
Inter·Office Memorandum 

To Distribution Date November 13, 1978 

From R. Johnsson Location Palo Alto 

Subject Microcode Swapping Meeting Organization SOD/DE 

XEROX 
XEROX SDD ARCHIVES 

I have read and understoud 
Pages _____ To ___ , 

Reviewer Date ----Filed on: [Iris] < Johnsson > Memos> USwap1.bravo ., of p8.8es __ ,Ref,,28~-o?/O 

A meeting was held on November 7, 1978 to discuss Microcode swapping as an approach to 
evolving software and hardware toward non-Alto compatible processors. Attending were Hankins, 
Johnsson, Koalkin, Lauer, Lynch, Melones, Metcalfe, Sandman, and Wick 

How are we going to debug Pilot 3.0 which runs in a non-Alto compatible hardware/microcode 
environment? 

Pilot 3.0 has: 
Devices 

RDC (Shugart 4000) 
UTVFC (17" monitor) 
X-Wire 

PrincOps architecture 

Mesa 5.0 

traps/ faults 
process switching 
left-to-tight opcode bytes 
not final bytecodc set 

compiled in I-A mode 
no Nova emulator 

AltolMesa 5.0 debugger expects: 
Devices 

RDC (Shugart 4000)- to access Pilot files 
JRDC (Diablo 31) to swap its own code and symbols 
lUTFP (850 monitor) 
Ethernet (not essential) to retrieve remote tiles 

Alto compatible architecture 

Mesa 5.0 

tra psi faults 
process switching 
right-to-left opcode bytes 
restricted bytecode set 

compiled in I A mode 
Nova emulator 

to do InI A>ad/OutLoad 
process implementation (invisible, replaceable) 



Microcode Swapping Meeting 2 

The problem is to debug Pilot 3.0 using a Debugger which does not depend on Pilot. Conversion 
of the Debugger to run on top of Pilot is expected, but not for some time. Wick pointed out that 
this problem is not unique to Pilot 3.0. We will continue to have to debug new Pilots which run in 
incompatible environments (new devices, Workstation, PrincOps bytecodes). The Mesa group solves 
such problems on the Alto by resorting to Swat. This is not possible in the Pilot world without the 
Nova emulator. 

Q: Run the Debugger on the Pilot hardware with what microcode? 

A: Change microcode between Pilot and Debugger. 

Alternatives: 
No changes between Pilot and Debugger 
Make one change at a time (no debugger on incompatible changes) 
Midas 
Remote Debugging 

The alternatives were rejected as being too painful or taking too long (in light of current beliefs 
about schedule). The remainder of the meeting was devoted to outlining the task of swapping 
microcode. 

The proposal is to swap microcode by parameterizing the normal boot sequence. The Debugger 
(and its Nub in the Pilot world) can then specify to the booting microcode just what microcode and 
boot format file are to be loaded as well as what initialization of devices/map/memory to perform. 

Several problems arise in saving and restoring the state of the world. These are more acute in the 
Pilot world. 

All devices must be stoppable 
State of microcode managed by Microcode Exec must be· restorable. 
Devices and drivers musl deal with rcinitializalion at (almost) any time. 

The following outline of what happens when the Pilot world goes to the Debugger was developed: 

o Enter nub. No procedure caUs allowed -- preallocated frame. 
o Save Mesa state (DumpState) 
o Save IOCS state 
o Stop devices 

Assume that device drivers can tolerate device going away. 
o Save Emulator Stale (WDe, Xfer trap status, ... ) 
o Save Microcode Exec stale 
o Save virtual memory state (Map and real memory.) 
o Boot Debugger's microcode and Debugger state 

When the Debugger proceeds, control continues here: 
o Init devices 

What about initialization overlays of microcode? 
o Restore emulator state 
o Restore state and leave nub (LoadS tate) 

l11e following outline of what currently happens when the boot button is pressed was developed: 



Microcode Swapping Meeting 3 

o Hardware reset 
o EPROM -+ CS 
o lump to ram (from this point the boot is controlled by microcode). 
o {Disk -+ CS}* 

Initialization 
Devices 
Diagnostics 
Emulator 

o Disk -+ Memory 
o Alto boot sequence 

Action Items 

Mclones/Lynch: define Pilot boot file format. Input from lohnsson on current Alto form~t. 

Hankins: provide more detailed description of what currently happens during a boot. 

lohnsson: coordinate, plan, and implement. 

Distribution: 
Hankins, Koalkin, Lauer, Lynch, Melones, Metcalfe, Sandman, Wick 


