
To

From

Subject

XERO)(.

Inter-Office 1Y1emoranduflI

Cyprians

Tesler, Merry, Sproull,
Lampson, Ingalls

Font Format

Date January 29) 1976

location Palo Alto

.Organization PARe

This memo explains how we arrived at a font format that is twice as compact as .A L format and is
easy to use with l3itI3lt.

Backgroufl{}

Everybody who ever tried to make the Alto do graphics wondered why there was .no BitBlt, so now
there is one, and it is wonderful for moving rectangles around the screen, making gray boxes, and
painting. But some of us have been less than delighted with its use for "scan conversion ll of
characters. This has been a surprise, because we always thought of BitBlt as a way of making
character display easier.

The Tnh!enu Scheme

Our first idea long ago was to have something like the 8 character wide by 16 character high
Tableau of the Smalltalk font editor. a bitmap tiled with the characters of a font. \-Vith ascii 0
placed in the upper left corner, one can easily find the upper-left-origin source rectangle of any
character by:

source x = fontmaxwidth * (ascii & 7)
source·y = fonthcight :I< (ascii rshift 3)
source bcn (base core add ress) = tableau
source bmw (bit map width) = fontmaxwidth lshift 3

<----
<==

The destination rectangle to display the character at (x,baseline) is:

dest width = widthtable ! ascii
dest height = fontheight .
dE;st x = left .
dest y = baseline + fontascent
dest bea = displayBitMapAddrcss
dest bmw = disfJlayBitiY1ap\Vidth\Vo~ds

<==

<==

On ly the fOll r values marked by < == need to be computed for every character ina ftlll of the Same

fonl and baseline .. Note that it is unnecessary to pre--clcar the space that the charHctcrs will occupy,
as long as spaces and lcacli ng arc expl ici tJy cleared.

\Vhcn it came around to· designing the font format, we noted some c1isndvantages of this simple
scheme.

The tableau has wasted white space ~\bove and below short characters ancl next to narrow

2

characters.

Unnecessary time is taken to "Bit" the \vhite space (unless it is lIsed as a feature to pre-clear).

Kerned characters like f require special handling.

The Offset/ Align Scheme

To remedy these difficulties, .we adopted the following cousin of AL format. Each character has its
own bitmap in which white space on all sides is suppressed, and three extra words for each
character help to determine the display parameters as follows: .

source x :: 0
source y :: 0

. source bca (base core address) :: glyphtable+glyphtabJe!ascii
source bmw (bit map width) :: bca> >bwcount

dest width:: widthtablc ! ascii
dest height = bea> >scount
dest x :: left + bca»batign + bca»fontboffset
dest y :: (baseline-fontsoffset) - bea> >salign - height
dest bea :: displayBitMapAddress
dest bmw:: displayBitMapWidthWords

(----
(----
(----
(----
(----
(----

Six values instead of four are computed for every character, and they are a little harder to compute.
but it seems a small price to pay for a more compact font, faster scan conversion after pre-clearing,
and uniform specification of kerned and unkerned characters. .

Disappointment

As it has turned out, the code to implement this scheme is messy and time-consuming. A couple.of
us started getting that depressed feel ing last acqui red after disi Ilusion ment with the "two-array" tree
representation last month. The way out last time was to do some calculations of total space
requirements, which exploded the myth fostered by a worst case analysis done last Spring, and to
think of some ways around the algorithmic shortcomings. Let's do that again.

If the maximum and average widths and heights in a 96-character font are Wmax, Wavg, Hmax,
and Havg, and wds(x)=(x+IS)/16, then the space in words taken by each format is theoretically:

AL:
Offset/align:
Tableau:

96*Havg*wds(Wavg) + 448
96*Havg*wds(Wavg) + 288 + widthtable
6*Hmax*\Vmax + widthtable

For Helvetica-IO, Wavg::Havg::7, \Vmax=Hmax=12, wds(\Vavg)=l. the width table can bo pack~d into
24 words, and the theoretical space requirements are:

AL: 96*7*1+448 ::
Offset/align: 96*7*1+288+24 ::
Tableau: 6*12* 12+24 ::

1120 (actual figure is 1147)
984 (actual. figure is 1029)
8 888

This represents a saving of 13%. It wins because the glyph/align format wastes more than half of
every 16-bit word for the average 7-wide character. For fonts closer to 16 dots wide, the saving
disappears; thus, Helvetica-I4 withWavg::Havg=9, \Vmax=Hmax= 16, would require:

A L: 96*9*1+448 ::

Offset/alir,n: 96*9*1+288+48 =
Tableau: 6*16*16 + 48

1312
1200
1584

which is 32% worse. This kind of reasoning originally led us away from the tableau scheme.
Furthermore, trouble could arise in the tableau scheme with a font of special symbols of radically
differing sizes, where the tile size would be determined by the largest character.

The Strikc Scheme

A slight variation of the tableau scheme has recently arisen which remedies some of these

3

problems. The tableau is made 96 characters wide by 1 character high, Le., a line of text containing
the whole font (some call it the "strike"). Now the space taken by each character can be
proportional to its width. The space requirements are:

Strike: 6*Hmax*\Vavg words + (96 for x table)

where the x table doubles as a way to locate the source rectangle and to calculate its width (the
difference of the following x and the cllrr~nt x). Now Helvetica-lO takes:

AL: 96*7*1+448
Offset/align: 96*7'lc1+288+24 =
Tableau: 6*12*12+24' =

1120
984
888

Strike: 6*12*7+96 = 600 (actual figure is 622)

and Helvetica-14 requires:

AL: 96*9*1+448 =
Offset/align: 96*9*1+288+48 =
Tableau: 6*16*16+48 =
Strike: 6*16*9+96 =

1312
1200
1584
960

This is obviously advantageous for typical fonts, but there are some disdvantages for odd fonts. In
a mixed-size symbol fOllt a lot of space is wasted, and very large fonts are hard to window. To
handle kerned fonts there mllst be as much white space to the left of every character as is required
for the worst character, and a font-wide parameter (Ie 0) tells how much that is (this also works for
the tableau). In its favor, the algorithms are utterly simple:

source x = xtable!ascii
source y = 0
source bea (base core address) = strike
source bmw (bit map width) = strikewic1th

dest width = xtable!(ascii+l)-xtable!ascii
dest height = fontheight
dest x = left + fontkern
dest y = baseline + fontascent
dest bca = displayBitMapAddress
dest bmw = displayBittvlapWidth\Vords

(----

(==

(----

with only three things to compute for each character. \Vith a planned change to BitUlt that speeds.
up the or'ing of zero, and the microcoding of the 13it13lt setup routine, this scheme can be made
nearly as fast as the standard. Alto' Convert.

Variations

Refinements to this scheme are necessary to window large fonts and to compress mixed-size symbol
fonts. Unfortunately, they make the algorithms more complicated.

V crtical Strike Schemc

'To make the font windowable, a vertical strike can be used. However, a width table and a

displacement is then necessary in addition to a ytable. aild the dest height and y must be set for
every character.

Segmented Strike Schemes

The font can be segmented. Each segment has its own strike, so the font can be windowed on a
segment basis. One method of identifying the segment is by high order bits in the xtable entry.
This necessitates extraction of the segment number from the xtable entry. but only adds a minor
adjustment to the width computation. and the bmw and bca must be computed for each character.

Pinching Schemes

4

To handle mized size symbol fonts, each segment can have its own top and bottom "pinch". which
allows suppression of white space above and below al1 the characters in a segment. This helps the
A-Z in standard fonts. and helps carefully organized symbol fonts. The space requirements for
Helvetica don't improve much. but strange symbol fonts could: a font with 96 characters of sizes
1x96. 2x95 •... , 96x1 in 32 segments of 3 characters each would require only a few thousand words as
opposed to almost 28,000 words without pinching. Fewer bits need to be Blt'ed. However. it is now
necessary to recompute dest y and height for every character." "

It is tempting to pinch Ollt the vertical white stripe that is normally on the left or right of each
character. However. this saves only a few per cent space ancl adds even mofe computation.

Permuting Schemes

The next complication is to permute the font so that characters with simiIJr pinches are in the same
segment. This requires separating the xtable into a table to find x and one to find width, although
the latter usually can be packed into 24 words. Now even Helvetica gains. because "the space
requirement is: "

Permuted iJinch: 6*Hav"g*Wavg + 96 + (24, 48. or 96 width table)

which comes out for Helvetica-l0:

AL: 96*7*1+448
Offset/align: 96*7*1+288+24
Tableau: 6*12*12+24
Strike: 6*12*7+96
Permuted pinch': 6*7*7+96+24

=
=
=
=
=

and for Helvetica-14 with an average height of" 9:

AL: 96*9*1+448 =
Offset/align: 96*9*1+288+48 =
Tableau: 6*16*16 + 48 =
Strike: 6*16*9+96 =
Permuted pinch: 6*9*9+96+24 =

1120
984
888
600
414

1312
1200
1584
960
"606

The width calculation is not very much harder than in the unpinched strike method, but the dest y
and height mllst be adjusted frequently. This is what you must do for the gain of 359& in space:

let scg = (xtable!asci i < <seg)

source x = (xtable!ascii< <x) + segx!seg
source y = 0 "
so.urce bea (base core address) = segbea!seg
source bmw (bit map width) = segbmw!seg

(----
(:-:

<=

dest width = widthtable!ascii [unpacked]
dest height = segheight!seg
dest x = left + fontkern
dest y = (baseline+fontascent) - topPinch!seg
dest bca = displayBit~1npAddress
dest bmw = displayBitMapWidth\Vords

<==
<=
<----
<=

Those things marked <= need be recomputed only when the segment ch~!.nges. but if extensive
packing has been done, this happens on almost every character, so it may as well be done every
time. If Fill Bits is called directly, multiplication can be avoided by computing a short table of
(topPinch!seg * dest bmw) when the font is read. Then the setup takes only 15 or 20 emulated
instructions more than in the simplest strike scheme. The segmented but unpinched scheme is
somewhere in between. ·

Variable Tableau

One could make segments be equal in total width, yielding a tableau with a varying number of
characters per line. The only advantage is that the bmw stays the same for every character; bca
could stay' the same but then y would have to vary.

5

6

File Format

PREPRESS has been modified to generate single-segment unpermuted strikes. The format chosen
allows for future addition of segmenting, permuting, and pinching. At this time, Cypress and
Smalltalk implementors expect to lise the simple scheme for all fonts except very large ones (>30
points) and very odd ones. Cypress will use a separate algorithm much slower than the standard to
display characters in the harder formats.

structure MiY1G L YPHS:
[
format word =

[
strike bit

. pinched bit
permuted bit
fixedpitch bit
blank bit 12
]

maxwidth word
ascent word
descent word
xoffset word
max word
nsegs word
@SEGMENTPOINTER -t O,nsegs-1

/ / all zeroes for simple strike

/ /distinguish from .al format
/ / some segments are pinched
/ / the width table is explicit
/ / all characters are maxwidth

/ / width of widest character
/ / in bits
/ / in bits
/ / in bits (negative for kerned font, 0 normally)

/ / =1 if unsegmented

if permuted & not fixedpitch then @CHARWIDTH t min,max+l
@CHARPOINTER t min,max+2 / /' index t ascii into the strike

@SEGMENT t O,nsegs-1 .
]

structure SEGMENTPOINTER: .
[
segwidth . word

pinchTop word

pinch Bottom word

]

structure CHAR WIDTH:
[

1/ dummy ~It max+1
/ / max+2 is for unpermuted width calculation
/ / the strike, possibly segmented

/ / bits (total of all chars; last word padded)
/ /(scgwidth+lS)/16 = rastcr for bitblt
/ / bits down from ascent top
/ /0 for the simple case
/ / bits lip from descent bottom
/ /0 for the simple case

width bit(maxwidth Is 16? 4. maxwidth Is 256? 8, 16)
]

segheight = (ascent + clescen t) - (pi rlchTop + pi nch Bottom)

structure CHARPOINTER:
[,

segment bit 5
xinsegment bit 11

]

structure SEGMENT:
. . [

/ / numbered from zero. always 0 if unsegmented
/ / source X for bitblt .
I/all 16 bits if unsegmented font (nsegs = 1)

Rules:

Note:

bits word «segwidth+lS)/16) * segheight
] .

SegmentX(segment) = Sum(s=O to segment-l)(segwidth(s»
VirtuaIX(char) = xl nSegment(char)+SegmentX(Segment(char»
If llnpermllted then Width(char) = VirtuaIX(char+l)-VirtuaIX(char)
DestX = DesiredDestx + xoffset

if nsegs eq 1. then both pinches will be zero
Iff \Vidth(char) eq O. char is illegal. try max+l where

a blob ought to be stashed

7

