
(ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 1

For Xerox Internal Use Only -- October 28, 1977

Trident disk software October 21, 1977 1

Software and Utilities for Trident Disks:
Tfs, Tfu, Triex

1. Introduction

This document describes Bcpl-based software for operating any of the
family of Trident disk drives attached to an Alto using a "Trident
controller card" (the software presently deals with the T-80 and T-300
models). Hardware and diagnostic information can be found in the
document "Trident disk for the Alto" (on (ALTODOCS)TRIDENT.EARS). by
Roger Bates.

The software documentation is
"how-to" section describing
operating the Trident; (2) a
programs. Tfu and Triex; and
package in more detail. There

divided into three parts: (1) a brief
the software package available for
section describing two useful utility
(3) a section describing the software

is a short revision history at the end.

The Tfs package and utilities all assume that the disk is to be
formatted with 9 sectors per track, 1024 data words per sector. Thus a
T-80 disk has a capacity (815 tracks, 5 surfaces, 9 sectors, 1024 words
per sector) of 36,675 pages or 37,555,200 words. A T-300 (19 surfaces
rather than 5) has a capacity of 139,365 pages or 142,709,760 words;
however, due to the restriction of virtual disk addresses to 16 bits, a
single file system may utilize only about 47 percent of this capacity,
and it is necessary to construct multiple file systems in order to make
use of the entire disk.

Because of bandwidth limitations, it is unwise to operate the Trident
disk while the Alto display is on. Although the Tfs package will save
the display state, turn it off, run the disk, and restore the display
for every transfer, the user may prefer to turn the display off
himself. The Tfs management of the display causes the screen to flash
objectionably whenever frequent calls to Tfs are underway.

2. Trident File System (Tfs) software package

The software for operating the Trident disk is contained in
(Alto)Tfs.Dm, and consists of the following relocatable files:
Tfslnit.Br, TfsBase.Br, TfsA.Br, TfsWrite.Br TfsCreate.Br, TfsClose.Br,
TfsDDMgr.Br, TfsNewDisk.Br, TfsSwat.Br. and TriConMc.Br. The
definitions file Tfs.D is also included. The LoadRam.Br file, formerly
included as part of the Tfs, is now available as a separate package.

(ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 1·: 1

2.1. Initializing the microcode

Operating the Trident requires special microcode that must be loaded
into the RAM before disk activity can start. The procedure LoadRam
will load the RAM from a table loaded into your program (it is actually
tL

(ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 2

For Xerox Internal Use Only -- October 28, 1977

Trident disk software October 21, 1977 2

part of TriConMc.Br). It will then "boot" the Alto in order to start
the appropriate micro-tasks in the RAM. (This booting process is
"silent" -- it does not re-load Alto memory from the file Sys.600t, but
instead lets your program continue.) The standard way to call LoadRam
to load the Trident disk microcode is:

external DiskRamImage
external LoadRam

let result=LoadRam(DiskRamlmage, true) IILoad and boot
if result ls 0 then

[
~Js("The Alto has no RAM or Ethernet board.")
Ws(" Cannot operate Trident")
finish
]

After LoadRam has returned successfully, the code of LoadRam and
TriConMc may be overlaid with data -- they are no longer needed.

When exiting a program that has micro-tasks active in the RAM, it is
helpful to "silently" boot the Alto so that all micro-tasks are
returned to the ROM. If this is not done, subsequent use of the RAM
may cause some running micro-task to run awry. To aChieve the "silent
boot," simply call the procedure TFSSilentBoot() at 'finish' time or as
part of a 'user finish procedure'.

For further information, consult the LoadRam package documentation.

2.2. Initializing the Trident drive

Once the RAM has been loaded, the Trident disk can be initialized. The
procedure TFSlnit will do this, provided that a legal file structure
has previously been established on the drive (see Tfu Erase, below).
The procedure returns ·a "disk object," a handle which can be used to
invoke all the disk routines. This disk object (or "disk" for short)
can be passed to various Alto Operating System procedures in order to
open streams on Trident disk files, delete Trident disk files, etc.

tridentDisk = TFSInit(zone, allocate [false], driveNumber [0], ddMgr
[0], freshDisk [false])

zone

allocate

You must provide a free-storage pool from which memory for
the disk object and possibly for a buffer window on the
disk bit table can be seized. The zone must obey the
normal conventions (see Alto Operating System Manual);
zones created by InitializeZone are fine.

This flag is true if you wish the machinery for allocating
or de-allocating disk space enabled. If it is enabled, a
small DDMgr object and a 1024-word buffer will be extracted
from the zone in order to buffer the bit table (unless you
supply a ddMgr argument, described below).

<ALTODOCS>TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 2:1

driveNumber This argument, which defaults to 0, specifies the number of
the Trident disk drive "being initialized. If the drive is
a T-300, the left-hand byte specifies the number of the
file system to be accessed on that drive, in the range a to

tL

<ALTODOCS>TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 3

For Xerox Internal Use Only -- October 2B, 1977

Trident disk software October 21, 1977 3

ddMgr

freshDisk

2. (For further information, consult the section entitled
'Disk Format'.)

This argument, which defaults to 0, supplies a handle on a
'DiskDescriptor Manager' (DDMgr) object, whose
responsibility it is to manage pages of the DiskDescriptor
(bit table), which, on the Trident, must be paged into and
out of memory due to its considerable size. If this
argument is defaulted, a separate DDMgr will be created
upon each call to TFSInit, at a cost of a little over 1024
words. If you intend to have multiple Trident drives open
simultaneously, you may conserve memory by first issuing
the call 'ddMgr = TFSCreateDDMgr(zone), and then passing
the returned pointer as the ddMgr argument in each call to
TFSlnit, thereby permitting the single ddMgr to be shared
among all drives. (This argument is ignored unless the
allocate argument is true.)

Normally, TFSInit attempts to open and read in the
DiskDescriptor file in order to obtain information about
the file system. However, if freshDisk is true, this
operation is inhibited and the corresponding portions of
the disk object are set up with default values. This
operation is essential for creating a virgin file system.

tridentDisk The procedure returns
cannot be operated
reasons are:

a disk object, or 0 if
for some reason. The

the Trident
most likely

1. No Trident disk controller plugged into the Alto.

2. No such disk unit, or disk unit not on-line.

3. Can't find SysDir, can't open
DiskDescriptor format is incompatible.
happen if freshDisk is true.)

DiskDescriptor, or
(These errors can't

After TFSInit has been executed, the code can be overlaid. as it is not
used for normal disk operation.

2.3. Closing the Trident disk

When all operations on the disk are completed, the TFSC10se procedure
will insure that any important state saved in Alto memory is correctly
written on the disk. This step can be omitted if the 'allocate'
argument to TFSInit was false (assuming you don't mind the loss of the
storage that was extracted from 'zone' by TFSlnit).

TFSClose(tridentDisk. dontFree [false])

The second argument is optional (default=false), and if true will not
permit the DiskDescriptor Manager (DDMgr) to be destroyed. This option
is useful in conjunction with the 'ddMgr' argumerit to TFSlnit.
tL

(ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 4

For Xerox Internal Use Only -- October 28, 1977

Trident disk software October 21, 1977 4

2.4. Example

Following is an example that uses the Trident disk system and
demonstrates the procedures described above. Note that the calls on
operating system disk stream routines all pass a private zone to use
for stream structures, rather than the default sysZone. The reason is
that streams on Trident disks require large buffers (1024 words) which
quickly exhaust the available space in sysZone. In addition, the
stream routines will consume more stack space when operating the
Trident disk than they do when operating the standard Alto disk.

Since the Alto as does not know about Trident disks, a call to Swat
will not properly wait for all Trident transfers to complete, with
consequent undefined results. This problem is easily remedied through
use of an assembly-language Swat context-switching procedure TFSSwat,
which is included as part of the TFS package. The example shows how it
is set up.

IIExamp1e.bcpl TFS Example
IIBldr Example TfsBase TfsA TfsWrite TfsCreate TfsClose TfsDDMgr
II TfsSwat TfsInit LoadRam TriConMc

get "streams.d"

external [
TFSlnit
TFSC10se
TFSS 11 ent800t
LoadRam
DiskRamImage

OpenFi1e
Closes
Puts
De1eteFile

Initia1izeZone
SetEndCode
TFSSwatContextProc
1vUserFinishProc
lvSwatContextProc
]

static [savedUFP; savedSCP; TFSdisk 0]

let Trylt() be
[

let driveNumber=O
let zonevec= vee 3000
let TFSzone = Initia1izeZone(zonevec, 3000)

IIInitialize the RAM:
let res=LoadRam(DiskRamImage, true)
if res ls 0 then [Ws("Cannot load the RAM."); finish]

<ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM

//Set up to cleanly finish or call swat
savedUFP = @lvUserFinishProc
@lvUserFinishProc = MyFinish

tL

savedSCP = @lvSwatContextProc
@lvSwatContextProc = TFSSwatContextProc

PAGE 4:1

<ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM

For Xerox Internal Use Only -- October 28, 1977

Trident disk software October 21, 1977

IIInitialize the disk:
TFSdisk = TFSlnit(TFSzone, true, driveNumber)
if TFSdisk eq 0 then

[\vs("Cannot operate Trident disk"); finish]

IIReclaim space used by initialization code:

PAGE 5·

SetEndCode(TFSInit) IIOver1ay TFSinit, LoadRam, TriConMc

IINow we are ready to operate the disk:

]

De1eteFi1e("Old.Bad", 0, 0, TFSzone, 0, TFSdisk)

let s=OpenFile("New.Good", ksTypeReadWrite, 0,0,0,0,
TFSzone, 0, TFSdisk)

for i=1 to 1000 do
for j=l to 1000 do Puts(s, Sa) IIWrite a million bytes!

Closes(s)

finish

and MyFinish() be
[

]

if TFSdisk ne a then TFSClose(TFSdisk)
@lvUserFinishProc = savedUFP
@lvSwatContextProc = savedSCP
TFSSilentBoot()

3. The Tfu and Triex utilities

3.1. Tfu

5

The Tfu utility (saved on <Alto)Tfu.Run) is used to initialize a
Trident pack with a virgin file system and to perform various file
copying, deleting, directory listing operations. Commands are given to
Tfu on the command line: immediately following the word "Tfu" is a sub
command name (only enough characters of a sub-command are needed in
order to distinguish it from other sub-commands), followed by optional
arguments. Several subcommands may appear on one command line,
s epa rat e d by ve r tic alb a r s . T h us" T F U 0 r i vel I Era s e ,II w ill era s e
drive 1. There must be a space on each side of the vertical bar.

In what follows, an "Xfile" argument is a filename, perhaps preceded by
a string that specifies which disk is to be used:

s:name.extension
tn:name.extension
name.extension

use standard Alto system disk
use Trident drive n (n=O to 7)
use default disk (Trident)

The "default disk" is always a Trident drive; the identity of the drive
is set with the Drive command.

<ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM

TFU DRIVE driveNumber
tL

PAGE 5:1

(ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 6

For Xerox Internal Use Only -- October 28, 1977

Trident disk software October 21, 1977 6

This command sets the default Trident drive number to use for the
remainder of the command line. The default drive is effectively
an 'argument' to the ERASE, DIRECTORY, CONVERT, and BAD commands.
(On a T-300, file systems 0, I, and 2 are specified as 'x',
'40x', and '100x', where 'x' is the actual unit number.)

TFU ERASE [tracks]

This command re-initia1izes the default Trident drive, after
asking you to confirm your destructive intentions. The tracks
argument specifies how many tracks of the drive are to be
included in the file system; it defaults to the maximum possible.
If smaller numbers are used, the initialization is
correspondingly faster. In any case, tracks beyond the one
specified are available for use outside the confines of the file
system. (Note that one "track" is 45 pages; this corresponds to
one cylinder on a T-80 and to nothing in particular on a T-300.)

TFU COPY Xfile ~ Xfile

This command copies a file in the direction of the arrow. The
destination file may be optionally followed by the switch /C, in
which case (provided it is a Trident disk file), the file will be
allocated on the disk at consecutive disk addresses. (Note: More
precisely, an attempt will be made to perform such an allocation.
If the attempt fails, you will sometimes get an error message.
The best way to verify that a file is contiguous is to use the
"address" command, below.)

TFU CREATEFILE Xfi1e pages

This command creates a contiguous file named Xfi1e with length
"pages."

TFU DELETE Xfile

This command deletes the given file.

TFU DIRECTORY [Xfile]

This command lists the directory of the default Trident drive on
the file Xfile; if Xfile is omitted, each entry will be typed on
the display. When the display fills up or the listing is
finished, Tfu waits for you to type any character before
proceeding. A somewhat more verbose listing can be achieved with
TFU OIR/V.

TFU BAD virtualOA

This command marks a given virtual disk address (on the default
drive) as "used," so that the file system will not endeavor to
assign this page to a new file. This command has become obsolete
and its use is not recommended because it does not record the
address in all the appropriate places; it merely marks it in the
bit table. There will shortly be available a version of the
Triex program that automatically records bad pages that it
discovers.

<ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM

TFU ADDRESS Xfile
tL

PAGE 6:1

<ALTOOOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM

For Xerox Internal Use Only -- October 28, 1977

Trident disk software October 21, 1977

This command reads the entire file and prints a list
of virtual disk addresses of the file pages.
character will proceed to the next output line.

TFU CONVERT

PAGE 7

7

(in octal)
Typing any

An incompatible change in the format of OiskDescriptor was made
in the Tfs release of July 24, 1977. The current Tfs software
will refuse to access Trident disks written in the old format
(specifically, TFSInit will return zero). The TFU CONVERT
command reformats the DiskDescriptor to conform to current
conventions (it is a no-op if applied to a disk that has already
been converted). Once you have converted all your Trident disks,
you should take care to get rid of all programs loaded with the
old Tfs, since the old Tfs did NOT check for version
comp at i b 11 i ty .

TFU EXERCISE passes drive drive drive ...

This command embarks on a lengthy "exercise" procedure; it is
repeated 'passes' times (default=10), and uses the disk drives
listed after 'passes' (if none are specified, all drives that are
on-line are used). It operates by making a series of files
(test.001, test.002 etc.) on the disk packs, and performing
various copying, deleting, writing and positioning operations.
The files are deleted when the exercise finishes. It is not
essential that the packs be fully erased initially; the procedure
for building test files will try to fill up the disk, just short
of overflowing. The test takes 20 to 30 minutes per full pack
per pass.

One or more of the following global switches may be specified
(i.e., a command of the form TFU/switch EXER ...):

IW Use a systematic data pattern when writing files, rather than
arbitrary garbage.

IC Carefully check the data read from the disk (implies IW).
Use of this switch makes the test run considerably slower
than normal.

10 Leave the display on during Trident disk transfers. This
causes data late errors to occur and thereby exercises the
error recovery logic.

IE Turn the Ethernet on during Trident disk transfers, with
results 'similar to 10.

<ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM

3.2. Triex

The documentation in this section is almost entirely
of wisdom from Roger Bates will be inserted here
available.

PAGE 7:1

o b sol e t e . \~ 0 r' d s
when they become

The Triex "Trident disk exerciser" program can be found on
<Alto>Triex.Run. This program is designed for initializing and testing
new disk packs before using with Tfu and Trs. The program has
essentially three operations:
tL

(ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 8·

For Xerox Internal Use Only -- October 28, 1977

Trident disk software October 21, 1977 8

1) Initialize headers and labels for use by Tfu.

2) Writing and reading of random data over the entire disk for
locating and recording of sectors on the disk pack which have
"bad" spots on them.

3) Writing of headers when you think just the header has been
clobbered.

The program is run by typing commands as appropriate once the program
is running. An example of the sequence for a new disk pack is:

TRIEX

Header initialization (yes) cr
Data testing

number of repeats (10) cr

Quit (yes) cr

GEARS packerr

This sequence will first write headers and labels over the entire disk
pack and then read them back to verify the headers. Next, multiple
passes are made over the disk where random data is written on the
entire disk and read back. Any disk errors are stored in the table and
written into the file on the standard Alto disk. A record of the pack
errors can be saved by quitting Triex and printing "packerr." The bad
spots found while running Triex can be "mapped out" with the "Tfu Bad"
command, using the virtual disk address reported in the file packerr.
A record of bad spots should be kept for future reference so they can
be re-mapped out should it be necessary to rebuild the entire file
system with "Tfu Erase."

Each pass over the entire disk takes 90 seconds for writing and 90
seconds for reading. In the above example, Header initialization takes
3 minutes and 10 passes of Data testing takes 30 minutes.

Whenever Triex is running the disk, the screen must be turned off due
to bandwidth considerations. In this mode, the cursor displays a "W"
while writing and an "R" during reading; the vertical position
represents the cylinder address being tested; and the horizontal
position indicates the proportion of passes toward completion. Any
operation can be suspended by typing any key. When this is done, error
messages and status information will become visible. The particular
operation can be terminated or continued by typing "N" or any other
key.

(ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 8:1

4. The Tfs software package in more detail

If programmers wish to interface the the Trident disk at levels lower
than Operating System streams, the Tfs package provides an additional
interface. The "disk" object created by TFSInit has a number of
abstract operations defined on it, which the Tfs package implements.
Documentation for these operations can be found in the Alto Operating
S y s t em r·t a n u ali nth e sec t ion 1 abe 1 e d " Dis k san d B f s ." The cat a log 0 f
available procedures is:
tL

<ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM

For Xerox Internal Use Only -- October 28, 1977

Trident disk software October 21, 1977

In TfsBase.Br and TfsA.Br:
ActOnDiskPages(disk, CAs, DAs,)
Rea1DiskDA(disk, vda,)
VirtualDiskDA(disk,)

In TfsWrite.Br:
WriteDiskPages(disk, CAs, DAs,)
AssignDiskPage(disk, vda)*

In TfsCreate.Br
CreateDiskFile(disk, name,)*
DeleteDiskPages(disk, CA,)*
ReleaseDiskPage(disk, vda)*

PAGE 9

9

The items with *'s following may be invoked only if the disk object was
created with the 'allocate' argument set to true. WriteDiskPages may
be invoked even if 'allocate' is false, provided it never allocates new
disk space. It should be noted that the standard Alto Streams package
invokes WriteDiskPages even for files opened for reading only, and that
TFSlnit uses Streams to read in the DiskDescriptor. Hence it is
necessary that all of the Tfs modules (TfsBase, TfsA, TfsWrite,
TfsCreate, and TfsDDMgr) be loaded in order to avoid undefined
'external' references. However, after initialization is complete, the
space occupied by TfsCreate and TfsDDMgr may be reclaimed if you do not
intend to allocate or delete pages, and TfsWrite may be discarded if
you are not using streams but rather are calling ActOnDiskPages
directly.

The TfsWrite and TfsCreate modules require that TfsDDMgr.Br (or some
equivalent) be loaded. This module provides the standard primitives
necessary for managing the DiskDescriptor. The DDMgr is an 'object',
so it may be replaced by one of your own devising so long as it
provides equivalent operations. An example of this would be to manage
pages of the DiskDescriptor as part of a more general virtual memory
mechanism (perhaps through use of the Alto VMem package). A complete
description of the required DDMgr operations may be found as comments
at the beginning of TfsDDMgr.Bcpl.

In addition to the standard "actions" defined in Disks.d, Tfs permits
the following. These actions are defined in Tfs.d and are available
only on Trident disks.

DCreadLnD Read header, read label, no data.

DCreadnD Check header, check label, no data.

DCwriteLnD Check header, write label, no data.

These actions neither read nor write the data record and therefore do
not require a buffer to be provided.

(ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE g:l

CreateDiskFile has a special feature for operating the Trident disks -
an optional seventh argument. If this argument (pageBuf) is present.
it is assumed to point to a 1024-word buffer that will be used to
create the leader page for the file. This feature may be used to save
stack space in CreateDisk file and/or to write interesting data into
the portion of the leader page .not used by the file system (only the
first 256 words are used by the file system; the remainder has no
standard interpretation).
tL

(ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 10

For Xerox Internal Use Only -- October 28, 1977

Trident disk software October 21, 1977 10

VirtualDiskDA returns fillInDA as
address that is either illegal or
system.

the virtual address for a
outside the confines of

real disk
the file

The procedures for creating and destroying the disk object, TFSInit and
TFSClose, were explained above. The procedure
TFSWriteDiskDescriptor(disk) will write out onto the disk all vital
information about the disk that is presently saved in memory. If you
write programs that run the disk for extremely long periods of time, it
is wise to write the disk descriptor occasionally. The only automatic
call on TFSWriteDiskDescriptor is performed by TFSClose.

TfsInit.Br contains a procedure TFSDiskModel(disk) that
model number (80 or 300) of the drive referenced by the
This is useful in deciding whether to open a second or
system on a T-300.

returns the
disk handle.

third file

A lower level of access is permitted with the routines
TFSInitia1izeCbStorage, TFSGetCb, and TFSDoDiskCommand, analogous to
the Bfs routines described in the Operating System Manual. Users of
these routines may wish to retrieve source files for the Tfs package
and examine the definitions in Tfs.D and the actual disk operation in
some detail. Sources are on <AltoSource>TfsSources.Dm.

4.1. TFSNewDisk

The TFSNewDisk procedure, defined in TfsNewDisk.Br, "erases" a disk
(formatting it and making all its pages appear free) and creates a
virgin Alto file system (SysDir and DiskDescriptor). It is called by:

success = TFSNewDisk(zone, driveNumber [OJ, diskSize [defau1tJ)

The zone passed to TFSNewDisk must be capable of supplying about 3500
words of storage. If the drive is a T-300, the driveNumber may include
a file system number (0 to 2) in its left byte, as is the case for
TFSlnit. The diskSize argument is the number of disk pages to be
included in the file system: it defaults to the maximum possible, which
is all of a T-80 or a little less than half of a T-300. TFSNewDisk
returns true if successful.

4.2. DiskFindHole

The procedure DiskFindHole, in DiskFindHole.Br, can be used to locate a
"hole" of available space in the disk bit table. The call:

virtualDA=DiskFindHo1e(disk, nPages)

will attempt to locate a contiguous hole nPages long. If it fails, the
procedure returns -1, otherwise the virtual disk address of the first
page of the hole.

(ALTODOCS>TFS.TTY;9 FRI 28-0CT-77 11:35AM 'PA~E 10: 1

In order to create a contiguous file, it is first necessary to create
the minimal file with a leader page at the given disk address and then
to use Operating System or Tfs routines to extend the file properly.
The first step is achieved by calling TFSSetStartingVDA(disk, vda),
where 'vda' is the desired disk address (i.e., tile result returned by
DiskFindHole). This value will be used to bias the selection of an
l'L

<ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 11

For Xerox Internal Use Only -- October 28, 1977

Trident disk software October 21, 1977 11

initial disk address for the leader page. Once the file is created, it
is wise to extend it to its final length immediately, as other disk
allocations might encroach on the "hole" that was located.

For example, if we are using the Operating System, we might proceed as
follows:

let nPages=433 IINumber of data pages needed.
let vda=DiskFindHo1e(TFSdisk, nPages+2)

11(+2= 1 for leader, 1 for last page)
if vda eq -1 then [~Js("Cannot find a hole big enough")]
TFSSetStartingVDA(TFSdisk, vda)

1 et s =Open File ("New. Can t i guou s" , ksTypeWr i teOn 1 y ,0, ve rNew, a , 0 ,0,
TFSzone, 0, TFSdisk)

PositionPage(s, nPages) IIMake the file the right length
Closes(s)

5. File structure on the Trident disk

The file structure built on the Trident disk by Tfs (Trident File
System) is as exact a copy of the Alto file structure built Bfs (Basic
File System) as is possible. Certain exceptions are present due to
hardware and microcode differences. The Alto Operating System
Reference Manual should be consulted for all file formats and internal
information not presented here.

5.1. Disk Format

The Trident disk unit and pack, as it comes from Calcomp, is set up to
run with the following parameters:

815 number of cylinders:
number of surfaces: 5 (T-80), 19 (T-300)

Triex will format each surface in the standard Tfs format:

number of sectors per track: 9
header words per sector: 2
label words per sector: 10
data words per sector: 1024

Thus, a T-80 disk will have 9*5*815 = 36,675
words. Sector a will not be used by Tfs. All
available to the file system.

sectors 37,555,200
but sector a will be

Ordinarily, Tfs utilizes only the first 383 cylinders (= 65,493 sectors
= 67,064,032 words) of a T-300 disk. This is the largest integral
number of cylinders that can be addressed using a l6-bit virtual disk
address. The 16-bit virtual address limitation is deeply embedded in
all existing higher-level Alto file system software, so changing the
Tfs interface to permit a larger virtual address space would be
impractical.

(ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 11:1

Instead, Tfs permits one to obtain another, entirely independent disk
tL

(ALTODOCS>TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 12

For Xerox Internal Use Only -- October 28, 1977

Trident disk software October 21, 1977 12

object for referencing the second 383 cylinders of the same T-300,
t~ereby permitting a separate, self-contained file system to be
constructed. This is done by passing a '1' in the left byte of the
'driveNumber' argument to TFSInit or TFSNewDisk (that is, drive '#400'
refers to the second file system on a T-300 pack mounted on drive 0).
A third file system (number '2', drive '#1000') may also be
constructed, but it contains only 49 cylinders (= 8379 pages, only 6
percent of the disk's total capacity), so doing so is probably not
worthwhile.

5.2. Disk Header and Label

On the Trident, a real disk address requires two words to express,
rather than the single word on the Diablo 31. Also, microcode
considerations gave rise to a reordering of the entries in the Label.
The result is that both the header and label formats are different for
the Trident. The Trident format follows. If you are interested in
this level of detail, the file Tfs.d (contained within (A1to)Tfs.dm)
should be consulted.

II disk header
structure DH:

[
track word
head byte
sector byte
]

II disk label
structure DL:

[
fileid word lFID
packID word
numChars word
pageNumber word
previous @DH
next @DH
]
manifest 1DL size DL/16

5.3. Disk Descriptor

Every valid Tfs disk has on it two files which must contain the state
information necessary to maintain the integrity of the file system.
The Trs system directory, "SysDir.", is identical in format and purpose
with its Bfs counterpart. However the Tfs disk descriptor file,
"DiskDescriptor.", while identical in purpose, is formatted differently
to allow easy manipulation of the bit table (which, for the Trident,
has to be paged in and out of memory). This difference in format
should not be evident to even low-level Trident users (unless you write
your own DDMgr), but is mentioned here for completeness.

<ALTODOCS)TFS.TTY;9

5.4. Bad Page Table

Tfs and (soon) Triex
of recording -2's in
tL

FRI 28-0CT-77 11:35AM PAGE 12:1

observe the standard Alto file system convention
the labels of all known bad pages. However, if

<ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM PAGE 13

For Xerox Internal Use Only -- October 28, 1977

Trident disk software October 21, 1977 13

this were the only location of such information, "erasing" a disk (to
create a virgin file system) would require two passes over the entire
disk: one to collect the addresses of all known bad pages and one to
mark all remaining pages deleted. This would require an excessive
amount of time, particularly on a T-300.

A duplicate table of known bad pages is therefore recorded on
page zero (= cylinder 0, head 0, sector 0) of the disk. This
not available to the file system for other reasons having to
end-of-file detection. The format of the table is given by
structure, which is defined in Tfs.d. Note that the entries
disk addresses and can therefore refer to any page on
regardless of whether or not such a page is accessible through
system. (A T-300 has only one bad page table, even if it
several file systems.)

physical
page is
do with
the BPL

are REAL
the disk
the file
contains

The Triex program is responsible for building the bad page table when a
disk pack is tested. The TFSNewDisk procedure (called by Tfu Erase) is
careful not to clobber this information but rather to propagate it to
the other places where it is needed (namely, the disk bit table and the
labels of the bad pages themselves). As a result, the bad page
information, once initialized, will survive across all normal
operations on the disk, including "erase" operations.

There does not presently exist any facility for manually appending to
this list when new bad pages are discovered. Experience to date with
the Trident disks (which provide correction for error bursts of up to
11 bits in length) has shown that such a facility is probably not
needed. Thorough testing of disks (using Triex) is recommended before
putting them into regular use, however.

6. Revision History

July 24, 1977

Incompatibilities:

The format of DiskDescriptor has changed. The new Tfs cannot access
old disks or vice versa. See description under "TFU CONVERT".

There is now another file, TfsA.Br, that is logically part of
TfsBase.Br and must be loaded along with it. It contains assembly
language code formerly included as "tables" in TfsBase.Br.

New Features:

Partial support for T-300 disks.

Conforms to new conventions for maintaining addresses of known bad
pages.

TFSInit checks for valid SysDir leader page and DiskDescriptor version.

Count of bit table discrepancies added to DiskDescriptor.
pages falsely claimed to be free in the bit table.)

(These are

(ALTODOCS)TFS.TTY;9 FRI 28-0CT-77 11:35AM

VirtualDiskDA returns filllnDA for illegal real disk addresses.
tL

PAGE 13:1

(ALTODOCS>TFS.TTY;9 FRI 28-0CT-77 11:35AM . PAGE 14

For Xerox Internal Use Only -- October 28, 1977

Trident disk software October 21, 1977 14

Additional Trident-specific disk actions.

Tfs is now entirely reentrant, so it is safe for the Idle() procedure
to give control to another process that in turn calls Tfs procedures.

October 21, 1977

Incompatibilities:

The former TfsWrite module has been broken into four pieces: TfsWrite,
TfsCreate, TfsClose, and TfsDDMgr. In most applications, all four must
be loaded.

The 'sharedBT' argument to TFSInit has been replaced
argument. The mechanism for sharing a bit table buffer
drives has been entirely changed. (Programs that omit
are unaffected by the change.)

by a 'ddMgr'
among multiple
this argument

The TFSCreateVDA static has been removed. In its place is a new
procedure TFSSetStartingVDA(disk, vda) that serves the same purpose.

The syntax of the 'Tfu Exercise' command has been changed. It is now
'Tfu Exercise <passes> <list of drives>', and <list of drives> defaults
to all drives that are on-line.

New features:

Complete support for T-300 disks. In conjunction with this, the
TFSDiskModel procedure has been added.

It is now possible for DiskDescriptor pages to be managed externally
(perhaps through some sort of virtual memory mechanism) by use of a
user-defined 'DiskDescriptor Manager' object.

TFSSilentBoot procedure added.
tL

