Hardware and Software

Environment: System 80

$$
90 / 30 \text { version is UP. } 8703
$$

This document contans the latest intormation available at the time of preparation. Therefore, it may contain descriptions of functions not amplemented at manual distribution time. To ensure that you have the latest information regarding levels of implementation and functional availability, please consult the appropriate release documentation or contact your local Sperry Univac representative

Sperry Univac reserves the right to modify or revise the content of this document No contractual obligation by Sperry Univac regarding level, scope, or timing of functional implementation is either expressed or implied in this document. It is further understood that in consideration of the recelpt or purchase of this document, the recopient or purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such action by others. for any purpose without pror written permission from Speriy Univac

Sperry Univac is a division of the Sperry Corporation.

FASIRAND, SPERRY UNIVAC. UNISCOPE. UNISERVO, and UNIVAC are registered trademarks of the Sperry Corporation. ESCORT, MAPPER. PAGEWRIIER, PIXIE, and UNIS are additional trademarks of the Sperry Corporation

This document was prepared by Systems Pubications using the SPERRY UNIVAC UTS 400 Text Editor. It was printed and distributed by the Customer Information Distribution Center (CIDC). 555 Henderson Rd, King of Prussia, Pa, 19406

PAGE STATUS SUMMARY

ISSUE: Update B - UP-8868 Rev. 1 RELEASE LEVEL: 8.2 Forward

Part/Section	Page Number	Update Level
Cover/Disclaimer		Orig.
PSS	1	B
Preface	1, 2	Orig.
Contents	1 thru 4	Orig.
1	Title Page 1 thru 5 6 7 8 thru 22 23 24 thru 30	Orig. B Orig. B Orig. B Orig.
2	Title Page 1 thru 9 10 11 thru 52	Orig. Orig. A Orig.
3	Titie Page 1 thru 24 25, 26 27 thru 30 31, 32	Orig. Orig. B Orig. A
4	Title Page 1. 2 3 4 thru 38 39 40 thru 126	Orig. Orig. B Orig. B Orig.
Appendixes	Title Page	Orig.
A	1. 2	Orig.
B	1	Orig.
User Comment Sheet		

Preface

This document is one in a series designed to describe the hardware and software of the SPERRY UNIVAC System 80 and the Operating System $/ 3(0 \mathrm{~S} / 3)$. This particular summary is a quick-reference manual for use in detecting hardware errors and in analyzing dumps. It is not necessary to understand the content of this manual to successfully use System 80.

This manual consists of tables and figures abstracted from other $0 S / 3$ publications. The information presented is limited to facts; no introductory information or examples of use are provided. The descriptive information for the subjects summarized in this manual is contained in the System 80 processor programmer reference, UP-8881 (current version), the I/O integrated controllers programmer reference, UP-8742 (current version), the 0S/3 assembler user guide, UP-8913 (current version), and the supervisor macroinstructions user guide/programmer reference, UP-8832 (current version).

The manual is divided into the following sections:

- Section 1. General

Contains information of a general nature, including EBCDIC and ASCII character sets, tables for conversion, and a table for hexadecimal-decimal conversion.

- Section 2. Machine Code

Contains information about the formats and functions of the general machine instructions. Instructions are listed by machine code and instruction name.

- Section 3. Supervisor

Contains OS/3 supervisor related information such as the program status word (PSW) format, the control register format, the layout for low-order main storage, the input formats for the monitor and trace functions, and a summary of the system debugging aids.

- Section 4. PIOCS

Contains information primarily related to the $0 S / 3$ physical input/output control system, including the peripheral device addresses, command codes, status byte definitions, and I/O sense data byte definitions. This information cannot be used by a programmer for developing programs with physical I/0 level interface.

- Appendixes

Contain the powers of 2 and powers of 16 tables for convenience and quick reference.

Contents

PAGE STATUS SUMMARY

PREFACE

CONTENTS

1. GENERAL

$$
\text { 1.1. STATEMENT CONVENTIONS } 1-1
$$

1.2. ASCII CHARACTER CODES 1-2
1.3. EBCDIC CHARACTER CODES 1-4
1.4. HEXADECIMAL CONVERSION TABLE FOR
DUMP ANALYSIS
1.5. CHARACTER CONVERSION TABLE $1-13$
1.6. HEXADECIMAL-DECIMAL CONVERSION
1.7. HEXADECIMAL ADDITION AND
SUBTRACTION TABLE
1.8. SIGN CONVENTIONS $1-30$
1.9. LINKAGE REGISTER CONVENTIONS $1-30$
2. MACHINE CODE
2.1. MACHINE INSTRUCTIONS 2-1
2.1.1. Instruction Formats 2-1
2.1.2. Instruction Repertoire 2-4
2.1.2.1. Instructions by Machine Code 2-4
2.1.2.2. Instructions by Instruction Name 2-28
2.1.3. Edit Instruction Settings 2-46
2.2. MACHINE DATA 2-47
2.2.1. Data Formats 2-47
2.2.2. Data Boundary Alignments 2-51
3. SUPERVISOR
3.1. MONITOR AND TRACE 3-1
3.1.1. Control Stream Format for a Job
To Be Monitored from the Start
of the Program
3.1.2. Monitor Input Format for Input
by the Operator After Program
Execution Has Begun
3.1.3. Statement Formats for Monitor
Input
3.1.4. Summary of Actions and Program Information Printed
3.2. LOW-ORDER MAIN STORAGE LAYOUT 3-7
3.3. PROGRAM STATUS WORD (PSW) FORMAT 3-10
3.4. CONTROL REGISTER FORMAT 3-18
3.5. HOW TO OBTAIN DUMPS 3-25
3.5.1. Obtaining a System Dump (SYSDUMP) 3-25
3.5.2. Obtaining a System Dump After an HPR (SYSDUMPO) 3-26
3.5.3. Obtaining a Job Dump or EOJ Dump 3-27
3.6. SYSTEM DEBUGGING AIDS 3-28
4. PIOCS
4.1. I/O CHANNEL NUMBER ASSIGNMENT 4-1
4.2. DEVICE ADDRESSES FOR SYSTEM 80 DEVICES 4-2
4.3. COMMAND CODES FOR SYSTEM 80 DEVICES 4-4
4.3.1. Command Codes for $8417 / 8419$ Disk 4-4
4.3.2. Command Codes for Single Line Communications Adapter (SLCA) 4-5
4.3.3. Command Codes for System 80 Workstation/Console Workstation 4-6
4.3.4. Command Codes for 8420/8422
Diskette 4-8
4.3.5. Command Codes for 0776/0789 Printer 4-10
4.3.6. Command Codes for 0789,0798 Remote Printer 4-12
4.3.7. Command Codes for 0719 Card Reader 4-14
4.3.8. Command Codes for 0608 Card Punch 4-15
4.3.9. Command Codes for UNISERVO 10 Magnetic Tape Type 0871 4-16
4.4. STATUS BYTE FORMATS FOR DMA DEVICES 4-18
4.4.1. Status Byte format for $8417 / 8419$ Disk 4-18
4.5. STATUS BYTE FORMATS FOR MLCM DEVICES 4-20
4.5.1. Status Byte Format for Single Line Communications Adapter (SLCA) 4-20
4.6. STATUS BYTE FORMATS FOR SDMA DEVICES 4-21
4.6.1. Status Byte Format for System 80 Workstation/Console Workstation 4-21
4.6.2. Status Byte Format for 8420/8422 Diskette $4-23$
4.6.3. Status Byte Format for 0776/0789 Printer 4-294.6.4. Status Byte Format for 0789/0798Remote Printer4-30
4.6.5. Status Byte Format for 0719Card Reader4-31
4.6.6. Status Byte Format for 0608Card Punch4-32
4.6.7. Status Byte Format for UNISERVO 10 Magnetic Tape Type 0871 4-33
4.7. I/O SENSE DATA BYTE DEFINITIONS FOR DMA DEVICES 4-36
4.7.1. I/O Sense Data Byte Definitions for 8417/8419 Disk 4-36
4.7.1.1. Summary of I/0 Sense Data Bytes for 8417/8419 Disk 4-46
4.8. I/O SENSE DATA BYTE DEFINITIONS FOR MLCM DEVICES 4-49
4.8.1. I/O Sense Data Byte Definitions for Single Line Communications Adapter (SLCA) 4-49
4.8.1.1. Summary of $1 / 0$ Sense Data Bytes for Single Line Communications Adapter (SLCA) 4-53
4.9. I/O SENSE DATA BYTE DEFINITIONS FOR SDMA DEVICES 4-54
4.9.1. I/O Sense Data Byte Definitions for System 80 Workstation/Console Workstation 4-54
4.9.1.1. Summary of I/O Sense Data Bytes for System 80 Workstation/Console Workstation 4-60
4.9.2. I/O Sense Data Byte Definitions for 8420/8422 Diskette 4-61
4.9.2.1. Summary of I/O Sense Data Bytes for 8420/8422 Diskette 4-77
4.9.3. $\quad 1 / 0$ Sense Data Byte Definitions for 0776/0789 Printer 4-79
4.9.3.1. Summary of $1 / 0$ Sense Data Bytes for 0776/0789 Printer 4-87
4.9.4. I/O Sense Data Byte Definitions for 0789/0798 Remote Printer 4-88
4.9.4.1. Summary of $1 / 0$ Sense Data Bytesfor 0789/0798 Remote Printer4-101
4.9.5. I/0 Sense Data Byte Definitions for 0719 Card Reader 4-103
4.9.5.1. Summary of $1 / 0$ Sense Data Bytes for 0719 Card Reader 4-108
4.9.6. I/0 Sense Data Byte Definitions for 0608 Card Punch 4-109
4.9.6.1. Summary of $\mathrm{I} / 0$ Sense Data Bytes for 0608 Card Punch $4-114$
4.9.7. I/O Sense Data Byte Definitionsfor UNISERVO 10 Magnetic TapeType 0871$4-115$
4.9.7.1. Summary of $1 / 0$ Sense Data Bytesfor UNISERVO 10 Magnetic TapeType 08714-126
A. POWERS OF 2 TABLE
B. POWERS OF 16 TABLE

USER COMMENT SHEET

Capital letters, parentheses, and punctuation marks	Must be coded exactly as shown
Lowercase letters and terms	Represent information supplied by the programmer
Braces \{ \}	Necessary entries from which one must be chosen
Brackets []	Optional entries
Ellipsis...	Indefinite number of entries
	Default option
Underlining	Only the underlined portion of the entry need be specified.

	ASCU Character Codes								
		0	1	2	3	4	5	6	7
	0	NUL	DLE	SP	0	@	P	-	p
포유융	1	SOH	DC1	${ }^{\prime}$ (1)	1	A	Q	a	9
冎	2	STX	DC2	"	2	B	R	b	r
굴	3	ETX	DC3	\#	3	C	S	c	S
M	4	EOT	DC4	\$	4	D	T	d	t
	5	ENQ	NAK	\%	5	E	U	e	u
	6	ACK	SYN	\&	6	F	V	f	v
$\stackrel{\overline{\ddot{a}}}{\stackrel{\rightharpoonup}{\sigma}} \sim$	7	BEL	ETB	,	7	G	W	g	w

	8	BS	CAN	1	8	H	X	h	x
	9	HT	EM)	9	1	Y	i	γ
	A	LF	SUB	*	:	J	z	j	z
	B	VT	ESC	4	;	K	[k	\{
	c	FF	FS	,	$<$	L	,	1	1
	D	CR	GS	-	$=$	M	1	m	\}
	E	So	RS	.	>	N	$\wedge^{(1)}$	n	\sim
	F	SI	US	\checkmark	?	O	-	-	DEL

NOTES:
Some graphic, card code, and hexadecimal assignments may differ depending upon the device, language.
application, or installation policy.
(1) The following optional graphics can be substituted in the character set:
\longrightarrow for \wedge
| for :
(2) Sixty-three printable character set
(3) Graphics available by use of the type 0768-02 printer, which prints a 94 -character set (DEL is not a graphic)
(4) Ninety-four printable character set.

중	EBCDIC Character Codes																
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
	0	NUL	DLE	$\text { Ds }{ }^{1}$		SP	8	－						（4）	1 （4）	1 （4）	0
$\begin{aligned} & \text { 포 } \\ & \text { 증 } \end{aligned}$	1	SOH	DC1	sos ${ }^{1}$				1		a^{4}	j	(4)		A	J		1
	2	STX	DC2	FS ${ }^{(1)}$	SYN					b	k	s		B	K	S	2
	3	ETX	DC3							c	1	t		C	L	T	3
$\begin{aligned} & \sum_{8}^{0} \\ & \text { 刃in } \end{aligned}$	4									d	m	u		D	M	U	4
京	5	HT		LF						e	n	\checkmark		E	N	V	5
茎另	6		BS	ETB						f	0	w		F	0	W	6
	7	DEL		ESC	EOT					9	D	\times		G	P	\times	7
	8		CAN							h	9	Y		H	0	Y	8
	9		EM						（4）	i	r	2		1	R	Z	9

A					14	$1!5$	(3)										
B	VT					\$		\#									
C	FF	Fs ${ }^{5}$		${ }^{\text {DC4 }}$	$<$	-	\%	0									
D	CR	G5 ${ }^{5}$	ENO	NAK	1	,											
E	$\mathrm{SO}^{(5)}$	RS ${ }^{(5)}$	ACK		+	:	>										
F	$\mathrm{SI}^{(5)}$	$u s^{(3)}$	BEL	SUB	$\begin{aligned} & (2) \\ & 1 \\ & \hline \end{aligned}$	$7 \text { (2) }$?										

NOTES:
Some graphic, card code, and hexadecimal assignments may differ depending upon the device, language, application, or installation policy
(1)

DS, SOS. FS are the control characters for the EDIT instruction and have been assigned for ASCII mode processing so as not to conflict with the corresponding character positions previously assigned in the EBCDIC chart. As these characters are not outside the range as defined in ANSt $\times 3.4$ - 1968, they must not appear in external storage media, such as ANSI standard tapes. This presents no difficulty due to the nature of the EDIT instruction.
(2) The following optional graphics can be substituted in the character set:
\wedge for \longrightarrow
Ifor:
(3)

For 63 -character printers, the following substitution is made:
Ifor:
(4) The lowercase alphabet and indicated graphics are introduced by use of the type 0768-02 printer, which prints a 94 -character set.
(5) The following substitutions are made for the UTS 400 handler:

SPROT (start protected) for SO EPROT (end protected) for S!
SB (start blink) for FS
EB (end blink) for GS
SOE (start of entry) for RS
(6) DC4 for the UTS 400 handler

	Hexadecimal Character Codes			
	ASCII	Control	Symbol	EBCDIC
	Hexadecimal	Character	Symbol	Hexadecimal
	00	NUL		00
	01	SOH		01
	02	STX		02
	03	ETX		03
	04	EOT		37
	05	ENQ		20
	06	ACK		2E
	07	BEL		2F
	08	BS		16
	09	HT		05
	OA	LF		25
号	OB	$V T$		OB
	OC	FF		OC
	OD	CR		OD
	OE	SO		OE
	OF	SI		OF

뀽ㄷ	10	DLE		10
－	11	DC1		11
∞	12	DC2		12
	13	DC3		13
	14	DC4		3 C
	15	NAK		3D
砍号	16	SYN		32
촊	17	ETB		26
脗	18	CAN		18
第至	19	EM		19
맃	1 A	SUB		3 F
敝感	1 B	ESC		27
cm	1 C	FS		1 C
氛	10	GS		1 D
柔串	1E	RS		1 E
	1F	US		1 F
	20	（space）		40
듬	21		$!$	5A 4F
䓂	22		＂	7F
∞	23		\＃	7 B
	24		\＄	58

$\begin{aligned} & \text { 꿍 } \\ & \stackrel{\circ}{\circ} \\ & -\mathbf{\infty} \\ & -\infty \\ & \hline \infty \end{aligned}$	xadecimal Charact	des（cont）		
	ASCII	Control Character	Symbol	EBCDIC
	Hexadecimal			Hexadecimal
	25		\％	6C
	26		\＆	50
䂞号	27			70
客芴	28		1	4D
冎	29		1	5D
\bigcirc	2A		＊	5C
خ入	2 B		＋	4 E
令盛	2C			68
\cdots	2D		－	60
돌	2E			48
졲ㅇㅇㅇ	2F		1	61
$\underset{\sim}{2}$	30		0	FO
	31		1	F1
\cdots	32		2	F2
	33		3	F3
	34		4	F4
	35		5	F5

ㄲ刃ㅇㅣㅔ	36	6	F6
$\stackrel{+}{\circ}$	37	7	F7
$-\infty$	38	8	F8
	39	9	F9
	3A		7A
	3 B		5E
꽂ㅇ	3C	$<$	4C
号品	3D	$=$	7E
㶨	3E	＞	6E
\％	3 F	？	6 F
予京	40	＠	7C
务0	41	A	C1
m	42	B	C2
管管	43	C	C3
言 ${ }_{\circ}^{\circ}$	44	D	C4
$\underset{\sim}{\sim}$	45	E	C5
	46	F	C6
\checkmark	47	G	C7
∞	48	H	C8
	49	1	C9
	4A	J	D1

2	Hexadecrmal Charact	odes (cont)		
-	ASCII Hexadecimal	Control Character	Symbol	EBCDIC Hexadecimal
	4B		K	D2
	4 C		L	D3
	4D		M	D4
	4E		N	D5
	4F		0	D6
$\stackrel{T}{6} \underset{i}{c}$	50		P	D7
	51		Q	D8
覅感	52		R	D9
	53		S	E2
	54		T	E3
	55		U	E4
	56		V	E5
$\stackrel{\square}{\square}$	57		W	E6
	58		X	E7
	59		Y	E8
	5A		Z	E9
	5B		1	4A

HEXADECIMAL CONVERSION TABLE FOR DUMP ANALYSIS (cont)

Hexadecimal Character Codes (cont)

ASCII Hexadecimal	Control Character	Symbol	EBCDIC Hexadecimal
72		r	99
73		s	A2
74		1	A3
75		u	A4
76		v	A5
77		w	A6
78		\times	A7
79		y	A8
7A		z	A9
7 B		;	CO
7 C		,	$4 F 6 \mathrm{~A}$
70		;	DO
7E			A1
7 F	DEL		07^{*}
80	ISR		20^{*}
81	SSB		21^{*}
82	FSB		22^{*}

-For edit mask conversion only.

	Character	Printed Symbol	Card Punches	ASCII		EBCDIC	
				Hexadecimal	Decimal	Hexadecimal	Decimal
	Letters						
	A	A	12-1	41	65	C1	193
	B	B	12-2	42	66	C 2	194
	C	C	$12 \cdot 3$	43	67	C3	195
	D	D	12--4	44	68	C4	196
	E	E	12-5	45	69	C5	197
$\frac{1}{\omega}$	F	F	12-6	46	70	C6	198
	G	G	12-7	47	71	C7	199
	H	H	12-8	48	72	C8	200

	Character	Printed Symbol	Card Punches	ASCII		EBCDIC	
				Hexadecimal	Decimal	Hexadecimal	Decimal
I	1	1	12-9	49	73	C 9	201
	J	J	11-1	4 A	74	D1	209
क등	K	K	11-2	$4 B$	75	D2	210
	L	L	11-3	4C	76	D3	211
長	M	M	11-4	4 D	77	D4	212
	N	N	$11-5$	4E	78	D5	213
-	O	O	11-6	4F	79	D6	214
	P	P	11-7	50	80	07	215

	Character Conversion Table (cont)						
		Printed Symbol	Card Punches	ASCII		EBCDIC	
	Charactor			Hexadocimal	Decimal	Hexadecimal	Decimal
	s	5	11-0-2	73	115	A2	162
	t	1	11-0-3	74	116	A3	163
	u	u	11-0-4	75	117	A4	164
	v	\checkmark	11-0-5	76	118	A5	165
	w	w	11-0-6	77	119	A6	166
	*	*	11-0-7	78	120	A7	167
\pm	v	v	11-0-8	79	121	A8	168
	'	<	11-0-9	7A	122	A9	169

	Numerals						
	0	0	0	30	48	F0	240
	1	1	1	31	49	F1	241
预号	2	2	2	32	50	F2	242
¢5	3	3	3	33	51	F3	243
	4	4	4	34	52	F4	244
\sum_{\equiv}^{∞}	5	5	5	35	53	F5	245
刃	6	6	6	36	54	F6	246
\checkmark	7	7	7	37	55	F7	247

Character Conversion Table (cont)

Character	Printed Symbol	Card Punches	ASCII		EBCDIC	
			Hexadecimal	Decimal	Hexadecimal	Decimal
8	8	8	38	56	F8	248
9	9	9	39	57	F9	249
Symbois						
Exclamation point	$!$	$11-2-812-8-7$	21	33	$4 F \quad 5 \mathrm{~A}$	9079
Quotation mark, dieresis	-	8-7	22	34	7 F	127
Number sign, pound sign	\#	8-3	23	35	7 B	123
Dollar sign	\$	11-8-3	24	36	5B	91
Percent sign	\%	0-8-4	25	37	6C	108
Ampersand	\&	12	26	38	50	80

꾼둥	Apostrophe，acute accent		8－5	27	39	70	125
	Opening parenthesis	1	12－8－5	28	40	4D	77
	Closing parenthesis	1	11－8－5	29	41	5D	93
号	Asterisk	－	11－8－4	2A	42	5C	92
¢	Plus sign	＋	12－8－6	2B	43	4E	78
窃会	Comma，cedilla	．	0－8－3	2 C	44	6B	107
들	Minus sign，hyphen	－	11	2D	45	60	96
＞	Period，decimal point	．	12－8－3	2 E	46	4B	75
	Slash，virgule，solidus	1	O－1	2F	47	61	97
	Colon		8－2	3A	58	7A	122

$\begin{aligned} & \text { 중 } \\ & \text { ¢ } \\ & -\infty \\ & -\infty \\ & \hline \infty \end{aligned}$	Character	Printed Symbol	Card Punches	ASCII		EBCDIC	
				Hexadecimal	Decimal	Hexadecimal	Decimal
	Semicolon	；	11－8－6	3B	59	5 E	94
	Less than	$<$	12－8． 4	3C	60	4C	76
$\begin{aligned} & \text { 另员 } \\ & \infty \end{aligned}$	Equal sign	$=$	86	3 D	61	$7 E$	126
	Greater than	$>$	086	3E	62	6 E	110
忍	Question mark	$?$	$\begin{array}{ll}0 & 8-7\end{array}$	3F	63	6 F	111
$\begin{aligned} & \text { 产 } \\ & \text { Box } \end{aligned}$	Commercral at symbol	＠	84	40	64	7 C	124
	Opening bracket	［	1282	5B	91	4 A	74
N	Closing bracket]	11．8．2	5 D	93	$5 A$	90
	Reverse slash	1	0－8 2	5 C	92	EO	224

Character Conversion Table (cont)

Character	Card Punches	ASCII		EBCDIC	
		Hexadecimal	Decimal	Hexadecimal	Decimal
Nonprintable Characters					
ACK (acknowledge)	$0-9-8-6$	06	6	2E	46
BEL (bell)	$0-9-8-7$	07	7	2 F	47
BS (backspace)	11-9-6	08	8	16	22
CAN (cancel)	11-9-8	18	24	18	24
CR (carriage return)	12-9-8-5	OD	13	0 D	13
DC1 (device control 1)	11-9-1	11	17	11	17
DC2 (device control 2)	11-9-2	12	18	12	18
DC3 (device control 3)	11-9-3	13	19	13	19

DC4 (device control 4)
DEL (delete)
DLE (data link escape)
DS (digit select)
EM (end of medium)
ENO (enquiry)
EOT (end of transmission)
ESC (escape)
ETB (end of transmission block)
$9-8-4$
$12-9$
$12-11-9-8-1$
$11-0-9-8-1$
$11-9-8-1$
$0-9-8-5$

9-7
0-9-7
0-9-6

3C
07
60

Character Conversion Table（cont）

	Character	Card Punches	ASCII		EBCDIC	
			Hexadecimal	Decimal	Hexadecimal	Decimal
	ETX（end of text）	12－9－3	03	3	03	3
長管	FF（form feed）	12－9－8－4	OC	12	OC	12
甬	FS（file separator）	11－9－8－4	1 C	28	1 C	28
	FS（field separator）	0－9－2	82	130	22	34
$\begin{aligned} & \text { me } \\ & \text { c } \\ & \end{aligned}$	GS（group separator）	$11-9-8-5$	1 D	29	10	29
줄	HT（horizontal tabulation）	12－9－5	09	9	05	5
$\stackrel{\sim}{\infty}$	LF（line feed）	0－9－5	OA	10	25	37
	NAK（negative acknowledge）	9－8－5	15	21	3D	61
	NUL（null）	12－0－9－8－1	00	0	00	0

Hexadecimal-Decimal Conversion Table

Hexadecimal to Decimal

Hexadecimal Digit Positions											
6		5		4		3		2		1	
Hex	Dec										
0	0	0	0	0	0	0	0	0	0	0	0
1	1,048.576	1	65,536	1	4,096	1	256	1	16	1	1
2	2,097,152	2	131.072	2	8.192	2	512	2	32	2	2
3	3.145 .728	3	196,608	3	12.288	3	768	3	48	3	3
4	4.194,304	4	262,144	4	16,384	4	1.024	4	64	4	4
5	5.242 .880	5	327.680	5	20.480	5	1.280	5	80	5	5
6	6.291 .456	6	393.216	6	24.576	6	1.536	6	96	6	6
7	7.340 .032	7	458.752	7	28.672	7	1.792	7	112	7	7
8	8.388,608	8	524.288	8	32,768	8	2.048	8	128	8	8
9	9.437.184	9	589.824	9	36,864	9	2.304	9	144	9	9
A	10.485,760	A	655,360	A	40,960	A	2.560	A	160	A	10
B	11.534 .336	B	720.896	B	45,056	B	2.816	B	176	B	11
C	12.582 .912	C	786.432	C	49.152	C	3.072	C	192	C	12
D	13.631 .488	D	851,968	D	53.248	D	3.328	D	208	0	13
E	14.680.064	E	917.504	E	57.344	E	3.584	E	224	E	14
F	15.728.640	F	983.040	F	61.440	F	3.840	F	240	F	15

	Hexadecimal Addition and Subtraction Table																
	$+$	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
	0	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
	1	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	10
	2	2	3	4	5	6	7	8	9	A	B	C	D	E	F	10	11
	3	3	4	5	6	7	8	9	A	B	C	D	E	F	10	11	12
	4	4	5	6	7	8	9	A	B	C	D	E	F	10	11	12	13
	5	5	6	7	8	9	A	B	C	D	E	F	10	11	12	13	14
	6	6	7	8	9	A	B	C	D	E	F	10	11	12	13	14	15
	7	7	8	9	A	B	C	D	E	F	10	11	12	13	14	15	16
	8	8	9	A	B	C	D	E	F	10	11	12	13	14	15	16	17
	9	9	A	B	C	D	E	F	10	11	12	13	14	15	16	17	18
	A	A	B	C	D	E	F	10	11	12	13	14	15	16	17	18	19
-	B	B	C	D	E	F	10	11	12	13	14	15	16	17	18	19	1 A
	C	C	D	E	F	10	11	12	13	14	15	16	17	18	19	1A	1B
	D	D	E	F	10	11	12	13	14	15	16	17	18	19	1 A	1 B	1C
	E	E	F	10	11	12	13	14	15	16	17	18	19	1A	1 B	1C	1D
	F	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1 C	1D	1E

Sign Conventions

Hexadecimal Representation		Binary Representation	Sign	
Generation	Digit		Value	Mode
External	A	1010	Positive	ASCII
	B	1011	Negative	
Processor	C	1100	Positive	ERCDIC
	D	1101	Negative	
External	E	1110	Positive	
	F	1111	Positive	

Linkage Register Conventions

Register	Contents
0	Reserved for system use
1	Parameter/list register
$2-12$	Free registers
13	Save area register
14	Return address register
15	Entry point register

2.1.1. Instruction Formats

Instruction Formats (cont)

[^0]
2.1.2.1. Instructions by Machine Code

꾼두	11	Load negative	RR	$\mathrm{R} 1-\mathrm{C}(\mathrm{R} 2)$	4		
$-\infty$	12	Load and test	RR	$\mathrm{R} 1-\mathrm{c}(\mathrm{R} 2)$	5		
	13	Load complement	RR	$\mathrm{R} 1-\mathrm{c}(\mathrm{R} 2)$	6	X0	
	14	AND	RR	$\mathrm{R} 1-\mathrm{C}(\mathrm{R} 1)$ AND $\mathrm{c}(\mathrm{R} 2)$	7		
	15	Compare logical	RR		2		
空另㚿	16	OR	RR	$\mathrm{Rl}-\mathrm{c}(\mathrm{R} 1) \mathrm{OR} \mathrm{C}(\mathrm{R} 2)$	7		
$\underset{\substack{m}}{\substack{2}}$	17	Exclusive 0R	RR	$R 1-c(R 1) \times 0 R(R 2)$	7		
롲ㄹ	18	Load	RR	$\mathrm{R} 1-\mathrm{c}(\mathrm{R} 2)$			
䎡步	19	Compare	RR		2		
	1 A	Add	RR	$\mathrm{R} 1-\mathrm{c}(\mathrm{R} 1)+\mathrm{c}(\mathrm{R} 2)$	6	x 0	
$\underset{\sim}{\mathbf{B}}$	1 B	Subtract	RR	$\mathrm{R} 1-\mathrm{c}(\mathrm{R} 1)-\mathrm{c}(\mathrm{R} 2)$	6	X0	
	1 C	Multiply	RR	$\{\mathrm{R} 1, \mathrm{R} 1+1]-\mathrm{c}(\mathrm{R} 1+1) \times \mathrm{c}(\mathrm{R} 2)$		SP	
N 	1D	Divide	RR	$\begin{aligned} & \mathrm{R} 1-\mathrm{Remainder} \text { of }\{\mathrm{c}(\mathrm{R} 1), \mathrm{c}(\mathrm{R} 1+1)\} \\ & \quad / \mathrm{c}(\mathrm{R} 2) \text {; } \\ & \mathrm{R} \mathbf{1}+1-\mathrm{Quotient} \text { of }[\mathrm{c}(\mathrm{R} 1), \mathrm{c}(\mathrm{R} 1+1)] \\ & \quad \mathrm{C}(\mathrm{R} 2) \end{aligned}$		SP，XD	

Instructions by Machine Code (cont)

$\begin{aligned} & \text { 준 } \\ & \stackrel{\circ}{0} \\ & -\underset{\infty}{\infty} \\ & -\infty \end{aligned}$	2 D	Divide, Iong	RR	FPR1-c(FPR1)/c(FPR2)		SP, E0, EU, FD	3, 4
	2 E	Add unnormalized, long	RR	FPR1-c $($ FPR1 $)+\mathrm{c}($ FPR2 $)$	5	SP, E0, SG	3,4,5
	2 F	Subtract unnormalized, long	RR	FPR1-c(FPR1) - c(FPR2)	5	SP, E0, SG	3,4,5
	30	Load positive, short	RR	FPR1- $\mathrm{c}($ (FPR2 $)-1$	15	SP	3
	31	Load negative, short	RR	FPR1-¢(FPR2) - 1	4	SP	3
	32	Load and test, short	RR	FPR1-c(FPR2)	5	SP	3
	33	Load complement, short	RR	FPR1--c(FPR2)	5	SP	3
	34	Halve, short	RR	FPR1-c(FPR2)/2		SP, EU	3
	38	Load, short	RR	FPR1-c(FPR2)		SP	3
	39	Compare, short	RR		2	SP	3
	3A	Add normalized, short	RR	FPR1-c(FPR1) $+\mathrm{c}(\mathrm{FPR} 2)$	5	SP, EO, EU, SG	3
\sim	3B	Subtract normalized, short	RR	FPR1-c(FPR1) - c(FPR2)	5	SP, EO, EU, SG	3
	3 C	Multiply, short	RR	FPR1-c(FPR1) $\times \mathrm{c}(\mathrm{FPR} 2)$		SP, EO, EU	3
	30	Divide, short	RR	FPR1-c(FPR1)/c(FPR2)		SP, EO, EU, FD	3

$\begin{aligned} & \text { 중 } \\ & \stackrel{\rightharpoonup}{\circ} \\ & -\infty \\ & -\infty \\ & -\infty \end{aligned}$	Instructions by Machine Code（cont）						
	Machine Code	Instruction Name	Type	Action＊	$\begin{gathered} \text { CC } \\ \text { Setting** } \end{gathered}$	Exceptions \dagger	Notest \dagger
	3 E	Add unnormalized，short	RR	FPR1－c（FPR1）$+\mathrm{c}($ FPR2 $)$	5	SP，E0，SG	3， 5
$\begin{aligned} & \text { 포 } \\ & \text { 莒呙 } \\ & \text { 总 } \end{aligned}$	3 F	Subtract unnormalized，short	RR	FPR1－c（FPR1）－c（FPR2）	5	SP，E0，SG	3， 5
	40	Store half word	RX	$S 2_{0-15}-\mathrm{C}(\mathrm{R})_{16-31}$		$A C, S P$	
	41	Load address	RX	$\mathrm{Rl}_{8-31}-\mathrm{S} 2 ; \mathrm{R1}_{0-7}-0$			
	42	Store character	RX	$\mathrm{S} 2_{0-7}-\mathrm{C}(\mathrm{R1})_{24-31}$		$A C$	
	43	Insert character	RX	$\mathrm{Rl}_{24-31}-\mathrm{c}(\mathrm{S} 2)_{0-7}$		AC	
	44	Execute	RX	Execute subject instruction at $\$ 2$ ， modified by $\mathbf{c}(\mathrm{RI})_{24-31}$	20	AC，SP，EX	6
	45	Branch and link	RX	$\mathrm{R} 1-\mathrm{c}(\mathrm{PSW})_{32-63} ;-\mathrm{S} 2$			
\cdots	46	Branch on count	RX	$\mathrm{R} 1-\mathrm{C}(\mathrm{R} 1)-\mathrm{l}$ ；-S 2 if $\mathrm{c}(\mathrm{R} 1) \neq 0$			
	47	Branch on condition	RX	$\rightarrow \mathrm{S} 2$ if $(\mathrm{M1})_{\mathrm{cc}}=1$			
	48	Load half word	RX	$\mathrm{R1} 1_{16-31}-\mathrm{c}(\mathrm{S} 2)_{0-15} ; \mathrm{R1}_{0-15}-\mathrm{c}(\mathrm{S} 2)_{0}$		$A C, S P$	

중둥	49	Compare half word	RX		2	AC，SP	7
－${ }_{\infty}^{\infty}$	4A	Add half word	RX	$\mathrm{R} 1-\mathrm{c}(\mathrm{R} 1)+\mathrm{c}(\mathrm{S} 2)_{0-15}$	6	$A C, S P, X 0$	7
	4 B	Subtract half word	RX	$\mathrm{R} 1-\mathrm{c}(\mathrm{R} 1)-\mathrm{c}(\mathrm{S} 2)_{0-15}$	6	AC，SP，XO	7
	4 C	Multiply half word	RX	$\mathrm{R} 1-\left(\mathrm{C}(\mathrm{R} 1) \times \mathrm{C}(\mathrm{S} 2)_{0-15}\right)_{16-47}$		$A C, S P$	7
	4E	Convert to decimal	RX	S20－63（packed decimal）－c（R1）（binary）		AC，SP	
效罚	4F	Convert to binary	RX	R1（binary）－c（S2） O－63 $^{\text {（packed decimal）}}$		AC，SP，DT，XD	
¢	50	Store	RX	$\mathrm{S} 2-\mathrm{c}(\mathrm{R} 1)$		$A C . S P$	
	51	Load directive address	RX	（privileged）		AC，PR，SP	
$\begin{aligned} & \text { Me } \\ & \end{aligned}$	54	AND	RX	R1－c（R1）AND c（S2）	7	AC，SP	
容	55	Compare logical	RX		2	$A C, S P$	
$\underset{\sim}{\sim}$	56	OR	RX	$\mathrm{Rl}-\mathrm{c}(\mathrm{R} 1) \mathrm{OR} \mathrm{c}(\mathrm{S} 2)$	7	AC，SP	
N	57	Exclusive 0 R	RX	$\mathrm{R} 1-\mathrm{c}(\mathrm{R} 1) \times \mathrm{XOR} \mathbf{c}(\mathrm{S} 2)$	7	$A C, S P$	
ω	58	Load	RX	$\mathrm{R} 1-\mathrm{c}(\mathrm{S} 2)$		$A C, S P$	
	59	Compare	RX		2	AC，SP	

㛿	6 A	Add normalized，long	RX	FPR1－c（FPR1）$+\mathrm{c}(\mathrm{S} 2)$	5	AC，SP，EU，E0，SG	3， 4
$-{\underset{\infty}{\infty}}_{\infty}^{\infty}$	6 B	Subtract normalized，long	RX	FPR1－c（FPR1）－ $\mathrm{c}(\mathrm{S} 2)$	5	$A C, S P, E U, E 0, S G$	3，4
	6 C	Multiply，long	RX	FPR1－c（FPR1）\times c（S2）		AC，SP，EU，EO	3， 4
	6D	Divide，long	RX	FPR1－c（FPR1）／c（S2）		AC，SP，EU，EO，FD	3， 4
	6 E	Add unnormalized，long	RX	FPR1－c（FPR1）$+\mathrm{c}(\mathrm{S} 2)$	5	AC，SP，EO，SG	3，4，5
为召	6 F	Subtract unnormalized，long	RX	FPR1－c（FPR1）－ $\mathrm{c}(\mathrm{S} 2)$	5	AC，SP，EO，SG	3，4，5
弟	70	Store，short	RX	S2－c（FPR1）		AC，SP	3
곡	78	Load，short	RX	FPR1－c（S2）		$A C, S P$	3
$\begin{aligned} & m \\ & \infty \\ & \infty \end{aligned}$	79	Compare，short	RX		2	$A C, S P$	3
家	7A	Add normalized，short	RX	FPR1－c（FPR1）$+\mathrm{c}(\mathrm{S} 2)$	5	AC，SP，EU，E0，SG	3
－	7 B	Subtract normalized，short	RX	FPR1－c $($ FPR1 $)-\mathrm{c}(\mathrm{S} 2)$	5	AC，SP，EU，E0，SG	3
	7 C	Multiply，short	RX	FPR1－c（FPR1）$\times \mathrm{c}(\mathrm{S} 2)$		$A C, S P, E U, E 0$	3
$\stackrel{\square}{-}$	70	Divide，short	RX	FPR1－c（FPR1）／c（S2）		$A C, S P, E U, E 0, F D$	3
	7E	Add unnormalized，short	RX	FPR1－c（FPR1）$+\mathrm{c}(\mathrm{S} 2)$	5	AC，SP，EO，SG	3，5

Instructions by Machine Code (cont)

	Machine Code	Instruction Name	Type	Action*	CC Setting**	Exceptions \dagger	Notes $\dagger \dagger$
	7F	Subtract unnormalized, short	RX	FPR1-c(FPR1) - $\mathrm{c}(\mathrm{S} 2)$	5	AC, SP, E0, SG	3, 5
	80	Set system mask	S	(privileged)		AC, PR	
	81	Move I/0	RS	(privileged)		AC, PR, SP	25
	82	Load PSW	S	(privileged)		AC, PR, SP	25
	8300	Execute diagnose	S	(privileged)		AC, EX, PR, SP	25
	8301	Reset	S	(privileged)		OP, PR, SP	25
	8302	Store status	S	(privileged)		AC, OP, PR, SP	
	8303	Initial program load	S	(privileged)		PR	
	830E	Longitudinal redundancy check	S	(privileged)		AC, PR, SP	25
	830F	Switch list scan	S	(privileged)		PR, SP	25
	86	Branch on index high	RS	$R 1-c(R 1)+c(R 3) ;$ if $R 3$ is odd, $\rightarrow S 2$ if $c(R 1)>c(R 3)$; if $R 3$ is even, $\rightarrow S 2$ if $c(R 1)>C(R 3+1)$			

(ұuоэ) ә!!оみәdәу uо!̣эплиsu|

	87	Branch on index low or equal	RS	$\mathrm{Rl}-\mathrm{c}(\mathrm{R} 1)+\mathrm{c}(\mathrm{R} 3) ;$ if $R 3$ is odd，$\rightarrow S 2$ if $c(R 1) \leqslant c(R 3)$ ； if $R 3$ is even，$\rightarrow \mathrm{S} 2$ it $c(R 1) \leqslant c(R 3+1)$			
	88	Shift right single logical	RS	Right shift（R1）${ }_{0-31}$ ，fill with 0 ＇s			8
高为	89	Shift left single logical	RS	Left shift（R1）$)_{0-31}$ ，fill with 0 ＇s			8
窓荷	8A	Shitt right single	RS	Right shift（R1） $\mathbf{1}_{1-31}$ ，fill with $\mathrm{C}(\mathrm{Rl})_{0}$	5		8
oic	8B	Shift left single	RS	Left shift（R1）$)_{1-31}$ ，fill with 0 ＇s	6	X0	8
	8C	Shift right double logical	RS	Right shift $[\mathrm{R} 1, \mathrm{R} 1+1]_{0-63}$ ，fill with 0 ＇s		SP	8
$\begin{aligned} & \text { m } \\ & \text { n } \end{aligned}$	80	Shift left double logical	RS	Left shift $\mid R 1, R 1+1]_{0-63}$ ，fill with 0 ＇s		SP	8
㚆	8 E	Shift right double	RS	Right shift $[R 1, R 1+1]_{1-63}$ ，fill with $\mathrm{c}(\mathrm{R})_{0}$	5	SP	8
\bigcirc	8 F	Shift left double	RS	Left shift $[R 1, R 1+1]_{1-63}$ ，fill with 0 ＇s	6	SP，X0	8
	90	Store muitiple	RS	$\mathrm{S} 2, \ldots-c(R 1), \mathrm{c}(\mathrm{R} 1+1) \ldots, \ldots(R 3)$		AC，SP	9
$\stackrel{\sim}{\omega}$	91	Test under mask	Si		9	AC	
	92	Move immediate	S	$\mathrm{Sl}_{0-7}-12$		AC	

$\begin{aligned} & \text { 刃刃ㅜㅜㅇ } \\ & -\dot{\infty} \\ & -\infty \end{aligned}$	Instructions by Machine Code (cont)						
	Machine Code	Instruction Name	Type	Action*	$\begin{gathered} \text { CC } \\ \text { Setting** } \end{gathered}$	Exceptions \dagger	Notest \dagger
	93	Test and set	S	$51_{0.7}-\mathrm{X}^{\prime} \mathrm{FF}{ }^{\prime}$	10	AC	
	94	AND immediate	SI	$\mathrm{Si}_{1-7}-\mathrm{C}(\mathrm{Sl})_{0-7} \mathrm{AND} 12$	7	AC	
	95	Compare logical immediate	SI		2	AC	
	96	OR immediate	SI	S1 1_{0-7} - $\mathrm{C}(\mathrm{S} 1)_{0-7}$ OR 12	7	AC	
	97	Exclusive OR immediate	SI	$S 1_{0-7}-\mathrm{C}(\mathrm{S} 1)_{0-7} \mathrm{XOR} 12$	7	AC	
	98	Load multiple	RS	$\mathrm{R} 1, \mathrm{Rl}+1, \ldots, \mathrm{R} 3-\mathrm{c}(\mathrm{S} 2)$		AC, SP	9
	99	Halt and proceed	SI	(privileged)		PR	
	9 A	Add immediate	Si	S1 ${ }_{0.15}-\mathrm{Sl}_{0-15}+12$	6	$A C, S P, X 0$	10
	9 B	Shift logical	RS	Shift R1 or $[\mathrm{R} 1, \mathrm{R} 1+1]$ according to M3 bits	11	SP	8, 11
$\stackrel{\sim}{\stackrel{\sim}{2}}$	$9 \mathrm{CO2}$	Start device	S	(privileged)		AC, PR, SP	25
	9DX2	Clear device	RS	(privileged)		AC, PR, SP	25

	Machine Code	Instruction Name	Type	Action*	$\begin{gathered} \text { CC } \\ \text { Setting** } \end{gathered}$	Exceptions \dagger	Notest \dagger
	89	Compare and swap under mask	RS	Compares $\mathrm{c}(\mathrm{S} 2)$ and $\mathrm{c}(\mathrm{R} 1+1)$ masked by $\mathrm{c}(\mathrm{Rl})$; if comparands are equal, S2 (masked by c(R3)) $-c(\mathbb{R} 3+1)$	2	AC, SP	12
	BD	Compare logical characters under mask	RS		2	AC	13
先家	BE	Store characters under mask	RS	S2-C(R1) under M3 mask		AC	13
	BF	Insert characters under mask	RS	R1 (under M3 mask)-c(S2)	12	$A C$	13
$\underset{\sim}{\sim}$	Dl	Move numerics	SS	Sl-c(S2)		AC	14, 15
\sim	D2	Move	SS	$\mathrm{S} 1-\mathrm{c}(\mathrm{S} 2)$		AC	14
$\stackrel{\square}{\square}$	D3	Move zones	SS	$\mathrm{S} 1-\mathrm{c}(\mathrm{S} 2)$		AC	14, 16
	D4	AND	SS	$\mathrm{S} 1-\mathrm{c}(\mathrm{S} 1)$ AND $\mathrm{C}(\mathrm{S} 2)$	7	AC	14

	D5	Compare logical	SS		2	AC	14
	D6	OR	SS	S1-c(\$1) OR c(S2)	7	$A C$	14
	D7	Exclusive 0 R	SS	S1-c(S1) XOR c(S2)	7	AC	14
	DC	Transiate	SS	$\mathrm{S} 1-\mathrm{c}(\mathrm{S} 2)$		AC	14, 17
	DD	Translate and test	SS	Register 1_{8-31}-address of nonzero result byte	14	AC	14, 18
				Register 2_{24-31}-nonzero result byte			
	DE	Edit	SS	$\mathrm{Sl} \vdash_{\text {c }}(\mathrm{S} 2)$	17	AC, DT	19
	DF	Edit and mark	SS	Sl - $\mathrm{C}(\mathrm{S} 2)$; Register $1_{8-3!}$-address of first significant digit	17	AC, DT	19
	E0	Enqueue l/0	SS	(privileged)		AC, PR, SP	25
	El	Compare logical immediate and skip	SM	$\rightarrow\left(\mathrm{PSW}_{40-63}+\mathrm{D} 4\right)$ if condition code and M3 mask permit	13	AC, SP	20
$\stackrel{\sim}{\because}$	E2	Test under mask and skip	SM	$-\left(\mathrm{PSW}_{40-63}+\mathrm{D4}\right)$ if condition code and M3 mask permit	9	AC. SP	20

Machine Code	Instruction Name	Type	Action*	$\frac{\text { CC }}{\text { Setting }^{* *}}$	Exceptions \dagger	Notest†
F0	Shift and round decimal	SS	$\mathrm{c}(\mathrm{S} 1)$ shifted right or left, rounded by factor 13	6	$A C, D T, D 0$	8, 21
F1	Move with offset	SS	S1-c(S2)		AC	22, 23
F2	Pack	SS	S1(packed decimal)-c(S2) (zoned decimal)		AC	22
F3	Unpack	SS	S1(zoned decimal)-c(S2) (packed decimal)		AC	22
F8	Zero and add	SS	S1-packed decimal 0; $\mathrm{S} 1-\mathrm{c}(\mathrm{S} 1)+\mathrm{c}(\mathrm{S} 2)$	6	AC, DT, DO	22
F9	Compare decimal	SS		2	$A C, D T$	22
FA	Add decima	SS	$\mathrm{S} 1-\mathrm{c}(\mathrm{S} 1)+\mathrm{c}(\mathrm{S} 2)$	6	AC, DT, DO	22
FB	Subtract decimal	SS	$\mathrm{Sl}-\mathrm{c}(\mathrm{S} 1)-\mathrm{c}(\mathrm{S} 2)$	6	AC, DT, D0	22
FC	Multiply decimal	SS	$\mathrm{S} 1-\mathrm{c}(\mathrm{S} 1) \times \mathrm{c}(\mathrm{S} 2)$		AC, SP, DT	22
FD	Divide decimal	SS	Sl -[quotient of $\mathrm{c}(\mathrm{S} 1) / \mathrm{c}(\mathrm{S} 2)$, remainder of $\mathrm{c}(\mathrm{S} 1) / \mathrm{c}(\mathrm{S} 2)]$		AC, SP, DT, DD	22, 24

*The meaning of the abbreviations in this column are:

R1
R2
R3

Sl
S2

FPRI

FPR2

M1
(Mn) Cc
M3
the number of the general register used as operand 1
the number of the general register used as operand 2
the number of the general register used as operand 3
the main storage address used as operand 1
the main storage address used as operand 2
the number of the floating-point register used as operand 1
the number of the floating-point register used as operand 2
the 4-bit mask used as operand 1
the operand n mask bit corresponding to the current condition code, 0 to 3
the 4 -bit mask used as operand 3
the 8 -bit immediate data used as the SVC instruction operand, bits 8-15 of the instruction the 8 -bit immediate data used as operand 2
the 12-bit binary displacement used as operand 4 of SM-type instructions
the contents of the specified operand; for example, S2 specifies the main storage address of operand 2 while $c(\$ 2)$ specifies the contents of operand 2.
specifies that bit m of the operand is acted upon; if n is also specified, only bits m to n inclusive are acted upon. Bits are numbered left to right starting with 0.
concatenation of operands 1 and 2
the even-odd register pair addressed by register n.
program status word
replacement operator; signifies the replacement of data at the left operand with the right operand branch; signifies that program control passes to the right operand location.
All operands are 32 bits long unless otherwise noted.
**The CC settings are:

1. Opl length $=$ Op2 length
2. $\quad 0 \mathrm{pl}=0 \mathrm{p} 2$
3. \quad Result $=0$
4. \quad Result $=0$
5. \quad Result $=0$
6. \quad Result $=0$
7. \quad Result $=0$
8. \quad Result $=0$, no carry

Opl length < 0 p 2 length
$0 \mathrm{pl}<\mathrm{Op} 2$

Result <0
Result <0
Result <0

Result $\neq 0$

Result $\neq 0$, no carry

Opl length $>$ Op2 length
$\mathrm{Opl}>0 \mathrm{p} 2$
Result >0
Overflow
Destructive overlap;
no move performed

줄둔 Instructions by Machine Code (cont)

9. All selected bits $=0$

Selected bits are
or $\mathrm{c}(12)=0$
mixed, some 0 and some 1
$\mathrm{c}(\mathrm{S} 2)_{0}=1$
Result $=0,1$ or more
1 's shifted out
12. All inserted bits $=0$ or $\mathrm{c}(\mathrm{M} 3)=0$

High-order inserted bit $=1$
13. $\quad 0 \mathrm{p} 2=0 \mathrm{p} 3$
14. All result bytes $=0$
$0 \mathrm{p} 2<0 \mathrm{p} 3$
Result byte $\neq 0$ and is not last byte of opl

Result $\neq 0$, no carry

Result $\neq 0$, all 0 's shifted out

High-order inserted bit $=0$ but not all inserted bits are 0's
$0 \mathrm{p} 2>0 \mathrm{p} 3$
Result byte $\neq 0$ and is last byte of opl
Result > 0
Result $=0$,
carry

Result $\neq 0$, carry
17. $\quad \begin{aligned} & \text { Last field } \\ & \text { examined }\end{aligned}=0$

Last field examined $\neq 0$, and plus sign is not detected

Last field examined >0
18. Set $=$ to bit positions 2 and 3 of the first operand
19. Set $=$ to bit positions 34 and 35 of the supervisor call new PSW (unchanged in the old PSW)
20. Condition code may be set by the subject instruction
\dagger Exception codes, in parentheses, are those contained in program status word (PSW) bits 24-31.

AC access (protection (04) or addressing (05))
DI data (07)
DD decimal divide (0B)
DO decimal overflow (OA)
EX execute (03)

EO exponent overflow (OC)

EU exponent underflow (OD)
XD fixed-point divide (09)
X0 fixed-point overflow (08)
FD floating-point divide (0 F)
OP operation (01)
PR privileged operation (02)
SG significance ($O E$)
SP specification (06)
†The explanations for this column are:

1. No branch is taken if $\mathrm{R} 2=0$.
2. Operands 1 and 2 both are even-odd register pairs. $c(R 1+1)_{8-31}$ is the length of operand $1, c(R 2+1)_{8-31}$ is the length of operand 2 , and $\mathrm{c}(\mathrm{R} 2+1)_{0-7}$ is the pad byte.
3. Operands are in floating-point form and normalized except where noted.
4. Operands are 64 bits long.
5. Normalization is not performed on result.
6. Before subject instruction is executed, an 0 R operation using specified R 1 bits is performed on bits $8-15$ of the instruction.
7. Before the operation begins, the half-word operand is expanded to 32 bits by propagating $\mathrm{c}(\mathrm{S} 2)_{0}$ through the high-order 16 bit positions.
8. Length of shift is given by low-order six bits of S 2 .
9. If $\mathrm{R} 1>\mathrm{R} 3$, registers wrap around: ..., $15,0, \ldots$ IF $\mathrm{R} 1=\mathrm{R} 3$, only that register is used. Main storage operand addresses the leftmost byte of main storage used. Length of operand is 4 bytes if $R 1=R 3,4 \times(R 3-R 1+1)$ bytes if $R 3>R 1$, or $4 \times(R 3-R 1+17)$ bytes if $R 3$ $<\mathrm{Rl}$.
10. Prior to addition, the immediate operand is expaned to 16 bits, (12$)_{0}$ being propagated through the high-order 8 bits.
11. Bits $\mathbf{1 2}-15$ in the instruction govern the shift as follows:

Bit 12: 0	discard bits shifted out; 1	circular shift
Bit $13: 0$	shift left; 1	shift right

Instructions by Machine Code (cont)

Bit 14: 0 shift single register; 1 shift even-odd register pair
 shift in 1's

Bit 15: 0 shift in 0's;
12. R1 and R 3 contain 32 -bit masks. For $m=$ bit positions $0-31, c(R 1+1)$ takes part in the comparison only if $c(R 1) m=1$, and $\mathrm{c}(\mathrm{R} 3+1) \mathrm{m}$ replaces $\mathrm{c}(\mathrm{S} 2) \mathrm{m}$ only if $\mathrm{c}(\mathrm{R} 3) \mathrm{m}=1$.
13. The 4 bit mask contained in $M 3$ determines which bytes of $R 1$ take part in the operation. For $n=$ mask bits 0 to $3, c(R 1)_{8} n-18 n+7$ takes part if $\mathrm{M} 3 \mathrm{n}=1$ but is masked out if $\mathrm{M} 3 \mathrm{n}=0$. Main storage bytes are contiguous.
14. The operand length minus 1 is given by bits $8-15$ of the instruction.
15. Only the low-order 4 bits of each operand 2 byte are moved.
16. Only the high-order 4 bits of each operand 2 byte are moved.
17. Each byte of S 1 is replaced by a byte addressed by S 2 so that $\mathrm{S} 1-\mathrm{c}\left(\mathrm{S} 2+\mathrm{c}(\mathrm{S} 1)_{0-7}\right.$
18. The instruction scans S 1 until it finds a nonzero byte or until it has scanned all of Sl .
19. Operand 2, which must be in packed format, is unpacked and edited under control of operand 1, the pattern, whose length is given in bits 8-15 of the instruction. See 2.1.3 for edit instruction settings.
20. Branch to PSW + D4 only if $\mathrm{c}(\mathrm{M} 3)_{\mathrm{cc}}=1$; M 3 is bits $16-19$ of the instruction.
21. The low-order 4 bits of $\mathrm{c}(\mathrm{S} 1)$ are left unchanged and 0 's are shifted in. The direction of the shift is determined by S 2 ; the high-order bit of the 6 -bit shift length in $S 2$ is set to 0 for a left shift, or to 1 for a right shift.
22. The operand 1 length minus 1 is given by bits $8-11$ of the instruction, the operand 2 length minus 1 given by bits $12-15$.
23. The S 2 bytes are shifted left one half byte when placed in S 1 , thus leaving the rightmost half byte of S 1 unchanged.
24. The remainder occupies the rightmost bytes of the operand 1 result and is equal in length to the S 2 divisor. The quotient occupies the rest of operand 1
25. This privileged instruction has possible condition code settings that are not described in this summary due to their complexity. Refer to the assembler user guide, UP-8913 (current version), for further information.
2.1.2.2. Instructions by Instruction Mame

Instruction Name	Machine Code	Mnemonic
Add	IA	AR
Add	5 A	A
Add decimal	FA	AP
Add half word	4 A	AH
Add immediate	9 A	AI
Add logical	1 E	ALR
Add logical	5 E	AL
Add normalized, long	2 A	ADR

뀽둥	Add normalized，long	6 A	AD
	Add normalized，short	3 A	AER
	Add normalized，short	7A	AE
高留	Add unnormalized，long	2 E	AWR
	Add unnormalized，long	6 E	AW
，룰	Add unnormalized，short	3 E	AUR
浐管	Add unnormalized，short	7 E	AU
좆중	AND	14	NR
	AND	54	N
$\widetilde{8}$	AND	94	Ni
	AND	D4	NC

	Instructions by Instruction Name (cont)		
	Instruction Name	Machine Code	Mnemonic
	Branch and link	05	BALR
	Branch and link	45	BAL
	Branch on condition	07	BCR
	Branch on condition	47	BC
	Branch on count	06	BCTR
	Branch on count	46	BCT
	Branch on index high	86	BXH
$\begin{aligned} & N \\ & \mathbf{c} \\ & \mathbf{c} \end{aligned}$	Branch on index low or equal	87	BXLE
	Clear channel-privileged	$9 F 02$	CLRCH

$\stackrel{\text { 70 }}{\substack{\text { che } \\ 0}}$	Clear device-privileged	9DX2	CLRDV
${ }_{\infty}$	Compare	19	CR
	Compare	59	C
	Compare and swap under mask	B9	CSM
	Compare decimal	F9	CP
	Compare half word	49	CH
	Compare logical	15	CLR
	Compare logical	55	CL
~	Compare logical	95	CLI
	Compare logical	D5	CLC
	Compare logical characters under mask	BD	CLM

Instructions by Instruction Name (cont)

Instruction Name	Machine Code	Mnemonic
Compare logical immediate and skip	El	CLIS
Compare logical characters long	OF	CLCL
Compare long	29	CDR
Compare long	69	CD
Compare, short	39	CER
Compare, short	79	CE
Convert to binary	4F	CVB
Convert to decimal	4E	CVD

忍ㄷ․	Divide	10	DR
－	Divide	5D	D
	Divide decimal	FD	DP
동웅	Divide，long	20	DDR
对て	Divide，long	6 D	DD
굴	Divide，short	30	DER
	Divide，short	7 D	DE
窓退	Edit	DE	ED
	Edit and mark	DF	EDMK
$\stackrel{\sim}{\omega}$	Enqueue 1／0－privileged	E0	EIO

Instructions by Instruction Name (cont)

Instruction Name	Machine Code	Mnemonic
Exclusive OR	17	XR
Exclusive OR	57	x
Exclusive OR	97	XI
Exclusive OR	D7	XC
Execute	44	EX
Execute diagnose - privileged	8300	EXD
GET IORB - privileged	OB	GRB
Halt and proceed - privileged	99	HPR
Halt device - privileged	9 E 01	HDV
Halve, long	24	HDR

	Halve, short	34	HER
	Initial program load - privileged	8303	IPL
	Insert character	43	IC
	Insert characters under mask	BF	ICM
	Insert storage key - privileged	09	ISK*
	Load	18	LR
	Load	58	L
	Load address	41	LA
	Load and test	12	LTR
N	Load and test, long	22	LTDR
	Load and test, short	32	LTER
	Load channel register - privileged	9703	LCHR

	Instructions by Instruction Name (cont)		
	Instruction Name	Machine Code	Mnemonic
	Load complement	13	LCR
	Load complement, long	23	LCDR
	Load complement, short	33	LCER
	Load control - privileged	B7	LCTL
	Load directive address - privileged	51	LDA
	Load half word	48	LH
	Load I/0 address - privileged	61	LIA
	Load, long	28	LDR
	Load, long	68	LD

	Load multiple	98	LM
	Load negative	11	LNR
	Load negative, long	21	LNDR
突号	Load negative, short	31	LNER
\bigcirc	Load positive	10	LPR
룰	Load positive, long	20	LPDR
\bigcirc	Load positive, short	30	LPER
춪ㅇㅇㅇ	Load PSW - privileged	82	LPSW
	Load relocation register - privileged	A3	LRR
$\stackrel{\sim}{\sim}$	Load, short	38	LER
	Load, short	78	LE

	Instructions by Instruction Name（cont）		
	Instruction Name	Machine Code	Mnemonic
	Longitudinal redundancy check－privileged	830 E	LRC
곢u	Move	92	MVI
产烒	Move	D2	MVC
	Move 1／0－privileged	81	MIO
	Move characters long	OE	MVCL
交䢒	Move numerics	D1	MVN
	Move with offset	F1	MVO
N \sim ∞	Move zones	D3	MVZ

준둥	Multiply	1 C	MR
	Multiply	5 C	M
	Multiply decimal	FC	MP
䂞号	Multiply half word	4 C	MH
砍近	Multiply，long	2 C	MDR
롤	Multiply，long	6 C	MD
5	Multiply，short	3 C	MER
容员	Multiply，short	70	ME
	OR	16	OR
－	OR	56	0
	OR	96	01

	Shift left double logical	8 D	SLDL
	Shift left single	8B	SLA
	Shift left single logical	89	SLL
乭号	Shift logical	9 B	SHL
¢	Shift right double	8 E	SRDA
	Shift right double logical	8C	SRDL
$\stackrel{\sim}{5}$	Shift right single	8A	SRA
${ }_{\text {Bic }}$	Shift right single logical	88	SRL
N	Start device - privileged	9 C 02	SDV
:	Store	50	ST

Instructions by Instruction Name (cont)

Instructions by Instruction Name (cont)

$\begin{aligned} & \text { 준 } \\ & \stackrel{0}{\infty} \\ & -\infty \\ & -\infty \\ & -\infty \\ & \infty \\ & \infty \end{aligned}$	Subtract	1B	SR
	Subtract	5B	S
	Subtract decimal	FB	SP
	Subtract half word	4B	SH
	Subtract logical	$1 F$	SLR
	Subtract logical	5F	SL
	Subtract normalized, long	2B	SDR
	Subtract normalized, long	6B	SD
$\stackrel{\Gamma}{\stackrel{\omega}{\omega}}$	Subtract normalized, short	3B	SER
	Subtract normalized, short	7B	SE
	Subtract unnormalized, long	$2 F$	SWR

-	Instruction Name	Machine Code	Mnemonic
	Subtract unnormalized, long	6 F	SW
$\begin{aligned} & \text { SPERRY UNIVAC SYSTEM } 80 \\ & \text { HARDWARE/SOFTWARE SUMMARY } \end{aligned}$	Subtract unnormalized, short	3 F	SUR
	Subtract unnormalized, short	7F	SU
	Supervisor call	0A	SVC
	Supervisor load multiple - privileged	B8	SLM
	Supervisor store multiple - privileged	B0	SSTM
	Switch list scan - privileged	830F	SWLS
	Test and set	93	TS
	Test under mask	91	TM
	Test under mask and skip	E2	TMS

$\stackrel{\text { 즐 }}{\substack{0}}$	Translate	DC	TR
∞	Translate and test	DD	TRT
	Unpack	F3	UNPK
	Zero and add	F8	ZAP

*Added as a feature.

Edit Instruction Settings

Mosk (Operand 1) Character	EBCDIC/ASCI!	S Switch Status	Date (Opertind 2) Charecter	Rewulting (Operend 1) Chiracter	Prosulting S Switch Status
Fill character	Any	Off	Not examined	Remeins same	Off
Digit select byte	20	On	Nonzero	Digit	On*
		On	Zero	Digit	On"
		Off	Nonzero	Digit	On*
		Off	Zero	Fill character	Off
Significance start byte	21	On	Nonzero	Digit	On*
		On	Zero	Digit	On'
		Oft	Nonzero	Digit	On*
		Off	Zero	Fill character	On*

Murk (Opermind 1) Chartecter	EBCDIC/ASCII	S Switch Stetus	Data (Operand 2) Cherecter	Rocuiting (Operand 1) Character	Requiting 5 Switen Steturs
Message character	Any except 20., 21 22	On	Not examined	Message character	On*
		Off	Not examined	Fill character	Off*
Field separator byte	22	On	Not examined	Fill charecter	Off
		Off	Not examined	Fill character	OHf

- Sign detection (examined simultaneously with operand 2 digit) affects the S switch as follows:

A plus or minus sign detected as most significant digit causes data exception.
A plus sign detected as a least significant digit couses S switch to be turned off
A minus sign has no effect on the S switch.

2.2. MACHINE DATA

2.2.1. Data Formats

Floating-Point Numbers

FULL WORD

S^{*}	CHARACTER. ISTIC	MANTISSA	
0	1	(fraction) (exponent)	7

DOUBLE WORD

(LONG FORMAT)

S	CHARACTER- ISTIC	MANTISSA (fraction)	
0	1	(exponent)	7

*S = SIGN BIT

UNPACKED NUMBERS

PACKED NUMBERS

(HIGH ORDER)

(LOW ORDER)

FULL WORD

Data Boundary Alignments

＊MSB＝MOST SIGNIFICANT BIT
＊＊LSB＝LEAST SIGNIFICANT BIT

HALF WORD

4 BYTES

DOUBLE WORD

8 bytes

To align data or instructions on a double-word, full-word, or half-word main storage boundaries, use the following directive formats:

Control Stream Format for a Job to be

Monitored from the Start of the Program

Control Stream Format for a Job to be Monitored from the Start of the Program (cont)

Monitor Input Format for Input by the Operator After

Program Execution has Begun

[^1]

Summary of Actions and Program Information Printed

Program Information Printed	Action				
	Display Register (D R)	Display Storage (D S)	Default Display	Halt (H)	Quit (Q)
Job name**	X	x	x	X	x
TCB address*	x	x	X	x	X
Program base address*	x	x	X	X	X
PSW contents	x	X	X	X	X
Next instruction to execute	x	X	x	X	X
Option causing this printout	x	x	X	X	X
Contents of specified registers	x				

Summary of Actions and Program Information Printed (cont)

Program Information Printed	Action				
	Display Register (D R)	Display Storage (D S)	Default Display	Halt (H)	Quit (Q)
Contents of specified storage		X			
Contents of changed registers			x		
Contents of referenced storage			x		
HALT message				X	

*These items are included only for the first option that causes a printout.

mation Printed (cont)
 Summary of Actions and Program Infor-

Low-Order Main Storage Layout

UP-8868	SPERRY UNIVAC SYSTEM 80	$3-8$
Rev. 1	HARDWARE/SOFTWARE SUMMARY	

7x	Repressible machine-check old PSW	Repressible machine-check new PSW
8 x	PER old PSW	PER new PSW
$9 \times$	Restart old PSW	Restart new PSW
Ax	Reserved	
Bx	Reserved	
Cx	Exigent machine-check interruption code (EMCIC)	
Dx	Exigent machine-check interruption code (EMCIC)	

$\begin{aligned} & \text { 꿍 } \\ & \stackrel{\circ}{0} \\ & -\infty \\ & -\infty \\ & \hline \infty \end{aligned}$	Program Status Word (PSW) Field Interpretation		
	Bits*	Field Name	Description
	0	External mask (e)	Controls whether the CPU is enabled for interruption by an external interruption request. When the bit is 1 , interruptions are permitted.
	1	1/0 mask (10)	Controls whether the CPU is enabled for $1 / 0$ interruptions. When the bit is 1 , interruptions are permitted.
	2	Repressible machine check mask (m)	Controls whether the CPU is enabled for repressible machine check interruptions. When this bit is 1 , interruptions are permitted.
	3-7	Reserved	Must be zero. The CPU will force these bits to zero when loaded regardless of their state in the new PSW. Stored as zeros in the old PSW.
$\begin{gathered} \omega \\ \stackrel{\rightharpoonup}{N} \end{gathered}$	8-11	Relocation register	The processor relocation key selects 1 of 16 keys and relocation registers which apply to all program-visible CPU references while this PSW is used as the current PSW.

Program Status Word (PSW) Field Interpretation (cont)

	15	Wait state (w)	When 1 , the CPU is in the wait state. When zero, the CPU is in the running state.
	16-18	Reserved	Must be zero. The CPU will force these bits to zero when loaded regardless of their state in the new PSW. Stored as zeros in the old PSW.
	19	Program event recording (PER)	When this bit is 1, a PER interruption is enabled.
	20-23	Key	When set to 0, no PER interruption is allowed. Refer to bits 8-11.
	$\begin{aligned} & 24-27 \\ & \text { (new PSW) } \end{aligned}$	Service routine register (rl)	Specifies a general register pair for passing the address of the $1 / 0$ service routine when a clear-channel instruction is executed or when an I/0 interruption occurs; specifies the PER argument passing registers for a PER interruption.
$\underset{\sim}{\sim}$	$\begin{aligned} & 24-31 \\ & \text { (old PSW) } \end{aligned}$	Interruption code	When the old PSW is stored on a program, external, 1/0, machine check, and supervisorcall interruption, this field identifies the cause of the interruption. For other interruptions, zeros are stored in this field in the old PSW. See condition code settings 2.1.2.1 for exception codes contained in bits 24-31.

Program Status Word (PSW) Field Interpretation (cont)

			Program Mask Bit Program Exception 36 Fixed-point overflow 37 Decimal overflow 38 Exponent underflow 39 Significance When the mask bit is 1 , the exception results in an interruption. When the mask bit is zero, no interruption occurs. The significance-mask bit also determines the manner in which floating-point addition and subtraction are completed. NOTE: The floating-point instruction set is a feature; bits 38 and 39 have no effect when the feature is not installed.
$\stackrel{\omega}{\stackrel{\omega}{\leftrightharpoons}}$	40-63	Instruction Address	These 24 bits form the instruction address (logical address). This address designates the location of the leftmost byte of the next instruction.

*Bits specified are for the old PSW and new PSW unless otherwise indicated.

3.4. CONTROL REGISTER FORMAT

Control Register Format
BITS

Control Register Format (cont)
CONTROL words

BITS

Word	Bits	Field Name	Association	Initial Value
0	0-23	Not used (all zeros)	-	-
	24	Interval timer mask	Interval timer	0
	25	Interrupt key mask	Interrupt key	1
	26-31	Not used (all zeros)	-	-
8	0-15	Not used (all zeros)	-	-
	16-31	Monitor masks	Monitoring	0
9	0	Successful branch event mask	PER	0
	1	Instruction fetch event mask	PER	0
	2	Storage alteration event mask	PER	0
	$3-31$	Not used (zero)	-	0

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& 10 \& \[
\begin{aligned}
\& 0-3 \\
\& 4-7 \\
\& 8-31
\end{aligned}
\] \& \begin{tabular}{l}
PER key \\
PER relocation register \\
PER starting address
\end{tabular} \& \[
\begin{aligned}
\& \text { PER } \\
\& \text { PER } \\
\& \text { PER }
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \\
\hline \& 11 \& \[
\begin{aligned}
\& 0-7 \\
\& 8-31
\end{aligned}
\] \& \begin{tabular}{l}
Not used (zero) \\
PER ending address
\end{tabular} \& \[
\begin{aligned}
\& - \\
\& \text { PER }
\end{aligned}
\] \& \begin{tabular}{l}
0 \\
Maximum installed address +1
\end{tabular} \\
\hline \& 12 \& \[
\begin{aligned}
\& 0-7 \\
\& 8-29 \\
\& 30-36
\end{aligned}
\] \& \begin{tabular}{l}
Not used (zero) \\
Repressible machine check absolute address (word boundary) \\
Not used (zero)
\end{tabular} \& RMC and ECC logging \& 0
0

-

\hline
\end{tabular}

13	$0-15$	RMC stack controls	RMC and ECC logging	0
	$16-23$	ECC threshold count	ECC logging	0
	24-31	Total ECC count	ECC logging	0
14	$0-15$	Maximum main storage address $+1 \div 256$	ECC logging	Correction $11 \div 256$
	16-31	Replaceable Element size	ECC logging	$00 \mathrm{FF}_{16}$
15	0-7	Store status double-word count	Store status and exigent MC	00_{16}
	8-28	Store status absolute address (doubleword boundary)	Store status and exigent MC	0
	28-31	Not used (zero)		0

Obtaining a System Dump (SYSDUMP)

You get a system dump with two steps:

1. Main storage write to the \$\$\$DUMP file
2. SYSDUMP listing from the \$Y\$DUMP file

In this situation:	You call the main storage write step with:	What happens next:
To get a SYSDUMP with the console workstation	SYSDUMP command	Job SYSDMPxx. This job is automatically scheduled to print SYSDUMP listing.
To get a SYSDUMP within a job	// OPTION SYSDUMP job control statement	This job runs module SYSDMP. It allows the system to run under your job but does no scheduling.

When a system error occurs, the main storage write step (SE 15 message displayed) is called automatically, followed by SYSDMPxx (where $x x$ is the SYSDMP number).

To get a system dump after an HPR:
IPL automatically schedules SYSDMPxx and run

- For Models 3 through 6:

Perform an IPL on the system according to directions in the operations handbook, taking care not to press FUNCTION and RESTART keys.

- For Model 8:

Press ESCAPE key on console; then press M. Select L in menu and transmit. Press U and transmit. Do an IPL on the system.

NOTES:

 statement RV SYSDUMPO. At this point, you may enter the following parameters:

1. The options and suboptions of the $D 0=$ parameter allow for a more specific dump. For a more detailed description of the run statement, see the DUMP ANALYSIS user guide/programmer reference, UP-9980 (current version).
2. If the command is entered without a $D 0=$ parameter entry, the following message is displayed:
SDØ1 DUMP OPTION(ALL,NONE,DUMP,TRANSLATED,JOBS,RESTORE,SAVE)

An option can be entered at this time, or, by leaving it blank, a default of ALL is assumed and a complete system dump is produced.

$\begin{aligned} & \text { 웅 } \\ & \stackrel{i}{\infty} \\ & -\underset{\infty}{\infty} \\ & -\infty \end{aligned}$	Summary of System Debugging Aids			
	Function	Use	Console Command	Results
	Pseudo monitor*	To identify the routine changing a particular byte	SET HA,PM,address [job-name]	HPR code 99130202 (Press START to continue.)
	Resident monitor*	To identify the instruction changing a particular byte	SET HA,RM,address [.job-name]	HPR code 99130404 (Press START to continue.)
	Verify bytes $0-B^{*}$	To identify the routine destroying low-order storage	Included in supervisor debug option	HPR code 99130303 (Press RUN to continue.)
	History tables*	To provide some recent history in SYSDUMPs	Included in supervisor debug option	Continuous updating of resident tables
	Halt on transient load	To halt if and when a particular transient is loaded	SET HA, TL.hex-id	HPR code 990C0C (Press START to continue.)
$\begin{gathered} \omega \\ \stackrel{1}{\infty} \\ \underset{\sim}{2} \end{gathered}$	Halt on transient call**	To halt if and when a particular transient is called	SET HA,TC, hex-id	HPR code 990COD (Press START to continue.)
	Halt on transient exit*	To halt if and when a particular transient is exited	SET HA, TE.hex-id	HPR code 990C0E (Press START to continue.)

	Halt on shared code call*	To halt if and when certain (or all) shared code modules are called	SE HA,SC $\left[\left\{\begin{array}{l}\text { module-name } \\ \text { prefix. }\end{array}\right\}\right]$	HPR code 991D01 (Press START to continue.)
	Halt on shared code return*	To halt if and when certain (or all) shared code modules return	$\text { SE HA,SR }\left[\left\{\left\{\begin{array}{l} \text { module-name } \\ \text { prefix. } \end{array}\right\}\right]\right.$	HPR code 991 D02 (Press START to continue.)
	Halt on shared code return with error*	To halt if and when certain (or all) shared code modules return with error	$\text { SE HA,SE }\left[\left\{\begin{array}{l} \text { module-name } \\ \text { prefix. } \end{array}\right\}\right]$	HPR code 991003 (Press START to continue.)
	Pause on shared code call*	To pause a task if and when certain (or all) shared code modules are called	$\text { SE PA,SC }\left[\left\{\begin{array}{l} \text { module-name } \\ \text { prefix. } \end{array}\right\}\right]$	SE25 console message (Enter 'C' to continue.)
	Pause on shared code return*	To pause a task if and when certain (or all) shared code modules return	$\text { SE PA,SR }\left[\left\{\begin{array}{l} \text { module-name } \\ \text { prefix. } \end{array}\right\}\right]$	SE25 console message (Enter 'C' to continue.)
	Pause on shared code return with error*	To pause a task if and when certain (or all) shared code modules return with error	$\text { SE PA,SE }\left[\left\{\begin{array}{c} \text { module-name } \\ \text { prefix. } \end{array}\right\}\right]$	SE25 console message (Enter 'C' to continue.)

Function	Use	Console Command	Results
Halt on symbiont load	To halt if and when a particular symbiont (or symbiont phase) is loaded	SET HA.SY.idnn	HPR code 997C (Press START to continue.)
PIOCS debug option	To identify checksum errors or internal PIocS problems	SET DE.IO	HPR code 990F
Transient debug option	To halt on transient errors (100-1FF)	SET DE.TR	HPR code 99080800
Loader debug option	To halt on loader errors (52-5F)	SET DE.LD	HPR code 991500 (Press RUN to Continue.)
Shared code debug option	To halt on error during execution of shared code	SET DE.SC	HPR code 990809 (Press RESTART to take a SYSDUMP and continue.) HPR 99130A when dynamic buffer pool links are destroyed.
Dynamic buffer debug option*	To halt on dynamic buffer overflow	SET DE.DB	HPR code 99130D

$\begin{aligned} & \text { 융 } \\ & \stackrel{c}{0} \\ & -\infty \\ & -\infty \\ & \hline \infty \\ & \hline \infty \end{aligned}$	Screen format coordinator input/output debug option	To take a snapshot dump of all input and output buffer blocks when using the screen format coordinator	SET DE, INO	Writes snapshot dump to job log
	Screen format coordinator format/input/output debug option	To take a snapshot dump of the format block; the input buffer (on input operations); the output buffer (on output operations) blocks; and, if errors occur, the screen format coordinator blocks	SET DE,FS	Writes snapshot dump to job \log or system printer

*Supervisor debug option required at IPL

Summary of System Debugzing Aids (cont)

Function	Use	Console Command	Results
Screen format coordinator input/output debug option	To take diagnostic snapshot if screen format coordinator error occurs	SE DE,SF	Causes snapshot to be taken
Reset pause option	To reset all SE PA commands	SE PA,OFF	None
Reset halts	To reset all SE HA commands	SE HA,OFF	None
Reset debug option	To reset all SE DE commands	SE DE,OFF	None

I/0 Channel Number Assignment

Channe $1=$	Direct memory access channel (DMA)
Channel $2=$	Multiple line communications multiplexor channel (MLCM)
Channel $3=$	Shared direct memory access channel (SMDA)

${ }_{9}{ }_{0} C_{0}$	Additional 0719 card reader	333，342－343
－	0608 card punch	333
	Additional 0608 card punch	343
工	Any UNISERVO 10 magnetic tape	370－371 ${ }^{(2)}$
搒芴	SLCA 0	280－282
會	SLCA 1	290－292
고굴	SLCA 2	2A0－2A2
$\stackrel{\sim}{0}$	SLCA 3	2B0－2B2
気	SLCA 4	2C0－2C2
	SLCA 5	200－202
䂴命	SLCA 6	2E0－2E2
∞	SLCA 7	2F0－2F2

（1）These device addresses must be contigured with the associated device type．All other device addresses are suggestions．Any address within the proper channel can be used．For further information on using device addresses，refer to the system installation user guide／programmer reference，UP－8839（current version）．
（2）Default device address
4.3.1. Command Codes for $8417 / 8419$ Disk

	Sense Reset		
SPERRY UNIVAC SYSTEM 80HARDWARE/SOFTWARE SUMMARY	4.3.2. Command Codes for Single Line Communications Adapter (SLCA)		
	Device	Command	Operation Code
	Single line communications adapter (SLCA)	$\mathrm{NO}-\mathrm{OP}$	03
		Sense	04
		Load memory address	00
		Load RAM	05
			06

		Enter work area mode	23
		Enter system response mode	43
		Sense	04
		Workstation reset	OB
て		Read event	32
를		Message waiting	07
¢		Load RAM	05

ㄲㅠㅜ둥		Diagnostic read subsystem buffer	76
∞		Read volume ID	56
		Diagnostic write enable	63
		Read control	46
		Diagnostic write subsystem buffer	71
		Recover	13
		Initial load	02
		Unload	33
		Nooperation	03
?		Format read	16
		Load physical track	61

	4.3.5. Command Codes for 0776/0789 Printer		
	Device	Command	Operation Code
	0776/0789 printer	Load vertical format buffer	43
		Print advance	X $1, \times{ }^{*}$
		Advance	$\mathrm{X} 7, \mathrm{XF}$ *
		Sense	04
		No-op	03
$\frac{B}{6}$;

중둥		Read vertical format buffer	12
		Unprintable character data check disable	73
		Unprintable character data check enable	78
		Diagnostic write data buffer	75
		Diagnostic read data buffer	76
		Diagnostic write enable	63

*X equals the modifier VFB detail bits. For an explanation of these modifier bits see the I/0 controllers programmer reference, UP-8742 (current version).
4.3.6. Command Codes for 0789/0798 Remote Printer

-	Device	Command	Operation Code
	0789 remote printer	Load memory address	OD
		Read memory	16
		Load-RAM	05
		Load vertical format buffer	43
		Print advance	X1, X9*
		Advance	X7, XF*
		Sense	04
$\stackrel{\sim}{\sim}$		No-op	03
		Read vertical format buffer	12

$\begin{aligned} & \text { 중 } \\ & \substack{\bar{\infty} \\ \infty} \\ & \hline \infty \end{aligned}$		Unprintable character data check disable	73
		Unprintable characters data check enable	7B
		Diagnostic write data buffer	75
		Diagnostic read data buffer	76
$\begin{aligned} & \text { D } \\ & \infty \end{aligned}$		Diagnostic write enable	63

* X equals the modifier VFB detail bits. For an explanation of these modifier bits see the I/O controllers programmer reference, UP-8742 (current version).
4.3.7. Command Codes for 0719 Card Reader

Device	Command	Operation Code
0719 card reader	Read translate mode	02
	Read image mode	06
	Sense	04
	No-op	03
	Diagnostic write data buffer	71
	Diagnostic read data buffer	76

Device	Command	Operation Code
UNISERVO 10 Magnetic Tape Type 0871	Write	01
	Sense	04
	Read	02 or 12
	Read backward	OC or 1C
	Rewind	07
	Rewind with interlock	OF
	Erase	17
	Write tape mark	1F
	Backspace block	27

		Backspace file	2 F
		Forward space block	37
		Forward space file	3 F
		No operation	03
		Request tie	1B
		Set low threshold	$5 B$
		Set 1600 BPI	C3
		Set 800 BPI	CB
$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{i}}$		Set monitor	8 B
		Set simulate	4 B
		Reset simulate	OB

4.4.1. Status Byte Format for $8417 / 8419$ Disk

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Bit } & \begin{array}{l}\text { Condition Which } \\
\text { Sets Bits }\end{array} & \\
\hline 0 & \text { Attention } & \begin{array}{l}\text { Indicates an unsolicited interrupt took place in the controller. This bit can only be presented to the processor } \\
\text { through the interrupt process after a load-channel-register has been received. }\end{array}
$$

\hline 1 \& Status modifier \& Indicates an error in an ID field has been recovered for a record other than the first of a series being processed.

\hline 2 \& - \& Not used; always set to zero.\end{array} $$
\begin{array}{l}\text { Indicates the 1/0 device is presently doing a seek operation or that the controller is attempting to present status. }\end{array}
$$\right\}\)| Presented when a data transfer or control transfer is completed and the controller has no more need of the |
| :--- |
| channel and will not appear busy after presentation as a result of the command for which it is presented. It may |
| or may not be presented with device end. |

$\substack{\text { 중 } \\ -\infty \\ -\infty \\ \hline \infty \\ \hline}$			
7	Unit exception	Unit check	Indicates that an abnormal condition was detected by the controller. It is normally indicative of an error condition, although operations like no-record-found are not software errors, but construed as hardware errors.

4.5.1. Status Byte Format for Single Line Communications Adapter (SLCA)

Bit	Condition Which Sets Bits	
0	Attention	Function is feature dependent. Usually set to zero.
1	Status modifier	Indicates successful error retry information is contained in sense bytes.
2	Control unit end	Indicates to the MLCM that the SLCA can accept another command for this port for a terminal other than the one which presented this control unit end status. (This bit is not seen by software).
3	Busy	Indicates that a command has addressed a device which is currently executing a command.
4	Channel end	Set along with device end.
5	Device end	Indicates that an outstanding command has completed for a given device. Device end is always accompanied by channel end.
6	Unit check	Indicates that the SLCA has encountered an error during the execution of a command or a command sequence and that one or more sense bits are set.
7	Unit exception	Function is feature dependent. Usually set to zero.

4.6.1. Status Byte Format for System 80 Workstation/Console Workstation

Bit	Condition Which Sets Bits	Meaning
0	Attention	Indicates any of the following occurred: operator activated TRANSMIT key; an implied transmit function ($\mathrm{DC1}$ or ESC $\mathrm{DC1}$) was contained in a write command; operator activated any one of 23 function keys; operator activated a mode change request from workstation mode to system mode or vice versa; a RAM parity error occurred at the device; or a power on condition occurred at the device.

Bit	Condition Which Sets Bits	Meaning
1	Status modifier	When set along with bit 0 (attention) indicates attention item merged with a successful error recovery. When set along with bit 4 (channel end) and bit 5 (device end), indicates the workstation controller (WSC) had to evoke an error recovery procedure in order to complete the outstanding command and the procedure was successful. When set along with bit 4 (channel end), bit 5 (device end), and bit 6 (unit check), indicates error recovery procedure evoked was unsuccessful.
2	-	Not used; always set to zero.
3	Busy	When set, indicates that a command has addressed a device that is currently executing a command.
4	Channel end	When set with bit 5 (device end), indicates WSC has successfully executed an outstanding command.
5	Device end	Indicates the termination of the execution of a command. It is always set along with bit 4 (channel end), or bits 4 (channel end) and 6 (unit check).

Status Byte Format for 8420/8422 Diskette (cont)

Bit	Condition Which Sets Bits	Meaning
0	Attention (cont)	When set with status modifier (bit 1) and busy (bit 3) it indicates the device addressed is busy, is in the run state, and has completed a successful automatic retry.
1	Status modifier	Is never set by itself. See the meaning for the following bits: - Attention (bit 0);
-Control unit end (bit 2); Busy (bit 3); Channel end (bit 4); and		
2	Control unit end	Indicates the diskette controller successfully completed a command chain and the controller presented control unit busy status to the channel during the execution of this command.

$\begin{aligned} & \text { 중 } \\ & \stackrel{c}{\circ} \\ & -\infty \\ & -\infty \\ & -\infty \\ & \hline \infty \end{aligned}$			When set with status modifier (bit 1), it indicates a successful automatic retry at the completion of a command chain and that the controller presented control unit busy status to the channel during the execution of this command.
	3	Busy	Indicates a command has addressed a diskette drive that is currently executing a command.
			When set with status modifier (bit 1) it indicates that a command was sent to the diskette controller while currently executing a nonfeed command for any other diskette drive (control unit busy).
			When set with both the status modifier (bit 1) and control unit end (bit 2) it indicates a command was sent to the diskette controller while it was executing a nonfeed command for another diskette drive and when the diskette controller had completed a command chain and presented control unit busy status to the channel.
			When set with any of the folloing combinations it indicates that an addressed device was attempting to present status when addressed by the system. These combinations indicate the failure of the device handling software to wait for an interrupt:
$ज$			Channel end (bit 4) and device end (bit 5)
			- Status modifier (bit 1), channel end (bit 4), and device end (bit 5);

Status Byte Format for 8420/8422 Diskette (cont)

Bit	Condition Which Sets Bits	Meaning
3	Busy (cont)	Channel end (bit 4), device end (bit 5), and unit exception (bit 7); Status modifier (bit 1), channel end (bit 4), device end (bit 5), and unit exception (bit 7); Channel end (bit 4), device end (bit 5), and unit check (bit 6); Status modifier (bit 1), channel end (bit 4), device end (bit 5) and unit check (bit 6): Channel end (bit 4), device end (bit 5), unit check (bit 6) and unit exception (bit 7); and Status modifier (bit 1), channel end (bit 4), device end (bit 5), unit check (bit 6) and unit exception (bit 7).
4	Channel end	When set with device end (bit 5), it indicates that the diskette controller has sucessfully executed an outstanding command that was not preceded by a control unit busy status presentation or that it did not require any automatic retry.

When set with status modifier (bit 1) and device end (bit 5), it indicates that the diskette controller has successfully completed a command that required an automatic retry.
When set with device end (bit 5) and unit exception (bit 7) it indicates that the diskette has encountered the end of volume (EOV).
When set with status modifier (bit 1), device end (bit 5), and unit exception (bit 7), it indicates the diskette has the EOV record during the execution of a read or write command and an automatic retry operation occurred.
When set with device end (bit 5) and unit check (bit 6) it indicates that the diskette controller has accepted a command and has encountered an error condition during command execution.
When set with status modifier (bit 1), device end (bit 5), and unit check (bit 6), it indicates that the diskette controller has accepted a command, an automatic retry operation occurred, and an error condition was encountered during command execution.
When set with device end (bit 5), unit check (bit 6), and unit exception (bit 7), it indicates that the diskette controller has accepted a command, the EOV record was encountered, an automatic retry operation occurred. and an error condition was encountered during command execution.

$\begin{aligned} & \text { 즁 ᄃ } \\ & -\underset{\infty}{\infty} \\ & -\infty \\ & \hline \infty \end{aligned}$	Status Byte Format for $8420 / 8422$ Diskette (cont)		
	Bit	Condition Which Sets Bits	Meaning
	5	Device end	Is never set by itself. See the meaning for the following bits: Busy (bit 3); and Channel end (bit 4).
	6	Unit check	Indicates that the diskette controller has encountered an error condition in response to or during a command sequence. (Command cannot be executed.) When set with status modifier (bit 1) it indicates the diskette encountered a nonrecoverable error in response to or during a command sequence and a successful automatic retry was initiated.
$\begin{aligned} & \stackrel{\rightharpoonup}{\vdots} \\ & \stackrel{y}{\infty} \end{aligned}$	7	Unit exception	Is never set by itself. See the meaning for the following bits: Busy (bit 3); and Channel end (bit 4).

4.6.3. Status Byte Format for 0776/0789 Printer

4.6.4. Status Byte Format for 0789/0798 Remote Printer

	466. Status Byte format for 0608 Card Punch		
	Bit	Condition Which Sets Bits	Meaning
	0	Attention	Indicates transition from stop state to run state.
	1	Status modifier	Set along with channel end/device end whenever the PPC calls at least one recovery procedure in order to complete the outstanding command. When the status modifier bit is set without the unit check being set, it implies that with error recovery, the command was completed successtully. Autosense follows.
	2	-	Not used; always set to zero.
	3	Busy	Indicates that the device cannot execute the command because it is executing a previously issued command.
	4	Channet end	Set concurrently with the device end by the PPC.
+	5	Device end	Specifies command completion by PPC.
	6	Unit check	Indicates at least one bit is set in sense byte 0,1, or 2 . Autosense follows.
	7	-	Not used; always set to zero.

4.6.7. Status Byte Format for UNISERV0 10 Magnetic Tape Type 0871
Bit Condition Which Sets Bits 0 Attention Indicates tape unit is ready for operation. Operator intervention (e.g., load new tape) is required. This status is unsolicited and not the result of any previous channel action. 1 Status modifier Presented with the busy bit to indicate the controller is busy. Also may be presented with device end bit to indicate successful recovery from error. 2 Control unit end Presented when an operation having control unit busy is complete. 3 Busy With status modifier bit to indicate controller is busy. 4 To indicate tape drive is busy executing a command.

$\begin{gathered} \alpha \\ \cdots \\ \infty \end{gathered}$	Bit	Condition Which Sets Bits	Meaning
	5	Device end	Indicates that: An operation is complete at the controller level. When errors are detected before tape motion is initiated, device end is not presented with error status. Data transfer operations aborted while still in progress (e.g., due to equipment check) cause device end to be sent with unit check. A rewind, as well as other operations, have completed at the tape drive. If control terminates unsuccessfully in the tape drive, device end bit is presented with unit check and control unit end.
穿要	6	Unit check	Sets bit when any of the following occurs: A bit in sense byte 0 was set because of the current operation. If the error codition was detected before tape motion begins, unit check is presented without normal ending status end; A rewind operation terminated unsuccessfully. Device-end bit is presented with unit check. A read-backward, backspace-block, or backspace-file operation is attempted when tape is positioned at load point;

			- A rewind with interlock was completed at the controller level; i.e., when the tape drive becomes nonready, device end is presented, and control unit end is presented if the operation is initiated; The selected tape drive is busy; i.e., ready and rewinding. End status is not presented with unit check. When a rewind tape drive is selected the tape drive is busy until the device end associated with the end of rewind is accepted by the channel; or Presented with device-end to indicate an error was unrecovered.
	7	Unit exception	Presented with device-end bit when: - A write, write-tape-mark, or erase operation is performed in the end-of-tape area; or - A tape mark is sensed during a read, read-backward, forward-space-block, or backspace-block operation.

4.7.1. I/0 Sense Data Byte Definitions for 8417/8419 Disk

Bit Position	Bit Designation	Definition
0	Command reject	Indicates an illegal command code occurred. It could be a write command to a file-protected device, unassigned command codes, a write command with programmed offset, or out-of-bounds command parameters (invalid address).
1	Intervention required	Indicates that some manual intervention is required to make the device availbale to the system. It can be set with either stop-state or device-not-present and stop-state.
2	Equipment check Indicates data transferred contains wrong parity at the time it was to be written onto the disk.	
3	Indicates a serious malfunction occurred within the subsystem. If set alone, it indicates that the direct memory access (DMA) control logic contains an error. When set with device check, it indicates a serious problem within the device. When set with seek incomplete, it indicates the device, after having been issued a seek instruction, did not complete that movement within the required period of time. When set with unselected status, it indicates that one of the status lines between the controller and device was active when no devices were selected. When set with	

$\begin{aligned} & \text { 준 } \\ & \stackrel{\circ}{0} \\ & -\infty \\ & -\infty \\ & -\infty \\ & \infty \\ & \infty \end{aligned}$			track overrun, it indicates that a problem exists relative to the rotational speed or sensing of the disk drive. When set with no clocks, it indicates too much time elapsed with no data or clocks being supplied by the device.
	4	Data check	Specifies a abnormal pattern exists in the error correction code (ECC) bytes of the control unit. It can be set with the ID field check or data field check, together with either sync region or ECC check. These combinations of sense bits determine the location and nature of the error. When set with record number miscompare, it indicates positioning control errors, and is set with these bits only in the absence of an ECC error in the ID field.
	5	Overrun	Indicates that either data was not accepted or data was not provided fast enough to satisfy the demands of the device. This condition normally indicates a problem in the controller data separation hardware.
	6	Stop State	Indicates that the drive has no power applied and is not available for use. If a drive is not connected to the system but addressed, the same indication results.
${\underset{\sim}{n}}_{\substack{4 \\ \hline}}$	7	Device check	Indicates that a device is unsafe due to loss of DC voltage, disk speed below 80% of normal, write oscillator not synchronous with servo track, or no write transitions when the write gate is active and address mark is not active, a seek failed to complete within 230 milliseconds, or a guard band was detected.

Bit Position	Bit Designation	Definition
Sense Data Byte 1		
0	ID field check	Indicates the pertinent sense bits set during the processing of an ID field. This bit is used primarily for diagnostic purposes and serves in isolating problems.
1	Track overrun	Indicates an operating device encounters an index mark when it is oriented on an ID or data field, or the gap between the two.
2	Cylinder end	Indicates an attempt was made to increment the head number beyond the actual heads of the drive. When set with no record found, it indicates a search/read was unsuccessfui.
3	Device type	Specifies the type of device selected by given address. When set, indicates a removable media disk drive.
4	No record found	Indicates, when set alone, that two revolutions of index passed without satisfying the search argument. When set with sync region error, it indicates no address mark was detected on the disk surface. It also can indicate the record number in the ICW exceeds the highest record number

$\begin{aligned} & \text { Po웅 } \\ & -\infty \\ & -\infty \\ & -\infty \end{aligned}$			written on the track, for example 60 . With multitrack search/read commands, this bit is set with cylinder end, indicating that the search argument could not exceed the cylinder head limit.
	5	File protect	Indicates that the selected device is unavailable for write operations. Data can be read trom the file but any attempt to write will cause unit check status and command reject to be set.
	6	Sync region error	Indicates either an error in gap data, gap detection hardware, or address mark write hardware.
	7	Data field check	Indicates an error occurred when processing the data field. This bit is mainly used for diagnostic purposes.
	Sense Data Byte 2		
	0	Seek incomplete	Indicates a failure occurred within the device so that it was unable to complete accessor movement within a predetermined time interval.
$\begin{aligned} & \text { 등 } \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{\omega}{\sigma} \end{aligned}$	1	Write protect/ offset unsafe	Indicates that a write has been attempted with the head offset active or write protect in the device. This implies either a malfunction in the execution of the nonoffset implied seek or write status verification or a device malfunction.

I/O Sense Data Byte Definitions for $8417 / 8419$ Disk (cont)

DMA DEVICES (cont)
 O SENSE DATA BY

	5	Unselected status	Indicates that one or more of the device status lines were active when no device was selected. When set with equipment check, it indicates an interface failure between the controller and device.
	6	ECC check	Set with data check and either ID field check or data field check to indicate that a nonzero residue existed in the ECC register of the control after the field was read. When set with equipment check, it indicates a failure within the ECC hardware during a write operation.
	7	No clocks	Set with equipment check to indicate that no clock pulses have been detected for a period of 1 millesecond while the controller was active.
	Sense Data Byte 3		
	0	Device not present	Indicates that the addressed device is not present in the system.
	1	Fixed heads	Indicates that the 60 fixed heads are installed within the drive. If this signal is not present when the command attempts to address the heads, cylinder, head, or record capacity exceeded and command reject are also set.
	2	Cylinder addressing feature	Indicates the cylinder addressing feature has been installed on an 8417 disk. This feature permits cylinder 0 through 560 to be addressed.

	10 Sense Data Byte Definitions for 8417/8419 Disk (cont)		
	$\begin{gathered} \text { Bit } \\ \text { Position } \end{gathered}$	Bit Designation	Definition
	Sense Data Byte 3 (cont)		
	3	Cylinder, head or record capacity exceeded	Indicates an attempt was made to select a cylinder or head or record address that exceeded the valid limits for the particular features configured. It is set along with command reject.
	4	Index passed	Indicates that the index has been passed once during a search/read command to allow a proper start.
	5	Low found	Indicates a low condition has been satisfied during a search/read operation prior to the sector on which the error was detected.
	6	Search satisfied	Indicates that the search portion of a search/read command has been satisfied on the record specified, even though an error has been detected.
$\begin{aligned} & \vec{~} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$			Sense Data Byte 4
	0-7	Record number	Contains the number of the track record that the associated sense information applies.

뀽둥	Sense Data Byte 5				
∞	$0-7$	Physical read number	Contains the number of the device head selected at the time that the sense information applies．		
	Sense Data Byte 6				
部资	0－7	Device status byte	Permits device status to be presented when both head select and device bus bit 7 are set．Each is defined as follows：		
			Bit	Name	$\underline{\text { Definition }}$
			0	PLO sync unsafe	PLO synchronization loss due to missing servo data．
$\text { 芧 } \underset{\sim}{\infty}$			1	Speed unsafe	Disk speed less than 80% of normal．Head positioned over landing zone．
$\begin{aligned} & \vec{~} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$			2	Guard band detected	Guard band 1 or 2 detected during a seek or when access ready is active．
			3	DC power unsafe	DC power loss or out of tolerance．

I/O Sense Data Byte Definitions for 8417/8419 Disk (cont)

Bit Position	Bit Designation	Definition

$0-7$
(cont)

| Device status byte | $\frac{\text { Bit }}{4}$ |
| ---: | :---: | :---: |
| 4 | |
| 5 | |
| 6 | |

Sense Data Byte 6 (cont)

Name

PLO unsafe
Definition
Indicates loss of synchronization of the PLO during a write operation.
Seek operation exceeded 230 milliseconds.
Indicates one or more of the following:

1. Both read and write gates are active
2. Multiple leads selected
3. No write current or no transitions detected with write gate active
4. Write current exceeds maximum

1/0 Sense Data Byte Definitions for 8417/8419 Disk (cont)

Bit Position	Bit Designation		Definition
Sense Data Byte 11			
-	Undefined	-	

4.8.1. I/O Sense Data Byte Definitions for Single Line Communications Adapter (SLCA)

Bit Position	Bit Designation	Definition
Sense Data Byte 0		
0	Command reject	Sets bit if an invalid command is issued to the SLCA or a command sequence error occurs. See sense byte 1 bit 5 for details. Unit check status is set.
1	Intervention required	Not used; always set to zero
2	Bus out check	Sets bit if a byte is received by the SLCA on the D-bus with a parity error.
3	Equipment check	Sets bit if a parity error is detected by the SLCA during internal data manipulation in the SLCA. See sense byte 1 bits 0 and 1 for further details.
4	Data check	Function is feature dependent.
5	Overrun	Function is feature dependent.

$\begin{aligned} & \text { 중 } \\ & -\infty \\ & -\infty \\ & -\infty \\ & \infty \\ & \hline \infty \end{aligned}$	Bit Position	Bit Designation	Definition
	Cense Data Byte 0 (cont)		
	6	Bus in check	Sets bit if a byte is received by the MCLM over the D-bus with a parity error.
	7	Program alert	Sets bit if a command is issued to an invalid device address or if sense byte 1 , bits $2,3,5$, or 6 are set. Set the description of these bits in sense byte 1 for further details.
			Sense Data Byte 1
	0	PIU parity error	Sets bit if a parity error is detected on the SLCA's internal data bus and not on the D-bus while the SLCA is performing a read or write operation with its PIU. Will be set in conjunction with sense byte 0 , bit 3 .
\vec{i}	1	RAM parity error	Sets bit if a parity error is detected by the SLCA while reading a byte from its RAM. Will be set in conjunction with sense byte 0 , bit 3 .

$\begin{aligned} & \text { 중둥 } \\ & -\infty \\ & -\infty, \infty \end{aligned}$	2	MEM address error	The RAM address for a load RAM command exceeds RAM limits or the associated byte count would cause the address to exceed these limits, or the address for a load memory address command is not within the boundary of the RAM. Will be set in conjunction with sense byte 0 , bit 7.
	3	Check sum error	The check sum for a load RAM command does not equal the sum generated by the SLCA. Will be set in conjunction with sense byte 0 , bit 7 if this error is on the check sum for one of the load RAM records. Will be set in conjunction with sense byte 0 , bit 7 and sense byte 1 , bit 6 if this error is on the overall check sum in the end record.
	4	RAM not loaded	Sets bit if the SLCA's RAM is not yet flagged as executable.
	5	Sequence error	Sets bit if any of the following occurs: A read memory command is not immediately preceded by a load memory access command. Set in conjunction with sense byte 0 , bit 0 .

1/0 Sense Data Byte Definitions for Singie Line Communications Adapter (SLCA) (cont)

4.9.1. I/0 Sense Data Byte Definitions for System 80 Workstation/Console Workstation

			power on occurred at workstation; a nonrecoverable programmable interface unit (PIU) error occurred at workstation; or a check sum error occurred during a load RAM command.
	4	Data check	Sets bit to indicate that an unsuccessful data transmission occurred between the workstation controller and the workstation in either direction.
	5	-	Not used; always set to zero.
	6	Bus in check	Sets bit to indicate a parity error occurred on the D-bus while sending a byte of data to the channel.
	7	Program alert	Sets bit to indicate one or more of the following: a user write command was issued in system mode; operator pressed unlock key while command was outstanding;

1/O Sense Data Byte Definitions for System 80 Workstation/Console Workstation (cont)

	Bit Position	Bit Designation	Definition
	Sense Data Byte 0 (cont)		
	$\begin{aligned} & 7 \\ & \text { (cont) } \end{aligned}$	Program alert	workstation reports an out-of-bounds vector address during a load RAM command; message waiting command was issued in system mode; or load RAM command was issued in system mode. Bit is set with intervention if an invalid device address was received (out-of-range). Bit is set with command reject if a user read command was issued to the workstation in system mode or if a system message read was issued to the workstation in workstation mode.
$\begin{aligned} & \text { A } \\ & \text { 号 } \end{aligned}$	Sense Data Byte 1		
	0	Invalid device address	Sets bit to indicate that a portion of the DA/FC byte was invalid during a command.

	1	WS not ready	Sets bit if the workstation does not respond when a workstation reset message results from D-bus reset; or if the workstation controller gets no response from the workstation during a command (other than sense or NO-OP).
	2	-	Not used; always set to zero.
	3	Interrupt active	Sets bit if the operator pressed the unlock key at the workstation while a command is outstanding for the workstation.
	4	Load error	Bit is set with equipment check if the workstation reports a text record check sum error during a load RAM command. Bit is set with program alert if the workstation reports a RAM vector address (contained in the initial record) that exceeds the RAM limits.
	5	-	Not used; always set to zero.
	6	-	Not used; always set to zero.
if	7	Invalid command at WS	Sets bit to indicate that a user write command was sent to the workstation in system mode.

矿둥	6	Mode change request	Sets bit to indicate that the operator requested the system to change the mode of the workstation from workstation mode to system mode or vice versa.
	7	System mode	Sets bit to 1 when the workstation is in system mode. Sets bit to 0 when the workstation is in workstation mode.
	Sense Data Byte 3		
	0-7		A binary count of the number of times communication errors were dectected by the workstation controller (WSC) on the workstation controller/workstation interface since the last command.
	Sense Data Byte 4		
	0-7		A binary count of the number of times communication errors were detected by the workstation at the workstation/workstation controller interface since the last command.
$\begin{aligned} & \stackrel{\rightharpoonup}{d} \\ & 0 \end{aligned}$	Sense Data Byte 5		
	0-7		A binary count of the number of times keyboard parity errors occurred at the workstation/keyboard interface since the last command.

Sense Data Byte 0 (cont)

Sets bit if:

- an invalid device address is presented;
- addressed drive is not installed;
- addressed drive is in stop state;
- a manual feed is in progress;
- an interlock condition exists;
- the autoloader is not at home position;
- stacker is full or the hopper empty;

$\begin{aligned} & \text { 중 } \\ & =\substack{0 \\ \infty \\ -\infty \\ -\infty \\ \infty \\ \hline \\ \hline} \end{aligned}$			a malfunction occurred during the unload or feed cycles; no index pulses occurred during execution; or drive became not ready during command execution.
	2	Bus out check	Sets bit if a parity retry or error was detected on the transier of a byte of data to the diskette controller.
	3	Equipment check	Sets bit if: a PROM parity retry occurred; a diskette controller parity error occurred; no index pulses occurred during execution; no track 0 detected during recalibrate; no disk sense signal occurred during command execution; or an autoloader time out/hang occurred.

$\begin{aligned} & \text { 준 } \\ & \underset{\sim}{\circ} \\ & -\underset{\infty}{\infty} \\ & -\underset{\infty}{\infty} \end{aligned}$	Sense Da	Definitions for 84	ctte (cont)
	Bit Position	Bit Designation	Definition
	Sense Data Byte 0 (cont)		
	4	Data check	Sets bit when any of the following occurs: read check error; no data separator lock error; ID CRC error; track mismatch error; side mismatch error; sector mismatch error; record length mismatch error;

$\begin{aligned} & \text { 忍高 } \\ & \stackrel{+}{\infty} \\ & -\infty \\ & -\infty \\ & \hline \infty \end{aligned}$	/ 0 Sense Data Byte Definitions for 8420/8422 Diskette (cont)		
	Bit Position	Bit Designation	Definition
	Sense Data Byte 0 (cont)		
	$\begin{aligned} & 7 \\ & \text { (cont) } \end{aligned}$	Program alert	- \quad side 2 is specified when a 1 -sided diskette is installed; a RAM parity error exists; hexadecimal FF is specified in first parameter byte; EOD record over-read; or an invalid device address is specified.
$\begin{aligned} & \stackrel{\rightharpoonup}{\mid} \\ & \hline 8 \end{aligned}$	Sense Data Byte 1		
	0	Illegal media	Sets bit if: ID feed track-byte is not 00 through 4C or FF ;

$\begin{aligned} & \text { 꿍 } \underset{\substack{\infty \\ \hline \\ -\infty \\ -\infty \\ \hline \\ \hline}}{ } \end{aligned}$			ID field side byte is not 00 or 01 ; ID field sector byte is not 01 through $1 A$; ID field length byte is not 00 through 02 ; or the data $A M$ was not detected or was invalid.
	1	Invalid mode	Sets bit if device is in wrong operating mode.
	2	Invalid sequence	Sets bit if: diagnostic write command was not enabled; not enough parameter bytes were transmitted; hexadecimal FF was specified in first parameter byte; or EOD record was over-read.

			－address drive was not installed；or －feature was not installed．
	5	Parity error	Sets bit if： －bus－in parity retry or error occurs； －bus－out parity retry or error occurs； －PROM parity error occurs；or －subsystem parity error occurs；
$\begin{gathered} \text { 畐 } \\ \\ \text { 品 } \\ \text { 品 } \end{gathered}$	6	Stop state error	Sets bit if： －the addressed drive is in the stop state； －the addressed drive became not ready during command execution；or －the addressed drive never became ready during feed command．

$\begin{gathered} \text { Bit } \\ \text { Position } \end{gathered}$	Bit Designation	Definition
Sense Data Byte 1 (cont)		
7	Interlock error	Sets bit when the interlock switch is tripped on addressed drive.
Sense Data Byte 2		
0	No data separator lock error	Sets bit if: disk read circuits could not lock onto data from the diskette; or no disk service-signal occurred after once having locked on.
1	Side error	Sets bit if: a side mismatch occurred in ID field read; or side 2 was specified when a 1 -sided diskette was installed.

$\begin{aligned} & \text { 끈 ᄃ } \\ & \stackrel{0}{0} \\ & -\infty \\ & -\infty \end{aligned}$	1/0 Sense Data Byte Definitions for 8420/8422 Diskette (cont)		
	Bit Position	Bit Designation	Definition
	Sense Data Byte 2 (cont)		
			a reread of the ID or data field occurred; or a retry of a parity error occurred.
	Sense Data Byte 3		
	0	DSL not found	Sets bit if the data set label was not found.
	1	DSL invalid	Sets bit if the data set label was invalid.
$\stackrel{i}{2}$	2	Control AM	Sets bit if a record that was read was preceded by a control address mark.
	3	DSL WP error	Sets bit if the data set label has a write protect indication.
	4	Disk parity error	Sets bit if a parity error occurred within the disk logic during writes to the disk.

	5	EOD/EOE	Sets bit if: end of data (EOD): In DSM, the last valid record of the last or only volume of a file has been read. In DAM, the last sector of the diskette has been read. end of extent (EOE): In DSM, the last valid record of the last or only volume of a file has been written. In DAM, the last sector of the diskette has been written.
	6	Read check	Sets bit if a CRC error occurred while read checking a data field after a write command.
	7	HWP	Sets bit if the diskette is hardware write protected.
	Sense Data Byte 4		
$\stackrel{?}{\stackrel{~}{1}}$	0	Autoloader unload fault	Sets bit if a malfunction occurred during the unload portion of the cycle.
	1	Autoloader feed fault	Sets bit if a malfunction occurred during the feed portion of the cycle.
	2	Autoloader stacker full	Sets bit if the output stacker is full.

$\begin{aligned} & \text { 꿍 } \\ & \stackrel{\circ}{\circ} \\ & -\stackrel{\infty}{\infty} \\ & -\underset{\infty}{\infty} \end{aligned}$	1/0 Sense Data Byte Definitions for 8420/8422 Diskette (cont)		
	$\begin{gathered} \text { Bit } \\ \text { Position } \end{gathered}$	Bit Designation	Definition
	Sense Data Byte 4 (cont)		
	3	Autoloader hopper empty	Sets bit if the input hopper is empty.
	4	Autoloader hang	Sets bit if a mechanism malfunction timeout occurred during operation.
	5	Autoloader busy	Sets bit if a manual feed switch operation is in progress.
	6	Autoloader jam	Sets bit if a diskette is jammed in the feed path.
	7	Data late	Sets bit if a byte of data was lost due to the subsystem failing to respond in time.
号			Sense Data Byte 5

.

1/0 Sense Data Byte Definitions for 8420/8422 Diskette (cont)

$\begin{gathered} \text { Bit } \\ \text { Position } \end{gathered}$	Bit Designation	Definition
Sense Data Byte 5 (cont)		
7	HWP	Indicates that installed diskette contains hardware write protect notch.
Sense Data Byte 6		
0-7	Track Address	Indicates the current track address in binary (bit 0 is MSB)
Sense Data Byte 7		
0	L side 0	Indicates the current side address. When bit is set to 0 , side 0 is the current side. When bit is set to 1 , side 1 is the current side.
$1-7$	Sector address	Indicates the current sector address in binary (bit 1 MSB).

*Bits 5 and 6 of sense byte 5 are not valid until after the first media related command has been executed on the addressed drive. If bit 5 and 6 are both 0 , the recording density is not known.
4.9.2.1. Summary of I/O Sense Data Bytes for 8420/8422 Diskette

0	1	2	3	4	5	6	7
Command reject	Intervention required	Bus out check	Equipment check	Data check	Not used	Bus in check	Program alert

1

No data separator lock error	Side error	Track error

Record length error	Sector error

ID CRC
Data CR
CRC
3 \square
DSL
not valid
\square

\square E0D/EO \square

4

Autoloader unioad fault	Autoloader feed fault	Autoloader stacker full	Autoloader hopper empty	Autoloader hang	Autoloader busy	Autoloader fam	Data late

Summary of I/O Sense Data Bytes for 8420/8422 Diskette (cont)

6
The current track address.

4.9.3. I/O Sense Data Byte Definitions for 0776/0789 Printer

Bit Position	Bit Designation	Sefinition
	Command reject	Sets bit when invalid command is issued. Unit check status is set and no action is initiated by the PPC.
0	Intervention required	Sets bit if a condition is detected that requires manual intervention, if an out-of range address is detected, or if a feature that was called for was not installed.
1	Bus out check	Sets bit when a parity error is received during a D-bus data transfer on controller inbound data.
3	Sets bit when any of the following error conditions are detected within the PPC or device:	
a parity error detected when reading VFB;		
a device check;		
nonrecoverable PIU error;		

I/0 Sense Data Byte Definitions for 0776/0789 Printer (cont)

 I/O SENSE DATA BYIE
 DEFINITIONS FOR

$\begin{aligned} & \text { 쯍 } \underset{\circ}{\circ} \\ & -\infty \\ & -\infty \\ & -\infty \\ & \infty \\ & \infty \end{aligned}$	4	Data check	Sets bit when one of the following conditions is present, unless suppressed by the data check disable command: an unprintable character received by printer; or data parity occurred on data transferred to printer on each of four tries.
	5	-	Not used; always set to zero.
	6	Bus in check	Sets bit when bus parity error is received during a D-bus data transfer on controller outbound data.
	7	Program alert	Sets bit when an out of range device address is presented to the PPC during command initiation or when a VFB sequence error or VFB check occurs.
	Sense Data Byte 1		
$\begin{aligned} & \vec{i} \\ & \stackrel{\infty}{\infty} \end{aligned}$	0	Forms out	Sets bit when forms low indication is present and last form moved the paper to or past home paper position. Printer indicates not ready condition.

징 $=-\infty$ $-\infty$ $-\infty$	6	Stop state	Sets bit when printer is in stop state. Printer may enter stop state by way of stop switch or on error condition.
	7	Printer parity error	Sets bit when one or more parity errors occur on the data transferred to printer on each of four tries.
	Sense Data Byte 2		
	0	Bit 1 print band sense	Used in conjunction with bit 2 to identify which print band is mounted on the printer.
	1	Vertical format buffer sequence error	Sets bit if a print-advance or advance command was received after power-on system reset or if operator initialized the VFB and no load-VFB command was issued.
	2	Bit 2 print band sense	Used in conjunction with bit 0 to identify which print band is mounted on the printer.
	3	6/8 line spacing	Specifies 8 tines per inch
$\stackrel{\stackrel{\rightharpoonup}{+}}{\substack{\infty \\ \sim}}$	4	Nonrecoverable PIU error	Sets bit if a nonrecoverable D-bus error occurred related to the PIU device.

Sense Data Byte 3

0	-	Not used；always set to zero．
1	-	Not used；always set to zero．
2	-	Sets bit if the diagnostic write enable command has not preceded all other diagnostic write commands．
3	-	Not used；always set to zero．
4	-	Not used；always set to zero．
5	-	Not used；always set to zero．
6	-	Not used；always set to zero．
7		Not used；always set to zero．

1/0 Sense Data Byte Definitions for 0776/0789 Printer (cont)

Bit Position	Bit Designation	Sefinition
0	Stacker forms check	Sets bit when the forms stacker is full.
1	Porms jam motion error	Sets bit when the paper has stopped moving while a line advance operation is being performed.
2	Forms runaway	Sets bit when the acceleration or deceleration of the paper is too slow.
3	Actuator error	Sets bit when the form has been continuously advanced for an excessive period of time.
5	Sets bit when an abnormal temperature condition exists at the device.	
6	Sets bit when either an open or short circuit exists in one of the print hammer actuators.	

꾼둥	1	Intervention required	Set when a condition is detected that requires manual intervention.
∞	2	Bus out check	Set when a bus parity error is detected.
	3	Equipment check	Set when any of the following conditions are detected: - parity error detected in the RPI, RPA, or by the printer; - print or advance operation exceeds time allotted; - error detected in a message on the cable; - forms jam; - paper feed motor motion error; - forms runaway; - temperature error; - actuator error; or - band error.

1/O Sense Data Byte Definitions for 0789/0798 Remote Printer (cont)

| Bit
 Position | Bit
 Designation | Definition |
| :--- | :--- | :--- | :--- |
| 4 | Data check | Set when any of the following conditions are present:
 unprintable character received; or |
| 4 | check sum error detected. | |

SDMA DEVICES (cont)
 I/O SENSE DATA BYTE DEFINITIONS FOR

1/0 Sense Data Byte Definitions for 0789/0798 Remote Printer (cont)

$\begin{gathered} \text { Bit } \\ \text { Position } \end{gathered}$	Bit Designation	Definition
Sense Data Byte 1 (cont)		
2	MEM address error	When set, indicates the RAM address for the load RAM command exceeds: RAM limits; associated byte count would cause the address to exceed these limits; or address for a load memory command is not within the boundary of the RAM. Is set in conjunction with sense byte 0 , bit 7 .
3	Check sum error	When set, indicates the check sum for a load RAM command does not equal the sum generated by the RPI. Is set in conjunction with sense byte 0 , bit 7 if this error is on the check sum for one of the load RAM records. Is set in conjunction with sense byte 0 , bit 7 and sense byte 1 , bit 6 if this error is on the overall check sum in the end record.

| Sense Data Byte 1 (cont) | | |
| :--- | :--- | :--- | :--- |
| 7 | RPI feature | Always set to 1. |
| 0 | Forms out Data Byte 2 | |

	5	-	Always set to 0 .
	6	Printer not ready	When set, indicates an inactive level is detected on the printer ready line from the printer.
	7	Printer parity error	When set, indicates printer reported a parity error in data being received from the RPA.
			Sense Data Byte 3
	0	Bit 1 print band sense	Identifies print band mounted on the printer. Is set in conjunction with sense byte 3, bit 2.
	1	Vertical format buffer sequence error	When set, indicates a print-advance or advance command was received after either power-on, system reset, or operator initialization of the VFB and no load VFB command was issued.
ث	2	Bit 2 print band sense	Identifies print band mounted on the printer. Is set in conjunction with sense byte 3 , bit 0.
	3	6/8 line spacing	When set, indicates 6/8 lpi switch is set to the 8 lpi position.
	4	-	Always set to 0 .

1/0 Sense Data Byte Definitions for 0789/0798 Remote Printer (cont)

	Bit Position	Bit Designation	Definition
	Sense Data Byte 3 (cont)		
	5	Printer time-out	When set, indicates printer did not complete either a print or a form advance operation in less than 8 seconds after having acknowledged the command.
	6	-	Always set to 0 .
	7	Device check	When set, indicates the printer reported a hardware malfunction or a not-ready condition during printing or advancing paper.
	Sense Data Byte 4		
	0	RPA power-on	When set, indicates the RPA successfully completed its power-on-confidence test.
$\begin{aligned} & \vec{i} \\ & \stackrel{8}{8} \end{aligned}$	1	RPA message error	When set, indicates the RPI detected an error in a message from the RPA.
	2	Invalid diagnostic sequence	When set, indicates a diagnostic write data buffer command that did not immediately follow a diagnostic write enable command was received from the channel.

	3	RPI message error	When set, indicates the RPA reported an error in a message from the RPI.
	4	No response from RPA	When set, indicates the RPI received no response while transmitting to the RPA.
	5	Unrecoverable RPA message error	When set, indicates the RPI detected an error in four successive message transmissions from the RPA.
	6	Unrecoverable RPI message error	When set, indicates the RPA reported an error in four successive message transmissions from the RPI.
	7	-	Always set to 0 .
			Sense Data Byte 5
	0	Stacker forms check	When set, indicates that the forms pullout stacker is full.
	1	Forms jam	When set, indicates that the paper forms stopped moving during a line advance operation.
	2	Paper feed motor error	When set, indicates starting and stopping of the paper forms is too slow.

Bit Position	Bit Designation	Sense Data Byte 5 (cont)
3	Forms runaway	When set, indicates paper forms have been advanced for an excessive period of time.
4	Temperature error	When set, indicates an abnormal temperature condition exists at the device.
5	Actuator error Printer RAM parity error set, indicates either an open or short circuit exists in one of the print hammer actuators.	
7	When set, indicates that the printer detected a parity error while reading its RAM.	
7	When set, indicates the printer failed to detect a sprocket signal, detected an extra Sprocket signal, or failed to detect a font mark.	

Sense Data Byte 6		
0	Unrecoverable printer parity error	When set, indicates the printer reported a parity error in data received from the RPA during each of four successive transfers of the same print line.
1	Printer power-off	When set, indicates an inactive level was detected on the power signal line from the printer.
2	RPA RAM parity error	When set, indicates a parity error was detected by the RPA while reading a byte from its RAM.
3	No response from printer	When set, indicates printer did not acknowledge a command or data transfer from the RPA within one millisecond.
4 through 7	-	Always set to 0 .

Bit Position		
Bit Designation		
0	-	Sense Data Byte 7
1	Command sequence number	Most significans set to 0.
2 through bit. 6	Command sequence numbers	Intermediate bits.
7	Command sequence number	Least significant unit.

4.9.4.1. Summary of I/O Sense Data Bytes for 0789/0798 Remote Printer

5 \begin{tabular}{|c|c|c|c|c|c|c|c|}

\hline | Stacker |
| :---: |
| forms check | \& Forms jam \& | Paper feed |
| :---: |
| motor |
| error | \& | Forms |
| :---: |
| runaway | \& | Temperature |
| :---: |
| error | \& | Actuator |
| :---: |
| error | \& | Printer RAM |
| :---: |
| parity error | \& Band error

\hline
\end{tabular}

6

Unrecoverable printer parity error	Printer power-off	RPA RAM parity error	No response from printer	-	-	-

7 \begin{tabular}{|c|c|c|c|}

\hline- \& | Command |
| :---: |
| sequence |
| number (MSB) | \& Command sequence numbers \& | Command |
| :---: |
| sequence |
| number (LSB) |

\hline
\end{tabular}

	$\begin{gathered} \text { Bit } \\ \text { Position } \end{gathered}$	Bit Designation	Definition
	Sense Data Byte 0		
	0	Command reject	Sets bit when an invalid command is issued. Unit check is also set, and no action is initiated by the PPC.
	1	Intervention required	Sets bit when a condition is detected that requires manual intervention, such as: - Hopper empty - Stacker full - Not ready - Power off - Initial power-up clear

	1/0 Sense Data Byte Definitions for 0719 Card Reader (cont)		
	Bit Position	Bit Designation	Definition
	Sense Data Byte 0 (cont)		
	$\begin{aligned} & 1 \\ & \text { (cont) } \end{aligned}$		- Door interlock open - Offline - STOP switch activated Input check.
	2	Bus out check	Sets bit when a bus parity error is received during D-bus transfer on controller inhound data.
$\stackrel{\circ}{\circ}$	3	Equipment check	Sets bit on PPC RAM data store parity error, such as PPC parity error, card operation not completed in maximum time, or nonrecoverable PIU error.

	4	Data check	Sets bit on an incorrect parity from device, device read check, device input check, or multiple punch error.
	5	Overrun	Not used; always set to zero.
	6	Bus in check	Sets bit when a bus parity error is received during a D-bus transfer on controller outbound data.
	7	Program alert	Sets bit when an out-of-range device address is presented to the PPC during command sequence.
			Sense Data Byte 1
	0	Device not ready	Sets bit if the device is offline, power is off, interlock is open, feature not installed or STOP switch is depressed.
	1	Stacker full	Sets bit when stacker is full.
告	2	Hopper empty	Sets bit when hopper is empty.
	3	Input check	Sets bit if device detects a misfeed or mispick condition.
	4	-	Not used; always set to zero.

	10 Sense Data Byte Definitions for 0719 Card Reader (cont)		
	$\begin{aligned} & \text { Bit } \\ & \text { Position } \end{aligned}$	Bit Designation	Definition
$\begin{gathered} \text { SPERRY UNIVAC SYSTEM } 80 \\ \text { HARDWARE/SOFTWARE SUMMARY } \end{gathered}$	Sense Data Byte 1 (cont)		
	5	Read check	Sets bit if device detects an error at read station.
	6	Stop state	Sets bit if device is in stop state. It may be entered by stop or device error.
	7	Parity check	Sets bit for parity error from device.
	Sense Data Byte 2		
	0	Multiple punch	Sets bit if the device detects more than one hole punched in columns 1 through 7.
$\stackrel{\text { ¢ }}{6}$	1	-	Not used; always set to zero.

	2	Invalid sequence	Sets bit if the diagnostic-write-enable command has not preceded all other diagnostic write commands.
	3	-	Not used; always set to zero.
	4	Nonrecoverable PIU error	Sets bit if a nonrecoverable error occurs related to the PIU device.
	5	-	Not used; always set to zero.
	6	PPC RAM parity error	Set if a parity error occurred in the PPC during a data transfer.
	7	-	Not used; always set to zero.

4.9.6. I/O Sense Data Byte Definitions for 0608 Card Punch

	Bit Position	Bit Designation	Definition
	Sense Data Byte 0		
	0	Command reject	Sets bit when an invalid command or command sequence is issued. Unit check status is set and no action is initiated by the PPC.
	1	Intervention required	Sets bit when any of the following conditions (that require manual intervention) occurs: Hopper empty Stacker full Not ready - Power off - Initial power up clear - Door interlock open

	Sense Da	Definitions for 06	(cont)
	Bit Position	Bit Designation	Definition
	Sense Data Byte 0 (cont)		
			- Offline - STOP switch pressed Input check Output check
0	2	Bus out check	Sets bit when a bus parity error is received during D-bus data transfer on controller inbound data.
	3	Equipment check	Sets bit when error conditions such as PPC parity error, card operation not completed in specified time, or nonrecoverable PIU error are detected within the PPC or device.

	4	Data check	Sets bit on incorrect parity from device, device read-check, device input check, device outputcheck, device not ready, or multiple punch error.
	5	-	Not used; always set to zero.
	6	Bus in check	Sets bit when a bus parity error is received during D-bus transfer on PPC outbound data.
	7	Program alert	Set when a read image command is issued to a 96 -column reader, or an out-of-range device address is presented to PPC during command sequence.
	Sense Data Byte 1		
	0	Device not ready	Sets bit when device is offline, power is off, interlock is open, a feature is not installed that was called for, or STOP switch was depressed.
	1	Stacker full	Sets bit if the stacker is full.
$\begin{aligned} & \stackrel{\rightharpoonup}{\vdots} \\ & \vdots \end{aligned}$	2	Hopper empty	Sets bit if the hopper is empty.
	3	Input check	Sets bit if the device detects misfeed or mispick condition.

I/O Sense Data Byte Definitions for 0608 Card Punch (cont)

4.9.6.1. Summary of $1 / 0$ Sense Data Bytes for 0608 Card Punch

4.9.7. I/O Sense Data Byte Definitions for UNISERVO 10 Magnetic Tape Type 0871

Bit Position	Bit Designation	Definition
Sense Data Byte 0		
0	Command reject	Sets bit when: a write, a write tape mark, or erase command was attempted on a file protected tape unit; a backward type command was attempted when the tape was already at load point (sense byte 0 , bit 7 and sense byte 1 , bit 4 are set); an invalid command is transmitted to the controller (this condition is not set if a bus out check occurred on a command transfer); or the tape unit incompatibility bit was set (sense byte 1 , bit 7).
1	Intervention required	Sets bit when tape unit status A is inactive; i.e., a nonexistent or nonready tape unit was selected on other than a sense command (bit 1 of sense byte 1 is not set).
2	Bus out check	Sets bit when even parity appears on the BUS OUT signal for data or command transfers. During write operations, if this condition is set on a data transfer, the operation is terminated and the error byte is not written on tape.

	1/0 Sense Data Byte Definitions for UNISERVO 10 Magnetic Tape Type 0871 (cont)		
	Bit Position	Bit Designation	Definition
	Sense Data Byte 0 (cont)		
	3	Equipment check	Sets bit when an equipment check condition occurred; i.e., bits 0,1 , or 5 of sense byte 4 have been set.
	4	Data check	Sets bit when a data check condition occurred; i.e., bit 0 of sense byte 1 or bits $0,1,2,3$, and 4 of sense byte 3 have been set.
	5	Overrun	Sets bit when service is requested on the I/0 interface, but data cannot be transferred due to a late response from the channel. If this occurs on the first data transfer of a write operation, word count zero is also set in conjunction with overrun (but not set on request-tie or sense commands).
$\stackrel{+}{\text { P }}$	6	Bus in check	Sets bit when the controller receives the outbound control flag for parity error.

$\begin{aligned} & \text { 꿍 } \\ & \stackrel{C}{0} \\ & -\underset{\infty}{\infty} \\ & -\infty \end{aligned}$	7	Program alert	Sets bit when: a command was issued while the tape was rewinding (sense byte 1 , bits 1 and 2 are set); or a backward type command was attempted when the tape was already at load point (sense byte 0 , bit 0 and sense byte 1 , bit 4 are set).
			Sense Data Byte 1
	0	Noise	Sets bit if: During reading or read checking a block of data, a data dropout occurs (i.e., all tracks inactive) that is less than 64 frame times in length (1.6 ms at $25 \mathrm{ips} / 635 \mathrm{mmps}$). End of block is set and postamble detected is not set. During erase operations, data (or noise due to tape defect) was detected on read check while the tape was being erased. During a read operation, a block consisting of less than 12 bytes is detected.

	2	Tape unit status B	Indicates not ready or rewinding			
			Status A	Status B	Tape Drive Status	Bit Set
				0	Nonexistent or offline	Unit check
			0	1	Not ready rewinding to interlock	Unit check
					Available	-
				1	Busy, i.e., rewinding	Unit check
	3	7-track	Normally			
$\stackrel{+}{5}$	4	Load point	Indicates tape positioned at load point			
	5	End of tape	Indicates tape positioned at end-ofttape area			

			2	Tape drive is selected for a read operation from load point but tape unit is 9 -track mode and failed to set to $800 \mathrm{bpi}(315 \mathrm{bpcm})$ when the tape is written in 800 bpi NRZI mode. NOTE: In case of item 1, no tape motion occurs as a result of attempted operation. In case of item 2 , the condition detected after the first read operation is initiated. If a read command is to be attempted a second time, a rewind command should be executed first in order to reposition the tape. GCR ID burst is detected on read operation.
$$	Sense Data Byte 2			
$\underset{\underset{\sim}{3}}{\substack{3}}$	0-7	Track in error		d; always set to zero for phase encoded (PE). Used in nonreturn zero inverted NRZI.
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{n}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	Sense Data Byte 3			
	0	Read/write VRC/RVRC		es a vertical redundancy check occurred on a data frame on a write, read, or readard operation.

I/O Sense Data Byte Definitions for UNISERVO 10 Magnetic Tape Type 0871 (cont)

Bit Position	Bit Designation	Sense Data Byte 3 (cont)		
1	Multiple dead track check/LRC	Indicates a marginal signal occurred in more than one track on a read or read-backward operation (uncorrectable).		
2	Skew 3	Indicates excessive skew occurs during a write, read, or read-backward operation (deskew register overflow).		
4				
Dead track				
check/write				
VRC			\quad	Indicates postamble following the data is not read correctly or is recognized before the actual end
:---				
of data (early stop sentinal).				

			A marginal signal is present in only one track during read or read-backward operation (correctable error). This bit is not set if a multiple track error occurs (see bit 1). If I=1 in the read command code and this bit is set, unit check will be set. If this bit is set and $\mathrm{I}=0$ is in the read command, however, unit check will not set. In either case, data is correct. A tape mark was not properly detected on the read check of a write-tape-mark operation.
	5	Tape unit 1600 bpi	Indicates the tape drive is set for $1600 \mathrm{bpi}(630 \mathrm{bpcm}$) mode.
	6	Backward	Indicates the tape drive is set for backward tape motion.
	7	-	Not used; always set to zero.
			Sense Data Byte 4
$\frac{\stackrel{\rightharpoonup}{i}}{\underset{\sim}{u}}$	0	Runaway check	Indicates: While read checking recorded data during write or write-tape-mark operations, the end-ofblock mark was not detected within 12.7 milliseconds after writing was terminated. During any read operation, data is not detected within 13 seconds.

1/0 Sense Data Byte Definitions for UNISERVO 10 Magnetic Tape Type 0871 (cont)

Bit Position	Bit Designation	Definition
Sense Data Byte 4 (cont)		
1	Tape motion fault	Indicates: - Tape drive failed to respond to a start command. Tape motion may or may not have started. Tape motion stopped independently of the controller during an operation requiring tape movement. This condition is detected if a backward operation is executed into load point.
2	Speed check	Indicates excessive speed variation occurred during a write operation.
3	Data bus parity error	Indicates a parity error exists on the data bus during storage read.
4	Translate error	Not used; always set to zero.
5	-	Not used; always set to zero.

	6	Tape fault	Inticates end of block was detected sooner than expected during write or write-tape-mark operation. False end of block can occur if a data dropout (all tracks) is longer than 1.6 milliseconds.
	7	COS parity error	Indicates a parity error occurred in the control store, read-only memory (ROM).

*These bits reflect the current state of the selected tape unit. For example, if a nonready condition is detected and the operation is aborted early, the tape-unit-available bit will be reset and the intervention-required bit will become set in sense bytes 1 and 0 , respectively. Between the time that operation was aborted and the sense command was executed, if the tape drive became ready, then the sense data returned to the channel indicates that intervention is required, and tape-unit-available bits are set.
4.9.7.1. Summary of $1 / 0$ Sense Data Bytes for UNISERVO 10 Magnetic Tape Type 0871

1

2

3

Read/write VRC/RVRC	Multiple dead track check/LRC	Skew	Postamble check/CRC	Dead track check/write VRC	Tape unit 1600 bpi	Backward	-

 I/O SENSE DATA BYTE DEFINITIONS FOR

Powers of 2 Table

	2^{n}	n	2^{-n}					
	1	0	1.0					
	2	1	0.5					
	4	2	0.25					
	8	3	0.125					
	16	4	0.062	5				
	32	5	0.031	25				
	64	6	0.015	625				
	128	7	0.007	812	5			
	256	8	0.003	906	25			
	512	9	0.001	953	125			
1	024	10	0.000	976	562	5		
2	048	11	0.000	488	281	25		
4	096	12	0.000	244	140	625		
8	192	13	0.000	122	070	312	5	
16	384	14	0.000	061	035	156	25	
32	768	15	0.000	030	517	578	125	
65	536	16	0.000	015	258	789	062	5
131	072	17	0.000	007	629	394	531	25
262	144	18	0.000	003	814	697	265	625
524	288	19	0.000	001	907	348	632	812

Powers of 2 Table (cont)

	1	048
	2	097
	4	194
	8	388
	16	777
	33	554
	67	108
	134	217
	268	435
	536	870
1	073	741
2	147	483
4	294	967
8	589	934
17	179	869
34	359	738
68	719	476
137	438	953
274	877	906
549	755	813
099	511	627

These powers of 16 are especially useful in determining the value of floating-point numbers.
φ

[^0]: *Always one less than actual length.

[^1]: $\stackrel{\omega}{\stackrel{\omega}{\sim}}$
 買
 Operator After Program Execution Has

