
WICAT

Macro Assembler (WiMAC)

User's Guide and Reference Manual

188-377-301 A

**** PRELIMINARY - For internal use only ****

January 1985

WICAT SYSTEMS mCDRroRATED
Oren, Utah

**** PRELIMINARY - For int~rnal use only ****

<DPYRIGHT STATEMENT

Copyright (c) 1985 by WICAT Systems Incor};X>rated

WIMAC is . not a stand-alone product and consequently is not
supported as such by WICAT Systens. '!his manual is provided to
aid those who need to interface WIMAC with a programming language.
WICAT assumes no resp:>nsibility for the use of WIMAC (as an
interface or any other w~) since it is not supported as a
stand-alone product.

'!he software described in this manual is provided in accordance
wi th a license agreenent and may l::e used or CDpied only as
indicated tmder the terms of such license.

WICAT Systems IncorIX>r ated assunes no resp)nsibil i ty for the use
or reliability of software on 8:}uipnent not supplied by WICAT.

lWIDAL INTENT STATEMENT

'nle I;UrP:>se of this manual is to help users in progran
developnent. 'nle information CDntained in the manual is subj ect
to change without notice and should not l::e CDnstrued as a
camni 1Jnent by WICAT Systems IncorIX>r ated. WICAT Systems
IncorIX>rated assunes no res};X>nsibility for any errors that may
a~ar in this manual.

**** PRELIMINARY - For internal use only ****

WiMAC Version: 1.0

**** NOTlCE ****

This manual describes the WI CAT Macro As~er version
1.0 and later. Version 1.0 of wiMAC stlpp)rts UniPlus+
System V <DFF and LL obj ect formats. 'Ibis version (bes
not support macros or the WMCS oommand line format. WiMAC
runs under the follCMing op:!rating systems:

WMCS 5.0
Uniplus+ System V 1.0

o Appendix A lists the ASCII character set that can re used
in assembler prograns.

o App:!ndix B lists error messages produced by the assembler.
An explanation and probable cause for each error is also
given.

o Appendix C

o Appendix D order.

o App:!ndix E lists the 68000 instruction set in altilabetical
order.

o Appendix F

MANUAL CONVENTIONS

A description of the symb:>lic oonventions used throughout this
manual follows. Familiarize yourself with these oonventions
t:efore you oontinue to read. .

'!he following oonventions are observed:

o Examples oonsist of actual assembler prograns or progran
fra911ents wherever };X>ssible.

o Upp:!rcase words and letters, when used in examples,
indicate that the word or letter must t:e ~d exactly as
shGln.

o Lowercase words and letter, when used in format examples,
indicate that you are to substitute a word or value of your
choice.

o S:Iuare brackets ([]) indicate that the enclosed itan(s)
is (are) optional. '!he ~uare brackets are DQt. entered as
part of aIr:! option, they are shown only to aid in the
description of the ~tax.

o Braces ({ }) indi cates tha t the enclosed i tan (s) can t:e
ret:eated zero or more times as a group. '!he braces are .IlQt.
entered as p:lrt of the ret:eti tions, they are shown only to
aid in the description of the &yntax.

o '!he angle brackets «» indicate that the item enclosed
must t:e supplied by the user. For itans that r~uire
nuneric values, the values are interpreted as decimal,
unless otherwise stated or modified. '!he angle brackets
are .IlQt entered as p:lrt of item, they are shown only to aid

**** PRELIMINARY - For internal use only ****

Figures

FIGURE

5-1 SOurce Line Syntax
6-1 User Symbol Syntax
6-2 Integer Syntax
6-3 <l1aracter Literal Syntax
6-4 leal Syntax
6-5 String Syntax
6-6 Padix Control OJ;erator Syntax
6-7 Expression Syntax
6-8 Simple Expression Syntax
6-9 '!'eon Syntax
6-10 Factor Syntax

SlMMARY OF TE<JlNIO\L OiANGES

'!his manual Cbcunents wiMAC version VI.O. '!he following
technical changes are new to this release:

None - A new release.

None - A new release.

FIXED BU;S

None - A new release.

PREFACE

MANUAL Cl3JECl'IVES

'!he intent of this publication is to provide sufficient
information to c2velop assenbl.y language prograns on WlCAT
ccmputer systems. '!he information oontained in this manual
~rtains to the usage and syntax of the assenbl.er only.

MANUAL STRIJCIURE

'!his manual is organized into ten chapters and seven
am;endices, as follows:

o Chapter 1 introduces the features of the WlCAT macro
assenbl. er •

o Olapter 2

o Olapter 3 explains how to use the assenbl.er on the
appropriate ~rating system (WMCS, OniPlus+ System V) •

o Olapter 4 descril:es the listing file produced by the
assenbl. er •

o Olapter 5 covers the format used in the assenbl.er source
statanents.

o Olapter 6 descril:es the components of a assenbl.er source
statanents: the character set; symt:x>ls; nunbers; and
expressions.

o Olapter 7 explains the general directives (pseucb-opoodes).
PseUcD-opoodes discussed in this chapter include listing
control, symOOl control, da ta def ini tion and storage, and
progran sectioning.

o Olapter 8

o Olapter 9

in the description of the ~tax.

<llAP!'ER 1

IN'mOmCl'ION

[To be written later]

1-1

[To be written later]

2-1

INVOKnli 'lHE ~SEMBLER

3.1 WMCS OPERATIR; SYSTEM

**** NOTE ****

At the time of this writing, WiMAC is used only to
assemble CDInpiler generated prograns. It is not intended
to ~ used directly by the user. 'Iherefore, all
invocation of WiMAC should ~ <bne by the <DMPILE utility.
Refer to the Wicat Multi-user Cbntrol Systen (WMCS) User's
Reference Manna' for CDmplete <bctmentation on the use of
CDMPILE.

3.2 UNlaUS+ SYSTEM V O~Tlro SYSTEM

**** NOTE ****

At the time of this writing, WiMAC is used only to
assemble CDInpiler generated prograns. It is not intended
to ~ used directly by the user. 'nlerefore, all
invocation of WiMAC should ~ <bne by the CC(l) utility.
Refer to the Wicat UniPlys+ ~sten V User's Manila]
(Section 1) for CDInplete d:>ctmentation on the use of
CC(l) •

3-1

INVOKIR; 'IHE ASSEH3LER
DI1(;WSTIC MESSIGES

3 .3 DI1'.GIDSTIC MESSIGES

3-2

<liAPl'ER 4

LISTIro FILE

'!be listing file produced by the assembler can consist of the
following five p:lrts:

o Assembly source statanents

o Symb:>l table (optional)

o Progran section tables (optional)

o Cross-reference table (optional)

o Assembly sumnary (optional)

Sections 4.1 through 4.5 describe each of these tarts. section
4.6 contains an example of a listing file.

4.1 ASSDmLY SClJRCE STATEMEN'lS

'!he assembly source statanents comprise the main tart of the
listing file, and consists of:

o Page Headers

o Source lines with hexadecimal code

o Error and informational messages (if applicable)

Each is described below.

4-1

LISTIR; FILE
ASSEmLY SClJRQ:: STATEMEN'IS

4.1.1 Page Header

'!he assanbler prints a new r::age in the listing f lie when it
encounters a .mGE directive in the source, when it encounters a
new pige (form feed) in the source file, or when the existing page
of the listing file is filled. On the top of each r::age in the
listing file, the assanbler prints five header lines.

'!he first line of the header CDntains the follCMing information:

o Assanbler name

o Assanbler CDnf iguration

o Assanbler version number

o I:a.te the listing file was generated

o Time the listing file was generated

o Listing page nun~r

'!he assanbler CDnfiguration string consists of three fielcs. '!he
first field indentifies the host oparating systan. 'IYPical values
are UNIX, WMCS, etc.. '!he second field lists the input format.
'!he final field shCMS the output format. '!he currently defined
output formats are LL and COFF.

!he second line of the header CDntains the follCMing information:

4-2

LISTING FILE
M)SEMBLY SaJRa: STMEMEN'lS

o wicat proprietary statanent (if applicable) (See. LIST WlCAT)

o Source file name.

'!he third line of the header oontains a user-supplied message. If
no message has been supplied, this line is left blank. See the
.HEADER directive for more infor:mation.

'!he fourth line is blank.

'!he fifth line oontains the source-line oolunn headers.

4.1.2 Source Statenents with Hexadecimal Code

'!his section is the main p:lrt of the listing i it oontains the
source l~nes and the binary code generated for eadl line.

The hexadecimal code is printed with the lowest address on the
left. '!he oode listed for an instruction oontains, fran left to
right:

o '!he opcode

o '!he first oJ;erand (if applicable)

o '!he second oJ;erand (if applicable)

o '!he third oJ;erand (if applicable)

'Ihe binary code for data storage is listed fran left to right.
'!he nunter of data itens that are listed on one line der:;ends on
the size of the data tyJ;e as shown in table 4-1.

4-3

Da ta 'lY1;:e

Byte

Word

Long

Characters

Qua~ord

LISTnG FILE
ASSEmLY SClJRa: STATEMEN'lS

Tabl e 4-1 : Data 'lY1;:es fer Line

N~r of Items p:!r Line

8

5

2

8

1 (oouble precision real)

Continuation lines will be added as necessary.

If an expression oontains an externally-def ined symbol, the
assanbler evaluates the expression by assigning a value of zero to
that symbol.

Table 4-2 sumnaries the source line listing format.

Table 4-2: Source Line Listing Format

Colunn Header I DescriI;t:ion

1-5 I Line I Source line nunber (decimal)
I I

7-14 I Address I Location oounter (hexadecimal)
I I

16-19 I Oped I Opoode (hexadecimal)
I I

21-39 I OI:"2rands I O{:er ands (hexadecimal)
I I

41- I Source Statenent I Source line

4-4

LISTIOO FILE
ASSEMBLY SaJRCE STATEMEN'lS

4.1.3 Error And Informational Messages

4.2 SYMBCL TABLE

'!he &ymbol table lists all &ymbols, except ~rmanent &ymbols, that
are def ined or referenced in the module. '!he &ymbols are listed
by order of aPJ;2arance in a module. Each new level of nested
&ymbols is indented two sp:lces.

4.3 PRmPAM SECl'ION TABLES

'!he progran section tables lists the progran sections, thei r
names, their size, and their attril::utes. '!his information is
presented in two tables, the first table lists all named program
sections. '!his list is in the order in which they were def ined.
'!his tables also includes any predef ined section names. '!he
second table oonsists, all def ined sections listed in nuneric
order, followed t¥ their size and attrib.1tes. See the .SECI'
directive for a complete description of the attrib.1tes. All
section nunbers and sizes are listed roth in decimal and
hexadecimal radix. Decimal ntmbers always aPJ;2ar with a decimal
};X>int (.) after the rumber.

4.4 mesS-REFERENCE TABLE

[Not implanented in this version]

4.5 ASSEMBLY SUMMARY

[Not implanented in this version]

4.6 EXAMl:LE LISTIOO

'!his section shows a oomplete listing file (figure 4-1) generated
t¥ assembling the source progran listed in figure 4-1.

4-5

CBAPrER 5

saJRCE STATEMENT FORMAT

An assanbly source progran 00 nsi sts of a sequence of source
statements, eadt of which occupies exactly one line. MIll tiple
statements on a single line are not allOetled. Fach line GaIl be up
to 254 characters long (not including the line tenninator).
HOetlever, no line should exceed 80 characters to ensure that the
source fits on one line in the listing file.

A source line oonsist of four basic fields: label, opcode,
o~rand and comment. '!he general format of an assembler line is:

Spices and tabs are allowed anywhere in the line, except inside
labels, opcodes, symbols and nunbers. At least one S};Bce or tab
must a~ar betlNeen opcode and op:!rand fields. Blank lines are
accepted, rut have l'X) significance or meaning. All characters
that have an ASCII value of splce or less are treated as a space,
with the exception of line feed ("J) and form feed ('L).

5-1

SCDRCE S'l'MEMENT IDRMAT
LABEL FIELD

5.1 LABEL FIELD

A label is a user-defined symbol that references a specific
location within a progran. 'Ibis symbol is assigned the value
equal to the current location counter. '!he value of symbol may be
absolute or relative de~nding on the typ! of section that it is
def.ined in.

A label is a symbol that can contain uppercase letters (A-Z),
lowercase letters (a-z), digits (0-9), underline LJ, <bllar sign
($) and period (.) characters. A label cannot start with a nun.ber
or a <bllar sign. A label must be terminated with a oolon (:) and
conform to all the rules that <Fvem user-defined symbols (see
section 6.2.2). '!his field is optional.

Once a label is defined within a module or a begin/end block, it
cannot be redefined in that module or block. If a label is
defined more that once, the assembler displays an error message
where the label was defined and again where it was redefined. All
lal::els are local to the module that they are defined in, unless
they are exported out of the module with the .GLC.5AL directive.

Only one label tEr source line is allowed. However, nul tiply
labels may have the same value. Fbr example:

labell:
label2:
label3: nop

all have the same val tE (which is the address of the "nop"
instruction) •

All labels that apply to directives (see chapter 7), l11lSt re on
the same line as the directive. Fbr example:

foo: .const 10

and

£00:
.const 10

are not equivalent. '!he second ".oonst" declaration will result
in an error (Label r9.:Iuired).

5-2

5.2 OPCDlE FIELD

SClJRCE STATEMENT EORMAT
OPCDIE FIELD

The opcode field s~cifies the action to ~ ~rformed by the line.
'nlis field may contain either an instruction mnemonic, an
assembler directive, or a macro call. hlsembler directives are
indicated l:¥ ~ginning with a ~riod (.). '!his style enables the
user to quickly identify assembler directives fran actual machine
instructions. See Apfendix E for a complete list of instructions
mnemonics. <llapter 7 describes the assembler directives and macro
calls.

5.3 OPERAND FIELD

'nle op:!rand field contains o~rana; for the instruction or
arguments for an assembler directive or macro call. 'nle o~rand
field must 1:2 separated fran the opcx>de field by a least one
delimiter. A delimiter is typically a sp:lce or tab, however, arr:J
character with an ASCII value of sp!ce (hexadecimal 40) or less
(except line feed (.... J) and form feed (.... L)) is considered a
delimiter. When two or more op:!rand a~ar within a statenent,
they must 1:2 separated l:¥ a comma (,) •

5.4 COMMENT FIELD

'!be canment field contains text that describes the ftmction of the
line. '!his field must start with a semicolon (i) and l:e
teIll1inated l:¥ the end-of-line character. canments Can start
anywhere on a line, including col linn 1. '!he amnent field may
contain any printable ASCII character (see Apfendix A) • Comments
are included in the assembly listing but, otherwise, are ignored
by the assembler.

5-3

CliAPI'ER 6

SCIJRrn STATEMENT CDMroNEN'IS

mus chapter describes the various CDInp>nents of the assembler
source statement. 'Ihese CDInp>nents oonsist of characters,
symOOls, nunbers, strings, and expressions.

6 .1 aiARACl'ER SET

'nle characters that can 1::e used in assembler source statanents are
listed in Table 6-1. All control characters and DEL are treated
as delimiters (spaces), except line feed (AJ) and form feed (AL).
'Ihe null character (A@) should 1::e avoided, for it causes pranature
inteonination of listing source lines.

Table 6-1: Legal Assembler <llaracters

Character Character Nane

"

$

%

Spice

Exclamation point

Double quote mark

Nunber sign

Dollar sign

Percent sign

6-1

Ftmction

Line terminator

Page advance

OpCX>de/~rand field delimiter

Logical roT o~rator

String indica tor and term ina tor

IIrmediate data indicator

Hexadecimal radix indicator
and character in symOOl name

Remainder o~r ator (IOOdul us)

SClJRa! STATEMENT <DMIDNEN'lS
aIARACI'ER SET

Table 6-1 (Cont.): Legal Assanbler Olaracters

Character Character Name Ftmction

& Am{Ersand Bitwise AND o{Erator

Single QlX>te Mark Character literal indica tor
and teIminator

Left Parenthesis Expression grouping delimiter
and register indirection indicator

Right Parenthesis Expression grouping delimiter
and register indirection indicator

* Asterisk Ari thmetic mul tiplica tion and
current location COlU'lter

+ Plus Autoincranent, unary plus,
and arithmetic addition

I
I camna O{:erand and paraneter setarator
I
I Minus Autodecranent, unary minus,
I ari thmetic subtraction, and
I register range (lOlEM instr)
I
I Period Character in symOOl name and
I real nunber decimal p:>int
I

/ I Slash Arithmetic division and
I register setarator (lOJEM instr)
I

O •• 9 I Digits Nunbers and characters in symOOl
I names
I
I Colon Label terminator and expression
I qualifier
I

; I San i 001 on canment field indicator
I

< I Left-angle bracket Less than o{Erator
I

= I Equal sign Equals op:!rator
I

> I Right-angle bracket Greater than o{Erator
I

? I Question mark Def ined o{Erator

6-2

SOJRCE STATEMENT <DMIDNEN'lS
CBARACI'ER SET

Table 6-1 (Cont.): Legal Assembler <llaracters

Character Character Name Ftmction

@ At sign Reserved for future use

A •• Z Uppercase letters Characters in syntx:>l names

Right-s;{uare Reserved for future use
bracket

\ Backslash Esca{:e character indicator

Lef t-s;{uare Reserved for future use
bracket

Cirrunflex Bitwise ~R operator

Underline Character in syntx:>l name
,

Reverse Ap>stro];ile Unary operator delimiter

a •• z L~ercase letters Characters in syntx:>l names

{ Left braCE Reserved for future use

I Vertical bar Bitwise OR o{:erator (exclusive)

} Right braCE Reserved for future use

Tilde l' s <Dll\pl.anent o{:erator

6.2 SYMBCLS

'!WO 1:yI::es of syntx:>ls can l:e used in assembly prograns: pennanent
syntx:>ls and user-defined symlx>ls. Each is described l:elow.

6.2.1 Pennanent Symbols

Pennanent syntx:>ls oonsist of stecific prOCEssor instruction
mnemonics (see ~ndix E), assembler directives (see <llapter 7)
and register names (see Table 6-2). 'lhese syntx:>ls need not l:e
clef ined l:efore l:eing used. Instruction mnenonics and assembler
directives are reserved symlx>l names and cannot be redefined by
the user.

6-3

SClJRa! STATEMENT CDMroNEN'lS
SYMBCLS

All ~rmanent &ymbols are converted internally to uppercase. For
example:

move dO,dl
lOlE 00,01
Move dO,Ol

are all the same instruction and registers.

'!he registers of the 68000 microprocessor must ~ referenced as
descrited in Table 6-2. IDNercase register names are allowed, rut
are maPfed internally into ~rcase register names.

Table 6-2: Assembler Register Nanes

Register Name 68000 Register

00-D7 Data registers

AO-A7 Address registers

SP Stack Pointer registers (A 7)

SSP SupeIVisor Stack Pointer register (A 7)

USP User Stack Pointer register

PC Progran OOunter

eCR Condition OOde Register

SR sta tus Register

A complete description of these registers may ~ found in the
Motorola MC68000 l6-Bit Microprocessor User I S Manna'.

6.2.2 User-Defined Symbols

A user-defined symbol is a string of altbanlllleric characters. '!he
general format for a user-defined symbol is:

6-4

SClJRCE STATEMENT CDMroNEN'IS
SYMBCLS

'nle following rules govern the creation of user-def ined synt:ols:

1. User-defined symbols can t:e canp:>sed of uppercase letters
(A-Z), lowercase letters (a-z), digits (0-9), tmderlines (~,
<bllars ($) and J;eriods (.).

2. '!be first character of a ~l II1.lSt t:egin with a letter
(A-Z, a-z), tmderline (~, or a };:eriod (.). It cannot t:egin
with a nUllb!r or a oollar sign.

3. No enbedded sp:lces or other characters are allowed in a
~l.

4. 'nlere is no limit to the length of a ~l, mwever, the
input source line is limited to 254 characters, thereby
indirectly limiting the length of a ~l to 254 characters.

User-def ined symbols can t:e used as latels, variabl es, IOOdul e
names, section names, and macro names. '!bese user-defined symbols
can also t:e 8iuated to a sp!cific value l::¥ the .ABSADR, .ADDR or
• CONS!' directives (see Chapter 7) and used in an;y expressions (see
Section 6.6) •

Symtols can have absolute (constant) or relative values.

6.2.3 Name Spaces

'!he assenbler supports several different name Sp:lces. Name
conflicts only occur in the same name Sp:lce. '!his is to say,
identical symbol names can coexist in different name sp:lces
wi thout conflict. 'nle following name S];:8ces are supp:>rted:

o rata Structure Names

6-5

SClJRCE STATEMENT <DMroNEN'lS
SYMBCLS

o lot>dul e and Block Nanes

o Section Nemes

o Label and Variable Nanes

o Macro Names

6.2.4 case Cbnversion

case conversion of user-def ined symbols is controlled by the
" • ENABLE UPFER" , " • ENABLE LQtlER" and ". ENABLE MIXED" eli recti ves.
When the ". ENABLE UpmR" directive is encountered, all subsequent
user-defined symbols are converted to uppercase. 'Ihe" • ENABLE
LCliER" directive cause all subsequent user-defined symbols to te
converted to lowercase. When the" • ENABLE MIXED" eli recti ve is
encounter, no case a>nversion is p:!rfocned. 'Ihe default is
" • ENABLE MIXED" • Table 6-3 sunmarizes the effect of the various
case conversion directives.

Table 6-3: case Cbnversion Di recti ves

Directive Description

• ENABLE LavER I Convert all subsequent user-defined symbols to
I lowercase.
I

• DlSABL LaVER I Return to MIXED mode •
I

.ENABLE upmR I Convert all subsequent user-def ined symbols to
I u~rcase.
I

• DlSABL upmR I Return to MIXED mode •
I

.ENABLE MIXED I No case corwersion of subsequent user-def ined
I symbols is p:!rformed.
I

• mSABL MIXED I Ignored •

Case conversion ~ applies to user-defined symbols. Permanent
symbols are always ma~d to uppercase. See chapter 7 for more
information on the ".ENABLE" directive.

6-6

SClJRCE STATEMENT CDMIDNEmS
SYMBCLS

6.2.5 Determining Symbol Values

The val tE of a syml:x>l de~ncs on hON it was def ined or used in the
assembiy program.

6.3 NUMBERS

N~r can be integers, character literals, or reals. Integers
and dlaracter literals are treated identically, and interpreted as
integer nunbers. All three ~s of numbers are descril::ed below.

NlJllbers are always treated as absolute (constant) values.

6.3.1 Integers

'!he general focnat for integer numbers is:

Integers must be in the range of -2,147,483,648 to +2,147,483,647
for signed numbers or in the range of 0 to +4,294,967,295 for
unsigned numbers.

'!he assembler translates all negative numbers into 2 IS CDmplanent
foon. Negative nunbers must be preceded by a minus sign. For
p:>sitive numbers, the plus sign is optional.

'!he assembler interprets all integers in the source program as
decimal unless the number is preceded by a radix control o~rator.
See section 6.6.1.1 for a description of the radix o~rators.

Integers can be used in expressions or as a single values.

6-7

SClJRa: STMEMENT CDMroNEmS
NUM3ERS

6.3.2 Character Literals

Character literals are a string of up to four characters (bytes)
that are enclosed by single qoote marks ('). '!he general format
for character literals is:

Character literals of roore than four dtaracters are illegal and
are rep:>rted as errors. '1he high order bit of eadt character in
the literal is cleared (parity bit set to zero). '!his cbne to
prevent sign extension of dtaracters that are moved into
registers.

All character Ii terals are considered internally as integer
nunbers.

Character literals can be used any where an integer n~r is
allowed.

Character literals are always considered as absolute (constant)
values.

6-8

6.3.3 Reals

SCIJRCE STATEMENT CDMIDNEN'IS
NUMBERS

'!he general fOIInat for a real n1.ltlber is:

'!he decimal p:>int can app!ar anywhere to the right of the first
digi t. However, a real n1.ltlber cannot start with a decimal p:>int.
A real ru.mber can be SIEcified with or without an exponent.

leal n1.ltlbers can be single-precision (32-bit) or cbuble precision
(64-bi t). '!he precision of single precision n1.ltlbers is 6-7 digits
and 15-16 digits for cbuble precision.

'!he assanbler oonverts all real n1.ltlbers into standard IEEE fOIInat.
A canplete description of the internal real format can be found in
A~ndix D.

leal nuni:ers can only be used in the .OC.F and .OC.D directives.
leal nunbers cannot be used in expressions or with aI¥ unary or
binary o~rators, with the exception of unary minus, unary plus
and and the unary o~rators 'R, 'T, 'F, 'u and 'L.

6.4 S'IRINGS

Cllaracter strings are a string of up to 254 characters (bytes)
that are enclosed by Cbuble qoote marks ("). '!he general format
for character strings is:

6-9

SClJRCE STATEMENT CDMEONEN'IS
S'IRJN;S

Any ASCII character except the line feed and Cbuble quote mark
characters can apJ;2ar directly within the string. All characters
in the string are converted to their 8-bit M3CII value, and the
high order bit is always cleared (parity bit set to zero) • It is
not recmmend that non-printable (control) character l:e typed
directly into the character string. My character, including
null, line feed, Cbuble qoote and oontrol characters, can l:e
included in a character string, by ftescapingft the character. An
ftescatedft character is introduced by the backslash character (\).
'!he character inmediately follCMing the backslash is included in
the string. My of the radix oontrol or:erators and floating point
oterator that return an integer can follow the backslash
character. In this case, the character whose value is represented
by the nunber is inserted into the character string. All nunbers
represented in this way are truncated to an 8-bit value. Finally,
if the character inmediately following the backslash is the
ci rcunflex character (A), then the next character is treated as a
oontrol character. '!his is the recx:rnmend wQ¥ of inserting oontrol
or ron-printing character into a character string.

'!he assenbler r:erfOI1l\S no case conversion on strings. '!he
assenbler Cbes not autanatically insert any character at the end
of the string.

A null string is represented by two consecutive Cbuble qoote marks
(ftft) and has a length of zero.

6 .5 I,()(ATIOO <IXJNl'ER

'!he current location counter alwQ¥s has the value of the address
of the current byte. '!he assenbler &ymbol for the location
oounter is the asterisk (*). '!he assembler sets the current
location counter at the teginning of eadt new progran section (see
• SEC!' - Chap:er 7). '!he location counter may l:e set or changed by
use of the follCMing directives:

6-10

SClJRCE STATEMENT CDMroNEm5
LeXATION <DJNTER

1. .loDIlJLE <name>

2. .SECI' <section>

3. • SECI' <section> ,ADDRESS = <expression>

4. .ALIGN <keyword> [, <f ill>]

5. .ALIGN <expression> [, FILL>]

6. .IE.x <expression> [,<fill>]

When the current location COtmter is used in the oI,:erand field of
an instruction, the current location counter has the value of the
address of the tegirming of the instruction - it <Des not have
the value of the address of the oI,:erand.

Asterisk has an absolute value if used in a absolute section,
otherwise it has a relative value.

6.6 GENERAL EXPRESSIONS

Expressions consist of constants, absolute &yIItlols, relative
syml:x>ls, external symbols, functions, and oI,:erators. COnstants
and absolute syml:x>ls can te used with arr:! of the oJ;erators and
have no limitations on their usage in expressions. Relative and
external symbols can only te used with the addition and
subtraction oI,:erators in simpie expression. Section 6.6.3
descibes where these &ymbols are legal. '!be legal oI,:erators are
fully descril:ed in section 6.6.1.

'!be assembler evaluates expressions fran left to right with the
oferator precedence rules described in Table 6-11. However,
p:lrentheses () can te used to change the order of eval ua tion. ~
I,X>rtion of an expression that is enclosed in };8rentheses is first
evaluated to a single value, which is then used in evaluating the
complete expression.

All expressions are evaluated as signed 32-bit values. '!be result
of any expression with an error is zero.

6-11

SCIJRCE STATEMENT CDMIDNEN'IS
GENERAL EXPRESSIONS

6.6.1 Operators

Operators perfor.m a specific function on an expression. All
operators accept only interger nunbers or character literals as
o~rands, with the exceptions of the real nunber o~rators ('R,
'T, 'F, 'u, and 'L), which accept floating-p:>int nunber as
o~rands. '!he result of all operators is a 32-bit signed integer
nunber.

The assembier o~rators are broken up into the following six
ca tegories:

1. Radix Control Operators

2. Real Nt.l'nCer Operators

3. Ari thmetic Operators

4. Bitwise Operators

5. Logical Operators

6. Relational Operators

Each is described ~low.

6-12

saJRCE STATEMENT CDMIONEN'IS
GENERAL EXPRESSIONS

6.6.1.1 Radix COntrol Operators - The assembler accepts numbers
in four different radixes: binary, octal, decimal, and
hexadecimal.. The default radix is decimal. 'lbe general format
for the radix control o};:erators is:

For axnIBtibility with previous assenblers, the <i>llar sign ($)
can te used to ~cified the hexadecimal radix. The legal
characters for each radix are listed l:elow.

Table 6-4: Legal Radix Characters

FODllat Radix I Legal Olaracters

'B Binary o and 1

'0 Octal o through 7

'D Decimal o through 9

'H Hexadecimal o through 9, A through F, and a through f

$ Hexadecimal o through 9, A through F, and a through f

Padix control op:!rators can te included in the source progran
aqywhere a numeric value is legal. A radix control o};:erator
affects only the n~r immediately follONing it.

The reverse ap::>stroIile (') cannot te seIBrated fran the B, 0, D,
and H character that follows it, rut the radix operator can te
sey;arated by SI;8ces or tabs fran the n~r that follows it.

Table 6-5 sumnarizes the radix control operators.

6-13

SCllRCE STATEMENT <DMIDNEmS
GENERAL EXPRESSIONS

Table 6-5: Radix Control Oparators

~rator , Op!rator Ncme , O};;eration

'B , Binary , Binary value
I I

'0 , Octal , Octal value
I I

'D 'Decimal , Decimal val ue
I ,

'H , Hexadecimal , Hexadecimal value , ,
$, Dollar sign , Hexadecimal value

. 6-14

SClJRCE STATEMENT COMroNEN'lS
GENERAL EXPRESSI~S

6.6.1.2 Real Number Operators - Real number operators accept real
n~r arguments and return an integer nunl::er. '!he real number
operators are useful because it allows real numbers to be used in
expressions and instructions that accept only integers. See
section 6.3.3 for the for.mat of real numbers.

Real number operators can be included in the source program
anywhere a nuneric value is legal. A real number operator affects
only the number imnedi.ate1y following it.

'!he reverse ap:>stroFhe (') cannot be set;:arated fran the R, T, F,
U, and L character that follCMS it, rut the real operator can be
sepirated by S};:8ces- or tab; fran the real number that follows it.

Table 6-6 sumnarizes the real number operators.

Table 6-6: Real Nunber Operators

Operator Operator Nane I Operation

'R Rotmd

Trmcate

Coerce

'L Double Lower

'u Double UPfer

Round real rn.mber to the nearest
integer.

Truncate real number to its integer
part.

Change apparent 1:yJ;:e of a single
precision (32-bit) real number to a
long integer (32-bit).

Extr act as an integer the lower
32-bits of a double-precision
(64-bit) real number.

Extract as an integer the ~r
32-bi ts of a double-precision
(64-bit) real number.

6-15

SClJRCE STMEMENT CDMlONEmS
GENERAL EXPRESSIONS

6.6.1.3 Arithmetic Operators - The arithmetic operators perfor.m
the usual arithmetic oonversion on their operands.

'!he assembler prints a warning message if division by zero occurs.

Table 6-7 sunmarizes the arithmetic operators.

Table 6-7: Arithmetic Operators

~rator Op!rator Nane Op!r ati on

+ Plus sign Positive (unary)

Minus sign Negative (unary)

+ Plus sign Addition

Minus sign Subtraction

* Asterisk Mul tiplication

/ Slash Division

% Per Cent Ranainder

6-16

SClJRa: STATEMENT CDMroNEN'lS
GENERAL EXPRESSIONS

6.6.1.4 Bitwise Operators - The bitwise operators perfODm the
usual bitwise oonversion on their operands.

The shift operators are used to perfODm left and right arithmetic
shifts. The first operand is shifted left or right t¥ the nunber
of bit p:>sitions stecified in the seoond operand. When the first
operand is shifted left, the low-order bits are set to zero. When
the right shift operator is used and the first operand is signed,
the high-order bits are set to the value of the orignal high-order
bi t (sign bit) (arithmetic shift). When the right shift operator
is used and the first operand is unsigned the high-order bits are
set to zero (logical shift).

Table 6-8 sumnarizes the bitwise operators.

Table 6-8: Bitwise Operators

O{:erator Operator Nane r Operation

Tilde I 1 r S <DInplanent value
I

& Ampersand I Bitwise AND
I

Exclanation I Bitwise OR (inclusive)
I

A Vertical bar I Bitwise OR (excl usi ve)
I

» Right angle I Shift right
brackets I

I
« Left angle I Shift left

brackets I

6-17

SClJRCE STATEMENT CDMlONEN'lS
GENERAL EXPRESSI<ES

6.6.1.5 Logical Operators - Logical operators return a one (1) if
the the result of the operation is true, and zero (0) if the
result of the Op!ration is false.

Table 6-9 sunmarizes the logical oI;erators.

Tabie 6-9: Logical Operators

Operator Operator Name Operation

NOT

? DEFINED

&& AND

" OR

Logical 00l' operator

Defined operator

Logical AND operator

Logical OR oJ;er ator

6-18

saJRCE STATEMENT <DMIDNEN'IS
GENERAL EXPRESSIONS

6.6.1.6 Relational Operators - Relational operators return a one
(1) if the the result of the operation is true, and zero (O) if
the result of the operation is false.

Table 6-10 sumnarizes the Relational operators.

Table 6-10: Relational Operators

Operator Operator Nane Operation

= Equal Equal

<> Not equal Not equal

,-.- Not equal Not equal

< Less than Less than

<= Less than Less than or Equal
or equal

> Greater than Greater than

>= Greater than Greater than or equal
or equal

6-19

SCIJRCE STATEMENT <DMlONEN'l5
GENERAL EXPRESSIONS

6.6.1.7 Operator Precedences And Associativi~ - Tabie 6-11
sumnarizes the oJ;erator IXecedences and associativi~ in the
assembler. 'Ihese oJ;erators are listed in order of decreasing
precedence. Operators grouped together have the same precedence
and are associated fran left to right.

Tabie 6-11: Operator Precedence

Operator Function

'B Binary value oJ;erator Highest Precedence
'0 Octal val ue op!r ator
'D Decimal val ue operator
'H Hexadecimal value ot:erator
$ Hexadecimal value operator
'R Round real operator
'T Truncate real operator
'F Coerce real operator
'u Upper real operator
'L Lower real oJ;erator

+ Unary plus operator
Unary minus oJ;erator
1 's CDmplanent oJ;erator
Logical 00l' oJ;erator

? Symt:ol defined operator

* Mul tiplication oJ;erator
/ Division operator
% Ranainder operator
& Bitwise AND oJ;erator
&& Logical AND operator
« Shift left operator
» Shift right operator

+ Addi tion oJ;er ator
Subtraction oJ;erator
Bitwise exclusive OR operator

I Bitwise inclusive OR oJ;erator
II Logical OR op!rator

< Less than ot:erator
<= Less than or equal op!rator
> Greater than operator
>= Greater than or equal operator
<> Not equal operator
1= Not equal operator
= Equal op!rator Lowest Precedence

6-20

SClJRa:: STATEMENT <DMEONEN'l5
GENERAL EXPRESSIONS

6.6.2 Expression

An expression oonsists either a simple expression or a simple
expression follONed by any of the relational op:!rators follONed by
another simple expression. All relational o};'2rators have ~ual
precedences. Expressions can be grouped for evaluation by
enclosing than in p3.rentheses. '!he enclosed expressions are
evaluated first, and all renaining op:!rations are :terformed fran
left to right.

Pelati ve and external val ues are not allONed as op:!r ands to
relational op:!rators.

Figure 6-7 sumnaries the &yntax of expressions.

6.6.3 Simpie Expressions

A simple expression oonsists either a teIIn or a sign follONed by a
term or a" simpie expression follONed by of the simple o};'2rator
follONed by" "a teIIn. All simple op:!rators have equal prece&nces.
Simpie expressions can be grouped for evaluation by enclosing than
in p3.rentheses. '!he enclosed simple expressions are eval uated
first, and all remaining op:!rations are :t;:erformed fran left to
right.

6-21

SClJRCE STATEMENT CDMIDNEN'lS
GENERAL EXPRESSIONS

Relative and external values are not allQ\1ed as op:!rancE to simple
operators with the exception of binary plus and minus oIErators.
Table 6-12 sumnarizes the use of relative and external values in
these oIErators.

Table 6-12:

O};er ati on Resul t

Absol ute + Absolute I Atsol ute
Absol ute + Relative I Relative
Absolute + External I External - Relative
Relative + Absolute I Relative
Relative + Relative J ERROR
Relative + External I ERROR
External + Absolute I External - Relative
External + Relative I ERROR
External + External I ERROR

I
Absol ute - ACsolute , Absol ute
Absol ute - Relative I ERROR
AbBol ute - External I ERROR
Relative - Absolute I Relative
Relative - Relative I Absolute *
Relative - External I ERROR
External - Ai:solute I External - Relative
External - Relative I ERROR
External - External I ERROR

* If and only if both relative values are defined in the same
modul e and section, otherwise, the resul t is an ERROR.

Figure 6-8 sumnaries the syntax of simple expressions.

6-22

6.6.4 Terms

SClJRCE STATEMENT <DMIDNEN'IS
GENERAL EXPRESSIONS

A term consists either a factor or a term followed by a term
o~rator followed by a factor. All term o~rators have equal
precedences. Terms can ~ grouped for evaluation by enclosing
than in p:lrentheses. '!he enclosed term are evaluated first, and
all ranaining operations are ~rformed fran left to right.

Relative and external values are not allowed as o~rands to tenn
operators.

Figure 6-9 sumnaries the syntax of term.

6.6.5 Factors

A factor oonsists of any of the following:

1. N~r

2. SymOOI

3. CUrrent location oounter (*)

4. One's compliment operator (-)

5. Logical OOT operator (1)

6. ~ined symbol o~rator (1)

7 • An expression enclosed by p:lrenthesis

Figure 6-10 suranaries the syntax of factors.

6-23

SCIJRCE STATEMENT <DMlONENm
GENERAL EXPRF.SSI~S

6-24

<liAPI'ER 7

ASSEMBLER DIRECl'lVES

'!he general assembler directives (pseud>-opcodes) prOV'ide
facil i ties for p!rfoming various assembler functions. Table 7-1
lists these flUlctions and the directives in each category. '!he
ranainder of this chapter cEscribes the directives in cEtail,
shQtling their formats and giving examples of their use. For ease
of reference, the directives are presented in al};ilatetical order
in this chapter. In addition, App!ndix C contains a sumnary of
all assembler directives.

Assembler directives are written in the same wO!j as instructions,
rut (with the exception of the .OC.x and .IE.x directives) do not
cause any code to ~ generated. All assembler directives begin
with a J;2riod (.). '!his style of naming directives enables the
user to quickly identify assembler directives fran actual machine
instructions.

Table 7-1: Assembler Directive Sunmary

category

Assanbler op:.ion
Directives

Listing Control
Directives

Message DisplO!j
Directives

Directives

.DISABL
• ENABLE

• HEADER
• LIST
.NCLIST
.P}.GE

• ERROR
• FATAL
• HUNT
• WARN

7-1

ASSEM3LER DIRECl'IVES

PRELlMINARY - For internal use only ****

Table 7-1 (Cont.): Assembler Directive Sunmary

Category Directives

Module and Block • BEGIN
Directives • END

.IDIlJLE

Program Sectioning • SEC!'
Directive

SymOOl Assignment .ASSAm
Directives .ADDR

.CINsr

SymOOl Attriwte • EXTERN
Directives .GLCBAL

.~

.NCNUSR
• USER
• WEAK

Data lRf ini tion • ENDS
Directives .S'lRJCI'

Data Storage .OC.x
Directives .DS.x

.CDMftDN

Location Control .ALIGN
Directive

Condi tiona! Assembly • ELSE
Directives .ENOC

.IF

Miscellaneous .<nlFIG
Directives .EDF

• FILE
.IN<LD
• LINE
• LINKER
.PRCXSS

7-2

~SEMBLER DIRECI'lVES

PRELIMINARY - For internal use only ****

Any directives may have a label, sane ra;{uire it. If a directive
ra;{uires a label, the label must a~ar on the same line as the
directive. For example:

foo: • const 10

and

foo:
.const 10

are not Equivalent. ~e first case sho«s a valid label for the
.CDNSl' directive. In the second case, RfooR is not a label for
the .<DNSl' directive and this case will cause in an assembler
error (Label r8:}ui red) •

7-3

.ABSArR

NAME:

EORMAT:

PARAMETERS :

ASSEMBLER DIRECl'IVES
PRELIMINARY - For internal use only ****

.ASSADR

.ASSADR - Ab;olute address definition directive.

<label> .ASSAm <address> [, <danain>]

<address> = an;y legal expression. '!he expression can oontain
forward references rut cannot oontain an;y external,
relative, or unresolved symbols. '!he expression
must evaluate to an assembl~time oonstant.

<danain> = any legal expression. '!he expression can oontain
forward references rut cannot contain an;y external,
relative, or unresol ved symbols. '!he expression
must evaluate to an assembl~time oonstant. '!he
danain must b! in the range of 0 through 254. '!he
default cbmain value is zero. '!his piraneter is
optional.

rESClUPl'ICE: The .ABSADR directive is used to assign an absolute
address to the user symbol in the label field. '!his
is pirticularly useful when writing software that
accesses absolute address in an address sI=8ce. An
example of this is device drivers that must directly
camnlU1ica te to dev ice SJ;2cif ic loca tions. '!hese
locations can be in menory (memory ma~d I/O), or
on an I/O rus, or in sane other address sI=8ce. '!he
<danain> paraneter is used to SJ;2cify a SJ;2cific
address SI=8ce. '!his form is used only on machines
that support multiple address spices (e. g. I/O
ruses) • A cbmain of zero is oonsidered the native
or host address space and is the default.

WIES:

An absolute address is treated internally by the
assembler as a signed constant.

1. 'Ibis directive must aPJ;ear inside a module (see
.IDIlJLE) •

7-4

~SEmLER DIRECl'IVES
**** PRELIMINARY - For internal use only ****

• ASSAm (Continued) • ASSAm

2. A label is r8:!uired by this directive. '!he <label>
cannot 00 defined anywhere else at this module
level.

3. '!his directive is not supp:>rted by all obj ect file
for.mats. Refer to Appendix F for specific object
file limitations.

7-5

.ADDR

NAME:

FORMAT:

PARAME'lERS :

~SEH3LER mRECl'lVES
PRELIMINARY - For internal use only ****

.ADIR - Address definition ~r~ive.

<label>.ADDR <address>

• ADm

. <address> = any legal expression. '!be expression can CDntain
forward references and relative &ymtx>ls rut cannot
contain an;y external or unresolved &ymtx>ls.

IESCRIPl'ION: '!he .ADm directive assigns the value of the address
expression to the user &ymtx>l in the label field.
'!he value of the expression is relative to the
beginning of the section in which the def ini tion
a~ars. If the definition a~ars in an absolute
section, the &ymtx>l is assigned the val ue of an
absolute address (see .ABSADR) , otherwise the symbol
value is assigned a relative value •

001ES:

• ADDR ~rforms the same function as a progran label
eefinition, except .ADm can app!ar anywhere within
the section. '!he .ADm directive };:erfoms an out of
line address definition, a label definition is an in
line address def ini tion. For example the following
code segments are Equivalent.

• sect 10 • sect 10
bra foo bra foo

foo: .addr * + 100
.ds.b 100 .ds.b 100
nop foo: nop

An address value is treated internally by the
assembler as a signed constant.

1. '!bis directive must app!ar inside a section (see
• SEC!') •

7-fj

.ADDR

ASSEH3LER DIRECl'lVES
PRELIMINARY - For internal use only

(Continued)

.ADDR

2. A label is ra:juired by this directive. '!he <label>
cannot be defined anywhere else at this module
level.

7-7

ASSEH3LER DIRECrlVES

PRELIMINARY - For internal use only ****

.ALIGN • ALIGN

NAME: .ALIGN - Align location counter directive.

roRMAT: .ALIGN <address> [,<fill>]
.ALIGN <keyword> [, <f ill>]

PARAME'IERS :

<address> = any legal expression. 'nle expression cannot contain
arJ¥ forward references, external &ymbols, relative
symbols, or unresolved symbols. 'nle expression must
evaluate to an assemble-time constant in the first
piss.

<keyword> = any keyword listed in Table 7-2. Either the long
fom or short fom of the keyword may be used.

<fill> = any legal expression. 'nle expression can contain
forward references, rut cannot contain any external,
relative, or lIlresolved symbols. '!he expression
must evaluate to an assemble-time constant. 'nle
fill value must te in the r,ange of 0 through 255.
'nle default fill value is zero. 'nlis pirameter is
optional.

IESClUPI'ION: The .ALIGN directive aligns the location counter to
the ooundary stacif ied l:¥ either the <address> or
the <keyword> paraneter. If the <address> paraneter
is used, the location counter is set to the value of
the <address> expression. If the <keyword>
par anete r is used, the location comter is aligned
to the address that is the next multiple of the
value listed in Table 7-2 lUlder ftSize in Bytesft. If
the optional <fill> value is supplied, the l::¥tes
skiPfed l:¥ the location a>mter (if any) are filled
with the stacified value, otherwise, the l:¥tes are
zero filled. If the fill value is larger than 255,
the value is truncated and a warning message is
printed.

7-8

• ALIGN

ASSEMBLER DIRECl'IVES
PRELIMINARY - For internal use only

(Continued)

Table 7-2:

Long Short I Size in
Form Form I Bytes

EYEN FN 1

ODD OD 1

BYTE BY 1

7-9

• ALIGN

Descrip:ion

'!he E.VEN keyword
ensures that the
cur rent val ue of
the location
counter is even.
If the location
counter is odd,
EVEN will add one
to the its value.
If the location
counter is already
even, no action is
taken.

The ODD keyword
ensures that the
current value of
the location
counter is odd.
If the location
counter is even,
ODD will add one
to the its value.
If the location
counter is al ready
odd, no action is
taken.

Align the location
counter to a byte
boundary. '!his
keyword ~rforms
no action.

• ALIGN

00'lES:

~SEMBLER DIRECrIVES
PRELIMINARY - For internal use only

(Continued)

Table 7-2:

Long I Short I Size in
Form I Form I Bytes

WORD WD 2

LeN; 4

P}.GE 4096

• ALIGN

Description

Align the location
counter to a word
bolU'ldary • If the
current is aligned
to a word no
action is taken.
This is equivalent
to the EVEN
keyword.

Align the location
COlU'lter to a long
word OOlU'ldary. If
the current value
is al igned to a
long word, no
action is taken.

Align the location
to a Ilige ooundary.
If the current
value is aligned
to a Ilige, no
action is taken.

1. '!his directive must aP{Ear inside a section (see
• SECI') •

2. If a label is ~cif ied, it is assigned the
value of the location CDlU'lter tefore any
aligning is p!rformed.

7-10

.BEI;IN

NAME:

FORMAT:

PARAME~:

}sSEltmLER mREcrlVES
PRELIMINARY - For internal use only

.BEGIN - Begin block directive.

• BEGIN [<name>]

• BEGIN

<name> = any legal user-defined symbol. 'Ibe default name is
the null name (a null string). 'Ibis I;Braneter is
optional.

IESClUPrION: The .BEGIN directive is used to start a new 5YJIlbol
scx>ping level. It <bes not change the value of the
location a>unter.

NOmS:

If the optional <name> is s~cif ied, it cannot ~
defined anywhere else in the activating module. A
name should ~ S};2cif ied in the • BEGIN di rective and
in the a>rresp'nding .END directive, so that the
assembler can detect any impro};erly rested scoping
blocks.

'Ibis directive is similar in function to an inner
block in the C language.

1. 'Ibis directive must a~ar insi<E a module (see
.IDIIJLE) •

2. If a latel is S};2cified, it is assigned the
current value of the location a>unter.

7-11

~SD!BLER mRECl'IVES

PRELIMINARY - For internal use only ****

.CDMMJN .CDMf.DN

NAME: .CDMMJN - canmon region definition directive.

IDRMAT: .CDMf.DN <name> [,<size>]

PARAMETERS :

<name> = any legal user-defined symlx>l.

<size> = any legal expression. ~e expression can cx:>ntain
forward references bIt cannot oontain arJ¥ external,
relative, or lI'lresol ved symbols. 'nle expression
must evaluate to an assemble-time oonstant. ~e
size must be a J;X)sitive value. '!he default size
value is zero. 'Ibis p:lraneter is optional.

IESOUPl'ION: The. CDMf.DN directive def ines <name> as a <DmInon
region with length of <size> bytes. Fbr oammons
with the same name and different sizes, the largest
size is used. No storage is allocated for common
regions by the assembler, this is cbne by the
linker. ~e S};ace reserved by the .CDMf.DN directive
is cx:>nsidered "out-of-line" storage allocation, the
user has no cx:>ntrol CNer the placanent of this
space.

NO'IES:

1. ~is directive must aREar inside a section (see
• SECl') •

2 • ~e sIBce allocated by the camnon di recti ve is
not necessarily allocated in the currently
defined section. ApFendix F describes where
common regiOns are placed t¥ the various
linkers.

7-12

.CIEFIG

NAME:

FORMAT:

PARAMETERS :

ASSEMBLER DIRECl'IVES
PRELIMINARY - For internal use only

.<DNFIG - Configuration directive.

.c:IEFIG n<configuratioILstring>n

• <DNFIG

<configuratioILstring> = any legal dlaracter string. Null strings
are not allowed.

IESClUPl'ION: '!he .<DNFIG directive places the ~cified
configuration string (without the <Duble quotes (n»
into the object file. '!his information can be used
by the various linkers and loaders. '!he assembler
OOes not enforce aT¥ format or structure on this
string. '!he format and structure of the
configuration string are ~cified b.i the linkers
and loaders. Refer to ApJ;:endix F for the effects of
this directive on s~cific object files.

NarES:

1. '!he cbuble qootes (n) are not pirt of the
configuration string.

2. '!his directive is not supported b.i all obj ect
file formats. Refer to ApJ;:endix F for s~cific
object file limitations.

7-13

NAME:

FORMAT:

PARAME'IERS :

AgSEMBLER mRECI'IVES
PRELIlmlARY - For internal use only ****

.CDNSI' - Constant symOOl definition directive.

<label> .CDNSI' <constant)

<constant) = aT¥ legal expression. '!he expression can contain
forward references rut cannot contain any external,
relative, or lI'lresol ved symI:ols. '!he expression
must evaluate to an assemble-time constant.

IESCRIPl'ION: '!he .OESI' directive assigns the value of the
constant expression to the symOOl in the label
field. • CDNSI' can aPf2ar outside module
definitions. 'Ibis directive is useful for assigning
values to conditional assembly symOOls.

NOI'ES:

1. A label is required by this directive. '!he
<label> cannot t:e defined anywhere else at this
module level.

2. A .~SI' directive can aPf2ar arrt where in the
user 's progran.

7-14

.oc.x

NAME:

EORMAT:

PARAME'lERS :

ASSEH3LER mRECl'IVES
PRELIMINARY - For internal use only

.oc. x - Data storage directive.

• OC. B <constant> {, <constant> }
.OC. W <constant> {, <constant> }
.OC. L <constant> {, <constant> }

.OC. F <fp_constant> {, <fp_constant> }

.oc. D <fp_constant> {, <fp_constant> }

.oc.x

<constant> = any legal expression or character string. The
expression can contain forward references, external
symOOls, and relative symOOls b.It cannot contain any
unresolved symOOls. Null character strings are
allowed, rut alloca te no space. External and
relative symOOls are resolved at link-time.

<fp_constant> = any legal real number. Expressions are not
allowed.

IESClUPl'ION: The.OC directive stores a 1::¥te, word or long
. integer, or a float or <DubIe real number. If the

<constant> is an expression, the expression is
eva! uated as a 3 2-bi t val ue. If this val ue is
larger than the allocated splce, the constant is
trtmcated and a warning message is printed. If
mul tip]. e constants are speci£ ied, they nust te
separated by cxmnas.

rrbe spice reserved 1::¥ the • IX: di recti ve is
considered nin-linen storage allocation.

7-15

.oc.x

NCJl'ES :

ASSEM3LER DIRECI'lVES
PRELIMINARY - For internal use only ****

(Continued) .OC.x

Table 7-3:

Directive Nane Range of Val LES AlIONed

.OC.B I Byte -128 to +255
I

.OC.W I Word -32768 to +65535
I

.OC.L I Long -2147483648 to +4294967295
I

.OC.F I Float 8.43E-37 to 3.37E+38
I

.OC.D I Double 4.l9E-307 to 1.67E+308

**** WARNlN; ****

At link-time, a relocatable value or
expression can resul t in val ~ that exceeds
the ~cified size. Not all linkers will
issue a truncation warning message.

1. '!his directive must a~ar inside a section (see
• SEer) •

7-16

.DISABL

NAf.E:

FORMAT:

PARAME'lERS :

ASSEMBLER DIREC1'lVE'S
PRELIMINARY - For internal use only ****

.DISABL - Flmction control directive.

• DISABL <keyword> {, <keyword> }

.DISABL

<keyword> = aT¥ keyword listed in Table 7-4. Ei ther the long
form or short form of the keyword can be used.

IESClUPI'ION: '!be .DlSABL directive disables, or inhibits, the
s};2cified assembler function. .DISABL is the
negative form of .ENABLE. Fefer to Table 7-4 for
~cific ftmctions.

If multiple keywords are used, they must be
sepirated by oommas.

Table 7-4:

Long Short Default
Form Form Condition Description

EXTERNAL EX Disabled When EXTERNAL is
disabl ed, aIr:!
tmdef ined symbol
that is not listed
in a .EXTERN
directive causes
an error.

USER US Enabled When USER is
disabl ed, aIr:!
symbol that is not
listed in a • USER
directive is
considered a
NCNUSER symbol
(see • NCNUSER)

7-17

.DISABL

ASSD1BLER mREC!'1VFS
PRELIMINARY - For internal use only

(Continued)

Table 7-4:

Long Short Default
FO[Ill FO[Ill Condition

UPPER UC Disabled

IDlER LC Disabled

MIXED MC Enabled

LexM. LS Disabled

7-18

.DISABL

Description

When UPPER is
disabled, mapping
of user-def ined
symbols to upper-
case is te[Illina ted
and no case mapping
is ~rfo[Illed on
subsequent
user-def ined
symbols (return
to MIXED mode) •

When IDlER is
disabled, mapping
of user-def ined
symbols to lower-
case is terminated
and no case mapping
is ~rformed on
subsequent
user-def ined
symbols (return
to MIXED mode) •

This keyword is
ignored in the
.DISABL directive.

When LOCAL is
disabled, all
subsequently
def ined local
symbols are
renoved fran the
object file symbol
table.

~SEMBLER DIRECl'1VES
**** PRELIMINARY - For internal use only ****

.DISABL (Continued) .DISABL

Table 7-4:

Long I Short I Default
Form I Form I Condition Description

tnIDSR NS Disabled I When NCNJSR is
I disabled, all
I subsequently
I def ined local
I symbols are
I renoved fran the
I object file symbol
I table.
I

CROSS CR Enabled I Not imp]. anented.

NarES:

1.

7-19

~SD1BLER DIRECrIVES

PRELIMINARY - For internal use only ****

.I:s.x .I:s.x

NAME: .I:s. x - Storage allocation directive.

FORMAT: .DS.B <size> [,<fill>]
.I:s.w <size> [,<fill>]
.DS.L <size> [,<fill>]
.I:s.s <size> [,<fill>]

PARAME'lERS :

<size> = any legal expression. The expression cannot contain
aJ'l¥ forward references, external symb:>ls, relative
symb:>ls, or tmresolved symb:>ls. The expression must
evaluate to an assemble-time constant in the first
piss.

<fill> = any legal expression. The expression can contain
forward references rut cannot contain any external,
relative, or tnresol ved symb:>ls. '!he expression
must eval uate to an assemble-time constant. The
fill value must ~ in the range of 0 through 255.
The default fill value is zero. This };arameter is
optional.

r.ESffiIPl'ION: Each • DS di recti ve allocates stor age for the
different data t:yp:!s. The value of <size>
deteonines the nun.ber of data i tans for which the
assembler reserves storage. '!he total nunber of
t:¥tes reserved is ~ual to the length of the data
type (see Table 7-5) multiplied by the value of
<size>. If the optional fill value is sp!cified,
then each data location is initialized to that
value. otherwise, the data locations are
ini tialized to zero.

'!he S};ace reserved by the .DS directive is
considered "in-line" storage allocation.

7-20

.1l3.x

OO'IES:

~SEmLER DIRECl'IVES
PRELIMINARY - For internal use only

(Continued)

Table 7-5:

.IE.x

Directive Nane Nunber of Bytes Allocated

.IE.B I Byte 1 * value of <size>
I

.lE.W I Word 2 * value of <size>
I

.lE.L I Long 4 * value of <size>
I

.lE.S I Struet 1 * size of structure

1. '!his directive must aPf.ear inside a section (see
• SECl') •

7-21

~smeLER mRECl'IVES

PRELIMINARY - For internal use only ****

• ELSE • ELSE

NAME: .ELSE - Conditional assembly else directive.

FORMAT: • ELSE

PARAME~: None.

IESOUPl'IGt: '!be .ELSE directive begins the optional ELSE block
of the .IF directive. If the expression in the
oorresp>nding • IF directive evaluates to zero, the
statanents between the .ELSE and the oorresp>nding
• ENOC are assembled. Otherwise the statanents are
skipp!d.

NOTES:

1.

7-22

• ENABLE

NAME:

EORMAT:

PARAMETERS :

~SEmLER DIRECl'IVES
PRELIMINARY - For internal use only ****

• ENABLE - Function control di recti vee

• ENABLE <keyword> {, <keyword> }

• ENABLE

<keyword> = arrJ keyword listed in Table 7-6. Either the long
fOIlll or short form of the keyword can re used.

IESOUPl'ION: '!he • ENABLE di recti ve enabl es the SJ;:2cif ied
assembler functions. .ENABLE and its negative form,
.DlSABL, control the functions listed in Table 7-6
assembly functions. Iefer to Table 7-6 for st=ecific
functions.

If rultiple keYworci; are used, they llUlSt re
sep:irated by cxmnas.

wng
FOIlll

USER

Table 7-6:

Short Default
Form Condition Description

EX Disabled When EXTERNAL is
enabled, all
undef ined symtx:>ls
are considered
EXTERNAL symOOl s
(see • EXTERN) •

US Enabled When USER is

7-23

enabled, arrj
symtx:>l that is not
listed in a
.NONUSR directive
is considered a
USER symOOl (see
.USER).

}sSEMBLER DIRECI'IVES
**** PRELIMINARY - For internal use only ****

• ENABLE (Continued) • ENABLE

Table 7-6:

Long Short Default
FOIIn FOIIn Condition Description

UPI=ER UC Disabled When UPEER is
enabled, all
subsequent user-
def ined symbols
are ma~d to
u~rcase.

LC Disabled When IDlER is
enabled, all
subsequent user-
def ined symbols
are mag;:ed to
lowercase.

MIXED MC Enabled When MIXED is
enabled, any
case-conversion
options (UPI=ER,
LO'lER) is
temina ted and
all subsequent
user-def ined
symbols are
not oonverted.

Lcx:AL I LS Disabled When LOCAL is
enabled, all
subsequent
user-def ined
Lcx:AL &ymbol s
(see • LOCAL)
are inc! uded
in the object
file &ymbol
tab! e. '!his
function is
useful when
derugging.

7-24

ASSEM3LER DIRECl'IVFS
**** PRELIMINARY - For internal use only ****

• ENABLE (Continued) .,ENABLE

Table 7-6:

Long Short Default
Form Form Condition Description

NaruSR NS Disabled When NCNUSR is
enabled, all
subsequent
user-defined
NCNUSR ~ls
(see • NCNUSR)
are incl ucEd
in the object
file ~l
table. 'nlis
function is
useful when
detugging.

CRCSS CR Enabled Not implanented.

oorES:

1.

7-25

ASSEMBLER DIRECI'IVFS

PRELIMINARY - For internal use only ****

.ENOC .ENIX:

NAME: .ENIX: - Conditional assenbly end directive.

FORMAT: • ENOC

PARAMETERS: None.

IESrnIPl'ION: '!he .ENOC directive teDllinates the oonditional
assembly block started by the .IF directive. See
the description of • IF for more information.

Wl'FS:

1.

7-27

• END

NAME:

EORMAT:

PARAMETERS :

~SElo1BLER DlRECl'IVES
PRELIMmARY - For internal use only ****

.END - lot>dule and block end directive.

• END [<name>]

• END

<name> = aIrj legal user-def ined symbol. '!his piraneter is
op:ional.

IESClUPl'ION: .END temtinates a .MJIIJLE or .BEGIN definition. If
• END is encountered without a oorrestx'nding .MJIIJLE
or .BEGIN directive, the assembler displays an error
message. If the optional name is sIEcified, it must
match the name defined in the oorrestx'nding .MJIlJLE
or • BEGIN di recti vee '!he use of the name is
strongly recommended so that the assembler can
detect aIrj :ilnpro{:erly nested modules or regin
blocks.

NOlES:

1.

7-26

• ENOS

NAME:

FORMAT:

PARAME'IERS :

ASSEmLER DIRECI'lVES
PRELIMINARY - For internal. use only ****

.mrs - Structure definition end directive.

.ENm [<name>]

• mrs

<name> = any legal user-def ined symOOl. 'Ibis J;2raneter is
optional.

IESOUPl'IGt: The .ENm directive terminates a structure
definition started by the .STRIJCI' directive. See
the descri~ion of • SlKJCI' for more information. If
the optional name is stecified, it must match the
name defined in the oorresp:>nding • SImCI' directive.
'!he name should be stecified so that the assembler
can detect any improp!rly nested structures.

oorF.S:

1.

7-28

ASSEMBLER DIREcrlVES

PRELIMINARY - For internal use only ****

.mF .IDF

NAME: .EOF - Assembly teDllination directive.

FORMAT: .mF

PARAMETERS: None.

IESOUPl'ION: The .IDF directive terminates the source progran.
Subsequent source lines are ignored and not included
in the listing file or the object file.

'!he .EDF directive is not r8:}uired to terminate a
source file. When the assembler enCOlmters a
J:ilysical end of file, it is interrupted as a • IDF
directive. An exception occurs if the assembler
enCOlmters a J:ilysical end of file inside an include
file, then the next I outer nested' file is read
f ran. However, if the assembler encolmters a • mF
inside an include file, .all. source line processing
is teDllinated at that I;X)int.

7-29

• ERROR

NAME:

FORMAT:

PARAMETERS :

~SEH3LER mRECl'IVES
PRELIMINARY - For internal use only ****

.ERROR -- Error message pcint directive.

.ERROR "<message>"

• ERROR

<message> = any legal character string. Null strings are
allONed.

IESCRIPl'ION: .ERROR causes the assanbler to display an error
message on standard error and in the listing file

00'.lES:

(if applicable). .ERROR can be used to display an
error message when a macro call or oondi tional
assanbly oontains an undesirable set of oondi tions.

User-generated error messages have the form:

** <name>-Error <file_name> [User-generated): <message>

Where:
<name> = to the assanbler name.
<file,JlaIlle) = to the source file that

generated the error message.
<message> = to message string to be printed

'!he '[User-generated]' distinguishes it fran error
messages generated l:¥ the assembler. '!he Cbuble
qootes (") 00 not a~ar as pirt of the printed
message.

When the assembly is finished, the assanbler
displays the total nllllber of errors encountered,
this includes both assembler and user-generated
errors.

1. '!he line oontaining the • ERROR eli recti ve is not
included in the listing file.

7-30

• ERROR

~SEH3LER DIRECl'lVES
PRELIMINARY - For internal use only

(Continued)

7-31

• ERROR

• EXTERN

NAME:

FORMAT:

PARAME'lERS :

AC)SEH3LER DIRECI'lVES
PRELIMINARY - For internal use only ****

• EXTERN

.EXTERN - External symb:>l definition directive.

• EXTERN <symbol> {, <symbol> }

<symbol> = any legal user-def ined symOOl.

DESCRIPrION: '!he. EXTERN directive indicated that the s~cified
symbols are external to this module.

OOI'ES:

If the EXTERNAL keyword is enabled (see the
description of .ENABLE), all unresolved symbols are
declared external. rrhus, if EXTERNAL is enabled,
the progranmer need not S};ecify symbols as external
using the • EXTERN di recti vee However, if EXTERNAL
is disabled, the progranmer must explicitly use
.EXTERN to declare any syntx>ls that are Cefined
externally Cut referred to in the current module.
If EXTERNAL is disabled and the assembler finds
symOOls that are not def ined in the current module
and are not listed in a • EXTERN di recti ve, an error
message is printed.

If a ~l is declared as external, and then
def ined in the current module, an error message is
printed.

If multiple symb:>ls are S};ecified, they must be
sep:lrated by conunas.

1. rrhis directive must app!ar inside a module (see
.M)IlJLE) •

7-32

• FATAL

NAME:

EORMAT:

PARAME'IERS :

~SE)1BLER DIRECI'IVES
PRELIMINARY - For internal use only ****

.FATAL - Fatal message print directive.

• FATAL n <message> n

• FATAL

<message> = any legal character string. Null strings are
allcwed.

IESQUPl'ION: • FATAL causes the assembler to display a fatal
message on standard error and in the listing file

WlES:

(if applicable). .FATAL can be used to display an
error message when a macro call or oonditional
assembly oontains a disastrous set of oondi tion~.

User-generated fatal messages have the form:

** <name>-Fatal <file,JlaIlle> [User-generated]: <message>

Where:
<name> = to the assembler name.
<fileJ}aII\e> = to the source file that

generated the fatal message.
<message> = to message string to be printed

'!he I [User-generated] I distinguishes it fran fatal
messages generated t¥ the assembler. '!he <DubIe
qootes (n) do not a~ar as tart of the printed
message.

'!be .FATAL directive causes the assembler to
imnediately abort in tass one and no taSS two
processing will occur. All source line processing
teIminates at that];X)int.

1. '!he line oontaining the • FATAL di recti ve is not
included in the listing file.

7-33

• FATAL

ASSE%t!BLER DIREC1'IVES
PRELIMINARY - For internal use only

(Continued)

• FATAL

2. '!he assenbler exit value will be set an error value.
'!his value is o{:erating system de};:endent.

7-34

• FILE

NAME:

EORMAT:

PARAME'lERS :

AgSEM3LER DIRECI'IVES
PRELIMINARY - For internal use only ****

.FILE - Source file definition directive.

• FILE

• FILE <nunber> [, "<name>" [,<modify_time>]]

<nunber> = any legal integer nunber. 'nle file nunber is
represented as a lIlsigned integer and has the range
of 0 through +4294967295. Negative nunbers and
expressions are not allowed.

<name> = arry legal character string. Null strings are not
allowed. '!his piraneter is optional.

<modify_time> = any legal integer nunber. '!he modify time is
represented as a signed integer and has the range of
-2147483648 through +2147483647. '!he default modify
time is zero. '!his paraneter is optional.
Expressions are not allowed.

IESClUPl'ION: '!be. FILE di recti ve is used to oontro1 the source
file name that is displayed whenever an error
message is issued by the linker or the rtmtime
loader. '!his information is also used by the
deblggers.

NO'IES:

'!he optional <name> and <modify_time> are only
necessary when the first reference to the file is
-made. If the first reference <Des not include a
file name, an assenbl.er error will result.
Subsequent references only need to s~cify the
<nunber>.

1. '!he assembler <Des not enforce any path or file
naming convention. '!his is sl,Ecif ied by the
host ol,Erating systan.

2. '!he <DubIe quotes (") are not pissed as pirt of
the file name.

7-35

• FILE

~SElt1BLER mRECl'IVES
PRELIMINARY - For internal use only

(Continued)

• FILE

3. File nunbers can be redefined by ~cifying a new
file name to the nunl:er.

7-36

.GLCBAL

NAME:

FORMAT:

PARAME'IERS :

MlSD1BLER DIRECI'IVES
PRELIl-fiNARY - For internal use only ****

.GLCBAL

.GLCBAL - Global &ymtol declaration directive.

• GLCBAL <symbol> {, <symbol> }

<symbol> = arrt legal user-def ined symbol.

lESOUPrlCE: The .GLCBAL directive indicates that the ~cified
symbols are declared as global &ymbols and are
exported one level out (made visible outside the
current module).

NO'IES:

If nultiple &ymbols are stecified, they IIUlSt re
seIBrated k¥ cx:mnas.

1. 'Ibis directive must_aPI2ar inside a module (see
.MJIlJLE) •

2. If a &ymbol is declared global, rut not dafined
in the current module, an error is printed.

7-37

.HFAIER

NAME:

EORMAT:

PARAME'lERS :

MSEMBLER DIRECl'IVES
PRELIMINARY - For internal use only

• HEAlER - Listing header eli recti vee

• HEADER "<string>"

• HEADER

<string> = any legal character string. NUll strings are
allowed.

IESOUPrlCE: The.HEAIER directive causes the assembler to print
the <Sting> on the third line of each tBge of the
listing file. A null <string> will clear or blank
the previous header sting. '!his directive is
ignored if no listing file was st2cified.

OOIES:

1. '!he.HEAIER directive takes affect on the rext
listing tBge generated, unless it is the first
opoode on the tBge.-

2. '!he header string can te up to 254 characters
long, ~ever, it is recommended that it is
limited to the width of the listing page.

3. '!he.HEADER string is initially set to the null
string (blank).

7-38

.IF

NAME:

FORMAT:

PARAME'IERS :

ASSEMBLER DIRECl'IVES
PRELIMINARY - For internal use only ****

.IF - Conditional assanbly if directive.

.IF <expression>

.IF

<expression> = any legal expression. The expression cannot
contain any forward references, external symbols,
relative symbols, or unresolved symbols. The
expression must evaluate to an assanble-time
constant in the first J:8ss.

DESClUPrION: A conditional assanbly block is a series of source
statanents that is assanbled only if a certain
condition is met at assanbly-time. .IF starts the
conditional block and .ENOC end; the conditional
block. An optional • .ELSE can aPJ;ear tetween • IF and
• ENOC. Eadl • IF must have an cor res{X)nding • ENOC.
The • IF directive contains an expression which is
evaluated (as 32-bits)... If the result is non-zero,
all the source lines up- until the • .ELSE or .ENOC
directives are assanbled. If the expression
evaluates to zero r all source lines up until the
.ELSE or .ENOC directives are ski~d. If a .ELSE
directive is encountered, then the lines tetween the
• ELSE and • ENOC are assembled.

Condi tional blocks can te nested, that is a
condi tional block can be inside of another
conditional block. In this case the statanents in
the inner condi tional block are assembled only if
the condition is met for both the outer and inner
block. .IF directives can be nested 16 levels deep.
If a statenent attanpts to exceed this nesting level
depth, the assanbler displays an error message.

7-39

.IF

oorm:

AgSD1BLER DIRECrlVES
PRELIMINARY - For internal use only

(Continued)

1.

7-40

.IF

.INaJ)

NAME:

FORMAT:

PARAMETERS :

N:jSEMBLER DIRECl'IVES
PRELIMINARY - For internal use only

• IN(l,D - Inel ude file di recti vee

• IN(l,D n <f il e,Jlall\e> n

.IN(!J)

<file_name> = any legal character string. Null strings are not·
allowed.

DESCRIPl'ION: The. IN(l,D directive inclucEs the <file,Jlall\e> in the
source stream. InelucE files may l::e nested. If a
.EDF directive is encountered in an include file,
all subsequent source lines are ignored. Nested
• IN(l,D are allowed to 16 levels.

NO'1ES:

1.

7-41

• LINE

NAME:

EORMAT:

PARAMETERS :

~SEJmLER mRECl'lVES
PRELIMINARY - For internal use only ****

• LINE

.LINE - Source line nunter definition directive.

• LINE [+1-] [<nunter>]

<nunter> = any legal integer nunter. '!he line nunber is
represented as a unsigned integer and has the range
of 0 through +4294967295. '!his parameter is
optional. Negative nunbers and expressions are not
allowed.

DES<lUPrION: The. LINE di recti ve is used to oontrol the line
nunber that is displayed whenever an error message
is issued by the linker or 'the rlU'ltime loader. rrhis
infomation is also used by the deruggers.

'!he various functions of the • LINE di recti ve are
stmmarized in Table 7-7.

Table 7-7:

Directive Description

• LINE Incranent the current source line
nunber by one •

• LINE - Decranent the current source line
nunber by one •

• LmE + Incranent the current source line
nunter by one •

• LINE <nunber> Set the source line nunber to
<nunber> •

• LINE -<nunber> Set the source line nunber to the
current source line nu:nber minus
<nunber>.

7-42

• LINE

OOIES:

ASSEMBLER DIRECl'IVES
PRELIMINARY - For internal use only

(Continued)

. Table 7-7:

Directive Description

• LINE

.LINE +<nunber> Set the source line nunber to the
current source line nunber plus
<nunber>.

1.

7-43

.LINRER

NAME:

EORMAT:

PARAME'IERS :

ASSEM3LER mRECl'lVES
PRELIMINARY - For internal use only

• LINRER - Linker directive.

.LINRER <value) {,<value)}

• LINKER

<value) = any legal expression. '!he expression can oontain
forward references, rut cannot oontain all¥ external,
relative or unresolved symbols. '!he expression must
eval uate to an asSEmble-time oonstant.

IESCRIPl'ION: The .LlNKER directive is used to !:=Bss information
directly to the linker. retailed knowledge of the
object format is needed to used this directive.
Extrane caution should be taken in using this
directive. Refer to App!ndix F for the effects of
this directive on sp!cific object files.

NO'IES:

1.

7-44

• LIST

NAME:

FORMAT:

PARAMETERS :

~SEMBLER mRECl'lVES
PRELIMINARY - For internal use only

• LIST - Listing control eli recti vee

• LIST <keyword> {,<keyword>}

• LIST

<keyword> = any keyword listed in Table 7-8. Either the long
form or short form of the keyword can te used.

IESClUPl'ION: .LIST and its negative form, .NCLIST, specify
listing control options in the source text of a
progran. .LIST causes certain ty};:es of lines to te
included in the listing file.

Each keyword can te used alone or in combina tion
with other keywords. If multiple keyword are
specif ied, they must te seIBrated by connnas.

Table 7-8:

Long Short Default
Form Form Condition Descri~ion

P~E R; List Enable the use
of the .PAGE
directive.

CDNDITIONS CA List Not implanented.

DEFINITION MD List Not implanented.

CALLS Me List Not implanented.

EXPANSIONS ME List Not implanented.

SaJRCE SL List List source lines.

'l5TATES TS List Not impl anented.

7-45

• LIST

00rES:

M)SEH3LER DIRECl'IVES
PRELIMINARY - For internal use only ****

Long
Form

WIo\T

1.

(Continued) • LIST

Table 7-8:

I Short Defaul t
I Form Condi tion Description

WS No List Print the WIo\T
proprietary
statanent on the
second line of
each listing page.
'!his statanent
will be printed

7-46

on every listing
page, regardless
of where the .LIST
di recti ve is
encotmtered.

• LOCAL

NAME:

FORMAT:

PARAME'IERS :

ASSEMBLER mRECl'IVES
PRELIMINARY - For internal use only ****

• LOCAL

.LOCAL - Weal symbol declaration directive.

.LOCAL ~l> {,<symbol>}

<symbol> = any legal user-def ined symbol.

DESClUPl'ION: '!he • LOCAL di recti ve indi cates that S};Ecif ied

NO'1ES:

symbols are declared as local symbols. If a &ymbol
is not declared as a .GLCBAL or • EXTERN, then it is
asstmed to be local. If a &ymbol is declared, rut
never defined (e.g. as a label), an error is
printed •

• LOCAL is the default for all &ymbols.

1. '!his directive must awear inside a module (see
.ltDIlJLE) •

7-47

.K>IlJLE

NAME:

FORMAT:

PARAMETERS :

ASSDmLER DIRECl'IVES
PRELIMINARY - For internal use only ****

.K>IlJLE - f.t>dule definition directive.

.K>IlJLE [<name)]

.K>IXJLE

<name) = arrt legal user-def ined symOOl. '!he def aul t name is
the null name (null string). '!his fSraneter is
optional.

IESClUPl'ION: The. ltDIXJLE di recti ves is used to tegin a new
procedure or subroutine. Each module defines a new
scoping symbol enviranent. Any previous def ined
section (see. SEer) is pushed onto the section
stack. Modules may be nested.

NarES:

1.

7-48

.NCLIST

NAME:

EORMAT:

PARAME'IERS :

ASSEMBLER DIRECl'IVES
PRtLIMINARY - For internal use only

.NLIST - Listing control directive.

.mLIST <keyword> {,<keyword>}

.NCLIST

<keyword> = any keyword listed in Table 7-9. Either the long
form or short form of the keyword can l:::e used.

IESOUPl'ION: • ta.IST sp!cify listing oontrol options in the
source text of a progran. .ta.IST causes CErtain
1:yp:!s of lines to l:::e excluded in the listing file.

Each keyword can l:::e used alone or in combination
with other keyworcE. If multiple keyword are
~cified, they must l:::e se};Brated by oommas.

Table 7-9:

Long Short Default
Form Form Condition Description

PK;E ro List Disable the use of
.PK;E.

CDNDITIONS CA List Not implanented.

DEFINITION MD List Not implanented.

CALLS Me List Not implanented.

EXPANSIONS ME List Not implanented.

SOJRCE SL List I):) not list source
lines.

'!STATES 'IS List Not implanented.

7-49

ASsneLER DIRECl'lVES
**** PRELIMINARY - For internal use only ****

.mLIST (Continued) .In.IST

tD'IES:

Long
Form

WICAT

1.

Table 7-9:

I Short Default
I Form Condition Description

I WS No List I Do not list the
I I WICAT proprietary
I I statenent.

7-50

.tnroSR

NAME:

EORMAT:

PARAMETERS :

AgSEM3LER DIREcr1VFS
PRELIMINARY - For internal use only ****

.~SR

.NCNUSR - Non-user symtx>l declaration directive.

.~SR ~l> {,<symbol>}

<symbol> = af¥ legal user-defined symbol.

DESffiIPl'ION: '!he .RlruSR directive indicates that ~cified
symtx>ls are declared as non-user defined symbols.
'!his directive is useful for distinguishing user
defined symtx>ls form non-user defined symbols (e.g.
compile symtx>ls). By default, non-user symtx>ls not
incl uded in obj ect files.

NOTES:

If the USER keyword is disabled (see the description
of .DISABL), all undeclared symtx>ls will be assuned
to be declared as non-user symtx>ls (see • NCNUSR) •
'!hus, if the USER keyword is disnabled, the
progranmer need not ~cify symtx>ls as non-user
using the .~SR directive. However, if USER is
enabled (the defaul t) , the progranmer must
explici tly use • NCNUSR to declare af¥ symtx>ls that
are not def ined by the user symtx>ls in the current
module.

If a symtx>l is
defined (e.g.
r ep)r ted.

declared as non-user, rut never
as a label), an error will be

If multiple symtx>ls are ~cified, they must be
separated by commas.

1. '!his directive must app:!ar inside a module (see
.ltDIlJLE) •

7-51

A9SEH3LER DIRECl'IVES

PRELIMINARY - For internal use only ****

• PAGE • PAGE

NAME: .PAGE - Page advance directive.

FORMAT: • PAGE

PARAMETERS: None.

IESOUPI'ION: The .PAGE directive advances the listing file to the
top of the next J;Bge. '!his is acoomplished by
wri ting a Form Feed (L) character into the listing
file. If the listing file is printed on a device
that cbes not s1.1pp)rt the Form Feed character, the
use of the .PAGE directive is ineffective.

7-52

• PRINT

NAME:

EORMAT:

PARAMETERS :

~SEMBLER DIRECl'IVFS
PRELIMINARY - For internal use only

.PRINT -- Print message directive.

• PRINT "<message>"

• PRINT

<message> = any legal character string. Null strings are
allowed.

IESrnIPl' ION : • PRINT causes the assembler to displa:y an
informational nessage on standard error and in the
listing file (if applicable). .PRINT can t:e used to
displa:y an informational message. '1he message
produced by .IRINT is not considered an error or
warning message.

NOIES:

Use r-gener ated messages have the form:

** <name>-Print <fileJlClllle> [User-generated]: <message>

Where:
<name> = to the assembler name.
<file_name> = to the source file that

generated the message.
<message> = to message string to t:e printed

'!be ' [User-generated] , distinguishes it fran
messages generated by the assembler. '!he rouble
qootes (") do not aPt=ear as p:lrt of the printed
message.

1. '!he line containing the .PRINT directive is not
included in the listing file.

7-53

.PROCSS

NAf.£ :

FORMAT:

PARAMETERS :

ASSDmLER DIRECl'lVES
PRELIMINARY - For internal use only ****

.PROCSS - Processor definition directive.

• PROCSS <tyJ;e >

.PROCSS

<tyJ;e> = any processor ty~ listed in Table 7-10.

IESOUPrION: The .PROCSS directive causes the assembler to
accepts only the instructions and addressing modes
of the st:ecif ied processor.

NarES:

Long
Form

M68000

M68020

1.

Table 7-10:

Short
Form Description

MO Accept the M68000 instructions
and addressing modes.

M2 Not implanented.

7-54

• SEer

NAME:

EORMAT:

PARAMETERS :

ASSEMBLER mRECrIVF.S
PRELIMINARY - For internal use only ****

.SEer - Section definition directive.

.SECI' <nunber> {,<attrirute>}

.SECT <name> {,<attrirute>}

• SEer

<ntmber> = arrt legal integer nunber. '!he section nunber must
be in the range of 0 through 254. Negative nunbers
and expressions are not allowed.

<name> = arrt legal user-defined symbol.

<attrirute> = arrt attriblte listed in Table 7-11. Either the long
form or short form of the attriblte can be used.

DES<lUPl'ION: The di recti ve • SECI' def ines a section and its
attributes. When the <name> paraneter is used, the
name must be either a preCefined section name (see
Table 7-12), or ·have be defined previously with the
NAME attriblte. '!he <number> par aneter specifies
the section nunber.

Each section can be defined to have the attributes
listed in Table 7-11. However, once a section is
eefined, conflicting attriwtes are not allowed.

Long
Form

ABSCLUTE

7-55

Table 7-11:

Short
Form Description

AS The linker assigns the
section to be atsolute.
'!he contents of this
section can be code or
data. '!he eefault
section tn:e is
relative (see
RELATIVE) •

• SECI'

OOIES:

ASSEMBLER DIRECrIVES
PRELIMINARY - For internal use only ****

(Continued) • SECI'

Table 7-11:

Long Short
Form Form Description

RELATIVE RS The linker assigns the
section ~ to be
relocatable. '!he
contents of this
section can be oode or
data. '!his is the
default section ~.

ADIEESS = <value> AD Set the beginning
address of this section
to <val ue>. '!he def aul t
beginning address is
zero.

NAl€ = <symbol> NM Assign <symbol> as the
name of this section.

Table 7-12: Predefined Section Names

Nane Attribltes

TEXT RELATIVE
Dl\TA RELATIVE
BSS RELATIVE
a;'lR RELATIVE
lURE RELATIVE
IMlURE RELATIVE

1. '!his directive must aPJ:ear inside a module (see
.IDIlJLE) •

7-56

ASSEM3LER DIRECrIVES

PRELIMINARY - For internal use only ****

2. '!he ABSCLUTE and ADmFSS keywords are not
supported t¥ all object file formats. Pefer to
App!ndix F for st:ecific obj ect file limitations.

7-57

.smrJCI'

ASSEMBLER DIRECI'lVES
PRELIMINARY - For internal use only ****

NAME: .mmeI' - Structure definition directive.

FORMAT: • S'IRDCI' <name>

PARAMETERS :

<name> = aroJ legal user-defined syrnOOl.

IESClUPrION: Not supp::>rted in this version.

7-58

• smIleI'

• USER

NAfJE:

FORMAT:

PARAMETERS :

ASSEH3LER DIRECl'lVES
PRELIMINARY - For internal use only ****

.USER - User symbol definition directive.

• USER <symbol> {, <symbol> }

• USER

<symbol> = any legal user-defined symbol.

DESCRIPl'ION: '!be .USER directive indicates that sp3cified symbols
are declared as user def ined symbols. rrhis
directive is useful for distinguishing user defined
symbols form non-user defined symbols (e.g. oompile
symbols). By default, non-user symbols not included
in object files.

tUmS:

If the USER keyword is disabled (see the description
of .DlSABL), all undeclared symbols will be assuned
to be declared as non-user symbols (see • OCNUSR) •
rrhus, if the USER keyword is enabled, the programner
need not sp3cify symbols as user using the .USER
directive. However, if USER is disabled, the
programner must explicitly use • USER to declare arry
symbols that are def ined as user symbol s in the
current modul e.

If a symbol is declared as user, rut never defined
(e.g. as a label), an error will be re];X)rted.

If nul tiple symbols are sIEcified, they nrust be
se{ar ated 1:¥ commas.

1. '!his directive must a~ar inside a module (see
.MJIlJLE) •

7-59

• WARN

NAME:

EORMAT:

PARAME'IERS :

~SE)1BLER DIRECl'IVES
PRELIMINARY - For internal use only ****

.WARN - Warning message print directive.

• WARN n <message> n

• WARN

<message> = aT¥ legal character string. Null strings are
allcwed.

IESOUPrION: .WARN causes the assembler to dispiay a warning
message on standard error and in the listing file
(if applicable). .WARN can ~ used to display a
warning message when a macro call or conditional
assembly contains a questionable set of a:>nditions.

OOIES:

user-generated warning messages have the form:

** <name>-Warn <file,J'laIlle> [User-generated]: <message>

Where:
<name> = to the assembler name.
<file,J'laIlle> = to the source file that

gener ated the warning message.
<message> = to message string to ~ printed

'!he • [User-generated]' distinguishes it fran warning
messages generated t¥ the assembler. '!he Cbuble
qootes (n) do not a~ar as tart of the pr inted
message.

When the assembly finishes, the assembler displays
the total nunber of warning encountered, this
includes both assembler and user-generated warnings.

1. '!he line containing the • WARN di recti ve is not
included in the listing file.

7-60

• WEAK

NAl£:

FORMAT:

PARAME'lERS :

ASSEmLER mRECl'IVES
PRELIMINARY - For internal use only ****

.WEAK - Weak symbol declaration directive.

.WEAK ~l> {,<symbol>}

• WEAK

<symbol> = any legal user-defined symbol.

DESrnIPrION: • WEAK st=ecif ies that references to the name
symbol (s) may re allowed to re unresolved during the
link editing process. If a .WEAK symbol is
resolved, the .WEAK directive has the same effect as
• EXTERN. If the symbol is unresolved during
linking, references to it are set to the default
value of -1 (NOTE: this vallE may re changed at
link-time. See the linker Cbcumentation information
on how to modify the default value.). 'nle linker
<bes NOT rep:>rt an error for LIlresol ved weak
symbols.

NarES:

When .WEAK s{Ecifies a symbol that is defined in the
current visible scx)~, then that definition is used,
and the &ymOO1 is considered def ined. In this case,
the .WEAK declaration has no meaning.

If a weak symbol is not referenced in the current
scx)~, then an error is reported.

If multiple &ymOOls are s~cified, they must re
separated by <DITanaS.

1. 'nlis directive must aPI;:ear inside a module (see
.IDIlJLE) •

2. '!his directive is not sllplX)rted by all object
file for.mats. Refer to Appendix F for specific
object file limitations.

7-61

<liAPl'ER 8

INSIRlcrION SET AND ADIRESSIOO MJIES

[To t:e written later]

8-1

aIAPI'ER 9

WRITm; roSITION nmEPENLmT <DDE

[To be written later]

9-1

C 0
H C
R T

APEmDIX A

ASCII CBARAcrER TABLE

D HI COD HI COD H COD H
E EI H C E EI H C E E H C E E
C xl R T C X R T C X R T C X

--------------1----------------------------
NUL(.... @) 000
SClI(.... A) 001
~(""B) 002

. Em{(.... C) 003
EDT ("'0) 004
EN:) (.... E) 005
ACK(.... F) 006
BEL (.... G) 007
BS ("'8) 010
HT (.... I) all
LF (.... J) 012
VT (.... K) 013
FF (.... L) 014
CR ' M) 015
so ("'N) 016
SI (.... 0) 017
DLE(.... P) 020
OCl(.... Q) 021
OC2(.... R) 022
OC3(.... S) 023
0C4 ("'T) 024
NAK(.... U) 025
SYN ("'v) 026
E'1B(~) 027
CAN ("'x) 030
EM (:!) 031
SJB(.... Z) 032
ESC(.... [) 033
FS (\) 034
GS (....]) 035
RS (........) 036
US (.... .J 037

o OOlsp 040 32 20 @ 100 64 40 I 140 96 60
1 011 ! 041 33 21 A 101 65 41 a 141 97 61
2 021 n 042 34 22 B 102 66 42 b 142 98 62
3 031 t 043 35 23 C 103 67 43 c 143 99 63
4 041 $ 044 36 24 D 104 68 44 d 144 100 64
5 051 % 045 37 25 E 105 69 45 e 145 101 65
6 061 & 046 38 26 F 106 70 46 f 146 102 66
7 071 I 047 39 27 G 107 71 47 g 147 103 67
8 081 (050 40 28 H 110 72 48 h 150 104 68
9 091) 051 41 29 I III 73 49 i 151 105 69

10 OAI * 052 42 lAl J 112 74 4A1 j 152 106 6A
11 OBI + 053 43 2BI K 113 75 4BI k 153 107 6B
12 OCI , 054 44 2CI L 114 76 4CI 1 154 108 6C
13 001 - 055 45 2D1 M 115 77 401 mISS 109 6D
14 OEI • 056 46 2EI N 116 78 4E n 156 110 6E
15 OFI / 057 47 2F1 0 117 79 4F 0 157 III 6F
16 101 0 060 48 301 p 120 80 50 P 160 112 70
17 III 1 061 49 311 Q 121 81 51 q 161 113 71
18 121 2 062 50 321 R 122 82 52 r 162 114 72
19 131 3 063 51 331 S 123 83 53 s 163 115 73
20 141 4 064 52 341 T 124 84 54 t 164 116 74
21 151 5 065 53 351 U 125 85 55 u 165 117 75
22 161 6 066 54 361 V 126 86 56 v 166 118 76
23 171 7 067 55 371 W 127 87 57 w 167 119 77
24 181 8 070 56 381 X 130 88 58 x 170 120 78
25 191 9 071 57 391 Y 131 89 59 Y 171 12l 79
26 lAl : 072 58 301 Z 132 90 SAl z 172 122 7A
Zl IBI ; 073 59 3BI [133 91 5BI { 173 123 7B
28 lCI < 074 60 3C 1 \ 134 92 SCI I 174 124 7C
29 101 = 075 61 3DI] 135 93 SOl } 175 125 7D
30 lEI > 076 62 3EI 136 94 5EI - 176 126 7E
31 IF I ? 077 63 3F I _ 137 95 SF IRUB177 127 7F

-------1 I I

A-I

APmIDIX B

AgSEMBLER DUGtnsTIC MESSPGES

[To be written later]

B-1

APFENDIX C

ASSEmLER SYNTAX SUMMARY

'!his a~ndix describes the oomplete assembler syntax in modified
Backus-Naur Foon (BNF). '!he following symbols are meta-symbols
belonging to the· BNF foonal ian:

<> - Denotes a syntactic unit.
Read as: the name enclosed in the angle
brackets.

::= - Definition of a syntactic unit.
Read as: "is defined to ~".

- Choose retween syntactic units.
'!his symbol can a~ar as p:lrt of the
assembler language.
Read as: "or".

{} - Denotes plssible rep:!ti tion of the enclosed
syntactic unit(s) zero or more times.
Read as: "zero or more occurenees of".

[] - Optional syntactic unit (s) •
Read as: "optionally".

<sIBee> - Concatenation of two syntactic units.
Read as: "followed by"

- TeIIllinal symbol range.
Read as: "through" (implied "or" (I) between
each elanent in the range.

All other characters are p:lrt of the assembler language.

C-l

ASSEM3LER SYNTAX SUMMARY

PRELIMINARY - For internal use only ****

GENERAL ASSa.mLER SYNTAX SUMMARY:'

<file>

<line>

<label>

<opco de >

<o~rands>

<o{:erand>

::= { <line> }

::= <label> <opcode> <o{:erands> <camnent>

: : = <symbol>: <empty>

: : = <symbol> <empty>

: : = <o~rand> <o{:erand> { , <o~rand> }

::= <PRcx:ESSOltJEPENDENT> <empty>

<camnent> : : = ; { <character> }

<expression> ::= <simple_expression> I <Simple_expression>
<relation-o~rator> <Simple_expression>

<simple_expression> : : = <teIlIl> I <Sign> <teIlll> I
<simple_expression> <Simple_o~rator> <term>

<teIlll> :':= <factor> I <teIlll> <teIIILo~rator> <factor>

<factor> ::= <symbol> I <integer> I (<expression>) I
- <factor> I ! <factor> I ? <symbol> I *

<r elati on-O{:er ator > ::= < <= I = I <> I 1= I >= I >

<simple_o~rator> ::= + I _ I A I I I I I I

<teIlll_o~rator> ::= * I / I % I & I && I « I »

<symbol>

<symbol_start>

<symbol_oody>

: : = <symbolJtart> <symbol_oody>

::= <letter> I • I _

::= {<letter> <decimal_digit> I • I _ I $ }

<integer> ::= <character_literal> I <number>

<character_literal> ::= I { <character_unit> } I

<character_unit> ::= <character> I \ <character> I
\ A <character> I \ <number>

<number> ::= <binary.Jlumber> I <octal_nunber>
<decimal.Jlunber> I <hexadecimal.Jlunber>
<int-real.Jlumber>

C-2

}sSEmLER SYNTAX SUMMARY

PRELIMINARY - For internal use only ****

<binary Jll.11lber>

<0 ctalJll.11lber>

< decimal.Jlunber>

<int-real.Jlumber>

<real>

<wh01e-FElrt>

<fractional-FElrt>

<exponent>

<sign>

<string>

<empty>

<character>

<letter>

<binary_digit>

<octal_digi t>

<decimal_digi t>

· .-· .-

· .-· .-

· .-· .-

· .-· .-

'B <binary_digit> { <binary_digit> }
'b <binary_digit> { <binary_digit> }

'0 <octal_digit> { <octal_digit>}
'0 <octal_digit> { <octal_digit> }

'D <decimal_digit> { <decimal_digit> }
'd <decimal_digit> { <decimal_digit> }

<decimal_digi t> { <decimal_digit>}

'H <hexadecimal_digit> { <hexadecimal_digit>}
'h <hexadecimal_digit> { <hexadecimal_digit>}
$ <hexadecimal_digit> { <hexadecimal_digit> }

::= 'R <real>
'T <real>
'F <real>
'L <real>
'u <real>

'r <real>
't <real>
'f <real>
'1 <real>
'u <real>

::= <wh01e-FElrt> • <fractional-FElrt> <exponent>

: : = <decimal_digit> { <decimal_digit>}

: : = <decimal_digit> { <decimal_digit>}
<empty>

::= E <Sign> <decimal_digit> { <decimal_digit> } I
e <Sign> <decimal._digi t> { <decimal._digi t> } I
<empty>

::= + I - I <empty>

::= n { <character_unit> } n

.. -.. -
::= ASCII character set

::= A •• Z a •• z

::= 0 I 1

::= 0 •• 7

::= 0 •• 9

<hexadecimal_digit> ::= 0 •• 9 I A •• F I a •• f

C-3

ASSFlt1BLER SYNTAX SUMMARY

PRELIMINARY - For internal use only

DIRECl'IVE SYNTAX SUMMARY:

<label> .ASSAm <expression> [,<expression>]
<label> .ADIR <expression>

.ALIGN <expression> [, <expression>]

.ALIGN <symOOl> [, <expression>]

.BEGIN [<symOOl>]

.CD.MK)N <symbol> [,<expression>]

.c:rEFIG <string>
<label> .CCNsr <expression>

.oc. B <expression> {, <expression> }

.oc. W <expression> {, <expression> }

.OC.L <expression> {,<expression>}

.OC.F <real> {,<real>}

.OC.D <real> { ,<real>}
• DISABL <symbol> { , <symbol> }
.IS.B <expression> [,<expression>]
.m.w <expression> [,<expression>]
.IS.L <expression> [,<expression>]
.I5. S <expression> [, <expression>]
• ELSE
.ENABLE <symOOl> {,<symOOl>}
• END [<symOOl >]
.ENDC
• ENI5 [<symOOl>]
.IDF
.ERROR <string>
.~ <symOOl> {,<symbol>}
.FATAL <string>

• FILE <integer> [,<string> [,<integer>]]
• GLCBAL <symOOl> {, <symbol> }
.HEAIER <string>
.IF <expression>
.lNaJ) <string>
• LINE [+1-] [<integer>]
.LINKER <expression> {, <expression> }
.LIST <symOOl> {,<symOOl>}
• LOCAL <symbol> {, <symOOl > }
.IDIl1LE [<syml:ol>]
.NLIST <symbol> {, <symlx>l> }
.NONUSR <symOOl> {,<symlx>l>}
.PIGE
.FRINT <string>
• mc:nlS <symbol>
• SEC!' <integer> {, <symbol> }
.SECT <symlx>l> {,<symbol>}
• smDC!' <symlx>l>
• USER <symOOl> {, <symbol> }
.WARN <string>
.WEAK <symbol> {,<symlx>l>}

C-4

APl:£NDIX D

ASSEmLER ELOATIR; IDmT FORMAT

[To t:e written later]

0-1

APE£NDIX E

68000 INSIRlCl'ION SET SUMMARY

'!his aPfendix provides a SlJl1Inaty of the 68000 instruction set.
For detailed information, refer to the
ftPtorola MC68QQQ 16-bit Microprocessor User IS Manna l •

E-l

ABCD

ADD

ADm
ADDI
ADm
ADDX

AND

ANDI

ASR

BCC
BCS
BFJJ
BF
BGE
BGT
BHI
BHS
BLE
BLO
BLS
BLT
BMI
ENE
BFL
BT
BVC
BVS
BCllG

BCLR

BRA
BSE'!'

BSR
B'IET

rnK
CI.,R

Q1P

68000 msmuC1'ION SET SUMMARY

PRELIMINARY - For internal use only

rn,rn
- (An) ,- (An)
<ea>,rn
rn,<ea>
<ea>,An
#<da ta> , <ea>
#<da ta> , <~a>
Dn,In
- (An) ,- (An)
<ea>,rn
rn,<ea>
#<da ta> , <ea>
<data> , crn
#<data>,SR
rn,rn
#<data>,rn
<ea>
rn,rn
#<data>,rn
<ea>
<label>
<label>
<label>
<label>
<labll>
<label>
<label>
<label>
<label>
<label>
<label>
<labll>
<label>
<label>
<label>
<label>
<label>
<label>
rn,<ea>
<data> , <ea>
rn,<ea>
<data> ,<ea>
<label>
rn,<ea>
#<da ta> , <ea>
<label>
rn,<ea>
#<data>,<ea>
<ea>,rn
<ea>
<ea>,rn

. E-2

68000 INSImCl'ION SET SUMMARY

PRELIMINARY - For internal use only

Q1PA
(}u)I
on:M
IECC
IE~

DBm
DBF
DBGE
DBGT
DBHl
DBHS
DBLE
DBLO
DBLS
DBLT
DBM!
DBNE
DBB:,
DBRA
DBT
DBve
DBVS
DIVS
DIVU
EOR
EORI

<ea>,An
#<da ta> , <ea>
(An) +, (An) +
1:h,<label>
01, <label>
01, <label>
Dn,<label>
1:h,<label>
1:h,<label>
1:h,<label>
1:h,<label>
1:h,<label>
1:h,<label>
01, <label>
Il1, <label>
01, <label>
en, <label>
Il1, <label>
1:h,<label>
Il1, <label>
1:h,<label>
en, <label>
<ea>,0'1
<ea>,en
1:h,<ea>
<da ta> , <ea>
<data> , ern
#<data>,SR

EX(; Rn,Rn
EXT Il1
ILLEGAL
JMP
JSR
LEA
LINK
LSL

LSR

<ea>
<ea>
<ea>,An
An, # <data>
1:h,Il1
#<data>,0'1
<ea>
1:h,Il1
#<data>,1:h
<ea>
<ea>,<ea>
<ea>,CCR
<ea>,SR
SR,<ea>
An,USP
USP,An
<ea>,An
<register_list>, <ea>
<ea>,<register_list>
Il1,d(An)

E-3

68000 INSlRlCl'lCN SET SUMMARY

PRELIMINARY - For internal use only

d (An) ,lil
M:NBJ i<data> , lil
f.lJLS <ea>,m
f.lJLU <ea>,Ib
NBCD <ea>
NEG <ea>
NEI;X <ea>
NOP
Nor <ea>
OR <ea>,m

Ib,<ea>
OR! i<da ta> , <ea>

i<data>,ern
i<data>,SR

PEA <ea>
RESET
RCL rn,m

i<data>,m
<ea>

ROR m,rn
i<data>,m
<ea>

ROXL rn,m
i<data>,rn
<ea>

ROXR Ib,Ib
i<data>,m
<ea>

R'lE
R'm
R'IS
SBCD Ih,Il1

-(An) ,-(An)
see <ea>
SCS <ea>
SBJ <ea>
SF <ea>
S2E <ea>
S2T <ea>
SHl <ea>
SHS <ea>
SLE <ea>
SLO <ea>
SLS <ea>
SLT <ea>
SMI <ea>
SNE <ea>
S~ <ea>
SRA <ea>
ST <ea>
SVC <ea>

E-4

68000 INSImCl'ION sgr SUMMARY

PRELIMINARY - For internal use only

SVS <ea>
S'lOP # <data>
SOB <ea>,lil

Il1,<ea>
SUBA <ea>,An
SUB I #<data>,<ea>
SUBJ i<da ta> , <ea>
SOBX Dn,I:'n

- (An) ,- (An)
~AP In
TAS <ea>
TRAP # <vector>
TRAPV
'lST <ea>
UNLK An

E-5

AP1?ENDIX F

OBJECr FILE AND LINKER LIMITATIONS

[To be written later]

F-l

