

Programmer Reference Manual

188-161-301 B

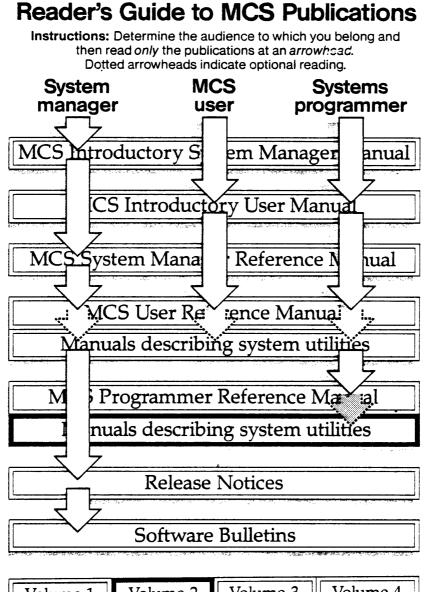
April 1984

Copyright Statement

Copyright © 1981 by WICAT Systems Incorporated All Rights Reserved Printed in the United States of America

Receipt of this manual must not be construed as any kind of commitment, on the part of WICAT Systems Incorporated, regarding delivery or ownership of items manufactured by WICAT.

This manual is subject to change without notice.


Revision History

First Printing September 1981 Second Printing April 1984

•

The Purpose of This Manual

The manual explains how to use the LINK Program for program development.

An introductory user manual is a tutorial introduction to a software product. In other words, use of the product is explained in a step-by-step, user-friendly format that walks you through some fundamental aspects of the product. When you complete the introductory manual, you have the experiential basis for understanding the products's user reference manual.

User reference manuals are written for those who are new to the product (but who have read the introductory user manual) as well as for the experienced user.

System manager reference manuals contain information for those who perform administrative tasks associated with routine system operation.

Programmer reference manuals are written for programmers who at least understand programming fundamentals.

WMCS LINK Programmer Reference Manual

Table Of Contents

.

CHAPTER 1	OVERVIEW
1.1 1.1.1 1.1.2 1.2 1.2.1 1.2.2	THE ROLE OF THE LINKER 1-1 Program Modules 1-1 Compilation And Assembly 1-4 LINK FUNCTIONS 1-4 Executable-image File 1-4 Cross Reference Map File 1-4
CHAPTER 2	SYMBOLS AND REFERENCES
2.1 2.2 2.2.1 2.2.2	TYPES
CHAPTER 3	OBJECT MODULES
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4	Delimiter
CHAPTER 4	IMAGE CREATION
4.1 4.1.1 4.1.2 4.1.3	Disk Memory Correspondence
CHAPTER 5	LIBRARIES
5.1 5.2 5.3 5.3.1	DEFINING A LIBRARY

Table of Contents

	5.3.2	Other Libraries
APPENDI	XA	TROUBLESHOOTING
	A.1 A.2 A.2.1 A.2.2	LINK DIAGNOSTIC MESSAGES
APPENDI	ХВ	EXAMPLE OF PROGRAM DEVELOPMENT
APPENDI	хс	RELOCATABLE MODULE FORMAT
APPENDI	XD	CROSS REFERENCE MAP LISTING

.

APPENDIX E BIT MAPS AND RECORDS

.

•

TYPOGRAPHICAL CONVENTIONS USED IN THIS MANUAL

Uppercase letters within text indicate sample command line character strings, file designations, diagnostic messages, and reports. Such samples are in uppercase when run into the text so that you can distinguish what would be typed (or what would appear) on the screen. Examples set off from the text are in lowercase.

Bold facing indicates what you should type onto the screen, i.e., whereas uppercase characters indicate <u>sample</u> character strings, etc., that are part of an example, bold faced characters indicate what you must type as part of a procedure.

Square brackets, [], indicate a function key, the name of which appears in uppercase within the brackets, e.g., [RETRN], [CTRL], etc.

Underlining is used for emphasis.

. .

CHAPTER 1

OVERVIEW

The WICAT Multi-user Control System (WMCS) LINK Program is a programming tool used to prepare the output of a compiler or assembler so that that output can be executed by the computer's hardware. Therefore, LINK produces a file that is an executable image.

The executable image has sharable and nonsharable segments. Sharable segments can be shared by more than one process.

LINK also creates a listing of symbols and addresses useful for cross referencing.

The description of the LINK Command, in the <u>WICAT</u> <u>Multi-user</u> <u>Control</u> <u>System (WMCS)</u> <u>User Reference Manual</u>, tells you how to execute LINK.

1.1 THE ROLE OF THE LINKER

The object modules created by language translators (including assemblers) are nonexecutable. External symbol references are unresolved. Unresolved symbol references include run-time modules required by high level languages as well as user-specified external declarations. The linker binds the symbol reference with the symbol definition and creates a memory image that can be read into memory and executed. Without a linker, modular programming is impossible, and language translators would be much more complex.

1.1.1 Program Modules

Modular programming, the process of combining separately compiled or assembled modules into an executable image, simplifies and enhances program development in the following ways:

1. Smaller modules are easier to write and maintain

because it is easier to find and fix errors in a smaller module.

- 2. Many modules are applicable to more than one task, and modules that have been used and tested in other programs can be included in new applications. This speeds program development.
- 3. Complicated programming requirements are simplified by breaking the requirements into smaller tasks, each of which can be allocated to a different person for implementation and debugging.
- 4. In some cases, the best language for one module may not be best for another part of the program. Modular programming allows modules written in different programming languages to be combined in a single application. Thus the programmer can use the language most suited to the application.

Figure 1.1 illustrates the role of the linker in modular programming wherein TIME is a computer program that interacts with the user to set the system clock on a WICAT system. The interaction is achieved through a main program written in WICAT Pascal. The clock is actually set by an assembly language program written in WICAT Assembler.

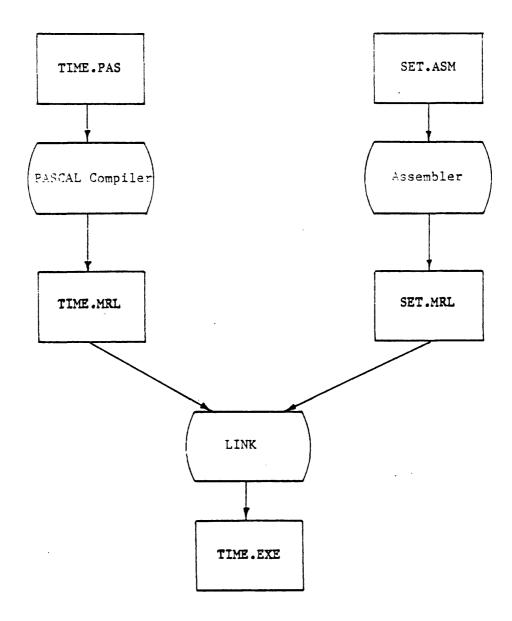


Figure 1.1. Modular Programming

1.1.2 Compilation And Assembly

LINK simplifies the work done by language translators because it assigns code to executable pages.

1.2 LINK FUNCTIONS

LINK produces two files:

- 1. An executable-image file (EXE is the file extension for this file).
- 2. A cross reference-map file (MCR is the file extension for this file).

These files are discussed in the following sections.

1.2.1 Executable-image File

An executable-image file is file type number 1. The record size of the file is 1024 bytes and the first record of the image file contains bit maps, each of which is 256 bytes long. These maps represent logical address space. Each of the bits in a map is a semaphore for a 1-Kbyte segment of address space. The first map defines the correspondence between the records on the disk and their ultimate location in memory. The second map defines the initial memory allocation. The third map indicates which pages can be shared.

The fourth map is not used on a WICAT computer.

1.2.2 Cross Reference Map File

This file is a listing file that specifies each module name and starting address.

CHAPTER 2

SYMBOLS AND REFERENCES

LINK's primary responsibility is to resolve symbolic references between modules.

2.1 DEFINITION

A symbol is an identifying label or name associated with one or more program statements or data area. A reference is the use of a symbol in a program statement of data definition.

Figure 2.1 illustrates a sample program called TEST. The program is written in Pascal and consists of one main routine and one subroutine.

1 PROGRAM TEST; 2 3 VAR I : INTEGER; 4 5 PROCEDURE INCREMENT; 6 BEGIN 7 I := I + 1; 8 END; 9 10 BEGIN 11 I := 0;12 INCREMENT; 13 END. Fig 2.1 Sample Program These are the symbols used in TEST: TEST The name of the main routine INCREMENT The name of the subroutine Ι The name of a data area or variable These are the references used in TEST: line 7 I is referenced twice line ll I is referenced once

line 12 The subroutine INCREMENT is called

2.2 TYPES

Symbols are one of two types: local or global. LINK treats each type differently.

2.2.1 Local Symbols

Local symbols can be referenced only in the routine in which the local symbols are defined.

Note that for a program such as that in figure 2.1 (where there are no local symbols) the compiler or assembler resolves all references to local symbols.

2-2

2.2.2 Global Symbols

Global symbols can be referenced by routines other than the routine that defines them. For example, in figure 2.1 all symbols are global because they are defined by TEST (the main routine) and are therefore global to all subroutines. LINK resolves global symbol references (see chapter 4).

Global symbols are of two types:

- 1. Internally defined symbols, defined in the main program.
- 2. Externally defined symbols, defined in a routine that is external to the main program, and independently compiled (e.g., runtime routines used by Pascal).

. •

CHAPTER 3

OBJECT MODULES

3.1 DEFINITION

The output (or object) file for the compiler or assembler is the input file for LINK. An object file consists of modules. In the case of the Pascal compiler, a discrete module is created for each procedure in the program along with one for the main program itself. An additional module is created for global variables. In chapter 2, figure 2.1, we examined a simple Pascal program. Figure 3.1 illustrates the modules created by the compiler.

Increment	Test	Globals

Fig. 3.1 Modules Created By PASCAL Compiler For TEST Program

A module can contain several records. An object record has the following hexadecimal format displayed in bytes:

Byte	Code Code	•	•	•	Code Check
Type Count Relative	Address Byte 1 Byte 2	•	•	•	Byte n Sum

Fig. 3.2 Object Record Format

This is an explanation of the terms appearing in figure 3.2:

Type of object record described in 3.2, a label.

Byte Count Number of bytes in the record following the record type (not including the byte

count itself).

- Relative Address Relative address of the code bytes in the module.
- Code Byte In the case of a code type record, the code bytes contain the actual hexadecimal code for the module; in the case of a symbol, the code bytes contain a name.
- Checksum The checksum is the one's complement of the sum of the bytes.

Diagrams showing the format of each type of record are found in appendix D.

Figure 3.3 shows the hexadecimal object file created by the Pascal compiler for program TEST (shown in figure 2.1). Note, the three modules relating to figure 3.1.

-

Туре	Count	Relative Address	Code/ASCII String/Checksum
RP	05	00000000	FA Branch to start 2E53544152542E09 of main program 4EF90000000AD 544553543083 F4 F4
R1	0C	00000000	
R2	0B	00000000	
R7	0A	00000002	
R8	05	00000006	
RP	05	00000000	FA INCREMENT module
R1	0F	00000000	494E4352454D454E54 <u>311A</u>
R2	17	00000000	4E56FFFC2D0D527 <u>9000004A</u> 2A5E4E5E4E7503
R7	16	00000008	2450415343414C2D474C4F42414C242D32A8
R8	05	00000012	E8
RP R1 R2 R7 R7 R7 R7 R7 R7 R7 R7 R8	05 0A 25 0B 16 16 16 16 16 0F 0B 05	<pre>000000000000000000000000000000000000</pre>	FA TEST module 544553543085 2F3C00000062F3C00000284EB3000000042790000004A2A4E4EB900000004B 4EB90000000CD 2450415343414C2D474C4F42414C242D32AE 2450415343414C2D474C4F42414C242D32A8 52525230303060 2450415343414C2D474C4F42414C242D329C 494E4352454D454E5431FE 5252523030314B D4
RI	05	0000000	FA GLOBAL module
R1	16	0000000	2450415343414C2D474C4F42414C242D32B0
R8	05	0000004C	AE
R9	05	0000000	FA

Fig. 3.3 Object File For TEST Program

Each record begins with a record label, 'R', followed by an integer between 0 and 9 or one of the alphabet characters 'I' or 'P'. References to global symbols (subroutines, variables, etc.) must be made using the M68000 absolute long addressing mode. In the object file, using figure 3.3 as an illustration, all references to internally and externally defined global symbols (refer to chapter 2) are enclosed in a box. Note, all references to internally defined global symbols have an offset into the global module while all references to externally defined global symbols have an address value of 0. These global references can be better understood by studying a listing of the assembly code generated by the compiler for TEST. This listing is illustrated in figure 3.4.

WICAT	Pascal	Version l	.3
;proce 0000	edure: i 4E56 FFFC	ncrement(link	1) a6,#-4
0004 0006	2D0D 5279 0000 004A	move.l addq.w	a5,-(a6) #1,74 global
000C 000E 0010	2A5E 4E5E 4E75	move.l unlk rts	(a6)+,a5 a6
;proce 0000	edure: t 2F3C 0000 0006	est(0) move.l	#6,−(sp) global
0006	2F3C 0000 0028	move.1	#40,-(sp) global
000C	4EB9 0000 0000	jsr	xxxxxx RRR000
0012	4279 0000 004A	clr.w	74 global
0018 001A	2A4E 4EB9 0000 0000	move.l jsr	a6,a5 xxxxxx INCREMENT1
0020	4EB9 0000 0000	jsr	XXXXXX RRR001

Fig. 3.4 Assembly Code Generated By Compiler For TEST Program

Note the following:

1. Global reference for I following address 0006 in module: INCREMENT

.

- 2. Global references for I in module: TEST, following address 0012.
- 3. External reference for runtime routine RRR000 following address C.
- 4. External reference for INCREMENT module following address 1A.

5. External reference of runtime routine RRR001 following address 20.

3.2 RECORD TYPES

There are four broad categories into which all object module records can be classified:

- 1. Delimiter.
- 2. Code.
- 3. Constant/label definitions.
- 4. References to global symbols.

3.2.1 Delimiter

There are six record types in this category, as defined by the second character in the type field:

- RP Delimits a sharable segment; pure storage.
- RI Delimits a nonsharable segment; impure storage.
- R0 Identifies the main program. The program name is coded in the code bytes. This record delimits the sequence of records pertaining to the main program.
- Rl Identifies a module or subroutine. The module name is coded in the code bytes. This record delimits the sequence of records pertaining to a module.
- R8 This record marks the end of a module. The address of the first free location past the end of the module. LINK uses this offset from the start of the module to determine where it can start loading the next module. This record contains the amount of space used by the module.
- R9 This record marks the end of the object file. An object file can contain several modules.

3.2.2 Code

An R2 label indicates that the record contains program code.

3.2.3 Constants/labels

There are four types of object records found in this category:

- R3 Identifies a local constant. The name is coded in the code bytes. The relative address field contains the value of the constant.
- R4 Identifies a local label. The name is coded in the code bytes. The relative address field contains an offset pointing to the labeled location.
- R5 Identifies a global constant. The name is coded in the code bytes.
- R6 Identifies a global label. The name is coded in the code bytes.

3.2.4 Global Symbols

Record type R7 identifies a reference to any global symbol. The relative address field is the location (within the module) of the reference to the global symbol.

CHAPTER 4

IMAGE CREATION

LINK reads relocatable object modules, resolves references between modules, and creates an image file that the operating system can load and execute.

As relocatable modules are read in, they are placed in a virtual address space that resembles the address space the program uses during execution. By convention, this address space is divided in half with the lower half reserved for program code and constants. The upper half is reserved for the stack and other variables. The purpose of this convention is to allow the non-changing or pure portions of programs to be shared among several users. See figure 4.1.

IMAGE CREATION

000000 =	
001000 :	Interrupt and Exception Vectors (This page physically resides in ROM and is shared by all users.)
001000	Pure Section
	(This area contains constants and code which may be shared between users.)
100000	
100000 :	Impure Section
	(This area contains variables and data which may not be shared.)
lfefff	User Stack (The stack starts at 1FEFFF and grows towards low memory.)

Fig. 4.1 Memory Map Of The 2-Mbyte Virtual Address Space

Space is allocated consecutively in these two segments. Allocation in each area is controlled by a base pointer that points to the lowest unallocated memory location. The pointer into the lower half of the address space is called Pure-Base and has an initial value of 1000 Hex. The pointer into the upper half of the address space is called Impure-Base and has an initial value of 100000 Hex.

As the relocatable modules are read in, they are placed into the virtual address space relative to one of these two bases. The base pointer chosen depends on the 'RP' or 'RI' type record that must be the first record in a module. If the record is type 'RP' the module goes into the lower half of the address space. If the record is type 'RI' the module goes into the upper half of the address space.

The end of a module is delimited by an 'R8' type of a record. The address field of an 'R8' type record contains a count of the number of bytes of memory used by the module. When a module has been completely read in, the base pointer is incremented by the value of the address

field in the R8 record. Thus the pointer once again points to the bottom of free memory.

.

Between the start and end of a module, three classes of records may be encountered. The first class causes data to be entered into the virtual memory address space. The second class causes symbols to become defined. The third class marks a reference to a symbol.

There is only one instance of the first record class. This is the 'R2' type of record. This record causes bytes of data to be stored in the virtual memory space.

The second and third record classes affect the linker symbol table that is defined by the series of Pascal statements in figure 4.2.

TYPE Symbol-Table = Record Next : Symbol-Table; Name : Packed Array [1..20] of Char; Value : Address Referenced : List-of-Undefined; End; List-of-Undefined = Record Next : List-of-Undefined; Value : Address; End;

Fig. 4.2 PASCAL Definition Of Linker Symbol Table

Pictorially, the symbol table corresponds to the diagram in figure 4.3.

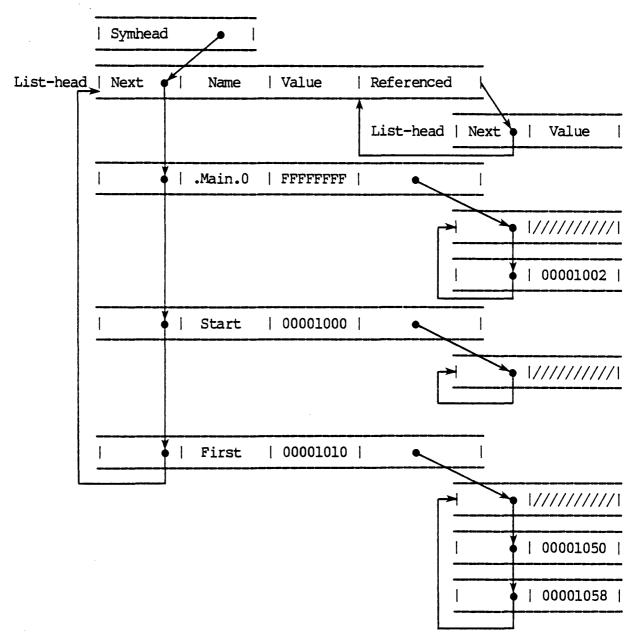


Fig. 4.3 Pictorial Representation of LINK Symbol

The second record class consists of types 'RQ', 'Rl', 'R5', and 'R6'. These result in a symbol table entry being built if one does not yet exist and cause the value field of the symbol table entry to become defined.

The third record class consists of only record type 'R7'. An occurence of a type 'R7' record causes a symbol table entry to be built if one does not yet exist. An entry is then made into a list of locations of undefined symbols that is associated with the symbol table entry.

After all of the relocatable modules are read in, LINK procedes to add the value field of each symbol table entry to all of the locations where it is referenced as specified in the associated list of references to undefined symbols.

After the undefined references have been resolved, the executable image file is created.

4.1 BIT MAP

The executable image file has a record length of 1024 bytes. The first record of this file contains bit maps each of which is 256 bytes long. These bit maps are:

- 1. Disk Memory Correspondence.
- 2. Initial Memory Allocation.
- 3. Shared Memory Page.

4. NOT USED.

These maps are arranged as shown in figure 4.4.

4-5

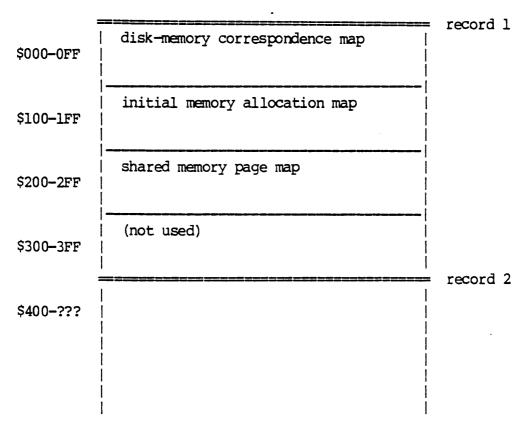


Fig. 4.4 Image File Format

4.1.1 Disk Memory Correspondence

The first bit map defines the relationship between the 2-Mbyte logical address space and the records of the executable image file. Each bit of this map corresponds to 1024 bytes of memory. If the bit is set, the next record from the executable image file is read into memory at the location corresponding to the bit position.

4.1.2 Initial Memory Allocation

The second bit map indicates which pages of memory should be allocated to the new process. Again, each bit corresponds to 1024 bytes in the 2-Mbyte address space. The operating system allocates memory to 4096-byte pages. Therefore, the setting of any of the bits on the page causes the full 4096 bytes to be allocated.

4.1.3 Shared Memory Page

.

The third bit map is the memory-protection bit map. The setting of any of the bits within the range corresponding to a 4096-byte page causes the full 4096 bytes to be write protected by the operating system. This process makes the page sharable because the contents cannot be changed.

There is space for a fourth bit map that is unused at this time and is assumed to be zero.

.

CHAPTER 5

LIBRARIES

LINK uses the content of a library definition file to resolve undefined references after all the user-specified files have been input.

5.1 DEFINING A LIBRARY

To define a library, you create a file containing a list of equivalences. An entry in this file is a symbolic name that can be referenced followed by the filename of an object module that defines the symbolic name.

You can create this file as a normal text file by using the VEW Program (read the <u>Virtual Editing Window (VEW)</u> <u>User Reference</u> <u>Manual</u>). The standard extension for a library definition file is .DEF. When referencing a file in an entry, you should enter the filename in uppercase and include the file extension.

A line that begins with an ampersand, @, indicates indirection through another library definition file. In this case, LINK responds as though the contents of the other file had been inserted at this point.

Figure 5.1 is an example of a library definition file.

Symbolic Name	File Name
1 2 12345678901234567890	3 4 5 123456789012345678901234567890
RRROCO RRROO1 PUTSTRING @_DSO/RLIB/ANOTHER_DEE	_DS0/PRTLIB/INIT.MRL _DS0/PRTLIB/EXIT.MRL _DS0/PRTLIB.SVC/PUTSTR.MRL

Fig. 5.1 Library Definition File

5.2 PRELINK

When LINK is ready to use a file, it must translate the name of the file to get the File Control Block (FCB) number assigned to the file. You can often save time during the linking process by performing this translation as a separate step. The PRELINK Program does this. Execute PRELINK by typing either of the following command-line character strings and then striking [RETRN]:

> prelink linklib.def

or

> prelink _ds0/syslib/linklib.def

PRELINK assumes the file has a .DEF extension if no file extension is specified in the PRELINK command-line character string.

•		
	DSO/PRTLIB/INIT.MRL DSO/PRTLIB/EXIT.MRL	 DS0//#96.1 DS0//#97.3
	OSO/PRILID/EXII.MRL	_DS0//#106.1

Fig. 5.2 Library Definition File After Processing By Prelink

Note: PRELINK creates a new version of the library definition file in the same directory as the original file. To

conserve disk space, you may want to purge old library definition files after running PRELINK.

5.3 REFERENCING LIBRARIES

5.3.1 Default Library

LINK always references the file LINKLIB.DEF, found in directory /SYSLIB/ on the system disk. During initialization, LINK reads the contents of this file to make the names of library routines available to programs.

5.3.2 Other Libraries

To reference another library definition file, use the :LIBRARY switch on the command line. For example:

> link one,two,three :library=test

The foregoing command tells LINK to link files ONE, TWO, and THREE and reference TEST.DEF as a library file.

• • -

.

APPENDIX A

TROUBLESHOOTING

A.1 LINK DIAGNOSTIC MESSAGES

These are the diagnostic message associated with LINK: Display Undefined Symbols

Checksum Error In Reading Relocatable Module

Unexpected End of File While Reading Relocatable Module

Address Of Undefined Reference Accesses Unallocated Disk Page

Open Error (WMCS diagnostic message number)

Read Error (WMCS diagnostic message number)

Write Error (WMCS diagnostic message number)

Close Error (WMCS diagnostic message number)

Delete Error (WMCS diagnostic message number)

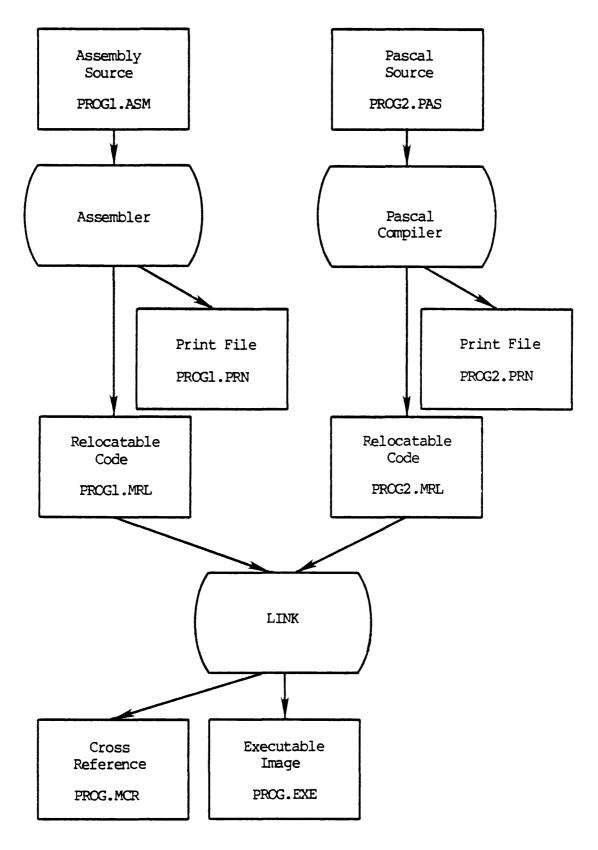
A.2 MISCELLANEOUS ERRORS

Certain conditions lead to errors that do not give the preceding error messages. Some of these conditions are discussed in this section.

A.2.1 File Empty Or Does Not Exist

If a specified file is empty or does not exist, the message 'Unexpected end of file encountered while reading' is displayed followed by the name of the file. The solution is to use the TYPE Command to display the contents of the file. Be certain to specify the filename given in the diagnostic message.

A.2.2 Invalid Symbol Address

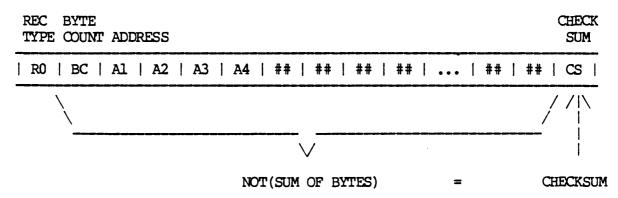

LINK does not check the validity of symbol addresses. If for some reason, a symbol has an offset beyond the end of its module, this error can happen to be caught during the process of adding the actual address to the location of an undefined reference. The solution is to examine the source modules for unreasonable address offsets.

APPENDIX B

EXAMPLE OF PROGRAM DEVELOPMENT

The diagram on the next page shows how files produced by the assembler and higher-level language compilers may be linked to form an executable image. A number of relocatable code (.MRL) files can be linked in one operation.

2



APPENDIX C

RELOCATABLE MODULE FORMAT

The relocatable source file contains a series of modules terminated by an R9 record. A module is a series of record types R2-R7 preceded either by an R0 or an R1 type record and terminated by an R8 type record.

The byte count is the number of bytes not including the byte count itself.

The checksum byte is the ones complement of the sum of the bytes. This form of checksum was chosen to be compatible with Motorola.

RELOCATABLE MODULE FORMAT

REC BYTE TYPE COUNT ADDRESS	PROGRAM NAME	CHECK SUM
R0 BC AL A2 A3 A4	## ## ## ## ## ##	CS
Delimits the sequence of record Otherwise, this type is treated	ds pertaining to the main progr the same as type 6.	am.
REC BYTE TYPE COUNT ADDRESS	MODULE NAME	CHECK SUM
R1 BC A1 A2 A3 A4	## ## ## ## ## ##	CS
	cords pertaining to a subrouti	ne.
Otherwise, this type is treated	the same as type 6.	
REC BYTE		CHECK SUM
REC BYTE TYPE COUNT ADDRESS		CHECK SUM
REC BYTE TYPE COUNT ADDRESS	CODE BLOCK ## ## ## ## ## ##	CHECK SUM
REC BYTE TYPE COUNT ADDRESS R2 BC AL A2 A3 A4 REC BYTE TYPE COUNT ADDRESS	CODE BLOCK ## ## ## ## ## ## LABEL	CHECK SUM CS CHECK

Local constant:

The label is defined to have the value of the address field.

	BYTE COUNT	ADDRESS		LABEL			CHECK SUM
R4	BC	Al A2	A3 A4	## ## ##	##	## ##	CS

Local label:

The label is defined to have the value of the address field plus the relocation constant.

¢

RELOCATABLE MODULE FORMAT

CULTURE

	BYTE COUNT	ADDRES	SS				LAF	3EI	ն											(CHEC SUN	
R5	BC	Al A	42	A3	A4	1	##	1	##	1	##		##	1	•••		##	1	##	1	CS	

Global constant:

The label is defined to have the value of the address field.

RFC	BYTE	

	COUNT	ADDRESS		LABEL	SUM
R6	BC	Al A2	A3 A4	## \ ## \ ##	 # CS

Global label:

The label is defined to have the value of the address field plus the relocation constant.

	BYTE COUNT	ADDRESS	DDRESS LABEL						
R7	BC	Al A2	A3 A4	## ## ##	: ## ## ##	CS			

The address field of this record is the location of the reference to the undefined label.

	REC IYPE	-			ADI	RI	ESS					(CHEC	_
	R8	1	BC		Al		A2		A3		A4		cs	

.

The foregoing kind of record marks the end of a module. This -record contains the amount of space used by the module. The address field from the record is added to the current location pointer to form the address of the first free location past the end of the module. The address of the first free location past the end of the module then becomes the new location pointer.

RELOCATABLE MODULE FORMAT

.

.

		BYTE		ADI	RI	ESS					(CHEC	_
R9		BC	1	Al	1	A2		A3	١	A4	1	CS	1

The foregoing kind of record marks the end of file. The address field is undefined.

.

.

•

•

APPENDIX D

.

۵

CROSS REFERENCE MAP LISTING

The following pages display a cross reference map listing from the sample program TEST.

WICAT Link Editor - Version 2.2

Linker map :

File	:	TEST.MRL .START. INCREMENT1 TESTO \$PASCAL-GLOBAL\$-2	Module Module Module Module
File	:	_DI0/PRTLIB/EXIT.MRL RRR001	Label
File	:	_DI0/PRTLIB/INIT.MRL RRR000	Label
File	:	_DI0/PRTLIB/RIGLOBAL.M RIGLOBAL HEAP	RL Module Module
File	:	_DIO/PRTLIB/REWRITE.MF RRR011	l Label
File	:	_DI0/PRTLIB/RESET.MRL RRR010	Label
File	:	_DI0/PRTLIB/FBINIT.MRI RRR009	Label
File	:	_DI0/PRTLIB/SHOWIO.MRI SHOWIO	Label
File	:	_DI0/PRTLIB/ERROR.MRL ERROR	Label
File	:	_DIO/PRTLIB/HANG.MRL HANG	Label
File	:	_DI0/PRTLIB/WHEX.MRL RRR039	Label
File	:	_DIO/PRTLIB/PUT.MRL RRR022	Label
File	:	_DI0/PRTLIB/GET.MRL RRR021	Label
File	:	_DI0/PRTLIB/MBVALID.M RRR020	RL Label

1000 1006 1018 100000			Pure=	1000 6 12 26 0	Impure=100000 0 0 4C
103E			Pure= Pure=	3E 103E 40	Impure= 4C Impure=10004C 0
107E			Pure= Pure=	40 107E 126	Impure= 0 Impure=10004C 0
			Pure= Pure=	126	Impure= 0 Impure=10004C
10004C 10005C	Used	_	Pure=	0 0	20 Impure= 20
11A4			Pure=	C4	Impure=10006C 0
1268	Base	-	Pure= Pure=	1268 EA	Impure= 0 Impure=10006C C
1352			Pure= Pure=	EA 1352 4C	Impure= 0 Impure=10006C 0
			Pure= Pure=	4C 139E	Impure= 0 Impure=10006C
139E			Pure= Pure=	60 60 13FE	
13FE	Used	_	Pure=	52 52	0 Impure= 0
1450			Pure= Pure=	48	Impure=10006C 0 Impure= 0
1498	Base	-	Pure=	1498 98	Impure=10006C 0
1530	Used Base		Pure= Pure=	98 1530 17C	Impure= 0 Impure=10006C 0
16AC			Pure= Pure=		Impure=10006C
TOWC			Pure= Pure=	7C 1728	0 Impure= 0 Impure=10006C
1728	Used	-	Pure=	1C0 1C0	0 Impure= 0

CROSS REFERENCE MAP LISTING

File : _DI0/PRTLIB/CLOSE.MRL ** Unable to open by FCB!			Base -	Pure=	18E8	Impure=1	0006C
RRR019	Label	18E8					
RRR019A	Label	18E8			F4		0
			Used -	Pure=	F4	Impure=	0
					-		
_HEAP	Symbol	10006C			0		0
Image filename = TEST.EXE Total image size (all sizes (given in	hexadecim	al) =				

Total image size (all sizes given in hexadecimal) 9DC bytes pure code. 6C bytes impure code. 0 bytes reserved for dynamic space. 1000 bytes reserved for stack.

.

CROSS REFERENCE MAP LISTING

WICAT Link Editor - Version 2.2

Symbol Cross Reference

,

\$PASCAL-GLOBAL\$-2 .START.	100000 1000	100E	101A	1020	102C			
ERROR	13FE	1230 18B0	131E 19A4	13B0	13D2	145E	156A	16E6
HANG	1450	123E	132C	1578	16F4	18BE	19B2	
HEAP	10005C	1150						
INCREMENT1	1006	1034						
RRR000	107E	1026						
RRR001	103E	103A	1454					
RRR009	1352	1102	1130	198A				
RRR010	1268	1140						
RRR011	11A4	1112						
RRR019	18E8	11BA	127E					
RRR019A	18E8							
RRR020	1728	16C6						
RRR021	16AC	12E4						
RRR022	1530	1514						
RRR039	1498	13C8						
RIGLOBAL	10004C	1044	105A	1118	1146	13B6	1408	
SHOWIO	139E	1238	1326	1572	16EE	18B8	19AC	
TEST0	1018	1002						
_HEAP	10006C	115A						

APPENDIX E

BIT MAPS AND RECORDS

This appendix contains bit maps and records for the sample program TEST. These bit maps and records are a hexadecimal dump of the image file for the TEST program.

FILE: _DIO/TOM.CDS/TEST.EXE.1

	00000000 0000010 0000020 0000030 0000050 00000050 00000060 00000080 00000080 00000080 00000080 000000	00 00 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00		0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00	First Bit Map	
	00000100 00000120 00000130 00000140 00000150 00000160 00000170 00000180 00000190 00000180 00000180 00000180 00000100 00000100 00000100 00000100	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	00 0 00 0 00 0 00 0 00 0 00 0 00 0 00	0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00	Second Bit Map	
Record 0 	00000200 0000210 00000230 00000240 00000250 00000250 00000270 00000280 00000290 00000280 00000280 00000280 00000280 00000200	0E 00 00 00	00 0 00 0 00 0 00 0 00 0 00 0 00 0 00	0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0	00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	Third Bit Map

BIT MAPS AND RECORDS

000002E0 000002F0	00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00	1
00000300 0000310 00000320 00000340 00000350 00000350 00000360 00000370 00000380 00000380 00000380 00000380 00000380 00000300 00000300	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	Fourth Bit Map
00000400 00000410 00000420 00000430 00000430 00000450 00000450 00000460 00000470 00000480 00000480 00000480 00000480 000004E0 000004E0 000004F0	00 00 2A FF 48 2F 42 42 00 53 66 3F 00	4A 10 4E F8 6E 28 A7 80 1F 80 F6 01 08	2A 00 4E 20 FF 00 42 20 00 FF 60 53 48 2F	5E 289 7C 87 00 FF 80 6F 20	4E 4E 00 4E 42 48 0C 6E 42 60 00 00	5E B9 00 10 40 A7 6E 80 FF 2A 28 02 02 04	4E 00 10 00 48 FF 00 6E 4A 00 53 42 2F	75 00 50 03 6E FC 1F 38 01 88 A7 2C	2F 10 4E 20 20 FF 4E FF 20 6F 53 48 20 0	3C 7E 89 50 7C FC 40 EC 6C 26 80 68 A7 00	00 42 00 2F 00 4E 00 6E 00 6F 00 42 4E	10 79 00 28 10 40 10 44 10 20 0A 01 A7 56	00 00 10 00 00 00 00 00 00 00 00 00 52 2C 00	06 10 3E 08 4C 03 FE 2F C0 20 81 4F 00	2F 00 4E 20 42 28 00 81 66 00 60 2F 48	3C 4A 56 A7 50 A7 50 A7 50 C FC 20 D6 2C E7	NyNV -Ry J*^N^Nu/ <<br (N9~ByJ *NN9N9>NV x P P/(B' Hn N@ L P /(B'Hn N@B' B'B'Hn N@`~(O B lnD / n8 lQ@l n*Jo& f S`rB(So fvS`SHhR`V ?HoB'B'B',O/, /,/,NVHg /.Bg? <</td
00000500 00000510 00000530 00000540 00000550 00000560 00000570 00000580 00000580 00000580 00000580	4E 2F 00 00 20 90 00 4F 54	 B9 2E 00 00 10 28 A8 0C 55 00 	00 00 13 12 00 00 00 4C 54 00	00 08 52 68 5C 04 04 04 DF 50 00	11 42 2F 20 21 06 21 3F 55 4E	A4 67 2E 7C 48 80 40 FF 54 56	20 3F 00 00 00 00 4E 00 00	7C 3C 08 10 00 00 00 5E 00 00	00 48 00 21 03 42 50 53 48	10 01 7A 50 7C FF A8 8F 59 E7	00 3F 00 20 00 02 00 4E 53 80	4C 3C 5E AE 10 80 0C 75 24 C0	20 00 42 00 00 2D 53 49 20	AE 01 67 08 6C 1F 6E 59 4E 6E	00 4E 20 00 FC 00 53 50 00	0C B9 7C 04 00 04 24 55 0E	N9R/.HzBg N9\$ L . /.Bg? <N9<br R/.Hz^BgN9 h P . \!H! 1 ((!@B(-n L_?N^PNuSYS\$ OUTPUTSYS\$INPU TNVHg@ n J(g/N9hln

E-3

Record	000005C0 000005D0 000005E0 000005F0	22 6E 2F 2E	A0 00 A0 00	20 09 2F 00	4A 1 2F 3	.9 66 SC 00	FC 00	90 8 00 0	9 44 2 3F	80 28	53 00	80 14	B(JhVh "n Jf DS /.// (<br BgB'/ <</th
	00000600 0000610 0000620 0000630 0000650 0000660 0000660 0000680 0000680 0000680 0000680 0000680 0000680 0000680 0000680 0000650	57 E8 4E 5E 00 00 14 50 49 54 49 4C 20 6E 18 E8 20 09 2F 00 00 08 50 E8 21 7C 2F 08	00 0D DF FC 13 FE 52 52 45 20 45 44 00 0E 31 6E 4A 19 2F 3C 48 68 00 0D FF FF 4E B9	66 14 00 00 2F 08 52 30 2D 2D 0D 0A 4A 28 00 08 66 FC 00 00 00 04 42 28 FF FF 00 00	2D 6 00 0. 4E B 31 3 20 2 00 0 00 0 90 8 00 0 4E 4 00 0 00 1 16 A	E 00 A 4E 9 00 1 20 1 20 1 20 1 20 1 20 1 3F 1 3F 1 3F 1 21 1 22	04 75 2D 52 56 08 28 02 28 02 28 7C 6E	00 0: 48 7/ 13 9/ 2D 2(45 4) 00 0(53 8(00 1) 4A A(00 0) 00 0/ 00 0/ 00 0/	E 4C 00 E 4E 0 52 1 54 0 48 22 0 48 22 0 42 8 00 24 00 00 4 00	DF 16 F9 45 20 E7 86 22 67 80 26 01 00	03 4E 00 57 46 80 00 00 48 66 00 42	01 B9 00 52 41 C0 00 0A 68 3C 00 1C DF	hlnB("n Jf DS/. // (BgHh<br HhN@J(f< PhB(B(Ph
	000007D0	00 03 13 FE 52 52 2D 2D 0A 00 42 98 31 6E 4A 6E 00 0E 00 00 00 00 00 04 4E B9 4E 5E	42 28 2F 08 52 30 20 20 4E 56 42 98 00 0C 00 08 20 5F 48 E7 13 FE 3F 3C 00 00 58 8F	00 00 4E B9 31 30 4F 50 00 00 42 98 00 18 56 E8 4E 5E FF 5C 7C FF 5E 75 13 75	60 D 00 0 20 21 45 41 2F 0 42 9 31 61 00 00 DF F 20 61 00 1 4E B 2D 61 42 21	0 48 0 13 D 2D E 20 8 22 8 42 E 00 C 56 C 00 E 00 E 00 E 00 E 00 E 00 E 00 F 4F	7A 9E 20 46 6E 98 0A E8 00 8 00 4C 00 20	00 10 4E F 52 4 41 4 00 01 42 9 00 1 42 9 00 1 42 9 00 0 248 7 22 5 14 9 00 0 52 4	6 4E 9 00 5 53 9 4C 20 8 20 4 50 3 4E 2D 4 2D 3 4E 2D 4 2D 8 48 00 1 2F 8 48 5 53	B9 00 45 98 6E 8 6E 75 A9 7A DF 55	00 14 54 42 00 00 4E 2F 00 3F 4C	00 50 20 0D 98 02 04 56 89 28 28 FF 54	NV/ nBB BBBBBB n lnlnPh JnVhVh-n _N^_ NUNV Hg nHz:N9 ~" L"Q//(? <n9hz(N9~-nL_? N^XNuL/O RESULT</n9hz(
	00000800 0000810 00000820 00000830 00000840 00000850 00000850 00000860 00000870 00000880 00000890	22 6E 2F 3C 00 08 2D 6E 20 00 13 FE 55 4D 50 20	00 08 FF FF 2F 06 00 04 4E F9 60 FE 50 20 49 4E	4A 19 FF FF 48 6E 00 08 00 00 45 58 54 4F 20 50	67 0 42 A FF F 4C D 10 3 45 4 20 4 41 5	4 52 7 2F 8 48 9F 3F 6E 48 63 55 68 45 63 43	86 3C 6E FF 7A 54 52 41	60 F ³ FF F1 FF F0 4E 51 00 02 49 41 45 23 4C 20	8 2F F FF E 4E E 58 A 4E E 47 2 20 0 52	28 FF 40 8F B9 20 4C 55	00 2F 00 4E 00 22 4F 4E	08 2E 05 75 00 4A 4F 54	xHg L PB "nJgR`x/(/ <b' .<br="" <="">/HnxHn N@ -nL_?N^XNu Ny>HzN9 ~`~EXECUTING "J UMP TO HERE" LOO P IN PASCAL F^{****} IMENV1Hgp@</b'>

0A80000 20 6E 00 0E 70 14 22 4E 13 3C 00 20 53 80 66 F8 np"N< Sfx 000008B0 42 83 24 2E 00 0A 22 4E 22 02 E8 8A 02 81 00 00 B\$."N"h 00 OF OC 01 00 09 6F 02 5E 01 06 01 00 30 13 01 o^0 000008C0 52 83 4A 82 66 E2 32 2E 00 08 48 C1 6A 02 22 03 RJfb2.HAj" 000008D0 000008E0 B2 83 6C 0C 22 4E 20 01 13 3C 00 2A 53 80 6E F8 21"N <*Snx 4A 81 67 28 B6 81 6A 08 11 7C 00 20 00 20 60 04 Jg(6j) 000008F0 00000900 11 59 00 20 11 7C 00 01 00 00 11 7C 00 01 00 01 Y || 00000910 2F 08 4E B9 00 00 15 30 53 81 60 D4 2D 6E 00 04 /N90S`T-n 00 0E 4C DF 03 0F 4E 5E DF FC 00 00 00 0A 4E 75 L_N^_Nu 00000920 4E 56 FF EE 2F 08 20 6E 00 08 4A 28 00 00 67 1E NVn/ nJ(g 00000930 61 00 00 92 52 A8 00 10 42 28 00 00 42 28 00 01 aR(B(B(00000940 00000950 2D 6E 00 04 00 08 20 5F 4E 5E 58 8F 4E 75 48 7A -n N^xNuHz 00 1C 60 04 48 7A 00 4C 4E B9 00 00 13 FE 2F 08 `HzLN9~/ 00000960 00000970 4E B9 00 00 13 9E 4E F9 00 00 14 50 52 52 52 30 N9NVPRRR0 32 32 20 2D 2D 20 50 55 54 20 2D 2D 20 20 46 49 22 - PUT -00000980 FI 4C 45 20 43 4F 4D 50 4F 4E 45 4E 54 20 44 41 54 LE COMPONENT DAT 00000990 0A600000 41 20 49 53 20 4E 4F 54 20 56 41 4C 49 44 0D 0A A IS NOT VALID 00 00 52 52 52 30 32 32 20 20 2D 2D 20 50 55 54 RRR022 000009B0 - PUT 000009C0 20 2D 2D 20 20 57 52 49 54 45 20 46 41 49 4C 45 - WRITE FAILE 44 0D 0A 00 48 E7 80 60 42 AE FF FC 4A 28 00 0C DHg B. J(000009D0 000009E0 67 08 2D 7C 00 00 00 03 FF FC 4A 68 00 18 67 00 g- Jhg 00 8A 42 6E FF EE 3D 68 00 18 FF F0 42 6E FF F2 Bnn=hpBnr 000009F0 Record 3D 68 00 14 FF F4 20 28 00 10 90 A8 00 1C 52 80 =ht ((R 00A0000 00000Al0 B0 AE FF EE 5C EE FF FA CO E8 00 14 43 E8 00 20 0.n\nz@hCh 24 49 D5 C0 20 2E FF F2 60 02 14 D9 51 C8 FF FC \$IU@ .r`YQH| 00000A20 4A 2E FF FA 67 00 00 3E 2F 28 00 08 2F 28 00 1C J.zq>/(/(00000A30 2F 2E FF FC 2F 3C FF FF FF FF 48 68 00 20 20 2E /. /. Hh 00000A40 00000A50 FF F2 D1 97 2F 2E FF EE 48 6E FF F6 48 68 00 04 rO/.nHnvHh 4E 40 00 05 4A A8 00 04 66 00 FE FA 20 2E FF EE NQJ(f~z .n 00000A60 D1 A8 00 1C 4C DF 06 01 4E 75 2F 28 00 08 2F 28 Q(L_Nu/(/(00000A70 08A00000 00 10 2F 2E FF FC 2F 3C FF FF FF FF 48 68 00 20 /. // Hh 00000A90 2F 3C 00 00 00 01 48 6E FF F6 48 68 00 04 4E 40 /<HnvHhN@ 0AA00000 00 05 4A A8 00 04 67 CC 60 00 FE BA 4E 56 00 00 J(gL`~:NV 00000AB0 2F 08 20 6E 00 08 4A 28 00 02 66 24 4A 28 00 00 / nJ(f\$J(00000AC0 66 08 2F 08 4E B9 00 00 17 28 42 28 00 00 52 A8 f/N9(B(R(00000AD0 00 10 2D 6E 00 04 00 08 20 5F 4E 5E 58 8F 4E 75 -n _N^XNu 48 7A 00 16 4E B9 00 00 13 FE 2F 08 4E B9 00 00 HzN9~/N9 00000AE0 00000AF0 13 9E 4E F9 00 00 14 50 52 52 52 30 32 31 20 20 NyPRRR021 00000B00 2D 2D 2D 47 45 54 20 2D 2D 2D 20 45 4F 46 20 57 - GET -EOF W 41 53 20 54 52 55 45 20 50 52 49 4F 52 20 54 4F AS TRUE PRIOR TO 00000B10 20 47 45 54 0D 0A 00 00 4E 56 FF EE 2F 08 20 6E GEINVn/ n 00000B20 00000B30 00 08 4A 28 00 00 66 00 00 48 4A 28 00 02 66 00 J(fHJ(f 00 40 61 00 00 4A 4A 28 00 0C 67 34 42 28 00 03 @aJJ(g4B(00000B40 OC 28 00 0D 00 20 67 24 0C 28 00 0A 00 20 67 1C (q\$(q 00000B50 00000B60 OC 28 00 0B 00 20 67 14 OC 28 00 OC 00 20 67 OC (g(g 4A 28 00 20 66 0A 11 7C 00 20 00 20 50 E8 00 03 J(f) Ph 00000B70

2

	00000B80 00000B90 00000BA0 00000B00 00000B00 00000B00 00000BE0 00000BF0	80 60 4 00 03 1 3D 68 0 20 28 0 00 4E 2 2F 2E 1	2 AE F1 F FC 44 0 14 F1 0 10 90 21 68 00 F FC 21	F FC 4 A 68 0 F F4 4 D A8 0 D 10 0 F 3C F	A 28 (0 18 (2 6E) 0 1C (0 1C) F FF]	00 0C 67 00 FF EE 6B 08 2F 28 FF FF	67 08 00 9C 3D 68 B0 AE 00 08 48 68	2D 7C 42 6E 00 18 FF EE 2F 28 00 20	00 00 FF F2 FF F0 6D 00 00 10 20 21	-n _N^XNuHg) `B. J(g- ! JhgBnr ! =htBnn=hp) ((k0.n ! N!h/(/(! /. / <hh rQ/.nHnxHh</hh
	00000C00 00000C10 00000C20 00000C30 00000C40 00000C50 00000C60 00000C70 00000C80 00000C90 00000C80 00000C80 00000C80 00000C80 00000C80 00000C80 00000C80 00000C80	66 00 0 00 66 4 00 8C 0 4C DF 0 FF FC 2 00 01 4 00 04 5 00 02 6 B0 68 0 24 49 1 00 00 1 14 50 5 41 4C 4	10 98 3: 14 2E F1 10 04 51 16 01 41 16 01 41 16 01 41 17 3C F1 18 6E F1 17 BC 60 10 1A 51 15 CO 21 16 52 52 17 52 52 18 44 20 19 44 20 10 45 4	L 6E F F F6 5 C 75 2 F FF 4 C 75 F F 7 7 F	F FA 7 E8 0 02 F 28 F FF 8 68 7 28 7 28 7 28 7 28 7 28 7 28 7 28 7 28 7 28 7 28 7 28 7 28 8 7 8 68 9 68 9 7 28 68 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 <td>00 1A 00 00 60 06 00 08 48 68 00 04 0C 80 00 10 CO E8 4E 75 00 00 20 20 20 52 4E 56</td> <td>42 A8 67 10 12 DA 2F 28 00 20 4E 40 00 00 90 A8 00 14 48 7A 13 9E 2D 2D 45 41 FF FC</td> <td>00 04 21 70 51 C8 00 10 2F 30 00 04 00 80 00 10 43 E8 00 16 4E F9 20 4E 44 20 48 E7</td> <td>61 00 00 00 FF FC 2F 2E 00 00 20 28 57 E8 52 80 00 20 4E B9 00 00 42 56 20 46 80 80</td> <td><pre>flnzB(a flnzB(a fl.vWhg! Ph`ZQH L_Nu/(/(/. /<hh \$iu@.rnuhzn9="" 0h^nv@hch="" <="" ailednv hq<="" alid="" f="" g<`\$((r="" hnxhhn@(="" mbv="" n9ny="" pre="" prrr020="" read="" whghwh="" ~="" —=""></hh></pre></td>	00 1A 00 00 60 06 00 08 48 68 00 04 0C 80 00 10 CO E8 4E 75 00 00 20 20 20 52 4E 56	42 A8 67 10 12 DA 2F 28 00 20 4E 40 00 00 90 A8 00 14 48 7A 13 9E 2D 2D 45 41 FF FC	00 04 21 70 51 C8 00 10 2F 30 00 04 00 80 00 10 43 E8 00 16 4E F9 20 4E 44 20 48 E7	61 00 00 00 FF FC 2F 2E 00 00 20 28 57 E8 52 80 00 20 4E B9 00 00 42 56 20 46 80 80	<pre>flnzB(a flnzB(a fl.vWhg! Ph`ZQH L_Nu/(/(/. /<hh \$iu@.rnuhzn9="" 0h^nv@hch="" <="" ailednv hq<="" alid="" f="" g<`\$((r="" hnxhhn@(="" mbv="" n9ny="" pre="" prrr020="" read="" whghwh="" ~="" —=""></hh></pre>
Record	00000D00 0000D10 0000D20 0000D30 0000D40 0000D50 00000D60 00000D70 00000D80 00000D80 00000D80 00000D80 00000D00 00000D0 00000D0 00000D0 00000D0 00000D0	2F 28 2F 3C 30 28 90 A8 2F 3C 00 05 00 04 42 67 00 04 42 67 20 43 20 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00	0 1C 42 F FF F 0 1C 21 0 1C 21 0 1C 21 0 0 0 1A A8 0 1E 40 0 1E B9 0 1C 4F 5 16 41 4 10 00 00 10 00 00 10 00 00 10 00 00 10 00 00	A 68 0 F FF 4 97 4 97 4 97 4 97 4 97 4 97 4 97 4 97 4 97 4 97 4 97 4 97 4 97 4 97 4 97 4 90 00 1 50 53 45 9 40 9 00 00 0 00 0 00 0 00 0 00 0	0 18 (A 28 (0 0E 1 8 6E 1 6 36 1 6 36 1 6 36 1 6 36 1 1 01 4 3 FE 1 0 01 4 1 01 4 3 FE 1 0 2D 1 0 2D 1 0 00 (0 0 (0 (66 04 00 20 00 17 3F 28 FF 28 3F 27 28 37 28 38 42 58 52 30 20 00 00 00 00 00 00 00 00 00	2E A8 4A 68 66 0C 00 18 48 68 00 08 00 18 00 00 58 8F 4E B9 31 39 20 57 00 00 00 00 00 00 00 00 00 00	00 10 00 18 20 28 42 67 00 04 42 A7 3F 28 13 52 4E 75 00 00 20 20 52 49 00 00 52 49 00 00 00 00 00 00 00 00 00 00	2F 00 67 20 00 10 60 06 4E 40 48 68 00 14 2D 6E 48 7P 13 9E 2D 2D 54 45 00 00 00 00 00 00 00 00	FAILED
	00000E20 00000E30 00000E40 00000E50	00 00 0 00 00 0 00 00 0	0 00 0 0 00 0	0000 0000 0000	0 00 0	00 00 00 00 00 00	00 00 00 00 00 00	00 00 00 00 00 00	00 00 00 00 00 00	

00000E60 00000E70 00000E80 00000E90 00000FA0 00000FB0 00000FC0 L 00001000 000010D0 000010E0

-

•

•

Record	00001140 00001150 00001160 00001170 00001180 00001190 00001180 00001180 00001180 00001100 00001100 00001100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000	00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0	00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0	0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
	00001200 00001210 00001220 00001230 00001250 00001250 00001260 00001270 00001280 00001280 00001280 000012B0 000012C0 000012C0 000012F0	00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0 00 00 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 00 00 00
	00001300 00001310 00001320 00001330 00001350 00001350 00001360 00001370 00001380 00001380 00001380 000013B0 000013D0 000013D0 000013F0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 10	00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 10 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 00 00 00
I	00001410	00 00 10	26 00	00 10	2C 00 0	00 10 3	4 00 00	10 3A &,4:


5

1	00001700	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
ĺ	00001710	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
1	00001720	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
	00001730	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
	00001740	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
	00001750	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
	00001760	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
l	00001770	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
l	00001780	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
l	00001790	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
	000017A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
1	00001780	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
I	000017C0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
I	000017D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
	000017E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
l	000017F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

WICAT Systems, Inc. Product-documentation Comment Form

We are constantly improving our documentation, and we welcome specific comments on this manual.

Document Title			
Part Number:			
Your Position:	D Novice user	🗆 System manager	
	Experienced user	Systems analyst	
	Applications programmer	Hardware technician	
Questions and	Comments		Page No.
Briefly describe e to this manual.	examples, illustrations, or information i	hat you think should be added	
What would you	u delete from the manual and why?		
What areas nee	ed greater emphasis?		
List any terms	or symbols used incorrectly.		
•			

Second Fold