
XEROX

XEROX LISP
RELEASE NOTES

3102434
Lyric Release
June 1987

XEROX LISP RELEASE NOTES

3102434

Lyric Release

June 1987

The information in this document is subject to change without notice and should
not be construed as a commitment by Xerox Corporation. While every effort has
been made to ensure the accuracy of this document, Xerox Corporation assumes no
responsibility for any errors that may appear.

Copyright © 1987 by Xerox Corporation.

Xerox Common Lisp is a trademark.

All rights reserved.

"Copyright protection claimed includes all forms and matters of copyrightable
material and information now allowed by statutory or judicial law or hereinafter
granted, including, without limitation, material generated from the software
programs which are displayed on the screen, such as icons, screen display looks,
etc. "

This manual is set in Modern typeface with text written and formatted on Xerox
Artificial Intelligence workstations. Xerox laser printers were used to produce text
masters.

Release Notes Organization

LYRIC RELEASE NOTES

PREFACE TO RELEASE NOTES

The preliminary Lyric Release Notes provide reference material
on the Xerox Lisp environment for the Lyric Beta release. You
will find the following information in these notes:

• An overview of significant Xerox extensions to the Common
Lisp language

• Discussion of how specific Common Lisp features have
affected the Interlisp-D language and the Xerox Lisp
environment.

• Notes reflecting the changes made to Interlisp-D,
independent of Common Lisp, since the Koto release

• Known restrictions to the use of Xerox Lisp

The Lyric Release Notes present information on the entire Xerox
Lisp environment.

Chapter 1, Introduction begins you orientation toward the Xerox
Lisp environment. It also lists the manual set for Lyric.

Chapter 2, Notes and Cautions, highlights significant changes in
the Xerox Lisp environment.

Chapter 3, Common Lisp/lnterlisp Integration, discusses how the
integration of Common Lisp into the Xerox Lisp environment
affects Interlisp features.

Chapter 4, Changes to Interlisp-D Since Koto, is a collection of
notes outlining changes that have taken place in Interlisp-D and
its environment since the Koto release. These changes are
primarily independent of Common Lisp integration.

Chapter 5, Library Modules, is a synopsis of the changes to Lisp
Library Modules ..

Chapter 6, User's Guides, is a collection of release notes on the
1108 and 1186 User's Gui'des; A User's Guide to Sketch, and A
User's Guide to TEdit.

Chapter 7, Known Problems, contains information on existing
problems in the environment.

Four Appendices contain complete documentation of newly
integrated system features.

Appendix A describes Xerox Lisp's new kind of Exec. Appendix B
describes the new structure editor, SEdit. Appendix C presents
information on ICONW, which has been moved out of the Koto
Library and into the system. Appendix D contains complete

III

How to Use The Release Notes

iv

information on Free Menu, another former Koto Library package
that has been expanded and added to Xerox Lisp.

Chapters 3 and 4 are organized to parallel the Interlisp-D
Reference Manual as closely as possible.

To make it easy to use these notes with the Interlisp-D Reference
Manual the following conventions are used:

Information (changes, etc.) is organized by Interlisp-D Reference
Manual volume and section. The Interlisp-D Reference Manual
section level headings were maintained in the Release Notes to
aid in cross-referencing.

In many instances the changed page is listed in the following
manner:

(11:17.6)

We recommend that you use these notes with your Interlisp-D
Reference Manual and the following documents packaged with
the Lyric release:

Xerox Common Lisp Implementation Notes

Common Lisp, the Language by Guy Steele

Lisp Library Modules

Documentation Tools

LYRIC RELEASE NOTES

TABLE OF CONTENTS

Preface

1. Introduction
Changes to the Envi ronment 2

Using the Release Notes 2

2. Notes and Cautions 3

Incompatible Changes to Interlisp 3

3. Common Lisp/lnterlisp-D Integration 7

Chapter 2 litatoms 7

Section 2.1 Using Litatoms as Variables 7

Section 2.3 Property Lists 8

Section 2.4 Print Names 8

Section 2.5 Characters 8

Chapter 4 Stri ngs 9

Chapter 5 Arrays 9

Chapter 6 Hash Arrays 9

Chapter 7 Numbers and Arithmetic Functions 10

Section 7.2 Integer Arithmetic 10

Chapter 10 Function Definition, Manipulation, and Evaluation 10

Section 10.1 Function Types 10

Section 10.6 Macros 10

Section 10.6.1 DEFMACRO 11

Chapter 11 Stack Functions 11

Section 11.1 The Spaghetti Stack 11

Chapter 12 Miscellaneous 12

Section 12.4 System Version Information 12

Section 12.8 Pattern Matching 12

Chapter 13 tnterlisp Executive 13

Chapter 14 Errors and Breaks 15

Section 14.3 Break Commands 15

Section 14.6 Creating Breaks with BREAK1 15

Section 14.7 Signalling Errors 15

Section 14.8 Catching Errors 16

Section 14. 9 Changing and Restoring System State 17

Section 14.10 Error List 17

LYRIC RElEAS"E NOTES v

TABLE OF CONTENTS

Chapter 15 Breaking Functions and Debugging 19

Section 15.1 Breaking Functions and Debugging 19

Section 15.2 Advising 20

Chapter 16 List Structure Editor 21

Switching Between Editors 21

Starting a Lisp Editor 22

Mapping the Old Edit Interface to ED 23

Section 16.18 Editor Functions 23

Chapter 17 File Package 23

Reader Envi ronments and the File Manager 24

Modifying .Standard Readtables 26

Programmer·s Interfaci! to ReadeT Environments 27

Section 17.1 Loading Files 28

Integration of Interlisp and Common Lisp LOAD Functions 28

Section 17.2 Storing Files 29

Section 17.8.2 Defining New File Manager Types 30

Definers: A New Facility for Extending the File Manager 30

Chapter 18 Compiler 35

Chapter 19 Masterscope 36

Chapter 21 CLISP 36

Chapter 22 Performance Issues 38

Section 22.3 Performance Measuring 38

Chapter 24 Streams and Files 39

Section 24.15 Deleting, Copying, and Renaming Files 40

Chapter 25 Input/Output Functions 40

Variables Affecting Input/Output 40

Integration of Common Lisp and Interlisp Input/Output Functions 42

Section 25.2 Input Functions 42

Section 25.3 Output Functions 43

Printing Differences Between Jl:PRtN2 and Cl:PRIN1 43

Internal Printing functions 44

Printing Differences Between Koto and Lyric 44

Bitmap Syntax 45

Section 25.8 Readtables 45

Differences Between Interlisp and Common Lisp Readtables 46

Section 25.8.2 New Readtable Syntax Classes 47

Additional ReadtableProperties 47

Section 25.8 Predefined Readtables 48

Koto Compatibility Considerations so
Specifying Readtables and Packages so

vi LYRtl: RELEASE NOTES

TABLE OF CONTENTS

The T Readtable 50

PQUOTE Printed Files 51

Back-Quote Facility 51

4. Changes to Interlisp-D Since Koto 53 .

Chapter 3 Lists 53

Section 3.2 53

Section 3.10 53

Chapter 6 Hash Arrays 53

Section 6.1 Hash Overflow 54

Chapter 7 Integer Arithmetic 54

Section 7.3 Logical Arithmetic Functions 54

Section 7.5 Other Arithmetic Functions 54

Chapter 9 Conditionals and Iterative Statements 55

Section 9.2 Equality Predicates 55

Section 9.8.3 Condition I.s. oprs 55

Chapter 10 Function Definition, Manipulation, and Evaluation 55

Section 10.2 Defining Functions 55

Section 10.5 Functional Arguments 55

Section 10.6.2 Interpreting Macros 55

Chapter 11 Variable Bindings and the Interlisp Stack 56

Section 11.2.1 Searching the Stack 56

Section 11.2.2 Variable Bindings in Stack Frames 56

Section 11.2.5 Releasing and Reusing Stack Pointers 57

Section 11.2.7 Other Stack Functions 57

Chapter 12 Miscellaneous 57

Section 12.2 Idle Mode 57

Section 12.3 Saving Virtual Memory State 58

Section 12.4 System Version Information 59

Chapter 13 Interlisp Executive 60

Chapter 14 Errors ~nd Breaks 60

Section 14.5 Break Window Variables 60

Chapter 17 File Package 60

Section 17.8.1 Functions for Manipulating Typed Definitions 60

Section 17.8.2 Defining New File Package Types 61

Section 17.9.8 Defining New File Package Commands 61

Section 17.11 Symbolic File Format 61

Section 17.11.3 File Maps. 61

Chapter 18 Compiler 61

Chapter 21 CLISP 62

Section 21.8 Miscellaneous Functions and Variables 62

LYRIC RELEASE NOTES vii

TABLE OF CONTENTS

Chapter 22 Performance Issues 62

Section 22. 1 Storage Allocation and Garbage Collection 62

Section 22.5 Using Data Types Instead of Records 63

Chapter 23 Processes 63

Section 23.6 Typein and the ITV Process 63

Chapter 24 Streams and Files 64

Section 24.7 File Attributes 64

Section 24.18.1 Pup File Server Protocols 64

Section 24.18.3 Operating System Designations 65

Chapter 25 Input/Output Functions 65

Section 25.2 Input Functions 65

Section 25.3.2 Printing Numbers 65

Section 25.3.4 Printing Unusual Data Structures 65

Section 25.4 Random Access File Operations 65

Section 25.6 PRI NTOUT 65

Section 25.8.3 READ Macros 66

Chapter 26 User Input/Output Packages 66

Section 26.3 ASKUSER 66

Section 26.4.5 Useful Macros 66

Chapter 27 Graphic Output Operations 66

Section 27.1.3 Bitmaps 66

Section 27.3 Accessing Image Stream Fields 66

Section 27.6 Drawing Lines 67

Section 27.7 Drawing Curves 67

Section 27.8 Miscellaneous Drawing and Printing Operations 67

Section 27.12 Fonts 69

Section 27.13 Font Files and Font Directories 71

Section 27.14 Font Classes 71

Section 27.14 Font Profiles 71

Chapter 28 Wi ndows and Menus 71

Section 28.1 Using the Window System 71

Section 28.4 Windows 72

Section 28.4.5 Reshaping Windows 72

Section 28.4.8 Shrinking Windows Into Icons 72

Section 28.4.11 Terminal 110 and Page Holding 73

Section 28.5 Menus 73

Section 28.6.2 Attached Prompt Windows 76

Chapter 29 Hardcopy Facilities 76

Chapter 30 TerminallnputlOutput 76

Section 30. 1 Interrupt Characters 76

viii LYRIC RELEASE NOTES

Section 30.2.3 Line Buffering

Section 30.4.1 Changing the Cursor Image

Section 30.5 Keyboard Interpretation

Section 30.6 Display Screen

Section 30.7 Miscellaneous Terminal 110

Chapter 31 Ethernet

Section 31.3. 1 Name and Address Conventions

Section 31.3.2 Clearinghouse Functions

Section 31.3.5.3 Performing Courier Transactions

Section 31.5 Pup Level One Functions

Section 31.6.1 Creating and Managing XIPs

5. Library Modules
Modules Moved from the Library

Modules Moved to Their Own Manuals

Modules Moved From the Library into the Sysout

Modules Replaced

New Modules

New Features Since Koto

Additional Notes

Koto CML Library Module

6. User's Guides
A User's Guide to TEdit-Release Notes

Changes, Additions, Corrections to TEdit Part One

Paragraph Looks Menu

Page Layout Menu

New Features

Changes, Additions, Corrections to Modifying TEdit

STREAM AND TEXTOBJ

Changes, Additions and Corrections to TEdit functions

Changes in the Documentation of TEdit Functions

New Features

Fixed ARS

A User's Guide to Sketch-Release Notes

Manipulating Sketch Elements

Adding and Deleting Control Points

Deleti ng Control Poi nts

Defaults Command

Better Feedback for Creating Wires, Circles and Ellipses

Arrowheads

Deleting Characters During Type-in

LYRIC RELEASE NOTES

TAB LE OF CONTE N15

77

71

78

78

78

79

79

79

81

81

81

81

82

82

82

82

82

85

85

85

85

8"5

86

86

86

89

91

91

91

9:1

91

91

91

91

ix

TABLE OF CONTENTS

Using Bit Maps in a Sketch 92

Zoomi ng Bitmaps 91

Changing Bitmaps 91

Freezing Sketch Elements 92

Aligning Sketch Elements 92

Placing Multiple Copies of Elements 92

Making the Window Fit the Sketch 93

Overlaying Figure Elements 93

Changing How Elements Overlap 93

The Programmer's Interface 93

New Behavior for the Get Command 94

Establishing Initial Defaults for Sketch 94

1108 User's Guide Release Notes 9S

What to Look For 9S

1186 User's Guide Release Notes 96

What to Look For 96

7. Known Problems 97

Communications 97

Pup File Service 97

XNS File Service 97

Other 98

Windows and Graphics 98

Fonts & Hardcopy 98

Graphics 98

Menus & Wi ndows 99

Free Menu 99

Operati ng System 99

File System 99

Floppy 99

Local Disk 100

Keyboard 100

Processes 100

Other 100

Language Support 100

Streams & I/O 100

Storage Allocation & Garbage Collector 101

Other 101

Programming Environment 101

File Manager 101

Editor 102

x LYRIC RELEASE NOTES

TABLE OF CONTENTS

Debugger 102

Exec & TTYIN 102

Common Lisp 103

System Tools 103

Library 104

4045 104

CopyFiles 104

FileBrowser 104

FTPServer 104

FX80 105

Grapher 105

Kermit & Modem 105

KeyboardEditor 105

Masterscope 105

NSMaintain 105

RS232 105

Sketch 105

Spy 106

TCP 106

TEdit 106

TExec 106

Virtual Keyboards 106

A. The Exec A-1

Input Formats A-2

Multiple Execs and the Exec's Type A-3

Event Specification A-4

Exec Commands A-5

Variables A-9

Fonts in the Exec A-10

Changi ng the Exec A-11

Defining New Commands A-11

Undoing A-12

Undoing in the Exec A-12

Undoing in Programs A-13

Undoable Versions of Common Functions A-13

Modifying the UNDO Facility A-14

Undoing Out of Order A-16

Format and Use of the History List A-16

Making or Changing an Exec A-17

LYRIC RELEASE NOTES xi

TABLE OF CONTENTS

Editing Exec Input A-20

Editing Your Input A-20

Usi ng the Mouse A-21

Editing Commands A-22

Cursor Movement Commands A-22

Buffer Modification Commands A-23

Miscellaneous Commands A-23

Useful Macros A-24

?= Handler A-24

Assorted Flags A-24

B. SEdit-The Lisp Editor B-1

16.1 SEOIT -The Structure Editor B-1

16. 1. 1 An Edit Session B-1

16.1.2 SEdit Carets B-2

16.1.3 The Mouse B-3

16.1.4 Gaps 8-4

16.1.5 Special Characters B-4

16. 1.6 Control Keys B-6

16. 1.7 Command Keys 8-6

16.1.8 Command Menu 8-8

16.1.9 Help Menu B-9

16. 1. 10 Interface B-10

16.1.11 Options B-11

C. ICONW C-1

28.4. 16 Creati ng Icons with ICONW C-1

28.4.16.1 Creating Icons C-1

28.4.16.2 Modifying Icons C-2

28.4.16.3 Default Icons C-2

28.4.16.4 Sample Icons C-3

D. Free Menu 0-1

28.7 Free Menus 0-1

28.7.1 Making a Free Menu 0-1

28.7.2 Free Menu Formatting 0-1

28.7.3 Free Menu Descriptions 0-2

28.7.4 Free Menu Group Properties 0-7

28.7.5 Other G rou p Properti es 0-8

28.7.6 Free Menu Items 0-8

xii LYRIC RELEASE NOTES

TABLE OF CONTENTS

28.7.7 Free Menu Item Oescri~tion 0-8

28.7.8 Free Menu Item Pro~erties 0-9

28.7.9 Mouse Pro~erties 0-10

28.7.10 S~stem Pro~erties 0-10

28.7. 11 Predefi ned Item T~~es 0-11

28.7.12 Free Menu Item Highlighting 0-14

28.7.13 Free Menu Item Links 0-14

28.7.14 Free Menu Window Pro~erties 0-15

28.7.15 Free Menu Interface Functions 0-15

28.7.16 Accessing Functions 0-15

28.7. 17 Changi ng Free Menus 0-16

28.7.18 Editor Functions 0-17

28.7.19 Miscellaneous Functions 0-17

28.7.20 Free Menu Macros 0-18

LYRIC RELEASE NOTES xiii

TABLE OF CONTENTS

[This page intentionally left blank]

xiv LYRIC RELEASE NOTES

LYRIC RELEASE NOTES

1. INTRODUCTION

With the Lyric release of Xerox Lisp, Common Lisp, as specified in
Common Lisp the Language by Guy Steele, becomes part of the
standard Lisp sysout. Many extensions to Common Lisp were also
developed and introduced, producing Xerox Common Lisp (XCL).

Integrating Common Lisp and Xerox's extensions into the Xerox
Lisp environment, while preserving most of the functionality
found in Interlisp-D, required major changes to the system. To
the experienced Interlisp user perhaps the· most reactive, and
potentially confusing, addition to the system is the introduction
of Common Lisp packages.

If you are unfamiliar with the way Common Lisp packages work
you should read the section on packages in the Xerox Common
Lisp Implementation Notes, "Packages," and Common Lisp the
Language, Chapter 11, Packages. However to get you started,
you will find a brief explanation of some of the simpler
implications of the introduction of packages given below.

Basically, packages provide separate name spaces for symbols.
With few exceptions every symbol in the environment is
"homed" in a package, that is each symbol is owned by a specific
package. The separate name spaces prevent the system from
misinterpreting the use of identically named symbols, for
example, Interlisp's MAPCAR from Common Lisp's MAPCAR. In
general, in the Xerox Lisp system, the print names of symbols
include a package qualifier; a word or an abbreviation, followed
by a colon, that represents the package that owns that particular
symbol.

The package qualifier for symbols in the INTERLISP package is IL:,
and for "pure" Common Lisp symbols, CL: . All Interlisp symbols,
and all symbols in this document (unless otherwise specified) are
in the INTERLISP package.

When you first start the system you will find yourself in an
executive from which most of the symbols you use in Interlisp are
inaccessible without package qualifiers. This is because the
system starts up in a Xerox Common Lisp executive. In this exec,
the current package is called XCL-USER and Interlisp symbols are
not "visible" from the XCL-USER package without package
qualifiers. If the current package contains the symbol you want
to use, then you don't need to use a package qualifier.

For example, to login from the default exec (called the XCL Exec)
you would have to evaluate (lL:LOGIN). The IL: is the package
qualifier that identifies the symbol LOGIN as being in the
package INTERLISP. If you try to evaluate just (LOGIN), i.e.,
without a package qualifier, whrte you are in the XCL Exec you
will get the error: "undefined car of form LOGIN."

Until you become accustomed to this change you might find it
useful to develop the habit of using the Common Lisp function
cI: in-package before working in Interlisp. That is you would type
to the exec: (in-package 'il) which would allow you to type all
Interlisp symbols to the exec without package qualifiers.
However, you will then have to use package qualifiers to use
Common Lisp functions, like cI:in-package.

INTRODUCTION

Changes to the Environment

Using the Release Notes

2

The integration of Common Lisp in Xerox Lisp required that
many things in the environment be changed. In the next
chapter, Notes and Cautions, you will find a list of the most
notable changes, with an emphasis on the incompatible ones.

The organization of the release notes parallels that of the
Interlisp-D Reference Manual (lRM). Within each chapter of the
release notes, IRM chapter and section headings are preserved
with respect to order and numbering, even when in conflict with
changes to the system (e.g., File Manager (new name) v. File
Package (old name». You may find it helpful to go through the
release notes and the IRM together, marking the IRM sections
that have release notes. Later when you consult the Reference
Manual you will know which sections require you to read the
analogous section of the release notes.

LYRIC RELEASE NOTES

2. NOTES AND CAUTIONS

In the course of integrating Common Lisp, Xerox's extensions to
Common Lisp, and Interlisp-D, incompatible changes were made
to the system. Below you will find a listing of the most critical
changes that you should take note of. This list represents only a
summary and should not be viewed as an alternative to a
thorough reading of the release notes and the Xerox Common
Lisp implementation Notes themselves.

The list is arranged in rough parallel with the Interlisp-D
Reference Manual rather than any kind of ranking of the
changes.

Incompatible Changes To Interlisp

I VRI(' RELEASE NOTES

• In the Lyric release, Koto and Lyric cannot both be supported
on one machine.

• You must have Services 10.0 installed on your printers to
correctly print TEdit files.

• Interlisp DMACROs are not visible to Common Lisp. If a
symbol has both a function definition and a DMACRO
property, the new Xerox compiler assumes that the DMACRO
was intended as an optimizer for the old Interlisp compiler
and ignores it.

• The Common Lisp functions found in Common Lisp: The
Language, section 25.4.2, "Other environmental Inquiries"
(e.g., L1SP-IMPLEMENTATION-TYPE) are in the COMMON LISP
(CL:) package.

• The system has a new type of Executive, and the ability to
spawn multiple Executive processes. The default executive is
Xerox Common Lisp, not Interlisp. The old Executive (the
"Programmer's Assistant") is still available but will not be in
future releases.

You should be particularly careful in the new Executives
when typing file names, as some file name delimiters now
have syntactic significance in the new readtables. In
particular, the character colon (:) used in NS file server names
is a package delimiter in all new Executives, and the version
delimiter semi-colon (;) is a comment character in the
Common Lisp Executives. If you type a file name in the form
of a symbol to an Exec, you must escape the special
characters, or use the multiple escape character around the
whole name. For example, in a Common Lisp Exec you might
type

{FS\:Me\:Company}<Fred>Stuff.tedit\;3

or

I{FS:Me:Company}< Fred >Stuff.tedit; 31,

which are equivalent, except that the former is read as all
upper case (Common Lisp Exec's read case-insensitively). This

3

NOTES AND CAUTIONS

caution should also be noted when copy-selecting file names
out of a File Browser.

However, it is recommended that you type file names as
strings whenever possible, as virtually all system interfaces
accept strings instead of symbols. Two notable exceptions
are MAKEFILE and TEDIT, which require symbols when
naming files.

Of course, these escaping rules apply only to file names typed
to an Executive (or in general, a Lisp reader). Individual tools
that prompt for a file name in general read the name as a
string, so escape characters need not (and should not) be
typed. In particular, this is true for the prompt windows of
TEdit and File Browser, and the prompt for an Init file when a
system with no local Init file is started up.

• The system has a new error system, based on the current
Common Lisp proposed error standard, replaces the old
Interlisp error system.

• The !EVAl debugger command no longer exists and the =
and -> break commands are no longer supported ..

• The function ERRORN no longer exists and ERRORTYPELIST is
no longer supported. See Chapter 3, Common Lisp?hiterlisp
Integration, section 14.10 "Error List" for Interlisp errors that
are no longer supported.

• A new compiler and compiled code format, .DFASL (FASt
Loading) files. The old compiler is still available and
produces files in the old format, but with extension .LCOM.
The old compiler will not be available in future releases.

• Files produced by the Lyric File Manager cannot be loaded
into previous releases of the system. Files compiled in Koto
cannot be loaded into Lyric.

• SETQ from the exec does not interact with the File Manager,
nor does it print (var reset) (except in the "Programmer's
Assistant").

• DWIM/CLlSP: CLISP infix is no longer fully supported; users
should dwimify old Koto code before running it in Lyric.
Additionally, WITH constructs using "E-" and BIND constructs
in the form of an atom AE-B need to be dwimified. ISee the
section ...

• The functions BREAKDOWN and BRKDWNRESULTS as well as
the variables, BRKDWNTYPE and BRKDWNTYPES have been
removed from the environment. The Lisp Library Module,
Spy supersedes BREAKDOWN.

• The file system supports having multiple streams opened on
a single file at one time. This means that the input/output
functions accept only streams as arguments, not symbols
naming files. This has several implications for Interlisp
programmers, one being that the function ClOSEAll is no
longer implemented. See the Chapter 3, Common
Lispllnterlisp Integration, Streams and Files section, for
details.

4 LYRIC RELEASE NOTES

NOTES AND CAUTIONS

• Windows cannot be used interchangeably with streams in
Common Lisp functions. If you need to use a window in the
middle of a Common Lisp function, use (IL:GETSTREAM
window) to get the associated display stream.

• Loading CPM-format floppies is very slow in Lyric. Moreover,
Lyric is the last release in which the loading of CPM-format
floppies will be supported.

• The default Interlisp readtable has been slightly modified to
be more in spirit with Common Lisp-the characters colon (:),
hash (I) and vertical bar <I) have different meaning. The File
Manager gives a choice of reader environments in which to
write files, and remembers which one was used for each file.

• READ/PRINT consistency: Old Interlisp code that used READ
and PRINT without being careful about using a particular
readtable may need to be fixed.

• The Interlisp function SKREAD now defaults its readtable
argument to the current readtable, viz., the value of
READTABlE, rather than FllERDTBl.

• FREEMENU and ICONW, formerly Library modules, are now
included in the Lisp.sysout

• A new Lisp editor, SEdit and a new editor interface, ED.
DEdit is now a library module. See Appendix B.

• Revised fonts: There is a new naming convention for font
files, and the printer widths files have correct line leading
information. Old Koto fonts can still be used, but you are
encouraged to start using the new fonts as soon as
practicable.

• Image objects are now stored on files in a way that cannot
always be read into Koto. [Lyric on the other hand, can read
both the Koto & the new formats.] This means, for example,
that you may not be able to share TEdit files or sketches with
image objects in them between Koto and Lyric.

• The field names for the CU RSOR datatype have been
changed.

• Masterscope has been removed from the standard
environment. If you wish to use it, load the Masterscope
Library module.

• Pattern matching is no longer a part of the standard
environment. Pattern matching can be found in the Lisp
Library Module, Match.

• PRESS fonts are not part of the standard Xerox Lisp
environment since PRESS is now a Library Module.

• In Lyric, the Library module TCPIIP does not work on 1186
workstations that have both lOPs with part number
140K03030 and "old" ROMs. The problem is not with the
lOP board per se, rather it's a problem with the lOP's ROMs.
If TCP/IP doesn't work on your 1186 you should check your
lOP board revision. If you have the old lOP you may need to

I V~I" ~~I ~ A.(,~ ~II"\TI:C c:

NOTES AND CAUTIONS

6

replace the ROMs before you can use TCPIIP, contact your
service representative.

TCP/IP does work with newer lOPs-part number 140K05560.

If you attempt to Teleraid a Lyric sysout from a Koto one you
should be aware of the following:

1. All symbols will be read as if they were in the
INTERLISP package and you can only type a subset of the IL
symbols to it.

2. Teleraid will not understand certain Common Lisp
datatypes, such as CHARACTER and strings.

With these caveats, you can still get a fair amount of
interesting information.

LYRIC RELEASE NOTES

Chapter 2 Litatoms

3. COMMON lISP/INTERLISP-D
INTEGRATION

This section provides detailed release notes indicating how
Common Lisp affects Interlisp-D in Xerox Lisp. Notes are
organized to correspond with the originallnterlisp-D Reference
Manual volumes, and sections within these volumes.

VOLUME I-LANGUAGE

(2.1)

What Interlisp calls a "LlTATOM" is the same as what Common
Lisp calls a "SYMBOL." Symbols are partitioned into separate
name spaces called packages. When you type a string of
characters, the resulting symbol is searched for in the "current
package." A colon in the symbol separates a package name from
a symbol name; for example, the string of characters "CL:AREF"
denotes the symbol AREF accessible in the package CL. For a full
discussion, see Guy Steele's Common Lisp, the Language.

All the functions in this section that create symbols do so in the
INTERLISP package (IL), which is also where all the symbols in the
Interfisp-D Reference Manual are found. Note that this is true
even in cases where you might not expect it. For example,
U-CASE returns a symbol in the INTERLISP package, even when its
argument is in some other package; similarly with L-CASE and
SUBATOM. In most cases, this is the right thing for an Interlisp
program; e.g., U-CASE in some sense returns a "canonical"
symbol that one might pass to a SELECTQ, regardless of which
executive it was typed in. However, to perform symbol
manipulations that preserve package information, you should
use the appropriate Common Lisp functions (See Common Lisp
the Language, Chapter 11, Packages and Chapter 18, Strings).

Symbols read under an old Interlisp readtable are also searched
for in the INTERLISP package. See Section 25.8, Readtables, for
more details.

Section 2.1 Using Litatoms as Variables

(BOUNDP VAR)

LYRIC RELEASE NOTES

(1:2.3)

[Function]

The Interlisp interpreter has been modified to consider any
symbol bound to the distinguished symbol NOBIND to be
unbound. It will signal an UNBOUND-VARIABLE condition on
encountering references to such symbols. In prior releases, the
interpreter only considered a symbol unbound if it had no
dynamic binding and in addition its top-level value was NOBIND.

7

COMMON L1SPIINTERLlSP-D INTEGRATION

Section 2.3 Property Lists

(REMPROP A TM PROP)

Section 2.4 Print Names

(MAPA TOMS FN)

Section 2.5 Characters

8

For most user code, this change has no effect, as it is unusual to
bind a variable to the particular value NOBIND and still
deliberately want the variable to be considered bound.
However, it is a particular problem when an interpreted Interlisp
function is passed to the function MAPA TOMS. Since NOBIND is
a symbol, it will eventually be passed as an argument to the
interpreted function. The first reference to that argument
within the function will signal an error.

A work-around for this problem is to use a Common Lisp
function instead. Calls to this function will invoke the Common
Lisp interpreter which will treat the argument as a local, not
special, variable. Thus, no error will be signaled. Alternatively,
one could include the argument to the Interlisp function in a
LOCALVARS declaration and then compile the function before
passing it to MAPATOMS. This has the advantage of significantly
speeding up the MAPATOMS call.

(1:2.6)

The value returned from the function REMPROP has been
changed in one case:

[Function]

Removes all occurrences of the property PROP (and its value)
from the property list of ATM. Returns PROP if any were found (T
if PROP is NIL), otherwise NIL.

(1:2.7)

The print functions now qualify the name of a symbol with a
package prefix if the symbol is not accessible in the current
package. The Interlisp "PRIN1" print name of a symbol does not
include the package name.

(1:2.10)

The GENSYM function in Interlisp creates symbols interned in the
INTERLISP package. The Common Lisp CL:GENSYM function
creates uninterned symbols.

(1:2.1 f)

[Function]

See the note for BOUNDP above.

A "character" in Interlisp is different from the type "character"
in Common Lisp. In Common Lisp, "character" is a distinguished
data type satisfying the predicate CL:CHARACTERP. In Interlisp,
a "character" is a single-character symbol, not distinguishable
from the type symbol (litatom). Interlisp also uses a more

lYRIC RELEASE NOTES

Chapter 4 Strings

Chapter 5 Arrays

Chapter 6 Hash Arrays

LYRIC RELEASE NOTES

COMMON tIfSP/INTERLlSP-D INTEGRATION

efficient object termed "character code", which is
indistinguishable from the type integer.

Interlisp functions that take as an argument a "character" or
"character code" do not in general accept Common Lisp
characters. Similarly, an Interlisp "character" or "character
code" is not acceptable to a Common Lisp function that operates
on characters. However, since Common Lisp characters are a
distinguished datatype, Interlisp string-manipulation functions
are willing to accept them any place that a "string or symbol" is
acceptable; the character object is treated as a single-character
string.

To convert an Interlisp character code n to a Common Lisp
character, evaluate (CL:CODE-CHAR n). To convert a Common
Lisp character to an Interlisp character code, evaluate
(CL:CHAR-CODE n). For character literals, where in Interlisp one
would write (CHARCODE x), to get the equivalent Common Lisp
character one writes #\x. In this syntax, x can be any character or
string acceptable to CHARCODE; e.g., #\GREEK-A.

(1:4.1)

Interlisp strings are a subtype of Common Lisp strings. The
functions in this chapter accept Common Lisp strings, and
produce strings that can be passed to Common Lisp string
manipulation functions.

Interlisp arrays and Common Lisp arrays are disjoint data types.
Interlisp arrays are not acceptable arguments to Common Lisp
array functions, and vice versa. There are no functions that
convert between the two kinds of arrays.

Interlisp hash arrays and Common Lisp hash tables are the same
data type, so Interlisp and Common Lisp hash array functions
may be freely intermixed. However, some of the arguments are
different; e.g., the order of arguments to the map functions in
IL:MAPHASH and CL:MAPHASH differ. The extra functionality
of specifying your own hashing function is available only from
Interlisp HASHARRAY, not CL:MAKE-HASH-TABLE, though the

9

COMMON LlSP/INTERLlSP-D INTEGRATION

latter does supply the three built-in types specified by Common
Lisp, the Language.

Chapter 7 Numbers and Arithmetic Functions

Section 7.2 Integer Arithmetic

(1:7.2)

The addition of Common Lisp data structures within the Xerox
Lisp environment means that there are some invariants which
used to be true for anything in the environment that are no
longer true.

For example, in Interlisp, there were two kinds of numbers:
integer and floating. With Common Lisp, there are additional
kinds of numbers, namely ratios and complex numbers, both of
which satisfy the Interlisp predicate NUMBERP. Thus, NUMBERP
is no longer the simple union of FIXP and FLOATP. It used to be
that a program saying

(if (NUMBERP X)
then (if (FIXP X)

then ... assumeXisaninteger ...
e 1 s e ... can assume X is floating point. ..))

would be correct in Interlisp. However, this is no longer true; this
program will not deal correctly with ratios or complex numbers,
which are NUMBERP but neither FIXP nor FLOATP.

When typing to a new Interlisp Executive, the input syntax for
integers of radix other than 8 or 10 has been changed to match
that of Common Lisp. Use # instead of I, e.g., #b10101 is the
new syntax for binary numbers, #x1A90 for hexadecimal, etc.
Suffix Q is still recognized as specifying octal radix, but you can
also use Common Lisp's #0 syntax.

Chapter 10 Function Definition, Manipulation, and Evaluation

Section 10.1 Function Types

Section 10.6 Macros

All Interlisp NLAMBDAs appear to be macros from Common
Lisp's point of view. This is discussed at greater length in The
Xerox Common Lisp Impementation Notes, Chapter 8, Macros.

(EXPANDMACRO EXP QUIETFLG - -) [Function]

10

EXPANDMACRO only works on Interlisp macros, those appearing
on the MACRO, BYTEMACRO or DMACRO properties of symbols.
Use CL:MACROEXPAND-1 to expand Common Lisp macros and

LYRIC RELEASE NOTES

Section 10.6.1 DEFMACRO

chapter 11 Stack Functions

Section 11.1 The Spaghetti Stack

LYRIC RELEASE NOTES

COMMON LlSPIINTERLlSP-D INTEGRATION

those Interlisp macros that are visible to the Common Lisp
compiler and interpreter.

(1:10.24)

Common Lisp does not permit a symbol to simultaneously name
a function and a macro. In Lyric, this restriction also applies to
Interlisp macros defined by DEFMACRO. That is, evaluating
DEFMACRO for a symbol automatically removes any function
definition for the symbol. Thus, if your purpose for using a
macro is to make a function compile in a special way, you should
instead use the new form XCl:DEFOPTIMIZER, which affects only
compilation. The Xerox Common Lisp Implementation Notes
describe XCl:DEFOPTIMIZER.

Interlisp DMACRO properties have typically been used for
implementation-specific optimizations. They are not subject to
the above restriction on function definition. However, if a
symbol has both a function definition and a DMACRO property,
the new Xerox Lisp compiler assumes that the DMACRO was
intended as an optimizer for the old Interlisp compiler and
ignores it.

Stack pointers now print in the form

#(Stackp address/framename>.

Some restrictions were placed on spaghetti stack mani pulations
in order to integrate reasonably with Common Lisp's Cl:CATCH
and Cl:THROW. In Lyric, "it is an error" to return to the same
frame twice, or to return to a frame that has been unwound
through. This means, for example, that if you save a stack
pointer to one of your ancestor frames, then perform a
Cl:THROW or RETFROM that returns "around" that frame, i.e.,
to an ancestor of that frame, then the stack pointer is no longer
valid, and any attempt to use it signals an error "Stack Pointer
has been released". It is also an error to attempt to return to a
frame in a different process, using RETFROM, REnO, etc.

The existence of spaghetti stacks raises the issue of under what
circumstances the cleanup forms of CL:UNWIND-PROTECT are
performed. In Xerox Lisp, Cl:THROW always runs the cleanup
forms or any Cl:UNWIND-PROTECT it passes. Thanks to the
integration of Cl:UNWIND·PROTECT with RESETlST and the
other Interlisp context-saving functions, Cl:THROW also runs the
cleanup forms of any RESETlST it passes. The Interlisp control
transfer constructs RETFROM, RETTO, RETEVAl and RETAPPlY
also run the cleanup forms in the analogous case, viz., when
returning to a direct ancestor of the current frame. This is a

CONMON lISPIINTERlISP-D INTEGRATION

Chapter 12 Miscellaneous

significant improvement over prior releases, where RETFROM
never ran any cleanup forms at all.

In the case of RETFROM, etc, returning to a non-ancestor, the
cleanup forms are run for any frames that are being abandoned
as a result of transferring control to the other stack control chain.
However, this should not be relied on, as the frames would not
be abandoned at that time if someone else happened to retain a
pointer to the caller's control chain, but subsequently never
returned to the frame held by the pointer. Cleanup forms are
not run for frames abandoned when a stack pointer is released,
either explicitly or by being garbage-collected. Cleanup forms
are also not run for frames abandoned because of a control
transfer via ENVEVAL or ENVAPPLV. Callers of ENVEVAL or
ENVAPPLV should consider whether their intent would be served
as well by RETEVAL or RETAPPL V, which do run cleanup forms in
most cases.

~iGn 12.4 System Version Information

~tion 12.8 Pattern Matching

12

All the functions listed on page 12.12 in the Interlisp-D Reference
Manual have had their symbols moved to the LISP (Cl) package.
They are not shared with the INTERLISP package and any
references to them in your code will need to be qualified i.e.,
Cl:name.

Pattern matching is no longer a standard part of the
environment. The functionality for Pattern matching can be
found in the Lisp Library Module called MATCH.

lYRIC RELEASE NOTES

VOLUME II-ENVIRONMENT

chapter 13 Interlisp Executive

LYRIC RELEASE NOTES

[This chapter of the Interlisp-O Reference Manual has been
renamed Chapter 13, Executives.]

Xerox Lisp has a new kind of Executive (or Exec), designed for use
in an environment with both Interlisp and Common Lisp. This
executive is available in three standard modes, distinguished by
their default settings for package and readtable:

XCL New Exec. Uses XCL readtable, XCL-USER package

CL New Exec. Uses LISP readtable, USER package

IL New Exec. Uses INTERLISP readtable, INTERLISP package

OLO-INTERLISP

In addition, the old Interlisp executive, the "Programmer's
Assistant", is still available in this release for the convenience of
Koto users:

Old "Programmer's Assistant" Exec. Uses OLO-INTERLlSP-T
readtable, INTERLISP package. It is likely that this executive will
not be supported in future releases

When Xerox Lisp starts, it is running a single executive, the XCl
Exec. You can spawn additional executives by selecting EXEC
from the background menu. The type of an executive is
indicated in the title of its window; e.g., the initial executive has
title" Exec (XCL)". Each executive runs in its own process; when
you are finished with an executive, you can simply close its
window, and the process is killed.

The new executive is modeled, somewhat, on the old
"Programmer's Assistant'" executive and, to a first
approximation, you can type to it just as you did in past releases.
You should note, however, that the default executive (XCl)
expects Common Lisp input syntax, and reads symbols relative to
the XCL-USER package. This means that totype Interlispsymbols,
you must prefix the symbol with the characters "Il:" (in upper or
lower case). And even in the new IL executive, the readtable
being used is the new INTERLISP readtable, in which the
characters colon (:), vertical bar (I) and hash (#) all have different
meanings than in Koto.

The OLO-INTERLISP exec, with one exception, uses exactly the
same input syntax as in Koto; this means in particular that colon
cannot be used to type package-qualfied symbols, since colon is
an ordinary character there. The one exception is that there is a
package delimiter character in the OLO-INTERLlSP readtable,
should you have a need to use it-Control-1', which usually
echoes as "1'1''', though it may appear as a black rectangle in
some fonts.

The new executive does differ from the old one in several
respects, especially in terms of its programmatic interface.
Complete details of the new executive can be found in
[Appendix A. The Exec]. Some of the important differences are:

13

COMMON LlSPIINTERLlSP-O INTEGRATION

14

• Executives are numbered

Executives, other than the first one, are labeled with a distinct
number. This number appears in the exec window's title, and
also in its prompt, next to the event number. The OLO-INTERLISP
executive does not include this exec number.

• Event number allocation

The numbers for events are allocated at the time the prompt for
the event is printed, but all execs still share a common event
number space and history list. This means that 11 shows all
events that have occurred in any executive, though not
necessarily in the order in which the events actually occurred
(since it is the order in which the event numbers were allocated).
Events for which the type-in has not been completed are labeled
"<in progress>" in the 11 listing. In the old executive, event
numbers are not allocated until type-in is complete, which means
that the number printed next to the prompt is not necessarily the
number associated with the event, in the case that there has
been activity in other executives.

In the new executive, relative event specifications are local to the
exec; e.g., ·1 refers to the most recent event in that specific exec.
In the old executive, ·1 referred to the immediately preceding
event in any executive.

• New facility for commands

The old Executive has commands based on lISPXMACROS. The
new Executive has its own command facility,
XCL:DEFCOMMAND, which allows commands to be named
without regard to package, and to be written with familiar
Common Lisp style of argument list.

• Commands are typed without parentheses

In the old executive, a command could be typed with or without
enclosing parentheses. In the new executive, a parenthesized
form is always interpreted as an EVAL-style input, never a
command.

• SETQ does not interact with the File Manager

In the Koto release, when you typed in the Exec

(SETQ FOO some-new-value-for-FOO)

the executive responded (FOO reset), and the file package was
told that FOO's value changed. Any files on which FOO
appeared as a variable would then be marked as needing to be
cleaned up. If FOO appeared on no file, you'd be prompted to
put it on one when you ran (FILES?).

This is still the case in the old executive. However, it is no longer
the case in the new executive. If you are setting a variable that is
significant to a program and you want to save it on a file, you
should use the Common lisp macro CL:DEFPARAMETER instead
of SETQ. This will give the symbol a definition of type
VARIABLES (rather than VARS), and it will be noticed by the File
manager. If you want to change the value of the variable, you

LYRIC RELEASE NOTES

chapter 14 Errors and Breaks

Section 14.3 Break Commands

COMMON LlSPIINTERlISP-D INTEGRATION

must either use CL:DEFPARAMETER again, or edit the variable
using ED (not DV).

• Programmatic interface completely different

As a first approximation, all the functions and variables in IRM
Sections 13.3 (except the LlSPXPRINT family) and 13.6 apply only
to the Old Interlisp Executive, unless specified otherwise in
Appendix A. In particular, the variables PROMPT#FLG,
PROMTPCHARFORMS, SYSPRETTYFLG, HISTORYSAVEFORMS,
RESETFORMS, ARCHIVEFN, ARCHIVEFLG, LlSPXUSERFN,
LlSPXMACROS, LlSPXHISTORYMACROS and READBUF are not
used by the new Exec. The function USEREXEC invokes an
old-style Executive, but uses the package and readtable of its
caller. The function LlSPXUNREAD has no effect on the new
Exec. Callers of LlSPXEVAL are encouraged to use EXEC·EVAL
instead.

Some subsystems still use the old-style Executive-in particular,
the tty structure editor.

Xerox Lisp extends the Interlisp break package to support
multiple values and the Common Lisp lambda syntax. Interlisp
errors have been converted to Common Lisp conditions.

Note that Sections 14.2 through 14.6 in the Interlisp-D Reference
Manual have been replaced by new Debugger information (see
Common Lisp Implementation Notes).

(II: 14.6)

The !EVAL debugger command no longer exists.

(/1: 14.10-11)

The Break Commands = and - > are no longer supported.

Section 14.6 Creating Breaks with BREAK1

Section 14.7 Signalling Errors

LYRIC RELEASE NOTES

While the function BREAK1 still exists, broken and traced
functions are no longer redefined in terms of it. More primitive
constructs are used.

Interlisp errors now use the new XCL error system. Most of the
functions still exist for compatibility with existing Interlisp code,
but the underlying machinery is different. There are some
incompatible differences, however, especially with respect to
error number~.

15

COMMON LlSPIINTERLlSP-D INTEGRATION

Section 14.8 Catching Errors

16

The old Interlisp error system had a set of registered error
numbers for well known error conditions, and all other errors
were identified by a string (an error message). In the new Xerox
Lisp error system, all errors are handled by signalling an object of
type XCl:CONDITION. The mapping from Interlisp error
numbers to Xerox Lisp conditions is given below in Section 14.10.

Since one cannot in general map a condition object to an
Interlisp error number, the function ERRORN no longer exists.
The equivalent functionality exists by examining the special
variable *LAST-CONDITION*, whose value is the condition object
most recently signaled.

(ERRORX ERXM) calls Cl:ERROR after first converting ERXM into
a condition in the following way: If ERXM is Nil, the value of
LAST-CONDITION is used; if ERXM is an Interlisp error
descriptor, it is first converted to a condition; finally, if ERXM is
already a condition, it is passed along unchanged. ERRORX also
sets up a proceed case for XCL:PROCEED, which will attempt to
re-evaluate the caller of ERRORX, much as OK did in the old
Interlisp break package.

ERROR, HELP, SHOUlDNT, RESET, ERRORMESS, ERRORMESS1,
and ERRORSTRING work as before. All output is directed to
ERROR-OUTPUT, initially the terminal.

ERROR! is equivalent to the new error system's XCl:ABORT
proceed function, except that if no ERRORSET or
XCl:CATCH-ABORT is found, it unwinds all the way to the top of
the process.

SETERRORN converts its arguments into a condition, then sets
the value of *LAST-CONDITION* to the result.

ERRORSET, ERSETQ and NlSETQ have been reimplemented in
terms of the new error system, but thei r behavior is essentially
the same as before. NlSETQ catches all errors (conditions of type
Cl:ERROR and its descendants), and sets up a proceed case for
XCl:ABORT so that ERRORf will return from it. ERSETQ also sets
up a proceed case for XCl:ABORT, though it does not catch
errors.

One consequence of the new implementation is that there are
no longer frames named ERRORSET on the stack; programs that
explicitly searched for such frames will have to be changed.

ERRORTVPELIST is no longer supported. The equivalent
functionality is provided by default handlers. Although
condition handlers provide a more powerful mechanism for
programmatically responding to an error condition, old
ERRORTVPElST entries generally canr:-ot be translated directly.
Condition handlers that want to resume a computation (rather
than, say, abort from a well-know stack location) generally
require the cooperation of a proceed case in the signalling code;
there is no easy way to provide a substitute value for the
"culprit" to be re-evaluated in a general way.

LYRIC RELEASE NOTES

COMMON LlSP/INTERLlSP-D INTEGRATION

One important difference between ERRORTYPELIST and
condition handlers is their behavior with respect to NLSETQ. In
Koto, the relevant error handler on ERRORTYPELST would be
tried, even for errors occurring underneath an NLSETQ. In Lyric,
the NLSETQ traps all errors before the default condition handlers
can see the error. This means, for example, that the behavior of
(NLSETQ (OPENSTREAM •• » is now different if the OPENSTREAM
causes a file not found error-in Koto, the system would search
DIRECTORIES for the file; in Lyric, the NLSETQ returns NIL
immediately without searching, since the default handler for
XCL:FILE·NOT-FOUND is not invoked.

Section 14.9 Changing and Restoring System State

Section 14.10 Error List

The special forms RESETLST, RESETSAVE, RESETVAR, RESETVARS
and RESETFORM still exist, but are implemented by a new
mechanism that also supports Common Lisp's
CL:UNWIND·PROTECT. Common Lisp's CL:THROW and (in most
cases) Interlisp's RETFROM and related control transfer
constructs cause the cleanup forms of both
CL:UNWIND·PROTECT and RESETLST (etc) to be performed. This
is discussed in more detail in the notes for Chapter 11, the stack.

Most of the Interlisp errors are mapped into condition types in
Xerox Lisp. Some are no longer supported. Following is the list of
error type mappings. The first name is the condition type that
the error descriptor turns into. If there is a second name, it is the
slot whose value is set to CADR of the error descriptor. Any
additional pairs of items are the values of other slots set by the
mapping. Attempting to use an unsupported error type number
will result in a simple error to that effect.

o Obsolete

1 Obsolete

2 STACK-OVERFLOW

3 ILLEGAL·RETURN

4 XCL:SIMPLE· TYPE·ERROR CULPRIT : EXPECTED· TYPE 'LIST

5 XCL:SIMPLE·DEVICE·ERROR MESSAGE

6 XCL:A TTEMPT· TO·CHANGE-CONSTANT

7 XCL:ATTEMPT·TO·RPLAC-NIL MESSAGE

8 ILLEGAL·GO TAG

9 XCL:FILE·WONT-OPEN PATHNAME

10 XCL:SIMPLE·TYPE·ERROR CULPRIT : EXPECTED-TYPE
'CL:NUMBER

11 XCL:SYMBOL·NAME· TOO·LONG

12 XCL:SYMBOL-HT·FULL

13 XCL:STREAM·NOT·OPEN STREAM

14 XCL:SIMPLE-TYPE·ERROR CULPRIT:EXPECTED·TYPE 'CL:SYMBOL

15 Obsolete

LYRIC RELEASE NOTES 17

COMMON LlSPIINTERLlSP-D INTEGRATION

18

16 END-OF-FILE STREAM

17 INTERLlSP-ERROR MESSAGE

18 Not supported (control-B interrupt)

19 ILLEGAl-STACK-ARG ARG

20 Obsolete

21 XCL:ARRAY-SPACE-FULL

22 XCl:FS-RESOURCES-EXCEEDED

23 XCL:FILE-NOT-FOUND PATHNAME

24 Obsolete

25 INVALlD·ARGUMENT-LiST ARGUMENT

26 XCL:HASH-TABLE-FULL TABLE

27 INVALID-ARGUMENT-LIST ARGUMENT

28 XCL:SIMPLE-TYPE-ERROR CULPRIT : EXPECTED-TYPE 'ARRAYP

29 Obsolete

30 STACK·POINTER·RELEASED NAME

31 XCL:STORAGE-EXHAUSTED

32 Not supported (attempt to use item of incorrect type)

33 Not supported (illegal data type number)

34 XCL:DATA-TYPES-EXHAUSTED

35 XCL:AITEMPT-TO-CHANGE·CONSTANT

36 Obsolete

37 Obsolete

38 XCL:SIMPLE· TYPE-ERROR CULPRIT : EXPECTED· TYPE
'READTABLEP

39 XCL:SIMPLE· TYPE-ERROR CULPRIT :EXPECTED-TYPE
'TERMTABLEP

40 Obsolete

41 XCL:FS-PROTECTION·VIOLATION

42 XCL:INVALlD·PATHNAME PATHNAME

43 Not supported (user break)

44 UNBOUND·VARIABLE NAME

45 UNDEFINED·CAR·OF-FORM FUNCTION

46 UNDEFINED-FUNCTION·IN·APPL Y

47 XCL:CONTROL·E·INTERRUPT

48 XCL: FLOATING-UNDERFLOW

49 XCL:FLOATING-OVERFLOW

50 Not supported (integer overflow)

51 XCL:SIMPLE·TYPE·ERROR CULPRIT:EXPECTED·TYPE
'CL:HASH-TABLE

52 TOO·MANY·ARGUMENTS CALLEE :MAXIMUM
CL:CALL·ARGUMENTS·LlMIT

LYRIC RELEASE NOTES

COMMON LlSP/INTERLlSP-D INTEGRATION

Note that there are many other condition types in Xerox Lisp; see
the error system documentation in the Xerox Common Lisp
Implementation Notes for details.

Chapter 15 Breaking Functions and Debugging

The Lyric release of Xerox Lisp contains a completely new
implementation of the breaking, tracing and advising facilities
described in this chapter of the Interlisp-D Reference Manual. As
a result, while the overall behavior of the functions defined in
this chapter has not changed, many details of the underlying
implementation have. The standard uses of BREAK, TRACE, and
ADVISE are unchanged, from the user's point of view, but the
internals of the implementation are quite different.

For complete documentation on the new implementation of
breaking, tracing and advising, see the Xerox Common Lisp
Implementation Notes, Section 25.3.

In particular, you should note the following differences:

• The variable BRKINFOLST no longer exists and the format
of the value of the variable BROKENFNS has changed. In
addition, the BRKINFO property is no longer used.

• BREAK and TRACE no longer work on CLISP words.

• The BREAKIN and UNBREAKIN functions no longer exist.
No comparable facility exists in Xerox Lisp. The user can
manually insert calls to the Common Lisp function
CL:BREAK in order to create a breakpoint at that point in
the function.

Please note the following additional changes to breaki ng
functions:

Section 15.1 Breaking Functions and Debugging

(BREAKO FN WHEN COMS --) [Function]

LYRIC RELEASE NOTES

The function BREAKO now works when applied to an undefined
function. This allows you to use the breaking facility to create
"stubs" that generate a breakpoint when called. You can then
examine the arguments passed and use the RETURN command in
the debugger to return the proper result(s).

The "break commands" facility (the COMS argument) is no
longer supported. BREAKO now signals an error when supplied
with a non-NIL third argument. If you need finer control over
the functioning of breakpoints you are directed to the ADVISE
facility; it offers complete control of how and when the given
function is evaluated.

Passing a non-atomic argument in the form (FN1 IN FN2) as the
first argument to BREAKO still has the effect of creating a
breakpoint wherever FN2 calls FN1. However, it no longer
creates a function named FN1-IN-FN2 to do so. In addition, the

19

COMMON IISP/lNTERlISP-D INTEGRATION

(TRACE X)

(UNBREAK X)

Section 1 S.2 Advising

format of the value of the NAMESCHANGED property has
changed and the ALIAS property is no longer used.

[Function1

TRACE is no longer a special case of BREAK, though the functions
UNBREAK and REBREAK continue to work on traced functions.

In addition, the function TRACE no longer calls BREAKO in order
to do its job. Also, non-atomic arguments to TRACE no longer
specify forms the user wishes to see in the tracing output.

[Function1

The function UNBREAK is no longer implemented in terms of
UNBREAKO, although that function continues to exist.

The implementation of advising has been completely reworked.
While the semantics implied by the code shown in Section 15.2.1
of the Interlisp-D Reference Manual is still supported, the details
are quite different. In particular, it is now possible to advise
functions that return multiple values and for AFTER-style advice
to access those values. Also, all advice is now compiled, rather
than interpreted. The advising facility no longer makes use of
the special forms ADV-PROG, ADV-RETURN, and ADV-SETQ.

You should also note the following changes to the advise
facility:

• The editing of advice has changed slightly. In previous
releases, the advice and original function-body were
edited simultaneously. In Lyric, they can only be edited
separately. When you finish editing the advice for a
function, that function is automatically re-advised using
the new advice.

• The variable ADVINFOlST no longer exists and the format
of the value of the variable ADVISEDFNS has changed. In
addition, the properti es ADVICE and READVICE are no
longer used, except in the handling of advice saved on
files from previous releases. Advice saved in Lyric does not
use the READVICE property.

• The function ADVISEDUMP no longer exists.

• Advice saved on files in previous releases can, in general,
be loaded into the Lyric system compatibly. A known
exception is the case in which a list of the form (FN1 IN
FN2) was given to the ADVICE or ADVISE file package
commands. When READVISE is called on such a name, the
old-style advice, on the READVICE property of the symbol
FN1-IN-FN2, will not be found. This will eventually lead to
an XCl:ATTEMPT-TO-RPLAC-Nll error. The user should
evaluate the form

(RETFROM'READVISE1)
in the debugger to proceed from the error and later
evaluate

(READVISE FN1-IN-FN2)
by hand to install the advice.

20 LYRIC RELEASE NOTES

COMMON LlSPIINTERLlSP-D INTEGRATION

• The ADVICE and ADVISE File Manager commands now
accept three kinds of arguments:

a symbol, naming an advised function,
a list in the form (FN1 :IN FN2), and
a symbol of the form FN1-IN-FN2.

Arguments of the form (FN1 IN FN2) are not acceptable
any longer. Arguments of the form FN1-IN-FN2 should be
converted into the equivalent form (FN1 :IN FN2).

(ADVISE WHO WHEN WHERE WHA n [Function]

Chapter 16 List Structure Editor

Switching Between Editors

LYRIC RELEASE NOTES

In the Lyric release of Xerox Lisp, ADVISE has some changes in the
way arguments are treated and the possible values for those
arguments. Most notably:

• In earlier releases, you could call ADVISE with only one
argument, the name of a function. In this case, ADVISE
"set up" the named function for advising, but installed no
advice. This usage is no longer supported.

• Previously, an undocumented value of BIND was accepted
for the WHEN argument to ADVISE. This kind of advice is
no longer supported. It can be adequately simulated
using AROUND advice.

In addition, advising Common Lisp functions works somewhat
differently with respect to a function's arguments. The
arguments are not available by name. Instead, the variable
XCl:ARGLIST is bound to a list of the values passed to the
function and may be changed to affect what will be passed on.

As with the breaking facility (see above), ADVISE no longer
creates a function named FN1-IN-FN2 as a part of advising (FN1
IN FN2).

The list structure editor, DEdit, is not part of the Xerox Lisp
environment. It is now a Lisp Library Module. Chapter 16 has
been renamed Structure Editor.

SEd it, the new Lisp editor, replaces DEdit in the Lyric release. The
description of SEdit may be found in Appendix B of this volume.
The commands used to invoke both SEdit and DEdit are the
same.

Following is a description of the interface to the Lisp editor.

If you have both SEdit and DEdit loaded, you switch between
them by calling: (EDITMODE 'EDITORNAME) where
EDITORNAME is one of the symbols SEdit or DEdit.

21

COMMON LlSP/INTERLlSP-D INTEGRATION

Starting a Lisp Editor

(ED NAME &OPTIONAL OPTIONS) [Function]

22

Calls the currently active Lisp editor. SEdit is the default Lisp
editor. The same symbol, ED, is used in both the IL and CL
packages.

NAME is the name of any File Manager object.

OPTIONS is either a single symbol or a list of symbols, each of
which is either a File Manager type or one or more of the
keywords : DISPLAY, :OONTWAIT, :CLOSE-ON-COMPLETION, or
:NEW. If exactly one File Manager type is given, ED tries to edit
that type of definition for NAME. If more than one type is given
in OPTIONS, ED will determine for which of them NAME has a
definition. If a definition exists for more than one of the types,
ED gives you a choice of which one to edit. If no File Manager
types are given, ED treats OPTIONS as though a list of all of the
existing types had been given; thus you are given a choice of all
of the existing definitions of NAME.

The variable FILEPKGTYPES contains a complete list of the
currently-known manager types.

If the keyword :DISPLA Y is included in OPTIONS, ED uses menus
for any prompting (e.g., to choose one of several possible
definitions to edit). If :DISPLAY is not included, ED prints its
queries to and reads the user's replies from *QUERY-IO* (usually
the Exec in which you are typing). Thus all of the following are
correct ways to call the editor:

(ED 'NAME :DISPLAY)

(ED 'NAME 'FUNCTIONS)

(ED 'NAME '(:DISPLAY»
(ED 'NAME '(FUNCTIONS :DISPLAY»

(ED 'NAME '(FUNCTIONS VARIABLES :DISPLAY»

The other keywords are interpreted as follows:

:OONTWAIT

Lets the edit interface return right away, rather than waiting for
the edit to be complete. OF, DV, DC, and DP specify this option
now, so editing from the exec will not cause the exec to wait.

:NEW

Lets you install a new definition for the name to be edited. You
will be asked what type of dummy definition you wish to install
based on which file manager types were included in OPTIONS.

:CLOSE-ON-COMPLETION

Tells the editor that it must close the editor window after the
first completion. So in SEdit, CONTROL-X will close the window;
shrinking the window is not allowed. Editor windows opened by
the exec command FIX specify this option.

If NAME does not have a definition of any of the given types, ED
can create a dummy definition of any of those types. You will be
asked to select what type you wish to install. New kinds of

LYRIC RELEASE NOTES

COMMON lISP/INTERlISP-D INTEG RAT I OlNl

dummy definitions can be added to the system through the UIS€

of the :PROTOTYPE option to XCL:OEFOEFINER.

Mapping the Old Edit Interface to ED

OF NAME

OV NAME

DP NAME

The old functions for starting the Lisp editor (OF, OV, OP, and DC}
have been reimplemented so that they work with Common Lisp_
The old edit commands map to the new editor function (ED) as
follows:

~ (ED 'NAME '(FUNCTIONS FNS :OONTWAIT»

~ (ED 'NAME '(VARIABLES VARS :OONTWAIT)

~ (ED 'NAME '(PROPERTY-LIST : DONTWAIT)

DP NAME MYPROP~ (ED ' (NAME MYPROP) '(PROPS :DONTWAIT))

DC NAME

Section 16.18 Editor Fu nctions

chapter 17 File Package

LYRIC RELEASE NOTES

~ (ED 'NAME '(FILES :DONTWAIT)

Thus, for example, when OF is invoked it looks first for Common
Lisp FUNCT IONS and then for Interlisp FNS. OV, DP and DC
operate in an analogous fashion.

(II: 16.74)

The function FINOCALLERS has the following limitations in Xerox
Lisp:

1. FINOCALLERS only identifies by name the occurrences inside
of Interlisp FNS, not Common Lisp FU NCTIONS.

2. Because FINOCALLERS uses a textual search, it may report
more occurrences of the specified ATOMS than there actually
are, if the file contains symbols by the same name in another
package, or symbols with the same pname but different
alphabetic case. EOjTCALLERS still edits only the actual
occurrences, since it reads the functions and operates on the real
Lisp structure, not its printed representation.

The Interlisp-D File Package has been renamed the File Manager.
Its operation is unchanged; however, it has been extended to
manipulate, load and save Common Lisp functions, variables, etc.
It also allows specification of the reader environment (package
and readtable) to use when writing and reading a file, solving
the problem of compatibility between old and new (Common
Lisp) syntax.

Note that although source files from earlier releases can be
loaded into Lyric, files produced by the File Manager in the Lyric
release cannot be loaded into previous releases. This is true for
several reasons, the most important being that previous releases
did not have packages, so symbols cannot be read back
consistentl y.

23

COMMON LlSP/INTERLlSP-D INTEGRATION

FUNCTIONS

VARIABLES

STRUCTURES

TYPES

SETFS

DEFINE-TYPES

OPTIMIZERS

COMMANDS

The new File Manager includes several new types to deal with
the various definition forms supported in Xerox Common lisp.
The following table associates each new type with the forms that
produce definitions of that type:

CL:DEFUN, CL:DEFMACRO, CL:DEFINE-MODIFV-MACRO,
XCL:DEFINLlNE, XCL:DEFDEFINER.
XCL: DEFINE .. PROCEED-FU NCTI ON

CL:DEFCONSTANT, CL:DEFVAR, CL:DEFPARAMETER,
XCL:DEFGLOBALVAR, XCL:DEFGLOBALPARAMETER

CL:DEFSTRUCT, XCL:DEFINE·CONDITION

CL:DEFTVPE

CL:DEFSETF, CL:DEFINE-SETF-METHOD

XCL: DEF-DEFI NE-TYPE

XCL:DEFOPTIMIZER

XCL:DEFCOMMAND

Note that the types listed above, as well as all the old File
Manager types, are symbols in the INTERLISP package. In
addition, the "filecoms" variable of a file and its rootname are
also both in the INTERlISP package. You should be careful when
typing to a Common lisp exec to qualify all such symbols with
the prefix IL:. E.g.,

3>(setq if :foocoms '«il :functions bar) (il: prop il :filetype il :foo»)

to indicate you want the function BAR (in the current package)
to live on a file with rootname FOO, and also that FOO's
FllETYPE property should be saved.

Reader Environments and the File Manager

24

(II: 17. f)

In order for READ to correctly read back the same expression that
PRINT printed, it is necessary that both operations be performed
in the same reader environment, i.e., the collection of
parameters that affect the way the reader interprets the
characters appearing on the input stream. In previous releases of
Interlisp there was, for all practical purposes, a single such
environment, defined entirely by the readtable FILERDTBL. In
the Lyric release of Xerox Lisp there are two significantly
different readtables in which to read (Common lisp and
Interlisp). In addition, there are more parameters than just the
readtable that can potentially affect READ: the current package
and the read base (the bindings of *PACKAGE* and
*READ-BASE *).

To handle this diversity, a new type of object is introduced, the
READER·ENVIRONMENT, consisting of a readtable, a package,
and a read/print base. Every file produced by the File Manager
has a header at the beginning specifying the reader environment
for that file. MAKEFILE and the compiler produce this header,
while LOAD, LOADFNS, and other file-reading functions read the
header in order to set their reading environment correctly. Files

lYRIC RELEASE NOTES

LYRIC RELEASE NOTES

COMMON LlSPIINTERLlSP-D INTEGRATION

written in older releases of Lisp lack this header and are
interpreted as having been written in the environment
consisting of the readtable FILERDTBL and the package
INTERLISP. Thus, you need take no special action to be able to
load Koto source files into Lyric; characters that are "special" in
Common Lisp, such as colon, semi-colon and hash, are
interpreted as the "ordinary" characters they were in Koto.

The File Manager's reader environments are specified as a
property list of alternating keywords and values of the form
(:READTABlE readtable :PACKAGE package :BASE base). The
:BASE pair is optional and defaults to 10. The values for
readtable and package should either be strings naming a
readtable and package, or expressions that can be evaluated to
produce a readtable and package. In the former case, the
readtable or package must be one that already exists in a virgin
Lisp sysout (or at least in any Lisp image in which you might
attempt any operation that reads the file). If an expression is
used, care should be exercised that the expression can be
evaluated in an environment where no packages or readtables,
other than the documented ones, are presumed to exist. For
hints and guidelines on writing the package expression for files
that create or use their own private packages, please see Chapter
11 of the Xerox Common Lisp Implementation Notes.

When MAKEFllE is writing a source file, it uses the following
algorithm to determine the reading environment for the new
file:

1. If the root name for the file has the property
MAKEFllE-ENVIRONMENT, the property's value is used. It
should be in the form described above. Note that if you
want the file always to be written in this environment, you
should save the MAKEFllE-ENVIRONMENT property itself on
the file, using a (PROP MAKEFllE-ENVIRONMENT file)
command in the filecoms.

2. If a previous version of the file exists, MAKEFllE uses the
previous version's environment. MAKEFllE does this even
when given option NEW or the previous version is no longer
accessible, assuming it still has the previous version's
environment in its cache. If the previous version was written
in an older release, and hence has no explicit reader
environment, MAKEFILE uses the environment (:READTABlE
"INTERLlSP" :PACKAGE IINTERLlSP" :BASE 10).

3. If no previous version exists (this is a new file), MAKEFllE uses
the value of *DEFAUL T-MAKEFllE-ENVIRONMENT*, initially
(:READTABlE "XCL" :PACKAGE "INTERLlSP" :BASE 10).

Note that changing the value of
DEFAUl T-MAKEFllE-ENVIRONMENT only affects new files. If
you decide you don't like the environment in which an existing
file is written, you must give the file a MAKEFILE-ENVIRONMENT
property to override any prior default.

Since the XCL readtable is case-insensitive, you should avoid
using it for files that contain many mixed-case symbols or
old-style Interlisp comments, as these will be printed with many

25

COMMON LlSPIINTERLlSP-D INTEGRATION

Modifying Standard Readtables

26

escape delimiters. This is why the default for reprinted Koto
sources is the INTERLISP readtable.

The readtable named LISP (the pure Common Lisp readtable)
should ordinarily not be used as part of a MAKEFILE
environment. It exists solely for the use of "pure" Common Lisp
(as in the CL Exec), and thus has no provision for font escapes
(inserted by the Xerox Lisp prettyprinter) to be treated as
whitespace. Most users will want to use either XCL or INTERLISP
as the readtable for files.

If the environment for the new version of the file differs from
that of the previous version, MAKEFILE copies unchanged FNS
definitions by actually reading from the old file, rather than just
copying characters as it otherwise would. Similarly, when
RECOMPILE or BRECOMPILE attempt to recompile a file for
which the previous compiled version's reader environment is
different, they must compile afresh all the functions on the file,
i.e., they behave like TCOMPL or BCOMPL.

In the past, programmers have been periodically tempted to
change standard readtables, such as T and FILERDTBL, typically
by adding macros to read certain objects in a convenient way.
For example, the PQUOTE LispUsers module defined single quote
as a macro in FILERDTBL. Unfortunately, changing a standard
readtable means that unless you are very careful, you cannot
read other users' files that were not written with your change,
and they cannot read your files without obtaining your macro.
Furthermore, the effects are often subtle. Rather than breaking,
the system merely reads the file incorrectly. For example,
reading a file written with PQUOTE in an environment lacking
PQUOTE produces many symbols with a single quote packed on
the front.

This confusion can be avoided with MAKEFILE reader
environments. To add your own special macro:

1. Copy some standard readtable; e.g., (COPYRDTBL
"INTERLlSP").

2. Give it a distinguished name of its own, by using
(READTABLEPROP rdtbl'NAME "yourname").

3. Make your change in the copied readtable.

4. Use your new private readtable to write your files: use its
name ("yourname") in the MAKEFILE-ENVIRONMENT
property of selected files andlor change
DEFAULT·MAKEFILE·ENVIRONMENT to affect all your new
files.

5. Make sure to save your new readtable. It is usually most
convenient to include the code to create it (steps 1-3) in your
system initialization, but you could even write a
self-contained expression to use in a single file's
MAKEFILE·ENVIRONMENT property.

LYRIC RELEASE NOTES

COMMON LlSPIINTERLlSP-D INTEG RATION

With this strategy, your system will read all files in the proper
environment-your own files with your private readtable and
other users' files in their environments, including the standard
environments, which you have carefully avoided polluting. If
another user tries to load one of your files into an environment
that doesn't know about your private readtable, LOAD will give
an error immediately (readtable not found), rather than loading
the file quietly but incorrectly.

Programmer's Interface to Reader Environments

The following function and macro are available for programmers
to use. Note that reader environments only control the
parameters that determine read/pri nt consistency. There are
other parameters, such as *PRINT-CASE*, that affect the
appearance of the output without affecting its ability to be read.
Thus, reader environments are not sufficient to handle problems
of, for example, repainting expressions on the display in exactly
the same total environment in which they were first written.

(MAKE-READER-ENVIRONMENT PACKAGE READTABLE BASE) [Function]

Creates a READER-ENVIRONMENT object with the indicated
components. The arguments must be valid values for the
variables *PACKAGE*, *READTABlE* and *PRINT-BASE*; names
are not sufficient. If any of the arguments is NIL, the current
value of the corresponding variable is used. Thus
(MAKE-READER-ENVIRONMENT) returns an object that captures
the current environment.

(WITH-READER-ENVIRONMENT ENVIRONMENT. FORMS) [Macro]

Evaluates each of the FORMS with *PACKAGE*, *READTABLE*,
PRINT-BASE and *READ-BASE* bound to the values in the
ENVIRONMENT object. Both *PRINT-BASE* and *READ-BASE*
are bound to the single BASE value in the environment.

(GET-ENVIRONMENT-AND-FILEMAP STREAM DONTCACHE) [Function]

LYRIC RELEASE NOTES

Parses the header of a file produced by the File Manager and
returns up to four values:

1. The reader environment in which the file was written;

2. The file's "filemap", used to locate functions on the file;

3. The file position where the FILECREATED expression starts;
and

4. A value used internally by the File Manager.

STREAM can be a full file name, in which case this function
returns NIL unless the information was previously cached.
Otherwise, STREAM is a stream open for input on the file. It must
be randomly accessible (unless information is available from the
cache). If the file is in Common Lisp format (it begins with a
comment), then value 1 is the default Common Lisp reader
environment (readtable LISP, package USER) and the other
values are NIL. Otherwise, if the file is not in File Manager
format, values 1 and 2 are NIL, 3 is zero.

27

COMMON LlSP/INTERLlSP-D INTEGRATION

Section 17.1 loading Files

If DONTCACHE is true, the function does not cache any
information it learns about File Manager files; otherwise, the
information is cached to speed up future inquiries.

(II: 17.5)

Integration of Interlisp and Common lisp lOAD functions

28

There are four kinds of files that can be loaded in Xerox Lisp:

1. Interlisp and Common Lisp source files produced by the File
Manager using, for example, the MAKEFllE function.

2. Standard Common Lisp source files produced with a text
editor either in Xerox Lisp or from some other Common Lisp
implementation.

3. DFASL files of compiled code, produced by the new XCl
Compiler, Cl:COMPllE·FllE (extension DFASL)

4. LCOM files of compiled code, produced by the old Interlisp
Compiler (BCOMPL, TCOMPL),

Types 1 and 4 were the only kind of files that you could load in
Koto; types 2 and 3 are new with Lyric. Both Il:LOAD and
Cl:LOAD are capable of loading all four kinds of files. However,
they use the following rules to make the types of files
unambiguous so that they can be loaded in the correct reader
envi ronment.

• If the file begins with an open parenthesis (possibly after
whitespace and font switch characters), it is assumed to be of
type 1 or 4: files produced by the File Manager. The first
expression on the file (at least) is assumed to be written in
the old FILERDTBl environment; for new Lyric files this
expression defines the reader environment for the
remainder of the file. See the section, Reader Environments
and File Manager for details.

• If the file begins with the special FASL signature byte (octal
221), it is assumed to be a compiled file in FASl format, and is
processed by the FASL loader. The FASl loader ignores the
LDFLG argument to Il:lOAD, treating all files as though
LDFLG were SYSlOAD (redefinition occurs, is not undoable,
and no File Manager information is saved).

• If the file begins with a semicolon, it is assumed to be a pure
Common Lisp file. The expressions on the file are read with
the standard Common Lisp readtable and in package USER
(unless a package argument was given to LOAD; see below).

• If the file begins with any other character, LOAD doesn't
know what to do. Currently, it treats the file as a pure
Common Lisp file (as if it started with a comment).

Thus, if you prepare Common Lisp text files you should be sure to
begin them with a comment so that lOAD can tell the file is in
Common Lisp syntax.

LYRIC RELEASE NOTES

COMMON lISPIINTERLlSP-D INTEGRATION

The function CL:LOAD accepts an additional keyword
:PACKAGE, whose value must be a package object; the function
IL:LOAD similarly has an optional fourth argument PACKAGE. If
a package argument is given, then LOAD reads Common Lisp
text files (type 2 above) with *PACKAGE* bound to the specified
package. In the case of File Manager files (types 1 and 4), the
package argument overrides the package specified in the file's
reader environment.

(11:17.6-17.8)

The Interlisp functions LOADFNS, LOADFROM, LOADVARS and
LOADCOMP do not work on FASL files. They do still work on files
produced by the old compiler (extension LCOM).

(II: 17.9)

FILESLOAD (also used by the File Manager's FILES command)
now searches for compiled files by looking for a file by the
specified name whose extension is in the list
COMPILED-EXTENSIONS. The default value for
*COMPILED-EXTENSIONS * the Lyric release is (DFASL LCOM). It
searches the list of extensions in order for each directory on the
search path. This means that FASL files are loaded in preference
to old-style compiled files.

Section 17.2 Storing Files

LYRIC RELEASE NOTES

The Lyric release contains two different compilers, the Interlisp
Compiler that was present in Koto and previous releases, and the
new XCL Compiler (see the next section, Chapter 18 Compiler).
With more than one compiler available, the question arises as to
which compiler will be used by the functions CLEANUP and
MAKEFILE. The default behavior of these functions in Lyric is to
always use the new XCL Compiler. This default can be changed,
either on a file-by-file basis or system-wide. Most users,
however, will have no need to change the default.

When the C or RC option has been given to MAKEFllE, the
system first looks for the value of the FILETYPE property on the
symbol naming the file. For examplel. for the file
"{DSK}<lISPFILES>MYFILE", the property list of the symbol
MYFILE would be examined.

The FILETYPE property should be either a symbol from the list
below or a list containing one of those symbols. The following
symbols are allowed and have the given meanings:

:TCOMPL Compile this file by calling either TCOMPL or RECOMPILE,
depending upon which of the C or RC options was passed to
MAKEFILE.

:BCOMPL Compile this file by calling either BCOMPL or BRECOMPILE,
depending upon which of the C or RC options was passed to
MAKEFILE. This isequivalent tothe Koto behavior.

:COMPILE-FILE Compile this file by calling CL:COMPILE-FILE, regardless of which
option was passed to MAKEFILE.

If no FILETYPE property is found, then the function whose name
is the value of the variable *OEFAULT-CLEANUP-COMPILER* 's

29

COMMON LlSP/INTERLlSP-D INTEGRATION

used. The only legal values for this variable are TCOMPL,
BCOMPL, and CL:COMPILE-FILE. Initially,
OEFAULT-CLEANUP-COMPILER is set to CL:COMPILE-FILE.

If you choose to set the FILETYPE property of file name, you
should take care that the filecoms for that file saves the value of
that property on the file. This will ensure that the same compiler
will be used every time the file is loaded. To save the value of the
property, you should include a line in the coms like the
following:

(PROP FILETYPE MYFILE)

where MYFILE is the symbol naming your file.

Section 17.8.2 Defining New File Manager Types

(11:17.30)

The File Manager has been extended to allow File Manager types
that accept any Lisp object as a name. A consequence of this is
that any user-defined type's HASOEF function should be
prepared to accept objects other than symbols as the NAME
argument. Names are compared using EQUAL.

Definers: A New Facility for Extending the File Manager

30

The Definer facility is provided to make the process of adding a
certain common kind of File Manager type easy. All of the new
File Manager types in the Lyric release (including FUNCTIONS,
VARIABLES, STRUCTURES, etc.) and almost all of the new
defining macros (including CL:OEFUN, CL:DEFPARAMETER,
CL:DEFSTRUCT, etc.) were themselves created using the Definer
facility.

In previous releases, adding new types and commands to the File
Manager involved deeply understanding the way in which it
worked and defining a number of functions to carry out certain
operations on the new type/command. Further, making
functions and macros save away definitions of the new type was
similarly subtle and generally difficult or complicated to do.
With the addition of Common Lisp, it was realized that a large
number of new types and commands would be added, all
needing essentially the same implementation of the various
operations. In addition, many new defining macros were to be
added and all of them needed to save definitions.

As an explanation of the Definer facility, we will describe how
VARIABLES and CL:OEFPARAMETER could be added into the
system, if they were not already there.

First, a little background about our example. The macro
CL:OEFPARAMETER is used in Common Lisp to globally declare a
given variable to be special and to give it an initial value. (For
the purposes of this example, we will ignore the
documentation-string given to real CL:DEFPARAMETER forms.)
The value of a call to the macro should be the name of the
variable being defined. An acceptable definition of this macro
might appear as follows:

LYRIC RELEASE NOTES

LYRIC RELEASE NOTES

COMMON LlSP/INTERLlSP-D INTEGRATION

(DEFMACRO CL:DEFPARAMETER (SYMBOL EXPRESSION)
, (PROGN

(CL:PROCLAIM '(CL:SPECIAL ,SYMBOL)
(SETQ ,SYMBOL ,EXPRESSION)
, ,SYMBOL))

There are some problems with using such a simple definition in
the Xerox Lisp environment, however. For example, if a call to
this macro were typed to the Exec, the File Manager would not
be told to notice it. Thus, there would be no convenient way to
remember to add the form to the filecoms of some file and thus
to save it away. Also, note that the macro does not pay attention
to the DFNFLG variable; thus, loading a file containing a
CL:DEFPARAMETER form would always set the variable to the
value of the initial expression, even when DFNFLG was set to
ALLPROP. This could make editing code using this variable
difficult.

We will now proceed to fix these problems by getti ng the
Definer facility involved. There are two steps involved in using
Definers:

• Unless one of the currently-existing File Manager types is
appropriate for definitions using the new macro, a new
type must be created. The macro XCL:DEF-DEFINE-TYPE is
used for this purpose .

• The macro must be defined in such a way that the File
Manager can tell that it should notice and save uses of the
macro and under which File Manager type the uses should
be saved. The macro XCL:DEFDEFINER is used for this
purpose.

Since we are pretending for the example that the File Manager
type VARIABLES is not defined, we decide that definitions using
CL:DEFPARAMETER should not be given any of the
already-existing types. We must define a type, therefore, and we
decide to call it VARIABLES. The following
XCL:DEF·DEFINE-TYPE form will do the trick:

(XCL:DEF-DEFINE-TYPE VARIABLES "Common Lisp
variables")

The first argument to XCL:DEF-DEFINE-TYPE is the name for the
new type. The second argument is a descriptive string, to be
used when printing out messages about the type.

With the new type thus created, we can now use
XCL:DEFDEFINER to redefine the macro. Simply changing the
word DEFMACRO into XCL:DEFDEFINER and adding an
argument specifying the new type suffices to change our earlier
definition into a use of the Definer facility:

{XCL:DEFDEFINER CL:DEFPARAMETER VARIABLES

, (PROGN
(SYMBOL EXPRESSION)

{CL:PROCLAIM '(CL:SPECIAL ,SYMBOL»
(SETQ .SYMBOL .EXPRESSION)
, ,SYMBOL))

(In fact, we could also remove the final • ,SYMBOL;
XCL:DEFDEFINER automatically arranges for the new macro to

31

COMMON LlSP/INTERLlSP-D INTEGRATION

32

return the name of the new definition.) Now, if we were to type
the form

(CL:DEFPARAMETER *FOO* 17)

into the Exec and then call the function FilES?, we would be
presented with something like the following:

24> (FilES?)
the Common Lisp variables: *FOO*
•.. to be dumped. want to say where the above
go?
As with other File Manager types, our definitions are being kept
track of. If we answer Yes to the above question and specify a
file in which to save the definition, a command like the following
will be added to the filecoms:

(VARIABLES *FOO*)

Actually, the output from FilES? as shown above is not quite
accurate. In reality, we would also be asked about the
following:

the Common Lisp functions/macros:
CL:DEFPARAMETER
the Definition types: VARIABLES

The File Manager is also watching for new types and new
Definers being created and will let us save those definitions as
well. These would be listed in the filecoms as follows:

(DEFINE-TYPES VARIABLES)
(FUNCTIONS CL:DEFPARAMETER)

All of these definitions are full-fledged File Manager citizens.
The functions GETDEF, HASDEF, PUTDEF, DElDEF, etc. all work
with the new type. We can edit the definition of *FOO* above
simply by specifying the type to the ED function:

(ED '*FOO* 'VARIABLES)

When we exit the editor, the new definition will be saved and,
unless DFNFlG is set to PROP or AllPROP, evaluated.

It is now time to fully describe the macros XCl:DEF-DEFINE-TYPE
and XCl:DEFDEFINER.

XCl:DEF-DEFINE-TYPE NAME DESCRIPTION &KEY :UNDEFINER [Macro]

Creates a new File Manager type and command with the given
NAME. The string DESCRIPTION will be used to describe the type
in printed messages. The new type implements PUTDEF
operations by evaluating the definition form, GETDEF and
HASDEF by looking up the given name in an internal hash-table,
using EQUAL as the equality test on names, and DElDEF by
removing any named definition from the hash-table. If the
:UNDEFINER argument is provided, it should be the name of a
function to be called with the NAME argument to any DElDEF
operations on this type. The :UNDEFINER function can perform
any other operations necessary to completely delete a definition.

XCl:DEF-DEFINE-TYPE forms are File Manager definitions of type
DEFINE-TYPES.

LYRIC RELEASE NOTES

COMMON LlSP/INTERLlSP-D INTEGRATION

As an example of the full use of XCL:DEF-DEFINE-TYPE, here is
the complete definition of the type VARIABLES as it exists in the
Lyric release:

(XCL:DEF-DEFINE-TYPE VARIABLES "Common Lisp variables"
:UNDEFINER UNDOABLY-MAKUNBOUND)

The function UNDOABLY-MAKUNBOUND is described in
Appendix D of these Release Notes.

XCL:OEFOEFINER {NAME I (NAME {OPTlON}*)} TYPE ARG-LiST &BODY BODY
[Macro]

LYRIC RELEASE NOTES

Creates a macro named NAME, calls to which are seen as File
Manager definitions of type TYPE. TYPE must be a File Manager
type previously defined using XCL:DEF-DEFINE-TYPE. ARG-LiST
and BODY are precisely as in DEFMACRO. A macro defined using
XCL:DEFDEFINER differs from one defined using DEFMACRO in
the following ways:

• BODY will be evaluated if and only if the value of DFNFLG
is not one of PROP or ALLPROP.

• The form returned by BODY will be evaluated in a context
in which the File Manager has been temporarily disabled.
This allows Definers to expand into other Definers without
the subordinate ones being noticed by the File Manager.

• Calls to Definers return the name of the new definition
(as, for example, CL:DEFUN and CL:DEFPARAMETER are
defined to do).

• Calls to Definers are noticed and remembered by the File
Manager, saved as a definition of type TYPE.

• SEdit- and Interlisp-style comment forms (those with a
CAR of IL:*) are stripped from the macro call before it is
passed to BODY. (This comment-removal is partially
controlled by the value of the variable
REMOVE-INTERLlSP-COMMENTS, described below.)

The following OPTIONs are allowed:

(:UNDEFINER FN)

If DELDEF is called on a name whose definition is a call to this
Definer, FN will be called with one argument, the name of the
definition. This option allows for Definer-specific actions to be
taken at DELDEF time. This is useful when more than one
Definer exists for a given type. FN should be a form acceptable as
the argument to the FUNCTION special form.

(: NAME NAME-FN)

By default, the Definer facility assumes that the first argument to
any macro defined using XCL:DEFDEFINER will be the name
under which the definition should be saved. This assumption
holds true for almost all Common Lisp defining macros, including
CL:DEFUN, CL:DEFMACRO, CL:DEFPARAMETER and CL:DEFVAR.
It doesn't work, however, for a few other forms, such as
CL:DEFSTRUCT and XCL:DEFDEFINER itself. When defining a
macro for which that assumption is false, the :NAME option
should be used. NAME-FN should be a function of one

33

COMMON LlSPIINTERLlSP-D INTEGRATION

34

argument, a call to the Definer. It should return the Lisp object
naming the given definition (most commonly a symbol, but any
lisp object is permissible). For example, the :NAME option in the
definitions of Cl:DEFSTRUCT and XCl:DEFDEFINER is as follows:

(:NAME {LAMBDA (FORM)
(LET «NAME (CADR FORM»)

(COND «LITATOM NAME)
NAME)

(T (CAR NAM~»»»
NAME-FN should be a form acceptable as the argument to the
FUNCTION special form (i .e., a symbol naming a function or a
LAMBDA-form).

(: PROTOTYPE DEFN-FN)

When the editor function ED is passed a name with no
definitions, the user is offered a choice of several ways to create
a prototype definition. Those choices are specified with the
:PROTOTYPE option to XCL:DEFDEFINER. DEFN-FN should be a
function of one argument, the name to be defined using this
Definer. DEFN-FN should return either NIL, if no definition of
that name can be created with this Definer, or a form that, when
evalauted, would create a definition of that name. For example,
the :PROTOTYPE option for Cl:DEFPARAMETER might look as
follows:

(:PROTOTYPE (LAMBDA (NAME)
(AND (LITATOM NAME)

'(CL:DEFPARAMETER .NAME "Value"»»
An example using all of the features of XCL:DEFDEFINER is the
definition of XCl:DEFDEFINER itself, which begins as follows:

(XCL:DEFDEFINER (XCL:DEFDEFINER

...)

(:UNDEFINER \DELETE-DEFINER)
(:NAME

{LAMBDA (FORM)
(LET «NAME (CADR FORM»)

(COND «LITATOM NAME)
NAME)

(T (CAR NAME»»»
(:PROTOTYPE

(LAMBDA (NAME)

FUNCTIONS

{AND (LITATOM NAME)
'(XCL:DEFDEFINER .NAME "Type"

("Arg List")
"Body"»»)

(NAME-AND-OPTIONS TYPE ARG-lIST &BODY BODY)

The following variable is used in the process of removing SEdit
and Interlisp-style comments from Definer forms:

REMOVE-INTERlISP-COMMENTS [Variable]

Interlisp-style comments are forms whose CAR is the symboIIL:*.
It is possible for certain lists in Lisp code to begin with IL:* but
not be a comment (for example, a SELECTQ clause). When such a
list is discovered, the value of *REMOVE·INTERlISP·COMMENTS*
is examined. If it is T, the list is assumed to be a comment and is
removed without comment. If it is :WARN, a warning message is
printed, saying that a possible comment was not stripped from

LYRIC RELEASE NOTES

Chapter 18 Compiler

LYRIC RELEASE NOTES

COMMON LlSPIINTERLlSP-D INTEGRATION

the code. If *REMOVE-INTERLlSP-COMMENTS * is NIL, the list is
not removed, but no warning is printed. This variable is initially
set to :WARN.

The Lyric release contains two distinct Lisp compilers:

• The Interlisp Compiler, described in detail in Section 18 of the
Interlisp Reference Manual

• The new XCL Compiler, described in the Xerox Common Lisp
Implementation Notes.

The Interlisp Compiler provides compatibility with previous
releases of Interlisp-D. It continues to work in very much the
same way as it did jn Koto; as before, it compiles all of the
Interlisp language. The Interlisp Compiler does not, however,
compile the Common Lisp language and will not be extended to
do so. The Lyric release is the last release to contain the Interlisp
Compiler as a component; future releases will have only the new
XCL Compiler. The XCL Compiler is designed to handle both
Interlisp and Common Lisp.

Several incompatible changes have been made in the compiled
object code produced by the Interlisp Compiler. This means that
all user code must be recompiled in Lyric. Code compiled in Koto
or previous releases will not load into Lyric, and code compiled in
Lyric wil not load into earlier releases. The filename extension
for Interlisp compiled files has been changed from DCOM to
LCOM in order to minimize possible confusion.

The XCL Compiler writes its output on a new kind of object file,
the DFASL file. These files are quite different from the
DCOM/LCOM files produced by the Interlisp Compiler. DFASL
files are somewhat more compact, much faster to load and can
represent a wider range of data objects than was possible in
LCOMs.

Interlisp source files from Koto can be compiled using the new
XCL compiler. However, some files need to be remade in Lyric
before compilation: files containing bitmaps, Interlisp arrays, or
the UGLVVARS and/or HORRIBLEVARS File Manager commands.
To compile such a file, first LOAD it, then call MAKEFILE to write
it back out. This action causes the bitmaps and other unusual
objects to be written back in a format acceptable to the new
compiler.

The default behavior of the File Manager's CLEANUP and
MAKEFILE functions is to use the new XCL Compiler to compile
files, rather than the old Interlisp Compiler. To change this
behavior, see Section 17.2, Storing Files.

Note that if you call the compiler explicitly, rather than via
CLEANUP or MAKEFILE, you should be careful to specify the
correct compiler. The new compiler is invoked by calling

35

COMMON LISP/INTERLlSP-D INTEGRATION

Chapter 19 Masterscope

Chapter 21 CLISP

36

CL:COMPILE-FILE. If you inadvertantly call BCOMPL on a file for
which CLEANUP has routinely been using the new XCL compiler,
there are two undesirable consequences: (1) Any Common Lisp
functions on the file will not be compiled (the InterJisp compiler
does not recognize CL:DEFUN), and (2) the DFASl files produced
by earlier calls on the XCL compiler will still. be loaded by
FILESLOAD in preference to the LCOM file produced by BCOMPL.

With this compiler, Xerox Lisp provides a facility,
XCL:DEFOPTIMIZER, by which you can advise the compiler about
efficient compilation of certain functions and macros.
XCL:DEFOPTIMIZER works with both the old Interlisp Compiler
and the new XCL Compiler. See the Xerox Common Lisp
Implementation Notes for a description of the compiler.

Masterscope is now a Lisp Library Module, not part of the
environment.

CLiSP infix forms do not work under the Common Lisp evaluator;
only "clean" CLiSP prefix forms are supported. You should run
DWIMIFY in Koto on all other CLiSP code before attempting to
load it in Lyric. The remainder of this note describes the specific
limitations on CLiSP in Lyric.

There are two broad classes of transformations that DWIM
applies to Lisp code:

1. A sort of macro expander that transforms IF, FOR, FETCH, etc.
forms into "pure" Lisp code in well-defined ways.

2. A heuristic "corrector" that performs spelling correction and
transforms CLiSP infix forms such as X + Y into (PLUS X V),
sometimes having to make guesses as to whether X + Y might
really have been the name of a variable.

An operational way of distinguishing the two is that DWIMIFY
applied to code of type (1) makes no alterations in the code,
whereas for code of type (2) it .physically changes the form.
Another difference is that code of type (2) must be dwimified
before it can be compiled (user typically sets DWIMIFYCOMPFLG
to T), whereas the compiler is able to treat code of type (1) as a
special kind of macro.

Broadly speaking, code of type (2) is no longer fully supported.
In particular, DWIM is invoked only when the code is
encountered by the Interlisp evaluator. This means code typed
to an "Old Interlisp" Executive, and code inside of an interpreted
Interlisp function. Furthermore, some CLiSP infix forms no

LYRIC RELEASE NOTES

LYRIC RELEASE NOTES

COMMON LlSP/INTERLlSP-D INTEGRATION

longer DWIMIFY correctly. It is likely that CLiSP infix will not be
supported at all in future releases.

Expressions typed to the new Executives and inside of Common
Lisp functions are run by the Common Lisp evaluator (CL:EVAL).
As far as this evaluator is concerned, DWIM does not exist, and
forms beginning with "CLlSP" words (IF, FOR, FETCH, etc) are
macros. These macros perform no DWIM corrections, so all of
the subforms must be correct to begi n with. This is a change
from past releases, where the DWIM expansion of a CLiSP word
form also had the side effect of transforming any CLiSP infix that'
it might have contained. Fori example, the macro expansion of

(if X then Y+1)

treats Y + 1 as a variable, rather than as an addition. The correct
form is

(if X then (PLUS Y 1»,

which is the wayan explicit call to DWIMIFY would transform it.

If you have CLiSP code from Koto you are advised to DWIMIFY
the code before attempting to run or compile it in Lyric. Because
of differences in the environments, not all CLiSP constructs will
DWIMIFY correctly in Lyric. In particular, the following do not
work reliably, or at all:

1. The list-composing constructs using < and> do not DWIMIFY
if the < is unpacked (an isolated symbol), because in Common
Lisp, < is a perfectly valid CAR of form. On the other hand,
the closing > must be unpacked if the last list element is
quoted, since, for example, «A 'B >) reads as «A (QUOT E
B> ».

2. Because of the conventional use of the characters * and - in
Common Lisp names, those characters are only recognized as
CLiSP operators when they appear unpacked.

3. On the other hand, the operators + and I are the names of
special variables in Common Lisp (Steele, p32S), and hence
cause no error when passed unpacked to the evaluator. Thus
(LIST X + Y) returns a list of three elements, with no
resort to DWIM; however, the parenthesized version (L I 5T
(X + Y» and the packed version (L I 5T X +Y) both
work.

If you routinely DWIMIFY code, so that no CLiSP infix forms (type
2 above) remain on your source files, you may not need to make
any changes. However, note that the fact that DWIMIFY of
prefix forms implicitly performed infix transformations can hide
code that escaped being completely dwimified before being
written to a file.

There is a further caution regarding even routinely dwimified
code that has not been edited since before Koto. Two uses of
the assignment operator (+-) no longer work, if not explicitly
dwimified, because their canonical form (the output of
DWIMIFY) has changed, and the old form is no longer supported
when the form is simply evaluated, macro-expanded, or
compiled (with DWIMIFYCOMPFLG = NIL):

37

COMMON LlSPIINTERLlSP-D INTEGRATION

Chapter 22 Performance Issues

Section 22.3 Performance Measuring

38

1. Iterative statement bindings must always be lists. For
example, the old form

(bind X~2 for Y in --)

is now canonically

(bind (X ~ 2) for Y in --).

2. In a WITH expression, assignments must be dwimified to
remove~. For example, the old form

(with MYRECDRD MYFIELD ~ (FDD)

is now canonically

(with MYRECDRD (SETQ MYFIELD (FDD)).

DWIMIFY in Koto correctly made these transformations;
however, in some older releases, it did not. Such old code must
be explicitly dwimified (which you can do for these cases in Lyric).
The errors resulting from failure to do so can be subtle. In
particular, the compiler issues no special warning when such
code is compiled. For example, in case 1, the macro expansion of
the old form treats the symbol X~2 as a variable to bind, rather
than as a binding of the variable X with initial value 2. The only
hint from the compiler that anything is amiss is likely to be an
indication that the variable X is used freely but not bound. Case
2 is even subtler: the symbols MY FIE LD and ~ are treated as
symbols to be evaluated; since their values are not used, the
compiler optimizes them away, reducing the entire expression to
simply (FDD), and there is thus no warning of any sort from the
compiler.

(11:22.8)

The Interlisp-D TIME function has been withdrawn and replaced
with the Common Lisp TIME macro (the symbol TIME is shared
between IL and CL and thus need not be typed with a package
prefix). The functionality of the TIMEN and TlMETYP arguments
to the old TIME can be had by keywords to the TIME macro. The
Xerox Common Lisp Implementation Notes describe the new
TIME macro and its associated command in more detail.

LYRIC RELEASE NOTES

chapter 24 Streams and Files

LYRIC RELEASE NOTES

VOLUME III-INPUT/OUTPUT

The Xerox Common Lisp file system supports multiple streams
open simultaneously on the same file. This is an incompatible
change to the semantics of Interlisp-D. You may have to modify
old programs if they have not followed the guidelines listed in
Sec 24.5 of the Interlisp-D Reference Manual. Some of the
implications of this change for Interlisp programs are described
below.

In prior releases of Interlisp-D, the system treated the name of an
open file as a synonym for the stream open on the file. This
meant that only one stream could be open at any time on a given
file. In the Lyric release, a file name is no longer a unique name
for an open stream. Thus, file names are no longer acceptable as
the file/stream argument to any input/output or file system
function that operates on an open stream (READ, PRINT, CLOSEF,
COPYBYTES, etc). The only non-stream values acceptable as
stream designators are the symbols NIL and T, designating the
primary and terminal input/output streams. An attempt to use a
litatom, even a "full file name," as a stream designator signals
the error "LlTATOM 'streams' no longer supported." Strings no
longer designate an input stream whose source is the string
itself-programs should call OPENSTRINGSTREAM instead, or use
the comparable Common Lisp forms, such as
CL:WITH-INPUT-FROM-STRING.

The functions OPENFILE and OPENSTREAM are now
synonymous-both return a stream instead of a "full file name."
The functions INPUT and OUTPUT also return streams. One
exception to this is that INPUT and OUTPUT return T in the case
where the primary input or output stream was previously
directed to the terminal. However, this special behavior is for
the Lyric release only; we recommend that you convert old code
that depended on testing (EQ (OUTPUT) T). Note that the values
of the variables *STANDARD-INPUT* and *STANDARD-OUTPUT*
are always streams, even if they are directed to the terminal.

The function FULLNAME can be used to obtain the name of a
stream. For your convenience, the print syntax of streams now
includes the name of the stream (if to a file) and its access (input,
output, etc.). Functions, such as UNPACKFILENAME, that
manipulate file names generally accept a stream as well,
extractingthe name of the file from the stream.

INFllEP still returns a full file name, as it is merely recognizing a
file, not opening a stream to it. Programmers should be wary of
code that subsequently tries to use the value of INFILEP as a
stream argument .. And, of course, the FILENAME argument to
OPENSTREAM is still a name (a symbol or string), not a stream.
OPEN STREAM also accepts a Common Lisp pathname as its
FILENAME argument.

The function CLOSEALL is no longer implemented. The function
OPENP returns NIL when passed a file name (or anything else but

39

COMMON lISP/INTERlISP-D INTEGRATION

an open stream). However, for the Lyric release, (OPENP NIL)
still returns a list of all streams open to files.

The functions GETFILEINFO and SETFILEINFO can still be given
either an open stream or a file name. However, in the latter case,
the request refers to the file, not to any stream open on the file.
Thus, requesting the value of the attribute LENGTH for a file
name may return a different value than requesting the value of
the attribute LENGTH for a stream currently open on the file.
GETFILEINFO returns NIL if given a file name and an attribute
that only makes sense for streams (e.g., ACCESS,
ENDOFSTREAMOP).

There is no difference between Common Lisp and Interlisp
streams. A stream opened by an Interlisp function can be passed
as argument to a Common Lisp input/output function, and vice
versa.

Even though mUltiple streams per file are supported, the streams
must still obey consistent access rules. That is, if a stream is open
for output, no other streams on that file can be opened. It is not
possible to RENAMEFILE or DELFILE a file that has any open
stream on it.

The RS-232 or TTY ports are inherently single-user devices (rather
than real files) thus, multiple streams cannot be open
simultaneously on RS-232 or TTY.

Section 24.15 Deleting, Copying, and Renaming Files

(111:24.15)

The support of multiple streams per file now makes it possible to
use COPYFILE without worrying about there being other readers
of the file, in particular even when there is already a stream open
on the file for sequential-only access (a case that failed in prior
releases). Of course, COPYFILE cannot be used if the file already
has an output stream open.

chapter 25 Input/Output Functions

Variables Affecting Input/Output

40

There are several implicit parameters that affect the behavior of
the input/output functions: the numeric print base, the primary
output file, etc. In Common Lisp, these parameters are
controlled by binding special variables. In Interlisp they are
controlled by a functional interface; e.g., an output expression is
wrapped in (RESETFORM (RADIX 8) --) to cause numbers
to be pri nted in octal.

Where the input/output parameters in Common Lisp and
Interlisp have essentially the same semantics, they have been
integrated in Xerox Lisp. That is, binding the Common Lisp
special variable and calling the Interlisp function are equivalent

LYRIC RELEASE NOTES

PRINT-BASE vs RADIX

STANDARD-INPUT vs INPUT

STANDARD-OUTPUT vs OUTPUT

*PRINT-LEVEL * & *PRINT-LENGTH*
vs PRI NTLEVEL

*READTABLE*vsSETREADTABLE

LYRIC RELEASE NOTES

COMMON lISPIINTERlISP-D INTEGRATION

operations, and they affect both Interlisp and Common Lisp
input/output. However, it is considerably more efficient to bind
a special. variable than to call a function in a RESETFORM
expression. In addition, binding a variable has only a local effect,
whereas calling a function to side-effect the input/output
parameters can also affect other processes. Thus, you are
encouraged to use special variable binding to change
parameters formerly changed via functional interface.

All of these variables are accessible in both the Common Lisp and
Interlisp packages, so no package qualifier is required when
typing them.

These parameters are as follows:

Binding *PRINT-BASE* to an integer n from 2 to 36 tells the
printing functions to print numbers in base n. This is equivalent
to (RADIX n). Note: this variable should not be confused with
PRINT-RADIX, another Common Lisp variable that controls
whether Common Lisp functions include radix specifiers when
printing numbers.

Binding *STANDARD-INPUT* to an input stream specifies the
stream from which to read when an input function's stream
argument is NIL or omitted. Evaluating *STANDARD-INPUT* is
the same as evaluating (INPUT), except that (INPUT) returns T if
the primary input for the process is the same as the ·terminal
input stream (this compatibility feature is for the Lyric release
only).

Binding *STANDARD-OUTPUT* to an output stream specifies the
stream to which to print when an output function's stream
argument is NIL or omitted. Evaluating *STANDARD-OUTPUT* is
the same as evaluating (OUTPUT) except that (OUTPUT) returns T
if the primary output for the process is the same as the terminal
output stream (this compatibility feature is for the Lyric release
only).

Binding *PRINT-LEVEL * to a positive integer a and
PRINT-LENGTH to a positive integer d is equivalent to calling
(PRINTLEVEL a d). Binding either variable to Nil is equivalent to
specifying a value of -1 for the corresponding argument to
PRINTLEVEL, i.e., it specifies infinite depth or length. Note that
in Interlisp, print level is " triangular"-the print length decreases
as the depth increases. In Common Lisp, the two are
independent. Thus, although print level for both Interlisp and
Common Lisp is controlled by a common pair of variables, the
Interlisp and Common Lisp print functions interpret them
(specifically *PRINT-LENGTH*) slightly differently. In addition,
Interlisp observes print level only when printing to the terminal,
whereas Common Lisp observes it on all output.

Binding *READTABLE* to a readtable specifies the readtable to
use in any input/output function with a readtable argument
omitted or specified as NIl. Evaluating *READTABLE* is the same
as evaluating (GETREADTABLE). There is no longer a "NIL" or
"T" readtable in Interlisp. See the discussion of readtables for
more details.

41

COMMON LlSP/INTERLlSP-D INTEGRATION

Although the binding style is to be preferred to the RESETFORM
expression, one difference should be noted with respect to error
checking. In a form such as

(RESETFORM (RADIX n)
some-printing-code)

the value of n is checked immediately for validity, and an error is
signalled if n is not an integer between 2 and 36. However, in

(LET «*PRINT-BASE* n»
some-printing-code)

there is no error checking at the time of the binding; rather, an
error will not be signalled until the code attempts to print a
number.

Similarly, the values of *STANDARO-INPUT* and
STANDARD-OUTPUT must be actual streams, not the val ues
that print functions coerce to streams, such as NIL, T or window
objects.

Integration of Common Lisp and Interlisp Input/output Functions

Section 25.2 Input Functions

42

Common Lisp and Interlisp have slightly different rules for
reading and printing, regarding such things as escape characters,
case sensitivity and number format. Each has two kinds of
printing function, an escaped version (intended for reading back
in) and an unescaped version. In order that Common Lisp and
Interlisp programs can more freely intermix, Xerox Lisp isolates
most of the reading/printing differences in the readtables used
by both languages, rather than in the functions themselves. The
exact rules have been chosen as a reasonable compromise
between backward compatibility with Interlisp and integration
with Common Lisp. This section outlines the details of this
integration.

In what follows, the phrase "the readtable" generally refers to
the readtable in force for the read or print operation being
discussed. Specifically, this means an explicit readtable (other
than NIL or T) passed as readtable argument to an Interlisp
function, or else the current binding of *READTABLE*. See the
section on readtables for more details.

The functions IL:READ and CL:READ, given the same readtable,
interpret an input in exactly the same way. That is, the functions
obey Common Lisp syntax rules when given a Common Lisp
readtable, and Interlisp syntax when given an Interlisp readtable.
Thus, the principal difference between the two is in the
functionality provided by CL:READ's extra arguments: end of file
handling and the ability to specify that the read is recursive,
which is mostly important when reading input containing
circular structure references· (the ## and # = macros). See
Common Lisp, the Language for details of CL:READ's optional
arguments.

There is one further difference between IL:READ and CL:READ,
in the handling of the terminating character. If the read

LYRIC RELEASE NOTES

Section 25.3 Output Functions

COMMON L1SP/INTERLlSP-D INTEGRATION

terminates on a white space character, CL:READ consumes the
character, while IL:READ leaves the character in the buffer, to be
read by the next input operation. Thus, IL:READ is equivalent to
CL:READ-PRESERVING-WHITESPACE. This difference is so that
Interlisp code that calls (READC) following a (READ) of a symbol
will behave consistently between Koto and Lyric.

The Interlisp function SKREAD now defaults its readtable
argument to the current readtable, viz., the value of
READTABLE, rather than FILERDTBL. This makes it consistent
with all the other input functions, and is usually the correct
thing, especially with the new reader environments used by the
File Manager, but it is an incompatible change from .Koto.
SKREAD is also now implemented using Common Lisp's
READ-SUPPRESS mechanism, which means that, unlike in
Koto, it does something reasonable when it encounters read
macros.

The discussion here is limited to the four basic printing functions:
the unescaped and escaped Interlisp printing functions (lL:PRIN1,
IL:PRIN2) and the corresponding Common Lisp functions
(CL:PRINC, CL:PRIN1). All other print functions ultimately reduce
to these. For example, IL:PRINT calls IL:PRIN2; CL:FORMAT with
the -S directive performs a CL:PRIN1.

IL:PRIN1 is essentially unchanged from previous releases. It uses
no readtable at all, so is unaffected by the value of
READTABLE. It can be thought of as implicitly using the
INTERLISP readtable.

Roughly speaking, IL:PRIN2 and CL:PRIN1 behave the same when
given the same readtable. In particular, they both produce
output acceptable to either READ function given the same
readtable. Their minor differences are listed below.

CL:PRINC behaves like CL:PRIN1, except that it never prints
escape characters or package prefixes. Thus, unlike IL:PRIN1, it is
affected by the value of *READTABLE*.

For the benefit of user-defined print functions, IL:PRIN2 and
CL:PRIN1 bind *PRINT-ESCAPE* to T, while IL:PRIN1 and
CL:PRINC bind it to NIL. Thus, the print function can always
examine *PRINT-ESCAPE* to decide whether it needs to print
objects in a way that will read back correctly (Common Lisp user
print functions may want to use CL:WRITE to pass
PRINT·ESCAPE through transparently; Interlisp functions
should choose IL:PRIN2 or IL:PRIN1 appropriately).

Printing Differences Between Il:PRIN2 and Cl:PRIN1

LYRIC RELEASE NOTES

There are two respects in which the lnterlisp print functions
(both IL:PRIN1 and IL:PRIN2) differ from the Common Lisp ones,
independent of readtable:

Line Length. The Interlisp functions respect the output stream's
line length, while the Common Lisp functions all ignore it (they

43

COMMON LlSP/INTERLlSP-D INTEGRATION

Internal Printing Functions

. never insert newline characters when output approaches the
right margin).

Print Level. The Interlisp functions respect the print level
variables only when printing to the terminal (unless PLVLFILEFLG
is true, see the Interlisp-D Reference Manual) or when printing
with a Common Lisp readtable, whereas the Common Lisp
functions respect them on all output.

Interlisp has several functions (e.g., NCHARS, STRINGWIDTH,
CHCON, MKSTRING) that operate on the "prin 1 pname" of an
object, or optionally on its "prin2 pname" when given an extra
flag and readtable as arguments. These functions are essentially
unchanged in Lyric.

In terms of the discussion above, the "prin1 pname" of an object
continues to be the characters that would be produced by a call
to IL:PRIN1 at infinite print level and line length, and with
PRINT-BASE bound to 10 (unless PRXFLG is true, see Interlisp-d
Reference Manual). The" prin2 pname" of an object is the list of
characters that would be produced by a call to IL:PRIN2 (or
CL:PRIN1) using the specified readtable (or *READTABLE* if
none is given), again at infinite print level and line length.

Exception: the function STRINGWIDTH computes the width of
the expression as if it were printed at the current *PRINT-LEVEL *
and *PRINT-LENGTH*.

Printing Differences between Koto and Lyric

44

The Common Lisp and Interlisp printing functions use the same
strategy for escaping characters in symbol names. Because of
this, symbols may print differently in Lyric than they did in Koto,
for two reasons: the use of the Common Lisp multiple escape
character, and the escaping of numeric print names. Although
the appearance is different, the functionality is the
same-symbols are still printed in a way that allows them to be
correctly read.

Roughly speaking, the multiple escape character is used to
escape symbol names that would require two or more single
escape characters. Thus, for example, a symbol that printed as
%(OH% NO%) in Koto will print in Lyric as I (OH NO) I. However,
in the old readtables that lack a multiple escape character (e.g.,
OLD-INTERLlSP-T), the single escapes are still used. Multiple
escapes are also used to print a symbol containing lower-case
letters when the readtable is case-insensitive, e.g., I Sma 11 I in a
Common Lisp readtable. Keep in mind also that some additional
characters are now "special", e.g., colon in all new readtables,
semi-colon in Common Lisp. Thus, the typical NS File "full name"
will be printed with the multiple escape character.

Since it is now possible to create symbols that have "numeric"
print names, such symbols must be printed with suitable escape
characters, so that on input they are not misinterpreted as
numbers. For example, the symbol whose print name is "1.2E3"

LYRIC RELEASE NOTES

Bitmap Syntax

Section 25.8 Readtables

LYRIC RELEASE NOTES

COMMON LlSPIINTERLlSP-D INTEGRATION

is printed as 11. 2E31. In read tables lacking a multiple escape
character, the single escape character is used instead, e.g.,
%1.2E3 in the old Interlisp T readtable. A print name is
considered numeric according to the definition of "potential
number" in Common lisp (p. 341). Even if such a symbol is not
readable in the current system as a number, it still needs to be
escaped in case it is read into another system that treats it as
numeric (either another Common Lisp implementation, or a
future implementation of Xerox lisp). Thus, some old Interlisp
symbols now print escaped where they didn't in Koto; e.g., the
PRINTOUT directive I. P21 is a potential number.

Bitmaps are printed in a new syntax in Lyric. When
PRINT-ARRA Y is NIL (the default at top level), a bitmap prints
in roughly the same compact form as previously:

#<B I TMAP @ nn,nnnnnn)

If *PRINT·ARRA Y* is T, a bitmap prints in a manner that allows it
to be read back:

#* (Width Height [BitsPerPixel])XXXXXXXXX ...

Width and Height are measured in pixels; BitsPerPixel is supplied
for bitmaps of other than the default of 1 bit per pixel. Each X
represents four bits of a row of the bitmap; the characters @ and
A through 0 are used in this encoding. Thus, there are
4*rWidth*BitsPerPixeI/161 X'sforeach row.

MAKEFILE binds *PRINT-ARRAY* to T so that bitmaps print
readably in files. E.g., if the value of FOO is a bitmap, the
command (VARS FOC) dumps something like

(RPAQQ FOO #* (10 10)ADSDKJFDKJH ... J
Note that with this new format, bitmaps are readable even inside
a complex list structure. This means you need no longer use the
UGLYVARS command when dumping a list containing bitmaps if
the bitmaps were previously the only "unprintable" part of the
list.

(111:25.34)

The input/output syntaxes of Common Lisp and Interlisp differ in
a few significant ways. For example, Common Lisp uses "\" as the
escape character, whereas Interlisp uses "%". Common lisp
input is case-insensitive (lower-case letters are read as
upper-case), whereas Interlisp is case-sensitive. In Xerox Lisp,
these differences are accommodated by having different
readtables for the two dialects. Which syntax is used for input or
output depends on which readtable is being used (either as an
explicit argument to the read/print function or by being the
"current" readtable).

Interlisp readtables have been extended to include features of
Common Lisp syntax. There is a registry of named readtables to
make it easier to choose a readtable. The default Interlisp

45

COMMON IISP/ INTERlISP-O INTEGRATION

readtable has been modified to make it look a little closer to
Common Lisp.

Also, Xerox Lisp has a new mechanism for maintaining read/print
consistency. This means that even though Koto files may contain
characters that are now "special", such as colon, you need make
no changes to them-the File Manager knows how to load them
correctly. See Chapter 17, Reader Environments and File
Manager for details of this mechanism.

Differences Between Interlisp and Common lisp Read Tables

46

When reading or printing, the readtable dictates the syntax rules
being followed. As in past releases, the readtable indicates
which characters must be escaped when printi ng a symbol (and
PRINT-ESCAPE is true). In addition, in Lyric the readtable
specifies such things as which escape character to use (\ or %) and
the package delimiter to print on package-qualified symbols.
The less obvious rules are detailed below.

Printing numbers. Numbers are always printed in the current
print base (the value of the variable *PRINT-BASE*, or
equivalently the value of (RADIX». Whether to print a radix
specifier is determined by the readtable. In Common Lisp, a radix
specifier is printed exactly when the value of *PRINT-RADIX* is
true. The radix specifier is a suffix decimal point in base-l0, or a
prefix using # for other bases. In Interlisp, a radix specifier is
printed if the base is not 10, *PRINT-ESCAPE* is true, and the
number is not less than the print base. The radix specifier is a
suffix Q for octal, or a prefix using # (or I in old Interlisp
readtables) for other bases. There is no decimal radix specifier.

Reading numbers. In Common Lisp, numbers are read in the
current value of *READ-BASE*, and a trailing decimal point is
interpreted as a decimal radix specifier. In Interlisp, numbers are
always read in base 10, and trailing decimal point denotes a
floating-point number.

Case conversion. In a case-insensitive readtable (as Common Lisp
is), the value of *PRINT-CASE* controls how upper-case symbols
are printed, and lower-case letters in symbols are escaped. In a
case-sensitive readtable (as Interlisp is), *PRINT-CASE* is ignored,
so all letters in symbols are printed verbatim. *PRINT-CASE* is
also ignored by PRIN1, which implicitly uses an Interlisp
readtable.

Ratios. The character slash (I) is interpreted as the ratio marker in
all readtables except old Interlisp readtables (specifically, those
whose COMMONNUMSYNTAX property is Nil). This is so that
old files containing symbols with slashes are not misinterpreted
as ratios. Thus, the characters "1/2" are read in new readtables
as the ratio 1/2, but in old Interlisp readtables as the 3-character
symbol 11/21 (I is the multiple-escape character, see below).
Ratios are printed in old Interlisp readtables in the form I. (/
numerator denominator).

Packages. Symbols are interned with respect to the current
package (the binding of *PACKAGE*) except in old Interlisp
readtables (specifically, those whose USESllPACKAGE property is

LYRIC RELEASE NOTES

COMMON LlSP/INTERLlSP-D INTEGRATION

T), where symbols are read with respect to the INTERLISP
package, independent of the binding of *PACKAGE*. Again,
this is a backward-compatibility feature: Interlisp had no
package system, so programmers were not confronted with the
need to read and print in a consistent package environment.

Print Level elision. When *PRINT-LEVEL * or "PRINT-LENGTH* is
exceeded, the printing functions denote elided elements and
elided tails by printing II &" and II - _" with an Interlisp readtable,
or "11" and It ••• " with a Common Lisp readtable.

Section 25.8.2 New Readtable Syntax Classes

MULTIPLE-ESCAPE

PACKAGEDELIM

Additional Readtable Properties

The following new syntax classes are recognized by GETSYNTAX
and SETSYNTAX:

This character inhibits any special interpretation of all characters
(except the single escape character) up until the next occurrence
of the multiple escape character. In Common Lisp and in the new
Interlisp readtables this character is the vertical bar ("I"). For
example, l(a)1 is read as the 3-character symbol II (a)" ; Ix\ly\\zl is
read as the 5 character symbol II xly\z ".

There is no multiple escape character in the old Interlisp
readtables.

This character separates a package name from the symbol name
in a package-qualified symbol. In Common Lisp and in the new
Interlisp readtables this character is colon (": It). In the old
Interlisp readtables the package delimiter is control-t (" t til); it
is not intended to be easily typed, but exists only to have a
compatible way to print package-qualified symbols in obsolete
readtables. See Common Lisp, the Language for details of
package specification.

Read tables have several additional properties in Xerox Lisp.
These are accessible via the function READTABLEPROP:

(READTABLEPROP RDTBL PROP NEWVALUE) [Function]

NAME

CASEINSENSITIVE

COMMONLISP

LYRIC RELEASE NOTES

Returns the current value of the property PROP of the readtable
RDTBL. In addition, if NEWVALUE is specified, the property's
value is set to NEWVALUE. The following properties are
recognized:

The name of the readtable (a string, case is ignored). The name
is used for identification when printing the readtable object
itself, and can be given to the function FIND-READTABLE to
retrieve a particular readtable.

If true, then unescaped lower-case letters in symbols are read as
upper-case when this readtable is in effect. This property is true
by default in Common Lisp readtables and false in Interlisp
readtables.

If true, then input/output obeys certain Common Lisp rules;
otherwise it obeys Interlisp rules. This is described in more detail
in the section on reading and printing. Setting this property to

47

COMMON LlSP/INTERLlSP-D INTEGRATION

COMMONNUMSYNTAX

USESILPACKAGE

true also sets COMMONNUMSYNTAX true and USESILPACKAGE
false.

If true, then the Common Lisp rules for number parsing are
followed; otherwise the old Interlisp rules are used. This affects
the interpretation of "/" and the floating-point exponent
specifiers "d", "f", "I" and "s". It does not affect the
interpretation of decimal point and *READ-BASE*, which are
controlled by the COMMONLISP property.
COMMONNUMSYNTAX is true for Common Lisp readtables and
the new Interlisp readtables; it is false for old Interlisp
readtables.

This is a backward compatibility feature. If USESILPACKAGE is
true, then the Interlisp input/output functions read and print
symbols with respect to the Interlisp package, independent of
the current value of *PACKAGE*. This property is true by default
for old Interlisp readtables and false for others.

The following properties let the print functions know what
characters are being used for certain variable syntax classes so
that they can print objects in a way that will read back correctly.
Note that it is possible for several characters to have the same
syntax on input, but only one ,of the characters is used for
output. Also note that only the three syntax classes ESCAPE,
MULTIPLE-ESCAPE and PACKAGEDELIM are parameterized for
output; the others (such as LEFTPAREN and STRINGDELlM) are
hardwired -the same character is always used.

ESCAPECHAR This is the character code for the character to use for sing'le
escape. Setting this property also gives the designated character
the syntax ESCAPE in the readtable.

MUL TIPLE·ESCAPECHAR This is the character code for the character to use for multiple
escape. Setting this property also gives the designated character
the syntax MULTIPLE·ESCAPE in the readtable.

PACKAGECHAR This is the character code for the package delimiter. Setting this
property also gives the designated character the syntax
PACKAGEDELIM in the readtable.

(FIND-READTABLE NAME) [Function]

(COPYREADTABLE RDTBL)

Returns the readtable whose name is NAME, which should be a
symbol or string (case is ignored); returns NIL if no mch
readtable is registered. Readtables are registered by caiUliiog
(READTABLEPROP rdtbl'NAME name).

[Function]

COPYREADTABLE has been extended to accept a readtable name
as its RDTBL argument (the old value ORIG could be considered a
special case of this). For example, (COPYREAD1ULE
"INTERLlSP") returns a copy of the INTERLISP readtable.
COPYREADTABLE preserves all syntax settings and properties
except NAME.

Section 25.8 Predefined Readtables

48

The following readtables are registered in the Lyric rel~ of
Xerox Lisp:

lYRIC RELEASE IMOTES

INTERLISP

I (vertical bar)

: (colon)

• (quote)

, (backquote)
, (comma)

COMMON L1SPIINTERLlSP-D INTEGRATION

This is the "new" Interlisp readtable. It is used by default in the
Interlisp Exec and by the File Manager to write new versi·ons of
pre-existing source files. It thus replaces the old T readtable,
FILERDTBL, CODERDTBL and DEDITRDTBL. It differs from them in
the following ways:

has syntax MULTIPLE-ESCAPE rather than being used as a variant
of the Common Lisp dispatchi ng # macro character.

is used as the Common Lisp dispatchi ng # macro character. For
example, to type a number in hexadecimal, the syntax is #xnnn
rath~r than Ixnnn.

has syntax PACKAGEDELIM.

reads the next expression as (QUOTE expression).

are used to read backquoted expressions

In addition, the Common Lisp syntax for numbers is supported
(the readtable has property COMMUNNUMSYNTAX). For
example, the characters "1/2" denote a ratio, not a symbol.
Note, however, that trailing decimal point still means floating
point, rather than forcing a decimal read base for an integer.

The syntax for quote, backquote, and comma is the same as in
OLD-INTERLlSP-T, so you will not see any difference when typing
to an Interlisp Exec. However, the fact that files are also written
in the new INTERLISP readtable means that the prettyprinter is
now able to print quoted and backquoted expressions much
more attractively on files (and to the display as well).

LISP This readtable implements Common Lisp read syntax, exactly as
described in Common Lisp, the Language.

XCL This readtable is the same as LISP, except that the characters with
ASCII codes 1 thru 26 have White-space (SEPRCHAR) syntax. This
readtable is intended for use in File Manager files, so that font
information can be encoded on the file.

ORIG

The following readtables are provided for backward
compatibility. They are the same as the corresponding
readtables in the Koto release, with the addition of the
USESILPACKAGE property.

This is the same as the ORIG readtable described in the
Interlisp-D Reference Manual. When using a readtable produced
by (COPYREADTABLE 'ORIG), expressions will read and print
exactly the same in Koto and Lyric.

OLD-INTERLlSP-FILE This is the same as the FILERDTBL described in the Interlisp-D
Reference Manual. This readtable is used to read source files
produced in the Koto release. Note that in Lyric, FILERDTBL is no
longer used when readi ng or writing new files; see the section
on reader environments.

OLD-I NTERLI SP-T

LYRIC RELEASE NOTES

This is the same as the T readtable described in the Interlisp-D
Reference Manual.

If you wish to change the syntax used by a standard readtable, it
is recommended instead that you copy the readtable, give it a

49

COMMON lISP/INTERlISP-D INTEGRATION

Koto Compatibility Considerations

Specifying Readtables and Packages

The T Readtable

50

distinguished name, and make the change in the new readtable.
This will reduce the likelihood that you will try to read another
user's files in an incompatible readtable, or that another user will
fail reading yours. See chpater 17, Reader Environments and the
File Manager, for more details.

In order to consistently read a data structure that you have
previously printed, it is important that READ and PRINT both use
the same readtable and package. Code that calls READ or PRINT
without explicitly specifying a readtable (via the RDTBL
argument or by doing a SETREADTABlE) is thus in some danger
of reading and printing inconsistently.

In Koto, the "primary" (NIL) readtable was not significantly
different from the other Interlisp readtables, and users tended
not to make significant modifications to the primary readtable
anyway. As a result, it was easy to write code that was not
careful about readtables and get away with it. In Lyric, however,
there are significant differences among commonly used
readtables. Thus, if code using the default readtable called
PRINT under, say, the Common Lisp Executive and tried to READ
the expression back while running under an Interlisp Executive, it
might very well get inconsistent results.

Lyric also introduces the extra complication of the default
package, which is the other important parameter affecting the
behavior of READ and PRINT.

Programmers are thus advised to fix any code that uses READ and
PRINT as a way of storing and retrieving Lisp expressions to be
sure to specify a readtable and package environment. For new
code in Lyric, this can be done by binding the special variables
READTABlE and *PACKAGE*. If it is necessary to write code
'that works in both Koto and Lyric, the programmer should pass
an explicit readtable to all READ and PRINT functions, or set the
primary readtable using (RESETFORM (SETREADTABlE rdtbf) --).
If the readtable chosen is either FILERDTBL or one derived as a
copy of ORIG, then READ and PRINT will automatically use the
INTERLISP package in lyric, thereby avoiding any need to specify
a binding for *PACKAGE*.

An additional possible incompatibility exists with regard to the
Koto T readtable: The T readtable was "the readtable used
when reading from the terminal". In Lyric, the T readtable is
synonymous with NIL, and all Executives bind *READTABlE* to
the appropriate value for the Exec. This is unlikely to be a major
source of incompatibility, as few programs depend on printing
something in the T readtable in a way that needs to read back
consistently.

LYRIC RELEASE NOTES

PQUOTE Printed Files

Back-Quote Facility

LYRIC RELEASE NOTES

COMMON LlSPIINTERLlSP-D INTEGRATION

In Lyric, the prettyprinter automatically prints quoted and
backquoted expressions attractively. Hence, the PQUOTE
lispusers module is now obsolete. However, if you have written
files in the past with the ·PQUOTE module loaded into your
environment, you need to do the following in Lyric in order to
load those files:

(SETSYNTAX (CHARCODE ') '(MACRO FIRST READQUOTE)
FILERDTBL)

You can then load the old files. New files produced in Lyric by
MAKEFILE will automatically be loadable, so you need only
perform the SETSYNTAX change as long as you still have old files
written with PQUOTE. Remember, of course, that as long as the
SETSYNTAX is in effect (as with the old PQUOTE module), if you
read old files that were written without PQUOTE you may read
them incorrectly.

The back-quote facility now fully conforms with Common Lisp
the Language. This means some cases of nested back-quote now
work correctly. Back-quote forms are also more attractively
displayed by the prettyprinter. Users should beware, however,
that the back-quote facility does not attempt to create fresh list
structures unless it is necessary to do so. Thus for example,

'(1 2 3)

is equivalent to

'(1 2 3)

not

(LIST 1 2 3)

If you need to avoid sharing structure you should explicitly use
LIST, or COpy the output of the back-quote form.

51

COMMON lISP/INTERlISP-D INTEGRATION

[This page intentionally left blank]

52 LYRIC RELEASE N"OTES

Chapter 3 Lists

4. CHANGES TO INTERLISP-O SINCE
KOTO

This section contains release notes indicating changes that have
occurred in Interlisp-D since the Koto release. These changes are
generally unrelated to the integration of Common Lisp in the
Xerox Lisp environment. Organization of this section
corresponds to the Interlisp-D Reference Manual.

VOLUME I-LANGUAGE

Section 3.2 Building Lists From Left To Right

(1:3.7)

The functions DOCOLLECT and ENDCOLLECT are no longer
supported.
(1:3.8)

The description of the ADDTOSCRATCHLIST function has been
revised to read:

(ADDTOSCRATCHLIST VALUE) [Function]

Section 3.10 Sorting Lists

(SORT DA TE COMPAREFN)

Chapter 6 Hash Arrays

For use inside a SCRATCHLIST form. VALUE is added on to the
end of the value being collected by SCRATCH LIST. When the
SCRATCHLIST returns, its value is a list containing all of the things
that ADDTOSCRATCHLIST has added.

(1:3.17)

[Function]

There is no safe interrupt to SORT-if you abort a call to SORT by
any means the possibility exists for losing elements from the list
being sorted.

(1:6.1)

(HASHARRA Y MINKEYS OVERFLOW HASHBITSFN EQUIVFN RECLAIMABLE
REHASH- THRESHOLD) [Function]

LYRIC RELEASE NOTES

The function HASHARRA Y has two new optional arguments,
RECLAIMABLE and REHASH-THRESHOLD. If RECLAIMABLE is
true; then entries in the hash table are considered "reclaimable"
in the sense that the system is permitted to remove any key and

53

CHANGES TO INTERLlSP-O SINCE KOTO

Section 6.1 Hash Overflow

chapter 7 Integer Arithmetic

(FIXR N)

its associated value from the hash table at any time. In practice,
the contract is less severe: the system only removes keys when a
hash table fills and is about to be rehashed, and then it only
removes keys whose reference count is one, and to which there
are thus no pointers outstanding except possibly from the stack
(local variables). This is useful for hash tables that serve to cache
information about Lisp objects to avoid recomputation; for
example, the system hash table CLiSPARRA Y is now reclaimable.
Discarding keys keeps the table from necessarily needing to
grow, and potentially allows the storage consumed by both the
key and value to be reclaimed.

(/:6.3)

You should note changes to the wording of two of the
possibilites for the overflow method:

The first sentence for NIL should read: The array is automatically
enlarged by at least a factor of 1.5 every time it overflows.

The explanation for "a positive integer N" should read: The
array is enlarged to include at least N more slots than it currently
has.

(1:7.5)

The variables MIN.lNTEGER and MAX.lNTEGER have been
removed from the Interlisp-D Reference Manual. Therefore,
calling (MIN) and (MAX) is an error.

(1:7.n

[Function]

When N is exactly half way between two integers, FIXR rounds it
to the even number. For example (FIXR 1.5) ~ 2 and (FIXR 2.5)
~2.

Section 7.3 Logical Arithmetic Functions

The function INTEGERLENGTH does not coerce floating point
numbers to integers; rather, it signals an error, "Arg not
Integer". (This was true in Koto as welL)

Section 7.5 Other Arithmetic Functions

54

(1:7.13)

The algorithms for SIN, COS, and other trigometric functions
have been tuned and are now'accurate to at least six significant
figures.

LYRIC RELEASE NOTES

CHANGES TO INTERLlSP-O SINCE KOTO

chapter 9 Conditionals and Iterative Statements

Section 9.2 Equality Predicates

(EQUALALL X y)

Section 9.8.3 Condition 1.5. oprs

UNTIL N (N a number)

(1:9.3)

(Function]

Add the following NOTE to the EQUALALL function:

Note: In general, EQUALALL descends all the way into all
datatypes, both those defined by the user and those built
into the system. If you have a data structure with fonts
and pointers to windows, EQUALALL will descend into
those also. If the data structures are circular, as windows
are, EQUALALL can cause a Stack Overflow error.

[1.5. Operator]

REPEATUNTIL N (N a number) [1.5. Operator]

These descriptions were included in the Interlisp-D Reference
Manual in error and should be removed. UNTIL and
REPEATUNTIL work only with predicate expressions, not
numbers.

chapter 10 Function Definition, Manipulation, and Evaluation

Section 10.2 Defining Functions

Section 10.5 Functional Arguments

Section 10.6.2 Interpreting Macros

(I: 10.11)

In the definition of the MOVD function, the sentence "COPYDEF
is a higher-level function that only moves expr definitions, but ... II
should be revised to read:

COPYDEF is a higher-level function that not only moves expr
definitions, but also works for variables, records, etc.

(I: 10.19)

FUNARG functionality (non-NIL second argument to FUNCTION)
has been withdrawn. Most of the uses for Interlisp FUNARG's are
better written using the lexical closure functionality of Common
Lisp.

The variables SHOULDCOMPILEMACROATOMS and
UNSAFEMACROA TOMS no longer exist.

LYRIC RELEASE NOTES 55

CHANGES TO INTERLlSP-O SINCE KOTO

Chapter 11 Variable Bindings and the Interlisp Stack

(II: 1'.2)

In Xerox Lisp there is a fixed amount of space allocated for the
stack. When this space is exhausted, the STACK OVERFLOW error
occurs. However, if the system waited until the stack were really
exhausted, there wouldn't be room to run the debugger. Thus,
a portion of the stack space is reserved; when the stack intrudes
into the reserved area, it causes a stack overflow interrupt, and
subsequently a call to the debugger.

In order not to get a STACK OVERFLOW error while inside the
debugger, this intrusion into the reserved area is only noted
once. If the reserved area is exhausted, then a II hard II stack
overflow occurs (a 9319 MP halt), from which the only recourse is
a hard reset via STOP (or Ctrl-D from TeleRaid). Following a hard
reset, the stack is cleared, stack overflow detection is reenabled,
and all processes are restarted.

The implications of this are that you should not attempt any
deep computations while inside the debugger for a stack
overflow error, and you should call (HARD RESET) as soon as
possible in order that subsequent stack overflows can again be
caught in the debugger before they advance to the MP halt. In
order to make this more convenient, the system automatically
calls (HARDRESET) if you exit the debugger via the f or OK
commands, or abort with a Ctrl-O. The only way to exit the
debugger without having a (HARDRESET) occur is by using the
RETURN command. You can disable this feature by setting
AUTOHARDRESETFLG to NIL, in which case you must be sure to
perform the (HARDRESET) yourself if you want the next stack
overflow to be detected early enough to enter the debugger.

Section 11.2.1 Searching the Stack

(STKPOS FRAMENAME N POS OLDPOS) [Function]

(STKPOS 'STKPOS) does not cause an error; it merely returns NIL.
(This was true in Koto as well.) It is still not permissible to create
a pointer to the active frame; however, STKPOS never attempts
to, as it starts searching for the specified frame by looking first at
its caller.

Section 11.2.2 Variable Bindings in Stack Frames

56

(STKARG N POS -)

(STKNARGS POS -)

(/:1'.7)

[Function]

[Function]

The functions STKARG and STKNARGS will now return the
number of arguments supplied to a Lambda Nospread when
there is a break. The? = command will show all the arguments.

(SETSTKARGNAME N POS NAME) [Function]

The function SETSTKARGNAME does not work for interpreted
frames.

LYRIC RELEASE NOTES

CHANGES TO INTERLlSP-O SINCE KOTO

Section 11.2.5 Releasing and Reusing Stack Pointers

(CLEARSTK FLG)

CLEARSTKLST

NOCLEARSTKLST

Section 11.2.7 Other Stack Functions

Chapter 12 Miscellaneous

Section 12.2 Idle Mode

ALLOWED.LOGINS

..

T

A user name

A group name

LYRIC RELEASE NOTES

[Function]

(CLEARSTK NIL) is a no-op-the ability to clear all stack pointers is
inconsistent with the modularity implicit in a multi-processing
environment.

[Variable]

[Variable]

The variables CLEARSTKLST and NOCLEARSTKLST are no longer
used. (More precisely, they are used only by the Old Interlisp
Executive, which means that programs can no longer depend on
them.)

(II: 11.13)

In the REALFRAMEP function, the INTERPFLG argument
description has been corrected to read:

If INTERPFLG = T returns T if POS is not a dummy frame. For
example, if (STKNAME POS) = COND, (REALFRAMEP POS) is NIL,
but (REALFRAMEP POS T) is T.

The following properties in IDLE.PROFILE are new or have
meanings different from the documentation in the Interlisp-D
Reference Manual:

The authentication aspects of this property have been separated
into the AUTHENTICATE property. The value of this property
now speaks specifically to who is allowed to exit idle mode: If
the value is NIL (or any other non-list), no login at all is required
to exit Idle mode. Otherwise, the value is a list composed of any
of the following:

Require login, but let anyone exit idle mode. This will overwrite
the previous user's name and password each time idle mode is
exited.

Let the previous user (as determined by USERNAME) exit idle
mode. If the user name has not been set, this is equivalent to *.

Let this specific user exit idle mode.

Allow any members of this group (an NS Clearinghouse group
name) to exit idle mode.

The initial value for ALLOWED.LOGINS is (T *), i.e., anyone is
allowed to exit idle mode.

57

CHANGES TO INTERLlSP-O SINCE KOTO

AUTHENTICA TE

FORGET

LOGIN.TIMEOUT

RESETVARS

SUSPEND.PROCESS.NAMES

The value of this property determines what mechanism is used to
check passwords. If T, use the NS authentication protocol
(requires the presence of an NS Authentication server accessible
via the network). If NIL, do not check the password at all-accept
any password. This is only particularly useful if
ALLOWED.LOGINS contains *.

The initial value of AUTHENTICATE is T.

If this is the symbol FIRST, the user's password will be erased
when idle mode is entered. Otherwise, this property is relevant
only when ALLOWED.LOGINS is NIL (if ALLOWED.LOGINS is a list,
then some sort of login is required, which will have the effect of
erasing any previous login): If FORGET is non-NIL, the user's
password will be erased when idle mode is exited. Initial value is
T (erase password on exit).

Note: If the password is erased on entry to Idle mode (value
FIRST), any program left running when idle mode is
entered may fail if it tries doing anything requiring
passwords (such as accessing file servers).

Value is a number indicating how many seconds Idle's prom"pt for
a login should remain up before timing it out and resuming Idle
mode. Initial value is 30. This feature avoids the problem of
having an Idle machine "freeze up" indefinitely (stop running
the idle pattern) just because someone brushed against the
keyboard.

This property is no longer used; rather, the value of the global
variable IDLE.RESETVARS is used instead.

This property is no longer used; rather, the value of the global
variable IDLE.SUSPEND.PROCESS.NAMES is used instead.

Section 12.3 Saving Virtual Memory State

58

AROUNDEXITFNS

BEFORELOGOUT

BEFORESYSOUT
BEFOREMAKES YS

BEFORESAVEVM

[Variable]

This variable provides a way to "advise" the system on cleanup
and restoration activities to perform around LOGOUT, SYSOUT,
MAKESYS and SAVEVM; it subsumes the functionality of
BEFORESYSOUTFORMS, AFTERLOGOUTFORMS, etc. Its value is a
list of functions (names) to call around every" exit" of the system.
Each function is called with one argument, a symbol indicating
which particular event is occurring:

The system is about to perform a LOGOUT. The event function
might want to save state, notify a network connecti on that it is
about to go away, etc.

The system is about to perform a SYSOUT, MAKESYS, or
SAVEVM. Often these three events are treated equivalently;
however, sometimes the distinction is interesting. For example, a
program might want to perform a much more extensive
tidying-up before MAKESYS than if it is merely doing a routine
SAVEVM.

LYRIC RELEASE NOTES

AFTERlOGOUT
AFTERSYSOUT

AFTERMAKESYS
AFTERSA VEVM

AFTERDOSYSOUT
AFTERDOMAKES YS

AFTERDOSAVEVM

CHANGES TO INTERLlSP-O SINCE KOTO

The system is starting up a virtual memory image that was saved
by performing a lOGOUT, SYSOUT, etc. Ordinarily, the event
function should treat all of these the same-in all four cases,
some arbitrary amount of time has passed, remote files may have
come and gone, a different user may be logged in, or the virtual
memory image might even be running on a different
workstati on.

The system is continuing in the same virtual memory image
following a SYSOUT, MAKESYS, or SAVEVM (as opposed to
having just booted the same virtual memory image). Ordinarily,
these events are uninteresting; they exist solely so that actions
taken by the BEFORExxx events can be compensated for after
the event. For example, if the before event cleared a cache, the
after event might initiate refilling it. There is, of course, no event
AFTERDOlOGOUT, as lOGOUT does not "continue".

Section 12.4 System Version Information

lYRIC RELEASE NOTES

(I: 12.13)

In the description of the MACHINETYPE function, add another
machine, the DOVE (for the Xerox 1186).

59

CHANGES TO INTERLlSP-O SINCE KOTO

Chapter 13 Interlisp Executive

(READLINE RDTBL --)

Chapter 14 Errors and Breaks

VOLUME II-ENVIRONMENT

(1:23.37)

[Function]

The Interlisp-D Reference Manual states:

The description on p 13.37 of READLINE's behavior when one or
more spaces precede the carriage return applies only when
LlSPXREADFN is READ. LlSPXREADFN is initially TTYINREAD,
which ignores spaces before the carriage return, and thus will
never prompt you with for an additional line. Also, the new
Executive does not use READLINE at all, so you will never see this
behavior in a new Executive, independent of the setting of
LlSPXREADFN.

Section 14.5 Break Window Variables

Section 14.8 Catching Errors

Chapter 17 File Package

(1/: 14. 15)

Setting the variable BREAKREGIONSPEC to NIL no longer creates
problems if there is a subsequent break.

(1/: 14.22)

The Nlambda functions ERSETQ and NlSETQ now allow
evaluation of an arbitrary number of forms, rather than only
one.

Note: The File Package is now known as the File Manager.

Section 17.8.1 Functions for Manipulating Typed Definitions

60

(1/:17.26)

(HASDEF NAME TYPE SOURCE SPELLFLG) [Function]

Clarification: HASDEF for type FNS (or NIL) indicates that NAME
has an editable source definition, not that NAME is defined at

LYRIC RELEASE NOTES

CHANGES TO INTERLlSP-O SINCE KOTO

all. Thus if NAME exists on a file for which you have loaded only
the compiled version but not the source, HASDEF returns NIL.

Section 17.8.2 Defining New File Package Types

(II: 17.31)

In the WHENCHANGED File Package Type Property the REASON
argument passed to WHENCHANGED no longer is T or NIL. The
Note has been revised as follows:

Note: The REASON argument passed to WHENCHANGED
functions is either CHANGED or DEFINED.

(II: 17.32)

The Nospread Function FILEPKGTYPE returns a property list
rather than an alist.

Section 17.9.8 Defining New File Package Commands

Section 17.11 Symbolic File Format

(II: 17.47}

The Nospread Function FILEPKGCOM returns a property list
rather than an alist.

(PRETTYDEF PRTTYFNS PRTTYFILE PRTTYCOMS REPRINTFNS SOURCEFILE
CHANGES) [Function]

(LiSPSOURCEFILEP FILE)

Section 17.11.3 File Maps

Chapter 18 Compiler

LYRIC RELEASE NOTES

PRETTYDEF accepts only a symbol for its file argument.

[Function]

LlSPSOURCEFILEP is more specifically defined to mean that the
file is in File Manager format and has a file map.

File maps are no longer stored on the FILEMAP property. See
GET-ENVIRONMENT-AND-FILEMAP in Chapter 3 Integration of
Interlisp-O and Common Lisp, "Programmer's Interface to
Reader Environments. II

Note that you should not attempt to compile a file containing a
function named STOP. The format of the .LCOM file produced
by BCOMPL or TCOMPL admits an unfortunate ambiguity in the
treatment of the symbol STOP-LOAD prefers to treat it as the
token signifying the end of the file, rather than as starting the
definition of the function STOP.

There is no such restriction for the .DFASL files produced by
CL:COMPILE-FILE.

61

CHANGES TO INTERLlSP-O SINCE KOTO

chapter 21 (LISP

Section 21.8 Miscellaneous Functions and Variables

(CLEARCLISPARRA Y NAME - -) [Function]

Chapter 22 Performance Issues

Macro and CLiSP expansions are cached in CLiSPARRA Y, the
system's CLiSP hash array. When anything changes that would
invalidate an expansion, it needs to be removed from the cache.
CLEARCLISPARRA Y removes from the CLiSP hash array any key
whose CAR is NAME. The system does this automatically
whenever you edit a clisp or macro form, or when you redefine a
clisp word or macro definition. However, you may need to call
CLEARCLISPARRAY explicitly if you change something in a more
subtle way, e.g., you redefine a function used by a macro. If your
change invalidates an unknown set of expansions, you might
prefer to take the performance penalty of calling (CLRHASH
CLiSPARRA Y) to invalidate the entire cache, just to make sure no
incorrect expansions are kept around.

Section 22.1 Storage Allocation and Garbage Collection

62

The following should be appended to the description of garbage
collection in Interlisp-O:

Another limitation of the reference-counting garbage collector
is that the table in which reference counts are maintained is of
fixed size. For typical Lisp objects that are pointed to from
exactly one place (e.g., the individual conses in a list), no burden
is placed on this table, since objects whose reference count is 1
are not explicitly represented in the table. However, large,
"rich" data structures, with many interconnections, backward
links, cross references, etc, can contri bute many entries to the
reference count table. For example, if you created a data
structure that functioned as a doubly-linked list,· such a structure
would contribute an entry (reference count 2) for each element.

When the reference count table fills up, the garbage collector
can no longer maintain consistent reference counts, so it stops
doing so altogether. At this point, a window appears on the
screen with the following message, and the debugger is entered:

Internal garbage collector tables have overflowed, due
to too many pointers with reference count greater than 1.
*** The garbage collector is now disabled. ***
Save your work and reload as soon as possible.

[This message is slightly misleading, in that it should say "count
not equal to 1". In the current implementation, the garbage
collection of a large pointer array whose elements are not
otherwise pointed to can place a special burden on the table, as
each element's reference count simultaneously drops to zero and

LYRIC RELEASE NOTES

CHANGES TO INTERLlSP-O SINCE KOTO

is thus added to the reference count table for the short period
before the element is itself reclaimed.]

If you exit the debugger window (e.g., with the RETU RN
command), your computation can proceed; however, the
garbage collector is no longer operating. Thus, your virtual
memory will become cluttered with objects no longer accessible,
and if you continue for long enough in the same virtual memory
image you will eventually fill up the virtual memory backing
store and gri nd to a halt.

Section 22.5 Using Data Types Instead of Records

Chapter 23 Processes

(11:22.13)

The note in this section states that "pages for datatypes are
allocated one page at a time." The note should read:

Space for datatypes is allocated two pages at a time. Thus, each
datatype for which any instances at all have been allocated has
at least two pages assigned to it.

Section 23.6 Typein and the TTY Process

BACKGROUNDFNS

TTYBACKGROUNDFNS

LYRIC RELEASE NOTES

[Variable]

A list of functions to call "in the background ". The system runs a
process (called "BACKGROUND") whose sole task is to call each
of the functions on the list BACKGROUNDFNS repeatedly. Each
element is the name of a function of no arguments. This is a
good place to put cheap background tasks that only do
something once in a while and hence do not want to spend their
own separate process on it. However, note that it is considered
good citizenship for a background function with a
time-consuming task to spawn a separate process to do it, so that
the other background functions are not delayed.

[Variable]

This list is like BACKGROUNDFNS, but the functions are only
called while in a tty input wait. That is, they always run in the tty
process, and only when the user is not actively typing. For
example, the flashing caret is implemented by a function on this
list. Again, functions on this list should spend very little time
(much less than a second), or else spawn a separate process.

63

CHANGES TO INTERLlSP-D SINCE KOTO

Chapter 24 Streams and Files

Section 24.7 File Attributes

(GETFllEINFO FILE A TTRIB)

READER

PROTECTION

VOLUME III-INPUT/OUTPUT

[Function]

NS file servers implement the following additional attributes for
GETFllEINFO (neither of these attributes is currently settable
with SETFllEINFO):

The name of the user who last read the fi Ie.

A list specifying the access rights to the file. Each element of the
list is of the form (name nametype . rights), where name is the
name of a user or group or a name pattern, and rights is one or
more of the symbols ALL READ WRITE DELETE CREATE MODIFY.
For servers runni ng Services release 10.0 or later, nametype is the
symbol " __ "; in earlier releases it is either INDIVIDUAL or GROUP,
to distinguish the type of name. For example, the value «Jane
Jones: -- ALL) (*: -- READ» means that user Jane Jones has full
access to the file, while all members of the default domai n only
have read access to the file.

Section 24.18.1 Pup File Server Protocols

UNIXFTPFlG

64

[Variable]

When the Leaf protocol was first implemented for the Vax Unix
operating system, its use was inconsistent with the operation of
the Pup Ftp server on the same host: the Leaf server supported
versions, but the Ftp server knew only about the native,
versionless file system. Thus, Lisp could not use the two protocols
interchangeably. For example, if it used Ftp to write a file Faa,
the Ftp server would, in versionless style, overwrite the
versionless file Faa, rather than create a new version Faa; 6 to
supersede the highest version Faa; 5 created by the Leaf server.

Lisp thus makes the conservative assumption that the Ftp server
is unusable for anything other than directory enumeration on a
host of type UNIX. This is unfortunate, since it is often the case
that Ftp is more efficiently implemented than Leaf, since one
need only tune the performance of sequential access.

More recent versions of the Unix Pup software have a Leaf and
Ftp server more in agreement with each other. Setting
UNIXFTPFlG to true (it is initially NIL) informs Lisp that all the
Unix servers accessible on your internetwork that possess Ftp
servers are safe to use in parallel with thei r leaf servers.

LYRIC RELEASE NOTES

CHANGES TO INTERLlSP-O SINCE KOTO

Section 24.18.3 Operating System Designations

DEFAUL T.OSTVPE [Variable]

If a host's name is not found in NETWORKOSTVPES, its operating
system type is assumed to be the value of DEFAUL T.OSTVPE. This
variable may be of use to sites with many servers all of the same
type. Its default value (IFS) is, unfortunately, inappropriate for
most sites. It is recommended you set DEFAULT.OSTVPE in the
initialization file that lives on the local disk (not in an init file on
a file server, since Lisp needs to know the operating system type
before talking to the server).

chapter 25 Input/Output Functions

Section 25.2 Input Functions

(LASTC FILE)

Section 25.3.2 Printing Numbers

[Function]

The function LASTC can return an incorrect result when called
immediately following a PEEKC on a file that contains run-coded
NS characters.

(11':25.15)

In the PRINTNUM function, the FLOAT format option (FLOAT 7 2
NIL T) is illegal; change the option to (FLOAT 72 NIL 0).

Section 25.3.4 Printing Unusual Data Structures

(HPRINT EXPR FILE UNCIRCULAR DATATYPESEEN) [Function]

Using HPRINT to save structures that include pointers to raw
storage will cause stack overflows. This includes dumping things
using the VARS, UGL VVARS, or HORRIBLEVARS filemanager
commands.

For example, a font descriptor points to raw storage, and cannot
be dumped; for that reason, other system data types (e.g.
windows) that point to fonts also cannot be dumped.

Section 25.4 Random Access File Operations

Section 25.6 PRINTOUT

LYRIC RELEASE NOTES

(111:25.20)

The first argument in the FILEPOS function should be called STR
not PA TTERN.

(11':25.27)

The PRINTOUT command .FONT changes the DSPFONT font
permanently, that is, even after printout finishes.

65

CHANGES TO INTERLlSP-D SINCE KOTO

Section 25.8.3 READ Macros

(111:25.42-43)

These READMACROS appear only in the OLD-INTERLlSP-T
readtable. (See Section 2 for a description of Lyric readtables.)

Chapter 26 User Input/Output Packages

Section 26.3 ASKUSER

(ASKUSER WAIT DEFAUL T MESS KEYLST TYPEAHEAD LlSPXPRNTFLG
OPTIONSLST FILE) [Function]

Section 26.4.5 Useful Macros

ASKUSER does not accept a string to mean a stream open on the
string; you must call OPENSTRINGSTREAM if that's what you
mean.

(111:26.29)

CTRLUFLG is no longer supported by default. To use this feature,
turn it on explicitly: (lNTERRUPTCHAR (CHARCODE f U)
'CTRLUFLG).

Chapter 27 Graphic Output Operations

Section 27.1.3 Bitmaps

(ROTATE-BITMAP BITMAP)

Note: The printed representation of bitmpas has changed.
Please see release notes Chapter 3, Integration of
Interlisp-DI Common Lisp, "Bitmap Syntax"

(111:27.4)

The following function has been added to Bitmap Operations
between the functions EXPANDBITMAP and SHRINKBITMAP:

[Function]

Given an m-high by n-wide bitmap, this function returns an
n-high by m-wide bitmap. The returned bitmap is the image of
the original bitmap, rotated 90 degrees clockwise.

Section 27.3 A,ccessing Image Stream Fields

66

The fol/owing functions were not documented in the Koto
release of the Interlisp-D reference Manual:

LYRIC RELEASE NOTES

CHANGES TO INTERLlSP-D SINCE KOTO

(DSPClEOl XPOS YPOS HEIGHn [Function]

"Clear to end of line". Clears a region from (XPOS, YPOS) to the
right margin of the display, with a height of HEIGHT. If XPOS
and YPOS are Nil, clears the remainder of the current display
line, using the height of the current font.

(DSPRUBOUTCHAR DS CHAR X Y TTBL) [Function]

Section 27.6 Drawing lines

Section 27.7 Drawing Curves

Backs up over character code CHAR in the display stream DS,
erasing it. If X, Yare supplied, the rubbing out starts from the
position specified. DSPRUBOUTCHAR assumes CHAR was printed
with the terminal table TTBL, so it knows to handle control
characters, etc. TTBL defaults to the primary terminal table.

(/11:27.18)

The RElDRAWTO function has been corrected so that it no
longer draws a spot if the DX and DY arguments are o.

(11/:27.18)

For the brush width value of Nil, the previous default value
(ROUND 1) has been changed. The default value for the brush
width value Nil is the DSPSCAlE of the stream (that is, 1 printer's
point wide).

("':27.19)

A new image stream function, DRAWARC, follows DRAWCIRClE
in the InterLisp-D Reference Manual.

(DRAWARC CENTERX CENTERY RADIUS STARTANGLE NDEGREES BRUSH
DASHINGSTREAM) [Function]

Draws an arc of the circle whose center point is (CENTERX
CENTERy) and whose radius is RADIUS from the position at
STARTANGLE degrees for NDEGREES number of degrees. If
STARTANGLE is 0, the starting point will be {CENTERX (CENTERY
+ RADIUS». If NDEGREES is positive, the arc will be
counterclockwise. If NDEGREES is negative, the arc will be
clockwise. The other arguments are interpreted as described in
DRAWCIRClE.

Section 27.8 Miscellaneous Drawing and Printing Operations

LYRIC RELEASE NOTES

(111:27.20)

To have a filled polygon print correctly, set the global variable
PRINTSERVICE to floating point value 9.0 for printers runni ng
Services 9.0 or later.

When using FlllPOlYGON to be sent to Xerox 8044 Interpress
printers, the global variable PRINTSERVICE must be set to the
same value as the Print Service installed on your printer, currently
either 8.0, 9.0 or 10.0. Thus, if your printer is running Print
Service 9.0, you must set the global variable PRINTSERVICE to the

67

CHANGES TO INTERLlSP-D SINCE KOTO

68

floating point value 9.0. This works around an incompatible
change in the Xerox 80441nterpress implementation.

The following function was omitted from previous version of the
Interlisp-D Reference Manual:

(DRAWPOl YGON POINTS CLOSED BRUSH DASHING STREAM) [Function]

Draws a polygon on the image stream STREAM. POINTS is a list
of positions to which the figure will be fitted (the vertices of the
polygon). If CLOSED is non-NIL, then the starting position is
specified only once in POINTS. If CLOSED is NIL, then the starting
vertex must be specified twice in POINTS. BRUSH and DASHING
are interpreted as described in Chapter 27 of the Interlisp-D
Reference Manual.

For example,

(DRAWPOLYGON '«100 . 100) 150 . 125)
(150 . 175) 200. 100) (150 . 50»

T t (ROUND 3) , 4 2) XX) .

would draw a polygon like the following on the display stream
XX.

(11':27.20)

The function FlllPOLYGON contains two new arguments,
OPERA TlON and WINDNUMBER. The new form for the function,
and definitions for added arguments, follow.

(FILlPOL YGON POINTS TEXTURE OPERA TlON WINDNUMBER STREAM) [Function]

OPERATION is the BITBLT operation (see page 27.15 in the
Interlisp-D Reference Manual) used to fill the polygon. If the
OPERA TlON is Nil, the OPERATION defaults to the STREAM
default OPERA TlON.

WINDNUMBER is the number for the winding rule convention.
This number is either 0 or 1; 0 indicates the "zero" winding rule,
1 indicates the "odd" winding rule.

When filling a polygon, there is more than one way of dealing
with the situation where two polygon sides intersect, or one
polygon is fully inside the other. Currently, FllLPOLYGON to a
display stream uses the "odd" winding rule, which means that
intersecting polygon sides define areas that are filled or not
filled somewhat like a checkerboard. For example,

(FILLPOLYGON '«125 . 125) (150 . 200) (175 . 125)

LYRIC RELEASE NOTES

Section 27.12 Fonts

I VRI(" RF=I F=Ac\F= NOTF=c\

CHANGES TO INTERLlSP-O SINCE KOTO

(125 . 175) (175 . 175))
GRAYSHADE WINDOW)

would produce a display something like this:

This fill convention also takes into account all polygons in
POINTS, if it specifies multiple polygons.

A revised set of font printi ng metrics is a part of the Lyric release
of Xerox Lisp. Note that Koto font files are still available to users
who request them.

With the revised font set the interline spacing (line leading) is
now consistent across all fonts within a point size. Previously,
text with multiple fonts (but with the same point size, i.e., if a
word were made bold or italic, or if the family were changed)
would have different leading on different lines. The new .WO
files clean up document appearance.

Note that these printer metric changes affect only hardcopy, not
the display. The contents of the display fonts are essentially
unchanged in Lyric.

Generally, line leading in the Lyric font files is tighter than in
previous releases of the fonts. The default line leading is now
the same as the font's nominal point size. As a consequence of
the above, any text file (one not already formatted for
Interpress) which is printed after installation of the new fonts
will be formatted to a different length. This means that
decisions regarding TEdit line leading, widows and orphans,
left/right pages, references to page numbers, etc. will need to
change. Koto documentation produced by users may need to be
reformatted with different line leading, using the new fonts.

All of the font files now have a new naming scheme, which
allows FONTSAVAILABLE to be able to do more accurate pattern
matching. For example, the display font file for modern 8 bold
italics used to be named:

Modern8-B-I-C41.Displayfont.

The file is now named:

Modern08-BIR-C41.Displayfont

In general font files use the following format:

The family name (e.g., Mode rn); a two digit size (e.g., 08); a
three letter Face (e.g., B I R, for Bold Italic Regular); the letter C
followed by the font's character set in base 8 (e.g., C41); and
finally an extension (e.g., 0 i sp 1 ayfont).

hQ

CHANGES TO INTERLlSP-D SINCE KOTO

70

Size
(two digits) CharacterSet (base 8)

+ +
MOdern08IB~RIC41.DiSPlaYfont

+ +
Family Face Extension

Figure 1. How the new font files are named. The
three letter Face is composed of a weight (e.g.,
Bold), a slope, (e.g., Italic) and an expansion (e.g.,
Regular).

The old file naming convention is still supported, however, with
the exception of the old Strike file naming convention. In Lyric,
FONTCREATE will first search for fonts using the new font
naming convention, and if the desired font is not found it will
search using the Koto convention.

Compatibility considerations You can continue using the old
printer metrics (.WO files) in Lyric, thus preserving document
looks between Koto and Lyric. If you choose to do so, it is
recommended that you rename your old .WD files to the new
naming scheme (see above), so that you benefit from the
changes to the font searching mechanisms. However, we
strongly urge you to use the new .WD files. Otherwise, if you
exchange TEdit documents with a site that is using the new files,
the documents will print differently at the two sites. The
creation date, rather than the naming convention, determines
whether a .WD file represents the old or new format.

If, after installing the new .WD files, you wish to print a
document using the old Koto formatting, make the font variable
INTERPRESSFONTDIRECTORIES point to a directory containing
the Koto font files. Also any Lyric printer font file information
must be uncached from the sysout. To uncache the fonts,
perform

(for INFO in (FONTSAVAILABLE '. '. '. '.
'INTERPRESS)

do (APPLY 'SETFONTDESCRIPTOR INFO»

("':27.30)

(STRINGWIDTH STR FONT FLG RDTBL) [Function]

In Lyric STRINGWIDTH observes *PRINT·lEVEl * and
PRINT-lENGTH.

Some new font manipulation functions have been added to
Xerox lisp. They are:

(WRITESTRIKEFONTFILE FONT CHARSET FILENAME) [Function]

Takes a display font fontdescriptor and a character set number,
and writes that character set into a file suitable for reading in
again. Note that the font descriptor's current state is used
(which was perhaps modified by INSPECTing the datum), so this
provides a mechanism for creating/modifying new fonts.

For example:

(WRITESTRIKEFONTFILE (FONTCREATE 'GACHA 10) 0
'{DSK}Magic10-MRR-CO.DISPLAYFONT)

LYRIC RELEASE NOTES

CHANGES TO INTERLlSP-D SINCE KOTO

writes a font file which is identical in appearance to the current
state of Gacha 10 charset o.
If your DISPLAYFONTDIRECTORIES includes {DSK}, then a
subsequent (FONTCREATE 'MAGIC 10) will create a new font
descriptor who's appearance is the same as the old Gacha font
descriptor.

However, the new font is identical to the old one in appearance
only. The individual datatype fields and bitmap may not be the
same as those in the old font descriptor, due to peculiarities of
different font file formats.

Section 27.13 Font Files and Font Directories

Section 27.14 Font Classes

Section 27.14 Font Profi les

(11':27.31)

Press fonts are not a part of the standard Xerox environment
since PRESS is now a Library module.

('":27.32-27.48)

This section has been expunged from the InterLisp-D Reference
Manual. Renumber the sections which followed the old Section
27.14as .

SECTION 27.15 ~ SECTION 27.14 Font Profiles

SECTION 27.16 ~ SECTION 27.15 Image Objects

SECTION 27.17 ~ SECTION 27.16 Implementation of Image
Streams

('":27.34)

The variable FONTCHANGEFlG has an additional value, ALl.
FONTCHANGEFLG = All indicates that all calls to CHANGEFONT
are executed.

(III: 27 .33)

The function FONTNAME is no longer supported by Interlisp-D.

Chapter 28 Windows and Menus

Section 28.1 Using the Window System

LYRIC RELEASE NOTES

The default layout for the screen in the Lyric release has been
altered from the Koto release. There is a new logo window (see
figure 2).

71

CHANGES TO INTERLlSP-D SINCE KOTO

Section 28.4 Windows

Section 28.4.5 Reshaping Windows

Figure 2. The Lyric Logo window

The default position for the logo window is the upper right
corner of the screen.

(111:28.13,28.38)

The ADDMENU function will change a window's RESHAPEFN and
also will change the window's REPAINTFN.

(111:28.17)

The Xerox lisp window system allows the following minimum
window sizes:

When creating a new window, the width and height specified
must be at least 9, or else you will get an error "region too small
to use as a window"

When reshaping a window, the smallest shape you can get is
width = 26 and height = height of the font to be used in the
window. If you specify a smaller region, SHAPEW will simply
adjust it to fit these limits.

Section 28.4.8 Shrinking Windows Into Icons

SHRINKFN

EXPANDREGIONFN

72

(111:28.22)

[Wi ndow property]

In previous releases, there was a bug in the attached window
system such that if an attached window had a SHRINKFN of the
single symbol DON'T, attempting to shrink the window resulted
in a break with the message "UNDEFINED FUNCTION DON'T."
For this case in lyric, all windows that can be shrunk will be,
while those windows with a SHRINKFN of the symbol DON'T will
be left open. .

To facilitate the management of window regions, the window
property EXPANDREGIONFN has been added to Xerox lisp. This
feature allows applications to arrange for reshaping a window
when it is expanded.

[Window property]

EXPANDREGIONFN, if non-NIL, should be the function to be
called (with the window as its argument) before the window is
actually expanded.

LYRIC RELEASE NOTES

DEFAUL TICONFN

CHANGES TO INTERLlSP-O SINCE KOTO

The EXPANDREGIONFN must return Nil or a valid region, and
must not do any window operations (e.g., redisplaying). If NIL is
returned, the window is expanded normally, as if the
EXPANDREGIONFN had not existed. The region returned
specifies the new region for the main window only, not for the
group including any of its attached windows. The window will
be opened in its new shape, and any attached windows will be
repositioned or rejustified appropriately. The main window
must have a REPAINTFN which can repaint the entire window
under these conditions.

As with expanding windows normally, the OPENFN for the main
window is not called.

Also, the window is reshaped without checking for a special
shape function (e.g., a DOSHAPEFN).

(11':28.23)

Add the variable DEFAUL TICONFN to the Icon section of the
InterLisp-D Reference Manual:

[Variable]

Changes how an icon is created when a window having no
ICONFN is shrunk or when SHRINKW, with a TOWHAT argument
of a string, is called. The value of DEFAUlTICONFN is a function
of two arguments (window text); text is either NIL or a string.
DEFAULTICONFN returns an icon window.

The initial value of DEFAULTICONFN is MAKETITLEBARICON. It
creates a window that is a title bar only; the title is either the
text argument, the window's title, or "Icon made < date>" for
titleless windows. MAKETITLEBARICON places the title bar at
some corner of the main window.

An alternative behavior is available by setting DEFAUL TICONFN
to be TEXTICON. TEXTICON creates a titled icon window from
the text or window's title. It is described further in Appendix B
(lCONW).

Section 28.4.11 Terminal 1/0 and Page Holding

Section 28.5 Menus

LYRIC RELEASE NOTES

(11':28.29)

TTYDISPLA YSTREAM has been fixed so that it can be successfully
used with non-wi ndows.

Two features have been added to this section, ICONW for
creating icons, and FREE MENU, for creating and using free
menus. Both features were formerly part of the Lisp Library.

The description for ICONW is in Appendix C. The FREE MENU
description is in Appendix o.

The Lyric version of Free Menu differs in some respects from the
Koto version of Free Menu. Following is a description of the
incompatible feature changes from the old version to the new

73

CHANGES TO INTERLlSP-D SINCE KOTO

74

version of Free Menu. Some of the terminology used in these
notes is introduced in the Free Menu documentation found in
Appendix B. Please reference Appendix B before reading the
following notes.

• The function FREEMENU is used to create a Free Menu,
replacing and combining the functions FM.MAKEMENU and
FM.FORMATMENU.

The description of Free Menu has these changes:

1. There is no longer a WINDOWPROPS list in the Free Menu
Description. Instead, the window properties TITLE and
BORDER thatwere previously set in the WINDOWPROPS list
can now be passed to the function FREEMENU. Other
window properties (like FM.PROMPTWINDOW) can be set
directly after Free Menu returns the window using the
system function WINDOWPROP. See Appendix B, Section
28.7.14, Free Menu Window Properties.

2. Setting the initial state of an item is now done with the item
property INITSTATE in the item description, rather than the
STATE property.

Free Menu Items has been modified as follows:

1. 3STATE items now have states OFF, NIL, and T (instead of a
NEUTRAL state). They appear by default in the NIL state.

2. STATE items are general purpose items which maintain state,
and replace the functionality of NCHOOSE items. To get the
functionality of NCHOOSE items, specify the property
MENUITEMS (a list of items to go in a popup menu), which
instructs the STATE item to popup the menu when it is
selected. STATE items do not display their current state by
default, like NCHOOSE items used to. Instead, if you want
the state displayed in the Free Menu, you have to link the
STATE item to a DISPLAY item using a Free Menu Item Link
named "DISPLAY". The current state of the STATE item will
then automatically be displayed in the specified DISPLAY
item. The item properties MENU FONT and MENUTITLE also
apply to the popup menu.

3. NWA Y items are declared slightly differently. There is now
the notion of an NWay Collection, which is a collection of
items acting an a single nway item. The Collection is
declared by specifying any number of NWay items, each with
the same COLLECTION property. NWay Collections have
properties themselves, accessible by the macro
FM.NWAYPROPS. These properties can be specified in
property list format as the value of the NWA YPROPS Item
Property of the first NWay item declared for each Collection.
NWay Collections by default cannot be deselected (a state in
which no item selected). Setting the Collection property
DESELECT to any non-nil value changes this behavior. The
state of the NWay Collection is maintained in its STATE
property.

4. EDIT items no longer will stop at the edge of the window.
Editing is either restricted by the MAXWIDTH property, or

LYRIC RELEASE NOTES

CHANGES TO INTERLlSP-D SINCE KOTO

else it is not restricted at all. The EDITSTOP property is
obsolete. When you start editing with the right mouse
button the item is first cleared.

S. EDITSTART items now specify their associated edit item
(there can only be one, now) by a Free Menu Item Link
named "EDIT" from the EDITSTARTitem to the EDIT item.

6. TITLE items are replaced by DISPLAY items, which work the
same way.

With Free Menu, the item interface functions can take the actual
item datatype, the item's 10 or LABEL, or a list of the form
(GROUPID ITEMID) specifying a particular item in a group, as the
ITEM argument.

The description for ICONW is in Appendix B. The FREE MENU
description is in Appendix C.

These changes have occurred in the Free Menu Interface
functions:

(FREEMENU DESCRIPTION TITLE BACKGROUND BORDER) [Function]

replaces FM.MAKEMENU and FM.FORMATMENU. The desired
format is not specified as the value of the FORMAT property in
the group's PROPS list.

(FM.GETITEM ID GROUP WINDOW) [Function]

(FM.GETSTATE WINDOW)

replaces FM.lTEMFROMI D.

Searches within GROUP for an item whose 10 property is 10.

10 is matched against the item 10 and then the item LABEL. If
GROUP is NIL, the entire menu is searched.

[Function]

replaces FM.READSTATE.

Returns a property list of the selected item in the menu. This list
now also includes the NWay Collections and their selected item.

(FM.CHANGELABEL ITEM NEWLABEL WINDOW UPDATEFLG) [Function]

has a new argument order. Now works by rebuilding the item
label from scratch, taking the original specification of
MAXWIDTH and MAXHEIGHT into account. NEWLABEL can be
an atom, string, or bitmap. If UPDATEFLG is set, then the Free
Menu Group's regions are recalculated, so that boxed groups will
be redisplayed properly.

(FM.CHANGESTATE X NEWSTATE WINDOW) [Function]

LYRIC RELEASE NOTES

has a new argument order.

X is either an item or an NWay Collection 10. NEWSTATE is an
appropriate state to the type of item. If an NWay collection,
NEWSTATE is the actual item to be selected, or NIL to deselect.
Toggle items take either T or NIL as NEWSTATE, and 3STATE
items take OFF, NIL, or T, and STATE items take any atom, string,

. or bitmap as their new state. For EDIT items, NEWSTATE is the
new label, and FM.CHANGELABEL is called to change the label of
the EDIT item.

7S

CHANGES TO INTERlISP-O SINCE KOTO

(FM.RESETSHAPE WINDOW ALWA YSFLG)

replaces FM.FIXSHAPE

(FM.HIGHLIGHTITEM ITEM WINDO\N)

[Function]

[Function]

replaces FM.SHADEITEM and FM.SHADEITEMBM.

FM.HIGHLIGHTITEM will programmatically highlight an item, as
specified by its HIGHLIGHT property. The highlighting is
temporary, and will be undone by a redisplay or scroll. To
programmatically shade an item an arbitrary shade, use the new
function FM.SHADE.

Section 28.6.2 Attached Prompt Windows

(GETPROMPTWINDOW MAINWINDOW #LlNES FONTDONTCREATE [Function]

In the Lyric release, the prompt window created by
GETPROMPTWINDOW is not independently closeable, as it was
in Koto. That is, selecting Close from the right-button window
menu in the prompt window is the same as selecting it from the
menu of any other window in the group-the entire window
group is closed.

Chapter 29 Hardcopy Facilities

(111:29.3)

The HARDCOPYW function now has an additional argument,
HARDCOPYTITLE, which allows you to change or eliminate the
"Window Image" message on IP screen images. Moreover,
HARDCOPYW function now allows you to print large images
occupying more than one page.

(HARDCOPYW WINDOW/BITMAP/REGION FILE HOST SCALEFACTOR ROTA TlON PRIN TER TYPE
HARDCOPYTITLE) [Function)

HARDCOPYTITLE is a string specifying a title to print on the page
containing the screen image. If NIL, the string "Window Image"
is used. To omit a title, specify the null string.

chapter 30 TerminallnputlOutput

Section 30.1 Interrupt Characters

Control-P

76

(111:30.2)

The Control-P (PRINTLEVEL) interrupt is no longer supported.
The interrupt of that name still exists and is defaultly assigned to
Control-P, but has no effect on printing.

LYRIC RELEASE NOTES

Control-T

CHANGES TO INTERLlSP-D SINCE KOTO

The Control-T interrupt flashes the window belonging to the tty
process and prints its status information in the prompt window.
This avoids disrupting the user typescript.

(111:30.3)

(INTERRUPTCHAR CHAR TYP/FORM HARDFLG -) [Function]

Section 30.2.3 Line Buffering

If the argument TYPIFORM is a symbol designating a predefined
system interrupt (RESET, ERROR, BREAK, etc), and HARDFLG is
omitted or NIL, then the hardness defaults to the standard
hardness of the system interrupt (e.g., MOUSE for the ERROR
i nterru pt) .

(11/:30.11-12)

The BKSYSBUF function has been changed, for compatibility
reasons. The description now reads as follows:

(BKSYSBUF X FLG RDTBL) [Function]

(BKSYSCHARCODE CODE)

BKSYSBUF appends the PRIN1-name of X to the system input
buffer. The effect is the same as though the user had typed X.
Returns X.

If FLG is T, then the PRIN2-name of X is used, computed with
respect to the readtable RDTBL. If RDTBL is NIL or omitted, the
current readtable of the TTY process (which is to receive the
characters) is used. Use this for copy selection functions that
want their output to be a readable expression in an Exec.

Note that if you are typing at the same time as the BKSYSBUF is
being performed, the relative order of the typein and the
characters of X is unpredictable.

(III: 30. 12)

Add the function BKSYSCHARCODE used in line buffering:

[Function]

This function appends the character code CODE to the system
input buffer. The function BKSYSBUF is implemented by
repeated calls to BKSYSCHARCODE.

Section 30.4.1 Changing the Cursor Image

LYRIC RELEASE NOTES

(11/:30.14)

The CURSOR record has been changed to a DATA TYPE, and its
field names have changed in the following way:

Old Field Name

CURSORBITMAP

CURSORHOTSPOTX

CURSORHOTSPOTY

New Field Name

CUIMAGE

CUHOTSPOTX

CUHOTSPOTY

The CURSORHOTSPOT field no longer exists; its val ue can be
fetched by composing CUHOTSPOTX and CUHOTSPOTY into a

77

CHANGES TO INTERLlSP-O SINCE KOTO

POSITION, or stored by destructuring a POSITION into those
fields.

Section 30.5 Keyboard Interpretation

(111:30. 19-20)

(KEYDOWNP KEYNAME)

(KEY ACTION KEYNAME ACTIONS-)

[Function]

[Function]

KEYNAME is interpreted differently in Lyric: If KEYNAME is a
small integer, it is taken to be the internal key number.
Otherwise, it is taken to be the name of the key. This means, for
example, that the name of the "6" key is not the number 6.
Instead, spelled-out names for all the digit keys have been
assigned. The "6" key is named SIX. It happens that the key
number of the "6" key is 2. Therefore, the following two forms
are equivalent:

. (KEYDOWNP 'SIX)

(KEYDOWNP 2)

Note: The key labeled HELP on the 1186 is named OBK-HELP for
use in KEYACTION.

Section 30.6 Display Screen

(111:30.22-23)

(CHANGEBACKGROUND SHADE -) [Function1

(VIDEORATE TYPE)

The function CHANGEBACKGROUND treats the SHADE
argument as a 4 X 4 texture. The CHANGEBACKGROUNDBORDER
function, on the other hand, treats the SHADE argument as a 2 X
8 texture.

Therefore, note that the same SHADE argument, when used by
the two functions, will not necessarily produce the same
background and border shades on the display screen.

(III: 30.23)

The VIDEORATE function works only on the 1108. Append the
following note to the VIDEORA TE function description:

[Function1

Note: VIDEORATE does not work on the 1186.

Section 30.7 Miscellaneous Terminal 1/0

(1I1:30.24)

(BEEPON FREQ) [Function]

The argument FREQ is measured in hertz, not in TICKS.

78 LYRIC RELEASE NOTES

CHANGES TO INTERLlSP-D SINCE KOTO

chapter 31 Ethernet

Section 31.3.1 Name and Address Conventions

(11':31.8-9)

Amend the first paragraph, describing NSADDRESS, to list, in
order, the components of NSADDRESS:

Addresses of hosts in the NS world consist of three parts, a
network number, a machine number, and a socket number.
These three parts are embodied in the Interlisp-D data type
NSADDRESS. The components of NSADDRESS are 32-bit
network, 48-bit host, 16-bit socket.

Move the following sentence from page 31.9 to the last
paragraph of Name and Address Conventions on page 31.8:

If you wish to manipulate NSADDRESS and NSNAME objects
directly you should load the Lisp Library Module ETHERRECORDS.

Section 31.3.2 Clearinghouse Functions

(11':31.9)

The variable AUTHENTICATION.NET.HINT has been added to
Clearinghouse Functions. It follows the CH.NET.HINT variable in
the Interlisp-D Reference Manual.

AUTHENTICA TION.NET.HINT [Variable]

AUTHENTICATION.NET.HINT can be set to CH.NET.HINT to speed
up the initial authentication connection. Its value is interpreted
in the same manner as CH.NET.HINT.

Section 31.3.5.3 Performing Courier Transactions

(11': 31.20-21)

The COURIER.OPEN function requires that a courier server be
running on the host machine.

Section 31.5 Pup Level One Functions

\10MBTYPE.PUP

\10MBTYPE.3T010

LYRIC RELEASE NOTES

(Variable]

[Variable]

The values of these variables are the 10MB Ethernet
encapsulation types for PUP packets and Pup-to-10MB address
translation packets, respectively. The initial values of these
variables are 512 and 513, respectively. However, these values
are illegal for an Ethernet conforming to IEEE 802.3
specifications.

New encapsulation types have been defined for IEEE 802.3
networks. To use them, set the variable \10MBTYPE.PUP to 2560
(decimal) and \10MBTYPE.3T010 to 2561. Then call either
(RESTART.ETHER) or (LOGOUT), so that the Ethernet code can
reinitialize itself. It may be convenient for a site to smash these
values directly into the standard sysout everyone fetches by using

79

CHANGES TO INTERLlSP-O SINCE KOTO

the function READSYS and its 'tV command from the TeleRaid
Library module (the sysout must be on disk or a random-access
file server). Note that all pup hosts on a network (servers as well
as workstations) must simultaneously choose to use the new
values; those using different values will be unable to
communicate with each other. The System Tool must also be
upgraded at the same time.

Section 31.6.1 Creating and Managing XIPs

(NSNET.DISTANCE NET#)

80

The function NSNET.OISTANCE was previously undocumented.
The documentation is:

[Function]

Returns the "hop count" to network NET#, i.e., the number of
gateways through which an XIP must pass to reach NET#,
according to the best routing information known at this point.
The local (directly-connected) network is considered to be zero
hops away. Current convention is that an inaccessible network is
16 hops away. NSNET.DISTANCE may need to wait to obtain
routing information from an Internetwork Router if NET# is not
currently in its routing cache.

LYRIC RELEASE NOTES

5. LIBRARY MODULES

Since the Koto release of this manual, the following changes
have taken place:

The name was changed, from "packages" to "modules," because
the former term has a specific meaning in Common Lisp.

Several modules were taken out of the library, and put into
LispUsers.

At the same time, four modules that were part of the Interlisp
environment have now been placed into the library.

And all modules presently in the library have been reviewed and
edited both for technical changes and style of presentation.

Modules Moved from the Library to LispUsers

Big
BitMapFns
BusExtender
BusMaster
CirclPrint
CheckSet
CompileBang
Color
C150Stream
DECL
Dlnfo
FileCache
HelpSys
Iris
LambdaTran
PCallStats
ReadAIS

Modules Moved to Their Own Manuals

TEdit
Sketch
CML, CMLArray, CMLArraylnspector (part of Xerox Common Lisp)

Modules Moved From the Sysout Into the Library

DEdit
Masterscope
Match
Press

Modules Moved From the Library Into the Sysout

LYRIC RELEASE NOTES

IconW
FreeMenu

81

LIBRARY MODULES

Modules Replaced

New Modules

Old: FX-80stream, FastFX-80stream, FXprinter
New: FX-80Printer

SysEdit
TableBrowser

New Features Since KOTO

Additional Notes

The following list is meant to indicate the highlights, rather than
be a complete and exhaustive summary of all the new features
that were added and other changes that were made since the
Koto release.

4045XLPstream Enabled its graphics capabilities; added 1108 cable/connector
pin-outs.

Centronics Added cable/connector pin-out.

Chat Added information about EMACS.

CopyFiles When told to copy to a non-existent NS subdirectory, it now asks
if it should create it.

EditBitMap Added a description of its user interface.

FileBrowser Added enhanced features to Load, Compile, Edit; it now
preserves path name of source files when copying to another
machine or user; sorts files by attributes; and prints hard copies
of directory listings.

FX-80driver New software, new text; added 1108/1186 cable/connector
pin-outs.

Kermit Added reference to a really nice text/reference book.

NSmaintain Clarified the command set.

TCP-IP Added revised/expanded installation procedure.

TExec Clarified its purpose in life.

DEdit is not error-protected. Doing a f in a DEdit break window
closes the DEdit window, too ...

In addition, the modules work under all Xerox Lisp environments
(Interlisp-D, Common Lisp, Xerox Lisp). However, many of the
functions and variables used within the modules are those of
Interlisp-D, and therefore you'll have to make sure that, when
you are not in Interlisp, you use the IL: prefix (see the Release
Notes for more details).

Koto CML Library Module

82

If you have files that used the Koto CML library module, with its
package-style symbol naming conventions, you will need to

LYRIC RELEASE NOTES

LYRIC RELEASE NOTES

LIBRARY MODU LES

convert them to use the correct symbols in Lyric. The procedure
is briefly as follows; see the Xerox Comon Lisp Implementation
Notes, Chapter 11, "Reader compatability feature" for complete
details on this mechanism:

First, set the global variable
L1TATOM-PACKAGE-CONVERSION-ENABLED to T. Then for each
of your files, do

(LOAD file 'PROP)

(MAKEFILE file 'NEW)

Afterwards be sure to set the global variable
L1TATOM-PACKAGE-CONVERSION-ENABLED back to NIL.

83

LIBRARY MODULES

[This page intentionally left blank]

84 LYRIC RELEASE NOTES

6. USER'S GUIDES

A User's Guide to TEdit-Release Notes

Changes, Additions, Corrections to TEdit Part One

Paragraph Looks Menu

Page Layout Menu

New Features

LYRIC RELEASE NOTES

TEdit now accepts non-TEdit documents that contai n extended
NS characters. It no longer shows as characters interspersed with
black boxes (AR 4545).

TEdit now accepts non-TEd it documents that contain extended
NS characters. It no longer shows as characters interspersed with
black boxes (AR 4545).

If you apply "new-page-before" to the first paragraph on the
first page, TEd it will no longer skip a page when the file is
printed.

You may now specify a landscape page layout.

In the page layout menu, Modern 10 MRR is now the default
page number font instead of Gacha 10. Also, there is a global
variable, TEDIT.DEFAULT.FOLlO.LOOKS, that you can set to be
any character-looks specification acceptable to TEDIT.LOOKS.
The default (Le., if you don't specify one in the page layout
menu) is taken from there.

If you have set page formatting in the past, the page-numbering
font has been set as well (even if you specified nothing). This
behavior continues, but the default is more sensible, and can be
changed.

You may now number the first page of a TEdit file O(zero).

TEdit now preserves text before and after page numbers after a
file is saved.

Using numbers with decimal points in the "Text before page
number" field in the page-layout menu now works properly.

TEdit GET now offers you the current/last-typed file name in the
same manner as TEdit PUT.

The copyright symbol has been added to TEdit abbreviations (NS
fonts only, e.g., Modern, Classic, etc.). If you expand a lowercase
c you will get the copyright symbol.

85

USER'S GUIDES

Changes, Additions! Corrections to Modifying TEdit

STREAM AND TEXTOBJ

Note: This section is now called the Programmer's Interface to
TEdit

All public TEdit functions (non- \) that take a TEXTOBJ argument
accept either a TEXTOBJ or a text STREAM as that argument's
value.

Changes, Additions and Corrections to TEdit functions

The function TEDIT.SINGLE.PAGEFORMAT is incorrectly
documented in the Lisp Library. The following corrections
should be noted: The arguments PG#X, PG#Y, and PG#FONT
should be PX, PY, and PFONT, respectively.

The argument PG#ALlGNMENTshould be POUAD.

The order for the arguments, TOP BOTTOM LEFT RIGHT should
be LEFT RIGHT TOP BOTTOM.

The argument #COLS should be COLS.

INTERCOLSPACE should be INTERCOL. And between the
INTERCOL and UNITS arguments there is a HEADINGS argument.

The functions and its arguments look like:

(TEDIT.SINGLE.PAGEFORMAT PAGE#S? PX PY PFONT POUAD LEFT RIGHT
TOP BOTTOM COLS COL WIDTH INTERCOL

PAGE#S?

PX

PY

PFONT

POUAD

LEFT

RIGHT

TOP

HEADINGS UNITS PAGEPROPS PAPERSIZE) [Function]

T if you want page numbers on this kind of page, else NIL.

The horizontal location of the page number, measured from the
left edge of the paper. Negative values are measured from the
paper's right edge.

The vertical location of the baseline for the page numbers,
measured from the bottom of the paper. Negative values are
measured from the top of the paper.

The font to be used to display the page numbers. This can be any
specification that is acceptable to TEDIT.LOOKS.

An atom that tells how the page number is to be aligned on the
location specified by PX and PY. LEFT means the location is the
lower-left corner of the page number. RIGHT means the location
is the lower-right corner. CENTERED means the page number
will be centered around the PX you specified.

The left margin-the distance from the left edge of the paper to
the left edge of the first text column.

The right margin-the distance from the right edge of the
rightmost text column to the right edge of the paper.

The top margin of the page-the distance from the top of the
paper to the top of the fi r5t line of body text.

LYRIC RELEASE NOTES

LYRIC RELEASE NOTES

BOTTOM

COLS

COL WIDTH

INTERCOL

HEADINGS

UNITS

PAGEPROPS

PAPERSIZE

USER'S GUIDES

The bottom margin-the distance from the bottom of the last
line of body text to the bottom of the paper.

Number of columns (default is one).

The column width (default is to evenly divide the available space
among the #COLS columns).

The space between the right edge of one column and the left
edge of the next column. Defaults to evenly divide the space left
after the columns are set up. If-there is more than one column,
one or the other of COLWIDTH and INTERCOLSPACE must be
specified.

A list of lists in the form of « HEADINGNAMEl XLOCATIO~

YLOCATIONt) (HEADINGNAMEz XLOCATIONz YLOCATIONz)
••• (HEADINGNAME n XLOCATIONn YLOCATIONn»·
The units used in setting the values you specified. May be one of
the atoms PICAS, IN, INCHES, CM, POINTS. Default is POINTS.

A property list of extra information. Properties are
STARTINGPAGE#, FOLIOINFO, and LANDSCAPE?

STARTINGPAGE# is the first page's number; it is ignored if this
isn't the first page.

FOLIOINFO is a list of information about page numbers,
(FORMAT TEXTBEFORE TEXTAFTER). FORMAT can be one of
ARABIC, LOWERROMAN, UPPERROMAN, or NIL (Le., ARABIC).
TEXTBEFORE is the text preceding the number, and TEXTAFTER is
the text following the number.

LANDSCAPE? determines if the document is printed in the usual
vertical format or printed in landscape format (horizontally). If
NIL the document is printed vertically, if non-NIL the document is
printed landscape. Defaults ~o NIl.

Is one of LETTER, LEGAL, the metric paper sizes (AO, A', A2 A3,
A4, AS, BO, B2, 83, B4), or NIL (which defaults to letter size).

TEDIT.GET accepts an open stream as the file to GET from. You
may still pass it a TEXTOBJ, however.

(TEDIT.GET STREAM FILE UNFORMATTED?) [Function]

Performs the TEdit Get command, loading the text from FILE
onto the editing stream STREAM-replacing the text that is
being edited currently. If FILE is not supplied, the user will be
asked for a file name. If UNFORMATTED? is non-NIL, FILE is
treated as a plain-text document, and all of its contents are
included-even TEdit formatting information.

You can now use TEDIT.PUT to store a TEdit document in the
middle of a larger file (e.g., for saving TEdit documents as part of
a database). The complete documentation is now as follows:

(TEDIT.PUT STREAM FILE FORCENEW UNFORMATTED? OLDFORMAT?) [Function]

Performs the TEdit Put command, saving the text from the text
stream STREAM onto the file named FILE. If FILE is NIL, the user
will be prompted for a fife name. In this case, if FORCENEW is

87

USER'S GUIDES

Note:

NIL, the user is offered the old file name as a default; if non-NIL,
no default is given, forcing the user to specify a file name. If
UNFORMATTED? is non-NIL, only characters are put in the
file-no formatting. If OLDFORMAT? is non-NIL, the file will be
written in the format used by the previous version of TEdit, for
backward compatibility.

In order to store a TEdit document as part of another file, call
TEDIT.PUT, passing an open stream on the file as the FILE
argument. The stream should be open for output and
positioned at the place you want TEdit to store the document
(call this file pointer START). When TEDIT.PUT returns, the
stream's end-of-file pointer will be just after the last byte in the
newly-inserted document. Call this file pointer END. To
subsequently retrieve the document from the middle of this
other file, call OPENTEXTSTREAM on the file, passing the START
and END pointers as the STARTand END arguments.

When TEDIT.PUT returns, the stream will be open for INPUT.

The functions TEDIT.MOVE and TEDIT.COPY were not
documented in Koto. They are:

(TEDIT.MOVE FROM TO) [Function]

FROM and TO are SELECTIONs. Moves the text described by
FROM to the place described by TO, within the same text stream
or between different text streams. The text described by FROM
is deleted from its original location.

(TEDIT.COPY FROM TO) [Function]

FROM and TO are SELECTIONs. Copies the text described by
FROM to the place described by TO, within the same text stream
or between different text streams. The text described by FROM
is not deleted in the FROM location.

Changes in the Documentation of TEdit Functions

88

The following functions have had the documentation of their
arguments changed to reflect what will appear if you' do a ? = or
evaluate ARGLIST on one of these functions. Arguments that
were corrected are indicated by bold italics (arg). Please note
that what changed was the documentation, not the way the
functions operate or the values of the arguments themselves.

(TEDIT.SETSEL STREAM CH# LEN POINT PENDINGDELFLG
LEAVECARETLOOKS OPERA T/ON)

(COERCETEXTOBJ STREAM TYPE OUTPUTSTREAM)

(TEDIT.DELETE STREAM SEL LEN)

(TEDIT.lNCLUDE STREAM FILE START END)

(TEDIT.FIND STREAM TARGETSTRING START# END# WILDCARDS?)

(TEDIT.GET.LOOKS STREAM CH#ORCHARLOOKS)

(TEDIT.PARALOOKS STREAM NfWLOOKS SEL LEN)

(TEDIT.COMPOUND.PAGEFORMAT FIRST VERSO RECTO)

,(TEXTOBJ STREAM)

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

LYRIC RELEASE NOTES

(TEXTSTREAM STREAM)

(TEDIT .CARETLOOKS STREAM LOOKS)

(TE DIT. NORMALIZECARET STREAM SEL)

(COPYTEXTSTREAM ORIGINAL CROSSCOPy)

(TEDIT.PROMPTPRINT TEXTSTREAM MSG CLEAR."

(TEDIT.SETSYNTAX CHAR CLASS TABLE)

(TEDIT.GETSYNTAX CH TABLE)

(TEDIT.SETFUNCTION CHARCODE FN RTBL)

(TEDIT.WORDGET CH TABLE)

(TEDIT. WORDSET CHARCODE CLASS TABLE)

(TEDIT.INSERT.OBJECT OBJECT STREAM CH#)

USER'S GUIDES

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

The following functions were previously documented as
accepti ng a TEXTOBJ. They all sti II take a TEXTOBJ but they wi II
now also accept a STREAM as the first argument.

(TEDIT.FIND STREAM TARGETSTRING START# END# WILDCARDS?)

1TEDIT.GET.LOOKS STREAM CH#ORCHARLOOKS)

~TEOIT.PARALOOKS STREAM NEWLOOKS SEL LEN)

(TEXTSTREAM STREAM)

'(TEOIT. NORMALIZECARET STREAM SEL)

(TEOIT.PROMPTPRINT TEXTSTREAM MSG CLEAR."

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

New Features

FixedARS

lYRIC RELEASE NOTES

For the benefit of NS file server users, TEdit now writes files of
type TEDIT, instead of BINARY. As a result, LlSTFILES and the
FileBrowser are able to determine that the file is a TEdit file and
call TEdit to create the hardcopy. Previously, it was necessary
that the TEdit file explicitly have the extension II .TEditll.

(OPENSTREAM file 'OUTPUT 'NEW '«TYPE TEDIT)}}.

This change is for formatted files only. Plain text files are still
written as type TEXT. Also, on devices that don't support
arbitrary file types (such as conventional mainframe file servers),
the type TEDIT coerces to BINARY. Unfortunately, if you
subsequently copy the file to an NS file server from such a device,
the knowledge of its "true" file type is lost.

AR 883-You no longer get spurious dashed underlining if you
scroll during a copy-selection and then extend the that selection·
from off-screen to on.

AR 4148-(COERCETEXTOBJ tex tObj 'STREAM} now returns
a stream.

AQ

USER'S GUIDES

90

AR 5092-Splitting and unsplitting TEdit window is now much
more robust.

AR 5093-TEdit Find and Substitute no longer ignore leading
zeros.

AR 5539-Files on hosts that don't use CR as their end-of-line
marker will not cause OPENTEXTSTREAM to break with an "end
of fil e II error.

AR 5621~TEDIT.PUT no longer passes NIL to the PUTFN as the
file name for a new file.

AR 5830-Programmatically Closing a TEd it window opened
with OPENTEXTSTREAM works.

AR 5903-Calling TEDIT.PUT from the QUITFN now closes the old
stream.

AR 5913-Using TEDIT.INSERT with pending delete selection no
longer causes display to be inconsistent.

AR 5920-Selecting a bitmap {shift-select, delete-select, etc.} in a
TEdit document will not cause the bitmap editor menu to
appear.

AR 5933-Using decimal tabs no longer requires an extra
character after a number to align properly.

AR 6088-When text is moved out of bounds of the window by
control shift selection, TEdit redisp/ays correctly.

AR 6274-Koto TEd it hang if you tried to hardcopy a series of
paragraphs that was bigger than a page with the HEADINGKEEP
property set to ON. TEdit no longer hangs.

AR 6447-TEdit will not break when an attempt is make to PUT
an empty file.

AR 6791-ln Koto the function TEDIT.PUT.PCTB did not preserve
NS characters if they immediately followed a bitmap.
TEDIT.PUT.PCTB now preseves NS characters in all cases.

AR 6802-\PEEKBIN now works properly with image objects.
\PEEKBIN no longer advances the fileptr.

LYRIC RELEASE NOTES

USER"i·GUIDES

A User's Guide to Sketch-Release Notes

Manipulating Sketch Elements

Adding and Deleting Control Points

Deleting Control Points

Defaults Command

The Lyric release of Sketch includes several new features, many
added in response to user's requests. The Lyric version of Sketch
also supports a programmer's interface which allows sketches to
be created by programs. This interface is described in a separate
document (The Programmer's Interface to Sketch.)

Individual control points can now be added to and deleted from
wires and curves.

You now have the option to delete elements or delete a control
point. Just select the Delete command, move the mouse cursor
out through the grey arrow, then select the point to be deleted.

Better Feedback for Creating Wires, Circles and Ellipses

Arrowheads

Deleting Characters During Type-in

LYRIC RELEASE NOTES

Sketch now provides better feedback when you are creating
circles, ellipses and wires. You are now prompted with an image
of what the figure will look like if you release the left button.
You can get the old feedback behavior (for example, if this is too
slow) by selecting the Feedback subcommand from the Defaults
submenu, then selecting the Points only subcommand from its
submenu.

A curved arrowhead shape was added and is now the default.
Also, a command was added to the menu of arrowhead change
operations that implements "look same" for arrowheads. To
make the arrowheads on a collection of elements look the same:
select Change; then, when prompted to select the elements to
change, first select the element that has the desired arrowhead,
then, in the same selection, add the elements that you want to
look like the first one; then select the item Arrowheads, then the
item Both, then the item Same as First.

You can now delete characters by using the UNDO key, just as
you would in TEdit. Type in a word or a phrase, then press the
UNDO key, and the text will be deleted.

91

USER'S GUIDES

Using Bit Maps in a Sketch

Zooming Bitmaps

Changing Bitmaps

The bit image element provides a bitmap that zooms. Selecting
the Bit image command from the command menu will prompt
you for a region of the screen that will be inserted as a bit image
into the sketch.

When you apply a Change cQmmand to a bit image that it is
being viewed at actual size, you will be prompted with the same
menu as a bitmap image object. If the image is being displayed
at other than original scale, you will be given the menu shown
below.

Scaled bitma 0 erations

Perfornl edit operations on the source bitmap of this inlage.
Make the inlage shown be the source

Make the source be at this scale
Make the inlage shown be the source at the source scale

Save this ima e to be used as a source at this scale

Fr-eezing Sketch Elements

Aligning Sketch Elements

Menu of commands offered when the Change command
is applied to a bit image that is not at original scale.

It is now possible to freeze elements, that is to make them
unaffected by edit changes. Frozen elements will not have their
control points highlighted (and hence cannot be selected) after
an edit command has been selected. This provides a way to keep
part of the figure fixed while editing on an overlapping part. It
also reduces the number of control points. The Freeze command
is a subcommand to the Group command. It will prompt you for
a collection of elements that will then be frozen. Elements can
be unfrozen by the UnFreeze command that is a subcommand to
the UnGroup command.

Sketch contains a set of commands to align elements. The main
menu command Align prompts for a collection of control points
and moves them so that they all line up with the leftmost one.

Placing Multiple Copies of Elements

92

There is a new feature in Sketch that makes it much easier to
place multiple copies of a collection of elements. While
positioning the image of the elements during the Copy
command, hold down the COpy key. A new copy of the
elements will be positioned everytime a mouse button (left or
right) is pressed and released, until either the image is placed
completely outside the viewer or the COpy key is released before
the mouse button is released.

LYRIC RELEASE NOTES

Making the Window Fit the Sketch

Overlaying Figure Elements

Changing How Elements Overlap

The Programmer's Interface

LYRIC RELEASE NOTES

USER'S GUIDES

The Fit to window subcommand under the Move View
command will zoom the sketch so that it just fits within the
current window. It has a sub-subcommand Fit window to sketch
that will reshape the window so that the entire sketch (at the
size shown) just fits within it. This is useful if you change a sketch
that was edited from a document.

Elements that have a filling property (boxes, text boxes, circles,
polygons and closed curves) now have a mode property that
determines how the filling should effect elements it covers. The
option Filling mode now appears in the Which aspect1
submenu.

Elements have an order in which they are displayed. An element
that is displayed early can be covered by elements layed down
later. Thus, changing the order in which overlapping elements
are displayed can effect the resulting image. The Bury command
pro~ides three subcommands to change the order in which
elements are displayed.

The Bury command will prompt you to select an element or
elements and will change their order so that they are displayed
first. That is, they will appear underneath any other elements. If
you select more than one element, they will all be displayed
before any non-selected elements and their relative order
maintained. The Send to bottom subcommand does the same
thi ng as Bury.

The Bring to top command is a subitem to the Bury command. It
will prompt you to select an element or elements and will
change their order so that they are displayed last. That is, they
will appear on top of any other elements. If you select more than
one element, they will all be displayed after any non-selected
elements and their relative order maintained.

The Reverse order command is a subitem to the B'ury command.
It will prompt you to select a collection of elements and will
reverse their display orders. A special case is when two elements
are selected. In this case the element positions are switched.

Since the Koto release, the programmer's interface to Sketch has
been significant redesigned. The programmer's interface allows
Sketch to be used as a tool by other programs. It is documented
in the Programmer's Interlace to Sketch.

93

USER'S GUIDES

New Behavior for the Get Command

The action of the Get command was changed to be consistent
with the TEdit Get command. It now deletes any sketch elements
that are in the sketch prior to the Get command. The affect of
the old Get command is available as the Include command on a
submenu to the Get command.

Establishing Initial Defaults for Sketch

94

The variable SK.DEFAULT.FONT, if non-NIL, is used as the default
font. If SK.DEFAULT.FONT is NIL, the default font
(DEFAULTFONT) is used.

The following variables are used to establish the default setting
for a new sketch. Descriptions of legal values can be found in the
Programmer's Interface to Sketch. SK.DEFAULT.BRUSH is the
default brush. SK.DEFAULT.ARROW.LENGTH is the default
arrowhead size. SK.DEFAULT.ARROW.TYPE is the default type
(one of LINE, CURVE, CLOSEDLINE or SOLID).
SK.DEFAUL T.ARROW.ANGLE is the default angle for arrowheads.
SK.DEFAULT.TEXT.ALlGNMENT is the default text alignment.
SK.DEFAULT.TEXTBOX.ALlGNMENT is the default textbox
alignment. SK.DEFAULT.DASHING is the default dashing.
SK.DEFAULT.TEXTURE, SK.DEFAUL T.BACKCOLOR and
SK.DEFAULT.OPERATION are combined to create the default
filling.

LYRIC RELEASE NOTES

USER'S G.l!.HDES

1108 User's Guide Release Notes

What to Look For

LYRIC RELEASE NOTES

The 1108 User's Guide has been extensively reorganized and
rewritten for the lyric Release. Wherever possible, it is ~now
nearly identical to the new version of the 1186 User's Guide.
While many old problems have been resolved, some still remain.
For that reason, a comment form is appended to each manual.

Chapters and sections in the two user's guides are now nearly
parallel, and much of the content wherever appropri~, is
identical, or nearly identkal. Snaps of the various Execs anrJ the
background menu are induded in Chapter 1.

The content of the old appendices is now distributed in thetbody
of the text, and new appendices catalogue library ModulE$. and
Fonts according to floppy disk location.

The chapter on diagnostics (Chapter 8) is largely new, and the
local rigid disk file system has been broken out into a mew
chapter (Chapter 4). A new section on fonts has been added to
the software installation procedures (Chapter 5). MP Cods are
now listed separately as Chapter 9. Also, the cabling diagr;ams
and other information related to RS-232 support formerly
includedill Chapter 7, Input/Output, is now in the Lisp Library
Modules :ManuaJ.

Finally, in every chapter that requires use of lisp expressicrms of
any kind, there is a notice regarding the use of IL: and a
suggestiol!! "that expressions~ functions, and variables be ~ped
into anlnterlisp Exec.

95

USER'S GUIDES

1186 User's Guide Release Notes

What to Look For

96

The 1186 User's Guide has been extensively reorganized and
rewritten for the lyric Release. Wherever possible, it is now
nearly identical to the new version of the 1108 User's Guide.
While many old problems have been resolved, some still remain.
For that reason, a comment form is appended to each manual.

Chapters and sections in the two user's guides are now nearly
parallel, and much of the content wherever appropriate, is
identical, or nearly identical. Snaps of the various Execs and the
background menu are included in Chapter 1.

The content of the old appendices is now distributed in the body
of the text, and new appendices catalogue Library Modules and
Fonts according to floppy disk location.

The chapter on diagnostics (Chapter 8) are largely new, and the
local rigid disk file system has been broken out into a new
chapter (Chapter 4). A new section on fonts has been added to
the software installation procedures (Chapter 5). Cursor Codes
are now listed separately as Chapter 9.

Finally, in every chapter that requires use of Lisp expressions of
any kind, there is a notice regarding the use of Il: and a
suggestion that expressions, functions, and variables be typed
into an Interlisp Exec.

LYRIC RELEASE NOTES

Communications

Pup File Service

XNS File Service

LYRIC RELEASE NOTES

7. KNOWN PROBLEMS

This chapter is a compilation of known problems in the Lyric
release. These problems are in the form of Action Requests (ARs)
from the Xerox Lisp AR data base. The appendix is organized by
major Xerox Lisp categories: Communications, Windows and
Graphics, Operating System, Language Support, Programming
Environment, Common Lisp, System Tools, and Library. A brief
description of the problem follows each AR number. Some ARs
have specific workarounds, noted by an arrow (...).

0012 Leaf sometimes prints "not responding" for non-user-visible
operations, such as closing a cached file in the background.

0432 Leaf after logout activity is not interlocked against other
processes; processes actively reading or writing a file at the time
of LOGOUT may have problems.

3374 UNIX OPENFILE for access of APPEND or BOTH fails unless RECOG
= OLD (this is a bug in the Leaf server).

5225 , Read-Open Pup FTP files are not reopened after logout. The

4453

4463

7401

7761

system prints" File has disappeared I" (even though it's only the
server connection that has dis.appeared) and closes the stream.

DIRECTORY does not match wildcards against subdirectory
names unless you include them in subdirectory syntax. For
example, (Fred)*S* finds (Fred)Ooc)Case but not
(Fred)Lisp)Hax. (Fred)*S*) would find the latter but not
the former.

Confusion jf you try to create an NS subdirectory with same name
as an existing ordinary file-a given filename can designate a
real file or a subdirectory, but not both. The errors signaled
when trying to use a subdirectory as a file or vice versa are not
always obvious.

NS Filing says "Login incorrect" even if the error was "Cannot
Authenticate". That is, your password may have been correctly
specified, but the file service was unable to contact an
authentication service within some timeout period.

A file residing on an NS file server can be deleted despite there
being an open input stream on it. The operations remai n
consistent, however-the input stream is read correctly to the
end of file, but the file may no longer exist on the server when it
finishes.

97

KNOWN PROBLEMS

Other

Windows and Graphics

Fonts & Hardcopy

Graphics

98

7528 Changing NETWORKOSTYPES has no effect for host whose OS
type has already been (incorrectly) defaulted. ... Set it in your
Init file on disk.

0831 FILE NOT FOUND error in FONTCREATE not continuable After
adding directories to whichever of DISPLAYFONDIRECTORIES or
INTERPRESSFONTDIRECTORIES is appropriate, revert to
FONTCREATE before saying OK.

3792 Interpress and Press BL TSHADE do not align textures (seams can
occur).

4219 Interpress treats margins and clipping region of stream as
synonymous.

4746 DSPFONT gives "Illegal argument" error instead of "Font not
found" error when given a non-existent font name.

5618 Documentation: FONTCREATE ignores the CHARSET argument.
(It is not needed, as non-zero character sets are created
automatically on demand.)

5703 Underscore (ASCII #0137) prints as leftward arrow, which was
the rendering of that character code in old ASCII, and still much
used in Interlisp To make it print as underscore (in Interpress
fonts), (SETA \ASCIITONS 95 95). To restore previous
behavior, (SETA \ASCIITONS 95 172).

6322

4771

4878

4879

5647

5721

6502

6798

HARDCOPYW with a rotation of 180 degrees places the image at
the wrong coordinates.

DRAWCIRCLE with stream's DSPOPERATION set to INVERT fails if
brush is bigger than 1.

Bug in DRAWLlNE: with DASHING, INVERT mode is ignored.

Bug in DRAWLlNE: with DASHING, the line width is larger than
anticipated.

SHADEITEM with shade WHITESHADE does not work for pop-up
menus.

If SOURCE argument to BITBL T is a display stream, SOURCELEFT
and SOURCEBOTTOM arguments do not default to O.

DRAWELLIPSE goes into an infinite loop for some arguments. ...
Approximate it with DRAWCURVE.

DRAWDASHEDLINE unnecessarily calls RELMOVETO.

LYRIC RELEASE NOTES

Menus & Windows

Free Menu

Operating System

File System

Floppy

LYRIC RELEASE NOTES

KNOWN PROBLEMS

4051 SUBITEM option of a menu doesn't work for multi-column
menus.

6255 Submenus do not allow return to parent menu unless you come
out to the left of them.

8629 Inspector prints at infinite depth when using the Interlisp read
table. This can cause infinite loop or stack overflow if a structure
is circular (special problem is stack frame backtraces). ~
(CHANGENAME 'PRINTANDBOX 'PRIN2 'Cl:PRIN1)

6410 In Table or Column formatting, regions for special item
highlighti ng aren't set properly.

7388 In some cases, FM.CHANGELABEl doesn't clear an item properly.

0340 OUTFllEP or FUllNAME/NEW with explicit version always returns
Nil on {CORE}.

3817 SETFllEINFO of EOl attribute on CORE or disk stream sets only
the stream's EOl, not the permanent file's EOl attribute.
GETFllEINFO always fetches the permanent EOl attribute. ~ Set
EOl for new files in call to OPENSTREAM; fix EOl for old files by
SETFllEINFO on the file, not a stream on the file.

3770

4042

4891

4992

5088

5212

Break "RECORDNOTFOUND" occurs when floppy misformatted.

Floppy in CPM mode has problems with EOL convention and
CONTROl-Z as end of file.

Floppy occasionally takes a long time to determine that it can't
be formatted.

FLOPPY.TO.FILE fails to specify type BINARY, so the image file
may turn out TEXT. -+ (ADVISE '(OPENSTREAM : IN
FlOPPY.TO.FllE) 'BEFORE '(PUSH OBSOLETE '(TYPE BINARY»))

A break occurs if you try to copy to floppy a file that was created
when the time was not set. ~ (SETFllEINFO file 'CREATION DATE
" reasonable date")

1186 Floppy does not automatically notice new floppies, uses old
cached information. -+ After changing floppies, DIR {FLOPPY}
or CONN {FLOPPY} will update the cached information.

99

KNOWN PROBLEMS

Local Disk

Keyboard

Processes

Other

Language Support

Streams & I/O

100

5259

7132

7788

5014

6434

6618

7724

7886

1186 (FLOPPY.WAIT.FOR.FLOPPY) doesn't clear typeahead
before user response.

Floppy directory search with multiple wildcards is too slow.

1108 Floppy directory cache is retained if machine is turned off in
IDLE.

Disk system on 29MB 1108 runs without error checking.

Local file system does not accept the character II ~" in file names.

KEY ACTION causes invalid address (MP 9305) if given an invalid
TABLE argument.

ADD.PROCESS<:reates unnecessary symbol for process name.

PROCESS.fVAL should check for thJe process having been
destroyed-if the process in which ttw!: <evaluation occurs aborts
or dies, caller hangs waiting for result. -+ Include an
UNWIND-PROTECT in the evaluated form to do something
interesting if an error occurs.

0563 Time functions do not factor out disk swapout time accurately.

5568 Booting a virtual memory image saved by SAVEVM underneath
Idle runs all the "after SAVEVM" tasks while still under Idle,
which can cause problems for some devices.

7498 Lyric sysout invalidates VMem at startup time much faster than
Koto did-you can't always immediately boot back to the
original VMem state.

3569

3889

8186

Printout commands .SUP, .SUB, .BASE do not work.

PEEKC followed by READC prints an additional CR in the case
where CR is input.

L1NELENGTH of synonym and other indirect streams (e.g.,
QUERY-IO and *ERROR-OUTPUT*) is not the same as the
L1NELENGTH of the underlying stream.

LYRIC RELEASE NOTES

KNOWN PROBLEMS

Storage Allocation & Garbage Collector

Other

4935 Garbage collector can turn itself off when table fills because of
many pointers getting reference count zero before a RECLAIM
occurs (see the discussion in "Section 22.1, Storage Allocatio'1
and Garbage Collection" of the Release Notes, Chapter
Changes to Interlisp-D).

5329 Reference count operations are slow on objects with large
reference counts.

7008 STORAGE should print the type name using PRIN2.

4348 (STRPOS '"' "") returns 1 instead of NIL.

4349 RPLSTRING complains about Invalid argument for the replacing
string, when it is really the index that is invalid.

6511 Soft stack overflow error can occur when there is still adequate
stack space.

6955 DECLARERECORD goes into infinite loop if given a field
specification of the form (fieldname 0 WORD).

Programming Environment

File Manager

LYRIC RELEASE NOTES

2992

4130

4991

5878

6606

7809

7895

8227

Asking FILES? to add a new filevar to filecoms adds the contents
of the filevar, instead of creating the filevar.

RENAME doesn't find occurrences of the old name in functions
that have earlier been renamed, unless you do a MAKEFILE first.

When MAKEFILE loads (DECLARE: DONTCOPY --) expressions
from a previously non-loaded file, they all get evaluated
regardless of thei r tags.

Editing a varrable whose VARTYPE isALISTS now marks all entries
as changed.

Records redeclared under (LOAD & 'PROP) are not marked as
changed, and no redeclaration warning is given.

DELDEF of a Definer does not remove its prototype function.

MAKEFILE accepts only symbols, not strings and pathnames, for
filenames.

Loading a FASL file does not add the file name to SYSFILES.

101

KNOWN PROBLEMS

Editor

Debugger

Exec &TIVIN

102

6563 SEdit's pretty-printer for special forms needs to be smarter about
the possibility of backquoted forms appearing in unexpected
places. E.g., , (1 et • b; nd; ngs ...) prettyprints poorly.

7745 SEdit doesn't grab the TTY when evalling an expression, so
DWIM interactions, etc., require that user click mouse in tty
window.

7928

7948

8018

8257

8279

8378

8406

8480

6981

7402

7445

Copy selecting a symbol you were just editing sometimes displays
it in upper-case, independent of *print-case*.

Can't copy select text of the form (QUOTE form) into SEdit-the
parentheses matching is confused after SEdit turns it into 'form.

If you attempt to copy select an expression into a form
(cI: function) or (quote), a break occurs.

ED < pathname > tries to edit the pathname structure instead
of invoking the text editor on the file named by pathname.

If INITIALS is NIL, edit time stamps are not created or replaced.

Using Meta-X on nonexistent functions doesn't give any
feedback.

Meta-E command key should give better error message when
applied to a left-button selection.

SEdit pretty printer produces awkward indentation of CL: DO exit
clauses.

Trace output doesn't stop when window is full.

Closing a debugger window does not abort unless the window
has the tty.

InspectCode from the debugger backtrace window is only
implemented for frames named by symbols with compiled code
definitions. ... To inspect the code behind a frame named
si::*unwind-protect*, first evaluate (il:movd 'il:help
'si: :*unwind-protect*).

7639 The error messages for Undefined Function and Unbound
Variable print a trailing period after the function or variable
name.

8139 Debugger's EDIT command does not reset context so that OK
reevaluates from the right place.

7397 Since XCL:SET-EXEC-TYPE immediately sets *readtable*,
package I etc., it should not be called from your Init file, as it
will not have the intended effect; in fact, it will change the
reading environment in which the Init file is being loaded. -+

Push onto the list POSTGREETFORMS an element of the form
(XCL:SET-EXEC-TYPE" type").

LYRIC RELEASE NOTES

Common Lisp

System Tools

LYRIC RELEASE NOTES

KNOWN PROBLEMS

7595 The implicit CL:PROCLAIM in CL:DEFVAR, CL:DEFPARAMETER,
etc., is not undone by UNDO.

7751 ., = does not handle package errors.

7904 The NAME command misinterprets complex Event-Specs.

8383 ., = loops forever if there is a semicolon or unbalanced
stringquote on the line. -+ Type CONTROL-E to get out.

8385 CONTROL-D or calling HARDRESET may change the Interlisp
Exec's prompt.

8414 UNDO of multiple events gives misleading indication of what
was undone-it only names one of the events.

8524 Exec Commands aren't passed all arguments when the first one is
a list, since the Exec misinterprets the input as being in APPLY
format.

7260 The compiler does not permit binding more than 15 specials in a
single LET or PROG.

8230 Optimizer for TYPEP does not catch errors in user-defined
DEFTYPE expansion functions.

8340 The proceed case for EXPORT confl i ct errors doesn't actually
export the symbol(s).

8622 Common Lisp interpreter does not support IL:OPENLAMBDA
macros.

4106

5095

6000

6633

7116

7420

7446

8386

System Tools' mouse-confirm message is gibberish-should be
"Click Left when ready, Right to exit".

1186 System Tools: Keyboard on-line diagnostic shows wrong
transitions on ESC key and middle mouse button.

Sysin! in System Tools causes 915 if VmemSize not set.

The Floppy Duplicate! command generates confusing error
message: "Channel Status:goodCompletion Floppy disk
error(write)". Ignore the bogus "goodCompletion".

System Tools crashes with 915/935 whenever you try to access a
volume that needs scavenging.

Floppy Utility: must do Floppy Info! before List!

Sysin to an 1186 from a VAX is twice as slow as to an 1108.

The COpy VMEM! window is too small when using a 15" display.

103

KNOWN PROBLEMS

Library

4045

Chat

CopyFiles

FileBrowser

FTPServer

104

8389 HELP command text scrolls up past top of message window on
15" display.

8403 MP 915 on Sysin if Organization set to 21 characters or more. The
Clearinghouse specification requires that Domain and
Organization names be 20 characters or less.

8153 4045XLPStream does not support international versions of the
4045.

3360 Reshaping Chat window sometimes confuses terminal
emulator-it starts typing halfway down window, bottom single
line redisplayed repeatedly.

6586 VT100KP does not reinitialize CHATMENU with the new menu
items. -+ Set CHATMENU to NIL after loading VT100KP.

8255 Screen mode reverse doesn't work in VTCHAT.

8325 Missing error types in GAP Courier program used by NSChat (if
such errors occur, the error message contains an error number,
rather than a description).

8324 COPYFILES generates bogus directory when moving single file to
explicitly named directoryless {CORE} or {FLOPPY} file. E.g.,
(COPYFILES "{FS}<LISP)TEST" "{CORE}MYTEST") writes
the file {CORE}<MYTEST)TEST instead.

5763

7212

8061

6520

6521

FileBrowser Rename to a numeric extension prints the renamed
file as if the extension were the version.

TabieBrowser right button selection behavior is odd when
selecting in the middle of non-contiguous selected files.

FileBrowser's FB command requires that its keywords be in the
Interlisp package.

DIRECTORY cannot get highest version of a file from a machine
runni ng FTPSERVER.

Cannot obtain the attributes CREATIONDATE, READDATE,
WRITEDATE, LENGTH or PAGES from a machine running
FTPSERVER.

LYRIC RELEASE NOTES

FX80

Grapher

Kermit & Modem

KeyboardEditor

Masterscope

NSMaintain

RS232

Sketch

LYRIC RELEASE NOTES

KNOWN PROBLEMS

8308 Writing a file to a machine running FTPSERVER with insufficient
space for the file (on disk or floppy) can result in a loop with no
error indication given.

8050

8317

4336

4778

5383

7817

FASTFX80 prints 1 inch wider than FASTFX80.INCHES-PER-LiNE
specifies.

HQFX80 printing does not reset line spacing to normal when it is
finished.

GRAPHER doesn't call COPYFN on image object labels.

LAYOUTSEXPR breaks if given non-NIL, non-list BOXING
argument.

EDITGRAPH node selection picks the node with the closest center
point, not necessarily the node the cursor is actually over.

Kermit and Modem do not recover from timeouts or bad packets
and eventually must abort.

4725 Keyboard Editor can EDITCONFIGURATION a nonexistent
configuration.

5614 Analyzing a file opens/closes the file once per function on the
file, as it calls LOADFNS on each function. -+ Load the file PROP
in the first place.

6962 Change Password does not work. -+ Chat to a Clearinghouse
server and use its Change Password command.

8165 NSMaintain incorrectly reports "done" even though operation
not successfully performed.

8410 NSMaintain's Show Domai n command supplies inappropriate
default value (last user/group, not a domain) .

6599 HARDRESET wedges TTY port.

6899 Sketch Put and Get fail to close their files.

105

KNOWN PROBLEMS

Spy

Tep

TEdit

106

8138 Passing a mergetype argument of DEFAULT to SPY.TREE causes a
break.

4303 DIR to a VMS host using TCP/IP lists no files.

5695 CONN to a Unix directory loses the last level of subdirectory.

6548 TCP can't be used to store files to a Unix directory that doesn't
already exist. You must explicitly create the directory on the
server side first.

8347 UNIX entry of NETWORKLOGINFO may need to use LF instead of
CR for some hosts.

4220

4724

4998

5100

5412

5619

5707

5729

5758

5843

5930

5993

6223

6763

7160

TEDIT.FIND searches beyond the given range; on large texts this
results in very slow performance Use STRPOS on the result of
TEDIT.SEL.AS.STRING instead.

TEdit performance bad on big documents with many pieces.

Big image objects don't display in the document after being
selected into the document. ... Reshape the wi ndow so the
bitmap fits.

READCCODE fails (non-numeric argument) when it encounters
an image object on a TEdit stream.

You can't orint NS characters to a TEdit stream (you get an end
of file error).

You can't use the Find wildcards * and # in Substitute.

Using the AGAIN key after the CASE key does not perform Case
on the new selection, but replaces new selection with previous
selection.

Holding the shift key, then buttoning on a sketch, then in TEdit
causes a break.

TEdit middle button LOOKS command menus don't come up
near the mouse.

OPENTEXTSTREAM specifying START but with END = NIL gets
zero characters.

TEdit Selection display doesn't turn on when expected.

TEdit prompt window does not push attached menus up when it
expands.

The LOOKS property in call to TEdit only sets the default
font-not saved by Put. ... Explicitly set the Looks after starting
the edit.

TEdit lost text due to timing problem during a delete selection.

Abbreviation expansion doesn't get Looks right.

LYRIC RELEASE NOTES

TExec

Virtual Keyboards

LYRIC RELEASE NOTES

KNOWN PROBLEMS

7243 TEdit CharLooks subwindow does not account for window title's
height, so Character Looks window must now be scrolled to see
its last line.

7499 Want TEd it's Undo command not to throwaway text.

8294 PageLayout menu Show command returns message, "Format too
complex to edit" for document formatted with
TEDIT.PAGEFORMAT or PAGEFORMAT property.

6815 TExec doesn't handle NS chars well.

5771 TExec "Get" command should be removed.

4957

4997

6809

1186 ""' and '"" are not placed correctly for European keyboard.

If you go into Idle mode while a Virtual Keyboard lacking English
characters is in effect, you can't log back in.

Standard-Russian Keyboard has wrong characters where capital
CH and capital B should be.

107

KNOWN PROBLEMS

[This page intentionally left blank]

108 LYRIC RELEASE NOTES

LYRIC RELEASE NOTES

APPENDIX A. THE EXEC

In most Common Lisp implementations, there is a "top-level
read-eval-print loop, II which reads an expression, evaluates it,
and prints the results. In Xerox Common Lisp, the Exec acts as the
top-level loop, but in addition to read-eval-print, it also performs
a number of other tasks, and allows a much greater range of
inputs.

The Exec is based on concepts from the Interlisp Programmer's
Assistant (see the Interlisp-D Reference Manual).

The Exec traps all throws, and recovers gracefully. It prints all
values resulting from evaluation, on separate lines. When zero
values are returned, nothing is printed.

The Exec keeps track of your previous input, in a structure called
the history list. A h'istory list is a list of the information associated
with each of the individual events that have occurred, where
each event corresponds to one input. Associated with each
event on the history list is the input, its values, plus other
optional information such as side-effects, formatting
information, etc.

The following dialogue contains illustrative examples and gives
the flavor of the use of the Exec. Be sure to type these examples
to an Exec whose *PACKAGE* is set to the XCL-USER package.
The Exec that Lisp starts up with is set to the XCL-USER package.
Each prompt consists of an event number and a prompt
character (" > ").

12> (setq foo 5)
5
13 > (setq foo 10)
10
14>undocr
SETQ undone.
15>foocr
5

This is an example of direct communication with the Exec. You
have instructed the Exec to undo the previous event.

25>set(lst1 (a be»

(A B C)

26>(setq Ist2 '(d e f»

(0 E F)
27>(mape #'(Iambda (x) (setf (get x 'myprop) t» Ist1)

(A B C)

The Exec accepts input both in APPL Y format (the SET) and EVAL
format (the SETQ.) In event 27, the user adds a property MYPROP
to the symbols A, 8, and C.

28>use Ist2 for Ist1 in 27cr
NIL

A-1

APPENDIX A - THE EXEC

Input Formats

You just instructed the Exec to go back to event number 27,
substitute LST2 for LST1, and then re-execute the expression.
You could have also used -2 instead of 27, specifying a relative
address.

46>(setf my-hash-table (make-hash-table»

#<Hash-Table @ 66,114034>

47 > (setf (gethash 'foo my-hash-table) (string 'foo»
"FOO"

If STRING were computationally expensive (which it is not), then
you might be caching its value for later use.

48> use fie for foo in stri ngCr

"FIE"

You now decide you would like to redo the SETF with a different
value. You specify the event using "IN STRING" rather than SETF.

49> 11 usecr

USE FIE FOR FOO IN STRING
48> (SETF (GETHASH 'FIE MY-HASH-TABLE)

(STRING 'FIE»
"FIE"

Here you ask the Exec (using the ?? command) what it .has on its
history list for the last input. Since the event corresponds to a
command, the Exec displays both the original command and the
generated input.

The most common interaction with the Exec occurs at the top
level or in the debugger, where you type in expressions for
evaluation, and see the values printed out. In this mode, the
Exec acts much like a standard Common Lisp top-level loop,
except that before attempting to evaluate an input, the Exec first
stores it in a new entry on the history list. Thus if the operation is
aborted or causes an error, the input is still saved and available
for modification and/or re-execution. The Exec also notes new
functions and variables to be added to its spelling lists to enable
future corrections.

After updating the history list, the Exec executes the
computation (i.e., evaluates the form or applies the function to
its arguments), saves the value in the entry on the history list
corresponding to the input, and prints the result. Finally the
Exec displays a prompt to indicate it is again ready for input.

The Exec accepts three forms of input: an expression to be
evaluated (EVAL-format), a function-name and arguments to
apply it to (APPLY-format), and Exec commands, as follows:

EVAL-format input If you type a single expression, either followed by a
carriage-return, or, in the case of a list, terminated with balanced
parenthesis, the expression is evaluated and the value is
returned. For example, if the value of the variable FOO is the list
(A B C):

A-2 LYRIC RELEASE NOTES

APPLY-format input

Exec commands

LYRIC RELEASE NOTES

32>FOOcr
(A B C)

APPENDIX A - THE EXEC

Similarly, if you type a Lisp expression, beginning with a left
parenthesis and terminated by a matching right parenthesis, the
form is simply passed to EVAL for evaluation. Notice that it is not
necessary to type a carriage return at the end of such a form; the
reader will supply one automatically. If a carriage-return is typed
before the final matching right parenthesis or bracket, it is
treated the same as a space, and input continues. The following
examples are interpreted identically:

123> (+ 1 (* 2 3»
7
124> (+ 1 (*cr
23»
7

Often, when typing at the keyboard, you call functions with
constant argument values, which would have to be quoted if you
typed them in "EVAL-format." For convenience, if you type a
symbol immediately followed by a list form, the symbol is
APPLYed to the elements within the list, unevaluated. The input
is terminated by the matching right parenthesis. For example,
typing LOAD(FOO) is equivalent to typing (LOAD 'FOO), and
GET(X COLOR) is equivalent to (GET 'X 'COLOR). As a simple
special case, a single right parenthesis is treated as a balanced set
of parentheses, e.g.

125> UNBREAK)

is equivalent to

125>UNBREAK()

The reader will only supply the "carriage return" automatically if
no space appears between the initial symbol and the list that
follows; if there is a space after the initial symbol on the line and
the list that follows, the input is not terminated until a carriage
return is explicitly typed.

Note that APPLY -format input cannot be used for macros or
special forms.

The Exec recognizes a number of commands, which usually refer
to past events on the history list. These commands are treated
specially; for example, they may not be put on the history list.
The format of a command is always a line beginning with the
command name. (The Exec looks up the command name
independent of package, so that Exec commands are package
independent.) The remainder of the line, if any, is treated as
"arguments" to the command. For example,

128>UNDocr
mapc undone
129>UNDO (FOO ._)cr
faa undone

are all valid command inputs.

A-3

APPENDIX A - THE EXEC

Multiple Execs and the Exec's Type

Event Specification

Multiple Execs I\Ime than one£xec can be active at anyone time. New !Execs can
be aeated by selecting the -Exec menu item in the background
pmp-up menu. When a prompt is printed for an event in other
tUm the first Exec, the prompt is preceded wi:t!tn 1the Exec
n.umtI:ber; for example:

2!1.51»>

mirgliltbea prompt in Exec 2. All Exe,cs share the sameihistory list,
bwtteach event records which Exec iti90eS with. Thati~,although
a !iing1oe global list exists, the Xerox lUSP history systerrm mmaintains
t1llese;parate threads of control withirmeach Exec.

Exec type S,everal variables are very important man Exec since~ control
the format of reading and printing. Together these i)lariables
~scribe a type of exec. Put another'w.ay, this is the£'_t'~s mode.
To allow easier setting of these modes some standirntt bindings
for the variables have been named. The names prox.4ir.methe user
an Exec of the Common Lisp (Cl), Interlisp (Il) or Xernh: IEJKtended
Ciommon Lisp (XCl) type. An Exec's type is usually cai.'ayed in
tine title bar of its window in parentheses:

Exec 2 (XCL)

,2/50) :t:package:t:
#(Package XCL-U8ER)
.2/51)'*readtable*
#<ReadTable XCL/75,35670)

E«ec commands, like UNDO, frequently refer to pre~i:eus events
irm the session's history. All Exec commands use ttihe same
oonventions and syntax for indicating whiche.vent(s) the
command refers to. This section stn:ows you the s~ used to
specify previous events.

Am event address identifies one event on the histfmlr~ list. For
eocample, the event address 42 refers to the event ~ith event
nwmber 42, and -2 refers to two evemts back in the 'wmrent Exec.
Usually,an event address wilt mntain only cttme or two
aommands.

E,vent addresses can be concatenated. For example, iilf!ROO refers
to event N, FOO FIE will refer to the first event befCi>ne event N
which contains FIE.

the symbols used in event addresses (such as AND, if., ::, etc. are
(Dmpared with STRING-EQUAL, so that it does not ll!'l!lilttter what
tme current package is when you type an event addrrsssymbol to
an Exec.

E"Ient addresses are interpreted as follows:

N (an integer) If N is positive, it refers to the event with event nurmtber N (no
matter which Exec the .event occurred in.) If N is mE.gative, it

A-4 lYRIC RBllE,A:SE NOTES

APPENDIX A - THE EXEC

always refers to the event -N events backwards counting only
events belonging to the current Exec.

F Specifies that the next object in the event address is to be
searched for, regardless of what it is. For example, F -2 looks for
an event contai ni ng -2.

• Specifies that the next object is to be searched for in the values of
events, instead of the inputs.

SUeHTHAT PRED Specifies an event for which the function PRED returns true.
PRED should be a function of two arguments, the input portion
of the event, and the event itself.

PAT Any other event address command specifies an event whose
input contains an expression that matches PAT. When multiple
Execs are active, all events are searched, no matter which Exec
they belong to. The pattern can be a simple symbol, or a more
complex search pattern.

Note: Specifications used below of the form EventAddressj refer

to event addresses, as described above. Since an event
address may contain multiple words, the event address is
parsed by searching for the words which delimit it. For
example, in EventAddress, AND EventAddress2' the
notation EventAddress, corresponds to all words up to the

AND in the event specification, and EventAddress2 to all
words after the AND in the event specification.

FROM EventAddress All events since EventAddress, inclusive. For example, if there is a
single Exec and the current event is number 53, then FROM 49
specifies events 49, 50, 51, and 52. FROM will include events
from all Execs.

ALL EventAddress Specifies all events satisfying EventAddress. For example, ALL
LOAD, ALL SUCHTHAT FOO-P.

empty If nothing is specified, it is the same as specifying -1, i.e., the last
event in the current Exec.

EventSpec, AND EventSpec2AND ... AND EventSpecN

Exec Commands

lYRIC RELEASE NOTES

Each of the EventSpecj is an event specification. The lists of

events are concatenated. For example, ALL MAPC AND ALL
STRING AND 32 specifies all events containing MAPe, all
containing STRING, and also event 32. Duplicate events are
removed.

All Exec commands are input as lines which begin with the name
of the command. The name of an Exec command is not a symbol
and therefore is not sensitive to the setting of the current
package (the value of *PAeKAGE*).

EventSpec is used to denote an event specification which in most
cases will be either a specific event address (e.g., 42) or a relative
one (e.g., -3). Unless specified otherwise, omitting EventSpec is

A-5

APPENDIX A - THE EXEC

A-6

REDO EventSpec

RETRY EventSpec

the same as specifying EventSpec = -1. For example, REDO and
REDO -1 are the same.

[Exec command]

Redoes the event or events specified by EventSpec. For example,
REDO 123 redoes the event numbered 123.

[Exec command]

Similarto REDO except sets the debugger parameters so that any
errors that occur while executing EventSpecwili cause breaks.

USE NEW [FOR OLD] [IN EventSpec] [Exec command]

Substitutes NEW for OLD in the events specified by EventSpec,
and redoes the result. NEW and OLD can include lists or symbols,
etc.

For example, USE SIN (- X) FOR COS X IN -2 AND -1 will substitute
SIN for every occurrence of COS in the previous two events, and
substitute (- X) for every occurrence of X, and reexecute them.
(The substitutions do not change the previous information saved
about these events on the history list.)

If IN EventSpec is omitted, the first member of OLD is used to
search for the appropriate event. For example, USE
DEFAUl TFONT FOR DEFLA TFONT is equivalent to USE
DEFAUlTFONT FOR DEFLATFONT IN F DEFLATFONT. The F is
inserted to handle correctly the case where the first member of
OLD could be interpreted as an event address command.

If OLD is omitted, substitution is for the "operator" in that
command. For example FBOUNDP(FF) followed by USE CAllS is
equivalent to USE CAllS FOR FBOUNDP IN -1.

If OLD is not found, USE will print a question mark, several spaces
and the pattern that was not found. For example, if you
specified USE Y FOR X IN 104 and X was not found, "X ?" is
pri nted to the Exec.

You can also specify more than one substitution. simultaneously
as follows:

USE NEW, FOR OLD, AND ... AND NEWNFOR OLDN[lN EventSpec [Exec command]

Note: The USE command is parsed by a small finite state parser
to distinguish the expressions and arguments. For
example, USE FOR FOR AND AND AND FOR FOR will be
parsed correctly.

Every USE command involves three pieces of information: the
expressions to be substituted, the arguments to be substituted
for, and an event specification that defines the input expression
in which the substitution takes place. If the USE command has
the same number of expressions as arguments, the substitution
procedure is straightforward. For example, USE X Y FOR U V

LYRIC RELEASE NOTES

1 &OPTIONAL NAME

11 EventSpec

(ONN DIRECTORY

DA

APPENDIX A - THE EXEC

means substitute X for U and V for V, and is equivalent to USE X
FOR U AND V FOR V.

However, the USE command also permits distributive
substitutions for substituting several expressions for the same
argument. For example, USE ABC FOR X means first substitute A
for X then substitute B for X (in a new copy of the expression),
then substitute (for X. The effect is the same as three separate
USE commands.

Similarly, USE ABC FOR D AND X V Z FOR W is equivalent to USE
. A FOR D AND X FOR W, followed by USE B FOR 0 AND V FOR W,

followed by USE C FOR D AND Z FOR W. USE A B (FOR 0 AND X
FOR V also corresponds to three substitutions, the first with A for
o and X for V, the second with B for 0, and X for V, and the third
with (for 0, and again X for V. However, USE ABC FOR D AND
X V FOR Z is ambiguous and will cause an error.

Essentially, the USE command operates by proceeding from left
to right handling each AND separately. Whenever the number
of expressions exceeds the number of expressions available,
multiple USE expressions are generated. Thus USE A B (0 FOR E
F means substitute A for E at the same time as substituting B for
F, then in another copy of the indicated expression, substitute (
for E and 0 for F. This is also equivalent to USE A C FOR E AND B D
FORF.

Note: The USE command correctly handles the situation where
one of the old expressions is the same as one of the new
ones, USE X V FOR V X, or USE X FOR V AND V FOR X.

[Exec command]

If NAME is not provided describes all available Exec commands by
printing the name, argument list, and description of each. With
NAME, only that command is described.

[Exec command]

Prints the most recent event matching the given EventSpec.

[Exec command]

Changes default pathname to DIRECTORY.

[Exec command]

Returns current date and time.

DIR &OPTIONAL PATHNAME &REST KEYWORDS [Exec command]

LYRIC RELEASE NOTES

Shows a directory listing for PATHNAME or the connected
directory. If provided, KEYWORDS indicate information to be
displayed for each file. Some keywords are: AUTHOR, AU,
CREATIONDATE, DA, etc.

A-7

APPENDIX A - THE EXEC

A-8

DO-EVENTS &REST INPUTS &ENVIRONMENT ENV [Exec command]

FIX &REST EventSpec

FORGET &REST EventSpec

DO-EVENTS is intended as a way of putting together several
different events, which can include commands. It executes the
multiple INPUTS as a single event. The values returned by the
DO-EVENTS event are the concatenation of the values of the
inputs. An input is not an EventSpec, but a call to a function or
command. If ENV is provided it is a lexical environm~nt in which
all evaluations (functions and commands) will take place. Event
specification in the INPUTS should be explicit, not relative, since
referring to the last event will reinvoke the executing
DO-EVENTS command.

[Exec command]

Edits the specified event prior to reexecuting it. If the number of
characters in the Fixed line is less than the variable
TTYINFIXLIMIT then it will be edited using TTYIN, otherwise the
Lisp editor is called via EDITE.

[Exec command]

Erases UNDO information for the specified events.

NAME COMMAND-NAME &OPTIONAL ARGUMENTS &REST EVENT-SPEC [Exec command]

Defines a new command, COMMAND-NAME, and its
ARGUMENTS, containing the events in EVENT-SPEC.

NDIR &OPTIONAL PATHNAME &REST KEYWORDS [Exec command]

PlSYMBOL

Shows a directory listing for PATHNAME or the connected
directory in abbreviated format. If provided, KEYWORDS
indicate information to be displayed for each file. Some
keywords are: AUTHOR, AU, CREATIONDATE, DA, etc.

[Exec command]

Prints the property list of SYMBOL in an easy to read format.

REMEMBER &REST EVENT-SPEC [Exec command]

SHH &REST LINE

UNDO &REST EventSpec

Tells File Manager to remember type-in from specified event(s) ,
EVENT-SPEC, as expressions to save.

[Exec command]

Executes LINE without history list processing.

[Exec command]

Undoes the side effects of the specified event (see below under
"Undoing").

LYRIC RELEASE NOTES

Variables

APPENDIX A - THE EXEC

PP &OPTIONAL NAME &REST TYPES [Exec command]

SEE &REST FILES

SEE* &REST FILES

Shows (prettyprinted) the definitions for NAME specified by
TYPES.

[Exec command]

Prints the contents of FILES in the Exec window, hiding
comments.

[Exec command]

Pri nts the contents of FILES in the Exec wi ndow, showi ng
comments.

TIME FORM &KEY REPEA T &ENVIRONMENT ENV [Exec command]

TY &REST FILES

TYPE &REST FILES

IL:IT

Times the evaluation of FORM in the lexical environment ENV,
repeating REPEAT number of times. Information is displayed in
the Exec window.

[Exec command]

Exactly like the TYPE Exec command.

[Exec command]

Prints the contents of FILES in the Exec window, hiding
comments.

A number of variables are provided for convenience in the Exec.

[Variable]

Whenever an event is completed, the global value of the variable
IT is reset to the event's value. For example,

312>(SQRT 2)
1.414214
313>(SQRT IL:IT)
1.189207

Following a 11 command, IL:IT is set to the value of the last event
printed. The inspector has an option for setting the variable IL:IT
to the current selection or inspected object, as well. The variable
IL:IT is global, and is shared among all Execs. IL:IT is a convenient
mechanism for passing values from one process to another.

Note: IT is in the INTERLISP package and these examples are
intended for an Exec whose *PACKAGE * is set to
XCL-USER. Thus, IT must be package qualified (the IL:).

The following variables are maintained independently by each
Exec. (When a new Exec is started, the initial values are NIL, or,
for a nested Exec, the value for the "parent" Exec. However,
events executed under a nested Exec will not affect the parent
values.)

LYRIC RELEASE NOTES A-9

APPENDIX A - THE EXEC

CL:-

CL:+

CL: + +

CL: + + +

CL:*

CL:**

CL:***

CL:I

CL:II

CL:III

Fonts in the Exec

PROMPTFONT

INPUTFONT

A-10

[Variable1

[Variable]

[Variable1

[Variable]

While a form is being evaluated by the' Exec, the variable· is
bound to the form, CL: + is bound to the previous form, CL: + +
the one before, etc. If the input is in apply-format rather than
eval-format, the value of the respective variable is just the
function name.

[Variable]

[Variable]

[Variable]

While a form is being evaluated by the Exec, the variable CL:* is
bound to the (first) value returned by the last event, CL:** to the
event before that, etc. The variable CL:* differs from IT in that IT
is global while each separate Exec maintains its own copy of CL:*,
CL:** and CL:***. In addition, the history commands change IT,
but only inputs which are retained on the history list can change
CL:*.

[Variable]

[Variable]

[Variable]

While a form is being evaluated by an Exec, the variable CL:I is
bound to a list of the results of the last event in that Exec, CL:II to
the values of the event before that, etc.

The Exec can use different fonts for displaying the prompt, user's
input, intermediate printout, and the values returned by
evaluation. The following variables control the Exec's font use:

[Variable]

Font used for printing the event prompt.

[Variable]

Font used for echoing user's type-in.

LYRIC RELEASE NOTES

PRINTOUTFONT

VALUEFONT

Changing the Exec

· APPENDIX A - THE EXEC

[Variabl-e1

Font used for any intermediate printing caused by execution of a
command or evaluation of a form. Initially the same as
DEFAULTFONT.

[Variable~

Font used to print the values returned by evaluation of a form.
Initially the same as DEFAULTFONT.

(CHANGESLICE N HISTORY -) [Function]

Defining New Commands

Changes the time-slice of the history list HISTORY to N. If NIL,
HISTORY defaults to the top level history LlSPXHISTORY.

Note: The effect of increasing the time-slice is gradual: the
history list is simply allowed to grow to the corresponding
length before any events are forgotten. Decreasing the
time-slice will immediately remove a sufficient number of
the older events to bring the history list down to the
proper size. However, CHANGESLICE is undoable, so that
these events are (temporarily) recoverable. Therefore, if
you want to recover the storage associated with these
events without waiting N more events until the
CHANGESLICE event drops off the history list, you must
perform a FORGET command.

You can define new Exec commands using the
XCL: DEFCOMMAND macro.

(XCL:DEFCOMMAND NAME ARGUMENT-LIST &REST BODy) [Macro]

LYRIC RELEASE NOTES

XCL:DEFCOMMAND is similar to XCL:DEFMACRO, but defines
new Exec commands. The ARGUMENT-LIST can have keywords,
defstructure, and use all of the features of macro argument lists.
When NAME is subsequently typed to the Exec, the rest of the
line is processed like the arguments to a macro, and the BODY is
executed. XCL:DEFCOMMAND is a definer; the File Manager will
remember typed-in definitions and allow them to be saved,
edited with EDITDEF, etc.

There are actually three kinds of commands that can be defined,
:EVAL, :QUIET, and :INPUT. Commands can also be marked as
only for the debugger, in which case they are labelled as
:DEBUGGER. The command type is noted by supplying a list for
the NAME argument to XCL:DEFCOMMAND, where the first
element of the lis! is the command name, and the other
elements are keyword(s) for the command type and, optionally
:DEBUGGER.

Note: The documentation string in user defined Exec
commands is automatically added to the documentation

A-l1

APPENDIX A - THE EXEC

Undoing

descriptions by the CL:DOCUMENTATION function under
the COMMANDS type and can be shown using the? Exec
command.

: EVAL This is the default. The body of the command just gets executed,
and its value is the value of the event. For example (in an XCL
Exec),

(DEFCOMMAND (LS : EVAL)
(&OpnONAL (NAMESTRING *DEFAULT-PATHNAME-DEFAUL TS*)
&REST DIRECTORY-KEYWORDS)
(MAPC

#'(LAMBDA (PATHNAME) (FORMATT "-&-A" (NAMESTRING PATHNAME»)
(APPLY #'DIRECTORY NAMESTRING DIRECTORY-KEYWORDS»

(VALUES»

would define the LS command to print out all file names that
match the input namestring. The (VALUES) means that no value
will be printed by the event, only the intermediate output from
the FORMAT.

:QUIET These commands are evaluated, but neither your input nor the
results of the command are stored on the history list. For
example, the ?? and SHH commands are quiet.

:INPUT These commands work more like macros, in that the result of
evaluating the command is treated as a new line of input. The
FIX command is an input command. The result is treated as a
line; a single expression in EVAL-format should be returned as a
list of the expression to EVAL.

Note: This discussion only applies to undoing under the Exec,
Debugger and within the UNDOABLY macro; editors
handle undoing in a different fashion.

The UNDO facility allows recording of destructive changes such
that they can be played back to restore a previous state. There
are two kinds of UNDOing: one is done by the Exec, the other is
available for use in a programmer's code. Both methods share
information about what kind of operations can be undone and
where the changes are recorded.

Undoing in the Exec

UNDO EventSpec

A-12

[Exec command]

The Exec's UNDO command is implemented by watching the
evaluation of forms and requiring undoable operations in that
evaluation to save enough information on the history list to
reverse their side effects. The Exec simply executes operations,
and any undoable changes that occur are automatically saved on
the history list by the responsible functions. The UNDO
command works on itself the same way: it recovers the saved
information and performs the corresponding inverses. Thus,
UNDO is effective on itself, so that you can UNDO an UNDO, and
UNDO that, etc.

LYRIC RELEASE NOTES

Undoing in Programs

APPENDIX A - THE EXEC

Only when you attempt to undo an operation does the Exec
check to see whether any information has been saved. If none
has been saved, and you have specifically named the event you
want undone, the Exec types nothing saved. (When you just
type UNDO, the Exec only tries to undo the last operation.)

UNDO watches evaluation using CL:EVALHOOK (thus, calling
CL:EVALHOOK cannot be undone). Each form given to EVAL is
examined against the list LlSPXFNS to see if it has a
corresponding undoable version. If an undoable version of a call
is found, it is called with the same arguments instead of the
original. Therefore, before evaluating all subforms of your
input, the Exec substitutes the corresponding undoable call for
any destructive operation. For example, if you type (DEFUN FOO
...), undoable versions of the forms that set the definition into
the symbol function cell are evaluated. FOO's function
definition itself is not made undoable.

There are two ways to make a program undoable. The simplest
method is to wrap the program's form in the UNDOABL Y macro.
The other is to call undoable versions of destructive operations
directly.

(XCL:UNDOABLY &REST FORMS) [Macro]

Executes the forms in FORMS using undoable versions of all
destructive operations. This is done by "walking" (see
WALKFORM) all of the FORMS and rewriting them to use the
undoable versions of destructive operations (LlSPXFNS makes
the association).

(STOP-UNDOABL Y &REST FORMS) [Macro]

Normally executes as PROGN; however, within an UNDOABLY
form, explicitly causes FORMS not to be done undoably. Turns
off rewriting of the FORMS to be undoable inside an UNDOABL Y
macro.

Undoable Versions of Common Functions

LYRIC RELEASE NOTES

Efficiency and overhead are serious considerations for the
execution of a user program. Thus, the programmer may need
more control over the saving of undo information than that
provided by the UNDOABL Y macro.

To make a function undoable, you can simply substitute the
corresponding undoable function if you want to make a
destructive operation in your own program undoable. When the
undoable function is called, it will save the undo information in
the current event on the history list.

Various operations, most notably SETF, have undoable versions.
The following undoable macros are initially available:

A-13

APPEN DIX A - TH E EXEC

Modifying the UNDO Facility

LlSPXFNS

A-14

UNDOABLY-POP

UNDOABL Y -PUSH

UNDOABL Y-PUSHNEW

UNDOABLY-REMF

UNDOABLY-ROTATEF

UNDOABLY-SHIFTF

UNDOABLY-DECF

UNDOABLY-INCF

UNDOABL Y-SET-SYMBOL

UNDOABLY-MAKUNBOUND

UNDOABLY-FMAKUNBOUND

UNDOABL Y-SETQ

XCL:UNDOABLY-SETF

UNDOABLY-PSETF

UNDOABLY-SETF-SYMBOL-FUNCTION

UNDOABL Y-SETF-MACRO·FUNCTION

Note: Many destructive Common Lisp functions do not currently
have undoable versions, e.g., CL:NREVERSE, CL:SORT, etc.
The current list of undoable functions is saved on the
association list LlSPXFNS.

You will usually wish to extend the UNDO facility after creating a
form whose side effects it might be desirable to undo, for
instance a file renaming function.

An undoable version of the function needs to be written. This
can be done by explicitly saving previous state information away,
or by renaming calls in the function to their undoable
equivalent. Undo information should be saved on the history list
using IL:UNDOSAVE.

You must then hook the undoable version of the function into
the undo facility. You do this by either using the IL:LlSPXFNS
association list, or in the case of a SETF modifier, on the
IL:UNDOABLE·SETF-INVERSE property of the SETF function.

[Variable]

Contains an association list which maps from destructive
operations to their undoable form. Initially this list contains:

«CL:POP. UNDOABLY.POP)

(CL:PSETF . NDOABl Y·PSETF)

(CL:PUSH. UNDOABLY-PUSH)

(CL:PUSHNEW. UNDOABLY-PUSHNEW)

«CL:REMF) . UNDOABLY-REMF)

(CL:ROTATEF . UNDOABL Y-ROTATEF)

(CL:SHIFTF. UNDOABLY-SHIFTF)

(CL:DECF. UNDOABLY-DECF)

LYRIC RELEASE NOTES

APPENDIX A - THE !£n;(

(Cl:INCF. UNDOABl Y-INCF)

(Cl:SET. UNDOABl V-SEt-SYMBOl)

(Cl:MAKUNBOUND . UNDOABl Y-MAKUNBOUND)

(Cl:FMAKUNBOUND. UNDOABl Y-FMAKUNBOUND)

... plus the originallnterlisp undo associations)

(XCl:UNDOABl V-SETF PLACE VALUE ...)

Like Cl:SETF but saves information so it may be umtiome.
UNDOABl Y-SETF uses undoable versions of the setf fuJOrt~
located on the UNDOABlE-SETF-INVERSE property Of the
function being SETFed. Initially these SETF names have s.uch a
property:

Cl:SYMBOl-FUNCTION - UNDOABl Y-S£TF-SYMBOl-FUNClkOll

Cl:MACRO-FUNCnON - UNDOABl Y-SETF-MACRO-FUNCTIC!ftI

(UNDOABl V-SETQ &REST FORMS) [Function]

Typed-in SETQs (and SETFs on symbols) are made undoable by
substituting a call to UNDOABl Y-SETQ. UNDOABl Y-SEJQ
operates like SETQ on lexical variables or those with dyr.mmi:c
bindings; it only saves information on the history list for chimges
to global, "top-Ievel" values.

(UNDOSAVE UNDOFORM HISTENTRy) [Fun:cticm]

\#UNDOSAVES

LYRIC RELEASE NOTES

Adds the undo information UNDOFORM to the SIDE proPer1:N:of
the history event HISTENTRY. If ther~ is no SIDE property, ~ js
created. If the value of the SIDE property is NOSAVE,tt.te
information is not saved. HISTENTRY specifies an event. IH
HISTENTRY = Nil, the value of lISPXHIST is used. If Ihath
HISTENTRYand lISPXHIST are Nil, UNDOSAVE is a no-op.

The form of UNDOFORM is (FN . ARGS). Undoing is dOf.l.e !by
performing {APPLY (CAR UNDOFORM) (CDR UNDOFORM».

[Variiablel

The value of \#UNDOSAVES is the maximum number ::off
UNDOFORMs to be saved for a single event. When the CQJilTlt of
UNDOFORMs reaches this number, UNDOSAVE prinl£ •
message CONTINUE SAVING?, asking if you want to contirwe
saving. If you answer NO or default, UNDOSAVE discar-.& the
previously saved information for this event, and makes N0SAVE
be the value of the property SIDE, which disables any f.urtmer
saving for this event. If you answer YES, UNDOSAVE changt'.5 the
count to -1, which is then never incremented, and continues
saving. The purpose of this feature is to avoid tying up itarge
quantities of storage for operations that will never need tto be
undone.

If\#UNDOSAVES is negative, then when the count reacha.(ABS
\#UNDOSAVES), UNDOSAVE simply stops saving wirthout
printing any messages or other interantions.

APPENDIX A - THE EXEC

Undoing Out of Order

Format and Use of the History List

LlSPXHISTORY

A-16

\#UNDOSAVES = NIL is equivalent to \#UNDOSAVES = infinity.
\#UNDOSAVES is initially NIl.

The configuration described here has been found to be a very
satisfactory one. You pay a very small price for the ability to
undo what you type in, since the interpreted evaluation is simply
watched for destructive operations, or if you wish to protect
yourself from malfunctioning in your own programs, you can
explicitly call, or have your program rewritten to explicitly call,
undoable functions.

UNDOABLY-SETF operates undoably by saving (on the history
list) the cell that is to be changed and its original contents.
Undoing an UNDOABLY-SETF restores the saved contents.

This implementation can produce unexpected results when
multiple modifications are made to the same piece of storage
and then undone out of order. For example, if you type (SETF
(CAR FOO) 1), followed by (SETF (CAR FOO) 2), then undo both
events by undoing the most recent event first, then undoing the
older event, FOO wi" be restored to its state before either event
operated. However if you undo the first event, then the second
event, (CAR FOO) will be 1, since this is what was in CAR of FOO
before (UNDOABLY-SETF (CAR FOO) 2) was executed. Similarly,
if you type (NeONe FOO '(1», followed by (NeONe FOO '(2»,
undoing just (NeONe FOO '(1» wi" remove both 1 and 2 from
FOO. The problem in both cases is that the two operations are
not independent.

In general, operations are always independent if they affect
different lists or different sublists of the same list. Undoing in
reverse order of execution, or undoing independent operations,
is always guaranteed to do the right thing. However, undoing
dependent operations out of order may not always have the
predicted effect.

[Variable]

The Exec currently uses one primary history list, LlSPXHISTORY
for the stori ng events.

The history list is in the form (EVENTS EVENT# SIZE MOD), where
EVENTS is a list of events with the most recent event first,
EVENT# is the event number for the most recent event on
EVENTS, SIZE is the the maximum length EVENTS is allowed to
grow. MOD is is the maximum event number to use, after which
event numbers roll over. LlSPXHISTORY is initialized to (NIL 0 100
1000).

The history list has a maximum length, called its time-slice. As
new events occur, existing events are aged, and the oldest events
are forgotten. The time-slice can be changed with the function
eHANGESLICE. Larger time-slices enable longer memory spans,
but tie up correspondingly greater amounts of storage. Since a

LYRIC RELEASE NOTES

APPENDIX A - THE EXEC

user seldom needs really ancient history, a relatively small
time-slice such as 30 events is usually adequate, although some
users prefer to set the time-slice as large as 200 events.

Each individual event on EVENTS is a list of the form (INPUT 10
VALUE. PROPS). For Exec events, 10 is a list (EVENT-NUMBER
EXEC-/O). The EVENT-NUMBER is the number of the event, while
the EXEC-/O is a string that uniquely identifies the Exec. (The
EXEC-/O is used to identify which events belong to the "same"
Exec.) VALUE is the (first) value of the event. PROPS is a property
list used to associate other information with the event (described
below).

INPUT is the input sequence for the event. Normally, this is just
the input that the user typed-in. For an APPLY-format input this
is a list consisting of two expressions; for an EVAL-format input,
this is a list of just one expression; for an input entered as list of
atoms, INPUT is simply that list. For example,

User Input

LlST(12)

(LIST 11)

DIR "{DSK} < LlSPFILES> "er

INPUT is:

(LIST (1 2»

«LIST 11»

(DIR I{DSK}<LlSPFILES>")

If you type in an Exec command that executes other events
(REDO, USE, etc.), several events might result. When there is
more than one input, they are wrapped together into one
invocation of the DO-EVENTS command.

The same convention is used for representing multiple inputs
when a USE command involves sequential substitutions. For
example, if you type FBOUNDP(FOO) and then USE FIE FUM FOR
FOO, the input sequence that will be constructed is DO-EVENTS
(EVENT FBOUNDP (FIE» (EVENT FBOUNDP (FUM», which is the
result of substituting FIE for FOO in (FBOUNDP (FOO»
concatenated with the result of substituting FUM for FOO in
(FBOUNDP (FOO».

PROPS is a property list of the form (PROPERTY, VALUE,

PROPERTY] VALUE] .•.), that can be used to associate arbitrary
information with a particular event. Currently, the following
properties are used by the Exec:

SIDE A list of the side effects of the event. See UNDOSAVE.

L1SPXPRINT Used to record calls to EXEC-FORMAT, and printed by the 11
command.

Making or Changing an Exec

(XCL:ADD-EXEC &KEY PROFILE REGION TTY 10) [Function]

LYRIC RELEASE NOTES

Creates a new process and window with an Exec running in it.
PROFILE is the type of the Exec to be created (see below under
XCL:SET-EXEC-TYPE). REGION optionally gives the shape and
location of the window to be used. If not provided the user will
be prompted. TTY is a flag, which, if true, causes the tty to be

A-17

APPENDIX A - THE EXEC

A-18

given to the new Exec process. ID is a string identifier to use for
events generated in this exec. IDdefaults to the number given to
the Exec process created.

(XCL: EXEC &K EY WINDOW PROMPT COMMAND-TABLES ENVIRONMENT PROFILE
TOP-LEVEL-P TITLE FUNCTION ID) [Function]

This is the main entry to the Exec. The arguments are:

WINDOW defaults to the current TTY display stream, or can be
provided a window in which the Exec will run.

PROMPT is the prompt to print.

COMMAND-TABLES is a list of hash-tables for looking up
commands (e.g., *EXEC-COMMAND-TABLE* or
DEBUGGER-COMMAND-TABlE).

ENVIRONMENT is a lexicaf environment used to evaluate things
in.

READTABLE is the default readtable to use (defaults to the
"Common Lisp" readtable).

PROFILE is a way to set the Exec's type (see above, "Multiple
Execs and the Exec's Type").

TOP-LEVEL-P is a boolean, which should be true if this Exec is at
the top level.

TITLE is an identifying title for the window title of the Exec.

FUNCTION is a function used 10 actually evaluate events, default
is EVAL-INPUT.

ID is a string identifier to use for events generated in this Exec. ID
defaults to the number given to the Exec process.

XCL:*PER-EXEC-VARIABLES* [Variable]

A list of pairs of the form (VAR INln. Each time an Exec is
entered, the variabtes in *PER-EXEC-VARIABLES* are rebound to
the value returned by evaluating INIT. The initial value of
PER-EXEC-VARIABLES is:

«*PACKAGE* *PACKAGE*)
(* *)
(** **)
(*** ***)
(+ +)
(++ ++)
(+++ +++)
(- -)
(/ /)
(// II)
(/// III)
(HElPFlAG T)
(*EVAlHOOK* NIL)
(*APPlYHOOK* nil)
(*ERROR-OUPUT· *TERMI.Al-IO*)
(*REAOTABlE* *READTABtf-)

LYRIC RELEASE NOTES

XCL: *EVAL-FUNcnON *

XCL: *EXEC-PROMPT*

APPENDIX A - THE EXEC

(*package* *package*)
(*eval-function* *eval-function*)
(*exec-pro.pt* ·exec-pro.pt*)
(·debugger-pro.pt* ·debugger-pro.pt*»

Most of these cause the values to be (re)bound to their current
value in any inferior Exec, or to NIL, their value at the "top level" .

[Variable]

Bound to the function used by the Exec to evaluate input.
Typically in an INTERLISP Exec this is IL:EVAL, and in a Common
Lisp Exec, CL:EVAL.

[Variable]

Bound to the string printed by the Exec as a prompt for input.
Typically in an INTERLISP Exec this is ".", and in a Common Lisp
Exec, "> ".

XCL:*DEBUGGER-PROMPT* [Variable]

Bound to the string printed by the debugger Exec as a prompt
for input. Typically in an INTERLISP Exec this is "I If, and in a
Common Lisp Exec, ": ".

(XCL: EXEC-EVAl. FORM &OPTIONAL ENVIRONMENn [Function]

Evaluates FORM (using EVAL) in the lexical environment
ENVIRONMENT the same as though it were typed in to EXEC, i.e.,
the event is recorded, and the evaluation is made undoable by
substituting the UNDOABLE-functions for the corresponding
destructive functions. XCL:EXEC·EVAL returns the value(s) of the
form, but does not print it, and does not reset the variables *, **,
***, etc.

(XCL:EXEC-FORMAT CONTROL-STRING &REST ARGUMENTS) [Function]

In addition to saving inputs and values, the Exec saves many
system messages on the history list. For example, FILE CREATED
•.. , FN redefined, VAR reset, output of TIME, BREAKDOWN,
ROOM, save their output on the history list, so that when ??
prints the event, the output is also printed. The function
XCL:EXEC-FORMAT can be used in user code similarly.
XCL:EXEC-FORMAT performs (APPLY #'CL:FORMAT
TERMINAL-IO CONTROL-STRING ARGUMENTS) and also saves
the format string and arguments on the history list associated
with the current event.

(XCL:SET-EXEC-TYPE NAME) [Function]

LYRIC RELEASE NOTES

Sets the type of the current Exec to that indicated by NAME. This
can be used to set up the Exec to your liking. NAME may be an
atom or string. Possible names are:

A-19

APPENDIX A - THE EXEC

INTERLlSP,IL *READTABlE* INTERLISP

PACKAGE INTERLISP

XCL:*DEBUGGER-PROMPT* ","

XCL:*EXEC-PROMPT* "I"

XCL:*EVAl-FUNCTION* IL:EVAl

XEROX-COMMON-lISP, XCL *READTABlE* XCl

PACKAGE XCl-USER

XCl:*DEBUGGER-PROMPT* ": "

XCl:*EXEC-PROMPT* "> "

XCl:*EVAl-FUNCTION* CL:EVAL

COMMON·LlSP, CL *READTABLE* LISP

PACKAGE USER

XCL:*DEBUGGER-PROMPT* ": "

XCL: *EXEC-PROMPT* "> "

XCl:*EVAL-FUNCTION* CL:EVAL

OLD-INTERlISP· T *READTABLE* OLD-INTERlISP-T

*PACKAGE*INTERLISP

XCL: *DEBUGGER-PROMPT* "I"

XCl:*EXEC-PROMPT* ": "

XCL:*EVAL-FUNCTION* IL:EVAL

(XCL:SET-DEFAULT-EXEC-TYPE NAME) [Function]

Editing Exec Input

Editing Your Input

Like XCL:SET-EXEC-TYPE , but sets the type of Execs created by
default, as from the background menu. Initially XCL. This can be
used in your greet file to set default Execs to your liking.

The Exec features an editor for input which provides completion,
spelling correction, help facility, and character-level editing. The
implementation is borrowed from the Interlisp module TTYIN.
This section describes the use of the TTYIN editor from the
perspective of the Exec.

Some editing operations can be performed using any of several
characters; characters that are interrupts will, of course, not be
read, so several alternatives are given. The following characters
may be used to edit your input:

CONTROL-A, BACKSPACE Deletes a character. At the start of the second or subsequent
lines of your input, deletes the last character of the previous line.

A-~a LYRIC RELEASE NOTES

CONTROl-W

CONTROl-Q

CONTROl-R

ESCAPE

APPENDIX A - THE EXEC

Deletes a "word". Generally this means back to the last space or
parenthesis.

Deletes the current line, or if the current line is blank, deletes the
previous line.

Refreshes the current line. Two in a row refreshes the whole
buffer (when doing multiline input).

Tries to complete the current word from the spelling list
USERWORDS. In the case of ambiguity, completes as far as is
uniquely determined, or beeps.

UNDO key (on 1108 and 1186)
Middle-blank key (on 1132) Retrieves characters from the previous non-empty b£Jffer when it

is able to; e.g., when typed at the beginning of the line this
command restores the previous line you typed; when typed in
the middle of a line fills in the remaining text from the old line;
when typed following CONTROL-Q or CONTROL-W ;restores what
those commands erased.

Using the Mouse

CONTROl-X Goes to the end of your input (or end of expression if there is an
excess right parenthesis) and returns if parentheses are balanced.

During most kinds of input, lines are broken, if possible, so that
no word straddles the end of the line. The pseudo-carriage
return ending the line is still read as a space, however; i.e., the
program keeps track of whether a line ends in a carriage return
or is merely broken at some convenient point. You will not get
carriage returns in your strings unless you explicitly type them.

Editing with the mouse during TIYIN input is slightly different
than with other modules. The mouse buttons are interpreted as
follows during TIYIN input:

LEFT Moves the caret to where the cursor is pointing. As you hold
down LEFT, the caret moves around with the cursor; after you let
up, any type-in will be inserted at the new position.

MIDDLE or LEFT + RIGHT like LEFT, but moves only to word boundaries.

LYRIC RELEASE NOTES

RIGHT Deletes text from the caret to the cursor, either forward or
backward. While you hold down RIGHT, the text to be deleted is
inverted; when you let up, the text goes away. If you let up
outside the scope of the text, nothing is deleted (this is how to
cancel this operation).

If you hold down MOVE, COPY, SHIFT or CTRL while pressing the
mouse buttons, you instead get secondary selection, move
selection or delete selection. The selection is made by holding
the appropriate key down while pressing the mouse buttons
LEFT (to select a character) or MIDDLE (to select a word), and
optionally extend the selection either left or right using RIGHT.
While you are doing this, the caret does not move, but the
selected text is highlighted in a manner indicating what is about
to happen. When the selection is complete, release the mouse
buttons and then I ift up on MOVEICOPYICTRUSHIFT and the
appropriate action will occur:

A-21

APPENDIX A - THE EXEC

COpy orSHIFT The selected text is inserted as if it were typed. The text is
highlighted with a broken underline during selection.

CTRL The selected text is deleted. The text is complemented during
selection.

MOVE orCTRL + SHIFT Combines copy and delete. The selected text is moved to the
caret.

Editing Commands

Cursor Movement Commands

You can cancel a selection in progress by pressing LEFT or
MIDDLE as if to select, and moving outside" the range of the text.

The most recent text deleted by mouse command can be inserted
at the caret by typing the UNDO key (on the Xerox
110811186/1185) or the Middle-blank key (on the Xerox 1132).
This is the same key that retrieves the previous buffer when
issued at the end of a line.

A number of characters have special effects while typi ng to the
Exec. Some of them merely move the caret inside the input
stream. While caret positioning can often be done more
conveniently with the mouse, some of the commands, such as
the case changing commands, can be useful for modifying the
input.

In the descriptions below, current word means the word the
cursor is under, or if under a space, the previous word. Currently,
parentheses are treated as spaces, which is usually what you
want, but can occasionally cause confusion in the word deletion
commands. The notation [CHAR] means meta-CHAR. The
notation S stands for the ESCAPE/EXPAND key. Most commands
can be preceded by numbers or escape (means infinity), only the
first of which requires the meta key (or the edit prefix). Some
commands also accept negative arguments, but some only look
at the magnitude of the argument. Most of these commands are
confined to work within one line of text unless otherwise noted.

Cbs] Backs up one (or n) characters.

[space] Moves forward one (or n) characters.

[f] Moves up one (or n) lines.

[If] Moves down one (or n) lines.

[(] Moves back one (or n) words.

[)] Moves ahead one (or n) words.

[tab] Moves to end of line; with an argument moves to nth end of
line; [Stab] goes to end of buffer.

[control-L] Moves to start of line (or nth previous, or start of buffer).

[{] and [}] Goes to start and end of buffer, respectively (like [Scontrol-L]
and [Stab]).

A-22 LYRIC RELEASE NOTES

APPENDIX A - THE EXEC

[[] (meta-left-bracket) Moves to beginning of the current list, where cursor is currently
under an element of that list or its closing paren. (See also the
auto-parenthesis-matching feature below under "Assorted
Flags".)

[]] (meta-right-bracket) Moves to end of current list.

[Sx] Skips ahead to next (or nth) occurrence of character x, or rings
the bell.

[Bx] Backward search, i.e., short for [-5] or [-nS).

Buffer Modification Commands

Miscellaneous Commands

[Zx] Zaps characters from cursor to next (or nth) occurrence of x.
There is no unzap command.

[A] or [R] Repeats the last 5, B, or Z command, regardless of any
intervening input.

[K] Kills the character under the cursor, or n chars starting at the
cursor.

[cr] When the buffer is empty is the same as undo i.e. restores
buffer's previous contents. Otherwise is just like a <cr> (except
that it also terminates an insert). Thus, [<cr> <cr>] will repeat
the previous input (as will undo<cr> without the meta key).

[0] Does "Open line", inserting a crlf after the cursor, i.e., it breaks
the line but leaves the cursor where it is.

[T] Transposes the characters before and after the cursor. When
typed at the end of a line, transposes the previous two
characters. Refuses to handle odd cases, such as tabs.

[G) Grabs the contents of the previous line from the cursor position
onward. [nG] grabs the nth previous line.

[L] Puts the current word. or n words on line, in lower case. [SLJ puts
the rest of the linein lower case; or if given at the end of line puts
the entire line in lower case.

[U] Analogous to [L], for putting word, line, or portion of line in
upper case.

[C) Capitalizes. If you give it an argument, only the first word is
capitalized; the rest are just lowercased.

[control-QJ Deletes the current line. [Scontrol-Q] deletes from the current
cursor position to the end of the buffer. No other arguments are
handled.

[control-W] Deletes the current word, or the previous word if sitting on a
space.

[PI Prettyprints buffer. Clears the buffer and reprints it using
prettyprint. If there are not enough right parentheses, it will
supply more; if there are too many, any excess remains
unprettyprinted at the end of the buffer. May refuse to do
anything if there is an unclosed string or other error trying to
read the buffer.

LYRIC RELEASE NOTES A-23

APPENDIX A - THE EXEC

Useful Macros

1= Handler

Assorted Flags

[N]

[control-Y]

[$control-Y]

[~]

Refreshes line. Same as control-R. [SN] refreshes the whole
buffer; [nN] refreshes n lines. Cursor movement in TTYIN
depends on TTYIN being the only source of output to the
window; in some circumstances, you may need to refresh the line
for best results.

Gets an Interlisp Exec.

Gets an Interlisp Exec, but first unreads the contents of the buffer
from the cursor onward. Thus if you typed at TTYIN something
destined for Interlisp, you can do [control-l$control-Y] and give
it to lisp.

Adds the current word to the spelling list USERWORDS. With
zero argument, removes word. See TTYINCOMPLETEFLG .

If the event is considered short enough, the Exec command FIX
will load the buffer with the event's input, rather than calling
the structure editor. If you really wanted the Lisp editor for your
fix, you can say FIX EVENT -ITTY:I.

Typing the characters? = <cr> displays the arguments to the
function currently in progress. Since TTYIN wants you to be able
to continue editing the buffer after a ? =, it prints the arguments
below your type-in and then puts the cursor back where it was
when? = was typed.

These flags control aspects of TTYIN's behavior. Some have
already been mentioned. In Interlisp-D, the flags are all initially
set to T.

?AcnVATEFLG [Variable]

A-24

If true, enables the feature whereby ? lists alternative
completions from the current spelling list.

SHOWPARENFLG [Variable]

USERWORDS

If true, then whenever you are typing lisp input and type a right
parenthesis, TTYIN will briefly move the cursor to the matching
parenthesis, assuming it is still on the screen. The cursor stays
there for about 1 second, or until you type another character
(i.e., if you type fast you will never notice it).

[Variable]

USERWORDS contains words you mentioned recently: functions
you have defined or edited, variables you have set or evaluated
at the executive level, etc. This happens to be a very convenient
list for context-free escape completion; if you have recently

LYRIC RELEASE NOTES

LYRIC RELEASE NOTES

APPENDIX A - THE EXf'C

edited a function, chances are good you may want to edit tit
again (typing "ED(xx$)") or type a call to it. If there is lAO

completion for the current word from USERWORDS, or there is
more than one possible completion, TTYIN beeps. If typed when
not inside a word, Escape completes to the value of LASTWOIlO"
i.e., the last thing you typed that the Exec noticed, except tmatt
Escape at the beginning of the line is left alone (it is an Qb:I
Interlisp Exec command).

If you really wanted to enter an escape, you can, of course, lust
quote it with a CONTROL-V, like you can other controt
characters.

You may explicitly add words to USERWORDS yourself that
would not get there otherwise. To make this convenient onli,me
the edit command [+-] means "add the current atom to
USERWORDS" (you might think of the command as pointing 0.LiIt
this atom). For example, you might be entering a functiam
definition and want to point to one or more of its arguments Of

prog variables. Giving an argument of zero to this command wi~1
instead remove the indicated atom from USERWORDS.

~ote that this feature loses some of its value if the spelling list;is
too long, if there are too many alternative completions for yoo
to get by with typing a few characters followed by escape. Lisp'-s
maintenance of the spelling list USERWORDS keeps the
temporary section (which is where everything goes initiall.,.
unless you say otherwise) limited to \#USERWORDS atoms,.
initially 100. Words fall off the end if they haven't been used
(they are used if FIXSPELL corrects to one, or you use < escape>
to complete one).

A-2S

APPENDIX A - THE EXEC

[This page intentionally left blank]

A-26 LYRIC RELEASE NOTES

APPENDIX B. SEDIT-THE liSP
EDITOR

SEdit is the new Xerox Lisp structure editor. It allows you to edit
Xerox Lisp code directly in memory. This editor replaces DEdit in
Chapter 16, Structure Editor, of the Interlisp-D Reference
Manual.

16.1 SEdit -The Structu re Editor

16.1.1 An Edit Session

RELEASE NOTES, LYRIC RELEASE

As a structure editor, SEdit alters Lisp code directly in memory.
The effect this has on the running system depends on what is
being edited.

For Common Lisp definitions, SEdit always edits a copy of the
object. For example, with functions, it edits the definition of the
function. What the system actually runs is the installed function,
either compiled or interpreted. The primary difference between
the definition and the installed function is that comment forms
are removed from the definition to produce the installed
function. The changes made while editing a function will not be
installed until the edit session is complete.

For Interlisp functions and macros, SEdit edits the actual
structure that will be run. An exception to this is an edit of an
EXPR definition of a compiled function. In this case, changes are
included and the function is unsaved when the edit session is
completed.

SEd it edits all other structures, such as variables and property
lists, directly. SEd it installs all changes as they are made.

If an error is made during an SEdit session, abort the edit with an
Abort command (see Section 16.1.7, Command Keys). This
command undoes all changes from the beginning of the edit
session and exits from SEdit without changing your
environment.

If the definition being edited is redefined while the edit window
is open, SEdit redisplays the new definition. Any edits on the old
definition will be lost. If SEdit was busy when the redefi nition
occurred, the SEdit window will be gray. When SEdit is no longer
busy, position the cursor in the SEdit window and press the left
mouse button; SEdit will get the new definition and display it.

The List Structure Editor discussion in Chapter 3, Language
Integration, explains how to start an editor in Xerox Lisp.

Whenever you call SEdit, a new SEdit window is created. This
SEd it window has its own process, and thus does not rely on an

8-1

APPENDIX B. SEDIT

16.1.2 SEdit Carets

8-2

Exec to run in. You can make edits in the window, shrink it while
you do something else, expand it and edit some more, and finally
close the window when you are done.

Throughout an edit session, SEdit remembers everything that
you do through a change history. All edits can be undone and
redone sequentially. When an edit session ends, SEdit forgets
this information and installs the changes in the system.

The session ends with an event signalling to the editor that
changes are complete. Three events signal completion:

• Closing the window.

Do this to terminate the edit session when you are finished.

• Shrinking the window.

Shrink the window when you have made some edits and want to
continue the editing session at a later time.

• Typing CONTROL-X.

Use this command when you want to install your changes and
complete the edit. CONTROL-X leaves the edit window open
and ready for more editing while the TTY process passes back to
the Exec.

A new edit session begins when you come back to an SEdit after
shrinking or using CONTROL-X. The change history is discarded
at this point.

If the Exec is waiting for SEdit to return before going on,
complete the edit session using any of the methods above to
alert the Exec that SEdit is done. The TTY process passes back to
the Exec.

There are two carets in SEd it, the edit caret and the structure
caret. The edit caret appears when characters are edited within
a single structure, such as an atom, string, or comment.
Anything typed in will appear at the edit caret as part of the
structure that the caret is within. The edit caret looks like this:

(a ~)

The structure caret appears when the edit point is between
structures, so that anything inserted will go into a new structure.
It looks like this:

SEdit changes the caret frequently, depending on where you are
in the structure you are editing, and how the caret is positioned.
The left mouse button allows an edit caret position to be set.
The middle mouse button allows the structure caret position to
be set.

RELEASE NOTES, LYRIC RELEASE

16.1.3 The Mouse

RELEASE NOTES, LYRIC RELEASE

APPENDIX B. SEDIT

In SEdit, the mouse buttons are used as follows. The left mouse
button positions the mouse cursor to point to parts of Lisp
structures. The middle mouse button positions the mouse cursor
to point to whole Lisp structures. Thus, selecting the Q in LEQ
using the left mouse button selects that character, and sets the
edit caret after the Q:

(LE~ n 1)

Any characters typed in at this point would be appended to the
atom LEO.

Selecting the same letter using the middle mouse button selects
the whole atom (this convention matches TEdifs character/word
selection convention), and sets a structure caret between the
LEO and the n:

(1!.2...n 1)

At this point, any characters typed in would form a new atom
between the LEO and the n.

Larger structures can be selected in two ways. Use the middle
mouse button to position the mouse cursor on the parenthesis of
the desired list to select that list. Press the mouse button
multiple times, without moving the mouse, extends the
selection. Using the previous example, if the middle button were
pressed twice, the list (LEQ ...) would be selected:

(LEQ n 1)

Pressing the button a third time would cause the list containing
the (LEQ n 1) to be selected.

The right mouse button positions the mouse cursor for selecting
sequences of structures or substructures. Extended selections are
indicated by a box enclosing the structures selected. The
selection is extended in the same mode as the original selection.
That is, if the original selection were a character selection, the
right button could be used to select more characters in the same
atom. Extended selections also have the property of being
marked for pending deletion. That is, the selection takes the
place of the caret, and anything typed in is inserted in place of
the selection.

For example, selecting the E by pressing the left mouse button
and selecting the Q by pressing the right mouse button would
produce:

(to n 1)

Similarly, pressing the middle mouse button and then select~ng
with the right mouse button extends the selection by whole
structures. Thus, in our example, pressing the middle mouse

B-3

APPENDIX B. SEDIT

16.1.4 Gaps

16.1.5 Special Characters

Lists- (and)

Quoted Structures:

8-4

button to select LEQ and pressing the right mouse button to
select the 1 would produce:

(ILEQ n 11>

This is not the same as selecting the entire list, as above. Instead,
the elements in the list are collectively selected, but the list itself
is not.

The SEdit structure editor requires that everything edited must
have an underlying Lisp structure, even if the structure is not
directly displayed. For example, with quoted forms the actual
structure might be (QUOTE GREEN), although this would be
displayed as 'GREEN. Even when the user is in the midst of
typing in a form, the underlying Lisp structure must exist.

Because of this necessity, SEdit provides gaps to serve as dummy
Lisp objects during typing. SEdit does not need a gap for every
form typed in, but gaps are necessary for quoted objects. When
something is typed that requires SEdit to build a Lisp structure
and thus create a gap, as the quote character does, the gap will
appear marked for pending deletion. This means it is ready to be
replaced by the structure to be typed in. In this way it is possible
to type special structures, like quotes, directly, while SEdit
maintains the structure.

A gap looks like: -x-

A gap displayed after a quote has been typed in would look like
this:

with the gap marked for pending deletion, ready for typein of
the object to be quoted.

A few characters have special meaning in Lisp, and are treated
specially by SEdit. SEdit must always have a complete structure
to work on at any level of the edit. This means that SEdit needs a
special way to type in structures such as lists, strings, and quoted
objects. In most instances these structures can be typed in just as
they would be to a regular Exec, but in a few cases this is not
possible.

Lists begin with an open parenthesis character (. Typing an open
parenthesis gives a balanced list, that is, SEdit inserts both an
open and a close parenthesis. The structure caret is between the
two parentheses. List elements can be typed in at the structure
caret. When a close parenthesis,) is typed, the caret will be .
moved outside the list (and the close parenthesis), effectively
finishing the list.

SEdit handles the quote keys so that it is possible to type in all
quote forms directly. When typing one of the following quote

RELEASE NOTES, LYRIC RELEASE

Single Quote -' .

Backquote -'

Comma-,

At Sign - @

Oot- .

Meta-# or Meta-3

Dotted Lists:

Escape- \ or 0/0

Multiple Escape- I

Comments- ;

RELEASE NOTES, LYRIC RELEASE

APPENDIX B. SEDIT

keys at a structure caret, the quote character typed will appear,
followed by a gap to be replaced by the object to be quoted.

Use to enter quoted structures.

Use to enter backquoted structures.

Use to enter comma forms, as used with a Backquote form.

Use after a comma to create a comma-at-sign gap. This allows
type-in of comma~at forms, e.g. ,@Iist, as used within a
Backquote form.

Use the dot (period) after a comma to create a comma-dot gap.
This allows type-in of comma-dot forms, e.g. ,.list, as used
within a Backquote form.

Use to enter the CL:FUNCTION abbreviation hash-quote (#'). A
hash-quote gap will follow typein of Meta-#.

The dot, or period, character (.) is used to type dotted lists in
SEdit. After typing a dot, SEdit inserts a dot and a gap to fill in
for the tail of the list. To dot an existing list, point the cursor
between the last and second to the last element in the list, and
type a dot. To undot a list, select the tail of the list before the
dot while holding down the SHIFT key.

Use to escape from a specific typed in character. Use the escape
key to enter characters, like parentheses, which otherwise have
special meaning to the SEdit reader. Press the escape key then
type in the character to escape. SEdit uses the escape key
appropriate to the environment it is editing in; it depends on the
readtable that was current when the editor was started. The
backslash key (\) is used when editing Common Lisp, and the
percent key (0/0) is used when editing Interlisp.

Use the multiple escape key, the vertical bar character (I), to
escape a sequence of typed in characters. SEdit always balances
multiple escape characters. When one multiple escape character
is typed, SEdit produces a balanced pair, with the caret between
them, ready for typing in the characters to be escaped. If you
type a second vertical bar, the caret moves after the second
vertical bar, and is still within the same atom, so that you can
add more unescaped characters to the atom.

The comment key, a semicolon (;), starts a comment. When a
semicolon is typed, an empty comment is inserted with the caret
in position for typing in the comment. Comments can be edited
like strings. There are three levels of comments supported by
SEdit: single, double, and triple. Single semicolon comments are
formatted at the comment column, about three-quarters of the
way across the SEd it window, towards the right margin. Double
semicolon comments are formatted at the current indentation of
the code that they are in. Triple semicolon comments' are
formatted against the left margin of the SEdit window. The level
of a comment can be increased or decreased by pointing after
the semicolon, and either typing another semicolon, or
backspacing over the preceding semicolon. Comments can be
placed anywhere in your Common Lisp code. However, in

8-5

APPENDIX B. SEDIT

Strings- •

16.1.6 Control Keys

CONTROL-L

CONTROL-W

CONTROL-X

16.1.7 Command Keys

Meta- (or Meta-9

Meta-) or Meta-O

Interlisp code, they must follow the placement rules for Interlisp
comments.

Enter strings in SEdit by typing a double quote ("). SEdit
balances the double quotes. When one is typed, SEdit produces a
second, with the caret between the two, ready for typing the
characters of the string. If a double quote character is typed in
the middle of a string, SEdit breaks the string into two smaller
strings, leaving the caret between them.

SEdit uses Control Keys for certain simple editing operations.
[Editor Command]

Redisplays the structure being edited.
[Editor Command]

Deletes the previous atom or whole structure. If the caret is in
the middle of an atom, deletes backward to the beginning of the
atom only.

[Editor Command]

Signals the system that this edit is complete. The window
remains open, though, so the user can see the edit and start
editing again directly.

SEdit commands are most easily entered through the keyboard.
They are all single character META keystrokes. On 1108s the
Meta key is labelled OPEN; on 1186s it is labelled META (ALT).

For all alphabetic command keys, either uppercase or lowercase
works. There is also an attached menu available, described in
detail in Section 16.9, SEdit Command Menu.

[Editor Command]

Parenthesizes the current selection, positioning the caret at the
beginning of the new list. Only a whole structure selection or an
extended selection of a sequence of whole structures can be
parenthesized.

[Editor Command]

Parenthesizes the current selection, positioning the caret after
the new list.

Meta-' Meta-' Meta-, Meta-@ or Meta-2, Meta-. [Editor Command]

Meta-'

8-6

Quotes the current selection with the specified kind of quote,
respectively, Single Quote, Backquote, Comma,
Comma-At-Sign, or Comma-Dot.

[Editor Command]

Extracts one level of structure from the current selection. If the
current selection is an atom, or if there is no selection, the next
largest structure containing this atom, or caret, is used. This
command can be used to strip the parentheses off a list or a
comment, or to unquote a quoted structure.

RELEASE NOTES, LYRIC RELEASE

Meta-;

Meta-A

Meta-B

Meta-E or Do-It

Meta-F or FIND

Meta-H or HELP

Meta-J

Meta-M

RELEASE NOTES, LYRIC RELEASE

APPENDIX B .. SEDIT

[Editor Command]

Converts old style comments in the selected structure to new
style comments. This converter notices any list that begins with
an asterisk (*) in the INTERLISP package (IL:*) as an old style
comment. Section 16.1.11, Options, describes the converter
options.

[Editor Command]

Aborts. This command must be confirmed. All changes since the
beginning of the edit session are undone, and the edit is closed.

[Editor Command]

Changes Print Base. Prompts for entry of the desired Print Base,
in decimal. SEdit redisplays fixed point numbers in this new base.

[Editor Command]

Evaluates the current selection. If the result is a structure, the
inspector is called on it, allowing the user to choose how to look
at the result. Otherwise, the result is printed in the SEdit prompt
window. The evaluation is done in the process from which the
edit session was started. Thus, while editing a function from a
break window, evaluations are done in the context of the break.

[Editor Command]

Finds a specified structure. If there is a current selection, SEdit
looks for the next occurrence of the selected structure. If there is
no selection, SEd it prompts for the structure to find, and
searches forward from the position of the caret. The found
structure will be selected, so the Find command can be used to
easily find the same structure again.

[Editor Command]

Shows the argument list for the function currently selected, or
currently being typed in, in the SEdit prompt window. If the
argument list will not fit in the SEdit prompt window, it is
displayed in the main Prompt Window.

[Editor Command]

Joins. This command joins any number of sequential Lisp objects
of the same type into one object of that type. Join is supported
for atoms, strings, lists, and comments. In addition, SEd it permits
joining of a sequence of atoms and strings, since either type can
easily be coerced into the other. In this case, the result of the
Join will be an atom if the first object in the selection is an atom,
otherwise the result will be a string.

[Editor Command]

Attaches a menu of the commonly used commands (the SEd it
Command Menu) to the top of the SEdit window. Each SEdit
window can have its own menu, if desired.

B-7

APPENDIX B. SEDIT

Meta-N or SKIP-NEXT

Meta-O

Meta-P

Meta-R or AGAIN

Meta-S or SHIFT-FIND

Meta-U or UNDO

Meta-X or EXPAND

Meta-Z

16.1.8 Command Menu

8-8

[Editor Command]

Skips to the next gap in the structure, leaving it selected for
pending deletion.

[Editor Command]

Edits the definition of the current selection. If the selected name
has more than one type of definition, SEdit asks for the type to
be edited. If the selection has no definition, a menu pops up.
This menu lets the user specify either the type of definition to be
created, or no definition if none needs to be created.

[Editor Command]

Changes the current package for this edit. Prompts the user, in
the SEdit prompt window, for a new package name. SEdit will
redisplay atoms with respect to that package.

[Editor Command]

Redoes the edit change that was just undone. Redo only works
directly following an Undo. Any number of Undo commands
can be sequentially redone.

[Editor Command]

Substitutes one structure for another over the current selection.
SEdit prompts the user in the SEdit prompt window for the
structure to replace, and the structure to replace it with.

[Editor Command]

Undoes the last edit. All changes since the beginning of the edit
session are remembered, and can be undone sequentially.

[Editor Command]

Replaces the current selection with its definition. This command
can be used to expand macros and translate CLiSP.

[Editor Command]

Mutates. This command allows the user to do arbitrary
operations on a LISP structure. First select the structure to be
mutated (it must be a whole structure, not an extended
selection). When the user presses Meta-Z SEdit prompts for the
function to use for mutating. This function is called with the
selected structure as its argument, and the structure is replaced
with the result of the mutation.

For example, an atom can be put in upper case by selecting the
atom and mutating by the function U-CASE. You can replace a
structure with its value by selecting it and mutating by EVAL.

The SEdit Attached Command Menu contains the commonly
used commands. Use the Meta-M keyboard command to bring

RELEASE NOTES, LYRIC RELEASE

16.1.9 Help Menu

RELEASE NOTES, LYRIC RELEASE

APPENDIX B. SEDIT

up this menu. The menu can be closed, independently of the
SEdit window, when desired. The menu looks like:

SEdlt Command Menu

(Exit Done Abort (Paren Quote Extractl

(Undo Redo A.-gUst I (Edit Eval Expand I
Print -Base 10 Package LISP
Find:
Substitute:

All of the commands in the menu function identically to their
corresponding keyboard commands, except for Find and
Substitute.

When Find is selected with the mouse cursor, SEd it prompts in
the menu window, next to the Find button, for the expression to
find. Type in the expression then select Find again. The search
begins from the caret position in the SEdit window.

Similarly, Substitute prompts, next to the Find button, for the
expression to find, and next to the Substitute button for the
expression to substitute it with. After both expressions have
been typed in, selecting Substitute replaces all occurrences of
the Find expression in the current selection with the Substitute
expression.

To do a confi rmed substitute, set the ed it poi nt before the fi rst
desired substitution, and select Find. Then if you want to
substitute that occurrence of the expression, select Substitute.
Otherwise, select Find again to go on.

Selecting either Find or Substitute with the right mouse button
erases the old structure to find or substitute from the menu, and
prompts for a new one.

When the mouse cursor is positioned in the SEdit title bar and
the middle mouse button is pressed, a Help Menu of commands
pops up. The menu looks like this:

8-9

APPENDIX B. SEDIT

16.1.10 Interface

Commands
Done C-X
Quote M-J
Extract M-/
Paren M-(
Con v . Comment M-;
Abort M-A
Set Print -base M -8
Eval M-E
Find M-F
Arglist M-H
Join M-J
Attach Menu M -M
Skip -Next M -N
Edit M-O
Set Package M-P
Redo M~R
Substitute M-S
Undo M-U
Expand M-X
Mutate M-Z

The Help Menu lists each command and its corresponding
Command Key. (In the menu, the letter C stands for CONTROL,
while M indicates Meta.) The command selected is executed just
as if the command had been entered from the keyboard. The
menu remembers which command was selected last, and pops up
with the mouse cursor next to that same command the next time
the menu is used. This provides a very fast way to repeat the
same command when using the mouse.

SEdit has specific functions which allow the user to control
certain aspects of Sedit's behavior.

(SEDIT.GET.WINDOW.REGION CONTEXT REASON) [Function]

8-10

This function is called when SEdit wants to know where to place
a window it is about to open. This happens whenever the user
starts a new SEdit or expands an Sedit icon.The default behavior
is to pop a window region off SEdit's stack of regions that have
been used in the past. If the stack is empty, SEdit prompts for a
new region.

This function can be redefined to provide different behavior. It is
called with the edit CONTEXT and a REASON for needing a
region. The edit CONTEXT is SEdit's main data structure and can
be useful for associating particular edits with specific regions.
The REASON argument specifies why SEdit wants a region, with
one of the keywords, :CREATE or : EXPAND.

RELEASE NOTES, LYRIC RELEASE

APPENDIX B. SEDIT

(SEDIT.SAVE.WINDOW.REGION CONTEXT REASON) [Function]

(SEDIT.RESET)

16.1.11 Options

This function is called whenever SEdit is finished with a region
and wants to make the region availabJe for other SEdits. This
happens whenever an SEd it window is closed or shrunk. The
default behaviOf is simply to push the region onto SEdit's stack of
regions (see the SEDtT.KEEP.WlNOOW.REGtON option in Section
16.1.11, Options).

This function can be redefined to provide different behavior. It
is also (ailed with the edit CONTEXT, used for associating
particular edits with specific regions, and REASON. The REASON
argument specifies why the region should be saved the region; it
is one of the keywords : CLOSE or :SHRINK.

[Function]

This function recomputes the SEdit edit environment. Any
changes made in the font profile, or any changes made to SEd it's
commands are captured by resetting. Close all SEdit windows
before calling this function.

The following top level variables can be set as desired:

SEDIT.KEEP.WINDOW.REGION [Variable]

SEDIT.CONVERT.UPGRADE

RELEASE NOTES, LYRIC RELEASE

Default T. This flag determines the behavior of the default SEdit
region manager, explained above, for shrinking and expanding
windows. When T, shrinking an SEdit window will not give up
that window's region; the icon will always expand back into the
same region. When NIL, the window's region is made available
for other SEdits when the window is shrunk. Then when an
SEdit icon is expanded, the window will be reshaped to the next
available region.

This variable is only used by the default implementations of the
functions SEDIT.GET.WINDOW.REGION and
SEDIT.SAVE.WINDOW.REGION. If these functions are redefined,
this flag is no longer used.

[Variable]

Default 100. When using Meta-; to convert old-style single
asterisk comments, if the length of the comment exceeds
SEDIT.CONVERT.UPGRADE characters, the comment is converted
into a double semicolon comment. Otherwise, the comment is
converted into a single semicolon comment.

Old-style double-asterisk comments are always converted into
new-style triple-semicolon comments.

B-11

APPENDIX B. SEDIT

[This page intentionally left blank]

8-12 RELEASE NOTES, LYRIC RELEASE

28.4.16 Creating Icons with ICONW

28.4.16.1 Creating Icons

APPENDIX C. ICONW

ICONW, used to build small windows which will appear as icons
on the display, is a new standard input/output feature of Xerox
Lisp. The following description of ICONW should be appended
to Section 28.4, Windows, of the Interlisp-D Reference Manual.

ICONW is a group of functions available for building small
windows of arbitrary shape. These windows are principally for
use as icons for shrinking windows; i.e., these functions are likely
to be invoked from within the ICONFN of a window. An icon is
specified by supplying its image (a bitmap) and a mask that
specifies its shape. The mask is a bitmap of the same dimensions
as the image whose bits are on (black) in those positions
considered to be in the image, and off (white) in those positions
where the background should show through. By using the mask
and appropriate window functions, ICONW maintains the
illusion that the icon window is nonrectangular, even though the
actual window itself is rectangular. The illusion is not complete,
of course. For example, if you try to select what looks like the
background (or an occluded window) around the icon but still
within its rectangular perimeter, the icon window itself is
selected. Also, if you move a window occluded by an icon, the
icon never notices that the background changed behind it. Icons
created with ICONW can also have titles; some part of the image
can be filled with text computed at the time the icon is created,
or text may be changed after creation.

Two types of icons can be created with ICONW, a borderless
wi ndow contai ni ng an image defi ned by a mask and a wi ndow
with a title.

(lCONW IMAGE MASK POSITION NOOPENFLG) [Function]

Creates a window at POSITION, or prompts for a position if
POSITION is NIl. The window is borderless, and filled with
IMAGE, as cookie-cut by MASK. If MASK is NIL, the image is
considered rectangular (i.e., MASK defaults to a black bitmap of
the same dimensions as IMAGE). If NOOPENFLG is T, the window
is returned unopened.

(TITLEDICONW ICON TITLE FONT POSITION NOOPENFLG JUST BREAKCHARS OPERA TlON)
[Function]

LYRIC RELEASE NOTES

Creates a titled icon at POSITION, or prompts for a position if
POSITION is NIl. If NOOPENFLG is T, the window is returned
unopened. The argument ICON is an instance of the record
TITLEDICON, which specifies the icon image and mask, as with
ICONW, and a region within the image to be used for displaying
the title. Thus, the ICON argument is usually of the form

(create TITLEDICON ICON ~ somelconlmage
MASK ~ iconMask TITLEREG ~
someRegionWithinICON)

(-1

APPENDIX C. ICONW

28.4.16.2 Modifying Icons

(lCONW.TITLE ICON TITLE)

The title region is specified in coordinates relative to the icon,
i.e., the lower-left corner of the image bitmap is (0, 0). The mask
can be NIL if the icon is rectangular. The image should be white
where it is covered by the title region. TITLEDICONWclears the
region before printing on it. The title is printed into the specified
region in the image, using FONT. If FONT is NIL it defaults to the
value of DEFAULTICONFONT, initially Helvetica 10. The title is
broken into mUltiple lines if neces~ry; TITLEDICONWattempts
to place the breaks at characters that are in the list of character
codes BREAKCHARS. BREAKCHARS defaults to (CHARCODE
(SPACE -». In addition, line breaks are forced by any carriage
returns in TITLE, independent of BREAKCHARS. BREAKCHARS is
ignored if a long title would not otherwise fit in the specified
region. For convenience, BREAKCHARS = FILE means the title is
a file .name, so break at file name field delimiters. The argument
JUST indicates how the text should be justified relative to the
region. It is an atom or list of atoms chosen from TOP, BOTTOM,
LEFT, or RIGHT, which indicate the vertical positioning (flush to
top or bottom) andlor horizontal positioning (flush to left edge
or right). If JUST = NIL, the text is centered. The argument
OPERA TlON is a display stream operation indicating how the title
should be printed. If OPERATION is INVERT, then the title is
printed white-on-black. The default OPERATION is REPLACE,
meaning black-on-white. ERASE is the same as INVERT; PAINT is
the same as REPLACE.

For convenience, TITLEDICONW can also be used to create icons
that consist solely of a title, with no special image. If the
argument ICON is NIL, TITLEDICONW creates a rectangular icon
large enough to contain TITLE, with a border the same width as
that on a regular window. The remaining arguments are as
descri bed above, except that a JUST of TOP or BOTTOM is not
meaningful.

[Function]

Returns the current title of the window ICON, which must be a
window returned by TITLEDICONW. In addition, if TITLE is
non-NIL, makes TITLE the new title of the window and repaints it
accordingly. To erase the current title, make TITLE a null string.

(lCONW.SHADE WINDOW SHADE) [Function]

28.4.16.3 Default Icons

C-2

Returns the current shading of the window ICON, which must be
a window returned by ICONW or TITLEDICONW. In addition, if
SHADE is non-NIL, paints the texture SHADE on WINDOW. A
typical use for this function is to communicate a change of state
in a window that is shrunken, without reopening the window.
To remove any shading, make SHADE be WHITESHADE.

When you shrink a window that has no ICONFN, the system
currently creates an icon that looks like the window's title bar.
You can make the system instead create titled icons by setting
the global variable DEFAUL TICONFN to the value TEXTICON.

LYRIC RELEASE NOTES

APPENDIX C. ICONW

{TEXTICON WINDOW TEXn [Function]

Creates a titled icon window for the main window WINDOW
containing the text TEXT, or the window's title if TEXT is NIl.

DEFAULTTEXTICON [Variable]

28.4.16.4 Sample Icons

LYRIC RELEASE NOTES

The val ue that TEXnCON passes to T1TLEDICONW as its ICON
argument. Initially it is NIL, which creates an unadorned
rectangular window. However, you can set it to a TITLEDICON
record of your choosing if you would like default icons to have a
different appearance.

The lispUsers Stocklcons module contains a collection of icons
and their masks usable with ICONW, including:

• FOLDER, FOLDERMASK - a file folder

• PAPERICON, PAPERICONMASK - a sheet of paper with the top
right corner turned

• FILEDRAWER, FILEDRAWERMASK - front of a file·drawer

• ENVELOPEICON, ENVELOPEMASK - envelope

• T1TLED.FILEDRAWER - Titledlcon of the filedrawer front
(capacity, about three lines of 1 O-point text)

• T1TLED.FILEFOLDER - Titledlcon of the file folder (capacity,
about three lines of 1 O-point text)

• TITLED.ENVELOPE - Titledlcon of the envelope (capacity, one
short line of 1 O-poi nt text)

C-3

APPENDIX C. ICONW

[This page intentionally left blank]

C-4 LYRIC RELEASE NOTES

28.7 Free Menus

28.7.1 Making a Free Menu

2:8.7.2 Free Menu Formatting

LYRIC RELEASE NOTES

APPENDIX D. Free Menu

Free Menu is a standard input/output feature of Xerox Lisp. The
following description of Free Menu should be added to the
Menus segment of Chapter 28, Windows and Menus, in the
Interlisp-D Reference Manual.

Free Menus are powerful and flexible menus that are useful for
applications needing menus with different types of items,
including command items, state items, and items that can be
edited. A Free Menu is part of a window. It can can be opened
and closed as desired, or attached as a control menu to the
application window.

A Free Menu is built from a description of the contents and
layout of the menu. As a Free Menu is simply a group of items, a
Free Menu Description is simply a specification of a group of
items. Each group has properties associated with it, as does each
Free Menu Item. These properties specify the format of the items
in the group, and the behavior of each item. The function
FREEMENU takes a Free Menu Description, and returns a closed
window with the Free Menu in it.

The easiest way to make a Free Menu is to define a specific
function which calls FREEMENU with the Free Menu Description
in the function. This function can then also set up the Free Menu
window as required by the application. The Free Menu
Description is saved as part of the specific function when the
application is saved. Alternately, the Free Menu Description can
be saved as a variable in your file; then just call FREEMENU with
the name of the variable. This may be a more difficult
alternative if the backquote facility is used to build the Free
Menu Description (see Section 28.7.7, Free Menu Item
Descriptions, for more information on using backquote with a
Free Menu Description) .

A Free Menu can be formatted in one of four ways. The items in
any group can.be automatically laid out in rows, in columns, or in
a table, or else the application can specify the exact location of
each item in the group. Free Menu keeps track of the region that
a group of items occupies, and items can be justified within that
region. This wayan item can be automatically positioned at one
of the nine justification locations, top-left, top-center, top-right,
middle-left, etc.

0-1

APPENDIX D. FREE MENU

28.7.3 Free Menu Description

0-2

A Free Menu Description, specifying a group of items, is a list
structure. The first entry in the list is an optional list of the
properties for this group of items. This entry is in the form:

(PROPS <PROP> <VALUE> <PROP> <VALUE> ...)

The keyword PROPS determines whether or not the optional
group properties list is specified. Section 28.7.4, II Free Menu
Group Properties, II describes each group property.

One important group property is FORMAT. The four types of
formatting, ROW, TABLE, COLUMN, or EXPLICIT, determine the
syntax of the rest of the Free Menu Description. When using
EXPLICIT formatting, the rest of the description is any number of
Item Descriptions which have LEFT and BOTTOM properties
specifying the position of the item in the menu. The syntax is:

({PROPS FORMAT EXPLICIT ...)
< ITEM DESCRIPTION>
< ITEM DESCRIPTION> ...)

When using ROW or TABLE formatting, the rest of the
description is any number of item groups, each group
corresponding to a row in the menu. These groups are identical
in syntax to an EXPLICIT group description. The groups have an
optional PROPS list and any number of Item Descriptions. The
items need not have LEFT and BOTTOM properties, as the
location of each item is determined by the formatter. However,
the order of the rows and items is important. The menu is laid
out top to bottom by row, and left to right within each row. The
syntax is:

«PROPS FORMAT ROW ...)
(< ITEM DESCRIPTION>
< ITEM DESCRIPTION> ...)
«PROPS ...)
<ITEM DESCRIPTION>
< ITEM DESCRIPTION> ... »

; props of this group
; items in fi rst row

; props of second row
; items in second row

(The comments above only describe the syntax.)

For COLUMN formatting, the syntax is identical to that of ROW
formatting. However, each group of items corresponds to a
column in the menu, rather than a row. The menu is laid out left
to right by column, top to bottom within each column.

Finally, a Free Menu Description can have recursively nested
groups. Anywhere the description can take an Item Description,
it can take a group, marked by the keyword GROUP. A nested
group inherits all of the properties of its mother group, by
default. However, any of these properties can be overridden in
the nested groups PROPS list, including the FORMAT. The syntax
is:

LYRIC RELEASE NOTES

APPENDIX D. FREE MENU

(; no PROPS list. default row format
«ITEM DESCRIPTION> ; first in row
(GROUP ; nested group. second in row

(PROPS FORMAT COLUMN ...) ; optional props
« ITEM DESCRIPTION> ...) ; first column
(< ITEM DESCRIPTION> ... »
<ITEM DESCRIPTION>)) ; third in row

Here is an example of a simple Free Menu Description for a menu
which might provide access to a simple data base:

«(LABEL LOOKUP SELECTEDFN MYLOOKUPFN)
(LABEL EXIT SELECTEDFN MYEXITFN»

«LABEL Name: TYPE DISPLAY) (LABEL "" TYPE EDIT 10 NAME»
«LABEL Address: TYPE DISPLAY) (LABEL "" TYPE EDIT 10 ADDRESS»
«LABEL Phone: TYPE DISPLAY)

(LABEL "" TYPE EDIT LIMITCHARS MYPHONEP 10 PHONE»)

This menu has two command buttons, LOOKUP and EXIT, and
three edit fields, with IDs NAME, PHONE, and ADDRESS. The Edit
items are initialized to the empty string, as in this example they
need no other initial value. The user could select the Name:
prompt, type a person's name, and then press the LOOKUP
button. The function MYlOOKUPFN would be called. That
function would look at the NAME Edit item, look up that name
in the data base, and fill in the rest of the fields appropriately.
The PHONE item has MYPHONEP as a LlMITCHARS function. This
function would be called when editing the phone number, in
order to restrict input to a valid phone number. After looking up
Perry, the Free Menu might look like:

LOOt'';UP E::< I T
Name: Herober°t. Q Per'roy
Addr'ess: 1:3 r~ i dc~ 1 eperT!l Dr
Phone: (411) 7Ei7-12:34

Here is a more complicated example:

«PROPS FONT (MODERN 10»
«LABEL Example FONT (MODERN 10 BOLD) HJUSTIFY CENTER»
«LABEL NORTH) (LABEL SOUTH) (LABEL EAST) (LABEL WEST»
«PROPS 10 ROW3 BOX 1)

(LABEL ONE) (LABEL TWO) (LABEL THREE»
«PROPS 10 ROW4)

(LABEL ONE 10 ALPHA)
(GROUP (PROPS FORMAT COLUMN BACKGROUND 23130 BOX 2 BOXSPACE 4)

«TYPE NWAY LABEL A BOX 1 COLLECTION COLl NWAYPROPS (DESELECT T»
(TYPE NWAY LABEL B BOX 1 COLLECTION COL1)
(TYPE NWAY LABEL C BOX 1 COLLECTION COLl»

«TYPE STATE LABEL "Choose Me" BOX 1 MENUITEMS (BRAVO DELTA)
INITSTATE DELTA LINKS (DISPLAY (GROUP ALPHA»)

(TYPE DISPLAY 10 ALPHA LABEL "" BOX 1 MAXWIDTH 35»)
(LABEL THREE»)

which will produce the following Free Menu:

LYRIC RELEASE NOTES 0-3

APPENDIX D. FREE MENU

0-4

Eumple
NORTH SOUTH EAST WEST

lONE TWO THREEI

ONE THREE

And if the Free Menu were formatted as a Table, instead of in
Rows, it would look like:

Example
NORTH SOUTH EAST WEST

IrIO-N-E-----T-W-·O-----------TH-R-E~EI

ONE THR.EE

The following breakdown of the example explains how each
part contributes to the Free Menu shown above.

(PROPS FONT (MODERN 10»

This line specifies the properties of the group that is the entire
Free Menu. These properties are described in Section 28.7.4, Free
Menu Group Properties. In this example, all items in the Free
Menu, unless otherwise specified, will be in Modern 10.

«LABEL Example FONT (MODERN 10 BOLD) HJUSTIFY CENTER»

This line of the Free Menu Description describes the first row of
the menu. Since the FORMAT specification of a Free Menu is, by
default, ROW formatting, this line sets the first row in the menu.
If the menu were in COLUMN formatting, this position in the
description would specify the first column in the menu.

In this example the first row contains only one item. The item is,
by default, a type MOMENTARY item. It has its own Font
declaration (FONT (MODERN 10 BOLD», that overrides the font
specified for the Free Menu as a whole, so the item appears
bolded.

Finally, the item is justified, in this case centered. The HJUSTIFY
Item Property indicates that the item is to be centered
horizontally within its row.

«LABEL NORTH) (LABEL SOUTH) (LABEL EAST) (LABEL WEST»

This line specifies the second row of the menu. The second row
has four very simple items, labeled NORTH, SOUTH, EAST, and
WEST next to each other within the same row.

LYRIC RELEASE NOTES

APPENDIX D. FREE MENU

«PROPS 10 ROW3 BOX 1)
(LABEL ONE) (LABEL TWO) (LABEL THREE»

The third row in the menu is similar to the second row, except
that it has a box drawn around it. The box is specified in the
PROPS declaration for this row. Rows (and columns) are just like
Groups in that the first thing in the declaration can be a list of
properties for that row. In this case the row is named by giving it
an 10 property of ROW3. It is useful to name your groups if you
want to be able to access and modify their properties later (via
the function FM.GROUPPROP). It is boxed by specifying the BOX
property with a value of 1, meaning draw the box one dot wide.

«PROPS 10 ROW4)
(LABEL ONE 10 ALPHA)
(GROUP (PROPS FORMAT COLUMN BACKGROUND 23130 BOX 2 BOXSPACE 4)

«TYPE NWAY LABEL A BOX 1 COLLECTION COLl NWAYPROPS (DESELECT T»
(TYPE NWAY LABEL B BOX 1 COLLECTION COL1)
(TYPE NWAY LABEL C BOX 1 COLLECTION COL1»

«TYPE STATE LABEL "Choose Me" BOX 1 MENUITEMS (BRAVO DELTA)
INITSTATE DELTA LINKS (DISPLAY (GROUP ALPHA»)

(TYPE DISPLAY 10 ALPHA LABEL "" BOX 1 MAXWIDTH 35»)
(LABEL THREE»)

This part of the description specifies the fourth row in the menu.
This row consists of: an item labelled ONE, a group of items, and
an item labelled THREE. That is, Free Menu thinks of the group
as an entry, and formats the rest of the row just as it it were a
large item.

(GROUP (PROPS FORMAT COLUMN BACKGROUND 23130 BOX 2 BOXSPACE 4)
«TYPE NWAY LABEL A BOX 1 COLLECTION COLl NWAYPROPS (DESELECT T»

(TYPE NWAY lABEL B BOX 1 COLLECTION COL1)
(TYPE NWAY LABEL C BOX 1 COLLECTION COL1»

«TYPE STATE LABEL "Choose Me" BOX 1 MENUITEMS (BRAVO DELTA)
INITSTATE DELTA LINKS (DISPLAY (GROUP ALPHA»)

(TYPE DISPLAY 10 ALPHA LABEL "" BOX 1 MAXWIDTH 35»)
The second part of this row is a nested group of items. It is
declared as a group by placing the keyword GROUP as the first
word in the declaration. A group can be declared anywhere a
Free Menu Description can take a Free Menu Item Description (as
opposed to a row or column declaration).

The first thing in what would have been the second item
declaration in this row is the keyword GROUP. Following this
keyword comes a normal group description, starting with an
optional list of properties, and followed by any number of things
to go in the group (based on the format of the group).

This group's Props declaration is:

(PROPS FORMAT COLUMN BACKGROUND 23130 BOX 2 BOXSPACE 4).

LYRIC RELEASE NOTES

It specifies that the group is to be formatted as a number of
columns (instead of rows, the default). The entire group will
have a background shade of 23130, and a box of width 2 around
it, as you can see in the sample menu. The BOXSPACE
declaration tells Free Menu to leave an extra four dots of room
between the edge of the group (ie the box around the group)
and the items in the group.

0-5

APPENDIX D. FREE MENU

0-6

The first column of this group is a Collection of NWA Y items:

({TYPE NWAY LABEL A BOX 1 COLLECTIONCOLl NWAYPROPS (DESELECT T»
(TYPE NWAY LABEL B BOX 1 COLLECTION COLl)
(TYPE NWAY LABEL C BOX 1 COLLECTION COLl»

The three items, labelled A, B, and C are all declared as NWA Y
items, and are also specified to belong to the same NWA Y
Collection, Co11. This is how a number of NWA Y items are
collected together. The property NWAYPROPS (DESELECT T) on
the first NWAY item specifies that the Col 1 Collection is to have
the Deselect property enabled. This simply means that the NWA Y
collection can be put in the state where none of the items (A, a,
or C) are selected (highlighted). Additionally, each item is
declared with a box whose width is one dot (pixel) around it.

The second column in this nested group is specified by:

({TYPE STATE LABEL "Choose Me" BOX 1 MENUITEMS (BRAVO DELTA)
INITSTATE DELTA LINKS (DISPLAY (GROUP ALPHA»)

(TYPE DISPLAY ID ALPHA LABEL "" BOX 1 MAXWIDTH 35»
Column two contains two items, a STATE item and a DISPLAY
item. The STATE item is labelled "Choose Me." A Label can be a
string or a bitmap, as well as an atom. Selecting the STATE item
will cause a pop-up menu to appear with two choices for the
state of the item, BRAVO and DELTA. The items to go in the
pop-up menu are designated by the MENUITEMS property.

The pop-up menu would look like:

BRAVO
DELTA

The initial state of the "Choose Me" item is designated to be
DELTA by the INITSTATE Item Property. The initial state can be
anything; it does not have to be one of the items in the pop-up
menu.

Next, the STATE item is Linked to a DISPLAY item, so that the
current state of the item will be displayed in the Free Menu. The
link's name is DISPLAY (a special link name for STATE items), and
the item linked to is described by the Link Description, (GROUP
ALPHA). Normally the linked item can just be described by its 10.
But in this case, there is more than one item whose 10 is ALPHA
(for the sake of this example), specifically the first item in the
fourth row and the display item in this nested group. The form
(GROUP ALPHA) tells Free Menu to search for an item whose 10 is
ALPHA, limiting the search to the items that are within this
lexical group. The lexical group is the smallest group that is
declared with the GROUP keyword (Le., not row and column
groups) that contains this item declaration. So in this case, Free
Menu wifllink the STATE item to the DISPLAY item, rather than
the first item in the fourth row, since that item is outside of the
nested group. For further discussion of linking items, see
Section 28.7.12, Free Menu Item Links.

LYRIC RELEASE NOTES

APPENDIX D. FREE MENU

Now, establish the DISPLAY item:

(TYPE DISPLAY 10 ALPHA LABEL "" BOX 1 MAXWIDTH 35)

(LABEL THREE)

28.7.4 Free Menu Group Properties

LYRIC RELEASE NOTES

10

FORMAT

FONT

COORDINATES

LEFT

BOTTOM

ROWSPACE

COLUMNSPACE

We have given it the 10 of Alpha that the aboveSTATE item uses
in finding the proper DISPLAY item to link to. This display item is
used to display the current state of the item "Choose Me." Every
item is required to have a Label property specified, but the label
for this DISPLAY item wi II depend on the state of .. Choose Me."
That is, when the state of the II Choose Me" item is changed from
DELTA to BRAVO, the label of the DISPLAY item will also change.
The null string serves to hold the place for the changeable label.

A box is specified for this item. Since the label is the empty
string, Free Menu would, draw a very small box. Instead, the
MAXWIDTH property indicates that the label, whatever it
becomes, will be limited to a stringwidth of 35. The width
restriction of 35 was chosen because it is big enough for each of
the possible labels for this display item. So Free Menu draws the
box big enough to enclose any item within this width restriction.

Finally we specify the final item in row four:

Each group has properties. Most group properties are relevant
and should be set in the group's PROPS list in the Free Menu
Description. User properties can be freely included in the PROPS
list. A few.other properties are set up by the formatter. The
macros FM.GROUPPROP or FM.MENUPROP allow access to
group properties after the Free Menu is created.

The identifier of this group. Setting the group 10 is desirable, for
example, if the application needs to get handles on items in
particular groups, or access group properties.

One of ROW, COLUMN, TABLE, or EXPLICIT. The default is ROW.

A font description of the form (FAMILY SIZE FACE), or a
FONTOESCRIPTOR data type. This will be the default font for
each item in this group. The default font of the top group is the
value of the variable OEFAULTFONT.

One of GROUP or MENU. This property applies only to EXPLICIT
formatting. If GROUP, the items in the EXPLICIT group are
positioned in coordinates relative to the lower left corner of the
group, as determined by the mother group. If MENU, which is
the default, the items are positioned relative to the lower left
corner of the menu.

Specifies a left offset for this group, pushing the group to the
right.

Specifies a bottom offset for this group, pushing the group up.

Specifies the number of dots between rows in this group.

Specifies the number of dots between columns in this group.

0-7

APPENDIX D. FREE MENU

BOX

BOXSHADE

BOXSPACE

BACKGROUND

28.7.5 Other Group Properties

ITEMS

REGION

MOTHER

DAUGHTERS

28.7.6 Free Menu Items

28.7.7 Free Menu Item Descriptions

0-8

Specifies the number of dots in the box around this group of
items.

Specifies the shade of the box.

Specifies the number of bits between the box and the items.

The background shade of this group. Nested groups inherit this
background shade, but items in this group and nested groups do
not. This is because, in general, it is difficult to read text on a
background, so items appear on a white background by default.
This can be overridden by the BACKGROUND Item Property.

The following group properties are set up and maintained by
Free Menu. The application should probably not change any of
these properties.

A list of the items in the group.

The region that is the extent of the items in the group.

The ID of the group that is the mother of this group.

A list of ID of groups which are daughters to this group.

Each Free Menu Item is stored as an instance of the data type
FREEMENUITEM. Free Menu Items can be thought of as objects,
each item having its own particular properties, such as its type,
label, and mouse event functions. A number of useful item
types, described in Section 28.7.11, Predefined Item Types, are
predefined by Free Menu. New types of items can be defined by
the application, using Display items as a base. Each Free Menu
Item is created from a Free Menu Item Description when the Free
Menu is created.

A Free Menu Item Description is a list in property list format,
specifying the properties of the item. For example:

(LABEL Refetch SELECTEDFN MY.REFETCHFN)

describes a MOMENTARY item labelled Refetch, with the
function MY.REFETCHFN to be called when the item is selected.
None of the property values in an item description are evaluated.
When constructing Free Menu descriptions that incorporate
evaluated expressions (for example labels that are bitmaps) it is
helpful to use the backquote facility. For instance, if the value of
the variable MYBITMAP is a bitmap, then

(FREEMENU '«(LABEL A) (LABEL ,MYBITMAP»»

would create a Free Menu of one row, with two items in that
row, the second of which has the value of MYBITMAP as its label.

LYRIC RELEASE NOTES

28.7.8 Free Menu Item Properties

TYPE

LABEL

FONT

10

LEFT ancBOnOM

LYRIC RELEASE NOTES

HJUSTIFY

VJUSTIFY

HIGHLIGHT

MESSAGE

INITSTATE

MAXWIDTH

MAXHEIGHT

BOX

APPENDIX D. FREE MENU

The following Free Menu Item Properties can be set in the Item
Description. Any other properties given in an Item Description
wi II be treated as user properties, and wi II be saved on the
USERDATA property of the item.

The type of the item. Choose from one of the Free Menu Item
type keywords MOMENTARY, TOGGLE, 3STATE, STATE, NWAY,
EDITSTART, EDIT, NUMBER, or DISPLAY. The default is
MOMENTARY.

An atom, string, or bitmap. Bitmaps are always copied, so that
the original will not be changed. This property must be specified
for every item.

The font in which the item appears. The default is the font
specified for the group containing this item. Can be a font
description of the form (FAMILY SIZE FACE), or a
FONTDESCRIPTOR data type.

May be used to specify a unique identifier for this item, but is not
necessary.

When ROW, COLUMN, or TABLE formatting, these specify
offsets, pushing the item right and up, respectively, from where
the formatter would have put the item. In EXPLICIT formatting,
these are the actual coordinates of the item, in the coordinate
system given by the group's COORDINATES property.

Indicates horizontal justification type: LEFT, CENTER, or RIGHT.
Specifies that this item is to be horizontally justified within the
extent of its group. Note that the main group, as opposed to
the smaller row or column group, is used.

Specifies that this item is to be vertically justified. Values are
TOP, MIDDLE, or BOnOM.

Specifies the highlighted looks of the item, that is, how the item
changes when a mouse event occurs on it. See Section 28.7.12,
Free Menu Item Highlighting, for more details on highlighting.

Specifies a string that will be printed in the prompt window after
a mouse cursor selects this item for MENUHELDWAIT
milliseconds. Or, if an atom, treated as a function to get the
message. The function is passed three arguments, ITEM,
WINDOW, and BUnONS, and should return a string. The
default is a message appropriate to the type of the item.

Specifies the initial state of the item. This is only appropriate to
TOGGLE, 3STATE, and STATE items.

Specifies the width allowed for this item. The formatter will
leave enough space after the item for the item to grow to this
width without collisions.

Similar to MAXWIDTH, but in the vertical dimension.

Specifies the number of bits in the box around this item. Boxes
are made around MAXWIDTH and MAXHEIGHT dimensions. If
unspecified, no box is drawn.

0-9

APPENDIX D. FREE MENU

BOXSHADE

BOXSPACE

BACKGROUND

LINKS

28.7.9 Mouse Properties

SELECTEDFN

DOWNFN

HELDFN

MOVEDFN

28.7.10 System Properties

0-10

GROUPID

STATE

BITMAP

REGION

MAXREGION

Specifies the shade that the box is drawn in. The default is
BLACKSHADE.

Specifies the number of bits between the box and the label. The
default is one bit.

Specifies the background shade on which the item appears. The
default is WHITESHADE, regardless of the group's background.

Can be used to link this item to other items in the Free Menu.
See Section 28.7.13, Free Menu Item Links, for more information.

The following properties provide a way for application functions
to be called under certain mouse events. These functions are
called with the ITEM, the WINDOW, and the BUTTONS passed as
arguments. These application functions do not interfere with
any Free Menu sys~em functions that take care of handling the
different item types. In each case, though, the application
function is called after the system function. The default for all of
these functions is NILL. The value of each of the following
properties can be the name of a function, or a lambda
expression.

Specifies the function to be called when this item is selected. The
Edit and EditStart items cannot have a SELECTEDFN. See the Edit
Free Menu item description in Section 28.7.11, Predefined Item
Types, for more information.

Specifies the function to be called when the item is selected with
the mouse cursor.

Specifies the function to be called repeatedly when the item is
selected with the mouse cursor.

Specifies the function to be called when the mouse cursor moves
off this item (mouse buttons are still depressed).

The following Free Menu Item properties are set and maintained
by Free Menu. The application should probably not change
these properties directly.

Specifies the 10 of the smallest group that the item is in. For
example, in a row formatted group, the item's GROUPID wi" be
set to the 10 of the row that the item is in, not the 10 of the
whole group.

Specifies the current state of TOGGLE, 3STATE, or STATE items.
The state of an NWAY item behaves like that of a toggle item.

Specifies the bitmap from which the item is displayed.

Specifies the region of the item, in window coordinates. This is
used for locating the display position, as well as determining the
mouse sensitive region of the item.

Specifies the maximum region the item may occupy, determined
by the MAXWIDTH and MAXHEIGHT properties (see Section

LYRIC RELEASE NOTES

SYSDOWNFN
SYSMOVEDFN

SYSSELECTEDFN

USERDATA

28.7.11 Predefined Item Types

MOMENTARV

TOGGLE

3STATE

OFF

STATE

CHANGESTATE

LYRIC RELEASE NOTES

APPENDIX D. FREE MENU

28.7.8, Free Menu item Properties). This is used by the formatter
and the display routines.

These are the system mouse event functions, set up by Free Menu
according to the item type. These functions are called before the
mouse event functions, and are used to implement highlighting,
state changes, editing, etc.

Specifies how any other properties are stored on this list in
property list format. This list should probably not need to be
manipulated directly.

[Free Menu Item]

MOMENTARY items are like command buttons. When the
button is selected, its associated function is called.

[Free Menu Item]

Toggle items are simple two-state buttons. When pressed, the
button is highlighted; it stays that way until pressed again. The
states of a toggle button are T and NIL; the initial state is NIL.

[Free Menu Item]

3STATE items rotate through NIL, T, and OFF, states each time
they are pressed. The default looks of the OFF state are with a
diagonal line through the button, while T is highlighted, and NIL
is normal. The default initial state is NIL.

The following Item Property applies to 3STATE items:

Specifies the looks of a 3STATE item in its OFF state. Similar to
HIGHLIGHT. The default is that the label gets a diagonal slash
through it.

[Free Menu Item]

STATE items are general multiple state items. The following
Item Property determines how the item changes state:

This Item Property can be changed at any time to change the
effect of the item. If a MENU data type, this menu pops up when
the item is selected, and the user can select the new state.
Otherwise, if this property is given, it is treated as a function
name, which is passed three arguments, ITEM, WINDOW, and
BUTTONS. This function can do whatever it wants, and is
expected to return the new state (an atom, string, or bitmap), or
NIL, indicating the state should not change. The state of the item
can automatically be indicated in the Free Menu, by setting up a
DISPLA V link to a DISPLA V item in the menu (see Section 28.7.13,
Free Menu Item Links). If such a link exists, the label of the
OISPLA V item will be changed to the new state. The possible
states are not restricted at all, with the exception of selections
from a pop-up menu. The state can be changed to any atom,
string, or bitmap, manually via FM.CHANGESTATE.

0-11

NWAY

0-12

MENUITEMS

MENU FONT

MENUnTlE

COllEcnON

NWAYPROPS

DESELECT

STATE

INITSTATE

The following Item Properties are relevant to STATE items when
building a Free Menu:

If specified, should be a list of items to g~ in a pop-up menu for
this item. Free Menu will build the menu and save it as the
CHANGESTATE property of the item.

The font of the items in the pop-up menu.

The title of the pop-up menu. The default title is the label of the
STATE item.

[Free Menu Item]

NWA Y items provide a way to collect any number of items
together, in any format within the Free Menu. Only one item
from each Collection can be selected at a time, and that item is
highlighted to indicate this. The following Item Properties are
particular to NWAY items:

An identifier that specifies which NWA Y Collection this item
belongs to.

A property list of information to be associated with this
collection. This property is only noticed in the Free Menu
Description on the first item in a COllEcnON. NWA Y
Collections are formed by creating a number of NWAY items
with the same COllEcnON property. Each NWAY item acts
individually as a Toggle item, and can have its own mouse event
functions. Each NWA Y Collection itself has properties, its state
for instance. After the Free Menu is created, these Collection
properties can be accessed by the macro FM.NWA YPROPS. Note
that NWA Y Collections are different from Free Menu Groups.
There are three NWA Y Collection properties that Free Menu
looks at:

If given, specifies that the Collection can be deselected, yielding
a state in which no item in the Collection is selected. When this
property is set, the Collection can be deselected by selecting any
item in the Collection and pressing the right mouse button.

The current state of the Collection, which is the actual item
selected.

Specifies the initial state of the Collection. The value of this
property is an Item Link Description (see Section 28.7.13, Free
Menu Item Links.)

LYRIC RELEASE NOTES

EDIT

MAXWIDTH

INFINITEWIDTH

LlMITCHARS

ECHOCHAR

LYRIC RELEASE NOTES

APPENDIX O. FREE MENU

[Free Menu Item)

EDIT items are textual items that can be edited. The label for an
EDIT item cannot be a bitmap. When the item is selected an edit
caret appears at that cursor position within the item, allowing
insertion and deletion of characters at that point. If selected
with the right mouse button, the item is cleared before editing
starts. While editing, the left mouse button moves the caret to a
new position within the item. The right mouse button deletes
from the caret to the cursor. CONTROl-W deletes the previous
word. Editing is stopped when another item is selected, when
the user moves the cursor into another TTY window and clicks
the cursor, or when the Free Menu function FM.ENDEDIT is called
(called when the Free Menu is reset, or the window is closed).
The Free Menu editor will time out after about a minute,
returning automatically. Because of the many ways in which
editing can terminate, EDIT items are not allowed to have a
SELECTEDFN, as it is not clear when this function should be
called. Each EDIT item should have an 10 specified, which is used
when getting the state of the Free Menu, since the string being
edited is defined as the state of the item, and thus cannot
distinguish edit items. The following Item Properties are specific
to EDIT items.

Specifies the maximum string width of the item, in bits, after
which input will be ignored. If MAXWIDTH is not specified, the
items becomes infinitely wide and input is never restricted.

This property is set automatically when MAXWIDTH is not
specified. This tells Free Menu that the item has no right end, so
that the item becomes mouse sensitive from its left edge to the
right edge of the window, within the vertical space of the item.

The input characters allowed can be restricted in two ways: If
this item property is a list, it is treated as a list of legal characters;
any character not in the list will be ignored. If it is an atom, it is
treated as the name of a test predicate, which is passed three
arguments, ITEM, WINDOW, and CHARACTER, when each
character is typed. This predicate should return T if the character
is legal, NIL otherwise. The LlMITCHARS function can also call
FM.ENDEDIT to force the editor to terminate, or FM.SKIPNEXT,
to cause the editor to jump to the next edit item i'n the menu.

This item property can be set to any character. This character will
be echoed in the window, regardless of what character is typed.
However the item's label contains the actual string typed. This is
useful for operations like password prompting. If ECHOCHAR is
used, the font of the item must be fixed pitch. Unrestricted EDIT
items should not have other items to their right in the menu, as
they will be replaced. If the item is boxed, input is restricted to
what will fit in the box. Typing off the edge of the window will
cause the window to scroll appropriately. Control characters can
be edited, including the carriage return and line feed, and they
are echoed as a black box. While editing, the Skip/Next key ends
editing the current item, and starts editing the next EDIT item in
the Free Menu.

0-13

APPENDIX D. FREE MENU

NUMBER

NUMBERTYPE

EDITSTART

DISPLAY

28.7.12 Free Menu Item Highlighting

28.7.13 Free Menu Item Links

0-14

[Free Menu Item]

NUMBER items are EDIT items that are restricted to numerals.
The state, of the item is coerced to the the number itself, not a
string of numerals. There is one NUMBER- specific Item Property:

If FLOATP (or FLOAT), then decimals are accepted. Otherwise
only whole numbers can be edited.

[Free Menu Item]

EDITSTART items serve the purpose of starting editing on
another item when they are selected. The associated Edit item is
linked to the EditStart item by an EDIT link (see Free Menu Item
Links below). If the EDITSTART item is selected with the right
mouse button, the Edit item is cleared before editing is started.
Similar to EDIT items, EDITSTART items cannot have a
SELECTEDFN, as it is not clear when the associated editing will
terminate.

[Free Menu Item]

DISPLA Y items serve two purposes. First, they simply provide a
way of putting dummy text in a Free Menu, which does nothing
when selected. The item's label can be changed, though.
Secondly, DISPLAY items can be used as the base for new item
types. The application can create new item types by specifying
DOWNFN, HELDFN, MOVEDFN, and SELECTEDFN for a DISPLAY
item, making it behave as desired.

Each Free Menu Item can specify how it wants to be highlighted.
First of all, if the item does not specify a HIGHLIGHT property,
there are two default highlights. If the item is not boxed, the
label is simply inverted, as in normal menus. If the item is boxed,
it is highlighted in the shade of the box. Alternatively, the value
of the HIGHLIGHT property can be a SHADE, which will be
painted on top of the item when a mouse event occurs on it. Or
the HIGHLIGHT property can be an alternate label, which can be
an atom, string or bitmap. If the highlight label is a different size
than the item label, the formatter will leave enough space for
the larger of the two. In all of these cases, the looks of the
highlighted item are determined when the Free Menu is built,
and a bitmap of the item with these looks is created. This bitmap
is stored on the item's HIGHLIGHT property, and simply displayed
when a mouse event occurs. The value of the highlight property
in the Item Description is copied to the USERDATA list, in case it is
needed later for a label change.

Links between items are useful for grouping items in abstract
ways. In particular, links are used for associating EDITSTART
items with their item to edit, and STATE items with their state
display. The Free Menu Item property LINKS is a property list,
where the value of each Link Name property is a pointer to
another item. In the Item Description, the value of the LINK
property should be a property list as above. The value of each

LYRIC RELEASE NOTES

<10>

«GROUPID> <10»

(GROUP < 10 »

APPENDIX D. FREE MENU

Link Name property is a Link Description. A Link Description can
be one of the following forms:

An 10 of an item in the Free Menu. This is acceptable if items can
be distinguished by 10 alone.

A list whose first element is a GROUPID, and whose second
element is the 10 of an item in that group. This way items with
similar purposes, and thus similar ID's, can be distinguished
across groups.

A list whose first element is the keyword GROUP, and whose
second element is an item 10. This form describes an item with
10, in the same group that this item is in. This way you do not
need to know the GROUPID, just which group it is in.

Then after the entire menu is built, the links are set up, turning
the Link Descriptions into actual pointers to Free Menu Items.
There is no reason why circular Item Links cannot be created,
although such a link would probably not be very useful. If
circular links are created, the Free Menu will not be garbage
collected after it is not longer being used. The application is
responsible for breaking any such links that it creates.

28.7.14 Free Menu Window Properties

FM.PROMPTWINDOW

FM.BACKGROUND

FM.DONTRESHAPE

Specifies the window that Free Menu should use for displaying
the item's messages. If not specified, PROMPTWINDOW is used.

The background shade of the entire Free Menu. This property
can be set automatically by specifying a BACKGROUND
argument to the function FREEMENU. The window border must
be 4 or greater when a Free Menu background is used, due to
the way the Window System handles window borders.

Normally, Free Menu will attempt to use empty space in a
window by pushing items around to fill the space. When a Free
Menu window is reshaped, the items are repositioned in the new
shape. This can be disabled by setting the FM.DONTRESHAPE
wi ndow property.

28.7.15 Free Menu Interface Functions

(FREEMENU DESCRIPTION TITLE BACKGROUND BORDER) [Function]

28.7.16 Accessing Functions

Creates a Free Menu from a Free Menu Description, returning
the window. This function will return quickly unless new display
fonts have to be created.

(FM.GETITEM 10 GROUP WINDOW) [Function]

LYRIC RELEASE NOTES

Gets item 10 in GROUP of the Free Menu in WINDOW. This
function will search the Free Menu for an item whose ID property
matches, or secondly whose LABEL property matches 10. If
GROUP is NIL, then the entire Free Menu is searched. If no
matching item is found, NIL is returned.

0-15

APPENDIX D. FREE MENU

(FM.GETSTATE WINDOW) [Function1

Returns in property list format the 10 and current STATE of every
NWAY Collection and item in the Free Menu. If an item's or
Collection's state is NIL, then it is not included in the list. This
provides an easy way of getting the state of the menu all at once.
If the state of only one item or Collection is needed, the
application can directly access the STATE property of that object
using the Accessing Macros described in Section 28.7.20, Free
Menu Macros. This function can be called when editing is in
progress, in which case it will provide the label of the item being
edited at that point.

28.7.17 Changing Free Menus

0-16

<10>

«GROUPIO> <10»

Many of the following functions operate on Free Menu Items,
and thus take the item as an argument. The ITEM argument to
these functions can be the Free Menu Item itself, or just a
reference to the item. In the second case, FM.GETITEM (see
Section 28.7.16, Accessing Functions) will be used to find the
item in the Free Menu. The reference can be in one of the
following forms:

Specifies the first item in the Free Menu whose 10 or LABEL
property matches < 10 >.

Specifies the item whose 10 or LABEL property matches <10>
within the group specified by <GROUPIO>.

(FM.CHANGELABEL ITEM NEWLABEL WINDOW UPDATEFLG) [Function1

CHANGELABELUPDA TE

Changes an ITEM's label after the Free Menu has been created. It
works for any type of item, and STATE items will remain in their
current state. If the window is open, the item will be redisplayed
with its new appearance. NEWLABEL can be an atom, a string, or
a bitmap (except for EDIT items), and will be restricted in size by
the MAXWIDTH and MAXHEIGHT Item Properties. If these
properties are unspecified, the ITEM will be able to grow to any
size. UPDATEFLG specifies whether or not the regions of the
groups in the menu are recalculated to take into account the
change of size of this item. The application should not change
the label of an EDIT item while it is being edited. The following
Item Property is relevant to changing labels:

Exactly like UPDATEFLG except specified on the item, rather than
as a function paramater.

(FM.CHANGESTATE X NEWSTATE WINDOW) [Function1

Programmatically changes the state of items and NWAY
Collections. X is either an item or a Collection name. For items
NEWSTATE is a state appropriate to the type of the item. For
NWA Y Collections, NEWSTATE should be the desired item in the
Collection, or NIL to deselect. For EDIT and NUMBER items, this
function just does a label change. If the window is open, the
item will be redisplayed.

(FM.RESETSTATE ITEM WINDOW) [Function]

Sets an ITEM back to its initial state.

LYRIC RELEASE NOTES

APPENDIX D. FREE MENU

(FM.RESETMENU WINDOW) [Function]

. Resets every item in the menu back to its initial state.

(FM.RESETSHAPE WINDOW ALWA YSFLG) [Function]

Reshapes the WINDOW to its full extent, leaving the lower-left
corner unmoved. Unless ALWAYSFLG is T, the window will only
be increased in size as a result of resetting the shape.

(FM.RESETGROUPS WINDOW) [Function]

Recalculates the extent of each group in the menu, updating
group boxes and backgrounds appropriately.

(FM.HIGHLIGHTITEM ITEM WINDOW) [Function]

28.7.18 Editor Functions

Programmatically forces an ITEM to be highlighted. This might
be useful for ITEMs which have a direct effect on other ITEMs in
the menu. The ITEM will be highlighted according to its
HIGHLIGHT property, as described in Section 28.7.12, Free Menu
Item Highlighting. This highlight is temporary, and will be lost if
the ITEM is redisplayed, by scrolling for example.

(FM.EDITITEM ITEM WINDOW CLEARFLG) [Function]

Starts editing an EDIT or NUMBER ITEM at the beginning of the
ITEM, as long as the WINDOW is open. This function will most
likely be useful for starting editing of an ITEM that is currently
the null string. If CLEARFLG is set, the ITEM is cleared first.

(FM.SKIPNEXT WINDOW CLEARFLG) [Function]

Causes the editor to jump to the beginning of the next EDIT item
in the Free Menu. If CLEARFLG is set, then the next item will be
cleared first. If there is not another EDIT item in the menu, this
function will simply cause editing to stop. If this function is
called when editing is not in progress, editing will begin on the
first EDIT item in the menu. This function can be called from any
process, and can also be called from inside the editor, in a
LlMITCHARS function.

(FM.ENDEDIT WINDOW WAITFLG) [Function]

(FM.EDITP WINDOW)

28.7.19 Miscellaneous Functions

Stop any editing going on in WINDOW. If WAITFLG is T, then
block until the editor has completely finished. This function can
be called from another process, or from a LlMITCHARS function.

[Function]

If an item is in the process of being edited in the Free Menu
WINDOW, that item is returned. Otherwise, NIL is returned.

(FM.REDISPLA YMENU WINDOW) [Function]

lYRIC RELEASE NOTES

Redisplays the entire Free Menu in its WINDOW, if the WINDOW
is open.

0-17

APPENDIX D. FREE MENU

(FM.REDISPLA YITEM ITEM WINDOW) [Function]

Redisplays a particular Free Menu ITEM in its WINDOW, if the
WINDOW is open.

(FM.SHADE X SHADE WINDOW) [Function]

X can be an item, or a group 10. SHADE is painted on top of the
item or group. Note that this is a temporary operation, and will
be undone by redisplaying. For more permanent shading, the
application may be able to add a REDEDISPLA YFN and SCROLLFN
for the window as necessary to update the shading.

(FM.WHICHITEM WINDOW POSorX y) [Function]

Locates and identifies an item from its known location within the
WINDOW. If WINDOW is NIL, (WHICHW) is used, and if POSorX is
NIL, the current cursor location is used.

(FM.TOPGROUPID WINDOW) [Function]

Return the 10 of the top group of this Free Menu.

28.7.20 Free Menu Macros

0-18

These Accessing Macros are provided to allow the application to
get and set information in the Free Menu data structures. They
are implemented as macros so that the operation will compile
into the actual access form, rather than figuring that out at run
time.

(FM.lTEMPROP ITEM PROP (VALUE}) [Macro]

Similar to WINDOWPROP, this macro provides an easy access to
the fields of a Free Menu Item. The function FM.GEnTEM gets
the ITEM, described in Section 28.7.16, Accessing Function.
VALUE is optional, and if not given, the current value of the
PROP property will be returned. If VALUE is given, it will be used
as the new value for that PROP, and the old value will be
returned. When a call to FM.lTEMPROP is compiled, if the PROP
is known (quoted in the calling form), the macro figures out
what field to access, and the appropriate Data Type access form
is compiled. However, if the PROP is not known at compile time,
the function FM.ITEMPROP, which goes through the necessary
property selection at run time, is compiled. The TYPE and
USERDATA properties of a Free Menu Item are Read Only, and
an error will result from trying to change the value of one of
these properties.

(FM.GROUPPROP WINDOW GROUP PROP (VALUE)) [Macro]

Provides access to the Group Properties set up in the PROPS list
for each group in the Free Menu Description. GROUP specifies
the 10 of the desired group, and PROP the name of the desired
property. If VALUE is specified, it will become the new value of
the property, and the old value will be returned. Otherwise, the
current value is returned.

LYRIC RELEASE NOTES

APPENDIX D. FREE MENU

(FM.MENUPROP WINDOW PROP (VALUE}) [Macro]

Provides access to the group properties of the top-most group in
the Free Menu, that is to say, the entire menu. This provides an
easy way for the application to attach properties to the menu as
a whole, as well as access the Group Properties for the entire
menu.

(FM.NWAYPROP WINDOW COLLECT/ON PROP (VALUE}) [Macro]

LYRIC RELEASE NOTES

This macro works just like FM.GROUPPROP, except it provides
access to the NWay Collections.

0-19

APPENDIX D. FREE MENU

[This page intentionally left blank)

0-20 LYRIC RELEASE NOTES

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20

