
Wibug
Programmer's Reference Manual

188-190-203 A

May 1985

WI CATsystems

-
~

I
• Softvvare •
Publications

Cop}~ight~1985 by WICAT Systems Incorporated
All Rights Reserved
Printed in the United States of America

Receipt of this manual nust not be construed as any kind of conunitment,
on the part of WICAT Systems IncorJ;X)rated, regarding delivery or
CMnership of itans manufactured by WICAT.

This manual is subject to change without notice.

first printing May 1985

Information about this Manual

Review the following items before you read this publication.

'!be subj ect of this manual

The manual descr ibes how to use wmu:;, an assembly-language level,
symbolic debugger.

The audience for whan this publication was written

This manual is written for programmers.

iii

Table of Contents

Executing WmtX; ••• wmtG-l

Section 1 General Information

a. Requirements for Debugging Programs •••••••••••••••••••••••••••••
b. Executing and Exiting WIBtX; •••••••••••••••••••••••••••••••••••••
c. Editing the WIBtX; Command Line ••••••••••••••••••••••••••••••••••
d. '!he Help Display ••
e. Interrupting Execution ••
f. WIBm Error Messa.ges ••
g. I/O Devices Used with wmm •••••••••••••••••••••••••••••••••••••
h. WIBtX; Expressions •••
i. Wildcarding •••
j . kcessing Symbol s •••
k. Input Forma. ts •••
1. Menory Access Size ••
m. C>lltput Formats ••
n. Mdr ess .Ra.nges ••

Section 2 Dictionary of WIBtX; Corranands

BR
CP
CS
DH

EX
HE

PR
RS
SB
SJ
SL
SS
TERM
XR
XS
XT

Display and Edit Breakpoints
Spawn a CIP
Clear Screen
Display PC history
Display Menory
Display Registers
Exit WIBtX;
Help Display
Modify Menory
Turn OnIoff Printing
Read a Symbol Table
Stack Backtrace
Step J SR, Rl'S
Step Local
Step Single
Set Terminal
Execute Real time
Execute Sil ent
Execute Trace

1-1
1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-5
1-5
1-6
1-7

~graphical Conventions Used in this Publication

Bold facing indicates what you should type.

Square brackets, [], indicate a function key, the name of which appears
in uppercase within the brackets. For example, [RETRN], [CTRL], etc.

Underlining is used for entbasis.

v

Executing wmu;

Functional Description

Use WIBUG to debug an executable file. wrBtX; is an
assembly-language level, symbolic debugger. It has a
built-in, 68000-based assembler and disassembler that
uses Motorola mnemonics.

Camnand Line Syntax

Mnemonic

Optional
parameter

Optional
parameter

Parameters

wi bug

file name

file parameters

filename Function: This ~cifies the executable file you want
to debug.
Default: WIBUG provides you with a 4K page of NDP's to
experiment with.
Syntax: ~ a single, standard file designation.
Wildcard symbols or WMCS search paths cannot be used.
(In other words, if you are not in the directory that
contains the file, you must type the complete file
designation.) You can also sJ;ecify a logical name.

file parameters etion: This ~cifies the parameters for the
executable file.
Defaul t: No parameters are passed to the executable
file.

WIBUG-l

Executing wmu;

Examples

This command debugs an executable file named A.EXE and passes a p:irameter
with the value 1000 to the executable:

> wibug a 1000

This command debugs an executable file named TFS'l'.EXE but does not pass any
parameters:

> wibug test

This command executes WIBOO and gives you a 4K page of nop's to experinent
with:

> wibug

WIB00-2

Section 1
General Information

a. Requiranents for debugging programs

WlBUG cannot be used with executable files that exceed
its size requirements, require the stack pointer to be in
a specific location, or use certain traps.

The program to be debugged must fit into the 2 megabyte
logical address sp:lce along with its data, its stack, and
WIBUG. WIBOO uses about l28K of this sIBce and also
changes the location of the stack pointer. Figure 1
shows how WIBUG uses its share of logical address sp:lce.

Also, WIBUG cannot be used to debug a program that
defines a trap handler for traps 13 (breakpoint), 19
(single st~), or 22 (set exit handler). These traps are
used by WIBOO.

IDTE: You can debug programs that define exit handlers,
as long as they do not set an exit handler with
trap 22.

a o~--------------~

Code Code

Data Data

Stack

Wibug
2 Mbyte '--__ S_ta_c_k __ -" 2 M by te ______________ -'

Fig 1 WIBUG uses sane logical address sIBce and moves the stack pointer

1-1

General Information

b. Executing and Exiting WIBOO

The syntax for executing WIBOO is explained at the beginning
of the WIBOO description. It is just like typing wibug in
front of the normal command line for your program.

WIBOO autanatically tries to load the symbol table for your
program. It does this by looking for a .mer or .out file with
the same name as the executable file. If WIBUG cannot find a
symbol table it displays an error message.

After you execute WIBOO, its pranpt ap~ars:

-)

At this point you can type any expression or WIBOO camnand.

To exit WIBOO, type:

-) ex [RETRN]

c. Edi ting the WIBOO Camrand Line

WIBUG is a line-oriented debugger. It has the same
camnand-line editing functions as the CIP. One command that
is particularly useful in WIBOO is [CrRL] e. It executes the
previous camnand, which is helpful when you want to repeatedly
single step through a program.

d. The Help Display

WIBOO has a help display, which is a syntax line for each
WIBOO camnand. To see the help display, type:

-) he [RETRN]

e. Interrupting Execution

Type [Cl'RL] c to interrupt the execution of your program in
WIBUG. You can also use [Cl'RL] c to abort WIBOO camnands
(such as a long disassembly). It is normally best to type a
single, deliberate [Cl'RL] c. As a last resort, you can try
two quick [C1'RL] CiS, which WIBOO recognizes as a "panic"
interrupt. If you wish, you can resume execution where the
program stop:fed.

1-2

General Information

f. WIBUG Error Messages

For the JOOst part, WIBUG generates the diagnostic nessages
WMCS would normally generate while your program is running.
WIBUG also generates a few of its own diagnostic messages that
pertain to operating the debugger, such as a syntax error in a
command or reporting a full symbol table.

g. I/O Devices Used With WIBUG

WIBUG performs its input and output through the devices or
files specified by the logical names WIBUGIN and WIBOOOOT
(defined on the CIP command line using logical name
assignments). If these names are not defined before you
execute WIBOO, the devices specified by SYS$IN1?{1l' and
SYS$OOTPtJT are used. If the printer is activated by WIBUG's
PR conunand, WIBUG outputs to the device or file specified by
the logical name WIBUGPRl'. If this name is not defined, WIBUG
uses SYS$PRINT. You can also alter the input and output
devices in WIBUG by using the PR and TERM commands. This is
helpful for programs that are screen oriented, so you can run
the program on one terminal and operate the debugger on
another. To do this start your program with WIBUG on one
terminal but define the logical names WIBUGIN and WIBOOOOT for
another' terminal. Theri;When WIBUG begliis execution, control
is switched to the secorrl teminal. You can change control to
another terminal after executing WIBUG with the TERM command
(see section 2).

h. WIBUG Expressions

Expressions are used in WIBUG to perform operations and to
specify addresses. Expressions are typed on WIBUG's command
line by themselves to display memory or registers.
Expressions combined with the assignment operator, =, are used
to roodify memory. Section 2 explains how to 00 these
operations.

Expressions also specify addresses for WIBUG commands and can
be used anywhere a command requires an address. Address
arithmetic is performed with expressions using the four
standard arithmetic operators (+, -, *, /), plus the bitwise
logical operators for AND and OR (& and I). '!be @ sign is
used to signify address indirection. (Indirection accesses
the value at that address. Double indirection uses the value
at the specified address as a pointer to a second address,
whose contents are then accessed.) Any value can be specified
with an expression. For example, the following expression
evaluates to the value found at the address s~cified by

1-3

General Information

adding the value of the symbol JIBin to the hexadecimal value
Ie:

-) @ (JIBin+$le)

Double indirection is indicated with two @ signs:

-) @@(JIBin+$le)

Additional indirection can be sIEcified (if you desire) with
additional @ signs.

i. Wildcarding

Wildcarding can be used with all applicable comnand
parameters, which includes the s~ification of registers and
symbols. The syntax for wildcarding is the same as WMCS
wildcarding (* for multiple characters and = for single
characters). The equal sign, =, is also used as an assignment
operator. If the meaning of = is ambiguous, WIBOO assumes it
is used as a wildcard symbol. For example, the following
canmand displays all three letter symbols whose names start
with te (the exclamation point means the expression refers to
symbols, not registers):

-) Ite=

And this comnand displays all symbols, of any length,
beginning with re:

-) lre*

j. Accessing Symbols

If a symbol from a program is the same as a reserved word in
the debugger, you must precede the name of the symbol with an
exclamation point, 1, when referring to it in an expression.
Otherwise, WIBOO thinks the symbol refers to the reserved
word. For example, to use the symbol pc (the same as WIBOO's
reserved word for program counter), you must type Ipc. Also,
when there is a conflict of names between registers and
symbols, WIBOO defaults to registers. For example, this
canmand line displays all registers:

-) *
Whereas this command line displays all symbols:

-) 1*

1-4

General Information

And this conunand line displays all symbols that begin with r:

-) lr*

k. Input Formats

The default input for expressions is hexadecimal. You cannot
change the default input, however, you can st:eCify the format
of an input value with the following notations:

Format

decimal
hexadecimal
octal
floating point

character
string

assembly
relative

Input

Precede the value with %
Precede the value with $
Precede the value with \
No symbol. Nlmlber must contain decimal point.
Syntax:

[-] digit •••• [digit •••] [e[+I-] digit •.•]

Enclose the value in I I

Enclose the value in " " (WIBtX; autanatically
terminates the string with a null)

Enclose the value in { }
There is no format symbol. Input the val ue
as an expression. For example, _main+$56 f

For example, the following is a decircal expression:

-) %16499 - %7500

You don1t need to include a dollar sign, $, with a hex string
since that is the default. For example, the following
expression is the same as $lef + $2ed:

-) lef + 2ed

1. Memory Access Size

The size of nernory accesses is s~cified by the switches :1
(byte), :2 (word), or :4 (longword). The initial default is
longword. To s~cify a size other than the default for an

1-5

General Information

individual cammand, include the size specification anywhere on
the input line. To change the default size for the remainder
of the WlBUG session, type the size specification on a line by
itself. For example, the following cammand changes the
default size to word:

-) :2

The size of memory access can affect changes to memory
locations and certain expressions. For example, if you assign
a to a location and the access size is longword, 4 bytes are
altered. However. if the access size is word, only two bytes
are altered. Also, the size of nenory derived from
expressions can vary. For example, the following expression
causes WIBOO to display 40 bytes of nenory beginning at
location 1000, assuming the default is longword:

-) 1000 for %10

But this expression displays only 10 locations (the access
size is byte):

-) 1000 for %10 :1

m. Output Formats

You can specify the format of an output value with the
following notations:

Format

decimal
hexadecimal
octal
single precision
double precision
character
string
assembly
relative

Output

: decimal
: hexadecimal
: octal
:sp (used only with display and modify memory)
:dp (used only with display and modify nenory)
: character
: string
: assembly
:r followed b¥ format symbol desired for
the offset from the label. For example,
: rd means relative with a decimal offset.

1-6

General Information

The default format is initially hexadecimal. Formats may be
specified by a substring of the format name. For example,
n:he n or ":hn are both valid s~cifications for hexadecimal
format. To override the default format for an individual
cannand, include the format s};ecification anywhere on the
input line. To change the defaul t output forma t for the
remainder of the WIBUG session, type the format s};ecification
on a line by itself. For example, the following command
changes the default output format to assembly:

-) assembly

n. Address Ranges

You can indicate address ranges by s};eci~ing the starting
address and the nunDer of tines to increnent the starting
address. Or you can s~i~ a starting address and an ending
address. For example, the following camnand displays the
contents of eight memory locations of the default size
beginning at location 1000 (hex 1000) :

-) 1000 for S

And this command displays the contents of addresses 1000
through lSeS in default format:

-) $1000 to $lSeS

1-7

Section 2
Dictionary of wmoo Commands

Command descriptions appear in the following order:

br
cp
cs
db

(no mnemonic)
(no mnemonic)

ex
he

(no mnemonic)
pr
rs
sb
sj
sl
ss

term
xr
xs
xt

2-1

Display and edit breakpoints
Spawn a CIP
Clear the screen
Display history
Display memory
Display registers
Exit wmoo
Help
Modify memory
TUrn on/off printing
Read a symbol table
Do Pascal- or C-style backtrace
Step jsr, rts
Step local
Step single
Set wmoo' s terminal
Execute realt~ne
Execute silent
Execute trace mode

Display and Edit Breakpoints BR

Camnand Line Syntax

Display breakpoints -) br

Set a breakpoint -) br

Delete a breakpoint -) br # va/lie

Delete all breakpoints -) br i*

Parameters

value

•
*

This s~cifies the address where a breakpoint is to be
set or deleted •

This indicates the breakpoint is to be deleted.

This is a wildCdrd, neaning all breakpoints.

Operation

This command is used to display, set, or delete breakpoints.
Breakpoints set with this command remain during the entire wmu:;
session, unless you delete than. Breakpoints are referenced by
the address at which the breakpoint is set. The XR, XS, and XT
conunands allow you to set tanporary (one use only) breakpoints.

Examples

This command displays all breakpoints:

-) br

BREAKPOINTS-l

Dictionary of wmu:; Corranands

Here is a ~le display of a breakpoint:

·Y"

\ \
hex

address
symbol

+ offset
assembly instruction

at that location

This camnand sets a breakpoint at location main+$lef (WIB{X; does
not generate a message to show the breakpoint was set):

-) br main+$lef

This command deletes a breakpoint at location $2e4fa:

-) br i $2e4fa

This command deletes all breakpoints:

-) br t*

BREAKPOINTS-2

Spawn a CIP CP

Camnand Line Syntax

Spawn a elP -) cp

Parameters

none

Operation

This comnand Splwns a elP. When you want to return to WIBt.X; by
logging out of the elP, you return to location in the program you
were at before the elP was sIBwned.

Examples

This command spiwns a elP:

-) cp

ClP-l

Clear Screen CS

Canmand Line Syntax

clear screen -) cs

Parameters

none

Operation

This conmand clears the screen and places the WIBUG prompt, -) ,
at the bottom of a blank screen.

Examples

This command clears the screen:

-) cs

CLEAR-l

Camnand Line Syntax

display last
20 pc values

display a number
of last pc values

Parameters

Display PC History DH

-> db

-> db

number This s~cifies the nuni:>er of pc values to display. The
default is 20 decimal. The maximum value of this
p:lrameter is 100 decimal.

Operation

This command displays a history of program execution. During
tracing the last 100 pc (program counter) values (addresses) are
stored. Each value displayed also includes the corresFOriiing
assembly instruction for that location.

IDTE: You cannot keep track of the execution if you use the XR
(execute real tine) command to execute the program. The

DB command displays four question marks, 1111, instead of
a pc value to indicate that an XR command was executed.

Examples

This cammand displays the 50 (decimal) instructions that were
last executed and their addresses:

-> db %50

DISPLAY HISTORY-l

Dictionary of wmoo Commands

Here is a sample five-line display (produced by the command db
5) :

00010148 $10148
0001014a $1014a
00010152 $10152
00010154 $10154

tst.b (al)
*bne.s $10152
cmpn.b (aO) +, (al) +
*dbne dO,$1013a

hex symbol (if any) assembly struction
at that location address + offset

DISPLAY HISTORY-2

Cannand Line Syntax

display one
location

display a number
of locations

display a range
of locations

Parameters

Display Memory

@

for number

value to value

value Specify one location in memory.

value for number Specify a beginning location for the value.

value to value

:a

:sp

:dp

SpPcify a nurrber of locations for the number.

Specify the beginning location for the left value
and the ending location for the right value.

Add this to the oammand line if you want the
values in the s~ified locations disassembled.
(:a is a substring of : assembly)

Sp:cify this with @Value to display the 4 bytes,
beginning at value, as a single-precision number.

Sp:cify this with @Value to display the 8 bytes,
beginning at value, as a double-precision number.

DISPLAY MEMORY-l

Dictionary of wmu; Commands

Operation

There is no command mnemonic for displaying memory. You display
memory by sinply listing an address or a range of locations (see
section 1-n). The nUJTber of actual bytes displayed depends on
the memory access size (section 1-1). If you display a single
location, the at sign, @, must precede the value. If you display
a range, you should not include the at sign.

Examples

This comnand displays the contents at the address hex $1000 and
disassembles value:

-) @$1000 :a

Here is a sample display the previous cammand would produce
(assuming the rnemory access size is longword, : 4) :

00001000 $1000 jmp $3b30

This cammand displays 2e hex locations (in bytes) beginning at
location 45fb:

-) $45fb for $2e :1

This comnand displays the contents of locations 4500 through 4600
hex (the default input is hex):

-) 4500 to 4600

This command displays the contents of locations 4500 through 4600
This conunand displays the contents of 4 bytes beginning at
location 5fa (hex) as a single-precision number:

-) @$5fa :sp

This command displays the contents of 8 bytes beginning at
hex location 5680 (default is hex) as a double-precision number:

-) @5680 :dp

DISPLAY MEMORY-2

Display Registers

Cannand Line Syntax

display all *
registers

display a
register

Parameters

register

Operation

'Ibis s:t:eCif ies the register whose contents you want to
display. '!he asterisk means all registers. Data
registers are specified by dO through d7, address
registers by aO through a7 (d* displays all data
registers, a* all address registers). The program
counter is specified by pc, the current stack pointer
by sp and the user stack pointer by usp. Register a7
also contains the value of the stack pointer in use at
the time.

In wmoo, you display the contents of a register by specifying
its name. Wildcarding applies (with * and =).

Examples

This expression displays the contents of all registers:

-) *

DISPLAY REGISTERS-l

Dictionary of wmm Commands

A display of all registers looks like this:

status
register

I:Z! ··~Irl ~._
hex

address

l
·.t:.~: :~ :.

symbol assembly
+ offset instruction

Jlllffh tiM
Registers 0 I 2 3 5 6 7
Data 00000000 00000007 00000000 00000000 00000000 00000000 00000000 00000075
;irress.,:~f;~OOOOO 00003b4~:,00100024 00100006 00000003 00ldeff8 00000000 cr

\ . I
Supervlsor user current

stack stack stack
pointer pointer pointer

'Ibis expression displays the contents of all data registers (d*
also works) :

-) d=

This expression displays the contents of the program counter:

-) pc

DISPLAY REGISTERS-2

Exit WIBUG EX

Camrand Line Syntax

exit WIBUG -) ex

Parameters

none

Operation

'Ibis command allows you to exit W!B{X;. /my changes you trade to
your program during the WIBUG session are lost.

EXIT-I

Cannand Line Syntax

help display -> he

Parameters

none

Operation

The help command displays a page of one-line syntax summaries for
each WIBOO command.

HELP-I

Canmand Line Syntax

IOOdify memory

IOOdify a register

IOOdify or create
a symbol

Parameters

@ value = value

register =

symbol value

Modify Memory

@ =

=
symbol

The value on the left specifies a location. The
value on the right s~cifies the value assigned to
that location. Use the input format explained in
section 1- k. You can use the address ranges
explained in section 1- n for either of this
parameters. If you use a range for the left
parameter, do not use the at sign, @. For
example, assuming the default is hexadecimal, this
command copies 16 locations, in the default size,
from 2000 to 1000 (i.e., locations 2000 - 203f are
copied to 1000 - 103f if the default size is :4):

-) @1000 = 2000 for 10

And, assuming the default is hexadecimal, this
command initializes 16 words with 4e7l beginning
at location 2000:

-) 2000 for 10 = 4e7l :2

The value is assigned to the register you s~cify.

If you specify a symbol that already exists, the
value is assigned to the symbol. If you s~cify a
symbol that does not exist, a symbol is created
with the value you specified. Use an exclamation
mark in front of symbols with the same name as
WIBUG reserved words or those that could be

IDDIEY-l

Dictionary of wmm Commands

J{B/dS!Q d/9H

:sp

:dp

confused with registers.

NJTE: There must be a sp:lce on each side of the
equal sign, =, or else a wildcard function
is assumed.

Specify this with @Value = fp_value to store the
floating-};X>int value in the 4 bytes beginning with
the address specified py value. The floating-};X>int
value must be in the correct format specified in
section l.k.

Specify this with @Value = fp_value to store the
floating-};X>int value in the 8 bytes beginning with
the address specified py value. The floating-IX'int
value must be in the correct format specified in
section l.k. Double-precision is the default
value, so if you specify without :sp or :dp, WIBa;
assumes it is double precision.

Operation

You modify memory by using the assignment operator. For more
than one location, use the address ranges explained in section
I-n.

Examples

This expression assigns the assembly conunand tst.b (a4) + to
location lOSe:

-) @105e = {tst.b (a4)+}

This expression assigns zero to locations 1000 to 1020:

-) 1000 to 1020 = 0

And this expression assigns c1ecinal 20 for 20 bytes (10 accesses
of word) beginning at location 1200:

-) 2000 for %10 = %20 :2

mDIFY-2

Dictionary of wmu; Commands

This expression assigns the hex value lSee4 to data register 3:

-) d3 = lSee4

And this expression creates a symbol called RCXJTINEI and assigns
it the hex value 1000:

-) routinel = 1000

This expression stores the single-precision value zero to the 4
bytes beginning at location 54f:

-) @54f = o. :sp

This expression stores the double-precision value 3.14159 to
the 8 bytes beginning at location 1000 (hex):

-) @$1000 = 3.14159 :dp

This expression stores the double-precision value -123.456e-44
to the 8 bytes beginning at location 2000 (hex):

-) @$2000 = -123.456e-44

r-DDIFY-3

Camnand Line Syntax

toggle onl of f

turn on printing

turn off printing

change print terminal

Parameters

Print PR

-) pr

-) pr on

-) pr off

-) pr terminal name

terminal name This s~cifies the port of a terminal or printer where
you want WIBUG's output echoed.

Operation

This cornnand allows you to tum on or turn off printing, or to
specify a new terminal or printer where the printing goes. When
print is on, WIBUG echoes everything that appears on your screen.
In other words, the output appears in both places.

Examples

This cornnand turns printing on:

-) pr on

This cornnand s{:eCifies _TT3 as the printer port:

-) pr _tt3

PRINT-l

ename

Read a Symbol Table RS

Camrand Line Syntax

Read from a file -) rs
filename

Read from file with
same name as .exe file

-) rs

Parameters

Operation

This is the name of a file with a .mer or • out
extension. You don't need to specify the extension
unless there is file with with the same name for both
extensions. If you don't specify a filename, the .mer
or .out file with the same name as the current .exe
file is used.

This conunand loads a symbol table from a .mer or • out file into
wmoo's symbol table. If symbols already exist in the symbol
table, this conunand adds to the list of symbols. If a symbol of
the same name exists in both the symbol table and the file, the
value in the file overwrites the value currently in the symbol
table.

Examples

This conunand causes WIBUG to look for a symbol table in a file
named SUM.Mrn or SUM.OOT, and read the table into WIBUG if it is
found:

-) rs sum

READ SYMBCL-l

Stack BacktraCe sa

Camnand Line Syntax

stack backtrace -) sb

Parameters

none

Operation

This command prints out a backtrace of the calling sequence,
starting with the current stack frame and continuing back until
the end of the stack is reached. The name of each routine called
is printed, followed by the plrarneters. For C programs, the
~rameter list is in the proper order and values of the
parameters are displayed as long words. For Pascal programs, the
parameter list is in reverse order of the declared parameters.
Also, for Pascal programs, WIBt,X; displays the value of the
parameters as words. Pascal plsses plrameters as words and
longwords, but WIBt,X; does not make j udgnents about the length of
the p:lrameters. Thus, the value of a long word parameter is
found in two adjoining words.

STACK BACKTRACE-l

Dictionary of wmu; Connnands

Examples

Here is a sample display of a stack backtrace for a Pascal
routine:

$b134: $IOlaO(OOld ec78 OOld Oec7c 0000 0050 OOld)
L .)

hex name or
address address
of call of routine

to routine

routine
p:lrameters

Here is a sample display of a stack backtrace for a C routine:

$293a: $44($00000000, $001dcfc4)
::::.

hex name or
address address
of call of routine

to routine

routine
p:lrameters

STACK BAacr'RACE-2

Step JSR, RTS SJ

Camnand Line Syntax

step jsr, rts -> sj

Parameters

none

Operation

This conunand causes your program to execute until it encounters a
j sr , bsr, rts, rtr, or rte instruction and then displays the
contents of the registers. In other words, SJ is the same as the
ss conunand, except it only stops on jsr, bsr, rts, rtr, and rte
instructions.

Examples

A register display looks like this:

status
register

hex symbol
address + offset

assembly
instruction

J .1 ii. 1,8 !IM. _4_£1&1111'" oW.@
Registers 0 1 2 3 4 5 6 7
Data 00000000 00000007 00000000 00000000 00000000 00000000 00000000 00000075
Address 00000000 00003b42 00100024 00100006 00000003 001deff8 oooooooo;lllt:.:····::·1} ,Ii: . . I .. ' ! " ""7'~'"

supervisor user current
stack stack stack

pointer pointer pointer

STEP JSR-l

Step Local SL

Camnand Line Syntax

step local -> sl

Parameters

none

Operation

This command executes your program one step at a tine, and
displays the contents of the registers after each step, except
for subroutines. It treats a subroutine as one step, and
executes the entire routine and returns to the line after the
routine call before displaying the registers. In O""ler words, it
is the same as the SS conmand, except a call to a subroutine is
counted as one instruction and WIBUG does not show single steps
through the routine.

STEP LOC'.AL-l

Dictionary of wmm Commands

Examples

A register display looks like this:

status
register

" .. \
hex

address
symbol

+ offset
assembly

instruction

Registers 0 1 2 3 4 5 6 7
Data 00000000 00000007 00000000 00000000 00000000 00000000 00000000 00000075
Address 00000000 00003b42 00100024 00100006 00000003 001deff8 00000000 ;111I;·~·I1.~~~II2.

~\" " .. :::" .. 1 I
supervisor user current

stack stack stack
pointer pointer pointer

STEP LO('AL-2

Step Single SS

Camnand Line Syntax

step single -) ss

Parameters

none

Operation

This command executes a single instruction and then dumps the
current pc and the contents of all other registers.

Examples

A register display looks like this:

assembly
instruction ,

Registers 0 1 2 3 4 5 6 7
Data 00000000 00000007 00000000 00000000 00000000 00000000 00000000 00000075
Address 00000000 00003b42 00100024 00100006 00000003 001deff8 oooooooolilliiril!
- }g,L ~:,;':':::1I'7"

supervisor user current
stack stack stack

pointer pointer pointer

STEP SThGLE-l

Set Terminal TERM

Camrand Line Syntax

set input
terminal

set output
terminal

set both
input & output

Parameters

terminal name

Operation

-> term <

-> term >

-> term terminal name

'!his srecifies a port that has been roounted on your
systan.

'!his command changes WIBUG's tenminal to the specified device.
You can change the input teoninal. the output tenminal, or both.
If you change the output terminal. the output is displayed there
but not on your terminal. In other words, the output is not
echoed to both terminals. This command is helpful when you want
to execute your program on one terminal and operate WIBUG on
another tenminal.

Examples

To operate WIBUG on another terminal once you have executed your
program wi th WIBUG, you would change the input terminal. '!his
command changes the input ter:minal to _TTS

-> term < _ttS

SET TERMINAL-l

Camnand Line Syntax

execute to end
or [Cl'RL] c

execute and
s~ify tanporary
breakpoint

Parameters

Execute Realtime XR

-) xr

-) xr

temp breakpoint This sI=ecifies a tanporary breakpoint that is set just
before execution begins and is cleared when execution
ends.

Operation

This camnand executes your program until a breakpoint is
encountered, your program ends, or you type [C1'RL] c. Your
program executes at full s~ed with this camnand. Breakpoints
are physically stored in your program as trap number 13.
Execution begins at the current pc. WIBtx; cannot keep a history
of the pc with this camnand. The output your program generates
or error messages are the only output generated with this
camnand. '!his comnand, when used with the tanporary breakpoint.
allows you to execute quickly to a spot in your program you want
to work with more closely.

Examples

This camnand causes your program to be executed until it
encounters a breakpoint and sets a temporary breakpoint at
location 4efe:

-) xr 4efe

EXEOJTE REAL-I

Camnand Line Syntax

execute

execute and
s};ecify temporary
breakpoint

Parameters

Execute Silent XS

-) xs

-) xs

temp breakpoint This s~cifies a tanporary breakpoint that is set just
before execution begins and is cleared when execution
ends.

Operation

This command executes your program until a breakpoint is
encountered, your program ends, or you type [Cl'RL] c. The XS
conmand is similar to the XR command but with one very intX>rtant
difference. While the XR command executes your program at full
s~ed, the XS command silently single steps your program. '!be
single stepping is very slow, but WIBUG is able to keep a history
of the pc. The only display generated by this command is the
display generated by your program and error messages.

Examples

This conmand causes your program to executed and keep track of
the program counter history:

-) xs

EXEClJTE SILENT-l

Canmand Line Syntax

execute

execute and
s~ify temporary
breakpoint

Parameters

Execute Trace XT

-> xt

-> xt temp breakpoint

temp breakpoint This s~cifies a temporary breakpoint that is set just
before execution begins and is cleared when execution
ends.

Operation

This cannand executes your program until a breakpoint is
encountered, your program ends, or you type [Cl'RL] c. The XT
cannand is just like the XS cOlDIlBlld except that XT displays the
registers between each single step. There is a one secord delay
between each step to give you a chance to glance at the register
display and decide if you want to interrupt execution with [Cl'RL]
c.

Examples

This cannand causes your program to execute a step at a tine and
display the registers after each step. It executes until a
breakpoint is encountered and the conmand also sets a temporary
breakpoint at location 204e:

-) xt 204e

EXEaJTE 'IRACE-l

Dictionary of wmu; Commands

A register display looks like this:

hex symbol assembly
address + offset instruction l , ,

:,1111:',/ ~_.II_¥.It*rfil:lglf:i_
Registers 0 1 2, 3 4 5 6 7
Data 00000000 00000007 00000000 00000000 00000000 00000000 00000000 00000075
Address 00000000 00003b42 00100024 00100006 00000003 001deff8 OOOOOOOOQO:_~~:
.}@i{t:RIR§II"'::"·','" '![:~"::'::::JI«""I""""" "",' '"" ,"

\ .
sU};ervl.sor user current

stack stack stack
pointer pointer pointer

EXEaJTE TRACE-2

WICAT Systems, Inc.
Product-documentation Comment Form

"Ve are constantly improving our documentation, and we welcome scecific comments on thIS manL.:al.

Cocument Title: ____________________________ _

Part Number:

Your Position: 0 Novice user

Cl Experienced user

o A~pticatjons programmer

Questions and C~mments

Cl System manager

o Systems analyst

o Hardware technician

8rieffy describe examcies. illustrations. or information that you think should be acceC
to this manual.

What would you delete from the manual and wny?

'Nhat areas need greater emphasis?

Ust any terms or symcols used incorrectly.

173-CO'~9 8

Page No.

First Rlld

BUSINESS REPLY MAIL
CREM. ufA,..

WICAT Systems, Inc.
Attn: Corporate Communications
1875 S. State St.
Orem, UT 84058

Second Rlld

iace

~c ::SSi:'GE
NECESs;.~v

;: ,\1':'II..EO
iN THE

uNITEe SiATES

•.

