
5.5
N E T W O R K P R O G R A M M E R ’ S G U I D E

VxWorks®

Copyright 2002 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,
microfilm, retrieval system, or by any other means now known or hereafter invented without the prior
written permission of Wind River Systems, Inc.

AutoCode, Embedded Internet, Epilogue, ESp, FastJ, IxWorks, MATRIXX, pRISM, pRISM+, pSOS,
RouterWare, Tornado, VxWorks, wind, WindNavigator, Wind River Systems, WinRouter, and Xmath are
registered trademarks or service marks of Wind River Systems, Inc.

Attaché Plus, BetterState, Doctor Design, Embedded Desktop, Emissary, Envoy, How Smart Things Think,
HTMLWorks, MotorWorks, OSEKWorks, Personal JWorks, pSOS+, pSOSim, pSOSystem, SingleStep,
SNiFF+, VxDCOM, VxFusion, VxMP, VxSim, VxVMI, Wind Foundation Classes, WindC++, WindManage,
WindNet, Wind River, WindSurf, and WindView are trademarks or service marks of Wind River Systems,
Inc. This is a partial list. For a complete list of Wind River trademarks and service marks, see the following
URL:

http://www.windriver.com/corporate/html/trademark.html

Use of the above marks without the express written permission of Wind River Systems, Inc. is prohibited.
All other trademarks mentioned herein are the property of their respective owners.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): 800/545-WIND
telephone: 510/748-4100
facsimile: 510/749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks Network Programmer’s Guide, 5.5

14 Aug 02
Part #: DOC-14618-ND-00

Contents
1 Overview ... 1

1.1 Introduction .. 1

1.2 Chapter Overviews .. 2

1.3 UML Notation ... 8

1.4 Recommended Reading .. 11

2 The VxWorks Network Stack ... 13

2.1 Introduction .. 13

2.2 Supported Protocols and Utilities .. 13

2.3 Setting Task Priorities Relative to the Networking Task 16

3 Data Link Layer Components .. 19

3.1 Introduction .. 19

3.2 Ethernet Driver Support .. 19

3.2.1 BPF, the BSD Packet Filter .. 20

3.2.2 Additional Filter Syntax .. 21
iii

VxWorks 5.5
Network Programmer’s Guide
3.3 The Shared-Memory Backplane Network Driver 21

3.3.1 The Backplane Shared-Memory Region ... 22

Backplane Processor Numbers .. 22
The Shared-Memory Network Master ... 23
The Shared-Memory Anchor ... 23
The Shared-Memory Backplane Network Heartbeat 25
Shared-Memory Location ... 25
Shared Memory Size ... 26
Test-and-Set to Shared Memory .. 27

3.3.2 Interprocessor Interrupts .. 27

3.3.3 Sequential Addressing .. 28

3.3.4 Shared-Memory Backplane Network Configuration 32

Example Configuration ... 33
Troubleshooting ... 38

3.4 Custom Interfaces .. 40

4 Configuring the Network Stack ... 41

4.1 Introduction .. 41

4.2 Summary of Configuration Settings .. 41

4.3 Configuring the Network Stack at Build Time .. 44

4.3.1 Network Protocol Scalability ... 45

4.3.2 Configuring the ARP, IP, TCP, UDP, IGMP, and ICMP Protocols 46

TCP Window Sizes .. 49

4.3.3 Network Memory Pool Configuration ... 50

Setting the Number of Clusters ... 53

4.3.4 Testing Network Connections ... 56

4.3.5 Supporting Multiple Network Interface Drivers 58

Configuring VxWorks for Multiple Drivers 58

4.4 Overview of TCP/IP ... 58
iv

Contents
4.5 Configuring the IP-to-Link Layer Interface .. 60

4.5.1 Binding IP to the MUX (Link Layer) ... 61

4.5.2 Assigning an IP Address and Network Mask to an Interface 61

Interfaces Configured from the Boot Line 62
Assigning the Net Mask to a Network Interface 62
Assigning the Internet Address for a Network Interface 65
Manually Starting Additional Network Interfaces at Run-Time 67

4.5.3 Configuring IP Broadcast Addresses .. 70

4.6 IGMP under VxWorks ... 71

4.6.1 Including IGMPv2 ... 72

4.6.2 IGMPv2 APIs .. 72

IGMPv2 Host Initialization .. 72
IGMPv2 Router Initialization and Termination 73
IGMPv2 Router Control .. 73
Working with VIFs (Ports) and ifnet Structure Pointers 74

4.7 Manually Editing the Routing Table ... 74

4.7.1 Adding Gateways (Routers) to a Network 75

4.8 Proxy ARP for Transparent Subnets .. 81

4.8.1 Proxy ARP Protocol Overview .. 81

4.8.2 Routing and the Proxy ARP Server ... 83

4.8.3 Proxy ARP and Broadcast Datagrams .. 83

4.8.4 Proxy ARP Configuration ... 84

Proxy ARP not Limited To a Shared Memory Network 85
Proxy ARP with Shared Memory and IP Routing 85
Setting Up Boot Parameters and Booting 86
Creating Network Connections ... 86
Routing Configuration for Multi-Homed Proxy Clients 88
Broadcasts Configuration for Multi-Homed Proxy Clients 90

4.9 Using Unnumbered Interfaces ... 90

4.10 Network Byte Order .. 92
v

VxWorks 5.5
Network Programmer’s Guide
4.11 Assigning Host Names to IP Addresses ... 93

5 Network Configuration Protocols ... 95

5.1 Introduction .. 95

5.2 BOOTP, Bootstrap Protocol ... 96

5.2.1 BOOTP Configuration .. 97

The BOOTP Database .. 97
Editing the BOOTP Database to Register a Target 98

5.3 DHCP, Dynamic Host Configuration Protocol .. 99

5.3.1 Including DHCP Components in an Image 100

5.3.2 Configuring the DHCP Client ... 101

5.3.3 Configuring DHCP Servers .. 102

Configuring the Supported DHCP Server 102
Adding Entries to the Database of a Running DHCP Server 105
Storing and Retrieving Active Network Configurations 106
Configuring the Unsupported DHCP Server 108

5.3.4 Configuring the Supported DHCP Relay Agent 109

5.3.5 DHCP within an Application .. 110

5.4 Boot Parameters for DHCP, BOOTP, and Network Initialization 111

5.4.1 Boot Parameters Returned from DHCP or BOOTP 113

5.5 SNMP, Simple Network Management Protocol .. 115

SNMP is a Separately Purchasable Option 116

6 Dynamic Routing Protocols .. 117

6.1 Introduction .. 117

6.2 RIP, Routing Information Protocol .. 117

6.2.1 VxWorks Debugging Routines for RIP ... 118

6.2.2 Configuring RIP ... 119
vi

Contents
6.2.3 Creating an Interface Exclusion List for RIP 122

7 Sockets under VxWorks .. 123

7.1 Introduction .. 123

7.2 BSD Sockets ... 124

7.2.1 VxWorks-Specific Socket Dependencies ... 124

7.2.2 Datagram Sockets (UDP) .. 125

Using a Datagram (UDP) Socket to Access IP Multicasting 129

7.2.3 Stream Sockets (TCP) .. 135

7.3 Zbuf Sockets .. 142

7.3.1 Zbuf Sockets and Protection Domains .. 143

7.3.2 Zbuf Calls to Send Existing Data Buffers 143

7.3.3 Manipulating the Zbuf Data Structure ... 143

Zbuf Byte Locations ... 144
Creating and Destroying Zbufs ... 145
Getting Data In and Out of Zbufs .. 145
Operations on Zbufs .. 146
Segments of Zbufs .. 147
Example: Manipulating Zbuf Structure .. 148
Limitations of the Zbuf Implementation .. 152

7.3.4 Zbuf Socket Calls ... 152

Standard Socket Calls and Zbuf Socket Calls 153

8 Remote Access Applications .. 157

8.1 Introduction .. 157

8.2 RSH, FTP, and netDrv .. 158

8.2.1 RSH .. 159

Configuring the Remote Host to Allow Access to an RSH User 160

8.2.2 FTP ... 160
vii

VxWorks 5.5
Network Programmer’s Guide
8.2.3 Using netDrv .. 161

Using netDrv to Download Run-Time Images 161

8.3 NFS and nfsDrv .. 163

8.3.1 VxWorks NFS Clients .. 164

8.3.2 VxWorks NFS Servers ... 166

Initializing a File System for NFS Export 167
Exporting a File System through NFS .. 167
Limitations of the VxWorks NFS Server .. 168
About leofs .. 168

8.4 TFTP ... 169

8.4.1 Host TFTP Server ... 169

8.4.2 VxWorks TFTP Server ... 169

8.4.3 VxWorks TFTP Client ... 170

8.5 RPC Remote Procedure Calls ... 170

8.6 rlogin .. 170

8.7 telnet .. 171

9 DNS and SNTP .. 173

9.1 Introduction .. 173

9.2 DNS: Domain Name System .. 173

9.2.1 Domain Names .. 174

9.2.2 The VxWorks Resolver .. 174

Resolver Integration .. 175
Resolver Configuration ... 175

9.3 SNTP: A Time Protocol ... 176

9.3.1 Using the SNTP Client .. 176

9.3.2 Using the SNTP Server ... 177
viii

Contents
10 Integrating a New Network Interface Driver ... 179

10.1 Introduction .. 179

10.1.1 The MUX and the OSI Network Model .. 179

10.1.2 The Protocol-to-MUX Interface .. 181

10.1.3 The Datalink-to-MUX Interface ... 182

10.1.4 How ENDs and NPT Drivers Differ ... 182

10.1.5 Managing Memory for Network Drivers and Services 184

10.1.6 Supporting Scatter-Gather in Your Driver 185

10.1.7 Early Link-Level Header Allocation in an NPT Driver 185

10.1.8 Buffer Alignment ... 186

10.2 END Implementation .. 188

10.2.1 END Operation .. 189

Adding an END to VxWorks .. 189
Launching the Driver .. 191
Binding to a Service ... 191
Receiving Frames in Interrupt Mode .. 191

10.2.2 The END Interface to the MUX .. 192

Data Structures Shared by the END and the MUX 192
END Entry Points Exported to the MUX .. 193

10.3 NPT Driver Implementation ... 203

10.3.1 NPT Driver Operation ... 203

Adding an NPT Driver to VxWorks .. 204
Launching the Driver .. 205
Responding to Network Service Bind Calls 205
Receiving Frames in Interrupt Mode .. 206

10.3.2 NPT Driver Interface to the MUX ... 207

Data Structures Used by the Driver .. 207
NPT Driver Entry Points Exported to the MUX 207

10.4 Porting a BSD Driver to the MUX .. 217
ix

VxWorks 5.5
Network Programmer’s Guide
10.4.1 Remove Unit Number References ... 217

10.4.2 Create an END Object to Represent the Device 218

10.4.3 Implementing the Standard END or NPT Entry Points 218

Rewrite xxattach() to Use an npt/endLoad() Interface 219
The xxReceive() Routine Still Handles Task-Level Packets 220
Rewrite xxOutput() to Use an npt/endSend() Interface 220
The xxIoctl() Routine is the Basis of npt/endIoctl() 220
Implement All Remaining Required END or NPT Entry Points 220

10.5 Supporting Multiple Network Interface Drivers .. 221

10.5.1 Configuring VxWorks for Multiple Drivers 221

10.5.2 Starting Additional Drivers at Run-Time 221

10.6 Avoiding Memory Leaks .. 221

11 Integrating a New Network Service ... 223

11.1 Introduction .. 223

11.2 Writing a Network Service Sublayer ... 223

11.2.1 Interface Initialization ... 223

11.2.2 Data Structures and Resources .. 225

11.2.3 Sublayer Routines .. 225

Sending Packets ... 226
Receiving Packets .. 226
Shutting Down an Interface ... 227
Error Reporting .. 227
Flow Control ... 228
Device Control ... 228

11.3 Interfacing with the MUX ... 228

11.3.1 Service Functions Registered Using muxTkBind() 229

11.3.2 Service Functions Registered Using muxBind() 230

11.4 Adding a Socket Interface to Your Service ... 232

Process Overview .. 233
x

Contents
11.4.1 Implementing a Socket Back End .. 234

The Socket Functional Interface ... 234
The sockLibAdd() Function ... 235

11.4.2 Enabling Zbuf Support Within a Socket Back End 236

11.4.3 Implementing Socket Functions .. 236

Implementation Recommendations for the Elements of a
SOCK_FUNC Table ... 236

Socket Functions Passed to iosDrvInstall() 246

A Using netBufLib .. 249

A.1 Introduction .. 249

A.2 How a netBufLib Pool Organizes Memory .. 250

A.3 Setting Up a Memory Pool .. 252

A.4 Storing and Using Data in Clusters ... 254

A.5 Freeing mBlks, clBlks, and Clusters ... 255

A.6 Macros for Buffer Manipulation ... 255

A.7 The netBufLib Library ... 256

B MUX/NPT Routines and Data Structures .. 269

B.1 Introduction .. 269

B.2 MUX Routines ... 269

B.2.1 muxAddrResFuncAdd() .. 270

B.2.2 muxAddrResFuncDel() .. 272

B.2.3 muxAddrResFuncGet() .. 272

B.2.4 muxAddressForm() .. 273

B.2.5 muxBind() .. 273

B.2.6 muxDevExists() ... 274
xi

VxWorks 5.5
Network Programmer’s Guide
B.2.7 muxDevLoad() .. 274

B.2.8 muxDevStart() ... 275

B.2.9 muxDevStop() ... 275

B.2.10 muxDevUnload() .. 275

B.2.11 muxError() ... 276

B.2.12 muxIoctl() ... 276

B.2.13 muxMCastAddrAdd() ... 277

B.2.14 muxMCastAddrDel() ... 277

B.2.15 muxMCastAddrGet() ... 277

B.2.16 muxTkBind() ... 278

B.2.17 muxTkDrvCheck() .. 280

B.2.18 muxTkPollReceive() ... 280

B.2.19 muxTkPollSend() .. 280

B.2.20 muxTkReceive() .. 281

B.2.21 muxTkSend() ... 282

B.2.22 muxTxRestart() ... 283

B.2.23 muxUnbind() ... 283

B.3 Data Structures ... 284

B.3.1 DEV_OBJ ... 284

B.3.2 END_ERR ... 285

B.3.3 END_OBJ .. 285

B.3.4 END_QUERY ... 289

B.3.5 LL_HDR_INFO .. 290

B.3.6 M2_INTERFACETBL and M2-ID .. 290

B.3.7 mBlk ... 290

B.3.8 MULTI_TABLE ... 292

B.3.9 NET_FUNCS .. 293
xii

Contents
C PPP, SLIP, and CSLIP ... 295

C.1 Introduction .. 295

C.2 Serial Driver Support ... 296

C.2.1 SLIP and CSLIP Configuration .. 296

C.3 PPP, the Point-to-Point Protocol for Serial Line IP 297

C.3.1 PPP Configuration ... 298

C.3.2 Using PPP .. 302

C.3.3 Troubleshooting PPP ... 309

C.3.4 PPP Option Descriptions .. 310

Index .. 317
xiii

VxWorks 5.5
Network Programmer’s Guide
xiv

1

Overview
1.1 Introduction

This guide describes the standard VxWorks network stack, which is based on the
4.4 BSD TCP/IP release. Chapters two through nine explain how to configure
VxWorks to include or to exclude a particular network protocol or utility. They also
describe how to set any configuration parameters associated with the supplied
protocols. If your application can use the supplied protocols and drivers as
shipped, you need read only these chapters.

The remaining chapters and appendices are intended for developers who need to
add a new data link layer driver or network service. This information comes from
the VxWorks Network Protocol Toolkit Programmer’s Guide, which is merged with this
manual now that the Network Protocol Toolkit is bundled with the standard
VxWorks stack.

Protection Domains

The protection domain feature was introduced to VxWorks with Tornado 3.0.
Using protection domains, it is possible to create protected groupings of system
resources such as tasks, code modules, semaphores, message queues, as well as
physical and virtual memory pages. Sharing resources between protection
domains is supported and expected, but it is possible only under very controlled
circumstances. This control, enforced using the memory management unit, lets

NOTE: Although this manual describes how to write code that interfaces with the
MUX, this manual is not a tutorial on how to write a protocol or data link layer
driver.
1

VxWorks 5.5
Network Programmer’s Guide
you insulate and protect sensitive elements of a VxWorks system from errant code
and other misbehaviors.

VxWorks under Tornado 2.0.2 and recent Tornado 2.n releases do not support
protection domains. However, the network stack implementation that follows the
Tornado 2.0.2 and Tornado 3.1 releases is identical. Thus, this manual is
appropriate for network programmers working with either Tornado/VxWorks
variant.

Developers working with versions of VxWorks that support protection domains
should note that direct access to some network stack features is limited to the
kernel protection domain, the protection domain that hosts the network stack.
Whenever such a limit applies, this manual notes the fact. If you are working with
a non-AE version of VxWorks, you can ignore these notes.

1.2 Chapter Overviews

After the stack overview in 2. The VxWorks Network Stack, chapters three through
nine describe individual network components. The remaining chapters focus on
adding new drivers and services to the existing network stack.

� 3. Data Link Layer Components
� 4. Configuring the Network Stack
� 5. Network Configuration Protocols
� 6. Dynamic Routing Protocols
� 7. Sockets under VxWorks
� 8. Remote Access Applications
� 9. DNS and SNTP
� 10. Integrating a New Network Interface Driver
� 11. Integrating a New Network Service

The manual also includes an index, the first place to look when using this manual
as a reference.

Data Link Layer Components

3. Data Link Layer Components discusses the data link layer, its general
configuration needs, and network drivers. These drivers handle the specifics of
communicating over networking hardware, such as an Ethernet board, or even the
2

1

1
Overview
shared-memory backplane. These drivers are the foundation of the network stack.
This chapter also discusses the Berkeley Packet Filter.

TCP/IP under VxWorks

4. Configuring the Network Stack introduces the TCP/IP protocol suite. In particular,
this chapter focuses on components such as TCP/IP itself, as well as UDP, ARP,
IGMP, and the use of IP over unnumbered interfaces.

VxWorks uses the MUX interface to communicate with the data link layer. The
purpose of the MUX is to decouple the data link and network layers. This makes it
easier to add new network drivers under an existing protocol. It also makes it
easier for an alternative protocol to run over the VxWorks data link layer. For more
information on the MUX, see 10. Integrating a New Network Interface Driver.

The discussion of IP, TCP, and UDP presented in 4. Configuring the Network Stack is
a simple overview that prepares you for a discussion of their configuration needs
under VxWorks. It is not a primer on these protocols, which are thoroughly
described in a variety of published works (see 1.4 Recommended Reading, p.11).

The discussion of ARP and proxy ARP are somewhat more detailed. ARP provides
dynamic mapping from an IP address to the corresponding media address. Using
ARP, VxWorks implements a proxy ARP scheme that can make distinct networks
appear to be one logical network. This proxy ARP scheme is an alternative to the
use of explicit subnets for accessing the shared-memory network. This helps
conserve IP addresses. So too does the use of unnumbered interfaces on
point-to-point links (see 4.9 Using Unnumbered Interfaces, p.90).

IGMP supports the correct delivery of multicast packets for TCP/IP. The standard
VxWorks stack supports both the host-side and the router-side of the IGMP v2
protocol, as specified in RFC 2236. For more information, see 4.6 IGMP under
VxWorks, p.71.

NOTE: The PPP, SLIP and CSLIP implementations previously described in this
chapter are now deprecated for future use and will be removed from the next
major release of Tornado. In anticipation of this change, the configuration
information for the PPP, SLIP and CSLIP implementations has been moved to
C. PPP, SLIP, and CSLIP. For more information on the discontinuance of these
features, please contact your local Wind River account manager.

If you require a PPP solution, please ask your Wind River account manager about
WindNet PPP. WindNet PPP is a reliable and manageable PPP solution built upon
an extensible Remote Access Framework.
3

VxWorks 5.5
Network Programmer’s Guide
Network Configuration Protocols

5. Network Configuration Protocols discusses the network configuration protocols:

� DHCP, Dynamic Host Configuration Protocol
� BOOTP, Bootstrap Protocol
� SNMP, Simple Network Management Protocol

VxWorks can use either DHCP or BOOTP to set up and maintain its network
configuration information. At boot time, both DHCP and BOOTP can provide the
client with IP addresses and related information. However, BOOTP assigns IP
addresses permanently. DHCP extends BOOTP to support the leasing of IP
addresses. If necessary, the lease need not time out, but if the client will need the
IP address for a limited time, you can limit the length of the lease appropriately.

When the lease expires, the IP address is available for use by another client. If the
original client still needs an IP address when the lease expires, the client must
renegotiate the lease. Because of the need for lease renegotiation, a DHCP client
remains active during run-time. This is not the case for the BOOTP client.

Although SNMP can provide network configuration information, it differs
significantly from BOOTP and DHCP in that it was not designed for use at boot
time. Instead, you use it to set up a network management station (NMS) from
which you can remotely configure, monitor, and control network-connected
devices called agents. Thus, SNMP is a network configuration protocol, but in a
very different sense of the term.

Dynamic Routing Protocols

6. Dynamic Routing Protocols discusses RIP, the Routing Information Protocol. RIP
maintains routing information within small inter-networks. The RIP server
provided with VxWorks is based on the 4.4 BSD routed program. The VxWorks
RIP server supports three modes of operation: Version 1 RIP, Version 2 RIP with
multicasting, and Version 2 RIP with broadcasting. The RIP implementation also
supports an interface exclusion list that you can use to exclude RIP from specific
interfaces as they are brought on line.

Sockets under VxWorks

7. Sockets under VxWorks discusses the VxWorks implementation of sockets. Using
sockets, applications can communicate across a backplane, within a single CPU,
across an Ethernet, or across any connected combination of networks. Socket
communications can occur between any combination of VxWorks tasks and host
4

1

1
Overview
system processes. VxWorks supports a standard BSD socket interface to TCP and
UDP. Using these standard BSD sockets, you can:

� communicate with other processes
� access the IP multicasting functionality
� review and modify the routing tables

In addition to the standard BSD socket interface, VxWorks also supports zbuf
sockets—an alternative set of socket calls based on a data abstraction called the
zbuf (the zero-copy buffer). Using zbuf sockets, you share data buffers (or portions
of data buffers) between separate software modules on a VxWorks target. Because
zbuf sockets share data buffers, you can avoid time-consuming data copies. The
zbuf socket interface is WRS-specific, but visible only to applications running on
the VxWorks target. The other end of the socket connection can use a standard BSD
socket interface.

Remote Access Applications

8. Remote Access Applications discusses the applications that provide remote access
to network-connected resources. VxWorks supports the following:

� RPC (Remote Procedure Call, for distributed processing)
� RSH (Remote Shell, for remote command execution)
� FTP (File Transfer Protocol, for remote file access)
� NFS (Network File System, for remote file access)
� TFTP (Trivial File Transfer Protocol, for remote file access)
� rlogin (for remote login)
� telnet (for remote login)

Other Network Applications

9. DNS and SNTP provides information on how to configure and use DNS and
SNTP under VxWorks.

DNS is a distributed database that most TCP/IP applications can use to translate
host names to IP addresses and back. DNS uses a client/server architecture. The
client side is known as the resolver. The server side is called the name server.
VxWorks provides the resolver functionality in resolvLib. For detailed
information on DNS, see RFC-1034 and RFC-1035.

NOTE: VxWorks also supports a registration mechanism that you can use to add a
socket back end for protocols that you have ported to VxWorks. For more
information, see 11. Integrating a New Network Service.
5

VxWorks 5.5
Network Programmer’s Guide
SNTP is a Simple Network Time Protocol. Using an SNTP client, a target can
maintain the accuracy of its internal clock based on time values reported by one or
more remote sources. Using an SNTP server, the target can provide time
information to other systems.

Integrating New Data Link Layer Drivers with the MUX

10. Integrating a New Network Interface Driver describes how to integrate new
network interface drivers with the MUX. The purpose of the MUX is to provide an
interface that insulates network services from the particulars of network interface
drivers and vice versa.

Currently, the MUX supports two network driver interface styles, the END
interface and the Network Protocol Toolkit (NPT) driver interface. ENDs are
frame-oriented drivers that exchange frames with the MUX. All drivers now
shipped with the standard network stack are ENDs. The NPT style drivers are
packet-oriented drivers that exchange packets with the MUX.

� Loading the Network Devices The muxDevLoad() routine loads network devices
into the system. This function returns a cookie that identifies the device and that is
used thereafter in all other calls that refer to that device. The system automatically
calls muxDevLoad() for each of the interfaces defined in the system device table.
For information on how to set up this table, see Adding an NPT Driver to VxWorks,
p.204 or Adding an END to VxWorks, p.189.

� Starting the Network Devices After a network device loads successfully, VxWorks
uses muxDevStart() to activate it (see Launching the Driver, p.205).

Integrating New Network Services with the MUX

11. Integrating a New Network Service tells you how to integrate a new network
service with MUX and thus with VxWorks.

This manual defines a network service as an implementation of the network and
transport layers of the OSI network model. Under VxWorks, network services
communicate with the data link layer through the MUX interface. Part of porting
a new network service to VxWorks is porting its data link layer access code to use
the MUX interface.

� Registering a Socket Back End for New Network Services To give applications
access to your network service, the VxWorks socket interface provides
sockLibAdd(). This registration function simplifies adding socket back ends for
your network service. The standard socket interface is designed to support the
coexistence of distinct socket back ends for each protocol layer implementation.
6

1

1
Overview
Thus, adding your socket library does not interfere with the socket back end for
any other network service. A layered architecture makes this possible (see
Figure 1-1).

Because adding a new network service might change your address mapping
needs, the VxWorks network stack also includes a registration mechanism for
address mapping services.

� Registering Service Address Mapping Routines To configure service address
mapping (such as address resolution and multicast mapping functions) with the
MUX, use functions such as muxAddrResFuncAdd() and muxMCastAddrAdd().
Register service address mapping functions for every pairing of a network service
type and a network driver type for which service address mapping functions will
be needed. The network service will then retrieve these registered functions from

Figure 1-1 The Standard Socket Interface

Your Socket Back End

Wind River Standard Socket Interface

Application

MUX

An application makes
standard socket calls.

You must register
your socket back end.

The interface
knows which
back end to use.

TCP

IP

ApplicationApplication

UDP ...
Your Network Service

Wind River BSD
Socket Back End
7

VxWorks 5.5
Network Programmer’s Guide
the MUX when they are needed. See B.2.1 muxAddrResFuncAdd(), p.270 and
B.2.13 muxMCastAddrAdd(), p.277.

� Initializing Network Services Typically, a network service provides a routine that
assigns the service to a network interface. Internally, this routine must bind the
service to a network driver interface using the muxTkBind() routine. After this
step is taken, the network service is ready to send and receive packets over the
corresponding device. See B.2.16 muxTkBind(), p.278.

Memory Management and the Network Stack

A. Using netBufLib provides advice on how to use netBufLib to create and manage
memory pools. Currently, the default VxWorks stack includes two memory pools.
Managing these pools is described in 4.3.3 Network Memory Pool Configuration,
p.50. However, if you need to create a totally new memory pool for a new network
driver or protocol, you need to read A. Using netBufLib.

1.3 UML Notation

Some schematic diagrams in this guide use a form of Unified Modeling Language
(UML) notation. This section gives an overview of this UML dialect.

Figure 1-2 shows how a class is represented in UML notation, along with its data
members and functional methods. In the VxWorks stack, classes are implemented
as data structures.

Figure 1-3 shows class inheritance in UML notation. In the VxWorks stack, class
inheritance is implemented by making the first member of the structure that
represents the subclass be a structure of the superclass. In UML notation, a subclass
points to its superclass with a closed arrowhead at the end of a solid line.

Figure 1-4 shows interface implementation and use in UML notation. Interfaces
are represented in much the same way as classes, except that their names are in
italics and they always have empty “Attributes” sections. Classes that implement
an interface point to that interface with a closed arrowhead at the end of a dashed

NOTE: You can set the MUX_MAX_BINDS configuration parameter to change the
maximum number of bind instances that the MUX will allow.
8

1

1
Overview
line. Classes that use an interface that another class implements point to that
interface with an open arrowhead at the end of a dashed line.

Figure 1-5 shows how class relationships are represented in UML. A solid line
between two classes indicates that one of the classes has a reference to one or more
objects of the other class (or that the classes mutually reference objects of each
other’s class). This relationship can be made more explicit with additional
notation.

An open arrowhead indicates that the object of the class doing the pointing knows
about the link between the two and should know which object or objects of the

Figure 1-2 A Class in UML Notation

Figure 1-3 Class Inheritance in UML Notation

Plug-in
privateData
name
pfwObj
profileDataSize
stackDataSize
profileDataConstruct()
profileDataCopy()
profileDataDestruct()
stackDataConstruct()
stackDataDestruct()
interfaceBind()
stackAdd()
stackDelete()
receive()
send()
stackDataShow()

Class Name

Attributes

Operations

(data members)

(also known as
“functions” or
“methods”)

Plug-in
privateData
name
pfwObj
profileDataSize
stackDataSize
profileDataConstruct()
profileDataCopy()
profileDataDestruct()
stackDataConstruct()
stackDataDestruct()
interfaceBind()
stackAdd()
stackDelete()
receive()
send()
stackDataShow()

Layer
planeId
position
type

packetType()
componentAdd()
componentDelete()
addDynamicComponent()
deleteDynamicComponent()

This arrow indicates
that a “Layer” class is a
subclass of the “Plug-in”
class and inherits the

of the “Plug-in” Object.
attributes and operations
9

VxWorks 5.5
Network Programmer’s Guide
other class make up the relationship. Numbers, ranges of numbers (such as 1..5),
or an asterisk (meaning any value) show how many objects are in the relationship.

A circle at the end of the line indicating the relationship can indicate how closely
coupled the objects of the two classes are. If object A creates and holds a reference
to object B, and then deletes object B as part of its own delete processing, this can
be indicated by putting a black circle at the class A side of the line connecting class
A and class B. If the two objects are created and deleted independently of one
another, a white circle can be used to indicate this.

Figure 1-4 Interface Implementation in UML Notation

Figure 1-5 Aggregates and Composites in UML Notation

PPP IP Interface IPCP

ipInterfaceUp()
ipInterfaceDown()

PPP_END

The dashed line with the open arrow indicates
that the IPCP class uses the PPP IP Interface.

The dashed line with the closed arrow indicates that
the PPP_END class implements the PPP IP Interface.

Polygon Point3..*
This indicates that a polygon is composed

float x,y

of three or more points, and that a point
object used to compose a polygon cannot
be used to compose a second polygon. If
the polygon object is deleted, the point
objects that compose that polygon are
also deleted.

Polygon Color1

int r,g,b

*
This indicates that a polygon has a color
object, but a color object may be shared
by more than one polygon, and if the
polygon object is deleted, the associated
color object will not be deleted

Aggregation:

Composition:

points

color
10

1

1
Overview
1.4 Recommended Reading

The focus of this manual is the configuration of the VxWorks network stack.
Although this manual includes some networking background information, it is
beyond the scope of this manual to provide a thorough description of socket usage,
routing, protocol implementation, and how to write a network interface driver. For
information of that sort, consider the following sources:

� The Design and Implementation of the 4.4 BSD Operating System by Marshall Kirk
McKusick, Keith Bostic, Michael J. Kraals, John S. Quarterman

� TCP/IP Illustrated, Vol. 1, by Richard Stevens

� TCP/IP Illustrated, Vol. 2, by Gary Wright and Richard Stevens

� Unix Network Programming, by Richard Stephens
(for information on socket programming)
11

VxWorks 5.5
Network Programmer’s Guide
12

2

The VxWorks Network

Stack
2.1 Introduction

This chapter provides an overview of the components that comprise the VxWorks
network stack. Also included in this chapter is a description of scheduling issues
associated with the priority of tNetTask.

VxWorks includes drivers that support network connections over serial lines
(using SLIP or CSLIP) or Ethernet networks (IEEE 802.3). It also supports
connections over a backplane bus using shared memory. The VxWorks network
stack uses the Internet protocols, based on the 4.4 BSD TCP/IP release, for all
network communications.

In addition to the remote access provided by Tornado, VxWorks supports remote
command execution, remote login, and remote source-level debugging. VxWorks
also supports standard BSD socket calls, remote procedure calls, SNMP, remote file
access, boot parameter access from a host, and proxy ARP networks.

2.2 Supported Protocols and Utilities

The VxWorks network stack includes support for the following protocols and
utilities:

� SLIP and CSLIP
� IP, Internet Protocol
13

VxWorks 5.5
Network Programmer’s Guide
� TCP and UDP
� DHCP
� BOOTP
� DNS
� IGMP
� ARP and Proxy ARP
� RIP
� Sockets (TCP, UDP, multicasting, routing, and Zbuf)
� RPC
� RSH, rlogin and telnet
� FTP and TFTP
� NFS

MUX Interface

VxWorks supports a network driver interface called the MUX. This interface
provides support for features such as multicasting, polled-mode Ethernet, and
zero-copy transmission. This interface also decouples the network driver and
network protocol layers. This decoupling lets you add new network drivers
without the need to alter the network protocol. Likewise, the decoupling lets you
add a new network protocol without the need to modify the existing MUX-based
network interface drivers.

Earlier versions of the network stack used drivers based on the BSD 4.3 or 4.4
model. Drivers of the BSD model are no longer supported and should be upgraded
to the MUX interface model. More information about the process of adding new
drivers and protocols to the network stack can be found in the 10. Integrating a New
Network Interface Driver and 11. Integrating a New Network Service.

Sockets

This network stack implementation includes two sets of socket calls: one set is
source-compatible with BSD 4.4 UNIX, the other set is the zbuf socket interface. This
second set of socket calls is useful when you need to streamline throughput.1 Both
interface styles provide a highly abstracted communication mechanism that hides
environmental details. Data written to one socket of a connected pair is read
transparently from the other socket.

Because of this transparency, the two tasks do not necessarily know whether they
are communicating with an agent on the same host or on another host, or with an
agent running under some other host operating system. Similarly, communicating
agents using the zbuf socket interface are not aware of whether their

1. The TCP subset of the zbuf interface is sometimes called “zero-copy TCP.”
14

2

2
The VxWorks Network Stack
communications partners are using standard sockets or are also using the zbuf
interface.

For information on using sockets, see 7 Sockets under VxWorks, p.123, and the
reference entries for sockLib and zbufSockLib. For information on adding a
socket back end to a new protocol implementation, see 11. Integrating a New
Network Service.

Remote Procedure Calls (RPC)

Remote Procedure Call (RPC) is a protocol that allows a process on one machine to
call a procedure that is executed by another process on another machine. Thus with
RPC, a VxWorks task or host machine process can invoke routines that are
executed on other VxWorks or host machines, in any combination. For more
information, see the RPC documentation (publicly and commercially available)
and the reference entry for rpcLib.

Remote File Access: NFS, RSH, FTP, and TFTP

VxWorks implements the remote file access protocols NFS, RSH, FTP, and TFTP.
Using these protocols, a VxWorks target can access the files on a remote
network-connected machine as easily as if the files were local to the VxWorks
system. Conversely, the VxWorks implementation of all of these protocols (except
RSH) lets remote machines access files on a VxWorks target just as transparently –
programs running on the host need not know that the files they use are maintained
on the VxWorks system.

See the reference entries for nfsLib, nfsdLib, remLib, ftpLib, ftpdLib, tftpLib, and
tftpdLib, and the following sections: 8.2 RSH, FTP, and netDrv, p.158, 8.3 NFS and
nfsDrv, p.163, and 8.4 TFTP, p.169.

Boot Parameter Access from Host

BOOTP is a basic bootstrap protocol. Using BOOTP, a booting target can get its
boot parameters from a network-connected host instead of getting the information
from local non-volatile RAM or ROM. Included in the information supplied using
BOOTP can be items such as the IP address for the target and the name/location
of the target’s run-time image. BOOTP cannot supply the image itself. Typically,
this file transfer is left to a protocol such as TFTP.

If BOOTP is inadequate to your needs, you can use DHCP instead. DHCP, an
extension of BOOTP, is designed to supply clients with all of the Internet
configuration parameters defined in the Host Requirements documents (RFCs
1122 and 1123) without manual intervention. Like BOOTP, DHCP allows the
permanent allocation of configuration parameters to specific clients. However,
15

VxWorks 5.5
Network Programmer’s Guide
DHCP also supports the assignment of a network address for a finite lease period.
This feature allows serial reassignment of network addresses. The DHCP
implementation provided with VxWorks conforms to the Internet standard RFC
2131.

Proxy ARP Networks

Proxy ARP provides transparent network access by using Address Resolution
Protocol (ARP) to make distinct networks appear as one logical network. The
proxy ARP scheme implemented in VxWorks provides an alternative to the use of
explicit subnets for access to the shared memory network.

With proxy ARP, nodes on different physical subnets are assigned addresses with
the same subnet number. Because they appear to reside on the same logical
network, and because they can communicate directly, they use ARP to resolve each
other’s hardware address. The gateway node that responds to ARP requests is
called the proxy server.

2.3 Setting Task Priorities Relative to the Networking Task

The tNetTask task provides packet-processing services outside the ISR. Processing
network packets outside the ISR minimizes the amount of time spent with
interrupts disabled. By default, tNetTask runs at a priority of 50. If you launch a
task that depends on network services, make sure your new task runs at a lower
priority than that of tNetTask. When assigning a priority to a task dependent upon
network services, keep in mind the following:

� an ISR interrupts even a priority 0 task
� when tNetTask is the highest priority task ready to run, it runs
� if a user task (typically priority 100) is ready, it runs instead of tNetTask
� while tNetTask does not run, packets are not processed, although ISRs

continue to receive the packets (by default, up to 85 before dropping packets)

Priority Inversion

After a task takes a semaphore with priority inversion protection, its task priority
is elevated if another higher priority task tries to take the semaphore. The new task
priority is equal to that of the highest priority task waiting for the semaphore. This
priority elevation is temporary. The priority of the elevated task drops back down
16

2

2
The VxWorks Network Stack
to its normal level after it releases the semaphore with priority inversion
protection.

If a task dependent on tNetTask takes a semaphore with priority inversion
protection, and if a higher priority task subsequently tries to take the same
semaphore, the tNetTask-dependent task inherits the higher task priority. Thus, it
is possible for a network-dependent task to elevate in priority beyond that of
tNetTask. This locks tNetTask out until after the tNetTask-dependent task gives
back the problematic semaphore or semaphores.

NOTE: For more information on priority inversion protection and semaphores, see
the reference entry for semMLib.
17

VxWorks 5.5
Network Programmer’s Guide
18

3

Data Link Layer Components
3.1 Introduction

The data link layer consists of the drivers that directly transmit and receive frames
on the physical network medium. The VxWorks stack bundles Ethernet drivers
and the shared-memory backplane network driver, which provides
communication over a backplane.

3.2 Ethernet Driver Support

Ethernet is one medium among many over which the VxWorks network stack can
operate. Ethernet is a local area network specification that is supported by
numerous vendors. If you are writing or porting an Ethernet driver to the VxWorks

NOTE: The PPP, SLIP and CSLIP implementations previously described in this
chapter are now deprecated for future use and will be removed from the next
major release of Tornado. In anticipation of this change, the configuration
information for the PPP, SLIP and CSLIP implementations has been moved to
C. PPP, SLIP, and CSLIP. For more information on the discontinuance of these
features, please contact your local Wind River account manager.

If you require a PPP solution, please ask your Wind River account manager about
WindNet PPP. WindNet PPP is a reliable and manageable PPP solution built upon
an extensible Remote Access Framework.
19

VxWorks 5.5
Network Programmer’s Guide
network stack, it should conform to the MUX interface for network drivers. This
interface includes support for features such as multicasting and polled-mode
Ethernet. For information on how to write a driver that works with the MUX, see
10. Integrating a New Network Interface Driver.

3.2.1 BPF, the BSD Packet Filter

This network stack implementation supports the BSD Packet Filter (BPF) as a
method of inspecting incoming data. One advantage of using BPF rather than an
input hook (a technique now deprecated) is that you can use BPF from outside of
the kernel protection domain. This is possible because packets caught by the filter
can be copied to an area of data that is available outside of the kernel protection
domain.

To create a BPF device, take the following steps:

1. Call bpfDrv() to initialize the BPF driver – you should check to make sure this
routine does not return ERROR.

2. Call bpfDevCreate() to create a BPF device.

STATUS bpfDevCreate
(
char * pDevName, /* I/O system device name */
int numUnits, /* number of device units */
int bufSize /* block size for the BPF device */
)

The device name should be something like /dev/bpf or /bpf/foo. The number
of units should be set to the maximum number of BPF units for the device – for
example, if you want to use /dev/bpf0 and /dev/bpf1, numUnits should be set
to at least 2. The buffer size should be less than or equal to the MTU, and the
buffer you use to read data from the BPF device should be at least as large as
this bufSize.

3. Call open() to get a file descriptor for one of these BPF units, for example:

bpffd = open("/dev/bpf0", 0, 0)

NOTE: The input hook depends on the etherInputHookAdd() functionality
supplied by etherLib, a library now deprecated for future use. Although this
library is still supported, it will be removed from the next major release or Tornado.
20

3

3
Data Link Layer Components
4. Set any desired options for this unit by using ioctl commands – for instance:

int arg = 1;
int status = ioctl (bpffd, BIOCIMMEDIATE, (int)&arg);

5. Use the BIOCSETF ioctl command to set a filter for the BPF device. This filter is
written according to the bpf_program template. Incoming packets that match
this filter will be passed to the associated BPF device.

6. Use the BIOCSETIF ioctl command to attach the file descriptor associated with
your BPF device unit to a specific network interface.

3.2.2 Additional Filter Syntax

The BPF_TYPE alias finds the type of link level frame. Use it in statements such as:

BPF_STMT(BPF_LD+BPF_TYPE,0) /* Save lltype in accumulator */

The BPF_HLEN alias determines the header length, independently of the variety of
link layer header in use. Use it in statements such as:

BPF_STMT(BPF_LD+BPF_H+BPF_ABS+BPF_HLEN, 6) /* IP fragment field */

3.3 The Shared-Memory Backplane Network Driver

The smEnd (Tornado 3) or if_sm (Tornado 2) shared-memory backplane network
driver allows multiple processors to communicate over their common backplane
as if they were communicating over a network by using a standard 4.4 BSD
compatible (if_sm) or MUX-capable (smEnd) network driver.1

A multiprocessor backplane bus is an Internet network with its own network /
subnet number. The hosts on this network (the processors) have their own unique
IP addresses. In the example shown in Figure 3-1, two CPUs are on a backplane.
The Internet address for the shared-memory backplane network is 161.27.0.0. Each
CPU on the shared-memory backplane network has a unique Internet address,
161.27.0.1 for vx1 and 161.27.0.2 for vx2.

1. For more information on the MUX and on END and NPT drivers, see 10. Integrating a New
Network Interface Driver.
21

VxWorks 5.5
Network Programmer’s Guide
Processors can communicate with other hosts on the Internet, or with each other,
by using the smEnd or if_sm driver. The driver behaves as any other network
driver, and thus a variety of network services can communicate through it.

3.3.1 The Backplane Shared-Memory Region

The contiguous memory region accessible to all processors on the backplane is the
physical medium that lets the smEnd or if_sm driver simulate driver-style
communication.1

Backplane Processor Numbers

Each processor on the backplane is assigned a unique backplane processor number
starting with 0. The assignment of numbers is arbitrary, except for processor 0,
which by convention and by default is the shared-memory backplane network
master, described in The Shared-Memory Network Master, p.23.

You set the processor numbers in the boot-line parameters passed to the boot
image. You can burn these parameters into ROM, set them in the processor’s
NVRAM (if available), or enter them manually.

Figure 3-1 Shared-Memory Backplane Network

1. The backplane is a type of bus. In this document, the terms are used interchangeably.

NOTE: Using the smEnd available with Tornado 3, you can set up two shared
memory networks on a single backplane with a single processor being a node on
each network. However, if you are using the optional VxMP product, you can use
only one shared memory network over the backplane. In this case, the processor
number of the master node is assigned to and fixed at zero.

Backplane

161.27.0.1 161.27.0.2

161.27.0.0

vx1 vx2
22

3

3
Data Link Layer Components
The Shared-Memory Network Master

One processor on the backplane is the shared-memory network master. The
shared-memory network master has the following responsibilities:

� Initialize the shared-memory region and the shared-memory anchor

� Maintain the shared-memory backplane network heartbeat

� Function (usually) as the gateway to the external network

� Allocate the shared-memory region (if requested)

No processor can use the shared-memory backplane network until the
shared-memory network master has initialized it. However, the master processor
is not involved in the actual transmission of packets on the backplane between
other processors. After the shared-memory region is initialized, all of the
processors, including the master, are peers.

Under Tornado 3, a configuration parameter determines the processor number of
the master. Knowing this, a Tornado 3 node can determine at run time whether it
is the master node by comparing the configured processor number with that
assigned to it in the boot parameters. Under Tornado 2, the processor number of
the master is always zero. A Tornado 2 node can determine at run time whether it
is the master by examining the processor number assigned to it in the boot
parameters.

Typically, the master has two Internet addresses in the system: its Internet address
on the external network, and its address on the shared-memory backplane
network. (See the reference entry for usrConfig.)

The other processors on the backplane can boot indirectly over the shared-memory
backplane network, using the master as the gateway. They need only have an
Internet address on the shared-memory backplane network. These processors
specify the shared-memory backplane network interface, esm, (Tornado 3) or sm
(Tornado 3), as the boot device in the boot parameters.

The Shared-Memory Anchor

The location of the shared-memory region depends on the system configuration.
All processors on the shared-memory backplane network must be able to access
the shared-memory region within the same bus address space as the anchor.

The shared-memory anchor serves as a common point of reference for all
processors. The anchor structure and the shared memory region may be located in
23

VxWorks 5.5
Network Programmer’s Guide
the dual-ported memory of one of the participating boards (the master by default)
or in the memory of a separate memory board.

The anchor contains an offset to the actual shared-memory region. The master sets
this value during initialization. The offset is relative to the anchor itself. Thus, the
anchor and region must be in the same bus address space so that the offset is linear
and valid for all processors.

The anchor address is established by configuration parameters or by boot
parameters. For the shared-memory network master, the local anchor address is
assigned in the master’s configuration at the time the system image is built.

Under Tornado 3, you set the shared memory anchor backplane bus address, as
seen by all boards, at build time. Two values determine the anchor location. These
values are a backplane bus address space specification (configuration parameter:
SM_ADRS_SPACE) and a bus address within that space (configuration parameter:
SM_ANCHOR_ADRS). Local, PCI and VME buses are supported.

Under Tornado 2, the shared memory anchor bus address is always a local bus
address. You can set this address using the SM_ANCHOR_OFFSET and
SM_ANCHOR_ADRS configuration parameters accessible from the
INCLUDE_SM_COMMON configuration component. You can also set this address
at run time as an aspect of the mapping between a slave’s local bus address space
and the backplane bus address space. (For more information, see the reference
entries for sysBusToLocalAdrs() and sysLocalToBusAdrs().)

For the slave processors on the shared-memory backplane network, a default
anchor bus address can also be assigned during configuration in the same way.
However, this requires burning boot ROMs with that configuration, because the
other processors must, at first, boot from the shared-memory backplane network.
For this reason, the anchor address can also be specified in the boot parameters if
the shared-memory backplane network interface is the boot device.

Under Tornado 3, the boot line format is bootDevName=busAdrsSpace:busAdrs. For
example:

esm=0x0d:0x10010000

In this case, this is the backplane bus address of the anchor as seen by all
processors. Note that the busAdrsSpace section should not specify the local bus if
the board is a slave.

NOTE: Some BSPs support locating the anchor and shared memory regions on a
participating non-master board. For examples of how to do this, see the Compact
PCI bus BSPs mcp750 and mcpn750.
24

3

3
Data Link Layer Components
Under Tornado 2, the boot line format is bootDevName=localAdrs. For example:

sm=0x10010000

This is the local address of the anchor as seen by the processor being booted.

The Shared-Memory Backplane Network Heartbeat

The processors on the shared-memory backplane network cannot communicate
over that network until the shared-memory region initialization is finished. To let
the other processors know when the backplane is “alive,” the master maintains a
backplane network heartbeat. This heartbeat is a counter that is incremented by the
master once per second. Processors on the shared-memory backplane network
determine that the shared-memory backplane network is alive by watching the
heartbeat for a few seconds.

The shared-memory backplane heartbeat is located in the first 4-byte word of the
shared-memory packet header. The offset of the shared-memory packet header is
the fifth 4-byte word in the anchor, as shown in Figure 3-2.

Shared-Memory Location

Assigning the shared-memory location differs according to whether you are
working under Tornado 2 or Tornado 3.

Figure 3-2 Shared-Memory Backplane Network Heartbeat

~~ ~~

1. ready value
2. .
3. .
4. .
5. Offset for smPktHeader

heartbeat

Shared-Memory
Anchor

smPktHeader
(anchor + offset)
25

VxWorks 5.5
Network Programmer’s Guide
Tornado 3

Shared memory is assigned a fixed location at compile time. The location is
determined by the value of the shared memory address set through a logical region
entry in the 00region.sdf file for that board’s BSP. Because all processors on the
backplane access the shared-memory region, you must configure that memory as
non-cacheable. This can be configured in the 00region.sdf file.

Tornado 2

Shared memory is, by default, assigned a fixed location and size at compile time.
The location is determined by the value of the shared memory address set through
the SM_MEM_ADRS parameter in the INCLDUE_SM_COMMON component for
that board. Because all processors on the backplane access the shared-memory
region, you must configure that memory as non-cacheable.

The shared memory backplane network region (not including the anchor) can also
be allocated at run time if you set SM_MEM_ADRS to NONE. In this case, a region
of size SM_MEM_SIZE is allocated and made non-cacheable.

Shared Memory Size

The size of the shared-memory backplane network area is set in the build-time
configuration information. The relevant configuration parameter is
SM_NET_MEM_SIZE (Tornado 3) or SM_MEM_SIZE (Tornado 2).

A related area, the shared-memory object area, used by the optional VxMP
product, is governed by the configuration parameter SM_OBJ_MEM_SIZE. If either
the network or VxMP is not installed or used, set the corresponding size parameter
to zero. You must do this because the total size of shared memory allocated or
assigned is the sum of the network and VxMP sizes.

The size required for the shared-memory backplane network area depends on the
number of processors and the expected traffic. There is less than 2KB of overhead
for data structures. After that, the shared-memory backplane network area is
divided into 2KB packets. Thus, the maximum number of packets available on the
backplane network is (areasize – 2KB) / 2KB. A reasonable minimum is 64KB. A
configuration with a large number of processors on one backplane and many
simultaneous connections can require as much as 512KB. If you reserve a
backplane network memory area that is too small, you will slow network
communication.
26

3

3
Data Link Layer Components
Test-and-Set to Shared Memory

To prevent more than one processor from simultaneously accessing certain critical
data structures of the shared-memory region, the shared memory backplane
network driver uses an indivisible test-and-set (TAS) instruction to obtain
exclusive use of a shared-memory data structure. This translates into a
read-modify-write (RMW) cycle on the backplane bus.1

It is important that the selected shared memory supports the RMW cycle on the
bus and guarantees the indivisibility of such cycles. This is especially problematic
if the memory is dual-ported, as the memory must then lock out one port during a
RMW cycle on the other.

Some processors do not support RMW indivisibly in hardware, but do have
software hooks to provide the capability. For example, some processor boards have
a flag that can be set to prevent the board from releasing the backplane bus, after it
is acquired, until that flag is cleared. You can implement these techniques for a
processor in the sysBusTas() routine of the system-dependent library sysLib. The
shared memory backplane network driver calls this routine to set up mutual
exclusion on shared-memory data structures.

3.3.2 Interprocessor Interrupts

Each processor on the backplane has a single input queue for packets received from
other processors. To attend to its input queue, a processor can either poll or rely on
interrupts (either bus interrupts or mailbox interrupts). When using polling, the
processor examines its input queue at fixed intervals. When using interrupts, the
sending processor notifies the receiving processor that its input queue contains
packets.

1. Or a close approximation to it. Some hardware cannot generate RMW cycles on the VME
bus and the PCI bus does not support them at all.

! CAUTION: Configure the shared memory test-and-set type (configuration
parameter: SM_TAS_TYPE) to either SM_TAS_SOFT or SM_TAS_HARD. If even one
processor on the backplane lacks hardware test and set, all processors in the
backplane must use the software test and set (SM_TAS_SOFT).

NOTE: The shared memory backplane network driver does not support the
specification of TAS operation size. This size is architecture dependent.
27

VxWorks 5.5
Network Programmer’s Guide
Interrupt-driven communication using either bus interrupts or mailbox interrupts
is more efficient than polling in that it invests as few cycles in communication as is
possible (although at a cost of greater latency). Unfortunately, the bus interrupt
mechanism can handle only as many processors as there are interrupt lines
available on the backplane (for example, VMEbus has seven). In addition, not all
processor boards are capable of generating bus interrupts.

As an alternative to bus interrupts, you can use mailbox interrupts, also called
location monitors because they monitor the access to specific memory locations. A
mailbox interrupt specifies a bus address that, when written to or read from, causes
a specific interrupt on the processor board. Using hardware jumpers or software
registers, you can set each board to use a different address for its mailbox interrupt.

To generate a mailbox interrupt, a processor accesses the specified mail box
address and performs a configurable read or write of a configurable size. Because
each interrupt requires only a single bus address, there is no meaningful limit on
the number of processors that can use mailbox interrupts. Most modern processor
boards include some kind of mailbox interrupt.

Each processor must tell the other processors which notification method it uses.
Each processor enters its interrupt type and up to three related parameters in the
shared-memory data structures. The shared-memory backplane network drivers
of the other processors use this information when sending packets.

The interrupt type and parameters for each processor are specified during
configuration. The relevant configuration parameter is SM_INT_TYPE (also
SM_INT_ARGn). The possible values are defined in the header file smLib.h.
Table 3-1 summarizes the available interrupt types and parameters.

3.3.3 Sequential Addressing

Sequential addressing is a method of assigning IP addresses to processors on the
backplane network based on their processor number. Addresses are assigned in
ascending order, with the master having the lowest address, as shown in
Figure 3-3.

Using sequential addressing, a target on the shared-memory backplane network
can determine its own IP address. Only the master’s IP address need be entered
manually. All other processors on the backplane determine their IP address by
adding their processor number to the master’s IP address.

Sequential addressing simplifies network configuration. By explicitly assigning an
IP address to the master processor, you implicitly assign IP addresses to other
processors. This simplifies setting up the boot parameters, in that only the master’s
28

3

3
Data Link Layer Components
parameters need to specify the backplane network IP address. The boot
parameters of the slave processors need no backplane IP addresses. Thus, when
setting up a shared-memory backplane network with sequential addressing,
choose a block of IP addresses and assign the lowest address in this block to the
master.

When the master initializes the shared-memory backplane network driver, the
master passes in its IP address as a parameter. The shared-memory backplane

Table 3-1 Backplane Interrupt Types

Type Arg 1 Arg 2 Arg 3 Description

SM_INT_NONE - - - Polling

SM_INT_BUS level vector - Bus interrupt

SM_INT_MAILBOX_1 address space address value 1-byte write mailbox

SM_INT_MAILBOX_2 address space address value 2-byte write mailbox

SM_INT_MAILBOX_4 address space address value 4-byte write mailbox

SM_INT_MAILBOX_R1 address space address - 1-byte read mailbox

SM_INT_MAILBOX_R2 address space address - 2-byte read mailbox

SM_INT_MAILBOX_R4 address space address - 4-byte read mailbox

SM_INT_USER_1 user defined user defined user defined first user-defined
method

SM_INT_USER_2 user defined user defined user defined second user-defined
method

Figure 3-3 Sequential Addressing

150.12.17.1 150.12.17.2 150.12.17.3

(Shared-Memory Backplane Network)
sm0

CPU 0 CPU 1 CPU 2
29

VxWorks 5.5
Network Programmer’s Guide
network stores this information in the shared-memory region. If any other address
is specified in the inet on backplane (b) boot parameter, the specified address
overrides the sequential address. To determine the starting IP address for an active
shared-memory network, use smNetShow(), if you are working under Tornado 3,
or ifShow(“sm”) from the master if you are working under Tornado 2.

Tornado 3 Example

In the following example, the master’s IP address is 150.12.17.1.

[vxKernel] -> smNetShow

The following output displays on the standard output device:

Anchor Local Addr: 0x4100, Hard TAS
Sequential addressing enabled.
Master IP address: 150.12.17.1 Local IP address: 150.12.17.2

heartbeat = 56, header at 0xe0025c, free pkts = 57.

cpu int type arg1 arg2 arg3 queued pkts
--- -------- ---------- ---------- ---------- -----------
0 mbox-1 0xd 0xfb000000 0x80 0
1 mbox-1 0xd 0xfb001000 0x80 2

PACKETS ERRORS
Unicast Brdcast

Input Output Input Output Input Output
======= ======= ======= ======= + ======= =======

26 27 2 2 | 0 1
value = 0 = 0x0
[vxKernel] ->

With sequential addressing, when booting a slave, the backplane IP address and
gateway IP boot parameters are not necessary. The default gateway address is the
address of the master. Another address can be specified if this is not the desired
configuration.

[vxWorks Boot] : p
boot device : esm=0xD:0x800000
processor number : 1
file name : /folk/fred/wind/target/config/bspname/vxWorks
host inet (h) : 150.12.1.159
user (u) : moose
flags (f) : 0x0
[vxWorks Boot] : @

boot device : esm
unit number : 0
processor number : 1
host name : host
file name :/folk/fred/wind/target/config/bspname/vxWorks
30

3

3
Data Link Layer Components
inet on backplane (b): 150.12.17.2:ffffff00
host inet (h) : 150.12.1.159
user (u) : moose
flags (f) : 0x0
target name (tn) : t207-2

Attaching to SM net with memory anchor at 0x10004100...
SM address: 150.12.17.2
Attached TCP/IP interface to esm0.
Gateway inet address: 150.12.17.1
Attaching interface lo0...done
Loading /folk/fred/wind/target/config/bspname/vxWorks/boot.txt

sdm0=/folk/fred/wind/target/config/bspname/vxWorks/vxKernel.sdm
0x000d8ae0 + 0x00018cf0 + 0x00011f70 + (0x0000ccec) + 0x00000078 + 0x0000
015c

Sequential addressing can be enabled during configuration. The relevant
component is INCLUDE_SM_SEQ_ADDR.

Tornado 2 Example

In the following example, the master’s IP address is 150.12.17.1.

[vxKernel] -> ifShow("sm")

The following output displays on the standard output device:

sm (unit number 0):
Flags: (0x8063) UP BROADCAST MULTICAST ARP RUNNING
Type: ETHERNET_CSMACD
Internet address: 147.11.207.1
Broadcast address: 147.11.207.255
Netmask 0xffff0000 Subnetmask 0xffffff00
Ethernet address is 00:02:e2:00:00:00
Metric is 0
Maximum Transfer Unit size is 2178
0 packets received; 1 packets sent
0 multicast packets received
0 multicast packets sent
0 input errors; 0 output errors
0 collisions; 0 dropped

value = 29= 0x1d
[vxKernel] ->

With sequential addressing, when booting a slave, the backplane IP address and
gateway IP boot parameters are not necessary. The default gateway address is the
address of the master. Another address can be specified if this is not the desired
configuration.

[vxWorks Boot]: p
boot device : sm=0x800000
processor number : 1
31

VxWorks 5.5
Network Programmer’s Guide
file name : /folk/fred/wind/target/config/bspname/vxWorks
host inet (h) : 150.12.1.159
user (u) : moose
flags (f) : 0x0
[vxWorks Boot]: @

boot device : sm
unit number : 0
processor number : 1
host name : host
file name :/folk/fred/wind/target/config/bspname/vxWorks
inet on backplane (b): 150.12.17.2:ffffff00
host inet (h) : 150.12.1.159
user (u) : moose
flags (f) : 0x0
target name (tn) : t207-2

Backplane anchor at 0x10004100... Attaching network interface sm0... done
Attaching interface lo0...done
Loading... 950064
Starting at 0x100000,,,

Sequential addressing can be enabled during configuration. The relevant
component is INCLUDE_SM_SEQ_ADDR.

3.3.4 Shared-Memory Backplane Network Configuration

For UNIX, configuring the host to support a shared-memory backplane network
uses the same procedures outlined elsewhere for other types of networks. In
particular, a shared-memory backplane network requires that:

� All shared-memory backplane network host names and addresses are present
in /etc/hosts.

� All shared-memory backplane network host names are present in .rhosts in
your home directory or in /etc/hosts.equiv if you are using RSH.

� A gateway entry specifies the master’s Internet address on the external
network as the gateway to the shared-memory backplane network. The
gateway entry is not needed if you are using proxy ARP. For more information,
see 4.8 Proxy ARP for Transparent Subnets, p.81.

For Windows hosts, the steps required to configure the host are determined by
your version of Windows and the networking software you are using. See that
documentation for details.
32

3

3
Data Link Layer Components
Example Configuration

This section presents an example of a simple shared-memory backplane network.
The network contains a single host and two target processors on a single
backplane. In addition to the target processors, the backplane includes a separate
memory board for the shared-memory region, and an Ethernet controller board.
The additional memory board is not essential, but provides a configuration that is
easier to describe.

Figure 3-4 illustrates the overall configuration. The Ethernet network is assigned
network number 150, subnet 12.0, and the shared-memory backplane network is
assigned network number 161, subnet 27.0. The host h1 is assigned the Internet
address 150.12.0.1.

The shared memory master is vx1, and functions as the gateway between the
Ethernet and shared-memory backplane networks. It therefore has two Internet
addresses: 150.12.0.2 on the Ethernet network and 161.27.0.1 on the
shared-memory backplane network.

The other backplane processor is vx2; it is assigned the shared-memory backplane
network address 161.27.0.2. It has no address on the Ethernet because it is not
directly connected to that network. However, it can communicate with h1 over the

Figure 3-4 Example Shared-Memory Backplane Network

Ethernet

h1

vx1vx2

host

sm master
& gateway

150.12.0.0

150.12.0.1

150.12.0.2

161.27.0.1161.27.0.2

161.27.0.0Shared-Memory
Network
33

VxWorks 5.5
Network Programmer’s Guide
shared-memory backplane network, using vx1 as a gateway. Of course, all
gateway use is handled by the IP layer and is completely transparent to the user.
Table 3-2 shows the example address assignments.

To configure the UNIX system for our example, the /etc/hosts file must contain the
Internet address and name of each system. Note that the backplane master has two
entries. The second entry, vx1.sm, is not actually necessary. This is because the host
system never accesses that system with that address. Still, it is useful to include it
in the file because that ensures that the address is not used for some other purpose.

The entries in /etc/hosts are as follows:

150.12.0.1 h1
150.12.0.2 vx1
161.27.0.1 vx1.sm
161.27.0.2 vx2

To allow remote access from the target systems to the UNIX host, the .rhosts file in
your home directory, or the file /etc/hosts.equiv, must contain the names of the
target systems:

vx1
vx2

To inform the UNIX system of the existence of the Ethernet-to-shared-memory
backplane network gateway, make sure the following line is in the file
/etc/gateways at the time the route daemon routed is started.

net 161.27.0.0 gateway 150.12.0.2 metric 1 passive

Alternatively, you can add the route manually (effective until the next reboot) with
the following UNIX command:

% route add net 161.27.0.0 150.12.0.2 1

Table 3-2 Network Address Assignments

Name Inet on Ethernet Inet on Backplane

h1 150.12.0.1 -

vx1 150.12.0.2 161.27.0.1

vx2 - 161.27.0.2
34

3

3
Data Link Layer Components
To prepare a run-time image for vx1, the backplane master shown in Figure 3-4,
include the following configuration components:

� Tornado 3

� INCLUDE_SMEND — includes the shared memory END (smEnd)

� INCLUDE_SM_COMMON — includes configuration parameters common
to memory sharing utilities

� INCLUDE_SECOND_SMEND_BOOT — attaches the smEnd as a secondary
boot device

� SM_OFF_BOARD — included because the memory is physically off-board

Within the INCLUDE_SMEND and INCLUDE_SM_COMMON components, you
must set the parameters as shown in Table 3-3.

Table 3-3 Configuration Parameters from INCLUDE_SM_COMMON and INCLUDE_SMEND

Parameter1 Value Comment

SM_NET_DEV_NAME “esm” The name of the device.

SM_ADRS_SPACE 0xD
e.g., esm=0xD:0x800000

Address space of shared-memory
region as seen by vx1.

SM_ANCHOR_ADRS 0x800000
e.g., esm=0xD:0x800000

Address of anchor as seen by vx1 in
SM_ADRS_SPACE.

SM_NET_MEM_SIZE 0x80000 Size of the shared-memory network
area, in bytes.

SM_OBJ_MEM_SIZE (set to zero if not used) Size of the shared-memory object area,
in bytes.

SM_INT_TYPE SM_INT_MAILBOX_1 Interrupt targets with 1-byte write
mailbox.

SM_INT_ARG1 VME_AM_SUP_SHORT_IO Mailbox in short I/O space.

SM_INT_ARG2 (0xc000|
(sysProcNum * 2))

Mailbox at:
0xc000 for vx1
0xc002 for vx2

SM_INT_ARG3 0 Write 0 value to mailbox.

SM_PKTS_SIZE DEFAULT_PKTS_SIZE Shared memory packet size.
35

VxWorks 5.5
Network Programmer’s Guide
� Tornado 2

� INCLUDE_SM_NET —includes the shared memory driver (if_sm)

� INCLUDE_SM_COMMON—includes configuration parameters common
to memory sharing utilities

� INCLUDE_SECOND_SMNET—attaches the if_sm as a secondary boot
device

� INCLUDE_SM_NET_SHOW—includes the smNetShow() routine

Within the INCLUDE_SM_NET and INCLUDE_SM_COMMON components,
you must set the parameters as shown in Table 3-4.

SM_CPUS_MAX DEFAULT_CPUS_MAX Maximum number of CPUs for the
shared network.

1 The SM_PKTS_SIZE and SM_CPUS_MAX parameters are part the INCLUDE_SMEND
configuration component. The other parameters are in INCLUDE_SM_COMMON.

Table 3-4 Configuration Parameters from INCLUDE_SM_COMMON and INCLUDE_SM_NET

Parameter1 Value Comment

SM_OFF_BOARD TRUE shared memory is on separate board

SM_ANCHOR_ADRS 0x800000
e.g., sm=0x800000

Address of anchor as seen by local
CPU.

SM_MEM_SIZE 0x80000 Size of the shared-memory backplane
network area, in bytes.

SM_OBJ_MEM_SIZE (set to zero if not used) Size of the shared-memory object area,
in bytes.

SM_INT_TYPE SM_INT_MAILBOX_1 Interrupt targets with 1-byte write
mailbox.

SM_INT_ARG1 VME_AM_SUP_SHORT_IO Mailbox in short I/O space.

SM_INT_ARG2 (0xc000|
(sysProcNum * 2))

Mailbox at:
0xc000 for vx1
0xc002 for vx2

Table 3-3 Configuration Parameters from INCLUDE_SM_COMMON and INCLUDE_SMEND (Continued)

Parameter1 Value Comment
36

3

3
Data Link Layer Components
When booting the backplane master, vx1, specify boot line parameters such as the
following:

boot device : gn
processor number : 0
host name : h1
file name : /usr/wind/target/config/bspname/vxWorks
inet on ethernet (e) : 150.12.0.2
inet on backplane (b) : 161.27.0.1:ffffff00
host inet (h) : 150.12.0.1
gateway inet (g) :
user (u) : darger
ftp password (pw) (blank=use rsh) :
flags (f) : 0

The other target, vx2, would use the following boot parameters:1

Under Tornado 3:

boot device : esm
processor number : 1
host name : h1
file name : /usr/wind/target/config/bspname/vxWorks
inet on ethernet (e) :
inet on backplane (b) : 161.27.0.2
host inet (h) : 150.12.0.1
gateway inet (g) : 161.27.0.1
user (u) : darger
ftp password (pw) (blank=use rsh)†:
flags (f) : 0

SM_INT_ARG3 0 Write 0 value to mailbox.

SM_PKTS_SIZE DEFAULT_PKTS_SIZE Shared memory packet size.

SM_CPUS_MAX DEFAULT_CPUS_MAX Maximum number of CPUs for the
shared network.

1 The SM_PKTS_SIZE and SM_CPUS_MAX parameters are part the INCLUDE_SM_NET
configuration component. The other parameters are in INCLUDE_SM_COMMON.

NOTE: For more information on boot devices, see the Tornado User’s Guide: Getting
Started. To determine which boot device to use, see the BSP’s documentation.

1. The parameters inet on backplane (b) and gateway inet (g) are optional with sequential
addressing.

Table 3-4 Configuration Parameters from INCLUDE_SM_COMMON and INCLUDE_SM_NET (Continued)

Parameter1 Value Comment
37

VxWorks 5.5
Network Programmer’s Guide
Under Tornado 2:

boot device : sm
processor number : 1
host name : h1
file name : /usr/wind/target/config/bspname/vxWorks
inet on ethernet (e) :
inet on backplane (b) : 161.27.0.2
host inet (h) : 150.12.0.1
gateway inet (g) : 161.27.0.1
user (u) : darger
ftp password (pw) (blank=use rsh)†:
flags (f) : 0

Troubleshooting

Getting a shared-memory backplane network configured for the first time can be
tricky. If you have trouble, use the following troubleshooting procedures—taking
one step at a time.

1. Boot a single processor in the backplane without any additional memory or
processor cards.

2. Power off and add the memory board, if you are using one. Power on and boot
the system again. Using the VxWorks boot ROM commands for display
memory (d) and modify memory (m), verify that you can access the shared
memory at the address you expect, with the size you expect.

3. Reboot the system, filling in the inet on backplane parameter. This initializes
the shared-memory backplane network. The following message appears
during the reboot:

Under Tornado 3:

Backplane anchor at anchor-addrs...Attaching network interface esm...don
e.

Under Tornado 2:

Backplane anchor at anchor-addrs...Attaching network interface sm...done
.

4. After VxWorks is booted, you can display the state of the shared-memory
network with the smNetShow() routine, as follows:

-> smNetShow ["interface"] [, 1]
value = 0 = 0x0
38

3

3
Data Link Layer Components
Under Tornado 3, the interface parameter is esm by default. Under Tornado 2,
it is sm0. Normally, smNetShow() displays cumulative activity statistics to
the standard output device; specifying 1 (one) as the second argument resets
the totals to zero.

5. Now test the host connection to the shared-memory master by pinging both of
its IP addresses from the host. On the host console , type:

ping 150.12.0.2

This should succeed and produce a message something like:

150.12.0.2 is alive

Then type:

ping 161.27.0.1

This should also succeed. If either ping fails, the host is not configured
properly, or the shared-memory master has incorrect boot parameters.

6. Power off and add the second processor board. Remember that the second
processor must not be configured as the system controller board. Power on and
stop the second processor from booting by typing any key to the boot ROM
program. Boot the first processor as you did before.

7. If you have trouble booting the first processor with the second processor
plugged in, you have some hardware conflict. Check that only the first
processor board is the system controller. Check that there are no conflicts
between the memory addresses of the various boards.

8. On the second processor’s console, use the d and m boot ROM commands to
verify that you can see the shared memory from the second processor. This is
either the memory of the separate memory board (if you are using the
off-board configuration) or the dual-ported memory of the first processor (if
you are using the on-board configuration).

9. Use the d command on the second processor.

Under Tornado 3, use the d command to look for the local address of the
shared-memory anchor as mapped to the two-part bus address space and
anchor location within that space. You can also look for the shared-memory
heartbeat; see The Shared-Memory Backplane Network Heartbeat, p.25.

Under Tornado 2, use the d command on the second processor to look for the
shared-memory anchor. You can also look for the shared-memory heartbeat;
see The Shared-Memory Backplane Network Heartbeat, p.25.
39

VxWorks 5.5
Network Programmer’s Guide
10. After you have found the anchor from the second processor, enter the boot
parameter for the boot device with the appropriate anchor bus address:

Under Tornado 3, enter the two-part backplane bus anchor address:

boot device: esm=0x0d:0x10010000

Under Tornado 2, enter the local bus anchor address:

boot device: sm=0x10010000

Enter the other boot parameters and try booting the second processor.

11. If the second processor does not boot, you can use smNetShow() on the first
processor to see if the second processor is correctly attaching to the
shared-memory backplane network. If not, then you have probably specified
the anchor bus address incorrectly on the second processor or have a mapping
error between the local and backplane buses. If the second processor is
attached, then the problem is more likely to be with the gateway or with the
host system configuration.

12. You can use host system utilities, such as arp, netstat, etherfind, and ping, to
study the state of the network from the host side; see the Tornado User’s Guide:
Getting Started.

13. If all else fails, call your technical support organization.

3.4 Custom Interfaces

You can write a driver to provide a custom interface to existing or new
communication media. If you write the driver to use the MUX/END interface, the
VxWorks network stack can use your custom interface as readily as it uses the
Ethernet interface.
40

4

Configuring the
Network Stack
4.1 Introduction

This chapter tells you how to include and configure VxWorks components on a
VxWorks target. It also tells you how to set any parameter values associated with
those components. Configuring VxWorks involves activities such as:

� including VxWorks components in the VxWorks image at build time
� setting the parameter values associated with those components
� configuring the network interfaces
� manually adjusting the contents of the forwarding table (optional)

4.2 Summary of Configuration Settings

The following summary lists all compile-time components and parameters,
boot-line parameters, and run-time function calls associated with configuring the
VxWorks stack. The more familiar you are with these components, parameters,
functions, and the functionality associated with each, the easier it will be to
configure your VxWorks stack.

NOTE: By default, IP forwarding is turned on. This is typical for a router. If you
want a host only product, you could turn off IP forwarding. To do this, remove the
IP_DO_FORWARDING flag from the IP_FLAGS_DFLT configuration parameter.
41

VxWorks 5.5
Network Programmer’s Guide
Compile-time Configuration Components and Parameters

ARP_MAX_ENTRIES — limit size of ARP table

INCLUDE_TCP — include the TCP protocol

INCLUDE_UDP — include the UDP protocol

INCLUDE_ICMP — include the ICMP protocol

INCLUDE_IGMP — include the IGMP protocol (host side)

INCLUDE_IGMP_ROUTER — include the IGMP protocol (router side)

INCLUDE_PING — include PING client

INCLUDE_SM_NET — include shared memory network support

INCLUDE_PROXY_SERVER — include the proxy ARP server

INCLUDE_PROXY_CLIENT — include the proxy ARP client

INCLUDE_SM_SEQ_ADDR — assign sequential addresses to hosts on the shared
memory back plane

INCLUDE_PROXY_DEFAULT_ADDR — use default IP address (ead plus 1) for
interface to shared memory backplane

SM_OFF_BOARD — identifies whether shared memory is off or on local board

TCP_FLAGS_DFLT — TCP Default Flags

TCP_SND_SIZE_DFLT — TCP Send Buffer Size

TCP_RCV_SIZE_DFLT — TCP Receive Buffer Size

TCP_CON_TIMEO_DFLT — TCP Connection Time out

TCP_REXMT_THLD_DFLT — TCP Retransmission Threshold

TCP_MSS_DFLT — Default TCP Maximum Segment Size

TCP_RND_TRIP_DFLT — Default Round Trip Interval

TCP_IDLE_TIMEO_DFLT — TCP Idle Time-out Value

TCP_MAX_PROBE_DFLT — TCP Probe Limit

UDP_FLAGS_DFLT — UDP Configuration Flags

UDP_SND_SIZE_DFLT — UDP Send Buffer Size

UDP_RCV_SIZE_DFLT — UDP Receive Buffer Size

ICMP_FLAGS_DFLT — ICMP Configuration Flags
42

4

4
Configuring the Network Stack
IP_FLAGS_DFLT — IP Configuration Flags

IP_MAX_UNITS — maximum number of interfaces attached to IP layer

IP_TTL_DFLT — IP Time-to-live Value

IP_QLEN_DFLT — IP Packet Queue Size

IP_FRAG_TTL_DFLT — IP Time-to-live Value for packet fragments

NUM_64 — Number of 64 byte clusters for network data memory pool

NUM_128 — Number of 128 byte clusters for network data memory pool

NUM_256 — Number of 256 byte clusters for network data memory pool

NUM_512 — Number of 512 byte clusters for network data memory pool

NUM_1024 — Number of 1024 byte clusters for network data memory pool

NUM_2048 — Number of 2048 byte clusters for network data memory pool

NUM_CL_BLKS — Number of clBlks for network data memory pool

NUM_NET_MBLKS — Number of mBlks for network data memory pool

NUM_SYS_64 — Number of 64 byte clusters for network system memory pool

NUM_SYS_128 — Number of 128 byte clusters for network system memory pool

NUM_SYS_256 — Number of 256 byte clusters for network system memory pool

NUM_SYS_512 — Number of 512 byte clusters for network system memory pool

NUM_SYS_CL_BLKS — Number of clBlks for network system memory pool

NUM_SYS_MBLKS — Number of mBlks for network system memory pool

Boot Line Configuration Values

ead — boot line parameter specifying IP address and mask for boot interface

bootDev — boot line parameter specifying name of boot network interface

unitNum — boot line parameter specifying number of boot network interface

gad — address and mask of the intermediate gateway to host supplying boot
image

bad — address and mask assigned to interface representing the shared memory
back plane. If you are using sequential addressing and proxy default addressing,
the target generates a bad value from the ead parameter and the CPU number.
43

VxWorks 5.5
Network Programmer’s Guide
Configuration Functions Callable at Run-Time

igmpRouterLibInit() — initialize IGMPv2 router

igmpRouterLibQuit() — shut down IGMPv2 router

igmpInterfaceEnable() — enable IGMPv2 on specified interface

igmpInterfaceDisable() — disable IGMPv2 on specified interface

igmpLibInit() — initialize the IGMPv2 host

ipAttach() — attach IP to the MUX

ipDetach() — detach IP from the MUX

ifMaskSet() — set network mask for an interface

ifAddrSet() — set IP address for an interface and associated broadcast address

ifBroadcastSet() — set custom broadcast IP address

mRouteAdd() — add a static route to the routing table

mRouteDelete() — delete a static route from the routing table

mRouteEntryAdd() — add a protocol-owned route to the routing table

mRouteEntryDelete() — delete a protocol-owned route from the routing table

proxyPortFwdOn() — allow forwarding of broadcasts for specified port

proxyPortFwdOff() — block forwarding of broadcasts for specified port

smNetShow() — find the shared memory anchor

sysBusToLocalAddr() — get the correct bus address for the shared memory
anchor

4.3 Configuring the Network Stack at Build Time

At compile time, you select the protocols and facilities that are included in the
networking stack. You may also specify resources allocated to the networking
stack as well as set behavior configuration values for IP, TCP, UDP, and ICMP.
44

4

4
Configuring the Network Stack
4.3.1 Network Protocol Scalability

The default VxWorks stack includes the code implementing the TCP, UDP, ICMP,
and IGMP protocols. If you want to exclude one of these protocols, reconfigure
VxWorks using the configuration parameters listed below:

About UDP — User Datagram Protocol

UDP provides a simple datagram-based end-to-end communication mechanism.
UDP extends the message address to include a port address in addition to the host
Internet address. The port address identifies one of several distinct destinations
within a single host. Thus, UDP accepts messages addressed to a particular port on
a particular host, and tries to deliver them, using IP to transport the messages
between the hosts. Like IP, UDP makes no guarantees that messages are delivered
correctly or even delivered at all.

However, this relatively low-overhead delivery mechanism makes UDP useful to
many other protocols and utilities, such as BOOTP, DHCP, DNS, RIP, SNMP, and
NFS.

About TCP — Transmission Control Protocol

TCP provides reliable, flow-controlled, two-way, process-to-process transmission
of data. TCP is a connection-based communication mechanism. This means that
before data can be exchanged over TCP, the two communicating processes must
first establish a connection through a distinct connection phase. Data is then sent
and received as a byte stream at both ends.

Like UDP, TCP extends the connection address to include a port address in
addition to the host Internet address. That is, a connection is established between
a particular port in one host and a particular port in another host. TCP guarantees
that the delivery of data is correct, in the proper order, and without duplication.

About ICMP — Internet Control Message Protocol

ICMP provides information on the success of data transfer. This protocol defines a
set of messages that the TCP/IP stack uses to detect a variety of transmission
failure types as well as time information. How the TCP/IP stack processes these
messages and how these messages change TCP/IP stack configuration often

INCLUDE_TCP Include the TCP protocol.
INCLUDE_UDP Include the UDP protocol.
INCLUDE_ICMP Include the ICMP protocol.
INCLUDE_IGMP Include the IGMP protocol (host side).
INCLUDE_IGMP_ROUTER Include the IGMP protocol (router side).
45

VxWorks 5.5
Network Programmer’s Guide
depends upon higher level protocols, such as TCP and interested users of UDP.
Still, ICMP is fundamental to monitoring transmission success.

About IGMP — Internet Group Management Protocol

The TCP/IP stack uses IGMP to support multicasting. The standard VxWorks
stack supports both the host-side and the router-side of the IGMP v2 protocol.

IGMP v2 is specified in RFC 2236. According to the RFC, IGMP routers listen on
enabled interfaces for membership reports from attached hosts. Using this
information, the IGMP routers maintain lists of the multicast addresses to which
the IGMP hosts are listening. The IGMP router keeps separate lists for each
interface. To discover when it needs to prune entries from a list, the IGMP router
periodically transmits queries to the multicast groups on a given interface. If no
reply arrives within a specifiable time or if a leave message is processed, the IGMP
router removes that group from the list for that interface.

To configure the host-side VxWorks IGMP implementation, you need only include
it in your image. It starts up automatically at boot time and requires no system
management attention. Configuring the router-side implementation can be as
simple, although you have more options. For more information, see 4.6 IGMP
under VxWorks, p.71.

4.3.2 Configuring the ARP, IP, TCP, UDP, IGMP, and ICMP Protocols

This section describes the configuration for the network layer protocols. Table 4-1
describes all configuration options. For some options, the default value is specified
using symbolic constants. These configuration components are defined in
netLib.h. To override any default values assigned to these constants, reconfigure
VxWorks with the appropriate values set.

Table 4-1 Network Configuration Options

Configuration Component Default Value and Description

ARP Cache Size

ARP_MAX_ENTRIES

Default Value: 20

Limits the number of entries in the ARP cache. Each entry
requires two 64-byte clusters and one 256-byte cluster.
46

4

4
Configuring the Network Stack
TCP Default Flags

TCP_FLAGS_DFLT

Default Value: TCP_DO_RFC1323

Includes RFC 1323 support. RFC 1323 is a specification to
support networks that have high bandwidth and longer round
trip times. This option is enabled by default. If the peer cannot
negotiate this option, it should drop the option. If the host does
not understand this option, it closes the connection. For such
hosts, you must turn off this option.

You can also use this option in conjunction with IP_FLAGS_DFLT
to turn off software checksum computation. See
IP_FLAGS_DFLT, p.48.

TCP Send Buffer Size

TCP_SND_SIZE_DFLT

Default Value: 8192

Sets the default send buffer size of a TCP connection.

TCP Receive Buffer Size

TCP_RCV_SIZE_DFLT

Default Value: 8192

Sets the default receive buffer size of a TCP connection.

TCP Connection Timeout

TCP_CON_TIMEO_DFLT

Default Value: 150 (75 seconds)

Sets the timeout on establishing a TCP connection.

TCP Retransmission
Threshold

TCP_REXMT_THLD_DFLT

Default Value: 3

Sets the number of duplicate ACKs needed to trigger the fast
retransmit algorithm. Typically, TCP receives a duplicate ACK
only if a segment is lost.

Default TCP Maximum
Segment Size

(TCP_MSS_DFLT)

Default Value: 512

Sets the default maximum segment size to use if TCP cannot
establish the maximum segment size of a connection.

Default Round Trip
Interval

TCP_RND_TRIP_DFLT

Default Value: 3 (seconds)

Sets the round-trip time to use if TCP cannot get an estimate
within 3 seconds. The round trip time of a connection is
calculated dynamically.

TCP Idle Timeout Value

TCP_IDLE_TIMEO_DFLT

Default Value: 14400 (4 hours, in seconds)

Sets the idle time for a connection. Idle times greater than this
value trigger a keep-alive probe. After the first keep-alive probe,
a probe is sent every 75 seconds for a number of times restricted
by the TCP Probe Limit.

Table 4-1 Network Configuration Options (Continued)

Configuration Component Default Value and Description
47

VxWorks 5.5
Network Programmer’s Guide
TCP Probe Limit

TCP_MAX_PROBE_DFLT

Default Value: 8

Sets the maximum number of keep-alive probes sent out on an
idle TCP connection. If TPC sends out the maximum number of
keep-alive probes but receives no response, TCP drops the
connection.

UDP Configuration Flags

UDP_FLAGS_DFLT

Default Value:UDP_DO_CKSUM_SND | UDP_DO_CKSUM_RCV

Specifies a calculation of data checksum for both send and
receive UDP datagrams.

UDP Send Buffer Size

UDP_SND_SIZE_DFLT

Default Value: 9216

Sets the default send buffer size of a UDP socket.

UDP Receive Buffer Size

UDP_RCV_SIZE_DFLT

Default Value: 41600

Sets the default receive buffer size of a UDP socket.

ICMP Configuration
Flags

ICMP_FLAGS_DFLT

Default Value: ICMP_NO_MASK_REPLY

The default value specifies no ICMP mask replies. If this option
is enabled on a VxWorks host, and the host receives an ICMP
mask query, the VxWorks host replies with its network
interface mask.

IP Configuration Flags

IP_FLAGS_DFLT

Default Value: IP_DO_FORWARDING | IP_DO_REDIRECT |
IP_DO_CHECKSUM_SND | IP_DO_CHECKSUM_RCV

The IP_DO_FORWARDING flag enables packet forwarding on
systems with multiple external interfaces. This is a typical router
configuration. If you want a product that does not forward
packets, you must remove this flag from the default value.

The IP_DO_REDIRECT flag enables ICMP redirects, which are
messages sent by a receiving host that was not the optimal
recipient of a packet. The redirect message provides the address
of a better host.

IP_DO_CHECKSUM_SND and IP_DO_CHECKSUM_RCV enable
software checksums for packets sent and received. Both
checksums are required for RFC compliance, but, if the network
chip handles IP checksum computation and insertion, you do
not need it in software. To prevent all software checksums, clear
both IP_DO_CHECKSUM_SND and IP_DO_CHECKSUM_RCV.
You must also set UDP_FLAGS_DFLT to zero.

Table 4-1 Network Configuration Options (Continued)

Configuration Component Default Value and Description
48

4

4
Configuring the Network Stack
TCP Window Sizes

For TCP sockets, the socket buffer sizes also limit the maximum send and receive
window sizes for a connection. While TCP window sizes under BSD 4.4 can
theoretically exceed a billion bytes, the maximum socket receive or send buffer size
of 258,111 bytes determines the actual upper limit.

The window size for a connection must be set with setsockopt() before the
listen() call (on the server) or the connect() call (on the client), because the
maximum window sizes are among the parameters negotiated when the

IP Time-to-live Value

IP_TTL_DFLT

Default Value: 64

Sets the IP default time to live, an upper limit on the number of
routers through which a datagram can pass. This value limits
the lifetime of a datagram. It is decremented by one by every
router that handles the datagram. If a host or router gets a
packet whose time to live is zero (this value is stored in a field in
the IP header), the datagram is thrown out and the sender is
notified with an ICMP message. This behavior prevents packets
from wandering in the networks forever.

IP Packet Queue Size

IP_QLEN_DFLT

Default Value: 50

Sets the default length of the IP queue and the network interface
queue. IP packets are added to the IP queue when packets are
received. Packets are added to the network interface queue
when transmitting.

IP Time-to-live Value for
packet fragments

IP_FRAG_TTL_DFLT

Default Value: 60 (30 seconds for received fragments)

Sets the default time to live value for an IP fragment. To transmit
a packet bigger than the MTU size, the IP layer breaks the packet
into fragments. On the receiving side, IP re-assembles these
fragments to form the original packet. Upon receiving a
fragment, IP adds it to the IP fragment queue. Each fragment
waiting to be re-assembled is removed after the time-to-live
expires. If the network is extremely busy, the IP fragment queue
can accumulate many fragments. This accumulation of
fragments can use up a large amount of system memory. To
alleviate this problem, reduce the value of this configuration
parameter.

Table 4-1 Network Configuration Options (Continued)

Configuration Component Default Value and Description
49

VxWorks 5.5
Network Programmer’s Guide
connection is established. If you change the buffer size after the connection has
been established, this change will not have any effect.

Periodically TCP sends window updates informing the peer how much space is
available in the receive buffer. The advertised window size cannot exceed the
maximum set when the connection was established, but will decrease to zero if the
receive buffer becomes full.

4.3.3 Network Memory Pool Configuration

VxWorks allocates and initializes memory for the network stack during network
initialization. This memory is allocated to two pools, a system pool and a data
pool. To get status information on these pools, use netStackSysPoolShow() and
netStackDataPoolShow().

The memory in these pools is organized and managed using mBlk structures,
clBlk structures, cluster buffers (simple character arrays), and routines supplied
by netBufLib. The mBlk and clBlk structures provide information necessary to
support buffer sharing and buffer chaining for the data that is stored in clusters.
The clusters come in sizes that are determined by the CL_DESC table that describes
the memory pool. The netBufLib functions provide an interface that you can use
to get or return buffers associated with a memory pool.

The CL_DESC tables for the network system memory pool and the network data
memory pool are defined in target/config/comps/src/net/usrNetLib.c as
sysClDescTbl[] and clDescTbl[] respectively.

Clusters

Valid cluster sizes are powers of two to up to 64KB (65536). Whether a particular
cluster size is valid within a particular memory pool depends on the contents of
the CL_DESC table that describes the pool. The two pools integral to the network
stack use the CL_DESC tables, clDescTbl[] and sysClDescTbl[].

! WARNING: Failure to configure these two pools correctly is one of the single
biggest causes of “frozen” network applications. The default settings for these
pools are just enough to get the stack up, running, and able to respond to simple
tests, such as ping. Deployed applications require more resources. Therefore,
study carefully the information in Determining Memory Pool Usage, p.55.
50

4

4
Configuring the Network Stack
� Data pool cluster sizes

Data pool cluster sizes are defined in usrNetLib.c by clDescTbl[] as follows:

CL_DESC clDescTbl [] = /* network cluster pool configuration table */
{
/*
clusterSize num memArea memSize
----------- ---- ------- -------
*/
{64, NUM_64, NULL, 0},
{128, NUM_128, NULL, 0},
{256, NUM_256, NULL, 0},
{512, NUM_512, NULL, 0},
{1024, NUM_1024, NULL, 0},
{2048, NUM_2048, NULL, 0}
};

� System pool cluster sizes

System pool cluster sizes are defined in usrNetLib.c by sysClDescTbl[] as
follows:

CL_DESC sysClDescTbl [] =
{
/*
clusterSize num memArea memSize
----------- ---- ------- -------
*/
{64, NUM_SYS_64, NULL, 0},
{128, NUM_SYS_128, NULL, 0},
{256, NUM_SYS_256, NULL, 0},
{512, NUM_SYS_512, NULL, 0},
};

A value in the first column specifies a valid cluster size in bytes. A value in the
second column, the “num” column, specifies how many clusters of the
specified size are allocated for the table. In the tables shown above, all values
in the second column are specified using symbolic constants. You can assign
the values of these constants using the standard Tornado configuration utility.
In particular, look for these values in the configuration component for network
buffer initialization.

If you do not modify the network stack internals, you should not need to edit
(add or delete rows) either of these tables directly. However, you will need to
adjust the values assigned to the NUM_* constants. See Setting the Number of
Clusters on p. 53.
51

VxWorks 5.5
Network Programmer’s Guide
mBlks and clBlks

The clBlk provides the first level of abstraction above the data in a cluster. For each
cluster in a memory pool, there needs to be a corresponding clBlk structure.
Contained in the clBlk is information such as a pointer to the cluster data, the
cluster size, and an external reference count.

Above the clBlk, is the mBlk structure. This structure stores a link to a clBlk and
can store a link to another mBlk. By chaining mBlks, you can reference an
arbitrarily large amount of data, such as a packet chain (see Figure 4-1).

Because the mBlk references the cluster data through a clBlk, duplicating an mBlk
does not copy the cluster data. For example, by duplicating mBlk 1 in Figure 4-2,
you can produce mBlk A. However, this duplication did not create a new copy of
the underlying cluster. When you use the netBufLib routines to duplicate an mBlk

Figure 4-1 Presentation of Two Packets in One mBlk Chain

Cluster
64 bytes

Cluster
512
bytes

mBlkmBlk mBlk null

mBlk mBlk null

Cluster
2048
bytes

clBlk clBlk clBlk

Cluster
64 bytes

Cluster
2028
bytes

clBlk clBlk

Packet 1

Packet 2
52

4

4
Configuring the Network Stack
(or mBlk chain), the library automatically increments the external reference
counter in the underlying clBlks. This is important when it comes time to free data
back to the memory pools.

If you use netBufLib routines to free an mBlk, the mBlk returns to the pool and
the reference count in the underlying clBlk is decremented. If this reference count
drops to zero (indicating that no mBlks reference the clBlk), netBufLib frees the
clBlk and its associated cluster back to the memory pool.

The number of mBlks allocated for the network stack system and data memory
pools are determined by the configuration constants NUM_NET_MBLK and
NUM_SYS_MBLK. See Table 4-2 and Table 4-3.

Setting the Number of Clusters

Table 4-2 describes the NUM_* constants used to configure the network data
memory pool. Table 4-3 describes the NUM_* constants used to configure the
network system memory pool.

Figure 4-2 Different mBlks Can Share the Same Cluster

! WARNING: Failure to configure these two pools correctly is one of the single
biggest causes of “frozen” network applications. The default settings for these
pools are just enough to get the stack up, running, and able to respond to simple
tests, such as ping. Deployed applications require more resources. Therefore,
study carefully the information provided in Determining Memory Pool Usage, p.55.

mBlk A mBlk b

Cluster
64 bytes

Cluster
2028
bytes

clBlk clBlk

null

mBlk 1

mBlk B

mBlk 2 null
53

VxWorks 5.5
Network Programmer’s Guide
Table 4-2 Configuration Parameters for Network Data Memory Pool

Parameter Description

NUM_NET_MBLK

Default: 400

Specifies the number of mBlk structures to allocate for the network
data memory pool. At a minimum, there should be at least as many
mBlks as there are clusters.

NUM_64

Default: 100

Specifies the number of 64-byte clusters to allocate for the network
data memory pool.

NUM_128

Default: 100

Specifies the number of 128-byte clusters to allocate for the
network data memory pool.

NUM_256

Default: 40

Specifies the number of 256-byte clusters to allocate for the
network data memory pool.

NUM_512

Default: 40

Specifies the number of 512-byte clusters to allocate for the
network data memory pool.

NUM_1024

Default: 25

Specifies the number of 1024-byte clusters to allocate for the
network data memory pool.

NUM_2048

Default: 25

Specifies the number of 2048-byte clusters to allocate for the
network data memory pool.

NUM_CL_BLKS

Default: the sum of
NUM_64 through
NUM_2048

This value specifies the number of clBlk structures to allocate. You
need exactly one clBlk structure per cluster. If you add another
cluster pool to clDescTbl[], be sure you increment this value
appropriately.

Table 4-3 Configuration Parameters for Network System Memory Pool

Parameter Description

NUM_SYS_MBLK

Default value: 2 times
NUM_SYS_CL_BLKS

Specifies the number of mBlk structures to allocate for the network
system memory pool. At a minimum, there should be at least as
many mBlks as there are clusters.

NUM_SYS_64

Default value: 40

Specifies the number of 64-byte clusters to allocate for the network
system memory pool.
54

4

4
Configuring the Network Stack
The defaults assigned to these parameters are tuned to let you run Tornado out of
the box. However, if you add an application that makes significant use of the
network, you will need to adjust these values.

Determining Memory Pool Usage

Estimating the demands on the network stack memory pools requires a detailed
understanding of the applications making the demands. Based on that
understanding, you should be able to estimate the number of simultaneous open
socket connections, the number of routing table and ARP entries needed, and the
number of network interfaces needed. Each of these elements creates a predictable
demand on the memory pool. For example:

� TCP socket: 128 byte cluster, a 256 byte cluster, and a 512 byte cluster; these are
used for the generic protocol control block, the TCP protocol control block, and the
socket structure respectively. 1

� UDP socket: one 128-byte cluster and one 512-byte cluster; these are used for the
generic protocol control block and socket structures.

� Routing table entries: four 64-byte clusters and two 256-byte clusters

NUM_SYS_128

Default value: 40

Specifies the number of 128-byte clusters to allocate for the
network system memory pool.

NUM_SYS_256

Default value: 40

Specifies the number of 256-byte clusters to allocate for the
network system memory pool.

NUM_SYS_512

Default value: 20

Specifies the number of 512-byte clusters to allocate for the
network system memory pool.

NUM_SYS_CL_BLKS

Default: the sum of
NUM_SYS_64
through
NUM_SYS_512

This value specifies the number of clBlk structures to allocate. You
need exactly one clBlk structure per cluster.

1. If your applications open more than 50 sockets, increase the default NUM_FILES value (in
the I/O system component), which currently defaults to fifty.

Table 4-3 Configuration Parameters for Network System Memory Pool (Continued)

Parameter Description
55

VxWorks 5.5
Network Programmer’s Guide
� ARP cache: two 64-byte clusters and one 256-byte cluster per cache entry. To limit
the size of the ARP cache, use ARP_MAX_ENTRIES.

� Network interface instance: two 64-byte clusters, two 128-byte clusters, and one
256-byte cluster

However, if you are unsure of how your application uses the above resources, you
can run the application under the debugger, pause it at critical points, and then
compare network stack pool usage at each point. To determine memory pool
usage, use the following functions:

netStackSysPoolShow()
Show network stack system pool statistics.

netStackDataPoolShow()
Show network stack data pool statistics.

memShow()
Show blocks and statistics for the current heap partition.

By scaling such single-event values according to your knowledge of how your
application uses sockets, the routing table, and so on, you should be able to make
some initial estimates on how to set the NUM_* parameters (Table 4-2 and
Table 4-3). However, it is critical that you test these values before deploying the
system. Failure to adequately reserve memory resources for the network stack is
one of the biggest reasons for “frozen” network applications. In addition, you must
avoid creating a network stack that reserves nearly all available memory to itself
and thus locks out all other applications.

4.3.4 Testing Network Connections

You can use the ping() utility from a target to test whether a particular system is
accessible over the network. Like the UNIX command of the same name, ping()
sends one or more packets to another system and waits for a response. You can
identify the other system either by name or by its numeric Internet address. This
feature is useful for testing routing tables and host tables, or determining whether
another machine is receiving and sending data.

The following example shows ping() output for an unreachable address:

-> ping "150.12.0.1",1
no answer from 150.12.0.1
value = -1 = 0xffffffff = _end + 0xfff91c4f
56

4

4
Configuring the Network Stack
If the first argument uses a host name, ping() uses the host table to look it up, as
in the following example:

-> ping "caspian",1
caspian is alive
value = 0 = 0x0

The second argument specifies how many packets to expect back (typically, when
an address is reachable, that is also how many packets are sent). If you specify
more than one packet, ping() displays more elaborate output, including summary
statistics. For example, the following test sends packets to a remote network
address until it receives ten acknowledgments. Then the test reports on the time it
takes to get replies:

-> ping "198.41.0.5",10
PING 198.41.0.5: 56 data bytes
64 bytes from 198.41.0.5: icmp_seq=0. time=176. ms
64 bytes from 198.41.0.5: icmp_seq=1. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=2. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=3. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=4. time=80. ms
64 bytes from 198.41.0.5: icmp_seq=5. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=6. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=7. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=8. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=9. time=64. ms

----198.41.0.5 PING Statistics----
10 packets transmitted, 10 packets received, 0% packet loss
round-trip (ms) min/avg/max = 64/76/176
value = 0 = 0x0

The report format matches the format used by the UNIX ping utility. Timings are
based on the system clock; its resolution could be too coarse to show any elapsed
time when communicating with targets on a local network.

Applications can use ping() periodically to test whether another network node is
available. To support this use, the ping() routine returns a STATUS value and
accepts a PING_OPT_SILENT flag as a bit in its third argument to suppress printed
output, as in the following code fragment:

/* Check whether other system still there */

if (ping (partnerName, 1, PING_OPT_SILENT) == ERROR)
{
myShutdown(); /* clean up and exit */
}

...
57

VxWorks 5.5
Network Programmer’s Guide
You can set one other flag in the third ping() argument: PING_OPT_DONTROUTE
restricts ping() to hosts that are directly connected, without going through a
gateway.

4.3.5 Supporting Multiple Network Interface Drivers

The VxWorks stack lets you use multiple network interface cards simultaneously.
You can use multiple cards of the same variety, or different types of cards, with any
combination of END and NPT drivers.1

Configuring VxWorks for Multiple Drivers

If you want to set up VxWorks to function as a router, you must configure it to
support multiple network interfaces. As a first step, make sure that you have
compiled all the necessary network drivers into your image. You may also need to
increase the value of the configuration parameter IP_MAX_UNITS.

If the image includes all the necessary drivers, you are ready to configure the target
to load, start, and configure the driver. For deployed systems, you will probably
want to set up the image so that it does this automatically at boot time. For
information on how to do this, see:

� Adding an END to VxWorks, p.189, to add an END driver
� Adding an NPT Driver to VxWorks, p.204, to add an NPT driver

However, as shown in Manually Starting Additional Network Interfaces at Run-Time,
p.67, is also possible to load, start, and configure a driver manually.

4.4 Overview of TCP/IP

IP is the heart of TCP/IP. The goal of the IP protocol is to accept packets addressed
to a particular host and then transmit the packets to that host. To accomplish this

1. Some BSPs and drivers may impose their own limitations on the number of interfaces and
units they support.
58

4

4
Configuring the Network Stack
task, IP works within a stack of cooperating protocols. Using a four-layer model,
the layers of the VxWorks stack are:

� Application—Telnet, FTP, and others
� Transport—TCP and UDP
� Network—IP
� Link—the MUX (a feature specific to VxWorks), its subordinate drivers, and

various supporting protocols, such as ARP

Data Plane Functionality

The four-layer model mentioned above describes the data plane functionality of a
TCP/IP stack. The data plane describes how the TCP/IP stack organizes the flow
of data from an application, down through the stack, out onto the network, and
then back. As packets flow down the stack, each layer adds a header to the packet
and pushes the packet down to the next level. As packets flow up the stack, each
layer strips its header, uses the header to determine the recipient of the packet, and
pushes the packet up to the appropriate recipient in the next higher layer.

To deliver a packet, IP hands the packet to the link layer after a routing table lookup
determines that the packet is deliverable. If the routing table cannot match the
destination address, IP considers the packet undeliverable and discards it. A
matching routing table entry gives IP all the information needed to transmit the
packet to a destination on the local network.

If the packet is destined for a remote host, the routing table match provides access
information for a local gateway. Gateways (also known as routers) have multiple
network interfaces (at least two) that let the gateway transfer data between
different networks. When a gateway accepts a packet, its IP layer checks the
destination of the packet. If the packet is not destined for the gateway itself, IP does
a routing table search on the destination address of the packet.

This lookup duplicates the process that took place on the machine originating the
packet. Depending on the results of the routing table search, the packet is dropped,
delivered, or forwarded. If the packet is forwarded, the process continues until the
packet is delivered, dropped, or expired. A packet expires if it cannot reach its
destination within a configurable number of hops (gateway forwardings).

If the packet expires, or IP drops the packet, IP generates an ICMP error message.
IP uses its data plane functionality to transmit this message, but the message itself
is processed by the TCP/IP control plane functionality.
59

VxWorks 5.5
Network Programmer’s Guide
Control Plane Functionality

The control plane functionality of the TCP/IP stack allows the protocols to detect
transmission failures and the like.

Maintaining Routing Information

How you set up and manage a routing table for your VxWorks stack depends on
your application. For example, you could use RIP to initialize, populate, and
manage the routing table. RIP uses IP functionality (through UDP) to announce its
presence on the network and discover peers with which to exchange information
on network topology.

In addition to a routing protocol, VxWorks includes functionality that you can use
to set up and manage a routing table manually. Although you might not use this
manual functionality in your deployed application, it is often very useful when
you are first developing and debugging your network communications for your
application.

4.5 Configuring the IP-to-Link Layer Interface

Configuring the IP-to-Link Layer interface involves the following:

1. Bind IP to the MUX.

2. Set the network mask for an interface.

3. Assign an IP address to each interface.

4. Assign broadcast addresses.

Binding IP to the MUX happens by default for the boot interface. If your target
includes only one network interface, you can set the interface network mask and
address from the boot line (additional interfaces will require explicit configuration
after booting). Assigning the netmask also sets a default broadcast address—the IP
address with all the host bits set. However, VxWorks includes functionality that
you can use to override this default.
60

4

4
Configuring the Network Stack
4.5.1 Binding IP to the MUX (Link Layer)

The MUX interface provides data link layer access to registered network protocols.
The MUX decouples IP and the data link layer and makes it possible to run
different network protocols over the same network hardware. To bind the TCP/IP
stack to a particular interface in the MUX, you must call ipAttach(). If you need to
remove this binding, call ipDetach().

For the boot device, the built-in TCP/IP stack initialization code automatically
calls ipAttach(). To bind the VxWorks stack to additional interfaces, you must
make an explicit ipAttach() call for each additional interface.

For more information on the MUX interface, see 10. Integrating a New Network
Interface Driver.

4.5.2 Assigning an IP Address and Network Mask to an Interface

A network interface represents a physical connection to a network through a specific
device. To use a specific network device with IP, you must assign a 32-bit Internet
(inet) address and a 32-bit network mask to the interface. The network mask
distinguishes the network address portion of the IP address from the host address
portion. IP uses this information to determine whether a particular IP address is
local (directly reachable). This information is also used to create local entries in the
routing table.

When setting the IP address and network mask value for a network interface, you
must specify the mask first and then the IP address. To assign a network mask to
an interface, call ifMaskSet(). To assign an IP address to an interface, call
ifAddrSet(). Because you must assign the mask first, you should call ifMaskSet()
before calling ifAddrSet(). This is because ifAddrSet() uses the net mask when
assigning the broadcast address. Calling ifMaskSet() does not update these
structures.

If your target boot line already includes an ead value (an IPaddress:mask value) for
a network interface, you do not need to call ifMaskSet() and ifAddrSet() for that
network interface. That is done for you automatically. For any additional interfaces
attached to the target, you will need to call ifMaskSet() and ifAddrSet()
explicitly.

For detailed information on these functions, see the ifLib reference entries.
61

VxWorks 5.5
Network Programmer’s Guide
Interfaces Configured from the Boot Line

If the boot line for the target specifies an ead value, your target uses this value as
the IP address of the network interface identified in the boot line by the bootDev
and unitNum values.

To specify the network mask for the interface, append a colon and network mask
value to the IP address in the ead value. For example, to assign an IP address of
147.38.1.2 and a network mask of 0xFFFFFFC0 in the boot line, you would specify
an ead value of:

147.38.1.2:FFFFFFC0

The base-16 network mask after the colon does not take a 0x prefix.

Consider the boot line:

ln(0, 0) bear:/usr/wpwr/target/config/mz7122/vxworks e=90.10.50.2:FFFFFFC0
b=90.10.50.2 h=100.0.0.4 g=90.10.50.3 u=papa pw=ornery f=0x80 tn=goldilox
s=bear:/usr/papa/startupScript o=

This line assigns an IP address of 90.10.50.2 with a network mask of 0xFFFFFFC0
to the ln0 interface.

Assigning the Net Mask to a Network Interface

IP routing table entries use the network number of an interface to determine which
IP addresses are reachable through that interface. If the network number of an IP
address matches the network number of a local network interface, IP can reach the
destination through that network interface.

Class-Based IP Addresses and Network Mask Values

Before Classless Inter-domain Routing (CIDR), the Internet address space was
divided into address classes (see Figure 4-3), each with its own default network
mask (see Table 4-4). IP could determine the class of an address by reading the
high-order bits of an Internet address as shown in Figure 4-3.

The default class-oriented address masks fell on byte boundaries. Masks with this
degree of granularity carved up the Internet address space into rather large
chunks. A network with a class A network number could manage 16,777,216 IP
addresses, a class B address network number allowed a network of 61,696 IP
addresses, and a class C network number could manage 256 IP addresses.
62

4

4
Configuring the Network Stack
CIDR IP Addresses and Network Masks

Under CIDR, IP routing no longer assumes a network mask based on the Internet
address class. Although, if you fail to set a network mask value for a network
interface before calling ifAddrSet(), the VxWorks routing table software assumes
a default value based on the class system.

Figure 4-3 Pre-CIDR Internet Address Classes

Table 4-4 Pre-CIDR Internet Address Ranges and Masks

Class High Order Bits Default Address Mask Address Range

A 0 0xff000000 0.0.0.0 – 126.255.255.255

Reserved 127.0.0.0 – 127.255.255.255

B 10 0xffff0000 128.0.0.0 – 191.255.255.255

C 110 0xffffff00 192.0.0.0 – 223.255.255.255

D 1110 None 224.0.0.0 – 239.255.255.255

NOTE: The number of hosts on an IP network is not quite as large as its IP address
space. This is because IP requires each network to reserve at least one address as
the broadcast address. If the network is divided into subnets, each subnet must
similarly reserve a local IP address for broadcasting to the local subnet. By default,
VxWorks reserves at least two addresses for broadcasting. One reserved address
follows the current convention for broadcast addresses—all host address bit are
set. The other reserved address follows the obsolete “all host address bits are
cleared” convention. In addition, the ifBroadcastSet() routine lets you designate
still another address as the local broadcast address.

network: 21 bits host: 8 bits

network: 14 bits host: 16 bits

network: 7 bits host: 24 bits 90.1.2.3

128.0.1.2

192.0.0.1

A

B

C 1 1 0

1 0

0

CLASS ADDRESS EXAMPLE

multicast group ID: 28 bits 224.0.0.1D 1 1 1 0
63

VxWorks 5.5
Network Programmer’s Guide
In the current CIDR environment, your network is still described by a network
number and a mask. However, the mask no longer falls on byte boundaries. Masks
can now be assigned by the bit. When choosing a network number, you can select
a network mask that has enough bits to include as many IP addresses as you expect
to need for your network.

For example, if you need a network of 1000 IP addresses, you would need a
netmask of at least 10 bits. Such a mask would give you an address space of 210

addresses (1024 possible IP addresses).

Determining the Network Mask for an Interface

When adding a host or router to an existing network, use the same network mask
as all the other interfaces attached to that network. If you did not set up that
network, you can get the network mask by asking the network administrator. The
network administrator can also assign you an available IP address for the host you
are adding.

For a simple example of how you would use masks to divide an address space into
subnets, consider a network with the network number 147.38.1.0 and a mask of 24
bits, which you can represent as 255.255.255.0 or 0xFFFFFF00. This gives you an
address space of 256 IP addresses (147.38.1.00 through 147.38.1.255).

If you want to divide this space into four equal subnets, you typically need five
interfaces, one connecting to the outside world and four connecting to the internal
subnets.

To subdivide your address space, you extend the assigned network mask. Each
added bit of mask subdivides your address space by powers of two. Thus, if you
extend the mask by one bit, you divide your address space into two subnets, two
bits subdivides your address space into four subnets, three bits into eight subnets,
four bits into 16 subnets, and so on.

If you extend the assigned mask by two bits, the last field of the mask contains a
value of:

11 00 00 00 = 27 + 26 + 0 + 0 + 0 + 0 + 0 + 0 = 192 = 0xC0

Joining this to the network mask assigned to your overall network gives you the
mask to use on each of the four subnets:

255.255.255.192 = 0xFFFFFFC0
64

4

4
Configuring the Network Stack
The network number of each subnet is the assigned network number plus all the
values expressible within the mask extension:

00 00 00 00 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0 = 0x0
01 00 00 00 = 0 + 26 + 0 + 0 + 0 + 0 + 0 + 0 = 64 = 0x10
10 00 00 00 = 27 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 128 = 0x80
11 00 00 00 = 27 + 26 + 0 + 0 + 0 + 0 + 0 + 0 = 192 = 0xC0

This gives the four network numbers shown in Table 4-5.

Assigning the Internet Address for a Network Interface

On a UNIX system, you assign an IP address to network interface using the
ifconfig command. For example, to assign the Internet address 147.38.1.64. to the
ln0 network interface, you would enter:

% ifconfig ln0 147.38.1.64

This is usually handled in the UNIX start-up file /etc/rc.boot. For more
information, see the UNIX reference entry for ifconfig.

Under VxWorks, use ifAddrSet() to assign an IP address to a local interface.

Table 4-5 Example Two-Bit Subnets under 147.38.1.00/0xFFFFFF00

Network Address/Network Mask IP Address Range (inclusive)

147.38.1.0/0xFFFFFFC0 147.38.1.0 to 147.38.63

147.38.1.64/0xFFFFFFC0 147.38.1.64 to 147.38.127

147.38.1.128/0xFFFFFFC0 147.38.1.128 to 147.38.191

147.38.1.192/0xFFFFFFC0 147.38.1.192 to 147.38.255

NOTE: Although the example divides the network into subnets of equal size, it is
possible to create subnets of different sizes. For example, the address/mask values
147.38.1.128/0xFFFFFF00, 147.38.1.0/0xFFFFFFC0, and 147.38.1.64/0xFFFFFFC0
create three subnets. The subnets with the longer 0xFFFFFFC0 masks create
subnets for the address ranges 147.38.1.0 to 147.38.63 and 147.38.1.64 to 147.38.127.
With these subnets already carved out of the 147.38.1.0 to 147.38.1.255 address
space, the 147.38.1.128/0xFFFFFF00 subnet contains the 147.38.128 to 147.38.255
space.
65

VxWorks 5.5
Network Programmer’s Guide
For example, to assign the Internet address 147.38.1.64 to the ln0 interface, enter:

ifAddrSet ("ln0", "147.38.1.64");

The ifAddrSet() routine does not let you specify a mask value. Prior to calling
ifAddrSet(), you must set the subnet mask for the interface by calling
ifMaskSet().

Fixing Misconfigured Interfaces

A call to ifAddrSet() automatically creates a local entry in the routing table. Local
entries in the routing table identify network interfaces on the local host. If you did
not assign the correct address to the interface or if you forgot to call ifMaskSet()
before calling ifAddrSet(), you need to delete the local host table entry and then
reconfigure the interface. The sequence should be:

mRouteDelete ("old IP address for network interface", "old mask value for network")
ifMaskSet ("new IP address for network interface", "new mask value for network")
ifAddrSet ("new IP address for network interface", "new mask value for network")

The IP address for a network interface can be any available IP address within the
IP address space of the network to which the interface connects.

Conventions for Assigning Interface Addresses

A free address is any address not already used by another interface or a service,
such as broadcasting. By convention, the broadcast address is the local address
with all its host bits set. Thus, within 147.38.1.64/0xFFFFFFC0, the conventional
broadcast address is 147.38.1.127:

Mask: 01 00 00 00 = 0 + 26 + 0 + 0 + 0 + 0 + 0 + 0 = 64 = 0x10
Broadcast: 01 11 11 11 = 0 + 26 + 25 + 24 + 23 + 22 + 21 + 20 = 127 = 0x7F

An old-style broadcast address would be 147.38.1.64. When VxWorks on a subnet
sees a packet addressed to either address style, it treats it as a broadcast packet for
the local network. Beyond avoiding the broadcast address, there are no general
conventions for assigning IP addresses. However, many organizations have their

NOTE: Before calling ifAddrSet(), call ifMaskSet() to set the network mask.
Otherwise, the network interface assumes the default netmask from the now
obsolete class-based system. Such a mask will likely be too large. This is not
necessarily a disaster, but the routing table may incorrectly indicate that it has local
access to addresses that actually reside on a remote network. For that reason, you
will see a lot of ARP errors and transmission failures.
66

4

4
Configuring the Network Stack
own conventions. For example, some organizations reserve the network address
plus one as the address of the gateway machine.

Manually Starting Additional Network Interfaces at Run-Time

Although you can configure VxWorks at build time to automatically load, start,
and configure multiple network interfaces, it is also possible to do it manually at
run-time.1

To start additional network interfaces manually at run-time:

1. Use ifShow() to display information on each currently loaded interface. When
adding a new interface, you do not want to conflict with any interface already
loaded.

2. Use muxDevLoad() to load the driver for the network interface.

3. Use muxAddrResFuncAdd() to install an address resolution function if
necessary. If you loaded an Ethernet driver, you can probably skip this step.
Drivers that register as Ethernet drivers automatically use arpresolve() to
handle address resolution, so you need not call muxAddrResFuncAdd().

4. Use muxDevStart() to initialize the network interface.

5. Call the network layer’s fooAttach() routine to attach the driver to the service.
For example, to attach to the standard VxWorks stack, call ipAttach().

6. Configure the interface. If working with the standard VxWorks stack, this
means assigning an IP address and a netmask. Use:

� ifMaskSet() — assign a netmask to the interface
� ifAddrSet() — assign an IP address to the interface

7. Use hostAdd() — to add the interface to the host table.

8. Check that the interface was loaded and configured correctly:

� ifShow() — list configuration information for network devices
� routeShow() — check that the routing table has an entry for the device
� hostShow() — check that the device was added to the host table

1. For information on configuring VxWorks to automatically start multiple network inter-
faces, see Adding an END to VxWorks, p.189, and Adding an NPT Driver to VxWorks, p.204.

NOTE: You may need to increase the value of the configuration parameter
IP_MAX_UNITS.
67

VxWorks 5.5
Network Programmer’s Guide
Consider Figure 4-4. The device acts as a router for tama. When tama pings abuna,
the packet goes out 136.12.38.11 to 136.12.38.125, from where it is routed out
136.12.117.10 to 136.12.117.12, the network interface to abuna.

The routing table on tama, a Solaris box, contains the following entries:

Routing Table:
Destination Gateway Flags Ref Use Interface

-------------------- -------------------- ----- ----- ------ ---------
136.12.38.0 136.12.38.11 U 3 78 le0
default 136.12.38.125 UG 0 32

To manually add the fei0 interface shown in Figure 4-4, you would access a
command shell on the target and enter the following muxDevLoad(),
muxDevStart(), ipAttach(), ifAddrSet(), and hostAdd() commands:

[vxKernel] -> fei2=muxDevLoad(0,fei82557EndLoad,"-1:0x00:0x20:0x20:0x00",1,0)
fei2 = 0x2e2650: value = 0 = 0x0 (PD NAME: vxKernel)

[vxKernel] -> muxDevStart(fei2)
value = 62 = 0x3e = '>'

[vxKernel] -> ipAttach(0,"fei")
value = 0 = 0x0

NOTE: For information on the exact inputs expected by the routines named above,
see the relevant reference entries.

Figure 4-4 Using a VxWorks Target as a Router

136.12.38.11

tama

136.12.117.12

abuna

Network 38

Network 117

136.12.38.125

VxWorks

136.12.117.10

Router
68

4

4
Configuring the Network Stack
[vxKernel] -> ifMaskSet("fei0",0xffffff00)
value = 0 = 0x0

[vxKernel] -> ifAddrSet("fei0","136.12.117.10")
value = 0 = 0x0

[vxKernel] -> hostAdd("woof-route-10","136.12.117.10")
value = 0 = 0x0

[vxKernel] -> muxShow
Device: elPci Unit: 0
Description: 3COM 3c90X Fast Etherlink Endhanced Network Driver.
Protocol: Wind Debug Agent Type: 257 Recv 0x1b87d0 Shutdown 0x0
Protocol: IP 4.4 ARP Type: 2054 Recv 0x14e480 Shutdown 0x14e780
Protocol: IP 4.4 TCP/IP Type: 2048 Recv 0x14e480 Shutdown 0x14e6a0
Device: fei Unit: 0
Description: Intel 82557 Ethernet Enhanced Network Driver
Protocol: IP 4.4 ARP Type: 2054 Recv 0x14e480 Shutdown 0x14e780
Protocol: IP 4.4 TCP/IP Type: 2048 Recv 0x14e480 Shutdown 0x14e6a0
value = 0 = 0x0

[vxKernel] -> hostShow
hostname inet address aliases
-------- ------------ -------
localhost 127.0.0.1
t38-125 136.12.38.125
tama 136.12.38.11
woof-route-10 136.12.117.10
value = 0 = 0x0

[vxKernel] -> ifShow
elPci (unit number 0):

Flags: (0x8863) UP BROADCAST MULTICAST ARP RUNNING
Type: ETHERNET_CSMACD
Internet address: 136.12.38.125
Broadcast address: 136.12.38.255
Netmask 0xffff0000 Subnetmask 0xffffff00
Ethernet address is 00:60:97:d1:5e:ce
Metric is 0
Maximum Transfer Unit size is 1500
0 octets received
0 octets sent
1899 packets received
0 packets sent
1899 unicast packets received
0 unicast packets sent
0 non-unicast packets received
0 non-unicast packets sent
0 input discards
617 input unknown protocols
0 input errors
0 output errors
0 collisions; 0 dropped

lo (unit number 0):
Flags: (0x8069) UP LOOPBACK MULTICAST ARP RUNNING
Type: SOFTWARE_LOOPBACK
69

VxWorks 5.5
Network Programmer’s Guide
Internet address: 127.0.0.1
Netmask 0xff000000 Subnetmask 0xff000000
Metric is 0
Maximum Transfer Unit size is 32768
0 packets received; 0 packets sent
0 multicast packets received
0 multicast packets sent
0 input errors; 0 output errors
0 collisions; 0 dropped

fei (unit number 0):
Flags: (0x8063) UP BROADCAST MULTICAST ARP RUNNING
Type: ETHERNET_CSMACD
Internet address: 136.12.117.10
Broadcast address: 136.12.117.255
Netmask 0xffff0000 Subnetmask 0xffffff00
Ethernet address is 00:02:b3:1d:29:a8
Metric is 0
Maximum Transfer Unit size is 1500
0 octets received
0 octets sent
0 packets received
1 packets sent
0 unicast packets received
1 unicast packets sent
0 non-unicast packets received
0 non-unicast packets sent
0 input discards
0 input unknown protocols
0 input errors
0 output errors
0 collisions; 0 dropped

value = 1 = 0x1

[vxKernel] -> mRouteShow
Destination Mask TOS Gateway Flags RefCnt Use Interface Proto
127.0.0.1 0 0 127.0.0.1 5 0 0 lo0 0
136.12.38.0 ffffff00 0 136.12.38.125 101 0 0 elPci0 0
136.12.117.0 ffffff00 0 136.12.117.10 101 0 0 fei0 0
value = 0 = 0x0

4.5.3 Configuring IP Broadcast Addresses

Many physical networks support the notion of broadcasting a packet to all hosts on
the network. A special Internet broadcast address is interpreted by the network
subsystem to mean “all systems” when specified as the destination address of a
datagram message (UDP).

Unfortunately, there is ambiguity concerning which address is the broadcast
address. The Internet specification now states that the broadcast address is an
Internet address with a host part of all ones (1). However, some older systems use
an Internet address with a host part of all zeros as the broadcast address.
70

4

4
Configuring the Network Stack
Most new network stacks, including VxWorks, accept either address on incoming
packets as being a broadcast packet. However, when an application sends a
broadcast packet, it must use the correct broadcast address for its system.

VxWorks normally uses a host part of all ones as the broadcast address. Thus a
datagram sent to Internet address 150.255.255.255 (0x96FFFFFF) is broadcast to all
systems on network 150. However, to allow compatibility with other systems,
VxWorks allows the broadcast address to be reassigned for each network interface
by calling the routine ifBroadcastSet(). For more information, see the reference
entry for ifBroadcastSet().

In addition, VxWorks supports multicasting — transmission to a subset of hosts on
the network. For more information on multicasting, see Using a Datagram (UDP)
Socket to Access IP Multicasting, p.129.

4.6 IGMP under VxWorks

According to RFC 2236, an IGMPv2 router listens on IGMP-enabled interfaces for
membership reports from networked hosts. Using the membership reports, an
IGMP router constructs and maintains per-interface lists of the multicast addresses
to which IGMP hosts are listening. To discover when it needs to prune entries from
a list, an IGMP router periodically transmits queries to the multicast groups
accessible through a given interface. If no replies arrive after a specific time, or if a
leave message is processed, the IGMP router removes the group from the list for
that interface.

To support its IGMPv2 router implementation, VxWorks relies on tIGMPtask, an
IGMP-dedicated task that waits on igmpMsgQ. This message queue collects IGMP
timer expiration messages as well as IGMP packet-arrival messages from
tNetTask.

In response to a timer expiration message, tIGMPtask either removes a multicast
destination from the interface on which it has expired, or the task sends a query. In
response to a packet arrival message, tIGMPtask processes the packet. This
processing can involve adding an address to an interface (when a new
membership report arrives) or deleting an address (when a leave report arrives).

To support the IGMPv2 host implementation, VxWorks does not spawn an
independent task. Processing for the IGMPv2 host implementation takes place
within the context of tNetTask.
71

VxWorks 5.5
Network Programmer’s Guide
4.6.1 Including IGMPv2

The IGMPv2 host is included by default, but IGMPv2 routing is not. To include the
IGMPv2 routing:

1. Access the project facility and select the VxWorks tab.

2. Select the IGMPv2 Routing component.

3. Select the Project -> Add/Include -> Component(s) menu option.

Because IGMPv2 routing depends on kernel multicast routing, the project
facility will prompt to add INCLUDE_MCAST_ROUTING (if it is not already
included).

4. Select OK.

The configuration parameters associated with the IGMPv2 host and router are
INCLUDE_IGMP and INCLUDE_IGMP_ROUTER.

4.6.2 IGMPv2 APIs

The IGMPv2 router side API consists of the following functions:

� igmpRouterLibInit()—initialize the IGMPv2 router
� igmpRouterLibQuit()—shut down the IGMPv2 router
� igmpInterfaceEnable()—enable IGMPv2 on the specified interface
� igmpInterfaceDisable()—disable IGMPv2 on the specified interface
� igmpNameToPort()—return a port number (VIF) for the specified interface

For detailed information on the above functions, see the igmpRouterLib reference
entries.

The IGMPv2 host side API consists of the function:

� igmpLibInit()—initialize the IGMPv2 host

IGMPv2 Host Initialization

If you include the IGMPv2 host in your application, the network initialization code
calls igmpLibInit(). You should have no need to call igmpLibInit() explicitly.
Because the IGMPv2 host does not launch an independent task or reserve
significant system resources, there is no IGMPv2 host termination function.
72

4

4
Configuring the Network Stack
IGMPv2 Router Initialization and Termination

If you used the project tool to enable IGMPv2 routing, the VxWorks start-up code
automatically calls igmpRouterLibInit(). You should have no need to call
igmpRouterLibInit() explicitly. If you need to shut down IGMPv2 routing before
shutting down the target, you can call igmpRouterLibQuit().

igmpRouterLibInit()—initialize the IGMP router

Calling igmpRouterLibInit() spawns the IGMP router task and does almost
everything necessary to initialize (but not start) the router side of the IGMPv2
implementation. A call to igmpRouterLibInit() returns OK if successful, or
ERROR otherwise, such as when IGMP has already been started. To actually start
IGMP routing, you must enable it on at least two host-local interfaces.

igmpRouterLibQuit()—shut down the IGMP router

Calling igmpRouterLibQuit() ends IGMP routing by closing the IGMP socket,
deleting the router task, and generally cleaning up. An igmpRouterLibQuit() call
returns OK if successful, ERROR otherwise, such as when IGMP has not been
started.

IGMPv2 Router Control

Nothing in VxWorks automatically calls igmpInterfaceEnable(). You must call
igmpInterfaceEnable() explicitly for each network interface on which you want
to enable IGMPv2 routing. Similarly, nothing in VxWorks automatically calls
igmpInterfaceDisable(). If an IGMPv2 routing enabled interface goes down, you
must explicitly call igmpInterfaceDisable() for that interface.

igmpInterfaceEnable()—enable IGMP on the specified interface

Calling igmpInterfaceEnable() enables IGMP on an interface. A call to
igmpInterfaceEnable() applies on the router side only. The host side of IGMP
does not have a notion of enabled or disabled interfaces. You can call this function
for any interface that is capable of receiving multicast packets.

NOTE: An IGMP router necessarily requires that the host device support at least
two network interfaces on which IGMP routing is enabled. Simply including
IGMP is not enough. Neither is enabling it on only one interface.
73

VxWorks 5.5
Network Programmer’s Guide
If you use igmpInterfaceEnable() to enable more than one interface on a target,
IGMP routing occurs. If there are fewer than two enabled interfaces on a target,
there is no possibility of multicast routing. This routine is also responsible for
populating the appropriate elements of the IGMP control structure.

An igmpInterfaceEnable() call returns OK if successful, ERROR otherwise, such
as when an interface is not multicast capable.

igmpInterfaceDisable()—disable IGMP on the specified interface

igmpInterfaceDisable() disables IGMP on an interface. If the target supports
fewer than two IGMP-enabled interfaces, IGMP on that target stops acting as a
router. igmpInterfaceDisable() returns OK if successful, ERROR otherwise, such
as when the interface was not enabled.

Working with VIFs (Ports) and ifnet Structure Pointers

Virtual Interfaces (VIFs), also known as ports, are implemented as indexes into a
system-internal array of ifnet structures. When working with the VxWorks
IGMPv2 implementation, it is often more convenient to work with ports than with
pointers to ifnet structures.

� igmpNameToPort()—return a port number (VIF) for the specified interface

4.7 Manually Editing the Routing Table

When IP needs to transmit a packet, it searches the routing table for an entry that
provides the address information it needs to supply when it hands the packet to
the link layer for transmission. The information in that table is often entered
automatically by a protocol such as RIP, but you can also manually add and delete
routing table entries using routeLib functions.

A review of the routeLib API in Table 4-6 shows a redundancy of add and delete
functions. This redundancy supports backward compatibility with earlier
routeLib and routing table implementations.
74

4

4
Configuring the Network Stack
Deprecated Functions

The routeAdd(), routeDelete(), and routeNetAdd() functions date from the
class-based VxWorks routing table implementation. Thus, when they add routes,
they use the netmasks assumed by the class-based system. As a result, the routes
they add are often disastrously inappropriate. These functions still work as
documented, but you should consider them obsolete. Do not use them in any new
code. You should also upgrade existing code to use mRouteAdd() and
mRouteDelete() to manage the static routes in your table.

4.7.1 Adding Gateways (Routers) to a Network

A gateway or router is a machine that is able to forward packets from one network
to another. Thus, a gateway has a physical connection to two or more networks. If
the destination of a packet is local to a network attached to the gateway, it can
deliver the packet directly. Otherwise, the gateway passes the packet to still
another gateway (if one is available). This process, called routing, continues until
the packet is delivered or is dropped.

To support routing, VxWorks depends on the routing table to distinguish
addresses on the local network from addresses that are accessible through a
gateway only. Using a routing protocol, such as RIP, VxWorks is able to discover
gateways and add or delete them from its routing table dynamically. In addition to
these dynamic routes, routeLib supplies functions you can use to create static

Table 4-6 routeLib Routines

Routine Definition

routeAdd() Add a static route (class based).*

routeNetAdd() Add a route to a destination that is a network.*

routeDelete() Delete a static route (class based).*

mRouteAdd() Add mask-distinguished static routes to a destination. (CIDR)

mRouteEntryAdd() Add a protocol-specific route. (CIDR)

mRouteEntryDelete() Delete a protocol-specific route. (CIDR)

mRouteDelete() Delete a static route from the routing table. (CIDR)

* These routines have been deprecated. Use the mRoute*() equivalents.
75

VxWorks 5.5
Network Programmer’s Guide
gateway routes. You can use these static routes to provide initial routing table
information.

Finally, the VxWorks routing table supports the idea of a default gateway. The
gateway you assign to 0.0.0.0 serves as the gateway of last resort. If the routing
table does not contain any other entry for a destination IP address, it returns the
gateway you assign to 0.0.0.0.

Adding a Gateway on Windows

The procedures vary according to your version of Windows and your networking
software package. For the details, see the documentation for your system.

Adding a Gateway on UNIX

A UNIX system can be told explicitly about a gateway in one of two ways: by
editing /etc/gateways or by using the route command. When the UNIX route
daemon routed is started (usually at boot time), it reads a static routing
configuration from /etc/gateways. Each line in /etc/gateways specifies a network
gateway in the following format:

net destinationAddr gateway gatewayAddr metric n passive

where n is the hop count from the host system to the destination network (the
number of gateways between the host and the destination network) and “passive”
indicates the entry is to remain in the routing tables.

For example, consider a system on network 150. The following line in
/etc/gateways describes a gateway between networks 150 and 161, with an Internet
address 150.12.0.1 on network 150. A hop count (metric) of 1 specifies that the
gateway is a direct connection between the two networks:

net 161.27.0.0 gateway 150.12.0.1 metric 1 passive

After editing /etc/gateways, you must kill the route daemon and restart it, because
it only reads /etc/gateways when it starts. After the route daemon is running, it is
not aware of subsequent changes to the file.

Alternatively, you can use the route command to add routing information
explicitly:

route add destination-network gatewayAddr [metric]

For example, the following command configures the gateway in the same way as
the previous example, which used the /etc/gateways file:

route add net 161.27.0.0 150.12.0.1 1
76

4

4
Configuring the Network Stack
Note, however, that routes added with this manual method are lost the next time
the system boots.

You can confirm that a route is in the routing table by using the UNIX command
netstat -r.

Adding a Gateway on VxWorks

The routeLib API provides a number of functions that you can use to add routes
to the routing table. Some of these functions are now obsolete and included for
backward compatibility only. All new development should use the following
routines:

As input to these functions, you can specify IP addresses using either dotted
decimal notation or host names.

� About Destination IP Addresses and Destination Networks

Using an IP address, you can specify a single interface on the Internet. Using an IP
address and a mask, you can specify a group of IP addresses — a network.

When creating a host entry in your routing table, you specify the destination as a
combination of the following values:

– an IP address
– the RTF_HOST flag

When creating a network entry in your routing table, you specify the destination
as a combination of the following values:

– an IP address
– a network mask

In the current implementation, a VxWorks routing table entry also stores:

– type of service
– protocol ID
– weight (router stack implementation only)

In the router stack, it is possible for the routing table to store multiple distinct
entries to the same destination. Only one of these route entries is externally visible
to protocols such as IP. This representative route is chosen based on its assigned
weight. The entry with the lowest weight value is used as the representative route.

mRouteAdd() Add mask-distinguished static routes.
mRouteEntryAdd() Add a protocol-specific dynamic route.
77

VxWorks 5.5
Network Programmer’s Guide
If you add a route using a function that does not let you specify a weight, type of
service, or protocol ID, VxWorks assigns appropriate default values for these route
characteristics.

� Inspecting the Routing Table

Before you edit the table, it is generally a good idea to look at what is already there.
To inspect the contents of the routing table, use routeShow(). If a VxWorks host
boots through an Ethernet network interface, a typical routeShow() call would
display the following:1

-> routeShow()

ROUTE NET TABLE
destination gateway flags Refcnt Use Interface
--
136.12.44.0 136.12.44.165 101 0 0 ei0
--
ROUTE HOST TABLE
destination gateway flags Refcnt Use Interface
--
127.0.0.1 127.0.0.1 5 1 0 lo0
--
value = 77 = 0x4d = 'M'

In the output shown above, the route entry for 136.12.44.0 shows that the flags
RTF_CLONING (0x100) and RTF_UP (0x001, signifying that the route is available
for use) are set. This route entry is set when the Ethernet network device “ei0” is
initialized. This is a network route and the network mask associated with this
route is 0xFFFFFF00.

� Using mRouteAdd() to Add Static Gateways and the Default Gateway

To use mRouteAdd() to add a gateway to your routing table, you need to specify
a destination, a gateway, a net mask, and a type of service value for the route. The
general format of an mRouteAdd() call is as follows:

mRouteAdd ("destination", "gateway", netmask, type-of-service, flags)

To use mRouteAdd() to add a default entry to the routing table:

mRouteAdd ("0.0.0.0", "gatewayAddrs", 0, 0, 0);

1. This assumes that VxWorks is configured to include network show routines. The relevant
configuration parameter is INCLUDE_NET_SHOW.
78

4

4
Configuring the Network Stack
If the routing table contains a route to 0.0.0.0, the gateway assigned to 0.0.0.0 serves
as the default for any destination for which there is no better match. Note also that
the netmask is all zeros.

For an example of using mRouteAdd() to add a gateway to the routing table,
consider the vx2 and vx3 VxWorks targets shown in Figure 4-5. Both have network
interfaces that link them to network 161.27.0.0:FFFFFF00. Because vx3 also has an
interface on network 150.12.0.0:FFFFFF00, it can serve as a gateway linking
networks 150.12.0.0:FFFFFF00 and 161.27.0.0:FFFFFF00.

On vx2, you can use the following calls to establish vx3 as a gateway to 150:

-> mRouteAdd ("150.12.0.0", "vx3", 0xFFFFFF00, 0, 0);

or:

-> mRouteAdd ("150.12.0.0", "161.27.0.3", 0xFFFFFF00, 0, 0);

To confirm that a route is in the routing table, call routeShow().1

NOTE: Although the boot line gad value (if any) automatically adds an entry to
your routing table, the gad is not used as a default gateway (the gateway
associated with 0.0.0.0). Instead, the gad gateway has a destination value equal to
that of the network (IP address and mask) of the remote network connected to the
boot host.

Figure 4-5 Configuring vx3 as a Gateway

161.27.0.2

vx2

150.12.0.2

h1

Network 161

Network 150

161.27.0.3

vx3

150.12.0.1
79

VxWorks 5.5
Network Programmer’s Guide
� Using Masks to Distribute Traffic to the Same Destination IP Address

Unique routing table entries are defined by a destination address, a network mask
(or RTF_HOST flag for host routes), and a type of service value — not simply a
destination IP address. For example, consider the network routing table entries
created by the calls:

mRouteAdd("90.0.0.0", "91.0.0.3", 0xFFFFFF00, 0, 0);
mRouteAdd("90.0.0.0", "91.0.0.254", 0xFFFF0000, 0, 0);

Both calls specify a destination IP address of 90.0.0.0 but differ in their network
mask values. When the routing software searches the routing table, it tries to match
a destination IP address with a routing entry based on the stored network address
and network mask.

The first mRouteAdd() call creates a routing table entry that matches with
destination IP addresses 90.0.0.0 through 90.0.0.255. The second mRouteAdd()
call uses a shorter mask and so matches more entries, 90.0.0.0 through 90.0.255.255.
This overlaps the range of the first mRouteAdd() call. However, because routing
software prefers matches with longer masks, searches for IP addresses within the
90.0.0.0 to 90.0.0.255 range match the 91.0.0.3 interface first.

Thus, these two entries divide the 90.0.0.0:0xFFFFFF00 traffic between 91.0.0.3 and
91.0.0.254. Packets destined to addresses in the 90.0.0.0 through 90.0.0.255 range go
to 91.0.0.3. Packets destined to addresses in the 90.0.1.0 through 90.0.255.255 range
go to 91.0.0.254.

If you were to delete the 91.0.0.3 route, all its traffic would go out through
91.0.0.254. However, deleting the 91.0.0.254 route would not result in all its traffic
going to 91.0.0.3. Only addresses matching 90.0.0.0 within the 0xFFFFFF00 mask
can map to the 91.0.0.3 entry. Thus, addresses in the 90.0.1.0 through 90.0.255.255
range are directed to the default gateway (if any) or are discarded as unreachable.

� Using mRouteDelete() to Delete a Static Entry in the Routing Table

To delete a static routing table entry, use mRouteDelete(). For example, to delete
an entry with a destination of 161.27.0.51 with a mask of 0xFFFFFF00, a type of
service value of 0, and a flags value of RTF_HOST, you would call mRouteDelete()
as follows:

mRouteDelete("161.27.0.51", 0xFFFFFF00, 0, RTF_HOST);

1. This function is not built into the Tornado shell. The relevant configuration parameter is
INCLUDE_NET_SHOW.
80

4

4
Configuring the Network Stack
The destination IP address as well as the values for network mask, type of service,
and flags that you specify in the parameters must match the values for the table
entry. Otherwise, the mRouteDelete() call fails.

Adding and Managing Dynamic Routes Manually

Although dynamic routes are normally added and deleted by a protocol, it is
possible to use mRouteEntryAdd() to impersonate a protocol when adding a
route.

4.8 Proxy ARP for Transparent Subnets

The IP routing discussed previously relies on the assignment of a separate network
number to each physical network. This restriction prevents communication
between hosts on different physical networks unless each host’s routing table
contains an entry for the appropriate network number.

Proxy ARP provides a method for assigning the same logical network number to
different physical networks without altering the routing table entries for existing
hosts. This feature is particularly valuable when creating a shared-memory
network on the back plane (see 3.3 The Shared-Memory Backplane Network Driver,
p.21).

RFCs Relevant to Proxy ARP

Proxy ARP is described in Request For Comments (RFC) 925 “Multi LAN Address
Resolution,” and an implementation is discussed in RFC 1027 “Using ARP to
Implement Transparent Subnet Gateways.” The ARP protocol is described in RFC
826 “Ethernet Address Resolution Protocol: Or converting network protocol
addresses to 48-bit Ethernet address for transmission on Ethernet hardware.” The
implementation of Proxy ARP for VxWorks is based on RFC 925. However, it is a
limited subset of that proposal.

4.8.1 Proxy ARP Protocol Overview

Proxy ARP uses the address resolution protocol (ARP) to provide transparent data
transfer across physical network boundaries. The IP transmission process uses
ARP to find the required link-level address information for a specific destination
81

VxWorks 5.5
Network Programmer’s Guide
address. Ordinarily, ARP messages are restricted to a single physical network.
Running a proxy ARP server on a multi-homed host lets ARP requests from hosts
on physically separate networks to succeed. From the perspective of individual
hosts, the result completely disguises the physical separation of the networks.

A Single Proxy ARP Instance Cannot Serve Both as a Server and a Client

A single proxy ARP instance can act as a server or as a client but not both. Thus,
configurations such as that in Figure 4-6 are not supported.

Figure 4-6 Multi-Tier Configurations CANNOT Be Used with Proxy ARP

150.12.0.1Main Network

150.12.0.6 150.12.0.7150.12.0.5

Proxy Network 0

150.12.0.10150.12.0.9

Proxy Network 1

150.12.0.2

150.12.0.4

150.12.0.3

150.12.0.8

vx1

h1 h2

vx2 vx3 vx4

vx5 vx6

Proxy
Server

Proxy
Server
82

4

4
Configuring the Network Stack
This restriction provides built-in protection against the accidental creation of
network circles, broadcast storms, and eternally forwarded ARP requests. In
addition, the restriction helps avoid routing table scalability issues that could arise
because the proxy ARP server edits the local routing table to add one host-specific
route per host on the proxy network.

This is not to say that a VxWorks target running VxWorks cannot be the node
linking multiple proxy networks. For example, the configuration shown in
Figure 4-7 is possible.

Two Instances of Proxy ARP on a Single Target Allow Chaining

In Figure 4-6, the vx3 target is labeled as a Proxy Server. As a simple proxy server, it
cannot fulfill all its functions. The vx3 target must function both as a proxy server
for vx5 and vx6 and as a proxy client to vx1. To do this, vx3 must run two instances
of proxy ARP; you can configure one instance to function as a server for vx5. The
other instance should be configured as a proxy client to vx1. Still, use such
configurations with extreme caution. Used casually, you risk accidentally creating
network circles, broadcast storms, and eternally forwarded ARP requests.

4.8.2 Routing and the Proxy ARP Server

Although a response to an ARP request is necessary for a host to begin an IP data
transfer, it is not enough to actually accomplish the data transfer. The data can
reach the final destination only if the proxy ARP server added appropriate entries
to the local routing table. Setting up a network interface ordinarily creates a single
route entry that serves for all hosts on the network attached to the network
interface. By default, the proxy ARP server automatically creates host-specific
routing table entries for proxy clients.

4.8.3 Proxy ARP and Broadcast Datagrams

When you broadcast an IP packet on a network, all nodes on that network are
expected to receive the packet. To make the proxy network truly appear part of the
main network, the proxy ARP server can forward broadcasts to and from the proxy
network. Thus, if a broadcast datagram originates on a proxy network (and the
port is enabled), the server forwards the broadcast to the main network, and to all
other proxy networks that have the same main network.

For example, in Figure 4-7, if a broadcast originates on sm1, proxy ARP may
forward the broadcast to ln0 and sm0.
83

VxWorks 5.5
Network Programmer’s Guide
If the broadcast originates on the main network (and the port is enabled), the
server forwards the broadcast to all appropriate proxy networks. For example, in
Figure 4-7, a broadcast from ln0 is forwarded to both sm0 and sm1. To prevent
forwarding loops, broadcasts forwarded onto proxy networks are given a
time-to-live value of 1.

However, most broadcasts are not of interest to any host outside the true physical
network. To give you selective control over which broadcasts are forwarded and
which are not, you can configure the proxy ARP server to forward the broadcasts
of specific destination UDP ports only. To enable proxy ARP broadcast forwarding
on a UDP port, call proxyPortFwdOn(). To disable forwarding for a port, call
proxyPortFwdOff(). By default, forwarding is disabled on all ports.

4.8.4 Proxy ARP Configuration

To include proxy ARP in VxWorks, reconfigure the image and rebuild it to include
the proxy server. The relevant configuration parameter is
INCLUDE_PROXY_SERVER.

On the target with processor zero (the shared-memory network master), the proxy
ARP server assumes the main network is on the other side of the default local
network interface. This interface uses the IP address:mask value specified in the
ead boot parameter, inet on ethernet (e).

For a shared memory configuration, the address of the interface between the proxy
ARP server and the backplane depends on whether you have set the
INCLUDE_PROXY_DEFAULT_ADDR configuration parameter. If this configuration

Figure 4-7 Broadcast Datagram Forwarding

proxy network 1 (sm1)

proxy network 0 (sm0)

m
ai

n
ne

tw
or

k
(ln

0)

vx1
84

4

4
Configuring the Network Stack
parameter is not set, the interface to the back plane gets its address from the bad
boot parameter, inet on backplane (b). If INCLUDE_PROXY_DEFAULT_ADDR is
set, the target hosting the proxy ARP server generates the address for the back
plane interface by adding one to the ead boot parameter.

For a shared memory configuration, how you assign an address to each host on the
proxy network depends on whether you have configured VxWorks with the
configuration parameter INCLUDE_SM_SEQ_ADDR set.

If INCLUDE_SM_SEQ_ADDR is not set, each slave target uses its ead value as the
IP address for its interface to shared memory back plane.

If INCLUDE_SM_SEQ_ADDR is set, the slave targets generate their IP address by
adding their CPU number (1, 2, 3, and so on) to the IP address of the interface
between the proxy ARP master and the shared memory back plane. For example,
if the proxy ARP server has a backplane address of 150.12.0.4, the first slave is
150.12.0.5, the second slave 150.12.0.6, and so on.

Proxy ARP not Limited To a Shared Memory Network

Although this document describes the use of Proxy ARP over a shared memory
network, the current Proxy ARP implementation is no longer limited to the shared
memory network.

Proxy ARP with Shared Memory and IP Routing

Even if you are using the same board for the master and the slaves, the master and
slaves need separate BSP directories because they have different configurations.
For more information on configuration, see the Tornado User’s Guide: Customizing
VxWorks AE.

Proxy ARP and Shared Memory Configuration Parameters:

(1) PING client (configuration parameter: INCLUDE_PING)

(2) Shared memory network initialization (INCLUDE_SM_NET)

NOTE: When using proxy ARP, it is no longer necessary to specify the gateway.
Each target on the shared-memory network (except the proxy server) can register
itself as a proxy client by specifying the proxy ARP flag, 0x100, in the boot flags
instead of specifying the gateway.
85

VxWorks 5.5
Network Programmer’s Guide
(3) Proxy ARP server (INCLUDE_PROXY_SERVER)

(4) Auto address setup (INCLUDE_SM_SEQ_ADDR)—required for default
addressing of proxy clients, but required in both client and server

(5) Default address for back plane—required only for default addressing

Parameters for proxy ARP sever:
INCLUDE_PROXY_SERVER
SM_OFF_BOARD=FALSE

Parameters for proxy client:
INCLUDE_PROXY_CLIENT
SM_OFF_BOARD=TRUE

Setting Up Boot Parameters and Booting

See 3.3 The Shared-Memory Backplane Network Driver, p.21 for information on
booting shared memory networks. After booting vx1 (the master, Figure 4-8), use
smNetShow() to find the shared memory anchor, which will be used with the
slave boot device (for vx2, vx3, and vx4). You will need to run
sysLocalToBusAddr() on the master and sysBusToLocalAddr() on each type of
target to get the correct bus address for the anchor.

Creating Network Connections

From vx1 (the master): Use mRouteAdd() to tell the master (the proxy server)
about the IP routing network:

-> mRouteAdd ("161.27.0.0", "150.12.0.6", 0xffff0000, 0, 0)

value = 0 = 0x0

From vx3: Since vx3 boots from the shared memory network, it needs to have its
connection to the IP routing network brought up explicitly. The following example
shows how to do this for vx3 in Figure 4-8:

-> usrNetIfAttach ("ln", "161.27.0.1")
Attaching network interface ln0...done.
value = 0 = 0x0
-> usrNetIfConfig ("ln", "161.27.0.1", "t0-1", 0xffff0000)
value = 0 = 0x
86

4

4
Configuring the Network Stack
Diagnosing Shared Memory Booting Problems

See Troubleshooting, p.38 for information on debugging the shared memory
network.

Figure 4-8 Multi-Tier Example Using Proxy ARP and IP Routing

NOTE: Substitute the appropriate network boot device for “ln”. The correct boot
device is given in the output from a boot prompt ? command.

150.12.0.1
Main Network

150.12.0.6 150.12.0.7150.12.0.5

Proxy Network

161.27.0.3161.27.0.2

Network 161.27.0.0

150.12.0.2

150.12.0.4

150.12.0.3

161.27.0.1

vx1

h1 h2

vx2 vx3 vx4

vx5 vx6

(Ethernet)

(Shared Memory Network)

(IP Routing Network)

Proxy
Server

Proxy
Clients

(master)

(slaves)
87

VxWorks 5.5
Network Programmer’s Guide
Diagnosing Routing Problems

The following routines can be useful in locating the source of routing problems:

ping()
Starting from vx1, ping other processors in turn to see if you get the expected
result. The function returns OK if it reaches the other machine, or ERROR if the
connection fails.

smNetShow()
This routine displays cumulative activity statistics for all attached processors.

arpResolve()
This function tells you the hardware address for a specified Internet address.
This function supercedes the functionality provided by the now obsolete
etherAddrResolve().

arpShow()
This routine displays the current Internet-to-Ethernet address mappings in the
system ARP table.

arptabShow()
This routine displays the known Internet-to-Ethernet address mappings in the
ARP table

routeShow()
This routine displays the current routing information contained in the routing
table.

ifShow()
This routine displays the attached network interfaces for debugging and
diagnostic purposes.

proxyNetShow()
This routine displays the proxy networks and their associated clients.

proxyPortShow()
This routine displays the ports currently enabled.

Routing Configuration for Multi-Homed Proxy Clients

If a proxy client also has an interface to the main network, some additional
configuration is required for optimal communications. The proxy client’s routing
tables must have network-specific routes with netmask 0xFFFFFFFF for nodes on
the proxy network, and a network-specific route for the main network. Otherwise,
traffic travels an extra unnecessary hop through the proxy server.
88

4

4
Configuring the Network Stack
In the example shown in Figure 4-9, vx1 is the proxy server and vx2 is a proxy
client with an interface on the main network. You must configure vx2 to store
network-specific routes to each of the other proxy clients (vx4 and vx5) and the
main network. In addition, these routes must use a mask of 0xFFFFFFFF. Otherwise,
any traffic from vx2 to vx4 (or vx5) unnecessarily travels over the main network
through the proxy server (vx1).

The following is an example of vx2’s routing table. The routing table is
manipulated using mRouteAdd() and mRouteDelete(). For more information,
see the reference entry for routeLib.

Destination Gateway
150.12.0.4 (network with netmask 0xffffffff) 150.12.0.6
150.12.0.5 (network with netmask 0xffffffff) 150.12.0.6
150.12.0.0 (network) 150.12.0.7

Figure 4-9 Routing Example

150.12.0.4 150.12.0.5

150.12.0.1

150.12.0.7150.12.0.2

150.12.0.3 150.12.0.6

vx1 vx2

vx4 vx5

h1

Main
Network

Proxy
Network

Dual
HomeProxy

Server

Proxy
Client

Proxy
Client

Proxy
Client
89

VxWorks 5.5
Network Programmer’s Guide
Broadcasts Configuration for Multi-Homed Proxy Clients

A proxy client that also has an interface connected to the main network must
disable broadcast packets from the proxy interface. Otherwise, it receives duplicate
copies of broadcast datagrams (one from Ethernet and one from the
shared-memory network).

4.9 Using Unnumbered Interfaces

Typically, each IP host or router needs its own IP address. However, when an
interface is the local end of a point-to-point link, it is possible for that interface to
borrow the IP address of a local interface that joins the router to a larger network.
This scheme, called unnumbered interfaces, is described in section 2.2.7 of RFC
1812. VxWorks provides support for unnumbered interfaces using
ifUnnumberedSet(), an ifLib routine.

As input, ifUnnumberedSet() expects the name of the local unnumbered interface
and the router IDs that identify the ends of the point-to-point link. Both router IDs
are “borrowed” IP addresses. For example, Figure 4-10 shows 147.38.11.150
serving as the IP address of both fei0 and fei1 on Vx A. Similarly, 138.12.12.12
serves as the IP address for both fei0 and fei1 on Vx B.

To use unnumbered interfaces to connect two VxWorks hosts:

1. Call ipAttach() to assign a name to the local unnumbered interface on a
point-to-point link.

2. Call ifUnnumberedSet() to assign a borrowed IP address to source interface
and associate that interface with a destination interface. For example, on Vx A
in Figure 4-10, the system manager calls:

ifUnnumberedSet("fei1", "138.12.12.12", "136.12.38.150");

This reuses 136.12.38.150 for the local interface and tells Vx A that 138.12.12.12
is the interface on the other side of the point-to-point link.

Similarly on Vx B, the system manager calls:

ifUnnumberedSet("fei1", "138.12.12.12", "136.12.38.150");
90

4

4
Configuring the Network Stack
3. Use mRouteAdd() to create appropriate network routes on all machines
participating in the system. For example, on Vx A in Figure 4-10, the system
manager calls:

mRouteAdd("138.12.0.0", "138.12.12.12", 0, 0, 0);

This tells Vx A that it can reach network 138.12.0.0 by forwarding to the router
at 138.12.12.12. The previous ifUnnumberedSet() call told it that it could
reach 138.12.12.12 by broadcasting on fei1.

Figure 4-10 Unnumbered Interface Setup

Network 136.12.0.0

Network 138.12.0.0

ipAttach(1, "fei");
ifUnnumberedSet("fei1", "136.12.38.150", "138.12.12.12");
mRouteAdd("136.12.0.0", "136.12.38.150", 0, 0, 0);

destination

mRouteAdd("136.12.0.0", "138.12.12.12", 0, 0, 0);

If “Thule” is not running VxWorks, make a locally
appropriate substitution for an mRouteAdd() call.

Ultima

136.12.38.50

136.12.38.150

Vx A

fei0

fei1

136.12.38.150

138.12.12.12

138.12.12.12

Vx B

fei1

fei0

mRouteAdd("138.12.0.0", "136.12.38.150", 0, 0, 0);

If “Ultima” is not running VxWorks, make a locally
appropriate substitution for an mRouteAdd() call.

ipAttach(1, "fei");
ifUnnumberedSet("fei1", "138.12.12.12" "136.12.38.150");
mRouteAdd("138.12.0.0", "138.12.12.12", 0, 0, 0);

destination

Thule

138.12.12.14
91

VxWorks 5.5
Network Programmer’s Guide
4.10 Network Byte Order

A single network can contain CPUs using different internal architectures. The
numeric representation schemes of these architectures can differ: some use
big-endian numbers, and some use little-endian numbers. To permit exchanging
numeric data over a network, some overall convention is necessary. Network byte
order is the convention that governs exchange of numeric data related to the
network itself, such as socket addresses or shared-semaphore IDs. Numbers in
network byte order are big-endian.

The routines in Table 4-7 convert longs and shorts between host and network byte
order. To minimize overhead, macro implementations (which have no effect on
architectures where no conversion is needed) are also available, in h/netinet/in.h.

To avoid macro-expansion side effects, do not apply these macros directly to an
expression. The following increments pBuf four times (on little-endian
architectures):

pBufHostLong = ntohl (*pBuf++); /* UNSAFE */

It is safer to increment separately from the macro call. The following increments
pBuf only once, whether the architecture is big- or little-endian:

pBufHostLong = ntohl (*pBuf);
pBuf++;

Table 4-7 Network Address Conversion Macros

Macro Description

htonl Convert a long from host to network byte ordering.

htons Convert a short from host to network byte ordering.

ntohl Convert a long from network to host byte ordering.

ntohs Convert a short from network to host byte ordering.
92

4

4
Configuring the Network Stack
4.11 Assigning Host Names to IP Addresses

On a VxWorks host, you can use the functions of the ifLib library to associate
Internet addresses with network interfaces and addresses. For a listing of these
configuration functions, see the reference entry for ifLib. To add host names, use
the functions supplied in hostLib. For a listing of these configuration functions, see
the reference entry for hostLib.

Associating Internet Addresses with Host Names

The underlying Internet protocol uses the 32-bit Internet addresses of systems on
the network. People, however, prefer to use system names that are more
meaningful to them. Thus VxWorks and most host development systems maintain
their own maps between system names and Internet addresses.

On UNIX systems, /etc/hosts contains the mapping between system names and
Internet addresses. Each line consists of an Internet address and the assigned
name(s) for that address:

150.12.0.1 vx1

There must be an entry in this file for each UNIX system and for each VxWorks host
on the network. For more information on /etc/hosts, see your UNIX system
reference entry hosts(5).

On a VxWorks host, call hostAdd() to associate system names with Internet
addresses. Make one call to hostAdd() for each system with which the VxWorks
host communicates. For example:

hostAdd ("vx1", "150.12.0.1");

To associate more than one name with an Internet address, hostAdd() can be
called several times with different host names and the same Internet address. The
routine hostShow() displays the current system name and Internet address
associations. In the following example, 150.12.0.1 is accessible using the names
host, myHost, and widget:

-> hostShow
value = 0 = 0x0

NOTE: In addition to hostAdd(), VxWorks also includes DNS. You can use DNS
to create and automatically maintain host-name/address associations for a
VxWorks host. See 9. DNS and SNTP.
93

VxWorks 5.5
Network Programmer’s Guide
The standard output device displays the following output:

hostname inet address aliases
-------- ----------- -------
localhost 127.0.0.1
host 150.12.0.1

-> hostAdd "myHost", "150.12.0.1"
value = 0 = 0x0
-> hostAdd "widget", "150.12.0.1"
value = 0 = 0x0
-> hostShow
value = 0 = 0x0

Now standard output displays the following:1

hostname inet address aliases
-------- ----------- -------
localhost 127.0.0.1
vx1 150.12.0.1 myHost widget
value = 0 = 0x0

The VxWorks startup routine, usrNetInit() in usrNetwork.c, automatically adds
the name of the host from which the target booted, using the host name specified
in the boot parameters.

1. Internally, hostShow() uses the resolver library to access DNS to get the information it
needs to respond to a query.
94

5

Network Configuration

Protocols
5.1 Introduction

This chapter describes the protocols used for retrieving network configuration
information. These protocols are:

� DHCP (Dynamic Host Configuration Protocol)
� BOOTP (Bootstrap Protocol)
� SNMP (Simple Network Management Protocol)

DHCP uses the BSD Packet Filter (BPF) in its boot scheme. For this reason, this
chapter also discusses BPF.

Both a DHCP server and a BOOTP server can supply an Internet host with an IP
address and related configuration information. When a BOOTP server assigns an
IP address to an Internet host, the address is permanently assigned.

A DHCP server is more flexible. It assigns an IP address on either a permanent or
leased basis. Leased IP addresses are an advantage in environments where large
numbers of Internet hosts join the network for sessions of limited duration.
Predicting the duration of such sessions is usually not possible at the time the
leases are assigned.

Fortunately, a DHCP client has the ability to contact its server again and
renegotiate the lease on an IP address (or request a replacement address). Unlike a
BOOTP client, a DHCP client must remain active for as long as the target needs a
current lease on an IP address.

Also included at the end of this section is a brief description of SNMP, an optional
networking product that is compatible with VxWorks and purchased separately.
95

VxWorks 5.5
Network Programmer’s Guide
For detailed usage information on SNMP, see the WindNet SNMP VxWorks
Optional Product Supplement.

DHCP and BOOTP Work Only on Broadcast-capable MUX Devices

Both the DHCP and BOOTP clients use broadcasts to discover an appropriate
server. Both protocols require network drivers that are capable of implementing
some sort of broadcast. In addition, these drivers must be implemented using the
MUX interface (in other words, as ENDs or NPT drivers).

5.2 BOOTP, Bootstrap Protocol

BOOTP is a basic bootstrap protocol implemented on top of the Internet User
Datagram Protocol (UDP). The BOOTP client provided with VxWorks lets a target
retrieve a single set of configuration parameters from a BOOTP server. Included
among these configuration parameters is a permanently assigned IP address and
a filename specifying a bootable image. To retrieve the boot file, the target can use
a file transfer program, such as TFTP, FTP, or RSH.1

BOOTP offers centralized management of target boot parameters on the host
system. Using BOOTP, the target can retrieve the boot parameters stored on a host
system. This lets you set up systems that can automatically reboot without the
need to enter the configuration parameters manually.

A BOOTP server must be running (with inetd on a UNIX system) on the boot host,
and the boot parameters for the target must be entered into the BOOTP database
(bootptab). The format of this database is server specific. An example bootptab file
is described in The BOOTP Database, p.97.

BOOTP is a simple protocol based on single-packet exchanges. The client transmits
a BOOTP request message on the network. The server gets the message, and looks

1. For the complete BOOTP protocol specification, see RFC 951 “Bootstrap Protocol (BOOTP),”
RFC 1542 “Clarifications and Extensions for BOOTP,” and RFC 1048 “BOOTP Vendor Infor-
mation Extensions.”

NOTE: For many applications, the DHCP protocol can function as an alternative to
BOOTP.
96

5

5
Network Configuration Protocols
up the client in the database. It searches for the client’s IP address if that field is
specified; if not, it searches for the client’s hardware address.

If the server finds the client’s entry in the database, it performs name translation
on the boot file, and checks for the presence (and accessibility) of that file. If the file
exists and is readable, the server sends a reply message to the client.

5.2.1 BOOTP Configuration

Using the BOOTP server to supply boot parameters requires that you edit the
server’s BOOTP database file, bootptab. However, the specifics of how to do this
can vary from server to server. Refer to the manuals for your host’s BOOTP server.
If the host does not provide a BOOTP server as part of the operating system, a copy
of the publicly available CMU BOOTP server is provided in
target/unsupported/bootp2.1.

The following discussion of how to modify bootptab applies to the CMU BOOTP
server.

The BOOTP Database

To register a VxWorks target with the BOOTP server, you must enter the target
parameters in the host’s BOOTP database (/etc/bootptab). The following is an
example bootptab for the CMU version of the BOOTP server:

/etc/bootptab: database for bootp server (/etc/bootpd)
Last update Mon 11/7/88 18:03
Blank lines and lines beginning with '#' are ignored.
#
Legend:
#
first field -- hostname
(may be full domain name and probably should be)
#
hd -- home directory
bf -- boot file
cs -- cookie servers
ds -- domain name servers
gw -- gateways
ha -- hardware address
ht -- hardware type
im -- impress servers
ip -- host IP address
lg -- log servers
lp -- LPR servers
ns -- IEN-116 name servers
97

VxWorks 5.5
Network Programmer’s Guide
rl -- resource location protocol servers
sm -- subnet mask
tc -- template host (points to similar host entry)
to -- time offset (seconds)
ts -- time servers
#
Be careful to include backslashes where they are needed. Weird (bad)
things can happen when a backslash is omitted where one is intended.
#
First, we define a global entry which specifies what every host uses.

global.dummy:\
:sm=255.255.255.0:\
:hd=/usr/wind/target/vxBoot:\
:bf=vxWorks:

vx240:ht=ethernet:ha=00DD00CB1E05:ip=150.12.1.240:tc=global.dummy
vx241:ht=ethernet:ha=00DD00FE2D01:ip=150.12.1.241:tc=global.dummy
vx242:ht=ethernet:ha=00DD00CB1E02:ip=150.12.1.242:tc=global.dummy
vx243:ht=ethernet:ha=00DD00CB1E03:ip=150.12.1.243:tc=global.dummy
vx244:ht=ethernet:ha=0000530e0018:ip=150.12.1.244:tc=global.dummy

Note that common data is described in the entry global.dummy. Any target entries
that want to use the common data use tc=global.dummy. Any target-specific
information is listed separately on the target line. For example, in the previous file,
the entry for the target vx244 specifies only its Ethernet address (0000530e0018)
and IP address (150.12.1.244). The subnet mask (255.255.255.0), home directory
(/usr/wind/target/vxBoot), and boot file (VxWorks) are taken from the common
entry global.dummy.

Editing the BOOTP Database to Register a Target

To register a target with the BOOTP server, log onto the host machine, edit the
BOOTP database file to include an entry that specifies the target address (ha=), IP
address (ip=), and boot file (bf=). For example, to add a target called vx245, with
Ethernet address 00:00:4B:0B:B3:A8, IP address 150.12.1.245, and boot file
/usr/wind/target/vxBoot/vxWorks, you would add the following line to the file:

vx245:ht=ethernet:ha=00004B0BB3A8:ip=150.12.1.245:tc=global.dummy

Note that you do not need to specify the boot filename explicitly. The home
directory (hd) and the boot file (bf) are taken from global.dummy.

When performing the boot filename translation, the BOOTP server uses the value
specified in the boot file field of the client request message as well as the bf (boot
file) and the hd (home directory) field in the database. If the form of the filename
calls for it (for example, if it is relative), the server prepends the home directory to
98

5

5
Network Configuration Protocols
the filename. The server checks for the existence of the file; if the file is not found,
it sends no reply. For more information, see bootpd in the manual for your host.

When the server checks for the existence of the file, it also checks whether its
read-access bit is set to public, because this is required by tftpd(8) to permit the file
transfer. All filenames are first tried as filename.hostname and then as filename, thus
providing for individual per-host boot files.

In the previous example, the server first searches for the file
/usr/wind/target/vxBoot/vxWorks.vx245. If the file does not exist, the server looks
for /usr/wind/target/vxBoot/vxWorks.

5.3 DHCP, Dynamic Host Configuration Protocol

DHCP, an extension of BOOTP, is designed to supply clients with all of the Internet
configuration parameters defined in the Host Requirements documents (RFCs
1122 and 1123) without manual intervention. Like BOOTP, DHCP allows the
permanent allocation of configuration parameters to specific clients. However,
DHCP also supports the assignment of a network address for a finite lease period.
This feature allows the serial reassignment of network addresses to different
clients. This feature is useful when IP addresses are limited and the clients connect
to the network for limited periods, such as is usually the case with clients that
connect to the network over a modem.

The DHCP implementation provided with VxWorks conforms to the Internet
standard RFC 2131.

VxWorks DHCP Components

VxWorks includes a DHCP client, server, and relay agent. The DHCP client can
retrieve one or more sets of configuration parameters from either a DHCP or
BOOTP server. The VxWorks DHCP client also maintains any leases it has
retrieved. Likewise, the VxWorks DHCP server can process both BOOTP and
DHCP messages. Both the client and server implementations support all options
described in RFC 2132. The DHCP relay agent provides forwarding of DHCP and
BOOTP messages across subnet boundaries.
99

VxWorks 5.5
Network Programmer’s Guide
Interface Settings Retrieved Using DHCP

If the server is configured to provide them, a lease can include configuration
parameters in addition to an assigned IP address. To minimize network traffic, the
DHCP client sets configuration values to the defaults specified in the Host
Requirements documents (RFCs 1122 and 1123) if the server does not specify
values for the corresponding parameters.

Unlike the configuration parameters supplied by BOOTP, the DHCP-assigned
configuration parameters can expire. Although the DHCP server can duplicate
BOOTP behavior and issue a permanent IP address to the client, the lease granted
is usually temporary. To continue using the assigned parameters, the client must
periodically contact the issuing server to renew the lease.

5.3.1 Including DHCP Components in an Image

The VxWorks DHCP implementation includes a server, a client, and a relay agent.
You can configure your image to include all, two, one, or none of these components
using the following configuration parameters:

INCLUDE_DHCPS
Includes the DHCP server.

INCLUDE_DHCPC
Includes the DHCPv4 run-time client. You need this code if you want the
target to boot using DHCP.

INCLUDE_DHCPR
Includes the DHCP relay agent. Include the DHCP relay agent if the target
must relay information from a DHCP server on a different subnet.

After setting any of the above configuration parameters, rebuild VxWorks.

! WARNING: The Tornado tools do not currently have any way to discover or
respond to a change in the target’s IP address. Such a change breaks the network
connection. In response, you must manually reconnect the Tornado tools to the
target’s new IP address. During development, this is rarely a serious problem, and
you can avoid it by having the DHCP server issue an infinite lease on the target’s
IP address.
100

5

5
Network Configuration Protocols
5.3.2 Configuring the DHCP Client

The following configuration parameters are set by default for the DHCP client:

DHCPC_SPORT—DHCP Client Target Port
Port monitored by DHCP servers. Default: 67.

DHCPC_CPORT—DHCP Client Host Port
Port monitored by DHCP clients. Default: 68.

DHCPC_MAX_LEASES—DHCP Client Maximum Leases
Maximum number of simultaneous leases. Default: 4.

DHCPC_OFFER_TIMEOUT—DHCP Client Timeout Value
Seconds to wait for multiple offers. Default: 5.

DHCPC_DEFAULT_LEASE—DHCP Client Default Lease
Desired lease length in seconds. Default: 3600.

DHCPC_MIN_LEASE—DHCP Client Minimum Lease
Minimum allowable lease length (seconds). Default: 30.

DHCPC_MAX_MSGSIZE—DHCP Client Maximum Message Size
Maximum size (in bytes) for a DHCP message. Default: 590.
The default value is the minimum DHCP message in an Ethernet frame.

When setting values for these parameters, keep in mind that the DHCP client
rejects all offers whose duration is less than the minimum lease. Therefore, setting
the DHCP Client Minimum Lease value too high could prevent the retrieval of any
configuration parameters. In addition, if the DHCP client is used at boot time, the

NOTE: If you are building a non-AE VxWorks image from the command line (that
is, using a BSP without the project facility), you can add network components such
as the DHCP client and server by editing the config.h header file for the BSP. For
example, to include the DHCP client, you could edit the BSP config.h to include
the line:

#define INCLUDE_DHCPC

However, the location of this line in the file is critical. The config.h file also
includes configAll.h, which contains statements that defines other constants
depending upon whether INCLUDE_DHCP is defined. Therefore, the
INCLUDE_DHCP statement must come before the inclusion of configAll.h.
Otherwise, the BSP build will likely fail.
101

VxWorks 5.5
Network Programmer’s Guide
values for DHCP Client Target Port and DHCP Client Host Port used in the boot
program and run-time image must match.

Finally, the DHCP Client Maximum Leases limit on multiple concurrent leases
includes a lease established at boot time. For example, if this limit has a value of
four, and if a boot-time DHCP client retrieves a lease, the run-time DHCP client is
limited to three additional sets of configuration parameters (until the boot-time
lease expires).

5.3.3 Configuring DHCP Servers

Configuring the DHCP server requires that you create a pool of configuration
parameter sets. Each parameter set must include an IP address. When a DHCP
client makes a request of the server, the server can then assign a parameter set to
the client (either permanently or on a leased basis). To store and maintain this pool
of configuration parameter sets, some DHCP servers use one or more files. This
approach is analogous to the use of the bootptab file associated with SunOS
BOOTP servers. The unsupported DHCP server distributed with VxWorks takes
this approach.

However, some VxWorks targets do not include a file system. The supported
target-resident DHCP server does not use a file-based mechanism for parameter
storage. Instead, the target-resident server maintains configuration parameters in
memory-resident structures. To control the contents of these memory-resident
structures, you can add entries using dhcpLeaseEntryAdd(), or you can modify
the source code that defines these structures.

The following sections describe how to configure the supported DHCP server.
Also included are pointers to reference information on configuring the
unsupported DHCP server. If you decide to use a third-party DHCP server, consult
the configuration information in the vendor-supplied documentation.

Configuring the Supported DHCP Server

Configuring the supported (target-resident) DHCP server involves setting
appropriate values for certain configuration parameters. For more information on

NOTE: In addition to setting values for the defines mentioned above,
asynchronous use of DHCP requires that you provide an event hook routine to
handle lease events. For more information, see the dhcpcEventHookAdd()
reference entry.
102

5

5
Network Configuration Protocols
configuring VxWorks, see the Tornado User’s Guide: Customizing VxWorks AE. The
relevant configuration parameters follow:

DHCPS_LEASE_HOOK — DHCP Server Lease Storage Routine
Default: None. This constant specifies the name of the routine that handles
non-volatile storage of the active leases. For more information, see Storing
and Retrieving Active Network Configurations, p.106.

DHCPS_ADDRESS_HOOK — DHCP Server Address Storage Routine
Default: None. This constant specifies the name of an optional storage
routine. For more information, see Storing and Retrieving Active Network
Configurations, p.106.

DHCPS_DEFAULT_LEASE — DHCP Server Standard Lease Length
Default: 3600. This constant specifies the default lease length in seconds.
This value applies if no explicit value is set in the address pool.

DHCP_MAX_HOPS — DHCP Server/Relay Agent Network Radius
Default: 4. This value limits the number of subnets that a DHCP message
can cross (prevents network flooding). The maximum valid value is 16.

DHCP_SPORT — DHCP Server/Relay Agent Host Port
Default: 67. This value specifies the port monitored by DHCP servers.

DHCPS_CPORT — DHCP Server/Relay Agent Target Port
Default: 68. This value specifies the port monitored by DHCP clients.

DHCPS_MAX_MSGSIZE — DHCP Server/Relay Agent Maximum Message Size
Maximum size (in bytes) for a DHCP message. Default: 590.
The default value is the minimum DHCP message in an Ethernet frame.

Configuring the Lease Table in the Supported DHCP Server

To determine its initial configuration data, the supported DHCP server uses the
dhcpsLeaseTbl[] defined in target/config/comps/src/net/usrNetDhcpsCfg.c.
This table describes the server’s pool of network configuration parameter sets. It
has the following format:

DHCPS_LEASE_DESC dhcpsLeaseTbl [] =
{
/* {"Name", "Start IP", "End IP", "parameters"} */

{"dflt", NULL, NULL, DHCPS_DEFAULT_ENTRY},

/* Sample database entries. */

/* {"ent1", "90.11.42.24", "90.11.42.24",
"clid=\"1:0x08003D21FE90\":maxl=90:dfl l=60"}, */
103

VxWorks 5.5
Network Programmer’s Guide
/* {"ent2", "90.11.42.25", "90.11.42.26",
"snmk=255.255.255.0:maxl=90:dfll=70:file=/vxWorks"},*/

/* {"ent3", "90.11.42.27", "90.11.42.27",
"maxl=0xffffffff:file=/vxWorks"}, */

/* {"entry4", "90.11.42.28", "90.11.42.29",
"albp=true:file=/vxWorks"} */

};

Each entry in this lease table must include a unique entry name of up to eight
characters and an IP address range for assignment to requesting clients. The
parameters field contains a colon-separated list of optional parameters for
inclusion in the DHCP server’s response. If subnetting is in effect, a critical entry
in the parameters field is the subnet mask (snmk). The server does not issue
addresses to clients that would change their current subnet. The address pool must
specify a correct subnet mask if the default class-based mask is not valid.

A complete description of the parameters field is found in the manual pages for the
DHCP server. Any parameters not specified take default values according to the
Host Requirements Documents (RFC 1122 and 1123). The server can also read
additional entries from an optional storage hook (Storing and Retrieving Active
Network Configurations, p.106). The most commonly used lease table parameters
are:

clid Indicates that this is a manual lease. Such a lease is issued only to the client
with the matching type:id pair. The address range for these entries must
specify a single IP address. The sample shown for “ent1” uses the
hardware address that the supported DHCP client uses for an identifier.

maxl Indicates that this lease is dynamic. This parameter specifies the maximum
lease duration granted to any requesting client. The automatic lease
illustrated in the third sample entry is implied by the assignment of an
infinite value for maxl.

albp Indicates a special type of automatic lease. Setting the albp parameter to
true in the fourth entry marks this lease as suitable for BOOTP clients that
contact this DHCP server.

siad Specifies the (boot) server Internet address, the IP address of the boot host.

Of the parameters shown above, the first three, clid, max1, and albp, indicate lease
types. The server uses the lease type to select one of the three supported
mechanisms for IP address allocation. With manual allocation, DHCP simply
conveys the related manual lease to the client. If dynamic allocation is used, the
protocol assigns one of the dynamic leases to the client for a finite period.
104

5

5
Network Configuration Protocols
Automatic allocation assigns a permanent IP address from the corresponding
automatic leases.

Dynamic allocation is the only method that allows reuse of addresses. The
allocation type defines the priority for assigning an IP address to a DHCP client.
Manual allocations have the highest priority, and automatic allocations the lowest.
Among automatic leases, the preferred configurations are those available only to
DHCP clients.

Configuring the Relay Agent Table in the Supported DHCP Server

If the DHCP server expects messages from relay agents, you must list those agents
(identified by IP address and subnet number) in the dhcpsRelayTbl[]. This table
acts as an authorization list. If messages arrive from relay agents not listed in the
table, the messages are ignored.

DHCPS_RELAY_DESC dhcpsRelayTbl [] =
{
/*
IP address of agent Subnet Number
-------------------- -------------
*/
/* {"90.11.42.254", "90.11.42.0"}, */
};

Adding Entries to the Database of a Running DHCP Server

After the server has started, use the following routine to add new entries to the
lease database:

STATUS dhcpsLeaseEntryAdd
(
char * pName, /* Name of lease entry */
char * pStartIp, /* First IP address to assign */
char * pEndIp, /* Last IP address in assignment range */
char * pParams /* Formatted string of lease parameters */
)

As input, dhcpsLeaseEntryAdd() expects to receive an entry name, starting and
ending IP addresses for assignment to clients, and a formatted string containing
lease parameters. If the entry is added successfully, the routine returns OK or
ERROR otherwise. This routine allows the expansion of the address pool without
rebuilding the image whenever new entries are needed. If you provide an
appropriate storage hook, these entries are preserved across server restarts.
105

VxWorks 5.5
Network Programmer’s Guide
Storing and Retrieving Active Network Configurations

To store and retrieve network configuration information, you need to implement
an address storage routine and a lease storage routine. The lease storage routine
uses the prototype:

STATUS dhcpsLeaseStorageHook
(
int op, /* requested storage operation */
char * pBuffer, /* memory location for record of active lease */
int dataLen /* amount of lease record data */
)

Your lease storage routine must store and retrieve active network configurations.
To install the routine you created, set DHCPS_LEASE_HOOK (a configuration
parameter) to a string containing the routine name. The address storage routine
uses the following prototype:

STATUS dhcpsAddressStorageHook
(
int op, /* requested storage operation */
char * pName, /* name of address pool entry */
char * pStartIp, /* first IP address in range */
char * pEndIp, /* last IP address in range */
char * pParams /* lease parameters for each address */
)

Your address storage routine (optional) stores and retrieves additional
address-pool entries created using dhcpsLeaseEntryAdd(). To preserve these
entries, set DHCPS_ADDRESS_HOOK (a configuration parameter) to the name of
your storage routine. If you don’t do this, any active leases using alternate entries
are not renewed when the server is restarted.

The op parameters of both storage routines expect one of the following values:2

DHCPS_STORAGE_START
Tells your storage routine to perform any necessary initialization. Your storage
routine should “reset” and thus prepare to return or replace any previously
stored data.

! CAUTION: Not providing the storage routine could cause DHCP to fail.

2. These symbolic constants are defined in dhcpsLib.h.
106

5

5
Network Configuration Protocols
DHCPS_STORAGE_STOP
Tells your storage routine to perform any necessary cleanup. After a stop, the
storage routine should not perform any reads or writes until after the next
start.

DHCPS_STORAGE_WRITE
Tells the routine to store network configurations. Each write must store the
data to some form of permanent storage.

The write functionality of your lease storage routine is critical. It is required to
preserve the integrity of the protocol and prevent assignment of IP addresses
to multiple clients. If the server is unable to store and retrieve the active
network configurations, the results are unpredictable. The write functionality
of the lease storage routine must accept a sequence of bytes of the indicated
length.

The write functionality of the address storage routine must accept
NULL-terminated strings containing the entry name, starting and ending
addresses, and additional parameters.

If a write completes successfully, the routine must return OK.

DHCPS_STORAGE_READ
Tells your storage routine to retrieve network configurations. Each read must
copy the data (stored by earlier writes) into the buffers provided. The returned
information must be of the same format provided to the write operation.

If a read completes successfully, your routine must return OK. If earlier reads
have retrieved all available data, or no data is available, your routine must
return ERROR. The server calls your routine with read requests until ERROR is
returned.

DHCPS_STORAGE_CLEAR
Used only in calls to your lease storage routine. This value tells your routine
that any data currently stored is no longer needed. Following this operation,
reads should return error until after the next write.
107

VxWorks 5.5
Network Programmer’s Guide
Configuring the Unsupported DHCP Server

The files in target/unsupported/dhcp-1.3beta/server contain a port of a public
domain server available from the WIDE project. This port modifies the original
code so that it supports Solaris as well as SunOS.

Unlike the supported VxWorks DHCP server, the unsupported server uses files to
store the databases that track the IP addresses and the other configuration
parameters that it distributes.

You can specify the names of these files in the dhcps command that you use to start
the DHCP server. If you do not specify the configuration files by name, the server
uses the following defaults: /etc/dhcpdb.pool, and /etc/dhcpdb.bind (or
/var/db/dhcpdb.bind for BSD/OS). If the server supports a relay agent, it also
maintains an extra database with the default name of /etc/dhcpdb.relay. The server
also creates other files as needed in the /etc directory, but you do not need to edit
these files to configure the server.

NOTE: Under VxWorks AE, all code you want to include in a target requires a
component description file. This is true also for the code you write for your storage
hooks. A .cdf file for an address storage hook would look as follows:

/* 00comp_dhcpstest.cdf - Component configuration file */
/* Copyright 1984 - 2000 Wind River Systems, Inc. */
/*
modification history

01a,18jul00,spm written
*/

Component INCLUDE_DHCPS_STORE
{
NAME DHCP dynamic address pool hook
SYNOPSIS Provides permanent storage for potential DHCP leases
MODULES dhcpsTestHook.o
PREF_DOMAIN KERNEL
}

Module dhcpsTestHook.o {
ENTRY_POINTS sampleAddressStorageHook

}

EntryPoint sampleAddressStorageHook {
SYNOPSIS Dummy routine for displaying storage operations

}

108

5

5
Network Configuration Protocols
For the specifics of how you should edit these files, see the DHCPS(5),
DHCPDB.POOL(5), and DHCPDB.RELAY(5) man pages included with the source
code for the unsupported DHCP server.

5.3.4 Configuring the Supported DHCP Relay Agent

To include the VxWorks DHCP relay agent in an image, use the INCLUDE_DHCPR
configuration parameter. The relay agent uses some of the same configuration
parameters as the DHCP server:

DHCP_MAX_HOPS — DHCP Server/Relay Agent Network Radius
Default: 4. Hops before discard, up to 16.

DHCPS_SPORT—DHCP Server/Relay Agent Host Port
Default: 67. Port monitored by DHCP servers.

DHCPS_CPORT—DHCP Server/Relay Agent Target Port
Default: 68. Port monitored by DHCP clients.

DHCPS_MAX_MSGSIZE—DHCP Server/Relay Agent Maximum Message Size
Maximum size (in bytes) for a DHCP message. Default: 590.

To find other DHCP relay agents or servers, the relay agent reads the
dhcpTargetTbl[] table defined in usrNetDhcprCfg.c. This table is of the form:

DHCP_TARGET_DESC dhcpTargetTbl [] =
{
/*
IP address of DHCP target servers

*/
/* {"90.11.42.2"}, */
};

Each entry in the table must specify a valid IP address for a DHCP server on a
different subnet than the relay agent. The relay agent transmits a copy of all DHCP
messages sent by clients to each of the specified addresses. The agent does not set
the IP routing tables so that the specified target addresses are reachable.

The relay agent forwards DHCP client messages through only a limited number of
targets: the DHCP Server/Relay Agent Network Radius. When the configured
value is exceeded, the message is silently discarded. This value is increased only
when a DHCP agent forwards the message. It is completely independent of the
similar value used by IP routers. RFC 1542 specifies the maximum value of 16 for
this constant. The default hops value is four.
109

VxWorks 5.5
Network Programmer’s Guide
Beyond providing the list of target addresses, and optionally changing the
maximum number of hops permitted, no further action is necessary. The DHCP
relay agent executes automatically whenever it is included in the image.

5.3.5 DHCP within an Application

The target-resident DHCP client can retrieve multiple sets of configuration
information. These retrieval requests can execute either synchronously or
asynchronously. In addition, the retrieved network configuration information can
be applied directly to the underlying network interface or used for some other
purpose. The following example demonstrates the asynchronous execution of a
DHCP request for a lease with a 30-minute duration in which the retrieved
configuration parameters are applied to the network interface used to contact the
DHCP server.3

pIf = ifunit ("net0"); /* Access network device. */

/* Initialize lease variables for automatic configuration. */

pLeaseCookie = dhcpcInit (pIf, TRUE);
if (pLeaseCookie == NULL)

return (ERROR);

/* Set any lease options here. */

dhcpcOptionAdd (pLeaseCookie, _DHCP_LEASE_TIME_TAG, 4, 1800);

result = dhcpcBind (pLeaseCookie, FALSE); /* Asynchronous execution. */
if (result != OK)

return (ERROR);

In the code above, the dhcpcInit() call used a value of TRUE for the autoconfig
parameter. This automatically includes a request for a subnet mask and broadcast
address in the cookie (pLeaseCookie). To request additional options for this lease
the code makes a call to dhcpcOptionSet(). Because the DHCP protocol requires
that all requested parameters be specified before a lease is established, both the
dhcpcOptionSet() and dhcpcOptionAdd() calls must precede the asynchronous
dhcpcBind() call that establishes the lease.

Although it is omitted from the example, you can use a dhcpcLeaseHookAdd()
call to associate a lease event hook routine with this lease. That way, you can note

3. The limit on the number of concurrent leases is the “DHCP Client Maximum Leases” value
set during configuration (Configuration parameter: DHCPC_MAX_LEASES). When
setting this value, remember to count the lease (if any) that the client retrieved at boot time.
110

5

5
Network Configuration Protocols
the DHCPC_LEASE_NEW event that occurs when the asynchronous dhcpcBind()
completes its negotiations with the DHCP server.

To query the local DHCP client for a parameter value from the lease information it
has retrieved, call dhcpcOptionGet(). This routine checks whether the lease
associated with a particular lease cookie is valid and whether the server provided
the requested parameter. If so, dhcpcOptionGet() copies the parameter value into
a buffer. Otherwise, it returns ERROR. A call to dhcpcOptionGet() generates no
network traffic; it queries the local DHCP client for the information it needs. The
following sample demonstrates the use of this routine:

inet_addr webServer;
STATUS result;
int lenght=4;
...
result = dhcpcOptionGet (pLeaseCookie, _DHCP_DFLT_WWW_SERVER_TAG,

&length, &webServer);
if (result == OK)

printf("Primary web server: %s", inet_ntoa (webServer));
...

In addition to dhcpcOptionGet(), you can use dhcpcParamsGet() to retrieve
multiple lease parameter values simultaneously. The DHCP client library also
provides other routines that you can use to get the values of particular parameters
(such as the lease timers) without supplying their option tags.

For more information on DHCP client features, see the dhcpcLib manual pages.

5.4 Boot Parameters for DHCP, BOOTP, and Network Initialization

Before the boot program can use a DHCP or BOOTP client to retrieve additional
boot parameters from a remote server, the boot program needs appropriate values
for bootDev, unitNum, procNum, and flags. See Table 5-1. Because the boot
program does not yet have network access, the target must be able to find these

NOTE: To check on configuration parameters associated with a lease established at
boot time, use the pDhcpcBootCookie global variable as the lease cookie in a call
to dhcpcOptionGet().

NOTE: If you already have an IP address and do not want another but want to
query the server for any other information it has for you, call dhcpInformGet().
111

VxWorks 5.5
Network Programmer’s Guide
parameter values in the default boot line, a user-provided boot line, or NVRAM
boot line.4

Table 5-1 Boot Parameters Needed for DHCP, BOOTP, and Network Device Initialization

Parameter Name from
BOOT_PARAMS

Parameter Name from p Command Listing
(followed by description)

bootDev boot device

Contains the name of the network device from which to boot. For
example, ln specifies the Lance driver. Which device you specify
determines the physical medium over which the boot program
attempts a networked boot. To add support for another medium,
write a MUX-based driver for the new network and include the
driver in your boot program. For more information on writing a
driver that uses the MUX interface, see the 10. Integrating a New
Network Interface Driver.

unitNum unit number

Contains the unit number for the network device. In boot prompts
that reference the network device, the target appends this to the
bootDev. For example, if you see an “ln0”, the “ln” refers to the
Lance driver, and the “0” is the network device unit number. If you
do not specify a unit number, the boot program defaults to using 0.

procNum processor number

Contains the backplane processor number of the target CPU. This
value is critical to the shared-memory network. The shared memory
master must be processor number zero.

flags flags (f)

Contains a value composed of flags (ORed in values) that configure
the boot process. The predefined significance of each bit is as
follows:

0x01 Disables system controller for processor 0 (not supported on
all boards).

4. If the target has NVRAM, and the user specified these parameters in a previous boot session,
the boot program knows to save these parameters to an NVRAM boot line for the use of the
next boot session.
112

5

5
Network Configuration Protocols
5.4.1 Boot Parameters Returned from DHCP or BOOTP

If the 0x40 bit in the flags parameter is set, the boot program uses either DHCP or
BOOTP client to retrieve the following parameters: ead (from which the boot
program also derives a value for bad), had, gad, and bootFile.5 See Table 5-2.

0x02 Loads the local symbols as well as the global symbols into the
target-based symbol table. This has consequences for tools
such as the target shell. If the target-based symbol contains
local variables, the target shell has access to both locally and
globally declared symbols. Setting this bit means you must
also reconfigure VxWorks to include a downloaded symbol
table. The relevant configuration parameter is
INCLUDE_NET_SYM_TBL. The VxWorks startup code
assumes that the file containing the symbol table is resident
on the same host as the boot image. The VxWorks startup
code also assumes that the name of the symbol table file is the
boot file name with an appended .sym suffix. When reading
the .sym file, the VxWorks image has the option of loading
local symbols as well as global symbols into its
target-resident symbol table.

0x04 Prevents autoboot.

0x08 Enables quick autoboot (no countdown).

0x20 Disables login security.

0x40 Specifies automatic configuration using BOOTP or DHCP.
VxWorks tries first to use a DHCP client. If the boot ROM
does not include the DHCP client, then the target uses the
BOOTP client to retrieve information. When the 0x40 flag is
set, e or ead (inet on ethernet) should be blank.

0x80 Tells the target to use TFTP to get VxWorks image.
Otherwise, the target uses either RSH or FTP. The target uses
FTP if you enter a non-empty value for the passwd
parameter. Otherwise, the target uses RSH.

0x100 Makes target register as a Proxy ARP client.

Table 5-1 Boot Parameters Needed for DHCP, BOOTP, and Network Device Initialization (Continued)

Parameter Name from
BOOT_PARAMS

Parameter Name from p Command Listing
(followed by description)
113

VxWorks 5.5
Network Programmer’s Guide
5. If you accidentally include both a DHCP and BOOTP client in a boot program, the program
uses the DHCP client. If neither is present and 0x40 is set, booting fails.

Table 5-2 Boot Parameters Returned from DHCP or BOOTP

Parameter Name from
BOOT_PARAMS

Parameter Name from p Command Listing
(followed by description)

ead inet on ethernet (e)

This value is the unique Internet address of this target on the
Ethernet or, if you are booting from SLIP, the local end of a SLIP
connection. You can also specify a subnet mask (as described in
4.5.2 Assigning an IP Address and Network Mask to an Interface, p.61).
If no mask is specified, the standard mask for the address class will
be used. If ead is empty, the target does not attach the Ethernet
interface. This is acceptable if the target is booting over the
backplane.

bad inet on backplane (b)

Actually, neither BOOTP nor DHCP supply this value directly, the
backplane Internet address. If this parameter contains a non-empty
value, the target attaches the backplane interface. Typically, the
boot program uses sequential and proxy default addressing
conventions to derive a bad value from the ead parameter (which
BOOTP can provide) and the CPU number. However, the use of
sequential addressing makes booting from the shared-memory
backplane incompatible with DHCP. This parameter should be
empty if no shared-memory network is required. To specify a
subnet mask for bad, see 4.5.2 Assigning an IP Address and Network
Mask to an Interface, p.61).

had host inet (h)

The Internet address of the host from which to retrieve the boot file.

gad gateway inet (g)

The Internet address of the gateway through which to boot if the
host is not on the same network as the target. If gad has a
non-empty value, a routing entry is added indicating that the
address is a gateway to the network of the specified boot host.
NOTE: do not use this field to enter the default gateway (the
router’s address) if the host and the target are on the same subnet.
Instead, use routeAdd() in your application startup code or
startup script.
114

5

5
Network Configuration Protocols
5.5 SNMP, Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) lets you use a Network
Management Station (NMS) to remotely configure, monitor, and manage any
networked device that runs an SNMP agent. The SNMP protocol is based on an
exchange of messages that set or get the value of variables in the agent’s
Management Information Base (MIB). Standard MIBs exist for well known
protocols and network devices. By adding variables to an agent’s MIB, you can
accommodate new network devices and protocols as necessary.

bootFile file name

The full path name of the file containing the VxWorks run-time
image.

! WARNING: If you decide to change the subnet mask for the target’s address (ead),
you must be careful to call the appropriate functions in the correct order:

1. ifRouteDelete() – to delete the existing network route for the
device

2. ifMaskSet() – to enter a new mask

3. ifAddrSet() – to set the IP address, whereupon the new
network route is created

Failing to call these functions in the correct order results in a misconfigured route
table.

Table 5-2 Boot Parameters Returned from DHCP or BOOTP (Continued)

Parameter Name from
BOOT_PARAMS

Parameter Name from p Command Listing
(followed by description)
115

VxWorks 5.5
Network Programmer’s Guide
SNMP is a Separately Purchasable Option

The VxWorks stack does not bundle in SNMP support. If you need SNMP,
purchase one of the following options:

� Envoy SNMP Source Code

This option provides a complete SNMP v1/v2c solution. You have the option
of enhancing Envoy with Envoy+3 and Envoy+X.

� Envoy+3

This option provides SNMP v3 functionality. SNMP v3 enhances the security
of the management protocol through the addition of encryption and
authentication. SNMPv3 uses industry-standard protocols such as MD5
(Message Digest 5), SHA (Secure Hash Algorithm), and DES (Data Encryption
Standard) to secure the communications channel. Envoy's SNMP v3
implementation also provides support for the Target and Notify MIBs.

� Envoy+X

This option provides AgentX functionality for implementing SNMP master
agent/subagent systems. AgentX lets users create dynamically extensible
SNMP agents. AgentX master agents communicate directly with network
management stations. Subagents dynamically register with a master agent.
Such functionality allows developers to design a modularly extensible system,
such as a multi-blade switching chassis, that can be managed as a single
device.

� WindNet SNMP

This option provides a binary version of the Envoy portable source code
product.

For more information, see the Envoy Programmer’s Guide and the Envoy Porting
Guide.
116

6

Dynamic Routing Protocols
6.1 Introduction

When a networking utility needs routing information, it searches the system’s
routing table. You can set up and manage this table manually (from the command
line). However, if the network environment is constantly in flux, the information
in a static routing table could quickly become obsolete. To update the routing table
dynamically, VxWorks supports RIP (Routing Information Protocol).

RIP comes bundled with VxWorks and is intended for small to medium-sized
networks. RIP is a distance-vector protocol, which means that it contains a vector of
distances (a hop count). Each router uses these distance-vectors to update its
routing tables.

6.2 RIP, Routing Information Protocol

RIP maintains routing information within small internetworks. You can use RIP
only in networks where the largest number of hops is 15. Although 15 hops can
encompass a very large network, many networks already exceed this limit.1

1. A packet takes a hop every time it crosses a subnet. If a packet leaves machine Q and must
pass through two subnet routers before it reaches its destination on machine N, the number
of hops is two.
117

VxWorks 5.5
Network Programmer’s Guide
RIP is based on work done in the Internet community, and its algorithmic base goes
back to the ARPANET circa 1969. It is based on the distance-vector algorithm, also
called Bellman-Ford, which is described in “Dynamic Programming,” from
Princeton University by R. E. Bellman. This paper was published in 1957.

The RIP server provided with VxWorks is based on the BSD 4.4 routed program.
There are several relevant RFCs; the two most important are RFC 1058, in which
RIP version 1 was first documented, and RFC 1388, in which the version 2
extensions are documented.

The VxWorks RIP server supports three modes of operation:

� Version 1 RIP

This mode of operation follows RFC 1058. It uses subnet broadcasting to
communicate with other routers and sends out only a gateway and metric for
each subnet.

� Version 2 RIP with Broadcasting

This mode is the same as Version 2 RIP with multicasting (see below), except
that it uses broadcasting instead of multicasting. This mode is backward
compatible with RIP Version 1 and is the mode recommended in RFC 1388.

� Version 2 RIP with Multicasting

In this mode, the server not only knows about routers but can also describe
routes based on their subnet mask and can designate a gateway that is not the
router that sends the updates. Thus, the machine that hosts the RIP server does
not necessarily have to be the gateway. Because this mode uses multicasting to
communicate, only interested nodes in the network see routing information
and updates.

6.2.1 VxWorks Debugging Routines for RIP

The RIP server provides several routines that make debugging easier. The most
often used is ripLogLevelBump(), which enables tracing of packets and routing
changes. Keep in mind that bumping the log level several times prints large
amounts of data to the console. Another routine is ripRouteShow(), which prints
the router’s internal tables to the console. The printed message provides the
following information:

� the route being advertised
� the router that routes the packets
� a subnet mask
118

6

6
Dynamic Routing Protocols
� the time out on the route (in seconds)2

� the flags value (see Table 6-1)

RIP periodically pushes routing information into the VxWorks routing table.
Between updates, the two tables can diverge, but updating only periodically
avoids route thrashing (pushing transient routes into the system route table but
then removing them immediately).

6.2.2 Configuring RIP

To include the RIP server, reconfigure the image. The relevant configuration
parameter is INCLUDE_RIP.

2. The time out is the length of time for which the route remains current. If a route is not
updated within 3 minutes, it is flushed from the routing table.

Table 6-1 Flag Constants for ripRouteShow()

Constant Meaning

RTS_CHANGED Route has changed recently (within the last 30 seconds).

RTS_EXTERNAL Route should not propagate to other routers.

RTS_INTERNAL Route is internal, used to implement border gateway filtering.

RTS_PASSIVE Route is on a passive interface (loopback).

RTS_INTERFACE Route is on a directly connected interface.

RTS_REMOTE Route is on a point to point link.

RTS_SUBNET Route is to a subnet (not a host).

RTS_OTHER Route belongs to some other (non-RIP) protocol.

RTS_PRIMARY Route is a primary route. If this flag is set, the RTS_OTHER flag
must also be set.

NOTE: If you exclude RIP, but include SNMP, a separately purchasable option, you
might want to edit snmpMib2.mib to exclude RIP MIB objects. Including these
objects does no harm, but it makes the image larger unnecessarily.
119

VxWorks 5.5
Network Programmer’s Guide
Compile-Time Configuration

The RIP server starts up when the network initialization code calls ripLibInit().
This routine takes several parameters. You set the value of these parameters by
adjusting the following configuration parameters:

BSD 4.3 Compatible Sockets — BSD43_COMPATIBLE
Although BSD43_COMPATIBLE is not a RIP-specific configuration parameter,
you must turn it off if you want to use VxWorks RIP. By default, this parameter
is already set. BSD43_COMPATIBLE is also automatically defined if VxWorks is
configured to use sockets, INCLUDE_BSD_SOCKET.

RIP Supplier Flag — RIP_SUPPLIER, default: 0
Set to 1, RIP_SUPPLIER tells the RIP server to send out routing information and
updates no matter how many physical interfaces are attached to it. Setting this
constant to 0 turns off this feature.

RIP Gateway Flag — RIP_GATEWAY, default: 0
Set to 1, RIP_GATEWAY tells the server that the router is a default gateway to
all hosts external to the routing domain. If this is not the case, set this constant
to 0.

RIP Multicast Flag — RIP_MULTICAST, default: 0
Set to 1, RIP_MULTICAST tells the server to use the RIP multicast address
(224.0.0.9) instead of using broadcasts. This mode lowers the load on the
network generated by the routing updates. Unfortunately, not all RIP server
implementations (for example, BSD and SunOS routed) can handle
multicasting.

RIP Version Number — RIP_VERSION, default: 1
Set to 1, RIP_VERSION tells the server to run just as a version 1 RIP router (as
described in RFC 1058). Such a server ignores all version 2 packets as well as
malformed version 1 packets. Set this constant to 2 to tell the server that it
should send out version 2 packets and that it should listen for and process both
version 1 and version 2 packets. If you set this constant to 2 and set the RIP
Multicast Flag, RIP_MULTICAST, to 1, you put the server in full version-2
mode.

RIP Timer Rate — RIP_TIMER_RATE, default: 1 second
RIP_TIMER_RATE tells RIP how often it should examine the routing table for
changes and expired routes.

! WARNING: Do not set RIP_GATEWAY to 1 unless this really is the general gateway.
Setting this to 1 configures the RIP server to ignore any advertisements for default
routers received from other RIP peers.
120

6

6
Dynamic Routing Protocols
RIP Supply Interval — RIP_SUPPLY_INTERVAL, default: 30 seconds
RIP_SUPPLY_INTERVAL tells RIP how frequently it should transmit route
updates over every known interface. This value must be set to a multiple of the
RIP Timer Rate.

RIP Expire Time — RIP_EXPIRE_TIME, default: 180 seconds
RIP_EXPIRE_TIME tells RIP the maximum time between updates before a route
is invalidated and removed from the kernel table.

RIP Garbage Time — RIP_GARBAGE_TIME, default: 120 seconds
RIP_GARBAGE_TIME tells RIP specifies the amount of time to wait before a
route removed from the kernel table is also deleted from the internal routing
table. This wait time does not apply until after the RIP_EXPIRE_TIME expires.
Thus, when a RIP_GARBAGE_TIME applies, the total wait time is
RIP_GARBAGE_TIME plus RIP_EXPIRE_TIME. By default, that delay would be
300 seconds (120 plus 180).

RIP Authentication Type — RIP_AUTH_TYPE, default: 1 (no authentication)
RIP_AUTH_TYPE tells RIP which authentication method (if any) that it should
use. Valid values for RIP_AUTH_TYPE are:

1 — no authentication
2 — simple password authentication
3 — MDS authentication

Run-Time Configuration

In addition to setting the defines shown above, there are two alternate methods
you can use to configure RIP:

� Use the m2Rip routines to configure RIP. These routines are documented in the
reference entries. The parameters to these routines are also described in
RFC-1389.

� Use an SNMP agent to configure RIP.

RIP Task Priority and User Protection Domains

RIP tasks run at a priority of 100 and 101. If you are using your own protection
domain, make sure that the task priority range for the protection domain spans the
above two values.

! CAUTION: The RIP server does not support separate routing domains. Only
routing domain 0, the default, is supported.
121

VxWorks 5.5
Network Programmer’s Guide
6.2.3 Creating an Interface Exclusion List for RIP

By default, RIP runs on all interfaces active when RIP is initialized. If you do not
want to run RIP on a particular interface, you can name the interface on a RIP
exclusion list. However, you must put the interface on the exclusion list before RIP
is initialized. If that is not possible, you can add the interface to the list and then
call ripIfReset().

If RIP is already running on an interface, simply putting an interface on the
exclusion list does not automatically shut down RIP on that interface.

To manage an interface exclusion list, ripLib provides the following functions:

ripIfExcludeListAdd() — add an interface to the RIP exclusion list

ripIfExcludeListDelete() — remove an interface from the RIP exclusion list

ripIfExcludeListShow() — show the interfaces on the RIP exclusion list

For more information on these functions, see the relevant ripLib reference entries.

NOTE: Calling ripIfReset() clears the RIP interface settings for the interface. This
means you lose the interface hooks, the interface MIB2 settings, and all other such
information associated with the interface.
122

7

Sockets under VxWorks
7.1 Introduction

This chapter describes how to use the standard BSD socket interface for stream
sockets and datagram sockets on a VxWorks target. It also describes how to use
zbuf sockets, an alternative set of socket calls based on a data abstraction called the
zbuf. These zbuf calls let you share data buffers (or portions of data buffers)
between separate software modules.

Using sockets, processes can communicate within a single CPU, across a
backplane, across an Ethernet, or across any connected combination of networks.
Socket communications can occur between VxWorks tasks and host system
processes in any combination. In all cases, the communications appear identical to
the application—except, of course, for the speed of the communications.

One of the biggest advantages of socket communication is that it is a homogeneous
mechanism: socket communications among processes are the same, regardless of
the location of the processes in the network or the operating system where they
run. This is true even if you use zbuf sockets, which are fully interoperable with
standard BSD sockets.

For additional information on the socket interface, see the sockLib reference entry.

NOTE: This chapter focuses on how to use a socket connection between processes.
If you are interested in learning how to add socket-support code to a new network
service or protocol, see 11.4 Adding a Socket Interface to Your Service, p.232.
123

VxWorks 5.5
Network Programmer’s Guide
7.2 BSD Sockets

A socket is a communications end-point that is bound to a UDP or TCP port within
the node. Under VxWorks, your application can use the sockets interface to access
features of the Internet Protocol suite (features such as multicasting). Depending
on the bound port type, a socket is referred to either as a stream socket or a
datagram socket. VxWorks sockets are UNIX BSD 4.4 compatible. However,
VxWorks does not support signal functionality for VxWorks sockets.

Stream sockets use TCP to bind to a particular port number. Another process, on any
host in the network, can then create another stream socket and request that it be
connected to the first socket by specifying its host Internet address and port
number. After the two TCP sockets are connected, there is a virtual circuit set up
between them, allowing reliable socket-to-socket communications. This style of
communication is conversational.

Datagram sockets use UDP to bind to a particular port number. Other processes, on
any host in the network, can then send messages to that socket by specifying the
host Internet address and the port number. Compared to TCP, UDP provides a
simpler but less robust communication method. In a UDP communication, data is
sent between sockets in separate, unconnected, individually addressed packets
called datagrams. There is no sense of conversation with a datagram socket. The
communication is in the style of a letter. Each packet carries the address of both the
destination and the sender. Compared to TCP, UDP is unreliable. Like the mail,
packets that are lost or out-of-sequence are not reported.

7.2.1 VxWorks-Specific Socket Dependencies

Although the socket interface is compatible with VxWorks, the environment does
affect how you use sockets. Specifically, the globally accessible file descriptors
available in the task-independent address space of VxWorks require that you take
extra precautions when closing a file descriptor.

You must make sure that one task does not close the file descriptor on which
another task is pending during an accept(). Although the accept() on the closed
file descriptor sometimes returns with an error, the accept() can also fail to return
at all. Thus, if you need to be able to close a socket connection’s file descriptor

NOTE: The complexities of socket programming are beyond the scope of this
document. For additional information, consult a socket-programming book, such
as those mentioned in the introduction to this manual.
124

7

7
Sockets under VxWorks
asynchronously, you may need to set up a semaphore-based locking mechanism
that prevents the close while an accept() is pending on the file descriptor.

7.2.2 Datagram Sockets (UDP)

You can use datagram (UDP) sockets to implement a simple client-server
communication system. You can also use UDP sockets to handle multicasting.

Using a Datagram Socket to Implement a Client-Server Communication System

The following code example uses a client-server communication model. The server
communicates with clients using datagram-oriented (UDP) sockets. The main
server loop, in udpServer(), reads requests and optionally displays the client’s
message. The client builds the request by prompting the user for input. Note that
this code assumes that it executes on machines that have the same data sizes and
alignment.

Example 7-1 Datagram Sockets (UDP)

/* udpExample.h - header used by both UDP server and client examples */

#define SERVER_PORT_NUM 5002 /* server's port number for bind() */
#define REQUEST_MSG_SIZE 1024 /* max size of request message */

/* structure used for client's request */

struct request
{
int display; /* TRUE = display message */
char message[REQUEST_MSG_SIZE]; /* message buffer */
};

/* udpClient.c - UDP client example */

/*
DESCRIPTION
This file contains the client-side of the vxWorks UDP example code.
The example code demonstrates the usage of several BSD 4.4-style
socket routine calls.
*/

/* includes */
125

VxWorks 5.5
Network Programmer’s Guide
#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "hostLib.h"
#include "ioLib.h"
#include "udpExample.h"

/**
*
* udpClient - send a message to a server over a UDP socket
*
* This routine sends a user-provided message to a server over a UDP socket.
* Optionally, this routine can request that the server display the message.
* This routine may be invoked as follows:
* -> udpClient "remoteSystem"
* Message to send:
* Greetings from UDP client
* Would you like server to display your message (Y or N):
* y
* value = 0 = 0x0
*
* RETURNS: OK, or ERROR if the message could not be sent to the server.
*/

STATUS udpClient
(
char * serverName /* name or IP address of server */
)
{
struct request myRequest; /* request to send to server */
struct sockaddr_in serverAddr; /* server's socket address */
char display; /* if TRUE, server prints message */
int sockAddrSize; /* size of socket address structure */
int sFd; /* socket file descriptor */
int mlen; /* length of message */

/* create client's socket */

if ((sFd = socket (AF_INET, SOCK_DGRAM, 0)) == ERROR)
{
perror ("socket");
return (ERROR);
}

/* explicit bind not required - local port number is dynamic */

/* build server socket address */

sockAddrSize = sizeof (struct sockaddr_in);
bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_len = (u_char) sockAddrSize;
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT_NUM);
126

7

7
Sockets under VxWorks
if (((serverAddr.sin_addr.s_addr = inet_addr (serverName)) == ERROR) &&
((serverAddr.sin_addr.s_addr = hostGetByName (serverName)) == ERROR))
{
perror ("unknown server name");
close (sFd);
return (ERROR);
}

/* build request, prompting user for message */

printf ("Message to send: \n");
mlen = read (STD_IN, myRequest.message, REQUEST_MSG_SIZE);
myRequest.message[mlen - 1] = '\0';

printf ("Would you like the server to display your message (Y or N): \n");
read (STD_IN, &display, 1);
switch (display)

{
case 'y':
case 'Y': myRequest.display = TRUE;

break;
default: myRequest.display = FALSE;

break;
}

/* send request to server */

if (sendto (sFd, (caddr_t) &myRequest, sizeof (myRequest), 0,
(struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)
{
perror ("sendto");
close (sFd);
return (ERROR);
}

close (sFd);
return (OK);
}

/* udpServer.c - UDP server example */

/*
DESCRIPTION
This file contains the server-side of the vxWorks UDP example code.
The example code demonstrates the usage of several BSD 4.4-style
socket routine calls.
*/

/* includes */
#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
127

VxWorks 5.5
Network Programmer’s Guide
#include "stdioLib.h"
#include "strLib.h"
#include "ioLib.h"
#include "fioLib.h"
#include "udpExample.h"

/***
*
* udpServer - read from UDP socket and display client's message if requested
*
* Example of vxWorks UDP server:
* -> sp udpServer
* task spawned: id = 0x3a1f6c, name = t2
* value = 3809132 = 0x3a1f6c
* -> MESSAGE FROM CLIENT (Internet Address 150.12.0.11, port 1028):
* Greetings from UDP client
*
* RETURNS: Never, or ERROR if a resources could not be allocated.
*/

STATUS udpServer (void)
{
struct sockaddr_in serverAddr; /* server's socket address */
struct sockaddr_in clientAddr; /* client's socket address */
struct request clientRequest; /* request/Message from client */
int sockAddrSize; /* size of socket address structure */
int sFd; /* socket file descriptor */
char inetAddr[INET_ADDR_LEN];

/* buffer for client's inet addr */

/* set up the local address */

sockAddrSize = sizeof (struct sockaddr_in);
bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_len = (u_char) sockAddrSize;
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT_NUM);
serverAddr.sin_addr.s_addr = htonl (INADDR_ANY);

/* create a UDP-based socket */

if ((sFd = socket (AF_INET, SOCK_DGRAM, 0)) == ERROR)
{
perror ("socket");
return (ERROR);
}

/* bind socket to local address */

if (bind (sFd, (struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)
{
perror ("bind");
close (sFd);
return (ERROR);
}

128

7

7
Sockets under VxWorks
/* read data from a socket and satisfy requests */

FOREVER
{
if (recvfrom (sFd, (char *) &clientRequest, sizeof (clientRequest), 0,

(struct sockaddr *) &clientAddr, &sockAddrSize) == ERROR)
{
perror ("recvfrom");
close (sFd);
return (ERROR);
}

/* if client requested that message be displayed, print it */

if (clientRequest.display)
{
/* convert inet address to dot notation */

inet_ntoa_b (clientAddr.sin_addr, inetAddr);
printf ("MSG FROM CLIENT (Internet Address %s, port %d):\n%s\n",

inetAddr, ntohs (clientAddr.sin_port), cl
ientRequest.message);

}
}

}

Using a Datagram (UDP) Socket to Access IP Multicasting

Multicasting is the delivery of the same packets to multiple IP addresses. Typical
multicasting applications include audio and video conferencing, resource
discovery tools, and shared white boards. Multicasting is a feature of the IP layer,
but to access this function, an application uses a UDP socket.

A VxWorks process must multicast on a network interface driver that supports
multicasting (many do not). To review the capabilities of all attached network
drivers, use ifShow(). If a network interface supports multicasting,
IFF_MULTICAST is listed among the flags for that network interface.

Multicast IP addresses range from 224.0.0.0 to 239.255.255.255. These addresses are
also called class D addresses or multicast groups. A datagram with a class D
destination address is delivered to every process that has joined the corresponding
multicast group.

To multicast a packet, a VxWorks process need do nothing special. The process just
sends to the appropriate multicast address. The process can use any normal UDP
socket. To set the route to the destination multicast address, use mRouteAdd().
129

VxWorks 5.5
Network Programmer’s Guide
To receive a multicast packet, a VxWorks process must join a multicast group. To
do this, the VxWorks process must set the appropriate socket options on the socket
(see Table 7-1).

When choosing an address upon which to multicast, remember that certain
addresses and address ranges are already registered to specific uses and protocols.
For example, 244.0.0.1 multicasts to all systems on the local subnet. The Internet
Assigned Numbers Authority (IANA) maintains a list of registered IP multicast
groups. The current list can be found in RFC 1700. For more information about the
IANA, see RFC 1700. Table 7-2 lists some of the well known multicast groups.

Table 7-1 Multicasting Socket Options*

* For more on multicasting socket options, see the setsockopt() reference entry.

Command Argument Description

IP_MULTICAST_IF struct in_addr Select default interface for outgoing
multicasts.

IP_MULTICAST_TTL char Select default time to live (TTL) for outgoing
multicast packets.

IP_MULTICAST_LOOP char Enable or disable loopback of outgoing
multicasts.

IP_ADD_MEMBERSHIP struct ip_mreq Join a multicast group.

IP_DROP_MEMBERSHIP struct ip_mreq Leave a multicast group.

Table 7-2 Well Known Multicast Groups

Group Constant Description

224.0.0.0 INADDR_UNSPEC_GROUP Reserved for protocols that implement
IP unicast and multicast routing
mechanisms. Datagrams sent to any of
these groups are not forwarded beyond
the local network by multicast routers.

224.0.0.1 INADDR_ALLHOSTS_GROUP All systems on this subnet. This value is
automatically added to all network
drivers at initialization.

224.0.0.2 All routers on this subnet.

224.0.0.3 Unassigned.
130

7

7
Sockets under VxWorks
The following code samples define two routines, mcastSend() and mcastRcv().
These routines demonstrate how to use UDP sockets for sending and receiving
multicast traffic.

mcastSend() transmits a buffer to the specified multicast address. As input, this
routine expects a multicast destination, a port number, a buffer pointer, and a
buffer length. For example:

status = mcastSend ("224.1.0.1", 7777, bufPtr, 100);

mcastRcv() receives any packet sent to a specified multicast address. As input, this
routine expects the interface address from which the packet came, a multicast
address, a port number, and the number of bytes to read from the packet. The
returned value of the function is a pointer a buffer containing the read bytes. For
example:

buf = mcastRcv (ifAddress, "224.1.0.1", 7777, 100) ;

Example 7-2 Datagram Sockets (UDP) and Multicasting

/* includes */
#include "vxWorks.h"
#include "taskLib.h"
#include "socket.h"
#include "netinet/in.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "sockLib.h"
#include "inetLib.h"
#include "ioLib.h"

224.0.0.4 DVMRP routers.

224.0.0.5 OSPF routers.

224.0.0.6 OSPF designated routers.

224.0.0.9 All RIP routers.

224.0.0.255 INADDR_MAX_LOCAL_GROUP Unassigned.

224.0.1.1 NTP (Network Time Protocol).

Table 7-2 Well Known Multicast Groups (Continued)

Group Constant Description
131

VxWorks 5.5
Network Programmer’s Guide
#include "routeLib.h"

/* defines */
/* globals */
/* forward declarations */

STATUS mcastSend (char * mcastAddr, USHORT mcastPort, char * sendBuf,
int sendLen);

char * mcastRcv (char * ifAddr, char * mcastAddr, USHORT mcastPort,
int numRead);

/**
* mcastSend - send a message to the multicast address
* This function sends a message to the multicast address
* The multicast group address to send, the port number, the pointer to the
* send buffer and the send buffer length are given as input parameters.
* RETURNS: OK if successful or ERROR
*/

STATUS mcastSend
(
char * mcastAddr, /* multicast address */
USHORT mcastPort, /* udp port number */
char * sendBuf, /* send Buffer */
int sendLen /* length of send buffer */
)
{
struct sockaddr_in sin;
struct sockaddr_in toAddr;
int toAddrLen;
int sockDesc;
char * bufPtr;
int len;

/* create a send and recv socket */

if ((sockDesc = socket (AF_INET, SOCK_DGRAM, 0)) < 0)
{
printf (" cannot open send socket\n");
return (ERROR);
}

/* zero out the structures */
bzero ((char *)&sin, sizeof (sin));
bzero ((char *)&toAddr, sizeof (toAddr));

sin.sin_len = (u_char) sizeof(sin);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(0);

if (bind(sockDesc, (struct sockaddr *)&sin, sizeof(sin)) != 0)
{
perror("bind");
if (sockDesc) close (sockDesc);
132

7

7
Sockets under VxWorks
return (ERROR);
}

toAddrLen = sizeof(struct sockaddr_in);
toAddr.sin_len = (u_char) toAddrLen;
toAddr.sin_family = AF_INET;

/* initialize the address to the send */
toAddr.sin_addr.s_addr = inet_addr (mcastAddr);

/* initialize the port to send */
toAddr.sin_port = htons(mcastPort);

bufPtr = sendBuf; /* initialize the buffer pointer */

/* send the buffer */
while (sendLen > 0)

{
if ((len = sendto (sockDesc, bufPtr, sendLen, 0,

(struct sockaddr *)&toAddr, toAddrLen)) < 0)
{
printf("mcastSend sendto errno:0x%x\n", errno);
break;
}

sendLen -= len;
bufPtr += len;

taskDelay (1); /* give a taskDelay */
}

close (sockDesc);

return (OK);
}

/**
* mcastRcv - receive a message from a multicast address
* This function receives a message from a multicast address
* The interface address from which to receive the multicast packet,
* the multicast address to recv from, the port number and the number of
* bytes to read are given as input parameters to this routine.
* RETURNS: Pointer to the Buffer or NULL if error.
*/

char * mcastRcv
(
char * ifAddr, /* interface address to recv mcast packets */
char * mcastAddr, /* multicast address */
USHORT mcastPort, /* udp port number to recv */
int numRead /* number of bytes to read */
)
{
struct sockaddr_in fromAddr;
struct sockaddr_in sin;
133

VxWorks 5.5
Network Programmer’s Guide
int fromLen;
struct ip_mreq ipMreq;
int recvLen;
int sockDesc;
char * bufPtr;
int status = OK;
char * recvBuf = NULL;

if ((sockDesc = socket (AF_INET, SOCK_DGRAM, 0)) < 0)
{
printf (" cannot open recv socket\n");
return (NULL);
}

bzero ((char *)&sin, sizeof (sin));
bzero ((char *) &fromAddr, sizeof(fromAddr));
fromLen = sizeof(fromAddr);

if ((recvBuf = calloc (numRead, sizeof (char))) == NULL)
{
printf (" calloc error, cannot allocate memory\n");
status = ERROR;
goto cleanUp;
}

sin.sin_len = (u_char) sizeof(sin);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;

/* UDP port number to match for the received packets */
sin.sin_port = htons (mcastPort);

/* bind a port number to the socket */
if (bind(sockDesc, (struct sockaddr *)&sin, sizeof(sin)) != 0)

{
perror("bind");
status = ERROR;
goto cleanUp;
}

/* fill in the argument structure to join the multicast group */
/* initialize the multicast address to join */

ipMreq.imr_multiaddr.s_addr = inet_addr (mcastAddr);

/* unicast interface addr from which to receive the multicast packets */
ipMreq.imr_interface.s_addr = inet_addr (ifAddr);

/* set the socket option to join the MULTICAST group */
if (setsockopt (sockDesc, IPPROTO_IP, IP_ADD_MEMBERSHIP,

(char *)&ipMreq,
sizeof (ipMreq)) < 0)

{
printf ("setsockopt IP_ADD_MEMBERSHIP error:\n");
status = ERROR;
goto cleanUp;
134

7

7
Sockets under VxWorks
}

/* get the data destined to the above multicast group */
bufPtr = recvBuf;

while (numRead > 0)
{
if ((recvLen = recvfrom (sockDesc, bufPtr, numRead, 0,

(struct sockaddr *)&fromAddr, &fromLen)) < 0)
{
perror("recvfrom");
status = ERROR;
break;
}

numRead -= recvLen; /* decrement number of bytes to read */
bufPtr += recvLen; /* increment the buffer pointer */
}

/* set the socket option to leave the MULTICAST group */
if (setsockopt (sockDesc, IPPROTO_IP, IP_DROP_MEMBERSHIP,

(char *)&ipMreq,
sizeof (ipMreq)) < 0)

printf ("setsockopt IP_DROP_MEMBERSHIP error:\n");

cleanUp:
close (sockDesc);

if ((status != OK) && (recvBuf != NULL))
{
free (recvBuf);
recvBuf = NULL;
}

return (recvBuf);
}

7.2.3 Stream Sockets (TCP)

The Transmission Control Protocol (TCP) provides reliable, two-way transmission
of data. In a TCP communication, two sockets are connected, allowing a reliable
byte-stream to flow between them in either direction. TCP is referred to as a virtual
circuit protocol, because it behaves as though a circuit is created between the two
sockets.

A good analogy for TCP communications is a telephone system. Connecting two
sockets is similar to calling from one telephone to another. After the connection is
established, you can write and read data (talk and listen).

Table 7-3 shows the steps in establishing socket communications with TCP, and the
analogy of each step with telephone communications.
135

VxWorks 5.5
Network Programmer’s Guide
Example 7-3 Stream Sockets (TCP)

The following code example uses a client-server communication model. The server
communicates with clients using stream-oriented (TCP) sockets. The main server
loop, in tcpServerWorkTask(), reads requests, prints the client’s message to the
console, and, if requested, sends a reply back to the client. The client builds the
request by prompting for input. It sends a message to the server and, optionally,
waits for a reply to be sent back. To simplify the example, we assume that the code
is executed on machines that have the same data sizes and alignment.

/* tcpExample.h - header used by both TCP server and client examples */

/* defines */
#define SERVER_PORT_NUM 5001 /* server's port number for bind() */
#define SERVER_WORK_PRIORITY 100 /* priority of server's work task */
#define SERVER_STACK_SIZE 10000 /* stack size of server's work task */
#define SERVER_MAX_CONNECTIONS 4 /* max clients connected at a time */
#define REQUEST_MSG_SIZE 1024 /* max size of request message */
#define REPLY_MSG_SIZE 500 /* max size of reply message */

/* structure for requests from clients to server */
struct request

{
int reply; /* TRUE = request reply from server */

int msgLen; /* length of message text */
char message[REQUEST_MSG_SIZE]; /* message buffer */
};

Table 7-3 TCP Analogy to Telephone Communication

Task 1
Waits

Task 2
Calls

Function Analogy

socket() socket() Create sockets. Hook up telephones.

bind() Assign address to socket. Assign telephone number.

listen() Allow others to connect to socket. Allow others to call.

connect() Request connection to another
socket.

Dial another telephone ’s
number.

accept() Complete connection between
sockets.

Answer telephone and
establish connection.

write() write() Send data to other socket. Talk.

read() read() Receive data from other socket. Listen.

close() close() Close sockets. Hang up.
136

7

7
Sockets under VxWorks
/* tcpClient.c - TCP client example */

/*
DESCRIPTION
This file contains the client-side of the VxWorks TCP example code.
The example code demonstrates the usage of several BSD 4.4-style
socket routine calls.
*/

/* includes */

#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "hostLib.h"
#include "ioLib.h"
#include "tcpExample.h"

/**
*
* tcpClient - send requests to server over a TCP socket
*
* This routine connects over a TCP socket to a server, and sends a
* user-provided message to the server. Optionally, this routine
* waits for the server's reply message.
*
* This routine may be invoked as follows:
* -> tcpClient "remoteSystem"
* Message to send:
* Hello out there
* Would you like a reply (Y or N):
* y
* value = 0 = 0x0
* -> MESSAGE FROM SERVER:
* Server received your message
*
* RETURNS: OK, or ERROR if the message could not be sent to the server.
*/

STATUS tcpClient
(
char * serverName /* name or IP address of server */
)
{
struct request myRequest; /* request to send to server */
struct sockaddr_in serverAddr; /* server's socket address */
char replyBuf[REPLY_MSG_SIZE]; /* buffer for reply */
char reply; /* if TRUE, expect reply back */
int sockAddrSize; /* size of socket address structure */
int sFd; /* socket file descriptor */
int mlen; /* length of message */
137

VxWorks 5.5
Network Programmer’s Guide
/* create client's socket */
if ((sFd = socket (AF_INET, SOCK_STREAM, 0)) == ERROR)

{
perror ("socket");
return (ERROR);
}

/* bind not required - port number is dynamic */
/* build server socket address */
sockAddrSize = sizeof (struct sockaddr_in);
bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_family = AF_INET;
serverAddr.sin_len = (u_char) sockAddrSize;
serverAddr.sin_port = htons (SERVER_PORT_NUM);

if (((serverAddr.sin_addr.s_addr = inet_addr (serverName)) == ERROR) &&
((serverAddr.sin_addr.s_addr = hostGetByName (serverName)) == ERROR))
{
perror ("unknown server name");
close (sFd);
return (ERROR);
}

/* connect to server */
if (connect (sFd, (struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)

{
perror ("connect");
close (sFd);
return (ERROR);
}

/* build request, prompting user for message */
printf ("Message to send: \n");
mlen = read (STD_IN, myRequest.message, REQUEST_MSG_SIZE);
myRequest.msgLen = mlen;
myRequest.message[mlen - 1] = '\0';
printf ("Would you like a reply (Y or N): \n");
read (STD_IN, &reply, 1);
switch (reply)

{
case 'y':
case 'Y': myRequest.reply = TRUE;

break;
default: myRequest.reply = FALSE;

break;
}

/* send request to server */

if (write (sFd, (char *) &myRequest, sizeof (myRequest)) == ERROR)
{
perror ("write");
close (sFd);
return (ERROR);
138

7

7
Sockets under VxWorks
}

if (myRequest.reply) /* if expecting reply, read and display it */

{
if (read (sFd, replyBuf, REPLY_MSG_SIZE) < 0)

{
perror ("read");
close (sFd);
return (ERROR);
}

printf ("MESSAGE FROM SERVER:\n%s\n", replyBuf);
}

close (sFd);
return (OK);
}

/* tcpServer.c - TCP server example */

/*
DESCRIPTION
This file contains the server-side of the VxWorks TCP example code.
The example code demonstrates the usage of several BSD 4.4-style
socket routine calls.
*/

/* includes */
#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "taskLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "ioLib.h"
#include "fioLib.h"
#include "tcpExample.h"

/* function declarations */

VOID tcpServerWorkTask (int sFd, char * address, u_short port);

/**
*
* tcpServer - accept and process requests over a TCP socket
*
* This routine creates a TCP socket, and accepts connections over the socket
* from clients. Each client connection is handled by spawning a separate
* task to handle client requests.
*
* This routine may be invoked as follows:
* -> sp tcpServer
139

VxWorks 5.5
Network Programmer’s Guide
* task spawned: id = 0x3a6f1c, name = t1
* value = 3829532 = 0x3a6f1c
* -> MESSAGE FROM CLIENT (Internet Address 150.12.0.10, port 1027):
* Hello out there
*
* RETURNS: Never, or ERROR if a resources could not be allocated.
*/

STATUS tcpServer (void)
{
struct sockaddr_in serverAddr; /* server's socket address */
struct sockaddr_in clientAddr; /* client's socket address */
int sockAddrSize; /* size of socket address structure */
int sFd; /* socket file descriptor */
int newFd; /* socket descriptor from accept */
int ix = 0; /* counter for work task names */
char workName[16]; /* name of work task */

/* set up the local address */

sockAddrSize = sizeof (struct sockaddr_in);
bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_family = AF_INET;
serverAddr.sin_len = (u_char) sockAddrSize;
serverAddr.sin_port = htons (SERVER_PORT_NUM);
serverAddr.sin_addr.s_addr = htonl (INADDR_ANY);

/* create a TCP-based socket */

if ((sFd = socket (AF_INET, SOCK_STREAM, 0)) == ERROR)
{
perror ("socket");
return (ERROR);
}

/* bind socket to local address */

if (bind (sFd, (struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)
{
perror ("bind");
close (sFd);
return (ERROR);
}

/* create queue for client connection requests */

if (listen (sFd, SERVER_MAX_CONNECTIONS) == ERROR)
{
perror ("listen");
close (sFd);
return (ERROR);
}

140

7

7
Sockets under VxWorks
/* accept new connect requests and spawn tasks to process them */

FOREVER
{
if ((newFd = accept (sFd, (struct sockaddr *) &clientAddr,

&sockAddrSize)) == ERROR)
{
perror ("accept");
close (sFd);
return (ERROR);
}

sprintf (workName, "tTcpWork%d", ix++);
if (taskSpawn(workName, SERVER_WORK_PRIORITY, 0, SERVER_STACK_SIZE,

(FUNCPTR) tcpServerWorkTask, newFd,
(int) inet_ntoa (clientAddr.sin_addr), ntohs (clien

tAddr.sin_port),
0, 0, 0, 0, 0, 0, 0) == ERROR)
{
/* if taskSpawn fails, close fd and return to top of loop */

perror ("taskSpawn");
close (newFd);
}

}
}

/**
*
* tcpServerWorkTask - process client requests
*
* This routine reads from the server's socket, and processes client
* requests. If the client requests a reply message, this routine
* will send a reply to the client.
*
* RETURNS: N/A.
*/

VOID tcpServerWorkTask
(
int sFd, /* server's socket fd */
char * address, /* client's socket address */
u_short port /* client's socket port */
)
{
struct request clientRequest; /* request/message from client */
int nRead; /* number of bytes read */
static char replyMsg[] = "Server received your message";

/* read client request, display message */

while ((nRead = fioRead (sFd, (char *) &clientRequest,
sizeof (clientRequest))) > 0)
{
printf ("MESSAGE FROM CLIENT (Internet Address %s, port %d):\n%s\n",

address, port, clientRequest.message);
141

VxWorks 5.5
Network Programmer’s Guide
free (address); /* free malloc from inet_ntoa() */

if (clientRequest.reply)
if (write (sFd, replyMsg, sizeof (replyMsg)) == ERROR)

perror ("write");
}

if (nRead == ERROR) /* error from read() */
perror ("read");

close (sFd); /* close server socket connection */
}

7.3 Zbuf Sockets

VxWorks includes an alternative set of socket calls based on a data abstraction
called a zbuf, a zero-copy buffer. Using the zbuf socket interface, applications can
read and write UNIX BSD sockets without copying data between application
buffers and network buffers. You can use zbufs with either UDP or TCP
applications. The TCP subset of the zbuf interface is sometimes called zero-copy
TCP.

Zbuf-based socket calls are interoperable with the standard BSD socket interface: the
other end of a socket has no way of telling whether your end is using zbuf-based
calls or traditional calls. However, zbuf-based socket calls are not source-compatible
with the standard BSD socket interface: you must call different socket functions to
use the zbuf interface. Applications that use the zbuf interface are thus less
portable.

To include zbuf functionality in your image, use the INCLUDE_ZBUF_SOCK
configuration parameter.

! WARNING: The send socket buffer size must exceed that of any zbufs sent over the
socket. To set the send socket buffer size, use either the TCP_SND_SIZE_DFLT or
UDP_SND_SIZE_DFLT configuration parameter.
142

7

7
Sockets under VxWorks
7.3.1 Zbuf Sockets and Protection Domains

If you are using zbufs within the VxWorks AE protection domain model, you must
do so within the kernel domain.

7.3.2 Zbuf Calls to Send Existing Data Buffers

The simplest way to use zbuf sockets is to call either zbufSockBufSend() (in place
of send() for a TCP connection) or zbufSockBufSendto() (in place of sendto() for
a UDP datagram). In either case, you supply a pointer to your application’s data
buffer containing the data or message to send, and the network protocol uses that
same buffer rather than copying the data out of it.

To receive socket data using zbufs, see the following sections. 7.3.3 Manipulating
the Zbuf Data Structure, p.143 describes the routines to create and manage zbufs,
and 7.3.4 Zbuf Socket Calls, p.152 introduces the remaining zbuf-specific socket
routines. See also the reference entries for zbufLib and zbufSockLib.

7.3.3 Manipulating the Zbuf Data Structure

A zbuf has three essential properties:

� A zbuf holds a sequence of bytes.

� The data in a zbuf is organized into one or more segments of contiguous data.
Successive zbuf segments are not usually contiguous to each other.

� Zbuf segments refer to data buffers through pointers. The underlying data
buffers can be shared by more than one zbuf segment.

Zbuf segments are at the heart of how zbufs minimize data copying; if you have a
data buffer, you can incorporate it (by reference, so that only pointers and lengths
move around) into a new zbuf segment. Conversely, you can get pointers to the
data in zbuf segments, and examine the data there directly.

! WARNING: Using zbufs allows different modules to share the same buffers. This
lets your application avoid the performance hit associated with copying the buffer.
To make this work, your application must not modify (let alone free!) the data
buffer while network software is still using it. Instead of freeing your buffer
explicitly, you can supply a free-routine callback: a pointer to a routine that knows
how to free the buffer. The zbuf library keeps track of how many zbufs point to a
data buffer and calls the free routine when the data buffer is no longer in use.
143

VxWorks 5.5
Network Programmer’s Guide
Zbuf Byte Locations

You can address the contents of a zbuf by byte locations. A zbuf byte location has
two parts, an offset and a segment ID.

An offset is a signed integer (type int): the distance in bytes to a portion of data in
the zbuf, relative to the beginning of a particular segment. Zero refers to the first
byte in a segment; negative integers refer to bytes in previous segments; and
positive integers refer to bytes after the start of the current segment.

A segment ID is an arbitrary integer (type ZBUF_SEG) that identifies a particular
segment of a zbuf. You can always use NULL to refer to the first segment of a zbuf.

Figure 7-1 shows a simple zbuf with data organized into two segments. The offsets
are relative to the first segment. This is the most efficient addressing scheme to use
to refer to bytes a, b, or c in the figure.

Figure 7-2 shows the same zbuf, but it is labeled with offsets relative to the second
segment. This is the most efficient addressing scheme to refer to bytes d, e, f, or g
in the figure.

Figure 7-1 Zbuf Addressing Relative to First Segment (NULL)

Figure 7-2 Zbuf Addressing Relative to Second Segment

a b c

gfe

0 1 2

d

3 4 5 6

a b c

gfe

321

d

0

–1–2–3
144

7

7
Sockets under VxWorks
Two special shortcuts give the fastest access to either the beginning or the end of a
zbuf. The constant ZBUF_END refers to the position after all existing bytes in the
zbuf. Similarly, ZBUF_BEGIN refers to the position before all existing bytes. These
constants are the only offsets with meanings not relative to a particular segment.

When you insert data in a zbuf, the new data is always inserted before the byte
location you specify in the call to an insertion routine. That is, the byte location you
specify becomes the address of the newly inserted data.

Creating and Destroying Zbufs

To create a new zbuf, call zbufCreate(). The routine takes no arguments, and
returns a zbuf identifier (type ZBUF_ID) for a zbuf containing no segments. After
you have the zbuf ID, you can attach segments or otherwise insert data. While the
zbuf is empty, NULL is the only valid segment ID, and 0 the only valid offset.

When you no longer need a particular zbuf, call zbufDelete(). Its single argument
is the ID for the zbuf to delete. The zbufDelete() routine calls the free routine
associated with each segment in the zbuf, for segments that are not shared by other
zbufs. After you delete a zbuf, its zbuf ID is meaningless; any reference to a deleted
zbuf ID is an error.

Getting Data In and Out of Zbufs

The usual way to place data in a zbuf is to call zbufInsertBuf(). This routine builds
a zbuf segment pointing to an existing data buffer, and inserts the new segment at
whatever byte location you specify in a zbuf. You can also supply a callback
pointer to a free routine, which the zbuf library calls when no zbuf segments point
to that data buffer.

Because the purpose of the zbuf socket interface is to avoid data copying, the need
to actually copy data into a zbuf (rather than designating its location as a shareable
buffer) occurs much less frequently. When that need does arise, however, the

Table 7-4 Zbuf Creation and Deletion Routines

Call Description

zbufCreate() Create an empty zbuf.

zbufDelete() Delete a zbuf and free any associated segments.
145

VxWorks 5.5
Network Programmer’s Guide
routine zbufInsertCopy() is available. This routine does not require a callback
pointer to a free routine, because the original source of the data is not shared.

Similarly, the most efficient way to examine data in zbufs is to read it in place,
rather than to copy it to another location. However, if you must copy some of the
data out of a zbuf (for example, to guarantee the data is contiguous, or to place it
in a data structure required by another interface), call zbufExtractCopy(). Within
the call, specify what to copy (zbuf ID, byte location, and the number of bytes) and
where to put it (an application buffer).

Operations on Zbufs

The routines listed in Table 7-6 perform several fundamental operations on zbufs.

The routine zbufLength() reports how many bytes are in a zbuf.

The routine zbufDup() provides the simplest mechanism for sharing segments
between zbufs: it produces a new zbuf ID that refers to some or all of the data in
the original zbuf. You can exploit this sort of sharing to get two different views of
the same data. For example, after duplicating a zbuf, you can insert another zbuf
into one of the two duplicates, with zbufInsert(). None of the data in the original

Table 7-5 Zbuf Data Copying Routines

Call Description

zbufInsertBuf() Create a zbuf segment from a buffer and insert into a zbuf.

zbufInsertCopy() Copy buffer data into a zbuf.

zbufExtractCopy() Copy data from a zbuf to a buffer.

Table 7-6 Zbuf Operations

Call Description

zbufLength() Determine the length of a zbuf, in bytes.

zbufDup() Duplicate a zbuf.

zbufInsert() Insert a zbuf into another zbuf.

zbufSplit() Split a zbuf into two separate zbufs.

zbufCut() Delete bytes from a zbuf.
146

7

7
Sockets under VxWorks
zbuf segments moves, yet after some byte location (the byte location where you
inserted data) addressing the two zbufs gives completely different data.

The zbufSplit() routine divides one zbuf into two; you specify the byte location
for the split, and the result of the routine is a new zbuf ID. The new zbuf’s data
begins after the specified byte location. The original zbuf ID also has a modified
view of the data: it is truncated to the byte location of the split. However, none of
the data in the underlying segments moves through all this. If you duplicate the
original zbuf before splitting it, three zbuf IDs share segments. The duplicate
permits you to view the entire original range of data, another zbuf contains a
leading fragment, and the third zbuf holds the trailing fragment.

Similarly, if you call zbufCut() to remove some range of bytes from within a zbuf,
the effects are visible only to callers who view the data through the same zbuf ID
you used for the deletion. Other zbuf segments can still address the original data
through a shared buffer.

For the most part, these routines do not free data buffers or delete zbufs, but there
are two exceptions:

� zbufInsert() deletes the zbuf ID it inserts. No segments are freed, because they
now form part of the larger zbuf.

� If the bytes you remove with zbufCut() span one or more complete segments,
the free routines for those segments can be called (if no other zbuf segment
refers to the same data).

The data-buffer free routine runs only when none of the data in a segment is part
of any zbuf. To avoid data copying, zbuf manipulation routines such as zbufCut()
record which parts of a segment are currently in a zbuf, postponing the deletion of
a segment until no part of its data is in use.

Segments of Zbufs

The routines in Table 7-7 give your applications access to the underlying segments
in a zbuf.

Table 7-7 Zbuf Segment Routines

Call Description

zbufSegFind() Find the zbuf segment containing a specified byte location.

zbufSegNext() Get the next segment in a zbuf.
147

VxWorks 5.5
Network Programmer’s Guide
By specifying a NULL segment ID, you can address the entire contents of a zbuf as
offsets from its very first data byte. However, it is always more efficient to address
data in a zbuf relative to the closest segment. Use zbufSegFind() to translate any
zbuf byte location into the most local form.

The pair zbufSegNext() and zbufSegPrev() are useful for going through the
segments of a zbuf in order, perhaps in conjunction with zbufSegLength().

Finally, zbufSegData() allows the most direct access to the data in zbufs: it gives
your application the address where a segment’s data begins. If you manage
segment data directly using this pointer, bear the following restrictions in mind:

� Do not change data if any other zbuf segment is sharing it.

� As with any other direct memory access, it is up to your own code to restrict
itself to meaningful data: remember that the next segment in a zbuf is usually
not contiguous. Use zbufSegLength() as a limit, and zbufSegNext() when
you exceed that limit.

Example: Manipulating Zbuf Structure

The following interaction illustrates the use of some of the previously described
zbufLib routines, and their effect on zbuf segments and data sharing. To keep the
example manageable, the zbuf data used is artificially small, and the execution
environment is the Tornado shell (for details on this shell, see the Tornado User’s
Guide: Shell).

To begin with, we create a zbuf, and use its ID zId to verify that a newly created
zbuf contains no data; zbufLength() returns a result of 0.

-> zId = zbufCreate()
new symbol "zId" added to symbol table.
zId = 0x3b58e8: value = 3886816 = 0x3b4ee0
-> zbufLength (zId)
value = 0 = 0x0

zbufSegPrev() Get the previous segment in a zbuf.

zbufSegData() Determine the location of data in a zbuf segment.

zbufSegLength() Determine the length of a zbuf segment.

Table 7-7 Zbuf Segment Routines (Continued)

Call Description
148

7

7
Sockets under VxWorks
Next, we create a data buffer buf1, insert it into zbuf zId, and verify that
zbufLength() now reports a positive length. To keep the example simple, buf1 is
a literal string, and therefore we do not supply a free-routine callback argument to
zbufInsertBuf().

-> buf1 = "I cannot repeat enough!"
new symbol "buf1" added to symbol table.
buf1 = 0x3b5898: value = 3889320 = 0x3b58a8 = buf1 + 0x10
-> zbufInsertBuf (zId, 0, 0, buf1, strlen(buf1), 0, 0)
value = 3850240 = 0x3ac000
-> zbufLength (zId)
value = 23 = 0x17

To examine the effect of other zbuf operations, it is useful to have a zbuf-display
routine. The remainder of this example uses a routine called zbufDisplay() for
that purpose; for the complete source code, see Example 7-4.

For each zbuf segment, zbufDisplay() shows the segment ID, the start-of-data
address, the offset from that address, the length of the segment, and the data in the
segment as a character string. The following display of zId illustrates that the
underlying data in its only segment is still at the buf1 address (0x3b58a8), because
zbufInsertBuf() incorporates its buffer argument into the zbuf without copying
data.

-> ld </usr/jane/zbuf-examples/zbufDisplay.o
value = 3890416 = 0x3b5cf0 = zbufDisplay.o_bss + 0x8
-> zbufDisplay zId
segID 0x3ac000 at 0x3b58a8 + 0x0 (23 bytes): I cannot repeat enough!
value = 0 = 0x0

When we copy the zbuf, the copy has its own IDs, but still uses the same data
address:

-> zId2 = zbufDup (zId,0,0,23)
new symbol "zId2" added to symbol table.
zId2 = 0x3b5ff0: value = 3886824 = 0x3b4ee8
-> zbufDisplay zId2
segID 0x3abf80 at 0x3b58a8 + 0x0 (23 bytes): I cannot repeat enough!
value = 0 = 0x0

If we insert a second buffer into the middle of the existing data in zId, there is still
no data copying. Inserting the new buffer gives us a zbuf made up of three
segments—but notice that the address of the first segment is still the start of buf1,
and the third segment points into the middle of buf1:

-> buf2 = " this"
new symbol "buf2" added to symbol table.
buf2 = 0x3b5fb0: value = 3891136 = 0x3b5fc0 = buf2 + 0x10
-> zbufInsertBuf (zId, 0, 15, buf2, strlen(buf2), 0, 0)
value = 3849984 = 0x3abf00
149

VxWorks 5.5
Network Programmer’s Guide
-> zbufDisplay zId
segID 0x3ac000 at 0x3b58a8 + 0x0 (15 bytes): I cannot repeat
segID 0x3abf00 at 0x3b5fc0 + 0x0 (5 bytes): this
segID 0x3abe80 at 0x3b58b7 + 0x0 (8 bytes): enough!
value = 0 = 0x0

Because the underlying buffer is not modified, both buf1 and the duplicate zbuf
zId2 still contain the original string, rather than the modified one now in zId:

-> printf ("%s\n", buf1)
I cannot repeat enough!
value = 24 = 0x18
-> zbufDisplay zId2
segID 0x3abf80 at 0x3b58a8 + 0x0 (23 bytes): I cannot repeat enough!
value = 0 = 0x0

The zbufDup() routine can also select part of a zbuf without copying, for instance
to incorporate some of the same data into another zbuf—or even into the same
zbuf, as in the following example:

-> zTmp = zbufDup (zId, 0, 15, 5)
new symbol "zTmp" added to symbol table.
zTmp = 0x3b5f70: value = 3886832 = 0x3b4ef0

-> zbufInsert (zId, 0, 15, zTmp)
value = 3849728 = 0x3abe00
-> zbufDisplay zId
segID 0x3ac000 at 0x3b58a8 + 0x0 (15 bytes): I cannot repeat
segID 0x3abe00 at 0x3b5fc0 + 0x0 (5 bytes): this
segID 0x3abf00 at 0x3b5fc0 + 0x0 (5 bytes): this
segID 0x3abe80 at 0x3b58b7 + 0x0 (8 bytes): enough!
value = 0 = 0x0

After zbufInsert() combines two zbufs, the second zbuf ID (zTmp in this example)
is automatically deleted. Thus, zTmp is no longer a valid zbuf ID—for example,
zbufLength() returns ERROR:

-> zbufLength (zTmp)
value = -1 = 0xffffffff = zId2 + 0xffc4a00f

However, you must still delete the remaining two zbuf IDs explicitly when they are
no longer needed. This releases all associated zbuf-structure storage. In a real
application, with free-routine callbacks filled in, it also calls the specified free
routine on the data buffers, as follows:

-> zbufDelete (zId)
value = 0 = 0x0
-> zbufDelete (zId2)
value = 0 = 0x0
150

7

7
Sockets under VxWorks
Example 7-4 Zbuf Display Routine

The following is the complete source code for the zbufDisplay() utility used in the
preceding example:

/* zbufDisplay.c - zbuf example display routine */

/* includes */

#include "vxWorks.h"
#include "zbufLib.h"
#include "ioLib.h"
#include "stdio.h"
/**
*
* zbufDisplay - display contents of a zbuf
*
* RETURNS: OK, or ERROR if the specified data could not be displayed.
*/
STATUS zbufDisplay

(
ZBUF_ID zbufId, /* zbuf to display */
ZBUF_SEG zbufSeg, /* zbuf segment base for <offset> */
int offset, /* relative byte offset */
int len, /* number of bytes to display */
BOOL silent /* do not print out debug info */
)
{
int lenData;
char * pData;
/* find the most-local byte location */
if ((zbufSeg = zbufSegFind (zbufId, zbufSeg, &offset)) == NULL)

return (ERROR);
if (len <= 0)

len = ZBUF_END;
while ((len != 0) && (zbufSeg != NULL))

{
/* find location and data length of zbuf segment */
pData = zbufSegData (zbufId, zbufSeg) + offset;
lenData = zbufSegLength (zbufId, zbufSeg) - offset;
lenData = min (len, lenData); /* print all of seg ? */
if (!silent)

printf ("segID 0x%x at 0x%x + 0x%x (%2d bytes): ",
(int) zbufSeg, (int) pData, offset, lenData);

write (STD_OUT, pData, lenData); /* display data */
if (!silent)

printf ("\n");
zbufSeg = zbufSegNext (zbufId, zbufSeg); /* update segment */
len -= lenData; /* update length */
offset = 0; /* no more offset */
}

return (OK);
}

151

VxWorks 5.5
Network Programmer’s Guide
Limitations of the Zbuf Implementation

The following zbuf limitations are due to the current implementation; they are not
inherent to the data abstraction. They are described because they can have an
impact on application performance.

� With the current implementation, references to data in zbuf segments before a
particular location (whether with zbufSegPrev(), or with a negative offset in
a byte location) are significantly slower than references to data after a
particular location.

� The data in small zbuf segments (less than 512 bytes) is sometimes copied,
rather than having references propagated to it.

7.3.4 Zbuf Socket Calls

The zbuf socket calls listed in Table 7-8 are named to emphasize parallels with the
standard BSD socket calls: thus, zbufSockSend() is the zbuf version of send(),
and zbufSockRecvfrom() is the zbuf version of recvfrom(). The arguments also
correspond directly to those of the standard socket calls.

For a detailed description of each routine, see the corresponding reference entry.

Table 7-8 Zbuf Socket Library Routines

Call Description

zbufSockLibInit() Initialize the socket libraries (called automatically if the
configuration has zbuf sockets enabled. The relevant
configuration parameter is INCLUDE_SOCK_ZBUF).

zbufSockSend() Send zbuf data through a TCP socket.

zbufSockSendto() Send a zbuf message through a UDP socket.

zbufSockBufSend() Create a zbuf and send it as TCP socket data.

zbufSockBufSendto() Create a zbuf and send it as a UDP socket message.

zbufSockRecv() Receive data in a zbuf from a TCP socket.

zbufSockRecvfrom() Receive a message in a zbuf from a UDP socket.
152

7

7
Sockets under VxWorks
Standard Socket Calls and Zbuf Socket Calls

The zbuf socket calls are particularly useful when large data transfer is a significant
part of your socket application. For example, many socket applications contain
sections of code like the following fragment:

pBuffer = malloc (BUFLEN);
while ((readLen = read (fdDevice, pBuffer, BUFLEN)) > 0)
write (fdSock, pBuffer, readLen);

You can eliminate the overhead of copying from the application buffer pBuffer
into the internal socket buffers by changing the code to use zbuf socket calls. For
example, the following fragment is a zbuf version of the preceding loop:

pBuffer = malloc (BUFLEN * BUFNUM); /* allocate memory */
for (ix = 0; ix < (BUFNUM - 1); ix++, pBuffer += BUFLEN)

appBufRetn (pBuffer); /* fill list of free bufs */

while ((readLen = read (fdDevice, pBuffer, BUFLEN)) > 0)
{
zId = zbufCreate (); /* insert into new zbuf */
zbufInsertBuf (zId, NULL, 0, pBuffer, readLen, appBufRetn, 0);
zbufSockSend (fdSock, zId, readLen, 0); /* send zbuf */
pBuffer = appBufGet (WAIT_FOREVER); /* get a fresh buffer */
}

The appBufGet() and appBufRetn() references in the preceding code fragment
stand for application-specific buffer management routines, analogous to malloc()
and free(). In many applications, these routines do nothing more than manipulate
a linked list of free fixed-length buffers.

Example 7-5 The TCP Example Server Using Zbufs

For a small but complete example that illustrates the mechanics of using the zbuf
socket library, consider the conversion of the client-server example in Example 7-3
to use zbuf socket calls.

No conversion is needed for the client side of the example; the client operates the
same regardless of whether or not the server uses zbufs. The next example
illustrates the following changes to convert the server side to use zbufs:

– Instead of including the header file sockLib.h, include zbufSockLib.h.

– The data processing component must be capable of dealing with potentially
non-contiguous data in successive zbuf segments. In the TCP example, this
component displays a message using printf(); we can use the zbufDisplay()
routine from Example 7-4 instead.
153

VxWorks 5.5
Network Programmer’s Guide
– The original TCP example exploits fioRead() to collect the complete message,
rather than calling recv() directly. To achieve the same end while avoiding
data copying by using zbufs, the following example defines a
zbufFioSockRecv() subroutine to call zbufSockRecv() repeatedly until the
complete message is received.

– A new version of the worker routine tcpServerWorkTask() must tie together
these separate modifications, and must explicitly extract the reply and
msgLen fields from the client’s transmission to do so. When using zbufs, these
fields cannot be extracted by reference to the C structure in tcpExample.h
because of the possibility that the data is not contiguous.

The following example shows the auxiliary zbufFioSockRecv() routine and the
zbuf version of tcpServerWorkTask(). To run this code:

1. Start with tcpServer.c as defined in Example 7-3.

2. Include the header file zbufSockLib.h.

3. Insert the zbufDisplay() routine from Example 7-4.

4. Replace the tcpServerWorkTask() definition with the following two routines:

/**
*
* zbufFioSockRecv - receive <len> bytes from a socket into a zbuf
*
* This routine receives a specified amount of data from a socket into a
* zbuf, by repeatedly calling zbufSockRecv() until <len> bytes
* are read.
*
* RETURNS:
* The ID of the zbuf containing <len> bytes of data,
* or NULL if there is an error during the zbufSockRecv() operation.
*
* SEE ALSO: zbufSockRecv()
*/
ZBUF_ID zbufFioSockRecv

(
int fd, /* file descriptor of file to read */
int len /* maximum number of bytes to read */
)
{
BOOL first = TRUE; /* first time thru ? */
ZBUF_ID zRecvTotal = NULL; /* zbuf to return */
ZBUF_ID zRecv; /* zbuf read from sock */
int nbytes; /* number of recv bytes */
for (; len > 0; len -= nbytes)

{
nbytes = len; /* set number of bytes wanted */
/* read a zbuf from the socket */
154

7

7
Sockets under VxWorks
if (((zRecv = zbufSockRecv (fd, 0, &nbytes)) == NULL) ||
(nbytes <= 0))
{
if (zRecvTotal != NULL)

zbufDelete (zRecvTotal);
return (NULL);
}

/* append recv'ed zbuf onto end of zRecvTotal */
if (first)

zRecvTotal = zRecv; /* cannot append to empty zbuf */
first = FALSE; /* can append now... */

else if (zbufInsert (zRecvTotal, NULL, ZBUF_END, zRecv) == NULL)
{
zbufDelete (zRecv);
zbufDelete (zRecvTotal);
return (NULL);
}

}
return (zRecvTotal);
}

/**
*
* tcpServerWorkTask - process client requests
*
* This routine reads from the server's socket, and processes client
* requests. If the client requests a reply message, this routine
* sends a reply to the client.
*
* RETURNS: N/A.
*/
VOID tcpServerWorkTask

(
int sFd, /* server's socket fd */
char * address, /* client's socket address */
u_short port /* client's socket port */
)
{
static char replyMsg[] = "Server received your message";
ZBUF_ID zReplyOrig; /* original reply msg */
ZBUF_ID zReplyDup; /* duplicate reply msg */
ZBUF_ID zRequest; /* request msg from client */
int msgLen; /* request msg length */
int reply; /* reply requested ? */
/* create original reply message zbuf */
if ((zReplyOrig = zbufCreate ()) == NULL)

{
perror ("zbuf create");
free (address); /* free malloc from inet_ntoa() */
return;
}

/* insert reply message into zbuf */
if (zbufInsertBuf (zReplyOrig, NULL, 0, replyMsg,

sizeof (replyMsg), NULL, 0) == NULL)
{
perror ("zbuf insert");
zbufDelete (zReplyOrig);
155

VxWorks 5.5
Network Programmer’s Guide
free (address); /* free malloc from inet_ntoa() */
return;
}

/* read client request, display message */
while ((zRequest = zbufFioSockRecv (sFd, sizeof(struct request))) != NULL)

{
/* extract reply field into <reply> */
(void) zbufExtractCopy (zRequest, NULL, 0,

(char *) &reply, sizeof (reply));
(void) zbufCut (zRequest, NULL, 0, sizeof (reply));
/* extract msgLen field into <msgLen> */
(void) zbufExtractCopy (zRequest, NULL, 0,

(char *) &msgLen, sizeof (msgLen));
(void) zbufCut (zRequest, NULL, 0, sizeof (msgLen));
/* duplicate reply message zbuf, preserving original */
if ((zReplyDup = zbufDup (zReplyOrig, NULL, 0, ZBUF_END)) == NULL)

{
perror ("zbuf duplicate");
zbufDelete (zRequest);
break;
}

printf ("MESSAGE FROM CLIENT (Internet Address %s, port %d):\n",
address, port);

/* display request message zbuf */
(void) zbufDisplay (zRequest, NULL, 0, msgLen, TRUE);
printf ("\n");
if (reply)

{
if (zbufSockSend (sFd, zReplyDup, sizeof (replyMsg), 0) < 0)

perror ("zbufSockSend");
}

/* finished with request message zbuf */
zbufDelete (zRequest);
}

free (address); /* free malloc from inet_ntoa() */
zbufDelete (zReplyOrig);
close (sFd);
}

! CAUTION: In the interests of brevity, the STATUS return values for several zbuf
socket calls are discarded with casts to void. In a real application, check these
return values for possible errors.
156

8

Remote Access Applications
8.1 Introduction

This chapter discusses the applications that provide remote network access.
VxWorks supports the following:1

� RPC (Remote Procedure Call, for distributed processing)
� RSH (Remote Shell, for remote file access)
� FTP (File Transfer Protocol, for remote file access)
� NFS (Network File System, for remote file access)
� TFTP (Trivial File Transfer Protocol, for remote file access)
� rlogin (for remote login)
� telnet (for remote login)

In addition to the simple implementation of the protocols listed above, VxWorks
also includes the drivers:

� netDrv — for downloading files using either FTP or RSH
� nfsDrv — for locally mounting remote file systems using NFS

1. If you are developing on a Windows host, check your Windows and networking software
documentation for information on which of these protocols are supported under Windows
and how to use them.
157

VxWorks 5.5
Network Programmer’s Guide
8.2 RSH, FTP, and netDrv

VxWorks provides an implementation of the client side (but not the server side) of
the RSH protocol. VxWorks also provides an implementation of both the client and
the server sides of the FTP protocol.

Using RSH, a VxWorks application can run commands on a remote system and
receive the command results on standard output and standard error over socket
connections. To execute commands remotely, RSH requires that the remote system
supports the server side of RSH and that the remote system grant access privileges
to the user specified in the RSH request. On a UNIX system, RSH server support is
implemented using the rshd shell daemon, and access privileges are controlled by
a .rhosts file. On a VxWorks host, there is no equivalent to rshd. Thus, remote
systems cannot use RSH to run commands on a VxWorks host.

You can use both RSH and FTP directly, but you can also use them indirectly to
download files through the mediation of the netDrv library. Using netDrv in this
way is especially convenient when a target needs to download a run-time image at
boot time.

That netDrv can use FTP to download a file is not surprising, given that FTP is a
protocol designed specifically for file transfer. Specifically, netDrv uses the FTP
RETR and STOR commands to retrieve and store the entire requested file. That
netDrv can use RSH to download a file is less obvious. RSH has no built-in
commands dedicated to file transfer. However, netDrv executes a remote cat on the
file it wants to download.

Setting the User ID for Remote File Access with RSH or FTP

All FTP and RSH requests to a remote system include the user name. All FTP
requests include a password as well as a user name. From VxWorks, you can
specify the user name and password for remote requests by calling iam():

iam ("username", "password")

The first argument to iam() is the user name that identifies you when you access
remote systems. The second argument is the FTP password. This is ignored if RSH
is being used, and can be specified as NULL or 0 (zero).

For example, the following command tells VxWorks that all accesses to remote
systems with RSH or FTP are through user darger, and if FTP is used, the password
is unreal:

-> iam "darger", "unreal"
158

8

8
Remote Access Applications
Setting File Permissions on the Remote System

For a VxWorks system to have access to a particular file on a host, you must set up
permissions on the host system appropriately. The user name seen from the host
must have permission to read that file (and write it, if necessary). That user name
must also have permission to access all directories in the path. The easiest way to
check this is to log in to the host with the user name VxWorks uses, and try to read
or write the file in question. If you cannot do this, neither can the VxWorks system.

8.2.1 RSH

Using the VxWorks RSH implementation, a VxWorks target can execute
commands on remote systems that run an rshd shell daemon. The command
results return on standard output and standard error over socket connections.

To include RSH in VxWorks, use the configuration component:

INCLUDE_NETWRS_REMLIB — include the remote command (RSH) library
Associated with this component is the configuration parameter:

RSH_STDERR_SETUP_TIMEOUT
Use this parameter to specify how long an rcmd() call should wait for a
return from its internal call to select. The default value for this parameter
is -1, which is no timeout or WAIT_FOREVER.

For more information on how to use RSH under VxWorks, see the remLib
reference entries.

NOTE: When a VxWorks boot program downloads a run-time image from a
remote network source using a netDrv instance, it relies upon either the FTP or
RSH protocols. To determine its user name and password (if any) for use with
these protocols, the boot program relies upon the values specified for these
parameters in the boot line.

NOTE: The VxWorks RSH implementation does not include an equivalent to the
rshd daemon. Thus, remote systems cannot use RSH to run commands remotely
on a VxWorks host.
159

VxWorks 5.5
Network Programmer’s Guide
Configuring the Remote Host to Allow Access to an RSH User

Included in an RSH request is the name of the requesting user. The receiving host
can then honor or ignore the request based on the user name and the site from
which the request originates. How you set up a receiving system to allow access to
particular users and sites depends on the specifics of the receiving system’s OS and
networking software.

For Windows hosts, support for RSH is determined by your version of Windows
and the networking software you are using. See that documentation for details.

For UNIX hosts, an RSH request is honored only if it originated on a known system
by a user with local login privileges. The list of known systems is specified in either
of two locations. The first location, the /etc/hosts.equiv file, maintains a list of all
systems from which remote access is allowed for all users that have local accounts.
The second location, a ~userName/.rhosts file, maintains a list of systems from
which remote access is allowed for that particular user, userName.

Which location you use depends on your security needs. In most environments,
adding system names to the /etc/hosts.equiv file is considered too dangerous.
Thus, for most environments, the preferred method is to add system names to a
~userName/.rhosts file. The format for this file is one system name per line.

The FTP protocol, unlike RSH, specifies both the user name and password on every
request. Therefore, when using FTP, the UNIX system does not use the .rhosts or
/etc/hosts.equiv files to authorize remote access.

8.2.2 FTP

To include the VxWorks FTP implementation, use the following configuration
components:

INCLUDE_FTP — includes the FTP client, ftpLib.

INCLUDE_FTP_SERVER — includes the FTP server, ftpdLib.

INCLUDE_FTPD_SECURITY — includes FTP server security functionality.

For information on how to use the VxWorks FTP client and server implementations
directly, see the reference entries for ftpLib and ftpdLib.

NOTE: The VxWorks FTP implementation does not support the REST (restart)
command.
160

8

8
Remote Access Applications
8.2.3 Using netDrv

Although you can use netDrv at boot time to download a run-time image, netDrv
is not limited to boot time or run-time images. It is a generic I/O device that you
can use to access files on a remote networks system. To include netDrv in
VxWorks, use the configuration component:

INCLUDE_NET_DRV — netDrv I/O library for accessing files on a remote host

To use netDrv, you must create a netDrv device for each system on which you
want to access files. You can then use this device in standard VxWorks I/O device
calls such as open(), read(), write(), and close(). To create a netDrv device, call
netDevCreate():

netDevCreate ("devName", "host", protocol)

Its arguments are:

devName
The name of the device to be created.

host
The Internet address of the host in dot notation, or the name of the remote
system as specified in a previous call to hostAdd(). Most typically, one
composes the device name using the host name followed by a colon.

protocol
The file transfer protocol: 0 for RSH or 1 for FTP.

For example, the following call creates a new I/O device on VxWorks called mars:,
which accesses files on the host system mars using RSH:

-> netDevCreate "mars:", "mars", 0

After a network device is created, files on that host are accessible by appending the
host pathname to the device name. For example, the filename
mars:/usr/darger/myfile refers to the file /usr/darger/myfile on the mars system.
You can read or write to this file as if it were a local file. For example, the following
Tornado shell command opens that file for I/O access:

-> fd = open ("mars:/usr/darger/myfile", 2)

Using netDrv to Download Run-Time Images

The usrNetInit() call in a VxWorks boot program can automatically create a
netDrv instance for the host name specified in the VxWorks boot parameters. The
161

VxWorks 5.5
Network Programmer’s Guide
boot program then uses this device to download an image from the host specified
in the boot parameters. Whether the netDrv instance uses FTP or RSH to download
the image depends on whether the boot parameters include an FTP password.
When the FTP password is present, netDrv uses FTP. Otherwise, netDrv uses
RSH.2

For most single-processor stand-alone VxWorks targets, using FTP or RSH to
download an image is useful while developing an application but rare in the
deployed system. However, for devices that consist of multiple VxWorks targets
linked together by a shared memory backplane, using FTP to download run-time
images from a central server CPU to its client CPUs is convenient and common. As
the clients on the backplane boot, they create instances of netDrv that they then use
to download their run-time images from the server.

Consider the system shown in Figure 8-1. Using the shared memory backplane,
CPU 1 can use FTP to download its run-time image from the storage device (in this
case, a SCSI disk) accessible through CPU 0. Note that the client must include a
non-empty ftp password field in its boot parameter:

boot device : sm=0x800000
processor number : 1
host name : vxServer
file name : /sd0/vx2
inet on backplane (b) : 161.27.0.2
host inet (h) : 161.27.0.1
user (u) : caraboo
ftp password (pw) (blank=use rsh) : ignored

Including an FTP password tells netDrv to use FTP. Whether the FTP server on
CPU 0 checks the validity of the password depends on whether the FTP server on
CPU 0 has been configured with security turned off (the default) or on. The
relevant configuration parameter is INCLUDE_FTPD_SECURITY.

The FTP server daemon is initialized on the VxWorks server based on the
configuration. The relevant configuration parameter is INCLUDE_FTP_SERVER.
See also the reference entry for ftpdLib.

2. When creating a boot program that must download an image using an RSH or and FTP
client, you must make sure that you include those components in the program.
162

8

8
Remote Access Applications
8.3 NFS and nfsDrv

The VxWorks NFS implementation supports both the client and server side of the
protocol. The relevant configuration components are:

INCLUDE_NFS — the NFS (version 2) client, nfsLib and nfsDrv
The basic NFS client support functions are provided in nfsLib. Using the
nfsLib functionality, nfsDrv completes the implementation of an NFS client
compatible with VxWorks. Associated with INCLUDE_NFS are the following
parameters:

NFS_CLIENT_NAME — local host name for NFS access, defaults to the target
name specified in the system boot parameters.

NFS_GROUP_ID — group identifier for NFS access, defaults to 100

NFS_USER_ID — user identifier for NFS access, defaults to 2001

INCLUDE_NFS_MOUNT_ALL — mount file systems exported by the remote host
Including this component tells the VxWorks NFS client to automatically
mount all file systems exported from the remote host that you named in the
boot parameters. If you include INCLUDE_NFS_MOUNT_ALL, the VxWorks
boot procedure automatically calls nfsMountAll() using the host name and
client (target) name in the boot parameters.

Figure 8-1 FTP Boot Example

CPU 1CPU 0

vxServer

161.27.0.2161.27.0.1

/sd0/vx2

Shared-Memory Network

SCSI Disk

vxClient
163

VxWorks 5.5
Network Programmer’s Guide
INCLUDE_NFS_SERVER — the NFS (version 2) server, mountLib and nfsdLib
The Mount Protocol Library, mountLib, provides the functionality needed to
manage file export under VxWorks. The NFS Server library, nfsdLib,
implements the server side of the NFS protocol. This NFS server is designed
for use with dosFs file systems.

The VxWorks NFS libraries are implemented using RPC.

8.3.1 VxWorks NFS Clients

To mount a remote file system on a VxWorks host, you must make sure that the
remote system runs an NFS server and that the remote directory has been made
available for export to your client. Then, on the target running a VxWorks NFS
client, you must set your NFS client name, user ID, and group ID. Finally, you can
call nfsMount(), which creates an nfsDrv instance that mounts and manages the
mounted remote file system.

Exporting File Systems from the Remote NFS Server

For a UNIX NFS server, the /etc/exports file specifies which of the server’s file
systems are exported for mounting by remote NFS clients. For example, if
/etc/exports contains the line:

/usr

The server exports /usr without restriction. If you want to limit access to this
directory, you can include additional parameters on the line. For more information
on these parameters, consult your UNIX system documentation. If a file system on
a UNIX NFS server is not listed in /etc/exports, the file system is not exported,
which means other machines cannot use NFS to mount it.

Windows systems also support NFS. Thus, it is possible to configure a directory on
a Windows system so that it is exported over NFS. However, the exact procedures
for doing so depend upon the particular network package you purchased. For
more information, consult the documentation included with your Windows
networking package.

Setting Your NFS Client Name, User ID, and Group ID

Internally, NFS depends upon RPC to handle the remote execution of the
commands (open, read, write, and others) that access the data in the remote file
system. Associated with the RPC protocol is an authentication system known as
AUTH_UNIX. This authentication system requires RPC peers to provide a user
164

8

8
Remote Access Applications
name, a user ID, and a group name. The recipient of an RPC message uses this
information to decide whether to honor or ignore the RPC request.

On a VxWorks host, you can set the NFS user name, user ID, and group name using
the NFS_CLIENT_NAME, NFS_GROUP_ID, and NFS_USER_ID parameters
included in the INCLUDE_NFS configuration component. You can also set these
values by calling nfsAuthUnixSet() or nfsAuthUnixPrompt(). For example, to
use nfsAuthUnixSet() to set the NFS user ID to 1000 and the NFS group ID to 200
for the machine mars, you would call nfsAuthUnixSet() as follows:

-> nfsAuthUnixSet "mars", 1000, 200, 0

The nfsAuthUnixPrompt() routine provides a more interactive way of setting the
NFS authentication parameters from the Tornado shell.

On UNIX systems, a user ID is specified in the file /etc/passwd. A list of groups that
a user belongs to is specified in the file /etc/group. To configure a default user ID
and group ID, set NFS_USER_ID and NFS_GROUP_ID. The NFS authentication
parameters will take on these values at system startup. If NFS file access is
unsuccessful, make sure that the configuration is correct.

Mounting a Remote File System

After setting your NFS client name, user ID, and group ID, you are ready to call
nfsMount() to mount any file system exported by a known host. To add a system
to the list of hosts known to a VxWorks system, call hostAdd():

hostAdd ("host", "IPaddress")

This function associates a host name with an IP address. Thus, if you wanted to
mount a file system exported by a system called “mars,” you would need to have
already called hostAdd() for “mars.” For, example, if “mars” were at 150.12.0.1,
you would need to call hostAdd() as follows:

hostAdd ("mars", "150.12.0.1")

If “mars” exports a file system called /usr, you can now use a call to nfsMount()
to create a local mount of that remotely exported file system. The syntax of an
nfsMount() call is as follows:

nfsMount ("hostName", "hostFileSys", "localName")

Its arguments are:

hostName
The host name of the NFS server that export the file system you want to mount.
165

VxWorks 5.5
Network Programmer’s Guide
hostFileSys
The name of the host file system or subdirectory as it is known on the
exporting NFS server system.

localName
The local name to assign to the file system.

For example, the following call mounts /usr of the host mars as /vwusr locally:

-> nfsMount "mars", "/usr", "/vwusr"

If the call above completes successfully, it creates a local I/O device called /vwusr.
This device refers to the mounted file system. You can open, read, write, and close
/vwusr just like any other VxWorks I/O device. Further, a reference on the
VxWorks target to a file with the name /vwusr/darger/myfile refers to the file
/usr/darger/myfile on the host mars as if it were local to the VxWorks system.

If you do not need to mount the remote file system under a new name, you should
consider using nfsMountAll() instead of nfsMount(). A call to nfsMountAll()
mounts all file systems that are exported from the remote system and that are
accessible to the specified client. The syntax of nfsMountAll() is as follows:

nfsMountAll("hostName", "clientName", quietFlag)

hostName
The name of the host from which you want to mount all exported file systems.

clientName
Your NFS client name.

quietFlag
A boolean value that tells nfsMountAll() whether to execute in verbose or
silent mode. FALSE indicates verbose mode, and TRUE indicates quiet mode.

8.3.2 VxWorks NFS Servers

To include the VxWorks NFS server in an image, use the configuration component
INCLUDE_NFS_SERVER. Using the VxWorks NFS server, it is possible for a
VxWorks target to act as a file server for any system that runs an NFS client.
Consistent with the NFS protocol, the VxWorks NFS server exports only those file
systems explicitly marked for NFS export. Under VxWorks, preparing a file system
for export is a two step procedure. First, when you initialize the file system, you
must initialize it to allow NFS export. Then you must register the file system with
the NFS server by calling nfsExport().
166

8

8
Remote Access Applications
Initializing a File System for NFS Export

On a VxWorks target, you can export a file system over NFS only if you have
initialized that file system. The following steps initialize a DOS file system called
/goodstuff on a SCSI drive. You can use any block device instead of SCSI. Your BSP
can also support other suitable device drivers; see your BSP’s documentation.

1. Initialize the block device containing your file system.

For example, you can use a SCSI drive as follows:

scsiAutoConfig (NULL);
pPhysDev = scsiPhysDevIdGet (NULL, 1, 0);
pBlkDev = scsiBlkDevCreate (pPhysDev, 0, 0);

Calling scsiAutoConfig() configures all SCSI devices connected to the default
system controller. (Real applications often use scsiPhysDevCreate() instead,
to specify an explicit configuration for particular devices.) The
scsiPhysDevIdGet() call identifies the SCSI drive by specifying the SCSI
controller (NULL specifies the default controller), the bus ID (1), and the
Logical Unit Number (0). The call to scsiBlkDevCreate() initializes the data
structures to manage that particular drive.

2. Initialize the file system. For example, if the device already has a valid dosFs
file system on it, initialize it as follows:

dosFsDevInit ("/goodstuff", pBlkDev, NULL);

Otherwise, specify a pointer to a DOS_VOL_CONFIG structure rather than
NULL as the third argument to dosFsDevInit() (see the dosFsLib reference
entry for details).

Exporting a File System through NFS

After you have an exportable file system, call nfsExport() to make it available to
NFS clients on your network. Then mount the file system from the remote NFS
client, using the facilities of that system. The following example shows how to

! CAUTION: For NFS-exportable file systems, the device name must not end in a
slash.
167

VxWorks 5.5
Network Programmer’s Guide
export the new file system from a VxWorks platform called vxTarget, and how to
mount it from a typical UNIX system.

1. After the file system (/goodstuff in this example) is initialized, the following
function call specifies it as a file system to be exported with NFS:

nfsExport ("/goodstuff", 0, FALSE, 0);

The first three arguments specify the name of the file system to export; the
VxWorks NFS export ID (0 means to assign one automatically); and whether
to export the file system as read-only. The last argument is a placeholder for
future extensions.

2. To mount the file system from another machine, see the system documentation
for that machine. Specify the name of the VxWorks system that exports the file
system, and the name of the desired file system. You can also specify a different
name for the file system as seen on the NFS client.

For example, on a typical UNIX system, the following command (executed
with root privilege) mounts the /goodstuff file system from the VxWorks
system vxTarget, using the name /mnt for it on UNIX:

/etc/mount vxTarget:/goodstuff /mnt

Limitations of the VxWorks NFS Server

When exporting dosFs file systems that do not provide file permissions, the
VxWorks NFS Server does not normally provide authentication services for NFS
requests. To authenticate incoming requests, write your own authentication
functions and arrange to call them when needed. See the reference entries for
nfsdInit() and mountdInit() for information on authorization hooks.

About leofs

A file system exported from a VxWorks target always contains a file called leofs.
This file is essential to the normal operation of the VxWorks NFS server. Do not
delete it.

! CAUTION: On UNIX systems, you need root access to mount file systems.
168

8

8
Remote Access Applications
8.4 TFTP

The Trivial File Transfer Protocol (TFTP) is implemented on top of the Internet User
Datagram Protocol (UDP) and conforms to the RFC 1350 recommendations for
packet format. VxWorks provides both a TFTP client and a TFTP server. The TFTP
client is useful at boot time, when you can use it to download a VxWorks image
from the boot host. The TFTP server is useful if you want to boot an X-Terminal
from VxWorks. It is also useful if you want to boot another VxWorks system from
a local disk.

To include the VxWorks TFTP client or server, use the following configuration
components:

INCLUDE_TFTP_CLIENT — include the TFTP client, tftpLib.

INCLUDE_TFTP_SERVER — include the TFTP server, tftpdLib.

Unlike FTP and RSH, TFTP requires no authentication; that is, the remote system
does not require an account or password. The TFTP server allows only publicly
readable files to be accessed. Files can be written only if they already exist and are
publicly writable.

8.4.1 Host TFTP Server

Typically, the host-resident Internet daemon starts the TFTP server. For added
security, some hosts (for example, Sun hosts) default to starting the TFTP server
with the secure (-s) option enabled. If -s is specified, the server restricts host access
by limiting all TFTP requests to the specified directory (for example, /tftpboot).

For example, if the secure option was set with -s /tftpboot, a TFTP request for the
file /vxBoot/vxWorks is satisfied by the file /tftpboot/vxBoot/vxWorks rather than
the expected file /vxBoot/vxWorks.

To disable the secure option on the TFTP server, edit /etc/inetd.conf and remove
the -s option from the tftpd entry.

8.4.2 VxWorks TFTP Server

The TFTP server daemon is initialized by default when VxWorks is appropriately
configured. The relevant configuration parameter is INCLUDE_TFTP_SERVER. See
the reference entry for tftpdLib.
169

VxWorks 5.5
Network Programmer’s Guide
8.4.3 VxWorks TFTP Client

Include the VxWorks TFTP client side by reconfiguring VxWorks. The relevant
configuration parameter is INCLUDE_TFTP_CLIENT. To boot using TFTP, specify
0x80 in the boot flags parameters. To transfer files from the TFTP host and the
VxWorks client, two high-level interfaces are provided, tftpXfer() and tftpCopy().
See the reference entry for tftpLib.

8.5 RPC Remote Procedure Calls

The Remote Procedure Call (RPC) protocol implements a client-server model of
task interaction. In this model, client tasks request services of server tasks and then
wait for replies. RPC formalizes this model and provides a standard protocol for
passing requests and returning replies.

Internally, RPC uses sockets as the underlying communication mechanism. RPC,
in turn, is used in the implementation of several higher-level facilities, including
the Network File System (NFS) and remote source-level debugging. In addition,
RPC includes utilities to help generate the client interface routines and the server
skeleton.

The VxWorks implementation of RPC is task-specific. Each task must call
rpcTaskInit() before making any RPC-related calls.

The VxWorks RPC implementation is based on a public domain implementation
that originated at Sun Microsystems. RPC is equivalent to the Open Networking
Computing (ONC) RPC standard. For more information, see the public domain
RPC documentation and the reference entry for rpcLib.

To include VxWorks RPC, use the INCLUDE_RPC configuration component.

8.6 rlogin

You can log in to a host system from a VxWorks terminal using rlogin(). For more
information on the VxWorks implementation of rlogin(), see the reference entry
170

8

8
Remote Access Applications
for rlogLib. To include VxWorks rlogin() in an image, use the INCLUDE_RLOGIN
configuration component.

When connecting with a Windows host system, VxWorks’s ability to remotely
login depends on your version of Windows and the networking software you are
using. See that documentation for details.

When connecting with a UNIX host system, access permission must be granted to
the VxWorks system by entering its system name either in the .rhosts file (in your
home directory) or in the /etc/hosts.equiv file. For more information, see
Configuring the Remote Host to Allow Access to an RSH User, p.160.

8.7 telnet

Like rlogin, telnet is another remote login utility. However, telnet does not require
any previous setup of a .rhosts file or its equivalent under non-UNIX systems, but
it does require that the remote system is configured to grant login privileges to the
user specified for a telnet session.

For more information on how to use the telnet server with a VxWorks target, see
the reference entry for telnetdLib.

To include the VxWorks telnet server, use the INCLUDE_TELNET configuration
component:

INCLUDE_TELNET — include the telnet server
Associated with this component are the following parameters:

TELNETD_MAX_CLIENTS — maximum number of simultaneous client
sessions allowed. The default value is 1, which is the only possible value using
the default TELNETD_PARSER_HOOK.

TELNETD_TASKFLAG — permission for the server to create tasks before
establishing connections, defaults to FALSE.

TELNETD_PORT — the port monitored by the telnet server. The default is 23.

TELNETD_PARSER_HOOK — name of the function that implements the
command interpreter. This function connects clients to the parser. The default

NOTE: VxWorks does not support a telnet client. As a result, you cannot use telnet
to connect from a machine running VxWorks.
171

VxWorks 5.5
Network Programmer’s Guide
routine, shellParserControl, accesses the VxWorks target shell. This function,
defined in target/src/ostool/remShellLib.[c,o], is not normally exposed to
users and requires INCLUDE_SHELL. However, if you have written or ported
an application that requires that you to replace shellParserControl() with
your own implementation, you must do so using a function with the same API:

STATUS shellParserControl
(
int remoteEvent, /* Starting or stopping a connection? */
UINT32 sessionId, /* Unique identifier for each session */
int * pInFd, /* Input to command interpreter (written by socket) */
int * pOutFd /* Output from command interpreter (read by socket) */
)

The internal (not printed) reference entry for shellParserControl() is as
follows:

shellParserControl - handle connecting and disconnecting remote users

This routine configures the shell to connect new telnet or rlogin sessions to the
command interpreter by redirecting standard input and standard output and
restores the original settings when those sessions exit. This routine is the
default parser control installed as part of the INCLUDE_SHELL_REMOTE
component. The default TELNETD_PARSER_HOOK setting for the
INCLUDE_TELNET component accesses this routine. It only supports a single
remote session at a time, which determines the default value of the
TELNETD_MAX_CLIENTS parameter.

Returns: OK or ERROR.
172

9

DNS and SNTP
9.1 Introduction

This chapter provides brief descriptions of the VxWorks implementations of DNS
and SNTP.

DNS is a distributed database that most TCP/IP applications can use to translate
host names to IP addresses and back. DNS uses a client/server architecture. The
client side is known as the resolver. The server side is called the name server.
VxWorks provides the resolver functionality in resolvLib. For detailed
information on DNS, see RFC 1034 and RFC 1035.

SNTP is a Simple Network Protocol for Time. Using an SNTP client, a target can
maintain the accuracy of its internal clock based on time values reported by one or
more remote sources. Using an SNTP server, the target can provide time
information to other systems.

9.2 DNS: Domain Name System

Most TCP/IP applications use Internet host names instead of IP addresses when
they must refer to locations in the network. One reason for this is that host names
are a friendlier human interface than IP addresses. In addition, when a
host-name/IP-address pair changes, the services associated with that site typically
follow the host name and not the IP address. Most applications should probably
refer to network locations using host names instead of IP addresses. To make this
173

VxWorks 5.5
Network Programmer’s Guide
possible, the applications need a way to translate between host names and IP
addresses.

On a small isolated network, a hand-edited table is a viable solution to the look-up
problem. Such a table contains entries that pair up host names with their
corresponding IP addresses. If you copy this table to each host on the network, you
give the applications running on those hosts the ability to translate host names to
IP addresses. However, as hosts are added to the network, you must update this
table and then redistribute it to all the hosts in the network. This can quickly
become an overwhelming task if you must manage it manually.

As networks grow, they develop a hierarchy whose structure changes with the
growth. Such restructuring can change the network addresses of almost every
machine on the network. In addition, these changes are not necessarily made from
a single central location. Network users at different locations can add or remove
machines at will. This gives rise to a decentralized network with a dynamically
changing structure. Trying to track such a structure using a static centralized table
is impractical. One response to this need is the Domain Name System (DNS).

9.2.1 Domain Names

DNS is modeled after a tree architecture. The root of the tree is unnamed. Below
the root comes a group of nodes. Each of these nodes represents a domain within
the network. Associated with each node is a unique label, a domain name of up to
63 characters. The domain names are managed by the NIC (Network Information
Center), which delegates control of the top-level domains to countries,
universities, governments, and organizations.

An example of a domain name is “com”, the commercial domain. Wind River
Systems is a commercial organization, thus it fits under the commercial domain.
The NIC has given Wind River the authority to manage the name space under
“windriver.com”. Wind River uses this space to name all the hosts in its network.

9.2.2 The VxWorks Resolver

The VxWorks implementation of the resolver closely follows the 4.4 BSD resolver
implementation. However, the VxWorks implementation differs in the way it
handles the hostent structure. The 4.4 BSD resolver is a library that links with each
process. It uses static structures to exchange data with the process.

This is not possible under VxWorks, which uses a single copy of the library that it
shares among all the tasks in the system. All applications using the resolver library
174

9

9
DNS and SNTP
must provide their own buffers. Thus, the functions resolvGetHostByName() and
resolvGetHostByAddr() require two extra parameters (for a detailed description
of the interface, see the reference entries for these routines).

The VxWorks resolver library uses UDP to send requests to the configured name
servers. The resolver also expects the server to handle any recursion necessary to
perform the name resolution. You can configure the resolver at initialization or at
run-time.1

The resolver can also query multiple servers if you need to add redundancy to
name resolution in your system. Additionally, you can configure how the resolver
library responds to a failed name server query. Either the resolver looks in the static
host configuration table immediately after the failed query, or the resolver ignores
the static table.2 The default behavior of the resolver is to query only the name
server and ignore the static table.

Resolver Integration

The resolver has been fully integrated into VxWorks. Existing applications can
benefit from the resolver without needing to make any code changes. This is
because the code internal to hostGetByName() and hostGetByAddr() has been
updated to use the resolver.3 Thus, the only thing you need do to take advantage
of the resolver is to include it in your VxWorks stack.

Resolver Configuration

The resolver library is not included by default in the VxWorks stack. Thus, to
include the resolver in your VxWorks stack, you must set configuration parameters
as follows:

1. Reconfigure VxWorks with the DNS resolver on. The relevant configuration
parameter is INCLUDE_DNS_RESOLVER.

2. Establish the IP address of the Domain Name Server by changing the default
value for the configuration parameter RESOLVER_DOMAIN_SERVER to the IP
address of the server. The IP address of the server needs to be in dotted decimal
notation (for example, 90.0.0.3).

1. For initialization, call resolvParamsGet() and resolvParamsSet(). See the reference entries
for these routines.

2. The static host name table is maintained by hostLib.
3. Both hostGetByName() and hostGetByAddr() are hostLib functions.
175

VxWorks 5.5
Network Programmer’s Guide
3. Make sure that a route to the Domain Name Server exists before you try to
access the resolver library. To do this, you can use mRouteAdd() to add the
route to the routing table. However, if you have included a routing protocol
such as RIP in your VxWorks stack, it will add the route for you.

4. Define the domain to which the resolver belongs by changing the default
Resolver Domain (defined by the RESOLVER_DOMAIN configuration
parameter).

You must change this domain name to the domain name to which your
organization belongs. The resolver uses this domain name when it tries to
query the domain server for the name of the host machine for its organization.

The resolver library supports a debug option, the DNS Debug Messages
parameter: DNS_DEBUG. Using this parameter causes a log of the resolver queries
to be printed to the console. The use of this feature is limited to a single task. If you
have multiple tasks running, the output to the console will be garbled.

9.3 SNTP: A Time Protocol

VxWorks supports a client and server for the Simple Network Time Protocol
(SNTP). You can use the client to maintain the accuracy of your system’s internal
clock based on time values reported by one or more remote sources. You can use
the server to provide time information to other systems.

9.3.1 Using the SNTP Client

To include the SNTP client, reconfigure your VxWorks stack. The relevant
configuration parameter is INCLUDE_SNTPC. To retrieve the current time from a
remote source, call sntpcTimeGet(). This routine retrieves the time reported by a
remote source and converts that value for POSIX-compliant clocks. To get time
information, sntpcTimeGet() either sends a request and extracts the time from the
reply, or it waits until a message is received from an SNTP/NTP server executing
in broadcast mode. See the sntpcTimeGet() reference entry.
176

9

9
DNS and SNTP
Summary of SNTP Client Build-Time Configuration Parameters

If you include INCLUDE_SNTPC, you can configure the SNTP Server at build time
using the following parameter:

SNTPC_PORT — SNTP Client Port
Port Used for SNTP Communication
Default: 123
Valid Values: a uint, a port number

9.3.2 Using the SNTP Server

To include the SNTP server, reconfigure your VxWorks stack. The relevant
configuration parameter is INCLUDE_SNTPS. If the image includes the SNTP
server, it automatically calls sntpsInit() during system startup.

Depending on the value of the SNTP Server Mode Selection (set by the
configuration parameter SNTPS_MODE), the server executes either in
SNTP_PASSIVE or SNTP_ACTIVE mode. In SNTP_PASSIVE mode, the server waits
for requests from clients and sends replies containing an NTP timestamp. In
SNTP_ACTIVE mode, the server periodically transmits NTP timestamp
information at fixed intervals.

When executing in active mode, the SNTP server determines the target IP address
and broadcast interval using the configuration parameters:

� SNTPS_DSTADDR — SNTP Server Destination Address
� SNTPS_INTERVAL — SNTP Server Update Interval

By default, the server transmits the timestamp information to the local subnet
broadcast address every 64 seconds. To change these settings after system startup,
call the sntpsConfigSet() routine. The SNTP server operating in active mode can
also respond to client requests as they arrive.

The SNTP Client/Server Port (configuration parameter SNTP_PORT) assigns the
source and destination UDP port. The default port setting is 123 as specified by the
RFC 1769.

Finally, the SNTP server requires access to a reliable external time source. To do
this, you must provide a routine of the form:

STATUS sntpsClockHook (int request, void *pBuffer);

Until this routine is hooked into SNTP, the server cannot provide timestamp
information. There are two ways to hook this routine into the SNTP server. The
177

VxWorks 5.5
Network Programmer’s Guide
first is to configure VxWorks with the SNTPS Time Hook (configuration parameter
SNTPS_TIME_HOOK) set to the appropriate routine name. You can also call
sntpsClockSet(). For more information, see the sntpsClockSet() reference entry.

Summary of SNTP Server Build-Time Configuration Parameters

If you include INCLUDE_SNTPS, you can configure the SNTP Server at build time
using the following parameters:

SNTPS_PORT—SNTP Server Port
Port used for SNTP communication.
Default: 123 (as specified by the RFC 1769)
Valid Values: a uint, a port number

SNTPS_DSTADDR—STNP Server Destination Address
Recipient for active mode updates (NULL for broadcasts).
Default: NULL
Valid Values: a string, an IP address expressed in dot notation

SNTPS_INTERVAL—SNTP Server Update Interval
For active mode, update interval in seconds.
Default: 64
Valid Values: a uint, a count of seconds

SNPTS_MODE—SNTP Server Mode Selection
Determines whether server sends unsolicited update messages.
Default: SNTP_ACTIVE
Valid Values: a uint, either SNTP_ACTIVE or SNTP_PASSIVE

SNTPS_TIME_HOOK—SNTP Time Hook Function
Name of required clock access routine.
Default: NULL
Valid Values: a FUNCPTR, the name of a clock access routine

! CAUTION: In the VxWorks AE protection domain model, hook routines like
sntpsClockHook() must be within the kernel domain.
178

10

Integrating a New Network

Interface Driver
10.1 Introduction

The purpose of the MUX is to provide an interface that insulates network services
from the particulars of network interface drivers, and vice versa. Currently, the
MUX supports two network driver interface styles, the Enhanced Network Driver
(END) interface and the Network Protocol Toolkit (NPT) driver interface.

The END is the original MUX network driver interface. ENDs are frame-oriented
drivers that exchange frames with the MUX. The NPT-style drivers are
packet-oriented drivers that exchange packets with the MUX. These packets are
stripped of all datalink layer information. Currently, all network drivers supplied
by Wind River are ENDs, as is the generic driver template defined in
templateEnd.c. There is no generic template for an NPT driver.

Support for the NPT-style driver is part of a set of MUX extensions designed to
facilitate the implementation of MUX-compatible network services. These
extensions include a registration mechanism for an alternative address resolution
utility and support for back ends that let you extend the sockets API so that
applications can use sockets to access a new network service. Both of these features
are described in 11. Integrating a New Network Service.

10.1.1 The MUX and the OSI Network Model

The OSI Network Model describes seven layers through which data passes when
it is transmitted from an application on one machine to a peer on a remote machine
reachable through a network. Transmitted data passes through these layers in the
order shown in Figure 10-1.
179

VxWorks 5.5
Network Programmer’s Guide
Starting in the application layer, data passes down through each layer of the stack
to the physical layer, which handles the physical transmission to the remote
machine. After arriving on the remote machine, data passes up through each layer
from the physical to the application.

In the abstract, each layer in the stack is independent of the other layers. A protocol
in one layer exchanges messages with peers in the same layer on remote machines
by passing the message to the layer immediately below it. Whether the message
passes down through other layers is not its concern. Ideally, the protocol is
insulated from such details.

In practice, network stacks that implement each layer with perfect independence
are rare. Within TCP/IP, the protocols that manage the Transport and Network

Figure 10-1 The OSI Network Model and the MUX

Application
The network applications that use
the data being transferred, for
example HTTP or FTP.

The layer in which data is encrypted,
translated, or compressed before it
is transmitted.

The layer responsible for establishing
and maintaining the connection
between communicating machines.

The layer in which data is packaged
and tracked to assure that the packets
have been received correctly. TCP, the
Transmission Control Protocol, is a
transport layer protocol.

The layer that adds routing information
to each data packet. IP, the Internet
Protocol, is an example of a network

The layer that prepares the packets
for transmission through the physical
layer and handles problems such as
packet collision. Ethernet is a data
link protocol.

The actual wiring and hardware that
support the network connection.

Protocol
Layer

Presentation

Session

Transport

Network

Data Link

Physical

MUX
Interface

protocol.
180

10
Integrating a New Network Interface Driver

10
layer functions are sufficiently coupled that they effectively comprise a single
layer, which this manual sometimes refers to as the protocol layer.

The MUX is an interface between the datalink and this protocol layer. However, the
MUX is not a new layer. There are no MUX-level protocols that communicate with
peers in the MUX of a remote machine. The MUX concerns itself solely with
standardizing communication between the protocol and datalink layers of a single
stack. Because of the MUX, no protocol or network driver needs direct knowledge
of the other’s internals.

For example, when a network driver needs to pass up a received packet, the driver
does not directly access any structure or function within the destination network
service. Instead, when the driver is ready to pass data to the service, the driver calls
a MUX function that handles the details. The MUX does this by calling the receive
function that the network service registered with the MUX. This design lets any
MUX-compatible network service use any MUX-compatible network driver.

10.1.2 The Protocol-to-MUX Interface

To interact with the MUX, a protocol or service calls either muxBind() or
muxTkBind(). These routines bind the protocol or service to at least one network
driver through the MUX. Within the bind call, the network protocol or service
supplies pointers to functions that the MUX uses to:

� shut down the service
� pass an error message up to the service
� pass a packet up to the service
� restart the service

The exact prototypes for these functions vary slightly depending on whether you
use muxBind() or muxTkBind(). After the protocol or service has bound itself to
a driver through the MUX, it can then call MUX-supplied functions, such as
muxSend() or muxTkSend(), to transmit a packet or request other MUX services.

When working with the default VxWorks stack, you do not need to make a direct
call to muxBind(). This is handled for you by the internals of ipAttach(). For the
boot device, the built-in TCP/IP stack initialization code automatically calls
ipAttach(). To bind the VxWorks stack to additional interfaces, you must make an
explicit ipAttach() call for each additional interface. Again, the internals of
ipAttach() handle the muxBind() call.

To free a network service from a binding to a driver in the MUX, you can call
muxUnbind(). Although, if the binding was created using ipAttach(), you should
call ipDetach(), which handles the muxUnbind() call and other details for you.
181

VxWorks 5.5
Network Programmer’s Guide
10.1.3 The Datalink-to-MUX Interface

To add an END or NPT device to the MUX, call muxDevLoad() for each driver you
want to add. This is done for you automatically in the standard network
initialization code if you name the driver’s load function in the endDevTbl[]. The
stack initialization code uses this function name as input to a muxDevLoad() call.

Internally, the driver’s load function must allocate and partially populate an
END_OBJ structure and a NET_FUNCS structure. The END_OBJ structure provides
the MUX with a description of the device, and the NET_FUNCS structure provides
the MUX with pointers to the driver’s standard MUX interface functions, xStart(),
xStop(), xReceive(), xIoctl(), and so on.

After a driver is loaded in to the MUX and has been bound to a protocol, it can pass
received packets up to the MUX by calling muxReceive(), if it is an END, or
muxTkReceive(), in NPT drivers.1

The receive function calls the stackRcvRtn() function registered by the network
service to which the driver wants to send a packet. If the mux[Tk]Receive() call
returns OK, the driver can consider the data delivered. After a packet is delivered,
the driver must free or schedule a free (pending a transmit interrupt) of the buffers
it allocated for the packet.

To remove a network interface from the MUX, call muxDevUnload().

10.1.4 How ENDs and NPT Drivers Differ

The NPT driver is a packet-oriented equivalent to the frame-oriented END. Both
the NPT driver and the END are organized around the END_OBJ and the

1. The mux[Tk]Receive() calls in the shipped ENDs and the template END are hard to iden-
tify as such when casually reading the code. When passing a packet up to the MUX, each of
these drivers uses the function pointer referenced in the receiveRtn member of its
END_OBJ. An earlier call to muxDevLoad() set the receiveRtn member to muxReceive()
or muxTkReceive(), whichever was appropriate.

NOTE: The standard VxWorks stack expects to borrow the buffers it receives and
thus avoid data copying. If a device cannot transfer incoming data directly into
clusters, the driver must explicitly copy the data from private memory into a
cluster in sharable memory before passing it in an mBlk up to the MUX.
182

10
Integrating a New Network Interface Driver

10
NET_FUNC structures, and both driver styles require many of the same entry
points:

xLoad() – load a device into the MUX and associate a driver with the device

xUnload() – release a device, or a port on a device, from the MUX

xSend() – accept data from the MUX and send it on towards the physical layer

xMCastAddrDel() – delete a multicast address registered for a device

xMCastAddrGet() – get a list of multicast addresses registered for a device

xMCastAddrAdd() – add a multicast address to those registered for a device

xPollSend() – send packets in polled mode rather than interrupt-driven mode

xPollReceive() – receive frames in polled rather than interrupt-driven mode

xStart() – connect device interrupts and activate the interface

xStop() – stop or deactivate a network device or interface

xIoctl() – support various ioctl commands2

xBind() – exchange data with the protocol layer at bind time (optional)3

For the most part, the prototypes for these entry points are identical. The
exceptions are the send and receive entry points.

� NPT send entry points take these additional parameters:

– a MAC address character pointer

– a networks service type value

– a void* pointer for any network service data the driver might need in
order to prepare the packet for transmission on the physical layer

� NPT receive entry points likewise take additional parameters:

– a frame type

– a pointer to the start of the network frame

– a void* pointer for any addition network service data that is important to
the protocol layer

2. Although the API for both the END and the NPT xIoctl() are identical, the NPT xIoctl()
must support two extra ioctl commands, EIOCGNPT and EIOCGMIB2233.

3. The xBind() entry point was not a part of the original END design. It was added with the
NPT enhancements, but the MUX supports its use in an END.
183

VxWorks 5.5
Network Programmer’s Guide
The three END entry points not included in an NPT driver are:4

xAddressForm() – add addressing information to a packet

xAddrGet() – extract the addressing information from a packet

xPacketDataGet() – separate the addressing information and data in a packet

The above functions were removed from the NPT driver because they are
frame-oriented and so irrelevant to a packet-oriented driver.

The following registration interface lets you manage an address resolution
function for a protocol/interface pair.

muxAddrResFuncAdd() – add an address resolution function

muxAddrResFuncGet() – get the address resolution function for
ifType/protocol

muxAddrResFuncDel() – delete an address resolution function

For Ethernet devices, the standard VxWorks implementation automatically
assigns arpresolve() as the address resolution function. If you are writing an END
that does not run over Ethernet, you also need to implement the xAddressForm(),
xAddrGet(), and xPacketDataGet() entry points explicitly. ENDs running over
Ethernet typically use the endLib implementations of these functions.

10.1.5 Managing Memory for Network Drivers and Services

The default VxWorks stack uses netBufLib to manage its internal system and data
memory pools. Similarly, almost all the shipped ENDs use netBufLib to manage
memory pools for their receive buffers. If the standard netBufLib implementation
is not suitable to your needs, you can replace it. If you are careful to preserve the
API of the current netBufLib routines, the standard VxWorks stack and the
shipped ENDs should be able to use your new memory allocation routines without
modification.

4. For Ethernet, these functions are implemented in endLib. Thus, if your driver runs over
Ethernet (using either 802.3 or DIX header formats), you can reference the existing functions
and do not need to implement them.

NOTE: The standard VxWorks stack expects to borrow the buffers it receives and
thus avoid data copying. If a device cannot transfer incoming data directly into
clusters, the driver must explicitly copy the data from private memory into a
cluster in sharable memory before passing it in an mBlk up to the MUX.
184

10
Integrating a New Network Interface Driver

10
10.1.6 Supporting Scatter-Gather in Your Driver

Some devices support breaking up a single network packet into separate chunks
of memory. This makes it possible to handle the outgoing network packets as a
chain of mBlk/clBlk/cluster constructs without any copying.

When a driver gets a chain of mBlks, it can decide how to transmit the clusters in
the chain. If it is able to do a gather-write, it does not need to do any data copying.
If it cannot, then it must collect all of the data from the chain into a single memory
area before transmitting it.

10.1.7 Early Link-Level Header Allocation in an NPT Driver

The NPT driver and its MUX support functions are automatically configured to
allocate extra room at the beginning of an outgoing packet to hold the network-
and transport-layer header information. This allows those layers to copy in their
headers without additional overhead in the form of memory allocation and buffer
chaining.

You can configure the NPT-supporting MUX functions to also allocate extra room
for the data-link-layer header by setting the USR_MAX_LINK_HDR configuration
parameter or #define in the configNet.h file for your BSP. You should set this value
to the largest of the data-link-layer header sizes used by the drivers in your system.
For instance, if you add the following line:

#define USR_MAX_LINK_HDR 16

sixteen extra bytes will be prepended to outgoing packets, and drivers with
data-link-layer headers of 16 bytes or fewer will have that space available in the
packet without having to prepend a new mBlk during their endAddressForm() or
nptSend() functions.

When using the M_PREPEND() macro to add a header to a packet, this extra space
will be automatically used (or, if the space has not been pre-allocated, a new mBlk
will automatically be generated and prepended). See A.6 Macros for Buffer
Manipulation, p.255.

NOTE: The USR_MAX_LINK_HDR configuration parameter only applies to header
information within the AF_INET addressing family.
185

VxWorks 5.5
Network Programmer’s Guide
10.1.8 Buffer Alignment

Some microprocessors, most notably those from MIPS and ARM, restrict data
access for long words (32-bit values) to the four-byte boundary. Accessing the data
in a long word at any other point, such as at a two-byte boundary, results in a
segmentation fault. When this restriction is applied to buffers, it requires that all
long-word fields within the buffer must align on absolute four-byte boundaries.5

Many protocols (IP, TCP, and the like) specify four-byte fields in their headers.
Conveniently, these protocol packets are usually set up so that these four-byte
fields align on four-byte boundaries relative to the start of the protocol packet.
Thus, if your network driver passes up a buffer in which the payload data (for
example, an IP packet) always starts at an absolute four-byte boundary, the fields
within the data should align correctly.

Unfortunately, when a packet first arrives, its datalink layer header might not end
on an absolute four-byte boundary. For example, the RFC 894 Ethernet packet (see
Figure 10-2) has a 14-byte header that precedes the payload data. If you receive this
type of Ethernet packet on a long word boundary, any four-byte aligned payload
data (such as an IP packet) following such a header would be misaligned because
the payload data would start on a two-byte boundary. If you pass this misaligned
data up to the MUX, the stack crashes.

5. If the buffer contains a four-byte region that you access as an array of 8-bit or 16-bit values,
there is no alignment restriction. The restriction applies only when you access long words.

! WARNING: When working with alignment-sensitive hardware, if the payload data
contains fields that the stack accesses as long words, those fields must align on
absolute four-byte boundaries. Otherwise, the stack crashes when it tries to access
those long word fields.

Figure 10-2 RFC 894 Ethernet Packets Are Problematic for Alignment-Sensitive Hardware

Buffer Containing an RFC 894 Packet

RFC 894 Ethernet Header:
Six-byte Destination Address,
Six-byte Source Address,
Two-byte Type Field, total of 14 bytes

Data payload, consisting internally of four-byte
aligned objects that are misaligned relative to
the absolute four-byte boundaries because of
the 14-byte RFC 894 header.
186

10
Integrating a New Network Interface Driver

10
To guarantee correctly aligned payload data, your driver can:

� copy the data (the worst-case solution)
� offset the receive buffers (often impossible on hardware that needs it)
� use a scatter-gather receive (the most elegant solution)

Copying the Data

The simplest solution to the alignment problem is for the driver to copy each
packet upon reception such that the data aligns properly. The driver can then
safely pass the data up to the MUX. Because such a copy is time consuming, it is a
worst-case solution.

Offsetting the Receive Buffers

On some hardware, the driver can offset the receive buffers that it gives to the
hardware such that the protocol headers within the received packets start at a
four-byte boundary. This misaligns the MAC header, but this is not usually a
problem. Neither the stack nor the MUX ever access Ethernet header data as
anything but eight-bit and 16-bit quantities. Thus, the access restriction that
applies to long words only does not apply.

To succeed, this approach relies on the ability to DMA data into a misaligned (non
four-byte aligned) buffer. Unfortunately, some DMA controllers do not allow
misaligned buffers. In fact, on boards that have CPUs with alignment issues, these
issues are usually pushed down into the rest of the hardware infrastructure,
including the DMA engines. Thus, this approach is often impossible on the very
hardware that requires it.

In Figure 10-3, the Ethernet header no longer starts on a four-byte boundary.
Therefore, neither the destination address nor the type fields in the Ethernet

Figure 10-3 Receiving an RFC 894 Packet into an Offset Buffer

Offset Buffer Containing an RFC 894 Packet

RFC 894
Ethernet Header

Two-byte
Offset

Data payload, consisting internally of four-byte objects
now correctly aligned relative to the absolute four-byte
boundaries because of the two-byte offset.
187

VxWorks 5.5
Network Programmer’s Guide
header fall on four-byte boundaries. However, because the stack does not access
either of these fields as long words, no segmentation fault occurs.

Using a Scatter-Gather Receive

If the hardware can handle scatter-gather lists, your driver can use this feature to
handle the alignment problem elegantly. For each packet, your driver allocates two
buffers: one buffer for the MAC layer header data (Ethernet header), and a second
buffer for the payload data (such as an IP datagram). See Figure 10-4.

On reception, the device places the MAC header into one buffer and the payload
data into the other. The driver receive function then links these together and
processes them as a buffer chain in which each component buffer automatically
starts on a four-byte boundary. Therefore, when the driver hands the buffer chain
up to the MUX, the payload data is correctly aligned.

10.2 END Implementation

This section presents an overview of how an END operates followed by
implementation recommendations for the standard END entry points. If you
compare this section with 10.3 NPT Driver Implementation, p.203, you will notice a
strong parallelism. This is because the NPT is a generalized extension of the END.
Thus, the implementation recommendations for both driver styles are nearly
identical. However, the few differences that do exist are critical.

If you are writing an END, you are writing a driver that passes its frames up to the
standard VxWorks implementation. As a starting point for your END, you should
use the generic END in templateEnd.c.

Figure 10-4 Receiving an RFC 894 Packet into Two Linked Scatter-Gather Buffers

First Buffer

RFC 894
Header

2 Bytes
Empty

Second Buffer

Payload data, the internally four-byte aligned data is also
correctly aligned relative to the absolute four-byte boundaries.
188

10
Integrating a New Network Interface Driver

10
10.2.1 END Operation

This subsection presents an overview of the following END operations:

� adding an END to VxWorks
� launching an END
� responding to a service bind event
� receiving frames

For the most part, the NPT and the END handle these operations identically. The
major exception is in the area of receiving frames. NPT drivers pass up the received
frames stripped of all datalink header information. ENDs include the frame header
information in the packets they pass up to the MUX.

Adding an END to VxWorks

Adding your driver to the target VxWorks system is much like adding any other
component. The first step is to compile and include the driver code in the VxWorks
image. A description of the general procedures can be found in the Tornado User’s
Guide.

Because VxWorks allows you to create more than one network device, you must
set up a table that groups the #define statements that configure these devices into
device-specific groups. This table, endDevTbl[],is defined in the configNet.h file
in your target/src/config/bspname directory, where bspname is the name of your
board support package, such as mv162 or pc486. For example, to add an ln7990
END, you would edit configNet.h to contain lines such as:

/* Parameters for loading ln7990 END supporting buffer loaning. */
#define LOAD_FUNC_0 ln7990EndLoad
#define LOAD_STRING_0 "0xfffffe0:0xffffffe2:0:1:1"
#define BSP_0 NULL

NOTE: For instructions on starting additional drivers at run time, see Manually
Starting Additional Network Interfaces at Run-Time, p.67.
189

VxWorks 5.5
Network Programmer’s Guide
You should define three constants, like those shown above, for each of the devices
you want to add. To set appropriate values for these constants, consider the
following:

LOAD_FUNC
Specifies the name of your driver’s endLoad() entry point. For example, if
your driver’s endLoad() entry point were ln7990EndLoad(), you would edit
configNet.h to include the line:6

#define LOAD_FUNC_n ln7990EndLoad

LOAD_STRING
Specifies the initialization string passed into muxDevLoad() during network
initialization as the initString parameter. This string is passed along blindly to
the endLoad() function of the driver, and its contents depend on what the
driver expects.

You must also edit the definition of the endDevTbl[] (a table in configNet.h that
specifies the ENDs included in the image) to include entries for each of the devices
to be loaded:

END_TBL_ENTRY endDevTbl [] =
{
{ 0, LOAD_FUNC_0, LOAD_STRING_0, BSP_0, NULL, FALSE },
{ 1, LOAD_FUNC_1, LOAD_STRING_1, BSP_1, NULL, FALSE },
{ 0, END_TBL_END, NULL, 0, NULL, FALSE },
};

The first number in each table entry specifies the unit number for the device. The
first entry in the example above specifies a unit number of 0. Thus, the device it
loads is deviceName0. The FALSE at the end of each entry indicates that the entry
has not been processed. After the system has successfully loaded a driver, it
changes this value to TRUE in the run-time version of this table. To prevent the
system from automatically loading your driver, set this value to TRUE.

At this point, you are ready to rebuild VxWorks to include your new drivers. When
you boot this rebuilt image, the system calls muxDevLoad() for each device
specified in the table in the order listed.

6. Do not confuse END entry points, indicated as endLoad(), endStart(), and so on, with
functions in endLib, an END support library that defines functions such as
endTxSemTake() and endTxSemGive().

NOTE: The endDevTbl[] can contain a mix of NPT drivers and ENDs.
190

10
Integrating a New Network Interface Driver

10
Launching the Driver

At system startup, the VxWorks kernel spawns the user root task, which initializes
the network. This task calls muxDevLoad(), which calls the endLoad() function in
your driver. This endLoad() function creates and partially populates an END_OBJ
structure that describes the driver. Among the information that endLoad() must
supply in the END_OBJ is a reference to a NET_FUNCS structure that endLoad() has
allocated and populated with references to the driver entry points.

After muxDevLoad() loads your driver, a muxDevStart() call executes the
endStart() function in your driver. The endStart() function should activate the
driver and register an interrupt service routine for the driver with the appropriate
interrupt connect routine for your architecture and BSP.

Binding to a Service

An END typically does not react when a service uses binds to a device. However,
an END may take advantage of the same facility used by an NPT driver to
exchange data with a service during the bind phase. See Responding to Network
Service Bind Calls, p.205, for more complete information on this process.

Receiving Frames in Interrupt Mode

When an interrupt is received, VxWorks invokes the interrupt service routine (ISR)
that was registered by the endStart() function. This ISR should do the minimum
amount of work necessary to transfer the frame from the local hardware into
accessible memory (ideally a cluster: see 10.1.3 The Datalink-to-MUX Interface,
p.182).

To minimize interrupt lockout time, your ISR should handle directly (at interrupt
level) only those actions that require minimum execution time, such as error
checking or device status change. The ISR should queue all time-consuming work
for processing at task level.

To queue frame reception work for processing at the task level, your ISR can use
netJobAdd(). This function takes a function pointer and up to five additional
arguments (representing parameters to the function referenced by the function
pointer)7.

7. You cannot call netJobAdd() from outside of the kernel protection domain.
191

VxWorks 5.5
Network Programmer’s Guide
The netJobAdd() function prototype is:

STATUS netJobAdd
(
FUNCPTR routine,
int param1,
int param2,
int param3,
int param4,
int param5
)

The routine in this case should be the function in your driver that performs frame
processing at the task level. The netJobAdd() function puts that function on
tNetTask’s work queue and gives a semaphore that awakens tNetTask.

Upon awakening, tNetTask dequeues function calls and associated arguments
from its work queue. It then executes these functions in its context until the queue
is empty.

Your task-level frame reception function should do whatever is necessary to
construct an mBlk chain containing the frame to hand off to the MUX, such as
assuring data coherency. This function might also use a level of indirection in order
to check for and avoid race conditions before it attempts to do any processing on
the received data. This routine should also set M_MCAST and M_BCAST flags in
the mBlk header, if appropriate. When all is ready, your driver passes the frame up
to the MUX by calling the function referenced in the receiveRtn member of the
END_OBJ structure that represents your device (see B.3.3 END_OBJ, p.285).

10.2.2 The END Interface to the MUX

This subsection describes the driver entry points and the shared data structures
that comprise an END’s interface to the MUX.

Data Structures Shared by the END and the MUX

The core data structure for an END is the END object, or END_OBJ. This structure
is defined in target/h/end.h (see also B.3.3 END_OBJ, p.285). The driver’s load
function returns a pointer to an END_OBJ that it allocated and partially populated.
This structure supplies the MUX with information that describes the driver as well
as a pointer to a NET_FUNCS structure populated with references to the END’s
standard entry points.
192

10
Integrating a New Network Interface Driver

10
Although the driver’s load function is responsible for populating much of the
END_OBJ structure, some of its members are set within the MUX when a protocol
binds to the device. Specifically, the MUX sets the END_OBJ’s receiveRtn member
so that it contains a reference to the bound protocol’s receive routine. The driver
calls this referenced function when it needs to send a packet up to the protocol. The
driver could access this function reference with a call to muxReceive() or
muxTkReceive().

END Entry Points Exported to the MUX

Table 10-1 lists the standard driver entry points that the NET_FUNCS structure
exports to the MUX. In this manual, the functions use a generic “end” prefix, but in
practice this prefix is usually replaced with a driver-specific identifier, such as
“ln7990” for the Lance Ethernet driver.

Table 10-1 END Functions

Function Description

endLoad() Load a device into the MUX and associate a driver with the device.

endUnload() Release a device, or a port on a device, from the MUX.

endSend() Accept data from the MUX and send it on to the physical layer.

endMCastAddrDel() Remove a multicast address from those registered for the device.

endMCastAddrGet() Retrieve a list of multicast addresses registered for a device.

endMCastAddrAdd() Add a multicast address to the list of those registered for the device.

endPollSend() Send frames in polled mode rather than interrupt-driven mode.

endPollReceive() Receive frames in polled mode rather than interrupt-driven mode.

endStart() Connect device interrupts and activate the interface.

endStop() Stop or deactivate a network device or interface.

endAddressForm() Add addressing information to a packet.

endAddrGet() Extract the addressing information from a packet.

endPacketDataGet() Separate the addressing information and data in a packet.

endIoctl() Support various ioctl commands.
193

VxWorks 5.5
Network Programmer’s Guide
endLoad()

Before a network interface can be used to send and receive frames, the appropriate
device must be loaded into the MUX and configured. The muxDevLoad() function
calls your driver’s endLoad().

This function takes an initialization string, the contents of which are user-defined
but generally include such items as the unit number identifying the physical
interface8, an interrupt vector number, and the address of memory mapped
registers.

The endLoad() function must be written as a two-pass algorithm. The MUX calls it
twice during the load procedure. In the first pass, the initialization string is blank
(all zeros). The endLoad() routine is expected to check for the blank string and
return with the name of the device copied into the string. A second call is then
made to endLoad() with the actual initialization string that was supplied to
muxDevLoad(). The endLoad() then must return a pointer to the END_OBJ that it
allocates or a NULL if the load fails.

Typically, the endLoad() function, in its second pass, will:

� Initialize the device and interface.
� Allocate and fill the END_OBJ structure.
� Initialize any necessary private structures.
� Parse and process the initialization string.
� Create and populate the MIB II interface table.
� Create and initialize a private pool of memory using the API in netBufLib.
� Allocate one or more network buffer pools using netBufLib.
� Fill the NET_FUNCS table referenced by pNetFuncs in the END_OBJ structure.

The endLoad() function is based on the following skeleton:

END_OBJ * endLoad
(
char * initString, /* defined in endTbl */
void * pBsp /* BSP-specific information (optional) */
)

{
END_OBJ * newEndObj;

if(!initString) /* initString is NULL, error condition */
{
/* set errno perhaps */

8. Although a driver is only loaded once, the driver’s endLoad() routine will be called for
each port to be activated within the driver. This is so the MUX may allocate an entry for each
port. The MUX interface does not impose restrictions on how drivers handle multiple ports
as long as a separate END_OBJ is allocated for each port.
194

10
Integrating a New Network Interface Driver

10
return((END_OBJ *) 0);
}
else if(initString[0] == 0) /* initString[0] is NULL, pass one */
{
strcpy(initString, "foo");
return((END_OBJ *) 0);
}
else /* initString is not NULL, pass two */
{
/* initialize device */
newEndObj = (END_OBJ *) malloc(sizeof(END_OBJ));
/* fill newEndObj and newEndObj->pFuncTable */
/* create and populate the MIB2 interface table */
/* initialize any needed private structures */
/* parse and process initString, and pBsp if necessary */
/* create a private pool of memory using netBufLib API */
/* create network buffer pools using netBufLib API */
return(newEndObj);
}

}

endUnload()

An endUnload() function is invoked when muxDevUnload() is called by the
system application. In this routine, the driver is responsible for doing whatever is
necessary to “release” the device.

This function is called for each port that has been activated by a call to endLoad().
If the device has multiple ports loaded, the driver must not free up any shared
resources until an unload request has been received for each of the loaded ports.

The endUnload() routine does not need to notify services about unloading the
device. Before calling endUnload(), the MUX sends a shutdown notice to each
service attached to the device.

The endUnload() prototype is:

STATUS endUnload
(
END_OBJ * pEND /* END object */
)

endSend()

The network driver send routine is referenced from the NET_FUNCS table that is
created during the load process. The MUX calls this function when the network
service issues a send request. The send routine is supplied a reference to an mBlk
chain representing the link-level frame to be sent.
195

VxWorks 5.5
Network Programmer’s Guide
The endSend() prototype is:

STATUS endSend
(
END_OBJ * pEND, /* END object */
M_BLK_ID pPkt /* mBlk chain containing the frame */
)

This function should return a status of:

– OK , if the send was successful.

– END_ERR_BLOCK, if the send could not be completed because of a
transient problem such as insufficient resources.

– ERROR, in this case, errno should be set appropriately.

endMCastAddrAdd()

This function registers a physical-layer multicast address with the device. It takes
as arguments a pointer to the END_OBJ returned by endLoad() and a string
containing the physical address to be added.

This routine should reconfigure the interface in a hardware-specific way that lets
the driver receive frames from the specified address.

The endMCastAddrAdd() prototype is:

STATUS endMCastAddrAdd
(
END_OBJ * pEND, /* END object */
char * pAddress /* physical address or a reference thereto */
)

This function should return a status OK or ERROR (in which case, errno should be
set appropriately).

endMCastAddrDel()

This function removes a previously registered multicast address from the list
maintained for a device. It takes as arguments a pointer to the END_OBJ returned
by endLoad(), and a string containing the physical address to be removed.

.

NOTE: To help you manage a list of Ethernet multicast addresses, VxWorks
provides the etherMultiLib library.

NOTE: To help you manage a list of Ethernet multicast addresses, VxWorks
provides the etherMultiLib library.
196

10
Integrating a New Network Interface Driver

10
The endMCastAddrDel() prototype is:

STATUS endMCastAddrDel
(
END_OBJ * pEND, /* END object */
char * pAddress /* physical address, or a reference thereto */
)

This function should return a status OK or ERROR (in which case, errno should be
set appropriately).

endMCastAddrGet()

This function retrieves a list of all multicast addresses that are currently active on
the device. It takes as arguments a pointer to the END_OBJ returned by endLoad(),
and a pointer to a MULTI_TABLE structure into which the list will be put.

The endMCastAddrGet() prototype is:

STATUS endMCastAddrGet
(
END_OBJ * pEND, /* driver's control structure */
MULTI_TABLE * pMultiTable /* container for address list */
)

This function should return a status OK or ERROR (in which case, errno should be
set appropriately).

endPollSend()

This routine provides a polled-mode equivalent to the driver’s interrupt-driven
send routine. It must either transfer a frame directly to the underlying device, or it
must exit immediately if the device is busy or if resources are unavailable.

Within your endPollSend() routine, verify that the device has been set to
polled-mode (by a previous endIoctl() call). Your endPollSend() routine should
then put the outgoing frame directly onto the network, without queuing the frame
on any output queue.

NOTE: To help you manage a list of Ethernet multicast addresses, VxWorks
provides the etherMultiLib library.

NOTE: When the system calls your endPollSend() routine, it is probably in a mode
that cannot service kernel calls. Therefore, this routine must not perform any
kernel operations, such as taking a semaphore or allocating memory. Likewise, this
routine must not block or delay because the entire system might halt.
197

VxWorks 5.5
Network Programmer’s Guide
This routine takes as arguments a pointer to the END_OBJ structure returned by
endLoad() and a reference to an mBlk or mBlk chain containing the outgoing
frame. It should return a status OK or ERROR (in which case, errno should be set).

The endPollSend() prototype is:

STATUS endPollSend
(
END_OBJ * pEND, /* END object*/
M_BLK_ID pMblk /* mBlk chain: data to be sent */
)

endPollReceive()

This function receives frames using polling instead of an interrupt-driven model.
The routine retrieves the frame directly from the network and copies it into the
mBlks passed to the routine. If no frame is available, the function returns ERROR.

Within the endPollReceive() routine, verify that the device has been set to
polled-mode (by a previous endIoctl() call). The routine should then retrieve the
frame directly from the network and copy it into the mBlk passed in to the routine.

It takes as arguments a pointer to the END_OBJ structure returned by endLoad()
and a reference to an mBlk or mBlk chain into which the incoming data should be
put.

The endPollReceive() prototype is:

STATUS endPollReceive
(
END_OBJ * pEND, /* returned from endLoad() */
M_BLK_ID pPkt /* mBlk chain: data being received */
)

This function should return OK or an error value of EAGAIN if the received data is
too large to fit in the provided mBlk, or if no data is available.

endStart()

The driver’s endStart() function connects device interrupts and makes the
interface active and available. This function takes as its argument the unique
interface identifier returned from the endLoad() call. As with endLoad(), this call
is made for each port that is to be activated within the driver.

NOTE: When the system calls your endPollReceive() routine, it is probably in a
mode that cannot service kernel calls. Therefore, this routine must not perform any
kernel operations, such as taking a semaphore or allocating memory. Likewise, this
routine must not block or delay because the entire system might halt.
198

10
Integrating a New Network Interface Driver

10
The endStart() prototype is:

STATUS endStart
(
END_OBJ * pEND, /* END object */
)

This function should return a status OK or ERROR (in which case, errno should be
set appropriately).

endStop()

The driver’s endStop() function halts a network device, typically by disconnecting
the appropriate interrupt. It does not remove the device by releasing the allocated
data structures. This function takes as its argument the unique interface identifier
returned from the endLoad() call.

The endStop() prototype is:

STATUS endStop
(
END_OBJ * pEND, /* END object */
)

This function should return a status OK or ERROR (in which case, errno should be
set appropriately).

endAddressForm()

The endAddressForm() routine generates a frame-specific header which it
prepends to the mBlk chain containing outgoing data. After adding the address
segment to the mBlk, the routine should adjust the mBlk.mBlkHdr.mLen and
mBlk.mBlkHdr.mData members accordingly.

If the incoming mBlk is not large enough to contain the added address
information, an additional mBlk/clBlk cluster must be created for this purpose,
and inserted at the beginning of the mBlk chain. For information on how to
prevent this extra allocation and chaining, see 10.1.7 Early Link-Level Header
Allocation in an NPT Driver, p.185.

The network protocol type can be found in the pDst.mBlkHdr.reserved field.

A reference to the new mBlk chain head is returned from endAddressForm().

The endAddressForm() prototype is:

M_BLK_ID endAddressForm
(
M_BLK_ID pData /* mBlk chain containing outgoing data */
199

VxWorks 5.5
Network Programmer’s Guide
M_BLK_ID pSrc, /* source address, in an mBlk */
M_BLK_ID pDst, /* destination address, in an mBlk */
BOOL bcastFlag /* use link-level broadcast ? */
)

endAddrGet()

This routine retrieves the address values for an incoming frame provided in an
mBlk chain. If the additional mBlk parameters are not NULL, it sets the
mBlk.mBlkHdr.mData and mBlk.mBlkHdr.mLen fields to indicate the location
and size of the corresponding data-link layer addresses. The additional mBlk
parameters are:

pSrc
The local source address of the frame.

pDst
The local destination of the frame.

pESrc
The original link-level source address, or the pSrc settings if none.

pEDst
The final link-level destination address, or the pDst settings if none.

The endAddrGet() prototype is:

STATUS endAddrGet
(
M_BLK_ID pData, /* mBlk chain containing frame */
M_BLK_ID pSrc, /* local source address, in an mBlk */
M_BLK_ID pDest, /* local destination address, in an mBlk */
M_BLK_ID pESrc, /* actual source address, in an mBlk */
M_BLK_ID pEDest /* actual destination address, in an mBlk */
)

This function should return a status OK or ERROR (in which case, errno should be
set appropriately).

NOTE: The endLib library contains an address formation routine that generates
and prepends Ethernet frame headers. Thus, you probably do not need to
implement this function if you are running over Ethernet.

NOTE: The endLib library contains a routine for retrieving address values from
Ethernet frame headers. Thus, you probably do not need to implement this
function if your driver runs over Ethernet.
200

10
Integrating a New Network Interface Driver

10
endPacketDataGet()

This routine parses an incoming frame provided in an mBlk chain. It places the
address information, including the size and offset of the address information, the
offset of the frame payload, and the frame type, in the LL_HDR_INFO structure that
is passed in as a parameter.

The endPacketDataGet() prototype is:

STATUS endPacketDataGet
(
M_BLK_ID pData, /* mBlk chain containing packet */
LL_HDR_INFO * pHeader /* structure to hold header info */
)

This function should return a status OK or ERROR (in which case, errno should be
set appropriately).

endIoctl()

An END may need to support ioctl commands, particularly if it is to be used with
the existing IP network service sublayer. See Table 10-4 for a list of commonly used
ioctl commands.

The endIoctl() function takes the following arguments:

– the unique interface identifier returned from the muxDevLoad() call

– the ioctl command being issued

– a buffer for additional data given in the command or for data to be returned on
completion of the command (defined as a caddr_t structure)

NOTE: The endLib library contains a routine for retrieving the address and data
offsets and sizes and the type information from Ethernet frames. Thus, you
probably do not need to implement this function if your driver runs over Ethernet.

! WARNING: If you are porting a driver from the BSD 4.3 model, you might be
tempted to use the existing xxIoctl() routine as your endIoctl() routine, skipping
the creation of separate routines for the multicast address table maintenance
functions. Do not do this! Your driver must implement the multicast address table
maintenance routines.
201

VxWorks 5.5
Network Programmer’s Guide
The endIoctl() prototype is:

int endIoctl
(
END_OBJ * pEND, /* END Object */
int command, /* ioctl command */
caddr_t buffer /* holds response from command */
)

This function returns 0 (zero) if successful, an appropriate error value otherwise,
or EINVAL if the command is not supported.

Table 10-2 ioctl Commands and Data Types

Command Function Data Type

EIOCSFLAGS Set device flags.
See flags in B.3.3 END_OBJ, p.285.

int

EIOCGFLAGS Get device flags. int

EIOCSADDR Set device address. char *

EIOCGADDR Get device address. char *

EIOCMULTIADD Add multicast address. char *

EIOCMULTIDEL Delete multicast address. char *

EIOCMULTIGET Get multicast list. MULTI_TABLE *

EIOCPOLLSTART Put device in polling mode. NULL

EIOCPOLLSTOP Put device in interrupt mode. NULL

EIOCGFBUF Get minimum first buffer for chaining. int

EIOCQUERY Retrieve the bind function. END_QUERY *

EIOCGHDRLEN Get the size of the datalink header. int

EIOCGMIB2 Get MIB-II counters from the driver. M2_INTERFACETBL *

NOTE: Wind River reserves command constants (such as EIOCGFBUF) that are in
the range of 0-128. If you want to use your own custom ioctl commands, define
their command constants to be equivalent to numbers outside this range.
202

10
Integrating a New Network Interface Driver

10
10.3 NPT Driver Implementation

This section presents an overview of how an NPT driver operates followed by
implementation recommendations for the standard NPT driver entry points. If you
compare this section with 10.2 END Implementation, p.188, you will notice a strong
parallelism. This arises from the fact that the NPT is a packet-oriented equivalent
to the END. Thus, the implementation recommendations for both NPT drivers and
ENDs are nearly identical. However, the few differences that do exist are critical.

Currently, VxWorks does not include an NPT driver implementation, only END
implementations. As a starting point for an NPT driver, you might want to use the
generic END defined in templateEnd.c.

10.3.1 NPT Driver Operation

This subsection presents an overview of the following NPT driver operations:

� adding an NPT Driver to VxWorks
� launching an NPT Driver
� responding to a service bind event
� receiving frames

For the most part, the NPT and the END handle these operations identically. The
major exception is in the area of receiving frames. NPT drivers pass up the received
frames stripped of all datalink header information. ENDs include the Ethernet
header information in the packets they pass up to the MUX.

66

NOTE: The design situations that require an NPT driver instead of an END are
rare. If you are writing a new driver, think first of implementing it as an END, for
which there exists a template as well as working driver implementations that you
can study. However, if porting packet-oriented driver, feel free to port it as an NPT
driver. The VxWorks stack supports mixing the two driver styles.

NOTE: For instructions on starting additional drivers at run time, see Manually
Starting Additional Network Interfaces at Run-Time, p.67.
203

VxWorks 5.5
Network Programmer’s Guide
Adding an NPT Driver to VxWorks

Adding your driver to the target VxWorks system is much like adding any other
component. The first step is to compile and include the driver code in the VxWorks
image. A description of this procedure is found in the Tornado User’s Guide.

Because VxWorks allows you to create more than one network device, you must
set up a table that groups the #define configuration statements for these devices
into device-specific groups. This table, endDevTbl[], is defined in the configNet.h
file in your target/src/config/bspname directory where bspname is the name of your
board support package, such as mv162 or pc486. For example, to add an ln7990
NPT driver, you would edit configNet.h to contain lines such as:

/* Parameters for loading ln7990 NPT driver supporting buffer loaning. */
#define LOAD_FUNC_0 ln7990nptLoad
#define LOAD_STRING_0 "0xfffffe0:0xffffffe2:0:1:1"
#define BSP_0 NULL

Define three constants, like those shown above, for each of the devices you want to
add. To set appropriate values for these constants, consider the following:

LOAD_FUNC
Specifies the name of your driver’s nptLoad() entry point. For example, if your
driver’s nptLoad() entry point were ln7990nptLoad(), you would edit
configNet.h to include the line:

#define LOAD_FUNC_n ln7990nptLoad

LOAD_STRING
Specifies the initialization string passed into muxDevLoad() as the initString
parameter. This string contains information that is passed along blindly to the
nptLoad() function of the driver, and its contents depend on what the driver
expects.

You must also edit the definition of the endDevTbl[] (a table in configNet.h that
specifies the drivers included in the image) to list the devices to be loaded:

END_TBL_ENTRY endDevTbl [] =
{
{ 0, LOAD_FUNC_0, LOAD_STRING_0, BSP_0, NULL, FALSE },
{ 1, LOAD_FUNC_1, LOAD_STRING_1, BSP_1, NULL, FALSE },
...
{ 0, END_TBL_END, NULL, 0, NULL, FALSE },
};

The first number in each table entry specifies the unit number for the device. The
first entry in the example above specifies a unit number of 0. Thus, the device it
loads is deviceName0. The FALSE at the end of each entry indicates that the entry
204

10
Integrating a New Network Interface Driver

10
has not been processed. After the system successfully loads a driver, it changes this
value to TRUE in the run-time version of this table. To prevent the system from
automatically loading your driver, set this value to TRUE.

After constructing these entries in configNet.h, you are ready to rebuild VxWorks
to include your new drivers. When you boot this rebuilt image, the system calls
muxDevLoad() for each device specified in the table in the order listed.

Launching the Driver

At system startup, the VxWorks kernel spawns the user root task to initialize the
network. The task calls muxDevLoad() which in turn calls the nptLoad() function
in your driver. The nptLoad() function creates and partially populates an
END_OBJ structure and a NET_FUNCS structure. The END_OBJ structure describes
the driver to the MUX. The NET_FUNCS structure provides the MUX with
references to the MUX-callable driver functions.

After muxDevLoad() loads your driver, a muxDevStart() call executes the
nptStart() function in your driver. The nptStart() function should activate the
driver and register an interrupt service routine for the driver with the appropriate
interrupt connect routine for your architecture and BSP.

Responding to Network Service Bind Calls

A driver is not required to respond when a service binds to a device. However, if
you want your driver to respond to a bind event, your driver can support an
nptBind() function.

When a service or protocol binds to an interface controlled by your driver, the
MUX uses the driver’s nptIoctl() function to retrieve a pointer to that driver’s
nptBind() function (if any). The MUX then executes that function before
continuing with the bind.

To get a pointer to a driver’s nptBind(), the MUX issues an EIOCQUERY command
to the driver’s nptIoctl() function. As input, the call supplies an END_QUERY
structure whose members are used as follows:

query
Set by MUX to END_BIND_QUERY.

NOTE: The endDevTbl[] can contain a mix of NPT drivers and ENDs.
205

VxWorks 5.5
Network Programmer’s Guide
queryLen
Set by MUX to the expected size of the data in queryData.

queryData
Set by your driver’s nptIoctl() to point to the drivers nptBind().

Receiving Frames in Interrupt Mode

When an interrupt is received, VxWorks invokes the interrupt service routine that
was registered by the nptStart() function. This interrupt service routine should do
the minimum amount of work necessary to transfer the frame from the local
hardware into accessible memory (ideally a cluster: see 10.1.3 The Datalink-to-MUX
Interface, p.182).

To minimize interrupt lockout time, the routine should handle at interrupt level
only those tasks that require minimum execution time, such as error checking or
device status change. The routine should queue all time-consuming work for
processing at task level.

To queue frame reception work for processing at the task level, use the
netJobAdd() function. This function takes a function pointer and up to five
additional arguments (representing parameters to the function referenced by the
function pointer). The netJobAdd() function prototype is: 9

STATUS netJobAdd
(
FUNCPTR routine,
int param1,
int param2,
int param3,
int param4,
int param5
)

The routine in this case should be the function in your driver that completes frame
processing at the task level. The netJobAdd() function puts the job request on
tNetTask’s work queue and gives the appropriate semaphore that awakens
tNetTask.

Upon awakening, tNetTask dequeues function calls and associated arguments
from its work queue. It then executes these functions in its context until the queue
is empty.

9. You cannot call netJobAdd() from outside of the kernel protection domain.
206

10
Integrating a New Network Interface Driver

10
Your task-level frame reception function should do whatever is necessary to
construct an mBlk chain containing the frame to hand off to the MUX, such as
assuring data coherency. This routine should also set M_MCAST and M_BCAST
flags in the mBlk header if appropriate. When all is ready, your driver passes the
frame up to the MUX by calling the function referenced as the receiveRtn member
of the END_OBJ structure representing your device.

10.3.2 NPT Driver Interface to the MUX

This subsection describes the driver entry points and the shared data structures
that comprise the NPT driver’s interface to the MUX.

Data Structures Used by the Driver

The core data structure for an NPT driver is the END object, or END_OBJ. The
structure is defined in target/h/end.h (see also B.3.3 END_OBJ, p.285). The driver’s
load function returns a pointer to an END_OBJ that it allocated and partially
populated. This structure supplies the MUX with information that describes the
driver as well as a pointer to a NET_FUNCS structure populated with references to
the NPT’s standard entry points.

Although the driver’s load function is responsible for populating much of the
END_OBJ structure, some of its members are set within the MUX when a protocol
binds to the device. Specifically, the MUX sets the END_OBJ’s receiveRtn member
so that it contains a reference to the bound protocol’s receive routine. The driver
calls this referenced function when it needs to send a packet up to the protocol. The
driver could access this function reference with a call to muxReceive() or
muxTkReceive().

NPT Driver Entry Points Exported to the MUX

Table 10-3 lists the standard driver entry points that the NET_FUNCS structure
exports to the MUX. In this manual, the functions use a generic “npt” prefix, but in
practice this prefix is usually replaced with a driver-specific identifier, such as
“ln7990” for the Lance Ethernet driver.

nptLoad()

Before you can use a network interface to send and receive frames, you must load
the appropriate device driver into the MUX and then configure that driver for the
207

VxWorks 5.5
Network Programmer’s Guide
interface. The user root task loads network device drivers into the MUX by calling
muxDevLoad() for all the drivers referenced in endDevTbl[]. The entries in this
table provide all the information needed to call muxDevLoad(). This includes the
actual name of your driver’s nptLoad() function.

As input, the nptLoad() function takes an initialization string. The contents this
string are user-defined but generally include such items as the unit number
identifying the physical interface10, an interrupt vector number, and the address of
memory mapped registers.

You must write your nptLoad() function as a two-pass algorithm. The MUX calls
it twice during the load procedure. In the first pass, it calls your nptLoad() function
using a blank (all zeros) initialization string. Your nptLoad() routine is expected to
check for the blank string and return with the name of the device copied into the
string.

Table 10-3 NPT Driver Functions

Function Description

nptLoad() Load a device into the MUX and associate a driver with the device.

nptUnload() Release a device, or a port on a device, from the MUX.

nptBind() Exchange data with the protocol layer at bind time. (Optional)

nptSend() Accept data from the MUX and send it on to the physical layer.

nptMCastAddrDel() Remove a multicast address from those registered for the device.

nptMCastAddrGet() Retrieve a list of multicast addresses registered for a device.

nptMCastAddrAdd() Add a multicast address to the list of those registered for the device.

nptPollSend() Send packets in polled mode rather than interrupt-driven mode.

nptPollReceive() Receive frames in polled mode rather than interrupt-driven mode.

nptStart() Connect device interrupts and activate the interface.

nptStop() Stop or deactivate a network device or interface.

nptIoctl() Support various ioctl commands.

10. Although a driver is only loaded once, the driver’s nptLoad() routine is called for each port
to be activated within the driver. This lets the MUX allocate an entry for each port. The MUX
interface does not impose restrictions on how drivers handle multiple ports as long as the
driver allocates a separate END_OBJ for each port.
208

10
Integrating a New Network Interface Driver

10
The MUX then calls your nptLoad() a second time using the actual initialization
string that was supplied to muxDevLoad(). Your nptLoad() routine must then
return a pointer to the END_OBJ that it allocates, or a NULL if the load fails.

Typically, the nptLoad() function, in its second pass, does the following:

� Initialize the device and interface.
� Allocate and fill the END_OBJ structure.
� Initialize any necessary private structures.
� Parse and process the initialization string.
� Create and initialize a private pool of memory using the API in netBufLib.
� Allocate one or more network buffer pools using netBufLib.
� Create and populate the MIB II interface table.
� Fill the NET_FUNCS table referenced by pNetFuncs in the END_OBJ structure.

The nptLoad() function is based on the following skeleton:

END_OBJ * nptLoad
(
char * initString, /* defined in endTbl */
void * pBsp /* BSP-specific information (optional) */
)

{
END_OBJ * newEndObj;

if(!initString) /* initString is NULL, error condition */
{
/* set errno perhaps */
return((void *) 0);
}
else if(initString[0] == 0) /* initString[0] is NULL, pass one */
{
strcpy(initString, "foo");
return((void *) 0);
}
else /* initString is not NULL, pass two */
{
/* initialize device */
newEndObj = (END_OBJ *) malloc(sizeof(END_OBJ));
/* fill newEndObj and newEndObj->pFuncTable */
/* create and populate a MIB2 interface table */
/* initialize any needed private structures */
/* parse and process initString, and pBsp if necessary */
/* create a private pool of memory using netBufLib API */
/* create network buffer pools using netBufLib API */
return(newEndObj);
}

}

209

VxWorks 5.5
Network Programmer’s Guide
nptUnload()

The MUX calls your driver’s nptUnload() when a system application calls
muxDevUnload(). In its nptUnload(), your driver is responsible for doing
whatever it takes to “release” the device. It should also free the memory allocated
for the END object.

The MUX calls your driver’s nptUnload() for each port that has been activated by
a call to the driver’s nptLoad(). If the device has loaded multiple ports, the driver’s
nptLoad() must not free up any shared resources until an unload request has been
received for each of the loaded ports.

The nptUnload() routine does not need to notify services about unloading the
device. Before calling nptUnload(), the MUX first sends a shutdown notice to each
service attached to the device.

The nptUnload() prototype is:

STATUS nptUnload
(
END_OBJ * pEND /* END object */
)

nptBind()

The nptBind() function is an optional driver function that gives your driver the
ability to respond to bind events. Using nptBind(), your driver can support the
exchange of information between a service and a driver whenever the service
binds to a device through that driver.

The MUX calls your driver’s nptBind() function (if any), in response to bind
events through that driver. To get an executable reference to a driver’s nptBind()
function, the MUX uses the driver’s nptIoctl() function.

The MUX calls nptBind() while processing a bind request from the network
service. Arguments passed to nptBind() include:

– a reference to information supplied by the network service
(although the network service may choose to supply no information at all)

– a reference to a template for network driver information
(if your driver cares to provide any)

– the network service type

The function is expected to return OK if the bind request is accepted. The driver
may also reject the bind request by returning ERROR, in which case the MUX will
deny the bind request to the network service.
210

10
Integrating a New Network Interface Driver

10
The nptBind() prototype is:

STATUS nptBind
(
END_OBJ * pEND, /* END object */
void * pNetSvcInfo, /* info provided by the network service */
void * pNetDrvInfo, /* template for network driver info */
long type /* of network service attempting to bind */
)

nptSend()

The network driver send routine is referenced from the NET_FUNCS table. The
MUX calls this function when the network service issues a send request. The send
routine is supplied a reference to an mBlk chain representing the packet to be sent.
This routine should prepend the link-level header to the packet (for information on
making this more efficient, see 10.1.7 Early Link-Level Header Allocation in an NPT
Driver, p.185).

The nptSend() prototype is:

STATUS nptSend
(
END_OBJ * pEND, /* END object */
M_BLK_ID pMblk, /* network packet to transmit */
char * dstAddr, /* destination MAC address */
int netSvcType, /* network service type */
void * pSpare /* optional network service data */
)

This function should return a status OK if the send was successful, i if the send
could not be completed because of a transient problem such as insufficient
resources, or ERROR (in which case, errno should be set appropriately).

nptMCastAddrAdd()

This routine registers a physical-layer multicast address with the device. As
arguments, it takes:

– a pointer to the END_OBJ structure returned by nptLoad()

– a string containing the physical address to be added
(or a reference to the address to be added)

This routine should reconfigure the interface in a hardware-specific way that lets
the driver receive frames from the specified address and pass those frames along.

NOTE: To help you manage a list of Ethernet multicast addresses, VxWorks
provides the etherMultiLib library.
211

VxWorks 5.5
Network Programmer’s Guide
The nptMCastAddrAdd() prototype is:

STATUS nptMCastAddrAdd
(
END_OBJ * pEND, /* driver's control structure */
char * pAddress /* physical address or a reference thereto */
)

This function should return a status OK or ERROR (in which case, errno should be
set appropriately).

nptMCastAddrDel()

This routine removes a previously registered multicast address from the list
maintained for a device. It takes as arguments a pointer to the END_OBJ structure
returned by nptLoad(), and a string containing the physical address to be removed
or a reference to that address.

The nptMCastAddrDel() prototype is:

STATUS nptMCastAddrDel
(
END_OBJ * pEND, /* END object */
char * pAddress /* physical address, or a reference thereto */
)

This function should return a status OK or ERROR (in which case, errno should be
set appropriately).

nptMCastAddrGet()

This routine retrieves a list of all multicast addresses that have been registered with
the device. It takes as arguments a pointer to the END_OBJ structure returned by
nptLoad(), and a pointer to a MULTI_TABLE structure into which the list will be
put.

NOTE: To help you manage a list of Ethernet multicast addresses, VxWorks
provides the etherMultiLib library.

NOTE: To help you manage a list of Ethernet multicast addresses, VxWorks
provides the etherMultiLib library.
212

10
Integrating a New Network Interface Driver

10
The nptMCastAddrGet() prototype is:

STATUS nptMCastAddrGet
(
END_OBJ * pEND, /* END object */
MULTI_TABLE * pMultiTable /* container for address list */
)

This function should return a status OK or ERROR (in which case, errno should be
set appropriately).

nptPollSend()

This routine provides a polled-mode equivalent to the driver’s interrupt-driven
send routine. Either it must transfer a frame directly to the underlying device, or it
must exit immediately if the device is busy or resources are unavailable.

Within your nptPollSend() routine, verify that the device has been set to
polled-mode (by a previous nptIoctl() call). Your nptPollSend() routine should
then put the outgoing packet directly onto the network, without queuing the
packet on any output queue.

This routine takes as arguments a pointer to the END_OBJ structure returned by
nptLoad() and a reference to an mBlk or mBlk chain containing the outgoing
frame.

The nptPollSend() prototype is:

STATUS nptPollSend
(
END_OBJ * pEND, /* END object */
M_BLK_ID pPkt, /* network packet to transmit */
char * dstAddr, /* destination MAC address */
long netType, /* network service type */
void * pSpareData /* optional network service data */
)

This function should return a status OK or ERROR (in which case, errno should be
set).

NOTE: When the system calls your nptPollSend() routine, it is probably in a mode
that cannot service kernel calls. Therefore, this routine must not perform any
kernel operations, such as taking a semaphore or allocating memory. Likewise, this
routine should not block or delay because the entire system might halt.
213

VxWorks 5.5
Network Programmer’s Guide
nptPollReceive()

This routine receives frames using polling instead of an interrupt-driven model.
The routine retrieves the frame directly from the network and copies it into the
mBlk passed to the routine. If no frame is available, it returns ERROR.

Within the nptPollReceive() routine, verify that the device has been set to
polled-mode (by a previous nptIoctl() call). The routine should then retrieve the
frame directly from the network and copy it into the mBlk passed in to the routine.

It takes as arguments a pointer to the END_OBJ structure returned by nptLoad()
and a reference to an mBlk or mBlk chain into which the incoming data should be
put, as well as information about the frame type and the offset within the packet
to the network frame.

The nptPollReceive() prototype is:

STATUS nptPollReceive
(
END_OBJ * pEND, /* END object */
M_BLK_ID pMblk, /* received frame */
long * pNetSvc, /* payload/network frame type */
long * pNetOffset, /* offset to network frame */
void * pSpareData /* optional network service data */
)

This function should return OK or an error value of EAGAIN if the received data is
too large to fit in the provided mBlk, or if no data is available.

nptStart()

The driver’s nptStart() function connects device interrupts and makes the
interface active and available. This function takes as its argument the END_OBJ
structure pointer returned from the nptLoad() call. As with nptLoad(), this call is
made for each port that is to be activated within the driver.

The nptStart() prototype is:

STATUS nptStart
(
END_OBJ * pEND, /* END object */
)

NOTE: When the system calls your nptPollReceive() routine, it is probably in a
mode that cannot service kernel calls. Therefore, this routine must not perform any
kernel operations, such as taking a semaphore or allocating memory. Likewise, this
routine must not block or delay because the entire system might halt.
214

10
Integrating a New Network Interface Driver

10
This function should return a status OK or ERROR (in which case, errno should be
set appropriately).

nptStop()

The driver’s nptStop() routine halts a network device, typically by disconnecting
the appropriate interrupt. It does not remove the device by releasing the allocated
data structures. It takes as its argument the END_OBJ structure pointer returned
from the nptLoad() call.

The nptStop() prototype is:

STATUS nptStop
(
END_OBJ * pEND, /* END object */
)

This function should return a status OK or ERROR (in which case, errno should be
set appropriately).

nptIoctl()

An NPT driver must support the ioctl command defined as EIOCGNPT. This
command is used to determine if the driver is of the NPT variety. All the driver
needs to do upon receiving this command is to return 0 (zero), indicating success.
For other drivers, this ioctl command is undefined and therefore returns EINVAL,
indicating that it is not an NPT driver.

An NPT driver must also support the EIOCGMIB2 command, which returns a
populated MIB2 interface table.

An NPT driver may also need to support other ioctl commands, particularly if it is
to be used with the existing IP network service sublayer. See Table 10-4 for a list of
commonly used ioctl commands.

The nptIoctl() function takes three arguments:

– the END_OBJ pointer returned from the nptLoad() call

– the ioctl command being issued

! WARNING: If you are porting a driver from the BSD 4.3 model, you might be
tempted to use the existing xxIoctl() routine as your nptIoctl() routine, skipping
the creation of separate routines for the multicast address table maintenance
functions. Do not do this! Your driver must implement the multicast address table
maintenance routines.
215

VxWorks 5.5
Network Programmer’s Guide
– a buffer for additional data given in the command or for data to be returned on
completion of the command (defined as a caddr_t structure).

Table 10-4 Ioctl Commands and Data Types

Command Function Data Type

EIOCSFLAGS Set device flags.
See flags in B.3.3 END_OBJ, p.285.

int

EIOCGFLAGS Get device flags. int

EIOCSADDR Set device address. char *

EIOCGADDR Get device address. char *

EIOCMULTIADD Add multicast address. char *

EIOCMULTIDEL Delete multicast address. char *

EIOCMULTIGET Get multicast list. MULTI_TABLE *

EIOCPOLLSTART Set device into polling mode. NULL

EIOCPOLLSTOP Set device into interrupt mode. NULL

EIOCGFBUF Get minimum first buffer for chaining. int

EIOCGNPT Indicate NPT-compliance. void

EIOCQUERY Retrieve the bind function. END_QUERY *

EIOCGHDRLEN Get the size of the datalink header. int

EIOCGMIB2 Retrieve RFC 1213 MIB-II table. M2_INTERFACETBL *

EIOCGMIB2233 Retrieve RFC 2233 MIB-II table M2_ID *

NOTE: Command constants (such as EIOGGFBUF) in the range of 0-128 are
reserved for use by Wind River. If you want to use your own custom ioctl
commands, you should define their command constants to be equivalent to
numbers outside of this range.
216

10
Integrating a New Network Interface Driver

10
The nptIoctl() prototype is:

int nptIoctl
(
END_OBJ * pEND, /* END object */
int command, /* ioctl command */
caddr_t buffer /* holds response from command */
)

This function returns 0 (zero) if successful, an appropriate error value otherwise,
or EINVAL if the command is not supported.

In the case where command is set to EIOCQUERY, the buffer will be set to point to an
END_QUERY structure. The query member of this structure will be set to the type
of query (for instance, END_BIND_QUERY), and the queryLen member will be set
to the size of the queryData buffer. Upon receipt of an EIOCQUERY command, you
should respond either by copying data into this queryData buffer, or by returning
an error value such as EINVAL from nptIoctl().

Your driver is not required to support EIOCQUERY commands, but you may find
this a useful way of communicating with the protocol layer.

10.4 Porting a BSD Driver to the MUX

To convert a BSD driver that communicates directly with the protocol layer into
one that communicates with the protocol layer through the MUX, you need to
make the following changes:

� remove unit number references
� create an END Object to represent the device
� implement the standard END or NPT entry points

When deciding whether to implement an END or NPT driver, choose the interface
style that is most convenient for the driver you are porting. If you are porting a
frame-oriented driver, the END is likely to be the more convenient driver style.

10.4.1 Remove Unit Number References

Under the MUX, each device is independent. Your BSD model may consider each
device to be part of an array of devices, each with a unit number. BSD driver
217

VxWorks 5.5
Network Programmer’s Guide
routines are sometimes written to take unit numbers as parameters, and to
distinguish between devices based on these unit numbers. In the MUX model, the
END Object is the distinguishing feature of devices, and MUX routines distinguish
between devices based on the END Object pointer that is passed in to the routines.

10.4.2 Create an END Object to Represent the Device

The head of your driver control object should be an END_OBJ structure that
includes all hardware- and driver-specific elements.

10.4.3 Implementing the Standard END or NPT Entry Points

The END and NPT models for network interface drivers contain standard entry
points that are not present in the BSD model. Table 10-5 shows some of the
analogies. You should be able to reuse much of the code from the BSD driver.

Table 10-5 Required Driver Entry Points and their Derivations

NPT or END Entry Points BSD 4.3 Style Entry Points

xLoad() xxattach()

xUnload() None—see endUnload(), p.195, or nptUnload(), p.210, and
templateEnd.c.

N/A xxReceive()

xSend() xxOutput()

xIoctl() xxIoctl()

xMCastAddrAdd() None—see endMCastAddrAdd(), p.196, or nptMCastAddrAdd(),
p.211, and templateEnd.c.

xMCastAddrDel() None—see endMCastAddrDel(), p.196, or nptMCastAddrDel(),
p.212, and templateEnd.c.

xMCastAddrGet() None—see endMCastAddrGet(), p.197, or nptMCastAddrGet(),
p.212, and templateEnd.c.

xPollSend() N/A—see endPollSend(), p.197, or nptPollSend(), p.213, and
templateEnd.c.

xPollReceive() N/A—see endPollReceive(), p.198, or nptPollReceive(), p.214.
218

10
Integrating a New Network Interface Driver

10
Rewrite xxattach() to Use an npt/endLoad() Interface

Rewrite the interface of your xxattach() to match the npt/endLoad() function
described in nptLoad(), p.207, or endLoad(), p.194.

Much of the code that handles the specifics of hardware initialization should be the
same. However, when allocating the memory for packet reception buffers that are
passed up to the service, you should use the MUX buffer management utilities. See
10.1.5 Managing Memory for Network Drivers and Services, p.184, A. Using netBufLib
as well as the reference entry for muxBufInit().

Remove any code your xxattach() included to support the implementation of the
etherInputHook() and etherOutputHook() routines. Etherhooks are no longer
supported. Similar functionality is now provided using BPF (see 3.2.1 BPF, the BSD
Packet Filter, p.20).

You may also need to add code that clears out the MIB2 variables in the END
Object’s mib2Tbl structure.

xStart() N/A—see endStart(), p.198, or nptStart(), p.214.

xStop() N/A—see endStop(), p.199, or nptStop(), p.215.

endAddressForm()* N/A—see also endAddressForm(), p.199.

endAddrGet()* N/A—see also endAddrGet(), p.200.

endPacketDataGet()* N/A—see also endPacketDataGet(), p.201.

* These functions are implemented for Ethernet in endLib. If porting the BSD driver
to run over Ethernet, you probably do not need to implement these functions.

! CAUTION: When porting a BSD network driver to the MUX, you must replace all
calls into the protocol with appropriate calls into the MUX. In addition, you must
remove all code that implements or uses etherInputHook() or
etherOutputHook() routines.

Table 10-5 Required Driver Entry Points and their Derivations (Continued)

NPT or END Entry Points BSD 4.3 Style Entry Points
219

VxWorks 5.5
Network Programmer’s Guide
The xxReceive() Routine Still Handles Task-Level Packets

Because the MUX does not directly call the driver’s packet reception code, there is
no npt/endReceive() entry point. However, your driver still needs to handle packet
reception at the task level. Unfortunately, most of the code in this driver routine
will require extensive revision. Instead of calling the service directly, this routine
uses a MUX-supplied function to pass a packet up to the service. Likewise, your
receive routine should use a MUX-managed memory pool as its receive buffer area.

Rewrite xxOutput() to Use an npt/endSend() Interface

Rewrite the interface of your output routine to match the npt/endSend() entry
point described in nptSend(), p.211 or endSend(), p.195.

Much of the code that dealt directly with putting the packet on the hardware
should need little if any revision. However, you should change your code to use
mBlk chains allocated out of an netBufLib-managed memory pool. See the
reference entry for netBufLib for details.

The xxIoctl() Routine is the Basis of npt/endIoctl()

Rewrite the interface of your xxIoctl() to match the npt/endIoctl() function
described in nptIoctl(), p.215 or endIoctl(), p.201. If your driver used xxIoctl() to
implement multicasting, you must break that functionality out into the separate
npt/endMCastAddrAdd(), npt/endMCastAddrDel(), and
npt/endMCastAddrGet() entry points.

Implement All Remaining Required END or NPT Entry Points

Table 10-5 lists a handful of driver points unique to ENDs and NPT drivers. Both
an END and an NPT require you to implement the xSend(), xStart(), and xStop()
entry points. There are no BSD equivalents for these entry points. In addition, if
you are implementing an END, you must implement entry points for
endAddressForm(), endAddrGet(), and endPacketDataGet(). However, these
functions are already implemented for Ethernet in endLib. If your driver will run
over Ethernet, you may use the functions supplied in endLib.
220

10
Integrating a New Network Interface Driver

10
10.5 Supporting Multiple Network Interface Drivers

The VxWorks network stack allows you to use multiple network interface cards
simultaneously. You can use multiple cards of the same variety, or different types
of cards, with a combination of END and NPT drivers.11

10.5.1 Configuring VxWorks for Multiple Drivers

To configure VxWorks to support multiple drivers, make sure that the drivers are
compiled into your VxWorks image. Follow the directions in Adding an NPT Driver
to VxWorks, p.204 (for an NPT driver) or Adding an END to VxWorks, p.189 (for an
END). You may also need to increase the value of the configuration parameters
IP_MAX_UNITS and MUX_MAX_BINDS.

10.5.2 Starting Additional Drivers at Run-Time

To start additional network drivers at run-time:

1. Use muxAddrResFuncAdd() to install an address resolution function if
necessary. If your driver does not register itself as an Ethernet driver, and if the
link layer requires hardware address resolution, you need to install an address
resolution function. See B.2.1 muxAddrResFuncAdd(), p.270.

2. Use muxBind() or muxTkBind() to bind the driver to the service. In the case
of IP, the binding is done in the ipAttach() routine.

3. Configure the interface. In the case of IP, this is done with calls to ifMaskSet()
and ifAddrSet().

10.6 Avoiding Memory Leaks

Your driver implementation may allocate a semaphore during its initialization
phase and store a reference to it in the END object’s txSem member. For example,
endObjInit(), which is commonly used to initialize ENDs, does this.12

11. Some BSPs and drivers may have their own limitations on the number of interfaces and
units they support.
221

VxWorks 5.5
Network Programmer’s Guide
If this semaphore is not deleted when the driver is unloaded, a memory leak will
result equal to the size of the semaphore data structure plus any memory allocation
overhead.

This may not be an issue for your application, since the amount of memory that
leaks is small, but if drivers are loaded and unloaded frequently, this could add up
and become a problem.

12. Please note that endObjInit() is an actual function defined in endLib.c. It is not an END
entry point, which would have been indicated as endObjInit().
222

11

Integrating a New Network

Service
11.1 Introduction

A network service, such as a network protocol, is an implementation of the
network and transport layers of the OSI network model. As shown in Figure 10-1,
network services communicate with the data link layer through the MUX interface.
Everything specific to the network interface is handled in the drivers of the data
link layer, which are described in 10. Integrating a New Network Interface Driver.

11.2 Writing a Network Service Sublayer

A network service sublayer allows a network service to send and receive packets
through the MUX. It may be written as part of a network service, or as a separate
element that the service uses. The minimum requirements of a network service
sublayer are an initialization routine and routines that support packet transfer and
error reporting. Support for flow control is optional.

11.2.1 Interface Initialization

When the system constructs the network stack, it activates network interfaces that
include a network service and a network driver. The activation routine that you
provide in your network service sublayer, by convention, is named fooAttach(),
where foo is replaced by an abbreviation for the network service. This naming
223

VxWorks 5.5
Network Programmer’s Guide
convention is a generalization based on the name of ipAttach(). Your fooAttach()
function typically allocates and initializes data structures that represent the
interface being attached to, determines the network driver paradigm (END or
NPT), and binds to the driver interface through the MUX.

Determining the Driver Paradigm

To determine a driver’s operating paradigm, use the muxTkDrvCheck() function
(see B.2.17 muxTkDrvCheck(), p.280). If your network service supports only NPT
devices, its fooAttach() routine should return an error if muxTkDrvCheck()
returns FALSE.

The Bind Phase

The network service must bind to a driver before it can send and receive packets
through it. Binding to a network driver is accomplished by calling the
muxTkBind() function (see B.2.16 muxTkBind(), p.278).1

The protocol type supplied to the bind function is used by the MUX to prioritize
the services, and determines which service sees which packets. A
MUX_PROTO_SNARF type service sees all the packets that are processed by any
driver to which it is bound. A MUX_PROTO_PROMISC type service sees a packet
only after all other services bound to a driver have had a chance to consume it. A
MUX_PROTO_OUTPUT type service sees outgoing rather than incoming packets.
Any other type value configures the service to see only packets of the specified
type.

After the bind operation has complete successfully, the sublayer should determine
which (if any) registered service address mapping functions are relevant to the
network interface. The sublayer should obtain references to those that apply and
retain these references for later use within the interface.

Network Address Resolution Function

The address resolution function translates a network service address to a network
driver (physical layer) address. To find the address resolution function that applies
to a specific network service/network driver pair, use the muxAddrResFuncGet()
function (see B.2.3 muxAddrResFuncGet(), p.272).

Typically, the network service performs address resolution when it sends a packet
to the network driver. The sublayer uses the address resolution function obtained

1. The muxBind() function may also be used, but only with ENDs. The muxBind() function
also requires you to implement a slightly different set of network service sublayer functions
than those that are used with muxTkBind().
224

11

11
Integrating a New Network Service
in this step to resolve the address. If an address resolution function does not exist
for this combination of service and driver, the network service is not expected to
initiate the address resolution. This allows flexibility for those services that prefer
to have the address resolution performed by the network driver.

If the address resolution mechanism qualifies as an address resolution protocol
(for instance, ARP) or network service in itself, it should bind to the MUX as a
distinct service. Typically, it would bind itself to the same interface to which the
corresponding network service is bound. The address resolution mechanism could
even share the same callback functions of the network service if it knows how to
distinguish between the two services.

The network address resolution function also supports multicast mapping, and
maps a network service multicast address to a network driver (physical layer)
multicast address.

11.2.2 Data Structures and Resources

The network service sublayer may allocate buffer pools in the form of mBlk
clusters for receiving and sending packets. The network buffer management
library netBufLib facilitates the implementation of an effective scheme for this
purpose. The sublayer may also make use of the system mBlk pools. See
10.1.5 Managing Memory for Network Drivers and Services, p.184, and A. Using
netBufLib for more information on network buffer management.

Other resources commonly used by network services include receive/transmit
queues and data structures that represent each active network interface controlled
by the sublayer. Data that should be collected and maintained for each interface
includes:

� the network driver’s paradigm
� the state of the interface (for instance: attached, stopped, flow-controlled)
� the cookie supplied by the MUX, this cookie identifies the binding instance
� references to the service address mapping functions for the interface

11.2.3 Sublayer Routines

The subsections provides an overview of how a network service sublayer handles:

� sending packets
� receiving packets
� shutting down an interface
225

VxWorks 5.5
Network Programmer’s Guide
� reporting errors
� flow control
� device control

Sending Packets

Network layer packets are sent down through the MUX by using the
muxTkSend() routine (see B.2.21 muxTkSend(), p.282). Data to be sent arrives
from an upper layer in the form of an mBlk chain, and is modified by your
network service before being sent.

The muxTkSend() routine may return an error indicating that the driver is out of
resources and cannot transmit the packet. A network service can use this error to
establish a flow control mechanism (see Flow Control, p.228).

Sending Packets through an END

Sending packets through an END requires that the mBlk chain being sent contains
fully formed physical layer frames. If necessary, a protocol must use the address
resolution function registered for the interface to determine the destination
address, and then use the muxAddressForm() routine to add the necessary frame
header to the packet.

Sending Packets through an NPT driver

When sending packets through an NPT driver, if the interface over which packets
are being sent has a registered address resolution function, it should be called at
send-time and the resolved address should be passed into muxTkSend().

Receiving Packets

The MUX forwards incoming packets to the appropriate network service by
invoking the stackRcvRtn() callback that was installed by the sublayer during the
bind phase (see stackRcvRtn(), p.229).

If a service binds to a network interface using muxTkBind(), it typically receives
packets (not frames) from the MUX. This is true whether the network interface is
managed using an END or an NPT driver. If a service needs to receive both packets
as well as the physical layer header, it can use the optional “piggy-back” facility
provided for in the stackRcvRtn() argument list. The only absolute exception to
this behavior occurs when the service binds to the MUX as a SNARF protocol. Such
a service always receives frames not packets. If the service binds as a PROMISC
226

11

11
Integrating a New Network Service
protocol, it typically sees frames. However, it can see a packet if some other service
that registered for packets does not consume its packet. If a service binds to an
END using muxBind(), the service always receives frames not packets.

If your stackRcvRtn() returns TRUE (except if your service is of type
MUX_PROTO_PROMISC), the packet is consumed and will not be available to
lower priority services listening to the same driver. If, on the other hand, your
routine returns FALSE (or is of type MUX_PROTO_PROMISC), the packet will
remain available to other services.

If your service has been registered as of type MUX_PROTO_OUTPUT, its
stackRcvRtn() callback routine will be called for all packets going out over the
driver to which your service is bound. If the stackRcvRtn() of such an output
protocol returns TRUE, the packet is consumed by the protocol and will not go out
over the driver. If it returns FALSE, the outgoing packet will continue on to the
driver. Only one service at a time may bind with type MUX_PROTO_OUTPUT to
any given driver.

Shutting Down an Interface

The MUX initiates a shutdown in response to a muxDevUnload() call from the
system. Before unloading the network driver, the MUX issues a shutdown message
to every network service bound to that driver by calling the stackShutdownRtn()
callbacks that were registered for those driver/service interfaces at bind time (see
stackShutdownRtn(), p.229).

Within this shutdown routine, the network service must take the necessary steps
to close the interface, including a call to muxUnbind() to unbind the network
service from the device (see B.2.23 muxUnbind(), p.283).

Error Reporting

Your network service may want to be notified of errors encountered in lower layers
of the stack. Error conditions encountered by a network driver are passed up to the
MUX. The MUX forwards each error to your network service sublayer if a
stackErrorRtn() callback is registered at bind time (see stackErrorRtn(), p.230).
227

VxWorks 5.5
Network Programmer’s Guide
Flow Control

The muxTkSend() routine may return an error, END_ERR_BLOCK, indicating that
the network driver has insufficient resources to transmit data2. The network
service sublayer can use this feedback to establish a flow control mechanism by
holding off on making any further calls to muxTkSend() until the device is ready
to restart transmission. At that time, the MUX calls the stackRestartRtn() that you
registered for the interface at bind time (see stackRestartRtn(), p.230).

Device Control

A driver may be written to respond to specific ioctl commands. These commands
can be issued from your network service by calling muxIoctl() (see
B.2.12 muxIoctl(), p.276).

11.3 Interfacing with the MUX

When a network service registers with the MUX, it must provide references to
functions that the MUX can call to handle the following:

� shutting down the network service
� passing a packet into the service
� passing a error message into the service
� restarting the service after a pause

The prototypes of the functions you specify to handle these functions differ
depending on whether you use muxTkBind() or muxBind() to bind the service to
a network interface in the MUX. If you are implementing a new network service,
you should use the muxTkBind() interface. This chapter includes the older
muxBind() interface solely to assist people maintaining network services that
were designed to work with ENDs before the development of the NPT.

2. Some less-carefully written drivers may simply return ERROR in this case, and it would not
be possible for your service to determine whether this was due to a temporary problem such
as insufficient resources or a more serious problem.
228

11

11
Integrating a New Network Service
11.3.1 Service Functions Registered Using muxTkBind()

This section describes the four service functions referenced in a muxTkBind() call.

stackShutdownRtn()

This routine is typically called by the MUX when it has received a call to
muxDevUnload() for a specific network device. Before unloading the driver,
every network service bound to that device is issued a shutdown message by
calling the stackShutdownRtn() function registered for that service.

Within this routine, the network service must call muxUnbind() to release itself
from the device, and it should bring itself to an orderly halt.

The stackShutdownRtn() prototype is:

STATUS stackShutdownRtn
(
void * netCallbackId /* the handle/ID installed at bind time */
)

stackRcvRtn()

The MUX forwards packets received by the driver to the protocol layer by using
the stackRcvRtn() callback that was installed with muxTkBind(). This routine
receives:

� a pointer to a mBlk chain containing the incoming packet

� the callback ID specific to the binding instance of the service/driver pair

� a network service type

� a pointer to additional data, the format of which, and the need for which,
depends on the requirements of the driver.

The stackRcvRtn() prototype is:

BOOL stackRcvRtn
(
void * netCallbackId, /* the handle/ID installed at bind time */
long type, /* network service type */
M_BLK_ID pNetBuf, /* network service datagram */
void * pSpareData /* pointer to optional data from driver */
)

If a network protocol accepts the frame by returning TRUE, it must free the given
mBlk chain when processing is complete.
229

VxWorks 5.5
Network Programmer’s Guide
stackErrorRtn()

Error conditions encountered by an driver are passed to the network service when
the MUX calls stackErrorRtn(). It is up to the network service to take the necessary
action upon receiving the error.

This function takes two arguments: the callback identifier supplied to the service
at bind-time, and a pointer to an END_ERR structure that describes the error (see
B.3.2 END_ERR, p.285).

The stackErrorRtn() prototype is:

void stackErrorRtn
(
void * netCallbackId, /* the handle/ID installed at bind time */
END_ERR * pError /* pointer to structure containing error */
)

stackRestartRtn()

This routine is called by the MUX to restart network services that had previously
stopped, perhaps because muxTkSend() had returned an error indicating that the
network service should wait before transmitting more packets.

When the device has determined that it has enough resources to resume
transmission, it will indicate this to the MUX, which will then call
stackRestartRtn().

This function takes a single argument: the identifier specific to the service/driver
pair that was supplied at bind-time.

The stackRestartRtn() prototype is:

STATUS stackRestartRtn
(
void * netCallbackId /* the handle/ID installed at bind time */
)

11.3.2 Service Functions Registered Using muxBind()

These function prototypes are included in this chapter to help people maintaining
network services that were designed to work with muxBind(), which predated the
NPT. If you are designing a new network service, implement the routines
associated with muxTkBind().
230

11

11
Integrating a New Network Service
stackENDShutdownRtn()

This routine is typically called by the MUX when it has received a call to
muxDevUnload() for the specified network interface. Before unloading the END,
every network service bound to that END’s device is issued a shutdown message
by calling the stackENDShutdownRtn() function registered for the interface at
bind time.

Within this routine, the network service must call muxUnbind() to release itself
from the device, and it should bring itself to an orderly halt.

The stackENDShutdownRtn() prototype is:

STATUS stackENDShutdownRtn
(
void * pEND, /* END_OBJ from the driver’s load routine */
void * pSpare /* defined on a per-service basis */
)

stackENDRcvRtn()

The MUX forwards packets received by the END to the protocol layer by using the
stackENDRcvRtn() callback that is installed with muxBind(). The pNetBuff
contains the entire driver-level frame, and pLinkHdr contains information about
offsets to the network payload in the frame.

The stackENDRcvRtn() prototype is:

BOOL stackENDRcvRtn
(
void * pCookie, /* returned by muxBind() */
long type, /* from RFC1700, or user-defined */
M_BLK_ID pNetBuff, /* packet with link-level info */
LL_HDR_INFO * pLinkHdr, /* link-level header info structure */
void * pCallbackId /* registered by the network svc with MUX */
)

If a network protocol accepts the frame by returning TRUE, it must free the given
mBlk chain when processing is complete.

stackENDErrorRtn()

Error conditions encountered by an END are passed to the network service when
the MUX calls stackENDErrorRtn(). It is up to the network service to take the
necessary action upon receiving the error.

This function takes three arguments: the callback identifier supplied to the service
at bind-time, a pointer to an END_ERR structure, and the spare data, if any, defined
for the service during the bind phase.
231

VxWorks 5.5
Network Programmer’s Guide
The stackENDErrorRtn() prototype is:

void stackENDErrorRtn
(
void * pEND, /* END_OBJ passed to the MUX by the driver */
END_ERR * pError, /* holds error information */
void * pSpare /* defined on a per-service basis */
)

stackENDRestartRtn()

This routine is called by the MUX to restart network services that had previously
stopped, perhaps because muxTkSend() had returned an error indicating that the
network service should wait before transmitting more packets.

When the device has determined that it has enough resources to resume
transmission, it will indicate this to the MUX, which will then call
stackENDRestartRtn().

This function takes a single argument: the identifier specific to the service/driver
pair that was supplied at bind-time.

The stackENDRestartRtn() prototype is:

STATUS stackENDRestartRtn
(
void * pEND, /* END_OBJ passed to the MUX by the driver */
void * pSpare, /* defined on a per-service basis */
)

11.4 Adding a Socket Interface to Your Service

One way to give applications easy access to your network service is to add socket
support to the service. In order to make it easier for you to write a network service
that includes sockets support, the VxWorks stack includes a standard socket
interface.

With the standard socket interface, you can add new socket back ends to access the
network stack through your protocol layer implementation. This allows
developers who are already familiar with the standard socket API to more easily
use your service.

The standard socket interface is designed so that you can use socket back ends
simultaneously for multiple protocol layer implementations. A layered
232

11

11
Integrating a New Network Service
architecture makes this possible. The Wind River standard socket interface is a
layer above your back end socket layer, as shown in Figure 11-1.

This chapter introduces the process of implementing a socket back end.

Process Overview

Socket calls made by an application are directed to the correct underlying socket
back end based on the domain parameter that is passed to the socket() call when
the application creates the socket. If this parameter matches the domainMap
parameter that you use when you add your new socket back end with the
sockLibAdd() routine, the socket calls are directed to your back end.

When you register your socket back end, you give the system a table that is filled
with references to socket functions that you have created to support your

Figure 11-1 The Standard Socket Interface

Your Socket Back End

Wind River Standard Socket Interface

Application

MUX

An application makes
standard socket calls.

You must register
your socket back end.

The interface
knows which
back end to use.

TCP

IP

ApplicationApplication

UDP ...
Your Network Service

Wind River BSD
Socket Back End
233

VxWorks 5.5
Network Programmer’s Guide
implementation (see The Socket Functional Interface, p.234). The system is then able
to support standard socket calls that are made using your back end.

11.4.1 Implementing a Socket Back End

To provide a socket back end requires that you implement socket functionality for
your service and that you make the system aware of this new sockets
implementation. The following sections show how this is done.

The Socket Functional Interface

The socket functional interface is the set of implementations of standard socket
functions that are supported by a particular socket back end. There are two steps
involved in creating a socket functional interface, both of which must be completed
before the network is initialized.

The first step in creating a socket functional interface is to create a unique constant
identifying the back end (for example, the BSD-specific INET back end is identified
by the constant AF_INET_BSD). Add this constant to the list found in
/target/h/sys/socket.h.

Then, create an initialization function that returns a reference to a SOCK_FUNC
table filled with references to all of the functions that your socket back end will
support, and call sockLibAdd() to have this function invoked by the system. (For
details about this initialization function, see usrSockLibInit(), p.237).

Populating the SOCK_FUNC Table

The SOCK_FUNC table is a structure containing references to 19 implementations
of functions common to sockets — functions such as bind(), recvfrom(), and
setsockopt() (see 11.4.3 Implementing Socket Functions, p.236). A new network
service that wants to be socket-accessible should implement service-specific
versions of as many of these functions as it intends to support. To support the
registration of these functions, the service should set up its usrSockLibInit()
routine to return a SOCK_FUNC table that is populated with references to these
functions.

NOTE: You are not required to support all of the possible socket functions. A call
made by a user application to a non-supported function in your socket back end
(indicated by a NULL pointer in the SOCK_FUNC table) results in an error returned
to the calling application, with errno set to ENOTSUP.
234

11

11
Integrating a New Network Service
Adding the Socket Library

Use the sockLibAdd() function to add new socket functionality to the system’s list
of socket implementations. As input, this function expects a reference to the
usrSockLibInit() function and the domain and service for which this socket
implementation is to be registered.

The sockLibAdd() Function

The sockLibAdd() function is used to make available a specific implementation of
sockets for a particular domain. This function takes three parameters:

sockLibInitRtn
The parameter refers to a socket library initialization function that is invoked
when sockLibAdd() is called (for details about this function, see
usrSockLibInit(), p.237). This function, among other things, passes the table of
socket function implementations to the system.

domainMap
This parameter should be set to a protocol family identifier uniquely defining
the sockets implementation (such as AF_INET_BSD).

domainReal
This parameter passes in a constant uniquely defining the address domain
(such as AF_INET) for which the implementation is being added.

The following is an example of how sockLibAdd() might be called to add the BSD
sockets back end:

sockLibAdd ((FUNCPTR) bsdSockLibInit, AF_INET_BSD, AF_INET);

The sockLibAdd() function is defined as follows:

STATUS sockLibAdd
(
FUNCPTR sockLibInitRtn, /* back end's initialization routine */
int domainMap, /* AF_FOO_BAR, identifying # of back end */
int domainReal, /* AF_FOO, identifying # of domain */
)

The function returns OK, or ERROR if the socket back end could not be added.
235

VxWorks 5.5
Network Programmer’s Guide
11.4.2 Enabling Zbuf Support Within a Socket Back End

Zbufs (zero-copy buffers) are an enhancement that reduces the overhead involved
in copying data between buffers as it passes through the layers of a network stack.
A socket back end does not have to support zbufs, but may achieve significant
performance gains by doing so.

The Wind River implementation of zbufs relies on the flags parameter in the socket
send and receive routines. One of the flags that may be set in this parameter is
MSG_MBUF. If this flag is set, this indicates that the data is in zbuf format — in
other words, the buffer is not a true buffer, but a pointer to an mbuf chain.

Your socket back end must implement the function usrSockZbufRtn() which
indicates whether the back end supports zbufs.

If your socket back end has been written to support zbufs, it should check for the
MSG_MBUF flag, and if it is present, it should treat the buffers as mbuf chains. See
the zbuf section of 7. Sockets under VxWorks for a more complete description of
zero-copy buffers.

If your socket back end has not been written to support zbufs, then applications
that try to use zbufs with your socket back end will fail with errno set to ENOTSUP.
However, these applications will be able to use the sockets interface without zbufs.

11.4.3 Implementing Socket Functions

This subsection provides implementation recommendations of the functions
referenced in a SOCK_FUNC table followed by implementation recommendations
to the functions referenced in a iosDrvInstall() call.

Implementation Recommendations for the Elements of a SOCK_FUNC Table

This subsection provides implementation details for the functions you must
supply in a SOCK_FUNC structure:

typedef struct sockFunc /* SOCK_FUNC */
{

FUNCPTR libInitRtn; /* sockLibInit() */
FUNCPTR acceptRtn; /* accept() */
FUNCPTR bindRtn; /* bind() */

! WARNING: Zbuf sockets can only operate within a single protection domain. You
may not pass data from one protection domain to another using zbuf sockets.
236

11

11
Integrating a New Network Service
FUNCPTR connectRtn; /* connect() */
FUNCPTR connectWithTimeoutRtn; /* connectWithTimeout() */
FUNCPTR getpeernameRtn; /* getpeername() */
FUNCPTR getsocknameRtn; /* getsockname() */
FUNCPTR listenRtn; /* listen() */
FUNCPTR recvRtn; /* recv() */
FUNCPTR recvfromRtn; /* recvfrom() */
FUNCPTR recvmsgRtn; /* recvmsg() */
FUNCPTR sendRtn; /* send() */
FUNCPTR sendtoRtn; /* sendto() */
FUNCPTR sendmsgRtn; /* sendmsg() */
FUNCPTR shutdownRtn; /* shutdown() */
FUNCPTR socketRtn; /* socket() */
FUNCPTR getsockoptRtn; /* getsockopt() */
FUNCPTR setsockoptRtn; /* setsockopt() */
FUNCPTR zbufRtn; /* ZBUF support */
} SOCK_FUNC;

usrSockLibInit()

The usrSockLibInit() function should install the socket back end as a driver
within the VxWorks I/O system by calling iosDrvInstall(), and then should return
a pointer to a SOCK_FUNC structure.

The iosDrvInstall() routine takes pointers to seven I/O functions, four of which
must be supported by a socket back end: usrSockClose(), usrSockRead(),
usrSockWrite() and usrSockIoctl()3. This routine returns a driver number, which
should be stored by the socket back end.

Your usrSockLibInit() routine, which should be declared public, is based on the
following skeleton:

SOCK_FUNC * usrSockLibInit (void)
{

/* install driver for socket */
int driverNum = iosDrvInstall((FUNCPTR) NULL, (FUNCPTR) NULL,

(FUNCPTR) NULL, (FUNCPTR) usrSockClose,
(FUNCPTR) usrSockRead, (FUNCPTR) usrSockWrite),
(FUNCPTR) usrSockIoctl));

if(driverNum == ERROR) return((SOCK_FUNC *) NULL);
/* Store driverNum somewhere convnient for future reference */
/* Initialize SOCK_FUNC table */
SOCK_FUNC * usrSockFuncs = (SOCK_FUNC *) malloc(sizeof(SOCK_FUNC));
if(!usrSockFuncs)
{

errno = ENOMEM;
return((SOCK_FUNC *) NULL);

}
usrSockFuncs->libInitRtn = (FUNCPTR) usrSockLibInit;

3. The others may be skipped as NULL pointers. For more information on these essential func-
tions, see Socket Functions Passed to iosDrvInstall(), p.246.
237

VxWorks 5.5
Network Programmer’s Guide
usrSockFuncs->acceptRtn = (FUNCPTR) usrSockAccept;
/* and so forth... */
usrSockFuncs->setsockoptRtn = (FUNCPTR) usrSockSetSockOpt;
usrSockFuncs->zbufRtn = (FUNCPTR) usrSockZbufRtn;
return (usrSockFuncs);

}

usrSocket()

When a socket() call is issued, the standard socket interface searches for a back
end that corresponds to the domain parameter passed to the socket() routine. This
domain parameter may be the actual domain name, domainReal. Alternatively, it
could be a domain name that maps to the actual domain, domainMap. A back end
is registered (using sockLibAdd()) both with its actual domain name (domainReal)
and with domainMap.

If a back end is found for the domain, the usrSocket() function from the
SOCK_FUNC structure that was registered for that domain is called. This function
is called with the real socket domain (domainReal) passed as the domain parameter,
regardless of whether the domainReal or domainMap parameters was passed to the
original socket() call. The type and protocol entries are passed unchanged.

The usrSocket() routine should create a socket structure and then generate a new
file descriptor representing the socket by calling iosFdNew() with the address of
the new socket structure. Other back end functions will receive this file descriptor
as a reference, and will use it to retrieve the associated socket structure by calling
iosFdValue() with the file descriptor as an argument.

The usrSocket() routine is of the form:

int usrSocket
(
int domain, /* socket domain or address family number */
int type, /* used to further define socket's nature */
int protocol /* the protocol variety of the socket */
)

The domain argument refers to the socket domain or address family the socket
belongs to (a particular back end may potentially be invoked for more than one
domain). The type argument can be used to further define the nature of the socket
(examples of types in the AF_INET domain include SOCK_STREAM, SOCK_RAW
and SOCK_DGRAM). The protocol argument refers to the protocol variety of the
socket (in the AF_INET_BSD back end, an example of a protocol variety is
IPPROTO_TCP).

The usrSocket() function returns the file descriptor that was generated for the
socket, or ERROR if it was unable to open a socket.
238

11

11
Integrating a New Network Service
usrSockAccept()

This routine accepts a connection on a socket and returns a file descriptor
representing the new socket created for the connection. Typically for this function
to succeed, the socket represented by fd must have been previously bound to an
address with usrSockBind() and enabled for connections by a call to
usrSockListen(). When usrSockAccept() is called, addr should be an available
buffer, and addrlen should indicate the size of the buffer.

The usrSockAccept() function will block the caller until a connection is present,
unless the socket has been explicitly marked as non-blocking.

The usrSockAccept() routine is of the form:

int usrSockAccept
(
int fd, /* file descriptor for socket */
struct sockaddr * addr, /* network address */
int * addrlen /* length of address structure */
)

This function returns a file descriptor representing a new socket with the same
properties as the one represented by fd (or ERROR if the accept fails). In addition,
on a successful return, addr should be filled with the address of the machine
making the connection, and addrlen should be set to the length of that address.

usrSockBind()

This routine associates a network address (referred to by name) with a specified
socket so that other processes can connect or send to it.

The usrSockBind() routine is of the form:

STATUS usrSockBind
(
int fd, /* file descriptor representing socket */
struct sockaddr * name, /* network address */
int namelen /* length of network address */
)

This function returns OK, or ERROR if the bind fails.

usrSockConnect()

This routine initiates a connection between a socket, fd, and another socket which
is specified by name.
239

VxWorks 5.5
Network Programmer’s Guide
The usrSockConnect() routine is of the form:

STATUS usrSockConnect
(
int fd, /* file descriptor representing socket */
struct sockaddr * name, /* network address */
int namelen /* length of network address */
)

This function returns OK, or ERROR if the connection fails.

usrSockConnectWithTimeout()

This routine attempts to initiate a connection between a socket, fd, and another
socket specified by name, for a duration specified by timeout, reporting an error if
it cannot do so in the time required. If timeout is NULL, this function should act
exactly like usrSockConnect().

The usrSockConnectWithTimeout() routine is of the form:

STATUS usrSockConnectWithTimeout
(
int fd, /* file descriptor representing socket */
struct sockadr * name, /* network address */
int namelen, /* length of address */
struct timeval * timeout /* maximum duration of connect attempt */
)

This function returns OK, or ERROR if it cannot make the connection in the
specified time.

usrSockGetpeername()

This routine gets the name of the peer connected to the socket fd, placing this name
in the sockaddr structure of length namelen that was passed in.

The usrSockGetpeername() routine is of the form:

STATUS usrSockGetpeername
(
int fd, /* file descriptor representing socket */
struct sockaddr * name, /* structure to hold peer name */
int * namelen /* length of returned peer name */
)

This function should place the name of the peer in name and set namelen to the size
of this name in bytes, then return OK, or ERROR if a name could not be retrieved
for the specified socket.
240

11

11
Integrating a New Network Service
usrSockGetsockname()

This routine gets the current name for the socket fd, placing this name in the
available sockaddr structure of size namelen that was passed in.

The usrSockGetsockname() routine is of the form:

STATUS usrSockGetsockname
(
int fd, /* file descriptor representing socket */
struct sockaddr * name, /* structure to hold socket name */
int * namelen /* length of returned socket name */
)

This function places the name of the socket in name and set namelen to the size of
this name in bytes, then returns OK, or ERROR if a name could not be retrieved for
the specified socket.

usrSockListen()

This routine enables connections to a socket. The backlog parameter specifies the
maximum number of unaccepted connections that can be pending at any given
time. After enabling connections with usrSockListen(), connections are actually
accepted by usrSockAccept().

The usrSockListen() routine is of the form:

STATUS usrSockListen
(
int fd, /* file descriptor representing the socket */
int backlog /* max number of unaccepted pending connections */
)

This function returns OK, or ERROR if the listen request fails.

usrSockRecv()

This routine receives data from a connection-based (stream) socket. How the flags
parameter should be set depends on the nature of the sockets involved and the
requirements of the connection. This will differ for different socket and service
implementations.

The usrSockRecv() routine is of the form:

int usrSockRecv
(
int fd, /* file descriptor represents the socket */
char * buf, /* buffer holding the received data */
241

VxWorks 5.5
Network Programmer’s Guide
int bufLen, /* length of the buffer */
int flags, /* flags describe the nature of the data */
)

This function returns the number of bytes received, or ERROR if the receive fails.

usrSockRecvFrom()

This routine receives data from a datagram socket, regardless of whether it is
connected. When this function is called, from will either be NULL or will be an
available buffer of size pFromLen designed to hold the address from which the data
is coming. How the flags parameter should be set depends on the nature of the
sockets involved and the requirements of the connection. This will differ for
different socket and service implementations.

The usrSockRecvFrom() routine is of the form:

int usrSockRecvFrom
(
int fd, /* file descriptor represents the socket */
char * buf, /* buffer holding the received data */
int bufLen, /* length of the buffer */
int flags, /* flags describe the nature of the data */
struct sockaddr * from, /* address of the sending agent */
int * pFromLen /* length of the from structure */
)

If from is not NULL, the address of the sending socket is copied into it, and
pFromLen is set to the length of this address. This function returns the number of
bytes received, or ERROR if the receive fails.

NOTE: If the MSG_MBUF flag is set in the flags parameter, this means that a
zero-copy buffer (zbuf) is being received. In this case, the buf parameter is a pointer
to a NULL mbuf pointer and not the char * specified in the parameter list. In other
words, *buf == (struct mbuf *) NULL. The usrSockRecv() routine should set buf to
point to the mbuf chain holding the incoming data.

NOTE: If the MSG_MBUF flag is set in the flags parameter, this means that a
zero-copy buffer (zbuf) is being received. In this case, the buf parameter is a pointer
to a NULL mbuf pointer and not the char * specified in the parameter list. In other
words, *buf == (struct mbuf *) NULL. The usrSockRecvFrom() routine should set buf
to point to the mbuf chain holding the incoming data.
242

11

11
Integrating a New Network Service
usrSockRecvMsg()

This routine receives a message from a datagram socket. It may be used in place of
usrSockRecvFrom() to decrease the overhead of breaking down the
message-header structure in each message. How the flags parameter should be set
depends on the nature of the sockets involved and the requirements of the
connection. This will differ for different socket and service implementations.

The usrSockRecvMsg() routine is of the form:

int usrSockRecvMsg
(
int fd, /* file descriptor for the socket */
struct msghdr * pMsgHdr, /* the message header */
int flags /* flags describing nature of the data */
)

This function returns the number of bytes received, or ERROR if the receive fails.

usrSockSend()

This routine transmits data from the socket fd to a previously-established
connection-based (stream) socket. How the flags parameter should be set depends
on the nature of the sockets involved and the requirements of the connection. This
will differ for different socket and service implementations.

The usrSockSend() routine is of the form:

int usrSockSend
(
int fd, /* file descriptor representing the socket */
char * buf, /* buffer containing data to be sent */
int bufLen, /* length of the buffer */
int flags /* flags describing the nature of the data */
)

This function returns the number of bytes sent, or ERROR if the send fails.

usrSockSendto()

This routine transmits data from the socket specified by fd to the datagram socket
specified by to. How the flags parameter should be set depends on the nature of the

NOTE: If the MSG_MBUF flag is set in the flags parameter, this means that a
zero-copy buffer (zbuf) is being sent. In this case, the buf parameter is a pointer to
a NULL mbuf pointer and not the char * specified in the parameter list. In other
words, *buf == (struct mbuf *) NULL. The usrSockSend() routine should set buf to
point to the mbuf chain holding the data.
243

VxWorks 5.5
Network Programmer’s Guide
sockets involved and the requirements of the connection. This will differ for
different socket and service implementations.

The usrSockSendto() routine is of the form:

int usrSockSendto
(
int fd, /* file descriptor representing the socket */
caddr_t buf, /* buffer containing message to be sent */
int bufLen, /* length of this buffer */
int flags, /* flags describing the nature of the data */
struct sockaddr * to, /* recipient's address */
int tolen /* length of the to structure */
)

This function returns the number of bytes sent, or ERROR if the send fails.

usrSockSendMsg()

This routine transmits a message to a datagram socket specified by fd. It may be
used in place of usrSockSendto() to decrease the overhead of reconstructing the
message header structure for each message. How the flags parameter should be set
depends on the nature of the sockets involved and the requirements of the
connection. This will differ for different socket and service implementations.

The usrSockSendMsg() routine is of the form:

int usrSockSendMsg
(
int fd, /* file descriptor for the socket */
struct msghdr * pMsgHdr, /* message header */
int flags /* flags describing nature of the data */
)

This function returns the number of bytes sent, or ERROR if the send fails.

usrSockShutdown()

This routine shuts down all, or part, of the connection-based socket fd. The how
value allows for some control over how this shutdown takes place if sends and
receives are still pending.

NOTE: If the MSG_MBUF flag is set in the flags parameter, this means that a
zero-copy buffer (zbuf) is being sent. In this case, the buf parameter is a pointer to
a NULL mbuf pointer and not the char * specified in the parameter list. In other
words, *buf == (struct mbuf *) NULL. The usrSockSendto() routine should set buf to
point to the mbuf chain holding the data.
244

11

11
Integrating a New Network Service
The usrSockShutdown() routine is of the form:

STATUS usrSockShutdown
(
int fd, /* file descriptor representing the socket */
int how /* directs how shutdown proceeds when activity is pending */
)

This function returns OK, or ERROR if the specified socket was invalid or could not
be shut down.

usrGetSockOpt()

This routine retrieves socket option values4 associated with a specified socket. To
find options set at the socket level, level is set to SOL_SOCKET. To find options set
for a particular service, level is set to the identifying number of that service. The
optval parameter points to an available buffer of size optlen. The buffer itself,
although passed in as a char *, is treated as a pointer to whatever data type or
structure is appropriate to the option being referenced.

The usrGetSockOpt() routine is of the form:

STATUS usrGetSockOpt
(
int fd, /* file descriptor representing the socket */
int level, /* scope of option being retrieved */
int optname, /* name of option being retrieved */
char * optval, /* holds the value of the option */
int * optlen /* indicates the length of optval */
)

This function fills optval with the setting of the specified option, and sets optlen to
the actual size of this value. The function returns OK, or ERROR if it was unable to
retrieve a value for this option given these parameters.

usrSetSockOpt()

This routine sets the options associated with a socket5. To manipulate options at
the socket level, level is set to SOL_SOCKET. Otherwise, level is set to the service
number of the service for which the option is being set.

4. For instance, in TCP, socket options include SO_KEEPALIVE, SO_LINGER and
TCP_NODELAY.

5. For instance, in UDP, socket options include SO_BROADCAST, IP_ADD_MEMBERSHIP and
IP_MULTICAST_IF.
245

VxWorks 5.5
Network Programmer’s Guide
The usrSetSockOpt() routine is of the form:

STATUS usrSetSockOpt
(
int fd, /* file descriptor representing the socket */
int level, /* scope of option being set */
int optname, /* name of option being set */
char * optval, /* value the option is being set to */
int optlen /* length of the value field */
)

This function returns OK, or ERROR if the request to set the socket option for the
specified socket fails.

usrSockZbufRtn()

This routine returns TRUE if the back end supports the zero-copy interface (zbufs),
otherwise it returns FALSE. This function is of the form:

STATUS usrSockZbufRtn()

Socket Functions Passed to iosDrvInstall()

An iosDrvInstall() call expects pointers to function to handle:

� closing the socket
� reading the socket
� writing to the socket
� I/O control for the socket

usrSockClose()

This routine is called by the I/O system to close a socket.

The usrSockClose() routine is of the form:

int usrSockClose
(
[socket structure] * so /* socket being closed */
)

The socket structure corresponds to whatever data structure describes the socket
object that was returned from iosFdValue(). This might be a struct socket, or it
may be some other structure.

This function returns 0 on success, or -1 on failure.
246

11

11
Integrating a New Network Service
usrSockRead()

The usrSockRead() routine is of the form:

int usrSockRead
(
[socket structure] * so, /* socket being read from */
char * buf, /* buffer to contain incoming data */
int bufLen /* length of this buffer */
)

The socket structure corresponds to whatever data structure describes the socket
object that was returned from iosFdValue(). This might be a struct socket, or it
may be some other structure.

This function returns the number of bytes read, or -1 if the read fails.

usrSockWrite()

The usrSockWrite() routine is of the form:

int usrSockWrite
(
[socket structure] * so, /* socket being written to */
char * buf, /* buffer containing outgoing data */
int bufLen /* length of this buffer */
)

The socket structure corresponds to whatever data structure describes the socket
object that was returned from iosFdValue(). This might be a struct socket, or it
may be some other structure.

This function returns the number of bytes written, or -1 if the write fails.

usrSockIoctl()

The usrSockIoctl() routine is of the form:

int usrSockIoctl
(
int fd, /* file descriptor representing the socket */
int function, /* the ioctl function being called */
int arg /* the argument to this ioctl function */
)

This function returns a positive number whose value depends on the ioctl function
being invoked, or -1 in the case of an error.
247

VxWorks 5.5
Network Programmer’s Guide
248

A

Using netBufLib
A.1 Introduction

Using netBufLib, you can set up and manage a memory pool specialized to the
needs of network interface drivers and network services (protocols). In a
netBufLib memory pool, data is held in clusters. Elements of the network stack
exchange references to these clusters using data structures called mBlks and
clBlks.

The VxWorks stack uses netBufLib to manage its internal system and data
memory pools. Likewise, the supplied network drivers use netBufLib to manage
their memory pools. This facilitates their sharing buffers with the MUX, which
expects buffers organized using mBlk and clBlk structures.

To include netBufLib in VxWorks, include INCLUDE_NETWORK.

Replacing netBufLib

Because the buffer management code in the VxWorks stack access only the
published netBufLib API, you can safely replace the shipped netBufLib
implementation with your own. If your implementation supports all the public
netBufLib function calls and structures, the current stack and network interface
drivers should continue to function normally. However, the replacements must
conform to the API of the existing routines. Otherwise, the network stack will be
unable to access memory.
249

VxWorks 5.5
Network Programmer’s Guide
A.2 How a netBufLib Pool Organizes Memory

The memory in a netBufLib memory pool is organized using pools of mBlk
structures, pools of clBlk structures, and pools of cluster buffers (simple character
arrays). A netPoolInit() call joins all these sub-pools into a single pool that is
organized around M_CL_CONFIG and CL_DESC structures.

To reserve a buffer from a netBufLib pool, call netTupleGet(). This call returns a
tuple, a construct consisting of an mBlk structure, a clBlk structure, and a cluster
buffer. The mBlk and clBlk structures provide information necessary to support
buffer loaning and buffer chaining for the data that is stored in the clusters. The
clusters come in sizes determined by the CL_DESC table that describes the memory
pool.

Clusters

Valid cluster sizes are within bounds set by powers of two to up to 64KB (65536) –
see Figure A-5. Exactly which cluster sizes are valid within a particular memory
pool depends on the contents of the CL_DESC table submitted to the netPoolInit()
call that initializes the pool.

mBlks and clBlks

To support buffer (cluster) loaning, netBufLib tracks clusters using mBlk and
clBlk structures. For each cluster in a memory pool, there needs to be a
corresponding clBlk structure. The clBlk structure tracks how many mBlks share
its underlying cluster. Above the clBlk, is the mBlk structure. This structure stores
a link to a clBlk and can store a link to another mBlk. By chaining mBlks, you can
reference an arbitrarily large amount of data, such as a packet chain (see
Figure A-1).

The mBlk structure is the primary object you use to access the data that resides in
a memory pool. Because an mBlk is only a reference to the data available through
a clBlk, network layers can exchange data without copying between internal
buffers. Each mBlk structure stores separate links for the data within a packet and
for the data that starts a new packet.

Because the mBlk references the cluster data through a clBlk, duplicating an mBlk
need not copy the cluster data. For example, mBlk A in Figure A-2 is a duplicate of
mBlk 1. Creating this duplicate did not require the copying of the underlying
cluster. However, the duplication did require incrementing the external reference
count stored in the clBlk that manages the underlying cluster. This is critical when
it comes time to free an mBlk.
250

A

A
Using netBufLib
Figure A-1 Presentation of Two Packets in One mBlk Chain

Figure A-2 Different mBlks Can Share the Same Cluster

Cluster
64 bytes

Cluster
512
bytes

mBlkmBlk mBlk null

mBlk mBlk null

Cluster
2048
bytes

clBlk clBlk clBlk

Cluster
64 bytes

Cluster
2028
bytes

clBlk clBlk

Packet 1

Packet 2

mBlk A mBlk b

Cluster
64 bytes

Cluster
2028
bytes

clBlk clBlk

null

mBlk 1

mBlk B

mBlk 2 null
251

VxWorks 5.5
Network Programmer’s Guide
If you use netBufLib to free the mBlk, the mBlk is freed back to the pool and the
reference count in the underlying clBlk is decremented. If this reference count
drops to zero (indicating that no mBlks are referencing the cluster), the clBlk and
cluster are also freed back to the memory pool.

A.3 Setting Up a Memory Pool

Setting up a memory pool culminates in a call to netPoolInit(). Before calling
netPoolInit(), you must have allocated all the memory you want to include in the
pool. You then reference that memory in the CL_DESC and M_CL_CONFIG
structures that you submit to netPoolInit(). The CL_DESC and M_CL_CONFIG
structures supply netPoolInit() with the memory pointers, structure counts,
buffer sizes, and buffer counts that define the memory pool.

� M_CL_CONFIG

An M_CL_CONFIG table contains only one row. The elements in the row specify
the pool’s clBlk count, its mBlk count, and a previously allocated memory area
identified by a starting address and a size. The count values are analogous to the
NET_NUM_BLK and NET_CL_BLKS values you specified for the network system
memory table.

The clBlk count you specify must be equal to the number of clusters in the memory
pool. The mBlk count must be at least as large, but could be larger, depending on
how you use the memory pool. The allocated memory referenced in the supplied
pointer should be large enough to contain all the clBlk and mBlk structures
specified by the supplied counts.

� CL_DESC

A CL_DESC table associates a cluster size with a cluster count and a memory area
identified by a starting address and a size. Although you did not need to provide
the memory area starting address and size in clDescTbl[] and sysClDescTbl[],
you do need to provide this information in any CL_DESC you create. In other
words, you must make the memory allocation calls that reserve memory for the
pool.

If you are setting up a CL_DESC table for a network driver pool, your table will
likely need only one row. This row specifies a cluster size close to the MTU of the
252

A

A
Using netBufLib
underlying device. For example, the Lance Ethernet driver uses a cluster size is
1520 bytes, which is the Ethernet MTU plus some slack (see Figure A-3). The
CL_DESC table for a network protocol will likely contain several rows. This is
because protocols typically require buffers of several different sizes (see
Figure A-4).

When deciding on cluster sizes, choose a size that is alone within a power of two
boundary (see Figure A-5) and that is large enough to contain the buffer you want
to store in the cluster. In addition, no two rows in the table can share the use the
same cluster size.

Figure A-5 shows two examples of sets of cluster sizes. The first, {48, 92, 244}, is
correct, because there is at least one power of two between the different sizes. The
second, {48, 88, 132, 192}, is incorrect, because the cluster sizes of 132 and 192 both
fall between the adjacent powers of two of 128 and 256.

Figure A-3 A Driver Memory Pool

Figure A-4 A Protocol Memory Pool

Memory Pool for a Driver

Pool of Clusters
1520 1520 1520

1520 1520 1520

1520 1520 1520

1520 1520 ...

The number of mBlks and clBlks
available to pool and their location in
memory is set in the M_CL_CONFIG table
you supply to netPoolInit().

The number of cluster pools, the size of
the clusters in each pool, and their
location in memory is set in the CL_DESC
that you supply to netPoolInit(). The
CL_DESC for this pool would have only
one row.

mBlks & clBlks

...

Memory Pool for a Protocol

Pool of Clusters
128 128 128

128 128 128

128 128 128

128 128 ...

Pool of Clusters
...

mBlks & clBlks

...

Pool of Clusters
64 64 64

64 64 64

64 64 64

64 64 ...
253

VxWorks 5.5
Network Programmer’s Guide
A.4 Storing and Using Data in Clusters

When your driver or protocol needs a buffer for a packet, reserve an appropriately
sized cluster buffer from an established memory pool. Then associate that cluster
with an mBlk and a clBlk structure from the pool.

To create an mBlk/clBlk/cluster construct one step at a time:

1. Call netClusterGet() to reserve a cluster buffer for your data.

2. Call netClBlkGet() to reserve a clBlk structure.

3. Call netClBlkJoin() to join the clBlk to the cluster containing the packet.

4. Call netMblkGet() to reserve a mBlk structure.

5. Call netMblkClJoin() to join the mBlk structure to the clBlk/cluster
construct.

Alternatively, you can reduce all of the above allocations and joins to a single
netTupleGet() call (see the netBufLib reference entry).

Now that the data is contained within an mBlk/clBlk/cluster construct, you can
use various netBufLib routines to adjust or inspect this data. For example, to read
the data in the construct, you can call netMblkToBufCopy(). In addition, you can
use the mBlk chaining feature to prepend or append data to the packet.

Figure A-5 Choosing Correct Cluster Sizes

NOTE: The various net*Get() routines reserve memory from a pre-allocated pool.
Internally, they do not use semaphores. Thus, they are safe to call when a call to
malloc() would be unsafe or impossible.

5122561286432

48 92 244 }{

132 19288 }{ 48

This set is correctly chosen so that
only one size lies between two
adjacent powers of two.

This set is incorrect. The cluster sizes
of 132 and 192 lie between two
adjacent powers of two.
254

A

A
Using netBufLib
A.5 Freeing mBlks, clBlks, and Clusters

When you want to return an mBlk/clBlk/cluster chain to its memory pool, call
netMblkClChainFree(). This frees all mBlks in the chain. It also decrements the
reference counters in all the clBlks in the chain. If the reference counter for a clBlk
drops to zero, that clBlk and its associated cluster are also freed back to the pool.
To free a single mBlk/clBlk/cluster back to the memory pool, use
netMblkClFree().

A.6 Macros for Buffer Manipulation

M_PREPEND(m, plen, how)

This macro prepends plen bytes at the beginning of buffer m. You can set how to
M_WAIT or M_DONTWAIT. This corresponds to the canWait parameter in the
netMblkGet() call. It specifies the desired behavior if there is not enough space in
m for plen bytes and a new buffer must be allocated and added to the buffer chain
to contain these prepended bytes.

For information on pre-allocating space at the beginning of a buffer, which
increases the speed of the M_PREPEND() operation, see 10.1.7 Early Link-Level
Header Allocation in an NPT Driver, p.185.

M_ALIGN(m, len)

This macro appends an area of len bytes to the buffer m, and aligns this area on a
long word boundary. It does not verify that this amount of space is available in the
buffer, so if you are in doubt, use M_TRAILINGSPACE() to verify this before
performing the M_ALIGN() operation.

M_LEADINGSPACE(m)

This macro reports the size of the leading space that comes before the data held in
the cluster belonging to buffer m. Knowing the size of this leading space is useful
before calling M_PREPEND(). If you find that there is not enough space, you can
allocate a new buffer.
255

VxWorks 5.5
Network Programmer’s Guide
M_TRAILINGSPACE(m)

This macro computes the amount of space past the data held in the cluster
belonging to mbuf m. This can be used to estimate how large a data block can be
added with an M_ALIGN() operation on that mbuf.

A.7 The netBufLib Library

This library contains routines that you can use to organize and maintain a memory
pool consisting of pools of mBlk structures, pools of clBlk structures, and pools of
clusters. The mBlk and clBlk structures are used to manage the clusters. The
clusters are containers for the actual data.

These structures and the functions in this library constitute a buffering API that has
been designed to meet the needs both of network services and network drivers.

The mBlk structure is the primary vehicle for passing data between a network
driver and a service. However, the mBlk structure must first be properly joined
with a clBlk structure that was previously joined with a data cluster. The actual
vehicle for passing data is not merely an mBlk structure but an
mBlk/clBlk/cluster construct.

To include netBufLib in VxWorks, build your image with basic network support
by including INCLUDE_NETWORK.

netBufLibInit()

This function initializes the netBufLib. If INCLUDE_NETWORK is included in the
configuration of your VxWorks image, VxWorks automatically calls
netBufLibInit().

STATUS netBufLibInit (void)

The function returns OK on successful initialization or ERROR otherwise.
256

A

A
Using netBufLib
netClBlkFree()

This function frees the clBlk/cluster construct from an mBlk. If there are no other
mBlks that refer to the construct, both the clBlk and its associated cluster are freed
back into the specified memory pool.

void netClBlkFree
(
NET_POOL_ID pNetPool, /* pointer to the net pool */
CL_BLK_ID pClBlk /* pointer to the clBlk to be freed */
)

netClBlkGet()

This function gets a clBlk from the specified memory pool. Set the canWait
parameter either to M_WAIT or M_DONTWAIT. If canWait is set to M_WAIT, and if
a clBlk is not initially available, netClBlkGet() attempts garbage collection before
failing. If canWait is set to M_DONTWAIT and if no clBlk is available,
netClBlkGet() returns a NULL value immediately.

CL_BLK_ID netClBlkGet
(
NET_POOL_ID pNetPool, /* pointer to the net pool */
int canWait /* M_WAIT/M_DONTWAIT */
)

This function returns a clBlk identifier, or NULL if none are available and canWait
is set to M_DONTWAIT.

netClBlkJoin()

This function joins the previously reserved cluster specified by pClBuf to the
previously reserved clBlk structure specified by pClBlk. The size parameter
indicates the size of the cluster referenced in pClBuf. The arguments pFreeRtn, arg1,
arg2, and arg3 set the values of the pCLFreeRtn, clFreeArg1, clFreeArg2, and
clFreeArg1 members of the specified clBlk structure.

CL_BLK_ID netClBlkJoin
(
CL_BLK_ID pClBlk, /* pointer to a cluster Blk */
char * pClBuf, /* pointer to a cluster buffer */
int size, /* size of the cluster buffer */
FUNCPTR pFreeRtn, /* pointer to the free routine */
int arg1, /* argument 1 of the free routine */
int arg2, /* argument 2 of the free routine */
int arg3 /* argument 3 of the free routine */
)

257

VxWorks 5.5
Network Programmer’s Guide
This function returns a CL_BLK_ID corresponding to the new pClBlk, or NULL if it
was unable to perform the join.

netClFree()

This function returns the specified cluster back to the specified memory pool.

void netClFree
(
NET_POOL_ID pNetPool, /* pointer to the net pool */
UCHAR * pClBuf /* pointer to the cluster buffer */
)

netClPoolIdGet()

This function returns a CL_POOL_ID corresponding to a cluster pool containing
clusters that match the specified bufSize. If bestFit is TRUE, this routine returns a
CL_POOL_ID for a pool that contains clusters greater than or equal to bufSize. If
bestFit is FALSE, this routine returns a CL_POOL_ID for a cluster from whatever
cluster pool is available. If the memory pool specified by pNetPool contains only
one cluster pool, bestFit should always be set to FALSE.

CL_POOL_ID netClPoolIdGet
(
NET_POOL_ID pNetPool, /* pointer to the net pool */
int bufSize, /* size of the buffer */
BOOL bestFit /* TRUE/FALSE */
)

This function returns either a CL_POOL_ID corresponding to a particular cluster
pool, or NULL if no such cluster pool could be found.

netClusterGet()

This function retrieves a cluster from the specified cluster pool pClPool within the
specified memory pool pNetPool.

char * netClusterGet
(
NET_POOL_ID pNetPool, /* pointer to the net pool */
CL_POOL_ID pClPool /* ptr to the cluster pool */
)

The function returns a character pointer referring to a cluster buffer, or NULL if no
buffer is available in the specified pool.
258

A

A
Using netBufLib
netMblkChainDup()

This function copies an mBlk chain or a portion of an mBlk chain, and returns a
new M_BLK_ID referring to a new mBlk allocated from pNetPool that holds the
copy. The copy starts at offset bytes from the beginning of the chain specified by
pMblk, and continues for len bytes, or, if len is set to M_COPYALL, for the remainder
of the mBlk chain.

M_BLK_ID netMblkChainDup
(
NET_POOL_ID pNetPool, /* pointer to the pool */
M_BLK_ID pMblk, /* pointer to source mBlk chai */
int offset, /* offset to duplicate from */
int len, /* length to copy */
int canWait /* M_DONTWAIT/M_WAIT */
)

This routine copies the references from a source pMblk chain to a newly allocated
mBlk chain. This lets the two mBlk chains share the same clBlk/cluster constructs.
This routine also increments the reference count in the shared clBlk.

The canWait parameter expects either M_WAIT or M_DONTWAIT. If canWait is
M_WAIT, this routine will make an attempt at garbage collection before failing if an
mBlk is not initially available. If canWait is M_DONTWAIT and no mBlk is
immediately available, this routine returns immediately with a NULL value.

This function returns an M_BLK_ID referring to the newly allocated mBlk chain, or
NULL if the copy fails. If NULL is returned, errno is set to either of the following:

– S_netBufLib_INVALID_ARGUMENT, indicating that one of the parameters is
set so that a copy could not take place

– S_netBufLib_NO_POOL_MEMORY, indicating that pNetPool does not have
enough room for the copied mBlk chain

netMblkClChainFree()

This function frees a chain of mBlk structures back into its memory pool, and
decrements the reference count in the associated clBlk structures. If no other
mBlks reference these clBlk structures, they are also freed along with their
associated clusters.

void netMblkClChainFree
(
M_BLK_ID pMblk /* pointer to the mBlk */
)

If pMblk does not refer to a valid M_BLK_ID, this function sets errno to
S_netBufLib_MBLK_INVALID.
259

VxWorks 5.5
Network Programmer’s Guide
netMblkClFree()

This function frees the mBlk specified back into its memory pool, and decrements
the reference count in the associated clBlk structure. If no other mBlks reference
this clBlk structure, it is also freed along with its associated cluster.

M_BLK_ID netMblkClFree
(
M_BLK_ID pMblk /* pointer to the mBlk */
)

If the specified mBlk is part of an mBlk chain, this routine returns an M_BLK_ID
referring to the next mBlk in the chain, otherwise it returns NULL. If pMblk does
not refer to a valid M_BLK_ID, this function sets errno to
S_netBufLib_MBLK_INVALID.

netMblkClGet()

This function retrieves a clBlk/cluster construct of size bufSize from the specified
net pool and joins it to the specified mBlk.

STATUS netMblkClGet
(
NET_POOL_ID pNetPool, /* pointer to the net pool */
M_BLK_ID pMblk, /* mBlk to embed the cluster in */
int bufSize, /* size of the buffer to get */
int canWait, /* wait or dontwait */
BOOL bestFit /* TRUE/FALSE */
)

If canWait is set to M_WAIT, this routine performs garbage collection and makes a
second attempt if a clBlk/cluster construct is not initially available. If canWait is set
to M_DONTWAIT and no clBlk/cluster construct is available, this routine returns
ERROR immediately.

If bestFit is set to TRUE and a cluster of the exact size is unavailable, this routine
tries to retrieve a larger cluster instead. If bestFit is set to FALSE and an exactly
matching size is unavailable, this routine tries to retrieve either a smaller or larger
cluster (depending on what is available). For memory pools containing only one
cluster size, bestFit should always be set to FALSE.

This function returns OK if the requested clBlk/cluster was retrieved and joined
to the specified mBlk, or ERROR if the attempt fails. If the M_BLK_ID specified does
not refer to a valid mBlk, errno is set to S_netBufLib_MBLK_INVALID.
260

A

A
Using netBufLib
netMblkClJoin()

This function joins a specified mBlk to a specified clBlk/cluster construct.
Internally, this routine sets the M_EXT flag in mBlk.mBlkHdr.mFlags. It also sets
the mBlk.mBlkHdr.mData to point to the start of the data in the cluster.

M_BLK_ID netMblkClJoin
(
M_BLK_ID pMblk, /* pointer to an mBlk */
CL_BLK_ID pClBlk /* pointer to a cluster Blk */
)

This function returns an M_BLK_ID corresponding to the modified pMblk, or NULL
if either the pMblk or pClBlk arguments are invalid.

netMblkDup()

This function copies the clBlk/cluster references from the source mBlk into the
destination mBlk and increments the reference count in the shared clBlk. This
allows the two mBlk structures to share the same clBlk/cluster construct.

M_BLK_ID netMblkDup
(
M_BLK_ID pSrcMblk, /* pointer to source mBlk */
M_BLK_ID pDestMblk /* pointer to the destination mBlk */
)

This function returns a pointer to the destination mBlk, or NULL if the source mBlk
is not part of a valid mBlk/clBlk/cluster construct.

netMblkFree()

This function frees a specified mBlk back into its memory pool.

void netMblkFree
(
NET_POOL_ID pNetPool, /* pointer to the net pool */
M_BLK_ID pMblk /* mBlk to free */
)

netMblkGet()

This function retrieves an mBlk from the specified net pool. If canWait is set to
M_WAIT, this routine performs garbage collection and makes a second attempt if
an mBlk is not initially available. If canWait is set to M_DONTWAIT and no mBlk
261

VxWorks 5.5
Network Programmer’s Guide
is immediately available, this routine returns immediately with a NULL value. The
type parameter indicates the type value to be associated with the retrieved mBlk.

M_BLK_ID netMblkGet
(
NET_POOL_ID pNetPool, /* pointer to the net pool */
int canWait, /* M_WAIT/M_DONTWAIT */
UCHAR type /* mBlk type */
)

This routine returns an M_BLK_ID referring to the newly retrieved mBlk, or NULL
if no mBlk is available.

netMblkToBufCopy()

This function copies data from the mBlk chain specified to the buffer referenced in
pBuf. It is assumed that pBuf points to enough memory to contain all the data in the
entire mBlk chain. The argument pCopyRtn expects either a NULL or a function
pointer to a copy routine. The arguments passed to the copy routine are source
pointer, destination pointer and the length of data to copy. If pCopyRtn is NULL,
netMblkToBufCopy() uses a default routine to extract the data from the chain.

int netMblkToBufCopy
(
M_BLK_ID pMblk, /* pointer to an mBlk */
char * pBuf, /* pointer to the buffer to copy */
FUNCPTR pCopyRtn /* function pointer for copy routine */
)

This function returns the length of the data copied, or 0 (zero) if no copy takes
place.

netPoolDelete()

This function frees the specified memory pool.

STATUS netPoolDelete
(
NET_POOL_ID pNetPool /* pointer to a net pool */
)

This routine returns OK if the pool is freed, or ERROR if it is unable to free the
specified pool. If pNetPool does not refer to a valid net pool, errno is set to
S_netBufLib_NETPOOL_INVALID.

netPoolInit()

This function initializes a netBufLib-managed memory pool, organizing several
sub-pools within it for mBlk structures, clBlk structures and cluster-size-specific
262

A

A
Using netBufLib
sub-pools. Set pNetPool to an identifier referring to a previously allocated
NET_POOL structure.

STATUS netPoolInit
(
NET_POOL_ID pNetPool, /* pointer to a net pool */
M_CL_CONFIG * pMclBlkConfig, /* pointer to a mBlk configuration */
CL_DESC * pClDescTbl, /* pointer to cluster desc table */
int clDescTblNumEnt, /* number of cluster desc entries */
POOL_FUNC * pFuncTbl /* pointer to pool function table */
)

Set pMclBlkConfig to point to a previously allocated and initialized M_CL_CONFIG
structure that specifies the requested subdivision of the memory pool. Within this
structure, you must provide the following values:

– mBlkNum, a count of mBlk structures
– clBlkNum, a count of clBlk structures
– memArea, a pointer to memory that can contain the mBlk and clBlk structures
– memSize, the size of that memory area

For example, you can set up an M_CL_CONFIG structure as follows:

M_CL_CONFIG mClBlkConfig = /* mBlk, clBlk configuration table */
{

/* mBlkNum clBlkNum memArea memSize */
/* ---------- ---- ------- ------- */

400, 245, 0xfe000000, 21260
};

You can calculate the memArea and memSize values. Such code can first define a
table as shown above, but set both memArea and memSize as follows:

mClBlkConfig.memSize =
(mClBlkConfig.mBlkNum * (M_BLK_SZ + sizeof(long)))
+ (mClBlkConfig.clBlkNum * CL_BLK_SZ);

You can set the memArea value to a pointer to private memory, or you can reserve
the memory with a call to malloc(). For example:

mClBlkConfig.memArea = malloc(mClBlkConfig.memSize);

The netBufLib.h file defines M_BLK_SZ as:

sizeof(struct mBlk)

Currently, this evaluates to 32 bytes. Likewise, this file defines CL_BLK_SZ as:

sizeof(struct clBlk)

Currently, this evaluates to 32 bytes.
263

VxWorks 5.5
Network Programmer’s Guide
When choosing values for mBlkNum and clBlkNum, remember that you need as
many clBlk structures as you have clusters (data buffers). You also need at least as
many mBlk structures as you have clBlk structures, but you will most likely need
more. That is because netBufLib shares buffers by letting multiple mBlk structures
join to the same clBlk and thus to its underlying cluster. The clBlk keeps a count
of the number of mBlk structures that reference it.

The pClDescTbl argument should be set to point to a table of previously allocated
and initialized CL_DESC structures. Each structure in this table describes a single
cluster pool. You need a dedicated cluster pool for each cluster size you want to
support. Within each CL_DESC structure, you must provide the following values:

– clusterSize, the size of a cluster in this cluster pool
– num, the number of clusters in this cluster pool
– memArea, a pointer to an area of memory that can contain all the clusters
– memSize, the size of that memory area

Thus, if you need to support six different cluster sizes, this parameter must point
to a table containing six CL_DESC structures. For example, consider the following:

CL_DESC clDescTbl [] = /* cluster descriptor table */
{

/* clusterSize num memArea memSize */
/* ---------- ---- ------- ------- */

{64, 100, 0x10000, 6800},
{128, 50, 0x20000, 6600},
{256, 50, 0x30000, 13000},
{512, 25, 0x40000, 12900},
{1024, 10, 0x50000, 10280},
{2048, 10, 0x60000, 20520}
};

As with the memArea and memSize members in the M_CL_CONFIG structure, you
can set these members of the CL_DESC structures by calculation after you create
the table. The formula would be as follows:

clDescTbl[n].memSize =
(clDescTbl[n].num * (clDescTbl[n].clusterSize + sizeof(long)));

The memArea member can point to a private memory area that you know to be
available for storing clusters, or you can use malloc().

clDescTbl[n].memArea = malloc(clDescTbl[n].memSize);

Valid cluster sizes range from 64 bytes to 65536 bytes. If there are multiple cluster
pools, valid sizes are further restricted by being separated by powers of two. See
A.3 Setting Up a Memory Pool, p.252 for further discussion of this restriction. A
typical buffer size for Ethernet devices is 1514 bytes. However, because a cluster
264

A

A
Using netBufLib
size requires a 4-byte alignment, the cluster size for this Ethernet buffer has to be
increased to at least 1516 bytes.

The clDescTblNumEnt argument should be set to the number of elements in the
pClDescTbl table. This is a count of the number of cluster pools. You can get this
value by using the NELEMENTS macro defined in vxWorks.h. For example:

int clDescTblNumEnt = (NELEMENTS(clDescTbl));

The pFuncTbl argument should be set either to NULL or to refer to a function table
containing pointers to the functions used to manage the buffers in this memory
pool. Using a NULL for this parameter tells netBufLib to use its default function
table. If you opt for the default function table, every mBlk and every cluster is
prepended by a 4-byte header (which is why the size calculations above for
clusters and mBlk structures contained an extra sizeof(long)). However, users
need not concern themselves with this header when accessing these buffers. The
returned pointers from functions such as netClusterGet() return pointers to the
start of data, which is just after the header.

Assuming you have set up the configuration tables as shown above, a typical call
to netPoolInit() is as follows:

int clDescTblNumEnt = (NELEMENTS(clDescTbl));
NET_POOL netPool;
NET_POOL_ID pNetPool = &netPool;
if (netPoolInit (pNetPool, &mClBlkConfig, &clDescTbl [0],

clDescTblNumEnt, NULL) != OK) return (ERROR);

This function returns OK if the initialization succeeds, or ERROR otherwise, in
which case errno is set to the following, depending on the reason for the failure:

� S_netBufLib_MEMSIZE_INVALID
� S_netBufLib_CLSIZE_INVALID
� S_netBufLib_NO_SYSTEM_MEMORY
� S_netBufLib_MEM_UNALIGNED
� S_netBufLib_MEMSIZE_UNALIGNED
� S_netBufLib_MEMAREA_INVALID

netPoolShow()

This function displays the distribution of mBlks and clusters in a given network
pool, specified by pNetPool.

void netPoolShow
(
NET_POOL_ID pNetPool
)

265

VxWorks 5.5
Network Programmer’s Guide
netShowInit()

This function initializes the network show routines. These routines are included in
VxWorks automatically if network show routines are built into the VxWorks image
by including INCLUDE_NET_SHOW.

void netShowInit (void)

netStackDataPoolShow()

This function displays the distribution of mBlks and clusters in the network data
pool. This pool is used only for data transfer through the network stack.

void netStackDataPoolShow (void)

netStackSysPoolShow()

This function displays the distribution of mBlks and clusters in the network
system pool. This pool is used only for system structures such as sockets, routes,
interface addresses, protocol control blocks, multicast addresses, and multicast
route entries.

void netStackSysPoolShow (void)

netTupleGet()

This function gets a mBlk/clBlk/cluster construct from the memory pool
specified by pNetPool. This construct is used to pass data across the layers of the
network stack. The bufSize parameter indicates the number of bytes in the cluster.

M_BLK_ID netTupleGet
(
NET_POOL_ID pNetPool, /* pointer to the net pool */
int bufSize, /* size of the buffer to get */
int canWait, /* wait or dontwait */
UCHAR type, /* type of data */
BOOL bestFit /* TRUE/FALSE */
)

If canWait is M_WAIT, this routine performs garbage collection and makes a second
attempt if an mBlk/clBlk/cluster construct is not initially available. If canWait is
M_DONTWAIT and no mBlk/clBlk/cluster construct is immediately available,
this routine returns immediately with a NULL value.

The type parameter indicates the type of data in the cluster, for example MT_DATA
or MT_HEADER. The acceptable type values are defined in netBufLib.h.

If bestFit is TRUE and a cluster of the exact size is unavailable, this routine gets a
larger cluster (if available). If bestFit is FALSE and an exactly matching size is
266

A

A
Using netBufLib
unavailable, this routine gets either a smaller or a larger cluster (depending on
what is available). Otherwise, it returns immediately with a NULL value. For
memory pools containing only one cluster size, bestFit should always be set to
FALSE.

This function returns an M_BLK_ID corresponding to an mBlk/clBlk/cluster
construct, or NULL if it is unable to get such a construct from the specified net pool.
In case of an error, errno may be set to S_netBufLib_MBLK_INVALID,
S_netBufLib_CLSIZE_INVALID or S_netBufLib_NETPOOL_INVALID.
267

VxWorks 5.5
Network Programmer’s Guide
268

B

MUX/NPT Routines and

Data Structures
B.1 Introduction

This appendix describes the routines and data structures that comprise the
MUX/NPT API.

B.2 MUX Routines

This section provides descriptions of the following routines:

– muxAddrResFuncAdd()
– muxAddrResFuncDel()
– muxAddrResFuncGet()
– muxAddressForm()
– muxBind()
– muxDevExists()
– muxDevLoad()
– muxDevStart()
– muxDevStop()
– muxDevUnload()
– muxError()
– muxIoctl()
– muxMCastAddrAdd()
– muxMCastAddrDel()
269

VxWorks 5.5
Network Programmer’s Guide
– muxMCastAddrGet()
– muxTkBind()
– muxTkDrvCheck()
– muxTkPollReceive()
– muxTkPollSend()
– muxTkReceive()
– muxTkSend()
– muxTxRestart()
– muxUnbind()

B.2.1 muxAddrResFuncAdd()

Use muxAddrResFuncAdd() to register an address resolution function for an
interface-type/protocol pair. You must call muxAddrResFuncAdd() before
calling the protocol’s protocolAttach() routine. If the driver registers itself as an
Ethernet driver, you do not need to call muxAddrResFuncAdd() because
VxWorks automatically assigns arpresolve() to registered Ethernet devices.

STATUS muxAddrResFuncAdd
(
long ifType, /* interface type from m2Lib.h, or driver type */
long protocol, /* protocol from RFC 1700, or service type */
FUNCPTR addrResFunc /* the function being added */
)

The prototype for your address resolution function (addrResFunc) must conform to
the following:

int xxxResolvRtn
(
FUNCPTR ipArpCallBackRtn,
struct mbuf * pMbuf,
struct sockaddr * dstIpAddr,
struct ifnet * ifp,
struct rtentry * rt,
char * dstBuff
)

In addition, your xxxResolvRtn() must return one upon success, which indicates
that dstIpAddr has been updated with the necessary data-link layer information
and that the IP sublayer output function can transmit the packet.

NOTE: If you are running IP over Ethernet, it is very unlikely that you will want to
replace arpresolve() with your own implementation.
270

B

B
MUX/NPT Routines and Data Structures
Your xxxResolvRtn() must return zero if it cannot resolve the address
immediately. In the default arpresolve() implementation, resolving the address
immediately means arpresolve() was able to find the address in its table of results
from previous ARP requests. Returning zero indicates that the table did not
contain the information but that the packet has been stored and that an ARP
request has been queued.

If the ARP request times out, the packet is dropped. If the ARP request completes
successfully, processing that event updates the local ARP table and resubmits the
packet to the IP sublayer's output function for transmission. This time, the
arpresolve() call will return one.

What is essential to note here is that arpresolve() did not wait for the ARP request
to complete before returning. If you replace the default arpresolve() function, you
must make sure your function returns as soon as possible and that it never blocks.
Otherwise, you block the IP sublayer from transmitting other packets out through
the interface for which this packet was queued. You must also make sure that your
arpresolve() function takes responsibility for the packet if it returns zero.

Writing an Address Resolution Function

An address resolution function designed for use with the VxWorks IP sublayer
implementation must conform strictly to expectations of that sublayer. The
function that you register with muxAddrResFuncAdd() must be of the form:

int xxxResolvRtn
(
FUNCPTR aCallBackRtn,
struct mbuf * pMbuf,
struct sockaddr * dstIpAddr,
struct ifnet * ifp,
struct rtentry * rt,
char * dstBuff
)

In addition, your xxxResolvRtn() must not block, and it must return with a
function value of zero or one, where one indicates desIpAddr contains the resolved
address and zero indicates that it does not. If your address resolution function
returns a zero, it should take responsibility for the packet.

Within your xxxResolvRtn(), you will likely implement an address resolution
table or some equally speedy mechanism that lets you reuse address resolution
information discovered previously. If your speedy address resolution mechanism
271

VxWorks 5.5
Network Programmer’s Guide
fails, you should queue the work to an address resolution protocol and return zero.
As a prototype for your function that queues the work, consider:

int resolveIPaddress
(
FUNCPTR pCallback, /* a retransmit callback function */
M_BLK_ID pIPPacket, /* the IP packet */
struct sockaddr pIPAddress, /* the IP address */
void * passthru1, /* reserved for internal use */
void * passthru2 /* reserved for internal use */
char * pBuffer, /* pre-allocated, up to 128 bytes */
)

This function would supply the address resolution protocol with the information
needed to perform the address resolution as well as the packet destined for that
address. If the address resolution succeeds, the function would add that
information to its table (or equivalent), and then use pCallback to submit the packet
(with its original parameters) to the IP layer output function for transmission. This
time, your xxxResolvRtn() replacement function should be able to return with the
address resolution information.

B.2.2 muxAddrResFuncDel()

Use muxAddrResFuncDel() to undo the assignment of an address resolution
function to an interface-type/protocol pair.

STATUS muxAddrResFuncDel
(
long ifType, /* media interface type from m2Lib.h */
long protocol, /* protocol type, for instance from RFC 1700 */
)

The muxAddrResFuncDel() function returns OK, or ERROR if the request fails.

B.2.3 muxAddrResFuncGet()

Use muxAddrResFuncGet() to retrieve a pointer to the address resolution
function registered to the specified interface-type/protocol pair.

FUNCPTR muxAddrResFuncGet
(
long ifType, /* interface type from m2Lib.h, or driver type*/
long protocol /* protocol from RFC 1700, or service type */
)

272

B

B
MUX/NPT Routines and Data Structures
This function returns a pointer to the address resolution function, or NULL if no
function is registered for the service.

B.2.4 muxAddressForm()

Use muxAddressForm() to form a frame with a link-layer address. A network
service needs this function when working with ENDs, which are frame-oriented,
but not with NPT drivers, which are packet oriented.

When given the source and destination addressing information (through pSrcAddr
and pDstAddr), this function returns an mBlk that points to an assembled link-level
header, and prepends this header to the mBlk chain pointed to by pMblk. Note that
the pDstAddr.mBlkHdr.reserved field should be set to the network protocol type.

M_BLK_ID muxAddressForm
(
void * pCookie, /* the cookie returned by muxBind() */
M_BLK_ID pMblk, /* pointer to the packet being reformed */
M_BLK_ID pSrcAddr, /* pointer to the mBlk with the source address */
M_BLK_ID pDstAddr, /* pointer to the mBlk with the dest address */
)

This function returns the head of an mBlk chain containing the data from pMblk
with a prepended link-level header, or NULL if the attempt fails.

B.2.5 muxBind()

You can use muxBind() to bind a network service to an END. However, it is often
better to use muxTkBind(), which works with both ENDs and NPT drivers.

void * muxBind
(
char * pName, /* interface name, for example, ln, ei,... */
int unit, /* unit number */
BOOL (* stackENDRcvRtn)(void *, long, M_BLK_ID, LL_HDR_INFO *, void *),
STATUS (* stackENDShutdownRtn)(void *, void *),
STATUS (* stackENDRestartRtn)(void *, void *),
void (* stackENDErrorRtn)(END_OBJ *, END_ERR *, void *),
long type, /* protocol type, from RFC1700 or user-defined */
char * pProtoName, /* string name for protocol */
void * pSpare /* identifies the binding instance */
)

Note that the stack*Rtn functions in the parameter list are defined differently than
in muxTkBind().
273

VxWorks 5.5
Network Programmer’s Guide
The muxBind() function returns a cookie identifying the network driver to which
the MUX has bound the service. The service should keep track of this cookie for
use with other MUX functions.

B.2.6 muxDevExists()

Use muxDevExists() to test whether a given device has already been loaded into
the network stack. As input, it expects the name and unit number of the device to
be tested.

BOOL muxDevExists
(
char * pName, /* string containing a device name (ln, ei, ...)*/
int unit /* unit number */
)

This function returns TRUE if the device has already been loaded into the network
stack, or FALSE otherwise.

B.2.7 muxDevLoad()

Use muxDevLoad() to load a network driver into the MUX. Internally,
muxDevLoad() calls the driver’s endLoad() or nptLoad(). After the device is
loaded, you must call muxDevStart() to start the device.

The pInitString argument passes directly into the endLoad() or nptLoad() function.
Likewise, the pBSP argument is passed along to the driver, which may or may not
use it. This argument can be used to pass in tables of BSP-specific functions that the
driver can use.

void * muxDevLoad
(
int unit, /* unit number of device */
END_OBJ * (* endLoad)(char *, void *), /* driver's load function */
char * pInitString, /* init string for driver */
BOOL loaning, /* unused */
void * pBSP /* BSP-specific */
)

This function returns a cookie that can be passed to muxDevStart(), or NULL, if the
device could not be loaded, in which case errno is set to S_muxLib_LOAD_FAILED.
274

B

B
MUX/NPT Routines and Data Structures
B.2.8 muxDevStart()

Use muxDevStart() to start a device after you have successfully loaded the device
using muxDevLoad(). Internally, muxDevStart() activates the network interfaces
for a device by calling the drivers endStart() routine.

STATUS muxDevStart
(
void * pCookie /* the cookie returned from muxDevLoad() */
)

The muxDevStart() function returns OK, on success; ERROR, if the driver’s
endStart() routine fails; or ENETDOWN, if pCookie does not represent a valid
device.

B.2.9 muxDevStop()

Use muxDevStop() to stop the specified driver. Internally, muxDevStop() calls
the endStop() or nptStop() routine registered for the driver.

STATUS muxDevStop
(
void * pCookie /* the cookie returned from muxDevLoad() */
)

The muxDevStart() function returns OK, on success; ERROR, if the endStop() or
nptStop() routine registered for the driver fails; or ENETDOWN, if pCookie does not
represent a valid device.

B.2.10 muxDevUnload()

Use muxDevUnload() to unload a device from the MUX. Unloading a device
closes any network connections made through the device.

To notify protocols that the device is unloading, muxDevUnload() calls the
stackShutdownRtn() function for each protocol bound to the device (internally,
the stackShutdownRtn() should call muxUnbind() to detach from the device).
275

VxWorks 5.5
Network Programmer’s Guide
To free device-internal resources, muxDevUnload() calls the endUnload() or
nptUnload() function that the device registered with the MUX.

STATUS muxDevUnload
(
char * pName, /* the name of the device, for example, ln or ei */
int unit /* the unit number */
)

This function returns OK, on success; or ERROR, if the device could not be found,
or the error returned from the device’s endUnload() or nptUnload() function if
that function fails.

B.2.11 muxError()

Drivers use muxError() to report an error to a network service that is bound to it
through the MUX. You can find predefined errors in end.h. This function is passed
two arguments: the END object that identifies the device that is issuing the error
and a pointer to an END_ERR structure (see B.3.2 END_ERR, p.285).

void muxError
(
void * pEnd, /* END object pointer returned by end/nptLoad() */
END_ERR * pError /* error structure */
}

B.2.12 muxIoctl()

Use muxIoctl() to access the ioctl services that network interfaces have registered
with the MUX. Typical uses of muxIoctl() include starting, stopping, or resetting
a network interface, or adding or configuring MAC and network addresses.

STATUS muxIoctl
(
void * pCookie, /* returned by muxTkBind() */
int cmd, /* ioctl command */
caddr_t data /* data needed to carry out the command */
)

This function returns OK if successful; ERROR, if the device was unable to
successfully complete the command; or ENETDOWN, if the cookie did not
represent a valid device.
276

B

B
MUX/NPT Routines and Data Structures
B.2.13 muxMCastAddrAdd()

Use muxMCastAddrAdd() to add an address to the table of multicast addresses
maintained for a device. It expects two arguments: a cookie that was returned
when muxTkBind() was used to bind to the device, and a string containing the
address to be added.

STATUS muxMCastAddrAdd
(
void * pCookie, /* returned by muxTkBind() */
char * pAddress /* address to add to the table */
)

This function returns OK, if successful; ERROR, if the device was unable to
successfully add the address (if this is because the device does not support
multicasting, errno will be set to ENOTSUP); or ENETDOWN, if the cookie does not
represent a valid device.

B.2.14 muxMCastAddrDel()

Use muxMCastAddrDel() to remove an address from the table of multicast
addresses maintained for a device. It expects two arguments: a cookie that was
returned when muxTkBind() was used to bind to the device, and a string
containing the address to be removed.

STATUS muxMCastAddrDel
(
void * pCookie, /* returned by muxTkBind() */
char * pAddress /* address to delete from the table */
)

This function returns OK , if successful; ERROR, if the device was unable to
successfully remove the address (if this is because the device does not support
multicasting, errno will be set to ENOTSUP, if this is because the address was not
found in the table, errno will be set to EINVAL); ENETDOWN, if the cookie does not
represent a valid device.

B.2.15 muxMCastAddrGet()

Use muxMCastAddrGet() to retrieve the list of multicast addresses that have been
registered for a driver. It expects two arguments: a cookie that was returned when
muxTkBind() was used to bind to the device, and a pointer to a pre-allocated
277

VxWorks 5.5
Network Programmer’s Guide
MULTI_TABLE structure into which the table contents will be written during this
function call (see B.3.8 MULTI_TABLE, p.292).

int muxMCastAddrGet
(
void * pCookie, /* returned by muxTkBind() */
MULTI_TABLE * pTable /* structure that will hold retrieved table */
)

This function returns OK, if successful; ERROR, if the device was unable to
successfully supply the list; or ENETDOWN, if the cookie does not represent a valid
device.

B.2.16 muxTkBind()

Use muxTkBind() to bind a network service to a network interface. Before the
network service can send and receive packets from the network, it must bind to
one or more network drivers through which the packets will be sent and received.
To specify these network drivers and bind to them, use the function muxTkBind().

In the call to muxTkBind() you must provide the following information:

� the network driver to bind to (name and unit number)

� a network service type, based on RFC 1700 or user-defined

� optional data structures used to exchange information with the driver
(typically used when a network service is designed to work with a
particular network driver)

� a set of callback routines used by the MUX (see Table B-1)

� a key or private data structure which will be passed back when these
callbacks are invoked to identify the bound interface

These callback functions are listed in Table B-1 and are described at greater length
in 11.3.1 Service Functions Registered Using muxTkBind(), p.229.

Table B-1 Network Service Callback Functions

Callback Function Description

stackRcvRtn() Receive data from the MUX.

stackErrorRtn() Receive an error notification from the MUX.

stackShutdownRtn() Shut down the network service.
278

B

B
MUX/NPT Routines and Data Structures
Two additional arguments (pNetSvcInfo and pNetDrvInfo) allow the sublayer to
exchange additional information with the network driver, depending on
requirements specific to the particular service or driver. The Wind River IP
network protocol, for instance, expects a driver to pass up certain information,
although it does not pass anything back down. These additional arguments may
be especially helpful to those network services and network driver types that are
naturally “tightly coupled.”

As part of the bind phase, the network service typically retrieve the address
resolution and mapping functions for each network interface that is being bound
to, storing them in a private data structure allocated by the service.

The muxTkBind() function returns a cookie that uniquely represents the binding
instance and is used to identify that binding instance in subsequent calls. A return
value of NULL indicates that the bind failed.

The muxTkBind() function is defined as:

void * muxTkBind
(
char * pName, /* interface name, for example: ln, ei */
int unit, /* unit number */
BOOL (* stackRcvRtn)(void *, long, M_BLK_ID, void *),
STATUS (* stackShutdownRtn)(void *),
STATUS (* stackRestartRtn)(void *),
void (* stackErrorRtn)(void *, END_ERR *),
long type, /* from RFC1700 or user-defined */
char * pProtoName, /* string name of service */
void * pNetCallBackId, /* returned to svc sublayer during recv */
void * pNetSvcInfo, /* ref to netSrvInfo structure */
void * pNetDrvInfo /* ref to netDrvInfo structure */
)

This function returns a cookie that uniquely represents the binding instance, or
NULL if the bind fails.

stackRestartRtn() Restart a suspended network service.

Table B-1 Network Service Callback Functions (Continued)

Callback Function Description
279

VxWorks 5.5
Network Programmer’s Guide
B.2.17 muxTkDrvCheck()

A network service sublayer uses muxTkDrvCheck() to determine whether a
particular driver is an NPT driver.

int muxTkDrvCheck
(
char * pDevName /* the name of the device being checked */
)

This routine returns 1 if that device is an NPT driver, 0 (zero) otherwise, and
ERROR (-1) if the specified device could not be found.

B.2.18 muxTkPollReceive()

A network service sublayer uses muxTkPollReceive() to poll a device for
incoming data. If no data is available at the time of the call, muxTkPollReceive()
returns EAGAIN. The pSpare argument points to any optional spare data provided
by an NPT driver. In the case of an END, pSpare will always be NULL or point to
NULL.

STATUS muxTkPollReceive
(
void * pCookie, /* returned by muxTkBind() */
M_BLK_ID pNBuff, /* a vector of buffers passed to us */
void * pSpare /* a reference to spare data is returned here */
)

This function returns OK on success; EAGAIN if no packet is available;
ENETDOWN, if the cookie passed in does not represent a loaded device; or an error
value specific to the end/nptpollReceive() routine registered for the particular
driver.

B.2.19 muxTkPollSend()

Use muxTkPollSend()is to transmit packets when a driver is in polled-mode. This
is the polled-mode equivalent to the interrupt-mode muxTkSend(). When using
muxTkPollSend(), the driver does not need to call muxAddressForm() to
complete the packet, nor does it need to prepend an mBlk of type MF_IFADDR
containing the destination address. Like muxTkSend(), this function expects as

NOTE: Internally, muxTkDrvCheck() uses an EIOCGNPT ioctl to ask the driver
whether its is an NPT. An NPT returns a zero in response to an EIOCGNPT ioctl.
280

B

B
MUX/NPT Routines and Data Structures
arguments a cookie identifying the device and a pointer to the mBlk chain
containing the data.

STATUS muxTkPollSend
(
void * pCookie, /* returned by muxTkBind()*/
M_BLK_ID pNBuff, /* data to be sent */
char * dstMacAddr, /* destination MAC address */
USHORT netType, /* network service that is calling us */
void * pSpareData /* spare data passed to driver on each send */
)

This function returns OK, on success; ENETDOWN, if the cookie passed in does not
represent a valid device; or an error value specific to the end/nptpollSend() routine
of the driver being used.

B.2.20 muxTkReceive()

A driver uses muxTkReceive() to pass validated packets up to the MUX.1

The muxTkReceive() function forwards the data to the network service sublayer
by calling the stackRcvRtn() registered for that sublayer.

Arguments to the function call include:

� a reference to the END object returned by the endLoad() or nptLoad() function

� an mBlk or mBlk chain that contains the received frame

� the offset value into the frame where the data field (the network service layer
header) begins

� the network service type of the service for which the packet is destined2

� a flag (wrongDstAddr) which should be set to TRUE if the packet being
received is not addressed to this device/service interface (which might happen
if the driver is in MUX_PROTO_PROMISC mode)

� a reference to any optional data or information that a network service may
expect to accompany the packet

1. This function is registered by the MUX as the receiveRtn in the END_OBJ data structure for
the device. The driver should make a call to this reference rather than calling
muxTkReceive() directly.

2. Typically, this value can be found in the header of the received frame.
281

VxWorks 5.5
Network Programmer’s Guide
The MUX strips off the frame header before forwarding the packet to the network
service, unless the network service is registered as MUX_PROTO_SNARF or
MUX_PROTO_PROMISC, in which case it will receive the complete frame.

The function is defined as:

STATUS muxTkReceive
(
END_OBJ * pEnd, /* returned by nptLoad() */
M_BLK_ID pMblk, /* the buffer being received */
long netSvcOffset, /* offset to network datagram in the packet */
long netSvcType, /* network service type */
BOOL wrongDstAddr, /* not addressed to this interface */
void * pSpareData /* out-of-band data */
)

This function returns OK, on success; ERROR, if the cookie is invalid; or FALSE, if
no services are bound to the referenced driver.

B.2.21 muxTkSend()

A network service sublayer uses muxTkSend() to transmit packet.

STATUS muxTkSend
(
void * pCookie, /* returned by muxTkBind()*/
M_BLK_ID pNBuff, /* data to be sent */
char * dstMacAddr, /* destination MAC address */
USHORT netType, /* network service that is calling us */
void * pSpareData /* spare data passed on each send */
)

To send a packet, the caller must supply:

� the cookie obtained from bind that identifies the bound interface

� a pointer to the buffer chain (mBlk chain) containing the packet

� the physical layer address to which the packet is being sent

� the type of network service that is sending the packet

The data to be sent should be formed into an mBlk chain (if it is not already in this
form). If the sublayer has a registered address resolution function for the
service/device interface, it should call this function to determine the destination
physical-layer address.

The network service may send fully formed physical layer frames to the device.
For an END, this is the required and default behavior, but when sending to a device
282

B

B
MUX/NPT Routines and Data Structures
that uses an NPT driver this requires that you set the M_L2HDR flag in the mBlk
header.

The muxTkSend() routine may return an error indicating that the driver is out of
resources for transmitting the packet. You can use this error to establish a flow
control mechanism if desired. The sublayer typically waits to send any more
packets until the MUX calls the stackRestartRtn() callback function.

This function returns OK, if successful; END_ERR_BLOCK, if the send() routine of
the driver is temporarily unable to complete the send due to insufficient resources
or some other problem; ERROR, if the send() routine of the driver fails; or
ENETDOWN, if the cookie does not represent a valid device.

B.2.22 muxTxRestart()

A network interface driver uses muxTxRestart() to tell a network service that it
may resume sending data. That network service is presumed to have paused itself
in response to an error returned from a muxTkSend() call. A driver can use
muxTxRestart() to implement flow control.

void muxTxRestart
(
END_OBJ * pEnd /* returned by endLoad() or nptLoad() */
)

B.2.23 muxUnbind()

A network service uses muxUnbind() to disconnect from a device. As input,
muxUnbind() expects a cookie that identifies the device, the driver type that was
passed during the bind, and a pointer to the stack*RcvRtn() registered at
bind-time.

STATUS muxUnbind
(
void * pCookie, /* returned from muxTkBind() */
long type, /* the device type passed in at bind-time */
FUNCPTR stackRcvRtn /* pointer to the service receive routine */
)

This function returns OK, if the device is successfully unbound; or ERROR
otherwise (if errno is set to EINVAL, the device was not bound to the service when
this function was called).
283

VxWorks 5.5
Network Programmer’s Guide
B.3 Data Structures

This section provides descriptions for the following structures:

� DEV_OBJ
� END_ERR
� END_OBJ
� END_QUERY
� LL_HDR_INFO
� M2_INTERFACETBL
� mBlk
� MULTI_TABLE
� NET_FUNCS

B.3.1 DEV_OBJ

The MUX uses the DEV_OBJ structure to store the name and control structure of
your device. The private control structure, held in the pDevice member of this
structure, stores information such as memory pool addresses and other essential
data. The DEV_OBJ structure is defined in end.h as:

typedef struct dev_obj
{
char name[END_NAME_MAX]; /* device name */
int unit; /* for multiple units */
char description[END_DESC_MAX]; /* text description */
void * pDevice; /* device control structure */
} DEV_OBJ;

name
A pointer to a string specifying the name of the network device.

unit
The unit number of the device. Unit numbers start at zero and increase for each
device controlled by the same driver.

description
A text description of the device driver. For example, the Lance Ethernet driver
uses the description string of “AMD 7990 Lance Ethernet Enhanced Network
Driver.” This string is displayed if muxShow() is called.

pDevice
A pointer to the private control structure used by the device. A device can
access its own control structure by using the devObject.pDevice member of
the END_OBJ that the MUX passes into driver functions.
284

B

B
MUX/NPT Routines and Data Structures
B.3.2 END_ERR

The END_ERR structure is defined as:

typedef struct end_err
{
INT32 errCode; /* Error code */
char * pMesg; /* NULL-terminated error message */
void * pSpare; /* Pointer to user-defined data */
} END_ERR;

The errCode member of the END_ERR structure is 32 bits long. The lower 16 bits
are reserved for system error messages, while the upper 16 bits may be used for
custom error messages. Table B-2 lists currently defined error codes:

B.3.3 END_OBJ

END_OBJ is the head of the structural interface between the MUX and a network
interface driver. The driver allocates this structure and initializes some of its
elements within its endLoad() or nptLoad() function. The structure is defined in
target/h/end.h and is diagramed in Figure B-1.

Table B-2 END_ERR Error Codes

Error Code Description

END_ERR_INFO This error is informational only.

END_ERR_WARN A non-fatal error has occurred.

END_ERR_RESET An error occurred that forced the device to reset itself, but the
device has recovered.

END_ERR_FLAGS The driver has changed the flags member of the END_OBJ
structure.

END_ERR_DOWN A fatal error occurred that forced the device to go down. The
device can no longer send or receive packets.

END_ERR_UP The device was down but has now come up and may again send
and receive packets.
285

VxWorks 5.5
Network Programmer’s Guide
The MUX manages some of the elements in this structure, but the driver is
responsible for setting and managing others:

node
The root of the device hierarchy. The MUX sets the value of this member. The
driver should not modify the value of this item.

Figure B-1 The END_OBJ Structure and Related Structures

END_OBJ

node : NODE
pOutputFilterSpare : void *
attached : BOOL
txSem : SEM_ID
flags : long
multiList : LIST
nMulti : int

receiveRtn() : STATUS

protocols : LIST
snarfCount : int
pNetPool : NET_POOL_ID

pFuncTable

1
NET_FUNCS

devObject

1

DEV_OBJ

name : char[]
unit : int
description : char[]
pDevice : void *

start()
stop()
unload()
ioctl()
send()
mCastAddrAdd()
mCastAddrDel()
mCastAddrGet()
pollSend()
pollRcv()
formAddress()
packetDataGet()
addrGet()
endBind()

NET_PROTOCOL

node : NODE
name : char[]
type : long
nptFlag : BOOL
pSpare : void *
pNptCookie : void *

stackRcvRtn() : BOOL
stackShutdownRtn() : STATUS
stackTxRestartRtn() : STATUS
stackErrorRtn() : void

outputFilterpEnd

1 0..1

mib2Tbl1

M2_INTERFACETBL

pMib2Tbl1

M2_ID

These structures are
described in greater
detail in another figure
286

B

B
MUX/NPT Routines and Data Structures
devObject
A pointer to the DEV_OBJ structure for this device (see B.3.1 DEV_OBJ, p.284).
The driver must set this value when its endLoad() or nptLoad() function is
called.

receiveRtn
A function pointer that references a muxReceive() function. The MUX
supplies this pointer when the driver is loaded. Any time after the completion
of the muxDevLoad() call, the driver can use this receiveRtn() to pass data up
to the protocol layer. The prototype for this receive routine is:

STATUS receiveRtn
(
void * pCookie, /* The cookie passed in to endLoad() */
M_BLK_ID pMblk /* The packet, as an mblk chain */
)

outputFilter
A function pointer that references an optional output filtering routine. This is
set by the MUX to the stackRcvRtn() of a network service that registers itself
as of the MUX_PROTO_OUTPUT type, if there is such a service.

pOutputFilterSpare
The optional output filter’s spare pointer, corresponding to the pSpare
argument passed during a call to muxBind(), or the netCallbackId argument
passed during a call to muxTkBind(). The MUX sets this element during the
bind phase for those services registered as of the MUX_PROTO_OUTPUT type.

attached
A boolean indicating whether or not the device is attached. The MUX sets and
manages this value.

txSem
A semaphore that controls access to the device’s transmission facilities. The
MUX initializes txSem, but the driver gives and takes the semaphore as
needed.

flags
A value constructed by ORing combinations of the following flags:

IFF_ALLMULTI
This device receives all multicast packets.

IFF_BROADCAST
The broadcast address is valid.

IFF_DEBUG
Debugging is on.
287

VxWorks 5.5
Network Programmer’s Guide
IFF_LINK0
A per link layer defined bit.

IFF_LINK1
A per link layer defined bit.

IFF_LINK2
A per link layer defined bit.

IFF_LOOPBACK
This is a loopback net.

IFF_MULTICAST
The device supports multicast.

IFF_NOARP
There is no address resolution protocol.

IFF_NOTRAILERS
The device must avoid using trailers.

IFF_OACTIVE
Transmission in progress.

IFF_POINTOPOINT
The interface is a point-to-point link.

IFF_PROMISC
This device receives all packets.

IFF_RUNNING
The device has successfully allocated needed resources.

IFF_SIMPLEX
The device cannot hear its own transmissions.

IFF_UP
The interface driver is up.

pFuncTable
A pointer to a NET_FUNCS structure (see B.3.9 NET_FUNCS, p.293). This
structure contains pointers to driver routines for handling standard requests
such as stop or send. Your driver must allocate and initialize this structure
when the endLoad() or nptLoad() routine is called.

! WARNING: If the driver changes the state of the flags element (for example,
marking itself as “down” by setting the IFF_DOWN flag), the driver should export
this change by calling muxError() with the errCode member of the END_ERR
structure set to END_ERR_FLAGS.
288

B

B
MUX/NPT Routines and Data Structures
mib2Tbl
An M2_INTERFACETBL structure used to track the MIB-II variables used in the
driver (see B.3.6 M2_INTERFACETBL and M2-ID, p.290). The driver should
initialize this structure, although the elements in the structure will be used and
adjusted both by the driver and by the MUX. For appropriate values for the
elements in this structure, see RFC 1158.

multiList
A list of multicast addresses. The MUX sets and manages this list, but it uses
the driver’s nptMCastAddrAdd(), nptMCastAddrDel(), and
nptMCastAddrGet() to do so.

nMulti
The number of addresses on the list referenced by the multiList member
described above. The MUX sets this value using the information returned by
the driver’s nptMCastAddrGet() routine.

protocols
A list of services that have bound themselves to this network driver. The MUX
manages this list.

snarfCount
A counter that indicates the number of snarf protocols.

pNetPool
A pointer to a netBufLib-managed memory pool. This pool, which is used
internally by the NPT, should be initialized in the endLoad() or nptLoad()
routine.

B.3.4 END_QUERY

This structure is designed specifically for use within the EIOCQUERY ioctl
command.

typedef struct
{
int query; /* the query */
int queryLen; /* length of expected/returned data */
char queryData[4]; /* 4 byte minimum; 120 byte maximum */
} END_QUERY;
289

VxWorks 5.5
Network Programmer’s Guide
B.3.5 LL_HDR_INFO

The MUX uses the LL_HDR_INFO structure to keep track of link-level header
information associated with packets passed from an END to the MUX and from
there up to a protocol. An LL_HDR_INFO structure is passed as an argument to an
END’s stack receive routine.

The LL_HDR_INFO structure is defined as:

typedef struct llHdrInfo
{
int destAddrOffset; /* destination address offset into mBlk */
int destSize; /* size of destination address */
int srcAddrOffset; /* source address offset into mBlk */
int srcSize; /* size of source address */
int ctrlAddrOffset; /* control info offset into mBlk */
int ctrlSize; /* size of control info */
int pktType; /* type of the packet */
int dataOffset; /* offset into mBlk where data starts */
} LL_HDR_INFO;

B.3.6 M2_INTERFACETBL and M2-ID

The M2_INTERFACETBL is still part of the END_OBJ structure for the purpose of
backwards-compatibility, but a new structure, the M2_ID structure, has been
added that encompasses and enhances the M2_INTERFACETBL structure.

The M2_ID structure referenced in the END_OBJ includes the elements that were
found in the M2_INTERFACETBL structure, and extends this with additional
elements from RFC 2233 (see Figure B-2).

B.3.7 mBlk

Use mBlk structures as a vehicle for passing packets between the driver and
protocol layers. The mBlk structure is defined in netBufLib.h as:

typedef struct mBlk
{
M_BLK_HDR mBlkHdr; /* block header, pointer to mHdr structure */
M_PKT_HDR mBlkPktHdr; /* packet header, pointer to pktHdr structure */
CL_BLK * pClBlk; /* pointer to cluster block */
} M_BLK;
290

B

B
MUX/NPT Routines and Data Structures
Figure B-2 The M2_ID Structure and Related Structures

M2_ID

M2_DATA

M2_OBJECTID

M2_INTERFACETBL

ifIndex : int
ifDescr : char[]
ifType : long
ifMtu : long
ifSpeed : unsigned long
ifAdminStatus : long
ifOperStatus : long
ifLastChange : unsigned long
ifInOctets : unsigned long

ifInUcastPkts : unsigned long

ifInNUcastPkts : unsigned long
ifInDiscards : unsigned long
ifInErrors : unsigned long
ifInUnknownProtos : unsigned long
ifOutOctets : unsigned long

ifOutUcastPkts : unsigned long

ifOutNUcastPkts : unsigned long
ifOutDiscards : unsigned long
ifOutErrors : unsigned long
ifOutQLen : unsigned long

M2_2233TBL

M2_PHYADDR
addrLength : long
phyAddress : unsigned char[]

ifPhysAddress

1

idLength : long
idArray : long[]

1

ifSpecific

ifName : char[]
ifInMulticastPkts : ULONG
ifInBroadcastPkts : ULONG
ifOutMulticastPkts : ULONG
ifOutBroadcastPkts : ULONG
ifHCInOctets : UI64
ifHCInUcastPkts : UI64
ifHCInMulticastPkts : UI64
ifHCInBroadcastPkts : UI64
ifHCOutOctets : UI64
ifHCOutUcastPkts : UI64
ifHCOutMulticastPkts : UI64
ifHCOutBroadcastPkts : UI64
ifLinkUpDownTrapEnable : UINT
ifHighSpeed : ULONG
ifPromiscuousMode : UINT
ifConnectorPresent : UINT
ifAlias : char[]
ifCounterDiscontinuityTime : ULONG

NOTE: Text in strikethrough indicates elements deprecated in RFC 2233.

mibIfTbl1

mibXIfTbl

1

m2PktCountRtn(M2_ID *, UINT, UCHAR *, ULONG) : STATUS
m2CtrUpdateRtn(M2_ID *, UINT, ULONG) : STATUS
m2VarUpdateRtn(M2_ID *, UINT, caddr_t) : STATUS

m2Data1
291

VxWorks 5.5
Network Programmer’s Guide
The elements of an mBlk structure are:

mBlkHdr
A pointer to an mHdr structure. If you chain this mBlk to another, you will
need to set the value of mBlkHdr.mNext or mBlkHdr.mNextPkt or both. The
mNext element is used to point to the next mBlk in a chain of mBlks, while the
mNextPkt element is used to point to an mBlk that contains the head of the
next packet.

mBlkPktHdr
A pointer to a pktHdr structure. Drivers attached to IP using ipAttach() must
set mBlkPktHdr.len so that the IP receive routine can locate the IP header.

pClBlk
A pointer to a clBlk structure. If you are using the netBufLib routines to
manage the driver’s memory pool, you will have no reason to access or modify
this member. If you are using your own driver memory pool management
routines, you will have to change the pClBlk.pClFreeRtn member to point to
your own memory free routine. This routine must use the same API as the
netBufLib free routine and you will have to update the pClBlk.pFreeArg1,
pClBlk.pFreeArg2, and pClBlk.pFreeArg3 members.

Setting appropriate values for the members of an mBlk structure and the
structures referenced by an mBlk structure is most easily accomplished by calling
the appropriate netBufLib routines for the creation of an mBlk/clBlk/cluster
construct.

B.3.8 MULTI_TABLE

The MULTI_TABLE structure is defined as follows:

typedef struct multi_table
{
long len; /* length of table, in bytes */
char * pTable; /* pointer to entries */
} MULTI_TABLE;
292

B

B
MUX/NPT Routines and Data Structures
B.3.9 NET_FUNCS

The MUX uses this structure to reference the functions implemented for a driver.
The NET_FUNCS structure is defined as:

typedef struct net_funcs
{
STATUS (* start)(void *);
STATUS (* stop)(void *);
STATUS (* unload)(void *);
int (* ioctl)(void *, int, caddr_t);
STATUS (* send)(void *, M_BLK_ID);
STATUS (* mCastAddrAdd)(void *, char*);
STATUS (* mCastAddrDel)(void *, char*);
STATUS (* mCastAddrGet)(void *, MULTI_TABLE*);
STATUS (* pollSend)(void *, M_BLK_ID);
STATUS (* pollRcv)(void *, M_BLK_ID);
M_BLK_ID (* formAddress)(M_BLK_ID, M_BLK_ID, M_BLK_ID, BOOL);
STATUS (* packetDataGet)(M_BLK_ID, LL_HDR_INFO *);
STATUS (* addrGet)(M_BLK_ID, M_BLK_ID, M_BLK_ID, M_BLK_ID, M_BLK_ID);
int (* endBind)(void *, void *, void *, long);
} NET_FUNCS;

The driver functions referred to in this structure are described in greater detail
elsewhere (see NPT Driver Entry Points Exported to the MUX, p.207 and END Entry
Points Exported to the MUX, p.193).
293

VxWorks 5.5
Network Programmer’s Guide
294

C

PPP, SLIP, and

CSLIP
C.1 Introduction

PPP Implementation Limitations

This PPP implementation is very limited. It works with a serial driver only, not
with other such options as a modem or an Ethernet driver. It does not provide an
API for modem support, and modem drivers are not provided for it. It is limited
to sixteen connections. It also supports only standard CHAP, not the Microsoft
CHAP extensions.

This implementation of PPP was originally intended for debugging purposes and
to provide an additional means for downloading a boot image. This version of PPP
should not be used for remote access applications.

NOTE: The PPP, SLIP and CSLIP implementations described in this appendix are
now deprecated for future use and will be removed from the next major release of
Tornado. For more information on the discontinuance of these features, please
contact your local Wind River account manager.

If you require a PPP solution, please ask your Wind River account manager about
WindNet PPP. WindNet PPP is a reliable and manageable PPP solution built upon
an extensible Remote Access Framework.
295

VxWorks 5.5
Network Programmer’s Guide
C.2 Serial Driver Support

The VxWorks target can support IP communication with the host operating system
over serial connections using the following protocols:

� Serial Line IP (SLIP)
� Compressed Serial Line IP (CSLIP)

SLIP and CSLIP (SLIP with compressed headers) provide a simple form of
encapsulation for IP datagrams on serial lines. Using SLIP or CSLIP as a network
interface driver is a straightforward way to use TCP/IP software with
point-to-point configurations such as long-distance telephone lines or RS-232
serial connections between machines.

C.2.1 SLIP and CSLIP Configuration

Configuring your system for SLIP requires configuring both target and host
systems. See your host system’s manual for information on configuring your host.

To use SLIP with your VxWorks target, make the following configuration changes
(for more information on configuring VxWorks, see the Tornado User’s Guide:
Projects):

1. Reconfigure VxWorks to include SLIP support. The relevant configuration
parameter is INCLUDE_SLIP.

2. Specify the device to be used for the SLIP connection, the SLIP Channel
Identifier. The relevant configuration parameter is SLIP_TTY. By default this is
set to 1, which sets the serial device to /tyCo/1.

3. Specify the baud rate or SLIP Channel Speed (optional). The relevant
configuration parameter is SLIP_BAUDRATE. If this is not defined, SLIP uses
the baud rate defined by your serial driver.

4. Specify the SLIP Channel Capacity (optional). The relevant configuration
parameter is SLIP_MTU. If you do not set this, the default value (576) will be
used.

! CAUTION: If you choose to use CSLIP, remember to make sure your host is also
using CSLIP. If your host is configured for SLIP, the VxWorks target receives
packets from the host, but the host cannot correctly decode the CSLIP packets from
the target. Eventually TCP resends the packets as SLIP packets, at which time the
host receives and acknowledge them. However, the whole process is slow. To
avoid this, configure the host and target to use the same serial protocol.
296

C

C
PPP, SLIP, and CSLIP
5. You can force the use of CSLIP when communicating with the host by setting
the Transmit Header Compression Flag. The relevant configuration parameter
is CSLIP_ENABLE.

6. Otherwise, you can allow the use of plain SLIP unless the VxWorks target
receives a CSLIP packet (in which case the target also uses CSLIP) by setting
the Receive Header Compression Flag. The relevant configuration parameter
is CSLIP_ALLOW.

C.3 PPP, the Point-to-Point Protocol for Serial Line IP

PPP provides for the encapsulation of data in frames. It also supports the following
protocols:

� Link Control Protocol (LCP)
� Internet Protocol Control Protocol (IPCP)
� Password Authentication Protocol (PAP)
� Challenge-Handshake Authentication Protocol (CHAP)

This implementation of PPP includes three main components:

� A method for encapsulating multi-protocol datagrams.

� A Link Control Protocol (LCP) for establishing, configuring, and testing the
data-link connection.

� A family of Network Control Protocols (NCPs) for establishing and
configuring different network-layer protocols.

Reference Material on PPP

The following is a list of Requests for Comments (RFCs) associated with this
unsupported PPP implementation:

RFC 1332: The PPP Internet Protocol Control Protocol (IPCP)

RFC 1334: PPP Authentication Protocols

! CAUTION: If you want to use VxSim for Solaris with PPP as the backend, you must
configure VxWorks without BSD 4.3 compatibility. (The relevant configuration
parameter is BSD43_COMPATIBLE). Otherwise, you get an exception in the WDB
task when the target server tries to connect to the WDB agent.
297

VxWorks 5.5
Network Programmer’s Guide
RFC 1548: The Point-to-Point Protocol (PPP)

The USENET news group, comp.protocols.ppp, is dedicated to the discussion of
PPP-related issues. Information presented in this forum is often of a general nature
(such as equipment, setup, or troubleshooting), but technical details concerning
specific PPP implementations are discussed as well.

C.3.1 PPP Configuration

Configuring your environment for PPP requires both host and target software
installation and configuration. See your host’s operating system manual for
information on installing and configuring PPP on your host.1

To include the default PPP configuration, configure VxWorks with PPP support.
The relevant configuration parameter is INCLUDE_PPP.

You can include the optional DES cryptographic package for use with the
Password Authentication Protocol (PAP). The relevant configuration parameter is
INCLUDE_PPP_CRYPT. It is not included in the standard Tornado Release; contact
your WRS Sales Representative to inquire about the availability of this optional
package.

The DES package allows user passwords to be stored in encrypted form on the
VxWorks target. If the package is installed, then it is useful only when the VxWorks
target is acting as a PAP server, that is, when VxWorks is authenticating the PPP
peer. Its absence does not preclude the use of PAP. For detailed information about
using the DES package with PAP, see Using PAP, p.305).

1. If your host operating system does not provide PPP facilities, you can use a publicly avail-
able implementation. One popular implementation for SunOS 4.1.x (and several other
hosts) is the PPP version 2.1.2 implementation provided in the unsupported/ppp-2.1.2
directory. This code is publicly available and is included only as a convenience. This code is
not supported by Wind River Systems.

! CAUTION: A VxWorks image that includes PPP sometimes fails to load. This
failure is due to the static maximum size of the VxWorks image allowed by the
loader. This problem can be fixed by either reducing the size of the VxWorks image
(by removing unneeded options), or by burning new boot ROMs. If you receive a
warning from vxsize when building VxWorks, or if the size of your image becomes
greater than that supported by the current setting of RAM_HIGH_ADRS, see
Creating Bootable Applications in the Tornado User’s Guide: Cross-Development for
information on how to resolve the problem.
298

C

C
PPP, SLIP, and CSLIP
There are three methods of configuration:

� At compile-time, by reconfiguring VxWorks as described in the Tornado User’s
Guide: Projects. Use this method with usrPPPInit(). (See Initializing a PPP Link,
p.302.)

� At run-time, by filling in a PPP options structure. Use this method with
pppInit(). (See Initializing a PPP Link, p.302.)

� At run-time, by setting options in a PPP options file. Use this method with
either usrPPPInit() or pppInit(). You can also use it to change the selection of
PPP options previously configured by one of the other two configuration
methods, although this assumes that the PPP options file is readable without
using the PPP link (for example, an options file located on a target’s local disk).

Each of these methods is described in a section that follows. For brief descriptions
of the various PPP options, see C.3.4 PPP Option Descriptions, p.310.

Setting PPP Options when Configuring VxWorks

The various configuration options offered by this PPP implementation can be
initialized at build-time by defining a number of configuration parameters.

First, make sure the PPP_OPTIONS_STRUCT configuration parameter is set (it is
set by default). Unless PPP_OPTIONS_STRUCT configuration parameter is set,
these configuration options cannot be enabled.

Then, specify the default serial interface that will be used by usrPPPInit() by
setting the PPP_TTY configuration parameter. Configuration options can be
selected using configuration constants only when usrPPPInit() is invoked to
initialize PPP. Specify the number of seconds usrPPPInit() will wait for a PPP link
to be established between a target and peer by defining the PPP_CONNECT_DELAY
configuration parameter. Table 1 lists the principal configuration parameters used
with PPP.

NOTE: See the Tornado User’s Guide for information on how to set configuration
parameters.

Table 1 PPP Configuration Parameters

Constant Purpose

INCLUDE_PPP Include PPP. *
299

VxWorks 5.5
Network Programmer’s Guide
The full list of configuration options available with PPP appears under C.3.4 PPP
Option Descriptions, p.310. By default, all of these options are disabled.

Setting PPP_OPTIONS_STRUCT, PPP_TTY, and PPP_CONNECT_DELAY as well as
any additional configuration parameters, constitutes a modification to the
configuration. These changes do not actually take effect until after you have
recompiled VxWorks and initialized PPP. To initialize PPP, call usrPPPInit(). You
can make this call manually from a target shell (see Initializing a PPP Link, p.302).

Setting PPP Options Using an Options Structure

PPP options may be set at run-time by filling in a PPP options structure and
passing the structure location to the pppInit() routine. This routine is the standard
entry point for initializing a PPP link (see Initializing a PPP Link, p.302).

The PPP options structure is typedefed to PPP_OPTIONS, and its definition is
located in h/netinet/ppp/options.h, which is included through h/pppLib.h.

The first field of the structure is an integer, flags, which is a bit field that holds the
ORed value of the OPT_option macros displayed under C.3.4 PPP Option
Descriptions, p.310. Definitions for OPT_option are located in
h/netinet/ppp/options.h. The remaining structure fields in column 2 are character
pointers to the various PPP options specified by a string.

The following code fragment is one way to set configuration options using the PPP
options structure. It initializes a PPP interface that uses the target’s second serial
port (/tyCo/1). The local IP address is 90.0.0.1; the IP address of the remote peer is

INCLUDE_PPP_CRYPT Include DES cryptographic package.†

PPP_OPTIONS_STRUCT Enable configuration parameters.

PPP_TTY Define default serial interface.

PPP_CONNECT_DELAY Define time-out delay for link establishment.

* If you want to use VxSim for Solaris with PPP as the backend, you must configure
VxWorks with BSD 4.3 compatibility off. The relevant configuration parameter is
BSD43_COMPATIBLE. Otherwise, you get an exception in the WDB task when the
target server tries to connect to the WDB agent.

† This option is not included in the standard Tornado Release; contact your Wind
River Sales Representative to inquire about the availability of this optional package.

Table 1 PPP Configuration Parameters (Continued)

Constant Purpose
300

C

C
PPP, SLIP, and CSLIP
90.0.0.10. The baud rate is the default rate for the tty device. The VJ compression
and authentication options have been disabled, and LCP (Link Control Protocol)
echo requests have been enabled.

PPP_OPTIONS pppOpt; /* PPP configuration options */

void routine ()
{
pppOpt.flags = OPT_PASSIVE_MODE | OPT_NO_PAP | OPT_NO_CHAP |

OPT_NO_VJ;
pppOpt.lcp_echo_interval = "30";
pppOpt.lcp_echo_failure = "10";

pppInit (0, "/tyCo/1", "90.0.0.1", "90.0.0.10", 0, &pppOpt, NULL);
}

Setting PPP Options Using an Options File

PPP options are most conveniently set using an options file. There is one
restriction: the options file must be readable by the target without there being an
active PPP link. Therefore the target must either have a local disk or RAM disk or
an additional network connection. For more information about using file systems,
see VxWorks Programmer’s Guide: Local File Systems.

This configuration method can be used with either usrPPPInit() or pppInit(). It
also can be used to modify the selection of PPP options previously configured
using configuration parameters or the option structure PPP_OPTION.

When using usrPPPInit() to initialize PPP, define the configuration parameter
PPP_OPTIONS_FILE to be the absolute pathname of the options file (NULL by
default). When using pppInit(), pass in a character string that specifies the
absolute pathname of the options file.

The options file format is one option per line; comment lines begin with #. For a
description of option syntax, see the manual entry for pppInit().

The following code fragment generates the same results as the code example in
C.3.4 PPP Option Descriptions, p.310. The difference is that the configuration
options are obtained from a file rather than a structure.

pppFile = "mars:/tmp/ppp_options"; /* PPP config. options file */

void routine ()
{
pppInit (0, "/tyCo/1", "90.0.0.1", "90.0.0.10", 0, NULL, pppFile);
}

301

VxWorks 5.5
Network Programmer’s Guide
In this example, mars:/tmp/ppp_options is a file that contains the following:

passive
no_pap
no_chap
no_vj
lcp_echo_interval 30
lcp_echo_failure 10

C.3.2 Using PPP

After it is configured and initialized, PPP attaches itself into the VxWorks TCP/IP
stack at the driver (link) layer. After a PPP link has been established with the
remote peer, all normal VxWorks IP networking facilities are available; the PPP
connection is transparent to the user.

Initializing a PPP Link

A PPP link is initialized by calls to either usrPPPInit() or pppInit(). When either
of these routines is invoked, the remote peer should be initialized. When a peer is
running in passive mode, it must be initialized first (see C.3.4 PPP Option
Descriptions, p.310.).

You can initialize the PPP interface by calling usrPPPInit():

– From the VxWorks shell.
– By user application code.

Use either syntax when calling usrPPPInit():

usrPPPInit ("bootDevice", unitNum, "localIPAddress", "remoteIPAddress")
usrPPPInit ("bootDevice", unitNum, "localHostName", "remoteHostName")

You can use host names in usrPPPInit() provided the hosts have been previously
added to the host database. For example, you can call usrPPPInit() in the
following way:

usrPPPInit ("ppp=/tyCo/1,38400", 1, "147.11.90.1", "147.11.90.199")

The usrPPPInit() routine calls pppInit(), which initializes PPP with the
configuration parameters that were specified at compile-time (see Setting PPP
Options when Configuring VxWorks, p.299). The pppInit() routine can be called
multiple times to initialize multiple channels.2 The connection timeout is specified
by PPP_CONNECT_DELAY. The return value of this routine indicates whether the
302

C

C
PPP, SLIP, and CSLIP
link has been successfully established. If the return value is OK, the network
connection should be fully operational.

The pppInit() routine is the standard entry point for initializing a PPP link. All
available PPP options can be set using parameters specified for this routine (see
C.3.4 PPP Option Descriptions, p.310). Unlike usrPPPInit(), the return value of
pppInit() does not indicate the status of the PPP link; it merely reports whether
the link could be initialized. To check whether the link is actually established, call
pppInfoGet() and make sure that the state of IPCP is OPENED. The following code
fragment demonstrates use of this mechanism for PPP unit 2:

PPP_INFO pppInfo;

if ((pppInfoGet (2, &pppInfo) == OK) &&
(pppInfo.ipcp_fsm.state == OPENED))
return (OK); /* link established */

else
return (ERROR); /* link down */

Deleting a PPP Link

There are two ways to delete a PPP link:

� By receiving a terminate request packet from the peer.
� By calling pppDelete() to terminate the link.

Merely deleting the VxWorks tasks that control PPP or rebooting the target severs
the link only at the TCP/IP stack, but does not delete the link on the remote peer
end.

The return value of pppDelete() does not indicate the status of the PPP link. To
check whether the link is actually terminated, call pppInfoGet() and make sure
the return value is ERROR. The following code fragment demonstrates the usage
of this mechanism for PPP unit 4:

PPP_INFO pppInfo;

if (pppInfoGet (4, &pppInfo) == ERROR)
return (OK); /* link terminated */

else
return (ERROR); /* link still up */

2. The usrPPPInit() routine can specify the unit number as a parameter. If this number is
omitted, PPP defaults to 0.
303

VxWorks 5.5
Network Programmer’s Guide
PPP Authentication

PPP provides security through two authentication protocols: PAP and CHAP. This
section introduces the use of PPP link-layer authentication and describes the
format of the secrets files.

In this implementation, the default behavior of PPP is to provide authentication
when requested by a peer but not to require authentication from a peer. If
additional security is required, choose PAP or CHAP by enabling the
corresponding option. This PPP implementation can act as a client (the peer
authenticating itself) or a server (the authenticator).

Authentication for both PAP and CHAP is based on secrets, selected from a secrets
file or from the secrets database built by the user (which can hold both PAP and
CHAP secrets). A secret is represented by a record, which itself is composed of
fields. The secrets file and the secrets database contain secrets that authenticate
other clients, as well as secrets used to authenticate the VxWorks client to its peer.
In the case that a VxWorks target cannot access the secrets file through the file
system, use pppSecretAdd() to build a secrets database.

Secrets files for PAP and CHAP use identical formats. A secrets record is specified
in a file by a line containing at least three words that specify the contents of the
fields client, server, and secret, in that order. For PAP, secret is a password that must
match the password entered by the client seeking PAP authentication. For CHAP,
both client and server must have identical secrets records in their secrets files; the
secret consists of a string of one or more words (for example, “an unguessable
secret”).

Table 2 is an example of a secrets file. It could be either a PAP or CHAP secrets file,
since their formats are identical.

At the time of authentication, for a given record, PPP interprets any words
following client, server, and secret as acceptable IP addresses for the client and secret
specified. If there are only three words on the line, it is assumed that any IP address
is acceptable; to disallow all IP addresses, use a dash (-). If the secret starts with an
@, what follows is assumed to be the name of a file from which to read a secret. An
asterisk (*) as the client or server name matches any name. When authentication is
initiated, a best-match algorithm is used to find a match to the secret, meaning that,
given a client and server name, the secret returned is for the closest match found.

NOTE: This version of CHAP does not support RFC 2433 – Microsoft PPP CHAP
Extensions (“MS-CHAP” or “CHAP-0x80”), which is used by some NT servers.
304

C

C
PPP, SLIP, and CSLIP
On receiving an authentication request, PPP checks for the existence of secrets
either in an internal secrets database or in a secrets file. If PPP does not find the
secrets information, the connection is terminated.

The secrets file contains secrets records used to authenticate the peer, and those
used to authenticate the VxWorks client to the peer. Selection of a record is based
on the local and remote names. By default, the local name is the host name of the
VxWorks target, unless otherwise set to a different name by the option
local_auth_name in the options file. The remote name is set to a NULL string by
default, unless otherwise set to a name specified by the option remote_auth_name
in the options file. (Both local_auth_name and remote_auth_name can be
specified in two other forms, as can other configuration options listed under
C.3.4 PPP Option Descriptions, p.310.)

Using PAP. The default behavior of PPP is to authenticate itself if requested by a
peer but not to require authentication from a peer. For PPP to authenticate itself in
response to a server’s PAP authentication request, it only requires access to the
secrets. For PPP to act as an authenticator, you must turn on the PAP configuration
option.

Secrets can be declared in a file or built into a database. The secrets file for PAP can
be specified in one of the following ways:

� By reconfiguring VxWorks with the PSP file specified. The relevant
configuration parameter is PPP_STR_PAP_FILE.

� By setting the pap_file member of the PPP_OPTIONS structure passed to
pppInit().

� By adding the following line entry in the PPP options file specified in your
configuration:

pap_file /xxx/papSecrets

Table 2 Secrets File Format

client server secret IP address

vxTarget mars "vxTargetSECRET"

venus vxTarget "venusSECRET" 147.11.44.5

* mars "an unguessable secret"

venus vxTarget "venusSECRET" -

vxTarget mars @host:/etc/passwd
305

VxWorks 5.5
Network Programmer’s Guide
If the VxWorks target is unable to access the secrets file, call pppSecretAdd() to
build a secrets database.

If PPP requires the peer to authenticate itself using PAP, the necessary
configuration option can be set in one of the following ways:

1. By reconfiguring VxWorks with PAP required. The relevant configuration
parameter is PPP_OPT_REQUIRE_PAP.

2. By setting the flag OPT_REQUIRE_PAP in the flags bit field of the
PPP_OPTIONS structure passed to pppInit();

3. By adding the following line entry in the options file.

require_pap

Secrets records are first searched in the secrets database; if none are found there,
then the PAP secrets file is searched. The search proceeds as follows:

� VxWorks as an authenticator: PPP looks for a secrets record with a client field
that matches the user name specified in the PAP authentication request packet
and a server field matching the local name. If the password does not match the
secrets record supplied by the secrets file or the secrets database, it is
encrypted, provided the optional DES cryptographic package is installed.
Then it is checked against the secrets record again. Secrets records for
authenticating the peer can be stored in encrypted form if the optional DES
package is used. If the login option was specified, the user name and the
password specified in the PAP packet sent by the peer are checked against the
system password database. This enables restricted access to certain users.

� VxWorks as a client: When authenticating the VxWorks target to the peer, PPP
looks for the secrets record with a client field that matches the user name (the
local name unless otherwise set by the PAP user name option in the options
file) and a server field matching the remote name.

Using CHAP. The default behavior of PPP is to authenticate itself if requested by a
peer but not to require authentication from a peer. For PPP to authenticate itself in
response to a server’s CHAP authentication request, it only requires access to the
secrets. For PPP to act as an authenticator, you must turn on the CHAP
configuration option.

CHAP authentication is instigated when the authenticator sends a challenge
request packet to the peer, which responds with a challenge response. Upon receipt
of the challenge response from the peer, the authenticator compares it with the
expected response and thereby authenticates the peer by sending the required
acknowledgment. CHAP uses the MD5 algorithm for evaluation of secrets.
306

C

C
PPP, SLIP, and CSLIP
The secrets file for CHAP can be specified in any of the following ways:

� By reconfiguring VxWorks with the CHAP file specified. The relevant
configuration parameter is PPP_STR_CHAP_FILE.

� By setting the chap_file member of the PPP_OPTIONS structure passed to
pppInit().

� By adding the following line entry in the options file:

chap_file /xxx/chapSecrets

If PPP requires the peer to authenticate itself using CHAP, the necessary
configuration option can be set in one of the following ways:

� By reconfiguring VxWorks with CHAP required. The relevant configuration
parameter is PPP_OPT_REQUIRE_CHAP.

� By setting the flag OPT_REQUIRE_CHAP in the flags bit field of the
PPP_OPTIONS structure passed to pppInit().

� By adding the following line entry in the options file:

require_chap

Secrets are first searched in the secrets database; if none are found there, then the
CHAP secrets file is searched. The search proceeds as follows:

� VxWorks as an authenticator: When authenticating the peer, PPP looks for a
secrets record with a client field that matches the name specified in the CHAP
response packet and a server field matching the local name.

� VxWorks as a client: When authenticating the VxWorks target to the peer, PPP
looks for the secrets record with a client field that matches the local name and
a server field that matches the remote name.

Connect and Disconnect Hooks

PPP provides connect and disconnect hooks for use with user-specific software.
Use the pppHookAdd() routine to add a connect hook that executes software
before initializing and establishing the PPP connection or a disconnect hook that
executes software after the PPP connection has been terminated. The
pppHookDelete() routine deletes connect and disconnect hooks.

The routine pppHookAdd() takes three arguments: the unit number, a pointer to
the hook routine, and the hook type (PPP_HOOK_CONNECT or
PPP_HOOK_DISCONNECT). The routine pppHookDelete() takes two arguments:
307

VxWorks 5.5
Network Programmer’s Guide
the unit number and the hook type. The hook type distinguishes between the
connect hook and disconnect hook routines.

Two arguments are used to call the connect and disconnect hooks: unit, which is
the unit number of the PPP connection, and fd, the file descriptor associated with
the PPP channel. If the user hook routines return ERROR, then the link is gracefully
terminated and an error message is logged.

The code in Example 1 demonstrates how to hook the example routines,
connectRoutine() and disconnectRoutine(), into the PPP connection
establishment mechanism and termination mechanism, respectively.

Example 1 Using Connect and Disconnect Hooks

#include <vxWorks.h>
#include <pppLib.h>

void attachRoutine(void);
static int connectRoutine(int, int);
static int disconnectRoutine(int, int);

void attachRoutine(void)
{

/* add connect hook to unit 0 */
pppHookAdd(0, connectRoutine, PPP_HOOK_CONNECT);

/* add disconnect hook to unit 0 */
pppHookAdd(0, disconnectRoutine, PPP_HOOK_DISCONNECT);
}

static int connectRoutine
(
int unit,
int fd
)
BOOL connectOk = FALSE;

/* user specific connection code */
{
.......................
connectOk = TRUE;

if(connectOk)
{
return(OK);

else
return(ERROR);

}

! CAUTION: In VxWorks AE, hooks such as the connect and disconnect hooks
described here must be in the kernel domain.
308

C

C
PPP, SLIP, and CSLIP
static int disconnectRoutine
(
int unit,
int fd
)
{
BOOL disconnectOk = FALSE;

/* user specific code */
{

..
disconnectOk = TRUE;
}
if(disconnectOk)

return(OK);
else

return(ERROR);
}

C.3.3 Troubleshooting PPP

Because of the complex nature of PPP, you may encounter problems using it in
conjunction with VxWorks. Give yourself the opportunity to get familiar with
running VxWorks configured with PPP by starting out using a default
configuration. Additional options for the local peer should be disabled. (You can
always add these options later.) Problems with PPP generally occur in either of two
areas: when establishing links and when using authentication. The following
sections offer checklists for troubleshooting errors that have occurred during these
processes.

Link Establishment

The link is the basic operating element of PPP; a proper connection ensures the
smooth functioning of PPP, as well as VxWorks. The following steps should help
resolve simple problems encountered when establishing a link.

1. Make sure that the serial port is connected properly to the peer. A null modem
may be required.

2. Make sure that the serial driver is correctly configured for the default baud rate
of 9600, no parity, 8 DATA bits, and 1 STOP bit.

3. Make sure that there are no problems with the serial driver. PPP may not work
if there is a hang up in the serial driver.

4. Start the PPP daemon on the peer in the passive mode.
309

VxWorks 5.5
Network Programmer’s Guide
5. Boot the VxWorks target and start the PPP daemon by typing:

% usrPPPInit

If no arguments are supplied, the target configures the default settings. If a
timeout error occurs, reconfigure VxWorks with a larger connect delay time.
The relevant configuration parameter is PPP_CONNECT_DELAY. By default,
the delay is set to 15 seconds, which may not be sufficient in some
environments.

6. Once the connection is established, add and test additional options.

Authentication

Authentication is one of the more robust features of this PPP implementation. The
following steps may help you troubleshoot basic authentication problems.

1. Turn on the debug option for PPP. The relevant configuration parameter is
PPP_OPT_DEBUG. You can also use the alternative options in C.3.4 PPP Option
Descriptions, p.310. By turning on the debug option, you can witness various
stages of authentication.

2. If the VxWorks target has no access to a file system, use pppSecretAdd() to
build the secrets database.

3. Make sure the secrets file is accessible and readable.

4. Make sure the format of the secrets file is correct.

5. PPP uses the MD5 algorithm for CHAP authentication of secrets. If the peer
tries to use a different algorithm for CHAP, then the CHAP option should be
turned off.

6. Turn off the VJ compression. It can be turned on after you get authentication
working.

C.3.4 PPP Option Descriptions

This section lists all the configurable options supported by this PPP
implementation. You can configure each of these options from three different
locations:

� the VxWorks image configuration tool
(see Setting PPP Options when Configuring VxWorks, p.299)
310

C

C
PPP, SLIP, and CSLIP
� a PPP_OPTIONS structure passed into pppInit()
(see Setting PPP Options Using an Options Structure, p.300)

� a PPP options file
(see Setting PPP Options Using an Options File, p.301)

If you set the same option using more than one of the above methods, the option
settings specified in the options file PPP_OPTIONS_FILE take precedence over any
set using the VxWorks image configuration tool or by passing a PPP_OPTIONS
structure into pppInit(). For example:

� If VxWorks is configured with the use of PAP negated, a subsequent setting of
require_pap in PPP_OPTIONS_FILE overrides the earlier setting enabling PAP
authentication. The relevant configuration parameter is PPP_OPT_NO_PAP.

� If char * netmask has been passed in the options structure PPP_OPTIONS to
pppInit() with a value of FFFF0000, and netmask FFFFFF00 is passed in
PPP_OPTIONS_FILE to usrPPPInit(), the network mask value is set to
FFFFFF00.

Table C-1 Configuration Options for PPP

Set in config.h Set Using Options Structure Set Using Options File

PPP_OPT_DEBUG OPT_DEBUG debug

Enable PPP daemon debug mode.

PPP_OPT_DEFAULT_ROUTE OPT_DEFAULT_ROUTE default_route

After IPCP negotiation is successfully completed, add a
default route to the system routing tables. Use the peer as
the gateway. This entry is removed when the PPP
connection is broken.

PPP_OPT_DRIVER_DEBUG OPT_DRIVER_DEBUG driver_debug

Enable PPP driver debug mode.

PPP_OPT_IPCP_ACCEPT_LOCAL OPT_IPCP_ACCEPT_LOCAL ipcp_accept_local

Set PPP to accept the remote peer’s idea of the target’s
local IP address, even if the local IP address was
specified.

PPP_OPT_IPCP_ACCEPT_REMOTE OPT_IPCP_ACCEPT_REMOTE ipcp_accept_remote

Set PPP to accept the remote peer’s idea of its (remote) IP
address, even if the remote IP address was specified.
311

VxWorks 5.5
Network Programmer’s Guide
PPP_OPT_LOGIN OPT_LOGIN login

Use the login password database for PAP authentication
of peer.

PPP_OPT_NO_ACC OPT_NO_ACC no_acc

Disable address/control compression.

PPP_OPT_NO_ALL OPT_NO_ALL no_all

Do not request/allow any options.

PPP_OPT_NO_CHAP OPT_NO_CHAP no_chap

Do not allow CHAP authentication with peer.

PPP_OPT_NO_IP OPT_NO_IP no_ip

Disable IP address negotiation in IPCP.

PPP_OPT_NO_MN OPT_NO_MN no_mn

Disable magic number negotiation.

PPP_OPT_NO_MRU OPT_NO_MRU no_mru

Disable MRU (Maximum Receive Unit) negotiation.

PPP_OPT_NO_PAP OPT_NO_PAP no_pap

Do not allow PAP authentication with peer.

PPP_OPT_NO_PC OPT_NO_PC no_pc

Disable protocol field compression.

PPP_OPT_NO_VJ OPT_NO_VJ no_vj

Disable VJ (Van Jacobson) compression.

PPP_OPT_NO_VJCCOM OPT_NO_ASYNCMAP no_asyncmap

Disable async map negotiation.

PPP_OPT_NO_VJCCOMP OPT_NO_VJCCOMP no_vjccomp

Disable VJ (Van Jacobson) connection ID compression.

PPP_OPT_PASSIVE_MODE OPT_PASSIVE_MODE passive_mode

Set PPP in passive mode so it waits for the peer to
connect, after an initial attempt to connect.

PPP_OPT_PROXYARP OPT_PROXY_ARP proxy_arp

Add an entry to this system’s ARP (Address Resolution
Protocol) table with the IP address of the peer and the
Ethernet address of this system.

Table C-1 Configuration Options for PPP

Set in config.h Set Using Options Structure Set Using Options File
312

C

C
PPP, SLIP, and CSLIP
PPP_OPT_REQUIRE_CHAP OPT_REQUIRE_CHAP require_chap

Require CHAP authentication with peer.

PPP_OPT_REQUIRE_PAP OPT_REQUIRE_PAP require_pap

Require PAP authentication with peer.

PPP_OPT_SILENT_MODE OPT_SILENT_MODE silent_mode

Set PPP in silent mode. PPP does not transmit LCP
packets to initiate a connection until a valid LCP packet
is received from the peer.

PPP_STR_ASYNCMAP char * asyncmap asyncmap value

Set the desired async map to the specified value.

PPP_STR_CHAP_FILE char * chap_file chap_file file

Get CHAP secrets from the specified file. This option is
necessary if either peer requires CHAP authentication.

PPP_STR_CHAP_INTERVAL char * chap_interval chap_interval value

Set the interval in seconds for CHAP rechallenge to the
specified value.

PPP_STR_CHAP_RESTART char * chap_restart chap_restart value

Set the timeout in seconds for the CHAP negotiation to
the specified value.

PPP_STR_ESACAPE_CHARS char * escape_chars escape_chars value

Set the characters to escape on transmission to the
specified values.

PPP_STR_IPCP_MAX_CONFIGURE char * ipcp_max_configure ipcp_max_configure value

Set the maximum number of transmissions for IPCP
configuration requests to the specified value.

PPP_STR_IPCP_MAX_FAILURE char * ipcp_max_failure ipcp_max_failure value

Set the maximum number of IPCP configuration NAKs
to the specified value.

PPP_STR_IPCP_MAX_TERMINATE char * ipcp_max_terminate ipcp_max_terminate value

Set the maximum number of transmissions for IPCP
termination requests to the specified value.

PPP_STR_IPCP_RESTART char * ipcp_restart ipcp_restart value

Set the timeout in seconds for the IPCP negotiation to the
specified value.

Table C-1 Configuration Options for PPP

Set in config.h Set Using Options Structure Set Using Options File
313

VxWorks 5.5
Network Programmer’s Guide
PPP_STR_LCP_ECHO_FAILURE char * lcp_echo_failure lcp_echo_failure value

Set the maximum consecutive LCP echo failures to the
specified value.

PPP_STR_LCP_ECHO_INTERVAL char * lcp_echo_interval lcp_echo_interval value

Set the interval in seconds for the LCP negotiation to the
specified value.

PPP_STR_LCP_MAX_CONFIGURE char * lcp_max_configure lcp_max_configure value

Set the maximum number of transmissions for LCP
configuration requests to the specified value.

PPP_STR_LCP_MAX_FAILURE char * lcp_max_failure lcp_max_failure value

Set the maximum number of LCP configuration NAKs to
the specified value.

PPP_STR_LCP_MAX_TERMINATE char * lcp_max_terminate lcp_max_terminate value

Set the maximum number of transmissions for LCP
termination requests to the specified value.

PPP_STR_LCP_RESTART char * lcp_restart lcp_restart value

Set the timeout in seconds for the LCP negotiation to the
specified value.

PPP_STR_LOCAL_AUTH_NAME char * local_auth_name local_auth_name name

Set the local name for authentication to the specified
name.

PPP_STR_MAX_CHALLENGE char * max_challenge max_challenge value

Set the maximum number of transmissions for CHAP
challenge requests to the specified value.

PPP_STR_MRU char * mru mru value

Set MRU (Maximum Receive Unit) for negotiation to the
specified value.

PPP_STR_MTU char * mtu mtu value

Set MTU (Maximum Transmission Unit) for negotiation
to the specified value.

PPP_STR_NETMASK char * netmask netmask value

Set the network mask value for negotiation to the
specified value.

Table C-1 Configuration Options for PPP

Set in config.h Set Using Options Structure Set Using Options File
314

C

C
PPP, SLIP, and CSLIP
PPP_STR_PAP_FILE char * pap_file pap_file file

Get PAP secrets from the specified file. This option is
necessary if either peer requires PAP authentication.

PPP_STR_PAP_MAX_AUTHREQ char * pap_max_authreq pap_max_authreq value

Set the maximum number of transmissions for PAP
authentication requests to the specified value.

PPP_STR_PAP_PASSWD char * pap_passwd pap_passwd passwd

Set the password for PAP authentication with the peer to
the specified password.

PPP_STR_PAP_RESTART char * pap_restart pap_restart value

Set the timeout in seconds for the PAP negotiation to the
specified value.

PPP_STR_PAP_USER_NAME char * pap_user_name pap_user_name name

Set the user name for PAP authentication with the peer to
the specified name.

PPP_STR_REMOTE_AUTH_NAME char * remote_auth_name remote_auth_name name

Set the remote name for authentication to the specified
name.

PPP_STR_VJ_MAX_SLOTS char * vj_max_slots vj_max_slots value

Set the maximum number of VJ compression header slots
to the specified value.

Table C-1 Configuration Options for PPP

Set in config.h Set Using Options Structure Set Using Options File
315

VxWorks 5.5
Network Programmer’s Guide
316

Index
Numerics
00region.sdf 26

A
address resolution

IP sublayers, for 271
network services, for 224

addresses, see Internet addresses; port addresses
AgentX 116
albp, DHCP lease table parameter 104
alignment, buffer

network interface drivers and 186
anchor, shared-memory 23
ARP

cache size 46
ARP_MAX_ENTRIES 46
arpResolve() 88
arpresolve()

MUX and 184
arpShow() 88
arptabShow() 88
asyncmap 313
AUTH_UNIX (RPC) 164
authentication

CHAP 306
NFS 164

PAP 305

B
backplane network heartbeat 25
backplanes

interrupt types 29
processor numbers 22
shared-memory networks, using with 22

bad (inet on backplane (b)) 114
Berkeley Packet Filter (BPF) 20

creating BPF devices 20
device name 20
header length, determining 21
link level frame type, finding 21
numUnits, setting 20

big-endian numbers 92
BIOCSETF ioctl command 21
BIOCSETIF ioctl command 21
boot line

example 62
boot parameters

bad (inet on backplane (b)) 114
bootDev (boot device) 112
bootFile (file name) 115
ead (inet on ethernet (e)) 114
flags (flags (f)) 112
gad (gateway inet (g)) 114
317

VxWorks 5.5
Network Programmer’s Guide
had (host inet (h)) 114
network devices, initializing 111–113
NVRAM and 111–113
procNum (processor number) 112
unitNum (unit number) 112

bootDev (boot device) 112
bootFile (file name) 115
BOOTP (Bootstrap Protocol) 96

boot parameters
required for initializing 111–113
returned by 113

configuring 97
database (bootptab) 96
public domain file 97

bootptab database 96
example 97
targets, registering 98

borrowed IP addresses 90
BPF, see Berkeley Packet Filter
BPF_HLEN 21
BPF_TYPE 21
bpfDevCreate() 20
bpfDrv() 20
broadcasting

addresses, configuring 70
multi-homed proxy clients, using 90
proxy ARP, and 83
RIP, using 118

BSD drivers
entry points, implementing 218
porting to MUX 217

BSD sockets, see datagram sockets; sockets; stream
sockets

BSD43_COMPATIBLE 300
RIP, and 120

BSP
#define example 189

buffer alignment in network interface drivers 186
buffers

chaining 185
freeing 182
manipulation macros for 255

C
chaining buffers 185
Challenge-Handshake Authentication Protocol

(CHAP)
secrets files, specifying 307
using 306

chap_file 313
chap_file member 307
chap_interval 313
chap_restart 313
checksum, for IP, preventing 48
CIDR (Classless Inter-domain Routing) 63
CL_DESC tables 252

network memory pool 50
system memory pool 50

Classless Inter-domain Routing, see CIDR
clBlk structures

freeing 255
memory pools, in

built-in network stack 52
user-defined 250

clDescTbl[] 50
cluster size, setting 51

clid, DHCP lease table parameter 104
cluster sizes

valid size values 250
clusters

creating 254
freeing 255
memory pools, in

built-in network stack 50
user-defined 250

sizes, setting
built-in network stack, for 51
user-defined, for 253

storing data in 254
code examples 125

PPP hooks, connecting and disconnecting 308
sockets, using

multicasting (datagram) 131
stream 136

zbuf sockets
display routine 151
TCP server, converting a 153
318

IX

Index
component description file, example 108
compressed Serial Line IP, see CSLIP
configNet.h

ENDs, adding 189
NPT drivers, adding 204

configuration parameters, list of 41
configuring

boot line 43
BOOTP 97
CSLIP 297
DHCP 100–110
ICMP 45
IP-to-link layer interface 60
network stack 44–58
PPP 298
proxy ARP 84
resolver (DNS) 175
RIP (Routing Information Protocol) 119
SLIP 296
TCP 45
TCP/IP protocol suite 41
UDP 45

cryptographic package, DES 298
CSLIP (compressed SLIP) 296

see also SLIP
configuring 297

CSLIP_ALLOW 297
CSLIP_ENABLE 297

D
daemons

routing routed 76
data link layer 19–40

see also drivers; MUX
custom interfaces 40

datagram sockets 125–135
code examples

client-server communication 125
multicasting 131

defined 124
multicasting 129

datagrams, see broadcasting; UDP
datalink-MUX interface 182

debug 311
debugging, see troubleshooting
default_route 311
DES cryptographic package 298
DEV_OBJ structure 284
DHCP 99–111

see also BOOTP; Berkeley Packet Filter; UDP;
RFC 1541

see online dhcpcLib
boot parameters

required for initializing 111–113
returned by 113

IP address, changing target’s 100
leases

IP addresses and other parameters 100
lease table parameters 104

DHCP client
applications, using in 110
configuring 101
including 100

DHCP relay agent
configuring 109
host port 109
including 100
message size, maximum 109
network radius 109
target port 109

DHCP server
adding entries to running 105
addresses

storage routine 103
storing 106

configuring 102
host port 103
including 100
leases

lease table configuration 103
standard length 103
storage routine 103
storing 106

message size, maximum 103
network configuration data, storing 106
network radius 103
relay agent table configuration 105
storage hooks
319

VxWorks 5.5
Network Programmer’s Guide
.cdf file example 108
target port 103
unsupported example 108

DHCP_MAX_HOPS
DHCP server and 103
relay agent and 109

DHCP_SPORT 103
DHCPC_CPORT 101
DHCPC_DEFAULT_LEASE 101
DHCPC_LEASE_NEW 110
DHCPC_MAX_LEASES 101

boot-time lease and 110
DHCPC_MAX_MSGSIZE 101
DHCPC_MIN_LEASE 101
DHCPC_OFFER_TIMEOUT 101
DHCPC_SPORT 101
dhcpcBind() 110
dhcpcEventHookAdd() 102
dhcpcInit() 110
dhcpcLeaseHookAdd() 110
dhcpcOptionAdd() 110
dhcpcOptionGet() 111
dhcpcOptionSet() 110
dhcpcParamsGet() 111
dhcpInformGet() 111
dhcpLeaseEntryAdd() 102
dhcpOptionGet() 111
dhcps command 108
DHCPS_ADDRESS_HOOK

DHCP server and 103
using 106

DHCPS_CPORT
DHCP server and 103
relay agent and 109

DHCPS_DEFAULT_LEASE 103
DHCPS_LEASE_HOOK

DHCP server and 103
using 106

DHCPS_MAX_MSGSIZE 109
DHCP server and 103

DHCPS_SPORT 109
DHCPS_STORAGE_CLEAR 107
DHCPS_STORAGE_READ 107
DHCPS_STORAGE_START 106
DHCPS_STORAGE_STOP 107

DHCPS_STORAGE_WRITE 107
dhcpsLeaseEntryAdd() 105
dhcpsLeaseTbl structure 103
dhcpsRelayTbl structure 105
dhcpTargetTbl structure 109
distance-vector protocols 117
DNS (Domain Name System) 173

debugging 176
domain names 174
IP address, setting 175
name server 173
NIC (Network Information Center) 174
resolver 174

DNS_DEBUG 176
Domain Name System, see DNS
dosFs

NFS and 168
driver_debug 311
drivers

see also BSD drivers; data link layer; Enhanced
Network Driver (END); Network
Protocol Toolkit (NPT) drivers

CSLIP 296
custom interfaces 40
Ethernet 19
PPP 297–310
shared-memory network 21
SLIP 296

E
ead (inet on ethernet (e)) 114

assigning addresses and masks 61
boot line, and 62

EAGAIN
muxTkPollReceive() and 280

EIOCGADDR
endIoctl(), and 202
nptIoctl(), and 216

EIOCGFBUF
endIoctl(), and 202
nptIoctl(), and 216

EIOCGFLAGS
endIoctl(), and 202
320

IX

Index
nptIoctl(), and 216
EIOCGHDRLEN

endIoctl(), and 202
nptIoctl(), and 216

EIOCGMIB
NPT drivers, and 215

EIOCGMIB2
endIoctl(), and 202
nptIoctl(), and 216

EIOCGMIB2233
nptIoctl(), and 216

EIOCGNPT 215
EIOCMULTIADD

endIoctl(), and 202
nptIoctl(), and 216

EIOCMULTIDEL
endIoctl(), and 202
nptIoctl(), and 216

EIOCMULTIGET
endIoctl(), and 202
nptIoctl(), and 216

EIOCPOLLSTART
endIoctl(), and 202
nptIoctl(), and 216

EIOCPOLLSTOP
endIoctl(), and 202
nptIoctl(), and 216

EIOCQUERY
endIoctl(), and 202
nptBind(), and 205
nptIoctl(), and 216

EIOCSADDR
endIoctl(), and 202
nptIoctl(), and 216

EIOCSFLAGS
endIoctl(), and 202
nptIoctl(), and 216

END (Enhanced Network Driver)
see also network interface drivers 189
adding to an image 189
address resolution and 184
bind event, response to 191
compared to NPT drivers 182
data structures shared with MUX 192
entry points 183

exported to MUX 193
example 188
generic driver template for 179
implementing 188–202
ioctl support 201
launching 191
MUX interface 192
receiving frames 191
servicing interrupts 191

END_BIND_QUERY 205
END_ERR structure 285
END_ERR_BLOCK

muxTkSend(), and 228
END_ERR_DOWN error code 285
END_ERR_FLAGS error code 285
END_ERR_INFO error code 285
END_ERR_RESET error code 285
END_ERR_UP error code 285
END_ERR_WARN error code 285
END_OBJ 285–289

allocating and populating 182
BSD drivers, and 218
ENDs, and 192
NPT drivers, and 207

END_QUERY structure 289
bind calls, responding to 205
nptIoctl(), and 217

endAddressForm() 199
endAddrGet() 200
endBind() 183
endDevTbl[] 182

ENDs, and 189
example 190
NPT drivers, and 204

endian conversion 92
endIoctl() 201

return values 202
endLib 184
endLoad() 194

calling 191
example 194
initialization string, defining 190
responsibilities of 194
return values of 194
specifying 190
321

VxWorks 5.5
Network Programmer’s Guide
endMCastAddrAdd() 196
endMCastAddrDel() 196
endMCastAddrGet() 197
endPacketDataGet() 201
endPollReceive() 198
endPollSend() 197
endSend() 195

return values of 196
endStart() 198

calling 191
endStop() 199
endUnLoad() 195
endUnload()

memory leaks and 222
ENETDOWN

muxPollReceive() and 280
muxPollSend() and 281

ENOTSUP
socket functions and 234

Envoy (SNMP optional product) 116
errCode 285
escape_chars 313
esm (boot device) 23
Ethernet drivers 19

F
flags (flags (f)) 112
flow control 228
FTP (File Transfer Protocol)

file permissions 159
network devices, creating 161
REST command 160
user ID, setting 158

ftpdLib 160
ftpLib 160

G
gad (gateway inet (g)) 114

default gateway and 79
gateways

adding 75
UNIX 76
Windows 76

default 76
deleting 80

gather-write
supporting 185

group 165

H
had (host inet (h)) 114
headers

prepending 211
heartbeat, shared-memory 25
hooks

connect and disconnect (PPP) 307
hop count

RIP and 117
specifying in /etc/gateways 76

host names
DNS, translating with 173
Internet addresses to, assigning 93

hostAdd()
additional network interfaces and 67
host name mapping and 93
remote file systems and 165

hostent structure (DNS) 174
hostGetByAddr() 175
hostGetByName() 175
hosts.equiv 160
hostShow() 93
htonl() 92
htons() 92

I
iam() 158
ICMP 45

configuration flags 48
configuring 45

ICMP_FLAGS_DFLT 48
322

IX

Index
if_sm shared-memory network driver 21
ifAddrSet() 61

CIDR and 66
ifBroadcastSet() 71
ifconfig command 65
IFF_MULTICAST flag 129
ifMaskSet() 61
ifShow() 88

multiple network drivers, starting 67
ifUnnumberedSet() 90
igmpInterfaceDisable() 74
igmpInterfaceEnable() 73
igmpLibInit() 72
igmpMsgQ 71
igmpNameToPort() 74
igmpRouterLibInit() 73
igmpRouterLibQuit() 73
IGMPv2 (Internet Group Management Protocol

Version 2) 71
about 46
API 72
including in an image 72
router, multiple interfaces required for 73
tasks 71
VIFs (virtual interfaces or ports) 74

IGMPv2 Routing (project facility component) 72
INADDR_ALLHOSTS_GROUP 130
INADDR_MAX_LOCAL_GROUP 131
INADDR_UNSPEC_GROUP 130
INCLUDE_BSD_SOCKET 120
INCLUDE_DHCPC 100
INCLUDE_DHCPR 100
INCLUDE_DHCPS 100
INCLUDE_DNS_RESOLVER 175
INCLUDE_FTP 160
INCLUDE_FTP_SERVER 162
INCLUDE_FTPD_SECURITY 162
INCLUDE_ICMP 45
INCLUDE_IGMP 72
INCLUDE_IGMP_ROUTER 72
INCLUDE_MCAST_ROUTING 72
INCLUDE_NET_DRV 161
INCLUDE_NET_SHOW 266
INCLUDE_NET_SYM_TBL 113
INCLUDE_NETWORK 249

INCLUDE_NETWRS_REMLIB 159
INCLUDE_NFS 163
INCLUDE_NFS_MOUNT_ALL 163
INCLUDE_NFS_SERVER 164
INCLUDE_PING 85
INCLUDE_PPP 298
INCLUDE_PPP_CRYPT 298
INCLUDE_PROXY_CLIENT 86
INCLUDE_PROXY_DEFAULT_ADDR 84
INCLUDE_PROXY_SERVER 84

shared memory and 86
INCLUDE_RIP 119
INCLUDE_RLOGIN 171
INCLUDE_RPC 170
INCLUDE_SECOND_SMEND_BOOT 35
INCLUDE_SECOND_SMNET 36
INCLUDE_SLIP 296
INCLUDE_SM_COMMON 36
INCLUDE_SM_NET 36

proxy ARP and 85
INCLUDE_SM_NET_SHOW 36
INCLUDE_SM_SEQ_ADDR 86

proxy ARP, configuring 85
sequential addressing

Tornado 2 32
Tornado 3 31

INCLUDE_SMEND 35
INCLUDE_SNTPC 176
INCLUDE_SNTPS 177
INCLUDE_SOCK_ZBUF 152
INCLUDE_TCP 45
INCLUDE_TELNET 171
INCLUDE_TFTP_CLIENT 169, 170
INCLUDE_TFTP_SERVER 169
INCLUDE_UDP 45
INCLUDE_ZBUF_SOCK 142
inet addresses, see Internet addresses
input hooks

disadvantages 20
Internet addresses

assigning
conventions for 66
host names, to 93
network interfaces, to 61

backplane, of 114
323

VxWorks 5.5
Network Programmer’s Guide
booting gateway, of 114
broadcasting 70
class-based 62
classless (CIDR) 63
correcting errors 66
DNS, translating with 173
host, of 114
network address from host address,

distinguishing 61
network interfaces, assigning for 65
SLIP connection, local end of 114
target on Ethernet, of 114

ioctl commands
issuing from a network service 228
multicast table maintenance and 215
muxIoctl() 276
reserved range 202

iosDrvInstall()
socket functions passed to 246
usrSockLibInit(), and 237

iosFdNew() 238
IP (Internet Protocol)

addresses
assignment conventions 66
borrowed 90
network interfaces, assigning to 61

binding to the MUX 61
broadcasting 70
checksum, preventing 48
class-based addresses 62
classless addresses (CIDR) 63
configuration flags 48
configuring interface to link layer 60
ead values 61
packet fragments, time-to-live value 49
packet queue size 49
time-to-live value 49

IP_ADD_MEMBERSHIP 130
IP_DROP_MEMBERSHIP 130
IP_FLAGS_DFLT 48
IP_FRAG_TTL_DFLT 49
IP_MAX_UNITS

multiple drivers and 221
multiple network drivers, using

build time, at 58

run-time, configuring at 67
IP_MULTICAST_IF 130
IP_MULTICAST_LOOP 130
IP_MULTICAST_TTL 130
IP_QLEN_DFLT 49
IP_TTL_DFLT 49
ipAttach() 61

multiple network interfaces, attaching 67
muxBind() and 181

ipcp_accept_local 311
ipcp_accept_remote 311
ipcp_max_configure 313
ipcp_max_failure 313
ipcp_max_terminate 313
ipcp_restart 313
ipDetach() 61

muxUnbind() and 181

L
lcp_echo_failure 314
lcp_echo_interval 314
lcp_max_configure 314
lcp_max_failure 314
lcp_max_terminate 314
lcp_restart 314
leofs, NFS exported file system 168
link-level header

muxTkSend(), and 282
nptSend(), and 211

little-endian numbers 92
LL_HDR_INFO data structure 290
LOAD_FUNC

ENDs, adding 190
example 189
NPT drivers, adding 204

LOAD_STRING
ENDs, adding 190
example 189
NPT drivers, adding 204

local_auth_name 314
location monitors 28
login 312
324

IX

Index
M
M_ALIGN() 255
M_BCAST

ENDs, and 192
NPT drivers, and 207

M_CL_CONFIG structure 263
M_CL_CONFIG tables 252
M_L2HDR 283
M_LEADINGSPACE() 255
M_MCAST

ENDs, and 192
NPT drivers, and 207

M_PREPEND() 255
link-level header allocation 185

M_TRAILINGSPACE() 256
M2_ID 290

retrieving via ioctl 216
M2_INTERFACETBL 290

retrieving via ioctl 216
m2Rip() 121
mailbox interrupts 28
masks, network

CIDR 63
determining 64
pre-CIDR 62

max_challenge 314
maxl, DHCP lease table parameter 104
mBlk structures

freeing 255
member descriptions 290
memory pools, in

built-in network stack 52
user-defined 250

reserved field 199
mBlkHdr.reserved field 199
mcastRcv() 131
mcastSend() 131
memory leaks, avoiding 221
memory pools

see online netBufLib
built into network stack

NUM_* values, setting 53
status information, getting 50
usage, determining 55

initializing 262
user-defined 249–267

buffer manipulation macros 255
CL_DESC tables, preparing 252
cluster sizes, valid 253
freeing memory back to pool 255
M_CL_CONFIG tables, preparing 252
netBufLib routines 256
organizing 250
setting up 252
storing data in 254

memShow()
memory pools, working with 56

MF_IFADDR
muxTkPollSend() and 280

MIB II table, loading the (NPT drivers) 209
mountdInit() 168
mounting file systems 164
mountLib 164
mRouteAdd()

DNS and 176
example 79
multicasting, usage in 129
static gateways, adding 78

mRouteDelete() 80
mru 314
MSG_MBUF 236

usrSockRecv(), and 242
usrSockRecvFrom(), and 242
usrSockSend(), and 243
usrSockSendto(), and 244

mtu 314
MULTI_TABLE structure 292
multicasting

datagram sockets, using 129
code example 131
groups 130
options 130

RIP, using 118
MUX 14

API 269–293
binding to IP 61
data copying and 182
datalink interface 182
END interface 192
325

VxWorks 5.5
Network Programmer’s Guide
memory management facilities,
alternative 249

NPT driver interface 207
OSI layers, and 179
protocol-MUX interface 181

MUX_MAX_BINDS 8
multiple drivers and 221

MUX_PROTO_OUTPUT 227
bind phase, in 224
END_OBJ elements, and 287

MUX_PROTO_PROMISC
bind phase, in 224
muxTkReceive() and 282
packet consumption and 227

MUX_PROTO_SNARF
bind phase, in 224
muxTkReceive() and 282

muxAddressForm() 273
muxTkPollSend() and 280

muxAddrResFuncAdd() 270
multiple network drivers, starting 67
NPT drivers, and 184

muxAddrResFuncDel() 272
NPT drivers, and 184

muxAddrResFuncGet() 272
NPT drivers, and 184

muxBind() 181
deprecation of 228
parameters 273
service functions of 230

muxDevExists() 274
muxDevLoad() 182

additional network interfaces, loading 67
initialization string, defining 190
parameters 274

muxDevStart() 275
multiple network interfaces, initializing 67

muxDevStop() 275
muxDevUnload() 182

parameters 275
muxError() 276
muxIoctl() 276
muxMCastAddrAdd() 277
muxMCastAddrDel() 277
muxMCastAddrGet() 277

muxReceive() 182
muxTkBind() 181

parameters 278
return values 279
service functions of 229

muxTkDrvCheck() 224
parameters 280

muxTkPollReceive() 280
muxTkPollSend() 280
muxTkReceive() 182

calling 281
parameters 281
return values 282

muxTkSend() 226
parameters 282
return values 283

muxTxRestart() 283
muxUnbind() 181

parameters 283

N
name server (DNS) 173
NELEMENTS macro 265
NET FUNCS table

END functions 193
NET_FUNCS table 293

filling 182
nptLoad() and 209

NPT functions 207
netBufLib 184

see online netBufLib
replacing 249

netBufLibInit() 256
netClBlkFree() 257
netClBlkGet() 257
netClBlkJoin() 257
netClFree() 258
netClPoolIdGet() 258
netClusterGet() 258
netDevCreate() 161
netDrv 161

downloading run-time images 161
netJobAdd
326

IX

Index
protection domains and 191
netJobAdd()

ENDs, and 191
NPT drivers, and 206

netmask 314
netMblkChainDup() 259
netMblkClChainFree() 259
netMblkClFree() 260
netMblkClGet() 260
netMblkClJoin() 261
netMblkDup() 261
netMblkFree() 261
netMblkGet() 261
netMblkToBufCopy() 262
netPoolDelete() 262
netPoolInit() 262

calling 265
errno values 265
using 252

netPoolShow() 265
netShowInit() 266
netStackDataPoolShow() 266

configuring network stack 56
netStackSysPoolShow() 266

configuring network stack 56
netstat -r command (UNIX) 77
netTupleGet() 266

using 250
network byte order 92
network interface drivers

see also END (Enhanced Network Driver);
Network Protocol Toolkit (NPT) driver

buffer alignment 186
link-level header allocation, early 185
memory, managing 184
multiple drivers, supporting 221

run-time, at 221
MUX, integrating with 179
scatter-gather, supporting 185

network interfaces
additional, starting at run-time 67
IP address, assigning to 61
IP addresses, fixing assignment errors 66

network masks
class-based 62

classless 63
determining 64
format 62
specifying 62

network packets
consuming 227

Network Protocol Toolkit (NPT) drivers
see also network interface drivers
adding to an image 204
API 269–293
bind events, responding to 205
BSD drivers to, porting 217
compared to ENDs 182
END_OBJ data structure 207
entry points 183

exported to MUX 207
implementing 203–217
interrupt handling 206
ioctl support 215
launching 205
MUX interface 207
receiving frames 206

network protocols
see network services

network services
address resolution 224
binding 224
device control 228
driver type, determining 224
errors, listening for 227
flow control 228
interface initialization 223
ioctl commands for, defining 276
receiving packets 226
sending packets 226
shutting down an interface 227
socket interface, adding a 232
subroutines for 228
writing a sublayer 223

network show routines
enabling 266

network stack
configuring 44–58
multiple drivers, supporting 58
router, configuring as a 58
327

VxWorks 5.5
Network Programmer’s Guide
scalability 45
testing connections 56

NFS (Network File System)
authentication 164
client, target as 164
exporting file systems 166

limitations, DOS 168
group IDs, setting 164
including and configuring 163
initializing exportable file systems 167
leofs 168
mounting file systems 164
network devices, creating 165
server facilities 164
server, target as 166
user IDs, setting 164

NFS_CLIENT_NAME 163
NFS_GROUP_ID 165
NFS_USER_ID 165
nfsAuthUnixPrompt() 165
nfsAuthUnixSet() 165
nfsdInit() 168
nfsdLib 164
nfsExport() 167
nfsMount() 165
nfsMountAll() 163
NIC (Network Information Center) 174
no_acc 312
no_all 312
no_asyncmap 312
no_chap 312
no_ip 312
no_mn 312
no_mru 312
no_pap 312
no_pc 312
no_vj 312
no_vjccomp 312
nptAddressForm()

no such function 184
nptAddrGet()

no such function 184
nptBind() 210

calling 205
return values 210

nptIoctl() 215
nptLoad() 207

calling 205
entry point of, specifying 204
example 209
initialization string, specifying 204
responsibilities of 209

nptMCastAddrAdd() 211
nptMCastAddrDel() 212
nptMCastAddrGet() 212
nptPacketDataGet()

no such function 184
nptPollReceive

return values 214
nptPollReceive() 214
nptPollSend() 213
nptSend() 211

return values 211
nptStart() 214

calling 205
nptStop() 215
nptUnLoad() 210
nptUnload()

memory leaks and 222
ntohl() 92
ntohs() 92
NUM_1024 54
NUM_128 54
NUM_2048 54
NUM_256 54
NUM_512 54
NUM_64 54
NUM_CL_BLKS 54
NUM_NET_MBLKS 54
NUM_SYS_128 55
NUM_SYS_256 55
NUM_SYS_512 55
NUM_SYS_64 54
NUM_SYS_CL_BLKS 55
NUM_SYS_MBLKS 54

O
OPT_DEBUG 311
328

IX

Index
OPT_DEFAULT_ROUTE 311
OPT_DRIVER_DEBUG 311
OPT_IPCP_ACCEPT_LOCAL 311
OPT_IPCP_ACCEPT_REMOTE 311
OPT_LOGIN 312
OPT_NO_ACC 312
OPT_NO_ALL 312
OPT_NO_ASYNCMAP 312
OPT_NO_CHAP 312
OPT_NO_IP 312
OPT_NO_MN 312
OPT_NO_MRU 312
OPT_NO_PAP 312
OPT_NO_PC 312
OPT_NO_VJ 312
OPT_NO_VJCCOMP 312
OPT_option 300
OPT_PASSIVE_MODE 312
OPT_PROXY_ARP 312
OPT_REQUIRE_CHAP

option, as 313
using 307

OPT_REQUIRE_PAP
option, as 313
using 306

OPT_SILENT_MODE 313
optional products

Envoy (SNMP) 116
WindNet SNMP 116

optional VxWorks products
VxSim (target simulator) 300

P
packet buffers

freeing 182
packet headers

adjusting the size 185
early allocation 185

packets
consuming 227

pap_file 315
pap_file member 305
pap_max_authreq 315

pap_passwd 315
pap_restart 315
pap_user_name 315
passive_mode 312
passwd 165
Password Authentication Protocol (PAP)

DES cryptographic package 298
secrets files, specifying 305
using 305

pDhcpcBootCookie 111
ping utility

network connections, testing 56
restricting ping to directly connected hosts 58
routing, troubleshooting 88
suppressing printed output 57

PING_OPT_DONTROUTE 58
PING_OPT_SILENT 57
Point-to-Point Protocol, see PPP
polled-mode

NPT drivers, and 213
port addresses 45
ports

drivers with multiple ports 194
PPP (Point-to-Point Protocol) 297–310

see also Challenge-Handshake Authentication
Protocol; Password Authentication
Protocol; RFC 1332; RFC 1334; RFC
1548

authentication 304
CHAP, using 306
PAP, using 305

configuration options 310
order of precedence 311

configuring 298
debugging 310
DES cryptographic package 298
hooks, connect and disconnect 307

code example 308
limitations 295
links

confirming 303
deleting 303
initializing 302

optional features, selecting 299
build-time, at 299
329

VxWorks 5.5
Network Programmer’s Guide
configuration constants, using 299
options files, using 301
options structures, using 300
run-time, at 300

secrets 304
system image, failing to load 298
troubleshooting 309

authentication 310
links, establishing 309

USENET news group 298
version 2.1.2 298

PPP_CONNECT_DELAY 299
PPP_HOOK_CONNECT 307
PPP_HOOK_DISCONNECT 307
PPP_OPT_DEBUG

option, as 311
using 310

PPP_OPT_DEFAULT_ROUTE 311
PPP_OPT_DRIVER_DEBUG 311
PPP_OPT_IPCP_ACCEPT_LOCAL 311
PPP_OPT_IPCP_ACCEPT_REMOTE 311
PPP_OPT_LOGIN 312
PPP_OPT_NO_ACC 312
PPP_OPT_NO_ALL 312
PPP_OPT_NO_CHAP 312
PPP_OPT_NO_IP 312
PPP_OPT_NO_MN 312
PPP_OPT_NO_MRU 312
PPP_OPT_NO_PAP 312
PPP_OPT_NO_PC 312
PPP_OPT_NO_VJ 312
PPP_OPT_NO_VJCCOM 312
PPP_OPT_NO_VJCCOMP 312
PPP_OPT_PASSIVE_MODE 312
PPP_OPT_PROXYARP 312
PPP_OPT_REQUIRE_CHAP

option, as 313
using 307

PPP_OPT_REQUIRE_PAP
option, as 313
using 306

PPP_OPT_SILENT_MODE 313
PPP_OPTIONS 300
PPP_OPTIONS_FILE 301
PPP_OPTIONS_STRUCT 299

PPP_STR_ASYNCMAP 313
PPP_STR_CHAP_FILE

option, as 313
using 307

PPP_STR_CHAP_INTERVAL 313
PPP_STR_CHAP_RESTART 313
PPP_STR_ESACAPE_CHARS 313
PPP_STR_IPCP_MAX_CONFIGURE 313
PPP_STR_IPCP_MAX_FAILURE 313
PPP_STR_IPCP_MAX_TERMINATE 313
PPP_STR_IPCP_RESTART 313
PPP_STR_LCP_ECHO_FAILURE 314
PPP_STR_LCP_ECHO_INTERVAL 314
PPP_STR_LCP_MAX_CONFIGURE 314
PPP_STR_LCP_MAX_FAILURE 314
PPP_STR_LCP_MAX_TERMINATE 314
PPP_STR_LCP_RESTART 314
PPP_STR_LOCAL_AUTH_NAME 314
PPP_STR_MAX_CHALLENGE 314
PPP_STR_MRU 314
PPP_STR_MTU 314
PPP_STR_NETMASK 314
PPP_STR_PAP_FILE 315

secrets, declaring 305
PPP_STR_PAP_MAX_AUTHREQ 315
PPP_STR_PAP_PASSWD 315
PPP_STR_PAP_RESTART 315
PPP_STR_PAP_USER_NAME 315
PPP_STR_REMOTE_AUTH_NAME 315
PPP_STR_VJ_MAX_SLOTS 315
PPP_TTY 299
pppDelete() 303
pppHookAdd() 307
pppHookDelete() 307
pppInfoGet() 303
pppInit()

links, initializing 302
PPP options, selecting

options files, using 301
options structures, using 300

pppSecretAdd() 304
priority inversion 16
priority, task

relative to tNetTask 16
procNum (processor number) 112
330

IX

Index
protection domains 1
BPF, and 20
hooks, using (PPP) 308
netJobAdd() calls

receiving frames, END 191
receiving frames, NPT 206

RIP, and 121
SNTP, hook routines, and 178
zbuf sockets 143

socket back end implementation 236
protocols 13

see also individual protocols
CSLIP (compressed SLIP) 296
DHCP 99–111
distance vector 117
ICMP (Internet Control Message Protocol) 45
IGMP (Internet Group Management

Protocol) 46
IP (Internet Protocol) 92
network configuration 95–116
PPP (Point-to-Point Protocol) 297–310
proxy ARP 81–90
RIP (Routing Information Protocol) 117
RPC (Remote Procedure Calls) 170
SLIP (Serial Line Internet Protocol) 296
SNMP (Simple Network Management

Protocol) 115
TCP (Transmission Control Protocol) 135–142
TCP/IP suite 41–94
TFTP (Trivial File Transfer Protocol) 169
UDP (User Datagram Protocol) 125–135

proxy ARP 81–90
see also RFC 826; RFC 925; RFC 1027
broadcast datagrams and
configuring 84

shared memory 85
data transfers, completing 83
gateway, specifying 85
multi-homed clients, working with 88
network connections, creating 86
single instances, using 82
two instances on single target 83

proxy_arp 312
proxyNetShow() 88
proxyPortFwdOff() 84

proxyPortFwdOn() 84
proxyPortShow() 88

R
remote file access 15

see also FTP; NFS; RSH; TFTP 15
see online ftpdLib; ftpLib; nfsDrv; remLib;

tftpdLib; tftpLib
FTP, using 160
permissions 159

remote file system
mounting 165

remote login utilities 170
Remote Procedure Calls, see RPC
remote_auth_name 315
require_chap 313
require_pap 313
resolver (DNS) 174

see also RFC 1034; RFC 1035
see online resolvLib
configuring 175
debugging 176
integration of 175

RESOLVER_DOMAIN 176
RESOLVER_DOMAIN_SERVER 175
resolvGetHostByAddr() 175
resolvGetHostByName() 175
resolvLib 173
resolvParamsGet() 175
resolvParamsSet() 175
REST command 160
RETR command 158
rhosts file 160
RIP (Routing Information Protocol) 117

broadcasting 118
configuring 119

m2Rip(), with 121
SNMP, with 121

debugging 118
hop count limitation 117
initializing 120
interface exclusion list, creating 122
multicasting 118
331

VxWorks 5.5
Network Programmer’s Guide
protection domains and 121
separate routing domains and 121
subnet broadcasting 118
tables, display internal 118
task priority 121
tracing packets and routing changes 118
versions 118

RIP Authentication Type 121
RIP Expire Time 121
RIP Garbage Time 121
RIP Gateway Flag 120
RIP Multicast Flag 120
RIP Supplier Flag 120
RIP Supply Interval 121
RIP Timer Rate 120
RIP Version Number 120
RIP_AUTH_TYPE 121
RIP_EXPIRE_TIME 121
RIP_GARBAGE_TIME 121
RIP_GATEWAY 120
RIP_MULTICAST 120
RIP_SUPPLIER 120
RIP_SUPPLY_INTERVAL 121
RIP_TIMER_RATE 120
RIP_VERSION 120
ripIfExcludeListAdd() 122
ripIfExcludeListDelete() 122
ripIfExcludeListShow() 122
ripIfReset() 122
ripLibInit() 120
ripLogLevelBump() 118
ripRouteShow() 118
rlogin utility 170

see online rLogLib
rlogin() 170
route command (UNIX) 76
routeAdd() 75
routed daemon 118

configuration 76
routeDelete() 75
routeLib API 74
routeNetAdd() 75
router IDs 90
routers, see gateways
routeShow() 88

adding a gateway, when 78
routing

see also RIP; routing tables
dynamic 117
gateways

adding 75
deleting 80

multi-homed proxy clients 88
troubleshooting 88

routing tables
see also RIP; routing 117
see online routeLib
confirming routes in 77
editing manually 74
inspecting 78
proxy ARP, using 83
unique entries, defining 80
updating, dynamic 117

RPC (Remote Procedure Calls) 170
see online rpcLib

rpcTaskInit() 170
RSH (Remote Shell)

file permissions 159
network devices, creating 161
user ID, setting 158

RSH_STDERR_SETUP_TIMEOUT 159
rshd 159
RTF_CLONING 78
RTF_HOST 77
RTF_UP 78
RTS_CHANGED 119
RTS_EXTERNAL 119
RTS_INTERFACE 119
RTS_INTERNAL 119
RTS_OTHER 119
RTS_PASSIVE 119
RTS_PRIMARY 119
RTS_REMOTE 119
RTS_SUBNET 119

S
-s “secure” option (TFTP) 169
scatter-gather support 185
332

IX

Index
buffer alignment, resolving 188
secrets (PPP) 304

configuring 305
secrets files

CHAP, specifying for 307
PAP, specifying for 305

security
PPP 304

security, TFTP 169
semaphores

tNetTask and 17
Serial Line Internet Protocol, see SLIP
service address mapping 7
setsockopt()

setting window size 49
shared-memory backplane network

anchor 23
locating on a non-master board 24
specifying in the boot line 24

anchor, initializing 23
configuring 32
driver 21
example configuration 33
heartbeat 25

maintaining 23
interrupts, interprocessor 27

types 29
location

Tornado 2 26
Tornado 3 26

master 23
memory pool 22
object area 26
proxy ARP, and 85
sequential addressing 28
size 26
TAS operation size 27
test-and-set instruction 27
test-and-set type 27
troubleshooting 38

shellParserControl() 172
siad, DHCP lease table parameter 104
signals 124
silent_mode 313
Simple Network Management Protocol, see SNMP

SLIP (Serial Line Internet Protocol) 296
see also CSLIP; PPP
configuring 296
setting baud rate 296
specifying device for connection 296

SLIP_BAUDRATE 296
SLIP_MTU 296
SLIP_TTY 296
sm (boot device) 23
SM_ADRS_SPACE 24
SM_ANCHORS_ADRS 24
SM_INT_ARGn 28
SM_INT_TYPE 28
SM_MEM_ADRS 26
SM_MEM_SIZE 26
SM_NET_MEM_SIZE 26
SM_OBJ_MEM_SIZE 26
SM_OFF_BOARD 35

proxy ARP and 86
SM_TAS_HARD 27
SM_TAS_SOFT 27
SM_TAS_TYPE 27
smEnd shared-memory network driver 21

VxMP and 22
smNetShow()

proxy ARP, and 86
routing, troubleshooting 88
sample output 30
shared-memory network backplane

starting addresses, finding 30
SNARF protocols

frame reception and 226
snmk 104
SNMP 115

using without RIP 119
snmpMib2.mib 119
SNTP (Simple Network Time Protocol)

client 176
hook routines, using 178
modes, server 177
protection domains 178
server 177

SNTP_ACTIVE 177
SNTP_PASSIVE 177
SNTP_PORT 177
333

VxWorks 5.5
Network Programmer’s Guide
SNTPC_PORT 177
sntpcTimeGet() 176
SNTPS_DSTADDR 177
SNTPS_INTERVAL 177
SNTPS_MODE 177
SNTPS_TIME_HOOK 178
sntpsClockHook() 178
sntpsClockSet() 178
sntpsConfigSet() 177
sntpsInit() 177
SOCK_FUNC 234
socket interface

see also sockets
adding 232–247
back end constant 234
functions 234
implementing 236
initialization function 234
SOCK_FUNC table 234
zbuf support 236

sockets
see also datagram sockets; socket interface;

stream sockets; zbuf sockets
see online sockLib; zbufSockLib
conceptual analogy 135
file descriptors and 124
increasing NUM_FILES for 55
option values, retrieving 245
signals, using 124
troubleshooting 124
zbuf sockets, advantages of 153

sockLibAdd() 235
example 235

SOL_SOCKET
usrGetSockOpt(), and 245
usrSetSockOpt(), and 245

stackENDErrorRtn() 231
stackENDRcvRtn() 231
stackENDRestartRtn() 232
stackENDShutdownRtn() 231
stackErrorRtn() 230
stackRcvRtn() 229

datalink-to-MUX interface 182
stackRestartRtn() 230

flow control and 228

stackShutdownRtn() 229
responsibilities 227

STOR command 158
stream sockets 135–142

client-server communication 136
code example 136
definition of 124

subnet mask
changing for a target address 115

subnets
defining with network masks 64
transparent

proxy ARP and 81–90
sysBusToLocalAddr()

proxy ARP, and 86
sysClDescTbl[] 50

cluster size, setting 51
sysLocalToBusAddr()

proxy ARP, and 86

T
TAS operation size 27
tasks

priorities, setting 16
priority inversion 16
semaphores and 17
tNetTask 16

TCP
configuring 45
connection timeout 47
default flags 47
idle timeout value 47
maximum segment size 47
probe limit 48
receive buffer size 47
retransmission threshold 47
round trip interval 47
Scalability 45
send buffer size 47
stream sockets 135–142
window size 49
zero-copy 142

TCP/IP protocol suite 41–94
334

IX

Index
boot line
configuration values 43

components 42
configuring 41
control plane 60
data plane 59
IP-to-link layer interface 60
layers, abstract 58
learning about 11
multiple network cards, using 58
network byte order 92
parameters, compile-time 42
proxy ARP, using 81–90
router, configuring as a 58
routines, run-time 44
routing tables, editing 74
scalability 45

TCP_CON_TIMEO_DFLT 47
TCP_FLAGS_DFLT 47
TCP_IDLE_TIMEO_DFLT 47
TCP_MAX_PROBE_DFLT 48
TCP_MSS_DFLT 47
TCP_RCV_SIZE_DFLT 47
TCP_REXMT_THLD_DFLT 47
TCP_RND_TRIP_DFLT 47
TCP_SND_SIZE_DFLT 47

zbuf sockets and 142
telnet 171

see online telnetLib
client support 171

TELNETD_MAX_CLIENTS 171
TELNETD_PARSER_HOOK 171
TELNETD_PORT 171
TELNETD_TASKFLAG 171
telnetdLib

see online telnetdLib
templateEnd.c (END drivers) 179
test-and-set type 27
TFTP (Trivial File Transfer Protocol) 169

boot host, on 169
client 170
security (-s option) 169
server 169

tftpCopy() 170
tftpdLib 169

tftpLib 169
tftpXfer() 170
tIGMPtask 71
time-to-live 49
tNetTask 16

default priority 16
netJobAdd() and 192

Transmission Control Protocol, see TCP
transparent subnets

proxy ARP for 81–90
troubleshooting

network connections 56
network pool sizes 50
PPP 309
resolver activity 176
routing 88
shared-memory networks 38
sockets 124

txSem
memory leaks and 221

U
UDP

configuration flags 48
configuring 45
datagram sockets 125–135
receive buffer size 48
scalability 45
send buffer size 48

UDP_FLAGS_DFLT 48
UDP_RCV_SIZE_DFLT 48
UDP_SND_SIZE_DFLT 48

zbuf sockets and 142
UML notation 8

class inheritance 8
class relationships 9
classes 8
interfaces 8

unitNum (unit number) 112
unnumbered interfaces 90
User Datagram Protocol, see UDP
USR_MAX_LINK_HDR 185
usrGetSockOpt() 245
335

VxWorks 5.5
Network Programmer’s Guide
usrNetDhcprCfg.c 109
usrNetDhcpsCfg.c 103
usrNetInit() 94
usrPPPInit()

links, initializing 302
PPP options, selecting

options files, using 301
configuration constants, using 299

target-peer link delay, setting 299
usrSetSockOpt() 245
usrSockAccept() 239
usrSockBind() 239
usrSockClose() 246
usrSockConnect() 239
usrSockConnectWithTimeout() 240
usrSocket() 238
usrSockGetpeername() 240
usrSockGetsockname() 241
usrSockIoctl() 247
usrSockLibInit() 237

example 237
usrSockListen() 241
usrSockRead() 247
usrSockRecv() 241
usrSockRecvFrom() 242
usrSockRecvMsg() 243
usrSockSend() 243
usrSockSendMsg() 244
usrSockSendto() 243
usrSockShutdown() 244
usrSockWrite() 247
usrSockZbufRtn() 246

V
vj_max_slots 315
VxMP

smEnd and 22
VxSim, using (for Solaris) 300
VxWorks optional products

VxSim (target simulator) 300

W
WindNet SNMP 116

Z
zbuf sockets 142–156

see online zbufLib; zbufSockLib
advantages 153
back ends 236
buffer size issues 142
code examples

display routine 151
TCP server, converting a 153

data structures 143
byte locations 144
creating 145
deleting 145
dividing in two 147
example 148
handling 145
illustrated 144
length, determining 146
offsets 144
segment IDs 144
segments 147

data, inserting 146
example 148
including support for 142
interoperability 142
limitations 152
protection domains 143
removing data 147
segments

byte locations, determining 148
data location, determining 148
length, determining 148
reading 148
sharing 146

sending existing buffers 143
shared buffers, managing 143
socket calls 152
zero-copy TCP 142

ZBUF_BEGIN 145
336

IX

Index
ZBUF_END 145
ZBUF_SEG 144
zbufCreate() 145
zbufCut() 147

freeing data buffers 147
zbufDelete() 145
zbufDup() 146
zbufExtractCopy() 146
zbufInsert() 146

deleting zbuf IDs 147
zbufInsertBuf() 145
zbufInsertCopy() 146
zbufLength() 146
zbufs

see zbuf sockets
zbufSegData() 148
zbufSegFind() 148
zbufSegLength() 148
zbufSegNext() 148
zbufSegPrev() 148
zbufSockBufSend() 143
zbufSockBufSendto() 143
zbufSockLibInit() 152
zbufSockRecv() 152
zbufSockRecvfrom() 152
zbufSockSend() 152
zbufSockSendto() 152
zbufSplit() 147
zero-copy TCP 142
337

	VxWorks Network Programmer's Guide
	Contents
	1 Overview
	1.1� Introduction
	1.2� Chapter Overviews
	1.3� UML Notation
	1.4� Recommended Reading

	2 The VxWorks Network Stack
	2.1� Introduction
	2.2� Supported Protocols and Utilities
	2.3� Setting Task Priorities Relative to the Networking Task

	3 Data Link Layer Components
	3.1� Introduction
	3.2� Ethernet Driver Support
	3.2.1� BPF, the BSD Packet Filter
	3.2.2� Additional Filter Syntax

	3.3� The Shared-Memory Backplane Network Driver
	3.3.1� The Backplane Shared-Memory Region
	Backplane Processor Numbers
	The Shared-Memory Network Master
	The Shared-Memory Anchor
	The Shared-Memory Backplane Network Heartbeat
	Shared-Memory Location
	Shared Memory Size
	Test-and-Set to Shared Memory

	3.3.2� Interprocessor Interrupts
	3.3.3� Sequential Addressing
	3.3.4� Shared-Memory Backplane Network Configuration
	Example Configuration
	Troubleshooting

	3.4� Custom Interfaces

	4 Configuring the Network Stack
	4.1� Introduction
	4.2� Summary of Configuration Settings
	4.3� Configuring the Network Stack at Build Time
	4.3.1� Network Protocol Scalability
	4.3.2� Configuring the ARP, IP, TCP, UDP, IGMP, and ICMP Protocols
	TCP Window Sizes

	4.3.3� Network Memory Pool Configuration
	Setting the Number of Clusters

	4.3.4� Testing Network Connections
	4.3.5� Supporting Multiple Network Interface Drivers
	Configuring VxWorks for Multiple Drivers

	4.4� Overview of TCP/IP
	4.5� Configuring the IP-to-Link Layer Interface
	4.5.1� Binding IP to the MUX (Link Layer)
	4.5.2� Assigning an IP Address and Network Mask to an Interface
	Interfaces Configured from the Boot Line
	Assigning the Net Mask to a Network Interface
	Assigning the Internet Address for a Network Interface
	Manually Starting Additional Network Interfaces at Run-Time

	4.5.3� Configuring IP Broadcast Addresses

	4.6� IGMP under VxWorks
	4.6.1� Including IGMPv2
	4.6.2� IGMPv2 APIs
	IGMPv2 Host Initialization
	IGMPv2 Router Initialization and Termination
	IGMPv2 Router Control
	Working with VIFs (Ports) and ifnet Structure Pointers

	4.7� Manually Editing the Routing Table
	4.7.1� Adding Gateways (Routers) to a Network

	4.8� Proxy ARP for Transparent Subnets
	4.8.1� Proxy ARP Protocol Overview
	4.8.2� Routing and the Proxy ARP Server
	4.8.3� Proxy ARP and Broadcast Datagrams
	4.8.4� Proxy ARP Configuration
	Proxy ARP not Limited To a Shared Memory Network
	Proxy ARP with Shared Memory and IP Routing
	Setting Up Boot Parameters and Booting
	Creating Network Connections
	Routing Configuration for Multi-Homed Proxy Clients
	Broadcasts Configuration for Multi-Homed Proxy Clients

	4.9� Using Unnumbered Interfaces
	4.10� Network Byte Order
	4.11� Assigning Host Names to IP Addresses

	5 Network Configuration Protocols
	6 Dynamic Routing Protocols
	6.1� Introduction
	6.2� RIP, Routing Information Protocol
	6.2.1� VxWorks Debugging Routines for RIP
	6.2.2� Configuring RIP
	6.2.3� Creating an Interface Exclusion List for RIP

	5.1� Introduction
	5.2� BOOTP, Bootstrap Protocol
	5.2.1� BOOTP Configuration
	The BOOTP Database
	Editing the BOOTP Database to Register a Target

	5.3� DHCP, Dynamic Host Configuration Protocol
	5.3.1� Including DHCP Components in an Image
	5.3.2� Configuring the DHCP Client
	5.3.3� Configuring DHCP Servers
	Configuring the Supported DHCP Server
	Adding Entries to the Database of a Running DHCP Server
	Storing and Retrieving Active Network Configurations
	Configuring the Unsupported DHCP Server

	5.3.4� Configuring the Supported DHCP Relay Agent
	5.3.5� DHCP within an Application

	5.4� Boot Parameters for DHCP, BOOTP, and Network Initialization
	5.4.1� Boot Parameters Returned from DHCP or BOOTP

	5.5� SNMP, Simple Network Management Protocol
	SNMP is a Separately Purchasable Option

	7 Sockets under VxWorks
	7.1� Introduction
	7.2� BSD Sockets
	7.2.1� VxWorks-Specific Socket Dependencies
	7.2.2� Datagram Sockets (UDP)
	Using a Datagram (UDP) Socket to Access IP Multicasting

	7.2.3� Stream Sockets (TCP)

	7.3� Zbuf Sockets
	7.3.1� Zbuf Sockets and Protection Domains
	7.3.2� Zbuf Calls to Send Existing Data Buffers
	7.3.3� Manipulating the Zbuf Data Structure
	Zbuf Byte Locations
	Creating and Destroying Zbufs
	Getting Data In and Out of Zbufs
	Operations on Zbufs
	Segments of Zbufs
	Example: Manipulating Zbuf Structure
	Limitations of the Zbuf Implementation

	7.3.4� Zbuf Socket Calls
	Standard Socket Calls and Zbuf Socket Calls

	8 Remote Access Applications
	8.1� Introduction
	8.2� RSH, FTP, and netDrv
	8.2.1� RSH
	Configuring the Remote Host to Allow Access to an RSH User

	8.2.2� FTP
	8.2.3� Using netDrv
	Using netDrv to Download Run-Time Images

	8.3� NFS and nfsDrv
	8.3.1� VxWorks NFS Clients
	8.3.2� VxWorks NFS Servers
	Initializing a File System for NFS Export
	Exporting a File System through NFS
	Limitations of the VxWorks NFS Server
	About leofs

	8.4� TFTP
	8.4.1� Host TFTP Server
	8.4.2� VxWorks TFTP Server
	8.4.3� VxWorks TFTP Client

	8.5� RPC Remote Procedure Calls
	8.6� rlogin
	8.7� telnet

	9 DNS and SNTP
	9.1� Introduction
	9.2� DNS: Domain Name System
	9.2.1� Domain Names
	9.2.2� The VxWorks Resolver
	Resolver Integration
	Resolver Configuration

	9.3� SNTP: A Time Protocol
	9.3.1� Using the SNTP Client
	9.3.2� Using the SNTP Server

	10 Integrating a New Network Interface Driver
	10.1� Introduction
	10.1.1� The MUX and the OSI Network Model
	10.1.2� The Protocol-to-MUX Interface
	10.1.3� The Datalink-to-MUX Interface
	10.1.4� How ENDs and NPT Drivers Differ
	10.1.5� Managing Memory for Network Drivers and Services
	10.1.6� Supporting Scatter-Gather in Your Driver
	10.1.7� Early Link-Level Header Allocation in an NPT Driver
	10.1.8� Buffer Alignment

	10.2� END Implementation
	10.2.1� END Operation
	Adding an END to VxWorks
	Launching the Driver
	Binding to a Service
	Receiving Frames in Interrupt Mode

	10.2.2� The END Interface to the MUX
	Data Structures Shared by the END and the MUX
	END Entry Points Exported to the MUX

	10.3� NPT Driver Implementation
	10.3.1� NPT Driver Operation
	Adding an NPT Driver to VxWorks
	Launching the Driver
	Responding to Network Service Bind Calls
	Receiving Frames in Interrupt Mode

	10.3.2� NPT Driver Interface to the MUX
	Data Structures Used by the Driver
	NPT Driver Entry Points Exported to the MUX

	10.4� Porting a BSD Driver to the MUX
	10.4.1� Remove Unit Number References
	10.4.2� Create an END Object to Represent the Device
	10.4.3� Implementing the Standard END or NPT Entry Points
	Rewrite xxattach(�) to Use an npt/endLoad(�) Interface
	The xxReceive(�) Routine Still Handles Task-Level Packets
	Rewrite xxOutput(�) to Use an npt/endSend(�) Interface
	The xxIoctl(�) Routine is the Basis of npt/endIoctl(�)
	Implement All Remaining Required END or NPT Entry Points

	10.5� Supporting Multiple Network Interface Drivers
	10.5.1� Configuring VxWorks for Multiple Drivers
	10.5.2� Starting Additional Drivers at Run-Time

	10.6� Avoiding Memory Leaks

	11 Integrating a New Network Service
	11.1� Introduction
	11.2� Writing a Network Service Sublayer
	11.2.1� Interface Initialization
	11.2.2� Data Structures and Resources
	11.2.3� Sublayer Routines
	Sending Packets
	Receiving Packets
	Shutting Down an Interface
	Error Reporting
	Flow Control
	Device Control

	11.3� Interfacing with the MUX
	11.3.1� Service Functions Registered Using muxTkBind(�)
	11.3.2� Service Functions Registered Using muxBind(�)

	11.4� Adding a Socket Interface to Your Service
	Process Overview
	11.4.1� Implementing a Socket Back End
	The Socket Functional Interface
	The sockLibAdd(�) Function

	11.4.2� Enabling Zbuf Support Within a Socket Back End
	11.4.3� Implementing Socket Functions
	Implementation Recommendations for the Elements of a SOCK_FUNC Table
	Socket Functions Passed to iosDrvInstall(�)

	A Using netBufLib
	A.1� Introduction
	A.2� How a netBufLib Pool Organizes Memory
	A.3� Setting Up a Memory Pool
	A.4� Storing and Using Data in Clusters
	A.5� Freeing mBlks, clBlks, and Clusters
	A.6� Macros for Buffer Manipulation
	A.7� The netBufLib Library

	B MUX/NPT Routines and Data Structures
	B.1� Introduction
	B.2� MUX Routines
	B.2.1� muxAddrResFuncAdd(�)
	B.2.2� muxAddrResFuncDel(�)
	B.2.3� muxAddrResFuncGet(�)
	B.2.4� muxAddressForm(�)
	B.2.5� muxBind(�)
	B.2.6� muxDevExists(�)
	B.2.7� muxDevLoad(�)
	B.2.8� muxDevStart(�)
	B.2.9� muxDevStop(�)
	B.2.10� muxDevUnload(�)
	B.2.11� muxError(�)
	B.2.12� muxIoctl(�)
	B.2.13� muxMCastAddrAdd(�)
	B.2.14� muxMCastAddrDel(�)
	B.2.15� muxMCastAddrGet(�)
	B.2.16� muxTkBind(�)
	B.2.17� muxTkDrvCheck(�)
	B.2.18� muxTkPollReceive(�)
	B.2.19� muxTkPollSend(�)
	B.2.20� muxTkReceive(�)
	B.2.21� muxTkSend(�)
	B.2.22� muxTxRestart(�)
	B.2.23� muxUnbind(�)

	B.3� Data Structures
	B.3.1� DEV_OBJ
	B.3.2� END_ERR
	B.3.3� END_OBJ
	B.3.4� END_QUERY
	B.3.5� LL_HDR_INFO
	B.3.6� M2_INTERFACETBL and M2-ID
	B.3.7� mBlk
	B.3.8� MULTI_TABLE
	B.3.9� NET_FUNCS

	C PPP, SLIP, and CSLIP
	C.1� Introduction
	C.2� Serial Driver Support
	C.2.1� SLIP and CSLIP Configuration

	C.3� PPP, the Point-to-Point Protocol for Serial Line IP
	C.3.1� PPP Configuration
	Setting PPP Options when Configuring VxWorks
	Setting PPP Options Using an Options Structure
	Setting PPP Options Using an Options File

	C.3.2� Using PPP
	Initializing a PPP Link
	Deleting a PPP Link
	PPP Authentication
	Connect and Disconnect Hooks

	C.3.3� Troubleshooting PPP
	Link Establishment
	Authentication

	C.3.4� PPP Option Descriptions

	Index

