
5.5

VxWorks Drivers

API Reference

EDITION 2

®

Copyright  2003 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks Drivers API Reference, 5.5
Edition 2
15 Apr 03
Part #: DOC-14605-ND-01

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents
1: Libraries

This volume provides reference entries for VxWorks driver libraries, arranged
alphabetically. Each entry lists the routines found in the library, including a one-line
synopsis of each and a general description of their use.

Individual reference entries for each of the available functions in these libraries is
provided in section 2.

2: Routines

This section provides reference entries for each of the routines found in the VxWorks
driver libraries documented in section 1.

Keyword Index

This section is a “permuted index” of keywords found in the NAME line of each reference
entry. The keyword for each index item is left-aligned in column 2. The remaining words
in column 1 and 2 show the context for the keyword.
iii

1

Libraries
aic7880Lib – Adaptec 7880 SCSI Host Adapter Library File.. 5
ambaSio – ARM AMBA UART tty driver ... 8
ataDrv – ATA/IDE and ATAPI CDROM (LOCAL and PCMCIA) disk device driver... 11
ataShow – ATA/IDE (LOCAL and PCMCIA) disk device driver show routine 14
auEnd – END style Au MAC Ethernet driver... 14
cd2400Sio – CL-CD2400 MPCC serial driver .. 18
cisLib – PCMCIA CIS library.. 18
cisShow – PCMCIA CIS show library ... 19
coldfireSio – ColdFire Serial Communications driver .. 19
ctB69000Vga – a CHIPS B69000 initialization source module ... 21
dec21x4xEnd – END style DEC 21x4x PCI Ethernet network interface driver............................ 24
dec21x40End – END-style DEC 21x40 PCI Ethernet network interface driver 28
ei82596End – END style Intel 82596 Ethernet network interface driver.................................... 35
el3c90xEnd – END network interface driver for 3COM 3C90xB XL.. 38
elt3c509End – END network interface driver for 3COM 3C509 .. 42
endLib – support library for END-based drivers .. 45
evbNs16550Sio – NS16550 serial driver for the IBM PPC403GA evaluation 45
fei82557End – END style Intel 82557 Ethernet network interface driver.................................... 47
gei82543End – Intel PRO/1000 F/T/XF/XT/MT network adapter END driver 50
i8250Sio – I8250 serial driver .. 54
if_cpm – Motorola CPM core network interface driver ... 54
if_cs – Crystal Semiconductor CS8900 network interface driver.................................... 58
if_dc – DEC 21x4x Ethernet LAN network interface driver .. 61
if_eex – Intel EtherExpress 16 network interface driver... 65
if_ei – Intel 82596 Ethernet network interface driver... 66
if_eidve – Intel 82596 Ethernet network interface driver for DVE-SH7XXX....................... 69
if_eihk – Intel 82596 Ethernet network interface driver for hkv3500................................. 73
if_elc – SMC 8013WC Ethernet network interface driver ... 76
if_elt – 3Com 3C509 Ethernet network interface driver ... 77
if_ene – Novell/Eagle NE2000 network interface driver ... 78
1

VxWorks Drivers API Reference, 5.5
if_esmc – Ampro Ethernet2 SMC-91c9x Ethernet network interface driver...................... 80
if_fei – Intel 82557 Ethernet network interface driver .. 81
if_fn – Fujitsu MB86960 NICE Ethernet network interface driver 83
if_ln – AMD Am7990 LANCE Ethernet network interface driver................................. 85
if_lnPci – AMD Am79C970 PCnet-PCI Ethernet network interface driver 88
if_loop – software loopback network interface driver ... 92
if_mbc – Motorola 68EN302 network-interface driver .. 92
if_nicEvb – National Semiconductor ST-NIC Chip network interface driver 95
if_sl – Serial Line IP (SLIP) network interface driver .. 96
if_sm – shared memory backplane network interface driver... 98
if_sn – National Semiconductor DP83932B SONIC Ethernet network driver.............. 99
if_ultra – SMC Elite Ultra Ethernet network interface driver.. 102
iOlicomEnd – END style Intel Olicom PCMCIA network interface driver 103
iPIIX4 – low level initalization code for PCI ISA/IDE Xcelerator 106
ln97xEnd – END style AMD Am79C97X PCnet-PCI Ethernet driver.................................... 110
ln7990End – END style AMD 7990 LANCE Ethernet network interface driver 115
lptDrv – parallel chip device driver for the IBM-PC LPT ... 118
m68302Sio – Motorola MC68302 bimodal tty driver .. 119
m68332Sio – Motorola MC68332 tty driver .. 120
m68360Sio – Motorola MC68360 SCC UART serial driver .. 120
m68562Sio – MC68562 DUSCC serial driver.. 121
m68681Sio – M68681 serial communications driver ... 121
m68901Sio – MC68901 MFP tty driver.. 124
mb86940Sio – MB 86940 UART tty driver .. 124
mb86960End – END-style Fujitsu MB86960 Ethernet network interface driver......................... 125
mb87030Lib – Fujitsu MB87030 SCSI Protocol Controller (SPC) library 126
mbcEnd – Motorola 68302fads END network interface driver... 127
miiLib – Media Independent Interface library ... 130
motCpmEnd – END style Motorola MC68EN360/MPC800 network interface driver 132
motFccEnd – END style Motorola FCC Ethernet network interface driver 135
motFecEnd – END style Motorola FEC Ethernet network interface driver 143
n72001Sio – NEC PD72001 MPSC (Multiprotocol Serial Communications Controller)....... 150
ncr710CommLib – common library for ncr710Lib.c and ncr710Lib2.c... 150
ncr710Lib – NCR 53C710 SCSI I/O Processor (SIOP) library (SCSI-1)................................... 151
ncr710Lib2 – NCR 53C710 SCSI I/O Processor (SIOP) library (SCSI-2)................................... 151
ncr810Lib – NCR 53C8xx PCI SCSI I/O Processor (SIOP) library (SCSI-2) 152
ncr5390Lib – NCR5390 SCSI-Bus Interface Controller library (SBIC)....................................... 153
ncr5390Lib1 – NCR 53C90 Advanced SCSI Controller (ASC) library (SCSI-1) 154
ncr5390Lib2 – NCR 53C90 Advanced SCSI Controller (ASC) library (SCSI-2) 154
ne2000End – NE2000 END network interface driver .. 155
nec765Fd – NEC 765 floppy disk device driver .. 157
nicEvbEnd – National Semiconductor ST-NIC Chip network interface driver 157
ns16550Sio – NS 16550 UART tty driver ... 159
ns83902End – National Semiconductor DP83902A ST-NIC... 160
nvr4101DSIUSio – NEC VR4101 DSIU UART tty driver.. 161
2

1: Libraries
nvr4101SIUSio – NEC VR4101 SIU UART tty driver ... 162
nvr4102DSIUSio – NEC VR4102 DSIU UART tty driver .. 162
pccardLib – PC CARD enabler library ... 164
pciAutoConfigLib – PCI bus scan and resource allocation facility .. 165
pcic – Intel 82365SL PCMCIA host bus adaptor chip library... 173
pciConfigLib – PCI Configuration space access support for PCI drivers 174
pciConfigShow – show routines of PCI bus (IO mapped) library... 185
pcicShow – Intel 82365SL PCMCIA host bus adaptor chip show library 185
pciIntLib – PCI Shared Interrupt support .. 186
pcmciaLib – generic PCMCIA event-handling facilities .. 186
pcmciaShow – PCMCIA show library .. 187
ppc403Sio – ppc403GA serial driver... 188
ppc555SciSio – MPC555 SCI serial driver ... 188
ppc860Sio – Motorola MPC800 SMC UART serial driver ... 189
sa1100Sio – Digital Semiconductor SA-1100 UART tty driver... 190
sab82532 – Siemens SAB 82532 UART tty driver.. 192
sh7615End – sh7615End END network interface driver... 193
shScifSio – Hitachi SH SCIF (Serial Communications Interface) driver................................ 195
shSciSio – Hitachi SH SCI (Serial Communications Interface) driver.................................. 195
smcFdc37b78x – a super IO (fdc37b78x) initialization source module ... 196
smNetLib – VxWorks interface to shared memory network (backplane) driver 198
smNetShow – shared memory network driver show routines .. 199
sn83932End – Nat. Semi DP83932B SONIC Ethernet driver .. 199
sramDrv – PCMCIA SRAM device driver... 201
st16552Sio – ST 16C552 DUART tty driver .. 202
sym895Lib – SCSI-2 driver for Symbios SYM895 SCSI Controller. ... 204
tcic – Databook TCIC/2 PCMCIA host bus adaptor chip driver 207
tcicShow – Databook TCIC/2 PCMCIA host bus adaptor chip show library...................... 207
ultraEnd – SMC Ultra Elite END network interface driver .. 208
vgaInit – a VGA 3+ mode initialization source module... 210
wd33c93Lib – WD33C93 SCSI-Bus Interface Controller (SBIC) library...................................... 211
wd33c93Lib1 – WD33C93 SCSI-Bus Interface Controller library (SCSI-1)................................... 211
wd33c93Lib2 – WD33C93 SCSI-Bus Interface Controller library (SCSI-2)................................... 212
wdbEndPktDrv – END based packet driver for lightweight UDP/IP .. 212
wdbNetromPktDrv – NETROM packet driver for the WDB agent.. 213
wdbPipePktDrv – pipe packet driver for lightweight UDP/IP .. 213
wdbSlipPktDrv – serial line pocket-size for the WDB agent .. 215
wdbTsfsDrv – virtual generic file I/O driver for the WDB agent .. 216
wdbUlipPktDrv – WDB communication interface for the ULIP driver... 219
wdbVioDrv – virtual tty I/O driver for the WDB agent... 220
z8530Sio – Z8530 SCC Serial Communications Controller driver ... 221
3

VxWorks Drivers API Reference, 5.5
4

1: Libraries
aic7880Lib

A

aic7880Lib

NAME aic7880Lib – Adaptec 7880 SCSI Host Adapter Library File

ROUTINES aic7880CtrlCreate() – create a control structure for the AIC 7880
aic7880sCompleted() – successfully completed execution of a client thread
aic7880EnableFast20() – enable double speed SCSI data transfers
aic7880dFifoThresholdSet() – set the data FIFO threshold
aic7880GetNumOfBuses() – perform a PCI bus scan
aic7880ReadConfig() – read from PCI config space
aic7880WriteConfig() – read to PCI config space

DESCRIPTION This is the I/O driver for the Adaptec AIC 7880 PCI Bus Master Single Chip SCSI Host
Adapter. It is designed to work with scsi2Lib. This driver runs in conjunction with the
HIM (Hardware Interface Module) supplied by Adaptec. The AIC 7880 SCSI Host
Adapter driver supports the following features

Fast, Double Speed, 20 MHz data transfers.

16 bit Wide Synchronous Data transfers.

Tagged Command Queueing.

Data FIFO threshold selection.

Disconnect / Reconnect support.

Multiple Initiator support.

Multiple Controller support.

In general, the SCSI system and this driver will automatically choose the best combination
of these features to suit the target devices used. However, the default choices may be
over-ridden by using the function scsiTargetOptionsSet() (see scsiLib).

To use this driver, enable the INCLUDE_AIC7880_SCSI component (VxAE).

OPERATIONS OVERVIEW

The host processor initiates a SCSI I/O operation by programming a data structure called
SCB (SCSI Command Block). The SCB contains all the relevant information needed by the
Host Adapter to carry out the requested SCSI operation. SCSI SCBs are passed to the HIM
by this module which are then sent to the AIC-7880 for execution. The AIC-7880
Sequencer or PhaseEngine comprises the on-chip intelligence that allows the AIC-7880 to
execute SCB commands. The Sequencer is programmable and uses its own microcode
program which is downloaded to AIC-7880 by the host at initialization.

The following is an example of how an SCB is delivered to the AIC-7880:
5

VxWorks Drivers API Reference, 5.5
aic7880Lib
Memory is allocated for the SCB structure and it is programmed with the necessary
information required to execute a SCSI transaction.

The SCB is then sent to HIM.

The HIM pauses the Sequencer.

The Sequencer has internal registers that point to the area in system memory where the
SCB resides.

The HIM unpauses the Sequencer.

The AIC-7880 Sequencer uses DMA to transfer the SCB into its internal memory.

The AIC-7880 executes the SCB.

Upon completion of the SCB command, the AIC-7880 Sequencer posts the pointer of the
completed SCB into system memory.

The AIC-7880 generates an interrupt.

The status of the completed SCB is then read by the host.

SCB PROCESSING The AIC-7880 Sequencer uses DMA to transfer the SCB into its internal memory. The
Sequencer processes SCBs in the order they are received with new SCBs being started
when older SCB operations are idle due to wait for selection or a SCSI bus disconnect.
When operations for an Idle SCB reactivate, the sequencer scans the SCB array for the SCB
corresponding to the Target/LUN reactivating. The Sequencer then restarts the SCB
found until the next disconnect or SCB completion.

MAXIMUM NUMBER OF TAGGED SCBs

The number of tagged SCBs per SCSI target that is handled by the Sequencer, range from
1-32. The HIM supports only the External SCB Access mode. The default number of tags
handled by the Sequencer in this mode is 32. Changing the field Cf_MaxTagScbs in the
cfp_struct changes the maximum number of tagged SCBs.

MAXIMUM NUMBER OF SCBs

The number of SCBs that can be queued to the Sequencer, range from 1-254. This value
can be changed before calling the HIM routine PH_GetConfig(). Changing the field
Cf_NumberScbs in cfp_struct changes the maximum number of SCBs to be used. The
default max number of SCBs is 254.

SYNCHRONOUS TRANSFER SUPPORT

If double speed SCSI mode is enabled, this driver supports transfer periods of 50, 64 and
76 ns. In standard fast SCSI mode transfer periods of 100, 125, 150, 175, 200, 225, 250 and
275 are supported. Synchronous transfer parameters for a target can be set using the SCSI
library function scsiTargetOptionsSet().
6

1: Libraries
aic7880Lib

A

DOUBLE SPEED SCSI MODE

To enable/disable double speed SCSI mode, the routine aic7880EnableFast20() needs to
be invoked with the following two parameters:

(1) A pointer to the appropriate SCSI Controller structure

(2) A BOOLEAN value which enables or disable double speed SCSI mode.

With double speed SCSI mode enabled the host adapter may be capable of transferring
data at theoretical transfer rates of 20 MB/s for an 8-bit device and 40 MB/s for a 16-bit
device. Double Speed SCSI is disabled by default.

DATA FIFO THRESHOLD

To set the data FIFO threshold the routine aic7880dFifoThresholdSet() needs to be
invoked with the following two parameters:

(1) A pointer to the appropriate SCSI Controller structure

(2) The data FIFO threshold value.

For more information about the data FIFO threshold value refer the
aic7880dFifoThresholdSet() routine

In order to initialize the driver from the BSP the following needs to be done in the BSP
specific routine sysScsiInit() in file sysScsi.c:

(1) Find the SCSI Host Adapter.

(2) Create the SCSI Controller Structure.

(3) Connect the interrupt to Interrupt Service Routine (ISR).

(4) Enable the SCSI interrupt.

The following example shows the SCSI initialization sequence that need to be done in the
BSP.

STATUS sysScsiInit ()

{

int busNo; /* PCI bus number */

int devNo; /* PCI device number */

UWORD found = FALSE; /* host adapter found */

int numHa = 0; /* number of host adapters */

for (busNo=0; busNo < MAX_NO_OF_PCI_BUSES && !found; busNo++)

for (devNo = 0; devNo < MAX_NO_OF_PCI_DEVICES; devNo++)

{

if ((found = sysScsiHostAdapterFind (busNo, devNo)) == HA_FOUND)

{

numHa++;

/* Create the SCSI controller */

if ((pSysScsiCtrl = (SCSI_CTRL *) aic7880CtrlCreate

(busNo, devNo, SCSI_DEF_CTRL_BUS_ID)) == NULL)
7

VxWorks Drivers API Reference, 5.5
ambaSio
{

logMsg ("Could not create SCSI controller\n",

0, 0, 0, 0, 0, 0);

return (ERROR);

}

/* connect the SCSI controller\xd5 s interrupt service routine */

if ((pciIntConnect (INUM_TO_IVEC (SCSI_INT_VEC), aic7880Intr,

(int) pSysScsiCtrl)) == ERROR)

return (ERROR);

/* enable SCSI interupts */

sysIntEnablePIC (SCSI_INT_LVL);

}

return (OK);

}

SEE ALSO scsiLib, scsi2Lib, cacheLib, AIC-7880 Design In Handbook, AIC-7880 Data Book, Adaptec
Hardware Interface Module (HIM) Specification, VxWorks Programmer’s Guide: I/O System

ambaSio

NAME ambaSio – ARM AMBA UART tty driver

ROUTINES ambaDevInit() – initialize an AMBA channel
ambaIntTx() – handle a transmitter interrupt
ambaIntRx() – handle a receiver interrupt

DESCRIPTION This is the device driver for the Advanced RISC Machines (ARM) AMBA UART. This is a
generic design of UART used within a number of chips containing (or for use with) ARM
CPUs such as in the Digital Semiconductor 21285 chip as used in the EBSA-285 BSP.

This design contains a universal asynchronous receiver/transmitter, a baud-rate
generator, and an InfraRed Data Association (IrDa) Serial InfraRed (SiR) protocol encoder.
The Sir encoder is not supported by this driver. The UART contains two 16-entry deep
FIFOs for receive and transmit: if a framing, overrun, or parity error occurs during
reception, the appropriate error bits are stored in the receive FIFO along with the received
data. The FIFOs can be programmed to be one byte deep only, like a conventional UART
with double buffering, but the only mode of operation supported is with the FIFOs
enabled.

The UART design does not support the modem control output signals: DTR, RI, and RTS.
Moreover, the implementation in the 21285 chip does not support the modem control
inputs: DCD, CTS, and DSR.
8

1: Libraries
ambaSio

A

The UART design can generate four interrupts: Rx, Tx, modem status change and a UART
disabled interrupt (which is asserted when a start bit is detected on the receive line when
the UART is disabled). The implementation in the 21285 chip has only two interrupts: Rx
and Tx, but the Rx interrupt is a combination of the normal Rx interrupt status and the
UART disabled interrupt status.

Only asynchronous serial operation is supported by the UART which supports 5- to 8-bit
word lengths with or without parity and with one or two stop bits. The only serial word
format supported by the driver is 8 data bits, 1 stop bit, no parity. The default baud rate is
determined by the BSP by filling in the AMBA_CHAN structure before calling
ambaDevInit().

The exact baud rates supported by this driver will depend on the crystal fitted (and
consequently the input clock to the baud-rate generator), but in general, baud rates from
about 300 to about 115200 are possible.

In theory, any number of UART channels could be implemented within a chip. This driver
has been designed to cope with an arbitrary number of channels, but at the time of
writing, has only been tested with one channel.

DATA STRUCTURES

An AMBA_CHAN data structure is used to describe each channel, this structure is
described in h/drv/sio/ambaSio.h.

CALLBACKS Servicing a “transmitter ready" interrupt involves making a callback to a higher level
library in order to get a character to transmit. By default, this driver installs dummy
callback routines which do nothing. A higher layer library that wants to use this driver
(e.g. ttyDrv) will install its own callback routine using the SIO_INSTALL_CALLBACK ioctl
command. Likewise, a receiver interrupt handler makes a callback to pass the character to
the higher layer library.

MODES This driver supports both polled and interrupt modes.

USAGE The driver is typically only called by the BSP. The directly callable routines in this
modules are ambaDevInit(), ambaIntTx() and ambaIntRx().

The BSP’s sysHwInit() routine typically calls sysSerialHwInit(), which initializes the
hardware-specific fields in the AMBA_CHAN structure (e.g. register I/O addresses, etc.)
before calling ambaDevInit() which resets the device and installs the driver function
pointers. After this the UART will be enabled and ready to generate interrupts, but those
interrupts will be disabled in the interrupt controller.

The following example shows the first parts of the initialization:

#include "drv/sio/ambaSio.h"

LOCAL AMBA_CHAN ambaChan[N_AMBA_UART_CHANS];
9

VxWorks Drivers API Reference, 5.5
ambaSio
void sysSerialHwInit (void)

{

int i;

for (i = 0; i < N_AMBA_UART_CHANS; i++)

{

ambaChan[i].regs = devParas[i].baseAdrs;

ambaChan[i].baudRate = CONSOLE_BAUD_RATE;

ambaChan[i].xtal = UART_XTAL_FREQ;

ambaChan[i].levelRx = devParas[i].intLevelRx;

ambaChan[i].levelTx = devParas[i].intLevelTx;

/*

* Initialise driver functions, getTxChar, putRcvChar and

* channelMode, then initialise UART

*/

ambaDevInit(&ambaChan[i]);

}

}

The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2(), which connects the
chips interrupts via intConnect() (the two interrupts ambaIntTx and ambaIntRx) and
enables those interrupts, as shown in the following example:

void sysSerialHwInit2 (void)

{

/* connect and enable Rx interrupt */

(void) intConnect (INUM_TO_IVEC(devParas[0].vectorRx),

ambaIntRx, (int) &ambaChan[0]);

intEnable (devParas[0].intLevelRx);

/* connect Tx interrupt */

(void) intConnect (INUM_TO_IVEC(devParas[0].vectorTx),

ambaIntTx, (int) &ambaChan[0]);

/*

* There is no point in enabling the Tx interrupt, as it will

* interrupt immediately and then be disabled.

*/

}

BSP By convention all the BSP-specific serial initialization is performed in a file called
sysSerial.c, which is #include’ed by sysLib.c. sysSerial.c implements at least four
functions, sysSerialHwInit(), sysSerialHwInit2(), sysSerialChanGet(), and
sysSerialReset(). The first two have been described above, the others work as follows:

sysSerialChanGet() is called by usrRoot to get the serial channel descriptor associated
with a serial channel number. The routine takes a single parameter which is a channel
number ranging between zero and NUM_TTY. It returns a pointer to the corresponding
channel descriptor, SIO_CHAN *, which is just the address of the AMBA_CHAN structure.
10

1: Libraries
ataDrv

A

sysSerialReset() is called from sysToMonitor() and should reset the serial devices to an
inactive state (prevent them from generating any interrupts).

INCLUDE FILES drv/sio/ambaSio.h, sioLib.h

SEE ALSO Advanced RISC Machines AMBA UART (AP13) Data Sheet, Digital Semiconductor 21285 Core
Logic for SA-110 Microprocessor Data Sheet,” Digital Semiconductor EBSA-285 Evaluation
Board Reference Manual

ataDrv

NAME ataDrv – ATA/IDE and ATAPI CDROM (LOCAL and PCMCIA) disk device driver

ROUTINES ataDriveInit() – initialize ATA drive
ataDrv() – initialize the ATA driver
ataDevCreate() – create a device for a ATA/IDE disk
ataRawio() – do raw I/O access

DESCRIPTION This is a driver for ATA/IDE and ATAPI CDROM devices on PCMCIA, ISA, and other
buses. The driver can be customized via various macros to run on a variety of boards and
both big-endian, and little-endian CPUs.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. However,
two routines must be called directly: ataDrv() to initialize the driver and ataDevCreate()
to create devices.

Before the driver can be used, it must be initialized by calling ataDrv(). This routine must
be called exactly once, before any reads, writes, or calls to ataDevCreate(). Normally, it is
called from usrRoot() in usrConfig.c.

The routine ataRawio() supports physical I/O access. The first argument is a drive
number, 0 or 1; the second argument is a pointer to an ATA_RAW structure.

NOTE Format is not supported, because ATA/IDE disks are already formatted, and bad sectors
are mapped.

During initialization this driver queries each disk to determine if the disk supports LBA.
16 bit words 0x60 and 0x61 (returned from the ATA IDENTIFY DEVICE command) may
report a larger value than the product of the CHS fields on newer large disks (8.4Gb+).
The driver will use strict LBA access commands and LBA geometry for drives reporting
"total LBA sectors" greater than the product of CHS. Although everyone should also be
using strict LBA on LBA disks, some older systems (mostly PC’s) do not and use only
11

VxWorks Drivers API Reference, 5.5
ataDrv
CHS. Such system cannot view drives larger than 8GB. VxWorks does not have such
limitations. However, it may be desirable to force VxWorks ignore the LBA information in
favor of CHS in order to mount a file system originally formatted on a CHS-only system.
Setting the boolean ataForceCHSonLBA to TRUE will force the use of CHS parameters on
all drives and the LBA parameters are ignored. Again, setting this boolean may prevent
access to the drive’s full capacity, since some manufacturers have stopped setting a drives
CHS accurately in favor of LBA.

PARAMETERS The ataDrv() function requires a configuration flag as a parameter. The configuration flag
is one of the following:

DMA transfer is not supported in this release. If ATA_PIO_AUTO or ATA_DMA_AUTO is
specified, the driver automatically chooses the maximum mode supported by the device.
If ATA_PIO_MULTI or ATA_DMA_MULTI is specified, and the device does not support it,
the driver automatically chooses single sector or word mode. If ATA_BITS_32 is specified,
the driver uses 32-bit transfer mode regardless of the capability of the drive.

Transfer mode

ATA_PIO_DEF_0 PIO default mode
ATA_PIO_DEF_1 PIO default mode, no IORDY
ATA_PIO_0 PIO mode 0
ATA_PIO_1 PIO mode 1
ATA_PIO_2 PIO mode 2
ATA_PIO_3 PIO mode 3
ATA_PIO_4 PIO mode 4
ATA_PIO_AUTO PIO max supported mode
ATA_DMA_0 DMA mode 0
ATA_DMA_1 DMA mode 1
ATA_DMA_2 DMA mode 2
ATA_DMA_AUTO DMA max supported mode

Transfer bits

ATA_BITS_16 RW bits size, 16 bits
ATA_BITS_32 RW bits size, 32 bits

Transfer unit

ATA_PIO_SINGLE RW PIO single sector
ATA_PIO_MULTI RW PIO multi sector
ATA_DMA_SINGLE RW DMA single word
ATA_DMA_MULTI RW DMA multi word

Geometry parameters

ATA_GEO_FORCE set geometry in the table
ATA_GEO_PHYSICAL set physical geometry
ATA_GEO_CURRENT set current geometry
12

1: Libraries
ataDrv

A

If ATA_GEO_PHYSICAL is specified, the driver uses the physical geometry parameters
stored in the drive. If ATA_GEO_CURRENT is specified, the driver uses current geometry
parameters initialized by BIOS. If ATA_GEO_FORCE is specified, the driver uses geometry
parameters stored in sysLib.c.

The geometry parameters are stored in the structure table ataTypes[] in sysLib.c. That
table has two entries, the first for drive 0, the second for drive 1. The members of the
structure are:

int cylinders; /* number of cylinders */

int heads; /* number of heads */

int sectors; /* number of sectors per track */

int bytes; /* number of bytes per sector */

int precomp; /* precompensation cylinder */

This driver does not access the PCI-chip-set IDE interface, but rather takes advantage of
BIOS or VxWorks initialization. Thus, the BIOS setting should match the modes specified
by the configuration flag.

The BSP may provide a sysAtaInit() routine for situations where an ATA controller
RESET(0x1f6 or 0x3f6, bit 2 is set) clears ATA specific functionality in a chipset that is not
re-enabled per the ATA-2 spec.

This BSP routine should be declared in sysLib.c or sysAta.c as follows:

void sysAtaInit (BOOL ctrl)

{

/* BSP SPECIFIC CODE HERE */

}

Then the BSP should perform the following operation before ataDrv() is called, in
sysHwInit for example:

IMPORT VOIDFUNCPTR _func_sysAtaInit;

/* setup during initialization */

_func_sysAtaInit = (VOIDFUNCPTR) sysAtaInit;

It should contain chipset specific reset code, such as code which re-enables PCI write
posting for an integrated PCI-IDE device, for example. This will be executed during every
ataDrv(), ataInit(), and ataReset() or equivalent block device routine. If the sysAtaInit()
routine is not provided by the BSP it is ignored by the driver, therefore it is not a required
BSP routine.

SEE ALSO VxWorks Programmer’s Guide: I/O System
13

VxWorks Drivers API Reference, 5.5
ataShow
ataShow

NAME ataShow – ATA/IDE (LOCAL and PCMCIA) disk device driver show routine

ROUTINES ataShowInit() – initialize the ATA/IDE disk driver show routine
ataShow() – show the ATA/IDE disk parameters

DESCRIPTION This library contains a driver show routine for the ATA/IDE (PCMCIA and LOCAL)
devices supported on the IBM PC.

auEnd

NAME auEnd – END style Au MAC Ethernet driver

ROUTINES auEndLoad() – initialize the driver and device
auInitParse() – parse the initialization string
auDump() – display device status

DESCRIPTION This module implements the Alchemey Semiconductor Au on-chip Ethernet MACs.

The software interface to the driver is divided into three parts. The first part is the
interrupt registers and their setup. This part is done at the BSP level in the various BSPs
which use this driver. The second and third part are addressed in the driver. The second
part of the interface comprises of the I/O control registers and their programming. The
third part of the interface comprises of the descriptors and the buffers.

This driver is designed to be moderately generic. Though it currently is implemented on
one processor, in the future it may be added to other Alchemey product offerings. Thus, it
would be desirable to use the same driver with no source level changes. To achieve this,
the driver must be given several target-specific parameters, and some external support
routines must be provided. These target-specific values and the external support routines
are described below.

This driver supports multiple units per CPU. The driver can be configured to support
big-endian or little-endian architectures.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The only external interface is the auEndLoad() routine, which expects the initString
parameter as input. This parameter passes in a colon-delimited string of the format:
14

1: Libraries
auEnd

A

unit:devMemAddr:devIoAddr:enableAddr:vecNum:intLvl:offset:qtyCluster:flags

The auEndLoad() function uses strtok() to parse the string.

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the
string name for the driver.

devAddr
This parameter is the memory base address of the device registers in the memory
map of the CPU. It indicates to the driver where to find the base MAC register.

devIoAddr
This parameter in the base address of the device registers for the dedicated DMA
channel for the MAC device. It indicates to the driver where to find the DMA
registers.

enableAddr
This parameter is the address MAC enable register. It is necessary to specify selection
between MAC 0 and MAC 1.

vecNum
This parameter is the vector associated with the device interrupt. This driver
configures the MAC device to generate hardware interrupts for various events within
the device; thus it contains an interrupt handler routine. The driver calls
intConnect() via the macro SYS_INT_CONNECT() to connect its interrupt handler to
the interrupt vector generated as a result of the MAC interrupt.

intLvl
Some targets use additional interrupt controller devices to help organize and service
the various interrupt sources. This driver avoids all board- specific knowledge of
such devices. During the driver’s initialization, the external routine
sysLanAuIntEnable() is called to perform any board-specific operations required to
allow the servicing of an interrupt. For a description of sysLanAuIntEnable(), see
"External Support Requirements" below.

offset
This parameter specifies the offset from which the packet has to be loaded from the
beginning of the device buffer. Normally this parameter is zero except for
architectures which access long words only on aligned addresses. For these
architectures the value of this offset should be 2.

qtyCluster
This parameter is for explicitly allocating the number of clusters that will be allocated.
This allows the user to suit the stack to the amount of physical memory on the board.

flags
This is parameter is reserved for future use. Its value should be zero.
15

VxWorks Drivers API Reference, 5.5
auEnd
EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions, defined as macros:

SYS_INT_CONNECT(pDrvCtrl, routine, arg)

SYS_INT_DISCONNECT (pDrvCtrl, routine, arg)

SYS_INT_ENABLE(pDrvCtrl)

SYS_INT_DISABLE(pDrvCtrl)

SYS_OUT_BYTE(pDrvCtrl, reg, data)

SYS_IN_BYTE(pDrvCtrl, reg, data)

SYS_OUT_WORD(pDrvCtrl, reg, data)

SYS_IN_WORD(pDrvCtrl, reg, data)

SYS_OUT_LONG(pDrvCtrl, reg, data)

SYS_IN_LONG(pDrvCtrl, reg, data)

SYS_ENET_ADDR_GET(pDrvCtrl, pAddress)

sysLanAuIntEnable(pDrvCtrl->intLevel)

sysLanAuIntDisable(pDrvCtrl->intLevel)

sysLanAuEnetAddrGet(pDrvCtrl, enetAdrs)

There are default values in the source code for these macros. They presume memory
mapped accesses to the device registers and the intConnect() and intEnable() BSP
functions. The first argument to each is the device controller structure. Thus, each has
access back to all the device-specific information. Having the pointer in the macro
facilitates the addition of new features to this driver.

The macros SYS_INT_CONNECT, SYS_INT_DISCONNECT, SYS_INT_ENABLE, and
SYS_INT_DISABLE allow the driver to be customized for BSPs that use special versions of
these routines.

The macro SYS_INT_CONNECT is used to connect the interrupt handler to the appropriate
vector. By default it is the routine intConnect().

The macro SYS_INT_DISCONNECT is used to disconnect the interrupt handler prior to
unloading the module. By default this routine is not implemented.

The macro SYS_INT_ENABLE is used to enable the interrupt level for the end device. It is
called once during initialization. It calls an external board level routine
sysLanAuIntEnable().

The macro SYS_INT_DISABLE is used to disable the interrupt level for the end device. It is
called during stop. It calls an external board level routine sysLanAuIntDisable().

The macro SYS_ENET_ADDR_GET is used get the Ethernet hardware of the chip. This
macro calls an external board level routine namely sysLanAuEnetAddrGet() to get the
ethernet address.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one mutual exclusion semaphore
16

1: Libraries
auEnd

A

– one interrupt vector

– 64 bytes in the initialized data section (data)

– 0 bytes in the uninitialized data section (BSS)

The driver allocates clusters of size 1520 bytes for receive frames and transmit frames.

INCLUDES end.h, endLib.h, etherMultiLib.h, auEnd.h

SEE ALSO muxLib, endLib, netBufLib, Writing An Enhanced Network Driver
17

VxWorks Drivers API Reference, 5.5
cd2400Sio
cd2400Sio

NAME cd2400Sio – CL-CD2400 MPCC serial driver

ROUTINES cd2400HrdInit() – initialize the chip
cd2400IntRx() – handle receiver interrupts
cd2400IntTx() – handle transmitter interrupts
cd2400Int() – handle special status interrupts

DESCRIPTION This is the driver for the Cirus Logic CD2400 MPCC. It uses the SCC’s in asynchronous
mode.

USAGE A CD2400_QUSART structure is used to describe the chip. This data structure contains four
CD2400_CHAN structure which describe the chip’s four serial channels. The BSP’s
sysHwInit() routine typically calls sysSerialHwInit() which initializes all the values in
the CD2400_QUSART structure (except the SIO_DRV_FUNCS) before calling
cd2400HrdInit(). The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2()
which connects the chips interrupts (cd2400Int, cd2400IntRx, and cd2400IntTx) via
intConnect().

IOCTL FUNCTIONS This driver responds to the same ioctl() codes as a normal serial driver; for more
information, see the comments in sioLib.h. The available baud rates are: 50, 110, 150, 300,
600, 1200, 2400, 3600, 4800, 7200, 9600, 19200, and 38400.

INCLUDE FILES drv/sio/cd2400Sio.h

cisLib

NAME cisLib – PCMCIA CIS library

ROUTINES cisGet() – get information from a PC card’s CIS
cisFree() – free tuples from the linked list
cisConfigregGet() – get the PCMCIA configuration register
cisConfigregSet() – set the PCMCIA configuration register

DESCRIPTION This library contains routines to manipulate the CIS (Configuration Information Structure)
tuples and the card configuration registers. The library uses a memory window which is
defined in pcmciaMemwin to access the CIS of a PC card. All CIS tuples in a PC card are
read and stored in a linked list, cisTupleList. If there are configuration tuples, they are
18

1: Driver Libraries
coldfireSio

C

interpreted and stored in another link list, cisConifigList. After the CIS is read, the PC
card’s enabler routine allocates resources and initializes a device driver for the PC card.

If a PC card is inserted, the CSC (Card Status Change) interrupt handler gets a CSC event
from the PCMCIA chip and adds a cisGet() job to the PCMCIA daemon. The PCMCIA
daemon initiates the cisGet() work. The CIS library reads the CIS from the PC card and
makes a linked list of CIS tuples. It then enables the card.

If the PC card is removed, the CSC interrupt handler gets a CSC event from the PCMCIA
chip and adds a cisFree() job to the PCMCIA daemon. The PCMCIA daemon initiates the
cisFree() work. The CIS library frees allocated memory for the linked list of CIS tuples.

cisShow

NAME cisShow – PCMCIA CIS show library

ROUTINES cisShow() – show CIS information

DESCRIPTION This library provides a show routine for CIS tuples. This is provided for engineering
debug use.

This module uses floating point calculations. Any task calling cisShow() needs to have
the VX_FP_TASK bit set in the task flags.

coldfireSio

NAME coldfireSio – ColdFire Serial Communications driver

ROUTINES coldfireDevInit() – initialize a COLDFIRE_CHAN
coldfireDevInit2() – initialize a COLDFIRE_CHAN, part 2
coldfireImrSetClr() – set and clear bits in the UART’s interrupt mask register
coldfireImr() – return current interrupt mask register contents
coldfireAcrSetClr() – set and clear bits in the UART’s aux control register
coldfireAcr() – return aux control register contents
coldfireOprSetClr() – set and clear bits in the output port register
coldfireOpr() – return the current state of the output register
coldfireInt() – handle all interrupts in one vector

DESCRIPTION This is the driver for the UART contained in the ColdFire Microcontroller.
19

VxWorks Drivers API Reference, 5.5
coldfireSio
Only asynchronous serial operation is supported by this driver. The default serial settings
are 8 data bits, 1 stop bit, no parity, 9600 baud, and software flow control. These default
settings can be overridden by setting the COLDFIRE_CHAN options and baudRate fields to
the desired values before calling coldfireDevInit(). See sioLib.h for options values. The
defaults for the module can be changed by redefining the macros
COLDFIRE_DEFAULT_OPTIONS and COLDFIRE_DEFAULT_BAUD and recompiling this
driver.

This driver uses the system clock as the input to the baud rate generator. The clkRate field
must be set to the system clock rate in HZ for the baud rate calculations to work correctly.
The actual range of supported baud rates depends on the system clock speed. For
example, with a 25MHz system clock, the lowest baud rate is 24, and the highest is over
38400. Because the baud rate values are calculated on request, there is no checking that the
requested baud rate is standard, you can set the UART to operate at 4357 baud if you
wish.

USAGE A COLDFIRE_CHAN structure is used to describe the chip.

The BSP’s sysHwInit() routine typically calls sysSerialHwInit() which initializes all the
H/W addresses in the COLDFIRE_CHAN structure before calling coldfireDevInit(). This
enables the chip to operate in polled mode, but not interrupt mode. Calling
coldfireDevInit2() from the sysSerialHwInit2() routine allows interrupts to be enabled
and interrupt mode operation to be used.

i.e.

#include "drv/multi/coldfireSio.h"

COLDFIRE_CHAN coldfireUart; /* my device structure */

#define INT_VEC_UART (24+3) /* use single vector, #27 */

sysSerialHwInit()

{

/* initialize the register pointers/data for uart */

coldfireUart.clkRate = MASTER_CLOCK;

coldfireUart.intVec = INT_VEC_UART;

coldfireUart.mr = COLDFIRE_UART_MR(SIM_BASE);

coldfireUart.sr = COLDFIRE_UART_SR(SIM_BASE);

coldfireUart.csr = COLDFIRE_UART_CSR(SIM_BASE);

coldfireUart.cr = COLDFIRE_UART_CR(SIM_BASE);

coldfireUart.rb = COLDFIRE_UART_RB(SIM_BASE);

coldfireUart.tb = COLDFIRE_UART_TB(SIM_BASE);

coldfireUart.ipcr = COLDFIRE_UART_IPCR(SIM_BASE);

coldfireUart.acr = COLDFIRE_UART_ACR(SIM_BASE);

coldfireUart.isr = COLDFIRE_UART_ISR(SIM_BASE);

coldfireUart.imr = COLDFIRE_UART_IMR(SIM_BASE);

coldfireUart.bg1 = COLDFIRE_UART_BG1(SIM_BASE);

coldfireUart.bg2 = COLDFIRE_UART_BG2(SIM_BASE);

coldfireUart.ivr = COLDFIRE_UART_IVR(SIM_BASE);

coldfireUart.ip = COLDFIRE_UART_IP(SIM_BASE);
20

1: Driver Libraries
ctB69000Vga

C

coldfireUart.op1 = COLDFIRE_UART_OP1(SIM_BASE);

coldfireUart.op2 = COLDFIRE_UART_OP2(SIM_BASE);

coldfireDevInit (&coldfireUart);

}

The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2() which connects the
chips interrupts via intConnect() to the single interrupt handler coldfireInt. After the
interrupt service routines are connected, the user then calls coldfireDevInit2() to allow
the driver to turn on interrupt enable bits. That is:

sysSerialHwInit2 ()

{

/* connect single vector for 5204 */

intConnect (INUM_TO_IVEC(MY_VEC), coldfireInt, (int)&coldfireUart);

...

/* allow interrupts to be enabled */

coldfireDevInit2 (&coldfireUart);

}

SPECIAL CONSIDERATIONS

The CLOCAL hardware option presumes that CTS outputs are not wired as necessary.
CLOCAL is one of the default options for this reason.

As to the output port, this driver does not manipulate the output port, or it’s
configuration register in any way. As stated above, if the user does not select the CLOCAL
option then the output port bit must be wired correctly or the hardware flow control will
not function as desired.

INCLUDE FILES drv/sio/coldfireSio.h

ctB69000Vga

NAME ctB69000Vga – a CHIPS B69000 initialization source module

ROUTINES ctB69000VgaInit() – initialize the B69000 chip and loads font in memory

DESCRIPTION The 69000 is the first product in the CHIPS family of portable graphics accelerator product
line that integrates high performance memory technology for the graphics frame buffer.
Based on the proven HiQVideo graphics accelerator core, the 69000 combines
state-of-the-art flat panel controller capabilities with low power, high performance
integrated memory. The result is the start of a high performance, low power, highly
integrated solution for the premier family of portable graphics products.
21

VxWorks Drivers API Reference, 5.5
ctB69000Vga
High Performance Integrated Memory
The 69000 is the first member of the HiQVideo family to provide integrated high
performance synchronous DRAM (SDRAM) memory technology. Targeted at the
mainstream notebook market, the 69000 incorporates 2MB of proprietary integrated
SDRAM for the graphics/video frame buffer. The integrated SDRAM memory can
support up to 83MHz operation, thus increasing the available memory bandwidth for
the graphics subsystem. The result is support for additional high color / high
resolution graphics modes combined with real-time video acceleration. This
additional bandwidth also allows more flexibility in the other graphics functions
intensely used in Graphical User Interfaces (GUIs) such as Microsoft Windows.

Frame-Based AGP Compatibility
The 69000 graphics is designed to be used with either 33MHz PCI, or with AGP as a
frame-based AGP device, allowing it to be used with the AGP interface provided by
the latest core logic chipsets.

HiQColor TM Technology
The 69000 integrates CHIPS breakthrough HiQColor technology. Based on the CHIPS
proprietary TMED (Temporal Modulated Energy Distribution) algorithm, HiQColor
technology is a unique process that allows the display of 16.7 million true colors on
STN panels without using Frame Rate Control (FRC) or dithering. In addition, TMED
also reduces the need for the panel tuning associated with current FRC-based
algorithms. Independent of panel response, the TMED algorithm eliminates all of the
flaws (such as shimmer, Mach banding, and other motion artifacts) normally
associated with dithering and FRC. Combined with the new fast response,
high-contrast, and low-crosstalk technology found in new STN panels, HiQColor
technology enables the best display quality and color fidelity previously only
available with TFT technology.

Versatile Panel Support
The HiQVideo family supports a wide variety of monochrome and color Single-
Panel, Single-Drive (SS) and Dual-Panel, Dual Drive (DD), standard and high-
resolution, passive STN and active matrix TFT/MIM LCD, and EL panels. With
HiQColor technology, up to 256 gray scales are supported on passive STN LCDs. Up
to 16.7M different colors can be displayed on passive STN LCDs and up to 16.7M
colors on 24- bit active matrix LCDs.

The 69000 offers a variety of programmable features to optimize display quality.
Vertical centering and stretching are provided for handling modes with less than 480
lines on 480-line panels. Horizontal and vertical stretching capabilities are also
available for both text and graphics modes for optimal display of VGA text and
graphics modes on 800x600, 1024x768 and 1280x1024 panels.

Television NTSC/PAL Flicker Free Output
The 69000 uses a flicker reduction process which makes text of all fonts and sizes
readable by reducing the flicker and jumping lines on the display.
22

1: Driver Libraries
ctB69000Vga

C

HiQVideo T Multimedia Support
The 69000 uses independent multimedia capture and display systems on-chip. The
capture system places data in display memory (usually off screen) and the display
system places the data in a window on the screen.

Low Power Consumption
The 69000 uses a variety of advanced power management features to reduce power
consumption of the display sub-system and to extend battery life. Optimized for 3.3V
operation, the 69000 internal logic, bus and panel interfaces operate at 3.3V but can
tolerate 5V operation.

Software Compatibility/Flexibility
The HiQVideo controllers are fully compatible with the VGA standard at both the
register and BIOS levels. CHIPS and third-party vendors supply a fully VGA
compatible BIOS, end-user utilities and drivers for common application programs.

Acceleration for All Panels and All Modes
The 69000 graphics engine is designed to support high performance graphics and
video acceleration for all supported display resolutions, display types, and color
modes. There is no compromise in performance operating in 8, 16, or 24 bpp color
modes allowing true acceleration while displaying up to 16.7M colors.

USAGE This library provides initialization routines to configure CHIPS B69000 (VGA) in
alphanumeric mode.

The functions addressed here include:

i - Initialization of CHIPS B69000 IC.

USER INTERFACE STATUS ctB69000VgaInit

(

VOID

)

This routine will initialize the VGA card if present in PCI connector, sets up register set in
VGA 3+ mode and loads the font in plane 2.

INCLUDE FILES None
23

VxWorks Drivers API Reference, 5.5
dec21x4xEnd
dec21x4xEnd

NAME dec21x4xEnd – END style DEC 21x4x PCI Ethernet network interface driver

ROUTINES dec21x4xEndLoad() – initialize the driver and device

DESCRIPTION This module implements a DEC 21x4x PCI Ethernet network interface driver and
supports 21040, 21140 and 21143 versions of the chip.

The DEC 21x4x PCI Ethernet controller is little-endian because it interfaces with a
little-endian PCI bus. Although PCI configuration for a device is handled in the BSP, all
other device programming and initialization are handled in this module.

This driver is designed to be moderately generic. Without modification, it can operate
across the range of architectures and targets supported by VxWorks. To achieve this, the
driver requires a few external support routines as well as several target-specific
parameters. These parameters, and the mechanisms used to communicate them to the
driver, are detailed below. If any of the assumptions stated below are not true for your
particular hardware, you need to modify the driver before it can operate correctly on your
hardware.

On 21040, the driver configures the 10BASE-T interface by default, waits for two seconds,
and checks the status of the link. If the link status indicates failure, AUI interface is
configured.

On other versions of the 2114x family, the driver reads media information from a DEC
serial ROM and configures the media. On targets that do not support a DEC format serial
ROM, the driver calls a target-specific media select routine using the hook,
_func_dec2114xMediaSelect, to configure the media.

The driver supports big-endian or little-endian architectures (as a configurable option).
The driver also and contains error recovery code that handles known device errata related
to DMA activity.

Big-endian processors can be connected to the PCI bus through some controllers which
take care of hardware byte swapping. In such cases all the registers which the chip DMAs
to have to be swapped and written to, so that when the hardware swaps the accesses, the
chip would see them correctly. The chip still has to be programmed to operate in
little-endian mode as it is on the PCI bus. If the CPU board hardware automatically swaps
all the accesses to and from the PCI bus, then input and output byte stream need not be
swapped.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The driver provides one standard external interface, dec21x4xEndLoad(), which a takes a
string of colon separated parameters. The parameters should be specified as hexadecimal
24

1: Driver Libraries
dec21x4xEnd

D

strings, optionally preceded by "0x" or a minus sign "-".

Although the parameter string is parsed using strtok_r(), each parameter is converted
from string to binary by a call to:

strtoul(parameter, NULL, 16)

The format of the parameter string is:

"unit number:device addr:PCI addr:ivec:ilevel:mem base: mem size:user flags:offset"

TARGET-SPECIFIC PARAMETERS

unit number
This represents the device instance number relative to this driver. That is, a value of
zero represents the first dec21x4x device, a value of 1 represents the second dec21x4x
device.

device addr
This is the base address at which the hardware device registers are located.

PCI addr
This parameter defines the main memory address over the PCI bus. It is used to
translate physical memory address into PCI accessible address.

ivec
This is the interrupt vector number of the hardware interrupt generated by this
Ethernet device. The driver uses intConnect(), or pciIntConnect() (x86 arch), to
attach an interrupt handler for this interrupt.

ilevel
This parameter defines the level of the hardware interrupt.

mem base
This parameter specifies the base address of a DMA-able, cache free, pre-allocated
memory region for use as a memory pool for transmit/receive descriptors and
buffers.

If there is no pre-allocated memory available for the driver, this parameter should be
-1 (NONE). In which case, the driver allocates cache safe memory for its use using
cacheDmaAlloc().

mem size
The memory size parameter specifies the size of the pre-allocated memory region. If
memory base is specified as NONE (-1), the driver ignores this parameter.

user flags
User flags control the run-time characteristics of the Ethernet chip. Most flags specify
non default CSR0 bit values. Refer to dec21x4xEnd.h for the bit values of the flags,
and to the device hardware reference manual for details about device capabilities,
and CSR 0.
25

VxWorks Drivers API Reference, 5.5
dec21x4xEnd
Some of them are worth mentioning:

Full Duplex Mode: When set, the DEC_USR_FD flag allows the device to work in full
duplex mode, as long as the PHY used has this capability. It is worth noting here that
in this operation mode, the dec21x40 chip ignores the Collision and the Carrier Sense
signals.

Transmit threshold value: The DEC_USR_THR_XXX flags enable the user to choose
among different threshold values for the transmit FIFO. Transmission starts when the
frame size within the transmit FIFO is larger than the threshold value. This should be
selected taking into account the actual operating speed of the PHY. Again, see the
device hardware reference manual for details.

offset
This parameter defines the offset which is used to solve alignment problem.

Device Type
Although the default device type is DEC 21040, specifying the DEC_USR_21140or
DEC_USR_21143 flag bit turns on DEC 21140 or DEC_USR_21143 functionality.

Ethernet Address
The Ethernet address is retrieved from standard serial ROM on DEC 21040, DEC
21140 and DEC 21143 devices. If retrieve from ROM fails, the driver calls the BSP
routine, sysDec21x4xEnetAddrGet(). Specifying DEC_USR_XEA flag bit tells the
driver should, by default, retrieve the Ethernet address using the BSP routine,
sysDec21x4xEnetAddrGet().

Priority RX processing
The driver programs the chip to process the transmit and receive queues at the same
priority. By specifying DEC_USR_BAR_RX, the device is programmed to process
receives at a higher priority.

TX poll rate
By default, the driver sets the Ethernet chip into a non-polling mode. In this mode, if
the transmit engine is idle, it is kick-started every time a packet needs to be
transmitted. Alternately, the chip can be programmed to poll for the next available
transmit descriptor if the transmit engine is in idle state. The poll rate is specified by
one of DEC_USR_TAP_xxx.

Cache Alignment
The DEC_USR_CAL_xxx flags specify the address boundaries for data burst transfers.

DMA burst length
The DEC_USR_PBL_xxx flags specify the maximum number of long words in a DMA
burst.

PCI multiple read
The DEC_USR_RML flag specifies that a device supports PCI memory-read-multiple.
26

1: Driver Libraries
dec21x4xEnd

D

EXTERNAL SUPPORT REQUIREMENTS

This driver requires four external support functions, and provides a hook function.

void sysLanIntEnable (int level)

This routine provides a target-specific interface for enabling Ethernet device
interrupts at a specified interrupt level.

void sysLanIntDisable (void)

This routine provides a target-specific interface for disabling Ethernet device
interrupts.

STATUS sysDec21x4xEnetAddrGet (int unit, char *enetAdrs)

This routine provides a target-specific interface for accessing a device Ethernet
address.

STATUS sysDec21143Init (DRV_CTRL * pDrvCtrl)

This routine performs any target-specific initialization required before the dec21143
device is initialized by the driver. The driver calls this routine every time it wants to
load the device. This routine returns OK, or ERROR if it fails.

FUNCPTR _func_dec2114xMediaSelect

This driver provides a default media select routine, when
_func_dec2114xMediaSelect is NULL, to read and set up physical media with
configuration information from a Version 3 DEC Serial ROM. Any other media
configuration can be supported by initializing _func_dec2114xMediaSelect, typically
in sysHwInit(), to a target-specific media select routine.

A media select routine is typically defined as:

STATUS decMediaSelect

(

DEC21X4X_DRV_CTRL * pDrvCtrl, /* Driver control */

UINT * pCsr6Val /* CSR6 return value */

)

{

...

}

Parameter pDrvCtrl is a pointer to the driver control structure which this routine may
use to access the Ethenet device. The driver control structure field mediaCount, is
initialized to 0xff at startup, while the other media control fields (mediaDefault,
mediaCurrent, and gprModeVal) are initialized to zero. This routine may use these
fields in any manner, however all other driver control fields should be considered
read-only and should not be modified.

This routine should reset, initialize and select an appropriate media, and write
necessary the CSR6 bits (port select, PCS, SCR, and full duplex) to memory location
pointed to by pCsr6Val. The driver will use this value to program register CSR6. This
routine should return OK, and ERROR on failure.

FUNCPTR _func_dec2114xIntAck
27

VxWorks Drivers API Reference, 5.5
dec21x40End
This driver does acknowledge the LAN interrupts. However if the board hardware
requires specific interrupt acknowledgement, not provided by this driver, the BSP
should define such a routine and attach it to the driver via _func_dec2114xIntAck.

SEE ALSO ifLib, DECchip 21040 Ethernet LAN Controller for PCI. Digital Semiconductor 21140A PCI Fast
Ethernet LAN Controller. Digital Semiconductor 21143 PCI/CardBus Fast Ethernet LAN
Controller, Using the Digital Semiconductor 21140A with Boot ROM, Serial ROM, and External
Register: An Application Note

dec21x40End

NAME dec21x40End – END-style DEC 21x40 PCI Ethernet network interface driver

ROUTINES endTok_r() – get a token string (modified version)
dec21x40EndLoad() – initialize the driver and device
dec21140SromWordRead() – read two bytes from the serial ROM
dec21x40PhyFind() – find the first PHY connected to DEC MII port
dec21145SPIReadBack() – read all PHY registers out

DESCRIPTION This module implements a DEC 21x40 PCI Ethernet network interface driver and supports
both the 21040, 21140, 21143, 21145 versions of the chip.

The DEC 21x40 PCI Ethernet controller is little-endian because it interfaces with a
little-endian PCI bus. Although PCI configuration for a device is handled in the BSP, all
other device programming and initialization needs are handled in this module.

This driver is designed to be moderately generic. Without modification, it can operate
across the full range of architectures and targets supported by VxWorks. To achieve this,
the driver requires a few external support routines as well as several target-specific
parameters. These parameters, and the mechanisms used to communicate them to the
driver, are detailed below. If any of the assumptions stated below are not true for your
particular hardware, you need to modify the driver before it can operate correctly on your
hardware.

On the 21040, the driver configures the 10BASE-T interface by default, waits for two
seconds, and checks the status of the link. If the link status indicates failure, AUI interface
is configured.

On other versions of the 21x40 family, the driver reads media information from a DEC
serial ROM and configures the media. To configure the media on targets that do not
support a DEC format serial ROM, the driver calls the target-specific media-select routine
referenced in the _func_dec21x40MediaSelect hook.

The 21145 supports HomePNA 1.0 (Home Phone Line) Networking as well as 10Base-T.
The HomePNA port can be forced to 1 MB/sec or 0.7 MB/sec mode via the
28

1: Driver Libraries
dec21x40End

D

DEC_USR_HPNA_FORCE_FAST and DEC_USR_HPNA_FORCE_SLOW user flags,
respectively. If these flags are not set then the speed is set using the SROM settings. Unlike
the Ethernet phys, the HomePNA phy can not determine link failure and therefore will
never notify the driver when the HomePNA port is disconnected. However, to allow
media change, the driver can be configured to ALWAYS prefer 10Base-T over HomePNA
by interrupting on 10Base-T link pass interrupt. Upon 10Base-T link failure, the driver will
revert back to HomePNA. Since this method violates the preference rules outlined in
Intel/DEC SROM format spec, this is not the default mode of operation. The driver must
be started with DEC_USR_HPNA_PREFER_10BT user flag set to set the driver into this
mode.

The driver supports big-endian or little-endian architectures (as a configurable option).
The driver also and contains error recovery code that handles known device errata related
to DMA activity.

Big-endian processors can be connected to the PCI bus through some controllers that take
care of hardware byte swapping. In such cases, all the registers which the chip DMAs
have to be swapped and written to, so that when the hardware swaps the accesses, the
chip would see them correctly. The chip still has to be programmed to operate in
little-endian mode as it is on the PCI bus. If the CPU board hardware automatically swaps
all the accesses to and from the PCI bus, then input and output byte stream need not be
swapped.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The driver provides one standard external interface, dec21x40EndLoad(). As input, this
function expects a string of colon-separated parameters. The parameters should be
specified as hexadecimal strings (optionally preceded by "0x" or a minus sign "-").
Although the parameter string is parsed using endTok_r(), each parameter is converted
from string to binary by a call to:

strtoul(parameter, NULL, 16).

The format of the parameter string is:

"deviceAddr:pciAddr:iVec:iLevel:numRds:numTds:
memBase:memSize:userFlags:phyAddr:pPhyTbl:phyFlags:offset:loanBufs"

TARGET-SPECIFIC PARAMETERS

deviceAddr
This is the base address at which the hardware device registers are located.

pciAddr
This parameter defines the main memory address over the PCI bus. It is used to
translate a physical memory address into a PCI-accessible address.
29

VxWorks Drivers API Reference, 5.5
dec21x40End
iVec
This is the interrupt vector number of the hardware interrupt generated by this
Ethernet device. The driver uses intConnect() to attach an interrupt handler for this
interrupt. The BSP can change this by modifying the global pointer
dec21x40IntConnectRtn with the desired routines (usually pciIntConnect()).

iLevel
This parameter defines the level of the hardware interrupt.

numRds
The number of receive descriptors to use. This controls how much data the device can
absorb under load. If this is specified as NONE (-1), the default of 32 is used.

numTds
The number of transmit descriptors to use. This controls how much data the device
can absorb under load. If this is specified as NONE (-1) then the default of 64 is used.

memBase
This parameter specifies the base address of a DMA-able cache-free pre-allocated
memory region for use as a memory pool for transmit/receive descriptors and
buffers, including loaner buffers. If there is no pre-allocated memory available for the
driver, this parameter should be -1 (NONE). In which case, the driver allocates cache
safe memory for its use using cacheDmaAlloc().

memSize
The memory size parameter specifies the size of the pre-allocated memory region. If
memory base is specified as NONE (-1), the driver ignores this parameter. When
specified this value must account for transmit/receive descriptors and buffers and
loaner buffers

userFlags
User flags control the run-time characteristics of the Ethernet chip. Most flags specify
non default CSR0 and CSR6 bit values. Refer to dec21x40End.h for the bit values of
the flags and to the device hardware reference manual for details about device
capabilities, CSR6 and CSR0.

phyAddr
This optional parameter specifies the address on the MII (Media Independent
Interface) bus of a MII-compliant PHY (Physical Layer Entity). The module that is
responsible for optimally configuring the media layer will start scanning the MII bus
from the address in phyAddr. It will retrieve the PHY’s address regardless of that, but,
since the MII management interface, through which the PHY is configured, is a very
slow one, providing an incorrect or invalid address may result in a particularly long
boot process. If the flag DEC_USR_MII is not set, this parameter is ignored.

pPhyTbl
This optional parameter specifies the address of a auto-negotiation table for the PHY
being used. The user only needs to provide a valid value for this parameter if he
wants to affect the order how different technology abilities are negotiated. If the flag
30

1: Driver Libraries
dec21x40End

D

DEC_USR_MII is not set, this parameter is ignored.

phyFlags
This optional parameter allows the user to affect the PHY’s configuration and
behavior. See below, for an explanation of each MII flag. If the flag DEC_USR_MII is
not set, this parameter is ignored.

offset
This parameter defines the offset which is used to solve alignment problem.

loanBufs
This optional parameter allows the user to select the amount of loaner buffers
allocated for the driver’s net pool to be loaned to the stack in receive operations. The
default number of loaner buffers is 32. The number of loaner buffers must be
accounted for when calculating the memory size specified by memSize.

Device Type: Although the default device type is DEC 21040, specifying the
DEC_USR_21140 flag bit turns on DEC 21140 functionality.

Ethernet Address: The Ethernet address is retrieved from standard serial ROM on both
DEC 21040, and DEC 21140 devices. If the retrieve from ROM fails, the driver calls the
sysDec21x40EnetAddrGet() BSP routine. Specifying DEC_USR_XEA flag bit tells the
driver should, by default, retrieve the Ethernet address using the
sysDec21x40EnetAddrGet() BSP routine.

Priority RX processing: The driver programs the chip to process the transmit and receive
queues at the same priority. By specifying DEC_USR_BAR_RX, the device is programmed
to process receives at a higher priority.

TX poll rate: By default, the driver sets the Ethernet chip into a non-polling mode. In this
mode, if the transmit engine is idle, it is kick-started every time a packet needs to be
transmitted. Alternatively, the chip can be programmed to poll for the next available
transmit descriptor if the transmit engine is in idle state. The poll rate is specified by one
of DEC_USR_TAP_xxx flags.

Cache Alignment: The DEC_USR_CAL_xxx flags specify the address boundaries for data
burst transfers.

DMA burst length: The DEC_USR_PBL_xxx flags specify the maximum number of long
words in a DMA burst.

PCI multiple read: The DEC_USR_RML flag specifies that a device supports PCI
memory-read-multiple.

Full Duplex Mode: When set, the DEC_USR_FD flag allows the device to work in full
duplex mode, as long as the PHY used has this capability. It is worth noting here that in
this operation mode, the dec21x40 chip ignores the Collision and the Carrier Sense signals.

MII interface: some boards feature an MII-compliant Physical Layer Entity (PHY). In this
case, and if the flag DEC_USR_MII is set, then the optional fields phyAddr, pPhyTbl, and
phyFlags may be used to affect the PHY’s configuration on the network.
31

VxWorks Drivers API Reference, 5.5
dec21x40End
10Base-T Mode: when the flag DEC_USR_MII_10MB is set, then the PHY will negotiate this
technology ability, if present.

100Base-T Mode: when the flag DEC_USR_MII_100MB is set, then the PHY will negotiate
this technology ability, if present.

Half duplex Mode: when the flag DEC_USR_MII_HD is set, then the PHY will negotiate
this technology ability, if present.

Full duplex Mode: when the flag DEC_USR_MII_FD is set, then the PHY will negotiate this
technology ability, if present.

Auto-negotiation: The driver’s default behavior is to enable auto-negotiation, as defined
in "IEEE 802.3u Standard". However, the user may disable this feature by setting the flag
DEC_USR_MII_NO_AN in the phyFlags field of the load string.

Auto-negotiation table: The driver’s default behavior is to enable the standard
auto-negotiation process, as defined in "IEEE 802.3u Standard". However, the user may
wish to force the PHY to negotiate its technology abilities a subset at a time, and according
to a particular order. The flag DEC_USR_MII_AN_TBL in the phyFlags field may be used to
tell the driver that the PHY should negotiate its abilities as dictated by the entries in the
pPhyTbl of the load string. If the flag DEC_USR_MII_NO_AN is set, this parameter is
ignored.

Link monitoring: this feature enables the netTask to periodically monitor the PHY’s link
status for link down events. If any such event occurs, and if the flag
DEC_USR_MII_BUS_MON is set, then a driver’s optionally provided routine is executed,
and the link is renegotiated.

Transmit treshold value: The DEC_USR_THR_XXX flags enable the user to choose among
different threshold values for the transmit FIFO. Transmission starts when the frame size
within the transmit FIFO is larger than the threshold value. This should be selected taking
into account the actual operating speed of the PHY. Again, see the device hardware
reference manual for details.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires three external support functions and provides a hook function.

sysLanIntEnable()
void sysLanIntEnable (int level)

This routine provides a target-specific interface for enabling Ethernet device
interrupts at a specified interrupt level.

sysLanIntDisable()
void sysLanIntDisable (void)

This routine provides a target-specific interface for disabling Ethernet device
interrupts.

sysDec21x40EnetAddrGet()
STATUS sysDec21x40EnetAddrGet (int unit, char *enetAdrs)
32

1: Driver Libraries
dec21x40End

D

This routine provides a target-specific interface for accessing a device Ethernet
address.

_func_dec21x40MediaSelect
FUNCPTR _func_dec21x40MediaSelect

If _func_dec21x40MediaSelect is NULL, this driver provides a default media-select
routine that reads and sets up physical media using the configuration information
from a Version 3 DEC Serial ROM. Any other media configuration can be supported
by initializing _func_dec21x40MediaSelect, typically in sysHwInit(), to a
target-specific media select routine.

A media select routine is typically defined as:

STATUS decMediaSelect

(

DEC21X40_DRV_CTRL * pDrvCtrl, /* driver control */

UINT * pCsr6Val /* CSR6 return value */

)

{

...

}

The pDrvCtrl parameter is a pointer to the driver control structure that this routine
can use to access the Ethenet device. The driver control structure member
mediaCount, is initialized to 0xff at startup, while the other media control members
(mediaDefault, mediaCurrent, and gprModeVal) are initialized to zero. This routine
can use these fields in any manner. However, all other driver control structure
members should be considered read-only and should not be modified.

This routine should reset, initialize, and select an appropriate media. It should also
write the necessary CSR6 bits (port select, PCS, SCR, and full duplex) to the memory
location pointed to by pCsr6Val. The driver uses this value to program register CSR6.
This routine should return OK or ERROR.

VOIDFUNCPTR _func_dec2114xIntAck
This driver does acknowledge the LAN interrupts. However if the board hardware
requires specific interrupt acknowledgement, not provided by this driver, the BSP
should define such a routine and attach it to the driver via _func_dec2114xIntAck.

PCI ID VALUES The dec21xxx series chips are now owned and manufactured by Intel. Chips may be
identified by either PCI Vendor ID. ID value 0x1011 for Digital, or ID value 0x8086 for
Intel. Check the Intel web site for latest information. The information listed below may be
out of date.

Chip Vendor ID Device ID

dec 21040 0x1011 0x0002

dec 21041 0x1011 0x0014

dec 21140 0x1011 0x0009

dec 21143 0x1011 0x0019

dec 21145 0x8086 0x0039
33

VxWorks Drivers API Reference, 5.5
dec21x40End
SEE ALSO ifLib, DECchip 21040 Ethernet LAN Controller for PCI, Digital Semiconductor 21140A PCI Fast
Ethernet LAN Controller, Using the Digital Semiconductor 21140A with Boot ROM, Serial
ROM, and External Register: An Application Note" Intel 21145 Phoneline/Ethernet LAN
Controller Hardware Ref. Manual Intel 21145 Phoneline/Ethernet LAN Controller Specification
Update
34

1: Driver Libraries
ei82596End

E

ei82596End

NAME ei82596End – END style Intel 82596 Ethernet network interface driver

ROUTINES ei82596EndLoad() – initialize the driver and device

DESCRIPTION This module implements an Intel 82596 Ethernet network interface driver. This driver is
designed to be moderately generic. It operates unmodified across the range of
architectures and targets supported by VxWorks. To achieve this, this driver requires
some external support routines as well as several target-specific parameters. These
parameters (and the mechanisms used to communicate them to the driver) are detailed
below.

This driver can run with the device configured in either big-endian or little-endian modes.
Error recovery code has been added to deal with some of the known errata in the A0
version of the device. This driver supports up to four individual units per CPU.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The driver provides one standard external interface, ei82596EndLoad(). As input, this
routine takes a string of colon-separated parameters. The parameters should be specified
in hexadecimal (optionally preceded by "0x" or a minus sign "-"). The parameter string is
parsed using strtok_r(), and each parameter is converted from string to binary by a call
to:

strtoul(parameter, NULL, 16).

TARGET-SPECIFIC PARAMETERS

The format of the parameter string is:

unit:ivec:sysbus:memBase:nTfds:nRfds:offset

unit
A convenient holdover from the former model. It is only used in the string name for
the driver.

ivec
This is the interrupt vector number of the hardware interrupt generated by this
ethernet device. The driver uses intConnect() to attach an interrupt handler to this
interrupt.

sysbus
This parameter tells the device about the system bus. To determine the correct value
for a target, see Intel 32-bit Local Area Network (LAN) Component User’s Manual.
35

VxWorks Drivers API Reference, 5.5
ei82596End
memBase
This parameter specifies the base address of a DMA-able cache-free pre-allocated
memory region for use as a memory pool for transmit/receive descriptors, buffers,
and other device control structures. If there is no pre-allocated memory available for
the driver, this parameter should be -1 (NONE). In which case, the driver calls
cacheDmaAlloc() to allocate cache-safe memory.

nTfds
This parameter specifies the number of transmit descriptor/buffers to be allocated. If
this parameter is zero or -1 (NULL), a default of 32 is used.

nRfds
This parameter specifies the number of receive descriptor/buffers to be allocated. If
this parameter is zero or -1 (NULL), a default of 32 is used.

offset
Specifies the memory alignment offset.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires seven external support functions:

sys596IntEnable()
void sys596IntEnable (int unit)

This routine provides a target-specific interface to enable Ethernet device interrupts for a
given device unit.

sys596IntDisable()
void sys596IntDisable (int unit)

This routine provides a target-specific interface to disable Ethernet device interrupts for a
given device unit.

sysEnetAddrGet()
STATUS sysEnetAddrGet (int unit, char *enetAdrs)

This routine provides a target-specific interface to access a device Ethernet address. This
routine should provide a six-byte Ethernet address in the enetAdrs parameter and return
OK or ERROR.

sys596Init()
STATUS sys596Init (int unit)

This routine performs any target-specific initialization required before the 82596 is
initialized. Typically, it is empty. This routine must return OK or ERROR.

sys596Port()
void sys596Port (int unit, int cmd, UINT32 addr)

This routine provides access to the special port function of the 82596. It delivers the
command and address arguments to the port of the specified unit. The driver calls this
36

1: Driver Libraries
ei82596End

E

routine primarily during initialization and, under some conditions, during error recovery
procedures.

sys596ChanAtn()
void sys596ChanAtn (int unit)

This routine provides the channel attention signal to the 82596 for the specified unit. The
driver calls this routine frequently throughout all phases of operation.

sys596IntAck()
void sys596IntAck (int unit)

This routine must perform any required interrupt acknowledgment or clearing. Typically,
this involves an operation to some interrupt control hardware.

NOTE: The INT signal from the 82596 behaves in an "edge-triggered" mode. Therefore,
this routine typically clears a latch within the control circuitry. The driver calls this routine
from the interrupt handler.

SYSTEM RESOURCE USAGE

The driver uses cacheDmaMalloc() to allocate memory to share with the 82596. The
fixed-size pieces in this area total 160 bytes. The variable-size pieces in this area are
affected by the configuration parameters specified in the eiattach() call. The size of one
RFD (Receive Frame Descriptor) is 1536 bytes. The size of one TFD (Transmit Frame
Descriptor) is 1534 bytes. For more on RFDs and TFDs, see the Intel 82596 User’s Manual.

The 82596 requires either that this shared memory region is non-cacheable or that the
hardware implements bus snooping. The driver cannot maintain cache coherency for the
device. This is because fields within the command structures are asynchronously
modified by both the driver and the device, and these fields might share the same cache
line.

TUNING HINTS The only adjustable parameters are the number of TFDs and RFDs that are created at
run-time. These parameters are given to the driver when eiattach() is called. There is one
TFD and one RFD associated with each transmitted frame and each received frame
respectively. For memory-limited applications, decreasing the number of TFDs and RFDs
might be a good idea. Increasing the number of TFDs provides no performance benefit
after a certain point. Increasing the number of RFDs provides more buffering before
packets are dropped. This can be useful if there are tasks running at a higher priority than
the net task.

SEE ALSO ifLib, Intel 82596 User’s Manual, Intel 32-bit Local Area Network (LAN) Component User’s
Manual
37

VxWorks Drivers API Reference, 5.5
el3c90xEnd
el3c90xEnd

NAME el3c90xEnd – END network interface driver for 3COM 3C90xB XL

ROUTINES el3c90xEndLoad() – initialize the driver and device
el3c90xInitParse() – parse the initialization string

DESCRIPTION This module implements the device driver for the 3COM EtherLink Xl and Fast EtherLink
XL PCI network interface cards.

The 3c90x PCI ethernet controller is inherently little-endian because the chip is designed
to operate on a PCI bus which is a little-endian bus. The software interface to the driver is
divided into three parts. The first part is the PCI configuration registers and their set up.
This part is done at the BSP level in the various BSPs which use this driver. The second
and third part are dealt in the driver. The second part of the interface comprises of the I/O
control registers and their programming. The third part of the interface comprises of the
descriptors and the buffers.

This driver is designed to be moderately generic, operating unmodified across the range
of architectures and targets supported by VxWorks. To achieve this, the driver must be
given several target-specific parameters, and some external support routines must be
provided. These target-specific values and the external support routines are described
below.

This driver supports multiple units per CPU. The driver can be configured to support
big-endian or little-endian architectures. It contains error recovery code to handle known
device errata related to DMA activity.

Big-endian processors can be connected to the PCI bus through some controllers which
take care of hardware byte swapping. In such cases all the registers which the chip DMAs
to have to be swapped and written to, so that when the hardware swaps the accesses, the
chip would see them correctly. The chip still has to be programmed to operated in
little-endian mode as it is on the PCI bus. If the CPU board hardware automatically swaps
all the accesses to and from the PCI bus, then input and output byte stream need not be
swapped.

The 3c90x series chips use a bus-master DMA interface for transferring packets to and
from the controller chip. Some of the old 3c59x cards also supported a bus master mode,
however for those chips you could only DMA packets to and from a contiguous memory
buffer. For transmission this would mean copying the contents of the queued M_BLK
chain into a an M_BLK cluster and then DMAing the cluster. This extra copy would sort of
defeat the purpose of the bus master support for any packet that does not fit into a single
M_BLK. By contrast, the 3c90x cards support a fragment-based bus master mode where
M_BLK chains can be encapsulated using TX descriptors. This is also called the gather
technique, where the fragments in an mBlk chain are directly incorporated into the
download transmit descriptor. This avoids any copying of data from the mBlk chain.
38

1: Driver Libraries
el3c90xEnd

E

NETWORK CARDS SUPPORTED

– 3Com 3c900-TPO 10Mbps/RJ-45

– 3Com 3c900-COMBO 10Mbps/RJ-45,AUI,BNC

– 3Com 3c905-TX 10/100Mbps/RJ-45

– 3Com 3c905-T4 10/100Mbps/RJ-45

– 3Com 3c900B-TPO 10Mbps/RJ-45

– 3Com 3c900B-COMBO 10Mbps/RJ-45,AUI,BNC

– 3Com 3c905B-TX 10/100Mbps/RJ-45

– 3Com 3c905B-FL/FX 10/100Mbps/Fiber-optic

– 3Com 3c980-TX 10/100Mbps server adapter

– Dell Optiplex GX1 on-board 3c918 10/100Mbps/RJ-45

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The only external interface is the el3c90xEndLoad() routine, which expects the initString
parameter as input. This parameter passes in a colon-delimited string of the format:

unit:devMemAddr:devIoAddr:pciMemBase:<vecNum:intLvl:memAdrs:
memSize:memWidth:flags:buffMultiplier

The el3c90xEndLoad() function uses strtok() to parse the string.

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the
string name for the driver.

devMemAddr
This parameter in the memory base address of the device registers in the memory
map of the CPU. It indicates to the driver where to find the register set. This
parameter should be equal to NONE if the device does not support memory mapped
registers.

devIoAddr
This parameter in the IO base address of the device registers in the IO map of some
CPUs. It indicates to the driver where to find the RDP register. If both devIoAddr and
devMemAddr are given then the device chooses devMemAddr which is a memory
mapped register base address. This parameter should be equal to NONE if the device
does not support IO mapped registers.

pciMemBase
This parameter is the base address of the CPU memory as seen from the PCI bus. This
39

VxWorks Drivers API Reference, 5.5
el3c90xEnd
parameter is zero for most intel architectures.

vecNum
This parameter is the vector associated with the device interrupt. This driver
configures the LANCE device to generate hardware interrupts for various events
within the device; thus it contains an interrupt handler routine. The driver calls
intConnect() to connect its interrupt handler to the interrupt vector generated as a
result of the LANCE interrupt. The BSP can use a different routine for interrupt
connection by changing the point el3c90xIntConnectRtn to point to a different
routine.

intLvl
Some targets use additional interrupt controller devices to help organize and service
the various interrupt sources. This driver avoids all board-specific knowledge of such
devices. During the driver’s initialization, the external routine sysEl3c90xIntEnable()
is called to perform any board-specific operations required to allow the servicing of a
NIC interrupt. For a description of sysEl3c90xIntEnable(), see "External Support
Requirements" below.

memAdrs
This parameter gives the driver the memory address to carve out its buffers and data
structures. If this parameter is specified to be NONE then the driver allocates cache
coherent memory for buffers and descriptors from the system pool. The 3C90x NIC is
a DMA type of device and typically shares access to some region of memory with the
CPU. This driver is designed for systems that directly share memory between the
CPU and the NIC. It assumes that this shared memory is directly available to it
without any arbitration or timing concerns.

memSize
This parameter can be used to explicitly limit the amount of shared memory (bytes)
this driver will use. The constant NONE can be used to indicate no specific size
limitation. This parameter is used only if a specific memory region is provided to the
driver.

memWidth
Some target hardware that restricts the shared memory region to a specific location
also restricts the access width to this region by the CPU. On these targets, performing
an access of an invalid width will cause a bus error.

This parameter can be used to specify the number of bytes of access width to be used
by the driver during access to the shared memory. The constant NONE can be used to
indicate no restrictions.

Current internal support for this mechanism is not robust; implementation may not
work on all targets requiring these restrictions.

flags
This is parameter is used for future use, currently its value should be zero.
40

1: Driver Libraries
el3c90xEnd

E

buffMultiplier
This parameter is used increase the number of buffers allocated in the driver pool. If
this parameter is -1 then a default multiplier of 2 is chosen. With a multiplier of 2 the
total number of clusters allocated is 64 which is twice the cumulative number of
upload and download descriptors. The device has 16 upload and 16 download
descriptors. For example on choosing the buffer multiplier of 3, the total number of
clusters allocated will be 96 ((16 + 16)*3). There are as many clBlks as the number of
clusters. The number of mBlks allocated are twice the number of clBlks. By default
there are 64 clusters, 64 clBlks and 128 mBlks allocated in the pool for the device.
Depending on the load of the system increase the number of clusters allocated by
incrementing the buffer multiplier.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions, defined as macros:

SYS_INT_CONNECT(pDrvCtrl, routine, arg)

SYS_INT_DISCONNECT (pDrvCtrl, routine, arg)

SYS_INT_ENABLE(pDrvCtrl)

SYS_INT_DISABLE(pDrvCtrl)

SYS_OUT_BYTE(pDrvCtrl, reg, data)

SYS_IN_BYTE(pDrvCtrl, reg, data)

SYS_OUT_WORD(pDrvCtrl, reg, data)

SYS_IN_WORD(pDrvCtrl, reg, data)

SYS_OUT_LONG(pDrvCtrl, reg, data)

SYS_IN_LONG(pDrvCtrl, reg, data)

SYS_DELAY (delay)

sysEl3c90xIntEnable(pDrvCtrl->intLevel)

sysEl3c90xIntDisable(pDrvCtrl->intLevel)

sysDelay (delay)

There are default values in the source code for these macros. They presume memory
mapped accesses to the device registers and the normal intConnect(), and intEnable()
BSP functions. The first argument to each is the device controller structure. Thus, each has
access back to all the device-specific information. Having the pointer in the macro
facilitates the addition of new features to this driver.

The macros SYS_INT_CONNECT, SYS_INT_DISCONNECT, SYS_INT_ENABLE, and
SYS_INT_DISABLE allow the driver to be customized for BSPs that use special versions of
these routines.

The macro SYS_INT_CONNECT is used to connect the interrupt handler to the appropriate
vector. By default it is the routine intConnect().

The macro SYS_INT_DISCONNECT is used to disconnect the interrupt handler prior to
unloading the module. By default this is a dummy routine that returns OK.
41

VxWorks Drivers API Reference, 5.5
elt3c509End
The macro SYS_INT_ENABLE is used to enable the interrupt level for the end device. It is
called once during initialization. It calls an external board level routine
sysEl3c90xIntEnable().

The macro SYS_INT_DISABLE is used to disable the interrupt level for the end device. It is
called during stop. It calls an external board level routine sysEl3c90xIntDisable().

The macro SYS_DELAY is used for a delay loop. It calls an external board level routine
sysDelay(delay). The granularity of delay is one microsecond.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one mutual exclusion semaphore

– one interrupt vector

– 24072 bytes in text for a I80486 target

– 112 bytes in the initialized data section (data)

– 0 bytes in the uninitialized data section (BSS)

The driver allocates clusters of size 1536 bytes for receive frames and transmit frames.
There are 16 descriptors in the upload ring and 16 descriptors in the download ring. The
buffer multiplier by default is 2, which means that the total number of clusters allocated
by default are 64 ((upload descriptors + download descriptors)*2). There are as many
clBlks as the number of clusters. The number of mBlks allocated are twice the number of
clBlks. By default there are 64 clusters, 64 clBlks and 128 mBlks allocated in the pool for
the device. Depending on the load of the system increase the number of clusters allocated
by incrementing the buffer multiplier.

INCLUDES end.h, endLib.h, etherMultiLib.h, el3c90xEnd.h

SEE ALSO muxLib, endLib, netBufLib, VxWorks Programmer’s Guide: Writing an Enhanced Network
Driver

BIBLIOGRAPHY 3COM 3c90x and 3c90xB NICs Technical Reference

elt3c509End

NAME elt3c509End – END network interface driver for 3COM 3C509

ROUTINES elt3c509Load() – initialize the driver and device
elt3c509Parse() – parse the init string
42

1: Driver Libraries
elt3c509End

E

DESCRIPTION This module implements the 3COM 3C509 EtherLink III Ethernet network interface
driver. This driver is designed to be moderately generic. Thus, it operates unmodified
across the range of architectures and targets supported by VxWorks. To achieve this, the
driver load routine requires an input string consisting of several target-specific values.
The driver also requires some external support routines. These target-specific values and
the external support routines are described below.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The only external interface is the elt3c509Load() routine, which expects the initString
parameter as input. This parameter passes in a colon-delimited string of the format:

unit:port:intVector:intLevel:attachementType:nRxFrames

The elt3c509Load() function uses strtok() to parse the string.

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the
string name for the driver.

intVector
Configures the ELT device to generate hardware interrupts for various events within
the device. Thus, it contains an interrupt handler routine. The driver calls
intConnect() to connect its interrupt handler to the interrupt vector generated as a
result of the ELT interrupt.

intLevel
This parameter is passed to an external support routine, sysEltIntEnable(), which is
described below in "External Support Requirements." This routine is called during as
part of driver’s initialization. It handles any board-specific operations required to
allow the servicing of a ELT interrupt on targets that use additional interrupt
controller devices to help organize and service the various interrupt sources. This
parameter makes it possible for this driver to avoid all board-specific knowledge of
such devices.

attachmentType
This parameter is used to select the transceiver hardware attachment. This is then
used by the elt3c509BoardInit() routine to activate the selected attachment.
elt3c509BoardInit() is called as a part of the driver’s initialization.

nRxFrames
This parameter is used as number of receive frames by the driver.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions, defined as macros:
43

VxWorks Drivers API Reference, 5.5
elt3c509End
SYS_INT_CONNECT(pDrvCtrl, routine, arg)

SYS_INT_DISCONNECT (pDrvCtrl, routine, arg)

SYS_INT_ENABLE(pDrvCtrl)

SYS_INT_DISABLE(pDrvCtrl)

SYS_OUT_BYTE(pDrvCtrl, reg, data)

SYS_IN_BYTE(pDrvCtrl, reg, data)

SYS_OUT_WORD(pDrvCtrl, reg, data)

SYS_IN_WORD(pDrvCtrl, reg, data)

SYS_OUT_WORD_STRING(pDrvCtrl, reg, pData, len)

SYS_IN_WORD_STRING(pDrvCtrl, reg, pData, len)

sysEltIntEnable(pDrvCtrl->intLevel)

sysEltIntDisable(pDrvCtrl->intLevel)

There are default values in the source code for these macros. They presume IO-mapped
accesses to the device registers and the normal intConnect(), and intEnable() BSP
functions. The first argument to each is the device controller structure. Thus, each has
access back to all the device-specific information. Having the pointer in the macro
facilitates the addition of new features to this driver.

The macros SYS_INT_CONNECT, SYS_INT_DISCONNECT, and SYS_INT_ENABLE allow the
driver to be customized for BSPs that use special versions of these routines.

The macro SYS_INT_CONNECT is used to connect the interrupt handler to the appropriate
vector. By default it is the routine intConnect().

The macro SYS_INT_DISCONNECT is used to disconnect the interrupt handler prior to
unloading the module. By default this is a dummy routine that returns OK.

The macro SYS_INT_ENABLE is used to enable the interrupt level for the end device. It is
called once during initialization. It calls an external board level routine sysEltIntEnable().

The macro SYS_INT_DISABLE is used to disable the interrupt level for the end device. It is
called during stop. It calls an external board level routine sysEltIntDisable().

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one interrupt vector

– 9720 bytes of text

– 88 bytes in the initialized data section (data)

– 0 bytes of bss

The driver requires 1520 bytes of preallocation for Transmit Buffer and 1520*nRxFrames
of receive buffers. The default value of nRxFrames is 64 therefore total pre-allocation is (64
+ 1)*1520.
44

1: Driver Libraries
evbNs16550Sio

E

TUNING HINTS nRxFrames parameter can be used for tuning number of receive frames to be used for
handling packet receive. More of these could help receiving more loaning in case of
massive reception.

INCLUDES end.h, endLib.h, etherMultiLib.h, elt3c509End.h

SEE ALSO muxLib, endLib, Writing An Enhanced Network Driver

endLib

NAME endLib – support library for END-based drivers

ROUTINES mib2Init() – initialize a MIB-II structure
mib2ErrorAdd() – change a MIB-II error count
endObjInit() – initialize an END_OBJ structure
endObjFlagSet() – set the flags member of an END_OBJ structure
endEtherAddressForm() – form an Ethernet address into a packet
endEtherPacketDataGet() – return the beginning of the packet data
endEtherPacketAddrGet() – locate the addresses in a packet

DESCRIPTION This library contains support routines for Enhanced Network Drivers. These routines are
common to ALL ENDs. Specialized routines should only appear in the drivers
themselves.

evbNs16550Sio

NAME evbNs16550Sio – NS16550 serial driver for the IBM PPC403GA evaluation

ROUTINES evbNs16550HrdInit() – initialize the NS 16550 chip
evbNs16550Int() – handle a receiver/transmitter interrupt for the NS 16550 chip

DESCRIPTION This is the driver for the National NS 16550 UART Chip used on the IBM PPC403GA
evaluation board. It uses the SCCs in asynchronous mode only.

USAGE An EVBNS16550_CHAN structure is used to describe the chip. TheBSP’s sysHwInit()
routine typically calls sysSerialHwInit() which initializes all the register values in the
EVBNS16550_CHAN structure (except the SIO_DRV_FUNCS) before calling
evbNs16550HrdInit(). The BSP’s sysHwInit2() routine typically calls
45

VxWorks Drivers API Reference, 5.5
evbNs16550Sio
sysSerialHwInit2() which connects the chip interrupt handler evbNs16550Int() via
intConnect().

IOCTL FUNCTIONS This driver responds to the same ioctl() codes as other serial drivers; for more
information, see sioLib.h.

INCLUDE FILES drv/sio/evbNs16550Sio.h
46

1: Driver Libraries
fei82557End

F

fei82557End

NAME fei82557End – END style Intel 82557 Ethernet network interface driver

ROUTINES fei82557EndLoad() – initialize the driver and device
fei82557DumpPrint() – display statistical counters
fei82557ErrCounterDump() – dump statistical counters

DESCRIPTION This module implements an Intel 82557 Ethernet network interface driver. This is a fast
Ethernet PCI bus controller, IEEE 802.3 10Base-T and 100Base-T compatible. It also
features a glueless 32-bit PCI bus master interface, fully compliant with PCI Spec version
2.1. An interface to MII compliant physical layer devices is built-in to the card. The 82557
Ethernet PCI bus controller also includes Flash support up to 1 MByte and EEPROM
support, altough these features are not dealt with in this driver.

The 82557 establishes a shared memory communication system with the CPU, which is
divided into three parts: the Control/Status Registers (CSR), the Command Block List
(CBL), and the Receive Frame Area (RFA). The CSR is on-chip and is either accessible with
I/O or memory cycles, whereas the other structures reside on the host.

The CSR is the main means of communication between the device and the host, meaning
that the host issues commands through these registers while the chip posts status changes
in it, occurred as a result of those commands. Pointers to both the CBL and RFA are also
stored in the CSR.

The CBL consists of a linked list of frame descriptors through which individual action
commands can be performed. These may be transmit commands as well as non-transmit
commands, e.g. Configure or Multicast setup commands. While the CBL list may function
in two different modes, only the simplified memory mode is implemented in the driver.

The RFA is a linked list of receive frame descriptors. Only support for the simplified
memory mode is granted. In this model, the data buffer immediately follows the related
frame descriptor.

The driver is designed to be moderately generic, operating unmodified across the range of
architectures and targets supported by VxWorks. To achieve this, this driver must be
given several target-specific parameters, and some external support routines must be
provided. These parameters, and the mechanisms used to communicate them to the
driver, are detailed below.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The driver provides the standard external interface, fei82557EndLoad(), which takes a
string of colon separated parameters. The parameters should be specified in hexadecimal,
optionally preceded by "0x" or a minus sign "-".
47

VxWorks Drivers API Reference, 5.5
fei82557End
The parameter string is parsed using strtok_r() and each parameter is converted from a
string representation to binary by a call to:

strtoul(parameter, NULL, 16)

The format of the parameter string is:

"memBase:memSize:nTfds:nRfds:flags:offset"

In addition, the two global variables, feiEndIntConnect and feiEndIntDisconnect, specify
respectively the interrupt connect routine and the interrupt disconnect routine to be used
depending on the BSP. The former defaults to intConnect() and the user can override this
to use any other interrupt connect routine (like pciIntConnect()) in sysHwInit() or any
device specific initialization routine called in sysHwInit(). Likewise, the latter is set by
default to NULL, but it may be overridden in the BSP in the same way.

TARGET-SPECIFIC PARAMETERS

memBase
This parameter is passed to the driver via fei82557EndLoad().

The Intel 82557 device is a DMA-type device and typically shares access to some
region of memory with the CPU. This driver is designed for systems that directly
share memory between the CPU and the 82557.

This parameter can be used to specify an explicit memory region for use by the 82557.
This should be done on targets that restrict the 82557 to a particular memory region.
The constant NONE can be used to indicate that there are no memory limitations, in
which case the driver will allocate cache safe memory for its use using
cacheDmaAlloc().

memSize
The memory size parameter specifies the size of the pre-allocated memory region. If
memory base is specified as NONE (-1), the driver ignores this parameter. Otherwise,
the driver checks the size of the provided memory region is adequate with respect to
the given number of Command Frame Descriptor and Receive Frame Descriptor.

nTfds
This parameter specifies the number of transmit descriptor/buffers to be allocated. If
this parameter is less than two, a default of 32 is used.

nRfds
This parameter specifies the number of receive descriptor/buffers to be allocated. If
this parameter is less than two, a default of 32 is used. In addition, four times as many
loaning buffers are created. These buffers are loaned up to the network stack. When
loaning buffers are exhausted, the system begins discarding incoming packets.
Specifying 32 buffers results in 32 frame descriptors, 32 reserved buffers and 128
loaning buffers being created from the system heap.

flags
User flags may control the run-time characteristics of the Ethernet chip. Not
48

1: Driver Libraries
fei82557End

F

implemented.

offset
Offset used to align IP header on word boundary for CPUs that need long word
aligned access to the IP packet (this will normally be zero or two). This field is
optional, the default value is zero.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires one external support function:

STATUS sys557Init (int unit, FEI_BOARD_INFO *pBoard)

This routine performs any target-specific initialization required before the 82557 device is
initialized by the driver. The driver calls this routine every time it wants to [re]initialize
the device. This routine returns OK, or ERROR if it fails.

SYSTEM RESOURCE USAGE

The driver uses cacheDmaMalloc() to allocate memory to share with the 82557. The size
of this area is affected by the configuration parameters specified in the
fei82557EndLoad() call.

Either the shared memory region must be non-cacheable, or else the hardware must
implement bus snooping. The driver cannot maintain cache coherency for the device
because fields within the command structures are asynchronously modified by both the
driver and the device, and these fields may share the same cache line.

TUNING HINTS The only adjustable parameters are the number of TFDs and RFDs that will be created at
run-time. These parameters are given to the driver when fei82557EndLoad() is called.
There is one TFD and one RFD associated with each transmitted frame and each received
frame respectively. For memory-limited applications, decreasing the number of TFDs and
RFDs may be desirable. Increasing the number of TFDs will provide no performance
benefit after a certain point. Increasing the number of RFDs will provide more buffering
before packets are dropped. This can be useful if there are tasks running at a higher
priority than the net task.

ALIGNMENT Some architectures do not support unaligned access to 32-bit data items. On these
architectures (eg. PowerPC and ARM), it will be necessary to adjust the offset parameter
in the load string to realign the packet. Failure to do so will result in received packets
being absorbed by the network stack, although transmit functions should work OK.

SEE ALSO ifLib, Intel 82557 User’s Manual, Intel 32-bit Local Area Network (LAN) Component User’s
Manual
49

VxWorks Drivers API Reference, 5.5
gei82543End
gei82543End

NAME gei82543End – Intel PRO/1000 F/T/XF/XT/MT network adapter END driver

ROUTINES gei82543EndLoad() – initialize the driver and device

DESCRIPTION The gei82543End driver supports Intel PRO1000 T/F/XF/XT/MT adaptors. These
adaptors use Intel 82543GC, 82544GC/EI, or 82540/82545/82546EB Gigabit Ethernet
controllers.The 8254x are highly integrated, high-performance LAN controllers for
1000/100/10Mb/s transfer rates. They provide 32/64 bit 33/66Mhz interfaces to the PCI
bus with 32/64 bit addressing and are fully compliant with PCI bus specification version
2.2. The 82544, 82545 and 82546 also provide PCI-X interface.

The 8254x controllers implement all IEEE 802.3 receive and transmit MAC functions. They
provide a Ten-Bit Interface (TBI) as specified in the IEEE 802.3z standard for 1000Mb/s
full-duplex operation with 1.25 GHz Ethernet transceivers (SERDES), as well as a GMII
interface as specified in IEEE 802.3ab for 10/100/1000 BASE-T transceivers, and also an
MII interface as specified in IEEE 802.3u for 10/100 BASE-T transceivers.

The 8254x controllers offer auto-negotiation capability for TBI and GMII/MII modes and
also support IEEE 802.3x compliant flow control. Although these devices also support
other advanced features such as receive and transmit IP/TCP/UDP checksum offloading,
jumbo frames, and provide flash support up to 512KB and EEPROM support, this driver
does not support these features.

The 8254x establishes a shared memory communication system with the CPU, which is
divided into two parts: the control/status registers and the receive/transmit
descriptors/buffers. The control/status registers are on the 8254x chips and are only
accessible with PCI or PCI-X memory cycles, whereas the other structures reside on the
host. The buffer size can be programmed between 256 bytes to 16k bytes. This driver uses
the receive buffer size of 2048 bytes for an MTU of 1500.

The Intel PRO/1000 F/XF adapters only implement the TBI mode of the
82543GC/82544GC controller with built-in SERDESs in the adaptors.

The Intel PRO/1000 T adapters based on 82543GC implement the GMII mode with a
Gigabit Ethernet Transceiver (PHY) of MARVELL’s Alaska 88E1000/88E1000S. However,
the PRO/1000 XT/MT adapters based on 82540/82544/82545/82546 use the built-in PHY
in controllers.

The driver on the current release supports both GMII mode for Intel PRO1000T/XT/MT
adapers and TBI mode for Intel PRO1000 F/XF adapters. However, it requires the
target-specific initialization code (sys543BoardInit()) to distinguish these kinds of
adapters by PCI device IDs.

EXTERNAL INTERFACE

The driver provides the standard external interface, gei82543EndLoad(), which takes a
50

1: Driver Libraries
gei82543End

G

string of colon separated parameters. The parameter string is parsed using strtok_r() and
each parameter in converted from a string representation to a binary.

The format of the parameter string is:

"memBase:memSize:nRxDes:nTxDes:flags:offset:mtu"

TARGET-SPECIFIC PARAMETERS

memBase
This parameter is passed to the driver via gei82543EndLoad().

The 8254x is a DMA-type device and typically shares access to some region of
memory with the CPU. This driver is designed for systems that directly share
memory between the CPU and the 8254x.

This parameter can be used to specify an explicit memory region for use by the 8254x
chip. This should be done on targets that restrict the 8254x to a particular memory
region. The constant NONE can be used to indicate that there are such memory, in
which case the driver will allocate cache safe memory for its use using
cacheDmaAlloc().

memSize
The memory size parameter specifies the size of the pre-allocated memory region.
The driver checks the size of the provided memory region is adequate with respect to
the given number of transmit Descriptor and Receive Descriptor.

nRxDes
This parameter specifies the number of transmit descriptors to be allocated. If this
number is 0, a default value of 24 will be used.

nTxDes
This parameter specifies the number of receive descriptors to be allocated. If this
parameter is 0, a default of 24 is used.

flags
This parameter is provided for user to customize this device driver for their
application.

GEI_END_SET_TIMER (0x01): a timer will be started to constantly free back the loaned
transmit mBlks.

GEI_END_SET_RX_PRIORITY (0x02): packet transfer (receive) from device to host
memory will have higher priority than the packet transfer (transmit) from host
memory to device in the PCI bus. For end-station application, it is suggested to set
this priority in favor of receive operation to avoid receive overrun. However, for
routing applications, it is not necessary to use this priority. This option is ignored by
82544-based adapters.

GEI_END_FREE_RESOURCE_DELAY (0x04): when transmitting larger packets, the
driver will hold mblks(s) from the network stack and return them after the driver has
51

VxWorks Drivers API Reference, 5.5
gei82543End
completed transmitting the packet, and either the timer has expired or there are no
more available descriptors. If this option is not used, the driver will free mblk(s)
when ever the packet transmission is done. This option will place greater demands on
the network pool and should only be used in systems which have sufficient memory
to allocate a large network pool. It is not advised for the memory-limited target
systems.

GEI_END_TBI_COMPATIBILITY (0x200): if this driver enables the workaround for TBI
compatibility HW bugs (#define INCLUDE_TBI_COMPATIBLE), user can set this bit to
enable a software workaround for the well-known TBI compatibility HW bug in the
Intel PRO1000 T adapter. This bug is only occured in the copper-and-82543-based
adapter, and the link partner has advertised only 1000Base-T capability.

offset
This parameter is provided for the architectures which need DWORD (4 byte)
alignment of the IP header. In that case, the value of OFFSET should be two,
otherwise, the default value is zero.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires one external support function:

STATUS sys82543BoardInit (int unit, ADAPTOR_INFO *pBoard)

This routine performs some target-specific initialization such as EEPROM validation and
obtaining ETHERNET address and initialization control words (ICWs) from EEPROM.
The routine also initializes the adaptor-specific data structure. Some target-specific
functions used later in driver operation are hooked up to that structure. It’s strongly
recommended that users provide a delay function with higher timing resolution. This
delay function will be used in the PHY’s read/write operations if GMII is used. The driver
will use taskDelay() by default if user can NOT provide any delay function, and this will
probably result in very slow PHY initialization process. The user should also specify the
PHY’s type of MII or GMII. This routine returns OK, or ERROR if it fails.

SYSTEM RESOURCE USAGE

The driver uses cacheDmaMalloc() to allocate memory to share with the 8254xGC. The
size of this area is affected by the configuration parameters specified in the
gei82543EndLoad() call.

Either the shared memory region must be non-cacheable, or else the hardware must
implement bus snooping. The driver cannot maintain cache coherency for the device
because fields within the command structures are asynchronously modified by both the
driver and the device, and these fields may share the same cache line.

SYSTEM TUNING HINTS

Significant performance gains may be had by tuning the system and network stack. This
may be especially necessary for achiving gigabit transfer rates.
52

1: Driver Libraries
gei82543End

G

Increasing the network stack’s pools are strongly recommended. This driver borrows
mblks from the network stack to accerlate packet transmitting. Theoretically, the number
borrowed clusters could be the same as the number of the device’s transmit descriptors.
However, if the network stack has fewer available clusters than available transmit
descriptors then this will result in reduced throughput. Therefore, increasing the network
stack’s number of clusters relative to the number of transmit descriptors will increase
bandwidth. Of course this technique will eventually reach a point of diminishing return.
There are actually several sizes of clusters available in the network pool. Increasing any or
all of these cluster sizes will result in some increase in performance. However, increasing
the 2048-byte cluster size will likely have the greatest impact since this size will hold an
entire MTU and header.

Increasing the number of receive descriptors and clusters may also have positive impact.

Increasing the buffer size of sockets can also be beneficial. This can significantly improve
performance for a target system under higher transfer rates. However, it should be noted
that large amounts of unread buffers idling in sockets reduces the resources available to
the rest of the stack. This can, in fact, have a negative impact on bandwidth. One method
to reduce this effect is to carefully adjust application tasks’ priorities and possibly increase
number of receive clusters.

Callback functions defined in the sysGei82543End.c can be used to dynamically and/or
statically change the internal timer registers such as ITR, RADV, and RDTR to reduce RX
interrupt rate.

SEE ALSO muxLib, endLib, RS-82543GC Gigabit Ethernet Controller Networking Developer’s Manual
53

VxWorks Drivers API Reference, 5.5
i8250Sio
i8250Sio

NAME i8250Sio – I8250 serial driver

ROUTINES i8250HrdInit() – initialize the chip
i8250Int() – handle a receiver/transmitter interrupt

DESCRIPTION This is the driver for the Intel 8250 UART Chip used on the PC 386. It uses the SCCs in
asynchronous mode only.

USAGE An I8250_CHAN structure is used to describe the chip. The BSP’s sysHwInit() routine
typically calls sysSerialHwInit() which initializes all the register values in the
I8250_CHAN structure (except the SIO_DRV_FUNCS) before calling i8250HrdInit(). The
BSP’s sysHwInit2() routine typically calls sysSerialHwInit2() which connects the chips
interrupt handler (i8250Int) via intConnect().

IOCTL FUNCTIONS This driver responds to all the same ioctl() codes as a normal serial driver; for more
information, see the comments in sioLib.h. As initialized, the available baud rates are 110,
300, 600, 1200, 2400, 4800, 9600, 19200, and 38400.

This driver handles setting of hardware options such as parity (odd, even) and number of
data bits(5, 6, 7, 8). Hardware flow control is provided with the handshakes RTS/CTS.
The function HUPCL (hang up on last close) is available.

INCLUDE FILES drv/sio/i8250Sio.h

if_cpm

NAME if_cpm – Motorola CPM core network interface driver

ROUTINES cpmattach() – publish the cpm network interface and initialize the driver
cpmStartOutput() – output packet to network interface device

DESCRIPTION This module implements the driver for the Motorola CPM core Ethernet network interface
used in the M68EN360 and PPC800-series communications controllers.

The driver is designed to support the Ethernet mode of an SCC residing on the CPM
processor core. It is generic in the sense that it does not care which SCC is being used, and
it supports up to four individual units per board.
54

1: Driver Libraries
if_cpm

I

The driver must be given several target-specific parameters, and some external support
routines must be provided. These parameters, and the mechanisms used to communicate
them to the driver, are detailed below.

This network interface driver does not include support for trailer protocols or data
chaining. However, buffer loaning has been implemented in an effort to boost
performance. This driver provides support for four individual device units.

This driver maintains cache coherency by allocating buffer space using the
cacheDmaMalloc() routine. It is assumed that cache-safe memory is returned; this driver
does not perform cache flushing and invalidating.

BOARD LAYOUT This device is on-chip. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver presents the standard WRS network driver API: the device unit must be
attached and initialized with the cpmattach() routine.

The only user-callable routine is cpmattach(), which publishes the cpm interface and
initializes the driver structures.

TARGET-SPECIFIC PARAMETERS

These parameters are passed to the driver via cpmattach().

address of SCC parameter RAM
This parameter is the address of the parameter RAM used to control the SCC.
Through this address, and the address of the SCC registers (see below), different
network interface units are able to use different SCCs without conflict. This
parameter points to the internal memory of the chip where the SCC physically
resides, which may not necessarily be the master chip on the target board.

address of SCC registers
This parameter is the address of the registers used to control the SCC. Through this
address, and the address of the SCC parameter RAM (see above), different network
interface units are able to use different SCCs without conflict. This parameter points
to the internal memory of the chip where the SCC physically resides, which may not
necessarily be the master chip on the target board.

interrupt-vector offset
This driver configures the SCC to generate hardware interrupts for various events
within the device. The interrupt-vector offset parameter is used to connect the
driver’s ISR to the interrupt through a call to intConnect().

address of transmit and receive buffer descriptors
These parameters indicate the base locations of the transmit and receive buffer
descriptor (BD) rings. Each BD takes up 8 bytes of dual-ported RAM, and it is the
user’s responsibility to ensure that all specified BDs will fit within dual-ported RAM.
This includes any other BDs the target board may be using, including other SCCs,
SMCs, and the SPI device. There is no default for these parameters; they must be
55

VxWorks Drivers API Reference, 5.5
if_cpm
provided by the user.

number of transmit and receive buffer descriptors
The number of transmit and receive buffer descriptors (BDs) used is configurable by
the user upon attaching the driver. Each buffer descriptor resides in 8 bytes of the
chip’s dual-ported RAM space, and each one points to a 1520-byte buffer in regular
RAM. There must be a minimum of two transmit and two receive BDs. There is no
maximum number of buffers, but there is a limit to how much the driver speed
increases as more buffers are added, and dual-ported RAM space is at a premium. If
this parameter is "NULL", a default value of 32 BDs is used.

base address of buffer pool
This parameter is used to notify the driver that space for the transmit and receive
buffers need not be allocated, but should be taken from a cache-coherent private
memory space provided by the user at the given address. The user should be aware
that memory used for buffers must be 4-byte aligned and non-cacheable. All the
buffers must fit in the given memory space; no checking is performed. This includes
all transmit and receive buffers (see above) and an additional 16 receive loaner
buffers. If the number of receive BDs is less than 16, that number of loaner buffers is
used. Each buffer is 1520 bytes. If this parameter is "NONE," space for buffers is
obtained by calling cacheDmaMalloc() in cpmattach().

EXTERNAL SUPPORT REQUIREMENTS

This driver requires seven external support functions:

STATUS sysCpmEnetEnable (int unit)

This routine is expected to perform any target-specific functions required to enable
the Ethernet controller. These functions typically include enabling the Transmit
Enable signal (TENA) and connecting the transmit and receive clocks to the SCC. The
driver calls this routine, once per unit, from the cpmInit() routine.

void sysCpmEnetDisable (int unit)

This routine is expected to perform any target-specific functions required to disable
the Ethernet controller. This usually involves disabling the Transmit Enable (TENA)
signal. The driver calls this routine from the cpmReset() routine each time a unit is
disabled.

STATUS sysCpmEnetCommand (int unit, UINT16 command)

This routine is expected to issue a command to the Ethernet interface controller. The
driver calls this routine to perform basic commands, such as restarting the transmitter
and stopping reception.

void sysCpmEnetIntEnable (int unit)

This routine is expected to enable the interrupt for the Ethernet interface specified by
unit.

void sysCpmEnetIntDisable (int unit)

This routine is expected to disable the interrupt for the Ethernet interface specified by
unit.
56

1: Driver Libraries
if_cpm

I

void sysCpmEnetIntClear (int unit)

This routine is expected to clear the interrupt for the Ethernet interface specified by
unit.

STATUS sysCpmEnetAddrGet (int unit, UINT8 * addr)

The driver expects this routine to provide the 6-byte Ethernet hardware address that
will be used by unit. This routine must copy the 6-byte address to the space provided
by addr. This routine is expected to return OK on success, or ERROR. The driver calls
this routine, once per unit, from the cpmInit() routine.

SYSTEM RESOURCE USAGE

This driver requires the following system resources:

– one mutual exclusion semaphore

– one interrupt vector

– 0 bytes in the initialized data section (data)

– 1272 bytes in the uninitialized data section (BSS)

The data and BSS sections are quoted for the CPU32 architecture and may vary for other
architectures. The code size (text) varies greatly between architectures, and is therefore
not quoted here.

If the driver allocates the memory shared with the Ethernet device unit, it does so by
calling the cacheDmaMalloc() routine. For the default case of 32 transmit buffers, 32
receive buffers, and 16 loaner buffers, the total size requested is 121,600 bytes. If a
non-cacheable memory region is provided by the user, the size of this region should be
this amount, unless the user has specified a different number of transmit or receive BDs.

This driver can operate only if the shared memory region is non-cacheable, or if the
hardware implements bus snooping. The driver cannot maintain cache coherency for the
device because the buffers are asynchronously modified by both the driver and the device,
and these fields may share the same cache line. Additionally, the chip’s dual ported RAM
must be declared as non-cacheable memory where applicable.

SEE ALSO ifLib, Motorola MC68EN360 User’s Manual, Motorola MPC860 User’s Manual, Motorola
MPC821 User’s Manual
57

VxWorks Drivers API Reference, 5.5
if_cs
if_cs

NAME if_cs – Crystal Semiconductor CS8900 network interface driver

ROUTINES csAttach() – publish the cs network interface and initialize the driver.
csShow() – shows statistics for the cs network interface

DESCRIPTION This module implements a driver for a Crystal Semiconductor CS8900 Ethernet controller
chip.

The CS8900 is a single chip Ethernet controller with a direct ISA bus interface which can
operate in either memory space or I/O space. It also supports a direct interface to a host
DMA controller to transfer receive frames to host memory. The device has a 4K RAM
which is used for transmit, and receive buffers; a serial EEPROM interface; and both
10BASE-T/AUI port support.

This driver is capable of supporting both memory mode and I/O mode operations of the
chip. When configured for memory mode, the internal RAM of the chip is mapped to a
contiguous 4K address block, providing the CPU direct access to the internal registers and
frame buffers. When configured for I/O mode, the internal registers are accessible
through eight contiguous, 16-bit I/O ports. The driver also supports an interface to an
EEPROM containing device configuration.

While the DMA slave mode is supported by the device for receive frame transfers, this
driver does not enable DMA.

This network interface driver does not support output hook routines, because to do so
requires that an image of the transmit packet be built in memory before the image is
copied to the CS8900 chip. It is much more efficient to copy the image directly from the
mbuf chain to the CS8900 chip. However, this network interface driver does support input
hook routines.

CONFIGURATION The defined I/O address and IRQ in config.h must match the one stored in EEPROM by
the vendor’s DOS utility program.

The I/O Address parameter is the only required csAttach() parameter. If the CS8900 chip
has a EEPROM attached, then the I/O Address parameter, passed to the csAttach()
routine, must match the I/O address programmed into the EEPROM. If the CS8900 chip
does not have a EEPROM attached, then the I/O Address parameter must be 0x300.

The Interrupt Level parameter must have one of the following values:

0 - Get interrupt level from EEPROM
5 - IRQ 5
10 - IRQ 10
11 - IRQ 11
12 - IRQ 12
58

1: Driver Libraries
if_cs

I

If the Interrupt Vector parameter is zero, then the network interface driver derives the
interrupt vector from the interrupt level if possible. It is possible to derive the interrupt
vector in an IBM PC compatible system. This parameter is present for systems which are
not IBM PC compatible.

The Memory Address parameter specifies the base address of the CS8900 chip’s memory
buffer (PacketPage). If the Memory Address parameter is not zero, then the CS8900 chip
operates in memory mode at the specified address. If the Memory Address parameter is
zero, then the CS8900 chip operates in the mode specified by the EEPROM or the
Configuration Flags parameter.

The Media Type parameter must have one of the following values:

0 - Get media type from EEPROM

1 - AUI (Thick Cable)

2 - BNC 10Base2 (Thin Cable)

3 - RJ45 10BaseT (Twisted Pair)

The Configuration Flags parameter is usually passed to the csAttach() routine as zero and
the Configuration Flags information is retrieved from the EEPROM. The bits in the
Configuration Flags parameter are usually specified by a hardware engineer and not by
the end user. However, if the CS8900 chip does not have a EEPROM attached, then this
information must be passed as a parameter to the csAttach() routine. The Configuration
Flags are:

0x8000 - CS_CFGFLG_NOT_EEPROM Don’t get Config. Flags from the EEPROM

0x0001 - CS_CFGFLG_MEM_MODE Use memory mode to access the chip

0x0002 - CS_CFGFLG_USE_SA Use system addr to qualify MEMCS16 signal

0x0004 - CS_CFGFLG_IOCHRDY Use IO Channel Ready signal to slow access

0x0008 - CS_CFGFLG_DCDC_POL The DC/DC conv. enable pin is active high

0x0010 - CS_CFGFLG_FDX 10BaseT is full duplex

If configuration flag information is passed to the csAttach() routine, then the
CS_CFGFLG_NOT_EEPROM flag should be set. This ensures that the Configuration Flags
parameter is not zero, even if all specified flags are zero.

If the Memory Address parameter is not zero and the Configuration Flags parameter is
zero, then the CS8900 network interface driver implicitly sets the
CS_CFGFLG_MEM_MODE flag and the CS8900 chip operates in memory mode. However,
if the Configuration Flags parameter is not zero, then the CS8900 chip operates in memory
mode only if the CS_CFGFLG_MEM_MODE flag is explicitly set. If the Configuration Flags
parameter in not zero and the CS_CFGFLG_MEM_MODE flag is not set, then the CS8900
chip operates in I/O mode.

The Ethernet Address parameter is usually passed to the csAttach() routine as zero and
the Ethernet address is retrieved from the EEPROM. The Ethernet address (also called
hardware address and individual address) is usually supplied by the adapter
manufacturer and is stored in the EEPROM. However, if the CS8900 chip does not have a
EEPROM attached, then the Ethernet address must be passed as a parameter to the
59

VxWorks Drivers API Reference, 5.5
if_cs
csAttach() routine. The Ethernet Address parameter, passed to the csAttach() routine,
contains the address of a NULL terminated string. The string consists of 6 hexadecimal
numbers separated by colon characters. Each hexadecimal number is in the range 00 - FF.
An example of this string is:

"00:24:20:10:FF:2A"

BOARD LAYOUT This device is soft-configured. No jumpering diagram is required.

EXTERNAL INTERFACE

The only user-callable routines are csAttach():

csAttach()
Publishes the cs interface and initializes the driver and device.

The network interface driver includes a show routine, called csShow(), which displays
driver configuration and statistics information. To invoke the show routine, type at the
shell prompt:

-> csShow

To reset the statistics to zero, type at the shell prompt:

-> csShow 0, 1

Another routine that you may find useful is:

-> ifShow "cs0"

EXTERNAL ROUTINES

For debugging purposes, this driver calls logMsg() to print error and debugging
information. This will cause the logLib library to be linked with any image containing this
driver.

This driver needs the following macros defined for proper execution. Each has a default
definition that assumes a PC386/PC486 system and BSP.

The macro CS_IN_BYTE(reg, pAddr) reads one byte from the I/O address reg, placing the
result at address pAddr. There is no status result from this operation, we assume the
operation completes normally, or a bus exception will occur. By default, this macro
assumes there is a BSP routine sysInByte() to perform the I/O operation.

The macro CS_IN_WORD(reg, pAddr) reads a short word (2 bytes) from the I/O address
reg, storing the result at address pAddr. We assume this completes normally, or causes a
bus exception. The default declaration assumes a BSP routine sysInWord() to perform the
operation.

The macro CS_OUT_WORD(reg, data) writes a short word value data at the I/O address reg.
The default declaration assumes a BSP routine sysOutWord().

The macro CS_INT_ENABLE(level, pResult) is used to enable the interrupt level passed as
an argument to csAttach(). The default definition call the BSP routine
60

1: Driver Libraries
if_dc

I

sysIntEnablePIC(level). The STATUS return value from the actual routine is stored at
pResult for the driver to examine.

The macro CS_INT_CONNECT(ivec, rtn, arg, pResult) macro is used to connect the driver
interrupt routine to the vector provided as an argument to csAttach() (after translation by
INUM_TO_IVEC). The default definition calls the CPU architecture routine intConnect().

The macro CS_IRQ0_VECTOR(pAddr) is used to fetch the base vector for the interrupt level
mechanism. If the int vector argument to csAttach() is zero, then the driver will compute
a vector number by adding the interrupt level to the value returned by this macro. If the
user supplies a non-zero interrupt vector number, then this macro is not used. The default
definition of this macro fetches the base vector number from a global value called
sysVectorIRQ0.

The macro CS_MSEC_DELAY(msec) is used to delay execution for a specified number of
milliseconds. The default definition uses taskDelay() to suspend task for some number of
clock ticks. The resolution of the system clock is usually around 16 milliseconds (msecs),
which is fairly coarse.

if_dc

NAME if_dc – DEC 21x4x Ethernet LAN network interface driver

ROUTINES dcattach() – publish the dc network interface
dcReadAllRom() – read entire serial rom
dcViewRom() – display lines of serial ROM for dec21140
dcCsrShow() – display dec 21040/21140 status registers 0 through 15

DESCRIPTION This module implements an ethernet interface driver for the DEC 21x4x family, and
currently supports the following variants -- 21040, 21140, and 21140A.

The DEC 21x4x PCI Ethernet controllers are inherently little-endian since they are
designed for a little-endian PCI bus. While the 21040 only supports a 10Mps interface,
other members of this family are dual-speed devices which support both 10 and 100Mbps.

This driver is designed to be moderately generic, operating unmodified across the range
of architectures and targets supported by VxWorks; and on multiple versions of the
dec21x4x family. To achieve this, the driver takes several parameters, and external
support routines which are detailed below. Also stated below are assumptions made by
the driver of the hardware, and if any of these assumptions are not true for your
hardware, the driver will probably not function correctly.

This driver supports up to 4 ethernet units per CPU, and can be configured for either
big-endian or little-endian architectures. It contains error-recovery code to handle known
device errata related to DMA activity.
61

VxWorks Drivers API Reference, 5.5
if_dc
On a dec21040, this driver configures the 10BASE-T interface by default and waits for two
seconds to check the status of the link. If the link status is "fail," it then configures the AUI
interface.

The dec21140, and dec21140A devices support both 10 and 100Mbps plus a variety of MII
and non-MII PHY interfaces. This driver reads a DEC version 2.0 SROM device for PHY
initialization information, and automatically configures an appropriate active PHY media.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver provides the standard external interface with the following exceptions. All
initialization is performed within the attach routine; there is no separate initialization
routine. Therefore, in the global interface structure, the function pointer to the
initialization routine is NULL.

The only user-callable routine is dcattach(), which publishes the dc interface and
initializes the driver and device.

TARGET-SPECIFIC PARAMETERS

bus mode
This parameter is a global variable that can be modified at run-time.

The LAN control register #0 determines the bus mode of the device, allowing the
support of big-endian and little-endian architectures. This parameter, defined as
"ULONG dcCSR0Bmr", is the value that will be placed into device control register #0.
The default is mode is little-endian.

For information about changing this parameter, see the manual DEC Local Area
Network Controller DEC21040 or DEC21140 for PCI.

base address of device registers
This parameter is passed to the driver by dcattach().

interrupt vector
This parameter is passed to the driver by dcattach().

This driver configures the device to generate hardware interrupts for various events
within the device; thus it contains an interrupt handler routine. The driver calls
intConnect() to connect its interrupt handler to the interrupt vector generated as a
result of the device interrupt.

interrupt level
This parameter is passed to the driver by dcattach().

Some targets use additional interrupt controller devices to help organize and service
the various interrupt sources. This driver avoids all board-specific knowledge of such
devices. During the driver’s initialization, the external routine sysLanIntEnable() is
called to perform any board-specific operations required to allow the servicing of a
62

1: Driver Libraries
if_dc

I

device interrupt. For a description of sysLanIntEnable(), see "External Support
Requirements" below.

This parameter is passed to the external routine.

shared memory address
This parameter is passed to the driver by dcattach().

The DEC 21x4x device is a DMA type of device and typically shares access to some
region of memory with the CPU. This driver is designed for systems that directly
share memory between the CPU and the DEC 21x4x. It assumes that this shared
memory is directly available to it without any arbitration or timing concerns.

This parameter can be used to specify an explicit memory region for use by the DEC
21x4x device. This should be done on hardware that restricts the DEC 21x4x device to
a particular memory region. The constant NONE can be used to indicate that there
are no memory limitations, in which case, the driver attempts to allocate the shared
memory from the system space.

shared memory size
This parameter is passed to the driver by dcattach().

This parameter can be used to explicitly limit the amount of shared memory (bytes)
this driver will use. The constant NONE can be used to indicate no specific size
limitation. This parameter is used only if a specific memory region is provided to the
driver.

shared memory width
This parameter is passed to the driver by dcattach().

Some target hardware that restricts the shared memory region to a specific location
also restricts the access width to this region by the CPU. On these targets, performing
an access of an invalid width will cause a bus error.

This parameter can be used to specify the number of bytes of access width to be used
by the driver during access to the shared memory. The constant NONE can be used to
indicate no restrictions.

Current internal support for this mechanism is not robust; implementation may not
work on all targets requiring these restrictions.

shared memory buffer size
This parameter is passed to the driver by dcattach().

The driver and DEC 21x4x device exchange network data in buffers. This parameter
permits the size of these individual buffers to be limited. A value of zero indicates
that the default buffer size should be used. The default buffer size is large enough to
hold a maximum-size Ethernet packet.

pci Memory base
This parameter is passed to the driver by dcattach(). This parameter gives the base
address of the main memory on the PCI bus.
63

VxWorks Drivers API Reference, 5.5
if_dc
dcOpMode
This parameter is passed to the driver by dcattach(). This parameter gives the mode
of initialization of the device. The mode flags for both the DEC21040 and DEC21140
interfaces are listed below.

DC_PROMISCUOUS_FLAG 0x01

DC_MULTICAST_FLAG 0x02

The mode flags specific to the DEC21140 interface are listed below.

DC_100_MB_FLAG 0x04

DC_21140_FLAG 0x08

DC_SCRAMBLER_FLAG 0x10

DC_PCS_FLAG 0x20

DC_PS_FLAG 0x40

DC_FULLDUPLEX_FLAG 0x10

Loopback mode flags

DC_ILOOPB_FLAG 0x100

DC_ELOOPB_FLAG 0x200

DC_HBE_FLAG 0x400

Ethernet address
This is obtained by the driver by reading an ethernet ROM register or the DEC serial
ROM.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires one external support function:

void sysLanIntEnable (int level)

This routine provides a target-specific enable of the interrupt for the DEC 21x4x
device. Typically, this involves interrupt controller hardware, either internal or
external to the CPU.

This routine is called once via the macro SYS_INT_ENABLE().

SEE ALSO ifLib, DECchip 21040 or 21140 Ethernet LAN Controller for PCI
64

1: Driver Libraries
if_eex

I

if_eex

NAME if_eex – Intel EtherExpress 16 network interface driver

ROUTINES eexattach() – publish the eex network interface and initialize the driver and device
eexTxStartup() – start output on the chip

DESCRIPTION This module implements the Intel EtherExpress 16 PC network interface card driver. It is
specific to that board as used in PC 386/486 hosts. This driver is written using the device’s
I/O registers exclusively.

SIMPLIFYING ASSUMPTIONS

This module assumes a little-endian host (80x86); thus, no endian adjustments are needed
to manipulate the 82586 data structures (little-endian).

The on-board memory is assumed to be sufficient; thus, no provision is made for
additional buffering in system memory.

The "frame descriptor" and "buffer descriptor" structures can be bound into permanent
pairs by pointing each FD at a "chain" of one BD of MTU size. The 82586 receive algorithm
fills exactly one BD for each FD; it looks to the NEXT FD in line for the next BD.

The transmit and receive descriptor lists are permanently linked into circular queues
partitioned into sublists designated by the EEX_LIST headers in the driver control
structure. Empty partitions have NULL pointer fields. EL bits are set as needed to tell the
82586 where a partition ends. The lists are managed in strict FIFO fashion; thus the link
fields are never modified, just ignored if a descriptor is at the end of a list partition.

BOARD LAYOUT This device is soft-configured. No jumpering diagram is required.

EXTERNAL INTERFACE

This driver provides the standard external interface with the following exceptions. All
initialization is performed within the attach routine and there is no separate initialization
routine. Therefore, in the global interface structure, the function pointer to the init()
routine is NULL.

There is one user-callable routine, eexattach(). For details on usage, see the manual entry
for this routine.

EXTERNAL SUPPORT REQUIREMENTS

None.

SYSTEM RESOURCE USAGE

– one mutual exclusion semaphore

– one interrupt vector
65

VxWorks Drivers API Reference, 5.5
if_ei
– one watchdog timer

– 8 bytes in the initialized data section (data)

– 912 bytes in the uninitialized data section (bss)

The data and bss sections are quoted for the MC68020 architecture and may vary for other
architectures. The code size (text) will vary widely between architectures, and is thus not
quoted here.

The device contains on-board buffer memory; no system memory is required for
buffering.

TUNING HINTS The only adjustable parameter is the number of TFDs to create in adapter buffer memory.
The total number of TFDs and RFDs is 21, given full-frame buffering and the sizes of the
auxiliary structures. eexattach() requires at least MIN_NUM_RFDS RFDs to exist. More
than ten TFDs is not sensible in typical circumstances.

SEE ALSO ifLib

if_ei

NAME if_ei – Intel 82596 Ethernet network interface driver

ROUTINES eiattach() – publish the ei network interface and initialize the driver and device
eiTxStartup() – start output on the chip

DESCRIPTION This module implements the Intel 82596 Ethernet network interface driver.

This driver is designed to be moderately generic, operating unmodified across the range
of architectures and targets supported by VxWorks. To achieve this, this driver must be
given several target-specific parameters, and some external support routines must be
provided. These parameters, and the mechanisms used to communicate them to the
driver, are detailed below.

This driver can run with the device configured in either big-endian or little-endian modes.
Error recovery code has been added to deal with some of the known errata in the A0
version of the device. This driver supports up to four individual units per CPU.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver provides the standard external interface with the following exceptions. All
initialization is performed within the attach routine; there is no separate initialization
routine. Therefore, in the global interface structure, the function pointer to the
66

1: Driver Libraries
if_ei

I

initialization routine is NULL.

The only user-callable routine is eiattach(), which publishes the ei interface and initializes
the driver and device.

TARGET-SPECIFIC PARAMETERS

the sysbus value
This parameter is passed to the driver by eiattach().

The Intel 82596 requires this parameter during initialization. This parameter tells the
device about the system bus, hence the name "sysbus." To determine the correct value
for a target, refer to the document Intel 32-bit Local Area Network (LAN) Component
User’s Manual.

interrupt vector
This parameter is passed to the driver by eiattach().

The Intel 82596 generates hardware interrupts for various events within the device;
thus it contains an interrupt handler routine. This driver calls intConnect() to
connect its interrupt handler to the interrupt vector generated as a result of the 82596
interrupt.

shared memory address
This parameter is passed to the driver by eiattach().

The Intel 82596 device is a DMA type device and typically shares access to some
region of memory with the CPU. This driver is designed for systems that directly
share memory between the CPU and the 82596.

This parameter can be used to specify an explicit memory region for use by the 82596.
This should be done on targets that restrict the 82596 to a particular memory region.
The constant NONE can be used to indicate that there are no memory limitations, in
which case, the driver attempts to allocate the shared memory from the system space.

number of Receive and Transmit Frame Descriptors
These parameters are passed to the driver by eiattach().

The Intel 82596 accesses frame descriptors in memory for each frame transmitted or
received. The number of frame descriptors at run-time can be configured using these
parameters.

Ethernet address
This parameter is obtained by a call to an external support routine.

During initialization, the driver needs to know the Ethernet address for the Intel
82596 device. The driver calls the external support routine, sysEnetAddrGet(), to
obtain the Ethernet address. For a description of sysEnetAddrGet(), see "External
Support Requirements" below.
67

VxWorks Drivers API Reference, 5.5
if_ei
EXTERNAL SUPPORT REQUIREMENTS

This driver requires seven external support functions:

STATUS sysEnetAddrGet (int unit, char *pCopy)

This routine provides the six-byte Ethernet address used by unit. It must copy the
six-byte address to the space provided by pCopy. This routine returns OK, or ERROR if
it fails. The driver calls this routine, once per unit, using eiattach().

STATUS sys596Init (int unit)

This routine performs any target-specific initialization required before the 82596 is
initialized. Typically, it is empty. This routine must return OK, or ERROR if it fails.
The driver calls this routine, once per unit, using eiattach().

void sys596Port (int unit, int cmd, UINT32 addr)

This routine provides access to the special port function of the 82596. It delivers the
command and address arguments to the port of the specified unit. The driver calls
this routine primarily during initialization, but may also call it during error recovery
procedures.

void sys596ChanAtn (int unit)

This routine provides the channel attention signal to the 82596, for the specified unit.
The driver calls this routine frequently throughout all phases of operation.

void sys596IntEnable (int unit), void sys596IntDisable (int unit)

These routines enable or disable the interrupt from the 82596 for the specified unit.
Typically, this involves interrupt controller hardware, either internal or external to
the CPU. Since the 82596 itself has no mechanism for controlling its interrupt activity,
these routines are vital to the correct operation of the driver. The driver calls these
routines throughout normal operation to protect certain critical sections of code from
interrupt handler intervention.

void sys596IntAck (int unit)

This routine must perform any required interrupt acknowledgment or clearing.
Typically, this involves an operation to some interrupt control hardware.

NOTE: The INT signal from the 82596 behaves in an "edge-triggered" mode; therefore, this
routine typically clears a latch within the control circuitry. The driver calls this routine
from the interrupt handler.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one mutual exclusion semaphore

– one interrupt vector

– one watchdog timer.

– 8 bytes in the initialized data section (data)

– 912 bytes in the uninitialized data section (BSS)
68

1: Driver Libraries
if_eidve

I

The above data and BSS requirements are for the MC68020 architecture and may vary for
other architectures. Code size (text) varies greatly between architectures and is therefore
not quoted here.

The driver uses cacheDmaMalloc() to allocate memory to share with the 82596. The
fixed-size pieces in this area total 160 bytes. The variable-size pieces in this area are
affected by the configuration parameters specified in the eiattach() call. The size of one
RFD (Receive Frame Descriptor) is 1536 bytes. The size of one TFD (Transmit Frame
Descriptor) is 1534 bytes. For more information about RFDs and TFDs, see the Intel 82596
User’s Manual.

The 82596 can be operated only if this shared memory region is non-cacheable or if the
hardware implements bus snooping. The driver cannot maintain cache coherency for the
device because fields within the command structures are asynchronously modified by
both the driver and the device, and these fields may share the same cache line.

TUNING HINTS The only adjustable parameters are the number of TFDs and RFDs that will be created at
run-time. These parameters are given to the driver when eiattach() is called. There is one
TFD and one RFD associated with each transmitted frame and each received frame
respectively. For memory-limited applications, decreasing the number of TFDs and RFDs
may be desirable. Increasing the number of TFDs will provide no performance benefit
after a certain point. Increasing the number of RFDs will provide more buffering before
packets are dropped. This can be useful if there are tasks running at a higher priority than
the net task.

CAVEAT This driver does not support promiscuous mode.

SEE ALSO ifLib, Intel 82596 User’s Manual, Intel 32-bit Local Area Network (LAN) Component User’s
Manual

if_eidve

NAME if_eidve – Intel 82596 Ethernet network interface driver for DVE-SH7XXX

ROUTINES eiattach() – publish the ei network interface and initialize the driver and device
eiTxStartup() – start output on the chip

DESCRIPTION This module implements the Intel 82596 Ethernet network interface driver.

This driver is designed to be moderately generic, operating unmodified across the range
of architectures and targets supported by VxWorks. To achieve this, this driver must be
given several target-specific parameters, and some external support routines must be
provided. These parameters, and the mechanisms used to communicate them to the
driver, are detailed below.
69

VxWorks Drivers API Reference, 5.5
if_eidve
This driver can run with the device configured in either big-endian or little-endian modes.
Error recovery code has been added to deal with some of the known errata in the A0
version of the device. This driver supports up to four individual units per CPU.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver provides the standard external interface with the following exceptions. All
initialization is performed within the attach routine; there is no separate initialization
routine. Therefore, in the global interface structure, the function pointer to the
initialization routine is NULL.

The only user-callable routine is eiattach(), which publishes the ei interface and initializes
the driver and device.

TARGET-SPECIFIC PARAMETERS

the sysbus value
This parameter is passed to the driver by eiattach().

The Intel 82596 requires this parameter during initialization. It tells the device about
the system bus, hence the name "sysbus." To determine the correct value for a target,
refer to the document Intel 32-bit Local Area Network (LAN) Component User’s Manual.

interrupt vector
This parameter is passed to the driver by eiattach().

The Intel 82596 generates hardware interrupts for various events within the device;
thus it contains an interrupt handler routine. This driver calls intConnect() to
connect its interrupt handler to the interrupt vector generated as a result of the 82596
interrupt.

shared memory address
This parameter is passed to the driver by eiattach().

The Intel 82596 device is a DMA type device and typically shares access to some
region of memory with the CPU. This driver is designed for systems that directly
share memory between the CPU and the 82596.

This parameter can be used to specify an explicit memory region for use by the 82596.
This should be done on targets that restrict the 82596 to a particular memory region.
The constant NONE can be used to indicate that there are no memory limitations, in
which case, the driver attempts to allocate the shared memory from the system space.

number of Receive and Transmit Frame Descriptors
These parameters are passed to the driver by eiattach().

The Intel 82596 accesses frame descriptors in memory for each frame transmitted or
received. The number of frame descriptors at run-time can be configured using these
parameters.
70

1: Driver Libraries
if_eidve

I

Ethernet address
This parameter is obtained by a call to an external support routine.

During initialization, the driver needs to know the Ethernet address for the Intel
82596 device. The driver calls the external support routine, sysEnetAddrGet(), to
obtain the Ethernet address. For a description of sysEnetAddrGet(), see "External
Support Requirements" below.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires seven external support functions:

STATUS sysEnetAddrGet (int unit, char *pCopy)

This routine provides the six-byte Ethernet address used by unit. It must copy the
six-byte address to the space provided by pCopy. This routine returns OK, or ERROR if
it fails. The driver calls this routine, once per unit, using eiattach().

STATUS sys596Init (int unit)

This routine performs any target-specific initialization required before the 82596 is
initialized. Typically, it is empty. This routine must return OK, or ERROR if it fails.
The driver calls this routine, once per unit, using eiattach().

void sys596Port (int unit, int cmd, UINT32 addr)

This routine provides access to the special port function of the 82596. It delivers the
command and address arguments to the port of the specified unit. The driver calls
this routine primarily during initialization, but may also call it during error recovery
procedures.

void sys596ChanAtn (int unit)

This routine provides the channel attention signal to the 82596, for the specified unit.
The driver calls this routine frequently throughout all phases of operation.

void sys596IntEnable (int unit), void sys596IntDisable (int unit)

These routines enable or disable the interrupt from the 82596 for the specified unit.
Typically, this involves interrupt controller hardware, either internal or external to
the CPU. Since the 82596 itself has no mechanism for controlling its interrupt activity,
these routines are vital to the correct operation of the driver. The driver calls these
routines throughout normal operation to protect certain critical sections of code from
interrupt handler intervention.

void sys596IntAck (int unit)

This routine must perform any required interrupt acknowledgment or clearing.
Typically, this involves an operation to some interrupt control hardware.

NOTE: The INT signal from the 82596 behaves in an "edge-triggered" mode; therefore, this
routine typically clears a latch within the control circuitry. The driver calls this routine
from the interrupt handler.
71

VxWorks Drivers API Reference, 5.5
if_eidve
SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one mutual exclusion semaphore

– one interrupt vector

– one watchdog timer

– 8 bytes in the initialized data section (data)

– 912 bytes in the uninitialized data section (BSS)

The above data and BSS requirements are for the MC68020 architecture and may vary for
other architectures. Code size (text) varies greatly between architectures and is therefore
not quoted here.

The driver uses cacheDmaMalloc() to allocate memory to share with the 82596. The
fixed-size pieces in this area total 160 bytes. The variable-size pieces in this area are
affected by the configuration parameters specified in the eiattach() call. The size of one
RFD (Receive Frame Descriptor) is 1536 bytes. The size of one TFD (Transmit Frame
Descriptor) is 1534 bytes. For more information about RFDs and TFDs, see the Intel 82596
User’s Manual.

The 82596 can be operated only if this shared memory region is non-cacheable or if the
hardware implements bus snooping. The driver cannot maintain cache coherency for the
device because fields within the command structures are asynchronously modified by
both the driver and the device, and these fields may share the same cache line.

TUNING HINTS The only adjustable parameters are the number of TFDs and RFDs that will be created at
run-time. These parameters are given to the driver when eiattach() is called. There is one
TFD and one RFD associated with each transmitted frame and each received frame
respectively. For memory-limited applications, decreasing the number of TFDs and RFDs
may be desirable. Increasing the number of TFDs will provide no performance benefit
after a certain point. Increasing the number of RFDs will provide more buffering before
packets are dropped. This can be useful if there are tasks running at a higher priority than
the net task.

SEE ALSO ifLib, Intel 82596 User’s Manual, Intel 32-bit Local Area Network (LAN) Component User’s
Manual
72

1: Driver Libraries
if_eihk

I

if_eihk

NAME if_eihk – Intel 82596 Ethernet network interface driver for hkv3500

ROUTINES eihkattach() – publish the ei network interface and initialize the driver and device
eiTxStartup() – start output on the chip
eiInt() – entry point for handling interrupts from the 82596

DESCRIPTION This module implements a hkv3500 specific Intel 82596 Ethernet network interface driver.

This driver is derived from the generic if_ei ethernet driver to support hkv3500 target
board. The receive buffer scheme has been modified from a simplified memory structure
to a flexible memory structure so that receive buffers can be word-aligned, and thus
support buffer loaning on a MIPS CPU architecture.

The driver requires several target-specific parameters, and some external support routines
which are detailed below.

This driver can run with the device configured in either big-endian or little-endian modes.
Error recovery code has been added to deal with some of the known errata in the A0
version of the device. This driver supports up to four individual units per CPU.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver provides the standard external interface with the following exceptions. All
initialization is performed within the attach routine; there is no separate initialization
routine. Therefore, in the global interface structure, the function pointer to the
initialization routine is NULL.

The only user-callable routine is eihkattach(), which publishes the ei interface and
initializes the driver and device.

TARGET-SPECIFIC PARAMETERS

the sysbus value
This parameter is passed to the driver by eihkattach().

The Intel 82596 requires this parameter during initialization. This parameter tells the
device about the system bus, hence the name "sysbus." To determine the correct value
for a target, refer to the document Intel 32-bit Local Area Network (LAN) Component
User’s Manual.

interrupt vector
This parameter is passed to the driver by eihkattach().

The Intel 82596 generates hardware interrupts for various events within the device;
73

VxWorks Drivers API Reference, 5.5
if_eihk
thus it contains an interrupt handler routine. This driver calls intConnect() to
connect its interrupt handler to the interrupt vector generated as a result of the 82596
interrupt.

shared memory address
This parameter is passed to the driver by eihkattach().

The Intel 82596 device is a DMA type device and typically shares access to some
region of memory with the CPU. This driver is designed for systems that directly
share memory between the CPU and the 82596.

This parameter can be used to specify an explicit memory region for use by the 82596.
This should be done on targets that restrict the 82596 to a particular memory region.
The constant NONE can be used to indicate that there are no memory limitations, in
which case, the driver attempts to allocate the shared memory from the system space.

number of Receive and Transmit Frame Descriptors
These parameters are passed to the driver by eihkattach().

The Intel 82596 accesses frame descriptors in memory for each frame transmitted or
received. The number of frame descriptors at run-time can be configured using these
parameters.

Ethernet address
This parameter is obtained by a call to an external support routine.

During initialization, the driver needs to know the Ethernet address for the Intel
82596 device. The driver calls the external support routine, sysEnetAddrGet(), to
obtain the Ethernet address. For a description of sysEnetAddrGet(), see "External
Support Requirements" below.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires seven external support functions:

STATUS sysEnetAddrGet (int unit, char *pCopy)

This routine provides the six-byte Ethernet address used by unit. It must copy the
six-byte address to the space provided by pCopy. This routine returns OK, or ERROR if
it fails. The driver calls this routine, once per unit, using eihkattach().

STATUS sys596Init (int unit, SCB *pScb)

This routine performs any target-specific initialization required before the 82596 is
initialized. Typically, it is empty. This routine must return OK, or ERROR if it fails.
The driver calls this routine, once per unit, using eihkattach().

void sys596Port (int unit, int cmd, UINT32 addr)

This routine provides access to the special port function of the 82596. It delivers the
command and address arguments to the port of the specified unit. The driver calls
this routine primarily during initialization, but may also call it during error recovery
procedures.
74

1: Driver Libraries
if_eihk

I

void sys596ChanAtn (int unit)

This routine provides the channel attention signal to the 82596, for the specified unit.
The driver calls this routine frequently throughout all phases of operation.

void sys596IntEnable (int unit), void sys596IntDisable (int unit)

These routines enable or disable the interrupt from the 82596 for the specified unit.
Typically, this involves interrupt controller hardware, either internal or external to
the CPU. Since the 82596 itself has no mechanism for controlling its interrupt activity,
these routines are vital to the correct operation of the driver. The driver calls these
routines throughout normal operation to protect certain critical sections of code from
interrupt handler intervention.

void sys596IntAck (int unit)

This routine must perform any required interrupt acknowledgment or clearing.
Typically, this involves an operation to some interrupt control hardware.

NOTE: The INT signal from the 82596 behaves in an "edge-triggered" mode; therefore, this
routine typically clears a latch within the control circuitry. The driver calls this routine
from the interrupt handler.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one mutual exclusion semaphore

– one interrupt vector

– one watchdog timer

– 8 bytes in the initialized data section (data)

– 912 bytes in the uninitialized data section (BSS)

The above data and BSS requirements are for the MC68020 architecture and may vary for
other architectures. Code size (text) varies greatly between architectures and is therefore
not quoted here.

The driver uses cacheDmaMalloc() to allocate memory to share with the 82596. The
fixed-size pieces in this area total 160 bytes. The variable-size pieces in this area are
affected by the configuration parameters specified in the eihkattach() call. The size of one
RFD (Receive Frame Descriptor) is 1536 bytes. The size of one TFD (Transmit Frame
Descriptor) is 1534 bytes. For more information about RFDs and TFDs, see the Intel 82596
User’s Manual.

The 82596 can be operated only if this shared memory region is non-cacheable or if the
hardware implements bus snooping. The driver cannot maintain cache coherency for the
device because fields within the command structures are asynchronously modified by
both the driver and the device, and these fields may share the same cache line.
75

VxWorks Drivers API Reference, 5.5
if_elc
TUNING HINTS The only adjustable parameters are the number of TFDs and RFDs that will be created at
run-time. These parameters are given to the driver when eihkattach() is called. There is
one TFD and one RFD associated with each transmitted frame and each received frame
respectively. For memory-limited applications, decreasing the number of TFDs and RFDs
may be desirable. Increasing the number of TFDs will provide no performance benefit
after a certain point. Increasing the number of RFDs will provide more buffering before
packets are dropped. This can be useful if there are tasks running at a higher priority than
the net task.

SEE ALSO ifLib, Intel 82596 User’s Manual, Intel 32-bit Local Area Network (LAN) Component User’s
Manual

if_elc

NAME if_elc – SMC 8013WC Ethernet network interface driver

ROUTINES elcattach() – publish the elc network interface and initialize the driver and device
elcPut() – copy a packet to the interface.
elcShow() – display statistics for the SMC 8013WC elc network interface

DESCRIPTION This module implements the SMC 8013WC network interface driver.

BOARD LAYOUT The W1 jumper should be set in position SOFT. The W2 jumper should be set in position
NONE/SOFT.

CONFIGURATION The I/O address, RAM address, RAM size, and IRQ levels are defined in config.h. The
I/O address must match the one stored in EEROM. The configuration software supplied
by the manufacturer should be used to set the I/O address.

IRQ levels 2,3,4,5,7,9,10,11,15 are supported. Thick Ethernet (AUI) and Thin Ethernet
(BNC) are configurable by changing the macro CONFIG_ELC in config.h.

EXTERNAL INTERFACE

The only user-callable routines are elcattach() and elcShow():

elcattach()
publishes the elc interface and initializes the driver and device.

elcShow()
displays statistics that are collected in the interrupt handler.
76

1: Driver Libraries
if_elt

I

if_elt

NAME if_elt – 3Com 3C509 Ethernet network interface driver

ROUTINES eltattach() – publish the elt interface and initialize the driver and device
eltTxOutputStart() – start output on the board
eltShow() – display statistics for the 3C509 elt network interface

DESCRIPTION This module implements the 3Com 3C509 network adapter driver.

The 3C509 (EtherLink® III) is not well-suited for use in real-time systems. Its meager
on-board buffering (4K total; 2K transmit, 2K receive) forces the host processor to service
the board at a high priority. 3Com makes a virtue of this necessity by adding fancy
lookahead support and adding the label "Parallel Tasking" to the outside of the box. Using
3Com’s drivers, this board will look good in benchmarks that measure raw link speed.
The board is greatly simplified by using the host CPU as a DMA controller.

BOARD LAYOUT This device is soft-configured by a DOS-hosted program supplied by the manufacturer.
No jumpering diagram is required.

EXTERNAL INTERFACE

This driver provides the standard external interface with the following exceptions. All
initialization is performed within the attach routine and there is no separate initialization
routine. Thus, in the global interface structure, the function pointer to the initialization
routine is NULL.

There are two user-callable routines:

eltattach()
publishes the elt interface and initializes the driver and device.

eltShow()
displays statistics that are collected in the interrupt handler.

See the manual entries for these routines for more detail.

SYSTEM RESOURCE USAGE

– one mutual exclusion semaphore

– one interrupt vector

– 16 bytes in the uninitialized data section (bss)

– 180 bytes (plus overhead) of malloc’ed memory per unit

– 1530 bytes (plus overhead) of malloc’ed memory per frame buffer, minimum 5 frame
buffers.
77

VxWorks Drivers API Reference, 5.5
if_ene
SHORTCUTS The EISA and MCA versions of the board are not supported.

Attachment selection assumes the board is in power-on reset state; a warm restart will not
clear the old attachment selection out of the hardware, and certain new selections may not
clear it either. For example, if RJ45 was selected, the system is warm-booted, and AUI is
selected, the RJ45 connector is still functional.

Attachment type selection is not validated against the board’s capabilities, even though
there is a register that describes which connectors exist.

The loaned buffer cluster type is MC_EI; no new type is defined yet.

Although it seems possible to put the transmitter into a non-functioning state, it is not
obvious either how to do this or how to detect the resulting state. There is therefore no
transmit watchdog timer.

No use is made of the tuning features of the board; it is possible that proper dynamic
tuning would reduce or eliminate the receive overruns that occur when receiving under
task control (instead of in the ISR).

TUNING HINTS More receive buffers (than the default 20) could help by allowing more loaning in cases of
massive reception; four per receiving TCP connection plus four extras should be
considered a minimum.

SEE ALSO ifLib

if_ene

NAME if_ene – Novell/Eagle NE2000 network interface driver

ROUTINES eneattach() – publish the ene network interface and initialize the driver and device
enePut() – copy a packet to the interface.
eneShow() – display statistics for the NE2000 ene network interface

DESCRIPTION This module implements the Novell/Eagle NE2000 network interface driver. There is one
user-callable routine, eneattach().

BOARD LAYOUT The diagram below shows the relevant jumpers for VxWorks configuration. Other
compatible boards will be jumpered differently; many are jumperless.
78

1: Driver Libraries
if_ene

I

| |

| |

| WWWWWWWW |

| WWWW WWW 87654321 ||

| 1111 11 1 ||

| 5432 901 2 ||

| 3 ||

| ||

| W |

| 1 |

| 6 |___

| . |___|

| . |

|________ ___ ____|

| | | |

|_______________| |_________________________|

EXTERNAL INTERFACE

There are two user-callable routines:

eneattach()
Publishes the ene interface and initializes the driver and device.

eneShow()
Displays statistics that are collected in the interrupt handler.

See the manual entries for these routines for more detail.

W1..W8 1-2 position selects AUI ("DIX") connector
2-3 position selects BNC (10BASE2) connector

W9..W11 YYN I/O address 300h, no boot ROM
NYN I/O address 320h, no boot ROM
YNN I/O address 340h, no boot ROM
NNN I/O address 360h, no boot ROM
YYY I/O address 300h, boot ROM at paragraph 0c800h
NYY I/O address 320h, boot ROM at paragraph 0cc00h
YNY I/O address 340h, boot ROM at paragraph 0d000h
NNY I/O address 360h, boot ROM at ??? (invalid configuration?)

W12 Y IRQ 2 (or 9 if you prefer)
W13 Y IRQ 3
W14 Y IRQ 4
W15 Y IRQ 5 (note that only one of W12..W15 may be installed)
W16 Y normal ISA bus timing

N timing for COMPAQ 286 portable, PS/2 Model 30-286, C&T
chipset
79

VxWorks Drivers API Reference, 5.5
if_esmc
SYSTEM RESOURCE USAGE

– one interrupt vector
– 16 bytes in the uninitialized data section (bss)
– 1752 bytes (plus overhead) of malloc’ed memory per unit attached

CAVEAT This driver does not enable the twisted-pair connector on the Taiwanese ETHER-16
compatible board.

if_esmc

NAME if_esmc – Ampro Ethernet2 SMC-91c9x Ethernet network interface driver

ROUTINES esmcattach() – publish the esmc network interface and initialize the driver.
esmcPut() – copy a packet to the interface.
esmcShow() – display statistics for the esmc network interface

DESCRIPTION This module implements the Ampro Ethernet2 SMC-91c9x Ethernet network interface
driver.

CONFIGURATION The W3 and W4 jumper should be set for IO address and IRQ. The defined I/O address
and IRQ in config.h must match the one stored in EEROM and the jumper setting.

BOARD LAYOUT The diagram below shows the relevant jumpers for VxWorks configuration.

| * * * * |

| ______ |

| | | |

| | U1 | W1 W3 |

| |PROM| X " |

| | | . - |

| | | - |

| | | - |

| |____| |

| W4 |

| " |

| " |

| - |

| - |

|_________________________________|

W1: Boot PROM Size

W3: IO-address, IRQ, Media

W4: IRQ Group Selection
80

1: Driver Libraries
if_fei

I

EXTERNAL INTERFACE

The only user-callable routines are esmcattach():

esmcattach()
Publishes the esmc interface and initializes the driver and device.

The last parameter of esmcattach(), mode, is a receive mode. If it is 0, a packet is
received in the interrupt level. If it is 1, a packet is received in the task level. Receiving
packets in the interrupt level requires about 10K bytes of memory, but minimize a
risk of dropping packets. Receiving packets in the task level doesn’t require extra
memory, but might have a risk of dropping packets.

if_fei

NAME if_fei – Intel 82557 Ethernet network interface driver

ROUTINES feiattach() – publish the fei network interface

DESCRIPTION This module implements the Intel 82557 Ethernet network interface driver.

This driver is designed to be moderately generic, operating unmodified across the entire
range of architectures and targets supported by VxWorks. This driver must be given
several target-specific parameters, and some external support routines must be provided.
These parameters, and the mechanisms used to communicate them to the driver, are
detailed below.

This driver supports up to four individual units.

EXTERNAL INTERFACE

The user-callable routine is feiattach(), which publishes the fei interface and performs
some initialization.

After calling feiattach() to publish the interface, an initialization routine must be called to
bring the device up to an operational state. The initialization routine is not a user-callable
routine; upper layers call it when the interface flag is set to UP, or when the interface’s IP
address is set.

There is a global variable feiIntConnect which specifies the interrupt connect routine to
be used depending on the BSP. This is by default set to intConnect() and the user can
override this to use any other interrupt connect routine (like pciIntConnect()) in
sysHwInit() or any device specific initialization routine called in sysHwInit().
81

VxWorks Drivers API Reference, 5.5
if_fei
TARGET-SPECIFIC PARAMETERS

shared memory address
This parameter is passed to the driver via feiattach().

The Intel 82557 device is a DMA-type device and typically shares access to some
region of memory with the CPU. This driver is designed for systems that directly
share memory between the CPU and the 82557.

This parameter can be used to specify an explicit memory region for use by the 82557.
This should be done on targets that restrict the 82557 to a particular memory region.
The constant NONE can be used to indicate that there are no memory limitations, in
which case the driver attempts to allocate the shared memory from the system space.

number of Command, Receive, and Loanable-Receive Frame Descriptors
These parameters are passed to the driver via feiattach().

The Intel 82557 accesses frame descriptors (and their associated buffers) in memory
for each frame transmitted or received. The number of frame descriptors can be
configured at run-time using these parameters.

Ethernet address
This parameter is obtained by a call to an external support routine.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires the following external support function:

STATUS sys557Init (int unit, BOARD_INFO *pBoard)

This routine performs any target-specific initialization required before the 82557 device is
initialized by the driver. The driver calls this routine every time it wants to [re]initialize
the device. This routine returns OK, or ERROR if it fails.

SYSTEM RESOURCE USAGE

The driver uses cacheDmaMalloc() to allocate memory to share with the 82557. The size
of this area is affected by the configuration parameters specified in the feiattach() call.
The size of one RFD (Receive Frame Descriptor) is the same as one CFD (Command Frame
Descriptor): 1536 bytes. For more information about RFDs and CFDs, see the Intel 82557
User’s Manual.

Either the shared memory region must be non-cacheable, or else the hardware must
implement bus snooping. The driver cannot maintain cache coherency for the device
because fields within the command structures are asynchronously modified by both the
driver and the device, and these fields may share the same cache line.

Additionally, this version of the driver does not handle virtual-to-physical or
physical-to-virtual memory mapping.

TUNING HINTS The only adjustable parameters are the number of frame descriptors that will be created at
run-time. These parameters are given to the driver by feiattach(). There is one CFD and
82

1: Driver Libraries
if_fn

I

one RFD associated with each transmitted frame and each received frame, respectively.
For memory-limited applications, decreasing the number of CFDs and RFDs may be
desirable. Increasing CFDs will provide no performance benefit after a certain point.
Increasing the number of RFDs will provide more buffering before packets are dropped.
This can be useful if there are tasks running at a higher priority than the net task.

SEE ALSO ifLib, Intel 82557 User’s Manual

if_fn

NAME if_fn – Fujitsu MB86960 NICE Ethernet network interface driver

ROUTINES fnattach() – publish the fn network interface and initialize the driver and device

DESCRIPTION This module implements the Fujitsu MB86960 NICE Ethernet network interface driver.

This driver is non-generic and has only been run on the Fujitsu SPARClite Evaluation
Board. It currently supports only unit number zero. The driver must be given several
target-specific parameters, and some external support routines must be provided. These
parameters, and the mechanisms used to communicate them to the driver, are detailed
below.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver provides the standard external interface with the following exceptions. All
initialization is performed within the attach routine; there is no separate initialization
routine. Therefore, in the global interface structure, the function pointer to the
initialization routine is NULL.

The only user-callable routine is fnattach(), which publishes the fn interface and
initializes the driver and device.

TARGET-SPECIFIC PARAMETERS

External support routines provide all parameters:

device I/O address
This parameter specifies the base address of the device’s I/O register set. This
address is assumed to live in SPARClite alternate address space.

interrupt vector
This parameter specifies the interrupt vector to be used by the driver to service an
interrupt from the NICE device. The driver will connect the interrupt handler to this
vector by calling intConnect().
83

VxWorks Drivers API Reference, 5.5
if_fn
Ethernet address
This parameter specifies the unique, six-byte address assigned to the VxWorks target
on the Ethernet.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires five external support functions:

char *sysEnetIOAddrGet (int unit)

This routine returns the base address of the NICE control registers. The driver calls
this routine once, using fnattach().

int sysEnetVectGet (int unit)

This routine returns the interrupt vector number to be used to connect the driver’s
interrupt handler. The driver calls this routine once, using fnattach().

STATUS sysEnetAddrGet (int unit, char *pCopy)

This routine provides the six-byte Ethernet address used by unit. It must copy the
six-byte address to the space provided by pCopy. It returns OK, or ERROR if it fails.
The driver calls this routine once, using fnattach().

void sysEnetIntEnable (int unit), void sysEnetIntDisable (int unit)

These routines enable or disable the interrupt from the NICE for the specified unit.
Typically, this involves interrupt controller hardware, either internal or external to
the CPU. The driver calls these routines only during initialization, using fnattach().

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one mutual exclusion semaphore

– one interrupt vector

– 3944 bytes in text section (text)

– 0 bytes in the initialized data section (data)

– 3152 bytes in the uninitialized data section (BSS)

The above data and BSS requirements are for the SPARClite architecture and may vary for
other architectures. Code size (text) varies greatly between architectures and is therefore
not quoted here.

The NICE device maintains a private buffer for all packets transmitted and received.
Therefore, the driver does not require any system memory to share with the device. This
also eliminates all data cache coherency issues.

SEE ALSO ifLib
84

1: Driver Libraries
if_ln

I

if_ln

NAME if_ln – AMD Am7990 LANCE Ethernet network interface driver

ROUTINES lnattach() – publish the ln network interface and initialize driver structures

DESCRIPTION This module implements the Advanced Micro Devices Am7990 LANCE Ethernet network
interface driver.

This driver is designed to be moderately generic, operating unmodified across the range
of architectures and targets supported by VxWorks. To achieve this, the driver must be
given several target-specific parameters, and some external support routines must be
provided. These parameters, and the mechanisms used to communicate them to the
driver, are detailed below. If any of the assumptions stated below are not true for your
particular hardware, this driver will probably not function correctly with it.

This driver supports only one LANCE unit per CPU. The driver can be configured to
support big-endian or little-endian architectures. It contains error recovery code to handle
known device errata related to DMA activity.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver provides the standard external interface with the following exceptions. All
initialization is performed within the attach routine; there is no separate initialization
routine. Therefore, in the global interface structure, the function pointer to the
initialization routine is NULL.

The only user-callable routine is lnattach(), which publishes the ln interface and
initializes the driver and device.

TARGET-SPECIFIC PARAMETERS

bus mode
This parameter is a global variable that can be modified at run-time.

The LANCE control register #3 determines the bus mode of the device, allowing the
support of big-endian and little-endian architectures. This parameter, defined as
"u_short lnCSR_3B", is the value that will be placed into LANCE control register #3.
The default value supports Motorola-type buses. For information about changing this
parameter, see the manual Advanced Micro Devices Local Area Network Controller
Am7990 (LANCE).

base address of device registers
This parameter is passed to the driver by lnattach(). It indicates to the driver where
to find the RDP register.
85

VxWorks Drivers API Reference, 5.5
if_ln
The LANCE presents two registers to the external interface, the RDP (register data
port) and RAP (register address port) registers. This driver assumes that these two
registers occupy two unique addresses in a memory space that is directly accessible
by the CPU executing this driver. The driver assumes that the RDP register is
mapped at a lower address than the RAP register; the RDP register is therefore
considered the "base address."

interrupt vector
This parameter is passed to the driver by lnattach().

This driver configures the LANCE device to generate hardware interrupts for various
events within the device; thus it contains an interrupt handler routine. The driver
calls intConnect() to connect its interrupt handler to the interrupt vector generated
as a result of the LANCE interrupt.

interrupt level
This parameter is passed to the driver by lnattach().

Some targets use additional interrupt controller devices to help organize and service
the various interrupt sources. This driver avoids all board-specific knowledge of such
devices. During the driver’s initialization, the external routine sysLanIntEnable() is
called to perform any board-specific operations required to allow the servicing of a
LANCE interrupt. For a description of sysLanIntEnable(), see "External Support
Requirements" below.

This parameter is passed to the external routine.

shared memory address
This parameter is passed to the driver by lnattach().

The LANCE device is a DMA type of device and typically shares access to some
region of memory with the CPU. This driver is designed for systems that directly
share memory between the CPU and the LANCE. It assumes that this shared memory
is directly available to it without any arbitration or timing concerns.

This parameter can be used to specify an explicit memory region for use by the
LANCE. This should be done on hardware that restricts the LANCE to a particular
memory region. The constant NONE can be used to indicate that there are no
memory limitations, in which case, the driver attempts to allocate the shared memory
from the system space.

shared memory size
This parameter is passed to the driver by lnattach().

This parameter can be used to explicitly limit the amount of shared memory (bytes)
this driver will use. The constant NONE can be used to indicate no specific size
limitation. This parameter is used only if a specific memory region is provided to the
driver.

shared memory width
This parameter is passed to the driver by lnattach().
86

1: Driver Libraries
if_ln

I

Some target hardware that restricts the shared memory region to a specific location
also restricts the access width to this region by the CPU. On these targets, performing
an access of an invalid width will cause a bus error.

This parameter can be used to specify the number of bytes of access width to be used
by the driver during access to the shared memory. The constant NONE can be used to
indicate no restrictions.

Current internal support for this mechanism is not robust; implementation may not
work on all targets requiring these restrictions.

Ethernet address
This parameter is obtained directly from a global memory location.

During initialization, the driver needs to know the Ethernet address for the LANCE
device. The driver assumes that this address is available in a global, six-byte character
array, lnEnetAddr[]. This array is typically created and stuffed by the BSP code.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires one external support function:

void sysLanIntEnable (int level)

This routine provides a target-specific enable of the interrupt for the LANCE device.
Typically, this involves interrupt controller hardware, either internal or external to
the CPU. This routine is called once, from the lnattach() routine.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one mutual exclusion semaphore
– one interrupt vector
– 24 bytes in the initialized data section (data)
– 208 bytes in the uninitialized data section (BSS)

The above data and BSS requirements are for the MC68020 architecture and may vary for
other architectures. Code size (text) varies greatly between architectures and is therefore
not quoted here.

If the driver is not given a specific region of memory via the lnattach() routine, then it
calls cacheDmaMalloc() to allocate the memory to be shared with the LANCE. The size
requested is 80,542 bytes. If a memory region is provided to the driver, the size of this
region is adjustable to suit user needs.

The LANCE can only be operated if the shared memory region is write-coherent with the
data cache. The driver cannot maintain cache coherency for the device for data written by
the driver because fields within the shared structures are asynchronously modified by
both the driver and the device, and these fields may share the same cache line.

SEE ALSO ifLib, Advanced Micro Devices Local Area Network Controller Am7990 (LANCE)
87

VxWorks Drivers API Reference, 5.5
if_lnPci
if_lnPci

NAME if_lnPci – AMD Am79C970 PCnet-PCI Ethernet network interface driver

ROUTINES lnPciattach() – publish the lnPci network interface and initialize the driver and device

DESCRIPTION This module implements the Advanced Micro Devices Am79C970 PCnet-PCI Ethernet 32
bit network interface driver.

The PCnet-PCI ethernet controller is inherently little-endian because the chip is designed
to operate on a PCI bus which is a little-endian bus. The software interface to the driver is
divided into three parts. The first part is the PCI configuration registers and their set up.
This part is done at the BSP level in the various BSPs which use this driver. The second
and third part are dealt in the driver. The second part of the interface comprises of the I/O
control registers and their programming. The third part of the interface comprises of the
descriptors and the buffers.

This driver is designed to be moderately generic, operating unmodified across the range
of architectures and targets supported by VxWorks. To achieve this, the driver must be
given several target-specific parameters, and some external support routines must be
provided. These parameters, and the mechanisms used to communicate them to the
driver, are detailed below. If any of the assumptions stated below are not true for your
particular hardware, this driver will probably not function correctly with it.

This driver supports only one LANCE unit per CPU. The driver can be configured to
support big-endian or little-endian architectures. It contains error recovery code to handle
known device errata related to DMA activity.

Big-endian processors can be connected to the PCI bus through some controllers which
take care of hardware byte swapping. In such cases all the registers which the chip DMAs
to have to be swapped and written to, so that when the hardware swaps the accesses, the
chip would see them correctly. The chip still has to be programmed to operated in
little-endian mode as it is on the PCI bus. If the CPU board hardware automatically swaps
all the accesses to and from the PCI bus, then input and output byte stream need not be
swapped.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver provides the standard external interface with the following exceptions. All
initialization is performed within the attach routine; there is no separate initialization
routine. Therefore, in the global interface structure, the function pointer to the
initialization routine is NULL.

The only user-callable routine is lnPciattach(), which publishes the lnPci interface and
initializes the driver and device.
88

1: Driver Libraries
if_lnPci

I

TARGET-SPECIFIC PARAMETERS

bus mode
This parameter is a global variable that can be modified at run-time.

The LANCE control register #3 determines the bus mode of the device, allowing the
support of big-endian and little-endian architectures. This parameter, defined as
"u_long lnPciCSR_3B", is the value that will be placed into LANCE control register
#3. The default value supports Motorola-type buses. For information about changing
this parameter, see the manual Advanced Micro Devices Local Area Network Controller
Am79C970 (PCnet-PCI).

base address of device registers
This parameter is passed to the driver by lnPciattach(). It indicates to the driver
where to find the RDP register.

The LANCE presents two registers to the external interface, the RDP (register data
port) and RAP (register address port) registers. This driver assumes that these two
registers occupy two unique addresses in a memory space that is directly accessible
by the CPU executing this driver. The driver assumes that the RDP register is
mapped at a lower address than the RAP register; the RDP register is therefore
considered the "base address."

interrupt vector
This parameter is passed to the driver by lnPciattach().

This driver configures the LANCE device to generate hardware interrupts for various
events within the device; thus it contains an interrupt handler routine. The driver
calls intConnect() to connect its interrupt handler to the interrupt vector generated
as a result of the LANCE interrupt.

interrupt level
This parameter is passed to the driver by lnPciattach().

Some targets use additional interrupt controller devices to help organize and service
the various interrupt sources. This driver avoids all board-specific knowledge of such
devices. During the driver’s initialization, the external routine sysLanIntEnable() is
called to perform any board-specific operations required to turn on LANCE interrupt
generation. A similar routine, sysLanIntDisable(), is called by the driver before a
LANCE reset to perform board-specific operations required to turn off LANCE
interrupt generation. For a description of sysLanIntEnable(), and
sysLanIntDisable(), see "External Support Requirements" below.

This parameter is passed to the external routine.

shared memory address
This parameter is passed to the driver by lnPciattach().

The LANCE device is a DMA type of device and typically shares access to some
region of memory with the CPU. This driver is designed for systems that directly
share memory between the CPU and the LANCE. It assumes that this shared memory
89

VxWorks Drivers API Reference, 5.5
if_lnPci
is directly available to it without any arbitration or timing concerns.

This parameter can be used to specify an explicit memory region for use by the
LANCE. This should be done on hardware that restricts the LANCE to a particular
memory region. The constant NONE can be used to indicate that there are no
memory limitations, in which case, the driver attempts to allocate the shared memory
from the system space.

shared memory size
This parameter is passed to the driver by lnPciattach().

This parameter can be used to explicitly limit the amount of shared memory (bytes)
this driver will use. The constant NONE can be used to indicate no specific size
limitation. This parameter is used only if a specific memory region is provided to the
driver.

shared memory width
This parameter is passed to the driver by lnPciattach().

Some target hardware that restricts the shared memory region to a specific location
also restricts the access width to this region by the CPU. On these targets, performing
an access of an invalid width will cause a bus error.

This parameter can be used to specify the number of bytes of access width to be used
by the driver during access to the shared memory. The constant NONE can be used to
indicate no restrictions.

Current internal support for this mechanism is not robust; implementation may not
work on all targets requiring these restrictions.

shared memory buffer size
This parameter is passed to the driver by lnPciattach().

The driver and LANCE device exchange network data in buffers. This parameter
permits the size of these individual buffers to be limited. A value of zero indicates
that the default buffer size should be used. The default buffer size is large enough to
hold a maximum-size Ethernet packet.

Use of this parameter should be rare. Network performance will be affected, since the
target will no longer be able to receive all valid packet sizes.

Ethernet address
This parameter is obtained directly from a global memory location.

During initialization, the driver needs to know the Ethernet address for the LANCE
device. The driver assumes that this address is available in a global, six-byte character
array, lnEnetAddr[]. This array is typically created and stuffed by the BSP code.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires one external support function:

void sysLanIntEnable (int level)
90

1: Driver Libraries
if_lnPci

I

This routine provides a target-specific enable of the interrupt for the LANCE device.
Typically, this involves programming an interrupt controller hardware, either
internal or external to the CPU.

This routine is called during chip initialization, at startup and each LANCE device
reset.

void sysLanIntDisable (int level)

This routine provides a target-specific disable of the interrupt for the LANCE device.
Typically, this involves programming an interrupt controller hardware, either
internal or external to the CPU.

This routine is called before a LANCE device reset.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one mutual exclusion semaphore

– one interrupt vector

– 24 bytes in the initialized data section (data)

– 208 bytes in the uninitialized data section (BSS)

The above data and BSS requirements are for the MC68020 architecture and may vary for
other architectures. Code size (text) varies greatly between architectures and is therefore
not quoted here.

If the driver is not given a specific region of memory via the lnPciattach() routine, then it
calls cacheDmaMalloc() to allocate the memory to be shared with the LANCE. The size
requested is 80,542 bytes. If a memory region is provided to the driver, the size of this
region is adjustable to suit user needs.

The LANCE can only be operated if the shared memory region is write-coherent with the
data cache. The driver cannot maintain cache coherency for the device for data that is
written by the driver because fields within the shared structures are asynchronously
modified by both the driver and the device, and these fields may share the same cache
line.

SEE ALSO ifLib, Advanced Micro Devices PCnet-PCI Ethernet Controller for PCI.
91

VxWorks Drivers API Reference, 5.5
if_loop
if_loop

NAME if_loop – software loopback network interface driver

ROUTINES loattach() – publish the lo network interface and initialize the driver and pseudo-device

DESCRIPTION This module implements the software loopback network interface driver. The only
user-callable routine is loattach(), which publishes the lo interface and initializes the
driver and device.

This interface is used for protocol testing and timing. By default, the loopback interface is
accessible at Internet address 127.0.0.1.

To use this feature, include the following component: INCLUDE_LOOPBACK

BOARD LAYOUT This device is "software only." A jumpering diagram is not applicable.

SEE ALSO ifLib

if_mbc

NAME if_mbc – Motorola 68EN302 network-interface driver

ROUTINES mbcattach() – publish the mbc network interface and initialize the driver
mbcStartOutput() – output packet to network interface device
mbcIntr() – network interface interrupt handler

DESCRIPTION This is a driver for the Ethernet controller on the 68EN302 chip. The device supports a
16-bit interface, data rates up to 10 Mbps, a dual-ported RAM, and transparent DMA. The
dual-ported RAM is used for a 64-entry CAM table, and a 128-entry buffer descriptor
table. The CAM table is used to set the Ethernet address of the Ethernet device or to
program multicast addresses. The buffer descriptor table is partitioned into fixed-size
transmit and receive tables. The DMA operation is transparent and transfers data between
the internal FIFOs and external buffers pointed to by the receive- and transmit-buffer
descriptors during transmits and receives.

The driver currently supports one Ethernet module controller, but it can be extended to
support multiple controllers when needed. An Ethernet module is initialized by calling
mbcattach().

The driver supports buffer loaning for performance and input/output hook routines. It
does not support multicast addresses.
92

1: Driver Libraries
if_mbc

I

The driver requires that the memory used for transmit and receive buffers be allocated in
cache-safe RAM area.

A glitch in the EN302 Rev 0.1 device causes the Ethernet transmitter to lock up from time
to time. The driver uses a watchdog timer to reset the Ethernet device when the device
runs out of transmit buffers and cannot recover within 20 clock ticks.

BOARD LAYOUT This device is on-chip. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver presents the standard WRS network driver API: first the device unit must be
attached with the mbcattach() routine, then it must be initialized with the mbcInit()
routine.

The only user-callable routine is mbcattach(), which publishes the mbc interface and
initializes the driver structures.

TARGET-SPECIFIC PARAMETERS

Ethernet module base address
This parameter is passed to the driver via mbcattach().

This parameter is the base address of the Ethernet module. The driver addresses all
other Ethernet device registers as offsets from this address.

interrupt vector number
This parameter is passed to the driver via mbcattach().

The driver configures the Ethernet device to use this parameter while generating
interrupt ack cycles. The interrupt service routine mbcIntr() is expected to be
attached to the corresponding interrupt vector externally, typically in sysHwInit2().

number of transmit and receive buffer descriptors
These parameters are passed to the driver via mbcattach().

The number of transmit and receive buffer descriptors (BDs) used is configurable by
the user while attaching the driver. Each BD is 8 bytes in size and resides in the chip’s
dual-ported memory, while its associated buffer, 1520 bytes in size, resides in
cache-safe conventional RAM. A minimum of 2 receive and 2 transmit BDs should be
allocated. If this parameter is NULL, a default of 32 BDs will be used. The maximum
number of BDs depends on how the dual-ported BD RAM is partitioned. The 128 BDs
in the dual-ported BD RAM can partitioned into transmit and receive BD regions
with 8, 16, 32, or 64 transmit BDs and corresponding 120, 112, 96, or 64 receive BDs.

Ethernet DMA parameters
This parameter is passed to the driver via mbcattach().

This parameter is used to specify the settings of burst limit, water-mark, and transmit
early, which control the Ethernet DMA, and is used to set the EDMA register.
93

VxWorks Drivers API Reference, 5.5
if_mbc
base address of the buffer pool
This parameter is passed to the driver via mbcattach().

This parameter is used to notify the driver that space for the transmit and receive
buffers need not be allocated, but should be taken from a cache-coherent private
memory space provided by the user at the given address. The user should be aware
that memory used for buffers must be 4-byte aligned and non-cacheable. All the
buffers must fit in the given memory space; no checking will be performed. This
includes all transmit and receive buffers (see above) and an additional 16 receive
loaner buffers, unless the number of receive BDs is less than 16, in which case that
number of loaner buffers will be used. Each buffer is 1520 bytes. If this parameter is
"NONE", space for buffers will be obtained by calling cacheDmaMalloc() in
cpmattach().

EXTERNAL SUPPORT REQUIREMENTS

The driver requires the following support functions:

STATUS sysEnetAddrGet (int unit, UINT8 * addr)

The driver expects this routine to provide the six-byte Ethernet hardware address
that will be used by unit. This routine must copy the six-byte address to the space
provided by addr. This routine is expected to return OK on success, or ERROR. The
driver calls this routine, during device initialization, from the cpmInit() routine.

SYSTEM RESOURCE USAGE

The driver requires the following system resource:

– one mutual exclusion semaphore
– one interrupt vector
– one watchdog timer
– 0 bytes in the initialized data section (data)
– 296 bytes in the uninitialized data section (bss)

The data and BSS sections are quoted for the CPU32 architecture.

If the driver allocates the memory shared with the Ethernet device unit, it does so by
calling the cacheDmaMalloc() routine. For the default case of 32 transmit buffers, 32
receive buffers, and 16 loaner buffers, the total size requested is 121,600 bytes. If a
non-cacheable memory region is provided by the user, the size of this region should be
this amount, unless the user has specified a different number of transmit or receive BDs.

This driver can only operate if the shared memory region is non-cacheable, or if the
hardware implements bus snooping. The driver cannot maintain cache coherency for the
device because the buffers are asynchronously modified by both the driver and the device,
and these fields may share the same cache line. Additionally, the chip’s dual-ported RAM
must be declared as non-cacheable memory where applicable.

SEE ALSO ifLib, Motorola MC68EN302 User’s Manual, Motorola MC68EN302 Device Errata, May 30,
1996
94

1: Driver Libraries
if_nicEvb

I

if_nicEvb

NAME if_nicEvb – National Semiconductor ST-NIC Chip network interface driver

ROUTINES nicEvbattach() – publish and initialize the nicEvb network interface driver
nicTxStartup() – the driver’s actual output routine

DESCRIPTION This module implements the National Semiconductor 83902A ST-NIC Ethernet network
interface driver.

This driver is non-generic and is for use on the IBM EVB403 board. Only unit number zero
is supported. The driver must be given several target-specific parameters. These
parameters, and the mechanisms used to communicate them to the driver, are detailed
below.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver provides the standard external interface with the following exceptions. All
initialization is performed within the attach routine; there is no separate initialization
routine. Therefore, in the global interface structure, the function pointer to the
initialization routine is NULL.

The only user-callable routine is nicEvbattach(), which publishes the nicEvb interface
and initializes the driver and device.

TARGET-SPECIFIC PARAMETERS

device I/O address
This parameter is passed to the driver by nicEvbattach(). It specifies the base address
of the device’s I/O register set.

interrupt vector
This parameter is passed to the driver by nicEvbattach(). It specifies the interrupt
vector to be used by the driver to service an interrupt from the ST-NIC device. The
driver will connect the interrupt handler to this vector by calling intConnect().

device restart/reset delay
The global variable nicRestartDelay (UINT32), defined in this file, should be
initialized in the BSP sysHwInit() routine. nicRestartDelay is used only with
PowerPC platform and is equal to the number of time base increments which makes
for 1.6 msec. This corresponds to the delay necessary to respect when restarting or
resetting the device.

EXTERNAL SUPPORT REQUIREMENTS

The driver requires the following support functions:
95

VxWorks Drivers API Reference, 5.5
if_sl
STATUS sysEnetAddrGet (int unit, UINT8 * addr)

The driver expects this routine to provide the six-byte Ethernet hardware address
that will be used by unit. This routine must copy the six-byte address to the space
provided by addr. This routine is expected to return OK on success, or ERROR. The
driver calls this routine, during device initialization, from the nicEnetAddrGet()
routine.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one mutual exclusion semaphore
– one interrupt vector

SEE ALSO ifLib

if_sl

NAME if_sl – Serial Line IP (SLIP) network interface driver

ROUTINES slipInit() – initialize a SLIP interface
slipBaudSet() – set the baud rate for a SLIP interface
slattach() – publish the sl network interface and initialize the driver and device
slipDelete() – delete a SLIP interface

DESCRIPTION This module implements the VxWorks Serial Line IP (SLIP) network interface driver.
Support for compressed TCP/IP headers (CSLIP) is included.

The SLIP driver enables VxWorks to talk to other machines over serial connections by
encapsulating IP packets into streams of bytes suitable for serial transmission.

USER-CALLABLE ROUTINES

SLIP devices are initialized using slipInit(). Its parameters specify the Internet address
for both sides of the SLIP point-to-point link, the name of the tty device on the local host,
and options to enable CSLIP header compression. The slipInit() routine calls slattach() to
attach the SLIP interface to the network. The slipDelete() routine deletes a specified SLIP
interface.

LINK-LEVEL PROTOCOL

SLIP is a simple protocol that uses four token characters to delimit each packet:

– END (0300)
– ESC (0333)
– TRANS_END (0334)
– TRANS_ESC (0335)
96

1: Driver Libraries
if_sl

I

The END character denotes the end of an IP packet. The ESC character is used with
TRANS_END and TRANS_ESC to circumvent potential occurrences of END or ESC within a
packet. If the END character is to be embedded, SLIP sends "ESC TRANS_END" to avoid
confusion between a SLIP-specific END and actual data whose value is END. If the ESC
character is to be embedded, then SLIP sends "ESC TRANS_ESC" to avoid confusion.

NOTE: The SLIP ESC is not the same as the ASCII ESC.

On the receiving side of the connection, SLIP uses the opposite actions to decode the SLIP
packets. Whenever an END character is received, SLIP assumes a full IP packet has been
received and sends it up to the IP layer.

TARGET-SPECIFIC PARAMETERS

The global flag slipLoopBack is set to 1 by default. This flag enables the packets to be sent
to the loopback interface if they are destined to to a local slip interface address. By setting
this flag, any packets sent to a local slip interface address will not be seen on the actual
serial link. Set this flag to 0 to turn off this facility. If this flag is not set any packets sent to
the local slip interface address will actually be sent out on the link and it is the peer’s
responsibility to loop the packet back.

IMPLEMENTATION The write side of a SLIP connection is an independent task. Each SLIP interface has its
own output task that sends SLIP packets over a particular tty device channel. Whenever a
packet is ready to be sent out, the SLIP driver activates this task by giving a semaphore.
When the semaphore is available, the output task performs packetization (as explained
above) and writes the packet to the tty device.

The receiving side is implemented as a "hook" into the tty driver. A tty ioctl() request,
FIOPROTOHOOK, informs the tty driver to call the SLIP interrupt routine every time a
character is received from a serial port. By tracking the number of characters and
watching for the END character, the number of calls to read() and context switching time
have been reduced. The SLIP interrupt routine will queue a call to the SLIP read routine
only when it knows that a packet is ready in the tty driver’s ring buffer. The SLIP read
routine will read a whole SLIP packet at a time and process it according to the SLIP
framing rules. When a full IP packet is decoded out of a SLIP packet, it is queued to IP’s
input queue.

CSLIP compression is implemented to decrease the size of the TCP/IP header
information, thereby improving the data to header size ratio. CSLIP manipulates header
information just before a packet is sent and just after a packet is received. Only TCP/IP
headers are compressed and uncompressed; other protocol types are sent and received
normally. A functioning CSLIP driver is required on the peer (destination) end of the
physical link in order to carry out a CSLIP "conversation."

Multiple units are supported by this driver. Each individual unit may have CSLIP support
disabled or enabled, independent of the state of other units.
97

VxWorks Drivers API Reference, 5.5
if_sm
BOARD LAYOUT No hardware is directly associated with this driver; therefore, a jumpering diagram is not
applicable.

SEE ALSO ifLib, tyLib, John Romkey: RFC-1055, A Nonstandard for Transmission of IP Datagrams Over
Serial Lines: SLIP, Van Jacobson: RFC-1144, entitled Compressing TCP/IP Headers for
Low-Speed Serial Links

ACKNOWLEDGEMENT

This program is based on original work done by Rick Adams of The Center for Seismic
Studies and Chris Torek of The University of Maryland. The CSLIP enhancements are
based on work done by Van Jacobson of University of California, Berkeley for the
"cslip-2.7" release.

if_sm

NAME if_sm – shared memory backplane network interface driver

DESCRIPTION This module implements the VxWorks shared memory backplane network interface
driver.

This driver is designed to be moderately generic, operating unmodified across the range
of hosts and targets supported by VxWorks. To achieve this, the driver must be given
several target-specific parameters, and some external support routines must be provided.
These parameters are detailed below.

There are no user-callable routines.

This driver is layered between the shared memory packet library and the network
modules. The backplane driver gives CPUs residing on a common backplane the ability to
communicate using IP (via shared memory).

BOARD LAYOUT This device is "software only." There is no jumpering diagram required.

TARGET-SPECIFIC PARAMETERS

A set of target-specific parameters is used to configure shared memory and backplane
networking.

local address of anchor
This parameter is the local address by which the local CPU accesses the shared
memory anchor.

maximum number of input packets
This parameter specifies the maximum number of incoming shared memory packets
that can be queued to this CPU at one time.
98

1: Driver Libraries
if_sn

I

method of notification
These four parameters are used to enable a CPU to announce the method by which it
is to be notified of input packets that have been queued to it.

heartbeat frequency
This parameter specifies the frequency of the shared memory backplane network’s
heartbeat, which is expressed in terms of the number of CPU ticks on the local CPU
corresponding to one heartbeat period.

number of buffers to loan
This parameter, when non-zero, specifies the number of shared memory packets
available to be loaned out.

master CPU number
This parameter specifies the master CPU number as set during system configuration.

For detailed information refer to VxWorks Network Programmer’s Guide: Data Link Layer
Network Components.

INCLUDE FILES smNetLib.h

SEE ALSO ifLib, smNetLib, VxWorks Network Programmer’s Guide

if_sn

NAME if_sn – National Semiconductor DP83932B SONIC Ethernet network driver

ROUTINES snattach() – publish the sn network interface and initialize the driver and device

DESCRIPTION This module implements the National Semiconductor DP83932 SONIC Ethernet network
interface driver.

This driver is designed to be moderately generic, operating unmodified across the range
of architectures and targets supported by VxWorks. To achieve this, the driver must be
given several target-specific parameters, and some external support routines must be
provided. These parameters, and the mechanisms used to communicate them to the
driver, are detailed below. If any of the assumptions stated below are not true for your
particular hardware, this driver will probably not function correctly with it. This driver
supports up to four individual units per CPU.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver provides the standard external interface with the following exceptions. All
99

VxWorks Drivers API Reference, 5.5
if_sn
initialization is performed within the attach routine; there is no separate initialization
routine. Therefore, in the global interface structure, the function pointer to the
initialization routine is NULL.

There is one user-callable routine, snattach(); for details, see the manual entry for this
routine.

TARGET-SPECIFIC PARAMETERS

device I/O address
This parameter is passed to the driver by snattach(). It specifies the base address of
the device’s I/O register set.

interrupt vector
This parameter is passed to the driver by snattach(). It specifies the interrupt vector
to be used by the driver to service an interrupt from the SONIC device. The driver
will connect the interrupt handler to this vector by calling intConnect().

Ethernet address
This parameter is obtained by calling an external support routine. It specifies the
unique, six-byte address assigned to the VxWorks target on the Ethernet.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires five external support functions:

void sysEnetInit (int unit)

This routine performs any target-specific operations that must be executed before the
SONIC device is initialized. The driver calls this routine, once per unit, from
snattach().

STATUS sysEnetAddrGet (int unit, char *pCopy)

This routine provides the six-byte Ethernet address used by unit. It must copy the
six-byte address to the space provided by pCopy. This routine returns OK, or ERROR if
it fails. The driver calls this routine, once per unit, from snattach().

void sysEnetIntEnable (int unit), void sysEnetIntDisable (int unit)

These routines enable or disable the interrupt from the SONIC device for the
specified unit. Typically, this involves interrupt controller hardware, either internal or
external to the CPU. The driver calls these routines only during initialization, from
snattach().

void sysEnetIntAck (int unit)

This routine performs any interrupt acknowledgement or clearing that may be
required. This typically involves an operation to some interrupt control hardware.
The driver calls this routine from the interrupt handler.

DEVICE CONFIGURATION

Two global variables, snDcr and snDcr2, are used to set the SONIC device configuration
registers. By default, the device is programmed in 32-bit mode with zero wait states. If
100

1: Driver Libraries
if_sn

I

these values are not suitable, the snDcr and snDcr2 variables should be modified before
calling snattach(). See the SONIC manual to change these parameters.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one interrupt vector

– 0 bytes in the initialized data section (data)

– 696 bytes in the uninitialized data section (BSS)

The above data and BSS requirements are for the MC68020 architecture and may vary for
other architectures. Code size (text) varies greatly between architectures and is therefore
not quoted here.

This driver uses cacheDmaMalloc() to allocate the memory to be shared with the SONIC
device. The size requested is 117,188 bytes.

The SONIC device can only be operated if the shared memory region is write-coherent
with the data cache. The driver cannot maintain cache coherency for the device for data
that is written by the driver because fields within the shared structures are
asynchronously modified by the driver and the device, and these fields may share the
same cache line.

NOTE 1 The previous transmit descriptor does not exist until the transmitter has been asked to
send at least one packet. Unfortunately the test for this condition must be done every time
a new descriptor is to be added, even though the condition is only true the first time.
However, it is a valuable test, since we should not use the fragment count field as an
index if it is 0.

NOTE 2 The following features are not supported in this version:

buffer loaning on receive

output hooks

trailer protocol

promiscuous mode

Also, the receive setup needs work so that the number of RRA descriptors is not fixed at
four. It would be a nice addition to allow all the sizes of the shared memory structures to
be specified by the runtime functions that call our init routines.

SEE ALSO ifLib
101

VxWorks Drivers API Reference, 5.5
if_ultra
if_ultra

NAME if_ultra – SMC Elite Ultra Ethernet network interface driver

ROUTINES ultraattach() – publish ultra interface and initialize device
ultraPut() – copy a packet to the interface.
ultraShow() – display statistics for the ultra network interface

DESCRIPTION This module implements the SMC Elite Ultra Ethernet network interface driver.

This driver supports single transmission and multiple reception. The Current register is a
write pointer to the ring. The Bound register is a read pointer from the ring. This driver
gets the Current register at the interrupt level and sets the Bound register at the task level.
The interrupt is never masked at the task level.

CONFIGURATION The W1 jumper should be set in the position of "Software Configuration". The defined I/O
address in config.h must match the one stored in EEROM. The RAM address, the RAM
size, and the IRQ level are defined in config.h. IRQ levels 2,3,5,7,10,11,15 are supported.

EXTERNAL INTERFACE

The only user-callable routines are ultraattach() and ultraShow():

ultraattach()
Publishes the ultra interface and initializes the driver and device.

ultraShow()
Displays statistics that are collected in the interrupt handler.
102

1: Driver Libraries
iOlicomEnd

I

iOlicomEnd

NAME iOlicomEnd – END style Intel Olicom PCMCIA network interface driver

ROUTINES iOlicomEndLoad() – initialize the driver and device
iOlicomIntHandle() – interrupt service for card interrupts

DESCRIPTION This module implements the Olicom (Intel 82595TX) network interface driver. The
physical device is a PCMCIA card. This driver also houses code to manage a Vadem
PCMCIA Interface controller on the ARM PID board, which is strictly a subsystem in it’s
own right.

This network interface driver does not include support for trailer protocols or data
chaining. However, buffer loaning has been implemented in an effort to boost
performance.

BOARD LAYOUT The device resides on a PCMCIA card and is soft configured. No jumpering diagram is
necessary.

EXTERNAL INTERFACE

This driver provides the END external interface with the following exceptions. The only
external interface is the iOlicomEndLoad() routine. All of the parameters are passed as
strings in a colon (:) separated list to the load function as an initString. The
iOlicomEndLoad() function uses strtok() to parse the string.

The string contains the target specific parameters like this:

"io_baseA:attr_baseA:mem_baseA:io_baseB:attr_baseB:mem_baseB: \
ctrl_base:intVectA:intLevelA:intVectB:intLevelB: \
txBdNum:rxBdNum:pShMem:shMemSize"

TARGET-SPECIFIC PARAMETERS

I/O base address A
This is the first parameter passed to the driver init string. This parameter indicates the
base address of the PCMCIA I/O space for socket A.

Attribute base address A
This is the second parameter passed to the driver init string. This parameter indicates
the base address of the PCMCIA attribute space for socket A. On the PID board, this
should be the offset of the beginning of the attribute space from the beginning of the
memory space.

Memory base address A
This is the third parameter passed to the driver init string. This parameter indicates
the base address of the PCMCIA memory space for socket A.
103

VxWorks Drivers API Reference, 5.5
iOlicomEnd
I/O base address B
This is the fourth parameter passed to the driver init string. This parameter indicates
the base address of the PCMCIA I/O space for socket B.

Attribute base address B
This is the fifth parameter passed to the driver init string. This parameter indicates
the base address of the PCMCIA attribute space for socket B. On the PID board, this
should be the offset of the beginning of the attribute space from the beginning of the
memory space.

Memory base address B
This is the sixth parameter passed to the driver init string. This parameter indicates
the base address of the PCMCIA memory space for socket B.

PCMCIA controller base address
This is the seventh parameter passed to the driver init string. This parameter
indicates the base address of the Vadem PCMCIA controller.

interrupt vectors and levels
These are the eighth, ninth, tenth and eleventh parameters passed to the driver init
string.

The mapping of IRQs generated at the Card/PCMCIA level to interrupt levels and
vectors is system dependent. Furthermore the slot holding the PCMCIA card is not
initially known. The interrupt levels and vectors for both socket A and socket B must
be passed to iOlicomEndLoad(), allowing the driver to select the required
parameters later.

number of transmit and receive buffer descriptors
These are the twelfth and thirteenth parameters passed to the driver init string.

The number of transmit and receive buffer descriptors (BDs) used is configurable by
the user upon attaching the driver. There must be a minimum of two transmit and
two receive BDs, and there is a maximum of twenty transmit and twenty receive BDs.
If this parameter is "NULL" a default value of 16 BDs will be used.

offset
This is the fourteenth parameter passed to the driver in the init string.

This parameter defines the offset which is used to solve alignment problem.

base address of buffer pool
This is the fifteenth parameter passed to the driver in the init string.

This parameter is used to notify the driver that space for the transmit and receive
buffers need not be allocated, but should be taken from a private memory space
provided by the user at the given address. The user should be aware that memory
used for buffers must be 4-byte aligned but need not be non-cacheable. If this
parameter is "NONE", space for buffers will be obtained by calling malloc() in
iOlicomEndLoad().
104

1: Driver Libraries
iOlicomEnd

I

mem size of buffer pool
This is the sixteenth parameter passed to the driver in the init string.

The memory size parameter specifies the size of the pre-allocated memory region. If
memory base is specified as NONE (-1), the driver ignores this parameter.

Ethernet address
This parameter is obtained from the Card Information Structure on the Olicom
PCMCIA card.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires three external support function:

void sysLanIntEnable (int level)

This routine provides a target-specific interface for enabling Ethernet device
interrupts at a specified interrupt level. This routine is called each time that the
iOlicomStart() routine is called.

void sysLanIntDisable (int level)

This routine provides a target-specific interface for disabling Ethernet device
interrupts. The driver calls this routine from the iOlicomStop() routine each time a
unit is disabled.

void sysBusIntAck(void)

This routine acknowledge the interrupt if it’s necessary.

SEE ALSO muxLib, endLib, Intel 82595TX ISA/PCMCIA High Integration Ethernet Controller User
Manual, Vadem VG-468 PC Card Socket Controller Data Manual
105

VxWorks Drivers API Reference, 5.5
iPIIX4
iPIIX4

NAME iPIIX4 – low level initalization code for PCI ISA/IDE Xcelerator

ROUTINES iPIIX4Init() – initialize PIIX4
iPIIX4KbdInit() – initialize the PCI-ISA/IDE bridge
iPIIX4FdInit() – initialize the floppy disk device
iPIIX4AtaInit() – low level initialization of ATA device
iPIIX4IntrRoute() – route PIRQ[A:D]
iPIIX4GetIntr() – give device an interrupt level to use

DESCRIPTION The 82371AB PCI ISA IDE Xcelerator (PIIX4) is a multi-function PCI device implementing
a PCI-to-ISA bridge function, a PCI IDE function, a Universal Serial Bus host/hub
function, and an Enhanced Power Management function. As a PCI-to-ISA bridge, PIIX4
integrates many common I/O functions found in ISA-based PC systems-two 82C37 DMA
Controllers, two 82C59 Interrupt Controllers, an 82C54 Timer/Counter, and a Real Time
Clock. In addition to compatible transfers, each DMA channel supports Type F transfers.
PIIX4 also contains full support for both PC/PCI and Distributed DMA protocols
implementing PCI-based DMA. The Interrupt Controller has Edge or Level sensitive
programmable inputs and fully supports the use of an external I/O Advanced
Programmable Interrupt Controller (APIC) and Serial Interrupts. Chip select decoding is
provided for BIOS, Real Time Clock, Keyboard Controller, second external
microcontroller, as well as two Programmable Chip Selects.

PIIX4 is a multi-function PCI device that integrates many system-level functions. PIIX4 is
compatible with the PCI Rev 2.1 specification, as well as the IEEE 996 specification for the
ISA (AT) bus.

PCI to ISA/EIO Bridge
PIIX4 can be configured for a full ISA bus or a subset of the ISA bus called the
Extended IO (EIO) bus. The use of the EIO bus allows unused signals to be
configured as general purpose inputs and outputs. PIIX4 can directly drive up to five
ISA slots without external data or address buffering. It also provides byte-swap logic,
I/O recovery support, wait-state generation, and SYSCLK generation. X-Bus chip
selects are provided for Keyboard Controller, BIOS, Real Time Clock, a second
microcontroller, as well as two programmable chip selects. PIIX4 can be configured as
either a subtractive decode PCI to ISA bridge or as a positive decode bridge. This
gives a system designer the option of placing another subtractive decode bridge in
the system (e.g., an Intel 380FB Dock Set).

IDE Interface (Bus Master capability and synchronous DMA Mode)
The fast IDE interface supports up to four IDE devices providing an interface for IDE
hard disks and CD ROMs. Each IDE device can have independent timings. The IDE
interface supports PIO IDE transfers up to 14 Mbytes/sec and Bus Master IDE
transfers up to 33 Mbytes/sec. It does not consume any ISA DMA resources. The IDE
106

1: Driver Libraries
iPIIX4

I

interface integrates 16x32-bit buffers for optimal transfers.

PIIX4’s IDE system contains two independent IDE signal channels. They can be
configured to the standard primary and secondary channels (four devices) or primary
drive 0 and primary drive 1 channels (two devices).This allows flexibility in system
design and device power management.

Compatibility Modules
The DMA controller incorporates the logic of two 82C37 DMA controllers, with seven
independently programmable channels. Channels [0:3] are hardwired to 8-bit,
count-by-byte transfers, and channels [5:7] are hardwired to 16-bit, count-by-word
transfers. Any two of the seven DMA channels can be programmed to support fast
Type-F transfers. The DMA controller also generates the ISA refresh cycles.

The DMA controller supports two separate methods for handling legacy DMA via the
PCI bus. The PC/PCI protocol allows PCI-based peripherals to initiate DMA cycles
by encoding requests and grants via three PC/PCI REQ#/GNT# pairs. The second
method, Distributed DMA, allows reads and writes to 82C37 registers to be
distributed to other PCI devices. The two methods can be enabled concurrently. The
serial interrupt scheme typically associated with Distributed DMA is also supported.

The timer/counter block contains three counters that are equivalent in function to
those found in one 82C54 programmable interval timer. These three counters are
combined to provide the system timer function, refresh request, and speaker tone.
The 14.31818-MHz oscillator input provides the clock source for these three counters.

PIIX4 provides an ISA-Compatible interrupt controller that incorporates the
functionality of two 82C59 interrupt controllers. The two interrupt controllers are
cascaded so that 14 external and two internal interrupts are possible. In addition,
PIIX4 supports a serial interrupt scheme. PIIX4 provides full support for the use of an
external IO APIC.

Enhanced Universal Serial Bus (USB) Controller
The PIIX4 USB controller provides enhanced support for the Universal Host
Controller Interface (UHCI). This includes support that allows legacy software to use
a USB-based keyboard and mouse.

RTC
PIIX4 contains a Motorola MC146818A-compatible real-time clock with 256 bytes of
battery-backed RAM. The real-time clock performs two key functions: keeping track
of the time of day and storing system data, even when the system is powered down.
The RTC operates on a 32.768-kHz crystal and a separate 3V lithium battery that
provides up to 7 years of protection.

The RTC also supports two lockable memory ranges. By setting bits in the
configuration space, two 8-byte ranges can be locked to read and write accesses. This
prevents unauthorized reading of passwords or other system security information.
The RTC also supports a date alarm, that allows for scheduling a wake up event up to
30 days in advance, rather than just 24 hours in advance.
107

VxWorks Drivers API Reference, 5.5
iPIIX4
GPIO and Chip Selects
Various general purpose inputs and outputs are provided for custom system design.
The number of inputs and outputs varies depending on PIIX4 configuration. Two
programmable chip selects are provided which allows the designer to place devices
on the X-Bus without the need for external decode logic.

Pentium and Pentium II Processor Interface
The PIIX4 CPU interface allows connection to all Pentium and Pentium II processors.
The Sleep mode for the Pentium II processors is also supported.

Enhanced Power Management
PIIX4’s power management functions include enhanced clock control, local and
global monitoring support for 14 individual devices, and various low-power
(suspend) states, such as Power-On Suspend, Suspend-to-DRAM, and
Suspend-to-Disk. A hardware-based thermal management circuit permits
software-independent entrance to low-power states. PIIX4 has dedicated pins to
monitor various external events (e.g., interfaces to a notebook lid, suspend/resume
button, battery low indicators, etc.). PIIX4 contains full support for the Advanced
Configuration and Power Interface (ACPI) Specification.

System Management Bus (SMBus)
PIIX4 contains an SMBus Host interface that allows the CPU to communicate with
SMBus slaves and an SMBus Slave interface that allows external masters to activate
power management events.

Configurability
PIIX4 provides a wide range of system configuration options. This includes full 16-bit
I/O decode on internal modules, dynamic disable on all the internal modules,
various peripheral decode options, and many options on system configuration.

USAGE This library provides low level routines for PCI-ISA bridge initialization, and PCI
interrupts routing. There are many functions provided here for enabling different logical
devices existing on ISA bus.

The functions addressed here include:

– Creating a logical device using an instance of physical device on PCI bus and
initializing internal database accordingly.

– Initializing keyboard (logical device number 11) on PIIX4.

– Initializing floppy disk drive (logical device number 5) on PIIX4.

– Initializing ATA device (IDE interface) on PIIX4.

– Route PIRQ[A:D] from PCI expansion slots on given PIIX4.

– Get interrupt level for a given device on PCI expansion slot.

USER INTERFACE STATUS iPIIX4Init ()

This routine locates and initializes the PIIX4.
108

1: Driver Libraries
iPIIX4

I

STATUS iPIIX4KbdInit ()

This routine does keyboard specific initialization on PIIX4.

STATUS iPIIX4FdInit ()

This routine does floppy disk specific intialization on PIIX4.

STATUS iPIIX4AtaInit ()

This routine does ATA device specific initialization on PIIX4.

STATUS iPIIX4IntrRoute

(

int pintx, char irq

)

This routine routes PIRQ[A:D] to interrupt routing state machine embedded in PIIX4
and makes them level triggered. This routine should be called early in boot process.

int iPIIX4GetIntr

(

int pintx

)

This routine returns the interrupt level of a PCI interrupt previously set by
iPIIX4IntrRoute.

INCLUDE FILES iPIIX4.h
109

VxWorks Drivers API Reference, 5.5
ln97xEnd
ln97xEnd

NAME ln97xEnd – END style AMD Am79C97X PCnet-PCI Ethernet driver

ROUTINES ln97xEndLoad() – initialize the driver and device
ln97xInitParse() – parse the initialization string

DESCRIPTION This module implements the Advanced Micro Devices Am79C970A, Am79C971,
Am79C972, and Am79C973 PCnet-PCI Ethernet 32-bit network interface driver.

The PCnet-PCI ethernet controller is inherently little-endian because the chip is designed
to operate on a PCI bus which is a little-endian bus. The software interface to the driver is
divided into three parts. The first part is the PCI configuration registers and their set up.
This part is done at the BSP level in the various BSPs which use this driver. The second
and third part are dealt with in the driver. The second part of the interface is comprised of
the I/O control registers and their programming. The third part of the interface is
comprised of the descriptors and the buffers.

This driver is designed to be moderately generic, operating unmodified across the range
of architectures and targets supported by VxWorks. To achieve this, the driver must be
given several target-specific parameters, and some external support routines must be
provided. These target-specific values and the external support routines are described
below.

This driver supports multiple units per CPU. The driver can be configured to support
big-endian or little-endian architectures. It contains error recovery code to handle known
device errata related to DMA activity.

Some big-endian processors may be connected to a PCI bus through a host/PCI bridge
which performs byte swapping during data phases. On such platforms, the PCnet-PCI
controller need not perform byte swapping during a DMA access to memory shared with
the host processor.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The driver provides one standard external interface, ln97xEndLoad(). As input, this
routine takes a string of colon-separated parameters. The parameters should be specified
in hexadecimal (optionally preceded by 0x or a minus sign -). The parameter string is
parsed using strtok_r().

TARGET-SPECIFIC PARAMETERS

The format of the parameter string is:

unit:devMemAddr:devIoAddr:pciMemBase:vecNum:intLvl:
memAdrs:memSize:memWidth:csr3b:offset:flags
110

1: Driver Libraries
ln97xEnd

L

unit
The unit number of the device. Unit numbers start at zero and increase for each
device controlled by the same driver. The driver does not use this value directly. The
unit number is passed through the MUX API where it is used to differentiate between
multiple instances of a particular driver.

devMemAddr
This parameter is the memory mapped I/O base address of the device registers in the
memory map of the CPU. The driver will locate device registers as offsets from this
base address.

The PCnet presents two registers to the external interface, the RDP (Register Data
Port) and RAP (Register Address Port) registers. This driver assumes that these two
registers occupy two unique addresses in a memory space that is directly accessible
by the CPU executing this driver. The driver assumes that the RDP register is
mapped at a lower address than the RAP register; the RDP register is therefore
derived from the "base address." This is a required parameter.

devIoAddr
This parameter specifies the I/O base address of the device registers in the I/O map
of some CPUs. It indicates to the driver where to find the RDP register. This
parameter is no longer used, but is retained so that the load string format will be
compatible with legacy initialization routines. The driver will always use memory
mapped I/O registers specified via the devMemAddr parameter.

pciMemBase
This parameter is the base address of the host processor memory as seen from the PCI
bus. This parameter is zero for most Intel architectures.

vecNum
This parameter is the vector associated with the device interrupt. This driver
configures the PCnet device to generate hardware interrupts for various events
within the device; thus it contains an interrupt handler routine. The driver calls
pciIntConnect() to connect its interrupt handler to the interrupt vector generated as
a result of the PCnet interrupt.

intLvl
Some targets use additional interrupt controller devices to help organize and service
the various interrupt sources. This driver avoids all board-specific knowledge of such
devices. During the driver’s initialization, the external routine sysLan97xIntEnable()
is called to perform any board-specific operations required to allow the servicing of a
PCnet interrupt. For a description of sysLan97xIntEnable(), see "External Support
Requirements" below.

memAdrs
This parameter gives the driver the memory address to carve out its buffers and data
structures. If this parameter is specified to be NONE then the driver allocates cache
coherent memory for buffers and descriptors from the system memory pool. The
PCnet device is a DMA type of device and typically shares access to some region of
111

VxWorks Drivers API Reference, 5.5
ln97xEnd
memory with the CPU. This driver is designed for systems that directly share
memory between the CPU and the PCnet. It assumes that this shared memory is
directly available to it without any arbitration or timing concerns.

memSize
This parameter can be used to explicitly limit the amount of shared memory (bytes)
this driver will use. The constant NONE can be used to indicate no specific size
limitation. This parameter is used only if a specific memory region is provided to the
driver.

memWidth
Some target hardware that restricts the shared memory region to a specific location
also restricts the access width to this region by the CPU. On these targets, performing
an access of an invalid width will cause a bus error.

This parameter can be used to specify the number of bytes of access width to be used
by the driver during access to the shared memory. The constant NONE can be used to
indicate no restrictions.

Current internal support for this mechanism is not robust; implementation may not
work on all targets requiring these restrictions.

csr3b
The PCnet-PCI Control and Status Register 3 (CSR3) controls, among other things,
big-endian and little-endian modes of operation. When big-endian mode is selected,
the PCnet-PCI controller will swap the order of bytes on the AD bus during a data
phase on access to the FIFOs only: AD[31:24] is byte 0, AD[23:16] is byte 1, AD[15:8] is
byte 2 and AD[7:0] is byte 3. In order to select the big-endian mode, set this parameter
to (0x0004). Most implementations, including natively big-endian host architectures,
should set this parameter to (0x0000) in order to select little-endian access to the
FIFOs, as the driver is currently designed to perform byte swapping as appropriate to
the host architecture.

offset
This parameter specifies a memory alignment offset. Normally this parameter is zero
except for architectures which can only access 32-bit words on 4-byte aligned address
boundaries. For these architectures the value of this offset should be 2.

flags
This is parameter is used for future use. Currently its value should be zero.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires five externally defined support functions that can be customized by
modifying global pointers. The function pointer types and default "bindings" are specified
below. To change the defaults, the BSP should create an appropriate routine and set the
function pointer before first use. This would normally be done within sysHwInit2().

NOTE: All of the pointers to externally defined functions must be set to a valid executable
code address. Also, note that sysLan97xIntEnable(), sysLan97xIntDisable(), and
112

1: Driver Libraries
ln97xEnd

L

sysLan97xEnetAddrGet() must be defined in the BSP. This was done so that the driver
would be compatible with initialization code and support routines in existing BSPs.

The function pointer convention has been introduced to facilitate future driver versions
that do not explicitly reference a named BSP-defined function. Among other things, this
would allow a BSP designer to define, for example, one endIntEnable() routine to
support multple END drivers.

ln97xIntConnect
IMPORT STATUS (* ln97xIntConnect)

(

VOIDFUNCPTR * vector, /* interrupt vector to attach to */

VOIDFUNCPTR routine, /* routine to be called */

int parameter /* parameter to be passed to routine */

);

/* default setting */

ln97xIntConnect = pciIntConnect;

The ln97xIntConnect pointer specifies a function used to connect the driver interrupt
handler to the appropriate vector. By default it is the pciIntLib() routine
pciIntConnect().

ln97xIntDisconnect
IMPORT STATUS (* ln97xIntDisconnect)

(

VOIDFUNCPTR * vector, /* interrupt vector to attach to */

VOIDFUNCPTR routine, /* routine to be called */

int parameter /* routine parameter */

);

/* default setting */

ln97xIntDisconnect = pciIntDisconnect2;

The ln97xIntDisconnect pointer specifies a function used to disconnect the interrupt
handler prior to unloading the driver. By default it is the pciIntLib() routine
pciIntDisconnect2().

ln97xIntEnable
IMPORT STATUS (* ln97xIntEnable)

(

int level /* interrupt level to be enabled */

);

/* default setting */

ln97xIntEnable = sysLan97xIntEnable;

The ln97xIntEnable pointer specifies a function used to enable the interrupt level for
the END device. It is called once during initialization. By default it is a BSP routine
named sysLan97xIntEnable(). The implementation of this routine can vary between
architectures, and even between BSPs for a given architecture family. Generally, the
parameter to this routine will specify an interrupt level defined for an interrupt
controller on the host platform. For example, MIPS and PowerPC BSPs may
113

VxWorks Drivers API Reference, 5.5
ln97xEnd
implement this routine by invoking the WRS intEnable() library routine. WRS Intel
Pentium BSPs may implement this routine via sysIntEnablePIC().

ln97xIntDisable
IMPORT STATUS (* ln97xIntDisable)

(

int level /* interrupt level to be disabled */

);

/* default setting */

ln97xIntDisable = sysLan97xIntDisable;

The ln97xIntDisable pointer specifies a function used to disable the interrupt level
for the END device. It is called during stop. By default it is a BSP routine named
sysLan97xIntDisable(). The implementation of this routine can vary between
architectures, and even between BSPs for a given architecture family. Generally, the
parameter to this routine will specify an interrupt level defined for an interrupt
controller on the host platform. For example, MIPS and PowerPC BSPs may
implement this routine by invoking the WRS intDisable() library routine. WRS Intel
Pentium BSPs may implement this routine via sysIntDisablePIC().

ln97xEnetAddrGet
IMPORT STATUS (* ln97xEnetAddrGet)

(LN_97X_DRV_CTRL * pDrvCtrl, char * pStationAddr);

/* default setting */

ln97xEnetAddrGet = sysLan97xEnetAddrGet;

The ln97xEnetAddrGet pointer specifies a function used to get the Ethernet (IEEE
station) address of the device. By default it is a BSP routine named
sysLan97xEnetAddrGet().

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one mutual exclusion semaphore

– one interrupt vector

– 14240 bytes in text for a PENTIUM3 target

– 120 bytes in the initialized data section (data)

– 0 bytes in the uninitialized data section (BSS)

The driver allocates clusters of size 1520 bytes for receive frames and transmit frames.

SEE ALSO muxLib, endLib, netBufLib, "Network Protocol Toolkit User’s Guide","PCnet-PCI II
Single-Chip Full-Duplex Ethernet Controllerfor PCI Local Bus Product","PCnet-FAST
Single-Chip Full-Duplex 10/100 Mbps Ethernet Controller for PCI Local Bus Product"
114

1: Driver Libraries
ln7990End

L

ln7990End

NAME ln7990End – END style AMD 7990 LANCE Ethernet network interface driver

ROUTINES ln7990EndLoad() – initialize the driver and device

DESCRIPTION This module implements the Advanced Micro Devices Am7990 LANCE Ethernet network
interface driver. The driver can be configured to support big-endian or little-endian
architectures, and it contains error recovery code to handle known device errata related to
DMA activity.

This driver is designed to be moderately generic. Thus, it operates unmodified across the
range of architectures and targets supported by VxWorks. To achieve this, the driver load
routine requires an input string consisting of several target-specific values. The driver also
requires some external support routines. These target-specific values and the external
support routines are described below. If any of the assumptions stated below are not true
for your particular hardware, this driver might not function correctly with that hardware.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The only external interface is the ln7990EndLoad() routine, which expects the initString
parameter as input. This parameter passes in a colon-delimited string of the format:

unit:CSR_reg_addr:RAP_reg_addr:int_vector:int_level:shmem_addr:shmem_size:shmem_width:of
fset:csr3B

The ln7990EndLoad() function uses strtok() to parse the string.

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the
string name for the driver.

CSR_register_addr
Tells the driver where to find the CSR register.

RAP_register_addr
Tells the driver where to find the RAP register.

int_vector
Configures the LANCE device to generate hardware interrupts for various events
within the device. Thus, it contains an interrupt handler routine. The driver calls
sysIntConnect() to connect its interrupt handler to the interrupt vector generated as
a result of the LANCE interrupt.
115

VxWorks Drivers API Reference, 5.5
ln7990End
int_level
This parameter is passed to an external support routine, sysLanIntEnable(), which is
described below in "External Support Requirements." This routine is called during as
part of driver’s initialization. It handles any board-specific operations required to
allow the servicing of a LANCE interrupt on targets that use additional interrupt
controller devices to help organize and service the various interrupt sources. This
parameter makes it possible for this driver to avoid all board-specific knowledge of
such devices.

shmem_addr
The LANCE device is a DMA type of device and typically shares access to some
region of memory with the CPU. This driver is designed for systems that directly
share memory between the CPU and the LANCE. It assumes that this shared memory
is directly available to it without any arbitration or timing concerns.

This parameter can be used to specify an explicit memory region for use by the
LANCE. This should be done on hardware that restricts the LANCE to a particular
memory region. The constant NONE can be used to indicate that there are no
memory limitations, in which case, the driver attempts to allocate the shared memory
from the system space.

shmem_size
Use this parameter to explicitly limit the amount of shared memory (bytes) that this
driver uses. Use "NONE" to indicate that there is no specific size limitation. This
parameter is used only if a specific memory region is provided to the driver.

shmem_width
Some target hardware that restricts the shared memory region to a specific location
also restricts the access width to this region by the CPU. On such targets, performing
an access of an invalid width causes a bus error. Use this parameter to specify the
number of bytes on which data must be aligned if it is to be used by the driver during
access to the shared memory. Use "NONE" to indicate that there are no restrictions.
The support for this mechanism is not robust. Thus, its current implementation might
not work on all targets requiring these restrictions.

offset
Specifies the memory alignment offset.

csr3B
Specifies the value that is placed into LANCE control register #3. This value
determines the bus mode of the device and thus allows the support of big-endian and
little-endian architectures. The default value supports Motorola-type buses. Normally
this value is 0x4. For SPARC CPUs, it is normally set to 0x7 to add the ACON and
BCON control bits. For more information on this register and the bus mode of the
LANCE controller, see Advanced Micro Devices Local Area Network Controller Am7990
(LANCE).
116

1: Driver Libraries
ln7990End

L

EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions, defined as macros:

SYS_INT_CONNECT(pDrvCtrl, routine, arg)

SYS_INT_DISCONNECT (pDrvCtrl, routine, arg)

SYS_INT_ENABLE(pDrvCtrl)

SYS_OUT_SHORT(pDrvCtrl, reg, data)

SYS_IN_SHORT(pDrvCtrl, reg, pData)

There are default values in the source code for these macros. They presume
memory-mapped accesses to the device registers and the normal intConnect(), and
intEnable() BSP functions. The first argument to each is the device controller structure.
Thus, each has access back to all the device-specific information. Having the pointer in the
macro facilitates the addition of new features to this driver.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one interrupt vector

– 68 bytes in the initialized data section (data) /@HELP@/

– 0 bytes of bss /@HELP@/

The above data and BSS requirements are for the MC68020 architecture and can vary for
other architectures. Code size (text) varies greatly between architectures and is therefore
not quoted here.

If the driver is not given a specific region of memory using the ln7990EndLoad() routine,
then it calls cacheDmaMalloc() to allocate the memory to be shared with the LANCE. The
size requested is 80,542 bytes. If a memory region is provided to the driver, the size of this
region is adjustable to suit user needs.

The LANCE can only be operated if the shared memory region is write-coherent with the
data cache. The driver cannot maintain cache coherency for data that is written by the
driver. That is because members within the shared structures are asynchronously
modified by both the driver and the device, and these members might share the same
cache line.

SEE ALSO muxLib, Advanced Micro Devices Local Area Network Controller Am7990 (LANCE)
117

VxWorks Drivers API Reference, 5.5
lptDrv
lptDrv

NAME lptDrv – parallel chip device driver for the IBM-PC LPT

ROUTINES lptDrv() – initialize the LPT driver
lptDevCreate() – create a device for an LPT port
lptShow() – show LPT statistics

DESCRIPTION This is the basic driver for the LPT used on the IBM-PC. If the component INCLUDE_LPT
is enabled, the driver initializes the LPT port on the PC.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. However,
two routines must be called directly: lptDrv() to initialize the driver, and lptDevCreate()
to create devices.

There are one other callable routines: lptShow() to show statistics. The argument to
lptShow() is a channel number, 0 to 2.

Before the driver can be used, it must be initialized by calling lptDrv(). This routine
should be called exactly once, before any reads, writes, or calls to lptDevCreate().
Normally, it is called from usrRoot() in usrConfig.c. The first argument to lptDrv() is a
number of channels, 0 to 2. The second argument is a pointer to the resource table.
Definitions of members of the resource table structure are:

int ioBase; /* IO base address */

int intVector; /* interrupt vector */

int intLevel; /* interrupt level */

BOOL autofeed; /* TRUE if enable autofeed */

int busyWait; /* loop count for BUSY wait */

int strobeWait; /* loop count for STROBE wait */

int retryCnt; /* retry count */

int timeout; /* timeout second for syncSem */

IOCTL FUNCTIONS This driver responds to two functions: LPT_SETCONTROL and LPT_GETSTATUS. The
argument for LPT_SETCONTROL is a value of the control register. The argument for
LPT_GETSTATUS is a integer pointer where a value of the status register is stored.

SEE ALSO VxWorks Programmer’s Guide: I/O System
118

1: Driver Libraries
m68302Sio

M

m68302Sio

NAME m68302Sio – Motorola MC68302 bimodal tty driver

ROUTINES m68302SioInit() – initialize a M68302_CP
m68302SioInit2() – initialize a M68302_CP (part 2)

DESCRIPTION This is the driver for the internal communications processor (CP) of the Motorola
MC68302.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. Before the
driver can be used, it must be initialized by calling the routines m68302SioInit() and
m68302SioInit2(). Normally, they are called by sysSerialHwInit() and
sysSerialHwInit2() in sysSerial.c

This driver uses 408 bytes of buffer space as follows:

128 bytes for portA tx buffer
128 bytes for portB tx buffer
128 bytes for portC tx buffer

8 bytes for portA rx buffers (8 buffers, 1 byte each)
 8 bytes for portB rx buffers (8 buffers, 1 byte each)
 8 bytes for portC rx buffers (8 buffers, 1 byte each)

The buffer pointer in the m68302cp structure points to the buffer area, which is usually
specified as IMP_BASE_ADDR.

IOCTL FUNCTIONS This driver responds to the same ioctl() codes as a normal tty driver; for more
information, see the manual entry for tyLib. The available baud rates are 300, 600, 1200,
2400, 4800, 9600 and 19200.

SEE ALSO ttyDrv, tyLib

INCLUDE FILES drv/sio/m68302Sio.h, sioLib.h
119

VxWorks Drivers API Reference, 5.5
m68332Sio
m68332Sio

NAME m68332Sio – Motorola MC68332 tty driver

ROUTINES m68332DevInit() – initialize the SCC
m68332Int() – handle an SCC interrupt

DESCRIPTION This is the driver for the Motorola MC68332 on-chip UART. It has only one serial channel.

USAGE A M68332_CHAN structure is used to describe the chip. The BSP’s sysHwInit() routine
typically calls sysSerialHwInit(), which initializes all the values in the M68332_CHAN
structure (except the SIO_DRV_FUNCS) before calling m68332DevInit(). The BSP’s
sysHwInit2() routine typically calls sysSerialHwInit2(), which connects the chips
interrupt (m68332Int) via intConnect().

INCLUDE FILES drv/sio/m68332Sio.h

m68360Sio

NAME m68360Sio – Motorola MC68360 SCC UART serial driver

ROUTINES m68360DevInit() – initialize the SCC
m68360Int() – handle an SCC interrupt

DESCRIPTION This is the driver for the SCCs in the internal Communications Processor (CP) of the
Motorola MC68360. This driver only supports the SCCs in asynchronous UART mode.

USAGE A m68360_CHAN structure is used to describe the chip. The BSP’s sysHwInit() routine
typically calls sysSerialHwInit() which initializes all the values in the M68360_CHAN
structure (except the SIO_DRV_FUNCS) before calling m68360DevInit(). The BSP’s
sysHwInit2() routine typically calls sysSerialHwInit2() which connects the chips
interrupt (m68360Int) via intConnect().

INCLUDE FILES drv/sio/m68360Sio.h
120

1: Driver Libraries
m68681Sio

M

m68562Sio

NAME m68562Sio – MC68562 DUSCC serial driver

ROUTINES m68562HrdInit() – initialize the DUSCC
m68562RxTxErrInt() – handle a receiver/transmitter error interrupt
m68562RxInt() – handle a receiver interrupt
m68562TxInt() – handle a transmitter interrupt

DESCRIPTION This is the driver for the MC68562 DUSCC serial chip. It uses the DUSCC in asynchronous
mode only.

USAGE A M68562_QUSART structure is used to describe the chip. This data structure contains
M68562_CHAN structures which describe the chip’s serial channels. The BSP’s
sysHwInit() routine typically calls sysSerialHwInit() which initializes all the values in
the M68562_QUSART structure (except the SIO_DRV_FUNCS) before calling
m68562HrdInit(). The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2()
which connects the chips interrupts (m68562RxTxErrInt, m68562RxInt, and m68562TxInt)
via intConnect().

IOCTL This driver responds to the same ioctl() codes as a normal serial driver. See the file
sioLib.h for more information.

INCLUDE FILES drv/sio/m68562Sio.h

m68681Sio

NAME m68681Sio – M68681 serial communications driver

ROUTINES m68681DevInit() – initialize a M68681_DUART
m68681DevInit2() – initialize a M68681_DUART, part 2
m68681ImrSetClr() – set and clear bits in the DUART interrupt-mask register
m68681Imr() – return the current contents of the DUART interrupt-mask register
m68681AcrSetClr() – set and clear bits in the DUART auxiliary control register
m68681Acr() – return the contents of the DUART auxiliary control register
m68681OprSetClr() – set and clear bits in the DUART output port register
m68681Opr() – return the current state of the DUART output port register
m68681OpcrSetClr() – set and clear bits in the DUART output port configuration register
m68681Opcr() – return the state of the DUART output port configuration register
m68681Int() – handle all DUART interrupts in one vector
121

VxWorks Drivers API Reference, 5.5
m68681Sio
DESCRIPTION This is the driver for the M68681 DUART. This device includes two universal
asynchronous receiver/transmitters, a baud rate generator, and a counter/timer device.
This driver module provides control of the two serial channels and the baud-rate
generator. The counter timer is controlled by a separate driver,
src/drv/timer/m68681Timer.c.

A M68681_DUART structure is used to describe the chip. This data structure contains two
M68681_CHAN structures which describe the chip’s two serial channels. The
M68681_DUART structure is defined in m68681Sio.h.

Only asynchronous serial operation is supported by this driver. The default serial settings
are 8 data bits, 1 stop bit, no parity, 9600 baud, and software flow control. These default
settings can be overridden on a channel-by-channel basis by setting the M68681_CHAN
options and baudRate fields to the desired values before calling m68681DevInit(). See
sioLib.hfor option values. The defaults for the module can be changed by redefining the
macros M68681_DEFAULT_OPTIONS and M68681_DEFAULT_BAUD and recompiling this
driver.

This driver supports baud rates of 75, 110, 134.5, 150, 300, 600, 1200, 2000, 2400, 4800, 1800,
9600, 19200, and 38400.

USAGE The BSP’s sysHwInit() routine typically calls sysSerialHwInit() which initializes all the
hardware addresses in the M68681_DUART structure before calling m68681DevInit(). This
enables the chip to operate in polled mode, but not in interrupt mode. Calling
m68681DevInit2() from the sysSerialHwInit2() routine allows interrupts to be enabled
and interrupt-mode operation to be used.

The following example shows the first part of the initialization through calling
m68681DevInit():

#include "drv/sio/m68681Sio.h"

M68681_DUART myDuart; /* my device structure */

#define MY_VEC (71) /* use single vector, #71 */

sysSerialHwInit()

{

/* initialize the register pointers for portA */

myDuart.portA.mr = M68681_MRA;

myDuart.portA.sr = M68681_SRA;

myDuart.portA.csr = M68681_CSRA;

myDuart.portA.cr = M68681_CRA;

myDuart.portA.rb = M68681_RHRA;

myDuart.portA.tb = M68681_THRA;

/* initialize the register pointers for portB */

myDuart.portB.mr = M68681_MRB;

...

/* initialize the register pointers/data for main duart */

myDuart.ivr = MY_VEC;

myDuart.ipcr = M68681_IPCR;
122

1: Driver Libraries
m68681Sio

M

myDuart.acr = M68681_ACR;

myDuart.isr = M68681_ISR;

myDuart.imr = M68681_IMR;

myDuart.ip = M68681_IP;

myDuart.opcr = M68681_OPCR;

myDuart.sopbc = M68681_SOPBC;

myDuart.ropbc = M68681_ROPBC;

myDuart.ctroff = M68681_CTROFF;

myDuart.ctron = M68681_CTRON;

myDuart.ctlr = M68681_CTLR;

myDuart.ctur = M68681_CTUR;

m68681DevInit (&myDuart);

}

The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2() which connects the
chips interrupts via intConnect() to the single interrupt handler m68681Int(). After the
interrupt service routines are connected, the user then calls m68681DevInit2() to allow
the driver to turn on interrupt enable bits, as shown in the following example:

sysSerialHwInit2 ()

{

/* connect single vector for 68681 */

intConnect (INUM_TO_IVEC(MY_VEC), m68681Int, (int)&myDuart);

...

/* allow interrupts to be enabled */

m68681DevInit2 (&myDuart);

}

SPECIAL CONSIDERATIONS

The CLOCAL hardware option presumes that OP0 and OP1 output bits are wired to the
CTS outputs for channel 0 and channel 1 respectively. If not wired correctly, then the user
must not select the CLOCAL option. CLOCAL is not one of the default options for this
reason.

This driver does not manipulate the output port or its configuration register in any way. If
the user selects the CLOCAL option, then the output port bit must be wired correctly or
the hardware flow control will not function correctly.

INCLUDE FILES drv/sio/m68681Sio.h
123

VxWorks Drivers API Reference, 5.5
m68901Sio
m68901Sio

NAME m68901Sio – MC68901 MFP tty driver

ROUTINES m68901DevInit() – initialize a M68901_CHAN structure

DESCRIPTION This is the SIO driver for the Motorola MC68901 Multi-Function Peripheral (MFP) chip.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. However,
one routine must be called directly: m68901DevInit() initializes the driver. Normally, it is
called by sysSerialHwInit() in sysSerial.c

IOCTL FUNCTIONS This driver responds to the same ioctl() codes as other tty drivers; for more information,
see the manual entry for tyLib.

SEE ALSO tyLib

mb86940Sio

NAME mb86940Sio – MB 86940 UART tty driver

ROUTINES mb86940DevInit() – install the driver function table

DESCRIPTION This is the driver for the SPARClite MB86930 on-board serial ports.

USAGE A MB86940_CHAN structure is used to describe the chip.

The BSP’s sysHwInit() routine typically calls sysSerialHwInit(), which initializes all the
values in the MB86940_CHAN structure (except the SIO_DRV_FUNCS) before calling
mb86940DevInit(). The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2(),
which connects the chips interrupts via intConnect().

IOCTL FUNCTIONS The UARTs use timer 3 output to generate the following baud rates: 110, 150, 300, 600,
1200, 2400, 4800, 9600, and 19200.

NOTE: The UARTs will operate at the same baud rate.

INCLUDE FILES drv/sio/mb86940Sio.h
124

1: Driver Libraries
mb86960End

M

mb86960End

NAME mb86960End – END-style Fujitsu MB86960 Ethernet network interface driver

ROUTINES mb86960EndLoad() – initialize the driver and device
mb86960InitParse() – parse the initialization string
mb86960MemInit() – initialize memory for the chip

DESCRIPTION This module implements the Fujitsu MB86960 NICE Ethernet network interface driver.

This driver is non-generic and has only been run on the Fujitsu SPARClite Evaluation
Board. It currently supports only unit number zero. The driver must be given several
target-specific parameters, and some external support routines must be provided. These
parameters, and the mechanisms used to communicate them to the driver, are detailed
below.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

The MB86960 Network Interface Controller with Encoder/Decoder (NICE) chip is a
highly integrated monolithic device which incorporates both network controller, complete
with buffer management and Manchester encoder/decoder.

TARGET-SPECIFIC PARAMETERS

The format of the parameter string is:

unit:devBaseAddr:ivec

unit
A convenient holdover from the former model. It is only used in the string name for
the driver.

devBaseAddr
The base Address of the chip registers.

ivec
This is the interrupt vector number of the hardware interrupt generated by this
ethernet device. The driver uses intConnect() to attach an interrupt handler to this
interrupt.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires seven external support functions:

sys86960IntEnable()
void sysEnetIntEnable (int unit)

This routine provides a target-specific interface to enable Ethernet device interrupts for a
given device unit. For this driver, value of unit must be 0.
125

VxWorks Drivers API Reference, 5.5
mb87030Lib
sys86960IntDisable()
void sysEnetIntDisable (int unit)

This routine provides a target-specific interface to disable Ethernet device interrupts for a
given device unit. For this driver, value of unit must be 0.

sysEnetAddrGet()
STATUS sysEnetAddrGet (int unit, char *enetAdrs)

This routine provides a target-specific interface to access a device Ethernet address. This
routine should provide a six-byte Ethernet address in the enetAdrs parameter and return
OK or ERROR.

In this driver the macros SYS_OUT_SHORT and SYS_IN_SHORT which call bsp-specific
functions to access the chip register.

INCLUDES end.h, endLib.h, etherMultiLib.h

SEE ALSO muxLib, endLib, Writing and Enhanced Network Driver

mb87030Lib

NAME mb87030Lib – Fujitsu MB87030 SCSI Protocol Controller (SPC) library

ROUTINES mb87030CtrlCreate() – create a control structure for an MB87030 SPC
mb87030CtrlInit() – initialize a control structure for an MB87030 SPC
mb87030Show() – display the values of all readable MB87030 SPC registers

DESCRIPTION This is the I/O driver for the Fujitsu MB87030 SCSI Protocol Controller (SPC) chip. It is
designed to work in conjunction with scsiLib.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. Two
routines, however, must be called directly: mb87030CtrlCreate() to create a controller
structure, and mb87030CtrlInit() to initialize the controller structure.

INCLUDE FILES mb87030.h

SEE ALSO scsiLib, Fujitsu Small Computer Systems Interface MB87030 Synchronous/Asynchronous
Protocol Controller Users Manual, VxWorks Programmer’s Guide: I/O System
126

1: Driver Libraries
mbcEnd

M

mbcEnd

NAME mbcEnd – Motorola 68302fads END network interface driver

ROUTINES mbcEndLoad() – initialize the driver and device
mbcParse() – parse the init string
mbcMemInit() – initialize memory for the chip
mbcAddrFilterSet() – set the address filter for multicast addresses

DESCRIPTION This is a driver for the Ethernet controller on the 68EN302 chip. The device supports a
16-bit interface, data rates up to 10 Mbps, a dual-ported RAM, and transparent DMA. The
dual-ported RAM is used for a 64-entry CAM table, and a 128-entry buffer descriptor
table. The CAM table is used to set the Ethernet address of the Ethernet device or to
program multicast addresses. The buffer descriptor table is partitioned into fixed-size
transmit and receive tables. The DMA operation is transparent and transfers data between
the internal FIFOs and external buffers pointed to by the receive and transmit-buffer
descriptors during transmits and receives.

The driver requires that the memory used for transmit and receive buffers be allocated in
cache-safe RAM area.

Up to 61 multicast addresses are supported. Multicast addresses are supported by adding
the multicast ethernet addresses to the address table in the ethernet part. If more than 61
multicast addresses are desired, address hashing must be used (the address table holds 62
entries at most). However, address hashing does not appear to work in this ethernet part.

A glitch in the EN302 Rev 0.1 device causes the Ethernet transmitter to lock up from time
to time. The driver uses a watchdog timer to reset the Ethernet device when the device
runs out of transmit buffers and cannot recover within 20 clock ticks.

BOARD LAYOUT This device is on-chip. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The only external interface is the mbcEndLoad() routine, which expects the initString
parameter as input. This parameter passes in a colon-delimited string of the format:

unit:memAddr:ivec:txBdNum:rxBdNum:dmaParms:bufBase:offset

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the
string name for the driver.

memAddr
This parameter is the base address of the Ethernet module. The driver addresses all
127

VxWorks Drivers API Reference, 5.5
mbcEnd
other Ethernet device registers as offsets from this address.

ivec
The interrupt vector to be used in connecting the interrupt handler.

txBdNum
The number of transmit buffer descriptors to use.

rxBdNum
The number of receive buffer descriptors to use.

The number of transmit and receive buffer descriptors (BDs) used is configurable by
the user while attaching the driver. Each BD is 8 bytes in size and resides in the chip’s
dual-ported memory, while its associated buffer, 1520 bytes in size, resides in
cache-safe conventional RAM. A minimum of 2 receive and 2 transmit BDs should be
allocated. If this parameter is 0, a default of 32 BDs will be used. The maximum
number of BDs depends on how the dual-ported BD RAM is partitioned. The 128 BDs
in the dual-ported BD RAM can partitioned into transmit and receive BD regions
with 8, 16, 32, or 64 transmit BDs and corresponding 120, 112, 96, or 64 receive BDs.

dmaParms
Ethernet DMA parameters.

This parameter is used to specify the settings of burst limit, water-mark, and transmit
early, which control the Ethernet DMA, and is used to set the EDMA register.

bufBase
Base address of the buffer pool.

This parameter is used to notify the driver that space for the transmit and receive
buffers need not be allocated, but should be taken from a cache-coherent private
memory space provided by the user at the given address. The user should be aware
that memory used for buffers must be 4-byte aligned and non-cacheable. All the
buffers must fit in the given memory space; no checking will be performed. Each
buffer is 1520 bytes. If this parameter is "NULL", space for buffers will be obtained by
calling cacheDmaMalloc() in mbcMemInit().

offset
Specifies the memory alignment offset.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions, defined as macros:

SYS_INT_CONNECT(pDrvCtrl, routine, arg)

SYS_INT_DISCONNECT (pDrvCtrl, routine, arg)

SYS_INT_ENABLE(pDrvCtrl)

SYS_OUT_SHORT(pDrvCtrl, reg, data)

SYS_IN_SHORT(pDrvCtrl, reg, pData)

There are default values in the source code for these macros. They presume
memory-mapped accesses to the device registers and the normal intConnect(), and
128

1: Driver Libraries
mbcEnd

M

intEnable() BSP functions. The first argument to each is the device controller structure.
Thus, each has access back to all the device-specific information. Having the pointer in the
macro facilitates the addition of new features to this driver.

SYSTEM RESOURCE USAGE

The driver requires the following system resources:

– one watchdog timer

– one interrupt vector

– 52 bytes in the initialized data section (data)

– 0 bytes in the uninitialized data section (bss)

The above data and BSS requirements are for the MC68000 architecture and can vary for
other architectures. Code size (text) varies greatly between architectures and is therefore
not quoted here.

If the driver allocates the memory shared with the Ethernet device unit, it does so by
calling the cacheDmaMalloc() routine. For the default case of 32 transmit buffers, 32
receive buffers, the total size requested is roughly 100,000 bytes. If a memory region is
provided to the driver, the size of this region is adjustable to suit user needs.

This driver can only operate if the shared memory region is non-cacheable, or if the
hardware implements bus snooping. The driver cannot maintain cache coherency for the
device because the buffers are asynchronously modified by both the driver and the device,
and these fields may share the same cache line. Additionally, the chip’s dual-ported RAM
must be declared as non-cacheable memory where applicable.

INCLUDES end.h, endLib.h, etherMultiLib.h

SEE ALSO muxLib, endLib, Writing and Enhanced Network Driver
129

VxWorks Drivers API Reference, 5.5
miiLib
miiLib

NAME miiLib – Media Independent Interface library

ROUTINES miiPhyInit() – initialize and configure the PHY devices
miiPhyUnInit() – uninitialize a PHY
miiAnCheck() – check the auto-negotiation process result
miiPhyOptFuncMultiSet() – set pointers to MII optional registers handlers
miiPhyOptFuncSet() – set the pointer to the MII optional registers handler
miiLibInit() – initialize the MII library
miiLibUnInit() – uninitialize the MII library
miiShow() – show routine for MII library
miiRegsGet() – get the contents of MII registers

DESCRIPTION This module implements a Media Independent Interface (MII) library.

The MII is an inexpensive and easy-to-implement interconnection between the Carrier
Sense Multiple Access with Collision Detection (CSMA/CD) media access controllers and
the Physical Layer Entities (PHYs).

The purpose of this library is to provide Ethernet drivers in VxWorks with a standardized,
MII-compliant, easy-to-use interface to various PHYs. In other words, using the services
of this library, network drivers will be able to scan the existing PHYs, run diagnostics,
electrically isolate a subset of them, negotiate their technology abilities with other
link-partners on the network, and ultimately initialize and configure a specific PHY in a
proper, MII-compliant fashion.

In order to initialize and configure a PHY, its MII management interface has to be used.
This is made up of two lines: management data clock (MDC) and management data
input/output (MDIO). The former provides the timing reference for transfer of
information on the MDIO signal. The latter is used to transfer control and status
information between the PHY and the MAC controller. For this transfer to be successful,
the information itself has to be encoded into a frame format, and both the MDIO and
MDC signals have to comply with certain requirements as described in the 802.3u IEEE
Standard.

Since no assumption can be made as to the specific MAC-to-MII interface, this library
expects the driver’s writer to provide it with specialized read and write routines to access
that interface. See EXTERNAL SUPPORT REQUIREMENTS below.

miiPhyUnInit(), miiLibInit(), miiLibUnInit(), miiPhyOptFuncSet()

STATUS miiLibInit (void);

STATUS miiLibUnInit (void);
130

1: Driver Libraries
miiLib

M

EXTERNAL SUPPORT REQUIREMENTS

phyReadRtn()
STATUS phyReadRtn (DRV_CTRL * pDrvCtrl, UINT8 phyAddr, UINT8 phyReg,

UINT16 * value);

This routine is expected to perform any driver-specific functions required to read a
16-bit word from the phyReg register of the MII-compliant PHY whose address is
specified by phyAddr. Reading is performed through the MII management interface.

phyWriteRtn()
STATUS phyWriteRtn (DRV_CTRL * pDrvCtrl, UINT8 phyAddr, UINT8 phyReg,

UINT16 value);

This routine is expected to perform any driver-specific functions required to write a
16-bit word to the phyReg register of the MII-compliant PHY whose address is
specified by phyAddr. Writing is performed through the MII management interface.

phyDelayRtn()
STATUS phyDelayRtn (UINT32 phyDelayParm);

This routine is expected to cause a limited delay to the calling task, no matter whether
this is an active delay, or an inactive one. miiPhyInit() calls this routine on several
occasions throughout the code with phyDelayParm as parameter. This represents the
granularity of the delay itself, whereas the field phyMaxDelay in PHY_INFO is the
maximum allowed delay, in phyDelayParm units. The minimum elapsed time
(phyMaxDelay * phyDelayParm) must be 5 seconds.

The user should be aware that some of these events may take as long as 2-3 seconds
to be completed, and he should therefore tune this routine and the parameter
phyMaxDelay accordingly.

If the related field phyDelayRtn in the PHY_INFO structure is initialized to NULL, no
delay is performed.

phyLinkDownRtn()
STATUS phyLinkDownRtn (DRV_CTRL *);

This routine is expected to take any action necessary to re-initialize the media
interface, including possibly stopping and restarting the driver itself. It is called when
a link down event is detected for any active PHY, with the pointer to the relevant
driver control structure as only parameter.

To use this feature, include the following component: INCLUDE_MIILIB

SEE ALSO IEEE 802.3.2000 Standard
131

VxWorks Drivers API Reference, 5.5
motCpmEnd
motCpmEnd

NAME motCpmEnd – END style Motorola MC68EN360/MPC800 network interface driver

ROUTINES motCpmEndLoad() – initialize the driver and device

DESCRIPTION This module implements the Motorola MC68EN360 QUICC as well as the MPC821 and
MPC860 Power-QUICC Ethernet Enhanced network interface driver.

All the above mentioned microprocessors feature a number of Serial Communication
Controllers (SCC) that support different serial protocols including IEEE 802.3 and
Ethernet CSMA-CD. As a result, when the Ethernet mode of a SCC is selected, by properly
programming its general Mode Register (GSMR), they can implement the full set of media
access control and channel interface functions those protocol require. However, while the
MC68EN360 QUICC and the MPC860 Power-QUICC support up to four SCCs per unit,
the MPC821 only includes two on-chip SCCs.

This driver is designed to support the Ethernet mode of a SCC residing on the CPM
processor core, no matter which among the MC68EN360 QUICC or any of the PPC800
Series. In fact, the major differences among these processors, as far as the driver is
concerned, are to be found in the mapping of the internal Dual-Port RAM. The driver is
generic in the sense that it does not care which SCC is being used. In addition, it poses no
constraint on the number of individual units that may be used per board. However, this
number should be specified in the bsp through the macro MAX_SCC_CHANNELS. The
default value for this macro in the driver is 4.

To achieve these goals, the driver requires several target-specific values provided as an
input string to the load routine. It also requires some external support routines. These
target-specific values and the external support routines are described below.

This network interface driver does not include support for trailer protocols or data
chaining. However, buffer loaning has been implemented in an effort to boost
performance.

This driver maintains cache coherency by allocating buffer space using the
cacheDmaMalloc() routine. This is provided for boards whose host processor use data
cache space, e.g. the MPC800 Series. Although the MC68EN360 does not have cache
memory, it may be used in a particular configuration: MC68EN360 in 040 companion
mode where that is attached to processors that may cache memory. However, due to a
lack of suitable hardware, the multiple unit support and ’040 companion mode support
have not been tested.

BOARD LAYOUT This device is on-chip. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver provides the standard END external interface. The only external interface is
132

1: Driver Libraries
motCpmEnd

M

the motCpmEndLoad() routine. The parameters are passed into the motCpmEndLoad()
function as a single colon-delimited string. The motCpmEndLoad() function uses
strtok() to parse the string, which it expects to be of the following format:

unit:motCpmAddr:ivec:sccNum:txBdNum:rxBdNum: txBdBase: rxBdBase:bufBase

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the
string name for the driver.

motCpmAddr
Indicates the address at which the host processor presents its internal memory (also
known as the dual ported RAM base address). With this address, and the SCC
number (see below), the driver is able to compute the location of the SCC parameter
RAM and the SCC register map, and, ultimately, to program the SCC for proper
operations. This parameter should point to the internal memory of the processor
where the SCC physically resides. This location might not necessarily be the
Dual-Port RAM of the microprocessor configured as master on the target board.

ivec
This driver configures the host processor to generate hardware interrupts for various
events within the device. The interrupt-vector offset parameter is used to connect the
driver’s ISR to the interrupt through a call to the VxWorks system function
intConnect().

sccNum
This driver is written to support multiple individual device units. Thus, the multiple
units supported by this driver can reside on different chips or on different SCCs
within a single host processor. This parameter is used to explicitly state which SCC is
being used (SCC1 is most commonly used, thus this parameter most often equals "1").

txBdNum and rxBdNum
Specify the number of transmit and receive buffer descriptors (BDs). Each buffer
descriptor resides in 8 bytes of the processor’s dual-ported RAM space, and each one
points to a 1520 byte buffer in regular RAM. There must be a minimum of two
transmit and two receive BDs. There is no maximum, although more than a certain
amount does not speed up the driver and wastes valuable dual-ported RAM space. If
any of these parameters is "NULL", a default value of "32" BDs is used.

txBdBase and rxBdBase
Indicate the base location of the transmit and receive buffer descriptors (BDs). They
are offsets, in bytes, from the base address of the host processor’s internal memory
(see above). Each BD takes up 8 bytes of dual-ported RAM, and it is the user’s
responsibility to ensure that all specified BDs fit within dual-ported RAM. This
includes any other BDs the target board might be using, including other SCCs, SMCs,
and the SPI device. There is no default for these parameters. They must be provided
by the user.
133

VxWorks Drivers API Reference, 5.5
motCpmEnd
bufBase
Tells the driver that space for the transmit and receive buffers need not be allocated
but should be taken from a cache-coherent private memory space provided by the
user at the given address. The user should be aware that memory used for buffers
must be 4-byte aligned and non-cacheable. All the buffers must fit in the given
memory space. No checking is performed. This includes all transmit and receive
buffers (see above). Each buffer is 1520 bytes. If this parameter is "NONE", space for
buffers is obtained by calling cacheDmaMalloc() in motCpmEndLoad().

EXTERNAL SUPPORT REQUIREMENTS

This driver requires three external support functions:

sysXxxEnetEnable()
This is either sys360EnetEnable() or sysCpmEnetEnable(), based on the actual host
processor being used. See below for the actual prototypes. This routine is expected to
handle any target-specific functions needed to enable the Ethernet controller. These
functions typically include enabling the Transmit Enable signal (TENA) and
connecting the transmit and receive clocks to the SCC. This routine is expected to
return OK on success, or ERROR. The driver calls this routine, once per unit, from the
motCpmEndLoad() routine.

sysXxxEnetDisable()
This is either sys360EnetDisable() or sysCpmEnetDisable(), based on the actual
host processor being used. See below for the actual prototypes. This routine is
expected to handle any target-specific functions required to disable the Ethernet
controller. This usually involves disabling the Transmit Enable (TENA) signal. This
routine is expected to return OK on success, or ERROR. The driver calls this routine
from the motCpmEndStop() routine each time a unit is disabled.

sysXxxEnetAddrGet()
This is either sys360EnetAddrGet() or sysCpmEnetAddrGet(), based on the actual
host processor being used. See below for the actual prototypes. The driver expects
this routine to provide the six-byte Ethernet hardware address that is used by this
unit. This routine must copy the six-byte address to the space provided by addr. This
routine is expected to return OK on success, or ERROR. The driver calls this routine,
once per unit, from the motCpmEndLoad() routine.

For the CPU32, the prototypes of the above support routines are as follows:

STATUS sys360EnetEnable (int unit, UINT32 regBase)

void sys360EnetDisable (int unit, UINT32 regBase)

STATUS sys360EnetAddrGet (int unit, u_char * addr)

For the PPC860, the prototypes of the above support routines are as follows:

STATUS sysCpmEnetEnable (int unit)

void sysCpmEnetDisable (int unit)

STATUS sysCpmEnetAddrGet (int unit, UINT8 * addr)
134

1: Driver Libraries
motFccEnd

M

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one mutual exclusion semaphore

– one interrupt vector

– 0 bytes in the initialized data section (data)

– 1272 bytes in the uninitialized data section (BSS)

The data and BSS sections are quoted for the CPU32 architecture and could vary for other
architectures. The code size (text) varies greatly between architectures, and is therefore
not quoted here.

If the driver allocates the memory to share with the Ethernet device unit, it does so by
calling the cacheDmaMalloc() routine. For the default case of 32 transmit buffers, 32
receive buffers, and 16 loaner buffers (this is not configurable), the total size requested is
121,600 bytes. If a non-cacheable memory region is provided by the user, the size of this
region should be this amount, unless the user has specified a different number of transmit
or receive BDs.

This driver can operate only if this memory region is non-cacheable or if the hardware
implements bus snooping. The driver cannot maintain cache coherency for the device
because the buffers are asynchronously modified by both the driver and the device, and
these fields might share the same cache line. Additionally, the chip’s dual-ported RAM
must be declared as non-cacheable memory where applicable (for example, when attached
to a 68040 processor). For more information, see the Motorola MC68EN360 User’s Manual,
Motorola MPC860 User’s Manual, Motorola MPC821 User’s Manual.

motFccEnd

NAME motFccEnd – END style Motorola FCC Ethernet network interface driver

ROUTINES motFccEndLoad() – initialize the driver and device

DESCRIPTION This module implements a Motorola Fast Communication Controller (FCC) Ethernet
network interface driver. The FCC supports several communication protocols, and when
programmed to operate in Ethernet mode, it is fully compliant with the IEEE 802.3u
10Base-T and 100Base-T specifications.

The FCC establishes a shared memory communication system with the CPU, which may
be divided into three parts: a set of Control/Status Registers (CSR) and FCC-specific
parameters, the buffer descriptors (BD), and the data buffers.

Both the CSRs and the internal parameters reside in the MPC8260’s internal RAM. They
are used for mode control and to extract status information of a global nature. For
135

VxWorks Drivers API Reference, 5.5
motFccEnd
instance, the types of events that should generate an interrupt, or features like the
promiscuous mode or the heartbeat control may be set programming some of the CSRs
properly. Pointers to both the Transmit Buffer Descriptors ring (TBD) and the Receive
Buffer Descriptors ring (RBD) are stored in the internal parameter RAM. The latter also
includes protocol-specific parameters, like the individual physical address of this station
or the max receive frame length.

The BDs are used to pass data buffers and related buffer information between the
hardware and the software. They may reside either on the 60x bus, or on the CPM local
bus They include local status information and a pointer to the incoming or outgoing data
buffers. These are located again in external memory, and the user may chose whether this
is on the 60x bus, or the CPM local bus (see below).

This driver is designed to be moderately generic. Without modification, it can operate
across all the FCCs in the MPC8260, regardless of where the internal memory base
address is located. To achieve this goal, this driver must be given several target-specific
parameters, and some external support routines must be provided. These parameters, and
the mechanisms used to communicate them to the driver, are detailed below.

This network interface driver does not include support for trailer protocols or data
chaining. However, buffer loaning has been implemented in an effort to boost
performance. In addition, no copy is performed of the outgoing packet before it is sent.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The driver provides the standard external interface, motFccEndLoad(), which takes a
string of colon-separated parameters. The parameters should be specified in hexadecimal,
optionally preceded by "0x" or a minus sign "-".

The parameter string is parsed using strtok_r() and each parameter is converted from a
string representation to binary by a call to:

strtoul(parameter, NULL, 16)

The format of the parameter string is:

"immrVal:fccNum:bdBase:bdSize:bufBase:bufSize:fifoTxBase: fifoRxBase
:tbdNum:rbdNum:phyAddr:phyDefMode:userFlags: mblkMult:clMult:txJobMsgQLen"

TARGET-SPECIFIC PARAMETERS

immrVal
Indicates the address at which the host processor presents its internal memory (also
known as the internal RAM base address). With this address, and the fccNum (see
below), the driver is able to compute the location of the FCC parameter RAM, and,
ultimately, to program the FCC for proper operations.

fccNum
This driver is written to support multiple individual device units. This parameter is
136

1: Driver Libraries
motFccEnd

M

used to explicitly state which FCC is being used (on the vads8260 board, FCC2 is
wired to the Fast Ethernet transceiver, thus this parameter equals "2").

bdBase
The Motorola Fast Communication Controller is a DMA-type device and typically
shares access to some region of memory with the CPU. This driver is designed for
systems that directly share memory between the CPU and the FCC.

This parameter tells the driver that space for both the TBDs and the RBDs needs not
be allocated but should be taken from a cache-coherent private memory space
provided by the user at the given address. The user should be aware that memory
used for buffers descriptors must be 8-byte aligned and non-cacheable. Therefore, the
given memory space should allow for all the buffer descriptors and the 8-byte
alignment factor.

If this parameter is "NONE", space for buffer descriptors is obtained by calling
cacheDmaMalloc() in motFccEndLoad().

bdSize
The memory size parameter specifies the size of the pre-allocated memory region for
the BDs. If bdBase is specified as NONE (-1), the driver ignores this parameter.
Otherwise, the driver checks the size of the provided memory region is adequate with
respect to the given number of Transmit Buffer Descriptors and Receive Buffer
Descriptors.

bufBase
This parameter tells the driver that space for data buffers needs not be allocated but
should be taken from a cache-coherent private memory space provided by the user at
the given address. The user should be aware that memory used for buffers must be
32-byte aligned and non-cacheable. The FCC poses one more constraint in that DMA
cycles may initiate even when all the incoming data have already been transferred to
memory. This means that at most 32 bytes of memory at the end of each receive data
buffer, may be overwritten during reception. The driver pads that area out, thus
consuming some additional memory.

If this parameter is "NONE", space for buffer descriptors is obtained by calling
memalign() in motFccEndLoad().

bufSize
The memory size parameter specifies the size of the pre-allocated memory region for
data buffers. If bufBase is specified as NONE (-1), the driver ignores this parameter.
Otherwise, the driver checks the size of the provided memory region is adequate with
respect to the given number of Receive Buffer Descriptors and a
non-user-configurable number of transmit buffers (MOT_FCC_TX_CL_NUM). All the
above should fit in the given memory space. This area should also include room for
buffer management structures.

fifoTxBase
Indicate the base location of the transmit FIFO, in internal memory. The user does not
137

VxWorks Drivers API Reference, 5.5
motFccEnd
need to initialize this parameter, as the default value (see MOT_FCC_FIFO_TX_BASE)
is highly optimized for best performance. However, if the user wishes to reserve that
very area in internal RAM for other purposes, he may set this parameter to a different
value.

If fifoTxBase is specified as NONE (-1), the driver uses the default value.

fifoRxBase
Indicate the base location of the receive FIFO, in internal memory. The user does not
need to initialize this parameter, as the default value (see MOT_FCC_FIFO_TX_BASE)
is highly optimized for best performance. However, if the user wishes to reserve that
very area in internal RAM for other purposes, he may set this parameter to a different
value.

If fifoRxBase is specified as NONE (-1), the driver uses the default value.

tbdNum
This parameter specifies the number of transmit buffer descriptors (TBDs). Each
buffer descriptor resides in 8 bytes of the processor’s external RAM space, If this
parameter is less than a minimum number specified in the macro
MOT_FCC_TBD_MIN, or if it is "NULL", a default value of 64 (see
MOT_FCC_TBD_DEF_NUM) is used. This number is kept deliberately high, since each
packet the driver sends may consume more than a single TBD. This parameter should
always equal a even number.

rbdNum
This parameter specifies the number of receive buffer descriptors (RBDs). Each buffer
descriptor resides in 8 bytes of the processor’s external RAM space, and each one
points to a 1584-byte buffer again in external RAM. If this parameter is less than a
minimum number specified in the macro MOT_FCC_RBD_MIN, or if it is "NULL", a
default value of 32 (see MOT_FCC_RBD_DEF_NUM) is used. This parameter should
always equal a even number.

phyAddr
This parameter specifies the logical address of a MII-compliant physical device (PHY)
that is to be used as a physical media on the network. Valid addresses are in the range
0-31. There may be more than one device under the control of the same management
interface. The default physical layer initialization routine will scan the whole range of
PHY devices starting from the one in phyAddr. If this parameter is "MII_PHY_NULL",
the default physical layer initialization routine will find out the PHY actual address
by scanning the whole range. The one with the lowest address will be chosen.

phyDefMode
This parameter specifies the operating mode that will be set up by the default
physical layer initialization routine in case all the attempts made to establish a valid
link failed. If that happens, the first PHY that matches the specified abilities will be
chosen to work in that mode, and the physical link will not be tested.
138

1: Driver Libraries
motFccEnd

M

pAnOrderTbl
This parameter may be set to the address of a table that specifies the order how
different subsets of technology abilities should be advertised by the auto-negotiation
process, if enabled. Unless the flag MOT_FCC_USR_PHY_TBL is set in the userFlags
field of the load string, the driver ignores this parameter.

The user does not normally need to specify this parameter, since the default behavior
enables auto-negotiation process as described in IEEE 802.3u.

userFlags
This field enables the user to give some degree of customization to the driver.

mblkMult
Ratio between mBlk’s and Rx BD’s

clMult
Ratio between Clusters and Rx BD’s

txJobMsgQLen
Length of the message queue from the ISR to motFccJobQueue()

MOT_FCC_USR_DPRAM_ALOC
This option allows multiple FCCs operating in the same system to share the Dual
Ported RAM. It enables Dual Ported RAM allocation and freeing using the utilities
m82xxDpramFccMalloc, m82xxDpramFree, and m82xxDpramFccFree via the
function pointers _func_m82xxDpramFccMalloc, _func_m82xxDpramFree, and
_func_m82xxDpramFccFree which must be loaded by the BSP if this option is used.

MOT_FCC_USR_PHY_NO_AN
The default physical layer initialization routine will exploit the auto-negotiation
mechanism as described in the IEEE Std 802.3u, to bring a valid link up. According to
it, all the link partners on the media will take part to the negotiation process, and the
highest priority common denominator technology ability will be chosen. If the user
wishes to prevent auto-negotiation from occurring, he may set this bit in the user
flags.

MOT_FCC_USR_PHY_TBL
In the auto-negotiation process, PHYs advertise all their technology abilities at the
same time, and the result is that the maximum common denominator is used.
However, this behavior may be changed, and the user may affect the order how each
subset of PHY’s abilities is negotiated. Hence, when the MOT_FCC_USR_PHY_TBL Bit
is set, the default physical layer initialization routine will look at the
motFccAnOrderTbl[] table and auto-negotiate a subset of abilities at a time, as
suggested by the table itself. It is worth noticing here, however, that if the
MOT_FCC_USR_PHY_NO_AN Bit is on, the above table will be ignored.

MOT_FCC_USR_PHY_NO_FD
The PHY may be set to operate in full duplex mode, provided it has this ability, as a
result of the negotiation with other link partners. However, in this operating mode,
the FCC will ignore the collision detect and carrier sense signals. If the user wishes
139

VxWorks Drivers API Reference, 5.5
motFccEnd
not to negotiate full duplex mode, he should set the MOT_FCC_USR_PHY_NO_FD bit
in the user flags.

MOT_FCC_USR_PHY_NO_HD
The PHY may be set to operate in half duplex mode, provided it has this ability, as a
result of the negotiation with other link partners. If the user wishes not to negotiate
half duplex mode, he should set the MOT_FCC_USR_PHY_NO_HD bit in the user flags.

MOT_FCC_USR_PHY_NO_100
The PHY may be set to operate at 100Mbit/s speed, provided it has this ability, as a
result of the negotiation with other link partners. If the user wishes not to negotiate
100Mbit/s speed, he should set the MOT_FCC_USR_PHY_NO_100 bit in the user flags.

MOT_FCC_USR_PHY_NO_10
The PHY may be set to operate at 10Mbit/s speed, provided it has this ability, as a
result of the negotiation with other link partners. If the user wishes not to negotiate
10Mbit/s speed, he should set the MOT_FCC_USR_PHY_NO_10 bit in the user flags.

MOT_FCC_USR_PHY_ISO
Some boards may have different PHYs controlled by the same management interface.
In some cases, there may be the need of electrically isolating some of them from the
interface itself, in order to guarantee a proper behavior on the medium layer. If the
user wishes to electrically isolate all PHYs from the MII interface, he should set the
MOT_FCC_USR_PHY_ISO bit. The default behavior is to not isolate any PHY on the
board.

MOT_FCC_USR_LOOP
When the MOT_FCC_USR_LOOP bit is set, the driver will configure the FCC to work
in internal loopback mode, with the TX signal directly connected to the RX. This
mode should only be used for testing.

MOT_FCC_USR_RMON
When the MOT_FCC_USR_RMON bit is set, the driver will configure the FCC to work
in RMON mode, thus collecting network statistics required for RMON support
without the need to receive all packets as in promiscuous mode.

MOT_FCC_USR_BUF_LBUS
When the MOT_FCC_USR_BUF_LBUS bit is set, the driver will configure the FCC to
work as though the data buffers were located in the CPM local bus.

MOT_FCC_USR_BD_LBUS
When the MOT_FCC_USR_BD_LBUS bit is set, the driver will configure the FCC to
work as though the buffer descriptors were located in the CPM local bus.

MOT_FCC_USR_HBC
If the MOT_FCC_USR_HBC bit is set, the driver will configure the FCC to perform
heartbeat check following end of transmission and the HB bit in the status field of the
TBD will be set if the collision input does not assert within the heartbeat window
(also see _func_motFccHbFail, below). The user does not normally need to set this
bit.
140

1: Driver Libraries
motFccEnd

M

EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions:

sysFccEnetEnable()
STATUS sysFccEnetEnable (UINT32 immrVal, UINT8 fccNum);

This routine is expected to handle any target-specific functions needed to enable the
FCC. These functions typically include setting the Port B and C on the MPC8260 so
that the MII interface may be used. This routine is expected to return OK on success,
or ERROR. The driver calls this routine, once per device, from the motFccStart()
routine.

sysFccEnetDisable()
STATUS sysFccEnetDisable (UINT32 immrVal, UINT8 fccNum);

This routine is expected to perform any target specific functions required to disable
the MII interface to the FCC. This involves restoring the default values for all the Port
B and C signals. This routine is expected to return OK on success, or ERROR. The
driver calls this routine from the motFccStop() routine each time a device is disabled.

sysFccEnetAddrGet()
STATUS sysFccEnetAddrGet (int unit,UCHAR *address);

The driver expects this routine to provide the six-byte Ethernet hardware address
that is used by this device. This routine must copy the six-byte address to the space
provided by enetAddr. This routine is expected to return OK on success, or ERROR.
The driver calls this routine, once per device, from the motFccEndLoad() routine.

STATUS sysFccMiiBitWr (UINT32 immrVal, UINT8 fccNum, INT32 bitVal);

This routine is expected to perform any target specific functions required to write a
single bit value to the MII management interface of a MII-compliant PHY device. The
MII management interface is made up of two lines: management data clock (MDC)
and management data input/output (MDIO). The former provides the timing
reference for transfer of information on the MDIO signal. The latter is used to transfer
control and status information between the PHY and the FCC. For this transfer to be
successful, the information itself has to be encoded into a frame format, and both the
MDIO and MDC signals have to comply with certain requirements as described in
the 802.3u IEEE Standard. There is not built-in support in the FCC for the MII
management interface. This means that the clocking on the MDC line and the framing
of the information on the MDIO signal have to be done in software. Hence, this
routine is expected to write the value in bitVal to the MDIO line while properly
sourcing the MDC clock to a PHY, for one bit time.

STATUS sysFccMiiBitRd (UINT32 immrVal, UINT8 fccNum, INT8 * bitVal);

This routine is expected to perform any target specific functions required to read a
single bit value from the MII management interface of a MII-compliant PHY device.
The MII management interface is made up of two lines: management data clock
(MDC) and management data input/output (MDIO). The former provides the timing
reference for transfer of information on the MDIO signal. The latter is used to transfer
control and status information between the PHY and the FCC. For this transfer to be
141

VxWorks Drivers API Reference, 5.5
motFccEnd
successful, the information itself has to be encoded into a frame format, and both the
MDIO and MDC signals have to comply with certain requirements as described in
the 802.3u IEEE Standard. There is not built-in support in the FCC for the MII
management interface. This means that the clocking on the MDC line and the framing
of the information on the MDIO signal have to be done in software. Hence, this
routine is expected to read the value from the MDIO line in bitVal, while properly
sourcing the MDC clock to a PHY, for one bit time.

_func_motFccPhyInit
FUNCPTR _func_motFccPhyInit

This driver sets the global variable _func_motFccPhyInit to the MII-compliant media
initialization routine miiPhyInit(). If the user wishes to exploit a different way to
configure the PHY, he may set this variable to his own media initialization routine,
typically in sysHwInit().

_func_motFccHbFail
FUNCPTR _func_motFccHbFail

The FCC may be configured to perform heartbeat check following end of
transmission, and to report any failure in the relevant TBD status field. If this is the
case, and if the global variable _func_motFccHbFail is not NULL, the routine
referenced to by _func_motFccHbFail is called, with a pointer to the driver control
structure as parameter. Hence, the user may set this variable to his own heart beat
check fail routine, where he can take any action he sees appropriate. The default
value for the global variable _func_motFccHbFail is NULL.

_func_m82xxDpramFccMalloc
FUNCPTR _func_m82xxDpramFccMalloc

_func_m82xxDpramFree
FUNCPTR _func_m82xxDpramFree

_func_m82xxDpramFccFree
FUNCPTR _func_m82xxDpramFccFree

The FCC can be configured to utilize the dual ported ram located in the MPPC8260
CMP. In this case the user flag MOT_FCC_USR_DPRAM_ALOC is set and the global
variables _func_m82xxDpramFccMalloc, _func_m82xxDpramFree, and
_func_m82xxDpramFccFree must be populated by the BSP with the FUNCPTRs to
m82xxDpramFccMalloc(), m82xxDpramFree(), and m82xxDpramFccFree()
(respectively) from m82xxDpramLib.h. These functions are then used by the
motFccEnd driver to allocate and free memory in the dual ported ram. If any of these
FUNCPTRs are left NULL the motFccPramInit() will return an ERROR and the
motFccEnd driver will not initialize.

SYSTEM RESOURCE USAGE

If the driver allocates the memory for the BDs to share with the FCC, it does so by calling
the cacheDmaMalloc() routine. For the default case of 64 transmit buffers and 32 receive
buffers, the total size requested is 776 bytes, and this includes the 8-byte alignment
requirement of the device. If a non-cacheable memory region is provided by the user, the
142

1: Driver Libraries
motFecEnd

M

size of this region should be this amount, unless the user has specified a different number
of transmit or receive BDs.

This driver can operate only if this memory region is non-cacheable or if the hardware
implements bus snooping. The driver cannot maintain cache coherency for the device
because the BDs are asynchronously modified by both the driver and the device, and
these fields share the same cache line.

If the driver allocates the memory for the data buffers to share with the FCC, it does so by
calling the memalign() routine. The driver does not need to use cache-safe memory for
data buffers, since the host CPU and the device are not allowed to modify buffers
asynchronously. The related cache lines are flushed or invalidated as appropriate. For the
default case of 7 transmit clusters and 32 receive clusters, the total size requested for this
memory region is 112751 bytes, and this includes the 32-byte alignment and the 32-byte
pad-out area per buffer of the device. If a non-cacheable memory region is provided by
the user, the size of this region should be this amount, unless the user has specified a
different number of transmit or receive BDs.

TUNING HINTS The only adjustable parameters are the number of TBDs and RBDs that will be created at
run-time. These parameters are given to the driver when motFccEndLoad() is called.
There is one RBD associated with each received frame whereas a single transmit packet
normally uses more than one TBD. For memory-limited applications, decreasing the
number of RBDs may be desirable. Decreasing the number of TBDs below a certain point
will provide substantial performance degradation, and is not recommended. An adequate
number of loaning buffers are also pre-allocated to provide more buffering before packets
are dropped, but this is not configurable.

The relative priority of the netTask and of the other tasks in the system may heavily affect
performance of this driver. Usually the best performance is achieved when the netTask
priority equals that of the other applications using the driver.

SEE ALSO ifLib, MPC8260 Fast Ethernet Controller (Supplement to the MPC860 User’s Manual) Motorola
MPC860 User’s Manual

motFecEnd

NAME motFecEnd – END style Motorola FEC Ethernet network interface driver

ROUTINES motFecEndLoad() – initialize the driver and device

DESCRIPTION This module implements a Motorola Fast Ethernet Controller (FEC) network interface
driver. The FEC is fully compliant with the IEEE 802.3 10Base-T and 100Base-T
specifications. Hardware support of the Media Independent Interface (MII) is built-in in
the chip.
143

VxWorks Drivers API Reference, 5.5
motFecEnd
The FEC establishes a shared memory communication system with the CPU, which is
divided into two parts: Control/Status Registers (CSR) and buffer descriptors (BD).

The CSRs reside in the MPC860T Communication Controller’s internal RAM. They are
used for mode control and to extract status information of a global nature. For instance,
the types of events that should generate an interrupt, or features like the promiscuous
mode or the max receive frame length may be set programming some of the CSRs
properly. Pointers to both the Transmit Buffer Descriptors ring (TBD) and the Receive
Buffer Descriptors ring (RBD) are also stored in the CSRs. The CSRs are located in on-chip
RAM and must be accessed using the big-endian mode.

The BDs are used to pass data buffers and related buffer information between the
hardware and the software. They reside in the host main memory and basically include
local status information and a pointer to the actual buffer, again in external memory.

This driver must be given several target-specific parameters, and some external support
routines must be provided. These parameters, and the mechanisms used to communicate
them to the driver, are detailed below.

For versions of the MPC860T starting with revision D.4 and beyond the functioning of the
FEC changes slightly. An additional bit has been added to the Ethernet Control Register
(ECNTRL), the FEC PIN MUX bit. This bit must be set prior to issuing commands
involving the other two bits in the register (ETHER_EN, RESET). The bit must also be set
when either of the other two bits are being utilized. For versions of the 860T prior to
revision D.4, this bit should not be set.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The driver provides the standard external interface, motFecEndLoad(), which takes a
string of colon-separated parameters. The parameters should be specified in hexadecimal,
optionally preceded by "0x" or a minus sign "-".

The parameter string is parsed using strtok_r() and each parameter is converted from a
string representation to binary by a call to:

strtoul(parameter, NULL, 16)

The format of the parameter string is:

"motCpmAddr:ivec:bufBase:bufSize:fifoTxBase:fifoRxBase:tbdNum:rbdNum:phyAddr:isoPhyAddr:
phyDefMode:userFlags:clockSpeed"

TARGET-SPECIFIC PARAMETERS

motCpmAddr
Indicates the address at which the host processor presents its internal memory (also
known as the dual ported RAM base address). With this address, the driver is able to
compute the location of the FEC parameter RAM, and, ultimately, to program the
FEC for proper operations.
144

1: Driver Libraries
motFecEnd

M

ivec This driver configures the host processor to generate hardware interrupts for various
events within the device. The interrupt-vector offset parameter is used to connect the
driver’s ISR to the interrupt through a call to the VxWorks system function
intConnect(). It is also used to compute the interrupt level (0-7) associated with the
FEC interrupt (one of the MPC860T SIU internal interrupt sources). The latter is given
as a parameter to intEnable(), in order to enable this level interrupt to the PPC core.

bufBase
The Motorola Fast Ethernet Controller is a DMA-type device and typically shares
access to some region of memory with the CPU. This driver is designed for systems
that directly share memory between the CPU and the FEC.

This parameter tells the driver that space for the both the TBDs and the RBDs needs
not be allocated but should be taken from a cache-coherent private memory space
provided by the user at the given address. The user should be aware that memory
used for buffers descriptors must be 8-byte aligned and non-cacheable. All the buffer
descriptors should fit in the given memory space.

If this parameter is "NONE", space for buffer descriptors is obtained by calling
cacheDmaMalloc() in motFecEndLoad().

bufSize
The memory size parameter specifies the size of the pre-allocated memory region. If
bufBase is specified as NONE (-1), the driver ignores this parameter. Otherwise, the
driver checks the size of the provided memory region is adequate with respect to the
given number of Transmit Buffer Descriptors and Receive Buffer Descriptors.

fifoTxBase
Indicate the base location of the transmit FIFO, in internal memory. The user does not
need to initialize this parameter, as the related FEC register defaults to a proper value
after reset. The specific reset value is microcode dependent. However, if the user
wishes to reserve some RAM for other purposes, he may set this parameter to a
different value. This should not be less than the default.

If fifoTxBase is specified as NONE (-1), the driver ignores it.

fifoRxBase
Indicate the base location of the receive FIFO, in internal memory. The user does not
need to initialize this parameter, as the related FEC register defaults to a proper value
after reset. The specific reset value is microcode dependent. However, if the user
wishes to reserve some RAM for other purposes, he may set this parameter to a
different value. This should not be less than the default.

If fifoRxBase is specified as NONE (-1), the driver ignores it.

tbdNum
This parameter specifies the number of transmit buffer descriptors (TBDs). Each
buffer descriptor resides in 8 bytes of the processor’s external RAM space, and each
one points to a 1536-byte buffer again in external RAM. If this parameter is less than a
minimum number specified in the macro MOT_FEC_TBD_MIN, or if it is "NULL", a
145

VxWorks Drivers API Reference, 5.5
motFecEnd
default value of 64 is used. This default number is kept deliberately hugh, since each
packet the driver sends may consume more than a single TBD. This parameter should
always equal a even number.

rbdNum
This parameter specifies the number of receive buffer descriptors (RBDs). Each buffer
descriptor resides in 8 bytes of the processor’s external RAM space, and each one
points to a 1536-byte buffer again in external RAM. If this parameter is less than a
minimum number specified in the macro MOT_FEC_RBD_MIN, or if it is "NULL", a
default value of 48 is used. This parameter should always equal a even number.

phyAddr
This parameter specifies the logical address of a MII-compliant physical device (PHY)
that is to be used as a physical media on the network. Valid addresses are in the range
0-31. There may be more than one device under the control of the same management
interface. If this parameter is "NULL", the default physical layer initialization routine
will find out the PHY actual address by scanning the whole range. The one with the
lowest address will be chosen.

isoPhyAddr
This parameter specifies the logical address of a MII-compliant physical device (PHY)
that is to be electrically isolated by the management interface. Valid addresses are in
the range 0-31. If this parameter equals 0xff, the default physical layer initialization
routine will assume there is no need to isolate any device. However, this parameter
will be ignored unless the MOT_FEC_USR_PHY_ISO bit in the userFlags is set to one.

phyDefMode
This parameter specifies the operating mode that will be set up by the default
physical layer initialization routine in case all the attempts made to establish a valid
link failed. If that happens, the first PHY that matches the specified abilities will be
chosen to work in that mode, and the physical link will not be tested.

userFlags
This field enables the user to give some degree of customization to the driver,
especially as regards the physical layer interface.

clockSpeed
This field enables the user to define the speed of the clock being used to drive the
interface. The clock speed is used to derive the MII management interface clock,
which cannot exceed 2.5 MHz. clockSpeed is optional in BSPs using clocks that are 50
MHz or less, but it is required in faster designs to ensure proper MII interface
operation.

MOT_FEC_USR_PHY_NO_AN
The default physical layer initialization routine exploits the auto-negotiation
mechanism as described in the IEEE Std 802.3, to bring a valid link-up. All the link
partners on the media take part to the negotiation, and the highest-priority common
denominator technology ability is chosen. If you wish to prevent auto-negotiation, set
this bit in the user flags.
146

1: Driver Libraries
motFecEnd

M

MOT_FEC_USR_PHY_TBL
In the auto-negotiation process, PHYs advertise all their technology abilities at the
same time, and the result is that the maximum common denominator is used.
However, this behavior may be changed, and the user may affect the order how each
subset of PHY’s abilities is negotiated. Hence, when the MOT_FEC_USR_PHY_TBL bit
is set, the default physical layer initialization routine will look at the
motFecPhyAnOrderTbl[] table and auto-negotiate a subset of abilities at a time, as
suggested by the table itself. It is worth noticing here, however, that if the
MOT_FEC_USR_PHY_NO_AN bit is on, the above table will be ignored.

MOT_FEC_USR_PHY_NO_FD
The PHY may be set to operate in full duplex mode, provided it has this ability, as a
result of the negotiation with other link partners. However, in this operating mode,
the FEC will ignore the collision detect and carrier sense signals. If the user wishes
not to negotiate full duplex mode, he should set the MOT_FEC_USR_PHY_NO_FD bit
in the user flags.

MOT_FEC_USR_PHY_NO_HD
The PHY may be set to operate in half duplex mode, provided it has this ability, as a
result of the negotiation with other link partners. If the user wishes not to negotiate
half duplex mode, he should set the MOT_FEC_USR_PHY_NO_HD bit in the user flags.

MOT_FEC_USR_PHY_NO_100
The PHY may be set to operate at 100Mbit/s speed, provided it has this ability, as a
result of the negotiation with other link partners. If the user wishes not to negotiate
100Mbit/s speed, he should set the MOT_FEC_USR_PHY_NO_100 bit in the user flags.

MOT_FEC_USR_PHY_NO_10
The PHY may be set to operate at 10Mbit/s speed, provided it has this ability, as a
result of the negotiation with other link partners. If the user wishes not to negotiate
10Mbit/s speed, he should set the MOT_FEC_USR_PHY_NO_10 bit in the user flags.

MOT_FEC_USR_PHY_ISO
Some boards may have different PHYs controlled by the same management interface.
In some cases, there may be the need of electrically isolating some of them from the
interface itself, in order to guarantee a proper behavior on the medium layer. If the
user wishes to electrically isolate one PHY from the MII interface, he should set the
MOT_FEC_USR_PHY_ISO bit and provide its logical address in the isoPhyAddr field of
the load string. The default behavior is to not isolate any PHY on the board.

MOT_FEC_USR_SER
The user may set the MOT_FEC_USR_SER bit to enable the 7-wire interface instead of
the MII which is the default.

MOT_FEC_USR_LOOP
When the MOT_FEC_USR_LOOP bit is set, the driver will configure the FEC to work in
loopback mode, with the TX signal directly connected to the RX. This mode should
only be used for testing.
147

VxWorks Drivers API Reference, 5.5
motFecEnd
MOT_FEC_USR_HBC
If the MOT_FEC_USR_HBC bit is set, the driver will configure the FEC to perform
heartbeat check following end of transmission and the HB bit in the status field of the
TBD will be set if the collision input does not assert within the heartbeat window
(also see _func_motFecHbFail, below). The user does not normally need to set this
bit.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires three external support functions:

sysFecEnetEnable()
STATUS sysFecEnetEnable (UINT32 motCpmAddr);

This routine is expected to handle any target-specific functions needed to enable the
FEC. These functions typically include setting the Port D on the 860T-based board so
that the MII interface may be used, and also disabling the IRQ7 signal. This routine is
expected to return OK on success, or ERROR. The driver calls this routine, once per
device, from the motFecEndLoad() routine.

sysFecEnetDisable()
STATUS sysFecEnetDisable (UINT32 motCpmAddr);

This routine is expected to perform any target specific functions required to disable
the MII interface to the FEC. This involves restoring the default values for all the Port
D signals. This routine is expected to return OK on success, or ERROR. The driver
calls this routine from the motFecEndStop() routine each time a device is disabled.

sysFecEnetAddrGet()
STATUS sysFecEnetAddrGet (UINT32 motCpmAddr, UCHAR * enetAddr);

The driver expects this routine to provide the six-byte Ethernet hardware address
that is used by this device. This routine must copy the six-byte address to the space
provided by enetAddr. This routine is expected to return OK on success, or ERROR.
The driver calls this routine, once per device, from the motFecEndLoad() routine.

_func_motFecPhyInit
FUNCPTR _func_motFecPhyInit

This driver sets the global variable _func_motFecPhyInit to the MII-compliant media
initialization routine motFecPhyInit(). If the user wishes to exploit a different way to
configure the PHY, he may set this variable to his own media initialization routine,
typically in sysHwInit().

_func_motFecHbFail
FUNCPTR _func_motFecPhyInit

The FEC may be configured to perform heartbeat check following end of
transmission, and to generate an interrupt, when this event occurs. If this is the case,
and if the global variable _func_motFecHbFail is not NULL, the routine referenced to
by _func_motFecHbFail is called, with a pointer to the driver control structure as
parameter. Hence, the user may set this variable to his own heart beat check fail
routine, where he can take any action he sees appropriate. The default value for the
global variable _func_motFecHbFail is NULL.
148

1: Driver Libraries
motFecEnd

M

SYSTEM RESOURCE USAGE

If the driver allocates the memory to share with the Ethernet device, it does so by calling
the cacheDmaMalloc() routine. For the default case of 64 transmit buffers and 48 receive
buffers, the total size requested is 912 bytes, and this includes the 16-byte alignment
requirement of the device. If a non-cacheable memory region is provided by the user, the
size of this region should be this amount, unless the user has specified a different number
of transmit or receive BDs.

This driver can operate only if this memory region is non-cacheable or if the hardware
implements bus snooping. The driver cannot maintain cache coherency for the device
because the BDs are asynchronously modified by both the driver and the device, and
these fields might share the same cache line.

Data buffers are instead allocated in the external memory through the regular memory
allocation routine (memalign), and the related cache lines are then flushed or invalidated
as appropriate. The user should not allocate memory for them.

TUNING HINTS The only adjustable parameters are the number of TBDs and RBDs that will be created at
run-time. These parameters are given to the driver when motFecEndLoad() is called.
There is one RBD associated with each received frame whereas a single transmit packet
normally uses more than one TBD. For memory-limited applications, decreasing the
number of RBDs may be desirable. Decreasing the number of TBDs below a certain point
will provide substantial performance degradation, and is not recommended. An adequate
number of loaning buffers are also pre-allocated to provide more buffering before packets
are dropped, but this is not configurable.

The relative priority of the netTask and of the other tasks in the system may heavily affect
performance of this driver. Usually the best performance is achieved when the netTask
priority equals that of the other applications using the driver.

SPECIAL CONSIDERATIONS

Due to the FEC8 errata in the document: "MPC860 Family Device Errata Reference" available
at the Motorola web site, the number of receive buffer descriptors (RBD) for the FEC (see
configNet.h) is kept deliberately high. According to Motorola, this problem was fixed in
Rev. B3 of the silicon. In memory-bound applications, when using the above mentioned
revision of the MPC860T processor, the user may decrease the number of RBDs to fit his
needs.

SEE ALSO ifLib, MPC860T Fast Ethernet Controller (Supplement to the MPC860 User’s Manual) Motorola
MPC860 User’s Manual
149

VxWorks Drivers API Reference, 5.5
n72001Sio
n72001Sio

NAME n72001Sio – NEC PD72001 MPSC (Multiprotocol Serial Communications Controller)

ROUTINES n72001DevInit() – initialize a N72001_MPSC
n72001IntWr() – handle a transmitter interrupt
n72001IntRd() – handle a receiver interrupt
n72001Int() – interrupt level processing

DESCRIPTION This is a driver for the NEC PD72001 MPSC (Multiprotocol Serial Communications
Controller). It uses the MPSC in asynchronous mode only.

USAGE A N72001_MPSC structure is used to describe the chip. This data structure contains two
N72001_CHAN structures which describe the chip’s two serial channels. The BSP’s
sysHwInit() routine typically calls sysSerialHwInit() which initializes all the values in
the N72001_MPSC structure (except the SIO_DRV_FUNCS) before calling
n72001DevInit(). The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2()
which connects the chips interrupts via intConnect() (either the single interrupt
n72001Int or the three interrupts n72001IntWr, n72001IntRd, and n72001IntEx).

INCLUDE FILES drv/sio/n72001Sio.h

ncr710CommLib

NAME ncr710CommLib – common library for ncr710Lib.c and ncr710Lib2.c

ROUTINES ncr710SingleStep() – perform a single-step
ncr710StepEnable() – enable/disable script single-step

DESCRIPTION Contains ncr710Lib and ncr710Lib2 common driver interfaces which can be called from
user code.

SEE ALSO ncr710Lib.c, ncr710Lib2.c, NCR 53C710 SCSI I/O Processor Programming Guide, VxWorks
Programmer’s Guide: I/O System
150

1: Driver Libraries
ncr710Lib2

N

ncr710Lib

NAME ncr710Lib – NCR 53C710 SCSI I/O Processor (SIOP) library (SCSI-1)

ROUTINES ncr710CtrlCreate() – create a control structure for an NCR 53C710 SIOP
ncr710CtrlInit() – initialize a control structure for an NCR 53C710 SIOP
ncr710SetHwRegister() – set hardware-dependent registers for the NCR 53C710 SIOP
ncr710Show() – display the values of all readable NCR 53C710 SIOP registers

DESCRIPTION This is the I/O driver for the NCR 53C710 SCSI I/O Processor (SIOP). It is designed to
work with scsi1Lib. It also runs in conjunction with a script program for the NCR 53C710
chip. This script uses the NCR 53C710 DMA function for data transfers. This driver
supports cache functions through cacheLib.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. Three
routines, however, must be called directly: ncr710CtrlCreate() to create a controller
structure, and ncr710CtrlInit() to initialize it. The NCR 53C710 hardware registers need
to be configured according to the hardware implementation. If the default configuration is
not proper, the routine ncr710SetHwRegister() should be used to properly configure the
registers.

INCLUDE FILES ncr710.h, ncr710_1.h, ncr710Script.h, ncr710Script1.h

SEE ALSO scsiLib, scsi1Lib, cacheLib, NCR 53C710 SCSI I/O Processor Programming Guide, VxWorks
Programmer’s Guide: I/O System

ncr710Lib2

NAME ncr710Lib2 – NCR 53C710 SCSI I/O Processor (SIOP) library (SCSI-2)

ROUTINES ncr710CtrlCreateScsi2() – create a control structure for the NCR 53C710 SIOP
ncr710CtrlInitScsi2() – initialize a control structure for the NCR 53C710 SIOP
ncr710SetHwRegisterScsi2() – set hardware-dependent registers for the NCR 53C710
ncr710ShowScsi2() – display the values of all readable NCR 53C710 SIOP registers

DESCRIPTION This is the I/O driver for the NCR 53C710 SCSI I/O Processor (SIOP). It is designed to
work with scsi2Lib. This driver runs in conjunction with a script program for the NCR
53C710 chip. The script uses the NCR 53C710 DMA function for data transfers. This driver
supports cache functions through cacheLib.
151

VxWorks Drivers API Reference, 5.5
ncr810Lib
USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. Three
routines, however, must be called directly. ncr710CtrlCreateScsi2() creates a controller
structure and ncr710CtrlInitScsi2() initializes it. The NCR 53C710 hardware registers
need to be configured according to the hardware implementation. If the default
configuration is not correct, the routine ncr710SetHwRegisterScsi2() must be used to
properly configure the registers.

INCLUDE FILES ncr710.h, ncr710_2.h, ncr710Script.h, ncr710Script2.h

SEE ALSO scsiLib, scsi2Lib, cacheLib, VxWorks Programmer’s Guide: I/O System

ncr810Lib

NAME ncr810Lib – NCR 53C8xx PCI SCSI I/O Processor (SIOP) library (SCSI-2)

ROUTINES ncr810CtrlCreate() – create a control structure for the NCR 53C8xx SIOP
ncr810CtrlInit() – initialize a control structure for the NCR 53C8xx SIOP
ncr810SetHwRegister() – set hardware-dependent registers for the NCR 53C8xx SIOP
ncr810Show() – display values of all readable NCR 53C8xx SIOP registers

DESCRIPTION This is the I/O driver for the NCR 53C8xx PCI SCSI I/O Processors (SIOP), supporting the
NCR 53C810 and the NCR 53C825 SCSI controllers. It is designed to work with scsiLib
and scsi2Lib. This driver runs in conjunction with a script program for the NCR 53C8xx
controllers. These scripts use DMA transfers for all data, messages, and status. This driver
supports cache functions through cacheLib.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. Three
routines, however, must be called directly. ncr810CtrlCreate() creates a controller
structure and ncr810CtrlInit() initializes it. The NCR 53C8xx hardware registers need to
be configured according to the hardware implementation. If the default configuration is
not correct, the routine ncr810SetHwRegister() must be used to properly configure the
registers.

PCI MEMORY ADDRESSING

The global variable ncr810PciMemOffset was created to provide the BSP with a means of
changing the VIRT_TO_PHYS mapping without changing the functions in the
cacheFuncs structures. In generating physical addresses for DMA on the PCI bus, local
addresses are passed through the function CACHE_DMA_VIRT_TO_PHYS and then the
value of ncr810PciMemOffset is added. For backward compatibility, the initial value of
152

1: Driver Libraries
ncr5390Lib

N

ncr810PciMemOffset comes from the macro PCI_TO_MEM_OFFSET defined in
ncr810.h.

I/O MACROS All device access for input and output is done via macros which can be
customized for each BSP. These routines are NCR810_IN_BYTE, NCR810_OUT_BYTE,
NCR810_IN_16, NCR810_OUT_16, NCR810_IN_32 and NCR810_OUT_32. By default,
these are defined as generic memory references.

INCLUDE FILES ncr810.h, ncr810Script.h, scsiLib.h

SEE ALSO scsiLib, scsi2Lib, cacheLib, SYM53C825 PCI-SCSI I/O Processor Data Manual, SYM53C810
PCI-SCSI I/O Processor Data Manual, NCR 53C8XX Family PCI-SCSI I/O Processors
Programming Guide, VxWorks Programmer’s Guide: I/O System

ncr5390Lib

NAME ncr5390Lib – NCR5390 SCSI-Bus Interface Controller library (SBIC)

ROUTINES ncr5390CtrlInit() – initialize the user-specified fields in an ASC structure
ncr5390Show() – display the values of all readable NCR5390 chip registers

DESCRIPTION This library contains the main interface routines to the SCSI-Bus Interface Controllers
(SBIC). These routines simply switch the calls to the SCSI-1 or SCSI-2 drivers,
implemented in ncr5390Lib1.c or ncr5390Lib2.c as configured by the Board Support
Package (BSP).

In order to configure the SCSI-1 driver, which depends upon scsi1Lib, the
ncr5390CtrlCreate() routine, defined in ncr5390Lib1, must be invoked. Similarly
ncr5390CtrlCreateScsi2(), defined in ncr5390Lib2 and dependent on scsi2Lib, must be
called to configure and initialize the SCSI-2 driver.

INCLUDE FILES ncr5390.h, ncr5390_1.h, ncr5390_2.h
153

VxWorks Drivers API Reference, 5.5
ncr5390Lib1
ncr5390Lib1

NAME ncr5390Lib1 – NCR 53C90 Advanced SCSI Controller (ASC) library (SCSI-1)

ROUTINES ncr5390CtrlCreate() – create a control structure for an NCR 53C90 ASC

DESCRIPTION This is the I/O driver for the NCR 53C90 Advanced SCSI Controller (ASC). It is designed
to work in conjunction with scsiLib.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. The only
exception in this portion of the driver is the ncr5390CtrlCreate() which creates a
controller structure.

INCLUDE FILES ncr5390.h

SEE ALSO scsiLib, NCR 53C90A, 53C90B Advanced SCSI Controller, VxWorks Programmer’s Guide: I/O
System

ncr5390Lib2

NAME ncr5390Lib2 – NCR 53C90 Advanced SCSI Controller (ASC) library (SCSI-2)

ROUTINES ncr5390CtrlCreateScsi2() – create a control structure for an NCR 53C90 ASC

DESCRIPTION This is the I/O driver for the NCR 53C90 Advanced SCSI Controller (ASC). It is designed
to work in conjunction with scsiLib.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. The only
exception in this portion of the driver is the ncr5390CtrlCreateScsi2() which creates a
controller structure.

INCLUDE FILES ncr5390.h

SEE ALSO scsiLib, NCR 53C90A, 53C90B Advanced SCSI Controller, VxWorks Programmer’s Guide: I/O
System
154

1: Driver Libraries
ne2000End

N

ne2000End

NAME ne2000End – NE2000 END network interface driver

ROUTINES ne2000EndLoad() – initialize the driver and device

DESCRIPTION This module implements the NE2000 Ethernet network interface driver.

EXTERNAL INTERFACE

The only external interface is the ne2000EndLoad() routine, which expects the initString
parameter as input. This parameter passes in a colon-delimited string of the format:

unit:adrs:vecNum:intLvl:byteAccess:usePromEnetAddr:offset

The ne2000EndLoad() function uses strtok() to parse the string.

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the
string name for the driver.

adrs
Tells the driver where to find the ne2000.

vecNum
Configures the ne2000 device to generate hardware interrupts for various events
within the device. Thus, it contains an interrupt handler routine. The driver calls
sysIntConnect() to connect its interrupt handler to the interrupt vector generated as
a result of the ne2000 interrupt.

intLvl
This parameter is passed to an external support routine, sysLanIntEnable(), which is
described below in "External Support Requirements." This routine is called during as
part of driver’s initialization. It handles any board-specific operations required to
allow the servicing of a ne2000 interrupt on targets that use additional interrupt
controller devices to help organize and service the various interrupt sources. This
parameter makes it possible for this driver to avoid all board-specific knowledge of
such devices.

byteAccess
Tells the driver the NE2000 is jumpered to operate in 8-bit mode. Requires that
SYS_IN_WORD_STRING() and SYS_OUT_WORD_STRING() be written to
properly access the device in this mode.

usePromEnetAddr
Attempt to get the ethernet address for the device from the on-chip (board) PROM
155

VxWorks Drivers API Reference, 5.5
ne2000End
attached to the NE2000. Will fall back to using the BSP-supplied ethernet address if
this parameter is 0 or if unable to read the ethernet address.

offset
Specifies the memory alignment offset.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions, defined as macros:

SYS_INT_CONNECT(pDrvCtrl, routine, arg)

SYS_INT_DISCONNECT (pDrvCtrl, routine, arg)

SYS_INT_ENABLE(pDrvCtrl)

SYS_IN_CHAR(pDrvCtrl, reg, pData)

SYS_OUT_CHAR(pDrvCtrl, reg, pData)

SYS_IN_WORD_STRING(pDrvCtrl, reg, pData)

SYS_OUT_WORD_STRING(pDrvCtrl, reg, pData)

These macros allow the driver to be customized for BSPs that use special versions of these
routines.

The macro SYS_INT_CONNECT is used to connect the interrupt handler to the
appropriate vector. By default it is the routine intConnect().

The macro SYS_INT_DISCONNECT is used to disconnect the interrupt handler prior to
unloading the module. By default this is a dummy routine that returns OK.

The macro SYS_INT_ENABLE is used to enable the interrupt level for the end device. It is
called once during initialization. By default this is the routine sysLanIntEnable(), defined
in the module sysLib.o.

The macro SYS_ENET_ADDR_GET is used to get the ethernet address (MAC) for the
device. The single argument to this routine is the END_DEVICE pointer. By default this
routine copies the ethernet address stored in the global variable ne2000EndEnetAddr into
the END_DEVICE structure.

The macros SYS_IN_CHAR, SYS_OUT_CHAR, SYS_IN_WORD_STRING and
SYS_OUT_WORD_STRING are used for accessing the ne2000 device. The default
macros map these operations onto sysInByte(), sysOutByte(), sysInWordString(), and
sysOutWordString().

INCLUDES end.h, endLib.h, etherMultiLib.h

SEE ALSO muxLib, endLib, Writing and Enhanced Network Driver
156

1: Driver Libraries
nicEvbEnd

N

nec765Fd

NAME nec765Fd – NEC 765 floppy disk device driver

ROUTINES fdDrv() – initialize the floppy disk driver
fdDevCreate() – create a device for a floppy disk
fdRawio() – provide raw I/O access

DESCRIPTION This is the driver for the NEC 765 Floppy Chip used on the PC 386/486.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. However,
two routines must be called directly: fdDrv() to initialize the driver, and fdDevCreate()
to create devices. Before the driver can be used, it must be initialized by calling fdDrv().
This routine should be called exactly once, before any reads, writes, or calls to
fdDevCreate(). Normally, it is called from usrRoot() in usrConfig.c.

The routine fdRawio() allows physical I/O access. Its first argument is a drive number, 0
to 3; the second argument is a type of diskette; the third argument is a pointer to the
FD_RAW structure, which is defined in nec765Fd.h.

Interleaving is not supported when the driver formats.

Two types of diskettes are currently supported: 3.5" 2HD 1.44MB and 5.25" 2HD 1.2MB.
You can add additional diskette types to the fdTypes[] table in sysLib.c.

The BLK_DEV bd_mode field will reflect the disk’s write protect tab.

SEE ALSO VxWorks Programmer’s Guide: I/O System

nicEvbEnd

NAME nicEvbEnd – National Semiconductor ST-NIC Chip network interface driver

ROUTINES nicEndLoad() – initialize the driver and device
nicEvbInitParse() – parse the initialization string

DESCRIPTION This module implements the National Semiconductor 83902A ST-NIC Ethernet network
interface driver.

This driver is non-generic and is for use on the IBM EVB403 board. The driver must be
given several target-specific parameters. These parameters, and the mechanisms used to
communicate them to the driver, are detailed below.
157

VxWorks Drivers API Reference, 5.5
nicEvbEnd
BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The only external interface is the nicEvbEndLoad() routine, which expects the initString
parameter as input. This parameter passes in a colon-delimited string of the format:

unit:nic_addr:int_vector:int_level

The nicEvbEndLoad() function uses strtok() to parse the string.

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the
string name for the driver.

nic_addr
Base address for NIC chip

int_vector
Configures the NIC device to generate hardware interrupts for various events within
the device. Thus, it contains an interrupt handler routine. The driver calls
sysIntConnect() to connect its interrupt handler to the interrupt vector.

int_level
This parameter is passed to an external support routine, sysLanIntEnable(), which is
described below in "External Support Requirements." This routine is called during as
part of driver’s initialization. It handles any board-specific operations required to
allow the servicing of a NIC interrupt on targets that use additional interrupt
controller devices to help organize and service the various interrupt sources. This
parameter makes it possible for this driver to avoid all board-specific knowledge of
such devices.

device restart/reset delay
The global variable nicRestartDelay (UINT32), defined in this file, should be
initialized in the BSP sysHwInit() routine. nicRestartDelay is used only with
PowerPC platform and is equal to the number of time base increments which makes
for 1.6 msec. This corresponds to the delay necessary to respect when restarting or
resetting the device.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions, defined as macros:

SYS_INT_CONNECT(pDrvCtrl, routine, arg)

SYS_INT_DISCONNECT (pDrvCtrl, routine, arg)

SYS_INT_ENABLE(pDrvCtrl)

There are default values in the source code for these macros. They presume
memory-mapped accesses to the device registers and the normal intConnect(), and
intEnable() BSP functions. The first argument to each is the device controller structure.
158

1: Driver Libraries
ns16550Sio

N

Thus, each has access back to all the device-specific information. Having the pointer in the
macro facilitates the addition of new features to this driver.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one mutual exclusion semaphore
– one interrupt vector

SEE ALSO muxLib

ns16550Sio

NAME ns16550Sio – NS 16550 UART tty driver

ROUTINES ns16550DevInit() – initialize an NS16550 channel
ns16550IntWr() – handle a transmitter interrupt
ns16550IntRd() – handle a receiver interrupt
ns16550IntEx() – miscellaneous interrupt processing
ns16550Int() – interrupt level processing

DESCRIPTION This is the driver for the NS16552 DUART. This device includes two universal
asynchronous receiver/transmitters, a baud rate generator, and a complete modem
control capability.

A NS16550_CHAN structure is used to describe the serial channel. This data structure is
defined in ns16550Sio.h.

Only asynchronous serial operation is supported by this driver. The default serial settings
are 8 data bits, 1 stop bit, no parity, 9600 baud, and software flow control.

USAGE The BSP’s sysHwInit() routine typically calls sysSerialHwInit(), which creates the
NS16550_CHAN structure and initializes all the values in the structure (except the
SIO_DRV_FUNCS) before calling ns16550DevInit(). The BSP’s sysHwInit2() routine
typically calls sysSerialHwInit2(), which connects the chips interrupts via intConnect()
(either the single interrupt ns16550Int or the three interrupts ns16550IntWr,
ns16550IntRd, and ns16550IntEx).

The driver sets hardware options such as parity (odd, even) and number of data bits (5, 6,
7, 8). Hardware flow control is provided with the handshakes RTS/CTS. The function
HUPCL (hang up on last close) is available. When hardware flow control is enabled, the
signals RTS and DTR are set to TRUE and remain set until a HUPCL is performed.

INCLUDE FILES drv/sio/ns16552Sio.h
159

VxWorks Drivers API Reference, 5.5
ns83902End
ns83902End

NAME ns83902End – National Semiconductor DP83902A ST-NIC

ROUTINES ns83902EndLoad() – initialize the driver and device
ns83902RegShow() – prints the current value of the NIC registers

DESCRIPTION This module implements the National Semiconductor dp83902A ST-NIC Ethernet
network interface driver.

This driver is moderately generic. The driver must be given several target-specific
parameters. These parameters, and the mechanisms used to communicate them to the
driver, are detailed below.

The driver supports big-endian or little-endian architectures.

EXTERNAL INTERFACE

The only external interface is the ns83902EndLoad() routine, which expects the initString
parameter as input. This parameter passes in a colon-delimited string of the format:

"baseAdrs:intVec:intLvl:dmaPort:bufSize:options"

The ns83902EndLoad() function uses strtok() to parse the string.

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the
string name for the driver.

baseAdrs
Base address at which the NIC hardware device registers are located.

vecNum
This is the interrupt vector number of the hardware interrupt generated by this
Ethernet device.

intLvl
This parameter defines the level of the hardware interrupt.

dmaPort
Address of the DMA port used to transfer data to the host CPU.

bufSize
Size of the NIC buffer memory in bytes.

options
Target specific options:
160

1: Driver Libraries
nvr4101DSIUSio

N

bit0 - wide (0: byte, 1: word)
bit1 - register interval (0: 1byte, 1: 2 bytes)

EXTERNAL SUPPORT REQUIREMENTS

This driver requires four external support functions, and provides a hook function:

void sysLanIntEnable (int level)

This routine provides a target-specific interface for enabling Ethernet device
interrupts at a specified interrupt level.

void sysLanIntDisable (void)

This routine provides a target-specific interface for disabling Ethernet device
interrupts.

STATUS sysEnetAddrGet (int unit, char *enetAdrs)

This routine provides a target-specific interface for accessing a device Ethernet
address.

sysNs83902DelayCount

This variable is used to introduce at least a 4 bus cycle (BSCK) delay between
successive NIC chip selects.

SYSTEM RESOURCE USAGE

This driver requires the following system resources:

– one mutual exclusion semaphore

– one interrupt vector

SEE ALSO muxLib, DP83902A ST-NIC Serial Interface Controller for Twisted Pair

nvr4101DSIUSio

NAME nvr4101DSIUSio – NEC VR4101 DSIU UART tty driver

ROUTINES nvr4101DSIUDevInit() – initialization of the NVR4101DSIU DSIU.
nvr4101DSIUInt() – interrupt level processing
nvr4101DSIUIntMask() – mask interrupts from the DSIU.
nvr4101DSIUIntUnmask() – unmask interrupts from the DSIU.

DESCRIPTION This is the device driver for the nvr4101 DSIU UART.

USAGE An NVR4101_DSIU_CHAN data structure is used to describe the DSIU.
161

VxWorks Drivers API Reference, 5.5
nvr4101SIUSio
The BSP’s sysHwInit() routine typically calls sysSerialHwInit(), which should pass a
pointer to an uninitialized NVR4101_DSIU_CHAN structure to nvr4101DSIUDevInit().
The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2(), which connects the
chip’s interrupts via intConnect().

INCLUDE FILES drv/sio/nvr4101DSIUSio.h

nvr4101SIUSio

NAME nvr4101SIUSio – NEC VR4101 SIU UART tty driver

ROUTINES nvr4101SIUDevInit() – initialization of the NVR4101SIU SIU.
nvr4101SIUInt() – interrupt level processing
nvr4101SIUIntMask() – mask interrupts from the SIU.
nvr4101SIUIntUnmask() – unmask interrupts from the SIU.
nvr4101SIUCharToTxWord() – translate character to output word format.

DESCRIPTION This is the device driver for the nvr4101 UART.

USAGE A NVR4101_CHAN data structure is used to describe the SIU.

The BSP’s sysHwInit() routine typically calls sysSerialHwInit(), which should pass a
pointer to an uninitialized NVR4101_CHAN structure to nvr4101SIUDevInit(). The
BSP’s sysHwInit2() routine typically calls sysSerialHwInit2(), which connects the chip’s
interrupts via intConnect().

INCLUDE FILES drv/sio/nvr4101SIUSio.h

nvr4102DSIUSio

NAME nvr4102DSIUSio – NEC VR4102 DSIU UART tty driver

ROUTINES nvr4102DSIUDevInit() – initialization of the NVR4102DSIU DSIU.
nvr4102DSIUInt() – interrupt level processing
nvr4102DSIUIntMask() – mask interrupts from the DSIU.
nvr4102DSIUIntUnmask() – unmask interrupts from the DSIU

DESCRIPTION This is the device driver for the nvr4102 DSIU UART.
162

1: Driver Libraries
nvr4102DSIUSio

N

USAGE An NVR4102_DSIU_CHAN data structure is used to describe the DSIU.

The BSP’s sysHwInit() routine typically calls sysSerialHwInit(), which should pass a
pointer to an uninitialized NVR4102_DSIU_CHAN structure to nvr4102DSIUDevInit().
The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2(), which connects the
chip’s interrupts via intConnect().

INCLUDE FILES drv/sio/nvr4102DSIUSio.h
163

VxWorks Drivers API Reference, 5.5
pccardLib
pccardLib

NAME pccardLib – PC CARD enabler library

ROUTINES pccardMount() – mount a DOS file system
pccardMkfs() – initialize a device and mount a DOS file system
pccardAtaEnabler() – enable the PCMCIA-ATA device
pccardSramEnabler() – enable the PCMCIA-SRAM driver
pccardEltEnabler() – enable the PCMCIA Etherlink III card
pccardTffsEnabler() – enable the PCMCIA-TFFS driver

DESCRIPTION This library provides generic facilities for enabling PC CARD. Each PC card device driver
needs to provide an enabler routine and a CSC interrupt handler. The enabler routine
must be in the pccardEnabler structure. Each PC card driver has its own resource
structure, xxResources. The ATA PC card driver resource structure is ataResources in
sysLib, which also supports a local IDE disk. The resource structure has a PC card
common resource structure in the first member. Other members are device-driver
dependent resources.

The PCMCIA chip initialization routines tcicInit() and pcicInit() are included in the
PCMCIA chip table pcmciaAdapter. This table is scanned when the PCMCIA library is
initialized. If the initialization routine finds the PCMCIA chip, it registers all function
pointers of the PCMCIA_CHIP structure.

A memory window defined in pcmciaMemwin is used to access the CIS of a PC card
through the routines in cisLib.

SEE ALSO pcmciaLib, cisLib, tcic, pcic
164

1: Driver Libraries
pciAutoConfigLib

P

pciAutoConfigLib

NAME pciAutoConfigLib – PCI bus scan and resource allocation facility

ROUTINES pciAutoConfigLibInit() – initialize PCI autoconfig library
pciAutoCfg() – automatically configure all non-excluded PCI headers
pciAutoCfgCtl() – set or get pciAutoConfigLib options
pciAutoDevReset() – quiesce a PCI device and reset all writeable status bits
pciAutoBusNumberSet() – set the primary, secondary, and subordinate bus number
pciAutoFuncDisable() – disable a specific PCI function
pciAutoFuncEnable() – perform final configuration and enable a function
pciAutoGetNextClass() – find the next device of specific type from probe list
pciAutoRegConfig() – assign PCI space to a single PCI base address register
pciAutoAddrAlign() – align a PCI address and check boundary conditions
pciAutoConfig() – automatically configure all nonexcluded PCI headers; obsolete

DESCRIPTION This library provides a facility for automated PCI device scanning and configuration on
PCI-based systems.

Modern PCI based systems incorporate many peripherals and may span multiple physical
bus segments, and these bus segments may be connected via PCI-to-PCI Bridges. Bridges
are identified and properly numbered before a recursive scan identifies all resources on
the bus implemented by the bridge. Post-scan configuration of the subordinate bus
number is performed.

Resource requirements of each device are identified and allocated according to system
resource pools that are specified by the BSP Developer. Devices may be conditionally
excluded, and interrupt routing information obtained via optional routines provided by
the BSP Developer.

GENERAL ALGORITHM

The library must first be initialized by a call to pciAutoConfigLibInit(). The return value,
pCookie, must be passed to each subsequent call from the library. Options can be set
using the function pciAutoCfgCtl(). The available options are described in the
documentation for pciAutoCfgCtl().

After initialization of the library and configuration of any options, auto configuration
takes place in two phases. In the first phase, all devices and subordinate busses in a given
system are scanned and each device that is found causes an entry to be created in the
Probelist or list of devices found during the probe/configuration process.

In the second phase each device that is on the Probelist is checked to see if it has been
excluded from automatic configuration by the BSP developer. If a particular function has
not been excluded, then it is first disabled. The Base Address Registers of the particular
function are read to ascertain the resource requirements of the function. Each resource
165

VxWorks Drivers API Reference, 5.5
pciAutoConfigLib
requirement is checked against available resources in the applicable pool based on size
and alignment constraints.

After all functions on the Probelist have been processed, each function and its appropriate
Memory or I/O decoder(s) are enabled for operation.

HOST BRIDGE DETECTION/CONFIGURATION
Note that the PCI Host Bridge is automatically excluded from configuration by the
autoconfig routines, as it is often already configured as part of the system bootstrap
device configuration.

PCI-PCI BRIDGE DETECTION/CONFIGURATION
Busses are scanned by first writing the primary, secondary, and subordinate bus
information into the bridge that implements the bus. Specifically, the primary and
secondary bus numbers are set to their corresponding value, and the subordinate bus
number is set to 0xFF, because the final number of sub-busses is not known. The
subordinate bus number is later updated to indicate the highest numbered sub-bus
that was scanned once the scan is complete.

GENERIC DEVICE DETECTION/CONFIGURATION
The autoconfiguration library creates a list of devices during the process of scanning
all of the busses in a system. Devices with vendor IDs of 0xFFFF and 0x0000 are
skipped. Once all busses have been scanned, all non-excluded devices are then
disabled prior to configuration.

Devices that are not excluded will have Resources allocated according to Base
Address Registers that are implemented by the device and available space in the
applicable resource pool. PCI Natural alignment constraints are adhered to when
allocating resources from pools.

Also initialized are the cache line size register and the latency timer. Bus mastering is
unconditionally enabled.

If an interrupt assignment routine is registered, then the interrupt pin register of the
PCI Configuration space is passed to this routine along with the bus, device, and
function number of the device under consideration.

There are two different schemes to determine when the BSP interrupt assignment
routine is called by autoconfig. The call is done either only for bus-0 devices or for all
devices depending upon how the autoIntRouting is set by the BSP developer (see the
section "INTERRUPT ROUTING ACROSS PCI-TO-PCI BRIDGES" below for more
details).

The interrupt level number returned by this routine is then written into the interrupt
line register of the PCI Configuration Space for subsequent use by device drivers. If
no interrupt assignment routine is registered, 0xFF is written into the interrupt line
register, specifying an unknown interrupt binding.

Lastly, the functions are enabled with what resources were able to be provided from
the applicable resource pools.
166

1: Driver Libraries
pciAutoConfigLib

P

RESOURCE ALLOCATION

Resource pools include the 32-bit Prefetchable Memory pool, the 32-bit Non-prefetchable
Memory ("MemIO") pool, the 32-bit I/O pool, and the 16-bit I/O allocation pool. The
allocation in each pool begins at the specified base address and progresses to higher
numbered addresses. Each allocated address adheres to the PCI natural alignment
constraints of the given resource requirement specified in the Base Address Register.

DATA STRUCTURES

Data structures are either allocated statically or allocated dynamically, depending on the
value of the build macro PCI_AUTO_STATIC_LIST, discussed below. In either case, the
structures are initialized by the call to pciAutoConfigLibInit().

For ease of upgrading from the older method which used the PCI_SYSTEM structure, the
option PCI_SYSTEM_STRUCT_COPY has been implemented. See the in the documentation
for pciAutoCfgCtl() for more information.

PCI RESOURCE POOLS

Resources used by pciAutoConfigLib can be divided into two groups.

The first group of information is the Memory and I/O resources, that are available in the
system and that autoconfig can use to allocate to functions. These resource pools consist of
a base address and size. The base address specified here should be the address relative to
the PCI bus. Each of these values in the PCI_SYSTEM data structure is described below:

pciMem32
Specifies the 32-bit prefetchable memory pool base address. Normally, this is given
by the BSP constant PCI_MEM_ADRS. It can be set with the pciAutoCfgCtl()
command PCI_MEM32_LOC_SET.

pciMem32Size
Specifies the 32-bit prefetchable memory pool size. Normally, this is given by the BSP
constant PCI_MEM_SIZE. It can be set with the pciAutoCfgCtl() command
PCI_MEM32_SIZE_SET.

pciMemIo32
Specifies the 32-bit non-prefetchable memory pool base address. Normally, this is
given by the BSP constant PCI_MEMIO_ADRS. It can be set with the pciAutoCfgCtl()
command PCI_MEMIO32_LOC_SET.

pciMemIo32Size
Specifies the 32-bit non-prefetchable memory pool size Normally, this is given by the
BSP constant PCI_MEMIO_SIZE. It can be set with the pciAutoCfgCtl() command
PCI_MEMIO32_SIZE_SET.

pciIo32
Specifies the 32-bit I/O pool base address. Normally, this is given by the BSP constant
PCI_IO_ADRS. It can be set with the pciAutoCfgCtl() command PCI_IO32_LOC_SET.
167

VxWorks Drivers API Reference, 5.5
pciAutoConfigLib
pciIo32Size
Specifies the 32-bit I/O pool size. Normally, this is given by the BSP constant
PCI_IO_SIZE. It can be set with the pciAutoCfgCtl() command PCI_IO32_SIZE_SET.

pciIo16
Specifies the 16-bit I/O pool base address. Normally, this is given by the BSP constant
PCI_ISA_IO_ADDR. It can be set with the pciAutoCfgCtl() command
PCI_IO16_LOC_SET.

pciIo16Size
Specifies the 16-bit I/O pool size. Normally, this is given by the BSP constant
PCI_ISA_IO_SIZE. It can be set with the pciAutoCfgCtl() command
PCI_IO16_SIZE_SET.

PREFETCH MEMORY ALLOCATION

The pciMem32 pointer is assumed to point to a pool of prefetchable PCI memory. If the
size of this pool is non-zero, then prefetch memory will be allocated to devices that
request it given that there is enough memory in the pool to satisfy the request, and the
host bridge or PCI-to-PCI bridge that implements the bus that the device resides on is
capable of handling prefetchable memory. If a device requests it, and no prefetchable
memory is available or the bridge implementing the bus does not handle prefetchable
memory then the request will be attempted from the non-prefetchable memory pool.

PCI-to-PCI bridges are queried as to whether they support prefetchable memory by
writing a non-zero value to the prefetchable memory base address register and reading
back a non-zero value. A zero value would indicate the bridge does not support
prefetchable memory.

BSP-SPECIFIC ROUTINES

Several routines can be provided by the BSP Developer to customize the degree to which
the system can be automatically configured. These routines are normally put into a file
called sysBusPci.c in the BSP directory. The trivial cases of each of these routines are
shown in the USAGE section below to illustrate the API to the BSP Developer.

DEVICE INCLUSION Specific devices other than bridges can be excluded from auto configuration and either not
used or manually configured later. For information, see the PCI_INCLUDE_FUNC_SET
section in the documentation for pciAutoCfgCtl().

INTERRUPT ASSIGNMENT

Interrupt assignment can be specified by the BSP developer by specifying a routine for
pciAutoConfigLib to call when each device or bridge is configured. For information, see
the PCI_INT_ASSIGN_FUNC_SET section in the entry for pciAutoCfgCtl().

INTERRUPT ROUTING ACROSS PCI-TO-PCI BRIDGES

PCI autoconfig allows use of two interrupt routing strategies for handling devices that
reside across a PCI-to-PCI Bridge. The BSP-specific interrupt assignment routine
168

1: Driver Libraries
pciAutoConfigLib

P

described in the above section is called for all devices that reside on bus 0. For devices
residing across a PCI-to-PCI bridge, one of two supported interrupt routing strategies
may be selected by setting the PCI_AUTO_INT_ROUTE_SET command using
pciAutoCfgCtl() to the boolean value TRUE or FALSE:

TRUE
If automatic interrupt routing is set to TRUE, then autoconfig only calls the BSP
interrupt routing routine for devices on bus number 0. If a device resides on a higher
numbered bus, then a cyclic algorithm is applied to the IRQs that are routed through
the bridge. The algorithm is based on computing a route offset that is the device
number modulo 4 for every bridge device that is traversed. This offset is used with
the device number and interrupt pin register of the device of interest to compute the
contents of the interrupt line register.

FALSE
If automatic interrupt routing is set to FALSE, then autoconfig calls the BSP interrupt
assignment routine to do all interrupt routing regardless of the bus on which the
device resides. The return value represents the contents of the interrupt line register
in all cases.

BRIDGE CONFIGURATION

The BSP developer may wish to perform configuration of bridges before and/or after the
normal configuration of the bus they reside on. Two routines can be specified for this
purpose.

The bridge pre-configuration pass initialization routine is provided so that the BSP
Developer can initialize a bridge device prior to the configuration pass on the bus that the
bridge implements.

The bridge post-configuration pass initialization routine is provided so that the BSP
Developer can initialize the bridge device after the bus that the bridge implements has
been enumerated.

These routines are configured by calling pciAutoCfgCtl() with the command
PCI_BRIDGE_PRE_CONFIG_FUNC_SET and the command
PCI_BRIDGE_POST_CONFIG_FUNC_SET, respectively.

HOST BRIDGE CONFIGURATION

The PCI Local Bus Specification, rev 2.1 does not specify the content or initialization
requirements of the configuration space of PCI Host Bridges. Due to this fact, no host
bridge specific assumptions are made by autoconfig and any PCI Host Bridge
initialization that must be done before either scan or configuration of the bus must be
done in the BSP. Comments illustrating where this initialization could be called in relation
to invoking the pciAutoConfig() routine are in the USAGE section below.

LIBRARY CONFIGURATION MACROS

The following four macros can be defined by the BSP Developer in config.h to govern the
operation of the autoconfig library.
169

VxWorks Drivers API Reference, 5.5
pciAutoConfigLib
PCI_AUTO_MAX_FUNCTIONS
Defines the maximum number of functions that can be stored in the probe list during
the autoconfiguration pass. The default value for this define is 32, but this may be
overridden by defining PCI_AUTO_MAX_FUNCTIONS in config.h.

PCI_AUTO_STATIC_LIST
If defined, then a statically allocated array of size PCI_AUTO_MAX_FUNCTION
instances of the PCI_LOC structure will be instantiated.

PCI_AUTO_RECLAIM_LIST
This define may only be used if PCI_AUTO_STATIC_LIST is not defined. If defined,
this allows the autoconfig routine to perform a free() operation on a dynamically
allocated probe list.

NOTE: If PCI_AUTO_RECLAIM_LIST is defined and PCI_AUTO_STATIC_LIST is also, a
compiler error will be generated.

USAGE The following code sample illustrates the usage of the PCI_SYSTEM structure and
invocation of the autoconfig library.

NOTE: The example BSP-specific routines are merely stubs. The code in each routine
varies by BSP and application.

#include "pciAutoConfigLib.h"

LOCAL PCI_SYSTEM sysParams;

void sysPciAutoConfig (void)

{

void * pCookie;

/* initialize the library */

pCookie = pciAutoConfigLibInit(NULL);

/* 32-bit Prefetchable Memory Space */

pciAutoCfgCtl(pCookie, PCI_MEM32_LOC_SET, PCI_MEM_ADRS);

pciAutoCfgCtl(pCookie, PCI_MEM32_SIZE_SET, PCI_MEM_SIZE);

/* 32-bit Non-prefetchable Memory Space */

pciAutoCfgCtl(pCookie, PCI_MEMIO32_LOC_SET, PCI_MEMIO_ADRS);

pciAutoCfgCtl(pCookie, PCI_MEMIO32_SIZE_SET, PCI_MEMIO_SIZE);

/* 16-bit ISA I/O Space */

pciAutoCfgCtl(pCookie, PCI_IO16_LOC_SET, PCI_ISA_IO_ADRS);

pciAutoCfgCtl(pCookie, PCI_IO16_SIZE_SET, PCI_ISA_IO_SIZE);

/* 32-bit PCI I/O Space */

pciAutoCfgCtl(pCookie, PCI_IO32_LOC_SET, PCI_IO_ADRS);

pciAutoCfgCtl(pCookie, PCI_IO32_SIZE_SET, PCI_IO_SIZE);

/* Configuration space parameters */

pciAutoCfgCtl(pCookie, PCI_MAX_BUS_SET, 0);

pciAutoCfgCtl(pCookie, PCI_MAX_LAT_ALL_SET, PCI_LAT_TIMER);

pciAutoCfgCtl(pCookie, PCI_CACHE_SIZE_SET,

(_CACHE_ALIGN_SIZE / 4));
170

1: Driver Libraries
pciAutoConfigLib

P

/*

* Interrupt routing strategy

* across PCI-to-PCI Bridges

*/

pciAutoCfgCtl(pCookie, PCI_AUTO_INT_ROUTE_SET, TRUE);

/* Device inclusion and interrupt routing routines */

pciAutoCfgCtl(pCookie, PCI_INCLUDE_FUNC_SET,

sysPciAutoconfigInclude);

pciAutoCfgCtl(pCookie, PCI_INT_ASSIGN_FUNC_SET,

sysPciAutoconfigIntrAssign);

/*

* PCI-to-PCI Bridge Pre-

* and Post-enumeration init

* routines

*/

pciAutoCfgCtl(pCookie, PCI_BRIDGE_PRE_CONFIG_FUNC_SET,

sysPciAutoconfigPreEnumBridgeInit);

pciAutoCfgCtl(pCookie, PCI_BRIDGE_POST_CONFIG_FUNC_SET,

sysPciAutoconfigPostEnumBridgeInit);

/*

* Perform any needed PCI Host Bridge

* Initialization that needs to be done

* before pciAutoConfig is invoked here

* utilizing the information in the

* newly-populated sysParams structure.

*/

pciAutoCfg (&sysParams);

/*

* Perform any needed post-enumeration

* PCI Host Bridge Initialization here.

* Information about the actual configuration

* from the scan and configuration passes

* can be obtained using the assorted

* PCI_*_GET commands to pciAutoCfgCtl().

*/

}

/*

* Local BSP-Specific routines

* supplied by BSP Developer

*/

STATUS sysPciAutoconfigInclude

(

PCI_SYSTEM * pSys, /* PCI_SYSTEM structure pointer */

PCI_LOC * pLoc, /* pointer to function in question */

UINT devVend /* deviceID/vendorID of device */

)

171

VxWorks Drivers API Reference, 5.5
pciAutoConfigLib
{

return OK; /* Autoconfigure all devices */

}

UCHAR sysPciAutoconfigIntrAssign

(

PCI_SYSTEM * pSys, /* PCI_SYSTEM structure pointer */

PCI_LOC * pLoc, /* pointer to function in question */

UCHAR pin /* contents of PCI int pin register */

)

{

return (UCHAR)0xff;

}

void sysPciAutoconfigPreEnumBridgeInit

(

PCI_SYSTEM * pSys, /* PCI_SYSTEM structure pointer */

PCI_LOC * pLoc, /* pointer to function in question */

UINT devVend /* deviceID/vendorID of device */

)

{

return;

}

void sysPciAutoconfigPostEnumBridgeInit

(

PCI_SYSTEM * pSys, /* PCI_SYSTEM structure pointer */

PCI_LOC * pLoc, /* pointer to function in question */

UINT devVend /* deviceID/vendorID of device */

)

{

return;

}

CONFIGURATION SPACE PARAMETERS

The cache line size register specifies the cacheline size in longwords. This register is
required when a device can generate a memory write and Invalidate bus cycle, or when a
device provides cacheable memory to the system.

NOTE: In the above example, the macro _CACHE_ALIGN_SIZE is utilized. This macro is
implemented for all supported architectures and is located in the architecture.h file in
.../target/h/arch/architecture. The value of the macro indicates the cache line size in bytes
for the particular architecture. For example, the PowerPC architecture defines this macro
to be 32, while the ARM 810 defines it to be 16. The PCI cache line size field and the
cacheSize element of the PCI_SYSTEM structure expect to see this quantity in longwords,
so the byte value must be divided by 4.
172

1: Driver Libraries
pcic

P

LIMITATIONS The current version of the autoconfig facility does not support 64-bit prefetchable memory
behind PCI-to-PCI bridges, but it does support 32-bit prefetchable memory.

The autoconfig code also depends upon the BSP Developer specifying resource pools that
do not conflict with any resources that are being used by statically configured devices.

INCLUDE FILES pciAutoConfigLib.h

SEE ALSO PCI Local Bus Specification, Revision 2.1, June 1, 1996 PCI Local Bus PCI to PCI Bridge
Architecture Specification, Revision 1.0, April 5, 1994"

pcic

NAME pcic – Intel 82365SL PCMCIA host bus adaptor chip library

ROUTINES pcicInit() – initialize the PCIC chip

DESCRIPTION This library contains routines to manipulate the PCMCIA functions on the Intel 82365
series PCMCIA chip. The following compatible chips are also supported:

Cirrus Logic PD6712/20/22

Vadem VG468

VLSI 82c146

Ricoh RF5C series

The initialization routine pcicInit() is the only global function and is included in the
PCMCIA chip table pcmciaAdapter. If pcicInit() finds the PCIC chip, it registers all
function pointers of the PCMCIA_CHIP structure.
173

VxWorks Drivers API Reference, 5.5
pciConfigLib
pciConfigLib

NAME pciConfigLib – PCI Configuration space access support for PCI drivers

ROUTINES pciConfigLibInit() – initialize the configuration access-method and addresses
pciFindDevice() – find the nth device with the given device & vendor ID
pciFindClass() – find the nth occurrence of a device by PCI class code.
pciDevConfig() – configure a device on a PCI bus
pciConfigBdfPack() – pack parameters for the Configuration Address Register
pciConfigExtCapFind() – find extended capability in ECP linked list
pciConfigInByte() – read one byte from the PCI configuration space
pciConfigInWord() – read one word from the PCI configuration space
pciConfigInLong() – read one longword from the PCI configuration space
pciConfigOutByte() – write one byte to the PCI configuration space
pciConfigOutWord() – write one 16-bit word to the PCI configuration space
pciConfigOutLong() – write one longword to the PCI configuration space
pciConfigModifyLong() – perform a masked longword register update
pciConfigModifyWord() – perform a masked longword register update
pciConfigModifyByte() – perform a masked longword register update
pciSpecialCycle() – generate a special cycle with a message
pciConfigForeachFunc() – check condition on specified bus
pciConfigReset() – disable cards for warm boot

DESCRIPTION This module contains routines to support accessing the PCI bus Configuration Space. The
library is PCI Revision 2.1 compliant.

In general, these functions should not be called from interrupt level, (except pciInt())
because configuration space access, which is slow, should be limited to initialization only.

The functions addressed here include:

– Initialization of the library.
– Locating a device by Device ID and Vendor ID.
– Locating a device by Class Code.
– Generation of Special Cycles.
– Accessing Configuration Space structures.

PCI BUS CONCEPTS

The PCI bus is an unterminated, high impedance CMOS bus using reflected wave
signalling as opposed to incident wave. Because of this, the PCI bus is physically limited
in length and the number of electrical loads that can be supported. Each device on the bus
represents one load, including adapters and bridges.

To accommodate additional devices, the PCI standard allows multiple PCI buses to be
interconnected via PCI-to-PCI bridge (PPB) devices to form one large bus. Each
constituent bus is referred to as a bus segment and is subject to the above limitations.
174

1: Driver Libraries
pciConfigLib

P

The bus segment accessible from the host bus adapter is designated the primary bus
segment (see figure). Progressing outward from the primary bus (designated segment
number zero from the PCI architecture point of view) are the secondary and tertiary
buses, numbered as segments one and two, respectively. Due to clock skew concerns and
propagation delays, practical PCI bus architectures do not implement bus segments
beyond the tertiary level.

For further details, refer to the PCI to PCI Bridge Architecture Specification.

CPU

Bridge 0
(host

adapter)

Bridge 1
(P2P)

Bridge 2
(P2P)

Host bus

PCI bus sergment 0

PCI bus segment 1

PCI bus segment 2

(primary bus segment)

(secondary bus segment)

(tertiary bus segment)

dev 0 dev 1 dev 2

dev 0 dev 1 dev 2

dev 0 dev 1 dev 2
175

VxWorks Drivers API Reference, 5.5
pciConfigLib
I/O MACROS AND CPU ENDIANESS

PCI bus I/O operations must adhere to little-endian byte ordering. Thus if an I/O
operation larger than one byte is performed, the lower I/O addresses contain the least
significant bytes of the multi-byte quantity of interest.

For architectures that adhere to big-endian byte ordering, byte-swapping must be
performed. The architecture-specific byte-order translation is done as part of the I/O
operation in the following routines: sysPciInByte(), sysPciInWord(), sysPciInLong(),
sysOutPciByte(), sysPciOutWord(), and sysPciOutLong(). The interface to these
routines is mediated by the following macros:

PCI_IN_BYTE
Read a byte from PCI I/O Space.

PCI_IN_WORD
Read a word from PCI I/O Space.

PCI_IN_LONG
Read a longword from PCI I/O Space.

PCI_OUT_BYTE
Write a byte from PCI I/O Space.

PCI_OUT_WORD
Write a word from PCI I/O Space.

PCI_OUT_LONG
Write a longword from PCI I/O Space.

By default, these macros call the appropriate PCI I/O routine, such as sysPciInWord().
For architectures that do not require byte swapping, these macros simply call the
appropriate default I/O routine, such as sysInWord(). These macros may be redefined by
the BSP if special processing is required.

INITIALIZATION pciConfigLibInit() should be called before any other pciConfigLib() functions.
Generally, this is performed by sysHwInit().

After the library has been initialized, it may be utilized to find devices, and access PCI
configuration space.

Any PCI device can be uniquely addressed within Configuration Space by the geographic
specification of a Bus segment number, Device number, and a Function number (BDF).
The configuration registers of a PCI device are arranged by the PCI standard according to
a Configuration Header structure. The BDF triplet specifies the location of the header
structure of one device. To access a configuration register, its location in the header must
be given. The location of a configuration register of interest is simply the structure
member offset defined for the register. For further details, refer to the PCI Local Bus
Specification, Revision 2.1. Refer to the header file pciConfigLib.h for the defined
standard configuration register offsets.
176

1: Driver Libraries
pciConfigLib

P

The maximum number of Type-1 Configuration Space buses supported in the 2.1
Specifications is 256 (0x00 - 0xFF), far greater than most systems currently support. Most
buses are numbered sequentially from 0. An optional define called PCI_MAX_BUS may be
declared in config.h to override the default definition of 256. Similarly, the default
number of devices and functions may be overridden by defining PCI_MAX_DEV and/or
PCI_MAX_FUNC.

NOTE: The number of devices applies only to bus zero, all others being restricted to 16 by
the 2.1 spec.

ACCESS MECHANISM 1

This is the preferred access mechanism for a PC-AT class machines. It uses two standard
PCI I/O registers to initiate a configuration cycle. The type of cycle is determined by the
Host-bridge device based on the devices primary bus number. If the configuration bus
number matches the primary bus number then a type 0 configuration cycle occurs.
Otherwise a type 1 cycle is generated. This is all transparent to the user.

The two arguments used for mechanism 1 are the CAR register address which by default
is PCI_CONFIG_ADDR (0xCF8), and the CDR register address which is normally
PCI_CONFIG_DATA (0xCFC), for example:

pciConfigLibInit (PCI_MECHANISM_1, PCI_CONFIG_ADDR,

PCI_CONFIG_DATA, NULL);

ACCESS MECHANISM 2

This is the non-preferred legacy mechanism for PC-AT class machines. The three
arguments used for mechanism 2 are the CSE register address which by default is
PCI_CONFIG_CSE (0xCF8), and the Forward register address which is normally
PCI_CONFIG_FORWARD (0xCFA), and the configuration base address which is normally
PCI_CONFIG_BASE (0xC000); for example:

pciConfigLibInit (PCI_MECHANISM_2, PCI_CONFIG_CSE,

PCI_CONFIG_FORWARD, PCI_CONFIG_BASE);

ACCESS MECHANISM 0

We have added a non-standard access method that we call method 0. Selecting method 0
installs user supplied read and write routines to actually handle configuration read and
writes (32 bit accesses only). The BSP will supply pointers to these routines as arguments 2
and 3 (read routine is argument 2, write routine is argument 3). A user provided special
cycle routine is argument 4. The special cycle routine is optional and a NULL pointer
should be used if the special cycle routine is not provided by the BSP.

All accesses are expected to be 32 bit accesses with these routines. The code in this library
will perform bit manipulation to emulate byte and word operations. All routines return
OK to indicate successful operation and ERROR to indicate failure.

Initialization examples using special access method 0:
177

VxWorks Drivers API Reference, 5.5
pciConfigLib
pciConfigLibInit (PCI_MECHANISM_0, myReadRtn,

myWriteRtn, mySpecialRtn);

or:

pciConfigLibInit (PCI_MECHANISM_0, myReadRtn,

myWriteRtn, NULL);

The calling convention for the user read routine is:

STATUS myReadRtn (int bus, int dev, int func,

int reg, int size, void * pResult);

The calling convention for the user write routine is:

STATUS myWriteRtn (int bus, int dev, int func,

int reg, int size, UINT32 data);

The calling convention for the optional special cycle routine is:

STATUS mySpecialRtn (int bus, UINT32 data);

In the Type-1 method, PCI Configuration Space accesses are made by the sequential access
of two 32-bit hardware registers: the Configuration Address Register (CAR) and the
Configuration Data Register (CDR). The CAR is written to first with the 32-bit value
designating the PCI bus number, the device on that bus, and the offset to the
configuration register being accessed in the device. The CDR is then read or written,
depending on whether the register of interest is to be read or written. The CDR access
may be 8-bits, 16-bits, or 32-bits in size. Both the CAR and CDR are mapped by the
standard to predefined addresses in the PCI I/O Space: CAR = 0xCF8 and CDR = 0xCFC.

The Type-2 access method maps any one configuration header into a fixed 4K byte
window of PCI I/O Space. In this method, any PCI I/O Space access within the range of
0xC000 to 0xCFFF will be translated to a Configuration Space access. This access method
utilizes two 8-bit hardware registers: the Configuration Space Enable register (CSE) and
the Forward register (CFR). Like the CAR and CDR, these registers occupy preassigned
PCI I/O Space addresses: CSE = 0xCF8, CFR = 0xCFA. The CSE specifies the device to be
accessed and the function within the device. The CFR specifies the bus number on which
the device of interest resides. The access sequence is 1) write the bus number to CFR, 2)
write the device location information to CSE, and 3) perform an 8-bit, 16-bit, or 32-bit read
or write at an offset into the PCI I/O Space starting at 0xC000. The offset specifies the
configuration register within the configuration header which now appears in the 4K byte
Configuration Space window.

SPECIAL STATUS BITS

Do not use pciConfigOutWord(), pciConfigOutByte(), pciConfigModifyWord(), or
pciConfigModifyByte() to modify the command and status register
(PCI_CFG_COMMAND). The bits in the status register are reset by writing a 1 to them. For
each of the functions, it is possible that they will emulate the operation by reading a 32 bit
quantity, shifting the new data into the proper byte lane and writing back a 32 bit value.
178

1: Driver Libraries
pciConfigLib

P

Improper use may inadvertently clear all error conditions indications if the user tries to
update the command bits. The user should insure that only full 32 bit operations are
performed on the command/status register. Use pciConfigInLong() to read the
Command/Status reg, mask off the status bits, mask or insert the command bit changes
and then use pciConfigOutLong() to rewrite the Command/Status register. Use of
pciConfigModifyLong() is okay if the status bits are rewritten as zeroes.

/*

* This example turns on the write invalidate enable bit in the Command

* register without clearing the status bits or disturbing other

* command bits.

*/

pciConfigInLong (bus, dev, func, PCI_CFG_COMMAND, &temp);

temp &= 0x0000ffff;

temp |= PCI_CMD_WI_ENABLE;

pciConfigOutLong (bus, dev, func, PCI_CFG_COMMAND, temp);

/* -or- include 0xffff0000 in the bit mask for ModifyLong */

pciConfigModifyLong (bus, dev, func, PCI_CFG_COMMAND,

(0xffff0000 | PCI_CMD_WI_ENABLE), PCI_CMD_WI_ENABLE);

The above warning applies to any configuration register containing write 1 to clear bits.

PCI DEVICE LOCATION

After the library has been initialized, the Configuration Space of any PCI device may be
accessed after first locating the device.

Locating a device is accomplished using either pciFindDevice() or pciFindClass(). Both
routines require an index parameter indicating which instance of the device should be
returned, since multiple instances of the same device may be present in a system. The
instance number is zero-based.

pciFindDevice() accepts the following parameters:

vendorId
The vendor ID of the device.

deviceId
The device ID of the device.

index
The instance number.

pciFindClass() simply requires a class code and the index:

classCode
The 24-bit class of the device.

index
The instance number.
179

VxWorks Drivers API Reference, 5.5
pciConfigLib
In addition, both functions return the following parameters by reference:

pBusNo
Where to return bus segment number containing the device.

pDeviceNo
Where to return the device ID of the device.

pFuncNo
Where to return the function number of the device.

These three parameters, Bus segment number, Device number, and Function number
(BDF), provide a means to access the Configuration Space of any PCI device.

PCI BUS SPECIAL CYCLE GENERATION

The PCIbus Special Cycle is a cycle used to broadcast data to one or many devices on a
target PCI bus. It is common, for example, for Intel x86-based systems to broadcast to PCI
devices that the system is about to go into a halt or shutdown condition.

The special cycle is initiated by software. Utilizing CSAM-1, a 32-bit write to the
configuration address port specifying the following

Bus Number
Is the PCI bus of interest.

Device Number
Is set to all 1’s (01Fh).

Function Number
Is set to all 1’s (07d).

Configuration Register Number
Is zeroed.

The pciSpecialCycle() function facilitates generation of a Special Cycle by generating the
correct address data noted above. The data passed to the function is driven onto the bus
during the Special Cycle’s data phase. The parameters to pciSpecialCycle() are:

busNo
Bus on which Special Cycle is to be initiated.

message
Data driven onto AD[31:0] during the Special Cycle.

PCI DEVICE CONFIGURATION SPACE ACCESS

The routines pciConfigInByte(), pciConfigInWord(), pciConfigInLong(),
pciConfigOutByte(), pciConfigOutWord(), and pciConfigOutLong() may be used to
access the Configuration Space of any PCI device, once the library has been properly
initialized. It should be noted that, if no device exists at the given BDF address, the
resultant behavior of the Configuration Space access routines is to return a value with all
bits set, as set forth in the PCI bus standard.
180

1: Driver Libraries
pciConfigLib

P

In addition to the BDF numbers obtained from the pciFindxxx functions, an additional
parameter specifying an offset into the PCI Configuration Space must be specified when
using the access routines. VxWorks includes defined offsets for all of the standard PCI
Configuration Space structure members as set forth in the PCI Local Bus Specification 2.1
and the PCI Local Bus PCI to PCI Bridge Architecture Specification 1.0. The defined offsets
are all prefixed by "PCI_CFG_". For example, if Vendor ID information is required,
PCI_CFG_VENDOR_ID would be passed as the offset argument to the access routines.

In summary, the pci configuration space access functions described above accept the
following parameters.

Input routines:

busNo
Bus segment number on which the device resides.

deviceNo
Device ID of the device.

funcNo
Function number of the device.

offset
Offset into the device configuration space.

pData
Where to return the data.

Ouput routines:

busNo
Bus segment number on which the device resides.

deviceNo
Device ID of the device.

funcNo
function number of the device.

offset
Offset into the device configuration space.

data
Data to be written.

PCI CONFIG SPACE OFFSET CHECKING

PciConfigWordIn(), pciConfigWordOut(), pciConfigLongIn(), and
pciConfigLongOut() check the offset parameter for proper offset alignment. Offsets
should be multiples of 4 for longword accesses and multiples of 2 for word accesses.
Misaligned accesses will not be performed and ERROR will be returned.
181

VxWorks Drivers API Reference, 5.5
pciConfigLib
The previous default behavior for this library was to not check for valid offset values. This
has been changed and checks are now done by default. These checks exist to insure that
the user gets the correct data using the correct configuration address offsets. The user
should define PCI_CONFIG_OFFSET_NOCHECK to achieve the older behavior. If user code
behavior changes, the user should investigate why and fix the code that is calling into this
library with invalid offset values.

PCI DEVICE CONFIGURATION

The function pciDevConfig() is used to configure PCI devices that require no more than
one Memory Space and one I/O Space. According to the PCI standard, a device may have
up to six 32-bit Base Address Registers (BARs) each of which can have either a Memory
Space or I/O Space base address. In 64-bit PCI devices, the registers double up to give a
maximum of three 64-bit BARs. The 64-bit BARs are not supported by this function nor
are more than one 32-bit BAR of each type, Memory or I/O.

The pciDevConfig() function sets up one PCI Memory Space and/or one I/O Space BAR
and issues a specified command to the device to enable it. It takes the following
parameters:

pciBusNo
PCI bus segment number.

pciDevNo
PCI device number.

pciFuncNo
PCI function number.

devIoBaseAdrs
Base address of one IO-mapped resource.

devMemBaseAdrs
Base address of one memory-mapped resource.

command
Command to issue to device after configuration.

UNIFORM DEVICE ACCESS

The function pciConfigForeachFunc() is used to perform some action on every device on
the bus. This does a depth-first recursive search of the bus and calls a specified routine for
each function it finds. It takes the following parameters:

bus
The bus segment to start with. This allows configuration on and below a specific
place in the bus hierarchy.

recurse
A boolean argument specifying whether to do a recursive search or to do just the
specified bus.
182

1: Driver Libraries
pciConfigLib

P

funcCheckRtn
A user supplied function which will be called for each PCI function found. It must
return STATUS. It takes four arguments: "bus", "device", "function", and a
user-supplied arg "pArg". The typedef PCI_FOREACH_FUNC is defined in
pciConfigLib.h for these routines.

NOTE: It is possible to apply "funcCheckRtn()" only to devices of a specific type by
querying the device type for the class code. Similarly, it is possible to exclude bridges or
any other device type using the same mechanism.

pArg
The fourth argument to funcCheckRtn().

SYSTEM RESET The function pciConfigReset() is useful at the time of a system reset. When doing a
system reset, the devices on the system should be disabled so that they do not write to
RAM while the system is trying to reboot. The function pciConfigReset() can be installed
using rebootHookAdd(), or it can be called directly from sysToMonitor() or elsewhere
in the BSP. It accepts one argument for compatibility with rebootHookAdd():

startType
Ignored.

NOTE: This function disables all access to the PCI bus except for the use of PCI config
space. If there are devices on the PCI bus which are required to reboot, then those devices
must be re-enabled after the call to pciConfigReset() or the system will not be able to
reboot.

USAGE The following code sample illustrates the usage of this library. Initialization of the library
is performed first, then a sample device is found and initialized.

#include "drv/pci/pciConfigLib.h"

#define PCI_ID_LN_DEC21140 0x00091011

IMPORT pciInt();

LOCAL VOID deviceIsr(int);

int param;

STATUS result;

int pciBusNo; /* PCI bus number */

int pciDevNo; /* PCI device number */

int pciFuncNo; /* PCI function number */

/*

* Initialize module to use CSAM-1

* (if not performed in sysHwInit())

*/

if (pciConfigLibInit (PCI_MECHANISM_1,

PCI_PRIMARY_CAR,

PCI_PRIMARY_CDR,

0)
183

VxWorks Drivers API Reference, 5.5
pciConfigLib
!= OK)

{

sysToMonitor (BOOT_NO_AUTOBOOT);

}

/*

* Find a device by its device ID, and use the

* Bus, Device, and Function number of the found

* device to configure it, using pciDevConfig(). In

* this case, the first instance of a DEC 21040

* Ethernet NIC is searched for. If the device

* is found, the Bus, Device Number, and Function

* Number are fed to pciDevConfig, along with the

* constant PCI_IO_LN2_ADRS, which defines the start

* of the I/O space utilized by the device. The

* device and its I/O space is then enabled.

*

*/

if (pciFindDevice (PCI_ID_LN_DEC21040 & 0xFFFF,

(PCI_ID_LN_DEC21040 >> 16) & 0xFFFF,

0,

&pciBusNo,

&pciDevNo,

&pciFuncNo)

!= ERROR)

{

(void)pciDevConfig (pciBusNo, pciDevNo, pciFuncNo,

PCI_IO_LN2_ADRS,

NULL,

(PCI_CMD_MASTER_ENABLE |

PCI_CMD_IO_ENABLE));

}

INCLUDE FILES pciConfigLib.h

SEE ALSO PCI Local Bus Specification, Revision 2.1, June 1, 1996 PCI Local Bus PCI to PCI Bridge
Architecture Specification, Revision 1.0, April 5, 1994"
184

1: Driver Libraries
pcicShow

P

pciConfigShow

NAME pciConfigShow – show routines of PCI bus (IO mapped) library

ROUTINES pciDeviceShow() – print information about PCI devices
pciHeaderShow() – print a header of the specified PCI device
pciFindDeviceShow() – find a device by device Id, then print an information
pciFindClassShow() – find a device by 24-bit class code
pciConfigStatusWordShow() – show the decoded value of the status word
pciConfigCmdWordShow() – show the decoded value of the command word
pciConfigFuncShow() – show configuration details about a function
pciConfigTopoShow() – show PCI topology

DESCRIPTION This module contains show routines to see all devices and bridges on the PCI bus. This
module works in conjunction with pciConfigLib.o. There are two ways to find out an
empty device.

– Check Master Abort bit after the access.

– Check whether the read value is 0xffff.

It uses the second method, since I did not see the Master Abort bit of the host/PCI bridge
changing.

pcicShow

NAME pcicShow – Intel 82365SL PCMCIA host bus adaptor chip show library

ROUTINES pcicShow() – show all configurations of the PCIC chip

DESCRIPTION This is a driver show routine for the Intel 82365 series PCMCIA chip. pcicShow() is the
only global function and is installed in the PCMCIA chip table pcmciaAdapter in
pcmciaShowInit().
185

VxWorks Drivers API Reference, 5.5
pciIntLib
pciIntLib

NAME pciIntLib – PCI Shared Interrupt support

ROUTINES pciIntLibInit() – initialize the pciIntLib module
pciInt() – interrupt handler for shared PCI interrupt.
pciIntConnect() – connect the interrupt handler to the PCI interrupt.
pciIntDisconnect() – disconnect the interrupt handler (OBSOLETE)
pciIntDisconnect2() – disconnect an interrupt handler from the PCI interrupt.

DESCRIPTION This component is PCI Revision 2.1 compliant.

The functions addressed here include:

– Initialize the library.

– Connect a shared interrupt handler.

– Disconnect a shared interrupt handler.

– Master shared interrupt handler.

Shared PCI interrupts are supported by three functions: pciInt(), pciIntConnect(), and
pciIntDisconnect2(). pciIntConnect() adds the specified interrupt handler to the link list
and pciIntDisconnect2() removes it from the link list. The master interrupt handler,
pciInt(), executes these interrupt handlers in the link list for a PCI interrupt. Each
interrupt handler must check the device dependent interrupt status bit to determine the
source of the interrupt, since it simply execute all interrupt handlers in the link list.
pciInt() should be attached by intConnect() function in the BSP initialization with its
parameter. The parameter is an vector number associated to the PCI interrupt.

pcmciaLib

NAME pcmciaLib – generic PCMCIA event-handling facilities

ROUTINES pcmciaInit() – initialize the PCMCIA event-handling package
pcmciad() – handle task-level PCMCIA events

DESCRIPTION This library provides generic facilities for handling PCMCIA events.

USER-CALLABLE ROUTINES

Before the driver can be used, it must be initialized by calling pcmciaInit(). This routine
should be called exactly once, before any PC card device driver is used. Normally, it is
186

1: Driver Libraries
pcmciaShow

P

called from usrRoot() in usrConfig.c.

The pcmciaInit() routine performs the following actions:

Creates a message queue.

Spawns a PCMCIA daemon, which handles jobs in the message queue.

Finds out which PCMCIA chip is installed and fills out the PCMCIA_CHIP structure.

Connects the CSC (Card Status Change) interrupt handler.

Searches all sockets for a PC card. If a card is found, it:

Gets CIS (Card Information Structure) information from a card

Determines what type of PC card is in the socket

Allocates a resource for the card if the card is supported

Enables the card

Enables the CSC interrupt.

The CSC interrupt handler performs the following actions:

Searches all sockets for CSC events.

Calls the PC card’s CSC interrupt handler, if there is a PC card in the socket.

If the CSC event is a hot insertion, it asks the PCMCIA daemon to call cisGet() at task
level. This call reads the CIS, determines the type of PC card, and initializes a device
driver for the card.

If the CSC event is a hot removal, it asks the PCMCIA daemon to call cisFree() at task
level. This call de-allocates resources.

pcmciaShow

NAME pcmciaShow – PCMCIA show library

ROUTINES pcmciaShowInit() – initialize all show routines for PCMCIA drivers
pcmciaShow() – show all configurations of the PCMCIA chip

DESCRIPTION This library provides a show routine that shows the status of the PCMCIA chip and the
PC card.
187

VxWorks Drivers API Reference, 5.5
ppc403Sio
ppc403Sio

NAME ppc403Sio – ppc403GA serial driver

ROUTINES ppc403DummyCallback() – dummy callback routine
ppc403DevInit() – initialize the serial port unit
ppc403IntWr() – handle a transmitter interrupt
ppc403IntRd() – handle a receiver interrupt
ppc403IntEx() – handle error interrupts

DESCRIPTION This is the driver for PPC403GA serial port on the on-chip peripheral bus. The SPU (serial
port unit) consists of three main elements: receiver, transmitter, and baud-rate generator.
For details, refer to the PPC403GA Embedded Controller User’s Manual.

USAGE A PPC403_CHAN structure is used to describe the chip. This data structure contains the
single serial channel. The BSP’s sysHwInit() routine typically calls sysSerialHwInit()
which initializes all the values in the PPC403_CHAN structure (except the
SIO_DRV_FUNCS) before calling ppc403DevInit(). The BSP’s sysHwInit2() routine
typically calls sysSerialHwInit2() which connects the chip interrupt routines
ppc403IntWr() and ppc403IntRd() via intConnect().

IOCTL FUNCTIONS This driver responds to the same ioctl() codes as other SIO drivers; for more information,
see sioLib.h.

INCLUDE FILES drv/sio/ppc403Sio.h

ppc555SciSio

NAME ppc555SciSio – MPC555 SCI serial driver

ROUTINES ppc555SciDevInit() – initialize a PPC555SCI channel
ppc555SciDevInit2() – initialize a PPC555SCI, part 2
ppc555SciInt() – handle a channel’s interrupt

DESCRIPTION This is the driver for SCIs of the QSMC the Motorola PPC555. The SMC has two SCI
channels. Both channels are compatible with earlier SCI devices from Motorola (eg.
MC68332), with enhancements to allow external baud clock source and queued operation
fro the first SCI channel.

DATA STRUCTURES An PPC555SCI_CHAN data structure is used to describe each channel, this structure is
described in h/drv/sio/ppc555SciSio.h. Based on the "options" field of this structure, the
188

1: Driver Libraries
ppc860Sio

P

driver can work in queued or non-queued mode. Only the first SCI of the QSMC on the
PowerPC 555 provides queued mode operation.

CALLBACKS Servicing a "transmitter ready" interrupt involves making a callback to a higher level
library in order to get a character to transmit. By default, this driver installs dummy
callback routines which do nothing. A higher layer library that wants to use this driver
(e.g. ttyDrv) will install its own callback routine using the SIO_INSTALL_CALLBACK ioctl
command. Likewise, a receiver interrupt handler makes a callback to pass the character to
the higher layer library.

MODES This driver supports both polled and interrupt modes.

USAGE The BSP’s sysHwInit() routine typically calls sysSerialHwInit(), which initializes all the
values in the PPC555SCI_CHAN structure (except the SIO_DRV_FUNCS) before calling
m68332DevInit().

The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2(), which connects the
chips interrupt (m68332Int) via intConnect().

INCLUDE FILES drv/sio/ppc555SciSio.h, sioLib.h

SEE ALSO Section 14 Queued Serial Multi-channel Module, MPC555 User’s Manual

ppc860Sio

NAME ppc860Sio – Motorola MPC800 SMC UART serial driver

ROUTINES ppc860DevInit() – initialize the SMC
ppc860Int() – handle an SMC interrupt

DESCRIPTION This is the driver for the SMCs in the internal Communications Processor (CP) of the
Motorola MPC68860/68821. This driver only supports the SMCs in asynchronous UART
mode.

USAGE A PPC800SMC_CHAN structure is used to describe the chip. The BSP’s sysHwInit()
routine typically calls sysSerialHwInit(), which initializes all the values in the
PPC860SMC_CHAN structure (except the SIO_DRV_FUNCS) before calling
ppc860DevInit().

The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2() which connects the
chip’s interrupts via intConnect().

INCLUDE FILES drv/sio/ppc860Sio.h
189

VxWorks Drivers API Reference, 5.5
sa1100Sio
sa1100Sio

NAME sa1100Sio – Digital Semiconductor SA-1100 UART tty driver

ROUTINES sa1100DevInit() – initialize an SA1100 channel
sa1100Int() – handle an interrupt

DESCRIPTION This is the device driver for the Digital Semiconductor SA-1100 UARTs. This chip contains
5 serial ports, but only ports 1 and 3 are usable as UARTs, the others support Universal
Serial Bus (USB), SDLC, IrDA Infrared Communications Port (ICP) and Multimedia
Communications Port (MCP)/Synchronous Serial Port (SSP).

The UARTs are identical in design. They contain a universal asynchronous
receiver/transmitter, and a baud-rate generator, The UARTs contain an 8-entry, 8-bit
FIFO to buffer outgoing data and a 12-entry 11-bit FIFO to buffer incoming data. If a
framing, overrun or parity error occurs during reception, the appropriate error bits are
stored in the receive FIFO along with the received data. The only mode of operation
supported is with the FIFOs enabled.

The UART design does not support modem control input or output signals e.g. DTR, RI,
RTS, DCD, CTS and DSR.

An interrupt is generated when a framing, parity or receiver overrun error is present
within the bottom four entries of the receive FIFO, when the transmit FIFO is half-empty
or receive FIFO is one- to two-thirds full, when a begin and end of break is detected on the
receiver, and when the receive FIFO is partially full and the receiver is idle for three or
more frame periods.

Only asynchronous serial operation is supported by the UARTs which supports 7 or 8 bit
word lengths with or without parity and with one or two stop bits. The only serial word
format supported by the driver is 8 data bits, 1 stop bit, no parity, The default baud rate is
determined by the BSP by filling in the SA1100_CHAN structure before calling
sa1100DevInit().

The UART supports baud rates from 56.24 to 230.4 kbps.

DATA STRUCTURES

An SA1100_CHAN data structure is used to describe each channel, this structure is
described in h/drv/sio/sa1100Sio.h.

CALLBACKS Servicing a "transmitter ready" interrupt involves making a callback to a higher level
library in order to get a character to transmit. By default, this driver installs dummy
callback routines which do nothing. A higher layer library that wants to use this driver
(e.g. ttyDrv) will install its own callback routine using the SIO_INSTALL_CALLBACK ioctl
command. Likewise, a receiver interrupt handler makes a callback to pass the character to
the higher layer library.
190

1: Driver Libraries
sa1100Sio

S

MODES This driver supports both polled and interrupt modes.

USAGE The driver is typically only called by the BSP. The directly callable routines in this
modules are sa1100DevInit(), and sa1100Int().

The BSP’s sysHwInit() routine typically calls sysSerialHwInit(), which initializes the
hardware-specific fields in the SA1100_CHAN structure (e.g. register I/O addresses, etc.)
before calling sa1100DevInit() which resets the device and installs the driver function
pointers. After this the UART will be enabled and ready to generate interrupts, but those
interrupts will be disabled in the interrupt controller.

The following example shows the first parts of the initialization:

#include "drv/sio/sa1100Sio.h"

LOCAL SA1100_CHAN sa1100Chan[N_SA1100_UART_CHANS];

void sysSerialHwInit (void)

{

int i;

for (i = 0; i < N_SA1100_UART_CHANNELS; i++)

{

sa1100Chan[i].regs = devParas[i].baseAdrs;

sa1100Chan[i].baudRate = CONSOLE_BAUD_RATE;

sa1100Chan[i].xtal = UART_XTAL_FREQ;

sa1100Chan[i].level = devParas[i].intLevel;

/* set up GPIO pins and UART pin reassignment */

...

/*

* Initialise driver functions, getTxChar, putRcvChar

* and channelMode and initialise UART

*/

sa1100DevInit(&sa1100Chan[i]);

}

}

The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2(), which connects and
enables the chips interrupts via intConnect(), as shown in the following example:

void sysSerialHwInit2 (void)

{

int i;

for (i = 0; i < N_SA1100_UART_CHANNELS; i++)

{

/* connect and enable interrupts */

(void)intConnect (INUM_TO_IVEC(devParas[i].vector),

sa1100Int, (int) &sa1100Chan[i]);

intEnable (devParas[i].intLevel);

}

}

191

VxWorks Drivers API Reference, 5.5
sab82532
BSP By convention, all the BSP-specific serial initialization is performed in a file called
sysSerial.c, which is #included by sysLib.c. sysSerial.c implements at least four functions,
sysSerialHwInit(), sysSerialHwInit2(), sysSerialChanGet(), and sysSerialReset(). The
first two have been described above, the others work as follows:

sysSerialChanGet() is called by usrRoot to get the serial channel descriptor associated
with a serial channel number. The routine takes a single parameter which is a channel
number ranging between zero and NUM_TTY. It returns a pointer to the corresponding
channel descriptor, SIO_CHAN *, which is just the address of the SA1100_CHAN
structure.

sysSerialReset() is called from sysToMonitor() and should reset the serial devices to an
inactive state (prevent them from generating any interrupts).

INCLUDE FILES drv/sio/sa1100Sio.h, sioLib.h

SEE ALSO Digital StrongARM SA-1100 Portable Communications Microcontroller, Data Sheet, Digital
Semiconductor StrongARM SA-1100 Microprocessor Evaluation Platform, User’s Guide

sab82532

NAME sab82532 – Siemens SAB 82532 UART tty driver

ROUTINES sab82532DevInit() – initialize an SAB82532 channel
sab82532Int() – interrupt level processing

DESCRIPTION This is the device driver for the sab82532 (D)UART.

USAGE A SAB82532_CHAN data structure is used to describe each channel on the chip.

The BSP’s sysHwInit() routine typically calls sysSerialHwInit(), which initializes all the
values in the SAB82532_CHAN structure (except the SIO_DRV_FUNCS) before calling
sab82532DevInit(). The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2(),
which connects the chips interrupts via intConnect().

INCLUDE FILES drv/sio/ns16552Sio.h
192

1: Driver Libraries
sh7615End

S

sh7615End

NAME sh7615End – sh7615End END network interface driver

ROUTINES sh7615EndLoad() – initialize the driver and device

DESCRIPTION This module implements an network interface driver for the Hitachi SH7615 on-chip
Ethernet controller (EtherC) and EtherNet COntroller Direct Memory Access Controller
(E-DMAC). The EtherC is fully compliant with the IEEE 802.3 10Base-T and 100Base-T
specifications. Hardware support of the Media Independent Interface (MII) is off-chip.

The Ethernet controller is connected to dedicated transmit and receive Ethernet DMACs
(E-DMACs) in the SH7615, and carries out high-speed data transfer to and from memory.
The operation of the E-DMAC is controlled with the transmit and receive descriptor rings.
The start address of the descriptors is set in the RDLAR and TDLAR registers, so they can
reside anywhere. The descriptors must reside on boundaries that are multiple of their size
(16, 32, or 64 bytes).

EXTERNAL INTERFACE

The driver provides the standard external interface, sh7615EndLoad(), which takes a
string of colon-separated parameters. The parameters should be specified in hexadecimal,
optionally preceded by "0x" or a minus sign "-".

The parameter string is parsed using strtok_r() and each parameter is converted from a
string representation to binary by a call to:

strtoul(parameter, NULL, 16)

The format of the parameter string is:

"ivec:ilevel:numRds:numTds:phyDefMode:userFlags"

TARGET-SPECIFIC PARAMETERS

ivec
This is the interrupt vector number of the hardware interrupt generated by this
Ethernet device. The driver uses intConnect() to attach an interrupt handler for this
interrupt.

ilevel
This parameter defines the level of the hardware interrupt.

numRds
The number of receive descriptors to use. This controls how much data the device can
absorb under load. If this is specified as NONE (-1), the default of 32 is used.

numTds
The number of transmit descriptors to use. This controls how much data the device
193

VxWorks Drivers API Reference, 5.5
sh7615End
can absorb under load. If this is specified as NONE (-1) then the default of 64 is used.

phyDefMode
This parameter specifies the operating mode that will be set up by the default
physical layer initialization routine in case all the attempts made to establish a valid
link failed. If that happens, the first PHY that matches the specified abilities will be
chosen to work in that mode, and the physical link will not be tested.

userFlags
This field enables the user to give some degree of customization to the driver. Bit [0-3]
reserved for receive FIFO depth and bit [4-7] reserved for transmit FIFO depth. The
actual FIFO size is 256 times + 256 the set value for each FIFO. The max FIFO depth is
512 bytes for SH7615 (i.e. 0x1 for receive FIFO, 0x10 for transmit FIFO) and 2048 bytes
for SH7616 (i.e. 0x7 for receive FIFO, 0x70 for transmit FIFO).

The macros SYS_INT_CONNECT, SYS_INT_DISCONNECT, and SYS_INT_ENABLE allow the
driver to be customized for BSPs that use special versions of these routines.

The macro SYS_INT_CONNECT is used to connect the interrupt handler to the appropriate
vector. By default it is the routine intConnect().

The macro SYS_INT_DISCONNECT is used to disconnect the interrupt handler prior to
unloading the module. By default this is a dummy routine that returns OK.

The macro SYS_INT_ENABLE is used to enable the interrupt level for the end device. It is
called once during initialization. By default this is the routine sysLanIntEnable(), defined
in the module sysLib.o.

The macro SYS_ENET_ADDR_GET is used to get the ethernet address (MAC) for the
device. The single argument to this routine is the SH7615END_DRV_CTRL pointer. By
default this routine copies the ethernet address stored in the global variable
sysTemplateEnetAddr into the SH7615END_DRV_CTRL structure.

SEE ALSO muxLib, endLib, Writing An Enhanced Network Driver SH7615 Hardware Manual
194

1: Driver Libraries
shSciSio

S

shScifSio

NAME shScifSio – Hitachi SH SCIF (Serial Communications Interface) driver

ROUTINES shScifDevInit() – initialize a on-chip serial communication interface
shScifIntRcv() – handle a channel’s receive-character interrupt
shScifIntTx() – handle a channels transmitter-ready interrupt
shScifIntErr() – handle a channel’s error interrupt
dummyCallback() – dummy callback routine

DESCRIPTION This is the driver for the Hitachi SH series on-chip SCIF (Serial Communication Interface
with FIFO). It uses the SCIF in asynchronous mode only.

USAGE A SCIF_CHAN structure is used to describe the chip. The BSP’s sysHwInit() routine
typically calls sysSerialHwInit() which initializes all the values in the SCIF_CHAN
structure (except the SIO_DRV_FUNCS) before calling shSciDevInit(). The BSP’s
sysHwInit2() routine typically calls sysSerialHwInit2(), which connects the chips
interrupts via intConnect().

INCLUDE FILES drv/sio/shSciSio.h drv/sio/shScifSio.h, sioLib.h

shSciSio

NAME shSciSio – Hitachi SH SCI (Serial Communications Interface) driver

ROUTINES shSciDevInit() – initialize a on-chip serial communication interface
shSciIntRcv() – handle a channel’s receive-character interrupt.
shSciIntTx() – handle a channels transmitter-ready interrupt.
shSciIntErr() – handle a channel’s error interrupt.
dummyCallback() – dummy callback routine.

DESCRIPTION This is the driver for the Hitachi SH series on-chip SCI (Serial Communication Interface).
It uses the SCI in asynchronous mode only.

USAGE A SCI_CHAN structure is used to describe the chip. The BSP’s sysHwInit() routine
typically calls sysSerialHwInit() which initializes all the values in the SCI_CHAN
structure (except the SIO_DRV_FUNCS) before calling shSciDevInit(). The BSP’s
sysHwInit2() routine typically calls sysSerialHwInit2(), which connects the chips
interrupts via intConnect().

INCLUDE FILES drv/sio/shSciSio.h, sioLib.h
195

VxWorks Drivers API Reference, 5.5
smcFdc37b78x
smcFdc37b78x

NAME smcFdc37b78x – a super IO (fdc37b78x) initialization source module

ROUTINES smcFdc37b78xDevCreate() – set correct IO port addresses for Super I/O chip
smcFdc37b78xInit() – initializes Super I/O chip Library
smcFdc37b78xKbdInit() – initializes the keyboard controller

DESCRIPTION The FDC37B78x with advanced Consumer IR and IrDA v1.0 support incorporates a
keyboard interface, real-time clock, SMSC’s true CMOS 765B floppy disk controller,
advanced digital data separator, 16 byte data FIFO, two 16C550 compatible UARTs, one
Multi-Mode parallel port which includes ChiProtect circuitry plus EPP and ECP support,
on-chip 12 mA AT bus drivers, and two floppy direct drive support, soft power
management and SMI support and Intelligent Power Management including PME and
SCI/ACPI support. The true CMOS 765B core provides 100% compatibility with IBM
PC/XT and PC/AT architectures in addition to providing data overflow and underflow
protection. The SMSC advanced digital data separator incorporates SMSC’s patented data
separator technology, allowing for ease of testing and use. Both on-chip UARTs are
compatible with the NS16C550. The parallel port, the IDE interface, and the game port
select logic are compatible with IBM PC/AT architecture, as well as EPP and ECP.

The FDC37B78x incorporates sophisticated power control circuitry (PCC) which includes
support for keyboard, mouse, modem ring, power button support and consumer infrared
wake-up events. The PCC supports multiple low power down modes.

The FDC37B78x provides features for compliance with the "Advanced Configuration and
Power Interface Specification" (ACPI). These features include support of both legacy and
ACPI power management models through the selection of SMI or SCI. It implements a
power button override event (4 second button hold to turn off the system) and either edge
triggered interrupts.

The FDC37B78x provides support for the ISA Plug-and-Play Standard (Version 1.0a) and
provides for the recommended functionality to support Windows95, PC97 and PC98.
Through internal configuration registers, each of the FDC37B78x’s logical device’s I/O
address, DMA channel and IRQ channel may be programmed. There are 480 I/O address
location options, 12 IRQ options or Serial IRQ option, and four DMA channel options for
each logical device.

USAGE This library provides routines to initialize various logical devices on super IO chip
(fdc37b78x).

The functions addressed here include:

– Creating a logical device and initializing internal database accordingly.

– Enabling as many device as permitted by this facility by single call. The user of the
facility can selectively initialize a set of devices on super IO chip.
196

1: Driver Libraries
smcFdc37b78x

S

– Initializing keyboard by sending commands to its controller embedded in super IO
chip.

INTERNAL DATABASES

This library provides it’s user to changes super IO’s config, index, and data I/O port
addresses. The default I/O port addresses are defined in target/h/drv/smcFdc37b78x.h
file. These mnemonics can be overridden by defining in architecture related BSP header
file. These defauAPI Referencet setting can also be changed on-the-fly by passing in a
pointer of type SMCFDC37B78X_IOPORTS with different I/O port addresses. If not
redefined, they take their default values as defined in smcFdc37b78x.h file.

SMCFDC37B78X_CONFIG_PORT
Defines the config I/O port for SMC-FDC37B78X super IO chip.

SMCFDC37B78X_INDEX_PORT
Defines the index I/O port for SMC-FDC37B78X super IO chip.

SMCFDC37B78X_DATA_PORT
Defines the data I/O port for SMC-FDC37B78X super IO chip.

USER INTERFACE VOID smcFdc37b78xDevCreate

(

SMCFDC37B78X_IOPORTS *smcFdc37b78x_iop

)

This is a very first routine that should be called by the user of this library. This routine sets
up IO port address that will subsequently be used later on. The IO PORT setting could
either be overridden by redefining SMCFDC37B78X_CONFIG_PORT,
SMCFDC37B78X_INDEX_PORT, and SMCFDC37B78X_DATA_PORT or on-the-fly by passing
in a pointer of type SMCFDC37B78X_IOPORTS.

VOID smcFdc37b78xInit

(

int devInitMask

)

This is routine intakes device initialization mask and initializes only those devices that are
requested by user. Device initialization mask holds bitwise ORed values of all devices that
are requested by user to enable on super IO device.

The mnemonics that are supported in current version of this facility are:

SMCFDC37B78X_COM1_EN
Use this mnemonic to enable COM1 only.

SMCFDC37B78X_COM2_EN
Use this mnemonic to enable COM2 only.

SMCFDC37B78X_LPT1_EN
Use this mnemonic to enable LPT1 only.
197

VxWorks Drivers API Reference, 5.5
smNetLib
SMCFDC37B78X_KBD_EN
Use this mnemonic to enable KBD only.

SMCFDC37B78X_FDD_EN
Use this mnemonic to enable FDD only.

The above mentioned can be bitwise ORed to enable more than one device at a time. e.g. if
you want COM1 and COM2 to be enable on super IO chip call:

smcFdc37b78xInit (SMCFDC37B78X_COM1_EN | SMCFDC37B78X_COM2_EN);

The prerequisites for above mentioned call, super IOchip library should be initialized
using smcFdc37b78xDevCreate() with parameter as per user’s need.

STATUS smcFdc37b78xKbdInit

(

VOID

)

This routine sends some keyboard commands to keyboard controller embedded in super
IO chip. Call to this function is required for proper functioning of keyboard driver.

INCLUDE FILES smcFdc37b78x.h

smNetLib

NAME smNetLib – VxWorks interface to shared memory network (backplane) driver

DESCRIPTION This library implements the VxWorks-specific portions of the shared memory network
interface driver. It provides the interface between VxWorks and the network driver
modules (e.g., how the OS initializes and attaches the driver, interrupt handling, etc.), as
well as VxWorks-dependent system calls.

There are no user-callable routines.

The backplane master initializes the backplane shared memory and network structures by
first calling smNetInit(). Once the backplane has been initialized, all processors can be
attached to the shared memory network via the smNetAttach() routine. Both
smNetInit() and smNetAttach() are called automatically during system initialization
when backplane parameters are specified in the boot line.

For detailed information refer to VxWorks Network Programmer’s Guide: Data Link Layer
Network Components.

INCLUDE FILES smNetLib.h, smPktLib.h, smUtilLib.h

SEE ALSO ifLib, if_sm, VxWorks Network Programmer’s Guide
198

1: Driver Libraries
sn83932End

S

smNetShow

NAME smNetShow – shared memory network driver show routines

ROUTINES smNetShow() – show information about a shared memory network

DESCRIPTION This library provides show routines for the shared memory network interface driver.

The smNetShow() routine is provided as a diagnostic aid to show current shared
memory network status.

INCLUDE FILES smNetLib.h, smPktLib.h

SEE ALSO if_sm, smNetLib, smPktLib, VxWorks Network Programmer’s Guide

sn83932End

NAME sn83932End – Nat. Semi DP83932B SONIC Ethernet driver

ROUTINES sn83932EndLoad() – initialize the driver and device

DESCRIPTION This module implements the National Semiconductor DP83932 SONIC Ethernet network
interface driver.

This driver is designed to be moderately generic. Thus, it operates unmodified across the
range of architectures and targets supported by VxWorks. To achieve this, the driver load
routine requires several target-specific parameters. The driver also depends on a few
external support routines. These parameters and support routines are described below. If
any of the assumptions stated below are not true for your particular hardware, this driver
probably cannot function correctly with that hardware. This driver supports up to four
individual units per CPU.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver provides the END external interface. Thus, the only normal external interface
is the sn83932EndLoad() routine, although snEndClkEnable() and snEndClkDisable()
are provided for the use (optional) of the internal clock. All required parameters are
passed into the load function by means of a single colon-delimited string. The
sn83932Load() function uses strtok() to parse the string, which it expects to be of the
following format:
199

VxWorks Drivers API Reference, 5.5
sn83932End
unit_ID:devIO_addr:ivec:e_addr

The entry point for sn83932EndLoad() is defined within the endDevTbl in configNet.h.

TARGET-SPECIFIC PARAMETERS

unit_ID
A convenient holdover from the former model, this is only used in the string name
for the driver.

devIO_addr
Denotes the base address of the device’s I/O register set.

ivec
Denotes the interrupt vector to be used by the driver to service an interrupt from the
SONIC device. The driver connects the interrupt handler to this vector by calling
intConnect().

e_addr
This parameter is obtained by calling sysEnetAddrGet(), an external support routine.
It specifies the unique six-byte address assigned to the VxWorks target on the
Ethernet.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires the following external support routines:

sysEnetInit()
void sysEnetInit (int unit)

This routine performs any target-specific operations that must be executed before the
SONIC device is initialized. The driver calls this routine, once per unit, during the
unit start-up phase.

sysEnetAddrGet()
STATUS sysEnetAddrGet (int unit, char *pCopy)

This routine provides the six-byte Ethernet address used by unit. It must copy the
six-byte address to the space provided by pCopy. This routine returns OK, or ERROR
if it fails. The driver calls this routine, once per unit, during the unit start-up phase.

sysEnetIntEnable()
void sysEnetIntEnable (int unit), void sysEnetIntDisable (int unit)

These routines enable or disable the interrupt from the SONIC device for the
specified unit. Typically, this involves interrupt controller hardware, either internal or
external to the CPU. The driver calls these routines only during initialization, during
the unit start-up phase.

sysEnetIntAck()
void sysEnetIntAck (int unit)

This routine performs any interrupt acknowledgment or clearing that may be
required. This typically involves an operation to some interrupt control hardware.
The driver calls this routine from the interrupt handler.
200

1: Driver Libraries
sramDrv

S

DEVICE CONFIGURATION

Two global variables, snEndDcr and snEndDcr2, are used to set the SONIC device
configuration registers. By default, the device is programmed in 32-bit mode with
zero-wait states. If these values are not suitable, the snEndDcr and snEndDcr2 variables
should be modified before loading the driver. See the SONIC manual for information on
appropriate values for these parameters.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

– one interrupt vector

– 0 bytes in the initialized data section (data)

– 696 bytes in the uninitialized data section (BSS)

The above data and BSS requirements are for the MC68020 architecture and can vary for
other architectures. Code size (text) varies greatly between architectures and is therefore
not quoted here.

This driver uses cacheDmaMalloc() to allocate the memory to be shared with the SONIC
device. The size requested is 117,188 bytes.

The SONIC device can only be operated if the shared memory region is write-coherent
with the data cache. The driver cannot maintain cache coherency for the device for data
that is written by the driver because fields within the shared structures are
asynchronously modified by the driver and the device, and these fields may share the
same cache line.

SEE ALSO ifLib

sramDrv

NAME sramDrv – PCMCIA SRAM device driver

ROUTINES sramDrv() – install a PCMCIA SRAM memory driver
sramMap() – map PCMCIA memory onto a specified ISA address space
sramDevCreate() – create a PCMCIA memory disk device

DESCRIPTION This is a device driver for the SRAM PC card. The memory location and size are specified
when the "disk" is created.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. However,
201

VxWorks Drivers API Reference, 5.5
st16552Sio
two routines must be called directly: sramDrv() to initialize the driver, and
sramDevCreate() to create block devices. Additionally, the sramMap() routine is called
directly to map the PCMCIA memory onto the ISA address space.

NOTE: This routine does not use any mutual exclusion or synchronization mechanism;
thus, special care must be taken in the multitasking environment.

Before using this driver, it must be initialized by calling sramDrv(). This routine should
be called only once, before any reads, writes, or calls to sramDevCreate() or sramMap().
It can be called from usrRoot() in usrConfig.c or at some later point.

SEE ALSO VxWorks Programmer’s Guide: I/O System

st16552Sio

NAME st16552Sio – ST 16C552 DUART tty driver

ROUTINES st16552DevInit() – initialize an ST16552 channel
st16552IntWr() – handle a transmitter interrupt
st16552IntRd() – handle a receiver interrupt
st16552IntEx() – miscellaneous interrupt processing
st16552Int() – interrupt level processing
st16552MuxInt() – multiplexed interrupt level processing

DESCRIPTION This is the device driver for the Startech ST16C552 DUART, similar, but not quite identical
to the National Semiconductor 16550 UART.

The chip is a dual universal asynchronous receiver/transmitter with 16 byte transmit and
receive FIFOs and a programmable baud-rate generator. Full modem control capability is
included and control over the four interrupts that can be generated: Tx, Rx, Line status,
and modem status. Only the Rx and Tx interrupts are used by this driver. The FIFOs are
enabled for both Tx and Rx by this driver.

Only asynchronous serial operation is supported by the UART which supports 5 to 8 bit
bit word lengths with or without parity and with one or two stop bits. The only serial
word format supported by the driver is 8 data bits, 1 stop bit, no parity, The default baud
rate is determined by the BSP by filling in the ST16552_CHAN structure before calling
st16552DevInit().

The exact baud rates supported by this driver will depend on the crystal fitted (and
consequently the input clock to the baud-rate generator), but in general, baud rates from
about 50 to about 115200 are possible.
202

1: Driver Libraries
st16552Sio

S

DATA STRUCTURES

An ST16552_CHAN data structure is used to describe the two channels of the chip and, if
necessary, an ST16552_MUX structure is used to describe the multiplexing of the interrupts
for the two channels of the DUART. These structures are described in
h/drv/sio/st16552Sio.h.

CALLBACKS Servicing a "transmitter ready" interrupt involves making a callback to a higher level
library in order to get a character to transmit. By default, this driver installs dummy
callback routines which do nothing. A higher layer library that wants to use this driver
(e.g. ttyDrv) will install its own callback routine using the SIO_INSTALL_CALLBACK ioctl
command. Likewise, a receiver interrupt handler makes a callback to pass the character to
the higher layer library.

MODES This driver supports both polled and interrupt modes.

USAGE The driver is typically only called by the BSP. The directly callable routines in this module
are st16552DevInit(), st16552Int(), st16552IntRd(), st16552IntWr(), and
st16552MuxInt().

The BSP’s sysHwInit() routine typically calls sysSerialHwInit(), which initializes all the
hardware-specific values in the ST16552_CHAN structure before calling st16552DevInit()
which resets the device and installs the driver function pointers. After this, the UART will
be enabled and ready to generate interrupts, but those interrupts will be disabled in the
interrupt controller.

The following example shows the first parts of the initialization:

#include "drv/sio/st16552Sio.h"

LOCAL ST16552_CHAN st16552Chan[N_16552_CHANNELS];

void sysSerialHwInit (void)

{

int i;

for (i = 0; i < N_16552_CHANNELS; i++)

{

st16552Chan[i].regDelta = devParas[i].regSpace;

st16552Chan[i].regs = devParas[i].baseAdrs;

st16552Chan[i].baudRate = CONSOLE_BAUD_RATE;

st16552Chan[i].xtal = UART_XTAL_FREQ;

st16552Chan[i].level = devParas[i].intLevel;

/*

* Initialise driver functions, getTxChar, putRcvChar and

* channelMode and init UART.

*/

st16552DevInit(&st16552Chan[i]);

}

}

203

VxWorks Drivers API Reference, 5.5
sym895Lib
The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2(), which connects the
chips interrupts via intConnect() (either the single interrupt st16552Int, the three
interrupts st16552IntWr, st16552IntRd, and st16552IntEx, or the multiplexed interrupt
handler st16552MuxInt which will cope with both channels of a DUART producing the
same interrupt). It then enables those interrupts in the interrupt controller as shown in the
following example:

void sysSerialHwInit2 (void)

{

/* Connect the multiplexed interrupt handler */

(void) intConnect (INUM_TO_IVEC(devParas[0].vector),

st16552MuxInt, (int) &st16552Mux);

intEnable (devParas[0].intLevel);

}

BSP By convention all the BSP-specific serial initialization is performed in a file called
sysSerial.c, which is #included by sysLib.c. sysSerial.c implements at least four functions,
sysSerialHwInit(), sysSerialHwInit2(), sysSerialChanGet(), and sysSerialReset(). The
first two have been described above, the others work as follows:

sysSerialChanGet() is called by usrRoot to get the serial channel descriptor associated
with a serial channel number. The routine takes a single parameter which is a channel
number ranging between zero and NUM_TTY. It returns a pointer to the corresponding
channel descriptor, SIO_CHAN *, which is just the address of the ST16552_CHAN structure.

sysSerialReset() is called from sysToMonitor() and should reset the serial devices to an
inactive state (prevent them from generating any interrupts).

INCLUDE FILES drv/sio/st16552Sio.h, sioLib.h

SEE ALSO Startech ST16C552 Data Sheet

sym895Lib

NAME sym895Lib – SCSI-2 driver for Symbios SYM895 SCSI Controller.

ROUTINES sym895CtrlCreate() – create a structure for a SYM895 device
sym895CtrlInit() – initialize a SCSI Controller Structure
sym895HwInit() – hardware initialization for the 895 Chip
sym895SetHwOptions() – set the Sym895 chip Options
sym895Intr() – interrupt service routine for the SCSI Controller
sym895Show() – display values of all readable SYM 53C8xx SIOP registers
sym895GPIOConfig() – configure general purpose pins GPIO 0-4
204

1: Driver Libraries
sym895Lib

S

sym895GPIOCtrl() – control general purpose pins GPIO 0-4
sym895Loopback() – perform loopback diagnostics on 895 chip

DESCRIPTION The SYM53C895 PCI-SCSI I/O Processor (SIOP) brings Ultra2 SCSI performance to Host
adapter, making it easy to add a high performance SCSI Bus to any PCI System. It
supports Ultra-2 SCSI rates and allows increased SCSI connectivity and cable length Low
Voltage Differential (LVD) signaling for SCSI. This driver runs in conjunction with
SCRIPTS Assembly program for the Symbios SCSI controllers. These scripts use DMA
transfers for all data, messages, and status transfers.

For each controller device a manager task is created to manage SCSI threads on each bus.
A SCSI thread represents each unit of SCSI work.

This driver supports multiple initiators, disconnect/reconnect, tagged command queuing
and synchronous data transfer protocol. In general, the SCSI system and this driver will
automatically choose the best combination of these features to suit the target devices used.
However, the default choices may be over-ridden by using the function
"scsiTargetOptionsSet()" (see scsiLib).

Scatter/Gather memory support: Scatter-Gather transfers are used when data scattered
across memory must be transferred across the SCSI bus together with out CPU
intervention. This is achieved by a chain of block move script instructions together with
the support from the driver. The driver is expected to provide a set of addresses and byte
counts for the SCRIPTS code. However there is no support as such from vxworks SCSI
Manager for this kind of data transfers. So the implementation, as of today, is not
completely integrated with vxworks, and assumes support from SCSI manager in the
form of array of pointers. The macro SCATTER_GATHER in sym895.h is thus not defined
to avoid compilation errors.

Loopback mode allows 895 chip to control all SCSI signals, regardless of whether it is in
initiator or target role. This mode insures proper SCRIPTS instructions fetches and data
paths. SYM895 executes initiator instructions through the SCRIPTS, and the target role is
implemented in sym895Loopback by asserting and polling the appropriate SCSI signals
in the SOCL, SODL, SBCL, and SBDL registers.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. Three
routines, however, must be called directly sym895CtrlCreate() to create a controller
structure, and sym895CtrlInit() to initialize it. If the default configuration is not correct,
the routine sym895SetHwRegister() must be used to properly configure the registers.

Critical events, which are to be logged anyway irrespective of whether debugging is being
done or not, can be logged by using the SCSI_MSG macro.

PCI MEMORY ADDRESSING

The global variable sym895PciMemOffset was created to provide the BSP with a means
of changing the VIRT_TO_PHYS mapping without changing the functions in the
cacheFuncs structures. In generating physical addresses for DMA on the PCI bus, local
205

VxWorks Drivers API Reference, 5.5
sym895Lib
addresses are passed through the function CACHE_DMA_VIRT_TO_PHYS and then the
value of sym895PciMemOffset is added. For backward compatibility, the initial value of
sym895PciMemOffset comes from the macro PCI_TO_MEM_OFFSET.

INTERFACE The BSP must connect the interrupt service routine for the controller device to the
appropriate interrupt system. The routine to be called is sym895Intr(), and the argument
is the pointer to the controller device pSiop. i.e.

pSiop = sym895CtrlCreate (...);

intConnect (XXXX, sym895Intr, pSiop);

sym895CtrlInit (pSiop, ...);

HARDWARE ACCESS

All hardware access is to be done through macros. The default definition of the
SYM895_REGx_READ(), and SYM895_REGx_WRITE() macros (where x stands for the width
of the register being accessed) assumes an I/O mapped model. Register access mode can
be set to either IO/memory using SYM895_IO_MAPPED macro in sym895.h. The macros
can be redefined as necessary to accommodate other models, and situations where timing
and write pipe considerations need to be addressed. In IO mapped mode, BSP routines
sysInByte() and sysOutByte() are used for accessing SYM895 registers. If these standard
calls are not supported, the calls supported by respective BSP are to be mapped to these
standard calls. Memory mapped mode makes use of pointers to register offsets.

The macro SYM895_REGx_READ (pDev, reg) is used to read a register of width x bits. The
two arguments are the device structure pointer and the register offset.

The macro SYM895_REGx_WRITE (pDev, reg,data) is used to write data to the specified
register address. These macros presume memory mapped I/O by default. Both macros
can be redefined to tailor the driver to some other I/O model.

The global variable sym895Delaycount provides the control count for the sym895’s delay
loop. This variable is global in order to allow BSPs to adjust its value if necessary. The
default value is 10 but it may be set to a higher value as system clock speeds dictate.

INCLUDE FILES scsiLib.h, sym895.h, sym895Script.c

SEE ALSO scsiLib, scsi2Lib, cacheLib, SYM53C895 PCI-SCSI I/O Processor Data Manual Version 3.0,
Symbios Logic PCI-SCSI I/O Processors Programming Guide Version 2.1
206

1: Driver Libraries
tcicShow

207

T

tcic

NAME tcic – Databook TCIC/2 PCMCIA host bus adaptor chip driver

ROUTINES tcicInit() – initialize the TCIC chip

DESCRIPTION This library contains routines to manipulate the PCMCIA functions on the Databook
DB86082 PCMCIA chip.

The initialization routine tcicInit() is the only global function and is included in the
PCMCIA chip table pcmciaAdapter. If tcicInit() finds the TCIC chip, it registers all
function pointers of the PCMCIA_CHIP structure.

tcicShow

NAME tcicShow – Databook TCIC/2 PCMCIA host bus adaptor chip show library

ROUTINES tcicShow() – show all configurations of the TCIC chip

DESCRIPTION This is a driver show routine for the Databook DB86082 PCMCIA chip. tcicShow() is the
only global function and is installed in the PCMCIA chip table pcmciaAdapter in
pcmciaShowInit().

VxWorks Drivers API Reference, 5.5
ultraEnd
ultraEnd

NAME ultraEnd – SMC Ultra Elite END network interface driver

ROUTINES ultraLoad() – initialize the driver and device

DESCRIPTION This module implements the SMC Elite Ultra Ethernet network interface driver.

This driver supports single transmission and multiple reception. The Current register is a
write pointer to the ring. The Bound register is a read pointer from the ring. This driver
gets the Current register at the interrupt level and sets the Bound register at the task level.
The interrupt is only masked during configuration or in polled mode.

CONFIGURATION The W1 jumper should be set in the position of "Software Configuration". The defined I/O
address in config.h must match the one stored in EEROM. The RAM address, the RAM
size, and the IRQ level are defined in config.h. IRQ levels 2,3,5,7,10,11,15 are supported.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions, defined as macros. These macros
allow the driver to be customized for BSPs that use special versions of these routines:

SYS_INT_CONNECT(pDrvCtrl, routine, arg)

SYS_INT_DISCONNECT (pDrvCtrl, routine, arg)

SYS_INT_ENABLE(pDrvCtrl)

SYS_INT_DISABLE(pDrvCtrl)

SYS_IN_BYTE(pDrvCtrl, reg, pData)

SYS_OUT_BYTE(pDrvCtrl, reg, pData)

SYS_INT_CONNECT
connects the interrupt handler to the appropriate vector. By default it is the routine
intConnect().

SYS_INT_DISCONNECT
disconnects the interrupt handler prior to unloading the module. By default this is a
dummy routine that returns OK.

SYS_INT_ENABLE
enables the interrupt level for the end device. It is called once during initialization. It
calls an external board level routine sysUltraIntEnable().

SYS_INT_DISABLE
disables the interrupt level for the end device. It is called once during shutdown. It
calls an external board level routine sysUltraIntDisable().

SYS_IN_BYTE and SYS_OUT_BYTE
access the ultra device. The default macros map these operations onto sysInByte()
and sysOutByte().
208

1: Driver Libraries
ultraEnd

U

INCLUDES end.h, endLib.h, etherMultiLib.h

SEE ALSO muxLib, endLib, Writing an Enhanced Network Driver
209

VxWorks Drivers API Reference, 5.5
vgaInit

210

vgaInit

NAME vgaInit – a VGA 3+ mode initialization source module

ROUTINES vgaInit() – initialize the VGA chip and loads font in memory

DESCRIPTION This library provides initialization routines to configure VGA in 3+ alphanumeric mode.

The functions addressed here include:

Initialization of the VGA specific register set.

USER INTERFACE STATUS vgaInit

(

VOID

)

This routine will initialize the VGA specific register set to bring a VGA card in VGA 3+
mode and loads the font in plane 2.

REFERENCES Programmer’s Guide to the EGA, VGA, and Super VGA Cards, Ferraro. Programmer’s Guide to
PC & PS/2 Video Systems, Richard Wilton.

1: Driver Libraries
wd33c93Lib1

W

wd33c93Lib

NAME wd33c93Lib – WD33C93 SCSI-Bus Interface Controller (SBIC) library

ROUTINES wd33c93CtrlInit() – initialize the user-specified fields in an SBIC structure
wd33c93Show() – display the values of all readable WD33C93 chip registers

DESCRIPTION This library contains the main interface routines to the Western Digital WD33C93 and
WD33C93A SCSI-Bus Interface Controllers (SBIC). However, these routines simply switch
the calls to either the SCSI-1 or SCSI-2 drivers, implemented in wd33c93Lib1 and
wd33c93Lib2 respectively, as configured by the Board Support Package (BSP).

In order to configure the SCSI-1 driver, which depends upon scsi1Lib, the
wd33c93CtrlCreate() routine, defined in wd33c93Lib1, must be invoked. Similarly,
wd33c93CtrlCreateScsi2(), defined in wd33c93Lib2 and dependent on scsi2Lib, must be
called to configure and initialize the SCSI-2 driver.

INCLUDE FILES wd33c93.h, wd33c93_1.h, wd33c93_2.h

SEE ALSO scsiLib, scsi1Lib, scsi2Lib, wd33c93Lib1, wd33c93Lib2, Western Digital WD33C92/93
SCSI-Bus Interface Controller, Western Digital WD33C92A/93A SCSI-Bus Interface Controller,
VxWorks Programmer’s Guide: I/O System

wd33c93Lib1

NAME wd33c93Lib1 – WD33C93 SCSI-Bus Interface Controller library (SCSI-1)

ROUTINES wd33c93CtrlCreate() – create and partially initialize a WD33C93 SBIC structure

DESCRIPTION This library contains part of the I/O driver for the Western Digital WD33C93 and
WD33C93A SCSI-Bus Interface Controllers (SBIC). The driver routines in this library
depend on the SCSI-1 version of the SCSI standard; for driver routines that do not depend
on SCSI-1 or SCSI-2, and for overall SBIC driver documentation. See wd33c93Lib.

USER-CALLABLE ROUTINES

Most routines in this driver are accessible only through the I/O system. The one exception
in this portion of the driver is wd33c93CtrlCreate(), which creates a controller structure.

INCLUDE FILES wd33c93.h, wd33c93_1.h

SEE ALSO scsiLib, scsi1Lib, wd33c93Lib
211

VxWorks Drivers API Reference, 5.5
wd33c93Lib2
wd33c93Lib2

NAME wd33c93Lib2 – WD33C93 SCSI-Bus Interface Controller library (SCSI-2)

ROUTINES wd33c93CtrlCreateScsi2() – create and partially initialize an SBIC structure

DESCRIPTION This library contains part of the I/O driver for the Western Digital WD33C93 family of
SCSI-2 Bus Interface Controllers (SBIC). It is designed to work with scsi2Lib. The driver
routines in this library depend on the SCSI-2 ANSI specification; for general driver
routines and for overall SBIC documentation, see wd33c93Lib.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. The only
exception in this portion of the driver is wd33c93CtrlCreateScsi2(), which creates a
controller structure.

INCLUDE FILES wd33c93.h, wd33c93_2.h

SEE ALSO scsiLib, scsi2Lib, wd33c93Lib, VxWorks Programmer’s Guide: I/O System

wdbEndPktDrv

NAME wdbEndPktDrv – END based packet driver for lightweight UDP/IP

ROUTINES wdbEndPktDevInit() – initialize an END packet device

DESCRIPTION This is an END based driver for the WDB system. It uses the MUX and END based drivers
to allow for interaction between the target and target server.

USAGE The driver is typically only called only from the configlette wdbEnd.c. The only directly
callable routine in this module is wdbEndPktDevInit(). To use this driver, just select the
component INCLUDE_WDB_COMM_END in the folder SELECT_WDB_COMM_TYPE. This is
the default selection. To modify the MTU, change the value of parameter WDB_END_MTU
in component INCLUDE_WDB_COMM_END.

DATA BUFFERING The drivers only need to handle one input packet at a time because the WDB protocol
only supports one outstanding host-request at a time. If multiple input packets arrive, the
driver can simply drop them. The driver then loans the input buffer to the WDB agent,
and the agent invokes a driver callback when it is done with the buffer.
212

1: Driver Libraries
wdbPipePktDrv

W

For output, the agent will pass the driver a chain of mbufs, which the driver must send as
a packet. When it is done with the mbufs, it calls wdbMbufChainFree() to free them. The
header file wdbMbufLib.h provides the calls for allocating, freeing, and initializing
mbufs for use with the lightweight UDP/IP interpreter. It ultimately makes calls to the
routines wdbMbufAlloc and wdbMbufFree, which are provided in source code in the
configlette usrWdbCore.c.

INCLUDE FILES drv/wdb/wdbEndPktDrv.h

wdbNetromPktDrv

NAME wdbNetromPktDrv – NETROM packet driver for the WDB agent

ROUTINES wdbNetromPktDevInit() – initialize a NETROM packet device for the WDB agent

DESCRIPTION This is a lightweight NETROM driver that interfaces with the WDB agent’s UDP/IP
interpreter. It allows the WDB agent to communicate with the host using the NETROM
ROM emulator. It uses the emulator’s read-only protocol for bi-directional
communication. It requires that NetROM’s udpsrcmode option is on.

wdbPipePktDrv

NAME wdbPipePktDrv – pipe packet driver for lightweight UDP/IP

ROUTINES wdbPipePktDevInit() – initialize a pipe packet device

DESCRIPTION This module is a pipe for drivers interfacing with the WDB agent’s lightweight UDP/IP
interpreter. It can be used as a starting point when writing new drivers. Such drivers are
the lightweight equivalent of a network interface driver.

These drivers, along with the lightweight UDP-IP interpreter, have two benefits over the
stand combination of a netif driver + the full VxWorks networking stack; First, they can
run in a much smaller amount of target memory because the lightweight UDP-IP
interpreter is much smaller than the VxWorks network stack (about 800 bytes total).
Second, they provide a communication path which is independent of the OS, and thus can
be used to support an external mode (e.g., monitor style) debug agent.

Throughout this file the word "pipe" is used in place of a real driver name. For example, if
you were writing a lightweight driver for the lance ethernet chip, you would want to
substitute "pipe" with "ln" throughout this file.
213

VxWorks Drivers API Reference, 5.5
wdbPipePktDrv
PACKET READY CALLBACK

When the driver detects that a packet has arrived (either in its receiver ISR or in its poll
input routine), it invokes a callback to pass the data to the debug agent. Right now the
callback routine is called "udpRcv", however other callbacks may be added in the future.
The driver’s wdbPipeDevInit() routine should be passed the callback as a parameter and
place it in the device data structure. That way the driver will continue to work if new
callbacks are added later.

MODES Ideally the driver should support both polled and interrupt mode, and be capable of
switching modes dynamically. However this is not required. When the agent is not
running, the driver will be placed in "interrupt mode" so that the agent can be activated as
soon as a packet arrives. If your driver does not support an interrupt mode, you can
simulate this mode by spawning a VxWorks task to poll the device at periodic intervals
and simulate a receiver ISR when a packet arrives.

For dynamically mode switchable drivers, be aware that the driver may be asked to
switch modes in the middle of its input ISR. A driver’s input ISR will look something like
this:

doSomeStuff();

pPktDev->wdbDrvIf.stackRcv (pMbuf); /* invoke the callback */

doMoreStuff();

If this channel is used as a communication path to an external mode debug agent, then the
agent’s callback will lock interrupts, switch the device to polled mode, and use the device
in polled mode for awhile. Later on the agent will unlock interrupts, switch the device
back to interrupt mode, and return to the ISR. In particular, the callback can cause two
mode switches, first to polled mode and then back to interrupt mode, before it returns.
This may require careful ordering of the callback within the interrupt handler. For
example, you may need to acknowledge the interrupt within the doSomeStuff()
processing rather than the doMoreStuff() processing.

USAGE The driver is typically only called only from usrWdb.c. The only directly callable routine
in this module is wdbPipePktDevInit(). You will need to modify usrWdb.c to allow your
driver to be initialized by the debug agent. You will want to modify usrWdb.c to include
your driver’s header file, which should contain a definition of WDB_PIPE_PKT_MTU.
There is a default user-selectable macro called WDB_MTU, which must be no larger than
WDB_PIPE_PKT_MTU. Modify the beginning of usrWdb.c to insure that this is the case by
copying the way it is done for the other drivers. The routine wdbCommIfInit() also
needs to be modified so that if your driver is selected as the WDB_COMM_TYPE, then your
driver’s init routine will be called. Search usrWdb.c for the macro
"WDB_COMM_CUSTOM" and mimic that style of initialization for your driver.

DATA BUFFERING The drivers only need to handle one input packet at a time because the WDB protocol
only supports one outstanding host-request at a time. If multiple input packets arrive, the
driver can simply drop them. The driver then loans the input buffer to the WDB agent,
and the agent invokes a driver callback when it is done with the buffer.
214

1: Driver Libraries
wdbSlipPktDrv

W

For output, the agent will pass the driver a chain of mbufs, which the driver must send as
a packet. When it is done with the mbufs, it calls wdbMbufChainFree() to free them. The
header file wdbMbuflib.h provides the calls for allocating, freeing, and initializing mbufs
for use with the lightweight UDP/IP interpreter. It ultimately makes calls to the routines
wdbMbufAlloc() and wdbMbufFree(), which are provided in source code in usrWdb.c.

wdbSlipPktDrv

NAME wdbSlipPktDrv – serial line pocket-size for the WDB agent

ROUTINES wdbSlipPktDevInit() – initialize a SLIP packet device for a WDB agent

DESCRIPTION This is a lightweight SLIP driver that interfaces with the WDB agents UDP/IP interpreter.
It is the lightweight equivalent of the VxWorks SLIP netif driver, and uses the same
protocol to assemble serial characters into IP datagrams (namely the SLIP protocol). SLIP
is a simple protocol that uses four token characters to delimit each packet:

FRAME_END (0300)

FRAME_ESC (0333)

FRAME_TRANS_END (0334)

FRAME_TRANS_ESC (0335)

The END character denotes the end of an IP packet. The ESC character is used with
TRANS_END and TRANS_ESC to circumvent potential occurrences of END or ESC within
a packet. If the END character is to be embedded, SLIP sends "ESC TRANS_END" to avoid
confusion between a SLIP-specific END and actual data whose value is END. If the ESC
character is to be embedded, then SLIP sends "ESC TRANS_ESC" to avoid confusion.

NOTE: The SLIP ESC is not the same as the ASCII ESC.

On the receiving side of the connection, SLIP uses the opposite actions to decode the SLIP
packets. Whenever an END character is received, SLIP assumes a full packet has been
received and sends on.

This driver has an MTU of 1006 bytes. If the host is using a real SLIP driver with a smaller
MTU, then you will need to lower the definition of WDB_MTU in configAll.h so that the
host and target MTU match. If you are not using a SLIP driver on the host, but instead are
using the target server’s wdbserial backend to connect to the agent, then you do not need
to worry about incompatibilities between the host and target MTUs.
215

VxWorks Drivers API Reference, 5.5
wdbTsfsDrv
wdbTsfsDrv

NAME wdbTsfsDrv – virtual generic file I/O driver for the WDB agent

ROUTINES wdbTsfsDrv() – initialize the TSFS device driver for a WDB agent

DESCRIPTION This library provides a virtual file I/O driver for use with the WDB agent. I/O is
performed on this virtual I/O device exactly as it would be on any device referencing a
VxWorks file system. File operations, such as read() and write(), move data over a virtual
I/O channel created between the WDB agent and the Tornado target server. The
operations are then executed on the host file system. Because file operations are actually
performed on the host file system by the target server, the file system presented by this
virtual I/O device is known as the target-server file system, or TSFS.

The driver is installed with wdbTsfsDrv(), creating a device typically called /tgtsvr. See
the manual page for wdbTsfsDrv() for more information about using this function. The
initialization is done automatically, enabling access to TSFS, when INCLUDE_WDB_TSFS is
defined. The target server also must have TSFS enabled in order to use TSFS. See the
WindView User’s Guide: Data Upload and the target server documentation.

TSFS SOCKETS TSFS provides all of the functionality of other VxWorks file systems. For details, see the
VxWorks Programmer’s Guide: I/O System and Local File Systems. In addition to normal files,
however, TSFS also provides basic access to TCP sockets. This includes opening the client
side of a TCP socket, reading, writing, and closing the socket. Basic setsockopt()
commands are also supported.

To open a TCP socket using TSFS, use a filename of the form:

TCP:server_name | server_ip:port_number

To open and connect a TCP socket to a server socket located on a server named
mongoose, listening on port 2010, use the following:

fd = open ("/tgtsvr/TCP:mongoose:2010", 0, 0)

The open flags and permission arguments to the open call are ignored when opening a
socket through TSFS. If the server mongoose has an IP number of 144.12.44.12, you can
use the following equivalent form of the command:

fd = open ("/tgtsvr/TCP:144.12.44.12:2010", 0, 0)

DIRECTORIES All directory functions, such as mkdir(), rmdir(), opendir(), readdir(), closedir(), and
rewinddir() are supported by TSFS, regardless of whether the target server providing
TSFS is being run on a UNIX or Windows host.

While it is possible to open and close directories using open() and close(), it is not
possible to read from a directory using read(). Instead, readdir() must be used. It is also
not possible to write to an open directory, and opening a directory for anything other than
216

1: Driver Libraries
wdbTsfsDrv

W

read-only results in an error, with errno set to EISDIR. Calling read() on a directory
returns ERROR with errno set to EISDIR.

OPEN FLAGS When the target server that is providing the TSFS is running on a Windows host, the
default file-translation mode is binary translation. If text translation is required, then
WDB_TSFS_O_TEXT can be included in the mode argument to open(). For example:

fd = open ("/tgtsvr/foo", O_CREAT | O_RDWR | WDB_TSFS_O_TEXT, 0777)

If the target server providing TSFS services is running on a UNIX host,
WDB_TSFS_O_TEXT is ignored.

TGTSVR For general information on the target server, see the reference entry for tgtsvr. In order to
use this library, the target server must support and be configured with the following
options:

-R root
Specify the root of the host’s file system that is visible to target processes using TSFS.
This flag is required to use TSFS. Files under this root are by default read only. To
allow read/write access, specify -RW.

-RW
Allow read and write access to host files by target processes using TSFS. When this
option is specified, access to the target server is restricted as if -L were also specified.

IOCTL SUPPORT TSFS supports the following ioctl() functions for controlling files and sockets. Details
about each function can be found in the documentation listed below.

FIOSEEK

FIOWHERE

FIOMKDIR
Create a directory. The path, in this case /tgtsvr/tmp, must be an absolute path
prefixed with the device name. To create the directory /tmp on the root of the TSFS
file system use the following:

status = ioctl (fd, FIOMKDIR, "/tgtsvr/tmp")

FIORMDIR
Remove a directory. The path, in this case /tgtsvr/foo, must be an absolute path
prefixed with the device name. To remove the directory /foo from the root of the
TSFS file system, use the following:

status = ioctl (fd, FIORMDIR, "/tgtsvr/foo")

FIORENAME
Rename the file or directory represented by fd to the name in the string pointed to by
arg. The path indicated by arg may be prefixed with the device name or not. Using
this ioctl() function with the path /foo/goo produces the same outcome as the path
/tgtsvr/foo/goo. The path is not modified to account for the current working
217

VxWorks Drivers API Reference, 5.5
wdbTsfsDrv
directory, and therefore must be an absolute path.

char *arg = "/tgtsvr/foo/goo";

status = ioctl (fd, FIORENAME, arg);

FIOREADDIR

FIONREAD
Return the number of bytes ready to read on a TSFS socket file descriptor.

FIOFSTATGET

FIOGETFL

The following ioctl() functions can be used only on socket file descriptors. Using these
functions with ioctl() provides similar behavior to the setsockopt() and getsockopt()
functions usually used with socket descriptors. Each command’s name is derived from a
getsockopt()/setsockopt() command and works in exactly the same way as the
respective getsockopt()/setsockopt() command. The functions setsockopt() and
getsockopt() can not be used with TSFS socket file descriptors.

For example, to enable recording of debugging information on the TSFS socket file
descriptor, call:

int arg = 1;

status = ioctl (fd, SO_SETDEBUG, arg);

To determine whether recording of debugging information for the TSFS-socket file
descriptor is enabled or disabled, call:

int arg;

status = ioctl (fd, SO_GETDEBUG, & arg);

After the call to ioctl(), arg contains the state of the debugging attribute.

The ioctl() functions supported for TSFS sockets are:

SO_SETDEBUG
Equivalent to setsockopt() with the SO_DEBUG command.

SO_GETDEBUG
Equivalent to getsockopt() with the SO_DEBUG command.

SO_SETSNDBUF
This command changes the size of the send buffer of the host socket. The
configuration of the WDB channel between the host and target also affects the
number of bytes that can be written to the TSFS file descriptor in a single attempt.

SO_SETRCVBUF
This command changes the size of the receive buffer of the host socket. The
configuration of the WDB channel between the host and target also affects the
number of bytes that can be read from the TSFS file descriptor in a single attempt.
218

1: Driver Libraries
wdbUlipPktDrv

W

SO_SETDONTROUTE
Equivalent to setsockopt() with the SO_DONTROUTE command.

SO_GETDONTROUTE
Equivalent to getsockopt() with the SO_DONTROUTE command.

SO_SETOOBINLINE
Equivalent to setsockopt() with the SO_OOBINLINE command.

SO_GETOOBINLINE
Equivalent to getsockopt() with the SO_OOBINLINE command.

SO_SNDURGB
The SO_SNDURGB command sends one out-of-band byte (pointed to by arg) through
the socket.

ERROR CODES The routines in this library return the VxWorks error codes that most closely match the
errnos generated by the corresponding host function. If an error is encountered that is due
to a WDB failure, a WDB error is returned instead of the standard VxWorks errno. If an
errno generated on the host has no reasonable VxWorks counterpart, the host errno is
passed to the target calling routine unchanged.

SEE ALSO Tornado User’s Guide, VxWorks Programmer’s Guide: I/O System, Local File Systems

wdbUlipPktDrv

NAME wdbUlipPktDrv – WDB communication interface for the ULIP driver

ROUTINES wdbUlipPktDevInit() – initialize the communication functions for ULIP

DESCRIPTION This is a lightweight ULIP driver that interfaces with the WDB agent’s UDP/IP
interpreter. It is the lightweight equivalent of the ULIP netif driver. This module provides
a communication path which supports both a task mode and an external mode WDB
agent.
219

VxWorks Drivers API Reference, 5.5
wdbVioDrv
wdbVioDrv

NAME wdbVioDrv – virtual tty I/O driver for the WDB agent

ROUTINES wdbVioDrv() – initialize the tty driver for a WDB agent

DESCRIPTION This library provides a pseudo-tty driver for use with the WDB debug agent. I/O is
performed on a virtual I/O device just like it is on a VxWorks serial device. The difference
is that the data is not moved over a physical serial channel, but rather over a virtual
channel created between the WDB debug agent and the Tornado host tools.

The driver is installed with wdbVioDrv(). Individual virtual I/O channels are created by
opening the device (see wdbVioDrv() for details). The virtual I/O channels are defined as
follows:

Once data is written to a virtual I/O channel on the target, it is sent to the host-based
target server. The target server allows this data to be sent to another host tool, redirected
to the "virtual console," or redirected to a file. For details see the Tornado User's Guide.

SEE ALSO Tornado User’s Guide

Channel Usage

0 Virtual console
1-0xffffff Dynamically created on the host
>= 0x1000000 User defined
220

1: Driver Libraries
z8530Sio

Z

z8530Sio

NAME z8530Sio – Z8530 SCC Serial Communications Controller driver

ROUTINES z8530DevInit() – initialize a Z8530_DUSART
z8530IntWr() – handle a transmitter interrupt
z8530IntRd() – handle a receiver interrupt
z8530IntEx() – handle error interrupts
z8530Int() – handle all interrupts in one vector

DESCRIPTION This is the driver for the Z8530 SCC (Serial Communications Controller). It uses the SCCs
in asynchronous mode only.

USAGE A Z8530_DUSART structure is used to describe the chip. This data structure contains two
Z8530_CHAN structures which describe the chip’s two serial channels. Supported baud
rates range from 50 to 38400. The default baud rate is Z8530_DEFAULT_BAUD (9600). The
BSP may redefine this.

The BSP’s sysHwInit() routine typically calls sysSerialHwInit() which initializes all the
values in the Z8530_DUSART structure (except the SIO_DRV_FUNCS) before calling
z8530DevInit().

The BSP’s sysHwInit2() routine typically calls sysSerialHwInit2() which connects the
chips interrupts via intConnect() (either the single interrupt z8530Int or the three
interrupts z8530IntWr, z8530IntRd, and z8530IntEx).

This driver handles setting of hardware options such as parity (odd, even) and number of
data bits (5, 6, 7, 8). Hardware flow control is provided with the signals CTS on transmit
and DSR on read. Refer to the target documentation for the RS232 port configuration. The
function HUPCL (hang up on last close) is supported. Default hardware options are
defined by Z8530_DEFAULT_OPTIONS. The BSP may redefine them.

All device registers are accessed via BSP-defined macros so that memory-mapped as well
as I/O space accesses can be supported. The BSP may re-define the REG_8530_READ and
REG_8530_WRITE macros as needed. By default, they are defined as simple
memory-mapped accesses.

The BSP may define DATA_REG_8530_DIRECT to cause direct access to the Z8530 data
register, where hardware permits it. By default, it is not defined.

The BSP may redefine the macro for the channel reset delay Z8530_RESET_DELAY as well
as the channel reset delay counter value Z8530_RESET_DELAY_COUNT as required. The
delay is defined as the minimum time between successive chip accesses (6 PCLKs + 200
nSec for a Z8530, 4 PCLKs for a Z85C30 or Z85230) plus an additional 4 PCLKs. At a
typical PCLK frequency of 10 MHz, each PCLK is 100 nSec, giving a minimum reset delay
as follows:
221

VxWorks Drivers API Reference, 5.5
z8530Sio
Z8530: 10 PCLKs + 200 nSec = 1200 nSec = 1.2 uSec

Z85x30: 8 PCLKs = 800 nSec = 0.8 uSec

INCLUDE FILES drv/sio/z8530Sio.h
222

2

Routines
aic7880CtrlCreate() – create a control structure for the AIC 7880... 231
aic7880dFifoThresholdSet() – set the data FIFO threshold .. 231
aic7880EnableFast20() – enable double speed SCSI data transfers.. 232
aic7880GetNumOfBuses() – perform a PCI bus scan ... 232
aic7880ReadConfig() – read from PCI config space... 233
aic7880ScbCompleted() – successfully completed execution of a client thread................................... 233
aic7880WriteConfig() – read to PCI config space.. 234
ambaDevInit() – initialize an AMBA channel.. 234
ambaIntRx() – handle a receiver interrupt ... 235
ambaIntTx() – handle a transmitter interrupt.. 235
ataDevCreate() – create a device for a ATA/IDE disk.. 236
ataDriveInit() – initialize ATA drive ... 237
ataDrv() – initialize the ATA driver ... 237
ataRawio() – do raw I/O access .. 238
ataShow() – show the ATA/IDE disk parameters .. 238
ataShowInit() – initialize the ATA/IDE disk driver show routine....................................... 239
auDump() – display device status.. 239
auEndLoad() – initialize the driver and device .. 240
auInitParse() – parse the initialization string.. 240
cd2400HrdInit() – initialize the chip.. 242
cd2400Int() – handle special status interrupts ... 242
cd2400IntRx() – handle receiver interrupts... 242
cd2400IntTx() – handle transmitter interrupts ... 243
cisConfigregGet() – get the PCMCIA configuration register.. 243
cisConfigregSet() – set the PCMCIA configuration register .. 243
cisFree() – free tuples from the linked list ... 244
cisGet() – get information from a PC card’s CIS ... 244
cisShow() – show CIS information.. 245
coldfireAcr() – return aux control register contents .. 245
coldfireAcrSetClr() – set and clear bits in the UART’s aux control register 246
223

VxWorks Drivers API Reference, 5.5
coldfireDevInit() – initialize a COLDFIRE_CHAN ... 246
coldfireDevInit2() – initialize a COLDFIRE_CHAN, part 2... 247
coldfireImr() – return current interrupt mask register contents ... 247
coldfireImrSetClr() – set and clear bits in the UART’s interrupt mask register........................... 248
coldfireInt() – handle all interrupts in one vector .. 248
coldfireOpr() – return the current state of the output register... 249
coldfireOprSetClr() – set and clear bits in the output port register.. 249
cpmattach() – publish the cpm network interface and initialize the driver..................... 250
cpmStartOutput() – output packet to network interface device .. 251
csAttach() – publish the cs network interface and initialize the driver......................... 252
csShow() – shows statistics for the cs network interface ... 253
ctB69000VgaInit() – initialize the B69000 chip and loads font in memory. 253
dcattach() – publish the dc network interface... 254
dcCsrShow() – display dec 21040/21140 status registers 0 thru 15 255
dcReadAllRom() – read entire serial rom .. 255
dcViewRom() – display lines of serial ROM for dec21140... 256
dec21x4xEndLoad() – initialize the driver and device .. 256
dec21x40EndLoad() – initialize the driver and device .. 257
dec21x40PhyFind() – find the first PHY connected to DEC MII port .. 257
dec21140SromWordRead() – read two bytes from the serial ROM... 258
dec21145SPIReadBack() – read all PHY registers out .. 258
dummyCallback() – dummy callback routine... 259
eexattach() – publish the eex network interface and initialize the driver and device .. 260
eexTxStartup() – start output on the chip .. 260
ei82596EndLoad() – initialize the driver and device .. 261
eiattach() – publish the ei network interface and initialize the driver and device 262
eihkattach() – publish the ei network interface and initialize the driver and device 263
eiInt() – entry point for handling interrupts from the 82596 264
eiTxStartup() – start output on the chip .. 265
el3c90xEndLoad() – initialize the driver and device .. 266
el3c90xInitParse() – parse the initialization string ... 266
elcattach() – publish the elc network interface and initialize the driver and device ... 268
elcPut() – copy a packet to the interface... 268
elcShow() – display statistics for the SMC 8013WC elc network interface................... 269
elt3c509Load() – initialize the driver and device .. 269
elt3c509Parse() – parse the init string.. 270
eltattach() – publish the elt interface and initialize the driver and device.................... 271
eltShow() – display statistics for the 3C509 elt network interface................................. 271
eltTxOutputStart() – start output on the board.. 272
endEtherAddressForm() – form an Ethernet address into a packet.. 272
endEtherPacketAddrGet() – locate the addresses in a packet... 273
endEtherPacketDataGet() – return the beginning of the packet data ... 273
endObjFlagSet() – set the flags member of an END_OBJ structure.. 274
endObjInit() – initialize an END_OBJ structure.. 274
endTok_r() – get a token string (modified version) ... 275
224

2: Routines
eneattach() – publish the ene network interface and initialize the driver and device .. 276
enePut() – copy a packet to the interface. .. 276
eneShow() – display statistics for the NE2000 ene network interface............................. 277
esmcattach() – publish the esmc network interface and initialize the driver.................... 277
esmcPut() – copy a packet to the interface ... 278
esmcShow() – display statistics for the esmc network interface... 278
evbNs16550HrdInit() – initialize the NS 16550 chip .. 279
evbNs16550Int() – handle a receiver/transmitter interrupt for the NS 16550 chip 279
fdDevCreate() – create a device for a floppy disk .. 280
fdDrv() – initialize the floppy disk driver ... 281
fdRawio() – provide raw I/O access... 281
fei82557DumpPrint() – Display statistical counters ... 282
fei82557EndLoad() – initialize the driver and device .. 282
fei82557ErrCounterDump() – dump statistical counters .. 283
feiattach() – publish the fei network interface ... 284
fnattach() – publish the fn network interface and initialize the driver and device..... 285
gei82543EndLoad() – initialize the driver and device .. 286
i8250HrdInit() – initialize the chip.. 287
i8250Int() – handle a receiver/transmitter interrupt ... 287
iOlicomEndLoad() – initialize the driver and device .. 288
iOlicomIntHandle() – interrupt service for card interrupts.. 288
iPIIX4AtaInit() – low level initialization of ATA device .. 289
iPIIX4FdInit() – initialize the floppy disk device... 289
iPIIX4GetIntr() – give device an interrupt level to use ... 290
iPIIX4Init() – initialize PIIX4 .. 290
iPIIX4IntrRoute() – route PIRQ[A:D]... 291
iPIIX4KbdInit() – initialize the PCI-ISA/IDE bridge ... 291
ln97xEndLoad() – initialize the driver and device .. 292
ln97xInitParse() – parse the initialization string.. 292
ln7990EndLoad() – initialize the driver and device .. 294
lnattach() – publish the ln network interface and initialize driver structures 294
lnPciattach() – publish the lnPci network interface and initialize the driver and device 295
loattach() – publish the lo network interface and initialize driver and pseudo-device 296
lptDevCreate() – create a device for an LPT port .. 297
lptDrv() – initialize the LPT driver .. 297
lptShow() – show LPT statistics... 298
m68302SioInit() – initialize a M68302_CP .. 299
m68302SioInit2() – initialize a M68302_CP (part 2) .. 299
m68332DevInit() – initialize the SCC.. 300
m68332Int() – handle an SCC interrupt ... 300
m68360DevInit() – initialize the SCC.. 301
m68360Int() – handle an SCC interrupt ... 301
m68562HrdInit() – initialize the DUSCC.. 302
m68562RxInt() – handle a receiver interrupt ... 302
m68562RxTxErrInt() – handle a receiver/transmitter error interrupt ... 303
225

VxWorks Drivers API Reference, 5.5
m68562TxInt() – handle a transmitter interrupt ... 303
m68681Acr() – return the contents of the DUART auxiliary control register 304
m68681AcrSetClr() – set and clear bits in the DUART auxiliary control register 304
m68681DevInit() – intialize a M68681_DUART.. 305
m68681DevInit2() – intialize a M68681_DUART, part 2 ... 305
m68681Imr() – return the current contents of the DUART interrupt-mask register 306
m68681ImrSetClr() – set and clear bits in the DUART interrupt-mask register 306
m68681Int() – handle all DUART interrupts in one vector... 307
m68681Opcr() – return the state of the DUART output port configuration register.......... 307
m68681OpcrSetClr() – set and clear bits in the DUART output port configuration register 308
m68681Opr() – return the current state of the DUART output port register 308
m68681OprSetClr() – set and clear bits in the DUART output port register 309
m68901DevInit() – initialize a M68901_CHAN structure ... 309
mb86940DevInit() – install the driver function table ... 310
mb86960EndLoad() – initialize the driver and device .. 310
mb86960InitParse() – parse the initialization string ... 311
mb86960MemInit() – initialize memory for the chip ... 311
mb87030CtrlCreate() – create a control structure for an MB87030 SPC ... 312
mb87030CtrlInit() – initialize a control structure for an MB87030 SPC 313
mb87030Show() – display the values of all readable MB87030 SPC registers 314
mbcAddrFilterSet() – set the address filter for multicast addresses... 315
mbcattach() – publish the mbc network interface and initialize the driver..................... 315
mbcEndLoad() – initialize the driver and device .. 316
mbcIntr() – network interface interrupt handler ... 317
mbcMemInit() – initialize memory for the chip ... 317
mbcParse() – parse the init string.. 318
mbcStartOutput() – output packet to network interface device .. 319
mib2ErrorAdd() – change a MIB-II error count ... 320
mib2Init() – initialize a MIB-II structure .. 320
miiAnCheck() – check the auto-negotiation process result .. 321
miiLibInit() – initialize the MII library.. 321
miiLibUnInit() – uninitialize the MII library ... 322
miiPhyInit() – initialize and configure the PHY devices ... 322
miiPhyOptFuncMultiSet() – set pointers to MII optional registers handlers ... 325
miiPhyOptFuncSet() – set the pointer to the MII optional registers handler.................................. 325
miiPhyUnInit() – uninitialize a PHY.. 326
miiRegsGet() – get the contents of MII registers .. 326
miiShow() – show routine for MII library .. 327
motCpmEndLoad() – initialize the driver and device .. 327
motFccEndLoad() – initialize the driver and device .. 328
motFecEndLoad() – initialize the driver and device .. 329
n72001DevInit() – initialize a N72001_MPSC... 331
n72001Int() – interrupt level processing... 331
n72001IntRd() – handle a receiver interrupt... 332
n72001IntWr() – handle a transmitter interrupt ... 332
226

2: Routines
ncr710CtrlCreate() – create a control structure for an NCR 53C710 SIOP 333
ncr710CtrlCreateScsi2() – create a control structure for the NCR 53C710 SIOP............................... 334
ncr710CtrlInit() – initialize a control structure for an NCR 53C710 SIOP 335
ncr710CtrlInitScsi2() – initialize a control structure for the NCR 53C710 SIOP 336
ncr710SetHwRegister() – set hardware-dependent registers for the NCR 53C710 SIOP 337
ncr710SetHwRegisterScsi2() – set hardware-dependent registers for the NCR 53C710 338
ncr710Show() – display the values of all readable NCR 53C710 SIOP registers 339
ncr710ShowScsi2() – display the values of all readable NCR 53C710 SIOP registers 340
ncr710SingleStep() – perform a single-step.. 341
ncr710StepEnable() – enable/disable script single-step.. 342
ncr810CtrlCreate() – create a control structure for the NCR 53C8xx SIOP............................... 342
ncr810CtrlInit() – initialize a control structure for the NCR 53C8xx SIOP.......................... 343
ncr810SetHwRegister() – set hardware-dependent registers for the NCR 53C8xx SIOP 344
ncr810Show() – display values of all readable NCR 53C8xx SIOP registers.................... 345
ncr5390CtrlCreate() – create a control structure for an NCR 53C90 ASC 346
ncr5390CtrlCreateScsi2() – create a control structure for an NCR 53C90 ASC 347
ncr5390CtrlInit() – initialize the user-specified fields in an ASC structure 349
ncr5390Show() – display the values of all readable NCR5390 chip registers..................... 350
ne2000EndLoad() – initialize the driver and device ... 351
nicEndLoad() – initialize the driver and device ... 351
nicEvbattach() – publish and initialize the nicEvb network interface driver 352
nicEvbInitParse() – parse the initialization string .. 352
nicTxStartup() – the driver’s actual output routine .. 353
ns16550DevInit() – intialize an NS16550 channel... 353
ns16550Int() – interrupt level processing.. 354
ns16550IntEx() – miscellaneous interrupt processing ... 354
ns16550IntRd() – handle a receiver interrupt .. 355
ns16550IntWr() – handle a transmitter interrupt .. 355
ns83902EndLoad() – initialize the driver and device ... 356
ns83902RegShow() – prints the current value of the NIC registers .. 356
nvr4101DSIUDevInit() – initialize the NVR4101DSIU DSIU. .. 357
nvr4101DSIUInt() – interrupt level processing.. 357
nvr4101DSIUIntMask() – mask interrupts from the DSIU. ... 358
nvr4101DSIUIntUnmask() – unmask interrupts from the DSIU.. 358
nvr4101SIUCharToTxWord() – translate character to output word format.. 359
nvr4101SIUDevInit() – initialization of the NVR4101SIU SIU.. 359
nvr4101SIUInt() – interrupt level processing.. 360
nvr4101SIUIntMask() – mask interrupts from the SIU. .. 360
nvr4101SIUIntUnmask() – unmask interrupts from the SIU... 361
nvr4102DSIUDevInit() – initialize the NVR4102DSIU DSIU. .. 361
nvr4102DSIUInt() – interrupt level processing.. 362
nvr4102DSIUIntMask() – mask interrupts from the DSIU. ... 362
nvr4102DSIUIntUnmask() – unmask interrupts from the DSIU.. 363
pccardAtaEnabler() – enable the PCMCIA-ATA device ... 364
pccardEltEnabler() – enable the PCMCIA Etherlink III card... 364
227

VxWorks Drivers API Reference, 5.5
pccardMkfs() – initialize a device and mount a DOS file system 365
pccardMount() – mount a DOS file system... 365
pccardSramEnabler() – enable the PCMCIA-SRAM driver... 366
pccardTffsEnabler() – enable the PCMCIA-TFFS driver ... 366
pciAutoAddrAlign() – align a PCI address and check boundary conditions.............................. 367
pciAutoBusNumberSet() – set the primary, secondary, and subordinate bus number 367
pciAutoCfg() – automatically configure all nonexcluded PCI headers 368
pciAutoCfgCtl() – set or get pciAutoConfigLib options ... 369
pciAutoConfig() – automatically configure all nonexcluded PCI headers; obsolete 376
pciAutoConfigLibInit() – initialize PCI autoconfig library ... 377
pciAutoDevReset() – quiesce a PCI device and reset all writeable status bits.......................... 377
pciAutoFuncDisable() – disable a specific PCI function.. 378
pciAutoFuncEnable() – perform final configuration and enable a function 378
pciAutoGetNextClass() – find the next device of specific type from probe list 379
pciAutoRegConfig() – assign PCI space to a single PCI base address register........................... 379
pcicInit() – initialize the PCIC chip.. 380
pciConfigBdfPack() – pack parameters for the Configuration Address Register...................... 380
pciConfigCmdWordShow() – show the decoded value of the command word...................................... 381
pciConfigExtCapFind() – find extended capability in ECP linked list .. 381
pciConfigForeachFunc() – check condition on specified bus ... 382
pciConfigFuncShow() – show configuration details about a function.. 382
pciConfigInByte() – read one byte from the PCI configuration space 383
pciConfigInLong() – read one longword from the PCI configuration space............................ 383
pciConfigInWord() – read one word from the PCI configuration space 384
pciConfigLibInit() – initialize the configuration access-method and addresses 384
pciConfigModifyByte() – perform a masked longword register update .. 385
pciConfigModifyLong() – perform a masked longword register update .. 386
pciConfigModifyWord() – perform a masked longword register update .. 387
pciConfigOutByte() – write one byte to the PCI configuration space ... 388
pciConfigOutLong() – write one longword to the PCI configuration space 388
pciConfigOutWord() – write one 16-bit word to the PCI configuration space 389
pciConfigReset() – disable cards for warm boot ... 389
pciConfigStatusWordShow() – show the decoded value of the status word... 390
pciConfigTopoShow() – show PCI topology... 390
pcicShow() – show all configurations of the PCIC chip ... 391
pciDevConfig() – configure a device on a PCI bus ... 391
pciDeviceShow() – print information about PCI devices ... 392
pciFindClass() – find the nth occurrence of a device by PCI class code 392
pciFindClassShow() – find a device by 24-bit class code ... 393
pciFindDevice() – find the nth device with the given device & vendor ID 393
pciFindDeviceShow() – find a device by deviceId, then print an information............................. 394
pciHeaderShow() – print a header of the specified PCI device .. 394
pciInt() – interrupt handler for shared PCI interrupt .. 395
pciIntConnect() – connect the interrupt handler to the PCI interrupt 395
pciIntDisconnect() – disconnect the interrupt handler (obsolete) ... 396
228

2: Routines
pciIntDisconnect2() – disconnect an interrupt handler from the PCI interrupt............................ 396
pciIntLibInit() – initialize the pciIntLib module... 397
pciSpecialCycle() – generate a special cycle with a message ... 397
pcmciad() – handle task-level PCMCIA events... 398
pcmciaInit() – initialize the PCMCIA event-handling package.. 398
pcmciaShow() – show all configurations of the PCMCIA chip.. 399
pcmciaShowInit() – initialize all show routines for PCMCIA drivers... 399
ppc403DevInit() – initialize the serial port unit ... 400
ppc403DummyCallback() – dummy callback routine ... 400
ppc403IntEx() – handle error interrupts.. 401
ppc403IntRd() – handle a receiver interrupt ... 401
ppc403IntWr() – handle a transmitter interrupt.. 402
ppc555SciDevInit() – initialize a PPC555SCI channel .. 402
ppc555SciDevInit2() – initialize a PPC555SCI, part 2... 403
ppc555SciInt() – handle a channel’s interrupt... 403
ppc860DevInit() – initialize the SMC... 404
ppc860Int() – handle an SMC interrupt .. 404
sa1100DevInit() – initialize an SA1100 channel... 405
sa1100Int() – handle an interrupt .. 405
sab82532DevInit() – initialize an SAB82532 channel .. 406
sab82532Int() – interrupt level processing ... 406
sh7615EndLoad() – initialize the driver and device .. 407
shSciDevInit() – initialize a on-chip serial communication interface 407
shScifDevInit() – initialize a on-chip serial communication interface 408
shScifIntErr() – handle a channel’s error interrupt... 408
shScifIntRcv() – handle a channel’s receive-character interrupt.. 409
shScifIntTx() – handle a channel’s transmitter-ready interrupt .. 409
shSciIntErr() – handle a channel’s error interrupt... 410
shSciIntRcv() – handle a channel’s receive-character interrupt.. 410
shSciIntTx() – handle a channel’s transmitter-ready interrupt .. 411
slattach() – publish the sl network interface and initialize the driver and device...... 411
slipBaudSet() – set the baud rate for a SLIP interface .. 412
slipDelete() – delete a SLIP interface ... 412
slipInit() – initialize a SLIP interface... 413
smcFdc37b78xDevCreate() – set correct IO port addresses for super I/O chip .. 414
smcFdc37b78xInit() – initialize Super I/O chip Library... 414
smcFdc37b78xKbdInit() – initialize the keyboard controller... 415
smNetShow() – show information about a shared memory network.................................. 415
sn83932EndLoad() – initialize the driver and device .. 416
snattach() – publish the sn network interface and initialize the driver and device 416
sramDevCreate() – create a PCMCIA memory disk device... 417
sramDrv() – install a PCMCIA SRAM memory driver... 417
sramMap() – map PCMCIA memory onto a specified ISA address space 418
st16552DevInit() – initialize an ST16552 channel ... 418
st16552Int() – interrupt level processing ... 419
229

VxWorks Drivers API Reference, 5.5
st16552IntEx() – miscellaneous interrupt processing .. 419
st16552IntRd() – handle a receiver interrupt... 420
st16552IntWr() – handle a transmitter interrupt ... 420
st16552MuxInt() – multiplexed interrupt level processing .. 421
sym895CtrlCreate() – create a structure for a SYM895 device... 421
sym895CtrlInit() – initialize a SCSI Controller Structure.. 423
sym895GPIOConfig() – configure general purpose pins GPIO 0-4.. 423
sym895GPIOCtrl() – controls general purpose pins GPIO 0-4 .. 424
sym895HwInit() – hardware initialization for the 895 Chip .. 425
sym895Intr() – interrupt service routine for the SCSI Controller.. 425
sym895Loopback() – this routine performs loopback diagnostics on 895 chip 426
sym895SetHwOptions() – set the Sym895 chip options... 427
sym895Show() – display values of all readable SYM 53C8xx SIOP registers....................... 428
tcicInit() – initialize the TCIC chip ... 430
tcicShow() – show all configurations of the TCIC chip .. 430
ultraattach() – publish ultra interface and initialize device .. 431
ultraLoad() – initialize the driver and device .. 431
ultraPut() – copy a packet to the interface... 432
ultraShow() – display statistics for the ultra network interface... 432
vgaInit() – initialize the VGA chip and loads font in memory..................................... 433
wd33c93CtrlCreate() – create and partially initialize a WD33C93 SBIC structure......................... 434
wd33c93CtrlCreateScsi2() – create and partially initialize an SBIC structure ... 435
wd33c93CtrlInit() – initialize the user-specified fields in an SBIC structure 437
wd33c93Show() – display the values of all readable WD33C93 chip registers 438
wdbEndPktDevInit() – initialize an END packet device .. 439
wdbNetromPktDevInit() – initialize a NETROM packet device for the WDB agent............................ 439
wdbPipePktDevInit() – initialize a pipe packet device.. 440
wdbSlipPktDevInit() – initialize a SLIP packet device for a WDB agent ... 440
wdbTsfsDrv() – initialize the TSFS device driver for a WDB agent 441
wdbUlipPktDevInit() – initialize the communication functions for ULIP.. 441
wdbVioDrv() – initialize the tty driver for a WDB agent .. 442
z8530DevInit() – initialize a Z8530_DUSART .. 443
z8530Int() – handle all interrupts in one vector .. 443
z8530IntEx() – handle error interrupts ... 444
z8530IntRd() – handle a receiver interrupt... 444
z8530IntWr() – handle a transmitter interrupt ... 445
230

2: Routines
aic7880dFifoThresholdSet()

A

aic7880CtrlCreate()

NAME aic7880CtrlCreate() – create a control structure for the AIC 7880

SYNOPSIS AIC_7880_SCSI_CTRL * aic7880CtrlCreate

(

int busNo, /* PCI bus Number */

int devNo, /* PCI device Number */

int scsiBusId /* SCSI Host Adapter Bus Id */

)

DESCRIPTION This routine creates an AIC_7880_SCSI_CTRL structure and must be called before using the
SCSI Host Adapter chip. It must be called exactly once for a specified Host Adapter.

RETURNS A pointer to the AIC_7880_SCSI_CTRL structure, or NULL if memory is unavailable or there
are invalid parameters.

SEE ALSO aic7880Lib

aic7880dFifoThresholdSet()

NAME aic7880dFifoThresholdSet() – set the data FIFO threshold

SYNOPSIS STATUS aic7880dFifoThresholdSet

(

SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller */

UBYTE threshHold /* data FIFO threshold value */

)

DESCRIPTION This routine specifies to the AIC-7880 host adapter how to manage its data FIFO. Below is
a description of the threshold values for SCSI reads and writes.

SCSI READS – 0 Xfer data from FIFO as soon as it is available.

– 1 Xfer data from FIFO as soon as the FIFO is half full.

– 2 Xfer data from FIFO as soon as the FIFO is 75% full.

– 3 Xfer data from FIFO as soon as the FIFO is 100% full.

SCSI WRITES – 0 Xfer data as soon as there is room in the FIFO.
231

VxWorks Drivers API Reference, 5.5
aic7880EnableFast20()
– 1 Xfer data to FIFO as soon as it is 50% empty.

– 2 Xfer data to FIFO as soon as it is 75% empty.

– 3 Xfer data to FIFO as soon as the FIFO is empty.

RETURNS OK or ERROR if the threshold value is not within the valid range.

SEE ALSO aic7880Lib

aic7880EnableFast20()

NAME aic7880EnableFast20() – enable double speed SCSI data transfers

SYNOPSIS VOID aic7880EnableFast20

(

SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller */

BOOL enable /* enable = 1 / disable = 0 */

)

DESCRIPTION This routine enables double speed SCSI data transfers for the SCSI host adapter. This
allows the host adapter to transfer data up to 20 MB/s for an 8 bit device and up to 40
MB/s for a 16 bit device.

RETURNS N/A

SEE ALSO aic7880Lib

aic7880GetNumOfBuses()

NAME aic7880GetNumOfBuses() – perform a PCI bus scan

SYNOPSIS DWORD aic7880GetNumOfBuses ()

DESCRIPTION This routine provides a callback mechanism from the HIM to the OSM It allows the OSM
to scan the PCI bus, before the HIM is allowed to perform the bus scan.

RETURNS 0x55555555 if the OSM is not able to conduct its own bus scan.

SEE ALSO aic7880Lib
232

2: Routines
aic7880ScbCompleted()

A

aic7880ReadConfig()

NAME aic7880ReadConfig() – read from PCI config space

SYNOPSIS DWORD aic7880ReadConfig

(

cfp_struct * configPtr, /* ptr to cf_struct */

UBYTE busNo, /* PCI bus number */

UBYTE devNo, /* PCI device number */

UBYTE regNo /* register */

)

DESCRIPTION This routine provides a callback mechanism from the HIM to the OSM. The purpose of
this routine is to allow the OSM to do its own Read access of the PCI configuration space.
If the OSM cannot successfully complete the Read access, the OSM returns 0x55555555. If
this happens the HIM attempts to conduct the configuration space Read access.

RETURNS Value read or 0x55555555, if the OSM is not able to conduct read access to the PCI
configuration space.

SEE ALSO aic7880Lib

aic7880ScbCompleted()

NAME aic7880ScbCompleted() – successfully completed execution of a client thread

SYNOPSIS VOID aic7880ScbCompleted

(

sp_struct * pScb /* ptr to completed SCSI Command Block */

)

DESCRIPTION This routine is called from within the context of the ISR. The HIM calls this routine
passing in the pointer of the of the completed SCB. This routine sets the thread status,
handles the completed SCB and returns program control back to the HIM which then
returns from the PH_IntHandler() routine.

This routine could be called more than once from the same PH_IntHandler() call. Each
call to this routine indicates the completion of an SCB. For each SCB completed, this
routine sets the event type and calls the appropriate AIC–7880 event handler routines
which sets the SCSI Controller, SCSI Physical Device and SCSI Thread, state variables
233

VxWorks Drivers API Reference, 5.5
aic7880WriteConfig()
appropriately. This routine also handles synchronization with the SCSI Manager so that
the next runnable thread can be scheduled for execution.

RETURNS N/A

SEE ALSO aic7880Lib

aic7880WriteConfig()

NAME aic7880WriteConfig() – read to PCI config space

SYNOPSIS DWORD aic7880WriteConfig

(

cfp_struct * config_ptr, /* ptr to cf_struct */

UBYTE busNo, /* PCI bus number */

UBYTE devNo, /* PCI device number */

UBYTE regNo, /* register */

DWORD regVal /* register value */

)

DESCRIPTION This routine provides a callback mechanism from the HIM to the OSM. The purpose of
this routine is to allow the OSM to do its own write access of the PCI configuration space.
If the OSM cannot successfully complete the write access, the OSM returns 0x55555555. If
this happens the HIM attempts to conduct the configuration space write access.

RETURNS OK or 0x55555555, if the OSM is not able to conduct write access to the PCI configuration
space.

SEE ALSO aic7880Lib

ambaDevInit()

NAME ambaDevInit() – initialize an AMBA channel

SYNOPSIS void ambaDevInit

(

AMBA_CHAN * pChan /* ptr to AMBA_CHAN describing this channel */

)

234

2: Routines
ambaIntTx()

A

DESCRIPTION This routine initializes some SIO_CHAN function pointers and then resets the chip to a

quiescent state. Before this routine is called, the BSP must already have initialized all the
device addresses, etc. in the AMBA_CHAN structure.

RETURNS N/A

SEE ALSO ambaSio

ambaIntRx()

NAME ambaIntRx() – handle a receiver interrupt

SYNOPSIS void ambaIntRx

(

AMBA_CHAN * pChan /* ptr to AMBA_CHAN describing this channel */

)

DESCRIPTION This routine handles read interrupts from the UART.

RETURNS N/A

SEE ALSO ambaSio

ambaIntTx()

NAME ambaIntTx() – handle a transmitter interrupt

SYNOPSIS void ambaIntTx

(

AMBA_CHAN * pChan /* ptr to AMBA_CHAN describing this channel */

)

DESCRIPTION This routine handles write interrupts from the UART.

RETURNS N/A

SEE ALSO ambaSio
235

VxWorks Drivers API Reference, 5.5
ataDevCreate()
ataDevCreate()

NAME ataDevCreate() – create a device for a ATA/IDE disk

SYNOPSIS BLK_DEV *ataDevCreate

(

int ctrl, /* ATA controller number, 0 is the primary controller */

int drive, /* ATA drive number, 0 is the master drive */

int nBlocks, /* number of blocks on device, 0 = use entire disk */

int blkOffset /* offset BLK_DEV nBlocks from the start of the drive */

)

DESCRIPTION This routine creates a device for a specified ATA/IDE or ATAPI CDROM disk.

ctrl is a controller number for the ATA controller; the primary controller is 0. The
maximum is specified via ATA_MAX_CTRLS.

drive is the drive number for the ATA hard drive; the master drive is 0. The maximum is
specified via ATA_MAX_DRIVES.

The nBlocks parameter specifies the size of the device in blocks. If nBlocks is zero, the
whole disk is used.

The blkOffset parameter specifies an offset, in blocks, from the start of the device to be
used when writing or reading the hard disk. This offset is added to the block numbers
passed by the file system during disk accesses. (VxWorks file systems always use block
numbers beginning at zero for the start of a device.)

RETURNS A pointer to a block device structure (BLK_DEV) or NULL if memory cannot be allocated
for the device structure.

SEE ALSO ataDrv, dosFsMkfs(), dosFsDevInit(), rt11FsDevInit(), rt11FsMkfs(), rawFsDevInit()
236

2: Routines
ataDrv()

A

ataDriveInit()

NAME ataDriveInit() – initialize ATA drive

SYNOPSIS STATUS ataDriveInit

(

int ctrl,

int drive

)

DESCRIPTION This routine checks the drive presents, identifies its type, initializes the drive controller
and driver control structures.

RETURNS OK, if drive was initialized successfully, or ERROR.

SEE ALSO ataDrv

ataDrv()

NAME ataDrv() – initialize the ATA driver

SYNOPSIS STATUS ataDrv

(

int ctrl, /* controller no. */

int drives, /* number of drives */

int vector, /* interrupt vector */

int level, /* interrupt level */

int configType, /* configuration type */

int semTimeout, /* timeout seconds for sync semaphore */

int wdgTimeout /* timeout seconds for watch dog */

)

DESCRIPTION This routine initializes the ATA/IDE/ATAPI CDROM driver, sets up interrupt vectors,
and performs hardware initialization of the ATA/IDE chip.

This routine must be called exactly once, before any reads, writes, or calls to
ataDevCreate(). Normally, it is called by usrRoot() in usrConfig.c.

RETURNS OK, or ERROR if initialization fails.

SEE ALSO ataDrv, ataDevCreate()
237

VxWorks Drivers API Reference, 5.5
ataRawio()
ataRawio()

NAME ataRawio() – do raw I/O access

SYNOPSIS STATUS ataRawio

(

int ctrl,

int drive,

ATA_RAW * pAtaRaw

)

DESCRIPTION This routine is called to perform raw I/O access.

drive is a drive number for the hard drive: it must be 0 or 1.

The pAtaRaw is a pointer to the structure ATA_RAW which is defined in ataDrv.h.

RETURNS OK, or ERROR if the parameters are not valid.

SEE ALSO ataDrv

ataShow()

NAME ataShow() – show the ATA/IDE disk parameters

SYNOPSIS STATUS ataShow

(

int ctrl,

int drive

)

DESCRIPTION This routine shows the ATA/IDE disk parameters. Its first argument is a controller
number, 0 or 1; the second argument is a drive number, 0 or 1.

RETURNS OK, or ERROR if the parameters are invalid.

SEE ALSO ataShow
238

2: Routines
auDump()

A

ataShowInit()

NAME ataShowInit() – initialize the ATA/IDE disk driver show routine

SYNOPSIS void ataShowInit (void)

DESCRIPTION This routine links the ATA/IDE disk driver show routine into the VxWorks system. It is
called automatically when this show facility is configured into VxWorks using either of
the following methods:

– If you use the configuration header files, define

INCLUDE_SHOW_ROUTINES in config.h.

– If you use the Tornado project facility, select INCLUDE_ATA_SHOW.

RETURNS N/A

SEE ALSO ataShow

auDump()

NAME auDump() – display device status

SYNOPSIS void auDump

(

int unit

)

SEE ALSO auEnd
239

VxWorks Drivers API Reference, 5.5
auEndLoad()
auEndLoad()

NAME auEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * auEndLoad

(

char * initString /* string to be parse by the driver */

)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in initString, which expects a string of the following
format:

unit:devMemAddr:devIoAddr:enableAddr:vecNum:intLvl:offset:qtyCluster:flags

This routine can be called in two modes. If it is called with an empty but allocated string,
it places the name of this device (that is, "au") into the initString and returns 0.

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.

RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

SEE ALSO auEnd

auInitParse()

NAME auInitParse() – parse the initialization string

SYNOPSIS STATUS auInitParse

(

AU1000_DRV_CTRL * pDrvCtrl, /* pointer to the control structure */

char * initString /* initialization string */

)

DESCRIPTION Parse the input string. This routine is called from auEndLoad() which initializes some
values in the driver control structure with the values passed in the initialization string.

The initialization string format is:

unit:devMemAddr:devIoAddr:vecNum:intLvl:offset:flags
240

2: Routines
auInitParse()

A

unit

Device unit number, a small integer.

devMemAddr
Device register base memory address.

devIoAddr
I/O register base memory address.

enableAddr
Address of MAC enable register.

vecNum
Interrupt vector number.

intLvl
Interrupt level.

offset
Offset of starting of data in the device buffers.

qtyCluster
Number of clusters to allocate.

flags
Device specific flags, for future use.

RETURNS OK, or ERROR if any arguments are invalid.

SEE ALSO auEnd
241

VxWorks Drivers API Reference, 5.5
cd2400HrdInit()
cd2400HrdInit()

NAME cd2400HrdInit() – initialize the chip

SYNOPSIS void cd2400HrdInit

(

CD2400_QUSART * pQusart /* chip to reset */

)

DESCRIPTION This routine initializes the chip and the four channels.

SEE ALSO cd2400Sio

cd2400Int()

NAME cd2400Int() – handle special status interrupts

SYNOPSIS void cd2400Int

(

CD2400_CHAN * pChan

)

DESCRIPTION This routine handles special status interrupts from the MPCC.

SEE ALSO cd2400Sio

cd2400IntRx()

NAME cd2400IntRx() – handle receiver interrupts

SYNOPSIS void cd2400IntRx

(

CD2400_CHAN * pChan

)

DESCRIPTION This routine handles the interrupts for all channels for a Receive Data Interrupt.

SEE ALSO cd2400Sio
242

2: Routines
cisConfigregSet()

C

cd2400IntTx()

NAME cd2400IntTx() – handle transmitter interrupts

SYNOPSIS void cd2400IntTx

(

CD2400_CHAN * pChan

)

DESCRIPTION This routine handles transmitter interrupts from the MPCC.

SEE ALSO cd2400Sio

cisConfigregGet()

NAME cisConfigregGet() – get the PCMCIA configuration register

SYNOPSIS STATUS cisConfigregGet

(

int sock, /* socket no. */

int reg, /* configuration register no. */

int * pValue /* content of the register */

)

DESCRIPTION This routine gets that PCMCIA configuration register.

RETURNS OK, or ERROR if it cannot set a value on the PCMCIA chip.

SEE ALSO cisLib

cisConfigregSet()

NAME cisConfigregSet() – set the PCMCIA configuration register

SYNOPSIS STATUS cisConfigregSet

(

int sock, /* socket no. */

int reg, /* register no. */
243

VxWorks Drivers API Reference, 5.5
cisFree()
int value /* content of the register */

)

DESCRIPTION This routine sets the PCMCIA configuration register.

RETURNS OK, or ERROR if it cannot set a value on the PCMCIA chip.

SEE ALSO cisLib

cisFree()

NAME cisFree() – free tuples from the linked list

SYNOPSIS void cisFree

(

int sock /* socket no. */

)

DESCRIPTION This routine free tuples from the linked list.

RETURNS N/A

SEE ALSO cisLib

cisGet()

NAME cisGet() – get information from a PC card’s CIS

SYNOPSIS STATUS cisGet

(

int sock /* socket no. */

)

DESCRIPTION This routine gets information from a PC card’s CIS, configures the PC card, and allocates
resources for the PC card.

RETURNS OK, or ERROR if it cannot get the CIS information, configure the PC card, or allocate
resources.

SEE ALSO cisLib
244

2: Routines
coldfireAcr()

C

cisShow()

NAME cisShow() – show CIS information

SYNOPSIS void cisShow

(

int sock /* socket no. */

)

DESCRIPTION This routine shows CIS information.

NOTE This routine uses floating point calculations. The calling task needs to be spawned with
the VX_FP_TASK flag. If this is not done, the data printed by cisShow() may be corrupted
and unreliable.

RETURNS N/A

SEE ALSO cisShow

coldfireAcr()

NAME coldfireAcr() – return aux control register contents

SYNOPSIS UCHAR coldfireAcr

(

COLDFIRE_CHAN * pChan

)

DESCRIPTION This routine returns the auxiliary control register contents. The acr is not directly readable,
a copy of the last value written is kept in the UART data structure.

RETURNS Returns auxiliary control register (acr) contents.

SEE ALSO coldfireSio
245

VxWorks Drivers API Reference, 5.5
coldfireAcrSetClr()
coldfireAcrSetClr()

NAME coldfireAcrSetClr() – set and clear bits in the UART’s aux control register

SYNOPSIS void coldfireAcrSetClr

(

COLDFIRE_CHAN * pChan,

UCHAR setBits, /* which bits to set in the ACR */

UCHAR clearBits /* which bits to clear in the ACR */

)

DESCRIPTION This routine sets and clears bits in the UART’s ACR.

This routine sets and clears bits in a local copy of the ACR, then writes that local copy to
the UART. This means that all changes to the ACR must go through this routine.
Otherwise, any direct changes to the ACR would be lost the next time this routine is
called.

Set has priority over clear. Thus you can use this routine to update multiple bit-fields by
specifying the field mask as the clear bits.

RETURNS N/A

SEE ALSO coldfireSio

coldfireDevInit()

NAME coldfireDevInit() – initialize a COLDFIRE_CHAN

SYNOPSIS void coldfireDevInit

(

COLDFIRE_CHAN * pChan

)

DESCRIPTION The BSP must have already initialized all the device addresses, etc. in COLDFIRE_CHAN
structure. This routine initializes some transmitter & receiver status values to be used in
the interrupt mask register and then resets the chip to a quiescent state.

RETURNS N/A

SEE ALSO coldfireSio
246

2: Routines
coldfireImr()

C

coldfireDevInit2()

NAME coldfireDevInit2() – initialize a COLDFIRE_CHAN, part 2

SYNOPSIS void coldfireDevInit2

(

COLDFIRE_CHAN * pChan

)

DESCRIPTION This routine is called as part of sysSerialHwInit2() and tells the driver that interrupt
vectors are connected and that it is safe to allow interrupts to be enabled.

RETURNS N/A

SEE ALSO coldfireSio

coldfireImr()

NAME coldfireImr() – return current interrupt mask register contents

SYNOPSIS UCHAR coldfireImr

(

COLDFIRE_CHAN * pChan

)

DESCRIPTION This routine returns the interrupt mask register contents. The imr is not directly readable,
a copy of the last value written is kept in the UART data structure.

RETURNS Returns interrupt mask register contents.

SEE ALSO coldfireSio
247

VxWorks Drivers API Reference, 5.5
coldfireImrSetClr()
coldfireImrSetClr()

NAME coldfireImrSetClr() – set and clear bits in the UART’s interrupt mask register

SYNOPSIS void coldfireImrSetClr

(

COLDFIRE_CHAN * pChan,

UCHAR setBits, /* which bits to set in the IMR */

UCHAR clearBits /* which bits to clear in the IMR */

)

DESCRIPTION This routine sets and clears bits in the UART’s IMR.

This routine sets and clears bits in a local copy of the IMR, then writes that local copy to
the UART. This means that all changes to the IMR must go through this routine.
Otherwise, any direct changes to the IMR would be lost the next time this routine is
called.

Set has priority over clear. Thus you can use this routine to update multiple bit-fields by
specifying the field mask as the clear bits.

RETURNS N/A

SEE ALSO coldfireSio

coldfireInt()

NAME coldfireInt() – handle all interrupts in one vector

SYNOPSIS void coldfireInt

(

COLDFIRE_CHAN * pChan

)

DESCRIPTION All interrupts share a single interrupt vector. We identify each interrupting source and
service it. We must service all interrupt sources for those systems with edge-sensitive
interrupt controllers.

RETURNS N/A

SEE ALSO coldfireSio
248

2: Routines
coldfireOprSetClr()

C

coldfireOpr()

NAME coldfireOpr() – return the current state of the output register

SYNOPSIS UCHAR coldfireOpr

(

COLDFIRE_CHAN * pChan

)

DESCRIPTION This routine returns the current state of the output register from the saved copy in the
UART data structure. The actual opr contents are not directly readable.

RETURNS Returns the current output register state.

SEE ALSO coldfireSio

coldfireOprSetClr()

NAME coldfireOprSetClr() – set and clear bits in the output port register

SYNOPSIS void coldfireOprSetClr

(

COLDFIRE_CHAN * pChan,

UCHAR setBits, /* which bits to set in the OPR */

UCHAR clearBits /* which bits to clear in the OPR */

)

DESCRIPTION This routine sets and clears bits in the UART’s OPR.

A copy of the current opr contents is kept in the UART data structure.

RETURNS N/A

SEE ALSO coldfireSio
249

VxWorks Drivers API Reference, 5.5
cpmattach()
cpmattach()

NAME cpmattach() – publish the cpm network interface and initialize the driver

SYNOPSIS STATUS cpmattach

(

int unit, /* unit number */

SCC * pScc, /* address of SCC parameter RAM */

SCC_REG * pSccReg, /* address of SCC registers */

VOIDFUNCPTR * ivec, /* interrupt vector offset */

SCC_BUF * txBdBase, /* transmit buffer descriptor base address */

SCC_BUF * rxBdBase, /* receive buffer descriptor base address */

int txBdNum, /* number of transmit buffer descriptors */

int rxBdNum, /* number of receive buffer descriptors */

UINT8 * bufBase /* address of memory pool; NONE = malloc it */

)

DESCRIPTION The routine publishes the cpm interface by filling in a network Interface Data Record
(IDR) and adding this record to the system’s interface list.

The SCC shares a region of memory with the driver. The caller of this routine can specify
the address of a shared, non-cacheable memory region with bufBase. If this parameter is
NONE, the driver obtains this memory region by calling cacheDmaMalloc().
Non-cacheable memory space is important for cases where the SCC is operating with a
processor that has a data cache.

Once non-cacheable memory is obtained, this routine divides up the memory between the
various buffer descriptors (BDs). The number of BDs can be specified by txBdNum and
rxBdNum, or if NULL, a default value of 32 BDs will be used. Additional buffers are
reserved as receive loaner buffers. The number of loaner buffers is the lesser of rxBdNum
and a default value of 16.

The user must specify the location of the transmit and receive BDs in the CPU’s
dual-ported RAM. txBdBase and rxBdBase give the base address of the BD rings. Each BD
uses 8 bytes. Care must be taken so that the specified locations for Ethernet BDs do not
conflict with other dual-ported RAM structures.

Up to four individual device units are supported by this driver. Device units may reside
on different processor chips, or may be on different SCCs within a single CPU.

Before this routine returns, it calls cpmReset() and cpmInit() to configure the Ethernet
controller, and connects the interrupt vector ivec.

RETURNS OK or ERROR.

SEE ALSO if_cpm, ifLib, Motorola MC68360 User’s Manual, Motorola MPC821 and MPC860 User’s
Manual
250

2: Routines
cpmStartOutput()

C

cpmStartOutput()

NAME cpmStartOutput() – output packet to network interface device

SYNOPSIS #ifdef BSD43_DRIVER LOCAL void cpmStartOutput

(

int unit /* unit number */

)

DESCRIPTION cpmStartOutput() takes a packet from the network interface output queue, copies the
mbuf chain into an interface buffer, and sends the packet over the interface.
etherOutputHookRtns are supported.

Collision stats are collected in this routine from previously sent BDs. These BDs will not
be examined until after the transmitter has cycled the ring, coming upon the BD after it
has been sent. Thus, collision stat collection will be delayed a full cycle through the Tx
ring.

This routine is called from several possible threads. Each one will be described below.

The first, and most common thread, is when a user task requests the transmission of data.
Under BSD 4.3, this will cause cpmOutput() to be called, which calls ether_output(),
which usually calls this routine. This routine will not be called if ether_output() finds that
our interface output queue is full. In this very rare case, the outgoing data will be thrown
out. BSD 4.4 uses a slightly different model in which the generic ether_output() routine is
called directly, followed by a call to this routine.

The second thread is when a transmitter error occurs that causes a TXE event interrupt.
This happens for the following errors: transmitter under run, retry limit reached, late
collision, and heartbeat error. The ISR sets the txStop flag to stop the transmitter until the
errors are serviced. These events require a RESTART command of the transmitter, which
occurs in the cpmTxRestart() routine. After the transmitter is restarted, cpmTxRestart()
does a netJobAdd of cpmStartOutput() to send any packets left in the interface output
queue. Thus, the second thread executes in the context of netTask().

The third, and most unlikely, thread occurs when this routine is executing and it runs out
of free Tx BDs. In this case, this routine turns on transmit interrupt and exits. When the
next BD is actually sent, an interrupt occurs. The ISR does a netJobAdd of
cpmStartOutput() to continue sending packets left in the interface output queue. Once
again, we find ourselves executing in the context of netTask().

RETURNS N/A

SEE ALSO if_cpm
251

VxWorks Drivers API Reference, 5.5
csAttach()
csAttach()

NAME csAttach() – publish the cs network interface and initialize the driver

SYNOPSIS STATUS csAttach

(

int unit, /* unit number */

int ioAddr, /* base IO address */

int intVector, /* interrupt vector, or zero */

int intLevel, /* interrupt level */

int memAddr, /* base memory address */

int mediaType, /* 0: Autodetect 1: AUI 2: BNC 3: RJ45 */

int configFlags, /* configuration flag */

char * pEnetAddr /* ethernet address */

)

DESCRIPTION This routine is a major entry point to this network interface driver and is called only once
per operating system reboot by the operating system startup code. This routine is called
before the csInit() routine.

This routine takes passed-in configuration parameters and parameters from the EEPROM
and fills in the instance global variables in the cs_softc structure. These variables are later
used by the csChipInit() routine.

This routine connects the interrupt handler, csIntr(), to the specified interrupt vector,
initializes the 8259 PIC and resets the CS8900 chip.

Finally, this routine calls the ether_attach() routine, to fill in the ifnet structure and attach
this network interface driver to the system. The driver’s main entry points (csInit(),
csIoctl(), csOutput(), csReset()) are made visible to the protocol stack.

Refer to "man if_cs" for detailed description of the configuration flags.

RETURNS OK or ERROR.

SEE ALSO if_cs
252

2: Routines
ctB69000VgaInit()

C

csShow()

NAME csShow() – shows statistics for the cs network interface

SYNOPSIS void csShow

(

int unit, /* interface unit */

BOOL zap /* zero totals */

)

DESCRIPTION This routine displays statistics about the cs Ethernet network interface. It has two
parameters:

unit
Interface unit; should be 0.

zap
If 1, all collected statistics are cleared to zero.

RETURNS N/A

SEE ALSO if_cs

ctB69000VgaInit()

NAME ctB69000VgaInit() – initialize the B69000 chip and loads font in memory.

SYNOPSIS STATUS ctB69000VgaInit (void)

DESCRIPTION This routine will initialize the VGA card if present in PCI connector, sets up register set in
VGA 3+ mode and loads the font in plane 2.

RETURNS OK/ERROR

SEE ALSO ctB69000Vga
253

VxWorks Drivers API Reference, 5.5
dcattach()
dcattach()

NAME dcattach() – publish the dc network interface.

SYNOPSIS STATUS dcattach

(

int unit, /* unit number */

ULONG devAdrs, /* device I/O address */

int ivec, /* interrupt vector */

int ilevel, /* interrupt level */

char * memAdrs, /* address of memory pool (-1 = malloc it) */

ULONG memSize, /* only used if memory pool is NOT malloc()\xd5 d */

int memWidth, /* byte-width of data (-1 = any width) */

ULONG pciMemBase, /* main memory base as seen from PCI bus */

int dcOpMode /* mode of operation */

)

DESCRIPTION This routine publishes the dc interface by filling in a network interface record and adding
this record to the system list. This routine also initializes the driver and the device to the
operational state.

The unit parameter is used to specify the device unit to initialize.

The devAdrs is used to specify the I/O address base of the device.

The ivec parameter is used to specify the interrupt vector associated with the device
interrupt.

The ilevel parameter is used to specify the level of the interrupt which the device would
use.

The memAdrs parameter can be used to specify the location of the memory that will be
shared between the driver and the device. The value NONE is used to indicate that the
driver should obtain the memory.

The memSize parameter is valid only if the memAdrs parameter is not set to NONE, in
which case memSize indicates the size of the provided memory region.

The memWidth parameter sets the memory pool’s data port width (in bytes); if it is NONE,
any data width is used.

The pciMemBase parameter defines the main memory base as seen from PCI bus.

The dcOpMode parameter defines the mode in which the device should be operational.

BUGS To zero out DEC 21x4x data structures, this routine uses bzero(), which ignores the
memWidth specification and uses any size data access to write to memory.
254

2: Routines
dcReadAllRom()

D

RETURNS OK or ERROR.

SEE ALSO if_dc

dcCsrShow()

NAME dcCsrShow() – display dec 21040/21140 status registers 0 thru 15

SYNOPSIS int dcCsrShow

(

int unit

)

DESCRIPTION Display the 16 registers of the DEC 21140 device on the console. Each register is printed in
hexadecimal format.

RETURNS N/A.

SEE ALSO if_dc

dcReadAllRom()

NAME dcReadAllRom() – read entire serial rom

SYNOPSIS void dcReadAllRom

(

ULONG devAdrs, /* device base I/O address */

UCHAR * buffer, /* destination bufferr */

int cnt /* Amount to extract in bytes */

)

DESCRIPTION Function to read all of serial rom and store the data in the data structure passed to the
function. The count value will indicate how much of the serial rom to read. The routine
with also swap the bytes as the come in.

RETURNS N/A.

SEE ALSO if_dc
255

VxWorks Drivers API Reference, 5.5
dcViewRom()
dcViewRom()

NAME dcViewRom() – display lines of serial ROM for dec21140

SYNOPSIS int dcViewRom

(

ULONG devAdrs, /* device base I/O address */

UCHAR lineCnt, /* Serial ROM line Number */

int cnt /* Amount to display */

)

RETURNS Number of bytes displayed.

SEE ALSO if_dc

dec21x4xEndLoad()

NAME dec21x4xEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * dec21x4xEndLoad

(

char * initStr /* String to be parse by the driver. */

)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the device
specific parameters are passed in the initString.

This routine can be called in two modes. If it is called with an empty, but allocated string
then it places the name of this device (i.e. dc) into the initString and returns 0.

If the string is allocated then the routine attempts to perform its load functionality.

RETURNS An END object pointer or NULL on error or 0 and the name of the device if the initString
was NULL.

SEE ALSO dec21x4xEnd
256

2: Routines
dec21x40PhyFind()

D

dec21x40EndLoad()

NAME dec21x40EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* dec21x40EndLoad

(

char* initStr /* String to be parse by the driver. */

)

DESCRIPTION This routine initializes the driver and the device to an operational state. All of the
device-specific parameters are passed in the initStr. If this routine is called with an empty
but allocated string, it puts the name of this device (that is, "dc") into the initStr and
returns 0. If the string is allocated but not empty, this routine tries to load the device.

RETURNS An END object pointer or NULL on error.

SEE ALSO dec21x40End

dec21x40PhyFind()

NAME dec21x40PhyFind() – find the first PHY connected to DEC MII port

SYNOPSIS UINT8 dec21x40PhyFind

(

DRV_CTRL * pDrvCtrl

)

RETURNS Address of PHY or 0xFF if not found.

SEE ALSO dec21x40End
257

VxWorks Drivers API Reference, 5.5
dec21140SromWordRead()
dec21140SromWordRead()

NAME dec21140SromWordRead() – read two bytes from the serial ROM

SYNOPSIS USHORT dec21140SromWordRead

(

DRV_CTRL * pDrvCtrl,

UCHAR lineCnt /* Serial ROM line Number */

)

DESCRIPTION This routine returns the two bytes of information that is associated with it the specified
ROM line number. This will later be used by the dec21140GetEthernetAdr() function. It
can also be used to review the ROM contents itself. The function must first send some
initial bit patterns to the CSR9 that contains the Serial ROM Control bits. Then the line
index into the ROM is evaluated bit-by-bit to program the ROM. The 2 bytes of data are
extracted and processed into a normal pair of bytes.

RETURNS Value from ROM or ERROR.

SEE ALSO dec21x40End

dec21145SPIReadBack()

NAME dec21145SPIReadBack() – read all PHY registers out

SYNOPSIS void dec21145SPIReadBack

(

DRV_CTRL * pDrvCtrl /* pointer to DRV_CTRL structure */

)

RETURNS Nothing.

SEE ALSO dec21x40End
258

2: Routines
dummyCallback()

D

dummyCallback()

NAME dummyCallback() – dummy callback routine

SYNOPSIS STATUS dummyCallback (void)

RETURNS ERROR.

SEE ALSO shSciSio
259

VxWorks Drivers API Reference, 5.5
eexattach()
eexattach()

NAME eexattach() – publish the eex network interface and initialize the driver and device

SYNOPSIS STATUS eexattach

(

int unit, /* unit number */

int port, /* base I/O address */

int ivec, /* interrupt vector number */

int ilevel, /* interrupt level */

int nTfds, /* # of transmit frames (0=default) */

int attachment /* 0=default, 1=AUI, 2=BNC, 3=TPE */

)

DESCRIPTION The routine publishes the eex interface by filling in a network interface record and adding
this record to the system list. This routine also initializes the driver and the device to the
operational state.

RETURNS OK or ERROR.

SEE ALSO if_eex, ifLib

eexTxStartup()

NAME eexTxStartup() – start output on the chip

SYNOPSIS #ifdef BSD43_DRIVER static void eexTxStartup

(

int unit

)

DESCRIPTION Looks for any action on the queue, and begins output if there is anything there. This
routine is called from several possible threads. Each will be described below.

The first, and most common thread, is when a user task requests the transmission of data.
Under BSD 4.3, this will cause eexOutput() to be called, which will cause ether_output()
to be called, which will cause this routine to be called (usually). This routine will not be
called if ether_output() finds that our interface output queue is full. In this case, the
outgoing data will be thrown out. BSD 4.4 uses a slightly different model in which the
generic ether_output() routine is called directly, followed by a call to this routine.
260

2: Routines
ei82596EndLoad()

E

The second, and most obscure thread, is when the reception of certain packets causes an
immediate (attempted) response. For example, ICMP echo packets (ping), and ICMP "no
listener on that port" notifications. All functions in this driver that handle the reception
side are executed in the context of netTask(). Always. So, in the case being discussed,
netTask() will receive these certain packets, cause IP to be stimulated, and cause the
generation of a response to be sent. We then find ourselves following the thread explained
in the second example, with the important distinction that the context is that of netTask().

The third thread occurs when this routine runs out of TFDs and returns. If this occurs
when our output queue is not empty, this routine would typically not get called again
until new output was requested. Even worse, if the output queue was also full, this
routine would never get called again and we would have a lock state. It DOES happen. To
guard against this, the transmit clean-up handler detects the out-of-TFDs state and calls
this function. The clean-up handler also runs from netTask.

NOTE: This function is ALWAYS called between an splnet() and an splx(). This is true
because netTask(), and ether_output() take care of this when calling this function.
Therefore, no calls to these spl functions are needed anywhere in this output thread.

SEE ALSO if_eex

ei82596EndLoad()

NAME ei82596EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ *ei82596EndLoad

(

char * initString /* parameter string */

)

DESCRIPTION This routine initializes both driver and device to an operational state using the
device-specific values specified by initString. The initString parameter expects an ordered
list of colon-separated values.

The format of the initString is:

unit:ivec:sysbus:memBase:nTfds:nRfds

unit
Specifies the unit number for this device.

ivec
This is the interrupt vector number of the hardware interrupt generated by this
Ethernet device. The driver uses intConnect() to attach an interrupt handler for this
interrupt.
261

VxWorks Drivers API Reference, 5.5
eiattach()
sysbus
Passes in values as described in the Intel manual for the 82596. A default number of
transmit/receive frames of 32 can be selected by passing zero in the parameters nTfds
and nRfds. In other cases, the number of frames selected should be greater than two.

memBase
Informs the driver about the shared memory region. The 82596 shares a region of
memory with the driver. The caller of this routine can specify the address of this
memory region, or can specify that the driver must obtain this memory region from
the system resources. If this parameter is set to the constant "NONE", this routine
tries to allocate the shared memory from the system. Any other value for this
parameter is interpreted by this routine as the address of the shared memory region
to be used.

If the caller provides the shared memory region, the driver assumes that this region
does not require cache-coherency operations, nor does it require conversions between
virtual and physical addresses. If the caller indicates that this routine must allocate
the shared memory region, this routine uses cacheDmaMalloc() to obtain some
non-cacheable memory. The attributes of this memory are checked, and, if the
memory is not both read- and write-coherent, this routine aborts.

RETURNS An END object pointer or NULL.

SEE ALSO ei82596End, ifLib, Intel 82596 User’s Manual

eiattach()

NAME eiattach() – publish the ei network interface and initialize the driver and device

SYNOPSIS STATUS eidveattach

(

int unit, /* unit number */

int ivec, /* interrupt vector number */

UINT8 sysbus, /* sysbus field of SCP */

char * memBase, /* address of memory pool or NONE */

int nTfds, /* no. of transmit frames (0 = default) */

int nRfds /* no. of receive frames (0 = default) */

)

DESCRIPTION This routine publishes the ei interface by filling in a network interface record and adding
this record to the system list. This routine also initializes the driver and the device to the
operational state.
262

2: Routines
eihkattach()

E

The 82596 shares a region of memory with the driver. The caller of this routine can specify
the address of this memory region, or can specify that the driver must obtain this memory
region from the system resources.

The sysbus parameter accepts values as described in the Intel manual for the 82596. A
default number of transmit/receive frames of 32 can be selected by passing zero in the
parameters nTfds and nRfds. In other cases, the number of frames selected should be
greater than two.

The memBase parameter is used to inform the driver about the shared memory region. If
this parameter is set to the constant "NONE," then this routine will attempt to allocate the
shared memory from the system. Any other value for this parameter is interpreted by this
routine as the address of the shared memory region to be used.

If the caller provides the shared memory region, then the driver assumes that this region
does not require cache coherency operations, nor does it require conversions between
virtual and physical addresses.

If the caller indicates that this routine must allocate the shared memory region, then this
routine will use cacheDmaMalloc() to obtain some non-cacheable memory. The attributes
of this memory will be checked, and if the memory is not both read and write coherent,
this routine will abort and return ERROR.

RETURNS OK or ERROR.

SEE ALSO if_eidve, ifLib, Intel 82596 User’s Manual

eihkattach()

NAME eihkattach() – publish the ei network interface and initialize the driver and device

SYNOPSIS STATUS eihkattach

(

int unit, /* unit number */

int ivec, /* interrupt vector number */

UINT8 sysbus, /* sysbus field of SCP */

char * memBase, /* address of memory pool or NONE */

int nTfds, /* no. of transmit frames (0 = default) */

int nRfds /* no. of receive frames (0 = default) */

)

DESCRIPTION This routine publishes the ei interface by filling in a network interface record and adding
this record to the system list. This routine also initializes the driver and the device to the
operational state.
263

VxWorks Drivers API Reference, 5.5
eiInt()
The 82596 shares a region of memory with the driver. The caller of this routine can specify
the address of this memory region, or can specify that the driver must obtain this memory
region from the system resources.

The sysbus parameter accepts values as described in the Intel manual for the 82596. A
default number of transmit/receive frames of 32 can be selected by passing zero in the
parameters nTfds and nRfds. In other cases, the number of frames selected should be
greater than two.

The memBase parameter is used to inform the driver about the shared memory region. If
this parameter is set to the constant "NONE," then this routine will attempt to allocate the
shared memory from the system. Any other value for this parameter is interpreted by this
routine as the address of the shared memory region to be used.

If the caller provides the shared memory region, then the driver assumes that this region
does not require cache coherency operations, nor does it require conversions between
virtual and physical addresses.

If the caller indicates that this routine must allocate the shared memory region, then this
routine will use cacheDmaMalloc() to obtain some non-cacheable memory. The attributes
of this memory will be checked, and if the memory is not both read and write coherent,
this routine will abort and return ERROR.

RETURNS OK or ERROR.

SEE ALSO if_eihk, ifLib, Intel 82596 User’s Manual

eiInt()

NAME eiInt() – entry point for handling interrupts from the 82596

SYNOPSIS void eiInt

(

DRV_CTRL * pDrvCtrl

)

DESCRIPTION The interrupting events are acknowledged to the device, so that the device will deassert
its interrupt signal. The amount of work done here is kept to a minimum; the bulk of the
work is deferred to the netTask. Several flags are used here to synchronize with task level
code and eliminate races.

SEE ALSO if_eihk
264

2: Routines
eiTxStartup()

E

eiTxStartup()

NAME eiTxStartup() – start output on the chip

SYNOPSIS void eiTxStartup

(

DRV_CTRL * pDrvCtrl

)

DESCRIPTION Looks for any action on the queue, and begins output if there is anything there. This
routine is called from several possible threads. Each will be described below.

The first, and most common thread, is when a user task requests the transmission of data.
This will cause eiOutput() to be called, which will cause ether_output() to be called,
which will cause this routine to be called (usually). This routine will not be called if
ether_output() finds that our interface output queue is full. In this case, the outgoing data
will be thrown out.

The second, and most obscure thread, is when the reception of certain packets causes an
immediate (attempted) response. For example, ICMP echo packets (ping), and ICMP "no
listener on that port" notifications. All functions in this driver that handle the reception
side are executed in the context of netTask(). Always. So, in the case being discussed,
netTask() will receive these certain packets, cause IP to be stimulated, and cause the
generation of a response to be sent. We then find ourselves following the thread explained
in the second example, with the important distinction that the context is that of netTask().

The third thread occurs when this routine runs out of TFDs and returns. If this occurs
when our output queue is not empty, this routine would typically not get called again
until new output was requested. Even worse, if the output queue was also full, this
routine would never get called again and we would have a lock state. It DOES happen. To
guard against this, the transmit clean-up handler detects the out-of-TFDs state and calls
this function. The clean-up handler also runs from netTask.

Note that this function is ALWAYS called between an splnet() and an splx(). This is true
because netTask(), and ether_output() take care of this when calling this function.
Therefore, no calls to these spl functions are needed anywhere in this output thread.

SEE ALSO if_ei, if_eidve
265

VxWorks Drivers API Reference, 5.5
el3c90xEndLoad()
el3c90xEndLoad()

NAME el3c90xEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * el3c90xEndLoad

(

char * initString /* String to be parsed by the driver. */

)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in initString, which expects a string of the following
format:

unit:devMemAddr:devIoAddr:pciMemBase:<vecnum:intLvl:memAdrs:memSize:memWidth:flags:b
uffMultiplier

This routine can be called in two modes. If it is called with an empty but allocated string,
it places the name of this device (that is, "elPci") into the initString and returns 0.

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.

RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

SEE ALSO el3c90xEnd

el3c90xInitParse()

NAME el3c90xInitParse() – parse the initialization string

SYNOPSIS STATUS el3c90xInitParse

(

EL3C90X_DEVICE * pDrvCtrl, /* pointer to the control structure */

char * initString /* initialization string */

)

DESCRIPTION Parse the input string. This routine is called from el3c90xEndLoad() which initializes
some values in the driver control structure with the values passed in the initialization
string.
266

2: Routines
el3c90xInitParse()

E

The initialization string format is:
unit:devMemAddr:devIoAddr:pciMemBase:<vecNum:intLvl:memAdrs:memSize:memWidth:flags:
buffMultiplier

unit
Device unit number, a small integer.

devMemAddr
Device register base memory address

devIoAddr
Device register base IO address

pciMemBase
Base address of PCI memory space

vecNum
Interrupt vector number.

intLvl
Interrupt level.

memAdrs
Memory pool address or NONE.

memSize
Memory pool size or zero.

memWidth
Memory system size, 1, 2, or 4 bytes (optional).

flags
Device specific flags, for future use.

buffMultiplier
Buffer Multiplier or NONE. If NONE is specified, it defaults to 2

RETURNS OK, or ERROR if any arguments are invalid.

SEE ALSO el3c90xEnd
267

VxWorks Drivers API Reference, 5.5
elcattach()
elcattach()

NAME elcattach() – publish the elc network interface and initialize the driver and device

SYNOPSIS STATUS elcattach

(

int unit, /* unit number */

int ioAddr, /* address of elc\xd5 s shared memory */

int ivec, /* interrupt vector to connect to */

int ilevel, /* interrupt level */

int memAddr, /* address of elc\xd5 s shared memory */

int memSize, /* size of elc\xd5 s shared memory */

int config /* 0: RJ45 + AUI(Thick) 1: RJ45 + BNC(Thin) */

)

DESCRIPTION This routine attaches an elc Ethernet interface to the network if the device exists. It makes
the interface available by filling in the network interface record. The system will initialize
the interface when it is ready to accept packets.

RETURNS OK or ERROR.

SEE ALSO if_elc, ifLib, netShow

elcPut()

NAME elcPut() – copy a packet to the interface.

SYNOPSIS #ifdef BSD43_DRIVER LOCAL void elcPut

(

int unit

)

DESCRIPTION Copy from mbuf chain to transmitter buffer in shared memory.

SEE ALSO if_elc
268

2: Routines
elt3c509Load()

E

elcShow()

NAME elcShow() – display statistics for the SMC 8013WC elc network interface

SYNOPSIS void elcShow

(

int unit, /* interface unit */

BOOL zap /* 1 = zero totals */

)

DESCRIPTION This routine displays statistics about the elc Ethernet network interface. It has two
parameters:

unit
Interface unit; should be 0.

zap
If 1, all collected statistics are cleared to zero.

RETURNS N/A.

SEE ALSO if_elc

elt3c509Load()

NAME elt3c509Load() – initialize the driver and device

SYNOPSIS END_OBJ * elt3c509Load

(

char * initString /* String to be parsed by the driver. */

)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in initString, which expects a string of the following
format:

unit:port:intVector:intLevel:attachementType:noRxFrames

This routine can be called in two modes. If it is called with an empty but allocated string,
it places the name of this device (that is, "elt") into the initString and returns 0.

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.
269

VxWorks Drivers API Reference, 5.5
elt3c509Parse()
RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

SEE ALSO elt3c509End

elt3c509Parse()

NAME elt3c509Parse() – parse the init string

SYNOPSIS STATUS elt3c509Parse

(

ELT3C509_DEVICE * pDrvCtrl, /* device pointer */

char * initString /* initialization info string */

)

DESCRIPTION Parse the input string. Fill in values in the driver control structure.

The initialization string format is:

unit:port:intVector:intLevel:attachementType:noRxFrames

unit
Device unit number, a small integer.

port
Base I/O address.

intVector
Interrupt vector number (used with sysIntConnect()).

intLevel
Interrupt level.

attachmentType
Type of Ethernet connector.

nRxFrames
Number of Rx Frames in integer format.

RETURNS OK or ERROR for invalid arguments.

SEE ALSO elt3c509End
270

2: Routines
eltShow()

E

eltattach()

NAME eltattach() – publish the elt interface and initialize the driver and device

SYNOPSIS STATUS eltattach

(

int unit, /* unit number */

int port, /* base I/O address */

int ivec, /* interrupt vector number */

int intLevel, /* interrupt level */

int nRxFrames, /* # of receive frames (0=default) */

int attachment, /* Ethernet connector to use */

char * ifName /* interface name */

)

DESCRIPTION The routine publishes the elt interface by filling in a network interface record and adding
this record to the system list. This routine also initializes the driver and the device to the
operational state.

RETURNS OK or ERROR.

SEE ALSO if_elt, ifLib

eltShow()

NAME eltShow() – display statistics for the 3C509 elt network interface

SYNOPSIS void eltShow

(

int unit, /* interface unit */

BOOL zap /* 1 = zero totals */

)

DESCRIPTION This routine displays statistics about the elt Ethernet network interface.

unit Interface unit; should be 0.

zap If 1, all collected statistics are cleared to zero.

RETURNS N/A

SEE ALSO if_elt
271

VxWorks Drivers API Reference, 5.5
eltTxOutputStart()
eltTxOutputStart()

NAME eltTxOutputStart() – start output on the board

SYNOPSIS #ifdef BSD43_DRIVER static void eltTxOutputStart

(

int unit

)

DESCRIPTION This routine is called from ether_output() when a new packet is enqueued in the interface
mbuf queue. Note that this function is always called between splnet() and splx(). This is
true because netTask() and ether_output() take care of this when calling this function.
Therefore, no calls to these spl functions are needed anywhere in this output thread.

SEE ALSO if_elt

endEtherAddressForm()

NAME endEtherAddressForm() – form an Ethernet address into a packet

SYNOPSIS M_BLK_ID endEtherAddressForm

(

M_BLK_ID pMblk, /* pointer to packet mBlk */

M_BLK_ID pSrcAddr, /* pointer to source address */

M_BLK_ID pDstAddr, /* pointer to destination address */

BOOL bcastFlag /* use link-level broadcast? */

)

DESCRIPTION This routine accepts the source and destination addressing information through pSrcAddr
and pDstAddr and returns an M_BLK_ID that points to the assembled link-level header. To
do this, this routine prepends the link-level header into the cluster associated with pMblk
if there is enough space available in the cluster. It then returns a pointer to the pointer
referenced in pMblk. However, if there is not enough space in the cluster associated with
pMblk, this routine reserves a new mBlk-clBlk-cluster construct for the header
information. It then prepends the new mBlk to the mBlk passed in pMblk. As the function
value, this routine then returns a pointer to the new mBlk, which the head of a chain of
mBlk structures. The second element of this chain is the mBlk referenced in pMblk.

RETURNS M_BLK_ID or NULL.

SEE ALSO endLib
272

2: Routines
endEtherPacketDataGet()

E

endEtherPacketAddrGet()

NAME endEtherPacketAddrGet() – locate the addresses in a packet

SYNOPSIS STATUS endEtherPacketAddrGet

(

M_BLK_ID pMblk, /* pointer to packet */

M_BLK_ID pSrc, /* pointer to local source address */

M_BLK_ID pDst, /* pointer to local destination address */

M_BLK_ID pESrc, /* pointer to remote source address (if any) */

M_BLK_ID pEDst /* pointer to remote destination address (if any) */

)

DESCRIPTION This routine takes a M_BLK_ID, locates the address information, and adjusts the
M_BLK_ID structures referenced in pSrc, pDst, pESrc, and pEDst so that their pData
members point to the addressing information in the packet. The addressing information is
not copied. All mBlk structures share the same cluster.

RETURNS OK or ERROR.

SEE ALSO endLib

endEtherPacketDataGet()

NAME endEtherPacketDataGet() – return the beginning of the packet data

SYNOPSIS STATUS endEtherPacketDataGet

(

M_BLK_ID pMblk,

LL_HDR_INFO * pLinkHdrInfo

)

DESCRIPTION This routine fills the given pLinkHdrInfo with the appropriate offsets.

RETURNS OK or ERROR.

SEE ALSO endLib
273

VxWorks Drivers API Reference, 5.5
endObjFlagSet()
endObjFlagSet()

NAME endObjFlagSet() – set the flags member of an END_OBJ structure

SYNOPSIS STATUS endObjFlagSet

(

END_OBJ * pEnd,

UINT flags

)

DESCRIPTION As input, this routine expects a pointer to an END_OBJ structure (the pEnd parameter) and
a flags value (the flags parameter). This routine sets the flags member of the END_OBJ
structure to the value of the flags parameter.

Because this routine assumes that the driver interface is now up, this routine also sets the
attached member of the referenced END_OBJ structure to TRUE.

RETURNS OK.

SEE ALSO endLib

endObjInit()

NAME endObjInit() – initialize an END_OBJ structure

SYNOPSIS STATUS endObjInit

(

END_OBJ * pEndObj, /* object to be initialized */

DEV_OBJ* pDevice, /* ptr to device struct */

char * pBaseName, /* device base name, for example, "ln" */

int unit, /* unit number */

NET_FUNCS * pFuncTable, /* END device functions */

char* pDescription

)

DESCRIPTION This routine initializes an END_OBJ structure and fills it with data from the argument list.
It also creates and initializes semaphores and protocol list.

RETURNS OK or ERROR.

SEE ALSO endLib
274

2: Routines
endTok_r()

E

endTok_r()

NAME endTok_r() – get a token string (modified version)

SYNOPSIS char * endTok_r

(

char * string, /* string to break into tokens */

const char * separators, /* the separators */

char * * ppLast /* pointer to serve as string index */

)

DESCRIPTION This modified version can be used with optional parameters. If the parameter is not
specified, this version returns NULL. It does not signify the end of the original string, but
that the parameter is null.

/* required parameters */

string = endTok_r (initString, ":", &pLast);

if (string == NULL)

return ERROR;

reqParam1 = strtoul (string);

string = endTok_r (NULL, ":", &pLast);

if (string == NULL)

return ERROR;

reqParam2 = strtoul (string);

/* optional parameters */

string = endTok_r (NULL, ":", &pLast);

if (string != NULL)

optParam1 = strtoul (string);

string = endTok_r (NULL, ":", &pLast);

if (string != NULL)

optParam2 = strtoul (string);

SEE ALSO dec21x40End
275

VxWorks Drivers API Reference, 5.5
eneattach()
eneattach()

NAME eneattach() – publish the ene network interface and initialize the driver and device

SYNOPSIS STATUS eneattach

(

int unit, /* unit number */

int ioAddr, /* address of ene\xd5 s shared memory */

int ivec, /* interrupt vector to connect to */

int ilevel /* interrupt level */

)

DESCRIPTION This routine attaches an ene Ethernet interface to the network if the device exists. It makes
the interface available by filling in the network interface record. The system will initialize
the interface when it is ready to accept packets.

RETURNS OK or ERROR.

SEE ALSO if_ene, ifLib, netShow

enePut()

NAME enePut() – copy a packet to the interface.

SYNOPSIS #ifdef BSD43_DRIVER static void enePut

(

int unit

)

DESCRIPTION Copy from mbuf chain to transmitter buffer in shared memory.

SEE ALSO if_ene
276

2: Routines
esmcattach()

E

eneShow()

NAME eneShow() – display statistics for the NE2000 ene network interface

SYNOPSIS void eneShow

(

int unit, /* interface unit */

BOOL zap /* 1 = zero totals */

)

DESCRIPTION This routine displays statistics about the ene Ethernet network interface.

unit Interface unit; should be 0.

zap If 1, all collected statistics are cleared to zero.

RETURNS N/A.

SEE ALSO if_ene

esmcattach()

NAME esmcattach() – publish the esmc network interface and initialize the driver

SYNOPSIS STATUS esmcattach

(

int unit, /* unit number */

int ioAddr, /* address of esmc\xd5 s shared memory */

int intVec, /* interrupt vector to connect to */

int intLevel, /* interrupt level */

int config, /* 0: Autodetect 1: AUI 2: BNC 3: RJ45 */

int mode /* 0: rx in interrupt 1: rx in task(netTask) */

)

DESCRIPTION This routine attaches an esmc Ethernet interface to the network if the device exists. It
makes the interface available by filling in the network interface record. The system will
initialize the interface when it is ready to accept packets.

RETURNS OK or ERROR.

SEE ALSO if_esmc, ifLib, netShow
277

VxWorks Drivers API Reference, 5.5
esmcPut()
esmcPut()

NAME esmcPut() – copy a packet to the interface

SYNOPSIS #ifdef BSD43_DRIVER LOCAL void esmcPut

(

int unit

)

DESCRIPTION Copy from mbuf chain to transmitter buffer in shared memory.

RETURNS N/A.

SEE ALSO if_esmc

esmcShow()

NAME esmcShow() – display statistics for the esmc network interface

SYNOPSIS void esmcShow

(

int unit, /* interface unit */

BOOL zap /* zero totals */

)

DESCRIPTION This routine displays statistics about the esmc Ethernet network interface. It has two
parameters:

unit
Interface unit; should be 0.

zap
If 1, all collected statistics are cleared to zero.

RETURNS N/A.

SEE ALSO if_esmc
278

2: Routines
evbNs16550Int()

E

evbNs16550HrdInit()

NAME evbNs16550HrdInit() – initialize the NS 16550 chip

SYNOPSIS void evbNs16550HrdInit

(

EVBNS16550_CHAN * pChan

)

DESCRIPTION This routine is called to reset the NS 16550 chip to a quiescent state.

SEE ALSO evbNs16550Sio

evbNs16550Int()

NAME evbNs16550Int() – handle a receiver/transmitter interrupt for the NS 16550 chip

SYNOPSIS void evbNs16550Int

(

EVBNS16550_CHAN * pChan

)

DESCRIPTION This routine is called to handle interrupts. If there is another character to be transmitted, it
sends it. If the interrupt handler is called erroneously (for example, if a device has never
been created for the channel), it disables the interrupt.

SEE ALSO evbNs16550Sio
279

VxWorks Drivers API Reference, 5.5
fdDevCreate()
fdDevCreate()

NAME fdDevCreate() – create a device for a floppy disk

SYNOPSIS BLK_DEV *fdDevCreate

(

int drive, /* driver number of floppy disk (0 - 3) */

int fdType, /* type of floppy disk */

int nBlocks, /* device size in blocks (0 = whole disk) */

int blkOffset /* offset from start of device */

)

DESCRIPTION This routine creates a device for a specified floppy disk.

The drive parameter is the drive number of the floppy disk; valid values are 0 to 3.

The fdType parameter specifies the type of diskette, which is described in the structure
table fdTypes[] in sysLib.c. fdType is an index to the table. Currently the table contains
two diskette types:

– An fdType of 0 indicates the first entry in the table (3.5" 2HD, 1.44MB);

– An fdType of 1 indicates the second entry in the table (5.25" 2HD, 1.2MB).

Members of the fdTypes[] structure are:

int sectors; /* no of sectors */

int sectorsTrack; /* sectors per track */

int heads; /* no of heads */

int cylinders; /* no of cylinders */

int secSize; /* bytes per sector, 128 << secSize */

char gap1; /* gap1 size for read, write */

char gap2; /* gap2 size for format */

char dataRate; /* data transfer rate */

char stepRate; /* stepping rate */

char headUnload; /* head unload time */

char headLoad; /* head load time */

char mfm; /* MFM bit for read, write, format */

char sk; /* SK bit for read */

char *name; /* name */

The nBlocks parameter specifies the size of the device, in blocks. If nBlocks is zero, the
whole disk is used.

The blkOffset parameter specifies an offset, in blocks, from the start of the device to be
used when writing or reading the floppy disk. This offset is added to the block numbers
passed by the file system during disk accesses. (VxWorks file systems always use block
numbers beginning at zero for the start of a device.) Normally, blkOffset is 0.
280

2: Routines
fdRawio()

F

RETURNS A pointer to a block device structure (BLK_DEV) or NULL if memory cannot be allocated
for the device structure.

SEE ALSO nec765Fd, fdDrv(), fdRawio(), dosFsMkfs(), dosFsDevInit(), rt11FsDevInit(),
rt11FsMkfs(), rawFsDevInit()

fdDrv()

NAME fdDrv() – initialize the floppy disk driver

SYNOPSIS STATUS fdDrv

(

int vector, /* interrupt vector */

int level /* interrupt level */

)

DESCRIPTION This routine initializes the floppy driver, sets up interrupt vectors, and performs
hardware initialization of the floppy chip.

This routine should be called exactly once, before any reads, writes, or calls to
fdDevCreate(). Normally, it is called by usrRoot() in usrConfig.c.

RETURNS OK.

SEE ALSO nec765Fd, fdDevCreate(), fdRawio()

fdRawio()

NAME fdRawio() – provide raw I/O access

SYNOPSIS STATUS fdRawio

(

int drive, /* drive number of floppy disk (0 - 3) */

int fdType, /* type of floppy disk */

FD_RAW * pFdRaw /* pointer to FD_RAW structure */

)

DESCRIPTION This routine is called when the raw I/O access is necessary.

The drive parameter is the drive number of the floppy disk; valid values are 0 to 3.
281

VxWorks Drivers API Reference, 5.5
fei82557DumpPrint()
The fdType parameter specifies the type of diskette, which is described in the structure
table fdTypes[] in sysLib.c. fdType is an index to the table. Currently the table contains
two diskette types:

– An fdType of 0 indicates the first entry in the table (3.5" 2HD, 1.44MB);

– An fdType of 1 indicates the second entry in the table (5.25" 2HD, 1.2MB).

The pFdRaw is a pointer to the structure FD_RAW, defined in nec765Fd.h

RETURNS OK or ERROR.

SEE ALSO nec765Fd, fdDrv(), fdDevCreate()

fei82557DumpPrint()

NAME fei82557DumpPrint() – Display statistical counters

SYNOPSIS STATUS fei82557DumpPrint

(

DRV_CTRL * pDrvCtrl /* pointer to DRV_CTRL structure */

)

DESCRIPTION This routine displays i82557 statistical counters

RETURNS OK, or ERROR if the DUMP command failed.

SEE ALSO fei82557End

fei82557EndLoad()

NAME fei82557EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* fei82557EndLoad

(

char * initString /* parameter string */

)

DESCRIPTION This routine initializes both, driver and device to an operational state using device specific
parameters specified by initString.
282

2: Routines
fei82557ErrCounterDump()

F

The parameter string, initString, is an ordered list of parameters each separated by a colon.
The format of initString is, "unit:memBase:memSize:nCFDs:nRFDs:flags:deviceId"

The 82557 shares a region of memory with the driver. The caller of this routine can specify
the address of this memory region, or can specify that the driver must obtain this memory
region from the system resources.

A default number of transmit/receive frames of 32 can be selected by passing zero in the
parameters nTfds and nRfds. In other cases, the number of frames selected should be
greater than two.

The memBase parameter is used to inform the driver about the shared memory region. If
this parameter is set to the constant "NONE," then this routine will attempt to allocate the
shared memory from the system. Any other value for this parameter is interpreted by this
routine as the address of the shared memory region to be used. The memSize parameter is
used to check that this region is large enough with respect to the provided values of both
transmit/receive frames.

If the caller provides the shared memory region, then the driver assumes that this region
does not require cache coherency operations, nor does it require conversions between
virtual and physical addresses.

If the caller indicates that this routine must allocate the shared memory region, then this
routine will use cacheDmaMalloc() to obtain some non-cacheable memory. The attributes
of this memory will be checked, and if the memory is not write coherent, this routine will
abort and return ERROR.

RETURNS An END object pointer, or NULL on error.

SEE ALSO fei82557End, ifLib, Intel 82557 User’s Manual

fei82557ErrCounterDump()

NAME fei82557ErrCounterDump() – dump statistical counters

SYNOPSIS STATUS fei82557ErrCounterDump

(

DRV_CTRL * pDrvCtrl, /* pointer to DRV_CTRL structure */

UINT32 * memAddr

)

DESCRIPTION This routine dumps statistical counters for the purpose of debugging and tuning the
82557.
283

VxWorks Drivers API Reference, 5.5
feiattach()
The memAddr parameter is the pointer to an array of 68 bytes in the local memory. This
memory region must be allocated before this routine is called. The memory space must
also be DWORD (4 bytes) aligned. When the last DWORD (4 bytes) is written to a value,
0xa007, it indicates the dump command has completed. To determine the meaning of each
statistical counter, see the Intel 82557 manual.

RETURNS OK or ERROR.

SEE ALSO fei82557End

feiattach()

NAME feiattach() – publish the fei network interface

SYNOPSIS STATUS feiattach

(

int unit, /* unit number */

char * memBase, /* address of shared memory (NONE = malloc) */

int nCFD, /* command frames (0 = default) */

int nRFD, /* receive frames (0 = default) */

int nRFDLoan /* loanable rx frames (0 = default, -1 = 0) */

)

DESCRIPTION This routine publishes the fei interface by filling in a network interface record and adding
the record to the system list.

The 82557 shares a region of main memory with the CPU. The caller of this routine can
specify the address of this shared memory region through the memBase parameter; if
memBase is set to the constant NONE, the driver will allocate the shared memory region.

If the caller provides the shared memory region, the driver assumes that this region does
not require cache coherency operations.

If the caller indicates that feiattach() must allocate the shared memory region, feiattach()
will use cacheDmaMalloc() to obtain a block of non-cacheable memory. The attributes of
this memory will be checked, and if the memory is not both read and write coherent,
feiattach() will abort and return ERROR.

A default number of 32 command (transmit) and 32 receive frames can be selected by
passing zero in the parameters nCFD and nRFD, respectively. If nCFD or nRFD is used to
select the number of frames, the values should be greater than two.

A default number of 8 loanable receive frames can be selected by passing zero in the
parameters nRFDLoan, else set nRFDLoan to the desired number of loanable receive
frames. If nRFDLoan is set to -1, no loanable receive frames will be allocated/used.
284

2: Routines
fnattach()

F

RETURNS OK, or ERROR if the driver could not be published and initialized.

SEE ALSO if_fei, ifLib, Intel 82557 User’s Manual

fnattach()

NAME fnattach() – publish the fn network interface and initialize the driver and device

SYNOPSIS STATUS fnattach

(

int unit /* unit number */

)

DESCRIPTION The routine publishes the fn interface by filling in a network interface record and adding
this record to the system list. This routine also initializes the driver and the device to the
operational state.

RETURNS OK or ERROR.

SEE ALSO if_fn
285

VxWorks Drivers API Reference, 5.5
gei82543EndLoad()

286

gei82543EndLoad()

NAME gei82543EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* gei82543EndLoad

(

char * initString /* String to be parsed by the driver. */

)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the device
specific parameters are passed in the initString.

The string contains the target specific parameters like this:
"unitnum:shmem_addr:shmem_size:rxDescNum:txDescNum:usrFlags:offset:mtu"

RETURNS An END object pointer, NULL if error, or zero.

SEE ALSO gei82543End

2: Routines
i8250Int()

I

i8250HrdInit()

NAME i8250HrdInit() – initialize the chip

SYNOPSIS void i8250HrdInit

(

I8250_CHAN * pChan /* pointer to device */

)

DESCRIPTION This routine is called to reset the chip in a quiescent state.

RETURNS N/A.

SEE ALSO i8250Sio

i8250Int()

NAME i8250Int() – handle a receiver/transmitter interrupt

SYNOPSIS void i8250Int

(

I8250_CHAN * pChan

)

DESCRIPTION This routine handles four sources of interrupts from the UART. If there is another
character to be transmitted, the character is sent. When a modem status interrupt occurs,
the transmit interrupt is enabled if the CTS signal is TRUE.

RETURNS N/A.

SEE ALSO i8250Sio
287

VxWorks Drivers API Reference, 5.5
iOlicomEndLoad()
iOlicomEndLoad()

NAME iOlicomEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * iOlicomEndLoad

(

char * initString /* String to be parsed by the driver. */

)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the device
specific parameters are passed in the initString.

This routine can be called in two modes. If it is called with an empty, but allocated string
then it places the name of this device (i.e. oli) into the initString and returns 0.

If the string is allocated then the routine attempts to perform its load functionality.

RETURNS An END object pointer or NULL on error or 0 and the name of the device if the initString
was NULL.

SEE ALSO iOlicomEnd

iOlicomIntHandle()

NAME iOlicomIntHandle() – interrupt service for card interrupts

SYNOPSIS void iOlicomIntHandle

(

END_DEVICE * pDrvCtrl /* pointer to END_DEVICE structure */

)

DESCRIPTION This routine is called when an interrupt has been detected from the Olicom card.

RETURNS N/A.

SEE ALSO iOlicomEnd
288

2: Routines
iPIIX4FdInit()

I

iPIIX4AtaInit()

NAME iPIIX4AtaInit() – low level initialization of ATA device

SYNOPSIS STATUS iPIIX4AtaInit ()

DESCRIPTION This routine will initialize PIIX4 - PCI-ISA/IDE bridge for proper working of ATA device.

RETURNS OK or ERROR.

SEE ALSO iPIIX4

iPIIX4FdInit()

NAME iPIIX4FdInit() – initialize the floppy disk device

SYNOPSIS STATUS iPIIX4FdInit ()

DESCRIPTION This routine will initialize PIIX4 - PCI-ISA/IDE bridge and DMA for proper working of
floppy disk device

RETURNS OK or ERROR.

SEE ALSO iPIIX4
289

VxWorks Drivers API Reference, 5.5
iPIIX4GetIntr()
iPIIX4GetIntr()

NAME iPIIX4GetIntr() – give device an interrupt level to use

SYNOPSIS char iPIIX4GetIntr

(

int pintx

)

DESCRIPTION This routine will give device an interrupt level to use based on PCI INT A through D,
valid values for pintx are 0, 1, 2 and 3. An autoroute in disguise.

RETURNS Char-interrupt level.

SEE ALSO iPIIX4

iPIIX4Init()

NAME iPIIX4Init() – initialize PIIX4

SYNOPSIS STATUS iPIIX4Init ()

DESCRIPTION Initialize PIIX4.

RETURNS OK or ERROR.

SEE ALSO iPIIX4
290

2: Routines
iPIIX4KbdInit()

I

iPIIX4IntrRoute()

NAME iPIIX4IntrRoute() – route PIRQ[A:D]

SYNOPSIS STATUS iPIIX4IntrRoute

(

int pintx,

char irq

)

DESCRIPTION This routine will connect an irq to a pci interrupt.

RETURNS OK or ERROR.

SEE ALSO iPIIX4

iPIIX4KbdInit()

NAME iPIIX4KbdInit() – initialize the PCI-ISA/IDE bridge

SYNOPSIS STATUS iPIIX4KbdInit ()

DESCRIPTION This routine will initialize PIIX4 - PCI-ISA/IDE bridge to enable keyboard device and IRQ
routing.

RETURNS OK or ERROR.

SEE ALSO iPIIX4
291

VxWorks Drivers API Reference, 5.5
ln97xEndLoad()
ln97xEndLoad()

NAME ln97xEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * ln97xEndLoad

(

char * initString /* string to be parse by the driver */

)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in initString, which expects a string of the following
format:

unit:devMemAddr:devIoAddr:pciMemBase:vecnum:intLvl:memAdrs
:memSize:memWidth:csr3b:offset:flags

This routine can be called in two modes. If it is called with an empty but allocated string,
it places the name of this device (that is, "lnPci") into the initString and returns 0.

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.

RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

SEE ALSO ln97xEnd

ln97xInitParse()

NAME ln97xInitParse() – parse the initialization string

SYNOPSIS STATUS ln97xInitParse

(

LN_97X_DRV_CTRL * pDrvCtrl, /* pointer to the control structure */

char * initString /* initialization string */

)

DESCRIPTION Parse the input string. This routine is called from ln97xEndLoad() which initializes some
values in the driver control structure with the values passed in the initialization string.

The initialization string format is:

unit:devMemAddr:devIoAddr:pciMemBase:vecNum:intLvl:memAdrs
292

2: Routines
ln97xInitParse()

L

:memSize:memWidth:csr3b:offset:flags

unit
The device unit number. Unit numbers are integers starting at zero and increasing for
each device controlled by the driver.

devMemAddr
The device memory mapped I/O register base address. Device registers must be
mapped into the host processor address space in order for the driver to be functional.
Thus, this is a required parameter.

devIoAddr
Device register base I/O address (obsolete).

pciMemBase
Base address of PCI memory space.

vecNum
Interrupt vector number.

intLvl
Interrupt level. Generally, this value specifies an interrupt level defined for an
external interrupt controller.

memAdrs
Memory pool address or NONE.

memSize
Memory pool size or zero.

memWidth
Memory system size, 1, 2, or 4 bytes (optional).

CSR3
Control and Status Register 3 (CSR3) options.

offset
Memory alignment offset.

flags
Device specific flags reserved for future use.

RETURNS OK, or ERROR if any arguments are invalid.

SEE ALSO ln97xEnd
293

VxWorks Drivers API Reference, 5.5
ln7990EndLoad()
ln7990EndLoad()

NAME ln7990EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* ln7990EndLoad

(

char* initString /* string to be parse by the driver */

)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in initString, which expects a string of the following
format:

unit:CSR_reg_addr:RAP_reg_addr:int_vector:int_level:shmem_addr: shmem_size:shmem_width

This routine can be called in two modes. If it is called with an empty but allocated string,
it places the name of this device (that is, "ln") into the initString and returns 0.

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.

RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

SEE ALSO ln7990End

lnattach()

NAME lnattach() – publish the ln network interface and initialize driver structures

SYNOPSIS STATUS lnattach

(

int unit, /* unit number */

char * devAdrs, /* LANCE I/O address */

int ivec, /* interrupt vector */

int ilevel, /* interrupt level */

char * memAdrs, /* address of memory pool (-1 = malloc it) */

ULONG memSize, /* only used if memory pool is NOT malloc()ed */

int memWidth, /* byte-width of data (-1 = any width) */

int spare, /* not used */

int spare2 /* not used */

)

294

2: Routines
lnPciattach()

L

DESCRIPTION This routine publishes the ln interface by filling in a network interface record and adding
this record to the system list. This routine also initializes the driver and the device to the
operational state.

The memAdrs parameter can be used to specify the location of the memory that will be
shared between the driver and the device. The value NONE is used to indicate that the
driver should obtain the memory.

The memSize parameter is valid only if the memAdrs parameter is not set to NONE, in
which case memSize indicates the size of the provided memory region.

The memWidth parameter sets the memory pool’s data port width (in bytes); if it is NONE,
any data width is used.

BUGS To zero out LANCE data structures, this routine uses bzero(), which ignores the
memWidth specification and uses any size data access to write to memory.

RETURNS OK or ERROR.

SEE ALSO if_ln

lnPciattach()

NAME lnPciattach() – publish the lnPci network interface and initialize the driver and device

SYNOPSIS STATUS lnPciattach

(

int unit, /* unit number */

char * devAdrs, /* LANCE I/O address */

int ivec, /* interrupt vector */

int ilevel, /* interrupt level */

char * memAdrs, /* address of memory pool (-1 = malloc it) */

ULONG memSize, /* used if memory pool is NOT malloc()ed */

int memWidth, /* byte-width of data (-1 = any width) */

ULONG pciMemBase, /* memory base as seen from PCI*/

int spare2 /* not used */

)

DESCRIPTION This routine publishes the ln interface by filling in a network interface record and adding
this record to the system list. This routine also initializes the driver and the device to the
operational state.
295

VxWorks Drivers API Reference, 5.5
loattach()
The memAdrs parameter can be used to specify the location of the memory that will be
shared between the driver and the device. The value NONE is used to indicate that the
driver should obtain the memory.

The memSize parameter is valid only if the memAdrs parameter is not set to NONE, in
which case memSize indicates the size of the provided memory region.

The memWidth parameter sets the memory pool’s data port width (in bytes); if it is NONE,
any data width is used.

BUGS To zero out LANCE data structures, this routine uses bzero(), which ignores the
memWidth specification and uses any size data access to write to memory.

RETURNS OK or ERROR.

SEE ALSO if_lnPci

loattach()

NAME loattach() – publish the lo network interface and initialize the driver and pseudo-device

SYNOPSIS STATUS loattach (void)

DESCRIPTION This routine attaches an lo Ethernet interface to the network, if the interface exists. It
makes the interface available by filling in the network interface record. The system
initializes the interface when it is ready to accept packets.

RETURNS OK.

SEE ALSO if_loop
296

2: Routines
lptDrv()

L

lptDevCreate()

NAME lptDevCreate() – create a device for an LPT port

SYNOPSIS STATUS lptDevCreate

(

char * name, /* name to use for this device */

int channel /* physical channel for this device (0 - 2) */

)

DESCRIPTION This routine creates a device for a specified LPT port. Each port to be used should have
exactly one device associated with it by calling this routine.

For instance, to create the device /lpt/0, the proper call would be:

lptDevCreate ("/lpt/0", 0);

RETURNS OK, or ERROR if the driver is not installed, the channel is invalid, or the device already
exists.

SEE ALSO lptDrv, lptDrv()

lptDrv()

NAME lptDrv() – initialize the LPT driver

SYNOPSIS STATUS lptDrv

(

int channels, /* LPT channels */

LPT_RESOURCE * pResource /* LPT resources */

)

DESCRIPTION This routine initializes the LPT driver, sets up interrupt vectors, and performs hardware
initialization of the LPT ports.

This routine should be called exactly once, before any reads, writes, or calls to
lptDevCreate(). Normally, it is called by usrRoot() in usrConfig.c.

RETURNS OK, or ERROR if the driver cannot be installed.

SEE ALSO lptDrv, lptDevCreate()
297

VxWorks Drivers API Reference, 5.5
lptShow()
lptShow()

NAME lptShow() – show LPT statistics

SYNOPSIS void lptShow

(

UINT channel /* channel (0 - 2) */

)

DESCRIPTION This routine shows statistics for a specified LPT port.

RETURNS N/A.

SEE ALSO lptDrv
298

2: Routines
m68302SioInit2()

M

m68302SioInit()

NAME m68302SioInit() – initialize a M68302_CP

SYNOPSIS void m68302SioInit

(

M68302_CP * pCp

(

DESCRIPTION This routine initializes the driver function pointers and then resets the chip to a quiescent
state. The BSP must already have initialized all the device addresses and the baudFreq
fields in the M68302_CP structure before passing it to this routine. The routine resets the
device and initializes everything to support polled mode (if possible), but does not enable
interrupts.

RETURNS N/A

SEE ALSO m68302Sio

m68302SioInit2()

NAME m68302SioInit2() – initialize a M68302_CP (part 2)

SYNOPSIS void m68302SioInit2

(

M68302_CP * pCp

(

DESCRIPTION Enables interrupt mode of operation.

RETURNS N/A

SEE ALSO m68302Sio
299

VxWorks Drivers API Reference, 5.5
m68332DevInit()
m68332DevInit()

NAME m68332DevInit() – initialize the SCC

SYNOPSIS void m68332DevInit

(

M68332_CHAN * pChan

(

DESCRIPTION This initializes the chip to a quiescent state.

RETURNS N/A

SEE ALSO m68332Sio

m68332Int()

NAME m68332Int() – handle an SCC interrupt

SYNOPSIS void m68332Int

(

M68332_CHAN * pChan

(

DESCRIPTION This routine handles SCC interrupts.

RETURNS N/A

SEE ALSO m68332Sio
300

2: Routines
m68360Int()

M

m68360DevInit()

NAME m68360DevInit() – initialize the SCC

SYNOPSIS void m68360DevInit

(

M68360_CHAN * pChan

(

DESCRIPTION This routine is called to initialize the chip to a quiescent state.

SEE ALSO m68360Sio

m68360Int()

NAME m68360Int() – handle an SCC interrupt

SYNOPSIS void m68360Int

(

M68360_CHAN * pChan

(

DESCRIPTION This routine gets called to handle SCC interrupts.

SEE ALSO m68360Sio
301

VxWorks Drivers API Reference, 5.5
m68562HrdInit()
m68562HrdInit()

NAME m68562HrdInit() – initialize the DUSCC

SYNOPSIS void m68562HrdInit

(

M68562_QUSART * pQusart

(

DESCRIPTION The BSP must have already initialized all the device addresses, etc in M68562_DUSART
structure. This routine resets the chip in a quiescent state.

SEE ALSO m68562Sio

m68562RxInt()

NAME m68562RxInt() – handle a receiver interrupt

SYNOPSIS void m68562RxInt

(

M68562_CHAN * pChan

(

RETURNS N/A

SEE ALSO m68562Sio
302

2: Routines
m68562TxInt()

M

m68562RxTxErrInt()

NAME m68562RxTxErrInt() – handle a receiver/transmitter error interrupt

SYNOPSIS void m68562RxTxErrInt

(

M68562_CHAN * pChan

(

DESCRIPTION Only the receive overrun condition is handled.

RETURNS N/A

SEE ALSO m68562Sio

m68562TxInt()

NAME m68562TxInt() – handle a transmitter interrupt

SYNOPSIS void m68562TxInt

(

M68562_CHAN * pChan

(

DESCRIPTION If there is another character to be transmitted, it sends it. If not, or if a device has never
been created for this channel, disable the interrupt.

RETURNS N/A

SEE ALSO m68562Sio
303

VxWorks Drivers API Reference, 5.5
m68681Acr()
m68681Acr()

NAME m68681Acr() – return the contents of the DUART auxiliary control register

SYNOPSIS UCHAR m68681Acr

(

M68681_DUART * pDuart

(

DESCRIPTION This routine returns the contents of the auxilliary control register (ACR). The ACR is not
directly readable; a copy of the last value written is kept in the DUART data structure.

RETURNS The contents of the auxilliary control register.

SEE ALSO m68681Sio

m68681AcrSetClr()

NAME m68681AcrSetClr() – set and clear bits in the DUART auxiliary control register

SYNOPSIS void m68681AcrSetClr

(

M68681_DUART * pDuart,

UCHAR setBits, /* which bits to set in the ACR */

UCHAR clearBits /* which bits to clear in the ACR */

(

DESCRIPTION This routine sets and clears bits in the DUART auxiliary control register (ACR). It sets and
clears bits in a local copy of the ACR, then writes that local copy to the DUART. This
means that all changes to the ACR must be performed by this routine. Any direct changes
to the ACR are lost the next time this routine is called.

Set has priority over clear. Thus you can use this routine to update multiple bit fields by
specifying the field mask as the clear bits.

RETURNS N/A

SEE ALSO m68681Sio
304

2: Routines
m68681DevInit2()

M

m68681DevInit()

NAME m68681DevInit() – intialize a M68681_DUART

SYNOPSIS void m68681DevInit

(

M68681_DUART * pDuart

(

DESCRIPTION The BSP must already have initialized all the device addresses and register pointers in the
M68681_DUART structure as described in m68681Sio. This routine initializes some
transmitter and receiver status values to be used in the interrupt mask register and then
resets the chip to a quiescent state.

RETURNS N/A

SEE ALSO m68681Sio

m68681DevInit2()

NAME m68681DevInit2() – intialize a M68681_DUART, part 2

SYNOPSIS void m68681DevInit2

(

M68681_DUART * pDuart

(

DESCRIPTION This routine is called as part of sysSerialHwInit2(). It tells the driver that interrupt
vectors are connected and that it is safe to allow interrupts to be enabled.

RETURNS N/A

SEE ALSO m68681Sio
305

VxWorks Drivers API Reference, 5.5
m68681Imr()
m68681Imr()

NAME m68681Imr() – return the current contents of the DUART interrupt-mask register

SYNOPSIS UCHAR m68681Imr

(

M68681_DUART * pDuart

(

DESCRIPTION This routine returns the contents of the interrupt-mask register (IMR). The IMR is not
directly readable; a copy of the last value written is kept in the DUART data structure.

RETURNS The contents of the interrupt-mask register.

SEE ALSO m68681Sio

m68681ImrSetClr()

NAME m68681ImrSetClr() – set and clear bits in the DUART interrupt-mask register

SYNOPSIS void m68681ImrSetClr

(

M68681_DUART * pDuart,

UCHAR setBits, /* which bits to set in the IMR */

UCHAR clearBits /* which bits to clear in the IMR */

(

DESCRIPTION This routine sets and clears bits in the DUART interrupt-mask register (IMR). It sets and
clears bits in a local copy of the IMR, then writes that local copy to the DUART. This
means that all changes to the IMR must be performed by this routine. Any direct changes
to the IMR are lost the next time this routine is called.

Set has priority over clear. Thus you can use this routine to update multiple bit fields by
specifying the field mask as the clear bits.

RETURNS N/A

SEE ALSO m68681Sio
306

2: Routines
m68681Opcr()

M

m68681Int()

NAME m68681Int() – handle all DUART interrupts in one vector

SYNOPSIS void m68681Int

(

M68681_DUART * pDuart

(

DESCRIPTION This routine handles all interrupts in a single interrupt vector. It identifies and services
each interrupting source in turn, using edge-sensitive interrupt controllers.

RETURNS N/A

SEE ALSO m68681Sio

m68681Opcr()

NAME m68681Opcr() – return the state of the DUART output port configuration register

SYNOPSIS UCHAR m68681Opcr

(

M68681_DUART * pDuart

(

DESCRIPTION This routine returns the state of the output port configuration register (OPCR) from the
saved copy in the DUART data structure. The actual OPCR contents are not directly
readable.

RETURNS The state of the output port configuration register.

SEE ALSO m68681Sio
307

VxWorks Drivers API Reference, 5.5
m68681OpcrSetClr()
m68681OpcrSetClr()

NAME m68681OpcrSetClr() – set and clear bits in the DUART output port configuration register

SYNOPSIS void m68681OpcrSetClr

(

M68681_DUART * pDuart,

UCHAR setBits, /* which bits to set in the OPCR */

UCHAR clearBits /* which bits to clear in the OPCR */

(

DESCRIPTION This routine sets and clears bits in the DUART output port configuration register (OPCR).
It sets and clears bits in a local copy of the OPCR, then writes that local copy to the
DUART. This means that all changes to the OPCR must be performed by this routine. Any
direct changes to the OPCR are lost the next time this routine is called.

Set has priority over clear. Thus you can use this routine to update multiple bit fields by
specifying the field mask as the clear bits.

RETURNS N/A

SEE ALSO m68681Sio

m68681Opr()

NAME m68681Opr() – return the current state of the DUART output port register

SYNOPSIS UCHAR m68681Opr

(

M68681_DUART * pDuart

(

DESCRIPTION This routine returns the current state of the output port register (OPR) from the saved
copy in the DUART data structure. The actual OPR contents are not directly readable.

RETURNS The current state of the output port register.

SEE ALSO m68681Sio
308

2: Routines
m68901DevInit()

M

m68681OprSetClr()

NAME m68681OprSetClr() – set and clear bits in the DUART output port register

SYNOPSIS void m68681OprSetClr

(

M68681_DUART * pDuart,

UCHAR setBits, /* which bits to set in the OPR */

UCHAR clearBits /* which bits to clear in the OPR */

(

DESCRIPTION This routine sets and clears bits in the DUART output port register (OPR). It sets and
clears bits in a local copy of the OPR, then writes that local copy to the DUART. This
means that all changes to the OPR must be performed by this routine. Any direct changes
to the OPR are lost the next time this routine is called.

Set has priority over clear. Thus you can use this routine to update multiple bit fields by
specifying the field mask as the clear bits.

RETURNS N/A

SEE ALSO m68681Sio

m68901DevInit()

NAME m68901DevInit() – initialize a M68901_CHAN structure

SYNOPSIS void m68901DevInit

(

M68901_CHAN * pChan

(

DESCRIPTION This routine initializes the driver function pointers and then resets the chip to a quiescent
state. The BSP must have already initialized all the device addresses and the baudFreq
fields in the M68901_CHAN structure before passing it to this routine.

RETURNS N/A

SEE ALSO m68901Sio
309

VxWorks Drivers API Reference, 5.5
mb86940DevInit()
mb86940DevInit()

NAME mb86940DevInit() – install the driver function table

SYNOPSIS void mb86940DevInit

(

MB86940_CHAN * pChan

(

DESCRIPTION This routine installs the driver function table. It also prevents the serial channel from
functioning by disabling the interrupt.

RETURNS N/A

SEE ALSO mb86940Sio

mb86960EndLoad()

NAME mb86960EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * mb86960EndLoad

(

char * pInitString /* String to be parsed by the driver. */

(

DESCRIPTION This routine initializes the driver and puts the device to an operational state. All of the
device specific parameters are passed in via the initString, which expects a string of the
following format:

unit:base_addr:int_vector:int_level

This routine can be called in two modes. If it is called with an empty but allocated string,
it places the name of this device (that is, "fn") into the initString and returns 0.

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.

RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

SEE ALSO mb86960End
310

2: Routines
mb86960MemInit()

M

mb86960InitParse()

NAME mb86960InitParse() – parse the initialization string

SYNOPSIS STATUS mb86960InitParse

(

MB86960_END_CTRL * pDrvCtrl, /* device pointer */

char * pInitString /* information string */

(

DESCRIPTION This routine parses the input string, filling in values in the driver control structure.

The initialization string format is: unit:baseAddr:ivec

unit
Device unit number, a small integer. Must always be 0.

devBaseAddr
Base address of the device register set.

ivec
Interrupt vector number, used with sysIntConnect().

RETURNS OK or ERROR for invalid arguments.

SEE ALSO mb86960End

mb86960MemInit()

NAME mb86960MemInit() – initialize memory for the chip

SYNOPSIS STATUS mb86960MemInit

(

MB86960_END_CTRL * pDrvCtrl /* device to be initialized */

(

DESCRIPTION This routine is highly specific to the device.

RETURNS OK or ERROR.

SEE ALSO mb86960End
311

VxWorks Drivers API Reference, 5.5
mb87030CtrlCreate()
mb87030CtrlCreate()

NAME mb87030CtrlCreate() – create a control structure for an MB87030 SPC

SYNOPSIS MB_87030_SCSI_CTRL *mb87030CtrlCreate

(

UINT8 * spcBaseAdrs, /* base address of SPC */

int regOffset, /* addr offset between consecutive regs. */

UINT clkPeriod, /* period of controller clock (nsec) */

int spcDataParity, /* type of input to SPC DP (data parity) */

FUNCPTR spcDMABytesIn, /* SCSI DMA input function */

FUNCPTR spcDMABytesOut /* SCSI DMA output function */

(

DESCRIPTION This routine creates a data structure that must exist before the SPC chip can be used. This
routine should be called once and only once for a specified SPC. It should be the first
routine called, since it allocates memory for a structure needed by all other routines in the
library.

After calling this routine, at least one call to mb87030CtrlInit() should be made before
any SCSI transaction is initiated using the SPC chip.

A detailed description of the input parameters follows:

spcBaseAdrs
the address at which the CPU would access the lowest register of the SPC.

regOffset
the address offset (bytes) to access consecutive registers. (This must be a power of 2,
for example, 1, 2, 4, etc.)

clkPeriod
the period in nanoseconds of the signal to the SPC clock input (only used for select
command timeouts).

spcDataParity
the parity bit must be defined by one of the following constants, according to whether
the input to SPC DP is GND, +5V, or a valid parity signal, respectively:

SPC_DATA_PARITY_LOW
SPC_DATA_PARITY_HIGH
SPC_DATA_PARITY_VALID

spcDmaBytesIn and spcDmaBytesOut
pointers to board-specific routines to handle DMA input and output. If these are
NULL (0), SPC program transfer mode is used. DMA is possible only during SCSI
data in/out phases. The interface to these DMA routines must be of the form:
312

2: Routines
mb87030CtrlInit()

M

STATUS xxDmaBytes{In, Out}

(

SCSI_PHYS_DEV *pScsiPhysDev, /* ptr to phys dev info */

UINT8 *pBuffer, /* ptr to the data buffer */

int bufLength /* number of bytes to xfer */

)

RETURNS A pointer to the SPC control structure, or NULL if memory is insufficient or parameters
are invalid.

SEE ALSO mb87030Lib

mb87030CtrlInit()

NAME mb87030CtrlInit() – initialize a control structure for an MB87030 SPC

SYNOPSIS STATUS mb87030CtrlInit

(

MB_87030_SCSI_CTRL * pSpc, /* ptr to SPC struct */

int scsiCtrlBusId, /* SCSI bus ID of this SPC */

UINT defaultSelTimeOut, /* default dev sel timeout */

/* (microsec) */

int scsiPriority /* priority of task doing */

/* SCSI I/O */

(

DESCRIPTION This routine initializes an SPC control structure created by mb87030CtrlCreate(). It must
be called before the SPC is used. This routine can be called more than once; however, it
should be called only while there is no activity on the SCSI interface.

Before returning, this routine pulses RST (reset) on the SCSI bus, thus resetting all
attached devices.

The input parameters are as follows:

pSpc
a pointer to the MB_87030_SCSI_CTRL structure created with mb87030CtrlCreate().

scsiCtrlBusId
the SCSI bus ID of the SIOP, in the range 0 - 7. The ID is somewhat arbitrary; the
value 7, or highest priority, is conventional.

defaultSelTimeOut
the timeout, in microseconds, for selecting a SCSI device attached to this controller.
The recommended value 0 specifies SCSI_DEF_SELECT_TIMEOUT (250 milliseconds).
313

VxWorks Drivers API Reference, 5.5
mb87030Show()
The maximum timeout possible is approximately 3 seconds. Values exceeding this
revert to the maximum.

scsiPriority
the priority to which a task is set when performing a SCSI transaction. Valid priorities
range from 0 to 255. Alternatively, the value -1 specifies that the priority should not
be altered during SCSI transactions.

RETURNS OK, or ERROR if parameters are out of range.

SEE ALSO mb87030Lib

mb87030Show()

NAME mb87030Show() – display the values of all readable MB87030 SPC registers

SYNOPSIS STATUS mb87030Show

(

SCSI_CTRL * pScsiCtrl /* ptr to SCSI controller info */

(

DESCRIPTION This routine displays the state of the SPC registers in a user-friendly manner. It is useful
primarily for debugging.

EXAMPLE -> mb87030Show

SCSI Bus ID: 7

SCTL (0x01): intsEnbl

SCMD (0x00): busRlease

TMOD (0x00): asyncMode

INTS (0x00):

PSNS (0x00): req0 ack0 atn0 sel0 bsy0 msg0 c_d0 i_o0

SSTS (0x05): noConIdle xferCnt=0 dregEmpty

SERR (0x00): noParErr

PCTL (0x00): bfIntDsbl phDataOut

MBC (0x00): 0

XFER COUNT : 0x000000 = 0

RETURNS OK, or ERROR if pScsiCtrl and pSysScsiCtrl are both NULL.

SEE ALSO mb87030Lib
314

2: Routines
mbcattach()

M

mbcAddrFilterSet()

NAME mbcAddrFilterSet() – set the address filter for multicast addresses

SYNOPSIS void mbcAddrFilterSet

(

MBC_DEVICE * pDrvCtrl /* device to be updated */

(

DESCRIPTION This routine goes through all of the multicast addresses on the list of addresses (added
with the endAddrAdd() routine) and sets the device’s filter correctly.

RETURNS N/A.

SEE ALSO mbcEnd

mbcattach()

NAME mbcattach() – publish the mbc network interface and initialize the driver

SYNOPSIS STATUS mbcattach

(

int unit, /* unit number */

void * pEmBase, /* ethernet module base address */

int inum, /* interrupt vector number */

int txBdNum, /* number of transmit buffer descriptors */

int rxBdNum, /* number of receive buffer descriptors */

int dmaParms, /* DMA parameters */

UINT8 * bufBase /* address of memory pool; NONE = malloc it */

(

DESCRIPTION The routine publishes the mbc interface by adding an mbc Interface Data Record (IDR) to
the global network interface list.

The Ethernet controller uses buffer descriptors from an on-chip dual-ported RAM region,
while the buffers are allocated in RAM external to the controller. The buffer memory pool
can be allocated in a non-cacheable RAM region and passed as parameter bufBase.
Otherwise bufBase is NULL and the buffer memory pool is allocated by the routine using
cacheDmaMalloc(). The driver uses this buffer pool to allocate the specified number of
1518-byte buffers for transmit, receive, and loaner pools.
315

VxWorks Drivers API Reference, 5.5
mbcEndLoad()
The parameters txBdNum and rxBdNum specify the number of buffers to allocate for
transmit and receive. If either of these parameters is NULL, the default value of 2 is used.
The number of loaner buffers allocated is the lesser of rxBdNum and 16.

The on-chip dual ported RAM can only be partitioned so that the maximum receive and
maximum transmit BDs are:

– Transmit BDs: 8, Receive BDs: 120

– Transmit BDs: 16, Receive BDs: 112

– Transmit BDs: 32, Receive BDs: 96

– Transmit BDs: 64, Receive BDs: 64

RETURNS ERROR, if unit is out of rang> or non-cacheable memory cannot be allocated; otherwise
TRUE.

SEE ALSO if_mbc, ifLib, Motorola MC68EN302 User’s Manual

mbcEndLoad()

NAME mbcEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* mbcEndLoad

(

char * initString /* String to be parsed by the driver */

(

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the device
specific parameters are passed in the initString.

The string contains the target specific parameters like this:

"unit:memAddr:ivec:txBdNum:rxBdNum:dmaParms:bufBase:offset"

RETURNS An END object pointer or NULL on error.

SEE ALSO mbcEnd
316

2: Routines
mbcMemInit()

M

mbcIntr()

NAME mbcIntr() – network interface interrupt handler

SYNOPSIS void mbcIntr

(

int unit /* unit number */

(

DESCRIPTION This routine is called at interrupt level. It handles work that requires minimal processing.
Interrupt processing that is more extensive gets handled at task level. The network task,
netTask(), is provided for this function. Routines get added to the netTask() work queue
via the netJobAdd() command.

RETURNS N/A

SEE ALSO if_mbc

mbcMemInit()

NAME mbcMemInit() – initialize memory for the chip

SYNOPSIS STATUS mbcMemInit

(

MBC_DEVICE * pDrvCtrl /* device to be initialized */

(

DESCRIPTION Allocates and initializes the memory pools for the mbc device.

RETURNS OK or ERROR.

SEE ALSO mbcEnd
317

VxWorks Drivers API Reference, 5.5
mbcParse()
mbcParse()

NAME mbcParse() – parse the init string

SYNOPSIS STATUS mbcParse

(

MBC_DEVICE * pDrvCtrl, /* device pointer */

char * initString /* information string */

(

DESCRIPTION Parse the input string. Fill in values in the driver control structure.

The initialization string format is:

"unit:memAddr:ivec:txBdNum:rxBdNum:dmaParms:bufBase:offset"

unit
Device unit number, a small integer.

memAddr
ethernet module base address.

ivec
Interrupt vector number (used with sysIntConnect)

txBdNum
transmit buffer descriptor

rxBdNum
receive buffer descriptor

dmaParms
dma parameters

bufBase
address of memory pool

offset
packet data offset

RETURNS OK or ERROR for invalid arguments.

SEE ALSO mbcEnd
318

2: Routines
mbcStartOutput()

M

mbcStartOutput()

NAME mbcStartOutput() – output packet to network interface device

SYNOPSIS #ifdef BSD43_DRIVER LOCAL void mbcStartOutput

(

int unit /* unit number */

(

DESCRIPTION mbcStartOutput() takes a packet from the network interface output queue, copies the
mbuf chain into an interface buffer, and sends the packet over the interface.
etherOutputHookRtns are supported.

Collision stats are collected in this routine from previously sent BDs. These BDs will not
be examined until after the transmitter has cycled the ring, coming upon the BD after it
has been sent. Thus, collision stat collection will be delayed a full cycle through the Tx
ring.

This routine is called under several possible scenarios. Each one will be described below.

The first, and most common, is when a user task requests the transmission of data. Under
BSD 4.3, this results in a call to mbcOutput(), which in turn calls ether_output(). The
routine, ether_output(), will make a call to mbcStartOutput() if our interface output
queue is not full, otherwise, the outgoing data is discarded. BSD 4.4 uses a slightly
different model, in which the generic ether_output() routine is called directly, followed
by a call to this routine.

The second scenario is when this routine, while executing runs out of free Tx BDs, turns
on transmit interrupts and exits. When the next BD is transmitted, an interrupt occurs and
the ISR does a netJobAdd of the routine which executes in the context of netTask() and
continues sending packets from the interface output queue.

The third scenario is when the device is reset, typically when the promiscuous mode is
altered; which results in a call to mbcInit(). This resets the device, does a netJobAdd() of
this routine to enable transmitting queued packets.

RETURNS N/A

SEE ALSO if_mbc
319

VxWorks Drivers API Reference, 5.5
mib2ErrorAdd()
mib2ErrorAdd()

NAME mib2ErrorAdd() – change a MIB-II error count

SYNOPSIS STATUS mib2ErrorAdd

(

M2_INTERFACETBL * pMib,

int errCode,

int value

(

DESCRIPTION This function adds a specified value to one of the MIB-II error counters in a MIB-II
interface table. The counter to be altered is specified by the errCode argument. errCode can
be MIB2_IN_ERRS, MIB2_IN_UCAST, MIB2_OUT_ERRS or MIB2_OUT_UCAST. Specifying a
negative value reduces the error count, a positive value increases the error count.

RETURNS OK or ERROR.

SEE ALSO endLib

mib2Init()

NAME mib2Init() – initialize a MIB-II structure

SYNOPSIS STATUS mib2Init

(

M2_INTERFACETBL * pMib, /* struct to be initialized */

long ifType, /* ifType from m2Lib.h */

UCHAR * phyAddr, /* MAC/PHY address */

int addrLength, /* MAC/PHY address length */

int mtuSize, /* MTU size */

int speed /* interface speed */

(

DESCRIPTION Initialize a MIB-II structure. Set all error counts to zero. Assume a 10Mbps Ethernet
device.

RETURNS OK or ERROR.

SEE ALSO endLib
320

2: Routines
miiLibInit()

M

miiAnCheck()

NAME miiAnCheck() – check the auto-negotiation process result

SYNOPSIS STATUS miiAnCheck

(

PHY_INFO * pPhyInfo, /* pointer to PHY_INFO structure */

UINT8 phyAddr /* address of a PHY */

(

DESCRIPTION This routine checks the auto-negotiation process has completed successfully and no faults
have been detected by any of the PHYs engaged in the process.

NOTE In case the cable is pulled out and reconnect to the same/different hub/switch again. PHY
probably starts a new auto-negotiation process and get different negotiation results. User
should call this routine to check link status and update phyFlags. pPhyInfo should include a
valid PHY bus number (phyAddr), and include the phyFlags that was used last time to
configure auto-negotiation process.

RETURNS OK or ERROR.

SEE ALSO miiLib

miiLibInit()

NAME miiLibInit() – initialize the MII library

SYNOPSIS STATUS miiLibInit (void)

DESCRIPTION This routine initializes the MII library.

PROTECTION DOMAINS

(VxAE) This function can only be called from within the kernel protection domain.

RETURNS OK or ERROR.

SEE ALSO miiLib
321

VxWorks Drivers API Reference, 5.5
miiLibUnInit()
miiLibUnInit()

NAME miiLibUnInit() – uninitialize the MII library

SYNOPSIS STATUS miiLibUnInit ()

DESCRIPTION This routine uninitializes the MII library. Previously allocated resources are reclaimed
back to the system.

RETURNS OK or ERROR.

SEE ALSO miiLib

miiPhyInit()

NAME miiPhyInit() – initialize and configure the PHY devices

SYNOPSIS STATUS miiPhyInit

(

PHY_INFO * pPhyInfo /* pointer to PHY_INFO structure */

(

DESCRIPTION This routine scans, initializes and configures the PHY device described in phyInfo. Space
for phyInfo is to be provided by the calling task.

This routine is called from the driver’s Start routine to perform media inialization and
configuration. To access the PHY device through the MII-management interface, it uses
the read and write routines which are provided by the driver itself in the fields
phyReadRtn(), phyWriteRtn() of the phyInfo structure. Before it attempts to use this
routine, the driver has to properly initialize some of the fields in the phyInfo structure, and
optionally fill in others, as below:

/* fill in mandatory fields in phyInfo */

pDrvCtrl->phyInfo->pDrvCtrl = (void *) pDrvCtrl;

pDrvCtrl->phyInfo->phyWriteRtn = (FUNCPTR) xxxMiiWrite;

pDrvCtrl->phyInfo->phyReadRtn = (FUNCPTR) xxxMiiRead;

/* fill in some optional fields in phyInfo */

pDrvCtrl->phyInfo->phyFlags = 0;

pDrvCtrl->phyInfo->phyAddr = (UINT8) MII_PHY_DEF_ADDR;

pDrvCtrl->phyInfo->phyDefMode = (UINT8) PHY_10BASE_T;

pDrvCtrl->phyInfo->phyAnOrderTbl = (MII_AN_ORDER_TBL *)

&xxxPhyAnOrderTbl;
322

2: Routines
miiPhyInit()

M

/*

* fill in some more optional fields in phyInfo: the delay stuff

@ we want this routine to use our xxxDelay () routine, with

@ the constant one as an argument, and the max delay we may

@ tolerate is the constant MII_PHY_DEF_DELAY, in xxxDelay units

*/

pDrvCtrl->phyInfo->phyDelayRtn = (FUNCPTR) xxxDelay;

pDrvCtrl->phyInfo->phyMaxDelay = MII_PHY_DEF_DELAY;

pDrvCtrl->phyInfo->phyDelayParm = 1;

/*

* fill in some more optional fields in phyInfo: the PHY\xd5 s callback

@ to handle "link down" events. This routine is invoked whenever

@ the link status in the PHY being used is detected to be low.

*/

pDrvCtrl->phyInfo->phyStatChngRtn = (FUNCPTR) xxxRestart;

Some of the above fields may be overwritten by this routine, since for instance, the logical
address of the PHY actually used may differ from the user’s initial setting. Likewise, the
specific PHY being initialized, may not support all the technology abilities the user has
allowed for its operations.

This routine first scans for all possible PHY addresses in the range 0-31, checking for an
MII-compliant PHY, and attempts at running some diagnostics on it. If none is found,
ERROR is returned.

Typically PHYs are scanned from address 0, but if the user specifies an alternative start
PHY address via the parameter phyAddr in the phyInfo structure, PHYs are scanned in
order starting with the specified PHY address. In addition, if the flag MII_ALL_BUS_SCAN
is set, this routine will scan the whole bus even if a valid PHY has already been found,
and stores bus topology information. If the flags MII_PHY_ISO, MII_PHY_PWR_DOWN are
set, all of the PHYs found but the first will be respectively electrically isolated from the
MII interface and/or put in low-power mode. These two flags are meaningless in a
configuration where only one PHY is present.

The phyAddr parameter is very important from a performance point of view. Since the
MII management interface, through which the PHY is configured, is a very slow one,
providing an incorrect or invalid address in this field may result in a particularly long
boot process.

If the flag MII_ALL_BUS_SCAN is not set, this routine will assume that the first PHY found
is the only one.

This routine then attempts to bring the link up. This routine offers two strategies to select
a PHY and establish a valid link. The default strategy is to use the standard 802.3 style
auto-negotiation, where both link partners negotiate all their technology abilities at the
same time, and the highest common denominator ability is chosen. Before the
auto-negotiation is started, the next-page exchange mechanism is disabled.

If GMII interface is used, users can specify it through user flags — MII_PHY_GMII_TYPE.
323

VxWorks Drivers API Reference, 5.5
miiPhyInit()
The user can prevent the PHY from negotiating certain abilities via user flags —
MII_PHY_FD, MII_PHY_100, MII_PHY_HD, and MII_PHY_10. as well as MII_PHY_1000T_HD
and MII_PHY_1000T_FD if GMII is used. When MII_PHY_FD is not specified, full duplex
will not be negotiated; when MII_PHY_HD is not specified half duplex will not be
negotiated, when MII_PHY_100 is not specified, 100Mbps ability will not be negotiated;
when MII_PHY_10 is not specified, 10Mbps ability will not be negotiated. Also, if GMII is
used, when MII_PHY_1000T_HD is not specified, 1000T with half duplex mode will not be
negotiated. Same thing applied to 1000T with full duplex mode via MII_PHY_1000T_FD.

Flow control ability can also be negotiated via user flags — MII_PHY_TX_FLOW_CTRL and
MII_PHY_RX_FLOW_CTRL. For symmetric PAUSE ability (MII), user can set/clean both
flags together. For asymmetric PAUSE ability (GMII), user can seperate transmit and
receive flow control ability. However, user should be aware that flow control ability is
meaningful only if full duplex mode is used.

When MII_PHY_TBL is set in the user flags, the BSP specific table whose address may be
provided in the phyAnOrderTbl field of the phyInfo structure, is used to obtain the list,
and the order of technology abilities to be negotiated. The entries in this table are ordered
such that entry 0 is the highest priority, entry 1 in next and so on. Entries in this table may
be repeated, and multiple technology abilities can be OR’d to create a single entry. If a
PHY cannot support a ability in an entry, that entry is ignored.

If no PHY provides a valid link, and if MII_PHY_DEF_SET is set in the phyFlags field of the
PHY_INFO structure, the first PHY that supports the default abilities defined in the
phyDefMode of the phyInfo structure will be selected, regardless of the link status.

In addition, this routine adds an entry in a linked list of PHY devices for each active PHY
it found. If the flag MII_PHY_MONITOR is set, the link status for the relevant PHY is
continually monitored for a link down event. If such event is detected, and if the
phyLinkDownRtn in the PHY_INFO * structure is a valid function pointer, then the
routine it points at is executed in the context of the netTask(). The parameter
MII_MONITOR_DELAY may be used to define the period in seconds with which the link
status is checked. Its default value is 5.

RETURNS OK or ERROR if the PHY could not be initialized,

SEE ALSO miiLib
324

2: Routines
miiPhyOptFuncSet()

M

miiPhyOptFuncMultiSet()

NAME miiPhyOptFuncMultiSet() – set pointers to MII optional registers handlers

SYNOPSIS void miiPhyOptFuncMultiSet

(

PHY_INFO * pPhyInfo, /* device specific pPhyInfo pointer */

FUNCPTR optRegsFunc /* function pointer */

(

DESCRIPTION This routine sets the function pointers in pPhyInfo-optRegsFun> to the MII optional,
PHY-specific registers handler. The handler will be executed before the PHY’s technology
abilities are negotiated. If a system employees more than on type of network device
requiring a PHY-specific registers handler use this routine instead of
miiPhyOptFuncSet() to ensure device specific handlers and to avoid overwritting one’s
with the other’s.

PROTECTION DOMAINS

(VxAE) This function can only be called from within the kernel protection domain. The
argument optRegsFunc must be a pointer to function in the kernel protection domain.

RETURNS N/A.

SEE ALSO miiLib

miiPhyOptFuncSet()

NAME miiPhyOptFuncSet() – set the pointer to the MII optional registers handler

SYNOPSIS void miiPhyOptFuncSet

(

FUNCPTR optRegsFunc /* function pointer */

(

DESCRIPTION This routine sets the function pointer in optRegsFunc to the MII optional, PHY-specific
registers handler. The handler is executed before the PHY’s technology abilities are
negotiated.

PROTECTION DOMAINS

(VxAE) This function can only be called from within the kernel protection domain. The
argument optRegsFunc must be a pointer to function in the kernel protection domain.
325

VxWorks Drivers API Reference, 5.5
miiPhyUnInit()
RETURNS N/A.

SEE ALSO miiLib

miiPhyUnInit()

NAME miiPhyUnInit() – uninitialize a PHY

SYNOPSIS STATUS miiPhyUnInit

(

PHY_INFO * pPhyInfo /* pointer to PHY_INFO structure */

(

DESCRIPTION This routine uninitializes the PHY specified in pPhyInfo. It brings it in low-power mode,
and electrically isolate it from the MII management interface to which it is attached. In
addition, it frees resources previously allocated.

RETURNS OK, or ERROR in case of fatal errors.

SEE ALSO miiLib

miiRegsGet()

NAME miiRegsGet() – get the contents of MII registers

SYNOPSIS STATUS miiRegsGet

(

PHY_INFO * pPhyInfo, /* pointer to PHY_INFO structure */

UINT regNum, /* number of registers to display */

UCHAR * buff /* where to read registers to */

(

DESCRIPTION This routine gets the contents of the first regNum MII registers, and, if buff is not NULL,
copies them to the space pointed to by buff.

RETURNS OK, or ERROR if could not perform the read.

SEE ALSO miiLib
326

2: Routines
motCpmEndLoad()

M

miiShow()

NAME miiShow() – show routine for MII library

SYNOPSIS void miiShow

(

PHY_INFO * pPhyInfo /* pointer to PHY_INFO structure */

(

DESCRIPTION This is a show routine for the MII library

RETURNS OK, always.

SEE ALSO miiLib

motCpmEndLoad()

NAME motCpmEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ *motCpmEndLoad

(

char * initString /* parameter string */

(

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the device
specific parameters are passed in the initString, which is of the following format:

unit:motCpmAddr:ivec:sccNum:txBdNum:rxBdNum:txBdBase:rxBdBase:bufBase

The parameters of this string are individually described in the reference entry for
motCpmEnd.

The SCC shares a region of memory with the driver. The caller of this routine can specify
the address of a non-cacheable memory region with bufBase. Or, if this parameter is
"NONE", the driver obtains this memory region by making calls to cacheDmaMalloc().
Non-cacheable memory space is important whenever the host processor uses cache
memory. This is also the case when the MC68EN360 is operating in companion mode and
is attached to a processor with cache memory.

After non-cacheable memory is obtained, this routine divides up the memory between the
various buffer descriptors (BDs). The number of BDs can be specified by txBdNum and
rxBdNum, or if "NULL", a default value of 32 BDs will be used. An additional number of
327

VxWorks Drivers API Reference, 5.5
motFccEndLoad()
buffers are reserved as receive loaner buffers. The number of loaner buffers is a default
number of 16.

The user must specify the location of the transmit and receive BDs in the processor’s dual
ported RAM. txBdBase and rxBdBase give the offsets from motCpmAddr for the base of the
BD rings. Each BD uses 8 bytes. Care must be taken so that the specified locations for
Ethernet BDs do not conflict with other dual ported RAM structures.

Multiple individual device units are supported by this driver. Device units can reside on
different chips, or could be on different SCCs within a single processor. The sccNum
parameter is used to explicitly state which SCC is being used. SCC1 is most commonly
used, thus this parameter most often equals "1".

Before this routine returns, it connects up the interrupt vector ivec.

RETURNS An END object pointer or NULL on error.

SEE ALSO motCpmEnd, Motorola MC68EN360 User’s Manual, Motorola MPC860 User’s Manual,
Motorola MPC821 User’s Manual

motFccEndLoad()

NAME motFccEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* motFccEndLoad

(

char * initString

(

DESCRIPTION This routine initializes both driver and device to an operational state using device specific
parameters specified by initString.

The parameter string, initString, is an ordered list of parameters each separated by a colon.
The format of initString is:

"immrVal:ivec:bufBase:bufSize:fifoTxBase:fifoRxBase
:tbdNum:rbdNum:phyAddr:phyDefMode:pAnOrderTbl:userFlags"

The FCC shares a region of memory with the driver. The caller of this routine can specify
the address of this memory region, or can specify that the driver must obtain this memory
region from the system resources.

A default number of transmit/receive buffer descriptors of 32 can be selected by passing
zero in the parameters tbdNum and rbdNum. In other cases, the number of buffers selected
should be greater than two.
328

2: Routines
motFecEndLoad()

M

The bufBase parameter is used to inform the driver about the shared memory region. If
this parameter is set to the constant NONE, then this routine will attempt to allocate the
shared memory from the system. Any other value for this parameter is interpreted by this
routine as the address of the shared memory region to be used. The bufSize parameter is
used to check that this region is large enough with respect to the provided values of both
transmit/receive buffer descriptors.

If the caller provides the shared memory region, then the driver assumes that this region
does not require cache coherency operations, nor does it require conversions between
virtual and physical addresses.

If the caller indicates that this routine must allocate the shared memory region, then this
routine will use cacheDmaMalloc() to obtain some cache-safe memory. The attributes of
this memory will be checked, and if the memory is not write coherent, this routine will
abort and return NULL.

RETURNS An END object pointer, or NULL on error.

SEE ALSO motFccEnd, ifLib, MPC8260 Power QUICC II User’s Manual

motFecEndLoad()

NAME motFecEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* motFecEndLoad

(

char * initString /* parameter string */

(

DESCRIPTION This routine initializes both driver and device to an operational state using device specific
parameters specified by initString.

The parameter string, initString, is an ordered list of parameters each separated by a colon.
The format of initString is:

"motCpmAddr:ivec:bufBase:bufSize:fifoTxBase:fifoRxBase
:tbdNum:rbdNum:phyAddr:isoPhyAddr:phyDefMode:userFlags :clockSpeed"

The FEC shares a region of memory with the driver. The caller of this routine can specify
the address of this memory region, or can specify that the driver must obtain this memory
region from the system resources.

A default number of transmit/receive buffer descriptors of 32 can be selected by passing
zero in the parameters tbdNum and rbdNum. In other cases, the number of buffers selected
should be greater than two.
329

VxWorks Drivers API Reference, 5.5
motFecEndLoad()
The bufBase parameter is used to inform the driver about the shared memory region. If
this parameter is set to the constant "NONE," then this routine will attempt to allocate the
shared memory from the system. Any other value for this parameter is interpreted by this
routine as the address of the shared memory region to be used. The bufSize parameter is
used to check that this region is large enough with respect to the provided values of both
transmit/receive buffer descriptors.

If the caller provides the shared memory region, then the driver assumes that this region
does not require cache coherency operations, nor does it require conversions between
virtual and physical addresses.

If the caller indicates that this routine must allocate the shared memory region, then this
routine will use cacheDmaMalloc() to obtain some cache-safe memory. The attributes of
this memory will be checked, and if the memory is not write coherent, this routine will
abort and return NULL.

RETURNS An END object pointer, or NULL on error.

SEE ALSO motFecEnd, ifLib, MPC860T Fast Ethernet Controller (Supplement to MPC860 User’s Manual
330

2: Routines
n72001Int()

N

n72001DevInit()

NAME n72001DevInit() – initialize a N72001_MPSC

SYNOPSIS void n72001DevInit

(

N72001_MPSC * pMpsc /* serial device descriptor */

)

DESCRIPTION The BSP must have already initialized all the device addresses, etc. in N72001_MPSC
structure. This routine initializes some SIO_CHAN function pointers and then resets the
chip in a quiescent state.

SEE ALSO n72001Sio

n72001Int()

NAME n72001Int() – interrupt level processing

SYNOPSIS void n72001Int

(

N72001_MPSC * pMpsc /* serial device descriptor */

)

DESCRIPTION This routine handles interrupts from MPSC channels.

On some boards, all MPSC interrupts for both ports share a single interrupt vector. This is
the ISR for such boards. We determine from the parameter which MPSC interrupted, then
look at the code to find out which channel and what kind of interrupt.

RETURNS N/A

SEE ALSO n72001Sio
331

VxWorks Drivers API Reference, 5.5
n72001IntRd()
n72001IntRd()

NAME n72001IntRd() – handle a receiver interrupt

SYNOPSIS void n72001IntRd

(

N72001_CHAN * pChan /* MPSC channel descriptor */

)

DESCRIPTION This routine handles read interrupts from the MPSC

RETURNS N/A

SEE ALSO n72001Sio

n72001IntWr()

NAME n72001IntWr() – handle a transmitter interrupt

SYNOPSIS void n72001IntWr

(

N72001_CHAN * pChan /* MPSC channel descriptor */

)

DESCRIPTION This routine handles write interrupts from the MPSC.

RETURNS N/A

SEE ALSO n72001Sio
332

2: Routines
ncr710CtrlCreate()

N

ncr710CtrlCreate()

NAME ncr710CtrlCreate() – create a control structure for an NCR 53C710 SIOP

SYNOPSIS NCR_710_SCSI_CTRL *ncr710CtrlCreate

(

UINT8 * baseAdrs, /* base address of the SIOP */

UINT freqValue /* clock controller period (nsec* 100) */

)

DESCRIPTION This routine creates an SIOP data structure and must be called before using an SIOP chip.
It should be called once and only once for a specified SIOP. Since it allocates memory for a
structure needed by all routines in ncr710Lib, it must be called before any other routines
in the library. After calling this routine, ncr710CtrlInit() should be called at least once
before any SCSI transactions are initiated using the SIOP.

A detailed description of the input parameters follows:

baseAdrs
The address at which the CPU accesses the lowest register of the SIOP.

freqValue
The value at the SIOP SCSI clock input. This is used to determine the clock period for
the SCSI core of the chip and the synchronous divider value for synchronous transfer.
It is important to have the right timing on the SCSI bus. The freqValue parameter is
defined as the SCSI clock input value, in nanoseconds, multiplied by 100. Several
freqValue constants are defined in ncr710.h as follows:

NCR710_1667MHZ 5998 /* 16.67Mhz chip */

NCR710_20MHZ 5000 /* 20Mhz chip */

NCR710_25MHZ 4000 /* 25Mhz chip */

NCR710_3750MHZ 2666 /* 37.50Mhz chip */

NCR710_40MHZ 2500 /* 40Mhz chip */

NCR710_50MHZ 2000 /* 50Mhz chip */

NCR710_66MHZ 1515 /* 66Mhz chip */

NCR710_6666MHZ 1500 /* 66.66Mhz chip */

RETURNS A pointer to the NCR_710_SCSI_CTRL structure, or NULL if memory is insufficient or
parameters are invalid.

SEE ALSO ncr710Lib
333

VxWorks Drivers API Reference, 5.5
ncr710CtrlCreateScsi2()
ncr710CtrlCreateScsi2()

NAME ncr710CtrlCreateScsi2() – create a control structure for the NCR 53C710 SIOP

SYNOPSIS NCR_710_SCSI_CTRL *ncr710CtrlCreateScsi2

(

UINT8 * baseAdrs, /* base address of the SIOP */

UINT clkPeriod /* clock controller period (nsec* 100) */

)

DESCRIPTION This routine creates an SIOP data structure and must be called before using an SIOP chip.
It must be called exactly once for a specified SIOP controller. Since it allocates memory for
a structure needed by all routines in ncr710Lib, it must be called before any other routines
in the library. After calling this routine, ncr710CtrlInitScsi2() must be called at least once
before any SCSI transactions are initiated using the SIOP.

A detailed description of the input parameters follows:

baseAdrs
The address at which the CPU accesses the lowest (SCNTL0/SIEN) register of the
SIOP.

clkPeriod
The period of the SIOP SCSI clock input, in nanoseconds, multiplied by 100. This is
used to determine the clock period for the SCSI core of the chip and affects the timing
of both asynchronous and synchronous transfers. Several commonly used values are
defined in ncr710.h as follows:

NCR710_1667MHZ 6000 /* 16.67Mhz chip */

NCR710_20MHZ 5000 /* 20Mhz chip */

NCR710_25MHZ 4000 /* 25Mhz chip */

NCR710_3750MHZ 2667 /* 37.50Mhz chip */

NCR710_40MHZ 2500 /* 40Mhz chip */

NCR710_50MHZ 2000 /* 50Mhz chip */

NCR710_66MHZ 1515 /* 66Mhz chip */

NCR710_6666MHZ 1500 /* 66.66Mhz chip */

RETURNS A pointer to the NCR_710_SCSI_CTRL structure, or NULL if memory is unavailable or there
are invalid parameters.

SEE ALSO ncr710Lib2
334

2: Routines
ncr710CtrlInit()

N

ncr710CtrlInit()

NAME ncr710CtrlInit() – initialize a control structure for an NCR 53C710 SIOP

SYNOPSIS STATUS ncr710CtrlInit

(

NCR_710_SCSI_CTRL * pSiop, /* ptr to SIOP struct */

int scsiCtrlBusId, /* SCSI bus ID of this SIOP */

int scsiPriority /* priority of task when doing */

/* SCSI I/O */

)

DESCRIPTION This routine initializes an SIOP structure, after the structure is created with
ncr710CtrlCreate(). This structure must be initialized before the SIOP can be used. It may
be called more than once; however, it should be called only while there is no activity on
the SCSI interface.

Before returning, this routine pulses RST (reset) on the SCSI bus, thus resetting all
attached devices.

The input parameters are as follows:

pSiop
Apointer to the NCR_710_SCSI_CTRL structure created with ncr710CtrlCreate().

scsiCtrlBusId
The SCSI bus ID of the SIOP, in the range 0 - 7. The ID is somewhat arbitrary; the
value 7, or highest priority, is conventional.

scsiPriority
The priority to which a task is set when performing a SCSI transaction. Valid
priorities are 0 to 255. Alternatively, the value -1 specifies that the priority should not
be altered during SCSI transactions.

RETURNS OK, or ERROR if parameters are out of range.

SEE ALSO ncr710Lib
335

VxWorks Drivers API Reference, 5.5
ncr710CtrlInitScsi2()
ncr710CtrlInitScsi2()

NAME ncr710CtrlInitScsi2() – initialize a control structure for the NCR 53C710 SIOP

SYNOPSIS STATUS ncr710CtrlInitScsi2

(

NCR_710_SCSI_CTRL * pSiop, /* ptr to SIOP struct */

int scsiCtrlBusId, /* SCSI bus ID of this SIOP */

int scsiPriority /* task priority when doing SCSI I/O

*/

)

DESCRIPTION This routine initializes an SIOP structure after the structure is created with
ncr710CtrlCreateScsi2(). This structure must be initialized before the SIOP can be used. It
may be called more than once if needed; however, it must only be called while there is no
activity on the SCSI interface.

A detailed description of the input parameters follows:

pSiop
A pointer to the NCR_710_SCSI_CTRL structure created with ncr710CtrlCreateScsi2().

scsiCtrlBusId
The SCSI bus ID of the SIOP. Its value is somewhat arbitrary: seven (7), or highest
priority, is conventional. The value must be in the range 0 - 7.

scsiPriority
This parameter is ignored. All SCSI I/O is now done in the context of the SCSI
manager task; if necessary, the priority of the manager task may be changed using
taskPrioritySet() or by setting the value of the global variable
ncr710ScsiTaskPriority before calling ncr710CtrlCreateScsi2().

RETURNS OK, or ERROR if the parameters are out of range.

SEE ALSO ncr710Lib2, ncr710CtrlCreateScsi2()
336

2: Routines
ncr710SetHwRegister()

N

ncr710SetHwRegister()

NAME ncr710SetHwRegister() – set hardware-dependent registers for the NCR 53C710 SIOP

SYNOPSIS STATUS ncr710SetHwRegister

(

SIOP * pSiop, /* pointer to SIOP info */

NCR710_HW_REGS * pHwRegs /* pointer to NCR710_HW_REGS info */

)

DESCRIPTION This routine sets up the registers used in the hardware implementation of the chip.
Typically, this routine is called by the sysScsiInit() routine from the board support
package. The input parameters are as follows:

pSiop
Pointer to the NCR_710_SCSI_CTRL structure created with ncr710CtrlCreate().

pHwRegs
Pointer to a NCR710_HW_REGS structure that is filled with the logical values 0 or 1 for
each bit of each register described below.

This routine includes only the bit registers that can be used to modify the behavior of
the chip. The default configuration used during ncr710CtlrCreate() and
ncr710CrtlInit() is {0,0,0,0,1,0,0,0,0,0,0,0,0,1,0}.

typedef struct

{

int ctest4Bit7; /* host bus multiplex mode */

int ctest7Bit7; /* disable/enable burst cache capability */

int ctest7Bit6; /* snoop control bit1 */

int ctest7Bit5; /* snoop control bit0 */

int ctest7Bit1; /* invert tt1 pin (sync bus host mode only) */

int ctest7Bit0; /* enable differential SCSI bus capability */

int ctest8Bit0; /* set snoop pins mode */

int dmodeBit7; /* burst length transfer bit 1 */

int dmodeBit6; /* burst length transfer bit 0 */

int dmodeBit5; /* function code bit FC2 */

int dmodeBit4; /* function code bit FC1 */

int dmodeBit3; /* program data bit (FC0) */

int dmodeBit1; /* user-programmable transfer type */

int dcntlBit5; /* enable ACK pin */

int dcntlBit1; /* enable fast arbitration on host port */

} NCR710_HW_REGS;

For a more detailed description of the register bits, see the NCR 53C710 SCSI I/O
Processor Programming Guide.
337

VxWorks Drivers API Reference, 5.5
ncr710SetHwRegisterScsi2()
NOTE: Because this routine writes to the NCR 53C710 chip registers, it cannot be used
when there is any SCSI bus activity.

RETURNS OK, or ERROR if an input parameter is NULL.

SEE ALSO ncr710Lib, ncr710CtlrCreate(), NCR 53C710 SCSI I/O Processor Programming Guide

ncr710SetHwRegisterScsi2()

NAME ncr710SetHwRegisterScsi2() – set hardware-dependent registers for the NCR 53C710

SYNOPSIS STATUS ncr710SetHwRegisterScsi2

(

SIOP * pSiop, /* pointer to SIOP info */

NCR710_HW_REGS * pHwRegs /* pointer to a NCR710_HW_REGS info */

)

DESCRIPTION This routine sets up the registers used in the hardware implementation of the chip.
Typically, this routine is called by the sysScsiInit() routine from the BSP.

The input parameters are as follows:

pSiop
Pointer to the NCR_710_SCSI_CTRL structure created with ncr710CtrlCreateScsi2().

pHwRegs
Pointer to a NCR710_HW_REGS structure that is filled with the logical values 0 or 1 for
each bit of each register described below.

This routine includes only the bit registers that can be used to modify the behavior of
the chip. The default configuration used during ncr710CtlrCreateScsi2() and
ncr710CrtlInitScsi2() is {0,0,0,0,1,0,0,0,0,0,0,0,0,1,0}.

typedef struct

{

int ctest4Bit7; /* Host bus multiplex mode */

int ctest7Bit7; /* Disable/enable burst cache capability */

int ctest7Bit6; /* Snoop control bit1 */

int ctest7Bit5; /* Snoop control bit0 */

int ctest7Bit1; /* invert tt1 pin (sync bus host mode only)*/

int ctest7Bit0; /* enable differential scsi bus capability*/

int ctest8Bit0; /* Set snoop pins mode */

int dmodeBit7; /* Burst Length transfer bit 1 */

int dmodeBit6; /* Burst Length transfer bit 0 */
338

2: Routines
ncr710Show()

N

int dmodeBit5; /* Function code bit FC2 */

int dmodeBit4; /* Function code bit FC1 */

int dmodeBit3; /* Program data bit (FC0) */

int dmodeBit1; /* user programmable transfer type */

int dcntlBit5; /* Enable Ack pin */

int dcntlBit1; /* Enable fast arbitration on host port */

} NCR710_HW_REGS;

For a more detailed explanation of the register bits, refer to the NCR 53C710 SCSI I/O
Processor Programming Guide.

NOTE: Because this routine writes to the chip registers you cannot use it if there is any
SCSI bus activity.

RETURNS OK, or ERROR if any input parameter is NULL.

SEE ALSO ncr710Lib2, ncr710CtrlCreateScsi2(), NCR 53C710 SCSI I/O Processor Programming Guide

ncr710Show()

NAME ncr710Show() – display the values of all readable NCR 53C710 SIOP registers

SYNOPSIS STATUS ncr710Show

(

SCSI_CTRL * pScsiCtrl /* ptr to SCSI controller info */

)

DESCRIPTION This routine displays the state of the NCR 53C710 SIOP registers in a user-friendly
manner. It is useful primarily for debugging. The input parameter is the pointer to the
SIOP information structure returned by the ncr710CtrlCreate() call.

NOTE: The only readable register during a script execution is the Istat register. If this
routine is used during the execution of a SCSI command, the result could be
unpredictable.

EXAMPLE -> ncr710Show

NCR710 Registers

0xfff47000: Sien = 0xa5 Sdid = 0x00 Scntl1 = 0x00 Scntl0 = 0x04

0xfff47004: Socl = 0x00 Sodl = 0x00 Sxfer = 0x80 Scid = 0x80

0xfff47008: Sbcl = 0x00 Sbdl = 0x00 Sidl = 0x00 Sfbr = 0x00

0xfff4700c: Sstat2 = 0x00 Sstat1 = 0x00 Sstat0 = 0x00 Dstat = 0x80

0xfff47010: Dsa = 0x00000000
339

VxWorks Drivers API Reference, 5.5
ncr710ShowScsi2()
0xfff47014: Ctest3 = ???? Ctest2 = 0x21 Ctest1 = 0xf0 Ctest0 = 0x00

0xfff47018: Ctest7 = 0x32 Ctest6 = ???? Ctest5 = 0x00 Ctest4 = 0x00

0xfff4701c: Temp = 0x00000000

0xfff47020: Lcrc = 0x00 Ctest8 = 0x00 Istat = 0x00 Dfifo = 0x00

0xfff47024: Dcmd/Ddc= 0x50000000

0xfff47028: Dnad = 0x00066144

0xfff4702c: Dsp = 0x00066144

0xfff47030: Dsps = 0x00066174

0xfff47037: Scratch3= 0x00 Scratch2= 0x00 Scratch1= 0x00 Scratch0= 0x0a

0xfff47038: Dcntl = 0x21 Dwt = 0x00 Dien = 0x37 Dmode = 0x01

0xfff4703c: Adder = 0x000cc2b8

RETURNS OK, or ERROR if pScsiCtrl and pSysScsiCtrl are both NULL.

SEE ALSO ncr710Lib, ncr710CtrlCreate()

ncr710ShowScsi2()

NAME ncr710ShowScsi2() – display the values of all readable NCR 53C710 SIOP registers

SYNOPSIS STATUS ncr710ShowScsi2

(

SCSI_CTRL * pScsiCtrl /* ptr to SCSI controller info */

)

DESCRIPTION This routine displays the state of the NCR 53C710 SIOP registers in a user-friendly way. It
is primarily used for debugging. The input parameter is the pointer to the SIOP
information structure returned by the ncr710CtrlCreateScsi2() call.

NOTE: The only readable register during a script execution is the Istat register. If you use
this routine during the execution of a SCSI command, the result could be unpredictable.

EXAMPLE -> ncr710Show

NCR710 Registers

0xfff47000: Sien = 0xa5 Sdid = 0x00 Scntl1 = 0x00 Scntl0 = 0x04

0xfff47004: Socl = 0x00 Sodl = 0x00 Sxfer = 0x80 Scid = 0x80

0xfff47008: Sbcl = 0x00 Sbdl = 0x00 Sidl = 0x00 Sfbr = 0x00

0xfff4700c: Sstat2 = 0x00 Sstat1 = 0x00 Sstat0 = 0x00 Dstat = 0x80

0xfff47010: Dsa = 0x00000000

0xfff47014: Ctest3 = ???? Ctest2 = 0x21 Ctest1 = 0xf0 Ctest0 = 0x00

0xfff47018: Ctest7 = 0x32 Ctest6 = ???? Ctest5 = 0x00 Ctest4 = 0x00
340

2: Routines
ncr710SingleStep()

N

0xfff4701c: Temp = 0x00000000

0xfff47020: Lcrc = 0x00 Ctest8 = 0x00 Istat = 0x00 Dfifo = 0x00

0xfff47024: Dcmd/Ddc= 0x50000000

0xfff47028: Dnad = 0x00066144

0xfff4702c: Dsp = 0x00066144

0xfff47030: Dsps = 0x00066174

0xfff47037: Scratch3= 0x00 Scratch2= 0x00 Scratch1= 0x00 Scratch0= 0x0a

0xfff47038: Dcntl = 0x21 Dwt = 0x00 Dien = 0x37 Dmode = 0x01

0xfff4703c: Adder = 0x000cc2b8

value = 0 = 0x0

RETURNS OK, or ERROR if pScsiCtrl and pSysScsiCtrl are both NULL.

SEE ALSO ncr710Lib2, ncr710CtrlCreateScsi2()

ncr710SingleStep()

NAME ncr710SingleStep() – perform a single-step

SYNOPSIS void ncr710SingleStep

(

SIOP * pSiop, /* pointer to SIOP info */

BOOL verbose /* show all registers */

)

DESCRIPTION This routine performs a single-step by writing the STD bit in the DCNTL register. The
pSiop parameter is a pointer to the SIOP information. Before executing, enable the
single-step facility by calling ncr710StepEnable().

RETURNS N/A

SEE ALSO ncr710CommLib, ncr710StepEnable()
341

VxWorks Drivers API Reference, 5.5
ncr710StepEnable()
ncr710StepEnable()

NAME ncr710StepEnable() – enable/disable script single-step

SYNOPSIS void ncr710StepEnable

(

SIOP * pSiop, /* pointer to SIOP info */

BOOL boolValue /* TRUE/FALSE to enable/disable single step */

)

DESCRIPTION This routine enables/disables the single-step facility on the chip. It also unmasks/masks
the single-step interrupt in the Dien register. Before executing any SCSI routines, enable
the single-step facility by calling ncr710StepEnable() with boolValue set to TRUE. To
disable, call it with boolValue set to FALSE.

RETURNS N/A.

SEE ALSO ncr710CommLib, ncr710SingleStep()

ncr810CtrlCreate()

NAME ncr810CtrlCreate() – create a control structure for the NCR 53C8xx SIOP

SYNOPSIS NCR_810_SCSI_CTRL *ncr810CtrlCreate

(

UINT8 * baseAdrs, /* base address of the SIOP */

UINT clkPeriod, /* clock controller period (nsec* 100) */

UINT16 devType /* NCR8XX SCSI device type */

)

DESCRIPTION This routine creates an SIOP data structure and must be called before using an SIOP chip.
It must be called exactly once for a specified SIOP controller. Since it allocates memory for
a structure needed by all routines in ncr810Lib, it must be called before any other routines
in the library. After calling this routine, ncr810CtrlInit() must be called at least once
before any SCSI transactions are initiated using the SIOP.

A detailed description of the input parameters follows:

baseAdrs
The address at which the CPU accesses the lowest (SCNTL0/SIEN) register of the
SIOP.
342

2: Routines
ncr810CtrlInit()

N

clkPeriod
The period of the SIOP SCSI clock input, in nanoseconds, multiplied by 100. This is
used to determine the clock period for the SCSI core of the chip and affects the timing
of both asynchronous and synchronous transfers. Several commonly-used values are
defined in ncr810.h as follows:

NCR810_1667MHZ 6000 /* 16.67Mhz chip */

NCR810_20MHZ 5000 /* 20Mhz chip */

NCR810_25MHZ 4000 /* 25Mhz chip */

NCR810_3750MHZ 2667 /* 37.50Mhz chip */

NCR810_40MHZ 2500 /* 40Mhz chip */

NCR810_50MHZ 2000 /* 50Mhz chip */

NCR810_66MHZ 1515 /* 66Mhz chip */

NCR810_6666MHZ 1500 /* 66.66Mhz chip */

devType
The specific NCR 8xx device type. Current device types are defined in the header file
ncr810.h.

RETURNS A pointer to the NCR_810_SCSI_CTRL structure, or NULL if memory is unavailable or there
are invalid parameters.

SEE ALSO ncr810Lib

ncr810CtrlInit()

NAME ncr810CtrlInit() – initialize a control structure for the NCR 53C8xx SIOP

SYNOPSIS STATUS ncr810CtrlInit

(

NCR_810_SCSI_CTRL * pSiop, /* ptr to SIOP struct */

int scsiCtrlBusId /* SCSI bus ID of this SIOP */

)

DESCRIPTION This routine initializes an SIOP structure, after the structure is created with
ncr810CtrlCreate(). This structure must be initialized before the SIOP can be used. It may
be called more than once if needed; however, it must only be called while there is no
activity on the SCSI interface.

A detailed description of the input parameters follows:

pSiop
Pointer to the NCR_810_SCSI_CTRL structure created with ncr810CtrlCreate().
343

VxWorks Drivers API Reference, 5.5
ncr810SetHwRegister()
scsiCtrlBusId
The SCSI bus ID of the SIOP. Its value is somewhat arbitrary: seven (7), or highest
priority, is conventional. The value must be in the range 0 - 7.

RETURNS OK, or ERROR if parameters are out of range.

SEE ALSO ncr810Lib

ncr810SetHwRegister()

NAME ncr810SetHwRegister() – set hardware-dependent registers for the NCR 53C8xx SIOP

SYNOPSIS STATUS ncr810SetHwRegister

(

SIOP * pSiop, /* pointer to SIOP info */

NCR810_HW_REGS * pHwRegs /* pointer to a NCR810_HW_REGS info */

)

DESCRIPTION This routine sets up the registers used in the hardware implementation of the chip.
Typically, this routine is called by the sysScsiInit() routine from the BSP.

The input parameters are as follows:

pSiop
Pointer to the NCR_810_SCSI_CTRL structure created with ncr810CtrlCreate().

pHwRegs
Pointer to a NCR810_HW_REGS structure that is filled with the logical values 0 or 1 for
each bit of each register described below.

This routine includes only the bit registers that can be used to modify the behavior of
the chip. The default configuration used during ncr810CtlrCreate() and
ncr810CrtlInit() is {0,0,0,0,0,1,0,0,0,0,0}.

typedef struct

{

int stest1Bit7; /* Disable external SCSI clock */

int stest2Bit7; /* SCSI control enable */

int stest2Bit5; /* Enable differential SCSI bus */

int stest2Bit2; /* Always WIDE SCSI */

int stest2Bit1; /* Extend SREQ/SACK filtering */

int stest3Bit7; /* TolerANT enable */

int dmodeBit7; /* Burst Length transfer bit 1 */

int dmodeBit6; /* Burst Length transfer bit 0 */

int dmodeBit5; /* Source I/O memory enable */
344

2: Routines
ncr810Show()

N

int dmodeBit4; /* Destination I/O memory enable*/

int scntl1Bit7; /* Slow cable mode */

} NCR810_HW_REGS;

For a more detailed explanation of the register bits, see the appropriate NCR 53C8xx
data manuals.

NOTE: Because this routine writes to the NCR 53C8xx chip registers, it cannot be used
when there is any SCSI bus activity.

RETURNS OK, or ERROR if any input parameter is NULL.

SEE ALSO ncr810Lib, ncr810.h, ncr810CtlrCreate()

ncr810Show()

NAME ncr810Show() – display values of all readable NCR 53C8xx SIOP registers

SYNOPSIS STATUS ncr810Show

(

SCSI_CTRL * pScsiCtrl /* ptr to SCSI controller info */

)

DESCRIPTION This routine displays the state of the SIOP registers in a user-friendly way. It is useful
primarily for debugging. The input parameter is the pointer to the SIOP information
structure returned by the ncr810CtrlCreate() call.

NOTE: The only readable register during a script execution is the Istat register. If you use
this routine during the execution of a SCSI command, the result could be unpredictable.

EXAMPLE -> ncr810Show

NCR810 Registers

0xfff47000: Sien = 0xa5 Sdid = 0x00 Scntl1 = 0x00 Scntl0 = 0x04

0xfff47004: Socl = 0x00 Sodl = 0x00 Sxfer = 0x80 Scid = 0x80

0xfff47008: Sbcl = 0x00 Sbdl = 0x00 Sidl = 0x00 Sfbr = 0x00

0xfff4700c: Sstat2 = 0x00 Sstat1 = 0x00 Sstat0 = 0x00 Dstat = 0x80

0xfff47010: Dsa = 0x00000000

0xfff47014: Ctest3 = ???? Ctest2 = 0x21 Ctest1 = 0xf0 Ctest0 = 0x00

0xfff47018: Ctest7 = 0x32 Ctest6 = ???? Ctest5 = 0x00 Ctest4 = 0x00

0xfff4701c: Temp = 0x00000000

0xfff47020: Lcrc = 0x00 Ctest8 = 0x00 Istat = 0x00 Dfifo = 0x00

0xfff47024: Dcmd/Ddc= 0x50000000
345

VxWorks Drivers API Reference, 5.5
ncr5390CtrlCreate()
0xfff47028: Dnad = 0x00066144

0xfff4702c: Dsp = 0x00066144

0xfff47030: Dsps = 0x00066174

0xfff47037: Scratch3= 0x00 Scratch2= 0x00 Scratch1= 0x00 Scratch0= 0x0a

0xfff47038: Dcntl = 0x21 Dwt = 0x00 Dien = 0x37 Dmode = 0x01

0xfff4703c: Adder = 0x000cc2b8

value = 0 = 0x0

RETURNS OK, or ERROR if pScsiCtrl and pSysScsiCtrl are both NULL.

SEE ALSO ncr810Lib, ncr810CtrlCreate()

ncr5390CtrlCreate()

NAME ncr5390CtrlCreate() – create a control structure for an NCR 53C90 ASC

SYNOPSIS NCR_5390_SCSI_CTRL *ncr5390CtrlCreate

(

UINT8 * baseAdrs, /* base address of ASC */

int regOffset, /* addr offset between consecutive regs. */

UINT clkPeriod, /* period of controller clock (nsec) */

FUNCPTR ascDmaBytesIn, /* SCSI DMA input function */

FUNCPTR ascDmaBytesOut /* SCSI DMA output function */

)

DESCRIPTION This routine creates a data structure that must exist before the ASC chip can be used. This
routine must be called exactly once for a specified ASC, and must be the first routine
called, since it calloc’s a structure needed by all other routines in the library.

The input parameters are as follows:

baseAdrs
The address at which the CPU would access the lowest register of the ASC.

regOffset
The address offset (bytes) to access consecutive registers. (This must be a power of 2,
for example, 1, 2, 4, etc.)

clkPeriod
The period, in nanoseconds, of the signal to the ASC clock input (used only for select
command timeouts).

ascDmaBytesIn and ascDmaBytesOut
Board-specific parameters to handle DMA input and output. If these are NULL (0),
ASC program transfer mode is used. DMA is possible only during SCSI data in/out
346

2: Routines
ncr5390CtrlCreateScsi2()

N

phases. The interface to these DMA routines must be of the form:

STATUS xxDmaBytes{In, Out}

(

SCSI_PHYS_DEV *pScsiPhysDev, /* ptr to phys dev info */

UINT8 *pBuffer, /* ptr to the data buffer */

int bufLength /* number of bytes to xfer */

)

RETURNS A pointer to an NCR_5390_SCSI_CTRL structure, or NULL if memory is insufficient or the
parameters are invalid.

SEE ALSO ncr5390Lib1

ncr5390CtrlCreateScsi2()

NAME ncr5390CtrlCreateScsi2() – create a control structure for an NCR 53C90 ASC

SYNOPSIS NCR_5390_SCSI_CTRL *ncr5390CtrlCreateScsi2

(

UINT8* baseAdrs, /* base address of ASC */

int regOffset, /* offset between consecutive regs. */

UINT clkPeriod, /* period of controller clock (nsec) */

UINT sysScsiDmaMaxBytes, /* maximum byte count using DMA */

FUNCPTR sysScsiDmaStart, /* function to start SCSI DMA xfer */

FUNCPTR sysScsiDmaAbort, /* function to abort SCSI DMA xfer */

int sysScsiDmaArg /* argument to pass to above funcs. */

)

DESCRIPTION This routine creates a data structure that must exist before the ASC chip can be used. This
routine must be called exactly once for a specified ASC, and must be the first routine
called, since it calloc’s a structure needed by all other routines in the library.

The input parameters are as follows:

baseAdrs
The address at which the CPU would access the lowest register of the ASC.

regOffset
The address offset (bytes) to access consecutive registers.

clkPeriod
The period, in nanoseconds, of the signal to the ASC clock input.
347

VxWorks Drivers API Reference, 5.5
ncr5390CtrlCreateScsi2()
sysScsiDmaMaxBytes, sysScsiDmaStart, sysScsiDmaAbort, and sysScsiDmaArg
Board-specific routines to handle DMA transfers to and from the ASC; if the
maximum DMA byte count is zero, programmed I/O is used. Otherwise, non-NULL
function pointers to DMA start and abort routines must be provided. The specified
argument is passed to these routines when they are called; it may be used to identify
the DMA channel to use, for example. The interface to these DMA routines must be of
the form:

STATUS xxDmaStart (arg, pBuffer, bufLength, direction)

int arg; /* call-back argument */

UINT8 *pBuffer; /* ptr to the data buffer */

UINT bufLength; /* number of bytes to xfer */

int direction; /* 0 = SCSI->mem, 1 = mem->SCSI */

STATUS xxDmaAbort (arg)

int arg; /* call-back argument */

Implementation details for the DMA routines can be found in the specific DMA
driver for that board.

NOTE: If there is no DMA interface, synchronous transfers are not supported. This is a
limitation of the NCR5390 hardware.

RETURNS A pointer to an NCR_5390_SCSI_CTRL structure, or NULL if memory is insufficient or the
parameters are invalid.

SEE ALSO ncr5390Lib2
348

2: Routines
ncr5390CtrlInit()

N

ncr5390CtrlInit()

NAME ncr5390CtrlInit() – initialize the user-specified fields in an ASC structure

SYNOPSIS STATUS ncr5390CtrlInit

(

int * pAsc, /* ptr to ASC info */

int scsiCtrlBusId, /* SCSI bus ID of this ASC */

UINT defaultSelTimeOut, /* default dev. select timeout (microsec) */

int scsiPriority /* priority of task when doing SCSI I/O */

)

DESCRIPTION This routine initializes an ASC structure, after the structure is created with
ncr5390CtrlCreate(). This structure must be initialized before the ASC can be used. It may
be called more than once; however, it should be called only while there is no activity on
the SCSI interface.

Before returning, this routine pulses RST (reset) on the SCSI bus, thus resetting all
attached devices.

The input parameters are as follows:

pAsc
Pointer to the NCR5390_SCSI_CTRL structure created with ncr5390CtrlCreate().

scsiCtrlBusId
The SCSI bus ID of the ASC, in the range 0 - 7. The ID is somewhat arbitrary; the
value 7, or highest priority, is conventional.

defaultSelTimeOut
The timeout, in microseconds, for selecting a SCSI device attached to this controller.
This value is used as a default if no timeout is specified in scsiPhysDevCreate(). The
recommended value zero (0) specifies SCSI_DEF_SELECT_TIMEOUT (250 millisec).
The maximum timeout possible is approximately 2 seconds. Values exceeding this
revert to the maximum.

scsiPriority
The priority to which a task is set when performing a SCSI transaction. Valid
priorities are 0 to 255. Alternatively, the value -1 specifies that the priority should not
be altered during SCSI transactions.

RETURNS OK, or ERROR if a parameter is out of range.

SEE ALSO ncr5390Lib, scsiPhysDevCreate()
349

VxWorks Drivers API Reference, 5.5
ncr5390Show()
ncr5390Show()

NAME ncr5390Show() – display the values of all readable NCR5390 chip registers

SYNOPSIS int ncr5390Show

(

int * pScsiCtrl /* ptr to SCSI controller info */

)

DESCRIPTION This routine displays the state of the ASC registers in a user-friendly manner. It is useful
primarily for debugging. It should not be invoked while another running process is
accessing the SCSI controller.

EXAMPLE -> ncr5390Show

REG #00 (Own ID) = 0x07

REG #01 (Control) = 0x00

REG #02 (Timeout Period) = 0x20

REG #03 (Sectors) = 0x00

REG #04 (Heads) = 0x00

REG #05 (Cylinders MSB) = 0x00

REG #06 (Cylinders LSB) = 0x00

REG #07 (Log. Addr. MSB) = 0x00

REG #08 (Log. Addr. 2SB) = 0x00

REG #09 (Log. Addr. 3SB) = 0x00

REG #0a (Log. Addr. LSB) = 0x00

REG #0b (Sector Number) = 0x00

REG #0c (Head Number) = 0x00

REG #0d (Cyl. Number MSB) = 0x00

REG #0e (Cyl. Number LSB) = 0x00

REG #0f (Target LUN) = 0x00

REG #10 (Command Phase) = 0x00

REG #11 (Synch. Transfer) = 0x00

REG #12 (Xfer Count MSB) = 0x00

REG #13 (Xfer Count 2SB) = 0x00

REG #14 (Xfer Count LSB) = 0x00

REG #15 (Destination ID) = 0x03

REG #16 (Source ID) = 0x00

REG #17 (SCSI Status) = 0x42

REG #18 (Command) = 0x07

RETURNS OK, or ERROR if pScsiCtrl and pSysScsiCtrl are both NULL.

SEE ALSO ncr5390Lib
350

2: Routines
nicEndLoad()

N

ne2000EndLoad()

NAME ne2000EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* ne2000EndLoad

(

char* initString, /* String to be parsed by the driver. */

void* pBSP /* for BSP group */

)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the device
specific parameters are passed in the initString. The string contains the target specific
parameters in the following format:

"unit:register addr:int vector:int level:shmem addr:shmem size:shmem width"

RETURNS An END object pointer or NULL on error.

SEE ALSO ne2000End

nicEndLoad()

NAME nicEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* nicEvbEndLoad

(

char* initString /* string to be parse by the driver */

)

DESCRIPTION This routine initializes the driver and device to the operational state. All device-specific
parameters are passed in initString, which expects a string of the following format:

unit:base_addr:int_vector:int_level

This routine can be called in two modes. If it is called with an empty but allocated string,
it places the name of this device (that is, "ln") into the initString and returns 0. If the string
is allocated and not empty, the routine attempts to load the driver using the values
specified in the string.

RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

SEE ALSO nicEvbEnd
351

VxWorks Drivers API Reference, 5.5
nicEvbattach()
nicEvbattach()

NAME nicEvbattach() – publish and initialize the nicEvb network interface driver

SYNOPSIS STATUS nicEvbattach

(

int unit, /* unit number */

NIC_DEVICE * pNic, /* address of NIC chip */

int ivec /* interrupt vector to use */

)

DESCRIPTION This routine publishes the nicEvb interface by filling in a network interface record and
adding this record to the system list. It also initializes the driver and the device to the
operational state.

RETURNS OK, or ERROR if the receive buffer memory could not be allocated.

SEE ALSO if_nicEvb

nicEvbInitParse()

NAME nicEvbInitParse() – parse the initialization string

SYNOPSIS STATUS nicEvbInitParse

(

NICEVB_END_DEVICE * pDrvCtrl,

char * initString

)

DESCRIPTION Parse the input string. Fill in values in the driver control structure. The initialization string
format is:

unit:base_adrs:vecnum:intLvl

unit
Device unit number, a small integer.

base_adrs
Base address for NIC device.

vecNum
Interrupt vector number (used with sysIntConnect()).
352

2: Routines
ns16550DevInit()

N

intLvl
Interrupt level.

RETURNS OK, or ERROR if any arguments are invalid.

SEE ALSO nicEvbEnd

nicTxStartup()

NAME nicTxStartup() – the driver’s actual output routine

SYNOPSIS #ifdef BSD43_DRIVER LOCAL STATUS nicTxStartup

(

int unit

)

DESCRIPTION This routine accepts outgoing packets from the if_snd queue, and then gains exclusive
access to the DMA (through a mutex semaphore), then calls nicTransmit() to send the
packet out onto the interface.

RETURNS OK, or ERROR if the packet could not be transmitted.

SEE ALSO if_nicEvb

ns16550DevInit()

NAME ns16550DevInit() – intialize an NS16550 channel

SYNOPSIS void ns16550DevInit

(

NS16550_CHAN * pChan /* pointer to channel */

)

DESCRIPTION This routine initializes some SIO_CHAN function pointers and then resets the chip in a
quiescent state. Before this routine is called, the BSP must already have initialized all the
device addresses, etc. in the NS16550_CHAN structure.

RETURNS N/A.

SEE ALSO ns16550Sio
353

VxWorks Drivers API Reference, 5.5
ns16550Int()
ns16550Int()

NAME ns16550Int() – interrupt level processing

SYNOPSIS void ns16550Int

(

NS16550_CHAN * pChan /* pointer to channel */

)

DESCRIPTION This routine handles four sources of interrupts from the UART. They are prioritized in the
following order by the Interrupt Identification Register: Receiver Line Status, Received
Data Ready, Transmit Holding Register Empty, and Modem Status.

When a modem status interrupt occurs, the transmit interrupt is enabled if the CTS signal
is TRUE.

RETURNS N/A.

SEE ALSO ns16550Sio

ns16550IntEx()

NAME ns16550IntEx() – miscellaneous interrupt processing

SYNOPSIS void ns16550IntEx

(

NS16550_CHAN * pChan /* pointer to channel */

)

DESCRIPTION This routine handles miscellaneous interrupts on the UART. Not implemented yet.

RETURNS N/A.

SEE ALSO ns16550Sio
354

2: Routines
ns16550IntWr()

N

ns16550IntRd()

NAME ns16550IntRd() – handle a receiver interrupt

SYNOPSIS void ns16550IntRd

(

NS16550_CHAN * pChan /* pointer to channel */

)

DESCRIPTION This routine handles read interrupts from the UART.

RETURNS N/A.

SEE ALSO ns16550Sio

ns16550IntWr()

NAME ns16550IntWr() – handle a transmitter interrupt

SYNOPSIS void ns16550IntWr

(

NS16550_CHAN * pChan /* pointer to channel */

)

DESCRIPTION This routine handles write interrupts from the UART. It reads a character and puts it in
the transmit holding register of the device for transfer.

If there are no more characters to transmit, transmission is disabled by clearing the
transmit interrupt enable bit in the IER (int enable register).

RETURNS N/A.

SEE ALSO ns16550Sio
355

VxWorks Drivers API Reference, 5.5
ns83902EndLoad()
ns83902EndLoad()

NAME ns83902EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* ns83902EndLoad

(

char* initString /* string to be parsed */

)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in initString. This routine can be called in two
modes. If it is called with an empty but allocated string, it places the name of this device
(that is, "ln") into the initString and returns 0.

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.

RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

SEE ALSO ns83902End

ns83902RegShow()

NAME ns83902RegShow() – prints the current value of the NIC registers

SYNOPSIS void ns83902RegShow

(

NS83902_END_DEVICE* pDrvCtrl

)

DESCRIPTION This routine reads and displays the register values of the NIC registers.

RETURNS N/A.

SEE ALSO ns83902End
356

2: Routines
nvr4101DSIUInt()

N

nvr4101DSIUDevInit()

NAME nvr4101DSIUDevInit() – initialize the NVR4101DSIU DSIU.

SYNOPSIS void nvr4101DSIUDevInit

(

NVR4101_DSIU_CHAN * pChan

)

DESCRIPTION This routine initializes some SIO_CHAN function pointers and then resets the chip in a
quiescent state. The caller needs to initialize the channel structure with the requested
word length and parity.

RETURNS N/A.

SEE ALSO nvr4101DSIUSio

nvr4101DSIUInt()

NAME nvr4101DSIUInt() – interrupt level processing

SYNOPSIS void nvr4101DSIUInt

(

NVR4101_DSIU_CHAN * pChan

)

DESCRIPTION This routine handles interrupts from the DSIU.

RETURNS N/A.

SEE ALSO nvr4101DSIUSio
357

VxWorks Drivers API Reference, 5.5
nvr4101DSIUIntMask()
nvr4101DSIUIntMask()

NAME nvr4101DSIUIntMask() – mask interrupts from the DSIU.

SYNOPSIS void nvr4101DSIUIntMask ()

DESCRIPTION This function masks all possible interrupts from the DSIU subsystem.

RETURNS N/A.

SEE ALSO nvr4101DSIUSio

nvr4101DSIUIntUnmask()

NAME nvr4101DSIUIntUnmask() – unmask interrupts from the DSIU.

SYNOPSIS void nvr4101DSIUIntUnmask ()

DESCRIPTION This function unmasks all desired interrupts from the DSIU subsystem.

RETURNS N/A.

SEE ALSO nvr4101DSIUSio
358

2: Routines
nvr4101SIUDevInit()

N

nvr4101SIUCharToTxWord()

NAME nvr4101SIUCharToTxWord() – translate character to output word format.

SYNOPSIS UINT16 nvr4101SIUCharToTxWord

(

char outChar

)

DESCRIPTION This routine performs the bit manipulations required to convert a character into the
output word format required by the SIU. This routine only supports 8-bit word lengths,
two stop bits and no parity.

RETURNS The translated output character.

SEE ALSO nvr4101SIUSio

nvr4101SIUDevInit()

NAME nvr4101SIUDevInit() – initialization of the NVR4101SIU SIU.

SYNOPSIS void nvr4101SIUDevInit

(

NVR4101_SIU_CHAN * pChan

)

DESCRIPTION This routine initializes some SIO_CHAN function pointers and then resets the chip in a
quiescent state. No initialization of the NVR4101_SIU_CHAN structure is required before
this routine is called.

RETURNS N/A

SEE ALSO nvr4101SIUSio
359

VxWorks Drivers API Reference, 5.5
nvr4101SIUInt()
nvr4101SIUInt()

NAME nvr4101SIUInt() – interrupt level processing

SYNOPSIS void nvr4101SIUInt

(

NVR4101_SIU_CHAN * pChan

)

DESCRIPTION This routine handles interrupts from the SIU.

RETURNS N/A.

SEE ALSO nvr4101SIUSio

nvr4101SIUIntMask()

NAME nvr4101SIUIntMask() – mask interrupts from the SIU.

SYNOPSIS void nvr4101SIUIntMask()

DESCRIPTION This function masks all possible interrupts from the SIU subsystem.

RETURNS N/A.

SEE ALSO nvr4101SIUSio
360

2: Routines
nvr4102DSIUDevInit()

N

nvr4101SIUIntUnmask()

NAME nvr4101SIUIntUnmask() – unmask interrupts from the SIU.

SYNOPSIS void nvr4101SIUIntUnmask()

DESCRIPTION This function unmasks all desired interrupts from the SIU subsystem.

RETURNS N/A.

SEE ALSO nvr4101SIUSio

nvr4102DSIUDevInit()

NAME nvr4102DSIUDevInit() – initialize the NVR4102DSIU DSIU.

SYNOPSIS void nvr4102DSIUDevInit

(

NVR4102_DSIU_CHAN * pChan

)

DESCRIPTION This routine initializes some SIO_CHAN function pointers and then resets the chip in a
quiescent state. The caller needs to initialize the channel structure with the requested
word length and parity.

RETURNS N/A.

SEE ALSO nvr4102DSIUSio
361

VxWorks Drivers API Reference, 5.5
nvr4102DSIUInt()
nvr4102DSIUInt()

NAME nvr4102DSIUInt() – interrupt level processing

SYNOPSIS void nvr4102DSIUInt

(

NVR4102_DSIU_CHAN * pChan

)

DESCRIPTION This routine handles interrupts from the DSIU.

RETURNS N/A.

SEE ALSO nvr4102DSIUSio

nvr4102DSIUIntMask()

NAME nvr4102DSIUIntMask() – mask interrupts from the DSIU.

SYNOPSIS void nvr4102DSIUIntMask()

DESCRIPTION This function masks all possible interrupts from the DSIU subsystem.

RETURNS N/A.

SEE ALSO nvr4102DSIUSio
362

2: Routines
nvr4102DSIUIntUnmask()

N

nvr4102DSIUIntUnmask()

NAME nvr4102DSIUIntUnmask() – unmask interrupts from the DSIU.

SYNOPSIS void nvr4102DSIUIntUnmask()

DESCRIPTION This function unmasks all desired interrupts from the DSIU subsystem.

RETURNS N/A.

SEE ALSO nvr4102DSIUSio
363

VxWorks Drivers API Reference, 5.5
pccardAtaEnabler()
pccardAtaEnabler()

NAME pccardAtaEnabler() – enable the PCMCIA-ATA device

SYNOPSIS STATUS pccardAtaEnabler

(

int sock, /* socket no. */

ATA_RESOURCE * pAtaResource, /* pointer to ATA resources */

int numEnt, /* number of ATA resource entries */

FUNCPTR showRtn /* ATA show routine */

)

DESCRIPTION This routine enables the PCMCIA-ATA device.

RETURNS OK, ERROR_FIND if there is no ATA card, or ERROR if another error occurs.

SEE ALSO pccardLib

pccardEltEnabler()

NAME pccardEltEnabler() – enable the PCMCIA Etherlink III card

SYNOPSIS STATUS pccardEltEnabler

(

int sock, /* socket no. */

ELT_RESOURCE * pEltResource, /* pointer to ELT resources */

int numEnt, /* number of ELT resource entries */

FUNCPTR showRtn /* show routine */

)

DESCRIPTION This routine enables the PCMCIA Etherlink III (ELT) card.

RETURNS OK, ERROR_FIND if there is no ELT card, or ERROR if another error occurs.

SEE ALSO pccardLib
364

2: Routines
pccardMount()

P

pccardMkfs()

NAME pccardMkfs() – initialize a device and mount a DOS file system

SYNOPSIS STATUS pccardMkfs

(

int sock, /* socket number */

char * pName /* name of a device */

)

DESCRIPTION This routine initializes a device and mounts a DOS file system.

RETURNS OK or ERROR.

SEE ALSO pccardLib

pccardMount()

NAME pccardMount() – mount a DOS file system

SYNOPSIS STATUS pccardMount

(

int sock, /* socket number */

char * pName /* name of a device */

)

DESCRIPTION This routine mounts a DOS file system.

RETURNS OK or ERROR.

SEE ALSO pccardLib
365

VxWorks Drivers API Reference, 5.5
pccardSramEnabler()
pccardSramEnabler()

NAME pccardSramEnabler() – enable the PCMCIA-SRAM driver

SYNOPSIS STATUS pccardSramEnabler

(

int sock, /* socket no. */

SRAM_RESOURCE * pSramResource, /* pointer to SRAM resources */

int numEnt, /* number of SRAM resource entries */

FUNCPTR showRtn /* SRAM show routine */

)

DESCRIPTION This routine enables the PCMCIA-SRAM driver.

RETURNS OK, ERROR_FIND if there is no SRAM card, or ERROR if another error occurs.

SEE ALSO pccardLib

pccardTffsEnabler()

NAME pccardTffsEnabler() – enable the PCMCIA-TFFS driver

SYNOPSIS STATUS pccardTffsEnabler

(

int sock, /* socket no. */

TFFS_RESOURCE * pTffsResource, /* pointer to TFFS resources */

int numEnt, /* number of SRAM resource entries */

FUNCPTR showRtn /* TFFS show routine */

)

DESCRIPTION This routine enables the PCMCIA-TFFS driver.

RETURNS OK, ERROR_FIND if there is no TFFS (Flash) card, or ERROR if another error occurs.

SEE ALSO pccardLib
366

2: Routines
pciAutoBusNumberSet()

P

pciAutoAddrAlign()

NAME pciAutoAddrAlign() – align a PCI address and check boundary conditions

SYNOPSIS STATUS pciAutoAddrAlign

(

UINT32 base, /* base of available memory */

UINT32 limit, /* last addr of available memory */

UINT32 reqSize, /* required size */

UINT32 * pAlignedBase /* output: aligned address put here */

)

RETURNS OK, or ERROR if available memory has been exceeded.

SEE ALSO pciAutoConfigLib

pciAutoBusNumberSet()

NAME pciAutoBusNumberSet() – set the primary, secondary, and subordinate bus number

SYNOPSIS STATUS pciAutoBusNumberSet

(

PCI_LOC * pPciLoc, /* device affected */

UINT primary, /* primary bus specification */

UINT secondary, /* secondary bus specification */

UINT subordinate /* subordinate bus specification */

)

DESCRIPTION This routine sets the primary, secondary, and subordinate bus numbers for a device that
implements the Type 1 PCI Configuration Space Header.

This routine has external visibility to enable it to be used by BSP Developers for
initialization of PCI Host Bridges that may implement registers similar to those found in
the Type 1 Header.

RETURNS OK, always.

SEE ALSO pciAutoConfigLib
367

VxWorks Drivers API Reference, 5.5
pciAutoCfg()
pciAutoCfg()

NAME pciAutoCfg() – automatically configure all nonexcluded PCI headers

SYNOPSIS STATUS pciAutoCfg

(

void * pCookie /* cookie returned by pciAutoConfigLibInit() */

)

DESCRIPTION Top level function in the PCI configuration process.

CALLING SEQUENCE

pCookie = pciAutoConfigLibInit(NULL);

pciAutoCfgCtl(pCookie, COMMAND, VALUE);

...

pciAutoCfgCtl(pCookie, COMMAND, VALUE);

pciAutoCfg(pCookie);

For ease in converting from the old interface to the new one, a pciAutoCfgCtl() command
PCI_PSYSTEM_STRUCT_COPY has been implemented. This can be used just like any other
pciAutoCfgCtl() command, and it will initialize all the values in pSystem. If used, it
should be the first call to pciAutoCfgCtl().

For a description of the COMMANDs and VALUEs to pciAutoCfgCtl(), see the
pciAutoCfgCtl() documentation.

For all non-excluded PCI functions on all PCI bridges, this routine will automatically
configure the PCI configuration headers for PCI devices and subbridges. The fields that
are programmed are:

Status register.

Command register.

Latency timer.

Cache line size.

Memory and/or I/O base address and limit registers.

Primary, secondary, subordinate bus number (for PCI-PCI bridges).

Expansion ROM disable.

Interrupt line.

ALGORITHM Probe PCI config space and create a list of available PCI functions. Call device exclusion
function, if registered, to exclude/include device. Disable all devices before we initialize
368

2: Routines
pciAutoCfgCtl()

P

any. Allocate and assign PCI space to each device. Calculate and set interrupt line value.
Initialize and enable each device.

RETURNS N/A.

SEE ALSO pciAutoConfigLib

pciAutoCfgCtl()

NAME pciAutoCfgCtl() – set or get pciAutoConfigLib options

SYNOPSIS STATUS pciAutoCfgCtl

(

void * pCookie, /* system configuration information */

int cmd, /* command word */

void * pArg /* argument for the cmd */

)

DESCRIPTION pciAutoCfgCtl() can be considered analogous to ioctl() calls: the call takes arguments of
(1) a pCookie, returned by pciAutoConfigLibInit(); (2) A command, macros for which
are defined in pciAutoConfigLib.h; and, (3) an argument, the type of which depends on
the specific command, but will always fit in a pointer variable. Currently, only globally
effective commands are implemented.

The commands available are:

PCI_FBB_ENABLE - BOOL * pArg

PCI_FBB_DISABLE - void

PCI_FBB_UPDATE - BOOL * pArg

PCI_FBB_STATUS_GET - BOOL * pArg
Enable and disable the functions which check Fast Back-To-Back functionality.
PCI_FBB_UPDATE is for use with dynamic/HA applications. It will first disable FBB
on all functions, then enable FBB on all functions, if appropriate. In HA applications,
it should be called any time a card is added or removed. The BOOL pointed to by
pArg for PCI_FBB_ENABLE and PCI_FBB_UPDATE will be set to TRUE if all cards
allow FBB functionality and FALSE if either any card does not allow FBB functionality
or if FBB is disabled. The BOOL pointed to by pArg for PCI_FBB_STATUS_GET will be
set to TRUE if PCI_FBB_ENABLE has been called and FBB is enabled, even if FBB is not
activated on any card. It will be set to FALSE otherwise.
369

VxWorks Drivers API Reference, 5.5
pciAutoCfgCtl()
NOTE: In the current implementation, FBB will be enabled or disabled on the entire bus. If
any device anywhere on the bus cannot support FBB, then it is not enabled, even if
specific sub-busses could support it.

PCI_MAX_LATENCY_FUNC_SET - FUNCPTR * pArg
This routine will be called for each function present on the bus when discovery takes
place. The routine must accept four arguments, specifying bus, device, function, and
a user-supplied argument of type void *. See PCI_MAX_LATENCY_ARG_SET. The
routine should return a UINT8 value, which will be put into the MAX_LAT field of the
header structure. The user supplied routine must return a valid value each time it is
called. There is no mechanism for any ERROR condition, but a default value can be
returned in such a case. Default = NULL.

PCI_MAX_LATENCY_ARG_SET - void * pArg
When the routine specified in PCI_MAX_LATENCY_FUNC_SET is called, this will be
passed to it as the fourth argument.

PCI_MAX_LAT_ALL_SET - int pArg
Specifies a constant max latency value for all cards, if no function has been specified
with PCI_MAX_LATENCY_FUNC_SET..

PCI_MAX_LAT_ALL_GET - UINT * pArg
Retrieves the value of max latency for all cards, if no function has been specified with
PCI_MAX_LATENCY_FUNC_SET. Otherwise, the integer pointed to by pArg is set to
the value 0xffffffff.

PCI_MSG_LOG_SET - FUNCPTR * pArg
The argument specifies a routine will be called to print warning or error messages
from pciAutoConfigLib if logMsg() has not been initialized at the time
pciAutoConfigLib is used. The specified routine must accept arguments in the same
format as logMsg(), but it does not necessarily need to print the actual message. An
example of this routine is presented below, which saves the message into a safe
memory space and turns on an LED. This command is useful for BSPs which call
pciAutoCfg() before message logging is enabled.

NOTE: After logMsg() is configured, output will go to logMsg() even if this command
has been called. Default = NULL.

/* sample PCI_MSG_LOG_SET function */

int pciLogMsg(char *fmt,int a1,int a2,int a3,int a4,int a5,int a6)

{

sysLedOn(4);

return(sprintf(sysExcMsg,fmt,a1,a2,a3,a4,a5,a6));

}

PCI_MAX_BUS_GET - int * pArg
During autoconfiguration, the library will maintain a counter with the highest
numbered bus. This can be retrieved by
370

2: Routines
pciAutoCfgCtl()

P

pciAutoCfgCtl(pCookie, PCI_MAX_BUS_GET, &maxBus)

PCI_CACHE_SIZE_SET - int pArg
Sets the pci cache line size to the specified value. See CONFIGURATION SPACE
PARAMETERS in the pciAutoConfigLib documentation for more details.

PCI_CACHE_SIZE_GET - int * pArg
Retrieves the value of the pci cache line size.

PCI_AUTO_INT_ROUTE_SET - BOOL pArg
Enables or disables automatic interrupt routing across bridges during the autoconfig
process. See "INTERRUPT ROUTING ACROSS PCI-TO-PCI BRIDGES" in the
pciAutoConfigLib documentation for more details.

PCI_AUTO_INT_ROUTE_GET - BOOL * pArg
Retrieves the status of automatic interrupt routing.

PCI_MEM32_LOC_SET - UINT32 pArg
Sets the base address of the PCI 32-bit memory space. Normally, this is given by the
BSP constant PCI_MEM_ADRS.

PCI_MEM32_SIZE_SET - UINT32 pArg
Sets the maximum size to use for the PCI 32-bit memory space. Normally, this is
given by the BSP constant PCI_MEM_SIZE.

PCI_MEM32_SIZE_GET - UINT32 * pArg
After autoconfiguration has been completed, this retrieves the actual amount of space
which has been used for the PCI 32-bit memory space.

PCI_MEMIO32_LOC_SET - UINT32 pArg
Sets the base address of the PCI 32-bit non-prefetch memory space. Normally, this is
given by the BSP constant PCI_MEMIO_ADRS.

PCI_MEMIO32_SIZE_SET - UINT32 pArg
Sets the maximum size to use for the PCI 32-bit non-prefetch memory space.
Normally, this is given by the BSP constant PCI_MEMIO_SIZE.

PCI_MEMIO32_SIZE_GET - UINT32 * pArg
After autoconfiguration has been completed, this retrieves the actual amount of space
which has been used for the PCI 32-bit non-prefetch memory space.

PCI_IO32_LOC_SET - UINT32 pArg
Sets the base address of the PCI 32-bit I/O space. Normally, this is given by the BSP
constant PCI_IO_ADRS.

PCI_IO32_SIZE_SET - UINT32 pArg
Sets the maximum size to use for the PCI 32-bit I/O space. Normally, this is given by
the BSP constant PCI_IO_SIZE.

PCI_IO32_SIZE_GET - UINT32 * pArg
After autoconfiguration has been completed, this retrieves the actual amount of space
which has been used for the PCI 32-bit I/O space.
371

VxWorks Drivers API Reference, 5.5
pciAutoCfgCtl()
PCI_IO16_LOC_SET - UINT32 pArg
Sets the base address of the PCI 16-bit I/O space. Normally, this is given by the BSP
constant PCI_ISA_IO_ADRS

PCI_IO16_SIZE_SET - UINT32 pArg
Sets the maximum size to use for the PCI 16-bit I/O space. Normally, this is given by
the BSP constant PCI_ISA_IO_SIZE

PCI_IO16_SIZE_GET - UINT32 * pArg
After auto configuration has been completed, this retrieves the actual amount of
space which has been used for the PCI 16-bit I/O space.

PCI_INCLUDE_FUNC_SET - FUNCPTR * pArg
The device inclusion routine is specified by assigning a function pointer with the
PCI_INCLUDE_FUNC_SET pciAutoCfgCtl() command:

pciAutoCfgCtl(pSystem, PCI_INCLUDE_FUNC_SET,sysPciAutoconfigInclude);

This optional user-supplied routine takes as input both the bus-device-function tuple,
and a 32-bit quantity containing both the PCI vendorID and deviceID of the function.
The function prototype for this function is shown below:

STATUS sysPciAutoconfigInclude

(

PCI_SYSTEM *pSys,

PCI_LOC *pLoc,

UINT devVend

);

This optional user-specified routine is called by PCI AutoConfig for each and every
function encountered in the scan phase. The BSP developer may use any combination
of the input data to ascertain whether a device is to be excluded from the autoconfig
process. The exclusion routine then returns ERROR if a device is to be excluded, and
OK if a device is to be included in the autoconfiguration process.

NOTE: PCI-to-PCI Bridges may not be excluded, regardless of the value returned by the
BSP device inclusion routine. The return value is ignored for PCI-to-PCI bridges.

The Bridge device will be always be configured with proper primary, secondary, and
subordinate bus numbers in the device scanning phase and proper I/O and Memory
aperture settings in the configuration phase of autoconfig regardless of the value returned
by the BSP device inclusion routine.

PCI_INT_ASSIGN_FUNC_SET - FUNCPTR * pArg
The interrupt assignment routine is specified by assigning a function pointer with the
PCI_INCLUDE_FUNC_SET pciAutoCfgCtl() command:

pciAutoCfgCtl(pCookie, PCI_INT_ASSIGN_FUNC_SET,

sysPciAutoconfigIntrAssign);

This optional user-specified routine takes as input both the bus-device-function tuple,
and an 8-bit quantity containing the contents of the interrupt Pin register from the
372

2: Routines
pciAutoCfgCtl()

P

PCI configuration header of the device under consideration. The interrupt pin
register specifies which of the four PCI Interrupt request lines available are
connected. The function prototype for this function is shown below:

UCHAR sysPciAutoconfigIntrAssign

(

PCI_SYSTEM *pSys,

PCI_LOC *pLoc,

UCHAR pin

);

This routine may use any combination of these data to ascertain the interrupt level.
This value is returned from the function, and will be programmed into the interrupt
line register of the function’s PCI configuration header. In this manner, device drivers
may subsequently read this register in order to calculate the appropriate interrupt
vector which to attach an interrupt service routine.

PCI_BRIDGE_PRE_CONFIG_FUNC_SET - FUNCPTR * pArg
The bridge pre-configuration pass initialization routine is provided so that the BSP
Developer can initialize a bridge device prior to the configuration pass on the bus that
the bridge implements. This routine is specified by calling pciAutoCfgCtl() with the
PCI_BRIDGE_PRE_CONFIG_FUNC_SET command:

pciAutoCfgCtl(pCookie, PCI_BRIDGE_PRE_CONFIG_FUNC_SET,

sysPciAutoconfigPreEnumBridgeInit);

This optional user-specified routine takes as input both the bus-device-function tuple,
and a 32-bit quantity containing both the PCI deviceID and vendorID of the device.
The function prototype for this function is shown below:

STATUS sysPciAutoconfigPreEnumBridgeInit

(

PCI_SYSTEM *pSys,

PCI_LOC *pLoc,

UINT devVend

);

This routine may use any combination of these input data to ascertain any special
initialization requirements of a particular type of bridge at a specified geographic
location.

PCI_BRIDGE_POST_CONFIG_FUNC_SET - FUNCPTR * pArg
The bridge post-configuration pass initialization routine is provided so that the BSP
Developer can initialize the bridge device after the bus that the bridge implements
has been enumerated. This routine is specified by calling pciAutoCfgCtl() with the
PCI_BRIDGE_POST_CONFIG_FUNC_SET command

pciAutoCfgCtl(pCookie, PCI_BRIDGE_POST_CONFIG_FUNC_SET,

sysPciAutoconfigPostEnumBridgeInit);

This optional user-specified routine takes as input both the bus-device-function tuple,
and a 32-bit quantity containing both the PCI deviceID and vendorID of the device.
373

VxWorks Drivers API Reference, 5.5
pciAutoCfgCtl()
The function prototype for this function is shown below:

STATUS sysPciAutoconfigPostEnumBridgeInit

(

PCI_SYSTEM *pSys,

PCI_LOC *pLoc,

UINT devVend

);

This routine may use any combination of these input data to ascertain any special
initialization requirements of a particular type of bridge at a specified geographic
location.

PCI_ROLLCALL_FUNC_SET - FUNCPTR * pArg
The specified routine will be configured as a roll call routine.

If a roll call routine has been configured, before any configuration is actually done,
the roll call routine is called repeatedly until it returns TRUE. A return value of TRUE
indicates that either (1) the specified number and type of devices named in the roll
call list have been found during PCI bus enumeration or (2) the timeout has expired
without finding all of the specified number and type of devices. In either case, it is
assumed that all of the PCI devices which are going to appear on the busses have
appeared and we can proceed with PCI bus configuration.

PCI_TEMP_SPACE_SET - char * pArg
This command is not currently implemented. It allows the user to set aside memory
for use during pciAutoConfigLib execution, e.g. memory set aside using
USER_RESERVED_MEM. After PCI configuration has been completed, the memory
can be added to the system memory pool using memAddToPool().

PCI_MINIMIZE_RESOURCES
This command is not currently implemented. It specifies that pciAutoConfigLib
minimize requirements for memory and I/O space.

PCI_PSYSTEM_STRUCT_COPY - PCI_SYSTEM * pArg
This command has been added for ease of converting from the old interface to the
new one. This will set each value as specified in the pSystem structure. If the
PCI_SYSTEM structure has already been filled, the pciAutoConfig(pSystem) call can
be changed to:

void *pCookie;

pCookie = pciAutoConfigLibInit(NULL);

pciAutoCfgCtl(pCookie, PCI_PSYSTEM_STRUCT_COPY, (void *)pSystem);

pciAutoCfgFunc(pCookie);

The fields of the PCI_SYSTEM structure are defined below. For more information about
each one, see the paragraphs above and the documentation for pciAutoConfigLib.

pciMem32
Specifies the 32-bit prefetchable memory pool base address.
374

2: Routines
pciAutoCfgCtl()

P

pciMem32Size
Specifies the 32-bit prefetchable memory pool size.

pciMemIo32
Specifies the 32-bit non-prefetchable memory pool base address.

pciMemIo32Size
Specifies the 32-bit non-prefetchable memory pool size.

pciIo32
Specifies the 32-bit I/O pool base address.

pciIo32Size
Specifies the 32-bit I/O pool size.

pciIo16
Specifies the 16-bit I/O pool base address.

pciIo16Size
Specifies the 16-bit I/O pool size.

includeRtn
Specifies the device inclusion routine.

intAssignRtn
Specifies the interrupt assignment routine.

autoIntRouting
Can be set to TRUE to configure pciAutoConfig() only to call the BSP interrupt
routing routine for devices on bus number 0. Setting autoIntRoutine to FALSE will
configure pciAutoConfig() to call the BSP interrupt routing routine for every device
regardless of the bos on which the device resides.

bridgePreInit
Specifies the bridge initialization routine to call before initializing devices on the bus
that the bridge implements.

bridgePostInit
Specifies the bridge initialization routine to call after initializing devices on the bus
that the bridge implements.

ERRNO EINVAL if pCookie is not NULL or cmd is not recognized

RETURNS OK, or ERROR if the command or argument is invalid.

SEE ALSO pciAutoConfigLib
375

VxWorks Drivers API Reference, 5.5
pciAutoConfig()
pciAutoConfig()

NAME pciAutoConfig() – automatically configure all nonexcluded PCI headers; obsolete

SYNOPSIS void pciAutoConfig

(

PCI_SYSTEM * pSystem /* PCI system to configure */

)

DESCRIPTION This routine is obsolete. It is included for backward compatibility only. It is recommended
that you use the pciAutoCfg() interface instead of this one.

Top level function in the PCI configuration process.

For all nonexcluded PCI functions on all PCI bridges, this routine will automatically
configure the PCI configuration headers for PCI devices and subbridges. The fields that
are programmed are:

Status register.

Command register.

Latency timer.

Cache line size.

Memory and/or I/O base address and limit registers.

Primary, secondary, subordinate bus number (for PCI-PCI bridges).

Expansion ROM disable.

Interrupt line.

ALGORITHM Probe PCI config space and create a list of available PCI functions. Call device exclusion
function, if registered, to exclude/include device. Disable all devices before we initialize
any. Allocate and assign PCI space to each device. Calculate and set interrupt line value.
Initialize and enable each device.

RETURNS N/A.

SEE ALSO pciAutoConfigLib
376

2: Routines
pciAutoDevReset()

P

pciAutoConfigLibInit()

NAME pciAutoConfigLibInit() – initialize PCI autoconfig library

SYNOPSIS void * pciAutoConfigLibInit

(

void * pArg /* reserved for future use */

)

DESCRIPTION pciAutoConfigLib initialization function.

ERRNO Not set.

RETURNS A cookie for use by subsequent pciAutoConfigLib function calls.

SEE ALSO pciAutoConfigLib

pciAutoDevReset()

NAME pciAutoDevReset() – quiesce a PCI device and reset all writeable status bits

SYNOPSIS STATUS pciAutoDevReset

(

PCI_LOC * pPciLoc /* device to be reset */

)

DESCRIPTION This routine turns off a PCI device by disabling the Memory decoders, I/O decoders, and
Bus Master capability. The routine also resets all writeable status bits in the status word
that follows the command word sequentially in PCI config space by performing a
longword access.

RETURNS OK, always.

SEE ALSO pciAutoConfigLib
377

VxWorks Drivers API Reference, 5.5
pciAutoFuncDisable()
pciAutoFuncDisable()

NAME pciAutoFuncDisable() – disable a specific PCI function

SYNOPSIS void pciAutoFuncDisable

(

PCI_LOC * pPciFunc /* input: Pointer to PCI function struct */

)

DESCRIPTION This routine clears the I/O, mem, master, & ROM space enable bits for a single PCI
function.

The PCI spec says that devices should normally clear these by default after reset but in
actual practice, some PCI devices do not fully comply. This routine ensures that the
devices have all been disabled before configuration is started.

RETURNS N/A.

SEE ALSO pciAutoConfigLib

pciAutoFuncEnable()

NAME pciAutoFuncEnable() – perform final configuration and enable a function

SYNOPSIS void pciAutoFuncEnable

(

PCI_SYSTEM * pSys, /* for backwards compatibility */

PCI_LOC * pFunc /* input: Pointer to PCI function structure */

)

DESCRIPTION Depending upon whether the device is included, this routine initializes a single PCI
function as follows:

Initialize the cache line size register Initialize the PCI-PCI bridge latency timers Enable the
master PCI bit for non-display devices Set the interrupt line value with the value from the
BSP.

RETURNS N/A.

SEE ALSO pciAutoConfigLib
378

2: Routines
pciAutoRegConfig()

P

pciAutoGetNextClass()

NAME pciAutoGetNextClass() – find the next device of specific type from probe list

SYNOPSIS STATUS pciAutoGetNextClass

(

PCI_SYSTEM * pSys, /* for backwards compatibility */

PCI_LOC * pPciFunc, /* output: Contains the BDF of the device found */

UINT * index, /* Zero-based device instance number */

UINT pciClass, /* class code field from the PCI header */

UINT mask /* mask is ANDed with the class field */

)

DESCRIPTION The function uses the probe list which was built during the probing process. Using
configuration accesses, it searches for the occurrence of the device subject to the class and
mask restrictions outlined below. Setting class to zero and mask to zero allows searching
the entire set of devices found regardless of class.

RETURNS TRUE if a device was found, else FALSE.

SEE ALSO pciAutoConfigLib

pciAutoRegConfig()

NAME pciAutoRegConfig() – assign PCI space to a single PCI base address register

SYNOPSIS UINT pciAutoRegConfig

(

PCI_SYSTEM * pSys, /* backwards compatibility */

PCI_LOC * pPciFunc, /* Pointer to function in device list */

UINT baseAddr, /* Offset of base PCI address */

UINT nSize, /* Size and alignment requirements */

UINT addrInfo /* PCI address type information */

)

DESCRIPTION This routine allocates and assigns PCI space (either memory or I/O) to a single PCI base
address register.

RETURNS Returns (1) if BAR supports mapping in the 64-bit address space. Returns (0) otherwise.

SEE ALSO pciAutoConfigLib
379

VxWorks Drivers API Reference, 5.5
pcicInit()
pcicInit()

NAME pcicInit() – initialize the PCIC chip

SYNOPSIS STATUS pcicInit

(

int ioBase, /* IO base address */

int intVec, /* interrupt vector */

int intLevel, /* interrupt level */

FUNCPTR showRtn /* show routine */

)

DESCRIPTION This routine initializes the PCIC chip.

RETURNS OK, or ERROR if the PCIC chip cannot be found.

SEE ALSO pcic

pciConfigBdfPack()

NAME pciConfigBdfPack() – pack parameters for the Configuration Address Register

SYNOPSIS int pciConfigBdfPack

(

int busNo, /* bus number */

int deviceNo, /* device number */

int funcNo /* function number */

)

DESCRIPTION This routine packs three parameters into one integer for accessing the Configuration
Address Register.

RETURNS Packed integer encoded version of bus, device, and function numbers.

SEE ALSO pciConfigLib
380

2: Routines
pciConfigExtCapFind()

P

pciConfigCmdWordShow()

NAME pciConfigCmdWordShow() – show the decoded value of the command word

SYNOPSIS STATUS pciConfigCmdWordShow

(

int bus, /* bus */

int device, /* device */

int function, /* function */

void * pArg /* ignored */

)

DESCRIPTION This routine reads the value of the command word for the specified bus, device, function
and prints the value in a human-readable format.

RETURNS OK, always.

SEE ALSO pciConfigShow

pciConfigExtCapFind()

NAME pciConfigExtCapFind() – find extended capability in ECP linked list

SYNOPSIS STATUS pciConfigExtCapFind

(

UINT8 extCapFindId, /* Extended capabilities ID to search for */

int bus, /* PCI bus number */

int device, /* PCI device number */

int function, /* PCI function number */

UINT8 * pOffset /* returned config space offset */

)

DESCRIPTION This routine searches for an extended capability in the linked list of capabilities in config
space. If found, the offset of the first byte of the capability of interest in config space is
returned via pOffset.

RETURNS OK if Extended Capability found, ERROR otherwise

SEE ALSO pciConfigLib
381

VxWorks Drivers API Reference, 5.5
pciConfigForeachFunc()
pciConfigForeachFunc()

NAME pciConfigForeachFunc() – check condition on specified bus

SYNOPSIS STATUS pciConfigForeachFunc

(

UINT8 bus, /* bus to start on */

BOOL recurse, /* if TRUE, do subordinate busses */

PCI_FOREACH_FUNC funcCheckRtn, /* routine to call for each PCI func */

void * pArg /* argument to funcCheckRtn */

)

DESCRIPTION pciConfigForeachFunc() discovers the PCI functions present on the bus and calls a
specified C-function for each one. If the function returns ERROR, further processing stops.

pciConfigForeachFunc() does not affect any HOST<-<PCI bridge on the system.

ERRNO Not set.

RETURNS OK normally, or ERROR if funcCheckRtn() does not return OK.

SEE ALSO pciConfigLib

pciConfigFuncShow()

NAME pciConfigFuncShow() – show configuration details about a function

SYNOPSIS STATUS pciConfigFuncShow

(

int bus, /* bus */

int device, /* device */

int function, /* function */

void * pArg /* ignored */

)

DESCRIPTION This routine reads various information from the specified bus, device, function, and prints
the information in a human-readable format.

RETURNS OK, always.

SEE ALSO pciConfigShow
382

2: Routines
pciConfigInLong()

P

pciConfigInByte()

NAME pciConfigInByte() – read one byte from the PCI configuration space

SYNOPSIS STATUS pciConfigInByte

(

int busNo, /* bus number */

int deviceNo, /* device number */

int funcNo, /* function number */

int offset, /* offset into the configuration space */

UINT8 * pData /* data read from the offset */

)

DESCRIPTION This routine reads one byte from the PCI configuration space.

RETURNS OK, or ERROR if this library is not initialized.

SEE ALSO pciConfigLib

pciConfigInLong()

NAME pciConfigInLong() – read one longword from the PCI configuration space

SYNOPSIS STATUS pciConfigInLong

(

int busNo, /* bus number */

int deviceNo, /* device number */

int funcNo, /* function number */

int offset, /* offset into the configuration space */

UINT32 * pData /* data read from the offset */

)

DESCRIPTION This routine reads one longword from the PCI configuration space.

RETURNS OK, or ERROR if this library is not initialized.

SEE ALSO pciConfigLib
383

VxWorks Drivers API Reference, 5.5
pciConfigInWord()
pciConfigInWord()

NAME pciConfigInWord() – read one word from the PCI configuration space

SYNOPSIS STATUS pciConfigInWord

(

int busNo, /* bus number */

int deviceNo, /* device number */

int funcNo, /* function number */

int offset, /* offset into the configuration space */

UINT16 * pData /* data read from the offset */

)

DESCRIPTION This routine reads one word from the PCI configuration space.

RETURNS OK, or ERROR if this library is not initialized.

SEE ALSO pciConfigLib

pciConfigLibInit()

NAME pciConfigLibInit() – initialize the configuration access-method and addresses

SYNOPSIS STATUS pciConfigLibInit

(

int mechanism, /* configuration mechanism: 0, 1, 2 */

ULONG addr0, /* config-addr-reg / CSE-reg */

ULONG addr1, /* config-data-reg / Forward-reg */

ULONG addr2 /* none / Base-address */

)

DESCRIPTION This routine initializes the configuration access-method and addresses.

Configuration mechanism one utilizes two 32-bit IO ports located at addresses 0x0cf8 and
0x0cfc. These two ports are:

– 32-bit configuration address port, at 0x0cf8.
– 32-bit configuration data port, at 0x0cfc.

Accessing a PCI function’s configuration port is two step process.

– Write the bus number, physical device number, function number and register number
to the configuration address port.
384

2: Routines
pciConfigModifyByte()

P

– Perform an IO read from or an write to the configuration data port.

Configuration mechanism two uses following two single-byte IO ports.

– Configuration space enable, or CSE, register, at 0x0cf8.
– Forward register, at 0x0cfa.

To generate a PCI configuration transaction, the following actions are performed.

– Write the target bus number into the forward register.

– Write a one byte value to the CSE register at 0x0cf8. The bit pattern written to this
register has three effects: disables the generation of special cycles; enables the
generation of configuration transactions; specifies the target PCI functional device.

– Perform a one, two or four byte IO read or write transaction within the IO range
0xc000 through 0xcfff.

Configuration mechanism zero is for non-PC/PowerPC environments where an area of
address space produces PCI configuration transactions. No support for special cycles is
included.

RETURNS OK, or ERROR if a mechanism is not 0, 1, or 2.

SEE ALSO pciConfigLib

pciConfigModifyByte()

NAME pciConfigModifyByte() – perform a masked longword register update

SYNOPSIS STATUS pciConfigModifyByte

(

int busNo, /* bus number */

int deviceNo, /* device number */

int funcNo, /* function number */

int offset, /* offset into the configuration space */

UINT8 bitMask, /* Mask which defines field to alter */

UINT8 data /* data written to the offset */

)

DESCRIPTION This function writes a field into a PCI configuration header without altering any bits not
present in the field. It does this by first doing a PCI configuration read (into a temporary
location) of the PCI configuration header word which contains the field to be altered. It
then alters the bits in the temporary location to match the desired value of the field. It then
writes back the temporary location with a configuration write. All configuration accesses
are long and the field to alter is specified by the "1" bits in the bitMask parameter.
385

VxWorks Drivers API Reference, 5.5
pciConfigModifyLong()
Do not use this routine to modify any register that contains write 1 to clear type of status
bits in the same longword. This specifically applies to the command register. Modify byte
operations could potentially be implemented as longword operations with bit shifting and
masking. This could have the effect of clearing status bits in registers that are not being
updated. Use pciConfigInLong() and pciConfigOutLong(), or pciModifyLong(), to read
and update the entire longword.

RETURNS OK if operation succeeds, ERROR if operation fails.

SEE ALSO pciConfigLib

pciConfigModifyLong()

NAME pciConfigModifyLong() – perform a masked longword register update

SYNOPSIS STATUS pciConfigModifyLong

(

int busNo, /* bus number */

int deviceNo, /* device number */

int funcNo, /* function number */

int offset, /* offset into the configuration space */

UINT32 bitMask, /* Mask which defines field to alter */

UINT32 data /* data written to the offset */

)

DESCRIPTION This function writes a field into a PCI configuration header without altering any bits not
present in the field. It does this by first doing a PCI configuration read (into a temporary
location) of the PCI configuration header word which contains the field to be altered. It
then alters the bits in the temporary location to match the desired value of the field. It then
writes back the temporary location with a configuration write. All configuration accesses
are long and the field to alter is specified by the "1" bits in the bitMask parameter.

Be careful to using pciConfigModifyLong for updating the command and status register.
The status bits must be written back as zeroes, else they will be cleared. Proper use
involves including the status bits in the mask value, but setting their value to zero in the
data value.

The following example will set the PCI_CMD_IO_ENABLE bit without clearing any status
bits. The macro PCI_CMD_MASK includes all the status bits as part of the mask. The fact
that PCI_CMD_MASTER does not include these bits, causes them to be written back as
zeroes, therefore they aren’t cleared.

pciConfigModifyLong (b,d,f,PCI_CFG_COMMAND,

(PCI_CMD_MASK | PCI_CMD_IO_ENABLE), PCI_CMD_IO_ENABLE);
386

2: Routines
pciConfigModifyWord()

P

Use of explicit longword read and write operations for dealing with any register
containing "write 1 to clear" bits is sound policy.

RETURNS OK if operation succeeds, ERROR if operation fails.

SEE ALSO pciConfigLib

pciConfigModifyWord()

NAME pciConfigModifyWord() – perform a masked longword register update

SYNOPSIS STATUS pciConfigModifyWord

(

int busNo, /* bus number */

int deviceNo, /* device number */

int funcNo, /* function number */

int offset, /* offset into the configuration space */

UINT16 bitMask, /* Mask which defines field to alter */

UINT16 data /* data written to the offset */

)

DESCRIPTION This function writes a field into a PCI configuration header without altering any bits not
present in the field. It does this by first doing a PCI configuration read (into a temporary
location) of the PCI configuration header word which contains the field to be altered. It
then alters the bits in the temporary location to match the desired value of the field. It then
writes back the temporary location with a configuration write. All configuration accesses
are long and the field to alter is specified by the "1" bits in the bitMask parameter.

Do not use this routine to modify any register that contains write 1 to clear type of status
bits in the same longword. This specifically applies to the command register. Modify byte
operations could potentially be implemented as longword operations with bit-shifting and
masking. This could have the effect of clearing status bits in registers that are not being
updated. Use pciConfigInLong() and pciConfigOutLong(), or pciModifyLong(), to read
and update the entire longword.

RETURNS OK if operation succeeds, ERROR if operation fails.

SEE ALSO pciConfigLib
387

VxWorks Drivers API Reference, 5.5
pciConfigOutByte()
pciConfigOutByte()

NAME pciConfigOutByte() – write one byte to the PCI configuration space

SYNOPSIS STATUS pciConfigOutByte

(

int busNo, /* bus number */

int deviceNo, /* device number */

int funcNo, /* function number */

int offset, /* offset into the configuration space */

UINT8 data /* data written to the offset */

)

DESCRIPTION This routine writes one byte to the PCI configuration space.

RETURNS OK, or ERROR if this library is not initialized

SEE ALSO pciConfigLib

pciConfigOutLong()

NAME pciConfigOutLong() – write one longword to the PCI configuration space

SYNOPSIS STATUS pciConfigOutLong

(

int busNo, /* bus number */

int deviceNo, /* device number */

int funcNo, /* function number */

int offset, /* offset into the configuration space */

UINT32 data /* data written to the offset */

)

DESCRIPTION This routine writes one longword to the PCI configuration space.

RETURNS OK, or ERROR if this library is not initialized

SEE ALSO pciConfigLib
388

2: Routines
pciConfigReset()

P

pciConfigOutWord()

NAME pciConfigOutWord() – write one 16-bit word to the PCI configuration space

SYNOPSIS STATUS pciConfigOutWord

(

int busNo, /* bus number */

int deviceNo, /* device number */

int funcNo, /* function number */

int offset, /* offset into the configuration space */

UINT16 data /* data written to the offset */

)

DESCRIPTION This routine writes one 16-bit word to the PCI configuration space.

RETURNS OK, or ERROR if this library is not initialized

SEE ALSO pciConfigLib

pciConfigReset()

NAME pciConfigReset() – disable cards for warm boot

SYNOPSIS STATUS pciConfigReset

(

int startType /* for reboot hook, ignored */

)

DESCRIPTION pciConfigReset() goes through the list of PCI functions at the top-level bus and disables
them, preventing them from writing to memory while the system is trying to reboot.

ERRNO Not set.

RETURNS OK, always.

SEE ALSO pciConfigLib
389

VxWorks Drivers API Reference, 5.5
pciConfigStatusWordShow()
pciConfigStatusWordShow()

NAME pciConfigStatusWordShow() – show the decoded value of the status word

SYNOPSIS STATUS pciConfigStatusWordShow

(

int bus, /* bus */

int device, /* device */

int function, /* function */

void * pArg /* ignored */

)

DESCRIPTION This routine reads the value of the status word for the specified bus, device, function and
prints the value in a human-readable format.

RETURNS OK, always.

SEE ALSO pciConfigShow

pciConfigTopoShow()

NAME pciConfigTopoShow() – show PCI topology

SYNOPSIS void pciConfigTopoShow ()

DESCRIPTION This routine traverses the PCI bus and prints assorted information about every device
found. The information is intended to present the topology of the PCI bus. In includes: (1)
the device type, (2) the command and status words, (3) for PCI to PCI bridges the memory
and I/O space configuration, and (4) the values of all implemented BARs.

RETURNS N/A.

SEE ALSO pciConfigShow
390

2: Routines
pciDevConfig()

P

pcicShow()

NAME pcicShow() – show all configurations of the PCIC chip

SYNOPSIS void pcicShow

(

int sock /* socket no. */

)

DESCRIPTION This routine shows all configurations of the PCIC chip.

RETURNS N/A.

SEE ALSO pcicShow

pciDevConfig()

NAME pciDevConfig() – configure a device on a PCI bus

SYNOPSIS STATUS pciDevConfig

(

int pciBusNo, /* PCI bus number */

int pciDevNo, /* PCI device number */

int pciFuncNo, /* PCI function number */

UINT32 devIoBaseAdrs, /* device IO base address */

UINT32 devMemBaseAdrs, /* device memory base address */

UINT32 command /* command to issue */

)

DESCRIPTION This routine configures a device on a Peripheral Component Interconnect (PCI) bus by
writing to the configuration header of the selected device. It first disables the device by
clearing the command register in the configuration header. It then sets the I/O or memory
space base address registers, the latency timer value, and the cache line size. Finally, it
re-enables the device by loading the command register with the specified command.

NOTE: This routine is designed for Type 0 PCI Configuration Headers ONLY. It is NOT
usable for configuring, for example, a PCI-to-PCI bridge.

RETURNS OK always.

SEE ALSO pciConfigLib
391

VxWorks Drivers API Reference, 5.5
pciDeviceShow()
pciDeviceShow()

NAME pciDeviceShow() – print information about PCI devices

SYNOPSIS STATUS pciDeviceShow

(

int busNo /* bus number */

)

DESCRIPTION This routine prints information about PCI devices. There are two ways to find out an
empty device:

– Check Master Abort bit after the access.
– Check whether the read value is 0xffff.

It uses the second method, since the Master Abort bit of the host/PCI bridge does not
change.

RETURNS OK, or ERROR if the library is not initialized.

SEE ALSO pciConfigShow

pciFindClass()

NAME pciFindClass() – find the nth occurrence of a device by PCI class code

SYNOPSIS STATUS pciFindClass

(

int classCode, /* 24-bit class code */

int index, /* desired instance of device */

int * pBusNo, /* bus number */

int * pDeviceNo, /* device number */

int * pFuncNo /* function number */

)

DESCRIPTION This routine finds the nth device with the given 24-bit PCI class code (class subclass
prog_if).

The class code arg of must be carefully constructed from class and sub-class macros.

Example: To find an ethernet class device, construct the class code arg as follows:

((PCI_CLASS_NETWORK_CTLR << 16 | PCI_SUBCLASS_NET_ETHERNET << 8))
392

2: Routines
pciFindDevice()

P

RETURNS OK, or ERROR if the class did not match.

SEE ALSO pciConfigLib

pciFindClassShow()

NAME pciFindClassShow() – find a device by 24-bit class code

SYNOPSIS STATUS pciFindClassShow

(

int classCode, /* 24-bit class code */

int index /* desired instance of device */

)

DESCRIPTION This routine finds a device by its 24-bit PCI class code, then prints its information.

RETURNS OK, or ERROR if this library is not initialized.

SEE ALSO pciConfigShow

pciFindDevice()

NAME pciFindDevice() – find the nth device with the given device & vendor ID

SYNOPSIS STATUS pciFindDevice

(

int vendorId, /* vendor ID */

int deviceId, /* device ID */

int index, /* desired instance of device */

int * pBusNo, /* bus number */

int * pDeviceNo, /* device number */

int * pFuncNo /* function number */

)

DESCRIPTION This routine finds the nth device with the given device and vendor ID.

RETURNS OK, or ERROR if the deviceId and vendorId did not match.

SEE ALSO pciConfigLib
393

VxWorks Drivers API Reference, 5.5
pciFindDeviceShow()
pciFindDeviceShow()

NAME pciFindDeviceShow() – find a device by deviceId, then print an information

SYNOPSIS STATUS pciFindDeviceShow

(

int vendorId, /* vendor ID */

int deviceId, /* device ID */

int index /* desired instance of device */

)

DESCRIPTION This routine finds a device by deviceId, then print an information.

RETURNS OK, or ERROR if this library is not initialized.

SEE ALSO pciConfigShow

pciHeaderShow()

NAME pciHeaderShow() – print a header of the specified PCI device

SYNOPSIS STATUS pciHeaderShow

(

int busNo, /* bus number */

int deviceNo, /* device number */

int funcNo /* function number */

)

DESCRIPTION This routine prints a header of the PCI device specified by busNo, deviceNo, and funcNo.

RETURNS OK, or ERROR if this library is not initialized.

SEE ALSO pciConfigShow
394

2: Routines
pciIntConnect()

P

pciInt()

NAME pciInt() – interrupt handler for shared PCI interrupt

SYNOPSIS VOID pciInt

(

int irq /* IRQ associated to the PCI interrupt */

)

DESCRIPTION This routine executes multiple interrupt handlers for a PCI interrupt. Each interrupt
handler must check the device dependent interrupt status bit to determine the source of
the interrupt, since it simply execute all interrupt handlers in the link list.

This is not a user callable routine.

RETURNS N/A.

SEE ALSO pciIntLib

pciIntConnect()

NAME pciIntConnect() – connect the interrupt handler to the PCI interrupt

SYNOPSIS STATUS pciIntConnect

(

VOIDFUNCPTR * vector, /* interrupt vector to attach to */

VOIDFUNCPTR routine, /* routine to be called */

int parameter /* parameter to be passed to routine */

)

DESCRIPTION This routine connects an interrupt handler to a shared PCI interrupt vector. A link list is
created for each shared interrupt used in the system. It is created when the first interrupt
handler is attached to the vector. Subsequent calls to pciIntConnect() just add their
routines to the linked list for that vector.

RETURNS OK, or ERROR if the interrupt handler cannot be built.

SEE ALSO pciIntLib
395

VxWorks Drivers API Reference, 5.5
pciIntDisconnect()
pciIntDisconnect()

NAME pciIntDisconnect() – disconnect the interrupt handler (obsolete)

SYNOPSIS STATUS pciIntDisconnect

(

VOIDFUNCPTR * vector, /* interrupt vector to attach to */

VOIDFUNCPTR routine /* routine to be called */

)

DESCRIPTION This routine disconnects the interrupt handler from the PCI interrupt line.

In a system where one driver and one ISR services multiple devices, this routine removes
all instances of the ISR because it completely ignores the parameter argument used to
install the handler.

NOTE: Use of this routine is discouraged and will be obsoleted in the future. New code
should use the pciIntDisconnect2() routine instead.

RETURNS OK, or ERROR if the interrupt handler cannot be removed.

SEE ALSO pciIntLib

pciIntDisconnect2()

NAME pciIntDisconnect2() – disconnect an interrupt handler from the PCI interrupt

SYNOPSIS STATUS pciIntDisconnect2

(

VOIDFUNCPTR * vector, /* interrupt vector to attach to */

VOIDFUNCPTR routine, /* routine to be called */

int parameter /* routine parameter */

)

DESCRIPTION This routine disconnects a single instance of an interrupt handler from the PCI interrupt
line.

NOTE: This routine should be used in preference to the original pciIntDisconnect()
routine. This routine is compatible with drivers that are managing multiple device
instances, using the same basic ISR, but with different parameters.
396

2: Routines
pciSpecialCycle()

P

RETURNS OK, or ERROR if the interrupt handler cannot be removed.

SEE ALSO pciIntLib

pciIntLibInit()

NAME pciIntLibInit() – initialize the pciIntLib module

SYNOPSIS STATUS pciIntLibInit (void)

DESCRIPTION This routine initializes the linked lists used to chain together the PCI interrupt service
routines.

RETURNS OK, or ERROR upon link list failures.

SEE ALSO pciIntLib

pciSpecialCycle()

NAME pciSpecialCycle() – generate a special cycle with a message

SYNOPSIS STATUS pciSpecialCycle

(

int busNo, /* bus number */

UINT32 message /* data driven onto AD[31:0] */

)

DESCRIPTION This routine generates a special cycle with a message.

RETURNS OK, or ERROR if this library is not initialized.

SEE ALSO pciConfigLib
397

VxWorks Drivers API Reference, 5.5
pcmciad()
pcmciad()

NAME pcmciad() – handle task-level PCMCIA events

SYNOPSIS void pcmciad (void)

DESCRIPTION This routine is spawned as a task by pcmciaInit() to perform functions that cannot be
performed at interrupt or trap level. It has a priority of 0. Do not suspend, delete, or
change the priority of this task.

RETURNS N/A.

SEE ALSO pcmciaLib, pcmciaInit()

pcmciaInit()

NAME pcmciaInit() – initialize the PCMCIA event-handling package

SYNOPSIS STATUS pcmciaInit (void)

DESCRIPTION This routine installs the PCMCIA event-handling facilities and spawns pcmciad(), which
performs special PCMCIA event-handling functions that need to be done at task level. It
also creates the message queue used to communicate with pcmciad().

RETURNS OK, or ERROR if a message queue cannot be created or pcmciad() cannot be spawned.

SEE ALSO pcmciaLib, pcmciad()
398

2: Routines
pcmciaShowInit()

P

pcmciaShow()

NAME pcmciaShow() – show all configurations of the PCMCIA chip

SYNOPSIS void pcmciaShow

(

int sock /* socket no. */

)

DESCRIPTION This routine shows all configurations of the PCMCIA chip.

RETURNS N/A

SEE ALSO pcmciaShow

pcmciaShowInit()

NAME pcmciaShowInit() – initialize all show routines for PCMCIA drivers

SYNOPSIS void pcmciaShowInit (void)

DESCRIPTION This routine initializes all show routines related to PCMCIA drivers.

RETURNS N/A.

SEE ALSO pcmciaShow
399

VxWorks Drivers API Reference, 5.5
ppc403DevInit()
ppc403DevInit()

NAME ppc403DevInit() – initialize the serial port unit

SYNOPSIS void ppc403DevInit

(

PPC403_CHAN * pChan

)

DESCRIPTION The BSP must already have initialized all the device addresses in the PPC403_CHAN
structure. This routine initializes some SIO_CHAN function pointers and then resets the
chip in a quiescent state.

RETURNS N/A.

SEE ALSO ppc403Sio

ppc403DummyCallback()

NAME ppc403DummyCallback() – dummy callback routine

SYNOPSIS STATUS ppc403DummyCallback (void)

RETURNS ERROR (always).

SEE ALSO ppc403Sio
400

2: Routines
ppc403IntRd()

P

ppc403IntEx()

NAME ppc403IntEx() – handle error interrupts

SYNOPSIS void ppc403IntEx

(

PPC403_CHAN * pChan

)

DESCRIPTION This routine handles miscellaneous interrupts on the serial communication controller.

RETURNS N/A.

SEE ALSO ppc403Sio

ppc403IntRd()

NAME ppc403IntRd() – handle a receiver interrupt

SYNOPSIS void ppc403IntRd

(

PPC403_CHAN * pChan

)

DESCRIPTION This routine handles read interrupts from the serial communication controller.

RETURNS N/A.

SEE ALSO ppc403Sio
401

VxWorks Drivers API Reference, 5.5
ppc403IntWr()
ppc403IntWr()

NAME ppc403IntWr() – handle a transmitter interrupt

SYNOPSIS void ppc403IntWr

(

PPC403_CHAN * pChan

)

DESCRIPTION This routine handles write interrupts from the serial communication controller.

RETURNS N/A.

SEE ALSO ppc403Sio

ppc555SciDevInit()

NAME ppc555SciDevInit() – initialize a PPC555SCI channel

SYNOPSIS void ppc555SciDevInit

(

PPC555SCI_CHAN * pChan

)

DESCRIPTION This routine initializes the driver function pointers and then resets the chip in a quiescent
state. The BSP must have already initialized all the device addresses and the baudFreq
fields in the PPC555SCI_CHAN structure before passing it to this routine.

RETURNS N/A.

SEE ALSO ppc555SciSio
402

2: Routines
ppc555SciInt()

P

ppc555SciDevInit2()

NAME ppc555SciDevInit2() – initialize a PPC555SCI, part 2

SYNOPSIS void ppc555SciDevInit2

(

PPC555SCI_CHAN * pChan /* device to initialize */

)

DESCRIPTION This routine is called by the BSP after interrupts have been connected. The driver can now
operate in interrupt mode. Before this routine is called only polled mode operations
should be allowed.

RETURNS N/A.

SEE ALSO ppc555SciSio

ppc555SciInt()

NAME ppc555SciInt() – handle a channel’s interrupt

SYNOPSIS void ppc555SciInt

(

PPC555SCI_CHAN * pChan /* channel generating the interrupt */

)

RETURNS N/A.

SEE ALSO ppc555SciSio
403

VxWorks Drivers API Reference, 5.5
ppc860DevInit()
ppc860DevInit()

NAME ppc860DevInit() – initialize the SMC

SYNOPSIS void ppc860DevInit

(

PPC860SMC_CHAN * pChan

)

DESCRIPTION This routine is called to initialize the chip to a quiescent state. Note that the smcNum field
of PPC860SMC_CHAN must be either 1 or 2.

SEE ALSO ppc860Sio

ppc860Int()

NAME ppc860Int() – handle an SMC interrupt

SYNOPSIS void ppc860Int

(

PPC860SMC_CHAN * pChan

)

DESCRIPTION This routine is called to handle SMC interrupts.

SEE ALSO ppc860Sio
404

2: Routines
sa1100Int()

S

sa1100DevInit()

NAME sa1100DevInit() – initialize an SA1100 channel

SYNOPSIS void sa1100DevInit

(

SA1100_CHAN * pChan /* ptr to SA1100_CHAN describing this channel */

)

DESCRIPTION This routine initializes some SIO_CHAN function pointers and then resets the chip to a
quiescent state. Before this routine is called, the BSP must already have initialized all the
device addresses, etc. in the SA1100_CHAN structure.

RETURNS N/A.

SEE ALSO sa1100Sio

sa1100Int()

NAME sa1100Int() – handle an interrupt

SYNOPSIS void sa1100Int

(

SA1100_CHAN * pChan /* ptr to SA1100_CHAN describing this channel */

)

DESCRIPTION This routine handles interrupts from the UART.

RETURNS N/A.

SEE ALSO sa1100Sio
405

VxWorks Drivers API Reference, 5.5
sab82532DevInit()
sab82532DevInit()

NAME sab82532DevInit() – initialize an SAB82532 channel

SYNOPSIS void sab82532DevInit

(

SAB82532_DUART * pDuart

)

DESCRIPTION This routine initializes some SIO_CHAN function pointers and then resets the chip in a
quiescent state. Before this routine is called, the BSP must already have initialized all the
device addresses, etc. in the SAB82532_CHAN structure.

RETURNS N/A.

SEE ALSO sab82532

sab82532Int()

NAME sab82532Int() – interrupt level processing

SYNOPSIS void sab82532Int

(

SAB82532_DUART * pDuart

)

DESCRIPTION This routine handles interrupts from the UART.

RETURNS N/A.

SEE ALSO sab82532
406

2: Routines
shSciDevInit()

S

sh7615EndLoad()

NAME sh7615EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* sh7615EndLoad

(

char * initString /* String to be parsed by the driver. */

)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the device
specific parameters are passed in the initString.

The string contains the target specific parameters like this:

"ivec:ilevel:numRds:numTds:phyDefMode:userFlags"

RETURNS An END object pointer or NULL on error.

SEE ALSO sh7615End

shSciDevInit()

NAME shSciDevInit() – initialize a on-chip serial communication interface

SYNOPSIS void shSciDevInit

(

SCI_CHAN * pChan

)

DESCRIPTION This routine initializes the driver function pointers and then resets the chip in a quiescent
state. The BSP must have already initialized all the device addresses and the baudFreq
fields in the SCI_CHAN structure before passing it to this routine.

RETURNS N/A.

SEE ALSO shSciSio
407

VxWorks Drivers API Reference, 5.5
shScifDevInit()
shScifDevInit()

NAME shScifDevInit() – initialize a on-chip serial communication interface

SYNOPSIS void shScifDevInit

(

SCIF_CHAN * pChan

)

DESCRIPTION This routine initializes the driver function pointers and then resets the chip in a quiescent
state. The BSP must have already initialized all the device addresses and the baudFreq
fields in the SCIF_CHAN structure before passing it to this routine.

RETURNS N/A.

SEE ALSO shScifSio

shScifIntErr()

NAME shScifIntErr() – handle a channel’s error interrupt

SYNOPSIS void shScifIntErr

(

SCIF_CHAN * pChan /* channel generating the interrupt */

)

RETURNS N/A.

SEE ALSO shScifSio
408

2: Routines
shScifIntTx()

S

shScifIntRcv()

NAME shScifIntRcv() – handle a channel’s receive-character interrupt

SYNOPSIS void shScifIntRcv

(

SCIF_CHAN * pChan /* channel generating the interrupt */

)

RETURNS N/A.

SEE ALSO shScifSio

shScifIntTx()

NAME shScifIntTx() – handle a channel’s transmitter-ready interrupt

SYNOPSIS void shScifIntTx

(

SCIF_CHAN * pChan /* channel generating the interrupt */

)

RETURNS N/A.

SEE ALSO shScifSio
409

VxWorks Drivers API Reference, 5.5
shSciIntErr()
shSciIntErr()

NAME shSciIntErr() – handle a channel’s error interrupt

SYNOPSIS void shSciIntErr

(

SCI_CHAN * pChan /* channel generating the interrupt */

)

RETURNS N/A.

SEE ALSO shSciSio

shSciIntRcv()

NAME shSciIntRcv() – handle a channel’s receive-character interrupt

SYNOPSIS void shSciIntRcv

(

SCI_CHAN * pChan /* channel generating the interrupt */

)

RETURNS N/A.

SEE ALSO shSciSio
410

2: Routines
slattach()

S

shSciIntTx()

NAME shSciIntTx() – handle a channel’s transmitter-ready interrupt

SYNOPSIS void shSciIntTx

(

SCI_CHAN * pChan /* channel generating the interrupt */

)

RETURNS N/A.

SEE ALSO shSciSio

slattach()

NAME slattach() – publish the sl network interface and initialize the driver and device

SYNOPSIS STATUS slattach

(

int unit, /* SLIP device unit number */

int fd, /* fd of tty device for SLIP interface */

BOOL compressEnable, /* explicitly enable CSLIP compression */

BOOL compressAllow, /* enable CSLIP compression on Rx */

int mtu /* user setable MTU */

)

DESCRIPTION This routine publishes the sl interface by filling in a network interface record and adding
this record to the system list. It also initializes the driver and the device to the operational
state.

This routine is usually called by slipInit().

RETURNS OK or ERROR.

SEE ALSO if_sl
411

VxWorks Drivers API Reference, 5.5
slipBaudSet()
slipBaudSet()

NAME slipBaudSet() – set the baud rate for a SLIP interface

SYNOPSIS STATUS slipBaudSet

(

int unit, /* SLIP device unit number */

int baud /* baud rate */

)

DESCRIPTION This routine adjusts the baud rate of a tty device attached to a SLIP interface. It provides a
way to modify the baud rate of a tty device being used as a SLIP interface.

RETURNS OK, or ERROR if the unit number is invalid or uninitialized.

SEE ALSO if_sl

slipDelete()

NAME slipDelete() – delete a SLIP interface

SYNOPSIS STATUS slipDelete

(

int unit /* SLIP unit number */

)

DESCRIPTION This routine resets a specified SLIP interface. It detaches the tty from the sl unit and
deletes the specified SLIP interface from the list of network interfaces. For example, the
following call will delete the first SLIP interface from the list of network interfaces:

slipDelete (0);

RETURNS OK, or ERROR if the unit number is invalid or uninitialized.

SEE ALSO if_sl
412

2: Routines
slipInit()

S

slipInit()

NAME slipInit() – initialize a SLIP interface

SYNOPSIS STATUS slipInit

(

int unit, /* SLIP device unit number (0 - 19) */

char * devName, /* name of the tty device to be initialized */

char * myAddr, /* address of the SLIP interface */

char * peerAddr, /* address of the remote peer SLIP interface */

int baud, /* baud rate of SLIP device: 0=don’t set rate */

BOOL compressEnable, /* explicitly enable CSLIP compression */

BOOL compressAllow, /* enable CSLIP compression on Rx */

int mtu /* user set-able MTU */

)

DESCRIPTION This routine initializes a SLIP device. Its parameters specify the name of the tty device, the
Internet addresses of both sides of the SLIP point-to-point link (i.e., the local and remote
sides of the serial line connection), and CSLIP options.

The Internet address of the local side of the connection is specified in myAddr and the
name of its tty device is specified in devName. The Internet address of the remote side is
specified in peerAddr. If baud is not zero, the baud rate will be the specified value;
otherwise, the default baud rate will be the rate set by the tty driver. The unit parameter
specifies the SLIP device unit number. Up to twenty units may be created.

The CLSIP options parameters compressEnable and compressAllow determine support for
TCP/IP header compression. If compressAllow is TRUE (1), then CSLIP will be enabled only
if a CSLIP type packet is received by this device. If compressEnable is TRUE (1), then CSLIP
compression will be enabled explicitly for all transmitted packets, and compressed
packets can be received.

The MTU option parameter allows the setting of the MTU for the link.

For example, the following call initializes a SLIP device, using the console’s second port,
where the Internet address of the local host is 192.10.1.1 and the address of the remote
host is 192.10.1.2. The baud rate will be the default rate for /tyCo/1. CLSIP is enabled if a
CSLIP type packet is received. The MTU of the link is 1006.

slipInit (0, "/tyCo/1", "192.10.1.1", "192.10.1.2", 0, 0, 1, 1006);

RETURNS OK, or ERROR if the device cannot be opened, memory is insufficient, or the route is
invalid.

SEE ALSO if_sl
413

VxWorks Drivers API Reference, 5.5
smcFdc37b78xDevCreate()
smcFdc37b78xDevCreate()

NAME smcFdc37b78xDevCreate() – set correct IO port addresses for super I/O chip

SYNOPSIS VOID smcFdc37b78xDevCreate

(

SMCFDC37B78X_IOPORTS * smcFdc37b78x_iop

)

DESCRIPTION This routine will initialize smcFdc37b78xIoPorts data structure. These ioports can either
be changed on-the-fly or overriding SMCFDC37B78X_CONFIG_PORT,
SMCFDC37B78X_INDEX_PORT and SMCFDC37B78X_DATA_PORT. This is a necessary step
in initialization of super IO chip and logical devices embedded in it.

RETURNS NONE.

SEE ALSO smcFdc37b78x

smcFdc37b78xInit()

NAME smcFdc37b78xInit() – initialize Super I/O chip Library

SYNOPSIS VOID smcFdc37b78xInit

(

int devInitMask

)

DESCRIPTION This routine will initialize serial, keyboard, floppy disk, parallel port, and gpio pins as a
part super I/O initialization

RETURNS NONE.

SEE ALSO smcFdc37b78x
414

2: Routines
smNetShow()

S

smcFdc37b78xKbdInit()

NAME smcFdc37b78xKbdInit() – initialize the keyboard controller

SYNOPSIS STATUS smcFdc37b78xKbdInit

(

VOID

)

DESCRIPTION This routine will initialize keyboard controller.

RETURNS OK/ERROR.

SEE ALSO smcFdc37b78x

smNetShow()

NAME smNetShow() – show information about a shared memory network

SYNOPSIS STATUS smNetShow

(

char * ifName, /* backplane interface name (NULL == "sm0") */

BOOL zero /* TRUE = zap totals */

)

DESCRIPTION This routine displays information about the different CPUs configured in a shared
memory network specified by ifName. It prints error statistics and zeros these fields if zero
is set to TRUE.

EXAMPLE -> smNetShow

Anchor at 0x800000

heartbeat = 705, header at 0x800010, free pkts = 237.

cpu int type arg1 arg2 arg3 queued pkts

--- -------- ---------- ---------- ---------- -----------

0 poll 0x0 0x0 0x0 0

1 poll 0x0 0x0 0x0 0

2 bus-int 0x3 0xc9 0x0 0

3 mbox-2 0x2d 0x8000 0x0 0

input packets = 192 output packets = 164

output errors = 0 collisions = 0
415

VxWorks Drivers API Reference, 5.5
sn83932EndLoad()
RETURNS OK, or ERROR if there is a hardware setup problem or the routine cannot be initialized.

SEE ALSO smNetShow, smNetLib

sn83932EndLoad()

NAME sn83932EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * sn83932EndLoad

(

char * initString /* String to be parse by the driver. */

)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the device
specific parameters are passed in the initString parameter. This string must be of the
format:

unit_number:device_reg_addr:ivec

These parameters are all individually described in the sn83932End man page.

RETURNS An END object pointer or NULL on error.

SEE ALSO sn83932End

snattach()

NAME snattach() – publish the sn network interface and initialize the driver and device

SYNOPSIS STATUS snattach

(

int unit, /* unit number */

char * pDevRegs, /* addr of device’s regs */

int ivec /* vector number */

)

DESCRIPTION This routine publishes the sn interface by filling in a network interface record and adding
this record to the system list. It also initializes the driver and the device to the operational
state.
416

2: Routines
sramDrv()

S

RETURNS OK or ERROR.

SEE ALSO if_sn

sramDevCreate()

NAME sramDevCreate() – create a PCMCIA memory disk device

SYNOPSIS BLK_DEV *sramDevCreate

(

int sock, /* socket no. */

int bytesPerBlk, /* number of bytes per block */

int blksPerTrack, /* number of blocks per track */

int nBlocks, /* number of blocks on this device */

int blkOffset /* no. of blks to skip at start of device */

)

DESCRIPTION This routine creates a PCMCIA memory disk device.

RETURNS A pointer to a block device structure (BLK_DEV), or NULL if memory cannot be allocated
for the device structure.

SEE ALSO sramDrv, ramDevCreate()

sramDrv()

NAME sramDrv() – install a PCMCIA SRAM memory driver

SYNOPSIS STATUS sramDrv

(

int sock /* socket no. */

)

DESCRIPTION This routine initializes a PCMCIA SRAM memory driver. It must be called once, before
any other routines in the driver.

RETURNS OK, or ERROR if the I/O system cannot install the driver.

SEE ALSO sramDrv
417

VxWorks Drivers API Reference, 5.5
sramMap()
sramMap()

NAME sramMap() – map PCMCIA memory onto a specified ISA address space

SYNOPSIS STATUS sramMap

(

int sock, /* socket no. */

int type, /* 0: common 1: attribute */

int start, /* ISA start address */

int stop, /* ISA stop address */

int offset, /* card offset address */

int extraws /* extra wait state */

)

DESCRIPTION This routine maps PCMCIA memory onto a specified ISA address space.

RETURNS OK, or ERROR if the memory cannot be mapped.

SEE ALSO sramDrv

st16552DevInit()

NAME st16552DevInit() – initialize an ST16552 channel

SYNOPSIS void st16552DevInit

(

ST16552_CHAN * pChan

)

DESCRIPTION This routine initializes some SIO_CHAN function pointers and then resets the chip in a
quiescent state. Before this routine is called, the BSP must already have initialized all the
device addresses, etc. in the ST16552_CHAN structure.

RETURNS N/A.

SEE ALSO st16552Sio
418

2: Routines
st16552IntEx()

S

st16552Int()

NAME st16552Int() – interrupt level processing

SYNOPSIS void st16552Int

(

ST16552_CHAN * pChan /* ptr to struct describing channel */

)

DESCRIPTION This routine handles interrupts from the UART.

RETURNS N/A.

SEE ALSO st16552Sio

st16552IntEx()

NAME st16552IntEx() – miscellaneous interrupt processing

SYNOPSIS void st16552IntEx

(

ST16552_CHAN * pChan /* ptr to struct describing channel */

)

DESCRIPTION This routine handles miscellaneous interrupts on the UART.

RETURNS N/A.

SEE ALSO st16552Sio
419

VxWorks Drivers API Reference, 5.5
st16552IntRd()
st16552IntRd()

NAME st16552IntRd() – handle a receiver interrupt

SYNOPSIS void st16552IntRd

(

ST16552_CHAN * pChan /* ptr to struct describing channel */

)

DESCRIPTION This routine handles read interrupts from the UART.

RETURNS N/A.

SEE ALSO st16552Sio

st16552IntWr()

NAME st16552IntWr() – handle a transmitter interrupt

SYNOPSIS void st16552IntWr

(

ST16552_CHAN * pChan /* ptr to struct describing channel */

)

DESCRIPTION This routine handles write interrupts from the UART.

RETURNS N/A.

SEE ALSO st16552Sio
420

2: Routines
sym895CtrlCreate()

S

st16552MuxInt()

NAME st16552MuxInt() – multiplexed interrupt level processing

SYNOPSIS void st16552MuxInt

(

ST16552_MUX * pMux /* ptr to struct describing multiplexed chans */

)

DESCRIPTION This routine handles multiplexed interrupts from the DUART. It assumes that channels 0
and 1 are connected so that they produce the same interrupt.

RETURNS N/A.

SEE ALSO st16552Sio

sym895CtrlCreate()

NAME sym895CtrlCreate() – create a structure for a SYM895 device

SYNOPSIS SYM895_SCSI_CTRL * sym895CtrlCreate

(

UINT8 * siopBaseAdrs, /* base address of the SCSI Controller */

UINT clkPeriod, /* clock controller period (nsec* 100) */

UINT16 devType, /* SCSI device type */

UINT8 * siopRamBaseAdrs, /* on Chip Ram Address */

UINT16 flags /* options */

)

DESCRIPTION This routine creates a SCSI Controller data structure and must be called before using a
SCSI Controller chip. It should be called once and only once for a specified SCSI
Controller. Since it allocates memory for a structure needed by all routines in sym895Lib,
it must be called before any other routines in the library. After calling this routine,
sym895CtrlInit() should be called at least once before any SCSI transactions are initiated
using the SCSI Controller.

A detailed description of parameters follows:

siopBaseAdrs
Base address of the SCSI controller.
421

VxWorks Drivers API Reference, 5.5
sym895CtrlCreate()
clkPeriod
Clock controller period (nsec*100).This is used to determine the clock period for the
SCSI core and affects the timing of both asynchronous and synchronous transfers.
Several commonly used values are:

SYM895_1667MHZ 6000 16.67Mhz chip

SYM895_20MHZ 5000 20Mhz chip

SYM895_25MHZ 4000 25Mhz chip

SYM895_3750MHZ 2667 37.50Mhz chip

SYM895_40MHZ 2500 40Mhz chip

SYM895_50MHZ 2000 50Mhz chip

SYM895_66MHZ 1515 66Mhz chip

SYM895_6666MHZ 1500 66Mhz chip

SYM895_75MHZ 1333 75Mhz chip

SYM895_80MHZ 1250 80Mhz chip

SYM895_160MHZ 625 40Mhz chip with Quadrupler

devType
SCSI sym8xx device type.

siopRamBaseAdrs
Base address of the internal scripts RAM.

flags
Various device/debug options for the driver. Commonly used values are

SYM895_ENABLE_PARITY_CHECK 0x01

SYM895_ENABLE_SINGLE_STEP 0x02

SYM895_COPY_SCRIPTS 0x04

RETURNS A pointer to SYM895_SCSI_CTRL structure, or NULL if memory is unavailable or there are
invalid parameters.

ERRORS N/A.

SEE ALSO sym895Lib
422

2: Routines
sym895GPIOConfig()

S

sym895CtrlInit()

NAME sym895CtrlInit() – initialize a SCSI Controller Structure

SYNOPSIS STATUS sym895CtrlInit

(

SIOP * pSiop, /* pointer to SCSI Controller structure */

UINT scsiCtrlBusId /* SCSI bus ID of this SCSI Controller */

)

DESCRIPTION This routine initializes a SCSI Controller structure, after the structure is created with
sym895CtrlCreate(). This structure must be initialized before the SCSI Controller can be
used. It may be called more than once if needed; however, it should only be called while
there is no activity on the SCSI interface.

A detailed description of parameters follows:

pSiop
Pointer to the SCSI controller structure created with sym895CtrlCreate().

scsiCtrlBusId
SCSI Bus Id of the SIOP.

RETURNS OK, or ERROR if parameters are out of range.

ERRORS N/A.

SEE ALSO sym895Lib

sym895GPIOConfig()

NAME sym895GPIOConfig() – configure general purpose pins GPIO 0-4

SYNOPSIS STATUS sym895GPIOConfig

(

SIOP * pSiop, /* pointer to SIOP structure */

UINT8 ioEnable, /* bits indicate input/output */

UINT8 mask /* mask for ioEnable parameter */

)

423

VxWorks Drivers API Reference, 5.5
sym895GPIOCtrl()
DESCRIPTION This routine uses the GPCNTL register to configure the general purpose pins available on
Sym895 chip. Bits 0-4 of GPCNTL register map to GPIO 0-4 pins. A bit set in GPCNTL
configures corresponding pin as input and a bit reset configures the pins as output.

pSiop
Pointer to the SIOP structure.

ioEnable
Bits 0-4 of this parameter configure GPIO 0-4 pins. 1 > input, 0 > output.

mask
Bits 0-4 of this parameter identify valid bits in ioEnable parameter. Only those pins are
configured, which have a corresponding bit set in this parameter.

SEE ALSO sym895Lib

sym895GPIOCtrl()

NAME sym895GPIOCtrl() – controls general purpose pins GPIO 0-4

SYNOPSIS STATUS sym895GPIOCtrl

(

SIOP * pSiop, /* pointer to SIOP structure */

UINT8 ioState, /* bits indicate set/reset */

UINT8 mask /* mask for ioState parameter */

)

DESCRIPTION This routine uses the GPREG register to set/reset of the general purpose pins available on
Sym895 chip.

pSiop
Pointer to the SIOP structure.

ioState
Bits 0-4 of this parameter controls GPIO 0-4 pins. 1 > set, 0 > reset.

mask
Bits 0-4 of this parameter identify valid bits in ioState parameter. Only those pins are
activated, which have a corresponding bit set in this parameter.

SEE ALSO sym895Lib
424

2: Routines
sym895Intr()

S

sym895HwInit()

NAME sym895HwInit() – hardware initialization for the 895 Chip

SYNOPSIS STATUS sym895HwInit

(

SIOP * pSiop /* pointer to the SIOP structure */

)

DESCRIPTION This function puts the SIOP in a known quiescent state. Also, if copying of SCSI scripts is
enabled, this routine copies entire SCRIPTS code from host memory to On-Chip SCRIPTS
RAM. This routine does not modify any of the registers that are set by
sym895SetHwOptions().

For details of the register bits initialized here, refer to SYM53C895 data manual Version
3.0.

pSiop
Pointer to the SIOP structure.

RETURNS OK, or ERROR if parameters are out of range.

ERRORS N/A.

SEE ALSO sym895Lib

sym895Intr()

NAME sym895Intr() – interrupt service routine for the SCSI Controller

SYNOPSIS void sym895Intr

(

SIOP * pSiop /* pointer to the SIOP structure */

)

DESCRIPTION The first thing to determine is whether the device is generating an interrupt. If not, then
this routine must exit as quickly as possible.

Find the event type corresponding to this interrupt, and carry out any actions which must
be done before the SCSI Controller is re-started. Determine whether or not the SCSI
Controller is connected to the bus (depending on the event type, see note below). If not,
425

VxWorks Drivers API Reference, 5.5
sym895Loopback()
start a client script if possible or else just make the SCSI Controller wait for something else
to happen.

The "connected" variable, at the end of switch statement, reflects the status of the currently
executing thread. If it is TRUE it means that the thread is suspended and must be
processed at the task level. Set the state of SIOP to IDLE and leave the control to the SCSI
Manager. The SCSI Manager, in turn invokes the driver through a "resume" call.

Notify the SCSI manager of a controller event.

RETURNS N/A.

SEE ALSO sym895Lib

sym895Loopback()

NAME sym895Loopback() – this routine performs loopback diagnostics on 895 chip

SYNOPSIS STATUS sym895Loopback

(

SIOP * pSiop /* pointer to SIOP controller structure */

)

DESCRIPTION Loopback mode allows 895 chip to control all signals, regardless of whether it is in
initiator or target role. This mode insures proper SCRIPTS instruction fetches and data
paths. SYM895 executes initiator instructions through the SCRIPTS, and this routine
implements the target role by asserting and polling the appropriate SCSI signals in the
SOCL, SODL, SBCL, and SBDL registers.

To configure 895 in loopback mode:

Bits 3 and 4 of STEST2 should be set to put SCSI pins in High-Impedance mode, so
that signals are not asserted on to the SCSI bus.

Bit 4 of DCNTL should be set to turn on single step mode. This allows the target
program (this routine) to monitor when an initiator SCRIPTS instruction has
completed.

In this routine, SELECTION, MSG_OUT, and DATA_OUT phases are checked. This will
ensure that data and control paths are proper.

SEE ALSO sym895Lib
426

2: Routines
sym895SetHwOptions()

S

sym895SetHwOptions()

NAME sym895SetHwOptions() – set the Sym895 chip options

SYNOPSIS STATUS sym895SetHwOptions

(

SIOP * pSiop, /* pointer to the SIOP structure */

SYM895_HW_OPTIONS * pHwOptions /* pointer to the Options Structure */

)

DESCRIPTION This function sets optional bits required for tweaking the performance of 895 to the Ultra2
SCSI. The routine should be called with SYM895_HW_OPTIONS structure as defined in
sym895.h file.

The input parameters are:

pSiop
Pointer to the SIOP structure.

pHwOptions
Pointer to the a SYM895_HW_OPTIONS structure.

struct sym895HWOptions

{

int SCLK : 1; /* STEST1:b7,if false, uses PCI Clock for SCSI */

int SCE : 1; /* STEST2:b7, enable assertion of SCSI thro SOCL*/

/* and SODL registers */

int DIF : 1; /* STEST2:b5, enable differential SCSI */

int AWS : 1; /* STEST2:b2, Always Wide SCSI */

int EWS : 1; /* SCNTL3:b3, Enable Wide SCSI */

int EXT : 1; /* STEST2:b1, Extend SREQ/SACK filtering */

int TE : 1; /* STEST3:b7, TolerANT Enable */

int BL : 3; /* DMODE:b7,b6, CTEST5:b2 : Burst length */

/* when set to any of 32/64/128 burst length */

/* transfers, requires the DMA Fifo size to be */

/* 816 bytes (ctest5:b5 = 1). */

int SIOM : 1; /* DMODE:b5, Source I/O Memory Enable */

int DIOM : 1; /* DMODE:b4, Destination I/O Memory Enable */

int EXC : 1; /* SCNTL1:b7, Slow Cable Mode */

int ULTRA : 1; /* SCNTL3:b7, Ultra Enable */

int DFS : 1; /* CTEST5:b5, DMA Fifo size 112/816 bytes */

} SYM895_HW_OPTIONS;

This routine should not be called when there is SCSI Bus Activity as this modifies the
SIOP Registers.
427

VxWorks Drivers API Reference, 5.5
sym895Show()
RETURNS OK or ERROR if any of the input parameters is not valid.

ERRORS N/A.

SEE ALSO sym895Lib, sym895.h, sym895CtrlCreate()

sym895Show()

NAME sym895Show() – display values of all readable SYM 53C8xx SIOP registers

SYNOPSIS STATUS sym895Show

(

SIOP * pSiop /* pointer to SCSI controller */

)

DESCRIPTION This routine displays the state of the SIOP registers in a user-friendly way. It is useful
primarily for debugging. The input parameter is the pointer to the SIOP information
structure returned by the sym895CtrlCreate() call.

NOTE: The only readable register during a script execution is the Istat register. If you use
this routine during the execution of a SCSI command, the result could be unpredictable.

EXAMPLE -> sym895Show

SYM895 Registers

Scntl0 = 0xd0 Scntl1 = 0x00 Scntl2 = 0x00 Scntl3 = 0x00

Scid = 0x67 Sxfer = 0x00 Sdid = 0x00 Gpreg = 0x0f

Sfbr = 0x0f Socl = 0x00 Ssid = 0x00 Sbcl = 0x00

Dstat = 0x80 Sstat0 = 0x00 Sstat1 = 0x0f Sstat2 = 0x02

Dsa = 0x07ea9538

Istat = 0x00

Ctest0 = 0x00 Ctest1 = 0xf0 Ctest2 = 0x35 Ctest3 = 0x10

Temp = 0x001d0c54

Dfifo = 0x00

Dbc0:23-Dcmd24:31 = 0x54000000

Dnad = 0x001d0c5c

Dsp = 0x001d0c5c

Dsps = 0x000000a0

Scratch0 = 0x01 Scratch1 = 0x00 Scratch2 = 0x00 Scratch3 = 0x00

Dmode = 0x81 Dien = 0x35 Dwt = 0x00 Dcntl = 0x01

Sien0 = 0x0f Sien1 = 0x17 Sist0 = 0x00 Sist1 = 0x00

Slpar = 0x4c Swide = 0x00 Macntl = 0xd0 Gpcntl = 0x0f
428

2: Routines
sym895Show()

S

Stime0 = 0x00 Stime1 = 0x00 Respid0 = 0x80 Respid1 = 0x00

Stest0 = 0x07 Stest1 = 0x00 Stest2 = 0x00 Stest3 = 0x80

Sidl = 0x0000 Sodl = 0x0000 Sbdl = 0x0000

Scratchb = 0x00000200

value = 0 = 0x0

RETURNS OK, or ERROR if pScsiCtrl and pSysScsiCtrl are both NULL.

SEE ALSO sym895Lib, sym895CtrlCreate()
429

VxWorks Drivers API Reference, 5.5
tcicInit()

430

tcicInit()

NAME tcicInit() – initialize the TCIC chip

SYNOPSIS STATUS tcicInit

(

int ioBase, /* IO base address */

int intVec, /* interrupt vector */

int intLevel, /* interrupt level */

FUNCPTR showRtn /* show routine */

)

DESCRIPTION This routine initializes the TCIC chip.

RETURNS OK, or ERROR if the TCIC chip cannot be found.

SEE ALSO tcic

tcicShow()

NAME tcicShow() – show all configurations of the TCIC chip

SYNOPSIS void tcicShow

(

int sock /* socket no. */

)

DESCRIPTION This routine shows all configurations of the TCIC chip.

RETURNS N/A.

SEE ALSO tcicShow

2: Routines
ultraLoad()

U

ultraattach()

NAME ultraattach() – publish ultra interface and initialize device

SYNOPSIS STATUS ultraattach

(

int unit, /* unit number */

int ioAddr, /* address of ultra\xd5 s shared memory */

int ivec, /* interrupt vector to connect to */

int ilevel, /* interrupt level */

int memAddr, /* address of ultra\xd5 s shared memory */

int memSize, /* size of ultra\xd5 s shared memory */

int config /* 0: RJ45 + AUI(Thick) 1: RJ45 + BNC(Thin) */

)

DESCRIPTION This routine attaches an ultra Ethernet interface to the network if the device exists. It
makes the interface available by filling in the network interface record. The system will
initialize the interface when it is ready to accept packets.

RETURNS OK or ERROR.

SEE ALSO if_ultra, ifLib, netShow

ultraLoad()

NAME ultraLoad() – initialize the driver and device

SYNOPSIS END_OBJ* ultraLoad

(

char * initString /* String to be parsed by the driver. */

)

DESCRIPTION This routine initializes the driver and device to the operational state. All device-specific
parameters are passed in initString, which expects a string of the following format:

unit:ioAddr:memAddr:vecNum:intLvl:config:offset"

– If the routine is called with an empty, but allocated string, it places the name of this
device (that is, "ultra") into the initString and returns 0.

– If the string is allocated and not empty, the routine attempts to load the driver using
the values specified in the string.
431

VxWorks Drivers API Reference, 5.5
ultraPut()
RETURNS An END object pointer, or NULL if error, or 0 and the name of the device if initString is
NULL.

SEE ALSO ultraEnd

ultraPut()

NAME ultraPut() – copy a packet to the interface

SYNOPSIS #ifdef BSD43_DRIVER LOCAL void ultraPut

(

int unit /* device unit number */

)

DESCRIPTION Copy from mbuf chain to transmitter buffer in shared memory.

RETURNS N/A.

SEE ALSO if_ultra

ultraShow()

NAME ultraShow() – display statistics for the ultra network interface

SYNOPSIS void ultraShow

(

int unit, /* interface unit */

BOOL zap /* zero totals */

)

DESCRIPTION This routine displays statistics about the elc Ethernet network interface. It has two
parameters:

unit Interface unit; should be 0.

zap If 1, all collected statistics are cleared to zero.

RETURNS N/A.

SEE ALSO if_ultra
432

2: Routines
vgaInit()

433

V

vgaInit()

NAME vgaInit() – initialize the VGA chip and loads font in memory

SYNOPSIS STATUS vgaInit (void)

DESCRIPTION This routine will initialize the VGA specific register set to bring a VGA card in VGA 3+
mode and loads the font in plane 2.

RETURNS OK/ERROR.

SEE ALSO vgaInit

VxWorks Drivers API Reference, 5.5
wd33c93CtrlCreate()
wd33c93CtrlCreate()

NAME wd33c93CtrlCreate() – create and partially initialize a WD33C93 SBIC structure

SYNOPSIS WD_33C93_SCSI_CTRL *wd33c93CtrlCreate

(

UINT8 * sbicBaseAdrs, /* base address of SBIC */

int regOffset, /* addr offset between consecutive regs. */

UINT clkPeriod, /* period of controller clock (nsec) */

int devType, /* SBIC device type */

FUNCPTR sbicScsiReset, /* SCSI bus reset function */

FUNCPTR sbicDmaBytesIn, /* SCSI DMA input function */

FUNCPTR sbicDmaBytesOut /* SCSI DMA output function */

)

DESCRIPTION This routine creates an SBIC data structure and must be called before using an SBIC chip.
It should be called once and only once for a specified SBIC. Since it allocates memory for a
structure needed by all routines in wd33c93Lib, it must be called before any other
routines in the library. After calling this routine, at least one call to wd33c93CtrlInit()
should be made before any SCSI transaction is initiated using the SBIC.

NOTE: Note that only the non-multiplexed processor interface is supported.

The input parameters are as follows:

sbicBaseAdrs
The address where the CPU accesses the lowest register of the SBIC.

regOffset
The address offset (in bytes) to access consecutive registers. (This must be a power of
2; for example, 1, 2, 4, etc.)

clkPeriod
The period, in nanoseconds, of the signal-to-SBIC clock input used only for select
command timeouts.

devType
A constant corresponding to the type (part number) of this controller; possible
options are enumerated in wd33c93.h under the heading "SBIC device type."

sbicScsiReset
A board-specific routine to assert the RST line on the SCSI bus, which causes all
connected devices to return to a known quiescent state.

spcDmaBytesIn and spcDmaBytesOut
Board-specific routines to handle DMA input and output. If these are NULL (0), SBIC
program transfer mode is used. DMA is implemented only during SCSI data in/out
434

2: Routines
wd33c93CtrlCreateScsi2()

W

phases. The interface to these DMA routines must be of the form:

STATUS xxDmaBytes{In, Out}

(

SCSI_PHYS_DEV *pScsiPhysDev, /* ptr to phys dev info */

UINT8 *pBuffer, /* ptr to the data buffer */

int bufLength /* number of bytes to xfer */

)

RETURNS A pointer to the SBIC control structure, or NULL if memory is insufficient or parameters
are invalid.

SEE ALSO wd33c93Lib1, wd33c93.h

wd33c93CtrlCreateScsi2()

NAME wd33c93CtrlCreateScsi2() – create and partially initialize an SBIC structure

SYNOPSIS WD_33C93_SCSI_CTRL *wd33c93CtrlCreateScsi2

(

UINT8 * sbicBaseAdrs, /* base address of the SBIC */

int regOffset, /* address offset between SBIC registers */

UINT clkPeriod, /* period of the SBIC clock (nsec) */

FUNCPTR sysScsiBusReset, /* function to reset SCSI bus */

int sysScsiResetArg, /* argument to pass to above function */

UINT sysScsiDmaMaxBytes, /* maximum byte count using DMA */

FUNCPTR sysScsiDmaStart, /* function to start SCSI DMA transfer */

FUNCPTR sysScsiDmaAbort, /* function to abort SCSI DMA transfer */

int sysScsiDmaArg /* argument to pass to above functions */

)

DESCRIPTION This routine creates an SBIC data structure and must be called before using an SBIC chip.
It must be called exactly once for a specified SBIC. Since it allocates memory for a
structure needed by all routines in wd33c93Lib2, it must be called before any other
routines in the library. After calling this routine, at least one call to wd33c93CtrlInit()
must be made before any SCSI transaction is initiated using the SBIC.

NOTE: Only the non-multiplexed processor interface is supported.

A detailed description of the input parameters follows:

sbicBaseAdrs
The address at which the CPU would access the lowest (AUX STATUS) register of the
435

VxWorks Drivers API Reference, 5.5
wd33c93CtrlCreateScsi2()
SBIC.

regOffset
The address offset (bytes) to access consecutive registers. (This must be a power of 2,
for example, 1, 2, 4, etc.)

clkPeriod
The period in nanoseconds of the signal to SBIC CLK input.

sysScsiBusReset and sysScsiResetArg
The board-specific routine to pulse the SCSI bus RST signal. The specified argument
is passed to this routine when it is called. It may be used to identify the SCSI bus to be
reset, if there is a choice. The interface to this routine is of the form:

void xxBusReset

(

int arg; /* call-back argument */

)

sysScsiDmaMaxBytes, sysScsiDmaStart, sysScsiDmaAbort, and sysScsiDmaArg
Board-specific routines to handle DMA transfers to and from the SBIC; if the
maximum DMA byte count is zero, programmed I/O is used. Otherwise, non-NULL
function pointers to DMA start and abort routines must be provided. The specified
argument is passed to these routines when they are called; it may be used to identify
the DMA channel to use, for example. Note that DMA is implemented only during
SCSI data in/out phases. The interface to these DMA routines must be of the form:

STATUS xxDmaStart

(

int arg; /* call-back argument */

UINT8 *pBuffer; /* ptr to the data buffer */

UINT bufLength; /* number of bytes to xfer */

int direction; /* 0 = SCSI->mem, 1 = mem->SCSI */

)

STATUS xxDmaAbort

(

int arg; /* call-back argument */

)

RETURNS A pointer to the SBIC structure, or NULL if memory is insufficient or the parameters are
invalid.

SEE ALSO wd33c93Lib2
436

2: Routines
wd33c93CtrlInit()

W

wd33c93CtrlInit()

NAME wd33c93CtrlInit() – initialize the user-specified fields in an SBIC structure

SYNOPSIS STATUS wd33c93CtrlInit

(

int * pSbic, /* ptr to SBIC info */

int scsiCtrlBusId, /* SCSI bus ID of this SBIC */

UINT defaultSelTimeOut, /* default dev. select timeout (microsec) */

int scsiPriority /* priority of task when doing SCSI I/O */

)

DESCRIPTION This routine initializes an SBIC structure, after the structure is created with either
wd33c93CtrlCreate() or wd33c93CtrlCreateScsi2(). This structure must be initialized
before the SBIC can be used. It may be called more than once; however, it should be called
only while there is no activity on the SCSI interface. Before returning, this routine pulses
RST (reset) on the SCSI bus, thus resetting all attached devices.

The input parameters are as follows:

pSbic
A pointer to the WD_33C93_SCSI_CTRL structure created with wd33c93CtrlCreate()
or wd33c93CtrlCreateScsi2().

scsiCtrlBusId
The SCSI bus ID of the SBIC, in the range 0 - 7. The ID is somewhat arbitrary; the
value 7, or highest priority, is conventional.

defaultSelTimeOut
The timeout, in microseconds, for selecting a SCSI device attached to this controller.
This value is used as a default if no timeout is specified in scsiPhysDevCreate(). The
recommended value zero (0) specifies SCSI_DEF_SELECT_TIMEOUT (250 millisec).
The maximum timeout possible is approximately 2 seconds. Values exceeding this
revert to the maximum. For more information about chip timeouts, see the manuals
Western Digital WD33C92/93 SCSI-Bus Interface Controller, Western Digital
WD33C92A/93A SCSI-Bus Interface Controller.

scsiPriority
The priority to which a task is set when performing a SCSI transaction. Valid
priorities are 0 to 255. Alternatively, the value -1 specifies that the priority should not
be altered during SCSI transactions.

RETURNS OK, or ERROR if a parameter is out of range.

SEE ALSO wd33c93Lib, scsiPhysDevCreate(), Western Digital WD33C92/93 SCSI-Bus Interface
Controller, Western Digital WD33C92A/93A SCSI-Bus Interface Controller
437

VxWorks Drivers API Reference, 5.5
wd33c93Show()
wd33c93Show()

NAME wd33c93Show() – display the values of all readable WD33C93 chip registers

SYNOPSIS int wd33c93Show

(

int * pScsiCtrl /* ptr to SCSI controller info */

)

DESCRIPTION This routine displays the state of the SBIC registers in a user-friendly manner. It is useful
primarily for debugging. It should not be invoked while another running process is
accessing the SCSI controller.

EXAMPLE -> wd33c93Show

REG #00 (Own ID) = 0x07

REG #01 (Control) = 0x00

REG #02 (Timeout Period) = 0x20

REG #03 (Sectors) = 0x00

REG #04 (Heads) = 0x00

REG #05 (Cylinders MSB) = 0x00

REG #06 (Cylinders LSB) = 0x00

REG #07 (Log. Addr. MSB) = 0x00

REG #08 (Log. Addr. 2SB) = 0x00

REG #09 (Log. Addr. 3SB) = 0x00

REG #0a (Log. Addr. LSB) = 0x00

REG #0b (Sector Number) = 0x00

REG #0c (Head Number) = 0x00

REG #0d (Cyl. Number MSB) = 0x00

REG #0e (Cyl. Number LSB) = 0x00

REG #0f (Target LUN) = 0x00

REG #10 (Command Phase) = 0x00

REG #11 (Synch. Transfer) = 0x00

REG #12 (Xfer Count MSB) = 0x00

REG #13 (Xfer Count 2SB) = 0x00

REG #14 (Xfer Count LSB) = 0x00

REG #15 (Destination ID) = 0x03

REG #16 (Source ID) = 0x00

REG #17 (SCSI Status) = 0x42

REG #18 (Command) = 0x07

RETURNS OK, or ERROR if pScsiCtrl and pSysScsiCtrl are both NULL.

SEE ALSO wd33c93Lib
438

2: Routines
wdbNetromPktDevInit()

W

wdbEndPktDevInit()

NAME wdbEndPktDevInit() – initialize an END packet device

SYNOPSIS STATUS wdbEndPktDevInit

(

WDB_END_PKT_DEV * pPktDev, /* device structure to init */

void (* stackRcv) (), /* receive packet callback (udpRcv) */

char * pDevice, /* Device (ln, ie, etc.) that we wish to */

/* bind to. */

int unit /* unit number (0, 1, etc.) */

)

DESCRIPTION This routine initializes an END packet device. It is typically called from configlette
wdbEnd.c when the WDB agent’s lightweight END communication path
(INCLUDE_WDB_COMM_END) is selected.

RETURNS OK or ERROR.

SEE ALSO wdbEndPktDrv

wdbNetromPktDevInit()

NAME wdbNetromPktDevInit() – initialize a NETROM packet device for the WDB agent

SYNOPSIS void wdbNetromPktDevInit

(

WDB_NETROM_PKT_DEV * pPktDev, /* packet device to initialize */

caddr_t dpBase, /* address of dualport memory */

int width, /* number of bytes in a ROM word */

int index, /* pod zero\xd5 s index in a ROM word */

int numAccess, /* to pod zero per byte read */

void (* stackRcv)(), /* callback when packet arrives */

int pollDelay /* poll task delay */

)

DESCRIPTION This routine initializes a NETROM packet device. It is typically called from usrWdb.c
when the WDB agents NETROM communication path is selected. The dpBase parameter is
the address of NetROM’s dualport RAM. The width parameter is the width of a word in
ROM space, and can be 1, 2, or 4 to select 8-bit, 16-bit, or 32-bit width respectively (use the
macro WDB_NETROM_WIDTH in configAll.h for this parameter). The index parameter
439

VxWorks Drivers API Reference, 5.5
wdbPipePktDevInit()
refers to which byte of the ROM contains pod zero. The numAccess parameter should be
set to the number of accesses to POD zero that are required to read a byte. It is typically
one, but some boards actually read a word at a time. This routine spawns a task which
polls the NetROM for incoming packets every pollDelay clock ticks.

RETURNS N/A.

SEE ALSO wdbNetromPktDrv

wdbPipePktDevInit()

NAME wdbPipePktDevInit() – initialize a pipe packet device

SYNOPSIS STATUS wdbPipePktDevInit

(

WDB_PIPE_PKT_DEV * pPktDev, /* pipe device structure to init */

void (* stackRcv)() /* receive packet callback (udpRcv) */

)

SEE ALSO wdbPipePktDrv

wdbSlipPktDevInit()

NAME wdbSlipPktDevInit() – initialize a SLIP packet device for a WDB agent

SYNOPSIS void wdbSlipPktDevInit

(

WDB_SLIP_PKT_DEV * pPktDev, /* SLIP packetizer device */

SIO_CHAN * pSioChan, /* underlying serial channel */

void (* stackRcv)() /* callback when a packet arrives */

)

DESCRIPTION This routine initializes a SLIP packet device on one of the BSP’s serial channels. It is
typically called from usrWdb.c when the WDB agent’s lightweight SLIP communication
path is selected.

RETURNS N/A.

SEE ALSO wdbSlipPktDrv
440

2: Routines
wdbUlipPktDevInit()

W

wdbTsfsDrv()

NAME wdbTsfsDrv() – initialize the TSFS device driver for a WDB agent

SYNOPSIS STATUS wdbTsfsDrv

(

char * name /* root name in i/o system */

)

DESCRIPTION This routine initializes the virtual I/O "2" driver and creates a TSFS device of the specified
name. This routine should be called exactly once, before any reads, writes, or opens.
Normally, it is called by usrRoot() in usrConfig.c, and the device name created is /tgtsvr.

After this routine has been called, individual virtual I/O channels can be opened by
appending the host file name to the virtual I/O device name. For example, to get a file
descriptor for the host file /etc/passwd, call open() as follows:

fd = open ("/tgtsvr/etc/passwd", O_RDWR, 0)

RETURNS OK, or ERROR if the driver can not be installed.

SEE ALSO wdbTsfsDrv

wdbUlipPktDevInit()

NAME wdbUlipPktDevInit() – initialize the communication functions for ULIP

SYNOPSIS void wdbUlipPktDevInit

(

WDB_ULIP_PKT_DEV * pDev, /* ULIP packet device to initialize */

char * ulipDev, /* name of UNIX device to use */

void (* stackRcv)() /* routine to call when a packet arrives */

)

DESCRIPTION This routine initializes a ULIP device for use by the WDB debug agent. It provides a
communication path to the debug agent which can be used with both a task and an
external mode agent. It is typically called by usrWdb.c when the WDB agent’s lightweight
ULIP communication path is selected.

RETURNS N/A.

SEE ALSO wdbUlipPktDrv
441

VxWorks Drivers API Reference, 5.5
wdbVioDrv()
wdbVioDrv()

NAME wdbVioDrv() – initialize the tty driver for a WDB agent

SYNOPSIS STATUS wdbVioDrv

(

char * name

)

DESCRIPTION This routine initializes the VxWorks virtual I/O driver and creates a virtual I/O device of
the specified name.

This routine should be called exactly once, before any reads, writes, or opens. Normally, it
is called by usrRoot() in usrConfig.c, and the device name created is "/vio".

After this routine has been called, individual virtual I/O channels can be open by
appending the channel number to the virtual I/O device name. For example, to get a file
descriptor for virtual I/O channel 0x1000017, call open() as follows:

fd = open ("/vio/0x1000017", O_RDWR, 0)

RETURNS OK, or ERROR if the driver cannot be installed.

SEE ALSO wdbVioDrv
442

2: Routines
z8530Int()

Z

z8530DevInit()

NAME z8530DevInit() – initialize a Z8530_DUSART

SYNOPSIS void z8530DevInit

(

Z8530_DUSART * pDusart

)

DESCRIPTION The BSP must have already initialized all the device addresses, etc. in Z8530_DUSART
structure. This routine initializes some SIO_CHAN function pointers and then resets the
chip to a quiescent state.

RETURNS N/A.

SEE ALSO z8530Sio

z8530Int()

NAME z8530Int() – handle all interrupts in one vector

SYNOPSIS void z8530Int

(

Z8530_DUSART * pDusart

)

DESCRIPTION On some boards, all SCC interrupts for both ports share a single interrupt vector. This is
the ISR for such boards. We determine from the parameter which SCC interrupted, then
look at the code to find out which channel and what kind of interrupt.

RETURNS N/A.

SEE ALSO z8530Sio
443

VxWorks Drivers API Reference, 5.5
z8530IntEx()
z8530IntEx()

NAME z8530IntEx() – handle error interrupts

SYNOPSIS void z8530IntEx

(

Z8530_CHAN * pChan

)

DESCRIPTION This routine handles miscellaneous interrupts on the SCC.

RETURNS N/A.

SEE ALSO z8530Sio

z8530IntRd()

NAME z8530IntRd() – handle a receiver interrupt

SYNOPSIS void z8530IntRd

(

Z8530_CHAN * pChan

)

DESCRIPTION This routine handles read interrupts from the SCC.

RETURNS N/A.

SEE ALSO z8530Sio
444

2: Routines
z8530IntWr()

Z

z8530IntWr()

NAME z8530IntWr() – handle a transmitter interrupt

SYNOPSIS void z8530IntWr

(

Z8530_CHAN * pChan

)

DESCRIPTION This routine handles write interrupts from the SCC.

RETURNS N/A.

SEE ALSO z8530Sio
445

VxWorks Drivers API Reference, 5.5
z8530IntWr()
446

Keyword Index
Keyword Name Page

 interface driver for 3COM 3C509. END network .. elt3c509End 42
 display statistics for 3C509 elt network interface. .. eltShow() 271

interface driver. 3Com 3C509 Ethernet network .. if_elt 77
 network interface driver for 3COM 3C509. END ... elt3c509End 42

interface driver. 3Com 3C509 Ethernet network .. if_elt 77
 network interface driver for 3COM 3C90xB XL. END.. el3c90xEnd 38

 registers for NCR 53C710. /hardware-dependent ncr710SetHwRegisterScsi2() 338
(SIOP) library (SCSI-1). NCR 53C710 SCSI I/O Processor ... ncr710Lib 151
(SIOP) library (SCSI-2). NCR 53C710 SCSI I/O Processor ... ncr710Lib2 151

 control structure for NCR 53C710 SIOP. create .. ncr710CtrlCreate() 333
 control structure for NCR 53C710 SIOP. create ncr710CtrlCreateScsi2() 334
 control structure for NCR 53C710 SIOP. initialize .. ncr710CtrlInit() 335
 control structure for NCR 53C710 SIOP. initialize ncr710CtrlInitScsi2() 336

 /registers for NCR 53C710 SIOP. .. ncr710SetHwRegister() 337
 /values of all readable NCR 53C710 SIOP registers. ... ncr710Show() 339
 /values of all readable NCR 53C710 SIOP registers. ncr710ShowScsi2() 340
(SIOP) library (SCSI-2). NCR 53C8xx PCI SCSI I/O Processor ncr810Lib 152

 control structure for NCR 53C8xx SIOP. create.. ncr810CtrlCreate() 342
 control structure for NCR 53C8xx SIOP. initialize.. ncr810CtrlInit() 343

 /registers for NCR 53C8xx SIOP. .. ncr810SetHwRegister() 344
 /values of all readable NCR 53C8xx SIOP registers. ... ncr810Show() 345
 /values of all readable SYM 53C8xx SIOP registers. ... sym895Show() 428
(ASC) library (SCSI-1). NCR 53C90 Advanced SCSI Controller ncr5390Lib1 154
(ASC) library (SCSI-2). NCR 53C90 Advanced SCSI Controller ncr5390Lib2 154

 control structure for NCR 53C90 ASC. create .. ncr5390CtrlCreate() 346
 control structure for NCR 53C90 ASC. create ncr5390CtrlCreateScsi2() 347

driver. Motorola 68EN302 network-interface ... if_mbc 92
 display statistics for SMC 8013WC elc network interface. elcShow() 269

interface driver. SMC 8013WC Ethernet network .. if_elc 76
 Siemens SAB 82532 UART tty driver. ... sab82532 192

 for handling interrupts from 82596. entry point ... eiInt() 264
447

VxWorks Drivers API Reference, 5.5

Keyword Name Page
interface/ END style Intel 82596 Ethernet network ... ei82596End 35
interface driver. Intel 82596 Ethernet network .. if_ei 66

interface driver for/ Intel 82596 Ethernet network ... if_eidve 69
interface driver for/ Intel 82596 Ethernet network ... if_eihk 73

LibraryFile. Adaptec 7880 SCSI Host Adapter aic7880Lib 5
interface driver. AMD Am7990 LANCE Ethernet network .. if_ln 85

network interface driver. AMD Am79C970 PCnet-PCI Ethernet ... if_lnPci 88
driver. END style AMD Am79C97X PCnet-PCI Ethernet ln97xEnd 110

 initialize AMBA channel. .. ambaDevInit() 234
 ARM AMBA UART tty driver. ... ambaSio 8

network interface/ END style AMD 7990 LANCE Ethernet ... ln7990End 115
network interface driver. AMD Am7990 LANCE Ethernet .. if_ln 85

Ethernet network interface/ AMD Am79C970 PCnet-PCI .. if_lnPci 88
Ethernet driver. END style AMD Am79C97X PCnet-PCI .. ln97xEnd 110

ARM AMBA UART tty driver. ... ambaSio 8
 structure for NCR 53C90 ASC. create control ... ncr5390CtrlCreate() 346
 structure for NCR 53C90 ASC. create control ncr5390CtrlCreateScsi2() 347

 53C90 Advanced SCSI Controller (ASC) library (SCSI-1). NCR ... ncr5390Lib1 154
 53C90 Advanced SCSI Controller (ASC) library (SCSI-2). NCR ... ncr5390Lib2 154

 user-specified fields in ASC structure. initialize .. ncr5390CtrlInit() 349
 low level initialization of ATA device. ... iPIIX4AtaInit() 289

 initialize ATA drive. ... ataDriveInit() 237
 initialize ATA driver. .. ataDrv() 237

and PCMCIA) disk device/ ATA/IDE and ATAPI CDROM (LOCAL ataDrv 11
 create device for ATA/IDE disk. ... ataDevCreate() 236
routine. initialize ATA/IDE disk driver show ataShowInit() 239

 show ATA/IDE disk parameters. .. ataShow() 238
disk device driver show/ ATA/IDE (LOCAL and PCMCIA) ataShow 14

disk device/ ATA/IDE and ATAPI CDROM (LOCAL and PCMCIA) ataDrv 11
 return contents of DUART auxiliary control register. .. m68681Acr() 304

 set and clear bits in DUART auxiliary control register. m68681AcrSetClr() 304
memory.. initialize B69000 chip and loads font in ctB69000VgaInit() 253

module. CHIPS B69000 initialization source ... ctB69000Vga 21
driver. shared memory backplane network interface .. if_sm 98

 set baud rate for SLIP interface. slipBaudSet() 412
 disable cards for warm boot. ... pciConfigReset() 389

 check condition on specified bus. .. pciConfigForeachFunc() 382
 configure device on PCI bus. .. pciDevConfig() 391

 Databook TCIC/2 PCMCIA host bus adaptor chip driver. .. tcic 207
 Intel 82365SL PCMCIA host bus adaptor chip library. .. pcic 173
 Intel 82365SL PCMCIA host bus adaptor chip show library. .. pcicShow 185

 Databook TCIC/2 PCMCIA host bus adaptor chip show library. ... tcicShow 207
 show routines of PCI bus (IO mapped) library. ... pciConfigShow 185

 secondary, and subordinate bus number. set primary, pciAutoBusNumberSet() 367
 perform PCI bus scan. .. aic7880GetNumOfBuses() 232

allocation facility. PCI bus scan and resource .. pciAutoConfigLib 165
device/ ATA/IDE and ATAPI CDROM (LOCAL and PCMCIA) disk ataDrv 11

format.. translate character to output word nvr4101SIUCharToTxWord() 359
CL-CD2400 MPCC serial driver. cd2400Sio 18

driver. ColdFire Serial Communications coldfireSio 19
448

Keyword Index

IX
Keyword Name Page
and addresses. initialize configuration access-method pciConfigLibInit() 384
Register. pack parameters for Configuration Address pciConfigBdfPack() 380

function. perform final configuration and enable pciAutoFuncEnable() 378
function. show configuration details about pciConfigFuncShow() 382

 get PCMCIA configuration register. .. cisConfigregGet() 243
 set PCMCIA configuration register. ... cisConfigregSet() 243

 /state of DUART output port configuration register. ... m68681Opcr() 307
 bits in DUART output port configuration register. /clear m68681OpcrSetClr() 308

 read one byte from PCI configuration space. ... pciConfigInByte() 383
 read one longword from PCI configuration space. .. pciConfigInLong() 383

 read one word from PCI configuration space. ... pciConfigInWord() 384
 write one byte to PCI configuration space. .. pciConfigOutByte() 388

 write one longword to PCI configuration space. pciConfigOutLong() 388
 write one 16-bit word to PCI configuration space. pciConfigOutWord() 389
support for PCI drivers. PCI Configuration space access ... pciConfigLib 174

headers. automatically configure all nonexcluded PCI pciAutoCfg() 368
headers;/ automatically configure all nonexcluded PCI pciAutoConfig() 376

configure device on PCI bus. pciDevConfig() 391
GPIO 0-4. configure general purpose pins sym895GPIOConfig() 423

 initialize and configure PHY devices. ... miiPhyInit() 322
copy packet to interface.. .. elcPut() 268
copy packet to interface.. .. enePut() 276
copy packet to interface. ... esmcPut() 278
copy packet to interface. ... ultraPut() 432

driver. Motorola CPM core network interface .. if_cpm 54
initialize driver. publish cpm network interface and .. cpmattach() 250

driver. Crystal Semiconductor CS8900 network interface ... if_cs 58
registers 0 thru 15. display dec 21040/21140 status ... dcCsrShow() 255
interface driver. END-style DEC 21x40 PCI Ethernet network dec21x40End 28

interface driver. DEC 21x4x Ethernet LAN network ... if_dc 61
interface driver. END style DEC 21x4x PCI Ethernet network dec21x4xEnd 24

 find first PHY connected to DEC MII port. ... dec21x40PhyFind() 257
 find nth device with given device & vendor ID. .. pciFindDevice() 393

 initialize driver and device. ... auEndLoad() 240
 packet to network interface device. output .. cpmStartOutput() 251

 initialize driver and device. ... dec21x4xEndLoad() 256
 initialize driver and device. ... dec21x40EndLoad() 257

 and initialize driver and device. /eex network interface....................................... eexattach() 260
 initialize driver and device. .. ei82596EndLoad() 261

 and initialize driver and device. /ei network interface... eiattach() 262
 and initialize driver and device. /ei network interface.. eihkattach() 263

 initialize driver and device. .. el3c90xEndLoad() 266
 and initialize driver and device. /elc network interface... elcattach() 268

 initialize driver and device. .. elt3c509Load() 269
 and initialize driver and device. publish elt interface ... eltattach() 271
 and initialize driver and device. /ene network interface eneattach() 276

 initialize driver and device. ... fei82557EndLoad() 282
 and initialize driver and device. /fn network interface ... fnattach() 285

 initialize driver and device. .. gei82543EndLoad() 286
 initialize driver and device. ... iOlicomEndLoad() 288
449

VxWorks Drivers API Reference, 5.5

Keyword Name Page
 level initialization of ATA device. low ... iPIIX4AtaInit() 289
 initialize floppy disk device. ... iPIIX4FdInit() 289
 initialize driver and device. .. ln97xEndLoad() 292
 initialize driver and device. .. ln7990EndLoad() 294

 and initialize driver and device. /network interface .. lnPciattach() 295
 initialize driver and device. .. mb86960EndLoad() 310
 initialize driver and device. .. mbcEndLoad() 316

 packet to network interface device. output.. mbcStartOutput() 319
 initialize driver and device. .. motCpmEndLoad() 327
 initialize driver and device. ... motFccEndLoad() 328
 initialize driver and device. ... motFecEndLoad() 329
 initialize driver and device. ... ne2000EndLoad() 351
 initialize driver and device. .. nicEndLoad() 351
 initialize driver and device. .. ns83902EndLoad() 356

 enable PCMCIA-ATA device. .. pccardAtaEnabler() 364
 print header of specified PCI device. ... pciHeaderShow() 394

 initialize driver and device. .. sh7615EndLoad() 407
 and initialize driver and device. /sl network interface .. slattach() 411

 initialize driver and device. .. sn83932EndLoad() 416
 and initialize driver and device. /sn network interface .. snattach() 416

 create PCMCIA memory disk device. .. sramDevCreate() 417
 create structure for SYM895 device. .. sym895CtrlCreate() 421
 ultra interface and initialize device. publish ... ultraattach() 431

 initialize driver and device. .. ultraLoad() 431
 initialize END packet device. .. wdbEndPktDevInit() 439
 initialize pipe packet device. ... wdbPipePktDevInit() 440

system. initialize device and mount DOS file pccardMkfs() 365
status bits. quiesce PCI device and reset all writeable pciAutoDevReset() 377

 find device by 24-bit class code. pciFindClassShow() 393
information. find device by deviceId, then print pciFindDeviceShow() 394

 find nth occurrence of device by PCI class code. .. pciFindClass() 392
 CDROM (LOCAL and PCMCIA) diskdevice driver. /and ATAPI ... ataDrv 11

 NEC 765 floppy disk device driver. ... nec765Fd 157
 PCMCIA SRAM device driver. .. sramDrv 201

 parallel chip device driver for IBM-PC LPT. ... lptDrv 118
 initialize TSFS device driver for WDB agent. wdbTsfsDrv() 441

 /(LOCAL and PCMCIA) disk device driver show routine. .. ataShow 14
 create device for ATA/IDE disk. ataDevCreate() 236
 create device for floppy disk. .. fdDevCreate() 280
 create device for LPT port. ... lptDevCreate() 297

 initialize NETROM packet device for WDB agent. wdbNetromPktDevInit() 439
 initialize SLIP packet device for WDB agent. wdbSlipPktDevInit() 440

 give device interrupt level to use. iPIIX4GetIntr() 290
probe list. find next device of specific type from pciAutoGetNextClass() 379

 configure device on PCI bus. .. pciDevConfig() 391
 display device status. .. auDump() 239

vendor ID. find nth device with given device & pciFindDevice() 393
 initialize and configure PHY devices. .. miiPhyInit() 322
 print information about PCI devices. .. pciDeviceShow() 392

 create device for ATA/IDE disk. .. ataDevCreate() 236
450

Keyword Index

IX
Keyword Name Page
 create device for floppy disk. ... fdDevCreate() 280
 initialize floppy disk device. ... iPIIX4FdInit() 289

 create PCMCIA memory disk device. .. sramDevCreate() 417
 ATAPI CDROM (LOCAL and PCMCIA)disk device driver. /and.. ataDrv 11

 NEC 765 floppy disk device driver. ... nec765Fd 157
 ATA/IDE (LOCAL and PCMCIA) disk device driver show/ .. ataShow 14

 initialize floppy disk driver. .. fdDrv() 281
 initialize ATA/IDE disk driver show routine. ... ataShowInit() 239

 show ATA/IDE disk parameters. ... ataShow() 238
transfers. enable double speed SCSI data aic7880EnableFast20() 232

driver. Nat. Semi DP83932B SONIC Ethernet ... sn83932End 199
 National Semiconductor DP83932B SONIC Ethernet/ .. if_sn 99

 Ethernet network interface driver. SMC Elite Ultra ... if_ultra 102
 PCMCIA network interface driver. /style Intel Olicom .. iOlicomEnd 103

 Am79C97X PCnet-PCI Ethernet driver. END style AMD.. ln97xEnd 110
 Ethernet network interface driver. /style AMD 7990 LANCE ln7990End 115

 Motorola MC68302 bimodal tty driver. ... m68302Sio 119
 (LOCAL and PCMCIA) disk devicedriver. /and ATAPI CDROM ... ataDrv 11

 Motorola MC68332 tty driver. ... m68332Sio 120
 MC68360 SCC UART serial driver. Motorola... m68360Sio 120

 MC68562 DUSCC serial driver. ... m68562Sio 121
 M68681 serial communications driver. ... m68681Sio 121

 MC68901 MFP tty driver. ... m68901Sio 124
 MB 86940 UART tty driver. ... mb86940Sio 124

 Ethernet network interface driver. /Fujitsu MB86960 ... mb86960End 125
 END network interface driver. Motorola 68302fads .. mbcEnd 127

 network interface driver. /MC68EN360/MPC800................................... motCpmEnd 132
 FCC Ethernet network interface driver. END style Motorola... motFccEnd 135
 FEC Ethernet network interface driver. END style Motorola... motFecEnd 143

 END style Au MAC Ethernet driver. ... auEnd 14
 NE2000 END network interface driver. ... ne2000End 155

 NEC 765 floppy disk device driver. .. nec765Fd 157
 ST-NIC Chip network interface driver. /Semiconductor .. nicEvbEnd 157

 NS 16550 UART tty driver. .. ns16550Sio 159
 NEC VR4101 DSIU UART tty driver. .. nvr4101DSIUSio 161

 NEC VR4101 SIU UART tty driver. ... nvr4101SIUSio 162
 NEC VR4102 DSIU UART tty driver. .. nvr4102DSIUSio 162

 ppc403GA serial driver. .. ppc403Sio 188
 MPC555 SCI serial driver. .. ppc555SciSio 188

 MPC800 SMC UART serial driver. Motorola.. ppc860Sio 189
 CL-CD2400 MPCC serial driver. .. cd2400Sio 18

 Semiconductor SA-1100 UART tty driver. Digital ... sa1100Sio 190
 Siemens SAB 82532 UART tty driver. .. sab82532 192

 END network interface driver. sh7615End.. sh7615End 193
 Communications Interface) driver. /SH SCIF (Serial ... shScifSio 195
 Communications Interface) driver. /SH SCI (Serial.. shSciSio 195

 memory network (backplane) driver. /interface to shared... smNetLib 198
 Semi DP83932B SONIC Ethernet driver. Nat. ... sn83932End 199
 ColdFire Serial Communications driver. ... coldfireSio 19

 PCMCIA SRAM device driver. ... sramDrv 201
451

VxWorks Drivers API Reference, 5.5

Keyword Name Page
 ST 16C552 DUART tty driver. .. st16552Sio 202
 PCMCIA host bus adaptor chip driver. Databook TCIC/2... tcic 207

 Elite END network interface driver. SMC Ultra.. ultraEnd 208
 interface for ULIP driver. WDB communication wdbUlipPktDrv 219

 Communications Controller driver. Z8530 SCC Serial .. z8530Sio 221
 initialize ATA driver. ... ataDrv() 237

 PCI Ethernet network interface driver. END style DEC 21x4x dec21x4xEnd 24
 interface and initialize driver. publish cpm network... cpmattach() 250
 interface and initialize driver. publish cs network.. csAttach() 252
 interface and initialize driver. publish esmc network esmcattach() 277

 initialize floppy disk driver. .. fdDrv() 281
 PCI Ethernet network interface driver. END-style DEC 21x40...................................... dec21x40End 28

 initialize LPT driver. ... lptDrv() 297
 interface and initialize driver. publish mbc network... mbcattach() 315

 nicEvb network interface driver. /and initialize .. nicEvbattach() 352
 Ethernet network interface driver. END style Intel 82596 ... ei82596End 35

 enable PCMCIA-SRAM driver. ... pccardSramEnabler() 366
 enable PCMCIA-TFFS driver. .. pccardTffsEnabler() 366

 install PCMCIA SRAM memory driver. ... sramDrv() 417
 Ethernet network interface driver. END style Intel 82557 .. fei82557End 47

 network adapter END driver. /PRO/1000 F/T/XF/XT/MT......................... gei82543End 50
 I8250 serial driver. .. i8250Sio 54

 CPM core network interface driver. Motorola ... if_cpm 54
 CS8900 network interface driver. Crystal Semiconductor ... if_cs 58

 Ethernet LAN network interface driver. DEC 21x4x .. if_dc 61
 16 network interface driver. Intel EtherExpress ... if_eex 65

 Ethernet network interface driver. Intel 82596.. if_ei 66
 Ethernet network interface driver. SMC 8013WC .. if_elc 76
 Ethernet network interface driver. 3Com 3C509 .. if_elt 77
 NE2000 network interface driver. Novell/Eagle ... if_ene 78

 Ethernet network interface driver. /Ethernet2 SMC-91c9x .. if_esmc 80
 Ethernet network interface driver. Intel 82557.. if_fei 81
 Ethernet network interface driver. Fujitsu MB86960 NICE ... if_fn 83
 Ethernet network interface driver. AMD Am7990 LANCE... if_ln 85
 Ethernet network interface driver. /Am79C970 PCnet-PCI ... if_lnPci 88

 ARM AMBA UART tty driver. ... ambaSio 8
 loopback network interface driver. software .. if_loop 92
 68EN302 network-interface driver. Motorola ... if_mbc 92

 ST-NIC Chip network interface driver. /Semiconductor.. if_nicEvb 95
 IP (SLIP) network interface driver. Serial Line.. if_sl 96

 backplane network interface driver. shared memory... if_sm 98
 SONIC Ethernet network driver. /DP83932B ... if_sn 99

 initialize driver and device. ... auEndLoad() 240
 initialize driver and device. .. dec21x4xEndLoad() 256
 initialize driver and device. .. dec21x40EndLoad() 257

 interface and initialize driver and device. /network.. eexattach() 260
 initialize driver and device. .. ei82596EndLoad() 261

 interface and initialize driver and device. /ei network... eiattach() 262
 interface and initialize driver and device. /ei network.................................... eihkattach() 263

 initialize driver and device. ... el3c90xEndLoad() 266
452

Keyword Index

IX
Keyword Name Page
 interface and initialize driver and device. /network ... elcattach() 268
 initialize driver and device. ... elt3c509Load() 269

 elt interface and initialize driver and device. publish ... eltattach() 271
 interface and initialize driver and device. /network .. eneattach() 276

 initialize driver and device. .. fei82557EndLoad() 282
 interface and initialize driver and device. /fn network.. fnattach() 285

 initialize driver and device. ... gei82543EndLoad() 286
 initialize driver and device. .. iOlicomEndLoad() 288
 initialize driver and device. ... ln97xEndLoad() 292
 initialize driver and device. ... ln7990EndLoad() 294

 interface and initialize driver and device. /network lnPciattach() 295
 initialize driver and device. .. mb86960EndLoad() 310
 initialize driver and device. ... mbcEndLoad() 316
 initialize driver and device. .. motCpmEndLoad() 327
 initialize driver and device. .. motFccEndLoad() 328
 initialize driver and device. ... motFecEndLoad() 329
 initialize driver and device. .. ne2000EndLoad() 351
 initialize driver and device. ... nicEndLoad() 351
 initialize driver and device. .. ns83902EndLoad() 356
 initialize driver and device. .. sh7615EndLoad() 407

 interface and initialize driver and device. /sl network ... slattach() 411
 initialize driver and device. .. sn83932EndLoad() 416

 interface and initialize driver and device. /sn network snattach() 416
 initialize driver and device. ... ultraLoad() 431

 /interface and initialize driver and pseudo-device. ... loattach() 296
 END network interface driver for 3COM 3C509. .. elt3c509End 42
 END network interface driver for 3COM 3C90xB XL. .. el3c90xEnd 38

 Ethernet network interface driver for DVE-SH7XXX. /82596 ... if_eidve 69
 Ethernet network interface driver for hkv3500. /82596 .. if_eihk 73
evaluation. NS16550 serial driver for IBM PPC403GA evbNs16550Sio 45

 parallel chip device driver for IBM-PC LPT. .. lptDrv 118
 END based packet driver for lightweight UDP/IP. wdbEndPktDrv 212

 pipe packet driver for lightweight UDP/IP. wdbPipePktDrv 213
Controller.. SCSI-2 driver for Symbios SYM895 SCSI sym895Lib 204
 NETROM packet driver for WDB agent. wdbNetromPktDrv 213

 virtual generic file I/O driver for WDB agent. .. wdbTsfsDrv 216
 virtual tty I/O driver for WDB agent. ... wdbVioDrv 220

 initialize TSFS device driver for WDB agent. .. wdbTsfsDrv() 441
 initialize tty driver for WDB agent. ... wdbVioDrv() 442

 install driver function table. ... mb86940DevInit() 310
 (LOCAL and PCMCIA) disk devicedriver show routine. ATA/IDE ... ataShow 14

 initialize ATA/IDE disk driver show routine. ... ataShowInit() 239
 shared memory network driver show routines. .. smNetShow 199

 interface and initialize driver structures. /ln network ... lnattach() 294
 space access support for PCI drivers. PCI Configuration .. pciConfigLib 174

 all show routines for PCMCIA drivers. initialize.. pcmciaShowInit() 399
 support library for END-based drivers. ... endLib 45

register. return contents of DUART auxiliary control .. m68681Acr() 304
 set and clear bits in DUART auxiliary control/ m68681AcrSetClr() 304

 return current contents of DUART interrupt-mask register. m68681Imr() 306
453

VxWorks Drivers API Reference, 5.5

Keyword Name Page
 set and clear bits in DUART interrupt-mask register. m68681ImrSetClr() 306
vector. handle all DUART interrupts in one .. m68681Int() 307

configuration/ return state of DUART output port ... m68681Opcr() 307
 set and clear bits in DUART output port/ m68681OpcrSetClr() 308

 return current state of DUART output port register. m68681Opr() 308
 set and clear bits in DUART output port register. m68681OprSetClr() 309

 ST 16C552 DUART tty driver. ... st16552Sio 202
initialize driver and/ publish eex network interface and ... eexattach() 260
initialize driver and/ publish ei network interface and ... eiattach() 262
initialize driver and/ publish ei network interface and .. eihkattach() 263
 /statistics for SMC 8013WC elc network interface. ... elcShow() 269

initialize driver and/ publish elc network interface and ... elcattach() 268
driver. SMC Ultra Elite END network interface .. ultraEnd 208

interface driver. SMC Elite Ultra Ethernet network .. if_ultra 102
driver and device. publish elt interface and initialize .. eltattach() 271

 display statistics for 3C509 elt network interface. .. eltShow() 271
lightweight UDP/IP. END based packet driver for wdbEndPktDrv 212

 F/T/XF/XT/MT network adapter END driver. Intel PRO/1000 .. gei82543End 50
 Motorola 68302fads END network interface driver. .. mbcEnd 127

 NE2000 END network interface driver. ne2000End 155
 sh7615End END network interface driver. sh7615End 193

 SMC Ultra Elite END network interface driver. ... ultraEnd 208
for 3COM 3C509. END network interface driver elt3c509End 42

for 3COM 3C90xB XL. END network interface driver el3c90xEnd 38
 initialize END packet device. wdbEndPktDevInit() 439

Ethernet network interface/ END style AMD 7990 LANCE .. ln7990End 115
PCnet-PCI Ethernet driver. END style AMD Am79C97X ... ln97xEnd 110

driver. END style Au MAC Ethernet ... auEnd 14
Ethernet network interface/ END style DEC 21x4x PCI .. dec21x4xEnd 24

network interface driver. END style Intel 82557 Ethernet fei82557End 47
network interface driver. END style Intel 82596 Ethernet ei82596End 35
network interface driver. END style Intel Olicom PCMCIA iOlicomEnd 103

Ethernet network interface/ END style Motorola FCC .. motFccEnd 135
Ethernet network interface/ END style Motorola FEC ... motFecEnd 143

MC68EN360/MPC800 network/ END style Motorola .. motCpmEnd 132
 display statistics for NE2000 ene network interface. .. eneShow() 277
initialize driver and/ publish ene network interface and ... eneattach() 276

 change MIB-II error count. .. mib2ErrorAdd() 320
 handle receiver/transmitter error interrupt. .. m68562RxTxErrInt() 303

 handle channel’s error interrupt. .. shScifIntErr() 408
 handle channel’s error interrupt. .. shSciIntErr() 410

 handle error interrupts. .. ppc403IntEx() 401
 handle error interrupts. .. z8530IntEx() 444

interface driver. Intel EtherExpress 16 network ... if_eex 65
 form Ethernet address into packet. endEtherAddressForm() 272

 style AMD Am79C97X PCnet-PCI Ethernet driver. END... ln97xEnd 110
 END style Au MAC Ethernet driver. ... auEnd 14

 Nat. Semi DP83932B SONIC Ethernet driver. ... sn83932End 199
driver. DEC 21x4x Ethernet LAN network interface .. if_dc 61

 /Semiconductor DP83932B SONIC Ethernet network driver. .. if_sn 99
454

Keyword Index

IX
Keyword Name Page
driver. SMC Elite Ultra Ethernet network interface ... if_ultra 102
 END style AMD 7990 LANCE Ethernet network interface/ ... ln7990End 115

 END-style Fujitsu MB86960 Ethernet network interface/ mb86960End 125
 END style Motorola FCC Ethernet network interface/ .. motFccEnd 135
 END style Motorola FEC Ethernet network interface/ .. motFecEnd 143

 END style DEC 21x4x PCI Ethernet network interface/ dec21x4xEnd 24
 END-style DEC 21x40 PCI Ethernet network interface/ dec21x40End 28

driver. END style Intel 82596 Ethernet network interface .. ei82596End 35
driver. END style Intel 82557 Ethernet network interface .. fei82557End 47

driver. Intel 82596 Ethernet network interface .. if_ei 66
driver. SMC 8013WC Ethernet network interface ... if_elc 76

driver. 3Com 3C509 Ethernet network interface ... if_elt 77
 Ampro Ethernet2 SMC-91c9x Ethernet network interface/ ... if_esmc 80

driver. Intel 82557 Ethernet network interface ... if_fei 81
driver. Fujitsu MB86960 NICE Ethernet network interface .. if_fn 83
driver. AMD Am7990 LANCE Ethernet network interface .. if_ln 85

 AMD Am79C970 PCnet-PCI Ethernet network interface/ .. if_lnPci 88
driver for/ Intel 82596 Ethernet network interface .. if_eidve 69
driver for/ Intel 82596 Ethernet network interface ... if_eihk 73

 7880 SCSI Host Adapter Library File. Adaptec .. aic7880Lib 5
 virtual generic file I/O driver for WDB agent. wdbTsfsDrv 216

 device and mount DOS file system. initialize ... pccardMkfs() 365
 mount DOS file system. .. pccardMount() 365

initialize driver and/ publish fn network interface and .. fnattach() 285
 character to output word format.. translate nvr4101SIUCharToTxWord() 359

free tuples from linked list. .. cisFree() 244
network interface/ END-style Fujitsu MB86960 Ethernet ... mb86960End 125

network interface driver. Fujitsu MB86960 NICE Ethernet ... if_fn 83
Controller (SPC) library. Fujitsu MB87030 SCSI Protocol mb87030Lib 126

895 Chip. hardware initialization for sym895HwInit() 425
 show CIS information. .. cisShow() 245

 device by deviceId, then print information. find .. pciFindDeviceShow() 394
 print information about PCI devices. pciDeviceShow() 392

memory network. show information about shared ... smNetShow() 415
CIS. get information from PC card’s .. cisGet() 244

 hardware initialization for 895 Chip. sym895HwInit() 425
 low level initialization of ATA device. iPIIX4AtaInit() 289

SIU.. initialization of NVR4101SIU nvr4101SIUDevInit() 359
 super IO (fdc37b78x) initialization source module. smcFdc37b78x 196

 VGA 3+ mode initialization source module. .. vgaInit 210
 CHIPS B69000 initialization source module. ctB69000Vga 21

 parse initialization string. ... auInitParse() 240
 parse initialization string. .. el3c90xInitParse() 266
 parse initialization string. .. ln97xInitParse() 292
 parse initialization string. ... mb86960InitParse() 311
 parse initialization string. ... nicEvbInitParse() 352

adaptor chip library. Intel 82365SL PCMCIA host bus .. pcic 173
adaptor chip show library. Intel 82365SL PCMCIA host bus pcicShow 185
interface driver. END style Intel 82557 Ethernet network fei82557End 47

interface driver. Intel 82557 Ethernet network .. if_fei 81
455

VxWorks Drivers API Reference, 5.5

Keyword Name Page
interface driver. END style Intel 82596 Ethernet network .. ei82596End 35
interface driver. Intel 82596 Ethernet network ... if_ei 66

interface driver for/ Intel 82596 Ethernet network .. if_eidve 69
interface driver for hkv3500. Intel 82596 Ethernet network .. if_eihk 73

interface driver. Intel EtherExpress 16 network .. if_eex 65
interface driver. END style Intel Olicom PCMCIA network iOlicomEnd 103

network adapter END driver. Intel PRO/1000 F/T/XF/XT/MT gei82543End 50
 handle receiver interrupt. ... ambaIntRx() 235

 handle transmitter interrupt. ... ambaIntTx() 235
 handle receiver/transmitter interrupt. ... i8250Int() 287

 handle SCC interrupt. .. m68332Int() 300
 handle SCC interrupt. .. m68360Int() 301

 handle receiver interrupt. ... m68562RxInt() 302
 receiver/transmitter error interrupt. handle ... m68562RxTxErrInt() 303

 handle transmitter interrupt. .. m68562TxInt() 303
 handle receiver interrupt. .. n72001IntRd() 332

 handle transmitter interrupt. .. n72001IntWr() 332
 handle receiver interrupt. .. ns16550IntRd() 355

 handle transmitter interrupt. .. ns16550IntWr() 355
 handler for shared PCI interrupt. interrupt .. pciInt() 395

 interrupt handler to PCI interrupt. connect.. pciIntConnect() 395
 interrupt handler from PCI interrupt. disconnect pciIntDisconnect2() 396

 handle receiver interrupt. .. ppc403IntRd() 401
 handle transmitter interrupt. .. ppc403IntWr() 402

 handle channel’s interrupt. .. ppc555SciInt() 403
 handle SMC interrupt. ... ppc860Int() 404

 handle interrupt. .. sa1100Int() 405
 handle channel’s error interrupt. ... shScifIntErr() 408

 channel’s receive-character interrupt. handle .. shScifIntRcv() 409
 channel’s transmitter-ready interrupt. handle .. shScifIntTx() 409

 handle channel’s error interrupt. ... shSciIntErr() 410
 channel’s receive-character interrupt. handle ... shSciIntRcv() 410

 channel’s transmitter-ready interrupt. handle ... shSciIntTx() 411
 handle receiver interrupt. ... st16552IntRd() 420

 handle transmitter interrupt. .. st16552IntWr() 420
 handle receiver interrupt. ... z8530IntRd() 444

 handle transmitter interrupt. ... z8530IntWr() 445
 handle receiver/transmitter interrupt for NS 16550 chip. evbNs16550Int() 279

 network interface interrupt handler. ... mbcIntr() 317
PCI interrupt. interrupt handler for shared .. pciInt() 395

interrupt. disconnect interrupt handler from PCI pciIntDisconnect2() 396
 disconnect interrupt handler (obsolete). pciIntDisconnect() 396

interrupt. connect interrupt handler to PCI pciIntConnect() 395
interrupt level processing. .. n72001Int() 331
interrupt level processing. ... ns16550Int() 354
interrupt level processing. nvr4101DSIUInt() 357
interrupt level processing. nvr4101SIUInt() 360
interrupt level processing. nvr4102DSIUInt() 362
interrupt level processing. ... sab82532Int() 406
interrupt level processing. .. st16552Int() 419
456

Keyword Index

IX
Keyword Name Page
 multiplexed interrupt level processing. st16552MuxInt() 421
 give device interrupt level to use. .. iPIIX4GetIntr() 290

 set and clear bits in UART’s interrupt mask register. coldfireImrSetClr() 248
contents. return current interrupt mask register ... coldfireImr() 247

 miscellaneous interrupt processing. .. ns16550IntEx() 354
 miscellaneous interrupt processing. ... st16552IntEx() 419

interrupts. interrupt service for card iOlicomIntHandle() 288
SCSI Controller. interrupt service routine for sym895Intr() 425

 PCI Shared Interrupt support. ... pciIntLib 186
 handle special status interrupts. .. cd2400Int() 242

 handle receiver interrupts. ... cd2400IntRx() 242
 handle transmitter interrupts. .. cd2400IntTx() 243

 interrupt service for card interrupts. .. iOlicomIntHandle() 288
 handle error interrupts. ... ppc403IntEx() 401
 handle error interrupts. .. z8530IntEx() 444

 entry point for handling interrupts from 82596. .. eiInt() 264
 mask interrupts from DSIU.. nvr4101DSIUIntMask() 358

 unmask interrupts from DSIU.. nvr4101DSIUIntUnmask() 358
 mask interrupts from DSIU.. nvr4102DSIUIntMask() 362

 unmask interrupts from DSIU.. nvr4102DSIUIntUnmask() 363
 mask interrupts from SIU.. nvr4101SIUIntMask() 360

 unmask interrupts from SIU.. nvr4101SIUIntUnmask() 361
 handle all interrupts in one vector. ... coldfireInt() 248

 handle all DUART interrupts in one vector. ... m68681Int() 307
 handle all interrupts in one vector. ... z8530Int() 443

 do raw I/O access. .. ataRawio() 238
 provide raw I/O access. ... fdRawio() 281

 IO port addresses for super I/O chip. set correct smcFdc37b78xDevCreate() 414
 initialize Super I/O chip Library. ... smcFdc37b78xInit() 414

 virtual generic file I/O driver for WDB agent. .. wdbTsfsDrv 216
 virtual tty I/O driver for WDB agent. ... wdbVioDrv 220

(SCSI-1). NCR 53C710 SCSI I/O Processor (SIOP) library .. ncr710Lib 151
(SCSI-2). NCR 53C710 SCSI I/O Processor (SIOP) library .. ncr710Lib2 151

(SCSI-2). NCR 53C8xx PCI SCSI I/O Processor (SIOP) library .. ncr810Lib 152
interface/ END style AMD 7990 LANCE Ethernet network ... ln7990End 115

interface driver. AMD Am7990 LANCE Ethernet network .. if_ln 85
 free tuples from linked list. ... cisFree() 244

 extended capability in ECP linked list. find.. pciConfigExtCapFind() 381
 free tuples from linked list. ... cisFree() 244

 of specific type from probe list. find next device pciAutoGetNextClass() 379
 capability in ECP linked list. find extended....................................... pciConfigExtCapFind() 381
initialize driver/ publish ln network interface and .. lnattach() 294

initialize driver and/ publish lo network interface and .. loattach() 296
chip. this routine performs loopback diagnostics on 895 sym895Loopback() 426

driver. software loopback network interface .. if_loop 92
 chip device driver for IBM-PC LPT. parallel .. lptDrv 118

 initialize LPT driver. ... lptDrv() 297
 create device for LPT port. ... lptDevCreate() 297

 show LPT statistics. .. lptShow() 298
mask interrupts from DSIU.. nvr4101DSIUIntMask() 358
457

VxWorks Drivers API Reference, 5.5

Keyword Name Page
mask interrupts from DSIU.. nvr4102DSIUIntMask() 362
mask interrupts from SIU.. nvr4101SIUIntMask() 360

 clear bits in UART’s interrupt mask register. set and coldfireImrSetClr() 248
 return current interrupt mask register contents. .. coldfireImr() 247

interface/ END-style Fujitsu MB86960 Ethernet network ... mb86960End 125
interface driver. Fujitsu MB86960 NICE Ethernet network .. if_fn 83

Controller (SPC)/ Fujitsu MB87030 SCSI Protocol ... mb87030Lib 126
 create control structure for MB87030 SPC. .. mb87030CtrlCreate() 312

 control structure for MB87030 SPC. initialize mb87030CtrlInit() 313
 display values of all readable MB87030 SPC registers. ... mb87030Show() 314

 Motorola MC68302 bimodal tty driver. .. m68302Sio 119
 Motorola MC68332 tty driver. ... m68332Sio 120

driver. Motorola MC68360 SCC UART serial .. m68360Sio 120
MC68562 DUSCC serial driver. m68562Sio 121
MC68901 MFP tty driver. .. m68901Sio 124

 B69000 chip and loads font in memory.. initialize .. ctB69000VgaInit() 253
 VGA chip and loads font in memory. initialize .. vgaInit() 433

interface driver. shared memory backplane network .. if_sm 98
 create PCMCIA memory disk device. ... sramDevCreate() 417

 install PCMCIA SRAM memory driver. ... sramDrv() 417
 initialize memory for chip. .. mb86960MemInit() 311
 initialize memory for chip. .. mbcMemInit() 317

 show information about shared memory network. .. smNetShow() 415
 VxWorks interface to shared memory network (backplane)/ smNetLib 198

routines. shared memory network driver show smNetShow 199
address space. map PCMCIA memory onto specified ISA ... sramMap() 418

 generate special cycle with message. ... pciSpecialCycle() 397
 MC68901 MFP tty driver. ... m68901Sio 124

 change MIB-II error count. ... mib2ErrorAdd() 320
 initialize MIB-II structure. ... mib2Init() 320
 initialize MII library. ... miiLibInit() 321

 uninitialize MII library. .. miiLibUnInit() 322
 show routine for MII library. .. miiShow() 327

handler. set pointer to MII optional registers miiPhyOptFuncSet() 325
handlers. set pointers to MII optional registers miiPhyOptFuncMultiSet() 325

 first PHY connected to DEC MII port. find ... dec21x40PhyFind() 257
 get contents of MII registers. ... miiRegsGet() 326

interface driver. Motorola 68302fads END network mbcEnd 127
network-interface driver. Motorola 68EN302 .. if_mbc 92

interface driver. Motorola CPM core network ... if_cpm 54
interface driver. END style Motorola FCC Ethernet network motFccEnd 135
interface driver. END style Motorola FEC Ethernet network motFecEnd 143

driver. Motorola MC68302 bimodal tty m68302Sio 119
Motorola MC68332 tty driver. .. m68332Sio 120

serial driver. Motorola MC68360 SCC UART m68360Sio 120
network interface/ END style Motorola MC68EN360/MPC800 motCpmEnd 132

serial driver. Motorola MPC800 SMC UART ppc860Sio 189
 initialize device and mount DOS file system. .. pccardMkfs() 365

mount DOS file system. .. pccardMount() 365
MPC555 SCI serial driver. ... ppc555SciSio 188
458

Keyword Index

IX
Keyword Name Page
 Motorola MPC800 SMC UART serial driver. ppc860Sio 189
 CL-CD2400 MPCC serial driver. ... cd2400Sio 18

Ethernet driver. Nat. Semi DP83932B SONIC ... sn83932End 199
 /registers for NCR 53C710. ncr710SetHwRegisterScsi2() 338

(SIOP) library (SCSI-1). NCR 53C710 SCSI I/O Processor ncr710Lib 151
(SIOP) library (SCSI-2). NCR 53C710 SCSI I/O Processor ncr710Lib2 151

 create control structure for NCR 53C710 SIOP. ... ncr710CtrlCreate() 333
 create control structure for NCR 53C710 SIOP. ncr710CtrlCreateScsi2() 334

 control structure for NCR 53C710 SIOP. initialize ncr710CtrlInit() 335
 control structure for NCR 53C710 SIOP. initialize ncr710CtrlInitScsi2() 336

 /registers for NCR 53C710 SIOP. ncr710SetHwRegister() 337
 display values of all readable NCR 53C710 SIOP registers. ncr710Show() 339
 display values of all readable NCR 53C710 SIOP registers. ncr710ShowScsi2() 340

Processor (SIOP) library/ NCR 53C8xx PCI SCSI I/O ... ncr810Lib 152
 create control structure for NCR 53C8xx SIOP. .. ncr810CtrlCreate() 342

 control structure for NCR 53C8xx SIOP. initialize ncr810CtrlInit() 343
 /registers for NCR 53C8xx SIOP. ncr810SetHwRegister() 344

 display values of all readable NCR 53C8xx SIOP registers. ncr810Show() 345
Controller (ASC) library/ NCR 53C90 Advanced SCSI ... ncr5390Lib1 154
Controller (ASC) library/ NCR 53C90 Advanced SCSI ... ncr5390Lib2 154

 create control structure for NCR 53C90 ASC. ... ncr5390CtrlCreate() 346
 create control structure for NCR 53C90 ASC. ncr5390CtrlCreateScsi2() 347

driver. NE2000 END network interface ne2000End 155
 display statistics for NE2000 ene network interface. eneShow() 277
driver. Novell/Eagle NE2000 network interface ... if_ene 78

driver. NEC 765 floppy disk device .. nec765Fd 157
(MultiprotocolSerial/ NEC PD72001 MPSC .. n72001Sio 150

driver. NEC VR4101 DSIU UART tty nvr4101DSIUSio 161
driver. NEC VR4101 SIU UART tty nvr4101SIUSio 162
driver. NEC VR4102 DSIU UART tty nvr4102DSIUSio 162

agent. initialize NETROM packet device for WDB wdbNetromPktDevInit() 439
agent. NETROM packet driver for WDB wdbNetromPktDrv 213

 about shared memory network. show information smNetShow() 415
 Intel PRO/1000 F/T/XF/XT/MT network adapter END driver. gei82543End 50

 /interface to shared memory network (backplane) driver. .. smNetLib 198
 DP83932B SONIC Ethernet network driver. /Semiconductor .. if_sn 99

 shared memory network driver show routines. smNetShow 199
 shows statistics for cs network interface. ... csShow() 253

 publish dc network interface.. ... dcattach() 254
 statistics for SMC 8013WC elc network interface. display ... elcShow() 269

 statistics for 3C509 elt network interface. display .. eltShow() 271
 statistics for NE2000 ene network interface. display .. eneShow() 277

 display statistics for esmc network interface. ... esmcShow() 278
 publish fei network interface. ... feiattach() 284

 display statistics for ultra network interface. .. ultraShow() 432
initialize/ publish cpm network interface and ... cpmattach() 250

initialize driver. publish cs network interface and .. csAttach() 252
initialize/ publish esmc network interface and .. esmcattach() 277
initialize/ publish mbc network interface and ... mbcattach() 315

initialize driver/ publish eex network interface and ... eexattach() 260
459

VxWorks Drivers API Reference, 5.5

Keyword Name Page
initialize driver/ publish ei network interface and ... eiattach() 262
initialize driver/ publish ei network interface and .. eihkattach() 263

initialize driver/ publish elc network interface and ... elcattach() 268
initialize driver/ publish ene network interface and .. eneattach() 276

initialize driver/ publish fn network interface and .. fnattach() 285
initialize/ publish lnPci network interface and ... lnPciattach() 295

initialize driver/ publish sl network interface and ... slattach() 411
initialize driver/ publish sn network interface and .. snattach() 416
initialize driver/ publish lo network interface and ... loattach() 296
initialize driver/ publish ln network interface and ... lnattach() 294

 output packet to network interface device. cpmStartOutput() 251
 output packet to network interface device. mbcStartOutput() 319

 SMC Elite Ultra Ethernet network interface driver. .. if_ultra 102
 END style Intel Olicom PCMCIA network interface driver. .. iOlicomEnd 103

 style AMD 7990 LANCE Ethernet network interface driver. END... ln7990End 115
 /Fujitsu MB86960 Ethernet network interface driver. ... mb86960End 125

 Motorola 68302fads END network interface driver. ... mbcEnd 127
 /Motorola MC68EN360/MPC800 network interface driver. ... motCpmEnd 132

 style Motorola FCC Ethernet network interface driver. END.. motFccEnd 135
 style Motorola FEC Ethernet network interface driver. END....................................... motFecEnd 143

 NE2000 END network interface driver. .. ne2000End 155
 /Semiconductor ST-NIC Chip network interface driver. .. nicEvbEnd 157

 sh7615End END network interface driver. .. sh7615End 193
 SMC Ultra Elite END network interface driver. .. ultraEnd 208

 style DEC 21x4x PCI Ethernet network interface driver. END.................................... dec21x4xEnd 24
 /DEC 21x40 PCI Ethernet network interface driver. .. dec21x40End 28

 publish and initialize nicEvb network interface driver. ... nicEvbattach() 352
 END style Intel 82596 Ethernet network interface driver. ... ei82596End 35
 END style Intel 82557 Ethernet network interface driver. .. fei82557End 47

 Motorola CPM core network interface driver. ... if_cpm 54
 Crystal Semiconductor CS8900 network interface driver. ... if_cs 58

 DEC 21x4x Ethernet LAN network interface driver. ... if_dc 61
 Intel EtherExpress 16 network interface driver. ... if_eex 65

 Intel 82596 Ethernet network interface driver. .. if_ei 66
 SMC 8013WC Ethernet network interface driver. .. if_elc 76

 3Com 3C509 Ethernet network interface driver. .. if_elt 77
 Novell/Eagle NE2000 network interface driver. ... if_ene 78

 /Ethernet2 SMC-91c9x Ethernet network interface driver. .. if_esmc 80
 Intel 82557 Ethernet network interface driver. .. if_fei 81

 Fujitsu MB86960 NICE Ethernet network interface driver. ... if_fn 83
 AMD Am7990 LANCE Ethernet network interface driver. ... if_ln 85
 Am79C970 PCnet-PCI Ethernet network interface driver. AMD .. if_lnPci 88

 software loopback network interface driver. ... if_loop 92
 /Semiconductor ST-NIC Chip network interface driver. .. if_nicEvb 95

 Serial Line IP (SLIP) network interface driver. .. if_sl 96
 shared memory backplane network interface driver. .. if_sm 98

3COM 3C509. END network interface driver for ... elt3c509End 42
3COM 3C90xB XL. END network interface driver for .. el3c90xEnd 38

 Intel 82596 Ethernet network interface driver for/ .. if_eidve 69
hkv3500. Intel 82596 Ethernet network interface driver for .. if_eihk 73
460

Keyword Index

IX
Keyword Name Page
handler. network interface interrupt .. mbcIntr() 317
 prints current value of NIC registers. .. ns83902RegShow() 356

interface/ Fujitsu MB86960 NICE Ethernet network .. if_fn 83
interface driver. Novell/Eagle NE2000 network .. if_ene 78
 initialization of NVR4101SIU SIU.. .. nvr4101SIUDevInit() 359

 read all PHY registers out. ... dec21145SPIReadBack() 258
 form Ethernet address into packet. ... endEtherAddressForm() 272

 locate addresses in packet. ... endEtherPacketAddrGet() 273
 return beginning of packet data. ... endEtherPacketDataGet() 273

 initialize END packet device. .. wdbEndPktDevInit() 439
 initialize pipe packet device. ... wdbPipePktDevInit() 440

 initialize NETROM packet device for WDB agent. wdbNetromPktDevInit() 439
 initialize SLIP packet device for WDB agent. wdbSlipPktDevInit() 440

UDP/IP. END based packet driver for lightweight wdbEndPktDrv 212
UDP/IP. pipe packet driver for lightweight wdbPipePktDrv 213

 NETROM packet driver for WDB agent. wdbNetromPktDrv 213
 copy packet to interface.. ... elcPut() 268
 copy packet to interface.. ... enePut() 276
 copy packet to interface. .. esmcPut() 278
 copy packet to interface. .. ultraPut() 432

device. output packet to network interface cpmStartOutput() 251
device. output packet to network interface mbcStartOutput() 319

conditions. align PCI address and check boundary pciAutoAddrAlign() 367
 initialize PCI autoconfig library. pciAutoConfigLibInit() 377

 assign PCI space to single PCI base address register. pciAutoRegConfig() 379
 configure device on PCI bus. ... pciDevConfig() 391

 show routines of PCI bus (IO mapped) library. pciConfigShow 185
 perform PCI bus scan. .. aic7880GetNumOfBuses() 232

allocation facility. PCI bus scan and resource pciAutoConfigLib 165
 nth occurrence of device by PCI class code. find ... pciFindClass() 392

 read from PCI config space. ... aic7880ReadConfig() 233
 read to PCI config space. ... aic7880WriteConfig() 234

 read one byte from PCI configuration space. pciConfigInByte() 383
 read one longword from PCI configuration space. pciConfigInLong() 383

 read one word from PCI configuration space. pciConfigInWord() 384
 write one byte to PCI configuration space. pciConfigOutByte() 388

 write one longword to PCI configuration space. pciConfigOutLong() 388
 write one 16-bit word to PCI configuration space. pciConfigOutWord() 389
support for PCI drivers. PCI Configuration space access pciConfigLib 174

 print header of specified PCI device. .. pciHeaderShow() 394
writeable status/ quiesce PCI device and reset all pciAutoDevReset() 377
 print information about PCI devices. .. pciDeviceShow() 392
 space access support for PCI drivers. /Configuration .. pciConfigLib 174

driver. END style DEC 21x4x PCI Ethernet network interface dec21x4xEnd 24
driver. END-style DEC 21x40 PCI Ethernet network interface dec21x40End 28

 disable specific PCI function. ... pciAutoFuncDisable() 378
 configure all nonexcluded PCI headers. automatically ... pciAutoCfg() 368

 /configure all nonexcluded PCI headers; obsolete. ... pciAutoConfig() 376
 interrupt handler for shared PCI interrupt. ... pciInt() 395
 connect interrupt handler to PCI interrupt. .. pciIntConnect() 395
461

VxWorks Drivers API Reference, 5.5

Keyword Name Page
 interrupt handler from PCI interrupt. disconnect................................ pciIntDisconnect2() 396
 level initalization code for PCI ISA/IDE Xcelerator. low .. iPIIX4 106

library (SCSI-2). NCR 53C8xx PCI SCSI I/O Processor (SIOP) .. ncr810Lib 152
PCI Shared Interrupt support. .. pciIntLib 186

address register. assign PCI space to single PCI base pciAutoRegConfig() 379
 show PCI topology. ... pciConfigTopoShow() 390

 show all configurations of PCMCIA chip. ... pcmciaShow() 399
PCMCIA CIS library. .. cisLib 18
PCMCIA CIS show library. .. cisShow 19

 get PCMCIA configuration register. cisConfigregGet() 243
 set PCMCIA configuration register. cisConfigregSet() 243

 /and ATAPI CDROM (LOCAL andPCMCIA) disk device driver. .. ataDrv 11
show/ ATA/IDE (LOCAL and PCMCIA) disk device driver .. ataShow 14

 all show routines for PCMCIA drivers. initialize pcmciaShowInit() 399
 enable PCMCIA Etherlink III card. pccardEltEnabler() 364

facilities. generic PCMCIA event-handling ... pcmciaLib 186
 initialize PCMCIA event-handling package. pcmciaInit() 398

 handle task-level PCMCIA events. .. pcmciad() 398
driver. Databook TCIC/2 PCMCIA host bus adaptor chip ... tcic 207

library. Intel 82365SL PCMCIA host bus adaptor chip .. pcic 173
show library. Intel 82365SL PCMCIA host bus adaptor chip pcicShow 185

show library. Databook TCIC/2 PCMCIA host bus adaptor chip .. tcicShow 207
 create PCMCIA memory disk device. sramDevCreate() 417

ISA address space. map PCMCIA memory onto specified sramMap() 418
 END style Intel Olicom PCMCIA network interface/ iOlicomEnd 103

PCMCIA show library. ... pcmciaShow 187
PCMCIA SRAM device driver. .. sramDrv 201

 install PCMCIA SRAM memory driver. sramDrv() 417
 uninitialize PHY. .. miiPhyUnInit() 326

 find first PHY connected to DEC MII port. dec21x40PhyFind() 257
 initialize and configure PHY devices. ... miiPhyInit() 322

 read all PHY registers out. dec21145SPIReadBack() 258
 initialize pipe packet device. wdbPipePktDevInit() 440

lightweight UDP/IP. pipe packet driver for .. wdbPipePktDrv 213
(SCSI-1). NCR 53C710 SCSI I/O Processor (SIOP) library .. ncr710Lib 151
(SCSI-2). NCR 53C710 SCSI I/O Processor (SIOP) library .. ncr710Lib2 151

 NCR 53C8xx PCI SCSI I/O Processor (SIOP) library/ ... ncr810Lib 152
 do raw I/O access. .. ataRawio() 238

 provide raw I/O access. ... fdRawio() 281
read all PHY registers out. dec21145SPIReadBack() 258
read entire serial rom. .. dcReadAllRom() 255
read from PCI config space. aic7880ReadConfig() 233

configuration space. read one byte from PCI pciConfigInByte() 383
configuration space. read one longword from PCI pciConfigInLong() 383
configuration space. read one word from PCI pciConfigInWord() 384

read to PCI config space. aic7880WriteConfig() 234
ROM. read two bytes from serial dec21140SromWordRead() 258

 get PCMCIA configuration register. ... cisConfigregGet() 243
 set PCMCIA configuration register. .. cisConfigregSet() 243
 bits in UART’s aux control register. set and clear .. coldfireAcrSetClr() 246
462

Keyword Index

IX
Keyword Name Page
 bits in UART’s interrupt mask register. set and clear... coldfireImrSetClr() 248
 return current state of output register. .. coldfireOpr() 249

 and clear bits in output port register. set... coldfireOprSetClr() 249
 of DUART auxiliary control register. return contents.. m68681Acr() 304
 in DUART auxiliary control register. set and clear bits m68681AcrSetClr() 304

 of DUART interrupt-mask register. /current contents.. m68681Imr() 306
 bits in DUART interrupt-mask register. set and clear... m68681ImrSetClr() 306

 output port configuration register. /state of DUART ... m68681Opcr() 307
 output port configuration register. /clear bits in DUART....................... m68681OpcrSetClr() 308

 state of DUART output port register. return current... m68681Opr() 308
 bits in DUART output port register. set and clear.. m68681OprSetClr() 309
 to single PCI base address register. assign PCI space pciAutoRegConfig() 379
 for Configuration Address Register. pack parameters pciConfigBdfPack() 380

 return aux control register contents. ... coldfireAcr() 245
 return current interrupt mask register contents. .. coldfireImr() 247

 perform masked longword register update. ... pciConfigModifyByte() 385
 perform masked longword register update. .. pciConfigModifyLong() 386
 perform masked longword register update. pciConfigModifyWord() 387

 display dec 21040/21140 status registers 0 thru 15. ... dcCsrShow() 255
 of all readable MB87030 SPC registers. display values .. mb87030Show() 314

 get contents of MII registers. ... miiRegsGet() 326
 all readable NCR 53C710 SIOP registers. display values of... ncr710Show() 339
 all readable NCR 53C710 SIOP registers. display values of............................... ncr710ShowScsi2() 340
 all readable NCR 53C8xx SIOP registers. display values of... ncr810Show() 345

 of all readable NCR5390 chip registers. display values ... ncr5390Show() 350
 prints current value of NIC registers. ... ns83902RegShow() 356

 all readable SYM 53C8xx SIOP registers. display values of....................................... sym895Show() 428
 of all readable WD33C93 chip registers. display values ... wd33c93Show() 438

 set hardware-dependent registers for NCR 53C710. ncr710SetHwRegisterScsi2() 338
 set hardware-dependent registers for NCR 53C710 SIOP. ncr710SetHwRegister() 337
 set hardware-dependent registers for NCR 53C8xx SIOP. ncr810SetHwRegister() 344

 set pointer to MII optional registers handler. ... miiPhyOptFuncSet() 325
 set pointers to MII optional registers handlers. miiPhyOptFuncMultiSet() 325

 read all PHY registers out. ... dec21145SPIReadBack() 258
 read entire serial rom. .. dcReadAllRom() 255

 read two bytes from serial ROM. ... dec21140SromWordRead() 258
 display lines of serial ROM for dec21140. .. dcViewRom() 256

route PIRQ[A:D]. ... iPIIX4IntrRoute() 291
 Siemens SAB 82532 UART tty driver. .. sab82532 192

 partially initialize WD33C93 SBIC structure. create and............................. wd33c93CtrlCreate() 434
 and partially initialize SBIC structure. create............................ wd33c93CtrlCreateScsi2() 435
 user-specified fields in SBIC structure. initialize...................................... wd33c93CtrlInit() 437

 initialize SCC. .. m68332DevInit() 300
 initialize SCC. .. m68360DevInit() 301

 handle SCC interrupt. .. m68332Int() 300
 handle SCC interrupt. .. m68360Int() 301

Controller driver. Z8530 SCC Serial Communications ... z8530Sio 221
 Motorola MC68360 SCC UART serial driver. .. m68360Sio 120

 driver for Symbios SYM895 SCSI Controller.. SCSI-2.. sym895Lib 204
 interrupt service routine for SCSI Controller. ... sym895Intr() 425
463

VxWorks Drivers API Reference, 5.5

Keyword Name Page
(SCSI-1). NCR 53C90 Advanced SCSI Controller (ASC) library ncr5390Lib1 154
(SCSI-2). NCR 53C90 Advanced SCSI Controller (ASC) library ncr5390Lib2 154

 initialize SCSI Controller Structure. sym895CtrlInit() 423
 enable double speed SCSI data transfers. aic7880EnableFast20() 232

File. Adaptec 7880 SCSI Host Adapter Library ... aic7880Lib 5
library (SCSI-1). NCR 53C710 SCSI I/O Processor (SIOP) ... ncr710Lib 151
library (SCSI-2). NCR 53C710 SCSI I/O Processor (SIOP) ... ncr710Lib2 151

library/ NCR 53C8xx PCI SCSI I/O Processor (SIOP) ... ncr810Lib 152
library. Fujitsu MB87030 SCSI Protocol Controller (SPC) mb87030Lib 126

 I/O Processor (SIOP) library (SCSI-1). NCR 53C710 SCSI... ncr710Lib 151
 SCSI Controller (ASC) library (SCSI-1). NCR 53C90 Advanced................................... ncr5390Lib1 154

 Interface Controller library (SCSI-1). WD33C93 SCSI-Bus...................................... wd33c93Lib1 211
 I/O Processor (SIOP) library (SCSI-2). NCR 53C710 SCSI... ncr710Lib2 151
 I/O Processor (SIOP) library (SCSI-2). NCR 53C8xx PCI SCSI ncr810Lib 152

 SCSI Controller (ASC) library (SCSI-2). NCR 53C90 Advanced................................... ncr5390Lib2 154
 Interface Controller library (SCSI-2). WD33C93 SCSI-Bus...................................... wd33c93Lib2 212

driver. Nat. Semi DP83932B SONIC Ethernet sn83932End 199
interface driver. Crystal Semiconductor CS8900 network ... if_cs 58

 National Semiconductor DP83902A ST-NIC. ns83902End 160
Ethernet network/ National Semiconductor DP83932B SONIC .. if_sn 99

driver. Digital Semiconductor SA-1100 UART tty sa1100Sio 190
network interface/ National Semiconductor ST-NIC Chip .. nicEvbEnd 157
network interface/ National Semiconductor ST-NIC Chip .. if_nicEvb 95

 PCI Shared Interrupt support. .. pciIntLib 186
network interface driver. shared memory backplane ... if_sm 98
 show information about shared memory network. .. smNetShow() 415

 VxWorks interface to shared memory network/ .. smNetLib 198
show routines. shared memory network driver smNetShow 199

 interrupt handler for shared PCI interrupt. .. pciInt() 395
PCICchip. show all configurations of .. pcicShow() 391

PCMCIAchip. show all configurations of pcmciaShow() 399
TCICchip. show all configurations of .. tcicShow() 430

show ATA/IDE disk parameters. ataShow() 238
show CIS information. ... cisShow() 245

about function. show configuration details pciConfigFuncShow() 382
word. show decoded value of command .. pciConfigCmdWordShow() 381
word. show decoded value of status pciConfigStatusWordShow() 390

memorynetwork. show information about shared smNetShow() 415
 PCMCIA host bus adaptor chip show library. Intel 82365SL.. pcicShow 185

 PCMCIA show library. .. pcmciaShow 187
 PCMCIA CIS show library. .. cisShow 19

 PCMCIA host bus adaptor chip show library. Databook TCIC/2 .. tcicShow 207
show LPT statistics. .. lptShow() 298
show PCI topology. pciConfigTopoShow() 390

 and PCMCIA) disk device driver show routine. ATA/IDE (LOCAL ataShow 14
 initialize ATA/IDE disk driver show routine. .. ataShowInit() 239

show routine for MII library. .. miiShow() 327
 shared memory network driver show routines. ... smNetShow 199

drivers. initialize all show routines for PCMCIA pcmciaShowInit() 399
mapped) library. show routines of PCI bus (IO pciConfigShow 185
464

Keyword Index

IX
Keyword Name Page
driver. Siemens SAB 82532 UART tty ... sab82532 192
 perform single-step. ... ncr710SingleStep() 341

 enable/disable script single-step. .. ncr710StepEnable() 342
 structure for NCR 53C710 SIOP. create control .. ncr710CtrlCreate() 333
 structure for NCR 53C710 SIOP. create control ncr710CtrlCreateScsi2() 334
 structure for NCR 53C710 SIOP. initialize control .. ncr710CtrlInit() 335
 structure for NCR 53C710 SIOP. initialize control ncr710CtrlInitScsi2() 336
 registers for NCR 53C710 SIOP. set hardware-dependent ncr710SetHwRegister() 337
 structure for NCR 53C8xx SIOP. create control .. ncr810CtrlCreate() 342
 structure for NCR 53C8xx SIOP. initialize control .. ncr810CtrlInit() 343
 registers for NCR 53C8xx SIOP. set hardware-dependent ncr810SetHwRegister() 344

 NCR 53C710 SCSI I/O Processor (SIOP) library (SCSI-1). .. ncr710Lib 151
 NCR 53C710 SCSI I/O Processor (SIOP) library (SCSI-2). .. ncr710Lib2 151

 53C8xx PCI SCSI I/O Processor (SIOP) library (SCSI-2). NCR... ncr810Lib 152
 of all readable NCR 53C710 SIOP registers. /values... ncr710Show() 339
 of all readable NCR 53C710 SIOP registers. /values..................................... ncr710ShowScsi2() 340
 of all readable NCR 53C8xx SIOP registers. /values... ncr810Show() 345
 of all readable SYM 53C8xx SIOP registers. /values... sym895Show() 428

 set baud rate for SLIP interface. ... slipBaudSet() 412
 delete SLIP interface. .. slipDelete() 412

 initialize SLIP interface. ... slipInit() 413
driver. Serial Line IP (SLIP) network interface .. if_sl 96

agent. initialize SLIP packet device for WDB wdbSlipPktDevInit() 440
 initialize SMC. .. ppc860DevInit() 404

 display statistics for SMC 8013WC elc network/ .. elcShow() 269
interface driver. SMC 8013WC Ethernet network .. if_elc 76

network interface driver. SMC Elite Ultra Ethernet ... if_ultra 102
 handle SMC interrupt. .. ppc860Int() 404

 Motorola MPC800 SMC UART serial driver. .. ppc860Sio 189
interface driver. SMC Ultra Elite END network ... ultraEnd 208

initialize driver and/ publish sn network interface and .. snattach() 416
 Nat. Semi DP83932B SONIC Ethernet driver. ... sn83932End 199

 /Semiconductor DP83932B SONIC Ethernet network driver. ... if_sn 99
 control structure for MB87030 SPC. create ... mb87030CtrlCreate() 312
 control structure for MB87030 SPC. initialize ... mb87030CtrlInit() 313

 values of all readable MB87030 SPC registers. display .. mb87030Show() 314
 PCMCIA SRAM device driver. .. sramDrv 201

 install PCMCIA SRAM memory driver. .. sramDrv() 417
 Semiconductor DP83902A ST-NIC. National ... ns83902End 160

 National Semiconductor ST-NIC Chip network interface/ nicEvbEnd 157
 National Semiconductor ST-NIC Chip network interface/ if_nicEvb 95

 parse initialization string. .. auInitParse() 240
 parse initialization string. ... el3c90xInitParse() 266

 parse init string. ... elt3c509Parse() 270
 parse initialization string. ... ln97xInitParse() 292
 parse initialization string. .. mb86960InitParse() 311

 parse init string. ... mbcParse() 318
 parse initialization string. .. nicEvbInitParse() 352

 get token string (modified version). ... endTok_r() 275
 display values of all readable SYM 53C8xx SIOP registers. sym895Show() 428
465

VxWorks Drivers API Reference, 5.5

Keyword Name Page
 set Sym895 chip options. sym895SetHwOptions() 427
 create structure for SYM895 device. .. sym895CtrlCreate() 421

 SCSI-2 driver for Symbios SYM895 SCSI Controller.. ... sym895Lib 204
 handle task-level PCMCIA events. .. pcmciad() 398

version). get token string (modified .. endTok_r() 275
agent. initialize TSFS device driver for WDB wdbTsfsDrv() 441

 Motorola MC68302 bimodal tty driver. ... m68302Sio 119
 Motorola MC68332 tty driver. ... m68332Sio 120

 MC68901 MFP tty driver. ... m68901Sio 124
 MB 86940 UART tty driver. ... mb86940Sio 124
 NS 16550 UART tty driver. ... ns16550Sio 159

 NEC VR4101 DSIU UART tty driver. .. nvr4101DSIUSio 161
 NEC VR4101 SIU UART tty driver. .. nvr4101SIUSio 162

 NEC VR4102 DSIU UART tty driver. .. nvr4102DSIUSio 162
 Semiconductor SA-1100 UART tty driver. Digital... sa1100Sio 190

 Siemens SAB 82532 UART tty driver. ... sab82532 192
 ST 16C552 DUART tty driver. .. st16552Sio 202

 ARM AMBA UART tty driver. ... ambaSio 8
 initialize tty driver for WDB agent. ... wdbVioDrv() 442

 virtual tty I/O driver for WDB agent. wdbVioDrv 220
 Motorola MC68360 SCC UART serial driver. .. m68360Sio 120
 Motorola MPC800 SMC UART serial driver. ... ppc860Sio 189

 MB 86940 UART tty driver. ... mb86940Sio 124
 NS 16550 UART tty driver. ... ns16550Sio 159

 NEC VR4101 DSIU UART tty driver. .. nvr4101DSIUSio 161
 NEC VR4101 SIU UART tty driver. .. nvr4101SIUSio 162

 NEC VR4102 DSIU UART tty driver. .. nvr4102DSIUSio 162
 Digital Semiconductor SA-1100 UART tty driver. ... sa1100Sio 190

 Siemens SAB 82532 UART tty driver. ... sab82532 192
 ARM AMBA UART tty driver. ... ambaSio 8

 communication functions for ULIP. initialize .. wdbUlipPktDevInit() 441
 communication interface for ULIP driver. WDB... wdbUlipPktDrv 219

interface driver. SMC Ultra Elite END network .. ultraEnd 208
interface driver. SMC Elite Ultra Ethernet network ... if_ultra 102

device. publish ultra interface and initialize .. ultraattach() 431
 display statistics for ultra network interface. .. ultraShow() 432

 handle all interrupts in one vector. .. coldfireInt() 248
 all DUART interrupts in one vector. handle ... m68681Int() 307

 handle all interrupts in one vector. .. z8530Int() 443
 get token string (modified version). .. endTok_r() 275

driver for WDB agent. virtual generic file I/O ... wdbTsfsDrv 216
agent. virtual tty I/O driver for WDB wdbVioDrv 220
 NEC VR4101 DSIU UART tty driver. nvr4101DSIUSio 161
 NEC VR4101 SIU UART tty driver. nvr4101SIUSio 162
 NEC VR4102 DSIU UART tty driver. nvr4102DSIUSio 162

 display values of all readable WD33C93 chip registers. wd33c93Show() 438
 /and partially initialize WD33C93 SBIC structure. wd33c93CtrlCreate() 434

Controller library (SCSI-1). WD33C93 SCSI-Bus Interface wd33c93Lib1 211
Controller library (SCSI-2). WD33C93 SCSI-Bus Interface wd33c93Lib2 212

Controller (SBIC) library. WD33C93 SCSI-Bus Interface wd33c93Lib 211
466

Keyword Index

IX
Keyword Name Page
 NETROM packet driver for WDB agent. ... wdbNetromPktDrv 213
 serial line pocket-size for WDB agent. ... wdbSlipPktDrv 215

 generic file I/O driver for WDB agent. virtual... wdbTsfsDrv 216
 virtual tty I/O driver for WDB agent. ... wdbVioDrv 220

 NETROM packet device for WDB agent. initialize wdbNetromPktDevInit() 439
 SLIP packet device for WDB agent. initialize wdbSlipPktDevInit() 440
 TSFS device driver for WDB agent. initialize ... wdbTsfsDrv() 441
 initialize tty driver for WDB agent. ... wdbVioDrv() 442

for ULIP driver. WDB communication interface wdbUlipPktDrv 219
 show decoded value of command word. ... pciConfigCmdWordShow() 381

 show decoded value of status word. .. pciConfigStatusWordShow() 390
 translate character to output word format.. nvr4101SIUCharToTxWord() 359

space. read one word from PCI configuration pciConfigInWord() 384
space. write one 16-bit word to PCI configuration pciConfigOutWord() 389

configuration space. write one 16-bit word to PCI pciConfigOutWord() 389
configuration space. write one byte to PCI pciConfigOutByte() 388
configuration space. write one longword to PCI pciConfigOutLong() 388

CommunicationsController/ Z8530 SCC Serial .. z8530Sio 221
467

	VxWorks Drivers API Reference
	Contents
	1 Libraries
	aic7880Lib – Adaptec 7880 SCSI Host Adapter Library File
	ambaSio – ARM AMBA UART tty driver
	ataDrv – ATA/IDE and ATAPI CDROM (LOCAL and PCMCIA) disk device driver
	ataShow – ATA/IDE (LOCAL and PCMCIA) disk device driver show routine
	auEnd – END style Au MAC Ethernet driver
	cd2400Sio – CL-CD2400 MPCC serial driver
	cisLib – PCMCIA CIS library
	cisShow – PCMCIA CIS show library
	coldfireSio – ColdFire Serial Communications driver
	ctB69000Vga – a CHIPS B69000 initialization source module
	dec21x4xEnd – END style DEC 21x4x PCI Ethernet network interface driver
	dec21x40End – END-style DEC 21x40 PCI Ethernet network interface driver
	ei82596End – END style Intel 82596 Ethernet network interface driver
	el3c90xEnd – END network interface driver for 3COM 3C90xB XL
	elt3c509End – END network interface driver for 3COM 3C509
	endLib – support library for END-based drivers
	evbNs16550Sio – NS16550 serial driver for the IBM PPC403GA evaluation
	fei82557End – END style Intel 82557 Ethernet network interface driver
	gei82543End – Intel PRO/1000 F/T/XF/XT/MT network adapter END driver
	i8250Sio – I8250 serial driver
	if_cpm – Motorola CPM core network interface driver
	if_cs – Crystal Semiconductor CS8900 network interface driver
	if_dc – DEC 21x4x Ethernet LAN network interface driver
	if_eex – Intel EtherExpress 16 network interface driver
	if_ei – Intel 82596 Ethernet network interface driver
	if_eidve – Intel 82596 Ethernet network interface driver for DVE-SH7XXX
	if_eihk – Intel 82596 Ethernet network interface driver for hkv3500
	if_elc – SMC 8013WC Ethernet network interface driver
	if_elt – 3Com 3C509 Ethernet network interface driver
	if_ene – Novell/Eagle NE2000 network interface driver
	if_esmc – Ampro Ethernet2 SMC-91c9x Ethernet network interface driver
	if_fei – Intel 82557 Ethernet network interface driver
	if_fn – Fujitsu MB86960 NICE Ethernet network interface driver
	if_ln – AMD Am7990 LANCE Ethernet network interface driver
	if_lnPci – AMD Am79C970 PCnet-PCI Ethernet network interface driver
	if_loop – software loopback network interface driver
	if_mbc – Motorola 68EN302 network-interface driver
	if_nicEvb – National Semiconductor ST-NIC Chip network interface driver
	if_sl – Serial Line IP (SLIP) network interface driver
	if_sm – shared memory backplane network interface driver
	if_sn – National Semiconductor DP83932B SONIC Ethernet network driver
	if_ultra – SMC Elite Ultra Ethernet network interface driver
	iOlicomEnd – END style Intel Olicom PCMCIA network interface driver
	iPIIX4 – low level initalization code for PCI ISA/IDE Xcelerator
	ln97xEnd – END style AMD Am79C97X PCnet-PCI Ethernet driver
	ln7990End – END style AMD 7990 LANCE Ethernet network interface driver
	lptDrv – parallel chip device driver for the IBM-PC LPT
	m68302Sio – Motorola MC68302 bimodal tty driver
	m68332Sio – Motorola MC68332 tty driver
	m68360Sio – Motorola MC68360 SCC UART serial driver
	m68562Sio – MC68562 DUSCC serial driver
	m68681Sio – M68681 serial communications driver
	m68901Sio – MC68901 MFP tty driver
	mb86940Sio – MB 86940 UART tty driver
	mb86960End – END-style Fujitsu MB86960 Ethernet network interface driver
	mb87030Lib – Fujitsu MB87030 SCSI Protocol Controller (SPC) library
	mbcEnd – Motorola 68302fads END network interface driver
	miiLib – Media Independent Interface library
	motCpmEnd – END style Motorola MC68EN360/MPC800 network interface driver
	motFccEnd – END style Motorola FCC Ethernet network interface driver
	motFecEnd – END style Motorola FEC Ethernet network interface driver
	n72001Sio – NEC PD72001 MPSC (Multiprotocol Serial Communications Controller)
	ncr710CommLib – common library for ncr710Lib.c and ncr710Lib2.c
	ncr710Lib – NCR 53C710 SCSI I/O Processor (SIOP) library (SCSI-1)
	ncr710Lib2 – NCR 53C710 SCSI I/O Processor (SIOP) library (SCSI-2)
	ncr810Lib – NCR 53C8xx PCI SCSI I/O Processor (SIOP) library (SCSI-2)
	ncr5390Lib – NCR5390 SCSI-Bus Interface Controller library (SBIC)
	ncr5390Lib1 – NCR 53C90 Advanced SCSI Controller (ASC) library (SCSI-1)
	ncr5390Lib2 – NCR 53C90 Advanced SCSI Controller (ASC) library (SCSI-2)
	ne2000End – NE2000 END network interface driver
	nec765Fd – NEC 765 floppy disk device driver
	nicEvbEnd – National Semiconductor ST-NIC Chip network interface driver
	ns16550Sio – NS 16550 UART tty driver
	ns83902End – National Semiconductor DP83902A ST-NIC
	nvr4101DSIUSio – NEC VR4101 DSIU UART tty driver
	nvr4101SIUSio – NEC VR4101 SIU UART tty driver
	nvr4102DSIUSio – NEC VR4102 DSIU UART tty driver
	pccardLib – PC CARD enabler library
	pciAutoConfigLib – PCI bus scan and resource allocation facility
	pcic – Intel 82365SL PCMCIA host bus adaptor chip library
	pciConfigLib – PCI Configuration space access support for PCI drivers
	pciConfigShow – show routines of PCI bus (IO mapped) library
	pcicShow – Intel 82365SL PCMCIA host bus adaptor chip show library
	pciIntLib – PCI Shared Interrupt support
	pcmciaLib – generic PCMCIA event-handling facilities
	pcmciaShow – PCMCIA show library
	ppc403Sio – ppc403GA serial driver
	ppc555SciSio – MPC555 SCI serial driver
	ppc860Sio – Motorola MPC800 SMC UART serial driver
	sa1100Sio – Digital Semiconductor SA-1100 UART tty driver
	sab82532 – Siemens SAB 82532 UART tty driver
	sh7615End – sh7615End END network interface driver
	shScifSio – Hitachi SH SCIF (Serial Communications Interface) driver
	shSciSio – Hitachi SH SCI (Serial Communications Interface) driver
	smcFdc37b78x – a super IO (fdc37b78x) initialization source module
	smNetLib – VxWorks interface to shared memory network (backplane) driver
	smNetShow – shared memory network driver show routines
	sn83932End – Nat. Semi DP83932B SONIC Ethernet driver
	sramDrv – PCMCIA SRAM device driver
	st16552Sio – ST 16C552 DUART tty driver
	sym895Lib – SCSI-2 driver for Symbios SYM895 SCSI Controller.
	tcic – Databook TCIC/2 PCMCIA host bus adaptor chip driver
	tcicShow – Databook TCIC/2 PCMCIA host bus adaptor chip show library
	ultraEnd – SMC Ultra Elite END network interface driver
	vgaInit – a VGA 3+ mode initialization source module
	wd33c93Lib – WD33C93 SCSI-Bus Interface Controller (SBIC) library
	wd33c93Lib1 – WD33C93 SCSI-Bus Interface Controller library (SCSI-1)
	wd33c93Lib2 – WD33C93 SCSI-Bus Interface Controller library (SCSI-2)
	wdbEndPktDrv – END based packet driver for lightweight UDP/IP
	wdbNetromPktDrv – NETROM packet driver for the WDB agent
	wdbPipePktDrv – pipe packet driver for lightweight UDP/IP
	wdbSlipPktDrv – serial line pocket-size for the WDB agent
	wdbTsfsDrv – virtual generic file I/O driver for the WDB agent
	wdbUlipPktDrv – WDB communication interface for the ULIP driver
	wdbVioDrv – virtual tty I/O driver for the WDB agent
	z8530Sio – Z8530 SCC Serial Communications Controller driver

	2 Routines
	aic7880CtrlCreate(�) – create a control structure for the AIC 7880
	aic7880dFifoThresholdSet(�) – set the data FIFO threshold
	aic7880EnableFast20(�) – enable double speed SCSI data transfers
	aic7880GetNumOfBuses(�) – perform a PCI bus scan
	aic7880ReadConfig(�) – read from PCI config space
	aic7880ScbCompleted(�) – successfully completed execution of a client thread
	aic7880WriteConfig(�) – read to PCI config space
	ambaDevInit(�) – initialize an AMBA channel
	ambaIntRx(�) – handle a receiver interrupt
	ambaIntTx(�) – handle a transmitter interrupt
	ataDevCreate(�) – create a device for a ATA/IDE disk
	ataDriveInit(�) – initialize ATA drive
	ataDrv(�) – initialize the ATA driver
	ataRawio(�) – do raw I/O access
	ataShow(�) – show the ATA/IDE disk parameters
	ataShowInit(�) – initialize the ATA/IDE disk driver show routine
	auDump(�) – display device status
	auEndLoad(�) – initialize the driver and device
	auInitParse(�) – parse the initialization string
	cd2400HrdInit(�) – initialize the chip
	cd2400Int(�) – handle special status interrupts
	cd2400IntRx(�) – handle receiver interrupts
	cd2400IntTx(�) – handle transmitter interrupts
	cisConfigregGet(�) – get the PCMCIA configuration register
	cisConfigregSet(�) – set the PCMCIA configuration register
	cisFree(�) – free tuples from the linked list
	cisGet(�) – get information from a PC card’s CIS
	cisShow(�) – show CIS information
	coldfireAcr(�) – return aux control register contents
	coldfireAcrSetClr(�) – set and clear bits in the UART’s aux control register
	coldfireDevInit(�) – initialize a COLDFIRE_CHAN
	coldfireDevInit2(�) – initialize a COLDFIRE_CHAN, part 2
	coldfireImr(�) – return current interrupt mask register contents
	coldfireImrSetClr(�) – set and clear bits in the UART’s interrupt mask register
	coldfireInt(�) – handle all interrupts in one vector
	coldfireOpr(�) – return the current state of the output register
	coldfireOprSetClr(�) – set and clear bits in the output port register
	cpmattach(�) – publish the cpm network interface and initialize the driver
	cpmStartOutput(�) – output packet to network interface device
	csAttach(�) – publish the cs network interface and initialize the driver
	csShow(�) – shows statistics for the cs network interface
	ctB69000VgaInit(�) – initialize the B69000 chip and loads font in memory.
	dcattach(�) – publish the dc network interface.
	dcCsrShow(�) – display dec 21040/21140 status registers 0 thru 15
	dcReadAllRom(�) – read entire serial rom
	dcViewRom(�) – display lines of serial ROM for dec21140
	dec21x4xEndLoad(�) – initialize the driver and device
	dec21x40EndLoad(�) – initialize the driver and device
	dec21x40PhyFind(�) – find the first PHY connected to DEC MII port
	dec21140SromWordRead(�) – read two bytes from the serial ROM
	dec21145SPIReadBack(�) – read all PHY registers out
	dummyCallback(�) – dummy callback routine
	eexattach(�) – publish the eex network interface and initialize the driver and device
	eexTxStartup(�) – start output on the chip
	ei82596EndLoad(�) – initialize the driver and device
	eiattach(�) – publish the ei network interface and initialize the driver and device
	eihkattach(�) – publish the ei network interface and initialize the driver and device
	eiInt(�) – entry point for handling interrupts from the 82596
	eiTxStartup(�) – start output on the chip
	el3c90xEndLoad(�) – initialize the driver and device
	el3c90xInitParse(�) – parse the initialization string
	elcattach(�) – publish the elc network interface and initialize the driver and device
	elcPut(�) – copy a packet to the interface.
	elcShow(�) – display statistics for the SMC 8013WC elc network interface
	elt3c509Load(�) – initialize the driver and device
	elt3c509Parse(�) – parse the init string
	eltattach(�) – publish the elt interface and initialize the driver and device
	eltShow(�) – display statistics for the 3C509 elt network interface
	eltTxOutputStart(�) – start output on the board
	endEtherAddressForm(�) – form an Ethernet address into a packet
	endEtherPacketAddrGet(�) – locate the addresses in a packet
	endEtherPacketDataGet(�) – return the beginning of the packet data
	endObjFlagSet(�) – set the flags member of an END_OBJ structure
	endObjInit(�) – initialize an END_OBJ structure
	endTok_r(�) – get a token string (modified version)
	eneattach(�) – publish the ene network interface and initialize the driver and device
	enePut(�) – copy a packet to the interface.
	eneShow(�) – display statistics for the NE2000 ene network interface
	esmcattach(�) – publish the esmc network interface and initialize the driver
	esmcPut(�) – copy a packet to the interface
	esmcShow(�) – display statistics for the esmc network interface
	evbNs16550HrdInit(�) – initialize the NS 16550 chip
	evbNs16550Int(�) – handle a receiver/transmitter interrupt for the NS 16550 chip
	fdDevCreate(�) – create a device for a floppy disk
	fdDrv(�) – initialize the floppy disk driver
	fdRawio(�) – provide raw I/O access
	fei82557DumpPrint(�) – Display statistical counters
	fei82557EndLoad(�) – initialize the driver and device
	fei82557ErrCounterDump(�) – dump statistical counters
	feiattach(�) – publish the fei network interface
	fnattach(�) – publish the fn network interface and initialize the driver and device
	gei82543EndLoad(�) – initialize the driver and device
	i8250HrdInit(�) – initialize the chip
	i8250Int(�) – handle a receiver/transmitter interrupt
	iOlicomEndLoad(�) – initialize the driver and device
	iOlicomIntHandle(�) – interrupt service for card interrupts
	iPIIX4AtaInit(�) – low level initialization of ATA device
	iPIIX4FdInit(�) – initialize the floppy disk device
	iPIIX4GetIntr(�) – give device an interrupt level to use
	iPIIX4Init(�) – initialize PIIX4
	iPIIX4IntrRoute(�) – route PIRQ[A:D]
	iPIIX4KbdInit(�) – initialize the PCI-ISA/IDE bridge
	ln97xEndLoad(�) – initialize the driver and device
	ln97xInitParse(�) – parse the initialization string
	ln7990EndLoad(�) – initialize the driver and device
	lnattach(�) – publish the ln network interface and initialize driver structures
	lnPciattach(�) – publish the lnPci network interface and initialize the driver and device
	loattach(�) – publish the lo network interface and initialize the driver and pseudo-device
	lptDevCreate(�) – create a device for an LPT port
	lptDrv(�) – initialize the LPT driver
	lptShow(�) – show LPT statistics
	m68302SioInit(�) – initialize a M68302_CP
	m68302SioInit2(�) – initialize a M68302_CP (part 2)
	m68332DevInit(�) – initialize the SCC
	m68332Int(�) – handle an SCC interrupt
	m68360DevInit(�) – initialize the SCC
	m68360Int(�) – handle an SCC interrupt
	m68562HrdInit(�) – initialize the DUSCC
	m68562RxInt(�) – handle a receiver interrupt
	m68562RxTxErrInt(�) – handle a receiver/transmitter error interrupt
	m68562TxInt(�) – handle a transmitter interrupt
	m68681Acr(�) – return the contents of the DUART auxiliary control register
	m68681AcrSetClr(�) – set and clear bits in the DUART auxiliary control register
	m68681DevInit(�) – intialize a M68681_DUART
	m68681DevInit2(�) – intialize a M68681_DUART, part 2
	m68681Imr(�) – return the current contents of the DUART interrupt-mask register
	m68681ImrSetClr(�) – set and clear bits in the DUART interrupt-mask register
	m68681Int(�) – handle all DUART interrupts in one vector
	m68681Opcr(�) – return the state of the DUART output port configuration register
	m68681OpcrSetClr(�) – set and clear bits in the DUART output port configuration register
	m68681Opr(�) – return the current state of the DUART output port register
	m68681OprSetClr(�) – set and clear bits in the DUART output port register
	m68901DevInit(�) – initialize a M68901_CHAN structure
	mb86940DevInit(�) – install the driver function table
	mb86960EndLoad(�) – initialize the driver and device
	mb86960InitParse(�) – parse the initialization string
	mb86960MemInit(�) – initialize memory for the chip
	mb87030CtrlCreate(�) – create a control structure for an MB87030 SPC
	mb87030CtrlInit(�) – initialize a control structure for an MB87030 SPC
	mb87030Show(�) – display the values of all readable MB87030 SPC registers
	mbcAddrFilterSet(�) – set the address filter for multicast addresses
	mbcattach(�) – publish the mbc network interface and initialize the driver
	mbcEndLoad(�) – initialize the driver and device
	mbcIntr(�) – network interface interrupt handler
	mbcMemInit(�) – initialize memory for the chip
	mbcParse(�) – parse the init string
	mbcStartOutput(�) – output packet to network interface device
	mib2ErrorAdd(�) – change a MIB-II error count
	mib2Init(�) – initialize a MIB-II structure
	miiAnCheck(�) – check the auto-negotiation process result
	miiLibInit(�) – initialize the MII library
	miiLibUnInit(�) – uninitialize the MII library
	miiPhyInit(�) – initialize and configure the PHY devices
	miiPhyOptFuncMultiSet(�) – set pointers to MII optional registers handlers
	miiPhyOptFuncSet(�) – set the pointer to the MII optional registers handler
	miiPhyUnInit(�) – uninitialize a PHY
	miiRegsGet(�) – get the contents of MII registers
	miiShow(�) – show routine for MII library
	motCpmEndLoad(�) – initialize the driver and device
	motFccEndLoad(�) – initialize the driver and device
	motFecEndLoad(�) – initialize the driver and device
	n72001DevInit(�) – initialize a N72001_MPSC
	n72001Int(�) – interrupt level processing
	n72001IntRd(�) – handle a receiver interrupt
	n72001IntWr(�) – handle a transmitter interrupt
	ncr710CtrlCreate(�) – create a control structure for an NCR 53C710 SIOP
	ncr710CtrlCreateScsi2(�) – create a control structure for the NCR 53C710 SIOP
	ncr710CtrlInit(�) – initialize a control structure for an NCR 53C710 SIOP
	ncr710CtrlInitScsi2(�) – initialize a control structure for the NCR 53C710 SIOP
	ncr710SetHwRegister(�) – set hardware-dependent registers for the NCR 53C710 SIOP
	ncr710SetHwRegisterScsi2(�) – set hardware-dependent registers for the NCR 53C710
	ncr710Show(�) – display the values of all readable NCR 53C710 SIOP registers
	ncr710ShowScsi2(�) – display the values of all readable NCR 53C710 SIOP registers
	ncr710SingleStep(�) – perform a single-step
	ncr710StepEnable(�) – enable/disable script single-step
	ncr810CtrlCreate(�) – create a control structure for the NCR 53C8xx SIOP
	ncr810CtrlInit(�) – initialize a control structure for the NCR 53C8xx SIOP
	ncr810SetHwRegister(�) – set hardware-dependent registers for the NCR 53C8xx SIOP
	ncr810Show(�) – display values of all readable NCR 53C8xx SIOP registers
	ncr5390CtrlCreate(�) – create a control structure for an NCR 53C90 ASC
	ncr5390CtrlCreateScsi2(�) – create a control structure for an NCR 53C90 ASC
	ncr5390CtrlInit(�) – initialize the user-specified fields in an ASC structure
	ncr5390Show(�) – display the values of all readable NCR5390 chip registers
	ne2000EndLoad(�) – initialize the driver and device
	nicEndLoad(�) – initialize the driver and device
	nicEvbattach(�) – publish and initialize the nicEvb network interface driver
	nicEvbInitParse(�) – parse the initialization string
	nicTxStartup(�) – the driver’s actual output routine
	ns16550DevInit(�) – intialize an NS16550 channel
	ns16550Int(�) – interrupt level processing
	ns16550IntEx(�) – miscellaneous interrupt processing
	ns16550IntRd(�) – handle a receiver interrupt
	ns16550IntWr(�) – handle a transmitter interrupt
	ns83902EndLoad(�) – initialize the driver and device
	ns83902RegShow(�) – prints the current value of the NIC registers
	nvr4101DSIUDevInit(�) – initialize the NVR4101DSIU DSIU.
	nvr4101DSIUInt(�) – interrupt level processing
	nvr4101DSIUIntMask(�) – mask interrupts from the DSIU.
	nvr4101DSIUIntUnmask(�) – unmask interrupts from the DSIU.
	nvr4101SIUCharToTxWord(�) – translate character to output word format.
	nvr4101SIUDevInit(�) – initialization of the NVR4101SIU SIU.
	nvr4101SIUInt(�) – interrupt level processing
	nvr4101SIUIntMask(�) – mask interrupts from the SIU.
	nvr4101SIUIntUnmask(�) – unmask interrupts from the SIU.
	nvr4102DSIUDevInit(�) – initialize the NVR4102DSIU DSIU.
	nvr4102DSIUInt(�) – interrupt level processing
	nvr4102DSIUIntMask(�) – mask interrupts from the DSIU.
	nvr4102DSIUIntUnmask(�) – unmask interrupts from the DSIU.
	pccardAtaEnabler(�) – enable the PCMCIA-ATA device
	pccardEltEnabler(�) – enable the PCMCIA Etherlink III card
	pccardMkfs(�) – initialize a device and mount a DOS file system
	pccardMount(�) – mount a DOS file system
	pccardSramEnabler(�) – enable the PCMCIA-SRAM driver
	pccardTffsEnabler(�) – enable the PCMCIA-TFFS driver
	pciAutoAddrAlign(�) – align a PCI address and check boundary conditions
	pciAutoBusNumberSet(�) – set the primary, secondary, and subordinate bus number
	pciAutoCfg(�) – automatically configure all nonexcluded PCI headers
	pciAutoCfgCtl(�) – set or get pciAutoConfigLib options
	pciAutoConfig(�) – automatically configure all nonexcluded PCI headers; obsolete
	pciAutoConfigLibInit(�) – initialize PCI autoconfig library
	pciAutoDevReset(�) – quiesce a PCI device and reset all writeable status bits
	pciAutoFuncDisable(�) – disable a specific PCI function
	pciAutoFuncEnable(�) – perform final configuration and enable a function
	pciAutoGetNextClass(�) – find the next device of specific type from probe list
	pciAutoRegConfig(�) – assign PCI space to a single PCI base address register
	pcicInit(�) – initialize the PCIC chip
	pciConfigBdfPack(�) – pack parameters for the Configuration Address Register
	pciConfigCmdWordShow(�) – show the decoded value of the command word
	pciConfigExtCapFind(�) – find extended capability in ECP linked list
	pciConfigForeachFunc(�) – check condition on specified bus
	pciConfigFuncShow(�) – show configuration details about a function
	pciConfigInByte(�) – read one byte from the PCI configuration space
	pciConfigInLong(�) – read one longword from the PCI configuration space
	pciConfigInWord(�) – read one word from the PCI configuration space
	pciConfigLibInit(�) – initialize the configuration access-method and addresses
	pciConfigModifyByte(�) – perform a masked longword register update
	pciConfigModifyLong(�) – perform a masked longword register update
	pciConfigModifyWord(�) – perform a masked longword register update
	pciConfigOutByte(�) – write one byte to the PCI configuration space
	pciConfigOutLong(�) – write one longword to the PCI configuration space
	pciConfigOutWord(�) – write one 16-bit word to the PCI configuration space
	pciConfigReset(�) – disable cards for warm boot
	pciConfigStatusWordShow(�) – show the decoded value of the status word
	pciConfigTopoShow(�) – show PCI topology
	pcicShow(�) – show all configurations of the PCIC chip
	pciDevConfig(�) – configure a device on a PCI bus
	pciDeviceShow(�) – print information about PCI devices
	pciFindClass(�) – find the nth occurrence of a device by PCI class code
	pciFindClassShow(�) – find a device by 24-bit class code
	pciFindDevice(�) – find the nth device with the given device & vendor ID
	pciFindDeviceShow(�) – find a device by deviceId, then print an information
	pciHeaderShow(�) – print a header of the specified PCI device
	pciInt(�) – interrupt handler for shared PCI interrupt
	pciIntConnect(�) – connect the interrupt handler to the PCI interrupt
	pciIntDisconnect(�) – disconnect the interrupt handler (obsolete)
	pciIntDisconnect2(�) – disconnect an interrupt handler from the PCI interrupt
	pciIntLibInit(�) – initialize the pciIntLib module
	pciSpecialCycle(�) – generate a special cycle with a message
	pcmciad(�) – handle task-level PCMCIA events
	pcmciaInit(�) – initialize the PCMCIA event-handling package
	pcmciaShow(�) – show all configurations of the PCMCIA chip
	pcmciaShowInit(�) – initialize all show routines for PCMCIA drivers
	ppc403DevInit(�) – initialize the serial port unit
	ppc403DummyCallback(�) – dummy callback routine
	ppc403IntEx(�) – handle error interrupts
	ppc403IntRd(�) – handle a receiver interrupt
	ppc403IntWr(�) – handle a transmitter interrupt
	ppc555SciDevInit(�) – initialize a PPC555SCI channel
	ppc555SciDevInit2(�) – initialize a PPC555SCI, part 2
	ppc555SciInt(�) – handle a channel’s interrupt
	ppc860DevInit(�) – initialize the SMC
	ppc860Int(�) – handle an SMC interrupt
	sa1100DevInit(�) – initialize an SA1100 channel
	sa1100Int(�) – handle an interrupt
	sab82532DevInit(�) – initialize an SAB82532 channel
	sab82532Int(�) – interrupt level processing
	sh7615EndLoad(�) – initialize the driver and device
	shSciDevInit(�) – initialize a on-chip serial communication interface
	shScifDevInit(�) – initialize a on-chip serial communication interface
	shScifIntErr(�) – handle a channel’s error interrupt
	shScifIntRcv(�) – handle a channel’s receive-character interrupt
	shScifIntTx(�) – handle a channel’s transmitter-ready interrupt
	shSciIntErr(�) – handle a channel’s error interrupt
	shSciIntRcv(�) – handle a channel’s receive-character interrupt
	shSciIntTx(�) – handle a channel’s transmitter-ready interrupt
	slattach(�) – publish the sl network interface and initialize the driver and device
	slipBaudSet(�) – set the baud rate for a SLIP interface
	slipDelete(�) – delete a SLIP interface
	slipInit(�) – initialize a SLIP interface
	smcFdc37b78xDevCreate(�) – set correct IO port addresses for super I/O chip
	smcFdc37b78xInit(�) – initialize Super I/O chip Library
	smcFdc37b78xKbdInit(�) – initialize the keyboard controller
	smNetShow(�) – show information about a shared memory network
	sn83932EndLoad(�) – initialize the driver and device
	snattach(�) – publish the sn network interface and initialize the driver and device
	sramDevCreate(�) – create a PCMCIA memory disk device
	sramDrv(�) – install a PCMCIA SRAM memory driver
	sramMap(�) – map PCMCIA memory onto a specified ISA address space
	st16552DevInit(�) – initialize an ST16552 channel
	st16552Int(�) – interrupt level processing
	st16552IntEx(�) – miscellaneous interrupt processing
	st16552IntRd(�) – handle a receiver interrupt
	st16552IntWr(�) – handle a transmitter interrupt
	st16552MuxInt(�) – multiplexed interrupt level processing
	sym895CtrlCreate(�) – create a structure for a SYM895 device
	sym895CtrlInit(�) – initialize a SCSI Controller Structure
	sym895GPIOConfig(�) – configure general purpose pins GPIO 0-4
	sym895GPIOCtrl(�) – controls general purpose pins GPIO 0-4
	sym895HwInit(�) – hardware initialization for the 895 Chip
	sym895Intr(�) – interrupt service routine for the SCSI Controller
	sym895Loopback(�) – this routine performs loopback diagnostics on 895 chip
	sym895SetHwOptions(�) – set the Sym895 chip options
	sym895Show(�) – display values of all readable SYM 53C8xx SIOP registers
	tcicInit(�) – initialize the TCIC chip
	tcicShow(�) – show all configurations of the TCIC chip
	ultraattach(�) – publish ultra interface and initialize device
	ultraLoad(�) – initialize the driver and device
	ultraPut(�) – copy a packet to the interface
	ultraShow(�) – display statistics for the ultra network interface
	vgaInit(�) – initialize the VGA chip and loads font in memory
	wd33c93CtrlCreate(�) – create and partially initialize a WD33C93 SBIC structure
	wd33c93CtrlCreateScsi2(�) – create and partially initialize an SBIC structure
	wd33c93CtrlInit(�) – initialize the user-specified fields in an SBIC structure
	wd33c93Show(�) – display the values of all readable WD33C93 chip registers
	wdbEndPktDevInit(�) – initialize an END packet device
	wdbNetromPktDevInit(�) – initialize a NETROM packet device for the WDB agent
	wdbPipePktDevInit(�) – initialize a pipe packet device
	wdbSlipPktDevInit(�) – initialize a SLIP packet device for a WDB agent
	wdbTsfsDrv(�) – initialize the TSFS device driver for a WDB agent
	wdbUlipPktDevInit(�) – initialize the communication functions for ULIP
	wdbVioDrv(�) – initialize the tty driver for a WDB agent
	z8530DevInit(�) – initialize a Z8530_DUSART
	z8530Int(�) – handle all interrupts in one vector
	z8530IntEx(�) – handle error interrupts
	z8530IntRd(�) – handle a receiver interrupt
	z8530IntWr(�) – handle a transmitter interrupt

	Keyword Index

