
Inter-Office Memorandum

To Debugger Planners Date June 9, 1978

From Barbara Koalkin Location Palo Alto

Subject Pilot Debugger Organization SDD/SD/DE
XEROX SDD ARCHIVES

I have read and und@.L"\~".
Pages To

XEROX
~I-"",,-.

Reviewer _________ Date ____ _

Filed on: [lris]<Koalkin>XD>PilotDebugger6-8.bravo # ot Pages Ret • .z~W- J3j

The following lists the set of debugger problems proposed by Richard Johnsson in his memo
of 617 along with suggestions as to how these problems may be solved as discussed in a
meeting of PlIot Implementors (Johnsson, Kierr, Koalkin, Lauer, Lynch, McJones, Redell,
Sandman, and Wick) on Thursday, June 8th.

For puposes of discussion, it was decided to call stage 1 of the Pilot debugger the Extended
Memory Debugger (with long pointers and codebase, virtual = real, MDS starts at 0, no page
faults), and call stage 2 the Paging Debugger (with virtual memory).

It was pointed out many times during the course of this meeting, the importance of
remembering tl1at the debugger wants to have no knowledge of the underlying Pilot data
structures and not to have to rely on Pilot for any information (since its early mode of use
will primarily be debugging Pilot itself).

Problems to be solved for Pilot Debugger:

1. Full integration of LONG POINTERS into the interpreter.
Can the debugger's type calculus deal with them?
What about LONG INTEGERS and long type-in?

The debugger interpreter is prepared to handle long pointers in terms of dereferencing them
and could easily be modified to do long arithmetic. However, extending the grammar to
generate variables of type LONG is much more difficult (but there needs to be a way of
typing in a long number).

2. Debugger's memory cache must deal with LONG POINTERS.

LongRead and LongWrite needed.
Interpretation of Pilot's VM to DA log file.

Format, interface, how to find.

In order for the debugger to be able to understand and manipulate the Pilot virtual memory,
the debugger's memory cache (which currently defines all memory access using a READ/WRITE

procedural interface), must use LONG POINTERS instead. LongRead and LongWrite operations
are needed, not specific to Pilot, and can be done once the mapping is well defined. The
short READ and WRITE operations in the Mesa 4.0 debugger will have to be changed to call the
long read and write operations after doing the MDS calculation. This change is necessary
for the Extended Memory Debugger.

As far as the Pilot VM to DA log file is concerned, we need to nail down the interface

Pilot Debugger 2

between Pilot and the debugger to answer questions such as where the log file will be kept,
how to turn it on and off, how to keep the log file from getting too big (and who should do
this), exactly what information it will contain, and how to find it (it was decided to define
the details of this interface at another meeting). This needs to be done before work can
proceed on the Paging Debugger.

3. Changing code files for breakpoints:
When do we make a copy of the code?
How do we tell Pilot about it?
Store broken instruction in code? How many? Packed code?
Pin affected pages in real memory?

We discussed 5 possibilities for solving the breakpoint problem:
(1) copy code and fix user pointers as in the Mesa 4.0 debugger

(no way to tell this to Pilot)
(2) lock page in memory when you set the breakpoint there

(but how to get it there first? performance?)
(3) leave a half page empty at the end of each codesegment to

store the break information
(what about packed code? what about Trace All Entries?)

(4) get new disk address for any virtual page
(need a reverse VM to DA map on a page basis)

(5) the diamond solution: just change the files themselves and
append breakpoint information to code file
(must be undone before leaving or else the code is clobbered)

McJones suggested that Pilot could reserve a segment of virtual memory (ie. 64K, the size of
Swatee) for the debugger to put code segments for breakpoints. This would be copied into
backing store and 'change the code pointer in the global frame. It was decided that this was
the best way for it to be done.

Lynch pointed out that we need to watch the performance issue (changing things out from
under the user, not space/time), since this strategy may change the nature of the bug that is
being tracked. The problem is moving the code in the virtual address space with the
codepointer possibly being on the stack. The restriction that will have to be placed in order
to get around this problem, is that we do not garbage collect this region until the end of a
session (ie., the sum of all of the codesegments in which breaks have been set must be <
64K).

If this seems to cause undue hardship, we could introduce a mode similar to worry mode,
which puts the breaks directly in the code, and lets you take your chances on having the
code get clobbered. (Note with the current StartUp strategy of the file being recreated from
the bcds at startup time, this is not as. much of a problem as it was first thought to be).

4. Compatibility - evolution
How do the Pilot and Mesa 4.0 (Alto or DO) debuggers differ?
Is the difference at compile time, install time, or InLoad time?

It was decided that is would be easier (both for implementing and maintaining), to have one
version of the debugger with the decision being made at In load time. This does have the
disadvantage that everybody pays for the added code required for the Pilot debugger, but it
is thought that this is not too much overhead too pay.

Pilot Debugger 3

5. Communications
In Load and OutLoad pass a message (18 words) back and forth. What is in it?
How will InLoad be done? What about microcode swapping? Map swapping?

Resident changes should be limited to InLoad and Out Load (which require changes to Nova
code and microcode), alloc trap (needs to call Pilot), and the ability to handle worry mode
breakpoints. Eight words of the message are currently unused; this should be enough space
for all of the additional information that we decide is neccesary. It is hoped that the
microcode will be able to tell what is going on and switch the map (exchange the first and
last 64K of map) while the Nova code is running. We will have to talk to Garner about
this.

Ths issue of microcode swapping was postponed for now since it was decided that it is not
on the critica~ path for completing the Pilot debugger and it can be a time sink.

6. How does the debugger know what it is debugging?
Install time or InLoad time?
If ~O/Pilot, where is the MOS?
What about multiple MOSs . . . ?

The debugger knows what machine it is debugging from the microcode and where to find
the MOS from PiiotNub (who gets the information from Startup (BootMesa».

Lynch said that there will not be multiple MDSs until at least Pilot 3.0; therefore we will
not worry about it in the Pilot debugger (however, the design will include provision for
adding this later without undoing what already has been done).

There is a need for a SEt MDS command, which takes a page number; useful on bootloading
the debugger and moving the MOS to a different place (note that this means that each time
the MDS is changed, many of the debugger's caches will have to be flushed due to a new
global frame table, etc.). This goes along with extending the notion of current context to
include the MOS as well; however, this may be postponed for a while until we are dealing
with multiple MOSs.

Problems arise on bootloading the debugger, when real memory (and the map) is gone.
There was a lengthy discus ion of alternative solutions to this problem; many questions
remain, including investigating whether the memory map could survive booting, the
difference between the soft boot and power up/off, and getting a dumper.boot to save
memory (as in the current world). An immediate solution is to resorl to debugging with
Midas when things get this bad. (It was decided to continue discussion on this issue at a
later time).

7. OebugNub's responsibilities
Finding the debugger
LoadState
Breakpoints

Pilot Nub can be given the file information about where to find the debugger from
Bootmesa.

Since there probably will not be a loader in Pilot 2.0, there is no need for a loadstate (there
will be only one bed). But Bootmesa can initialize the loadstate for now.

Pilot Debugger 4

There will be a problem in finding files when the debugger has been bootloaded; the
solution to this seems to be to force the user to enter restricted debugging mode whenever
the files cannot be found easily. Since the file information can be gotten from Wart
(StartUp), it seems better than making the decision at install time or having separate
debuggers.

8. When do things start moving into Pilot File System?
What are they?

As soon as possible, things will start moving into the Pilot File System, beginning with the
anonymous files.

The going inposition is that we will try to accomplish all of this without changing the Mesa
definitions files, and confine the changes to the debugger to those modules that deal with
file manipulation, breakpoints, and interpreting long variables.

The discussion then turned to the issue of scheduling. Wick guessed that it would take 2
weeks of Sandman, Johnsson, and Koalkin working full time to get stage 1 complete, plus
about 1 112 weeks of debugging time on the DO (assuming all of the long pointer things
have been checked out). The stage 2 debugger can be completed in a shorter time, about 1
week of design plus 1 week of debugging.

Lynch and the Pilot group need to decide if, with this schedule, the debugger will be useful
to them when they get it. Wick offered another debugger, with long pointer READ and WRITE

as a first step if that would be useful. It could be used for examining memory> 64K but
not any code out there. This brought up the discussior.. of the hybrid compiler (which Wick
guessed would take Sweet about 3 days to do), vs completion of the Pilot Runtime. One of
the big problems in all of this remains the availability of a working DO as soon as possible.

