the state as of the last Processing
Level notification (the last call on a PNR).

EnumerateDownKeys: PROCEDURE

[window: Window. Handle, downUp: DownUp, place: Window.Place];

This procedure will g'.!nerate a call on the appropriate PNR for all keys that are downUp. This
means when you call this procedure it will process the current hardware state and call the
appropriate PNR, in the window, for every key that is in the same state as the passed downUp.

Interrupt Level

We do not envision that clients will really be concerned with the Interrupt Level. We present this
interface primarily for understanding purposes and for the rare cases that will require it.

User Input maintains two procedure variables that contain descriptors for the two Interrupt
Notification Routines (SNRs). Here are the type declarations for the two 'SNRs:

MouseSNRType: TYPE = PROCEDURE RETURNs[screenPlace: Window.Place];

The primary purpose of this procedure is to track the mouse.

KeySNRType: TYPE = PROCEDURE [

key: KeyName, du: DownUp, screenPlace: Window.Place];

The mouse SNR is called every time the Interrupt Level gets control of the cpu. The key SNR is
called only if a paddle, button, or key has changed state. The Interrupt Level has routines to alter
the procedure variables so that a tool can get its own SNRs invoked.

The two SNR variables are initialized to point at the system supplied ones. The default mouse SNR
merely sees that the cursor doesn't go off the screen. The default key SNR causes items to be
enqueued for later processing by the Processing Level. There is a separate call on the key SNR for
each depression or release of a key even if more than one happens "simultaneously". [Note that no

items are enqueued for subwindow boundary cross,jngs. Queue items pertain only to a DownUp of a Key.]

96 Tajo Functional Specification

SwapMouseSNR: PROCEDURE [new: MouseSNRType] RETURNS [old: MouseSNRType];

This procedure allows you to subsitute your own mouse SNR for the current one.

SwapKeySNR: PROCEDURE [new: KeySnrType] RETURNS [old: KeySnrType];

These procedures allow you to subsitute your own mouse or key SNR for the current 'one.

We only envision use of SwapMouseSNR or SwapKeySNR in atypical situations. Considerable
knowledge is required to do your own processing at the Interrupt Level. If it's really necessary, you
should use the system SNR's as prototypes.

The following procedures are used by the Interrupt and Processing levels. They should only be of
interest if you are writing your own stimulus level routines (SNRs).

DequeueUA: PROCEDURE RETURNS [key: Keys.' KeyName, downUp: DownUp, screenPlace:
Window, action: BOOLEAN];

Removes (dequeues) a user action and returns the head item of the queue. If the queue is
empty, action is FALSE.

EndOfUAQ: PROCEDURE RETURNS [BOOLEAN];

Returns TRUE if there are no items (user actions) in the queue, FALSE otherwise.

EnqueueUA: PROCEDURE [key: Keys.Key~ame, downUp: DownUp, screenPlace: Window.Place];

Enqueues a user action (item) in the queue.

FlushUAQ: PROCEDURE;

Sets the user action queue empty ignoring any items in the queue.

5.28.2 Character Translation

The Alto hardware presents an un encoded bit interface for the key set and keyboard. Tajo contains
tables and procedures for doing key stroke to ASCII character translation using the definitions and
notification mechanism described above.

The following procedure translates keyboard and/or keyset actions into characters

TranslateKeylntoChar: PROCEDURE [key: Key] RETURNs[char: CHARACTER];

5.28.3 User Typeln

The User TypeIn facilities are built using the above described notification and character translation
facilities. The TypeIn facility lets the client supply a procedure that will be called whenever the
appropriate actions have taken place that correspond to a character being typ.ed (e.g. key down, key

(

(

Implementation Components 97

up. shift, control etc.}. Typeln allows the client to essentially be free of any concern for "how it is
done". There is one important exception to this rule: there can be changes made in a subwindow that are not noticable

. -
above the TypeInPNR level. If a Tool wishes to see these changes. it must operate at or below the TypelnP~R level.

Clients of the type in mechanism supply procedures of the following TYPE.

CaretProcType: TYPE = PROCEDURE [window: Window. Handle, startStop: StartStop];

StringlnProcType: TYPE = PROCEDURE [window: Window. Handle, string: STRING);

These two procedures allow clients to create/destroy type in for a specific subwindow.

CreateStringlnOut: PROCEDURE [

window: Window.Handle,

in, out: StringProcType,
caretProc: CaretProcType ... NopCaretProc];

Error[code: windowAlreadyHasStringlnOut] can be raised if the window has type in.

DestroyStringlnOut: PROCEDURE [window: Window.Handle);

The following procedures allow clients to alter the procedures to be called for a window with already
existing type in.

SetStringln: PROCEDURE [

window: Window.Handle, proc: StringProcType];

RETURNs[StringProcType];

SetStringOut: PROCEDURE [

window: Window. Handle, proc: StringProcType];

RETURNs[StringProcType];

For the above two procedures Error~code: noStringlnOutForWindow] can be raised if
the window has no type in.

The typein mechanism is also designed to allow a client to redirect input/output to another window
(Tool or subwindow). For example, a Tool has a MsgSW and a FileSW which accepts user type-in.
Type-in to the MsgSW could be redirected to the FileSW so that the user would only have to have
the cursor in the Tool window and not specifically in the FileSW when typing to the FileSW.

CreatelndirectStringlnOut: PROCEDURE [from, to: Window.Handle);

Error[code: windowAlreadyHasStringlnOut] can be raised if the window has type in.

DestroylndirectStringJnOut: PROCEDURE [window: Window.Handle);

-
The following procedures allow clients to drive the type in mechanism as though the data was coming
from the user. The returned BOOLEANS are TRUE only if window was prepared to accept input.

Stuff Character: PROCEDURE [window: Window.Handle, char: CHARACTER];

98 Tajo Functional Specification

RETURNS[BOOLEAN];

StuffCurrentSelection: PROCEDURE [window: Window.Handle];

RETURNS[BOOLEAN];

Stuff String: PROCEDURE [window: Window.Handle, string: STRING];

RETURNS[BOOLEAN];

The following procedure allows clients to output directly to a window, bypassing any input filtering
. that might have been performed.

StringOut: PROCEDURE [window: Window.Handle, string: STRING];

5.28.4 Utilities

Client operations that run for more than a few seconds can poll

userAbort: READONLY BOOLEAN;

to see if the user has indicated that he wants to abort the operation by keying some abort sequence.
Every time that a PNR is called this variable is set to FALSE. In the unusual case that a client needs to

explicitely set this variable to FALSE he should call

ResetUser Abort: PROCEDURE;

Sometimes a client is deep in the call stack of some notifier invoked operation from which he simply
wants to UNWIND. The following ERROR can be raised that will be caught at the toP. level of the PNR
mechanism.

ReturnToNotifier: ERROR [string: STRING];

The client can catch the ERROR, post a message with string in it and let the ERROR

propagate on up.

A standard rajo mechanism of prompting for user confirmation is to set the cursor to mouseRed
and call

WaitForConfirmation: PROCEDURE RETURNS [place: Window.Place, okay: BOOLEAN];

If okay = TRUE then the user pushed the red mouse button otherwise the user pushed
either the yellow or the blue mouse buttons. place is the position of the cursor, bitmap
relative, when the button went down.

The cursor should be set back to its previous type upon return from the above procedure.

The following procedure returns when all the mouse buttons are released.

WaitNoButtons: PROCEDURE;

Clients sometimes want to wakeup at regular time intervals to do some operation. Mesa's condition
variable timeout mechanism can be used to do this. However, sometimes a client needs to do a series
of operations that if done while the the PNR mechanism was invoking some other operation either

Implementation Components 99

would preempt the user or could cause serious problems in Tajo, e.g., blinking the cursor. Thus. the
periodic notification mechanism is provided.

PeriodicNotifyHandle: TYPE = POINTER TO PeriodicNotifyEntry;
PeriodicNotifyEntry: TYPE;

PeriodicProcType: TYPE = PROCEDURE [window: Window. Handle, place: Window.Place];

CreatePeriodicNotify: PROCEDURE [

proc: PeriodicProcType, window: Window.Handle, rate: Process.Ticks]
RETURNS [PeriodicNotifyHandle];

proc is called every interval defined by rate as long as no other PNR operations are taking
place.

CancelPeriodicNotify: PROCEDURE [PeriodicNotifyHandle]
RETURNS [nil: PeriodicNotifyHandle);

Stops the periodic notification. Raises Error[code: noSuchPeriodicNotifier] if the"-'
passed in handle is not valid (NIL is a no-op.

100 Tajo Functional Specification

5.29 UserTerminal

The interface UserTerminal describes the state of the user input/output devices (i.e. display bitmap,
display cursor, keyboard, mouse, and keyset), and allows the client to manipulate them. This
interface takes as fixed many of the characteristics of these devices and only allows variations such as
the number of keys or the size and resolution of the display. This interface deals with many of the
lowest level attributes of the terminal and, with a few exceptions, should not be of interest to Tajo
clients. This section only presents definitions and functions of general interest to the Tajo client. The
Vista documentation describes other operations.

[Warning: Do not call UserTenninal.SetState. Instead call TajoMisc.SetState].

Clients can determine the physical attributes of the display via the following exported variables.

screenWidth: READONL Y CARDINAL[O .. 32767];

screenHeight: READONL Y CARDINAL[O .. 32767];

pixelsPerlnch: READONL Y CARDINAL;

The bitmap display is addressed by xy coordinates defined as follows.

Coordinate: TYPE = MACHINE DEPENDENT RECORD [x, y: INTEGER];

The state of the display is defined as:

State: TYPE = {on, off, disconnected};

on - The display is physically on' and visible to the user (bitmap allocated).

off - The display is physically off and not visible to the user (bitmap all~ated).

disconnected - The same as off with no allocated bitmap.

Clients may determine the current state of the bitmap display by calling

.GetState: PROCEDURE RETURNS [state: State];

The bitmap display is capable of displaying black-on-white or white-on-black. Clients may determine
or alter the current state of the background by using the following procedures.

GetBackground: PROCEDURE RETURNS [background: Background];

SetBackground: PROCEDURE [new: Background] RETURNS [old: Background];

Background: TYPE = {white, black};

Clients may momentarily blink (video reverse) the display by calling

BlinkDisplay: PROCEDURE;

Implementation Components 101

5.30 Window

This interface is only of interest to clients who are implementing their own subwindow types. It is
also the primary interface for the Vista window package and is documented as a part of that package.
The following occur elsewhere in this document and are included here to reduce the number of levels
of indirection needed to understand Tajo.

Handle: TYPE = POINTER TO Object;

Object: TYPE = RECORD [... 1;

102 Tajo Functional Specification

5.31 \VindowFont

The following description of the interface Window Font is taken frolll the Vista documentation. It is
included in this document as convenience to clients. Vista font routines deal only in .strike fonts.
Vista provides routines for initializing and manipulating fonts and font objects. For details of these
operations we refer you to the Vista documentation.

The text painting procedures of the Window interface take as an argument a Handle on an object
from Window Font. The fields of a Handle are mostly private to the implementation.

Handle: TYPE = POINTER TO Object;
Object: TYPE = RECORD [...];

The bits within the font object that define the character pictures are private to the implementation.
The only public interfaces allow the client to determine the sizes of the characters in screen dots:

CharWidth: PROCEDURE [char: CHARACTER, font: Handle +- NIL] RETURNS [[O .. LAST[INTEGER]]]

FontHeight: PROCEDURE [font: Handle +- NIL] RETURNS [[O .. LAST[INTEGER]]]

A font argument of NIL for these routines, as well as for the text painting routines of the Window
interface, means to use the defaultFont. The defaultFont is set by c~lling

SetDefault: PROCEDURE [font: Handle]

Using this defaulting mechanism before the defaultFont is set is a client error.

Tajo Functional Specification 103

6.0 OPERATIONAL CONSIDERATIONS

The Compatiblity interface contains useful types that enable source level compatiblity between Tools
written for AltoMesa Tajo and Pilot Tajo.

6.1 AltoMesa version

The following procedures apply to the Alto world and should be called instead of their counter parts
in ImageDefs:

TajoMisc.MakeCheckPoint: PROCEDURE [name: STRING];

TajoMisc.Makelmage: PROCEDURE [name: STRING];

6.2 Pilot version

Code that works on AltoMesa may not work on Pilot due to more extensive monitoring of Tajo and
the preemptive process mechanism in Pilot.

104 Tajo Functional Specification

GLOSSARY

button: One of the three (sometimes 2) things on a mouse that go up and down.

choice: The process of pointing at a portion of the screen with the mouse and clicking a button such
that some operation is performed. (See select)

contents: The file or data that the Librarian Data Base is keeping track of.

current selection: The system global selection. The argument to some menu commands.

form: A collection of values that the user may alter that usually serve as parameters to some operaion.
Commands may be invoked directly from forms.

Interrupt Level: The process responsible for capturing user actions and enqueuing them for subsequent
processing.

Interrupt Notification Routine (SNR): A procedure that may be notified on the Interrupt Level.

key: One of the things on a keyboard that go up and down.

Libject: Shorthand for Librarian Object. The name of an item contained in the Librarian Data Base.

Librarian Data Base: The complete history data files and data stored and controlled by the Librarian
Service.

Librarian Interface: The mechanism used to access the data stored in the Librarian Data Base.

Librarian Service: The network based program that controls the Librarian Data Base.

menu: A list of options and commands presented to the user that is displayed due to a button
depression. A choice ~an be made from this list

Menu Command Routine (MCR): A procedure that runs as a result of a menu item being chosen.

notification mechanism (the notifier): The mechanism whereby PNRs and SNRs get notified of user
actions.

notify: Invoke a PNR or SNR; call a PNR or SNR to notify it that a user action has occurred.

paddle: One of the five things on a keyset that go up and down.

Processing Notification Routine (PNR): A procedure that may be notified on the Processing Level.

Processing Level: The process that implements the notification mechanism.

PropertyList: The data structure used for passing as well as receiving data from the librarian database.

Tajo Functional Specification

selection: The process of pointing at text or graphics on the screen with the mouse and clicking a
button such that it becomes highlighted in some way. Also, the data so selected.

SNR: See Interrupt Notification Routine definition.

subwindow: A rectangular sub-region of a Tool.

Tool: A program that runs in Tajo, but is not part of it.

Tajo: The basic runtime system for tools.

105

user action: The depression or release of a paddle, button or key by a human user. Sometimes the term
includes the moving of the cursor across a subwindow boundary.

Vista: General window management software package.

window: A rectangular region on the display. The primary output medium for a Tool.

106 Tajo Functional Specification

Appendix 1: A Simple Tool

-- File: Simp/eToo/.mesa -last edit by:
-- Mark, Sep 22, 19802: 19 PM

. -- This is an example of a minimal "Too/" that runs in TaJo. /t is the equivalent of
-- everyone's first Mesa program to "read a character and echo it on the display".
-- We go beyond that to present a little of the Tajo religion. It is our goal that when
-- a Tool is inactive it should consume minimal resources.

DIRECTORY
Tool USING [Create, MakeFileSW, MakeSWsProc],
Storage USING [FreeNodeNil, Node],
ToolWindow USING [TransitionProcType],
Userlnput USING [SetStringln, StringProcType],
VVindow USING [Handle];

SimpleTool: PROGRAM IMPORT~ Storage, Tool, Userlnput =
BEGIN

-- TYPEs

DataHandle: TYPE = POINTER TO Data;
Data: TYPE = RECORD [
-- File subwindow stuff
fileSW: Window. Handle ... NIL,
oldStringln: Userlnput.StringProcType +- NIL];

-- Variable declarations

-- This data illustrates a" technique for minimizing memory use when this Tool is inactive
toolData: DataHandle +- NIL;
wh: Window.Handle; -- Tool's window

-- Tool needed routines

ClientTransition: ToolWindow.TransitionProcType =
-- This procedure is called whenever the system determines that this
-- Tool's state is undergoing a user invoked transition.
-- In this example we minimize the memory requirements when we are inactive.
BEGIN
SELECT TRUE FROM
old = inactive =)

IF tool Data = NIL THEN
BEGIN toolData +- Storage.Node[sIZE[Data]]; toolDatat ... []; END;

new = inactive =)
IF tool Data # NIL THEN

BEGIN toolData +- Storage.FreeNodeNiI[tooIData]; END;
ENDCASE; .

END;

Init: PROCEDURE =
BEGIN
wh +- Tool.Create[

A Simple Tool

makeSWsProc: MakeSWs, initialState: default,
clientTransition: ClientTransition, name: "Simple Tool 6.0"L];

END;

MakeSWs: Tool,MakeSWsProc =
BEGIN
toolData.fileSW ~ TooI,MakeFileSW[window: window, name: "Simple.log"L];
-- Here we demonstrate a common augmentation trick used by Tajo clients. We
-- interpose our procedure between the notification mechanism and the file
-- subwindow so that we can see what the user typed.
toolData.oldStringln ~ Userlnput.SetStringln[tooIData.fileSW, MyStringProc];
END;

MyStringProc: Userlnput.StringProcType =
BEGIN
-- To be useful the client would normally look at the characters as they go by.
-- We just pass them on.
tooIData.oldStringln[window, string];
END;

. -- Mainline code

Init[]; -- this gets string out of global frame

END ...

107

108 Tajo Functional Specification

Appendix 2: A Sample Tool

-- File: SampleTool.mesa -last edit by:
-- Mark, Sep 23, 19805:21 PM
-- Smokey, May 2, 1980 6: 12 PM
-- Evans, Jul10, 1980 12:43 PM

-- This is an example of a "Tool" that runs in Tajo. It demonstrates the use of a
-- comprehensive set of commonly used Tajo facilities. Specifically we present examples
-- of the definition, creation, use and destruction of the following:
-- Windows and subwindows
-- Menus
-- Msg subwindows
-- Form subwindows

File subwindows

DIRECTORY
Ascii USING [CR],
Menu USING [Handle, Instantiate, Make, MCRType],
F ormSW USING [
AliocateltemDescriptor, BooleanChoices, Booleanltem, ClientltemsProcType,
Command Item, Enumerated, Enumeratedltem, lineD, line1, line2, Iine3, line4,
NotifyProcType, ProcType, Stringltem],

Put USING [Line],
Tool USING [
Create, MakeFileSW, MakeFormSW, MakeMsgSW, MakeSWsProc, UnusedLogName],

Storage USING [CopyString, FreeNodeNil, Node],
ToolWindow USING [TransitionProcType],
Window USING [Handle];

SampleTool: PROGRAM IMPORTS FormSW, Menu, Put, Storage, Tool =
BEGIN

-- TYPEs

StringNames: TYPE = {vanilla, password, readOnly};

DataHandle: TYPE = POINTER TO Data;
Data: TYPE = MACHINE DEPENDENT RECORD [
-- Message subwindow stuff
msgSW(D): Window.Handle ~ NIL,

-- File subwindow stuff
fileSW(1): Window.Handle +- NIL,

-- Form subwindow stuff
-- Note: enumerateds and booleans must be word boundary
-- aligned as addresses for them must be generated
formSW(2): Window.Handle +- NIL,

switch 1 (3): BOOLEAN +- NULL,
switch2(4): BOOLEAN +- NULL,

enum1 (5): Enum1 +- NULL,

enum2(6): Enum2 +- NULL,
strings(?): ARRAY StringNames OF STRING +- NULL];

Enum1: TYPE = {a, b, c};

A Sample Tool

Enum2: TYPE = {x, y, z};

-- Variable declarations

-- This data illustrates a technique for minimizing memory use when this Tool is inactive
toolData: DataHandle +- NIL;
wh: Window. Handle; -- Tool's window

-- Sample Tool Menu support routines

MenuCommandRoutine: Menu.MCRType =
-- Do the tasks necessary to execute a menu command.
-- If the command will take a long time, then one might FORK a PROCESS to do it.
BEGIN
SELECT index FROM
D = > Put.Line[tooIData.msgSW, "Message posted. "L];
1 = > Put.Line[tooIData.fileSW, "A Menu command called."L];
ENDCASE = > Put.Line[tooIData.fileSW, liB Menu command called. ilL];

END;

-- Sample Tool FormS W support routines

ForrnSvVCommandRoutine: FormSW.ProcType =
-- Do the tasks necessary to execute a form subwindow command.
-- Again, if the command will take a long time, then one might FORK a PROCESS to do it.
BEGIN .
Put.Line[tooIDataJileSW, "The Command Procedure has been called. ilL];
END;

NotifyClientOfFormAction: FormSW.NotifyProcType =
-- This procedure will be called whenever a potentially interesting state
"-- change (user action) occurs in the Form subwindow.
BEGIN
Put.Line[tooIData.fileSW, liThe Notify Procedure has been called. ilL];
END;

-- Tool needed routines

ClientTransition: ToolWindow.TransitionProcType =
-- This procedure is called whenever the system determines that this
-. Tool's state is undergoing a user invoked transition.
-. In this Example we demonstrate a technique that minimizes the memory
-. requirements for a Tool that is inactive.
BEGIN
SELECT TRUE FROM
old = inactive =)

IF toolData = NIL THEN
BEGIN toolData +- Storage.Node[sIZE[Data]]; toolDatat +- []; END;

new = inactive = >
IF tool Data # NIL THEN

BEGIN toolData +- Storage.FreeNodeNil[tooIData]; END;
ENDCASE;

END;

Init: PROCEDURE =
BEGIN
wh +- Tool,Create[
makeSWsProc: MakeSWs, initialState: default,
clientTransition: ClientTransition, name: "Sample TooI6.D"L];

109

110 Tajo Functional Specification

END;

MakeForm: FormSW.ClientltemsProcType = .
BEGIN OPEN FormSW; -- This procedure creates a sample FormSW.
nltems: CARDINAL = 8;
e1: ARRAY [0 .. 3) OF Enumerated ...
[[" A"L, Enum1 [a]], ["B"L, Enum1 [b]], ["C"L, Enum1 [c]]];

e2: ARRAY [0 .. 3) OF Enumerated ...
[["X"L, Enum2[x]], ["V"L, Enum2[y]], ["Z"L, Enum2[z]]];

items'" AllocateltemDescriptor[nltems];
tooIData.strings[vanilla] +- tooIData.strings[password] +- NIL;
tooIData.strings[readOnly] +- Storage.CopyString["Read Only String"L];
-- Create an example of command item usage
items[O] ... Commandltem[
tag: "Command"L, place: [0, IineO], proc: FormSWCommandRoutine];

-- Create three examples of string item usage
items[1] +- Stringltem[
tag: "Vanilla"L, place: [200, IineO], string: @tooIData.strings[vanilla],
inHeap: TRUE];

items[2] +- Stringltem[. .
tag: "Password"L, place: [0, line1], string: @tooIData.strings[pass\yord],
feedback: password, inHeap: TRUE];

items[3] +- Stringltem[
tag: "ReadOnly"L, place: [0, line2], string: @tooIData.strings[readOnly],
readOnly: TRUE];

-- Create two examples of apparent booleans
-- The first one is actually done via an enumerated item
items[4] +- Enumeratedltem[
tag: "boolean(trueFalse)"L, place: [0, line3], feedback: all,
value: @tooIData.switch1, copyChoices: FALSE, choices: BooleanChoices[]];

toolData.switch1 ... TRUE;
items[5] +- Boolean Item[
tag: "boolean(video)"L, place: [250, line3], switch: @tooIData.switch2];

toolData.switch2 +- TRUE;
-- Create two examples of enumerated FormSWltem usage
items[6] +- Enumeratedltem[
tag: "enumerated(one)"L, place: [0, line4], feedback: one,
value: @tooIData.enum1, choices: DESCRIPTOR[e1]];

toolData.enum1 ... a;
items[7] +- Enumeratedltem[
tag: "enumerated(all)"L, place: [175, line4], feedback: all,
value: @tooIData.enum2, choices: DESCRIPToR[e2]];

tooIData.enum2'" y; .
RETuRN[items: items, freeDesc: TRUE];
END;

MakeSWs: Tool.MakeSWsProc =
BEGIN
log Name: STRING'" [40];
menuStrings: ARRAY [0 .. 3) OF STRING ...
["Post message"L, "A Command"L, "B Command"L];

menu: Menu.Handle +- Menu.Make[
name: "Tests"L, strings: DESCRIPToR[menuStrings],
mcrProc: MenuCommandRoutine];

TooI.UnusedLogName[unused: logName, root: "Sample.log"L];
toolData.msgSW +- TooI.MakeMsgSW[window: window];
tooIData.formSW'" TooI.MakeFormSW[window: window, formProc: MakeForm];
tooIData.fileSW'" TooI.MakeFileSW[window: window, name: logName];
Menu.lnstantiate[menu, window];

(

(

A Sample Tool

END;

-- Mainline code

Init[]; -- this gets string out of global frame

END ...

111

(

