
 M T S

 The Michigan Terminal System

 Volume 14: 360/370 Assemblers in MTS

 May 1983

 Updated September 1986 (Update 1)

 The University of Michigan Computing Center

 Ann Arbor, Michigan

 * *

 * This obsoletes the August 1978 edition. *

 * *

 1

 DISCLAIMER

 The MTS Manual is intended to represent the current state of the

 Michigan Terminal System (MTS), but because the system is constantly

 being developed, extended, and refined, sections of this volume will

 become obsolete. The user should refer to the Computing Center _________ ______

 Newsletter, Computing Center Memos, and future Updates to this volume __________

 for the latest information about changes to MTS.

 Copyright 1983 by the Regents of the University of Michigan. Copying is

 permitted for nonprofit, educational use provided that (1) each repro-

 duction is done without alteration and (2) the volume reference and date

 of publication are included. Permission to republish any portions of

 this manual should be obtained in writing from the Director of the

 University of Michigan Computing Center.

 2

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 PREFACE _______

 The software developed by the Computing Center staff for the

 operation of the high-speed processor computer can be described as a

 multiprogramming supervisor that handles a number of resident, reentrant

 programs. Among them is a large subsystem, called MTS (Michigan

 Terminal System), for command interpretation, execution control, file

 management, and accounting maintenance. Most users interact with the

 computer’s resources through MTS.

 The MTS Manual is a series of volumes that describe in detail the

 facilities provided by the Michigan Terminal System. Administrative

| policies of the Computing Center and the physical facilities provided

| are described in other publications.

|

| The MTS volumes now in print are listed below. The date indicates

| the most recent edition of each volume; however, since volumes are

| periodically updated, users should check the file *CCPUBLICATIONS, or

| watch for announcements in the U-M Computing News, to ensure that their __________________

| MTS volumes are fully up to date.

|

|

| Volume 1: The Michigan Terminal System, January 1984 ____________________________

| Volume 2: Public File Descriptions, April 1982 ________________________

| Volume 3: System Subroutine Descriptions, April 1981 ______________________________

| Volume 4: Terminals and Networks in MTS, March 1984 _____________________________

| Volume 5: System Services, May 1983 _______________

| Volume 6: FORTRAN in MTS, October 1983 ______________

| Volume 7: PL/I in MTS, September 1982 ___________

| Volume 8: LISP and SLIP in MTS, June 1976 ____________________

| Volume 9: SNOBOL4 in MTS, September 1975 ______________

| Volume 10: BASIC in MTS, December 1980 ____________

| Volume 11: Plot Description System, August 1978 _______________________

| Volume 12: PIL/2 in MTS, December 1974 ____________

| Volume 13: The Symbolic Debugging System, September 1985 _____________________________

| Volume 14: 360/370 Assemblers in MTS, May 1983 _________________________

| Volume 15: FORMAT and TEXT360, April 1977 __________________

| Volume 16: ALGOL W in MTS, September 1980 ______________

| Volume 17: Integrated Graphics System, December 1980 __________________________

| Volume 18: The MTS File Editor, August 1985 ___________________

| Volume 19: Tapes and Floppy Disks, February 1983 ______________________

| Volume 20: Pascal in MTS, December 1985 _____________

| Volume 21: MTS Command Extensions and Macros, April 1986 _________________________________

 Other volumes are in preparation. The numerical order of the volumes

 does not necessarily reflect the chronological order of their

 appearance; however, in general, the higher the number, the more

 specialized the volume. Volume 1, for example, introduces the user to

 3

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 MTS and describes in general the MTS operating system, while Volume 10

 deals exclusively with BASIC.

 The attempt to make each volume complete in itself and reasonably

 independent of others in the series naturally results in a certain

 amount of repetition. Public file descriptions, for example, may appear

 in more than one volume. However, this arrangement permits the user to

 buy only those volumes that serve his or her immediate needs.

 Richard A. Salisbury

 General Editor

 4

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 PREFACE TO VOLUME 14 ____________________

 The May 1983 revision reflects the changes that have been made to MTS

 since August 1978. Some of these changes were described Update 1

 (October 1979), Update 2 (April 1980), and Update 3 (January 1981) and

 are incorporated into this edition.

 Since January 1981, further changes have been made to the Message

 Macros and the Structured Programming Macros and are described herein.

 In addition, the descriptions of the *ASMG and *ASMT assemblers have

 been removed since they are no longer actively supported by the

 Computing Center. These descriptions are available through the *GENDOC

 program.

 The sections "IOH," "Extensions to the Amdahl 470 Operations," and

 "Extensions to the System/360 Model 67 Operations" have been moved into

 Volume 14 from MTS Volume 5, System Services. _______________

 5

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 6

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 Contents ________

 Preface 3 EXIT 77

 FLOAT 79

 Preface to Volume 14 5 FREESPAC 80

 GETSPACE 81

 360/370 Assemblers in MTS . . . 11 GUSER 82

 INSTSET 85

 Assembler H 13 IOH Macros 87

 *ASMH 14 KWLHT 89

 Assembler Options 14 KWRHT 90

 BATCH Option 18 KWSET 98

 Assembler H Extensions . . . 18 LABEL 99

 I/O Unit Usage 24 LITADDR100

 SCARDS Input 24 MAXxx, MINxx 101

 Macro Libraries and COPY MOUNT104

 Sections 24 MSG, PMSG, PHRASE105

 SPRINT Output 26 MTS106

 SPUNCH and Unit 1 Output . 27 MTSCMD 107

 Diagnostics and Return Codes 27 MTSMODS108

 Assembler H Messages 28 QUIT 109

 Invoking ASMH from a Program 30 READ 110

 REQU 113

 Differences between *ASMG, RETURN 115

 *ASMH, and *ASMT 33 REWIND 117

 SAVE 118

 Utility Programs for SCARDS 120

 Assembler Users 41 SERCOM 123

 *ASMTIDY 42 SPIE 126

 *PEXIT 47 SPRINT 128

 SPUNCH 131

 Macro Libraries 51 STIMER 134

 Using Macro Libraries 52 SYSTEM 137

 Constructing a Macro Library 52 TRL, TRTL138

 System-Supplied Macros . . . 54 TRTAB139

 ASMTYPE 55 TTIMER 143

 A8, S8, A8R, S8R 56 WRITE144

 ASSIGN 58

 BPI 59 The Message Macros 147

 CALL 62 Examples 147

 CMD 65 MSG Macro Operators148

 CMDNOE 66 The "IF" Operators 156

 CNTRL 67 IF Operator Formats157

 DFAD, DFSB, DFMP 70 IF Comparison Operators . .157

 DCI, DCINIT 70.1 OUTPUT Operator158

 DFIX, EFIX 71 OUTPUT operators 158

 DISMOUNT 72 Optional OUTPUT Operators .159

 ENTER 73 PICTURE Operator 160

 ERROR 76 MSG Examples 161

 7

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 Extensions to the Amdahl

 Structured Programming Macros .165 470/5860 Operations261

 Logical Expressions165 Extended-Branch Operations .261

 Simple Conditions166 Branch and Store 261

 Compound Conditions171 Extended-Precision

 IF, THEN, ELSE, ELSEIF, Floating-Point Operations . .262

 ENDIF173 Divide 262

 DOCASE, CASE, ELSECASE, Search List Instruction . . .264

 ENDCASE176

 DO, ENDDO179 Extensions to the System/360

 REDO, EXITDO, NEXTDO 185 Model 67 Operations265

 DEFCC187 Extended-Precision

 FLAGS189 Floating-Point Operations . .265

 FLAGVAL192 Add Double 266

 SET193 Subtract Double267

 TEST 195 Multiply Double268

 MACSET 197 Mixed-Precision

 Floating-Point Operations . .269

 IOH201 Load Mixed 269

 Introduction 201 Add Mixed269

 A Simple Case201 Subtract Mixed 269

 Format Terms 203 Multiply Mixed 270

 Types of Format Divide Mixed 270

 Specifications 204 Swap Register Instruction . .271

 Integer204 Search List Instruction . . .271

 Floating-Point (F-type) . .204

 Floating-Point (E-type) . .206 The Macro-Library Editor . . .279

 Character207 Macro-Library Editor

 Hexadecimal207 Command Language 282

 Packed Decimal 208 Macro-Library Editor

 Literals 208 Commands 285

 Spaces and Tabs209 ADD285

 Line Skips 210 BUILDIR285

 Modifiers210 CLEAR285

 Multiplicities, Groups, COMMENT286

 and Blocks 212 COPY 286

 Format-Break Characters . .213 CREATE 286

 Rescanning the Format . . .214 DELETE 287

 Standard Format I/O215 DISPLAY287

 IOH Macros 217 EDIT 287

 Special Features of IOH . . .224 EMPTY288

 Additional Entry Points EXPLAIN288

 to IOH 224 HELP 289

 Format Variables 229 INCLUDE289

 Changing Defaults233 LIST 289

 Appendix A: IOH Format MCMD 290

 Specifications 238 MTS290

 Appendix B: IOH Calling PUNCH290

 Sequences255 RENAME 291

 General Structure of the RENUMBER 291

 Calling Sequence 255 REPLACE292

 Description of the OPEN RETURN 292

 and CLOSE Routines 257

 8

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 SET292 External Dummy Sections

 STOP 293 (Assembler F only) 312

 UPDATE 294 COM - Define Blank Common

 Command Modifiers295 Control Section312

 BREAK295 Machine-Instructions 313

 COMSAVE295 Instruction Alignment and

 EMPTY295 Checking 313

 FULL 295 Operand Fields and

 HDRGEN 296 Subfields313

 INCREMENT296 Assembler Language

 LIST 296 Statements 313

 NAME 296 OPSYN - Equate Operation

 SEQ296 Code 313

 SORT 297 DC - Define Constant . . .313

 START297 CCW - Define Channel

 TERSE297 Command Word 314

 VERBOSE297 Listing Control

 VERIFY 297 Instructions 314

 Principles of Operation . . .298 Program Control

 Macro-Library Editor Example 301 Instructions 315

 Introduction to the Macro

 ASSIST Assembler and Language 315

 Interpreter303 Open Code Conditional

 Running ASSIST Under MTS . . .304 Assembly 315

 The MTS $RUN Command and The Macro Definition . . .315

 Logical Unit Specifications .304 System and Programmer

 Control Cards304 Macro Definitions315

 Parameters 305 How to Prepare Macro

 Sample Deck Setups 309 Definitions316

 The Assembly Language Under Macro Instruction

 ASSIST 310 Prototype316

 Introduction 310 Model Statements 316

 Macro Instructions 310 Copy Statements316

 The Assembler Program . . .310 How to Write Macro

 General Information310 Instructions 317

 General Restrictions on How to Write Conditional

 Symbols310 Assembly Instructions317

 Location Counter Reference 310 Attributes 317

 Literals 311 AIF - Conditional Branch .317

 Literal Pool 311 AGO - Unconditional Branch 318

 Expressions311 ACTR - Conditional

 Addressing - Program Assembly Loop Counter . . .318

 Sectioning and Linking . . .311 Conditional Assembly

 USING - Use Base Register .311 Elements 318

 Control Sections 311 Extended Features of the

 Control Section Location Macro Language 318

 Assignment 312 MNOTE - Request for Error

 First Control Section . . .312 Message318

 START - Start Assembly . .312 &SYSECT318

 CSECT - Identify Control Macro Definition

 Section312 Compatibility318

 DSECT - Identify Dummy Execution-Time Services319

 Section312 Input/Output Mnemonics . . .319

 9

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 Input319 Execution Phase - The

 Output 320 Interpreter345

 Notes320 Type of Printout 346

 Supplementary Mnemonics . . .321 Supplementary Calls347

 System Subroutines 322 Execution-Time Error

 Output and Error Messages . . .337 Messages 348

 Assembly Listing 337 The Cross-Reference Option . .352

 Assembly Listing Format . .337 ASSIST Macro Libraries 355

 Assembler Error Messages .337 Sources of Macro Libraries .355

 Assist Monitor Error The *SYSLIB Card 355

 Messages 344 Hints on Optimal Use of a

 Assembler Statistics Macro Library357

 Summary345 Macro Descriptions 357

 Index373

 10

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 360/370 ASSEMBLERS IN MTS _________________________

 This edition contains information for using those translators which

 translate languages that are essentially 360 or 370 machine languages.

 The translators described are

 Assembler H

 ASSIST

 The August 1978 edition describes

 Assembler G

 TSS Assembler

 Descriptions of these assemblers are also available through the *GENDOC

 program. The Assembler G and TSS Assembler translators are no longer

 actively supported by the Computing Center.

 All of these translators use a traditional assembler format (one

 instruction per line, with each line divided into a label field, an

 opcode field, an operands field, and a comments field) and translate

 approximately the same source language.

 LANGUAGE REFERENCES ___________________

 The language reference manual for Assembler G, Assembler H, and

 ASSIST is the IBM publication, IBM System/360 Operating System Assembler ___

 Language, form number GC28-6514. The language reference manual for the ________

 TSS Assembler is the IBM publication, IBM System/360 Time-Sharing System __________________________________

 Assembler Language, form number GC28-2000. __________________

 For a description of the individual machine instructions, see the IBM

 publication, IBM System/370 Principles of Operation, form number GA22- _______________________________________

 7000. In addition, certain special instructions that are available on

 the IBM 360/67 and on the Amdahl 470 and 5860 computers when running in

 MTS are described in this volume.

 SUPPLEMENTARY MATERIAL ______________________

 This volume also contains the descriptions of the macros provided by

 the Computing Center for assembly language programmers. For those using

 Assembler G and Assembler H, the macros will be found in the public file

 11

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 *SYSMAC; for those using the TSS Assembler, the macros will be found in

 the public file *ASMTSYSMAC. The majority of these macros aid the

 programmer in providing calling sequences for subroutines of the same

 name. The macro descriptions found in this volume assume that the user

 is familiar with the related subroutine descriptions which appear in MTS

 Volume 3, System Subroutine Descriptions. ______________________________

 In addition, this volume contains public file descriptions for

 certain programs of interest to assembly language users. These public

 file descriptions also appear in MTS Volume 2, Public File Descriptions. ________________________

 For information on the detailed format of object records which are

 produced by the translators described in this volume, see the section

 "The Dynamic Loader" in MTS Volume 5, System Services. _______________

 12

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 ASSEMBLER H ___________

 The following section describes the use of the IBM program product

 Assembler H which has been adapted for use in MTS.

 Several of the extensions to Assembler H described in the subsection

 "Assembler H Extensions" are adapted from changes made to Assembler H by

 Gregory J. Mushial at the Stanford Linear Accelerator Center. In

 particular items 20, 21, and 25 are taken from Mr. Mushial’s changes as

 well as the &SYSNEST system set symbol, the REL2 parameter, the

 nullified USING message (IEV056), and the USING map that appears as part

 of the listing page header. The descriptions of the above changes are

 adapted from SLAC Computing Services User Note 100 by Mr. Mushial. _____________________________________

 Assembler H 13

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 *ASMH _____

 Contents: The initial object module of the MTS Assembler H.

 Purpose: To assemble System/370 assembly language programs.

 Use: The assembler is invoked by the $RUN command.

 Logical I/O Units Referenced:

 SCARDS - the source program to be assembled.

 SERCOM - assembler diagnostics.

 SPRINT - listing and reference tables.

 SPUNCH - the resulting object module.

 0 - a library of macro definitions.

 If 0 is not assigned, then *SYSMAC will be used.

 1 - the resulting object module.

 2-10 - additional libraries of macro definitions.

 If the assembler is being called from within a program,

 the logical I/O units may differ. See the subsection

 "Invoking ASMH from a Program."

| Description: This assembler is the IBM program product Assembler H,

| Version 2 (program number 5668-962) modified for use in

| MTS. The language accepted by ASMH is given in the IBM

| publication, Assembler H Version 2 Application Program- __

| ming: Language Reference (form GC26-4037). Extensions ___________________________

| to the language are discussed in the subsection "Assem-

| bler H Extensions." The error messages produced by ASMH

| are listed and explained in the IBM publication, Assem- ______

| bler H Version 2 Application Programming: Guide (form ___

| SC26-4036). Additions and changes to these messages are

| described in the subsection "Assembler H Messages."

 ASSEMBLER OPTIONS _________________

 The programmer may specify the following options in the PAR field of

 the $RUN command. The entries may appear in any order and, if any are

 missing, a standard default will be assumed. Commas are accepted as

 parameter delimiters and keyword operands may be delimited on the left

 with equal signs or may be enclosed in parentheses (except XREF which

 may not be used with an equal sign).

 14 Assembler H

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 No abbreviations are allowed for the options. The default forms are

 given at the right of each option name.

 ALGN or ALIGN / NOALGN or NOALIGN Default: ALGN

 The ALGN option specifies that all alignment errors are to be

 flagged. The NOALGN option specifies that only alignment errors

 involving the fetching of instructions (e.g., BC or LPSW) are to be

 flagged.

 BATCH or MULT / NOBATCH or NOMULT Default: NOBATCH

 With the BATCH option, the assembler processes a stream of

 assemblies, the last assembly being terminated by an end-of-file.

 See the following subsection, "BATCH Option." With the NOBATCH

 option, the assembler processes only one assembly and then returns

 to the calling program.

| CALIGN=n / NOCALIGN Default: NOCALIGN

|

| The CALIGN option controls the placement of fields in generated

| statements. NOCALIGN, the default, prints the operation, operand,

| and comment fields in the same columns they were found in the

| source statement, if possible. CALIGN=0 prints the operation and

| operand fields in columns 10 and 16, respectively. In addition,

| CALIGN=n (16<n≤72) positions comments in generated statements at

| the specified column.

 DECK / NODECK Default: DECK

 The DECK option specifies that the object module is produced and

 written on the logical I/O unit SPUNCH. With the NODECK option, no

 object module is written on SPUNCH.

 ESD / NOESD Default: ESD

 The ESD option specifies that the external symbol dictionary is

 listed on the logical I/O unit SPRINT. The NOESD option suppresses

 the listing of the external symbol dictionary. See also the LIST

 option which controls SPRINT output.

 EXTEN / NOEXTEN Default: EXTEN

 The EXTEN option specifies that certain extensions to the OS

 Assembler H are allowed. See the subsection "Assembler H Exten-

 sions." With the NOEXTEN option, strict compatibility with the OS

 Assembler H is observed.

 FLAG(n) or MSGLEVEL(n) Default: FLAG(0)

 The FLAG option specifies the level below which error diagnostics

 will not be printed. See the IBM publication, OS Assembler H ________________

 Assembler H 15

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 Messages (form SC26-3770), for the levels of diagnostic messages. ________

 The default is FLAG(0) which prints all diagnostic messages.

 LINECNT(n) or LINECOUNT(n) Default: LINECNT(55)

 The LINECNT option specifies the number of lines to be printed

 between the headings in the source listing. The limits are from 1

 to 32767 lines.

 LIST / NOLIST Default: See text

 With the LIST option, SPRINT output from the assembler will occur

 as specified by the ESD, RLD, and XREF options. This is the

 default in batch mode and in conversational mode, if SPRINT is

 explicitly assigned or has defaulted to something other than the

 terminal. With the NOLIST option, all SPRINT output is suppressed

 including the header, source listing, and summary. In this case,

 the ESD, RLD, and XREF options are ignored. This is the default in

 conversational mode if SPRINT has not been explicitly assigned and

 is defaulted to the terminal. The recommended method of obtaining

 SPRINT output at the terminal is to specify SPRINT=*MSINK*.

 LOAD or OBJECT / NOLOAD or NOOBJECT Default: NOLOAD

 The LOAD option specifies that the object module is produced and

 written on logical I/O unit 1. With the NOLOAD option, no object

 module is written on logical I/O unit 1.

| MACXREF / NOMACXREF Default: NOMACXREF

|

| The MACXREF option prints a cross-reference listing of the macros

| and copy sections used from various libraries. The NOMACXREF

| option suppresses this listing.

|

| NUM(LEFT) or NUM / NUM(RIGHT) / NONUM Default: NUM(LEFT)

|

| The NUM option specifies whether line numbers are printed on the

| assembly listing and on SERCOM error messages. NUM(LEFT) specifies

| that line numbers are printed between the statement number and

| source statement fields on the listing and included in error

| messages written to SERCOM. NUM is equivalent to NUM(LEFT).

| NUM(RIGHT) specifies that line numbers are printed on the right

| side of the listing and on SERCOM. NONUM specifies that line

| numbers are not printed on either the listing or SERCOM. In this

| case, the space in the listing between the statement number and the

| source statement is closed up. NUM={LEFT|RIGHT} notation may be

| used instead of the parentheses when specifying NUM in the PAR

| field.

|

| With NONUM in effect, the listing is truly OS-compatible, with a

| maximum line length of 121 bytes. With either NUM(LEFT) or

| NUM(RIGHT) in effect, the listing has a maximum line length of 133.

| This information may be useful when writing listings to tape.

 16 Assembler H

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 PEXIT=*PEXIT

 If the PEXIT parameter is specified, the *PEXIT listing postproces-

 sor will be invoked to improve the readability of the source

 listing. This feature is most useful when using the structured-

 programming macro package. See the description of *PEXIT in this

 volume for further details on the postprocessor.

 REL2 / NOREL2 Default: NOREL2

 The REL2 option suppresses the error message generated by the

 assembler when a halfword relocatable adcon is used.

 RENT / NORENT Default: NORENT

 The RENT option specifies that the assembler will check for

 statements with reentrancy violations (caused by instructions that

 change a location within a CSECT). With the NORENT option, this

 check is not made.

 RLD / NORLD Default: NORLD

 The RLD option specifies that the relocation dictionary is listed

 on the logical I/O unit SPRINT. The NORLD option suppresses the

 listing of the relocation dictionary. See also the LIST option

 which controls SPRINT output.

 Assembler H 16.1

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 16.2 Assembler H

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SYSPARM(n) Default: See text

 The SYSPARM option specifies the character string value of the

 system variable symbol &SYSPARM. If the SYSPARM option is not

 specified, &SYSPARM will default to a null string. Commas are not

 allowed unless the value of the SYSPARM parameter is enclosed in

 balanced parentheses or primes. If the parameter is enclosed in

 primes, an embedded prime must be represented by two primes. The

 enclosing primes or parentheses are considered as part of the value

 unless no equal sign is given, in which case the outer parentheses

 are not included. For example,

 SYSPARM(&AB,(’&XY))

 assigns &AB,(’&XY) to &SYSPARM.

 TERM / NOTERM Default: See text

 If the TERM option is specified, flagged lines and assembler

 diagnostics are listed on SERCOM. TERM is the default in conversa-

 tional mode unless SPRINT has been explicitly assigned to the

 terminal (SPRINT=*MSINK*). If the NOTERM option is specified, the

 TERM option is suppressed. NOTERM is the default in batch mode.

 TEST / NOTEST Default: NOTEST

 The TEST option specifies that the object module includes SYM

 records used by the Symbolic Debugging System for program debug-

 ging. With the NOTEST option, no SYM records are produced. See

 MTS Volume 13, The Symbolic Debugging System, for further details _____________________________

 on using SDS.

 UMAP / NOUMAP Default: UMAP

 If the UMAP option is specified, the currently active USING

 statements will be printed at the top of each page of the source

 listing. This will be truncated without warning to fit on two

 lines, if necessary. The statements printed are those current as

 of the end of the assembly of the first instruction on the new

 page; the first statement may not actually appear in the listing if

 it is, for example, an EJECT, SPACE, or TITLE statement. If NOUMAP

 is specified, these statements will not be printed.

 XREF(FULL) or XREF / XREF(SHORT) / NOXREF Default: XREF(FULL)

 The XREF(FULL) option specifies that a cross-reference table

 containing all symbols defined in the program (whether referenced

 or not) and all literals used in the program will be printed on the

 logical I/O unit SPRINT. The XREF(SHORT) option specifies that the

 above cross-reference table will be printed on SPRINT except that

 it will not contain unreferenced symbols. The NOXREF option

 suppresses the printing of the cross-reference table. See also the

 LIST option which controls the SPRINT output.

 Assembler H 17

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 BATCH OPTION ____________

 If the option BATCH is specified, the assembler will accept multiple

 source decks from SCARDS. The decks are only delimited by the END card

 of the preceding deck, and the end of the batch is indicated by an

 end-of-file on SCARDS. The listing of each source deck is preceded by

 the usual header page, and the object decks appear one after another on

 SPUNCH and/or logical I/O unit 1.

 The return code returned to the invoking program is the highest code

 encountered in any of the assemblies in the batch.

 Note that MULT is a synonym for BATCH and NOMULT is a synonym for

 NOBATCH.

 ASSEMBLER H EXTENSIONS ______________________

 Several extensions to the language accepted by Assembler H have been

 made. Most of these are not available in non-MTS versions of Assembler

 H and, in the MTS version, are available only if the EXTEN option is

 specified (the default). By specifying NOEXTEN, the assembler will be

 fully compatible with the non-MTS version of Assembler H. The exten-

 sions are as follows:

 (1) Literals can be used in EQU statements such as "A EQU =A(ABC)"

 and in expressions such as "IC 0,=X’010203’-1".

 (2) The "*nnn" on LCLC and GBLC declarations for *ASMG is ignored.

 This makes the macro language almost upward compatible with

 Assembler G. Note that SETC symbols may be up to 255 characters

 long without any special declaration.

 (3) Five new system set symbols are allowed in macro definitions:

 &SYSCCID is the signon ID running *ASMH (this is also allowed

 outside a macro definition).

 &SYSSTYP is the type of section from which the macro was called

 (CSECT, COM, or DSECT).

 &SYSSTMT is the statement number from which the macro was

 called.

 &SYSLINE is the MTS line number of the top level macro call.

 When used as a character string, its value is the same as the

 line number printed by the assembler (with no blanks). When

 used as an arithmetic or Boolean value, its value is the

 internal MTS line number as a signed integer (the internal line

 number is the external line number times 1000). If it is

 18 Assembler H

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 assigned to a SETC symbol and the result is used in an

 arithmetic or Boolean expression, an error will result.

 &SYSNEST contains the macro nesting depth where the top-level

 macro called from open code has a SYSNEST value of 1.

 (4) A predefined, absolute symbol can be used in a SETA or SETB

 expression and as the value of a SETC symbol or macro parameter

 used in a SETA or SETB expression. For example, "&A SETA

 JTBLPOOL" or "AIF (LENGTH GT 256).ERROR". The symbols used must

 be predefined and will not be cross-referenced.

 (5) The value of &SYSNDX is 5 instead of 4 digits long. This will

 not cause a problem with symbols that are too long since

 Assembler H allows symbols up to 63 characters long.

 (6) Macro call operands are scanned for sublists, keywords, etc.,

 after all substitution is done for parameters from higher levels

 or set symbols. This means, for example, that if the value of

 &A is "A,B,C" in "CALL QQSV,(&A)", the second argument will be a

 sublist. Note that this change can cause problems if the value

 substituted in a macro call contains unbalanced primes or

 parentheses.

 (7) Symbols appearing in V-type constants appear in the cross-

 reference listing. They are identified and distinguished from

 the same symbol defined in this program, if any, by giving VCON

 as the point of definition.

 (8) A C-type constant may have a null value, i.e., "DC C’’" is valid

 and generates nothing. This may help in certain macro

 definitions.

 (9) A type A, Y, S, or Q constant appearing in a DSECT or COM

 section may have an undefined symbol without being flagged as an

 error.

 (10) A line that is entirely blank except for a possible label is

 treated as an ANOP pseudo-op.

 (11) In open code, an ANOP (or blank line treated as an ANOP) may

 have a label which is an ordinary symbol and will be defined as

 the current location counter (or absolute zero if no section has

 been started). This will not necessarily be aligned to a

 halfword boundary. An ordinary symbol on an ANOP statement in a

 macro is still an error.

 (12) A length attribute may be used with a literal or set symbol as

 in " LA 0,L’&ABC" or " LA 0,L’=X’0123’". This will make it

 unnecessary to use a SETC symbol with a value or one prime in

 situations of this sort.

 Assembler H 19

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 (13) An OPSYN or OPDEF statement which attempts to remove an op-code

 that is already undefined is not an error.

 (14) The T’, L’, S’, and I’ attributes may be used with a SETC symbol

 or macro parameter, the value of which is a literal. This

 means, for example, that a macro can determine the length of a

 literal passed as a parameter. Note that a reference to a

 literal in a macro statement or EQU will cause that literal to

 be generated in the next literal pool, even if it is not

 otherwise referenced. This may cause the anomaly of an unre-

 ferenced literal.

 (15) The use of SETC symbols and macro parameters in macro arithmetic

 expressions has been generalized. The value of the SETC symbol

 or macro parameter may be any assembler expression that evalu-

 ates to an absolute number. All symbols must be predefined and

 if the difference between two relocatable symbols is used, there

 must be no location counter discontinuity between them. Note

 that the expressions must be assembler expressions, not macro _________ _____

 expressions. In particular, no ampersands may be used. This

 change means that the message IEV102 will not occur with EXTEN

 enabled.

 (16) The D’ attribute has been extended to allow a macro to determine

 if a given SETC symbol or macro parameter may be used in a macro

 arithmetic expression. Use of the D’ attribute never produces a

 diagnostic no matter how erroneous the argument is, and it

 returns one of four values:

 0 The argument is a valid symbol that is not defined.

 1 The operand is a symbol or expression that evaluates to an

 absolute value, i.e., it can be used in a macro arithmetic

 expression.

 2 The operand is a valid symbol or expression, but the value

 is either relocatable or unknown at this time.

 3 The operand has invalid syntax.

 (17) The name of a created set symbol may contain any character.

 This makes created set symbols more useful for building tables

 which can be searched quickly. This change means that the

 message IEV083 will not occur with EXTEN enabled.

 (18) A Q-type address constant may contain any valid expression. Any

 references to a DXD or a symbol of a DSECT in a Q-adcon will

 cause the DXD or DSECT to be placed in the external symbol

 dictionary (ESD) for the program as a pseudoregister. An A-type

 address constant may contain references to DXDs or symbols in

 DSECTs, but only if the DXD or a symbol in the DSECT is also

 referenced in a Q-adcon. This is because an A-adcon will not

 cause a DXD or DSECT to be placed in the ESD as a pseudo-

 register. This is the only difference between A and Q con-

 stants. This change means that the message IEV061 will not

 occur with EXTEN enabled.

 20 Assembler H

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 (19) The expression on an ORG statement can contain symbols not yet

 defined in the program. There must be exactly one way in which

 the locations counters can be assigned, i.e., the ORGs must be

 resolvable and unambiguous.

 (20) The PRINT statement has a new option: "MSOURCE" or "NOMSOURCE".

 This option is ignored if the GEN option is "NOGEN". Otherwise,

 it controls whether the source text for macro generated state-

 ments is printed as well as the object code. If "MSOURCE" is

 active (the default), the output is as it always has been. If

 "NOMSOURCE" is active, the output includes the object code for

 macro generated statements, but not the source text, i.e., the

 right-hand side of the listing will be blank for macro generated

 statements.

 (21) There are ten new extended-branch opcodes, five for BCR and five

 for BC. They are as follows:

 BCR BC Mask ___ __ ____

 BGTR BGT 2

 BGER BGE A

 BEQR BEQ 8

 BLER BLE C

 BLTR BLT 4

 (22) The attributes of a symbol defined on a DXD will be the same as

 if the symbol were defined on a DS with the same operands. If

 NOEXTEN is specified, the attributes will be as if the symbol

 were a section name.

 (23) An attribute reference other than T’ to a symbol with type "M"

 which is otherwise undefined will cause a forward scan for the

 symbol rather than an error message. A symbol will be type "M"

 and undefined if it has appeared in the label field of a macro

 instruction and has not been defined elsewhere.

 (24) Underscore ("_") is a legal alphabetic character which can be

 used anywhere A-Z, #, @, or $ can be used.

 (25) Qualified USINGS (or, more properly, labeled USINGS and quali-

 fied symbols), allow much greater control over the resolution of

 symbolic expressions into base-displacement form with specific

 base registers.

 The mechanics of this facility are as follows. First, put a

 label on a USING statement. Then, to force the assembler to

 resolve a symbol into base-displacement form through that USING,

 qualify the symbol by preceding it with the label on the USING,

 followed by a period. An example of labeled USINGs and

 qualified symbols would be:

 Assembler H 21

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 PRIOR USING IHADCB,R10

 NEXT USING IHADCB,R2

 MVC PRIOR.DCBLRECL,NEXT.DCBLRECL

 Without labeled USINGs, the equivalent form would be one of

 USING IHADCB,R10

 MVC DCBLRECL,DCBLRECL-IHADCB(R2)

 or

 MVC DCBLRECL-IHADCB(,R10),DCBLRECL-IHADCB(R2)

 The label on a USING may appear in the name field of another

 statement. The two uses of the symbol are distinct. If a label

 appears on a USING, any previous USING with the same label is

 dropped. Labels on USINGs and qualifiers on symbols will appear

 in the XREF listing flagged by "QUAL" in the definition column.

 If qualified symbols are used in an expression, the qualifiers

 will cancel if possible. The result after all cancellation must

 be an expression with either no qualifier or one positive

 qualifier. For example,

 THIS.SYM1+NEXT.SYM2-NEXT.DSECT

 is legal and is an expression qualified by "THIS." On the other

 hand,

 THIS.SYM1+NEXT.SYM2

 is illegal since neither qualifier cancels. A qualifier may not

 be used with an absolute symbol and qualifiers may only be used

 in expressions that will be decoded into a base-displacement

 address, i.e., in machine instructions or S-type constants, and

 in USING and DROP statements (see item 26 below).

 As is the case with unlabeled USING statements, a symbol (in the

 first operand) or a register (in any of the remaining operands)

 may appear in any number of USINGs. However, in the case of

 qualified USINGs, as long as all the USINGs have unique labels,

 all are considered active and are eligible to be used as

 qualifiers.

 There is a very basic concept about labeled and unlabeled USINGS

 that needs to be understood. In non-labeled USINGS, a register

 implies data, in the sense that a register may imply only one

 piece of data at a time (i.e., when a register that appeared in

 a USING appears in another USING, the prior USING is dropped).

 In labeled USINGs the reverse is true: the data implies a

 register. That is, a single register may appear in multiple

 USINGs, all being active, so long as all the USINGs have unique ___

 labels. (Dropping of labeled USINGs occurs only when the same

 22 Assembler H

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 label appears in a USING or DROP statement, not when a repeated

 register appears.)

 Labeled USINGs do not interfere with unlabeled USINGs. When the

 assembler resolves an implied address into base-displacement

 form, either the expression to be resolved was qualified or not.

 If it was qualified, the specified labeled USING will be used.

 If not, the active unlabeled USINGs will be scanned in the

 standard manner, looking for a resolution.

 A label on a USING defines an environment. As such, to delete

 that environment, the environment name (the USING’s label) must

 be dropped. An attempt to drop a labeled USING by dropping its

 registers will result in those registers being dropped instead

 from the unlabeled USING pool. The labeled USINGs in the

 example above may be dropped by writing:

 DROP PRIOR,NEXT

 If a symbol in a DROP has been used both as a label on a USING

 and as an ordinary symbol (so that it could be a register name),

 the labeled using will be dropped, not the register.

 (26) The base specified in a USING statement can now be a simply

 relocatable expression as well as a register number. This

 allows one to define nested data structures in the assembler,

 with the nesting being defined by USING statements. For example

 if ADATA is a symbol defined in the dsect CMDAREA and UCLOGREC

 is another DSECT, then one can say

 USING UCLOGREC,ADATA

 to specify that the dsect UCLOGREC is to be used to describe the

 part of CMDAREA starting at ADATA.

 USING statements with relocatable bases may be either labeled or

 unlabeled. Also the relocatable base may be either qualified or

 unqualified.

 As with USING statements specifying registers as bases, there

 may not be more than one unlabeled USING statement active at the

 same time for the same relocatable base. Two USING statements

 that have the same base except that they use different quali-

 fiers are considered to have different bases. A subsequent one

 for the same base (including qualifier) replaces the previous

 one. To DROP an unlabeled USING with a relocatable base,

 specify the base with the appropriate qualifier in a DROP

 statement (just as for a register USING). Of course, there may

 be several labeled USINGs active for the same relocatable base

 at the same time, and one must qualify references to symbols to

 be resolved through them the same way as if they specified

 registers for bases.

 Assembler H 23

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 The rules for deciding which of several relevant USINGs apply to

 a given address resolution are the same as before: use the

 smallest displacement, or for equal displacements, the largest

 register. However, now the active USINGs can define a tree

 structure and the assembler will follow all paths that lead to

 register USINGs and pick the best one according to the rules

 above. There is an arbitrary limit of 25 on the number of

 different relocatable USINGs that will be considered in resolv-

 ing one address.

 Any one USING statement must contain either exactly one relocat-

 able base or one or more registers. Relocatable bases and

 registers cannot be mixed in the same statement.

 (27) The use of the length attribute of a symbol defined with a DC or

 DS with the explicit length given by an expression is valid.

 This is true regardless of whether EXTEN is specified.

 I/O UNIT USAGE ______________

 The following gives additional details on the logical I/O units used

 by the assembler.

 SCARDS Input ____________

 A source programs reads from SCARDS consists of assembler language

 statements. Each statement is limited to a length of 80 characters.

 The program is terminated by a statement containing the assembler

 instruction END.

 SCARDS can provide a sequence of one or more assemblies terminated by

 an end-of-file. When the default option NOBATCH is in effect, the

 assembler terminates after assembling one source program. When the

 option BATCH is in effect, the assembler terminates after encountering

 an end-of-file. (See the earlier section, "BATCH Option," for details.)

 Macro Libraries and COPY Sections _________________________________

 Macro libraries may be used by attaching them to logical I/O units 0,

| 2 through 10. This allows several macro libraries to be used at once.

 If 0 is not assigned, *SYSMAC will be used. To have no macro library,

 specify "0=*DUMMY*". If a particular macro name is defined in more than

 one of the libraries attached, the ordering to establish precedence is

 the following: 2 through 10, and 0. That is, the assembler searches

 24 Assembler H

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 the directories of the macro libraries attached to the logical I/O units

 in that order, and it will use the first occurrence of a macro

 definition that it finds. Macro definitions included on SCARDS take

 precedence over all macro libraries. See the sections, "Using Macro

 Libraries" and "Constructing a Macro Library," later in this volume for

 details.

| Macro libraries attached to logical I/O units 0 and 2 through 10 may

| consist of concatenations of line files. Previous versions of the

| assembler did not allow concatenation on these units and permitted only

| a single macro library to be assigned to each unit.

|

| Both explicit and implicit concatenation may be used. In the case of

| implicit concatenation, only $CONTINUE WITH lines appearing in the

| directory portion of the library will be recognized. $CONTINUE WITH

| lines should include the RETURN option, otherwise the portion of the

| directory (if any) following the line will be lost. For consistency and

| ease of maintenance, implicit concatenation should be restricted to

| files containing only $CONTINUE WITH lines, rather than embedding such

| lines in the directory of a macro library. A file containing only

| $CONTINUE WITH ... RETURN lines referencing other macro libraries is

| called a "pointer file". Pointer files may point to other pointer

| files, and this hierarchy may be continued to any depth. Eventually,

| all pointers must terminate at an actual macro library.

|

| Macro libraries are searched in the order 2 to 10, then 0. In the

| case of a single macro library attached to each logical I/O unit, the

| assembler behaves as described above. When concatenation is used, macro

| libraries comprising the concatenation are searched logically in the

| same order that would be observed by sequentially reading the direc-

| tories of the concatenation. Therefore, the precedence of resolution is

| to the first logical I/O unit on which the name is encountered and

| within a single concatenation, the first member in which the name is

| encountered.

|

| Logical I/O unit 0 receives special treatment. If it is left

| unassigned, the assembler will use *SYSMAC by default. If it desired

| that *SYSMAC not be searched, and no macro libraries are to be attached

| to it, unit 0 should be assigned to *DUMMY*. The assembler lists the

| implicit use of *SYSMAC in the I/O unit summary on the listing head

| sheet. When unit 0 is assigned to a macro library or libraries and it

| is desired that *SYSMAC be searched in the normal order, *SYSMAC should

| be explicitly concatenated to the end of the unit 0 assignment.

|

| Concatenation may be used on an overriding macro library I/O unit

| supplied when the assembler is invoked as a subroutine.

|

| All macro libraries used will be listed on the head sheet I/O unit

| summary. In the case of a concatenation, the libraries will be listed

| successively following the I/O unit to which they are attached. A

| library will be displayed only once per concatenation, regardless of the

| number of times it is encountered. Any file of a concatenation which

| consists only of $CONTINUE WITHs to other files (a pointer file) will

 Assembler H 25

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

| have the parenthetical comment "no members" printed beside it. The

| ordering of the macro library summary from top to bottom is the same as

| the order in which the libraries are searched by the assembler.

 The COPY assembler instruction may be used to include text from an

 arbitrary source. In MTS, the operand is not restricted as indicated in

 the assembler language manual, but may be a full FDname, including line

 number ranges, explicit concatenation, etc. The total length of the

 operand may not exceed 63. The operand of the COPY statement is first

 looked up in the macro directories, in the order specified in the

 preceding paragraph. If it is not found in any of the macro libraries

 specified, then it is assumed to be an FDname and the assembler reads

 from the file or device specified until it encounters an end-of-file.

 If it is found in a macro library, the assembler reads from the

 specified place until an end-of-file is sensed. In this latter case, a

 "$ENDFILE" line will be recognized as an end-of-file even if the system

 ENDFILE switch has been set OFF (see the SET command description in MTS

 Volume 1, The Michigan Terminal System, for details). ____________________________

 SPRINT Output _____________

 Assembler listing output consists of a heading page, an external

 symbol dictionary listing, a source and object program listing, a

 relocation dictionary listing, a symbol cross-reference table, and a

 diagnostic cross-reference table. Which, if any, of these are produced

 on SPRINT depends on the options ESD or NOESD, RLD or NORLD, XREF or

 NOXREF. The default is to produce everything but the RLD listing. The

 LIST/NOLIST option controls the SPRINT output. If LIST is specified,

 the output appears as specified. This is the default if SPRINT is not

 defaulted to a terminal. If NOLIST is specified, no SPRINT output __

 appears. This is the default if SPRINT is defaulted to a terminal. In

 this case SPRINT is not used.

 Each page of listing output normally contains up to 55 lines. This

 can be changed using the LINECNT option.

 Listing output is written in fixed-length print line images. Each

 line on SPRINT contains one 133-character print line image.

 The SPRINT output from ASMH should be largely self-explanatory. If

 the comments below are insufficient, the user should consult the

 complete description of the output given in the IBM publication, OS __

 Assembler H Programmer’s Guide (form SC26-3759). ______________________________

 ASMH always prints a PRINT statement, regardless of the PRINT options

 in effect before or after the PRINT statement is executed.

 Statements containing variable symbols are printed only as they

 appear before substitution if NOGEN is in effect.

 26 Assembler H

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 The sequence ID field (columns 73-80) of a statement generated by a

 macro call contains information about the origin of the statement in the

 form "nn-xxxxx", where "nn" is the level of the macro call producing the

 statement and "xxxxx" is either the statement number of the model

 statement if the macro definition appears in the source program or the

 first five characters of the name of the macro for a library macro.

 All diagnostics are printed in line by ASMH and a list of flagged

 lines is printed as part of the summary at the end of the listing.

 SPUNCH and Unit 1 Output ________________________

 Assembler object deck output is written in fixed-length, 80-character

 card images. The last 8 columns of the card image contain deck

 identification (taken from the label field of the first labeled TITLE

 card encountered in the source deck) and sequence numbering. The

 formats of the card images are described in the section "The Dynamic

 Loader" in MTS Volume 5, System Services. The options TEST or NOTEST _______________

 specify whether or not a symbol table is to be included in the object

 deck. The symbol table is used by the MTS Symbolic Debugging System

 (see MTS Volume 13, The Symbolic Debugging System). _____________________________

 The output written on logical I/O unit 1 is identical to the object

 deck written on SPUNCH. The options LOAD or NOLOAD specify whether or

 not an object deck is to be written on logical I/O unit 1; the options

 DECK and NODECK specify whether or not an object deck is to be written

 on SPUNCH. The defaults of DECK and NOLOAD cause only one copy of the

 object deck to be written, and direct it through SPUNCH.

 DIAGNOSTICS AND RETURN CODES ____________________________

 Diagnostic messages are written as part of the assembler listing

 output. An error occurring in unlisted text will force the erroneous

 statement to be printed unless the value of the FLAG parameter is not

 zero.

 Each diagnostic message has a message number of the form IEVnnn and a

 message text.

 Associated with any error detected or MNOTE produced is a severity

 code. The return code produced by the assembler is the highest severity

 error occurring during the assembly.

 Assembler H 27

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 Return Code Explanation ______ ____ ___________

 0 No error detected.

 4 Minor errors detected; successful program execution

 is probable.

 8 Errors detected; unsuccessful program execution is

 possible.

 12 Serious errors detected; unsuccessful program execu-

 tion is probable.

 16 Critical errors detected; normal execution is

 impossible.

 A diagnostic message for a statement generated by a macro definition

 may be followed by the macro name or model statement number which caused

 the error and a SET symbol, parameter number, or value string associated

 with the error. Parameter 10 is the name field and the rest are

 numbered upward from 11 with keyword parameters first. This information

 also may appear for an error on a conditional assembly statement in open

 code. The macro name in this case will be OPENC.

 ASSEMBLER H MESSAGES ____________________

 Several messages produced by ASMH are different in the MTS version

| from the messages given in Assembler H Version 2 Application Program- ___

| ming: Guide; there are several mistakes in that publication. The _____________

 differences and corrections are as follows:

 Code Severity Message ____ ________ _______

 IEV006 8 OPERAND IS IN A DSECT OR DXD. NO RLD GENERATED.

 This is a new message. The operand of a statement

 that causes an RLD entry to be generated is in a DSECT

 or DXD. No RLD entry is generated.

 IEV009 12 SYSTEM VARIABLE SYMBOL ILLEGALLY RE-DEFINED.

 In addition to the symbols listed, &SYSCCID, &SYSSTYP,

 &SYSSTMT, &SYSLINE, and &SYSNEST cannot be redefined.

| IEV010 12 MACRO PARAMETER EXPRESSION TOO LONG. TRUNCATED AT 864

 CHARACTERS.

 The total length of the parameters on a macro call

 between commas that appear in the source code is

 greater than 864. This is not the limit on a single

 28 Assembler H

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 parameter (which is 255) and can only occur through

 substitution of a SET symbol or higher-level macro

 parameter into the macro parameter expression.

 IEV014 8 IRREDUCIBLE QUALIFIED EXPRESSION.

 Symbol qualifiers are used in such a way that they do

 not cancel to a single, positive qualifier.

 IEV015 8 INVALID USE OF A SYMBOL QUALIFIER.

 A qualifier is used with a symbol that is not simply

 relocatable, or in an expression that does not allow

 qualifiers.

 IEV016 8 USING STATEMENTS NESTED TOO DEEPLY (MORE THAN 25

 LEVELS).

 More than 25 relocatable USINGs apply to a single

 base-displacement address.

 IEV017 0 UNDEFINED KEYWORD PARAM. DEFAULT TO POSITIONAL

 INCLUDING KW.

 This is now a level 0 message.

 IEV032 8 RELOCATABLE OR COMPLEX RELOCATABLE VALUE FOUND IN

 INVALID CONTEXT.

 A relocatable or complex-relocatable expression is

 used where an absolute or simple-relocatable expres-

 sion is required.

 IEV045 4 REGISTER, BASE, OR QUALIFIER NOT PREVIOUSLY USED.

 The operand of a DROP statement cannot be found among

 the currently active labeled or unlabeled USING

 statements.

 IEV056 4 USING RENDERED NULL BY A PRIOR ACTIVE USING.

 Given the rules governing base-displacement resolution

 of implied addresses (choose the register giving the

 smallest displacement, and the highest-numbered such

 register), the USING being processed will never be

 used because a prior active USING specifies the same

 base and larger register.

 IEV066 0 RELOCATABLE Y-TYPE CONSTANT.

 This is now a level 0 message.

 Assembler H 29

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 IEV094 0 SUBSTRING GOES PAST STRING END.

 This message will not occur; i.e., this is not an

 error.

 IEV098 8 ATTRIBUTE REFERENCE TO INVALID SYMBOL.

 This can occur when the value of a symbol or expres- _____

 sion is requested in a macro arithmetic expression if

 EXTEN is enabled.

 IEV113 4 OPERAND FIELD ENDS PREMATURELY. EXPECTED CONTINUATION

 NOT PRESENT.

 An operand field of SETx, LCLx, GBLx, AIF, or AGO ends

 with a comma (or an ampersand in the last column for

 LCLx or GBLx) and there is no continuation card. This

 may be because the text of the continuation card is

 taken as comments due to starting past column 16.

 IEV114 12 INVALID COPY OPERAND.

 This message will not occur.

 IEV115 12 COPY OPERAND TOO LONG.

 This message will occur only if the COPY operand is

 longer than 63 characters.

 IEV181 12 CCW OPERAND VALUE IS OUTSIDE ALLOWABLE RANGE.

 This message will not occur if the third operand is a

| multiple of 2 (not 8).

 IEV980, IEV981, IEV982, IEV983, and IEV999 (various system and I/O

 messages) cannot occur.

 INVOKING ASMH FROM A PROGRAM ____________________________

 The assembler can be called from a program, and for each of the

 internal I/O "usages," an optional replacement logical I/O unit may be

 specified.

 The invocation can be either a standard S-type subroutine call to the

 entry point ASMH, found in the file *ASMH, or it can be via LINK,

 specifying the file *ASMH. The module ASMH is not very large, and the

 other modules are in shared virtual memory, so using a subroutine call

 does not cause much increase in virtual memory usage. The prototype

 given here uses the CALL macro:

 30 Assembler H

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 CALL ASMH,(optionlist[,namelist]),VL

 where

 optionlist is the PAR field, set up as it would be from a $RUN __________

 command. (I.e., optionlist is the location of a halfword __________

 length-of-text immediately followed by the text. The

 first character of the text should be the first character

 that would follow the PAR if it were presented in a $RUN

 command.)

 namelist is a list specifying the names of replacement logical I/O ________

 units. The first halfword contains the number of bytes

 in the remainder of the list. This remainder consists of

 8-byte fields. Each of these should be either (a) all

 binary zeros, or (b) a logical I/O unit name, left-

 justified, and padded with blanks, or (c) a fullword

 logical I/O unit number in the first 4 bytes and anything

 in the second 4 bytes, or (d) a FDUB pointer in the first

 4 bytes and anything in the second 4 bytes. Binary zeros

 indicate the use of the standard I/O unit for that

 "usage." Entries may be omitted for names beyond the

 last one to be altered. The order of entries is given in

 the table below.

 Position Usage Standard Unit ________ _____ ________ ____

 1 LOAD output 1

 2 Unused

 3 Unused

 4 Macro libraries 2-10,0

 5 Assembler input SCARDS

 6 Assembler listing SPRINT

 7 DECK output SPUNCH

 8 Unused

 9 TERM output SERCOM

 The return code will be the highest severity code from an error

 message or MNOTE statement.

 The following sample program illustrates how to call ASMH as a

 subroutine. The program reads input from logical I/O unit 17 and writes

 the TERM output on logical I/O unit 18.

 Assembler H 31

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 ASMHCALL TITLE ’CALL ASMH AS A SUBROUTINE’

 ASMHCALL CSECT

 PRINT NOGEN

 REQU TYPE=BOTH

 ENTER R12,SA=SA

 CALL ASMH,(PARLIST,DDNAMES),VL

 EXIT

 *

 SA DS 18A

 PARLIST DC Y(EPARLIST-PARLIST-2),C’RENT’

 EPARLIST EQU *

 DDNAMES DC Y(EDDNAME-DDNAMES-2),4XL8’0’,FL4’17,0’,3XL8’0’,CL8’18’

 EDDNAME EQU *

 END

 32 Assembler H

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 DIFFERENCES BETWEEN *ASMG, *ASMH, AND *ASMT ___

 The following is a list of some of the differences in the language

 accepted by the three 360/370/470 assemblers available under MTS at the

 University of Michigan. The list is not complete and users are referred

 to the appropriate IBM publications and other sections of this volume

 for detailed descriptions of the assemblers.

 Symbol names in *ASMG and *ASMT are limited to 8 characters in

 length, while in *ASMH symbol names may be up to 63 characters

 long. External symbols are limited to 8 characters in length by

 all three assemblers.

 *ASMG and *ASMT (with FMT=CARD, the default) allow source state-

 ments to be continued onto two continuation cards, giving a total

 of three input lines per statement. *ASMH allows source statements

 to be continued onto nine continuation cards, giving a total of ten

 input lines per statement. *ASMT also allows an alternate input

 format (FMT=KEYBOARD).

 *ASMT and *ASMH represent self-defining terms as 32-bit values,

 while *ASMG represents self-defining terms as 24-bit values.

 Decimal self-defining terms may range from 0 to 16,777,215 (2²⁴-1),
 in *ASMG, from -2,147,489,648 (-2³¹) to 2,147,489,647 (2³¹-1) in
 *ASMH and from 0 to 4,294,967,295 (2³²-1) in *ASMT.

 *ASMG and *ASMH allow both unary and binary operators in SETA and

 SETB expressions, while *ASMT supports only binary operators.

 *ASMH allows both unary and binary operators in expressions, while

 *ASMG and *ASMT support only binary operators.

 *ASMG allows up to 5 levels of parentheses in expressions during

 its conditional assembly phase and up to 11 levels during its

 assembly phase. In *ASMT, this limit is 64 levels, and in *ASMH,

 there is no limit.

 *ASMG allows up to 16 terms in expressions during its conditional

 assembly phase and up to 25 terms during the assembly phase. In

 *ASMT the limit is always 16 terms, while *ASMH has no limit.

 *ASMT does not support the ACTR, OPSYN, POP, PUSH, and WXTRN

 assembler instructions. Both *ASMG and *ASMH support these

 instructions.

 *ASMH supports the AREAD, LOCTR, MHELP, and OPDEF assembler

 instructions, while *ASMG and *ASMT do not.

 Differences between *ASMG, *ASMH, and *ASMT 33

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 *ASMT treats the PUNCH and REPRO assembler instructions as com-

 ments, while in *ASMG and *ASMH these instructions cause lines to

 be included with any object module being written.

 *ASMT allows the specification of attributes on CSECT, PSECT, and

 COM statements, while *ASMG and *ASMH do not. In the MTS

 environment these attributes have no effect on the object modules

 produced.

 *ASMT supports the PSECT assembler instruction, the system variable

 symbol &SYSPSCT and R-type address constants, while *ASMG and *ASMH

 do not. In *ASMT, PSECTS are treated as CSECTS. Each *ASMT

 control section and entry point may also have a PSECT name defined

 for it. The PSECT name is the same as the symbolic name, but uses

 lowercase letters and is the R-value for the symbol.

 *ASMG and *ASMH allow the assembler instructions CNOP and ORG to be

 labeled, while *ASMT does not.

 *ASMG and *ASMH allow unnamed DSECTs, while *ASMT requires that all

 DSECTs be labeled.

 The label associated with the TITLE statement in an assembly may be

 up to 8 characters long in *ASMG and *ASMH, but is limited to 4

 characters by *ASMT. In *ASMG and *ASMT, only the first TITLE

 statement may have a label. In *ASMH, only one TITLE statement may

 have a label, but the requirement that this statement must be the

 first has been removed. *ASMG uses up to four characters from the

 label given with the TITLE statement to label the object module

 produced. *ASMH will use from 1 to 8 characters to label the

 object module. *ASMT does not normally label the object module.

 *ASMT and *ASMH allow macro definitions to be placed anywhere in

 the source as long as they occur before they are referenced. *ASMG

 requires all macros to be defined at the beginning of the source

 program.

 *ASMT supports the FULLGEN option for use with the PRINT assembler

 instruction, while *ASMG and *ASMH do not.

 All three assemblers support the extended form of the EQU instruc-

 tion. *ASMG and *ASMT allow a length from 1 to 65535 to be

 specified as an absolute integer expression or a 1- or 2-byte

 self-defining term, although *ASMG makes the further requirement

 that the length must be a self-defining term if it is to be used

 during macro expansion. *ASMH allows a length from 0 to 65535 to

 be specified as an absolute expression. *ASMH and *ASMT allow the

 type to be specified as either an absolute integer expression in

 the range 0 to 255 or as a one-byte self-defining term. *ASMG

 allows the type to be specified as a one-byte self-defining term,

 but not as an expression.

 34 Differences between *ASMG, *ASMH, and *ASMT

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 *ASMH and *ASMT allow modifier expressions to be used in literals

 (e.g., =CL(L’SYM)’#’), while *ASMG does not.

 *ASMH and *ASMT allow S- and Q-type address constants to be used in

 literals, while *ASMG does not.

 *ASMH and *ASMT do not include the relocatable symbol in a DXD

 statement in the external symbol dictionary (ESD) unless the symbol

 is used in a Q-type address constant. *ASMG always includes the

 symbol in the ESD.

 *ASMG and *ASMH allow SETC values up to 255 characters in length,

 while SETC values are limited to 8 characters in length by *ASMT.

 The default length for SETC symbols declared without an explicit

 length on the GBLC or LCLC statements in *ASMG is determined by the

 PAR field option LSETC which defaults to 8. With *ASMH, no

 explicit declaration is required, but for compatibility with *ASMG

 explicit length declarations are accepted and ignored.

 *ASMG and *ASMH allow the count (K’) attribute to be used with both

 SETC symbols and macro operands, while in *ASMT the count attribute

 may only be used with macro operands.

 *ASMH allows the count (K’) attribute to be used with SETA and SETB

 symbols in addition to SETC symbols; *ASMG and *ASMT do not.

 *ASMH supports the defined attribute (D’); *ASMG and *ASMT do not.

 *ASMH allows the number attribute (N’) to be used with SETx

 variables to determine the highest subscript that has been used in

 an assignment, while *ASMG and *ASMT do not.

 *ASMH allows the use of the T’, L’, S’ and I’ attributes with SETC

 symbols, while *ASMG and *ASMT do not.

 *ASMT rescans statements after set symbols are inserted in the

 source text, while *ASMG and *ASMH do not. This rescanning

 requires that all quotes (’) or ampersands (&) must be explicitly

 doubled if the rescanning is to work without producing error

 comments. *ASMH rescans macro call operands only and not for

 ampersands (&).

 *ASMH allows the MNOTE assembler instruction to be used in open

 code as well as within macro definitions. In *ASMG and *ASMT, the

 MNOTE instruction may only be used from within macro definitions.

 *ASMT will accept SETC symbols of the from ’123 ’ or ’ 123’ as

 arithmetic, while *ASMG and *ASMH will not.

 In *ASMG and *ASMH when using operand-sublist notation to refer to

 a macro operand that is not a sublist, the operand itself is

 returned for the first sublist member and a null value is returned

 for all other sublist members. In *ASMT, the operand itself is

 Differences between *ASMG, *ASMH, and *ASMT 35

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 always returned regardless of which sublist member is being

 referenced.

 The form of the date returned by *ASMH in the system variable

 symbol &SYSDATE is mm/dd/yy (e.g., 12/31/78), while *ASMG returns

 yymondd (e.g., 78DEC31), and *ASMT returns mm-dd-yy (e.g.,

 12-31-78).

 The form of the time returned by *ASMG and *ASMT in the system

 variable symbol &SYSTIME is hh:mm:ss (e.g., 12:00:00), while *ASMH

 returns the time as hh.mm (e.g., 12.00).

 *ASMH allows COPY instructions to be nested within copied code to

 an unlimited depth, *ASMG allows nested COPY instructions to a

 depth of 5 and *ASMT does not allow nested COPY instructions.

 *ASMG and *ASMT do not allow the assembler instructions END, ISEQ,

 MACRO, MEND, or OPSYN (in fact *ASMT doesn’t allow OPSYN anywhere)

 to occur within macro definitions, while *ASMH does. In addition,

 *ASMT does not allow the START assembler instruction to occur

 within macro definitions.

 *ASMT and *ASMH both allow the assembler instructions END and ISEQ

 to appear within copied code, while *ASMG does not.

 *ASMH and *ASMT allow the assembler instructions CSECT, DSECT, END,

 MNOTE, OPSYN (*ASMH only), PRINT, and START to be generated using

 variable symbols, while *ASMG does not.

 *ASMT allows the assembler instructions AGO, AIF, ANOP, GBLx, ISEQ,

 LCLx, REPRO, and SETx to be generated using variable symbols, while

 *ASMG and *ASMH do not.

 *ASMH allows nested macro definitions, while *ASMG and *ASMT do

 not.

 *ASMH allows macro definitions to be redefined, while *ASMG does

 not. *ASMT also allows macro definitions to be redefined, but

 unlike *ASMH, the macro definition that occurs physically last in

 the source deck will be used for all references to the macro.

 *ASMG does not allow variable symbols in the label or operand

 fields of the COPY, ISEQ, REPRO, or OPSYN assembler instructions.

 *ASMH and *ASMT do not have this restriction.

 *ASMH allows multilevel sublists in macro calls, while *ASMG and

 *ASMT do not.

 *ASMT and *ASMH allow comments (both * and .*) to occur before the

 MACRO statement in macro library files, *ASMG allows only regular

 comments (*) before the MACRO statement.

 36 Differences between *ASMG, *ASMH, and *ASMT

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ASMT allows macro comments (.) to occur in open code as well as

 within macro definitions, while *ASMH and *ASMG do not.

 *ASMH allows comments (both * and .*) between the MACRO statement

 and the macro prototype, while *ASMG and *ASMT do not.

 *ASMH relaxes the ordering requirements for mixed-mode format

 macros allowing keyword and positional parameters to be intermixed.

 *ASMG and *ASMT require all positional parameters to occur before

 the first keyword parameter.

 *ASMH supports extended forms of the AGO, AIF, GBLx, LCLx, SETA,

 SETB, and SETC assembler instructions, while *ASMG and *ASMT do

 not.

 *ASMH allows SET symbols to be declared explicitly using the GBLx

 or LCLx assembler instructions or implicitly by appearing in the

 name field of a SETx statement. These declarations can appear

 anywhere so long as they appear before the symbol is first used.

 *ASMH and *ASMT allow more than one GBLx or LCLx assembler

 instruction for a given set symbol to appear as long as only one is

 encountered during macro expansion (through the appropriate use of

 AIF and AGO instructions).

 *ASMH and *ASMT allow macro calls to be generated by substitution,

 while *ASMG does not.

 *ASMH and *ASMT allow macros to redefine machine instruction

 mnemonics, although *ASMT will produce a warning comment. *ASMG

 does not allow machine instruction mnemonics to be redefined in

 this manner.

 *ASMH allows macros to redefine assembler instructions, while *ASMG

 and *ASMT do not.

 *ASMH allows embedded equal signs (=) to appear in positional macro

 parameters, although a warning message will be produced. *ASMG and

 *ASMT do not allow embedded equal signs to appear in positional

 macro parameters.

 *ASMH allows SETA expressions where SETB expressions are legal,

 with a value of zero taken as false and nonzero values taken as

 true. *ASMG and *ASMT do not allow SETA expressions in place of

 SETB expressions.

 *ASMH allows SET symbols to be created by substitution, while *ASMG

 and *ASMT do not; *ASMH allows created SET symbols for this

 purpose.

 *ASMH allows duplication factors expressed as SETA expressions

 enclosed in parentheses to be used with SETC symbols and character

 strings in SETC expressions.

 Differences between *ASMG, *ASMH, and *ASMT 37

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 In *ASMH, literals can be used in EQU statements such as "A EQU

 =A(ABC)" and in expressions such as "IC 0,=X’010203’-1". *ASMG and

 *ASMT do not allow this.

 In *ASMH, a predefined, absolute expression can be used in a SETA

 or SETB expression and as the value of a SETC symbol or macro

 parameter used in a SETA or SETB expression. For example, "&A SETA

 JTBLPOOL+2" or "AIF (LENGTH GT 256).ERROR". The symbols used must

 be predefined and will not be cross-referenced. *ASMG and *ASMT do

 not allow this. *ASMT allows an expression containing SDTs or

 variable symbols but not ordinary symbols.

 In *ASMH, the value of &SYSNDX is 5 instead of 4 digits long. This

 will not cause a problem with symbols that are too long since

 Assembler H allows symbols up to 63 characters long.

 In *ASMH, macro call operands are scanned for sublists, keywords,

 etc., after all substitution is done for parameters from higher

 levels or set symbols. This means, for example, that if the value

 of &A is "A,B,C" in "CALL QQSV,(&A)", the second argument will be a

 sublist. Note that this change can cause problems if the value

 substituted in a macro call contains unbalanced primes or

 parentheses.

 In *ASMH, a C-type constant may have a null value, i.e., "DC C’’"

 is valid and generates nothing. This may help in certain macro

 definitions. *ASMG and *ASMT do not allow this.

 In *ASMH, a type A, Y, S, or Q constant appearing in a DSECT or COM

 section may have an undefined symbol without being flagged as an

 error. *ASMG and *ASMT flag this as an error.

 In *ASMH, a line that is entirely blank except for a possible label

 is treated as an ANOP pseudo-op.

 In open code with *ASMH, an ANOP (or blank line treated as an ANOP)

 may have a label which will be defined as the current location

 counter (or absolute zero if no section has been started). This

 will not necessarily be aligned to a halfword boundary. An

 ordinary symbol on an ANOP statement in a macro is still an error.

 In *ASMH, a length attribute may be used with a literal or a set

 symbol as in " LA 0,L’&ABC" or " LA 0,L’=X’0123’". This will make

 it unnecessary to use a SETC symbol with a value or one prime in

 situations of this sort. In *ASMT, a length attribute may used

 only with a set symbol; in *ASMG, a length attribute may not be

 used with either a literal or a set symbol.

 In *ASMH, an OPSYN or OPDEF statement which attempts to remove an

 op-code that is already undefined is not an error (Assembler G

 treats this as an error while Assembler T does not support either

 OPSYN or OPDEF).

 38 Differences between *ASMG, *ASMH, and *ASMT

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 In *ASMH, expressions on statements that affect the location

 counter (e.g., ORG, CNOP) and the first operand of an EQU may

 contain symbols defined later in the assembly.

 *ASMH supports the MSOURCE/NOMSOURCE option of the PRINT statement.

 The set of extended-branch opcodes recognized is different for each

 of the three assemblers.

 *ASMH defines the attributes of a symbol on a DXD opcode correctly.

 *ASMG and *ASMT define the attributes as if the symbol was a

 section name.

 *ASMH allows the underscore (_) wherever an alphabetic character is

 allowed.

 *ASMH allows labeled USINGs and qualified symbols. It also allows

 relocatable base values and registers in USINGs.

 The following table indicates which system variable symbols are

 supported by each of the three assemblers, and whether the symbols may

 be used in open code as well as macro definitions or just in macro

 definitions.

 Differences between *ASMG, *ASMH, and *ASMT 39

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ┌───┐ ┌ ┌ ┌
 | | | | |

 | Name | *ASMG | *ASMH | *ASMT |

 |──────────────┼──────────────┼──────────────┼──────────────| ┌ ┘
 | | | | |

 | &SYSDATE | macros | open code, | open code, |

 | | | macros | macros |

 | | | | |

 | &SYSECT | macros | macros | macros |

 | | | | |

 | &SYSLINE | ------ | macros | ------ |

 |──────────────┼──────────────┼──────────────┼──────────────| ┌ ┘
 | | | | |

 | &SYSLIST | macros | macros | macros |

 | | | | |

 | &SYSLOC | ------ | macros | ------ |

 | | | | |

 | &SYSNDX | macros | macros | macros |

 |──────────────┼──────────────┼──────────────┼──────────────| ┌ ┘
 | | | | |

 | &SYSPARM | macros | open code, | ------ |

 | | | macros | |

 | | | | |

 | &SYSPSCT | ------ | ------ | macros |

 | | | | |

 | &SYSSTYP | macros | macros | macros |

 |──────────────┼──────────────┼──────────────┼──────────────| ┌ ┘
 | | | | |

 | &SYSSTMT | ------ | macros | ------ |

 | | | | |

 | &SYSTIME | macros | open code, | open code, |

 | | | macros | macros |

 |──────────────┼──────────────┼──────────────┼──────────────| ┌ ┘
 | | | | |

 | &SYSNEST | ------ | macros | ------ |

 └───┘ ┘ ┘ ┘

 40 Differences between *ASMG, *ASMH, and *ASMT

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 UTILITY PROGRAMS FOR ASSEMBLER USERS ____________________________________

 The following public file descriptions also appear in MTS Volume 2,

 Public File Descriptions, and are repeated here for the user’s __________________________

 convenience.

 41

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 *ASMTIDY ________

 Contents: The 360/370 assembly "tidying" program.

 Purpose: To edit 360/370 assembly programs into an easily readable

 format and to indent programs containing structured

 macros to show the program structure.

 Use: The program is invoked by the $RUN command.

 Program Key: *ASMTIDY

 Logical I/O Units Referenced:

 SCARDS - the input file consisting of an untidied assem-

 bly source.

 SPUNCH - the output file to contain the tidied assembly

 source.

 SPRINT - the listing of the tidied source plus MTS line

 numbers of SPUNCH, statement numbers, and level

 numbers.

 SERCOM - severe error comments.

 Parameters: The PAR field of the $RUN command can be used to change

 the assembly standard format. The form is PAR=N,O,V,C

 where:

 N defines the starting column for the name field

 O defines the starting column for the operation field

 V defines the starting column for the operand field

 C defines the starting column for the comments field

 The default is PAR=1,10,16,35. Only those parameters

 whose values differ from the default need be specified.

 "Missing" parameters may be represented by a single comma

 or an explicit zero.

 Example: PAR=,8,,30 will change the operation field and

 comments field starting in columns 8 and 30,

 respectively, but will not alter the others.

 The following parameters may be specified, after "N,O,V,

 C" if any, in the parameter field of the $RUN command.

 The parameters must appear after "N,O,V,C" and must be

 separated by commas or blanks. In case of conflicting

 parameters, the rightmost parameter takes precedence.

 Some of the parameters, as indicated below, may be

 negated by prefixing them with "NO", "N", "-", or "¬".

 Alternatively, these same parameters may be written as

 42 *ASMTIDY

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 parm=ON, parm=YES, parm=NO, or parm=OFF, where "parm" is

 the parameter name. Thus, LIST is the same as LIST=ON,

 and NOLIST the same as LIST=OFF. No embedded blanks are

 allowed within a parameter.

 [NO]BATCH The BATCH parameter specifies that *ASMTIDY is

 to process a stream of assemblies, with the

 last assembly terminated by an end-of-file.

 The NOBATCH parameter causes *ASMTIDY to pro-

 cess only one assembly. The default is BATCH.

 [NO]DECK The DECK parameter specifies that tidied lines

 are to be written on SPUNCH. The NODECK

 parameter suppresses the SPUNCH output. The

 default is DECK.

 [NO]EDIT The EDIT parameter specifies that *ASMTIDY is

 to edit all machine instructions plus two

 assembler instructions USING and DROP. General

 registers 0...15 are replaced by R0...R15

 whenever possible; floating registers 0...6

 replaced by FR0...FR6; and control registers

 0...15 by CR0...CR15. If any suboperand of an

 assembler operand is omitted, e.g., BASEOF(,

 15), a zero is inserted in its place. If

 D2(X2,B2) or S2(B2) is written like D2(0,0) or

 S2(0) respectively, *ASMTIDY will edit as D2 or

 S2 respectively. The instructions, BC and BCR,

 are replaced by extended branch instructions

 whenever possible. The default is NOEDIT.

 [NO]FRAME The FRAME parameter specifies that the comment

 lines preceded by "*FRAME" are to be enclosed

 in a box of asterisks. If the seventh charac-

 ter of the *FRAME line is nonblank, it is taken

 as the framing character instead of the

 asterisk. The NOFRAME suppresses this feature.

 The default is FRAME.

 INDENT=n The INDENT parameter specifies the number of

 spaces used to indent the source statement for

 each nesting level. The default indentation is

 2 spaces per nesting level. This parameters

 applies to the source files containing struc-

 tured programming macros (IF, ELSE, DO, etc.).

 To disable the INDENT feature, the user may

 specify INDENT=0 or INDENT=OFF.

 INPUT={CARD|FREE}

 The CARD parameter means the input consists of

 80-character cards. A warning will be printed

 for every line of length more than 256 charac-

 ters and for every line with any nonblank

 *ASMTIDY 43

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 character beyond column 80. The FREE parameter

 specifies the free-format input. Each input

 line may be up to 256 characters. Continuation

 is indicated by a minus sign (-) as the last

 character of the line. The input parameters

 INPUT=CARD and INPUT=FREE may be abbreviated to

 CARD and FREE respectively. The default is

 CARD.

 [NO]LCTOUC

 The LCTOUC parameter specifies that assembler

 labels, opcodes, and operands are to be trans-

 lated to upper case, except those within

 quotes. This parameter is useful if the source

 file was typed in lower case. The comment

 fields remain unchanged. The default is

 LCTOUC.

 LINECNT=n LINECNT specifies the number of lines per page

 to be printed. The range is 5 to 32767; the

 default is 60.

 [NO]LIST The LIST parameter causes an edited listing of

 the source program to be produced on SPRINT.

 The line numbers printed are those used on

 SPUNCH. NOLIST suppresses this listing. The

 default is LIST unless SPRINT defaults to a

 terminal.

 MAXLEN=n If the parameter OUTPUT=FREE is in effect, the

 parameter MAXLEN specifies the maximum output

 length of lines on SPUNCH. "n" must be >= 72

 and <= 256. The default is MAXLEN=80.

 OUTPUT={CARD|FREE}

 This is same as INPUT parameter except this

 goes for the SPUNCH output. The default is

 OUTPUT=CARD. For OUTPUT=FREE, see also the

 parameter MAXLEN.

 [NO]SEQ The SEQ parameter specifies that *ASMTIDY is to

 punch the sequence ID field in columns 73-80 of

 the punch output. Columns 73-76 contain the

 first four characters in the label of the TITLE

 statement, and columns 77-80 contain the se-

 quence number. This action will be overridden

 if the ending column as specified by the ICTL

 statement is greater than 72 or if the ending

 column is 72 with the continuation column

 specified in the ICTL statement. The default

 is SEQ=OFF.

 44 *ASMTIDY

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 TLC or FULLTLC

 The TLC (Translate to Lower Case) parameter

 specifies that comment fields on assembler

 instructions are to be translated to lower

 case. The first character of the comment field

 is not changed. If the comment is already in

 mixed case, it is not changed. FULLTLC speci-

 fies that, in addition to comment fields, all

 comment statements (lines beginning with "*")

 are also to be translated to lower case. By

 default, no comments are translated.

 VERBOSE or TERSE

 The VERBOSE parameter specifies that *ASMTIDY

 is to confirm that an assembly source program

 has been tidied by issuing the following

 message

 ASSEMBLY SOURCE TIDIED FOR name

 where "name" is the label of the TITLE state-

 ment in the source program. The TERSE parame-

 ter suppresses this message. The default is

 the same as the setting of the MTS $SET TERSE

 option.

 Description: *ASMTIDY may be used to tidy 360/370 assembler source

 programs. It reads an untidied assembler source program

 from the logical I/O unit SCARDS and writes out the

 tidied source on the unit SPUNCH. If LIST is specified,

 *ASMTIDY will produce an indented listing of the source

 program showing any program structure (if structured

 programming macros are used).

 The program will set up each field to standard format

 with the name field in column 1 (or the beginning column

 specified by the ICTL statement), the operation field

 starting in column 10, the operand field starting in

 column 16, and the comment field in column 35. If the

 last character of any field exceeds the starting column

 for next field, the starting column will be one blank

 after the last character. If structured programming

 macros are used (IF, ELSE, DO, etc.), each statement

 beginning with the operation field will be indented 2

 spaces for each nesting level unless they are enclosed

 within the pseudo-operations MACRO and MEND. This spac-

 ing can be overridden by the INDENT=OFF parameter. For

 example, the operation field of each statement following

 an IF macro at level 0 will begin in column 12, for level

 1, the operation code will start in column 14. Comment

 fields still begin in column 35 if possible; if not, they

 are pushed to the right. It is possible that the

 operation code may not be indented since the assembler

 *ASMTIDY 45

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 requires the operation code to be complete in the first

 line.

 The program will automatically translate label names,

 operation codes, and operands to upper case except for

 characters enclosed within single quotes. Comments are

 left unchanged.

 Comment cards ("*" in column 1 or the beginning column

 specified by the ICTL statement) are not modified, except

 when "*FRAME" starts a line preceding a series of comment

 cards, in which case a box comprised of asterisks will be

 built around those comment cards. This may be suppressed

 with the NOFRAME parameter.

 Examples: $RUN *ASMTIDY SCARDS=A SPUNCH=B

 In the above example, the source program is read

 from file A and the tidied output is written to file

 B. The standard format is used.

 $RUN *ASMTIDY SCARDS=X SPUNCH=Y PAR=,,20,40,FREE

 In the above example, the input in the file X is

 free-formatted. The output in file Y is converted

 to card-formatted output with the operand field in

 column 20 and the comment field in column 40.

 46 *ASMTIDY

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 *PEXIT ______

 Contents: An Assembler-H listing postprocessor.

 Purpose: To make cosmetic alterations to the source program

 listing generated by *ASMH. This will provide a more

 readable listing, especially if the structured program-

 ming macros are used.

 Use: The subroutine is invoked by the H-level Assembler by

 specifying the PEXIT parameter, e.g.,

 $RUN *ASMH [I/O units] PAR=PEXIT=*PEXIT

 Program Key: *EXEC

 Description: The subroutine is called for every line printed by the

 assembler to edit the listing as follows:

 (1) The current nesting level for the structured

 programming macros (IF, DO, etc.) is inserted in

 the output for each statement.

 (2) The cross-reference listing is pruned of all the

 internal labels generated by the structured pro-

 gramming macros (e.g., IF#nnn, DO#nnn, etc.), the

 MSG macros, and some additional *SYSMAC macros.

 (3) CASE macro invocations will have their respective

 case number printed in the right-hand margin of

 the listing. If a CASE macro specifies a list of

 cases, only the first number is printed suffixed

 by the character "*", indicating that more than

 one case was given.

 (4) FLAGS macro invocations will have the flag mask,

 name, and address printed in the left-hand margin

 of the listing for each flag declared. If more

 than one flag is specified on the same line of a

 FLAGS macro call, only the first will have this

 information listed.

 (5) Macro invocations will have whatever object code

 is generated printed on the same line as the

 macro call. Only the first one or two instruc-

 tions (up to eight bytes) will be listed by

 default. If PRINT GEN,NOMSOURCE is in effect,

 the output will include the object code for all

 macro generated statements, with the source text

 blanked.

 The first two items do not require any special macro

 calls in the source file or macro libraries for the print

 exit subroutine. The additional features, however, re-

 *PEXIT 47

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 quire the macro library *SYSMAC (the standard macro

 library used by *ASMH), and that the following macro

 statement be coded in the source file before any USING or ______

 DROP statements:

 ASMEDIT [csect][,keywords]

 The positional parameter "csect" is optional but should

 specify the name of the initial CSECT if the macro is

 coded outside of a control section. The ASMEDIT macro

 initializes the print exit environment, redefining the

 following assembler instructions:

 USING

 DROP

 PUSH

 POP

 PRINT

 EJECT

 TITLE

 SPACE

 ASMEDIT also defines the symbolic register names R0-R15

 and emits a USING for each of the registers with null

 dsects to allow an abbreviated form of address specifica-

 tion using the $ symbol. This permits instruction

 operands to be written as follows:

 LA R2,$R2+1

 MVC $R1(4),=C’QQSV’

 instead of

 LA R2,1(,R2)

 MVC 0(4,R1),=C’QQSV’

 This notation may be used only for registers that do not

 have another unlabeled USING currently active.

 ASMEDIT Macro Options _____________________

 The ASMEDIT macro accepts a number of "keyword" parame-

 ters that may be used to change some of the *PEXIT

 defaults and request additional postprocessor functions.

 The following keywords are recognized:

 BOX={YES|NO|len|(shift,len)}

 The BOX option requests *PEXIT to build *BOX com-

 ments if YES; not to if NO; sets the BOX length to

 "len" (4<=len<=72); shifts the box right or left (if

 "shift" is negative) on the listing page by "shift"

 columns. The box cannot be shifted left more than

 48 *PEXIT

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 54 columns (shift>-54) or shifted right such that

 "shift" + "len" exceeds 80.

 INDCH={c|NO}

 The INDCH option sets the register indirection

 prefix character to "c". The default character is

 $. If INDCH=NO is specified, the register null

 dsect usings will not be generated so that the

 register indirection notation will not be available.

 LINECOUNT=n

 The LINECOUNT option is the same as the LINECOUNT

 assembler option. The default number of lines

 between new page headings is 55. This option must

 be specified in addition to the assembler parameter

 since *PEXIT repaginates the listing.

 LITXREF=YES

 The LITXREF option requests *PEXIT to generate a

 separate literal cross-reference listing that is

 reformatted like the one produced by *ASMG. If a

 large number of literal symbols is used, this option

 may potentially reduce the number of literal cross

 reference pages by half.

 REQU=NO

 The REQU option suppresses the generation of the

 register equates by the ASMEDIT macro. The register

 indirection usings will still be emitted unless

 INDCH=NO is also specified.

 TOC=YES

 The TOC option requests *PEXIT to generate a table

 of contents at the end of the listing. The table of

 contents entries are the operands of all nonblank

 TITLE statements, including TITLEs before this macro

 call.

 Only the first ASMEDIT macro statement encountered will

 be printed in the listing by *PEXIT.

 PEXIT Control Cards ___________________

 Some *PEXIT options are specified on Assembler comment

 statements. The following options control the output

 produced by the listing postprocessor.

 *PEXIT 49

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 *FRAME

 The FRAME option builds a box composed of asterisks

 around the following comment lines. If the seventh

 character of the *FRAME line is nonblank, it is

 taken as the framing character, instead of the

 asterisk. The box width is 71.

 *BOX

 The BOX options builds a box composed of TN box

 characters around the following comment lines. If

 "*BOX CENTER" is specified, the box will be centered

 horizontally on the listing page. The default box

 width is 72.

 Example: $RUN *ASMH SCARDS=SOU SPUNCH=OBJ SPRINT=*PRINT*

 PAR=TEST,PEXIT=*PEXIT

 50

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MACRO LIBRARIES _______________

 This section is concerned with macro libraries that may be used with

 Assembler G, Assembler H, and the TSS Assembler. The beginning of this

 section describes how to use and construct macro libraries.

 The bulk of this section is composed of descriptions of macros

 provided by the Computing Center for assembly language programmers.

 These macros are all in *SYSMAC (the system macro library for *ASMH), in

 *ASMGSYSMAC (the system macro library for *ASMG), and in *ASMTSYSMAC

 (the system macro library for *ASMT). Many of these macros aid the

 programmer in providing calling sequences for subroutines of the same

 name as the macro. The macro descriptions found in this section assume

 the user is familiar with the related subroutine descriptions, which are

 to be found in MTS Volume 3, System Subroutine Descriptions. ______________________________

 Macros 51

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 USING MACRO LIBRARIES _____________________

 The Computing Center maintains a number of macro libraries in public

 files. In addition, users can construct and use their own macro

 libraries.

 Except for the system macro library *SYSMAC, any macro library that

 is to be used when assembling a program must be explicitly mentioned

 when running *ASMH. Several macro libraries may be used for one

 assembly. A macro library is specified by assigning it to one of the

 logical units 2-5, or 0 when running the assemblers. Logical I/O units

 6-10 also may be used with *ASMH to specify additional macro libraries.

 For example,

 $RUN *ASMH SCARDS=SOURCEPGM SPUNCH=OBJ 0=MACLIB

 will use MACLIB as a macro library. For *ASMH, the macro libraries are

 searched in the order of logical I/O units 2 though 10, followed by I/O

 unit 0. For example,

 $RUN *ASMH SCARDS=IN SPUNCH=OBJ 2=MYMACLIB 0=*SYSMAC

 will cause a macro to be expanded from MYMACLIB if that macro’s

 definition is found there. Otherwise, the definition from *SYSMAC will

 be used. Note that any macro definitions supplied with the assembler

 input will take precedence over definitions in a macro library.

 The following public files contain macro libraries:

 *SYSMAC

 *SYSMAC is the system macro library. These macros may be used

 with the Assembler H (*ASMH). These macros are described below.

 *OSMAC

 *OSMAC contains the macro library from IBM’s Operating System.

 It is designed to enable the assembling of OS programs under

 MTS. The programs so assembled must not be run under MTS. ___

 Descriptions of these macros will be found in the pertinent IBM

 documentation.

 CONSTRUCTING A MACRO LIBRARY ____________________________

 As described below, a macro library has a rather simple structure.

 Small macro libraries can be easily constructed by hand. For construct-

 ing larger macro libraries, the program *MACUTIL is available (see the

 section "The Macro-Library Editor" in this volume).

 52 Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 A macro library is a line file containing both a directory of the

 names and the definitions themselves.

 A. The directory:

 1. Each entry of the directory contains the name of a macro or

 copy section starting in column 1 and the line number of

 the macro definition header of the corresponding macro or

 the first line of a copy section separated from the name by

 at least one blank.

 2. The line number of the first entry in the directory must be

 1.

 3. The terminating entry in the directory is a string of eight

 zeros in columns 1-8.

 B. The macros or copy sections:

 1. The line number of the macro-definition header of each

 macro or the first line of a copy section must be a

 positive integral number.

 2. The first macro or copy section follows the last entry in

 the directory.

 3. A copy section should be terminated by $ENDFILE.

 Example:

 $COPY *SOURCE* FILE(1)

 BASR 10

 BAS 20

 00000000

 $ENDFILE

 $COPY *SOURCE* FILE(10)

 MACRO

 &LABEL BASR ®1,®2

 &LABEL BALR ®1,®2

 MEND

 $ENDFILE

 $COPY *SOURCE* FILE(20)

 MACRO

 &LABEL BAS ®1,&LOC

 &LABEL BAL ®1,&LOC

 MEND

 $ENDFILE

 The public file *MACUTIL contains a program to construct a macro

 library. Before the program is run, the macro definitions should be put

 in the line file starting at some relatively high, positive line number.

 The MACRO line of each definition must occur on an integral line number.

 Then *MACUTIL is run to construct the directory, which must start at

 Macros 53

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 line 1 of the file. *MACUTIL reads the macro definitions from the file

 attached to logical I/O unit 0 and writes the directory back into the

 same file, i.e.,

 $RUN *MACUTIL 0=macrofile PAR=BUILDIR

 The following would produce a macro library from the same macros as

 the previous section:

 $COPY *SOURCE* FILE(1000)

 MACRO

 &LABEL BASR ®1,®2

 &LABEL BALR ®2,®2

 MEND

 MACRO

 &LABEL BAS ®1,&LOC

 &LABEL BAL ®1,&LOC

 MEND

 $ENDFILE

 $RUN *MACUTIL 0=FILE PAR=BUILDIR

 Further details on the use of *MACUTIL are given in the section "The

 Macro-Library Editor" in this volume.

 SYSTEM-SUPPLIED MACROS ______________________

 The following pages contain descriptions of the macros available in

 *SYSMAC to be used with the Assembler H (*ASMH). They are arranged

 alphabetically by macro name. The structured-programming macros (IF,

 DO, etc.) are described in the section "Structured Programming Macros."

 Many of these macros aid the programmer in providing calling sequences

 for subroutines of the same name as the macro. Descriptions of those

 macros assume the user is familiar with the related subroutine descrip-

 tions, which can be found in MTS Volume 3, System Subroutine __________________

 Descriptions. ____________

 If not otherwise specified by the user, the Assembler H defaults

 logical I/O unit 0 to *SYSMAC.

 The macros described in this section will assemble correctly only

 with the Assembler H. Both *ASMGSYSMAC and *ASMTSYSMAC contain versions

 of many of these macros that will correctly assemble with the Assembler

 G and the TSS Assembler. However, since the macro language of these

 assemblers is much more limited than that of the Assembler H, not all

 the macros and features described are available to them. The availabi-

 lity of a macro in *ASMGSYSMAC or *ASMTSYSMAC may be ascertained by

 directly examining the macro library directory at the head of the macro

 file.

 54 System-Supplied Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ASMTYPE _______

 Macro Description

 Purpose: To determine which assembler is being used to assemble

 the program.

 Prototype: [label] ASMTYPE

 Description: The global SETC symbol &SYSASM is set to ’G’, ’H’, or ’T’

 to indicate whether ASMG, ASMH, or ASMT is being used to

 assemble the program. &SYSASM must be declared with a

 GBLC op-code in order to be properly used.

 ASMTYPE Macro 55

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 A8, S8, A8R, S8R ________________

 Macro Description

 Purpose: To add or subtract 8-byte integers.

 Prototype: [label] A8 r1,loc[,F1=f1][,CC=Y]

 [label] S8 r1,loc[,CC=Y]

 [label] A8R r1,r2[,F1=f1][,CC=Y]

 [label] S8R r1,r2[,CC=Y]

 Parameters:

 r1 is an even general register __

 loc is an 8-byte storage area on a fullword boundary ___

 r2 is an even general register __

 f1 is the location of a fullword constant one (if __

 this parameter is omitted, the literal =F’1’

 will be used instead)

 Description: The 8-byte integer in r2 and r2+1 or in loc through loc+7 __ __ ___ ___

 will be added to (for A8 and A8R) or subtracted from (for

 S8 and S8R) the 8-byte integer in r1 and r1+1. The __ __

 result will be placed in r1 and r1+1. __ __

 An 8-byte integer has the same twos-complement form as a

 2- or 4-byte integer, but is 8 bytes (64 bits) long.

 If CC=Y is specified, the condition code will be set as ____

 after an A or S instruction. Otherwise, the condition

 code will be unpredictable.

 Warning: The code generated by the A8 and A8R macros may

 cause a fixed-point overflow exception in cases where the

 values are very large (close to overflowing a double

 register) even though the final result would be between

 -2⁶³ and 2⁶³-1. Similarly, the code generated by the S8
 and S8R macros may fail to cause a fixed-point overflow

 exception when logically it should cause an exception.

 In the cases where an overflow does occur, the condition

 code will be 0, 1, or 2, not 3 as would normally occur

 with the A and S instructions.

 Examples: LAB1 A8 2,X

 This example adds the 8 bytes at X to the number in

 registers 2 and 3.

 56 A8,S8,A8R,S8R Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 LAB2 S8R 2,6,CC=Y

 This example subtracts the number in registers 6 and 7

 from the number in registers 2 and 3. The condition code

 is set depending on the results.

 LAB3 A8 2,Y,F1=ONE

 The number at location Y is added to the number in

 registers 2 and 3. The constant 1 from location ONE is

 used instead of the literal =F’1’.

 A8,S8,A8R,S8R Macros 57

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ASSIGN ______

 Macro Description

 Purpose: To generate tables of constants.

 Prototype: [label] ASSIGN mode,values

 Parameters:

 mode is any legal assembly-type character for a ____

 DC statement (e.g., F, E, D, A, etc.).

 values is a parenthesized list of values to be ______

 assigned. For each element in this list, a

 DC statement is generated using mode as the ____

 type and the element as the value.

 Example: TBL ASSIGN E,(1.0,1.1,3.0,4.0)

 This example generates a table of the form

 TBL DC E’1.0’

 DC E’1.1’

 DC E’3.0’

 DC E’4.0’

 58 ASSIGN Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 BPI ___

 Macro Description

 Purpose: To branch on a program interrupt.

 Prototype: [label] BPI type,loc

 [label] BPI (type1,type2,...),loc

 Parameters:

 type,type1,type2 ________________

 is the category or categories of program

 interrupts to be covered by the macro. See

 the description below for the type codes

 available.

 loc is the location to transfer to if the ___

 specified type (or types) of program inter-

 rupt occurred on the previous instruction.

 Description: Two forms of the macro are available: the first form is

 used to specify one branch address for the corresponding

 category of interrupt type; the second form is used to

 specify one branch address for several different

 interrupt-type categories. Several BPI macros may be

 given in succession.

 When an instruction gets a precise program interrupt, the

 following instruction is checked to determine if it is a

 BPI instruction. If it is, the type of program interrupt

 that occurred is compared with the type categories

 specified in the BPI macro. If there is a match, the

 condition code is set to reflect the interrupt that

 occurred (according to the table below) and the branch is

 taken. Otherwise, the next instruction is checked to

 determine if it is a BPI instruction, etc. If there is

 no BPI transfer made (either because there was no BPI

 instruction or because the program interrupt type did not

 match the mask of any BPIs that were present), then the

 normal processing of the interrupt occurs. Namely, if a

 PGNTTRP exit is active, it is taken; otherwise, an error

 comment is printed and a return is made to MTS command

 mode.

 BPI Macro 59

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Table of BPI interrupt-type categories: ____

 BPI BPI Int. Interrupt Condition Code ___ ___ ____ _________ _________ ____

 Type Mask Number Name on Branch ____ ____ ______ ____ __ ______

 OPCD 8 1 Operation 1

 2 Privileged operation 2

 3 Execute 3

 OPND 4 4 Protection 0

 5 Addressing 1

 6 Specification 2

 7 Data 3

 OVDIV 2 8 Fixed overflow 0

 9 Fixed divide 1

 10 Decimal overflow 2

 11 Decimal divide 3

 FP 1 12 Exponent overflow 0

 13 Exponent underflow 1

 14 Significance 2

 15 Floating-point divide 3

 Precise program interrupts: For a user program running _______ _______ __________

 under MTS on an IBM 360/67, only program interrupt 4

 (protection) is potentially imprecise. For program

 interrupt 4, a fetch-protect violation is always precise.

 A store-protect violation is precise only if

 (1) the CPU must also wait for the operation to fetch

 something (hence, the TS instruction causes a

 precise interrupt), or

 (2) more than one doubleword of storage must be

 changed:

 a. STM of 1 register - imprecise

 STM of 2 registers - imprecise, if storage

 specified is doubleword-aligned; precise,

 otherwise.

 STM of 3 or more registers - precise

 b. variable-length instructions - precise if

 destination operand crosses a doubleword

 boundary.

 All program interrupts on any 370 are precise.

 This macro assembles as a special type of NOP instruc-

 tion; hence, if executed, it is treated as a "branch

 never" instruction. The form of the BPI instruction is

 470xbddd

 60 BPI Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 where x is the BPI mask as given in the table above, and _

 b and ddd are the base and displacements specifying the _ ___

 branch address.

 Examples: SUBR STM 14,12,12(13)

 BPI OPND,BADR13

 This example will branch to the address BADR13 on an

 interrupt caused by an illegal value in register 13.

 D 0,0(3)

 BPI OVDIV,BADDIV

 BPI OPND,BADREG3

 This example will branch to the address BADDIV on an

 interrupt caused by a fixed-divide exception, or to the

 address BADREG3 on an interrupt caused by an illegal

 value in register 3.

 EX 5,INST

 BPI (OPCD,OVDIV,FP),BAD

 This example will branch to the address BAD on any

 interrupt covered by the OPCD, OVDIV, or FP categories.

 BPI Macro 61

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 CALL ____

 Macro Description

 Purpose: To pass control to a subroutine at a specified entry

 point.

 Prototype: [label] CALL name[,(par)[,VL]][,ID=num] [,MF=mod]

 [,EXIT=exitseq][,LIT=YES]

 Parameters:

 name is the name of the entry point to be given ____

 control; the name is used in the macro

 instruction as the operand of a V-type

 address constant. If (15) is specified,

 GR15 must contain the address of the entry

 point to be given control.

 par (optional) are one or more address parame- ___

 ters, separated by commas, to be passed to

 the subroutine. Each address is expanded,

 in the order specified, to a fullword on a

 fullword boundary. When control is passed

 to the subroutine, GR1 contains the address

 of the first parameter. If no address

 parameters are specified, the contents of

 GR1 are not changed. The address parameter

 may be a general register number enclosed in

 parentheses, in which case the value in the

 specified register will be inserted into the

 parameter list pointed to by GR1. The

 address parameter may also be a literal

 unless the MF=L parameter is being used and

 the program is being assembled by ASMG or

 ASMT (if ASMH is being used, the literal is

 always legal). In this case, the necessary

 instructions are generated to load the

 address of the literal and store it in the

 parameter list (if ASMH is being used, the

 literal will be assembled directly into the

 parameter list).

 VL (optional) specifies a variable number of

 parameters being passed to the subroutine.

 VL causes the high-order bit of the last

 parameter in the macro expansion to be set

 to 1; the bit can be checked by the sub-

 routine to find the end of the parameter

 list. If VL is specified when par and mod ___ ___

 are omitted, then GR1 will be set to zero

 before the call.

 62 CALL Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 num (optional) is a keyword parameter containing ___

 a number not exceeding 2**16-1 (65535). The

 last fullword of the macro expansion is a

 NOP instruction containing num in the low- ___

 order two bytes. GR14 contains the address

 of the NOP instruction when the subroutine

 is given control. If num is omitted, a NOP ___

 is not generated.

 mod (optional) is a keyword parameter. See ___

 below for a description of the MF= keyword.

 exitseq (optional) is a keyword parameter specifying _______

 the exits to be taken for nonzero return

 codes. If exitseq is a single symbol, any _______

 nonzero return code will cause a branch to

 this symbol. If exitseq is a parenthesized _______

 list of symbols, a return code of 4 will

 cause a branch to the first symbol, a return

 code of 8 will cause a branch to the second

 symbol, etc. If a return code larger than

 that corresponding to the last symbol

 occurs, a branch to the last symbol will be

 taken.

 LIT=YES (optional) specifies that literals are

 addressable and the macro will then use a

 literal for the entry address rather than

 generating an adcon inline. If LIT is not

 specified, then literals will not be used

 unless a LITADDR or MACSET macro has speci-

 fied otherwise.

 This macro destroys the contents of registers 14 and 15

 (and, if any of par, mod, or VL is given, the contents of ___ ___

 register 1) in setting up the call. Register 0 may be

 used to return a value from the called subroutine.

 Register 13 must point to the calling program’s save

 area. The called subroutine may set the condition code.

 Description: The linkage relationship established when control is

 passed to the subroutine is the same as that created by a

 BAL instruction; that is, the calling program expects

 control to be returned. The calling program is not

 involved in passing control, so the reusability status of

 the subroutine must be maintained by the user.

 If MF=L is included in the parameter list, only the

 parameter list will be generated. In this case, no

 executable code is produced and all other parameters are

 optional.

 If MF=(E,listadr) is specified, listadr is assumed to be _______

 the address of a remote parameter list, and only the

 executable code required to call the subroutine is

 generated. The address of the parameter list can be

 CALL Macro 63

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 coded as described under par, or can be loaded into GR1, ___

 in which case MF=(E,(1)) should be coded.

 Examples: LAB1 CALL SYSTEM

 This example assembles a call to the SYSTEM subroutine.

 LAB2 CALL SCARDS,(REG,LEN,MOD,LNUM)

 This example assembles a call to the SCARDS subroutine.

 Register 1 points to the parameter list containing the

 addresses of REG, LEN, MOD, and LNUM.

 LAB3 CALL (15),(PAR1,PAR2)

 This example assembles a call to the subroutine whose

 address is contained in register 15. Register 1 points

 to the parameter list containing the addresses of PAR1

 and PAR2.

 CALL GETFD,MF=(E,FNAME)

 .

 .

 FNAME DC C’DATAFILE ’

 This example assembles a call to the GETFD subroutine.

 The address of the parameter list FNAME is stored in

 register 1.

 L 7,TXTPTR

 CALL KEYWORD,(LHTLEN,LHTAB,EXTAB,(7),RHTAB)

 This example assembles a call to the KEYWORD subroutine.

 Register 1 points to the parameter list containing the

 address of LHTLEN, LHTAB, EXTAB, and RHTAB. The contents

 of register 7 is inserted into the parameter list as the

 fourth parameter.

 64 CALL Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 CMD ___

 Macro Description

 Purpose: To assemble a call to the CMD subroutine. See the CMD

 subroutine description in MTS Volume 3, System Subroutine _________________

 Descriptions. ____________

 Prototype: [label] CMD reg[,len]

 Parameters:

 reg specifies the command to be given to CMD. It ___

 may be a command enclosed in primes, the name

 of a region containing the command, or the

 number of a register (which contains the loca-

 tion of the command) enclosed in parentheses.

 len (optional) specifies the length of the command. ___

 It may be the name of a halfword or fullword

 containing the length, or the number of a

 register (which contains the length) enclosed

 in parentheses. If it is omitted, L’REG is

 used. It must be omitted if reg is ’text’ and ____ ___

 may not be omitted if reg specifies a register. ___ ___

 This macro destroys the contents of registers 1, 14, and

 15. Register 13 must point to the calling program’s save

 area. The condition code may be changed.

 Examples: LBL CMD ’$SET ECHO=OFF’

 This example calls CMD with $SET ECHO=OFF as the command.

 This same effect can also be obtained by calling the

 CUINFO subroutine.

 CMD CMDLOC

 This example calls CMD with location CMDLOC containing a

 command. The length of CMDLOC defines the length of the

 command.

 CMD (2),(3)

 This example calls CMD with register 2 containing the

 location of a command and register 3 containing the

 length of the command.

 CMD Macro 65

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 CMDNOE ______

 Macro Description

 Purpose: To assemble a call to the CMDNOE subroutine. See the

 CMDNOE subroutine description in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Prototype: [label] CMDNOE reg[,len]

 Parameters:

 reg specifies the command to be given to CMDNOE. ___

 It may be a command enclosed in primes, the

 name of a region containing the command, or the

 number of a register (which contains the loca-

 tion of the command) enclosed in parentheses.

 len (optional) specifies the length of the command. ___

 It may be the name of a halfword or fullword

 containing the length, or the number of a

 register (which contains the length) enclosed

 in parentheses. If it is omitted, L’REG is

 used. It must be omitted if reg is ’text’ and ____ ___

 may not be omitted if reg specifies a register. ___

 This macro destroys the contents of registers 1, 14, and

 15. Register 13 must point to the calling program’s save

 area. The condition code may be changed.

 Examples: LBL CMDNOE ’$SET ECHO=OFF’

 This example calls CMDNOE with $SET ECHO=OFF as the

 command. This same effect can also be obtained by

 calling the CUINFO subroutine.

 CMDNOE CMDLOC

 This example calls CMDNOE with location CMDLOC containing

 a command. The length of CMDLOC defines the length of

 the command.

 CMDNOE (2),(3)

 This example calls CMDNOE with register 2 containing the

 location of a command and register 3 containing the

 length of the command.

 66 CMDNOE

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 CNTRL _____

 Macro Description

 Purpose: To provide an interface between the user and the CONTROL

 entry in the device support routines (DSRs). This macro

 allows the user to execute control operations on files

 and devices. See the CONTROL subroutine description in

 MTS Volume 3, System Subroutine Descriptions. ______________________________

 Prototype: [label] CNTRL fdub,’text’[,ret][,EXIT=exitseq]

 [,MF=mod][,TREG=(r1,r2)]

 [label] CNTRL fdub,info[,len][,ret][,EXIT=exitseq]

 [,MF=mod][,TREG=(r1,r2)]

 Parameters:

 fdub is either ____

 (1) the location of a FDUB-pointer, a full-

 word logical I/O unit number (0 through

 19), or a left-justified, 8-character

 logical I/O unit name,

 (2) ’name’, where "name" is the name of a

 logical I/O unit,

 (3) a logical I/O unit number (0 through

 19), or

 (4) a register number in parentheses (the

 register must contain a FDUB-pointer or

 a logical I/O unit number).

 text is the actual text of the device control ____

 information to be passed to the device

 support routines.

 info is the location of the device control infor- ____

 mation to be passed to the device support

 routines. This may be either an expression

 or a register number in parentheses (the

 register must contain the location).

 len (optional) is the length of the control ___

 information. This may be either an expres-

 sion defining the location of a halfword

 containing the length, a self-defining term

 which is length, or a register number in

 parentheses (the register must contain the

 length). If len is omitted, L’info is ___ ____

 assumed.

 ret (optional) is the location of an area of 27 ___

 fullwords to receive the return information

 from the device support routines. This area

 will contain:

 CNTRL Macro 67

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Word 1: return code from the DSR

 2: length of the DSR message, or

 zero

 3-27: DSR error message (if given)

 ret may be specified as an expression or a ___

 register number in parentheses (the register

 must contain the location of the area). If

 ret is omitted, the return information will ___

 be discarded.

 exitseq (optional) is a keyword parameter specifying _______

 the exits to be taken for nonzero return

 codes. If exitseq is a single symbol, any _______

 nonzero return code will cause a branch to

 this symbol. If exitseq is a parenthesized _______

 list of symbols, a return code of 4 will

 cause a branch to the first symbol, a return

 code of 8 will cause a branch to the second

 symbol, etc. If a return code larger than

 that corresponding to the last symbol

 occurs, a branch to the last symbol will be

 taken.

 mod (optional) is a keyword parameter. See ___

 below for a description of the MF= keyword.

 r1,r2 (optional) is a keyword parameter specifying _____

 two temporary registers to be used in

 expanding calls when MF=E is specified. If

 this is omitted, GR14 and GR15 are assumed.

 This macro destroys the contents of registers 1, 14, and

 15. Register 13 must point to the calling program’s save

 area. The condition code may be changed.

 Description: If MF=L is specified in the parameter list, only the

 parameter list will be generated. In this case, no

 executable code is produced, and all other parameters are

 optional. Parameters specified as registers will be

 ignored.

 If MF=(E,listadr) is specified, listadr is assumed to be _______

 the name assigned to an MF=L form of the macro, and only

 the executable code required to call the subroutine is

 generated. listadr may be the name of an MF=L form of _______

 the macro or a register number in parentheses (the

 register must contain the location of an MF=L form). If

 any other parameters are given, they are used to modify

 the list generated by the MF=L macro before the call. In

 this case, the TREG keyword specifies two registers to be

 used for modifying the parameter list. If omitted, GR14

 and GR15 are used, and they should not contain parame-

 ters. Any other parameter may be used with an MF=E form

 of the call.

 68 CNTRL Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Example: LAB CNTRL 8,’REW’,RETINFO,EXIT=ERROR

 In this example, a "rewind" control command is issued for

 logical I/O unit 8. Any return information from the

 device support routines will be stored in RETINFO. If a

 nonzero return code occurs, a branch will be made to the

 location ERROR.

 CNTRL Macro 69

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 DFAD, DFSB, DFMP ________________

 Macro Description

 Purpose: To simulate extended-precision floating-point operations

 using the instructions available on the machine. These

 macros will add, subtract, or multiply two contiguous,

 long, floating-point registers by an extended-precision

 (16-byte) operand and place the result in the same two

 registers.

 Prototype: [label] DFAD reg,adr,temp

 [label] DFSB reg,adr,temp

 [label] DFMP reg,adr,temp

 Parameters:

 reg is the first of two contiguous floating-point ___

 registers. Note that reg must be 0 or 4. ___

 adr is the location of the doubleword-aligned, ___

 extended-precision (16-byte) operand.

 temp is the location of a doubleword-aligned scratch ____

 area. For DFAD and DFSB, this must be 16 bytes

 long; for DFMP, this must be 64 bytes long.

 Description: The contents of adr are added to, subtracted from, or ___

 multiplied by the contents of the long floating-point

 registers reg and reg+2. ___ ___

 An extended-precision operand may be considered as two

 long floating-point operands. Both operands have a

 characteristic and a mantissa; the characteristic of the

 second long operand is 14 less than the characteristic of

 the first long operand.

 These macros inspect the value of the GBLB symbol &S370

 to determine whether the program is to be run on a 360/67

 or a 370. If &S370 is 0, they use the hardware

 operations ADD, ADDR, SDD, SDDR, MDD, and MDDR. See the

 description of these instructions in the section "Exten-

 sions to the System/360 Model 67 Operations" in this

 volume. If &S370 is 1, they use the hardware operations

 AXR, SXR, or MXR. These are described in IBM System/370 ______________

 Principles of Operation, form number GA22-7000. _______________________

 70 DFAD, DFSB, DFMP Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

|

| DCI, DCINIT ___________

|

| Macro Description

|

|

|

| Purpose: To automatically initialize storage in a dsect.

|

| Prototype: symbol DCI const1,const2,...

| DCINIT dsect[,TYPE={ORG|SUBR}]

|

| Parameters:

|

| symbol specifies the name of the location(s) in the ______

| dsect that are to be initialized.

| const specifies the constant values that are to be _____

| stored into the initialized locations.

| dsect specifies the name of the dsect that con- _____

| tains the locations to be initialized.

| TYPE={ORG|SUBR}

| specifies whether the generated initializa-

| tion code is to reside in the csect at the

| point of the DCINIT macro call (TYPE=ORG),

| or is to reside in a separate subroutine

| which is called at the point of the DCINIT

| macro call (TYPE=SUBR). For TYPE=SUBR, a

| standard OS (I) S-type call is made; regis-

| ter 1 must contain the address of the dsect

| being initialized. A separate csect will be

| generated to collect the subroutine initial-

| ization code for all the DCINIT macro calls.

| The default is TYPE=ORG.

|

| Description: The DCI and DCINIT macros provide a method for automati-

| cally initializing storage in a dsect. The DCI macro

| defines and generates the executable code to initialize

| the storage. The DCINIT macro specifies where the

| initialization is to reside.

|

| The syntax of the DCI macro is the same as the syntax for

| the DC pseudo-op except that bit-length modifier (L.) is

| not supported.

|

| Address-type constants (AL3 and AL4) are initialized by a

| series of load address (LA) and store (ST or STM)

| instructions. All other constants are initialized by

| move (MVI, MVC, or MVCL) instructions with the source

| being the constant value expressed as a literal. All

| literals will be emitted by a LTORG psuedo-op in the

| control section containing the initialization code.

 DCI, DCINIT Macros 70.1

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

| Example: The following example illustrates the use of of the DCI

| and DCINIT macros.

|

| DCINIT MYDSECT

| ...

| MYDSECT DSECT

| INPAR DCI A(BUF,INL,MOD,LNUM)

| BUF DS CL80

| INL DCI Y(0,256,0)

| MOD DCI X’80000002’

| LNUM DCI FE3’1’

| END

|

| The above sequence generates the following code in the

| csect containing the DCINIT call (TYPE=ORG is defaulted).

|

| LA R0,BUF

| LA R1,INL

| LA R2,MOD

| LA R3,LNUM

| STM R1,R3,INPAR

| MVC INL(6),=Y(0,256,0)

| MVC MOD(4),=X’80000002’

| MVC LNUM(4),=FE3’1’

 70.2 DCI, DCINIT Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 DFIX, EFIX __________

 Macro Description

 Purpose: To convert a floating-point number (in a floating-point

 register) to an integer (in a general register).

 Prototype: [label] DFIX fpr,gr[,WA=wkarea]

 [label] EFIX fpr,gr[,WA=wkarea]

 Parameters:

 fpr is the floating-point register. ___

 gr is the general register. __

 wkarea (optional) is a keyword parameter designat- ______

 ing a doubleword-aligned work area of 16

 bytes. If omitted, the macro will allocate

 an in-line work area.

 The condition code is unpredictable afterwards.

 Description: DFIX converts a long-precision, floating-point number (8

 bytes); EFIX converts a short-precision, floating-point

 number (first 4 bytes of a floating-point register). The

 contents of the specified floating-point register are

 restored at the end of the macro call. Note that it is

 possible to convert a floating-point number that is too

 big to fit (as an integer) into a general register, but

 the results will be meaningless since in order to make

 the floating-point number fit into a general register,

 part of the number is truncated. No attempt is made to

 signal this as an error.

 Example: LBL DFIX 0,0

 This example converts the 8-byte floating-point number in

 floating-point register 0 into an integer in general

 register 0.

 DFIX, EFIX Macros 71

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 DISMOUNT ________

 Macro Description

 Purpose: To assemble a call to the DISMOUNT subroutine.

 Prototype: [label] DISMOUNT ’string’

 Parameters:

 string is one or more pseudodevice names (separated ______

 by blanks or commas) for the items to be

 released.

 This macro destroys the contents of registers 1, 14, and

 15. Register 13 must point to the calling program’s save

 area. The condition code may be changed.

 Description: A call will be assembled to the DISMOUNT subroutine. See

 the DISMOUNT subroutine description in MTS Volume 3,

 System Subroutine Descriptions. The macro generates ________________________________

 literal constants; thus literal addressability must be

 preserved.

 Example: DMNT DISMOUNT ’*TAPE*’

 This example will assemble a call to DISMOUNT to release

 TAPE.

 72 DISMOUNT Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ENTER _____

 Macro Description

 Purpose: To generate prolog code for the entrance to a subroutine.

 Prototype: [label] ENTER reg[,par][,SA=savarea][,LENGTH=len]

 [,TREG=tempreg][,ID=idval][,T=type]

 [,DSECT=base13][,BASE=baseval][,LIT=NO]

 Parameters:

 reg is the register or list of registers to be ___

 established as a base register. None of the

 registers should be the same as tempreg or _______

 be registers 0 or 13. In addition, if

 savarea is omitted, registers 1, 14, and 15 _______

 cannot be used.

 par (optional) is the register to copy register ___

 1 into. This will be the pointer to the

 parameters. If par is specified, it cannot ___

 be the same as tempreg or reg or be register _______ ___

 13. If both par and savarea are specified, ___ _______

 they cannot be registers 0, 14, or 15. If

 par is omitted, register 1 is not copied. ___

 savarea (optional) is a keyword parameter specifying _______

 the location of a save area to use. If

 savarea is omitted, a call to the GETSPACE _______

 subroutine is made to get a save area of

 length specified by len. If savarea is *, ___ _______

 no save area is set up.

 len (optional) is a keyword parameter specifying ___

 the length of the save area to be obtained

 if savarea is omitted. If len is omitted, _______ ___

 72 is used.

 tempreg (optional) is a keyword parameter specifying _______

 the temporary register to be used in the

 prolog code. If omitted, register 15 is

 used. If savarea specifies a location, _______

 tempreg should not be registers 0 or 13. If _______

 savarea is omitted, tempreg should not be _______ _______

 registers 0, 1, or 13. tempreg is not used _______

 if savarea is *. _______

 idval (optional) is the ID to be assigned to this _____

 entry. The length of the ID will be the

 fourth byte generated and the ID itself will

 start at the fifth byte. If idval is * or _____

 (*,name), then either label will be used for _____

 the ID, or if label is missing, then the _____

 name of the enclosing CSECT will be used, or

 ENTER Macro 73

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 if both are missing, then name will be used. ____

 In this last case a "name CSECT" statement ____

 is also generated. If idval is $ or _____

 ($,name2), then either the name of the CSECT

 is used for the ID, or if the CSECT is

 unnamed, then name2 is used, or if name2 is _____ _____

 missing, then label is used. In these _____

 latter two cases a CSECT statement is

 generated.

 type (optional) is the type code to be used on ____

 the call to GETSPACE for the save area if

 savarea is omitted. If the T parameter is _______

 omitted, the type code of 3 is used.

 base13 (optional) is the name of a DSECT describing ______

 the save area allocated if savarea is omit- _______

 ted. A "USING base13,13" is inserted. ______

 baseval (optional) is a value or list of values to _______

 be loaded into the base register or regis-

 ters specified by reg. If baseval is "$", ___ _______

 the origin of the control section is used as

 the value to be loaded into reg. ___

 LIT=NO (optional) specifies that no literals should

 be used in code generated by this macro. In

 this case, constants will be generated in-

 line with a branch around them. The macro

 assumes that savarea is also not addressable _______

 if LIT=NO is specified.

 Description: ENTER produces all of the code normally needed at the

 entry to a subroutine to:

 (1) Save the caller’s registers.

 (2) Establish base registers for this program.

 (3) Copy the parameter list pointer to a safe

 register.

 (4) Establish a save area for this program.

 Base registers are established as follows: Either or

 both of reg or baseval may be a list enclosed in ___ _______

 parentheses. The number of base registers established is

 equal to the number of items in the longer list. If an

 entry in reg is omitted, it is assumed to be the previous ___

 register plus one. If an entry in baseval is omitted, it _______

 is assumed to be the previous value plus 4096, unless it

 is the first entry, in which case the location of the

 ENTER macro is assumed.

 Examples: SUB1 ENTER 12

 This example generates an entry sequence using register

 12 as the base register. A 72-byte save area is

 allocated by the macro.

 74 ENTER Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SUB2 ENTER 9,SA=SAVEAREA

 This example generates an entry sequence using register 9

 as the base register and the region at location SAVEAREA

 as the save area.

 SUB3 ENTER 11,TREG=12

 This example generates an entry sequence using register

 11 as the base register and register 12 as the temporary

 register in the sequence. A 72-byte save area is

 allocated by the macro.

 SUB4 ENTER (9,10,11),SA=SAVE

 This example generates an entry sequence using registers

 9, 10, and 11 as base registers addressing SUB4, SUB4+

 4096, and SUB4+8192, respectively.

 SUB5 ENTER 9,SA=SAVE,BASE=(BAS1,,BAS2)

 This example generates an entry sequence using registers

 9, 10, and 11 as base registers addressing BAS1, BAS1+

 4096, and BAS2, respectively.

 ENTER Macro 75

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ERROR _____

 Macro Description

 Purpose: To assemble a call to the ERROR subroutine. See the

 ERROR subroutine description in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Prototype: [label] ERROR

 Description: This will generate

 label L 15,=V(ERROR)

 BALR 14,15

 76 ERROR Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 EXIT ____

 Macro Description

 Purpose: To reestablish the calling program’s save area and to

 return with a return code in GR15 and an optional

 returned value in GR0.

 Prototype: [label] EXIT [rc][,rval][,MF=mod][,SPM=YES]

 [,TREG=(n,m)][,RESTORE=gr][,DROP=regs]

 [,COMPLET=NO]

 Parameters:

 rc (optional) is a return code to be loaded __

 into GR15. If rc is omitted, the return __

 code is zero. rc may be expressed as a __

 register number in parentheses, a self-

 defining term, a storage location, or *

 meaning the return code is in register 15.

 rval (optional) is a return value to be loaded ____

 into GR0. It may be expressed as a register

 number in parentheses, a self-defining term,

 a storage location, or * meaning the value

 is in register 0. If rval is omitted, the ____

 default of * is used.

 mod (optional) If given as MF=FS, specifies that ___

 the save area pointed to by GR13 is to be

 released by calling FREESPAC. If given as

 MF=*, specifies that GR13 already points to

 the caller’s save area.

 SPM=YES specifies that the program mask is to be

 restored from register 14 before returning.

 (n,m) n and m are two registers that may be used _ _ _ _

 by the macro. They must not be 0, 1, 13,

 14, or 15. They will only be used if MF=FS

 is specified. Registers 2 and 3 are used if

 the TREG parameter is omitted.

 gr is the number of the first register to __

 restore. If gr is given, registers 14 and __

 gr through 12 are restored. If the RESTORE __

 parameter is omitted, gr is 0 if rval is __ ____

 omitted and 1 otherwise.

 regs is a list of registers to be DROPped. This ____

 list should be enclosed in parentheses and

 separated by commas.

 COMPLET=NO specifies that the 12th byte of the

 caller’s save area is not to be set to ___

 X’FF’. This setting to X’FF’ is normally

 done to indicate that this subroutine has

 returned.

 EXIT Macro 77

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Description: This macro will restore registers and optionally the

 program mask, and return to the program which called the

 current subroutine. If MF=* is not specified, the save

 areas must be properly linked on entry as is done by the

 ENTER macro.

 Examples: EXIT 4

 This example generates a return with a return code of 4

 in register 15.

 OUT EXIT 0,(1)

 This example generates a return with a return code of

 zero in register 15 and a return value from register 1 in

 register 0.

 EXIT 0,4

 This example generates a return with a return code of

 zero in register 15 and a return value of 4 in register

 0.

 LABEL EXIT 0,RVAL

 This example generates a return with a return code of

 zero in register 15 and the return value from location

 RVAL in register 0.

 78 EXIT Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 FLOAT _____

 Macro Description

 Purpose: To convert the contents of a general register or a

 fullword area in storage into a floating-point number and

 leave the converted number in a floating-point register.

 Prototype: [label] FLOAT arg1,arg2[,WA=wkarea]

 Parameters:

 arg1 can either be a general register or a ____

 fullword location; if arg1 specifies a gen- ____

 eral register, the argument must be enclosed

 in parentheses.

 arg2 is the floating-point register into which ____

 the results are placed.

 wkarea is the user-specified doubleword scratch ______

 area. If omitted, the scratch area is

 generated in-line within the macro

 expansion.

 Addressability of the literal pool is required.

 After execution, the condition code will be set as

 follows:

 0 if value=0

 1 if value<0

 2 if value>0

 Examples: FLOAT A,2

 This example converts the contents of location A to a

 floating-point number and stores the result in floating-

 point register 2.

 FLOAT (6),4

 This example converts the contents of general register 6

 to a floating-point number and stores the result in

 floating-point register 4.

 FLOAT Macro 79

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 FREESPAC ________

 Macro Description

 Purpose: To assemble a call to the FREESPAC subroutine. See the

 FREESPAC subroutine description in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Prototype: [label] FREESPAC [loc][,length][,EXIT=err]

 Parameters:

 loc (optional) is the location of the space to ___

 be released or the number of a register

 (which contains the location) in parenthe-

 ses. If this parameter is omitted or coded

 as *, it is assumed that the location is

 given in register 1.

 length (optional) is the length of the region to be ______

 released, the number (in parentheses) of a

 register which contains the length, or *

 meaning the length is in register 0. If

 this parameter is omitted, the length is

 assumed zero (release whole region).

 err is the location to branch to if the FREESPAC ___

 subroutine detects an error.

 This macro destroys the contents of registers 0, 1, 14,

 and 15. Register 13 need not point to a save area.

 Examples: LAB1 FREESPAC A

 This example calls FREESPAC with the location of the

 region to be released in location A.

 LAB2 FREESPAC B,1024

 This example calls FREESPAC with the location of the

 region to be released in location B. The length to be

 released is 1024 bytes.

 LAB3 FREESPAC ,(2)

 This example calls FREESPAC with the location of the

 region to be released in register 1. The length to be

 released is in register 2.

 80 FREESPAC Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 GETSPACE ________

 Macro Description

 Purpose: To assemble a call to the GETSPACE subroutine. See the

 GETSPACE subroutine description in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Prototype: [label] GETSPACE [length][,T=type][,EXIT=err]

 Parameters:

 length (optional) is the number of bytes of storage ______

 wanted. It may be a self-defining term, an

 expression, the name of a location, or a

 register number in parentheses. If omitted

 or coded as *, the length is assumed to be

 in register 1.

 type (optional) is a keyword parameter specifying ____

 the type of space wanted. type should be ____

 from 0 to 7. If omitted, type is assumed to ____

 be 3. See the description of the GR0

 contents in the GETSPACE subroutine descrip-

 tion in MTS Volume 3.

 err is the location to branch to if the GETSPACE ___

 subroutine detects an error.

 This macro destroys the contents of registers 0, 1, 14,

 and 15. Register 13 need not point to a save area. The

 condition code may be changed.

 Example: LAB GETSPACE 8192

 This example calls GETSPACE for a region of 8192 bytes of

 storage.

 GETSPACE Macro 81

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 GUSER _____

 Macro Description

 Purpose: To assemble a call to the GUSER subroutine. See the

 GUSER subroutine description in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Prototype: [label] GUSER reg[,regl][,modifs][,lnr][,EXIT=exitseq]

 [,MF=mod][,TREG=(r1,r2)]

 Parameters:

 reg is the location of the region into which the ___

 record is to be read. This may be expressed

 as a symbol or as the number of a register

 (which contains the location of the region)

 in parentheses.

 regl (optional) specifies the place to store the ____

 length of the input upon return from the

 GUSER subroutine. This may be either the

 name of a halfword to contain the length, or

 the number of a register (which will contain

 the length) in parentheses. If omitted, the

 length is discarded.

 modifs (optional) stands for several parameters ______

 separated by commas. Each parameter con-

 sists of the name of an MTS modifier pre-

 ceded by either an at sign (@), an at sign

 and a not sign (@¬), or an at sign and a

 minus sign (@-). If no modifiers are given,

 zero is used for the modifiers parameter to

 GUSER. See the "I/O Modifiers" description

 in MTS Volume 1 or MTS Volume 3.

 lnr (optional) specifies the line number parame- ___

 ter for the GUSER subroutine. It may be the

 location of a fullword containing the line

 number, a self-defining term which is the

 line number, or the number of a register

 (which contains the line number) in paren-

 theses. If a register is specified, it will

 be stored in the line number parameter

 before the call and loaded from it after the

 call. If omitted, the macro generates a

 fullword if needed. If the @INDEXED modi-

 fier is specified in this macro or else-

 where, the value of the lnr parameter before ___

 the call to the GUSER subroutine is used.

 See the "I/O Modifiers" description in MTS

 Volume 1 or MTS Volume 3 for further discus-

 82 GUSER Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 sion. If both regl and lnr are registers, ____ ___

 lnr should not be GR1. ___

 exitseq (optional) is a keyword parameter specifying _______

 the exits to be taken for nonzero return

 codes. If exitseq is a single symbol, any _______

 nonzero return code will cause a branch to

 this symbol. If exitseq is a parenthesized _______

 list of symbols, a return code of 4 will

 cause a branch to the first symbol, a return

 code of 8 will cause a branch to the second

 symbol, etc. If a return code larger than

 that corresponding to the last symbol

 occurs, a branch to the last symbol will be

 taken.

 mod (optional) is a keyword parameter. See ___

 below for a description of the MF= keyword.

 r1,r2 (optional) is a keyword parameter specifying _____

 two temporary registers to be used in

 expanding calls when MF=E. If omitted, GR14

 and GR15 are assumed.

 This macro destroys the contents of registers 1, 14, and

 15. If modifs includes NOPROMPT and/or NOTIFY, the ______

 called subroutine will destroy the contents of register

 0. If MF=(E,...) is specified, the contents of regis-

 ters r1 and r2 are also destroyed. Register 13 must __ __

 point to the calling program’s save area. The condition

 code may be changed.

 Description: If MF=L is included in the parameter list, only the

 parameter list will be generated. In this case, no

 executable code is produced and all other parameters are

 optional. Parameters specified as registers will be

 ignored.

 If MF=(E,listadr) is specified, listadr is assumed to be _______

 the name assigned to an MF=L form of the macro, and only

 the executable code required to call the subroutine is

 generated. listadr may be the name of an MF=L form of _______

 the macro or the number of a register (which contains the

 location of an MF=L form) in parentheses. If any other

 parameters are given, they are used to modify the list

 generated by the MF=L macro before the call. In this

 case, the TREG keyword specifies two registers to be used

 for modifying the parameter list. If omitted, registers

 14 and 15 are used, and they should not contain parame-

 ters. Any other parameter may be used with an MF=E form

 of the call. If any modifiers are given, the new

 modifiers completely replace the old modifiers unless the

 MF parameter is given as MF=(E,listadr,SEP) in which case

 only the modifiers specified are changed.

 GUSER Macro 83

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Examples: LAB1 GUSER REG,LEN,EXIT=EOF

 This example calls GUSER with REG as the location of the

 region to be read into and LEN as the location to store

 the length of the record read. A nonzero return code

 from GUSER will cause a branch to EOF.

 LAB2 GUSER REGION,LENG,@I,@PFX,EXIT=DONE

 This example calls GUSER with REGION as the location of

 the region to be read into and LENG as the location to

 store the length of the record read. The record is read

 with the @I and @PFX modifiers specified. A nonzero

 return code will cause a branch to DONE.

 84 GUSER Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

| INSTSET _______

|

| Macro Description

|

|

|

| Purpose: To control which set of machine instructions will be

| available in ASMH.

|

| Prototype: [label] INSTSET [M67={YES|NO}][,S370={YES|NO}]

| [,M470={YES|NO}][,M580={YES|NO}]

| [,M4300={YES|NO}][,MODEL=model]

| [,FEATURES=(feature[,...])]

|

| Parameters:

|

| M67={YES|NO}

|

| M67 controls the inclusion of the System/360

| Model 67 instruction set. If M67=YES is speci-

| fied, the following instructions will be avail-

| able: BAS, BASR, LMC, STMC, AX, DX, LX, MX,

| SX, ADD, MDD, SDD, ADDR, MDDR, SDDR, SLT, SWPR,

| and LRA. See the section "Extensions to the

| System/360 Model 67 Operations" in this volume

| and the IBM publication, IBM System/360 Model ______________________

| 67 Functional Characteristics (form number ________________________________

| GA27-2719), for a description of these

| instructions.

|

| M370={YES|NO}

|

| M370 controls inclusion of the System/370 in-

| struction set. If S370=YES is specified the

| following instructions will be available: AXR,

| CDS, CLCL, CLM, CLRIO, CS, HDV, ICM, IPK, LCTL,

| LRA, LRDR, LRER, MC, MVCL, MXD, MXDR, MXR,

| PTLB, RRB, SCK, SCKC, SIGP, SIOF, SPKA, SPT,

| SPX, SRP, STAP, STCK, STCKC, STCM, STCTL,

| STIDC, STIDP, STNSM, STOSM, STPT, STPX, and

| SXR. See the IBM publication, IBM System/370 ______________

| Principles of Operation (form number GA22- _________________________

| 7000), for a description of these instructions.

|

| M470={YES|NO}

|

| M470 controls the inclusion of instructions

| peculiar to the Amdahl 470 series of machines,

| all of which are privileged. If M470=YES is

| specified the following instructions will be

| available: LFCR, STFCR, PPG, and PSU.

 INSTSET 85

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

| M580={YES|NO}

|

| M580 controls the inclusion of instructions

| peculiar to the Amdahl 580 series of machines.

| There are currently no instructions of this

| type, therefore this parameter has no effect.

|

| M4300={YES|NO}

|

| M4300 controls the inclusion of instructions

| peculiar to the IBM 4300 series of machines.

| If M4300=YES is specified, the following in-

| structions will be available: CLRP, CTP, DEP,

| DCTP, IPB, LFI, MAD, MADS, MUN, MVCIN, RSP,

| SPB, and STCAP. See the IBM publication, IBM ___

| 4300 Processors Principles of Operation for ___

| ECPS:VSE Mode (form number GA22-7070), for a ______________

| description of these instructions.

|

| MODEL=model

|

| MODEL controls the inclusion of instructions

| based on the model number of the machine. This

| allows a finer degree of control than the more

| general, machine-series specification indicated

| by M67, S370, M470, M580, or M4300. The

| instruction set included for a particular mode

| number is that of the base machine; i.e.,

| without any features which are considered op-

| tional on that model. Valid model numbers are:

|

| Model Machine Specified

|

| 67 IBM System/360 Model 67

| 115 IBM System/370 Model 115

| 125 IBM System/370 Model 125

| 135 IBM System/370 Model 135

| 135-3 IBM System/370 Model 135-3

| 138 IBM System/370 Model 138

| 145 IBM System/370 Model 145

| 145-3 IBM System/370 Model 145-3

| 148 IBM System/370 Model 148

| 155 IBM System/370 Model 155

| 158 IBM System/370 Model 158

| 158-3 IBM System/370 Model 158-3

| 165 IBM System/370 Model 165

| 168 IBM System/370 Model 168

| 168-3 IBM System/370 Model 168-3

| 195 IBM System/370 Model 195

| 3031 IBM 3031 (all submodels)

| 3032 IBM 3032 (all submodels)

| 3033 IBM 3033 (all submodels)

| 3081 IBM 3081 (all submodels)

 86 INSTSET

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

| 3083 IBM 3083 (all submodels)

| 3084 IBM 3084 (all submodels)

| 3090 IBM 3090 (all submodels)

| 4321 IBM 4321 (all submodels)

| 4331 IBM 4331 (all submodels)

| 4341 IBM 4341 (all submodels)

| 4361 IBM 4361 (all submodels)

| 4381 IBM 4381 (all submodels)

| 5840 Amdahl 5840

| 5850 Amdahl 5850

| 5860 Amdahl 5860

| 5867 Amdahl 5867

| 5868 Amdahl 5868

| 5870 Amdahl 5870

| 5880 Amdahl 5880

| 5890 Amdahl 5890

| 470/V6 Amdahl 470/V6

| 470/V7 Amdahl 470/V7

| 470/V8 Amdahl 470/V8

|

| FEATURES=(feature[,...])

|

| FEATURES controls the inclusion of instructions

| on the basis of which facility they are a part

| of. FEATURES modifies the instruction set

| defined by the MODEL parameter. It may only be

| specified when the MODEL parameter is also

| specified.

|

| Any combination of features may be included or

| excluded, regardless of whether that feature is

| available on the machine implied by MODEL. A

| feature is included by specifying its name,

| chosen from the following list, for "feature".

| A feature is excluded by specifying its name

| preceded by "-", "¬", or "NO", for "feature".

|

| Feature Machine Facility Specified

|

| AP Multiprocessing

| BAS Branch and save

| BRANCH_AND_SAVE Branch and save

| CHANNEL_SET_SWITCHING

| Channel set switching

| CLOCK_COMPARATOR CPU timer and clock comparator

| CONDITIONAL_SWAPPING

| Conditional swapping

| COMPARE_AND_SWAP Conditional swapping

| CPU_TIMER CPU timer and clock comparator

| CS Conditional swapping

| CSS Channel set switching

| DAS Dual address space

| DAT Translation

 INSTSET 86.1

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

| DC Direct control

| DIRECT_CONTROL Direct control

| DUAL_ADDRESS_SPACE

| Dual address space

| ECPS Extended control program

| support

| EXPANDED_STORAGE Instructions to access

| expanded storage

| EXT Extended

| EXTENDED_FACILITY

| Extended

| EXTENDED_ARCHITECTURE

| System/370 Extended

| Architecture

| EXTENDED_PRECISION

| Extended-precision floating

| point

| FXP Extended-precision floating

| point

| ISKE Storage-key-instruction

| extensions

| MAD Multiply and add

| MOVE_INVERSE Move inverse

| VECTOR_FACILITY IBM 3090 vector instructions

 86.2 INSTSET

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 IOH Macros __________

 Macro Description

 Purpose: To generate calls to IOH to perform formatted input and

 output.

 Prototype: [label] RDFMT fmt[,(par,...)]

 [label] PRFMT fmt[,(par,...)]

 [label] PCFMT fmt[,(par,...)]

 [label] WRFMT fmt[,(par,...)]

 [label] SERFMT fmt[,(par,...)]

 [label] GUSFMT fmt[,(par,...)]

 Parameters:

 fmt specifies the location of the IOH format. This ___

 must be given as a symbolic expression. See

 the section "IOH" in this volume for a descrip-

 tion of the format language.

 par specifies one simple or block parameter giving ___

 the location to be read or written. If a

 simple parameter is desired, this must be

 specified as a symbolic expression. If a block

 parameter is desired, this must be specified as

 two symbolic expressions separated by ",...,";

 for example,

 A,...,A+20

 These macros destroy the contents of registers 1, 14, and

 15. Register 13 must point to the calling program’s save

 area. The condition code may be changed.

 Description: The above macros are used to call IOH from assembly

 language programs. This description covers only the most

 elementary usage omitting many additional parameters

 which may be specified, and several other related macros.

 For a complete description of IOH, see the section "IOH"

 in this volume.

 When one of these macros is executed, IOH will be called

 to perform input or output according to the format given

 by fmt into or from the locations specified by par. Any ___ ___

 number of simple or block parameters may be specified,

 and input or output will continue until a parameter

 specified as "0" is encountered. For this reason, the

 last par should be given as "0" to terminate input or ___

 output.

 IOH Macros 87

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 By using some of the more advanced features of these

 macros, it is possible to compute dynamically the parame-

 ters to be used, specify parameters relative to base

 registers, etc. Those users who need the advanced

 features should see the section "IOH."

 Examples: RDLBL RDFMT INFMT,(CNT,A,...,A+10*4,0)

 .

 .

 INFMT DC C’I,11WF*’

 CNT DS F

 A DS 11E

 This example will read 1 fullword integer and 11 fullword

 floating-point numbers in free format.

 PRLBL PRFMT OFMT,(NUM,RESULT,C,...,C+5*4,0)

 .

 .

 NUM DS F

 RESULT DS E

 C DS 6E

 OFMT DC C’"-CASE ",I5,"RESULTS ",7WF6.2*’

 This example will print 1 fullword integer and 7 fullword

 floating-point numbers plus the 2 comments in the format

 specification.

 88 IOH Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 KWLHT _____

 Macro Description

 Purpose: To build a left-hand side entry for subroutine KWSCAN.

 See the KWSCAN subroutine description in MTS Volume 3,

 System Subroutine Descriptions. ______________________________

 Prototype: [label] KWLHT rht,exec[,keyword[,NOSPELLCOR]]

 [,MINLEN=len]

 Parameters:

 rht specifies the right-hand side index. If ___

 RHTABLE=RHT has been specified on a previous

 KWSET macro, "rht-RHT" is assembled as the ___

 right-hand side index.

 exec specifies the execute-table index. If ____

 EXTABLE=EXT has been specified on a previous

 KWSET macro, "exec-EXT" is assembled as the ____

 execute-table index.

 keyword specifies the left-hand side keyword. This _______

 may be enclosed in primes; e.g., either KEY

 or ’KEY’ may be used. If omitted, the macro

 generates a null left-hand side, implying

 the degenerate form "RHSide".

 NOSPELLCOR specifies that spelling correction is to

 be suppressed for the left-hand side entry

 (by inclusion of the X’FE’ control code).

 len specifies an explicit minimum initial sub- ___

 string length for the left-hand side entry

 (by inclusion of the X’FD’ control code).

 Examples: LBL KWLHT SPACERHT,0,SPACE

 This example generates a left-hand table entry with

 SPACERHT as the right-hand side index and 0 as the

 execute-table index. The keyword is SPACE.

 KWLHT JUNK,8

 This example generates a null left-hand side with JUNK as

 the right-hand side index and 8 as the execute-table

 index.

 KWLHT Macro 89

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 KWRHT _____

 Macro Description

 Purpose: To build a right-hand side entry for KWSCAN. See the

 KWSCAN subroutine description in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Prototype: [label] KWRHT type[,exec[,...]]

 Parameters:

 type specifies the right-hand side type. See ____

 below for the description of the types

 available. Several of the type parameters ____

 have alternate names.

 exec specifies the execute-table index. The sym- ____

 bol EXTABLE may be set by the KWSET macro as

 the execute table, in which case "exec- ____

 EXTABLE" instead of "exec" is assembled. ____

 exec may be specified as (exec,Nexec) in ____

 various types such as NEGLIT, NEGSTR, and

 NEGCHARS. This allows two execute-table

 indices. For several types, exec is ____

 omitted.

 Types:

 CHARACTERS or

 CHARS KWRHT CHARS,exec[[,min],max]

 The right-hand side is taken as an arbitrary character

 string, possibly subject to minimum (min) and maximum ___

 (max) length restrictions. ___

 KWRHT CHARS,4,1,17

 The above example matches the right-hand side, provided

 that it is 1 to 17 characters long.

 DELIMITERS or

 DCHARS KWRHT DCHARS,exec,min,max,dlmtrs

 Delimited character strings are initiated and terminated

 by one of the delimiters dlmtrs. Double instances of ______

 delimiters are interpreted as single instances of the

 delimiters. The delimited character strings are limited

 by min, the minimum permissible length, and max, the ___ ___

 maximum permissible length (less than 128).

 90 KWRHT Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 KWRHT DCHARS,STRING,1,127,’’’’

 The above example takes character strings that are of

 length 1 to 127 and are delimited by primes.

 END KWRHT END

 This terminates the search of the right-hand table and

 forces the scan for a keyword match to fail.

 FDNAME KWRHT FDNAME,exec[,N]

 The right-hand side is interpreted as an MTS FDname, or

 concatenation of FDnames, and a FDUB is acquired for it.

 If ",N" is specified, no FDnames specifying explicit

 concatenation are matched.

 FLAGGEDHEX or

 FHEX KWRHT FHEX,exec

 The right-hand side is interpreted as a flagged hexadeci-

 mal number of 8 digits maximum, expressed in the form

 X’number’.

 FILTER KWRHT FILTER,(POS1,...,POSn)

 This specifies the separator filter between the left-hand

 and right-hand sides. POS1,...,POSn specifies the ordin-

 al positions of the separators in the list passed as the

 slist parameter or implied by sws bits 20 and 21 having _____ ___

 value 01 (see the KWSCAN description in MTS Volume 3).

 KWRHT FILTER,(0,6)

 The above example lets through only "=" and degenerate

 keywords, provided that bits 20 and 21 are set to 01 in

 sws. Position 0 specifies degenerate keywords and posi- ___

 tion 6 refers to "=".

 FLOAT KWRHT FLOAT,exec[,(CODE1,NR1),...,(CODEn,NRn)]

 This specifies a long, real, floating-point number. The

 right-hand side value is interpreted as a FORTRAN-style

 long, real number, optionally followed by a scale factor.

 Operations (CODEi,NRi) may be performed on the number.

 CODEi must be a single character, and NRi a valid number.

 Operations are performed according to the following

 operation codes:

 Code Action ____ ______

 > The right-hand side value is compared to

 the operand value. If the right-hand side

 KWRHT Macro 91

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 value is less, the right-hand side match

 fails.

 < The right-hand side value is compared to

 the operand value. If the right-hand side

 value is greater, the right-hand side

 match fails.

 * The right-hand side value is multiplied by

 the operand value.

 / The right-hand side value is divided by

 the operand value.

 Others The operation code character is inter-

 preted as an optional scale factor, which,

 if present at the end of the right-hand

 value, causes the value to be multiplied

 by the operand value.

 KWRHT FLOAT,EPSILON

 The above example takes the right-hand side as a

 floating-point number, which is passed to the subroutine

 EPSILON.

 KWRHT FLOAT,MINUTES,(>,0),(S,.0166666667),(<,1000)

 The above example takes a floating-point number which

 must be positive, divides it by 60 if expressed in terms

 of seconds, and then checks if it is less than 1000.

 HEXADECIMAL or

 HEX RHT HEX,exec

 The right-hand side is interpreted as a hexadecimal

 number up to 8 hexadecimal digits long.

 IGNORE KWRHT IGNORE

 The entire keyword expression is ignored. No instruc-

 tions in the execute table are performed.

 INSET KWRHT INSET,exec,min,max,literal

 All the characters constituting the keyword expression

 right-hand side must be members of a given set of

 characters as specified in literal. min and max must be _______ ___ ___

 given and refer to the minimum and maximum permissible

 lengths of the right-hand side.

 KWRHT INSET,EBMETM,0,7,’WHTR$’

 In the above example, only characters W, H, T, R, and $

 are allowed in the right-hand side.

 92 KWRHT Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 INTEGER KWRHT INTEGER,exec[,(CODE1,NR1),...,(CODEn,NRn)]

 The right-hand side is interpreted as an optionally

 signed integer number with up to 10 decimal digits and

 possibly followed by a scale factor. NRi must be in the

 range of (-2147483648, 2147483647), inclusive. (CODEi,

 NRi) are the same as in type=FLOAT, except that NRi is

 taken as integer and that NRi can be expressed as an

 360/370 Assembler expression.

 KWRHT INTEGER,0,(M,60),(<,23*60)

 The above example takes a number as expressed in the

 right-hand side. If the right-hand side is followed by

 the scale factor M, the number is multiplied by 60. The

 number is then compared with 23*60.

 LINENUMBER or

 LINENR KWRHT LINENR,exec[,(CODE1,NR1),...,(CODEn,NRn)]

 The right-hand side is interpreted as MTS line number, an

 optionally signed number with 7 integral digits and 3

 fractional digits. This is then multiplied by 1000 to

 remove any fractional digits. (CODEi,NRi) are as in type

 INTEGER.

 KWRHT LINENR,0,(S,1),(M,60),(<,27962026),(>,1),

 (*,768),(/,10)

 The above example takes the right-hand side as expressed

 in terms of seconds "S", multiplies by 60 if it is

 followed by "M", compares it with the values 27962026 and

 1, then multiplies it by 768 and divides the product by

 10. Finally, the result is multiplied by 1000.

 LITERAL or

 LIT KWRHT LIT,exec,string

 The right-hand side is matched against a specified

 character string string. If there is a match, the ______

 instructions are then executed. The string may optional-

 ly be delimited by primes.

 KWRHT LIT,0,ON

 KWRHT LIT,4,’OFF’

 In the above example, the right-hand side is compared

 with strings ON and OFF. If ON, the instructions at

 offset 0 are executed; otherwise, if OFF, the instruc-

 tions at offset 4 are performed.

 KWRHT Macro 93

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 LITSUBSTR or

 LITSUB KWRHT LITSUB,exec,min,string

 The right-hand side must be a string of characters not

 less than "min", which must be an initial substring of

 the given "string". If "min" is zero, no restriction on

 the string length is imposed.

 KWRHT LITSUB,STOPPER,2,’STOP’

 In the above example, if the right-hand side is "ST",

 "STO", or "STOP", the instructions at STOPPER are per-

 formed. If the right-hand side is "S" or "STOPPER", the

 instructions are not performed.

 NEGCHARACTERS or

 NEGCHARS KWRHT NEGCHARS,(exec,Nexec)[[,min],max]

 This is the same as in type CHARS, except they may be

 prefixed by one of "-", "¬", "NO", or "N". If not

 prefixed, exec is performed. Otherwise, Nexec is per- ____ _____

 formed. Optionally, the minimum and maximum permissible

 lengths may be specified.

 KWRHT NEGCHARS,(YES,NO),1,3

 The above example executes YES if the right-hand side is

 not preceded by a negative prefix; otherwise, it executes

 NO. Only characters up to 3 in length may be used.

 NEGLITERAL or

 NEGLIT KWRHT NEGLIT,(exec,Nexec),string

 As in type LIT, except that string may be preceded by a

 negative prefix.

 KWRHT NEGLIT,(HEAD,NOHEAD),’HEAD’

 In the above example, if the right-hand side is HEAD, the

 instructions at HEAD are performed. If the right-hand

 side is NOHEAD, the instructions at NOHEAD are performed.

 NEGLITSUBSTR or

 NEGLITSUB KWRHT NEGLITSUB,(exec,Nexec),min,string

 As in type LITSUB, except that string may be preceded by ______

 a negative prefix.

 NEGSUBSTR or

 NEGSTR KWRHT NEGSTR,(exec,Nexec),string

 As in type SUBSTR, except that string may be preceded by ______

 a negative prefix.

 94 KWRHT Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 NORHS or

 NORHT KWRHT NORHT,exec

 If there is no right-hand side, the instructions at exec ____

 are performed.

 NOSPELLCOR

 This specifies that spelling correction is to be sup-

 pressed for the next right-hand side entry (by inclusion

 of the X’FB’ control code).

 NOTINSET KWRHT NOTINSET,exec,min,max,literal

 As in type INSET, except that the characters constituting

 the keyword expression right-hand side may not contain

 any of the characters in a given set.

 PAR KWRHT PAR,exec

 The right-hand side is taken as the remainder of the

 input string.

 PARENTHESES or

 PARENS KWRHT PARENS

 This processes parenthesized right-hand sides and causes

 the current keyword expression right-hand side to be

 treated as a parenthesized list of right-hand sides if

 such a list appears. For example, INFO=(SIZE,TYPE) would

 be processed as if INFO=SIZE,INFO=TYPE had been given.

 POP KWRHT POP

 This aborts the right-hand table search and forces the

 keyword scanner to reject the match of the keyword

 left-hand side, and to continue scanning for an alternate

 match to the left-hand side following the point in the

 left-hand table at which the previous left-hand side

 match was found.

 SUBSTR KWRHT SUBSTR,exec,string

 The right-hand side must begin with the string of

 characters specified in string. ______

 KWRHT Macro 95

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The following example draws from the MTS $FILESTATUS command. It

 processes:

 NAME=filename, filename

 HEADING=ON, HEADING=OFF, HEAD, NOHEAD

 OUTFORM=COL..., OUTFORM=KEY..., OUTFORM=LABEL...,

 OUTFORM=PACK..., COL..., KEY..., LABEL..., PACK...

 SIZE>=x, SIZE<=x, SIZE=x, SIZE<x, SIZE>x,

 SIZE>=xP, SIZE<=xP, SIZE=xP, SIZE<xP, SIZE>xP

 (This is a small subset of the parameters of the

 $FILESTATUS command).

 KWSET RHTABLE=RHT

 MVI NAMEF,0 Initialize flag

 TRYAGAIN CALL KWSCAN,(LHTL,LHT,EXT,STR,RHT,STRL,SWS,RVEC)

 LTR 15,15

 BZ OK -> All OK.

 CLC =F’1’,RVEC

 BE ABORT -> User said to CANCEL it.

 CLC =F’3’,RVEC

 BNE VERYBAD -> Unexpected return code

 SERCOM ’ TRY AGAIN.’

 B TRYAGAIN -> Sic

 LHTL DC Y(RHT-LHT) Length of left-hand table

 SPACE 3

 LHT KWLHT JUNK,0,’OUTFORM’

 KWLHT HEAD,HEADE-EXT,’HEADING’

 KWLHT NAME,NAMEE-EXT,’NAME’

 KWLHT SIZE,SIZEE-EXT,’SIZE’

 KWLHT JUNK,0 Null left-hand side

 RHT EQU *

 HEAD KWRHT FILTER,(6) Only let through "="

 KWRHT LIT,0,’ON’ HEADING=ON

 KWRHT LIT,4,’OFF’ HEADING=OFF

 KWRHT END

 SIZE KWRHT FILTER,(1,2,4,5,6) Don’t let null left-hand

 * sides or SIZE¬=xx through

 * here

 KWRHT LINENR,0,(P,1) SIZE (>=,<=,>,<,=)xxxP

 KWRHT END

 NAME KWRHT FILTER,(6) Only let through "="

 KWRHT CHARS,0,1,17 NAME=<1 TO 17 characters>

 KWRHT END

 JUNK KWRHT FILTER,(0,6) Only let through "=" and

 * degenerates

 KWRHT SUBSTR,OUTFE-EXT,’COL’ OUTFORM=COL or COL

 KWRHT SUBSTR,OUTFE-EXT+4,’KEY’ OUTFORM=KEY or KEY

 KWRHT SUBSTR,OUTFE-EXT+8,’LABEL’ OUTFORM=LABEL or

 * LABEL

 96 KWRHT Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 KWRHT SUBSTR,OUTFE-EXT+12,’PACK’ OUTFORM=PACK or PACK

 KWRHT FILTER,(0) Only let null left-hand

 * side through

 KWRHT NEGLIT,(HEADE-EXT,HEADE-EXT+4),’HEAD’

 * HEAD or NOHEAD

 KWRHT CHARS,NAMEE-EXT,1,17 <filename>

 KWRHT END

 SPACE 5

 EXT DS 0H

 HEADE MVI HEADF,1 Header

 MVI HEADF,0 No header

 NAMEE BAL 15,*+4 Make this a subroutine

 TM NAMEF,1 Already have a name?

 BO 16(,15) -> Yup, user blew it

 OI NAMEF,1 Remember name was saved

 EX 1,FILEMVC Save name

 BR 15 -> To KWSCAN

 FILEMVC MVC FILENAME(0),0(2)

 SIZEE BAL 15,*+4 Make this a subroutine

 STC 5,RELATION Save relational character

 ST 2,SIZEVAL Save size value

 BR 15 -> To KWSCAN

 OUTFE MVI FORMF,0 Select heading format

 MVI FORMF,1

 MVI FORMF,2

 MVI FORMF,3

 SPACE 5

 HEADF DS X

 NAMEF DS X

 FILENAME DS CL17

 RELATION DS X

 SIZEVAL DS F

 FORMF DS X

 STR DC CL80’OUTFORM=COL,JUNK,SIZE>5P,NOHEAD’

 STRL DC H’80’

 SWS DC X’0000E427’ Correct spelling, RVEC

 * format, relational

 * separators, uppercase,

 * print, prompt, multiple

 * keywords

 RVEC DS 27F

 KWRHT Macro 97

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 KWSET _____

 Macro Description

 Purpose: To set the symbols for the macros KWLHT and KWRHT.

 Prototype: KWSET RHTABLE=rht,EXTABLE=ext,LHTL=len

 Parameters:

 rht specifies the right-hand side table. See ___

 the KWLHT macro.

 ext specifies the execute table. See both the ___

 KWLHT and KWRHT macros.

 len specifies that in the KWLHT macro the dis- ___

 placements of right-hand side and execute-

 table indices are to be len bytes long. The ___

 legal values for len are 1 or 2; the default ___

 is 1.

 Examples: KWSET RHTABLE=RHT,EXTABLE=EXEC

 This sets RHTABLE to the right-hand side table RHT, and

 EXTABLE to the execute table EXEC.

 KWSET LHTL=2

 This example resets RHTABLE and EXTABLE to null, and

 specifies that the displacements in KWLHT macro are to be

 two bytes long.

 98 KWSET

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 LABEL _____

 Macro Description

 Purpose: To define a label as a machine instruction.

 Prototype: [label] LABEL

 Description: If the label is specified, the macro expansion will

 generate:

 DS 0H

 label EQU *,,C’I’

 LABEL Macro 99

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 LITADDR _______

 Macro Description

 Purpose: To set a switch to indicate to the following macros if

 literals are addressable.

 Prototype: LITADDR [YES|NO] ___

 Description: This macro sets the Global SETB (GBLB) switch &LITADDR to

 1 if the parameter to the macro is YES or if there is no

 parameter. This switch is tested by certain macros, such

 as CALL, to see whether it can generate a literal instead

 of an in-line adcon.

 100 LITADDR Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MAXxx, MINxx ____________

 Macro Description

 Purpose: To pick the maximum (or minimum) from the list of

 arguments.

 Prototype: Short form:

 [label] MAXxx x,y

 [label] MINxx x,y

 Long form:

 [label] MAXxx result,a,b,...,z

 [label] MINxx result,a,b,...,z

 Parameters:

 MAXxx or MINxx specifies the macro name. __ __

 x specifies the first argument and the _

 result.

 y specifies the second argument. _

 result specifies the result. ______

 a,b,...,z specifies the list of arguments. _________

 The condition code is unpredictable afterwards.

 Description: The macros MAXxx (or MINxx) place the maximum (or

 minimum) of all arguments in the result (either "x" or

 "result" according to which form of macros is being

 used). The short form is used when there are only two

 macro operands; in this case, the first operand is

 compared with the second operand, and the maximum (or

 minimum) of the two operands is placed in the first

 operand. The long form is used when there are more than

 two macro operands. Here, the first operand is consid-

 ered as the "result" while all operands are arguments.

 All arguments must be of the same type for any MAXxx or

 MINxx macro. If an argument is enclosed within parenthe-

 ses, then the value is in the specified general register

 (MAX/MIN, MAXH/MINH, MAXL/MINL) or in the specified

 floating-point register (MAXE/MINE, MAXD/MIND). The re-

 sult, which is the maximum (or minimum) of all arguments,

 is placed in "result" or "x", which must be a general

 register for MAX/MIN, MAXH/MINH, MAXL/MINL, or a

 floating-point register for MAXE/MINE, MAXD/MIND, or a

 packed-decimal datum for MAXP/MINP, or a character field

 for MAXC/MINC. All arguments in MAXP/MINP macros must

 fit the "result" or a data overflow will result. All

 MAXxx, MINxx Macros 101

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 arguments in MAXC/MINC macros must be character fields of

 same length as the "result", and this length must be less ____

 than or equal to 256.

 Note that for the short form, only two operands are

 compared and the result is placed in the first operand.

 It is necessary that the first operand must conform to

 the type of the result.

 ┌──┐ ┌ ┌
 |Macro | Type of operands | Type of result |

 |──────┼──────────────────────────────────────┼────────────────────────| ┌ ┘
 | MAX | Fullword integer or general register | General register |

 | MIN | | |

 |──────┼──────────────────────────────────────┼────────────────────────| ┌ ┘
 | MAXH | Halfword integer or general register | General register |

 | MINH | | |

 |──────┼──────────────────────────────────────┼────────────────────────| ┌ ┘
 | MAXL | Logical fullword or general register | General register |

 | MINL | | |

 |──────┼──────────────────────────────────────┼────────────────────────| ┌ ┘
 | MAXE | Short floating register or fullword | Short floating register|

 | MINE | | |

 |──────┼──────────────────────────────────────┼────────────────────────| ┌ ┘
 | MAXD | Long floating register or doubleword | Long floating register |

 | MIND | | |

 |──────┼──────────────────────────────────────┼────────────────────────| ┌ ┘
 | MAXP | Packed-decimal data | Packed-decimal datum |

 | MINP | | |

 |──────┼──────────────────────────────────────┼────────────────────────| ┌ ┘
 | MAXC | Character fields | Character field |

 | MINC | | |

 └──┘ ┘ ┘

 Examples:

 LM 0,1,=CL8’SPRINT’ Get information for SPRINT

 CALL GDINFO

 USING GDDSECT,1 Now using GDINFO dsect

 LH 2,GDOUTLEN Obtain maximum output length

 MAXH 2,=H’20’ If less than 20, set to 20

 MINH 2,=H’121’ If more than 121, set to 121

 DROP 1

 STH 2,OUTLEN Set output length

 ...

 COPY *GDINFODSECT

 This example obtains the maximum output length for the

 logical I/O unit SPRINT and sets it within the bounds of

 (20,121).

 MAXC 0(8,8),A,B,C,D Set maximum of A, B, C, D

 MINC 8(8,8),A,B,C,D Set minimum of A, B, C, D

 102 MAXxx, MINxx Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 This example finds the maximum and minimum of four

 character fields of length 8. Both the maximum and

 minimum are placed in two doublewords pointed to by

 register 8.

 MIN 15,F1,F2,(9)

 This example obtains the minimum of fullword integers F1,

 F2, and register 9. The minimum is put in general

 register 15.

 LM 3,5,=A(ARR,4,ARR+(10-1)*4)

 LE 0,0(0,3) Load first array element

 DO BXLE=(3,4) Loop for all other elements

 MAXE 0,0(0,3) Get maximum of two values

 ENDDO ,

 STE 0,MAX Store the maximum.

 ...

 MAX DS E Holds maximum in the array

 ARR DS 10E Ten floating-point elements

 This example finds the maximum of short floating-point

 array and stores it in the variable MAX.

 MAXxx, MINxx Macros 103

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MOUNT _____

 Macro Description

 Purpose: To assemble a call to the MOUNT subroutine.

 Prototype: [label] MOUNT ’string’

 Parameters:

 string is the character string for one or more ______

 mount requests separated by semicolons (see

 the $MOUNT command description in Volume 1,

 The Michigan Terminal System). ____________________________

 This macro destroys the contents of registers 0, 1, 14,

 and 15. Register 13 must point to the calling program’s

 save area. The condition code may be changed.

 Description: A call to the MOUNT subroutine will be assembled. A

 description of the MOUNT subroutine is given in MTS

 Volume 3, System Subroutine Descriptions. The macro ________________________________

 generates literal constants, thus literal addressability

 must be preserved.

 Example: STA MOUNT ’C9999 ON 9TP *T* RING=IN ’’TAPE 462’’’

 This example mounts the magnetic tape C9999 on a 9-track

 tape drive. The tape is mounted with the file-protect

 ring in and is assigned the pseudodevice name *T*. The

 tape ID is TAPE 462. Note that the double primes are

 required in the macro call to produce single primes in

 the character string used to call MOUNT.

 104 MOUNT Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MSG, PMSG, PHRASE _________________

 Macro Description

 Purpose: To assemble and print messages. MSG assembles a message.

 PMSG assembles and prints a message. PHRASE assembles

 partial (unterminated) messages.

 Description: The description of these macros is given in the section

 "The Message Macros" in this volume.

 MSG, PMSG, PHRASE Macros 105

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MTS ___

 Macro Description

 Purpose: To assemble a call to the MTS subroutine. See the MTS

 subroutine description in MTS Volume 3, System Subroutine _________________

 Descriptions. ____________

 Prototype: [label] MTS

 This macro destroys the contents of registers 14 and 15.

 Register 13 must point to the calling program’s save

 area. The condition code may be changed.

 Description: This will generate

 label L 15,=V(MTS)

 BALR 14,15

 106 MTS Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MTSCMD ______

 Macro Description

 Purpose: To assemble a call to the MTSCMD subroutine. See the

 MTSCMD subroutine description in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Prototype: [label] MTSCMD reg[,len]

 Parameters:

 reg specifies the command to be given to MTSCMD. ___

 It may be a command enclosed in primes, the

 name of a region containing the command, or the

 number of a register (which contains the loca-

 tion of the command) enclosed in parentheses.

 len (optional) specifies the length of the command. ___

 It may be the name of a halfword or fullword

 containing the length, or the number of a

 register (which contains the length) enclosed

 in parentheses. If it is omitted, L’REG is

 used. It must be omitted if reg is ’text’ and ____ ___

 may not be omitted if reg specifies a register. ___ ___

 This macro destroys the contents of registers 1, 14, and

 15. Register 13 must point to the calling program’s save

 area. The condition code may be changed.

 Examples: LBL MTSCMD ’$RESTART SPRINT=-X’

 This example calls MTSCMD with $RESTART SPRINT=-X as the

 command.

 MTSCMD CMD

 This example calls MTSCMD with location CMD containing a

 command. The length of CMD defines the length of the

 command.

 MTSCMD (2),(3)

 This example calls MTSCMD with register 2 containing the

 location of a command and register 3 containing the

 length of the command.

 MTSCMD Macro 107

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MTSMODS _______

 Macro Description

 Purpose: To assemble a word of modifier bits for the I/O routines.

 Prototype: [label] MTSMODS mods

 Parameter:

 mods is either a single item, or else a list of ____

 items, enclosed in parentheses and separated by

 commas. Each item consists of the name of an

 MTS modifier preceded by either an at sign (@),

 an at sign and a not sign (@¬), or an at sign

 and a minus sign (@-). For a list of names and

 their meanings, see the "I/O Modifiers" de-

 scription in MTS Volume 1 or MTS Volume 3.

 Examples: MODI MTSMODS @I

 OUTMOD MTSMODS (@I,@PFX,@¬TRIM)

 108 MTSMODS Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 QUIT ____

 Macro Description

 Purpose: To assemble a call to the QUIT subroutine. See the QUIT

 subroutine description in MTS Volume 3, System Subroutine _________________

 Descriptions. ____________

 Prototype: [label] QUIT [WHO=tb,][WHEN=nl]

 Parameters:

 tb (optional) either BATCH (the default) indicat- __

 ing to call QUIT in batch mode only, or ALL

 indicating to call QUIT always.

 nl (optional) is either NOW (the default) indicat- __

 ing that the SYSTEM subroutine is to be called

 after a return from QUIT, or LATER indicating

 an omission of the call to SYSTEM.

 This macro destroys the contents of registers 14 and 15.

 Register 13 must point to the calling program’s save

 area. The condition code may be changed.

 Example: LBL QUIT WHEN=LATER

 This example calls QUIT; the call to SYSTEM is omitted.

 This call is effective for batch mode only.

 LBL1 QUIT WHO=ALL

 This example calls QUIT and then calls SYSTEM immediately

 afterwards. This is effective for both terminal and

 batch mode.

 QUIT Macro 109

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 READ ____

 Macro Description

 Purpose: To assemble a call to the READ subroutine. See the READ

 subroutine description in MTS Volume 3, System Subroutine _________________

 Descriptions. ____________

 Prototype: [label] READ unit,reg[,regl][,modifs][,lnr]

 [,EXIT=exitseq][,MF=mod][,TREG=(r1,r2)]

 Parameters:

 unit specifies the corresponding parameter to be ____

 given to the READ subroutine. This parame-

 ter is either a number from 0 through 19,

 the name of a logical I/O unit enclosed in

 primes, the location of a fullword-aligned

 fullword containing a FDUB-pointer, or the

 number of a register (which contains a

 FDUB-pointer) in parentheses.

 reg is the location of the region into which the ___

 record is to be read. This may be expressed

 as a symbol or as the number of a register

 (which contains the location of the region)

 in parentheses.

 regl (optional) specifies the place to store the ____

 length of the input upon return from the

 READ subroutine. This may be either the

 name of a halfword to contain the length, or

 the number of a register (which will contain

 the length) in parentheses. If omitted, the

 length is discarded.

 modifs (optional) stands for several parameters ______

 separated by commas. Each parameter con-

 sists of the name of an MTS modifier pre-

 ceded by either an at sign (@), an at sign

 and a not sign (@¬), or an at sign and a

 minus sign (@-). If no modifiers are given,

 zero is used for the modifiers parameter to

 READ. See the "I/O Modifiers" description

 in MTS Volume 1 or MTS Volume 3.

 lnr (optional) specifies the line number parame- ___

 ter for the READ subroutine. This may be

 the location of a fullword containing the

 line number, a self-defining term which is

 the line number, or the number of a register

 (which contains the line number) in paren-

 theses. If a register is specified, it will

 be stored in the line number parameter

 110 READ Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 before the call and loaded from it after the

 call. If omitted, the macro generates a

 fullword if needed. If the @INDEXED modi-

 fier is specified in this macro or else-

 where, the value of the lnr parameter before ___

 the call to the READ subroutine is used.

 See the "I/O Modifiers" description in MTS

 Volume 1 or MTS Volume 3 for further discus-

 sion of this. If both regl and lnr are ____ ___

 registers, lnr should not be GR1. ___

 exitseq (optional) is a keyword parameter specifying _______

 the exits to be taken for nonzero return

 codes. If exitseq is a single symbol, any _______

 nonzero return code will cause a branch to

 this symbol. If exitseq is a parenthesized _______

 list of symbols, a return code of 4 will

 cause a branch to the first symbol, a return

 code of 8 will cause a branch to the second

 symbol, etc. If a return code larger than

 that corresponding to the last symbol

 occurs, a branch to the last symbol will be

 taken.

 mod (optional) is a keyword parameter. See ___

 below for a description of the MF= keyword.

 r1,r2 (optional) is a keyword parameter specifying _____

 two temporary registers to be used in

 expanding calls when MF=E. If it is omit-

 ted, GR14 and GR15 are assumed.

 This macro destroys the contents of registers 1, 14, and

 15. If modifs includes NOPROMPT and/or NOTIFY, the ______

 called subroutine will destroy the contents of register

 0. If MF=(E,...) is specified, the contents of regis-

 ters r1 and r2 are also destroyed. Register 13 must __ __

 point to the calling program’s save area. The condition

 code may be changed.

 Description: If MF=L is included in the parameter list, only the

 parameter list will be generated. In this case, no

 executable code is produced, and all other parameters are

 optional. Parameters specified as registers will be

 ignored.

 If MF=(E,listadr) is specified, listadr is assumed to be _______

 the name assigned to an MF=L form of the macro, and only

 the executable code required to call the subroutine is

 generated. listadr may be the name of an MF=L form of _______

 the macro or the number of a register (which contains the

 location of an MF=L form) in parentheses. If any other

 parameters are given, they are used to modify the list

 generated by the MF=L macro before the call. In this

 case, the TREG keyword specifies two registers to be used

 for modifying the parameter list. If omitted, registers

 READ Macro 111

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 14 and 15 are used, and they should not contain parame-

 ters. Any other parameter may be used with an MF=E form

 of the call. If any modifiers are given, the new

 modifiers completely replace the old modifiers unless the

 MF parameter is given as MF=(E,listadr,SEP) in which case

 only the modifiers specified are changed.

 Examples: LAB1 READ 5,INREG,L,EXIT=(EOF,OUCH)

 This example calls READ, specifying that a record is to

 be read from logical I/O unit 5 into the region at the

 location INREG and that the length of the record is to be

 stored in location L. A branch is made to EOF upon a

 return code of 4 from READ; a branch is made to OUCH upon

 a return code of 8 or greater.

 LAB2 READ ’SCARDS’,REGION,LENG,@I,@PFX,EXIT=DONE

 This example calls READ, specifying that a record is to

 be read from SCARDS into the region at the location

 REGION and that the length of the record is to be stored

 in the location LENG. The record is read with the @I and

 @PFX modifiers specified. A branch is made to DONE upon

 a nonzero return code from READ.

 112 READ Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 REQU ____

 Macro Description

 Purpose: To generate EQU statements for the general registers or

 floating-point registers.

 Prototypes: REQU [TYPE={HEX|DEC|BOTH}][,PFX=prefix]

 REQU TYPE={FRS|FPR}[,PFX=prefix]

 Description: The first form of REQU generates 16 EQU statements

 equating symbolic register names to the values 0 through

 15. The PFX keyword specifies the symbolic prefix to be

 used. The default for prefix is R. Thus if the default ______

 PFX is used, the macro generates statements equating R0

 through RF or R0 through R15 to the values 0 through 15,

 respectively.

 The code generated (assuming PFX=R) is

 R0 EQU 0

 R1 EQU 1

 R2 EQU 2

 R3 EQU 3

 R4 EQU 4

 R5 EQU 5

 R6 EQU 6

 R7 EQU 7

 R8 EQU 8

 R9 EQU 9

 plus the following if val is HEX, BOTH, or omitted ___

 RA EQU 10

 RB EQU 11

 RC EQU 12

 RD EQU 13

 RE EQU 14

 RF EQU 15

 plus the following if val is DEC or BOTH ___

 R10 EQU 10

 R11 EQU 11

 R12 EQU 12

 R13 EQU 13

 R14 EQU 14

 R15 EQU 15

 REQU Macro 113

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The second form of REQU generates 4 EQU statements

 equating symbolic register names to the values 0, 2, 4,

 and 6. The PFX keyword specifies the symbolic prefix to

 be used. The default for prefix is FR. ______

 The code generated (assuming PFX=FR) is

 FR0 EQU 0

 FR2 EQU 2

 FR4 EQU 4

 FR6 EQU 6

 114 REQU Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 RETURN ______

 Macro Description

 Purpose: To return control to the calling program and to signal

 normal termination of the returning program.

 Prototype: [label] RETURN [(r1[,r2])][,T][,RC=code]

 Parameters:

 r1,r2 (optional) is the range of registers to be __ __

 restored from the save area pointed to by

 the address in GR13. The registers should

 be specified to cause the loading of regis-

 ters 14, 15, and 0 through 12 when used in a

 LM instruction. If r2 is not specified, __

 only the register specified by the r1 oper- __

 and is loaded. If the operand is omitted,

 the contents of the registers are not

 altered.

 T (optional) causes the control program to

 flag the save area used by the returning

 program. A byte containing all 1’s is

 placed in the high-order byte of word 4 of

 the save area after the registers have been

 loaded.

 code (optional) is the return code to be passed ____

 to the calling program. The return code

 should have a maximum value of 4095; it will

 be placed right-adjusted in GR15 before the

 return is made. If RC=(15) is coded, it

 indicates that the return code has been

 previously loaded into GR15; in this case

 the contents of GR15 are not altered or

 restored from the save area. (If this

 operand is omitted, the contents of GR15 are

 determined by the r1,r2 operands.) __ __

 Description: The return of control by the RETURN macro instruction is

 always made by executing a branch instruction using the

 address in GR14. This macro can be written to restore a

 specified range of registers, provide the proper return

 code in GR15, and flag the save area by the returning

 program. See the "Calling Conventions" description in

 MTS Volume 3, System Subroutine Descriptions, for a ________________________________

 further explanation of save areas and their formats.

 RETURN Macro 115

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Examples: LAB1 RETURN (14,12),RC=4

 This example generates a return sequence which restores

 registers 14 through 12 from the save area specified by

 register 13. A return code of 4 is given in register 15.

 LAB2 RETURN (5,10),T

 The example generates a return sequence which restores

 registers 5 through 10 from the save area pointed to by

 register 13. The save area is flagged in word 4.

 LAB3 RETURN (14,12),T,RC=(15)

 This examples generates a return sequence which restores

 registers 14 through 12 from the save area pointed to by

 register 13. The save area is flagged in word 4.

 Register 15 is not altered.

 116 RETURN Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 REWIND ______

 Macro Description

 Purpose: To rewind a magnetic tape or file.

 Prototype: [label] REWIND ldn

 Parameters:

 ldn is a logical I/O unit number from 0 to 19, ___

 ’SCARDS’, ’SPRINT’, ’SPUNCH’, ’SERCOM’, or

 ’GUSER’ corresponding to the appropriate logi-

 cal I/O unit specification on a $RUN command,

 or an FDUB-pointer.

 This macro destroys the contents of registers 1, 14, and

 15. Register 13 must point to the calling program’s save

 area. The condition code may be changed.

 Description: REWIND assembles a call to the subroutine REWIND#. See

 the REWIND# subroutine description in MTS Volume 3,

 System Subroutine Descriptions. ______________________________

 Examples: LAB1 REWIND 0

 This example calls REWIND#, specifying logical I/O unit 0

 as the logical I/O unit to be rewound.

 LAB2 REWIND ’SPRINT’

 This example calls REWIND#, specifying SPRINT as the

 logical I/O unit to be rewound.

 LAB3 REWIND FDUB

 This example calls REWIND#, specifying that the tape or

 file referred to by the FDUB-pointer in location FDUB is

 to be rewound.

 REWIND Macro 117

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SAVE ____

 Macro Description

 Purpose: To save the contents of a specified set of general

 registers in a save area provided by the user.

 Prototype: [label] SAVE (r1[,r2]),[T][,name]

 Parameters:

 r1,r2 is the range of general registers to be __ __

 stored in the save area at the address

 contained in GR13. The registers should be

 specified so that they are stored in the

 order 14, 15, and 0 through 12 when used in

 a STM instruction. The registers are stored

 in words 4 through 18 of the save area. If

 only one register is specified, only that

 register is saved.

 T (optional) specifies that registers 14 and

 15 are to be stored in words 4 and 5,

 respectively, of the save area. If both T

 and r2 are specified and r1 is any one of __ __

 the registers 14, 15, 0, 1, or 2, all of

 registers 14 through r2 are saved. __

 name (optional) is an identifier name to be ____

 associated with the SAVE macro instruction.

 The name may be up to 70 characters and may

 be a complex name. If an asterisk is coded,

 the identifier is the symbol associated with

 the SAVE macro instruction, or, if the name

 field is blank, with the control section

 name. If the CSECT instruction name field

 is blank, the operand is ignored. Whenever

 a symbol or an asterisk is coded, the

 following macro expansion occurs:

 (1) A count byte, containing the number of

 characters in the identifier name, is

 constructed, starting at four bytes

 following the address contained in

 GR15.

 (2) The character string containing the

 identifier name is constructed, start-

 ing at five bytes following the address

 contained in GR15.

 Description: The SAVE macro instruction causes the contents of the

 specified registers to be stored in the save area at the

 118 SAVE Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 address contained in GR13. An entry point identifier can

 optionally be specified. The SAVE macro should be

 written only at the entry point of a program because the

 code resulting from the macro expansion requires that

 GR15 contain the address of the SAVE macro instruction.

 See the "Calling Conventions" description in MTS Volume

 3, System Subroutine Descriptions, for a further explana- ______________________________

 tion of save areas and their formats.

 Examples: LAB1 SAVE (14,12)

 USING LAB1,15

 This example generates a sequence to save registers 14

 though 12 in the save area pointed to by register 13.

 LAB2 SAVE (5,10),T

 USING LAB2,15

 This example generates a sequence to save registers 5

 through 10 in the save area pointed to by register 13.

 Registers 14 and 15 are stored in words 4 and 5 of the

 save area, respectively.

 LAB3 SAVE (14,12),,*

 USING LAB3,15

 This example generates a sequence to save registers 14

 through 12 in the save area pointed to by register 13.

 The symbol LAB3 is associated with the SAVE macro

 instruction.

 SAVE Macro 119

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SCARDS ______

 Macro Description

 Purpose: To assemble a call to the SCARDS subroutine. See the

 SCARDS subroutine description in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Prototype: [label] SCARDS reg[,regl][,modifs][,lnr][,EXIT=exitseq]

 [,MF=mod][,TREG=(r1,r2)]

 Parameters:

 reg is the location of the region into which a ___

 record is to be read. This may be expressed

 as a symbol or as the number of a register

 (which contains the location of the region)

 in parentheses.

 regl (optional) specifies the place to store the ____

 length of the input upon return from the

 SCARDS subroutine. This may be either the

 name of a halfword to contain the length, or

 the number of a register (which will contain

 the length) in parentheses. If omitted, the

 length is discarded.

 modifs (optional) stands for several parameters ______

 separated by commas. Each parameter con-

 sists of the name of an MTS modifier pre-

 ceded by either an at sign (@), an at sign

 and a not sign (@¬), or an at sign and a

 minus sign (@-). If no modifiers are given,

 zero is used for the modifiers parameter to

 SCARDS. See the "I/O Modifiers" description

 in MTS Volume 1 or MTS Volume 3.

 lnr (optional) specifies the line number parame- ___

 ter for the SCARDS subroutine. This may be

 the location of a fullword containing the

 line number, a self-defining term which is

 the line number, or the number of a register

 (which contains the line number) in paren-

 theses. If a register is specified, it will

 be stored in the line number parameter

 before the call and loaded from it after the

 call. If omitted, the macro generates a

 fullword if needed. If the @INDEXED modi-

 fier is specified in this macro or else-

 where, the value of the lnr parameter before ___

 the call to the SCARDS subroutine is used.

 See the "I/O Modifiers" description in MTS

 Volume 1 or MTS Volume 3 for further discus-

 120 SCARDS Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 sion of this. If both regl and lnr are ____ ___

 registers, lnr should not be GR1. ___

 exitseq (optional) is a keyword parameter specifying _______

 the exits to be taken for nonzero return

 codes. If exitseq is a single symbol, any _______

 nonzero return code will cause a branch to

 this symbol. If exitseq is a parenthesized _______

 list of symbols, a return code of 4 will

 cause a branch to the first symbol, a return

 code of 8 will cause a branch to the second

 symbol, etc. If a return code larger than

 that corresponding to the last symbol

 occurs, a branch to the last symbol will be

 taken.

 mod (optional) is a keyword parameter. See ___

 below for a description of the MF= keyword.

 r1,r2 (optional) is a keyword parameter specifying _____

 two temporary registers to be used in

 expanding calls when MF=E. If omitted, GR14

 and GR15 are assumed.

 This macro destroys the contents of registers 1, 14, and

 15. If modifs includes NOPROMPT and/or NOTIFY, the ______

 called subroutine will destroy the contents of register

 0. If MF=(E,...) is specified, the contents of regis-

 ters r1 and r2 are also destroyed. Register 13 must __ __

 point to the calling program’s save area. The condition

 code may be changed.

 Description: If MF=L is included in the parameter list, only the

 parameter list will be generated. In this case, no

 executable code is produced, and all other parameters are

 optional. Parameters specified as registers will be

 ignored.

 If MF=(E,listadr) is specified, listadr is assumed to be _______

 the name assigned to an MF=L form of the macro, and only

 the executable code required to call the subroutine is

 generated. listadr may be the name of an MF=L form of _______

 the macro or the number of a register (which contains the

 location of an MF=L form) in parentheses. If any other

 parameters are given, they are used to modify the list

 generated by the MF=L macro before the call. In this

 case, the TREG keyword specifies two registers to be used

 for modifying the parameter list. If omitted, registers

 14 and 15 are used, and they should not contain parame-

 ters. Any other parameter may be used with an MF=E form

 of the call. If any modifiers are given, the new

 modifiers completely replace the old modifiers unless the

 MF parameter is given as MF=(E,listadr,SEP) in which case

 only the modifiers specified are changed.

 SCARDS Macro 121

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Examples: LAB1 SCARDS REG,LEN,EXIT=EOF

 This example calls SCARDS with REG as the location of the

 region to be read into and LEN as the location to store

 the length of the record read. A nonzero return code

 from SCARDS will cause a branch to EOF.

 LAB2 SCARDS REGION,LENG,@I,@PFX,EXIT=DONE

 This example calls SCARDS with REGION as the location of

 the region to be read into and LENG as the location to

 store the length of the record read. The record is read

 with the @I and @PFX modifiers specified. A nonzero

 return code will cause a branch to DONE.

 122 SCARDS Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SERCOM ______

 Macro Description

 Purpose: To assemble a call to the SERCOM subroutine. See the

 SERCOM subroutine description in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Prototype: [label] SERCOM reg[,regl][,modifs][,lnr][,EXIT=exitseq]

 [,MF=mod][,TREG=(r1,r2)]

 [label] SERCOM ’comment’[,modifs][,lnr][,EXIT=exitseq]

 [,MF=mod][,TREG=(r1,r2)]

 Parameters:

 reg is the location of the region from which the ___

 record is to be written. This may be

 expressed as a symbol or as the number of a

 register (which contains the location of the

 region) in parentheses.

 regl (optional) specifies the length of the out- ____

 put region for the SERCOM subroutine. This

 may be either the name of a halfword con-

 taining the length, or the number of a

 register (which contains the length) in

 parentheses. If it is omitted, L’REG is

 assumed.

 modifs (optional) stands for several parameters ______

 separated by commas. Each parameter con-

 sists of the name of an MTS modifier pre-

 ceded by either an at sign (@), an at sign

 and a not sign (@¬), or an at sign and a

 minus sign (@-). If no modifiers are given,

 zero is used for the modifiers parameter to

 SERCOM. See the "I/O Modifiers" description

 in MTS Volume 1 or MTS Volume 3.

 lnr (optional) specifies the line number parame- ___

 ter for the SERCOM subroutine. This may be

 the location of a fullword containing the

 line number, a self-defining term which is

 the line number, or the number of a register

 (which contains the line number) in paren-

 theses. If a register is specified, it will

 be stored in the line number parameter

 before the call and loaded from it after the

 call (if the @RETURNLINE# modifier is speci-

 fied or if the MF=(E,...) form is used).

 If omitted, the macro generates a fullword

 if needed. If the @INDEXED modifier is

 SERCOM Macro 123

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 specified in this macro or elsewhere, the

 value of the lnr parameter before the call ___

 to the SERCOM subroutine is used. See the

 "I/O Modifiers" description in MTS Volume 1

 or MTS Volume 3 for further discussion of

 this. If both regl and lnr are registers, ____ ___

 lnr should not be GR1. ___

 exitseq (optional) is a keyword parameter specifying _______

 the exits to be taken for nonzero return

 codes. If exitseq is a single symbol, any _______

 nonzero return code will cause a branch to

 this symbol. If exitseq is a parenthesized _______

 list of symbols, a return code of 4 will

 cause a branch to the first symbol, a return

 code of 8 will cause a branch to the second

 symbol, etc. If a return code larger than

 that corresponding to the last symbol

 occurs, a branch to the last symbol will be

 taken.

 mod (optional) is a keyword parameter. See ___

 below for a description of the MF= keyword.

 r1,r2 (optional) is a keyword parameter specifying _____

 two temporary registers to be used in

 expanding calls when MF=E. If omitted, GR14

 and GR15 are assumed.

 This macro destroys the contents of registers 1, 14, and

 15. If modifs includes NOPROMPT and/or NOTIFY, the ______

 called subroutine will destroy the contents of register

 0. If MF=(E,...) is specified, the contents of regis-

 ters r1 and r2 are also destroyed. Register 13 must __ __

 point to the calling program’s save area. The condition

 code may be changed.

 Description: If MF=L is included in the parameter list, only the

 parameter list will be generated. In this case, no

 executable code is produced, and all other parameters are

 optional. Parameters specified as registers will be

 ignored.

 If MF=(E,listadr) is specified, listadr is assumed to be _______

 the name assigned to an MF=L form of the macro, and only

 the executable code required to call the subroutine is

 generated. listadr may be the name of an MF=L form of _______

 the macro or the number of a register (which contains the

 location of an MF=L form) in parentheses. If any other

 parameters are given, they are used to modify the list

 generated by the MF=L macro before the call. In this

 case, the TREG keyword specifies two registers to be used

 for modifying the parameter list. If omitted, registers

 14 and 15 are used, and they should not contain parame-

 ters. Any other parameter may be used with an MF=E form

 of the call. If any modifiers are given, the new

 124 SERCOM Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 modifiers completely replace the old modifiers unless the

 MF parameter is given as MF=(E,listadr,SEP) in which case

 only the modifiers specified are changed.

 Examples: LAB1 SERCOM REG,LEN,EXIT=(EOF,ERROR)

 This example calls SERCOM, writing the record contained

 in location REG of length contained in location LEN. A

 branch is made to EOF upon a return code of 4; a branch

 is made to ERROR upon a return code of 8 or greater.

 LAB2 SERCOM REGION,LENG,@I,EXIT=DONE

 This example calls SERCOM, writing the record contained

 in location REGION of length contained in location LENG.

 The record is written with the @I modifier specified. A

 nonzero code from SERCOM will cause a branch to DONE.

 LAB3 SERCOM ’THIS IS A COMMENT’

 This example calls SERCOM, writing the text enclosed in

 primes.

 SERCOM Macro 125

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SPIE ____

 Macro Description

 Purpose: To assemble a call to the SPIE subroutine. The SPIE

 subroutine is used to specify the address of an interrup-

 tion exit routine and to specify the program interrupt

 types that are to cause the exit routine to be given

 control. See the SPIE subroutine description in MTS

 Volume 3, System Subroutine Descriptions. ______________________________

 Prototype: [label] SPIE [exit,(mask)][,MF=mod]

 Parameters:

 exit is the location of the exit routine to be given ____

 control after a program interrupt of the type

 specified in the mask parameter. ____

 mask is one or more decimal numbers, separated by ____

 commas, specifying the program interrupt types

 which cause control to be given to the exit

 routine. These decimal numbers correspond to

 the 15 program exception codes. See the SPIE

 subroutine description in MTS Volume 3. The

 interrupt types can be specified in any order

 as follows:

 (1) One or more single numbers, each indicat-

 ing the program interrupt type.

 (2) One or more pairs or numbers, each pair

 indicating a range of interrupt types.

 The second number must be higher than the

 first. The pair of numbers must be sepa-

 rated by commas and enclosed in

 parentheses.

 mod is a keyword parameter. See below for a ___

 description of the MF= keyword.

 This macro destroys the contents of registers 1, 14, and

 15. Register 13 must point to the calling program’s save

 area. The condition code may be changed.

 Description: If MF=L is included in the parameter list, only the

 parameter list will be generated. In this case, no

 executable code is produced and all other parameters are

 optional.

 If MF=(E,listadr) is specified, listadr is assumed to be _______

 the address of a remote parameter list, and only the

 126 SPIE Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 executable code required to call the subroutine is

 generated. listadr may be the name of an MF=L form of _______

 the macro or the number of a register (which contains the

 location of an MF=L form) in parentheses. If any other

 parameters are given, they are used to modify the remote

 parameter list.

 Examples: SPIE FIXUP,(8)

 This example calls SPIE with FIXUP as the exit routine

 and the number 8 (fixed-point overflow) as the interrupt

 mask.

 SPIE FIXUP,((8,15))

 This example calls SPIE with FIXUP as the exit routine

 and the range 8 through 15 as the interrupt mask.

 SPIE MF=(E,(5))

 This example resets the SPIE exits to those specified by

 the address contained in register 5. This could be a

 value returned in register 1 by a previous SPIE.

 SPIE Macro 127

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SPRINT ______

 Macro Description

 Purpose: To assemble a call to the SPRINT subroutine. See the

 SPRINT subroutine description in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Prototype: [label] SPRINT reg[,regl][,modifs][,lnr][,EXIT=exitseq]

 [,MF=mod][,TREG=(r1,r2)]

 [label] SPRINT ’comment’[,modifs][,lnr][,EXIT=exitseq]

 [,MF=mod][,TREG=(r1,r2)]

 Parameters:

 reg is the location of the region from which the ___

 record is to be written. This may be

 expressed as a symbol or as the number of a

 register (which contains the location of the

 region) in parentheses.

 regl (optional) specifies the length of the out- ____

 put region for the SPRINT subroutine. This

 may be either the name of a halfword con-

 taining the length, or the number of a

 register (which contains the length) in

 parentheses. If it is omitted, L’REG is

 assumed.

 modifs (optional) stands for several parameters ______

 separated by commas. Each parameter con-

 sists of the name of an MTS modifier pre-

 ceded by either an at sign (@), an at sign

 and a not sign (@¬), or an at sign and a

 minus sign (@-). If no modifiers are given,

 zero is used for the modifiers parameter to

 SPRINT. See the "I/O Modifiers" description

 in MTS Volume 1 or MTS Volume 3.

 lnr (optional) specifies the line number parame- ___

 ter for the SPRINT subroutine. This may be

 the location of a fullword containing the

 line number, a self-defining term which is

 the line number, or the number of a register

 (which contains the line number) in paren-

 theses. If a register is specified, it will

 be stored in the line number parameter

 before the call and loaded from it after the

 call (if the @RETURNLINE# modifier is speci-

 fied or if the MF=(E,...) form is used).

 If omitted, the macro generates a fullword

 if needed. If the @INDEXED modifier is

 128 SPRINT Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 specified in this macro or elsewhere, the

 value of the lnr parameter before the call ___

 to the SPRINT subroutine is used. See the

 "I/O Modifiers" description in MTS Volume 1

 or MTS Volume 3 for further discussion of

 this. If both regl and lnr are registers, ____ ___

 lnr should not be GR1. ___

 exitseq (optional) is a keyword parameter specifying _______

 the exits to be taken for nonzero return

 codes. If exitseq is a single symbol, any _______

 nonzero return code will cause a branch to

 this symbol. If exitseq is a parenthesized _______

 list of symbols, a return code of 4 will

 cause a branch to the first symbol, a return

 code of 8 will cause a branch to the second

 symbol, etc. If a return code larger than

 that corresponding to the last symbol

 occurs, a branch to the last symbol will be

 taken.

 mod (optional) is a keyword parameter. See ___

 below for a description of the MF= keyword.

 r1,r2 (optional) is a keyword parameter specifying _____

 two temporary registers to be used in

 expanding calls when MF=E. If omitted, GR14

 and GR15 are assumed.

 This macro destroys the contents of registers 1, 14, and

 15. If modifs includes NOPROMPT and/or NOTIFY, the ______

 called subroutine will destroy the contents of register

 0. If MF=(E,...) is specified, the contents of regis-

 ters r1 and r2 are also destroyed. Register 13 must __ __

 point to the calling program’s save area. The condition

 code may be changed.

 Description: If MF=L is included in the parameter list, only the

 parameter list will be generated. In this case, no

 executable code is produced, and all other parameters are

 optional. Parameters specified as registers will be

 ignored.

 If MF=(E,listadr) is specified, listadr is assumed to be _______

 the name assigned to an MF=L form of the macro, and only

 the executable code required to call the subroutine is

 generated. listadr may be the name of an MF=L form of _______

 the macro or the number of a register (which contains the

 location of an MF=L form) in parentheses. If any other

 parameters are given, they are used to modify the list

 generated by the MF=L macro before the call. In this

 case, the TREG keyword specifies two registers to be used

 for modifying the parameter list. If omitted, registers

 14 and 15 are used, and they should not contain parame-

 ters. Any other parameter may be used with an MF=E form

 of the call. If any modifiers are given, the new

 SPRINT Macro 129

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 modifiers completely replace the old modifiers unless the

 MF parameter is given as MF=(E,listadr,SEP) in which case

 only the modifiers specified are changed.

 Examples: LAB1 SPRINT REG,LEN,EXIT=(EOF,ERROR)

 This example calls SPRINT, writing the record contained

 in location REG of length contained in location LEN. A

 branch is made to EOF upon a return code of 4; a branch

 is made to ERROR upon a return code of 8 or greater.

 LAB2 SPRINT REGION,LENG,@I,EXIT=DONE

 This example calls SPRINT, writing the record contained

 in location REGION of length contained in location LENG.

 The record is written with the @I modifier specified. A

 nonzero code from SPRINT will cause a branch to DONE.

 LAB3 SPRINT ’THIS IS A COMMENT’

 This example calls SPRINT, writing the text enclosed in

 primes.

 130 SPRINT Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SPUNCH ______

 Macro Description

 Purpose: To assemble a call to the SPUNCH subroutine. See the

 SPUNCH subroutine description in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Prototype: [label] SPUNCH reg[,regl][,modifs][,lnr][,EXIT=exitseq]

 [,MF=mod][,TREG=(r1,r2)]

 [label] SPUNCH ’comment’[,modifs][,lnr][,EXIT=exitseq]

 [,MF=mod][,TREG=(r1,r2)]

 Parameters:

 reg is the location of the region from which the ___

 record is to be written. This may be

 expressed as a symbol or as the number of a

 register (which contains the location of the

 region) in parentheses.

 regl (optional) specifies the length of the out- ____

 put region for the SPUNCH subroutine. This

 may be either the name of a halfword con-

 taining the length, or the number of a

 register (which contains the length) in

 parentheses. If it is omitted, L’REG is

 assumed.

 modifs (optional) stands for several parameters ______

 separated by commas. Each parameter con-

 sists of the name of an MTS modifier pre-

 ceded by either an at sign (@), an at sign

 and a not sign (@¬), or an at sign and a

 minus sign (@-). If no modifiers are given,

 zero is used for the modifiers parameter to

 SPUNCH. See the "I/O Modifiers" description

 in MTS Volume 1 or MTS Volume 3.

 lnr (optional) specifies the line number parame- ___

 ter for the SPUNCH subroutine. This may be

 the location of a fullword containing the

 line number, a self-defining term which is

 the line number, or the number of a register

 (which contains the line number) in paren-

 theses. If a register is specified, it will

 be stored in the line number parameter

 before the call and loaded from it after the

 call (if the @RETURNLINE# modifier is speci-

 fied or if the MF=(E,...) form is used).

 If omitted, the macro generates a fullword

 if needed. If the @INDEXED modifier is

 SPUNCH Macro 131

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 specified in this macro or elsewhere, the

 value of the lnr parameter before the call ___

 to the SPUNCH subroutine is used. See the

 "I/O Modifiers" description in MTS Volume 1

 or MTS Volume 3 for further discussion of

 this. If both regl and lnr are registers, ____ ___

 lnr should not be GR1. ___

 exitseq (optional) is a keyword parameter specifying _______

 the exits to be taken for nonzero return

 codes. If exitseq is a single symbol, any _______

 nonzero return code will cause a branch to

 this symbol. If exitseq is a parenthesized _______

 list of symbols, a return code of 4 will

 cause a branch to the first symbol, a return

 code of 8 will cause a branch to the second

 symbol, etc. If a return code larger than

 that corresponding to the last symbol

 occurs, a branch to the last symbol will be

 taken.

 mod (optional) is a keyword parameter. See ___

 below for a description of the MF= keyword.

 r1,r2 (optional) is a keyword parameter specifying _____

 two temporary registers to be used in

 expanding calls when MF=E. If omitted, GR14

 and GR15 are assumed.

 This macro destroys the contents of registers 1, 14, and

 15. If modifs includes NOPROMPT and/or NOTIFY, the ______

 called subroutine will destroy the contents of register

 0. If MF=(E,...) is specified, the contents of regis-

 ters r1 and r2 are also destroyed. Register 13 must __ __

 point to the calling program’s save area. The condition

 code may be changed.

 Description: If MF=L is included in the parameter list, only the

 parameter list will be generated. In this case, no

 executable code is produced, and all other parameters are

 optional. Parameters specified as registers will be

 ignored.

 If MF=(E,listadr) is specified, listadr is assumed to be _______

 the name assigned to an MF=L form of the macro, and only

 the executable code required to call the subroutine is

 generated. listadr may be the name of an MF=L form of _______

 the macro or the number of a register (which contains the

 location of an MF=L form) in parentheses. If any other

 parameters are given, they are used to modify the list

 generated by the MF=L macro before the call. In this

 case, the TREG keyword specifies two registers to be used

 for modifying the parameter list. If omitted, registers

 14 and 15 are used, and they should not contain parame-

 ters. Any other parameter may be used with an MF=E form

 of the call. If any modifiers are given, the new

 132 SPUNCH Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 modifiers completely replace the old modifiers unless the

 MF parameter is given as MF=(E,listadr,SEP) in which case

 only the modifiers specified are changed.

 Examples: LAB1 SPUNCH REG,LEN,EXIT=(EOF,ERROR)

 This example calls SPUNCH, writing the record contained

 in location REG of length contained in location LEN. A

 branch is made to EOF upon a return code of 4; a branch

 is made to ERROR upon a return code of 8 or greater.

 LAB2 SPUNCH REGION,LENG,@I,EXIT=DONE

 This example calls SPUNCH, writing the record contained

 in location REGION of length contained in location LENG.

 The record is written with the @I modifier specified. A

 nonzero code from SPUNCH will cause a branch to DONE.

 LAB3 SPUNCH ’THIS IS A COMMENT’

 This example calls SPUNCH, writing the text enclosed in

 primes.

 SPUNCH Macro 133

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 STIMER ______

 Macro Description

 Purpose: MTS support for the OS STIMER macro.

 Prototype: [label] STIMER type,[exit],units=time

 Parameters:

 type is one of the following: ____

 TASK specifies that the time interval is to

 decremented only when the associated

 task is running.

 REAL specifies that the time interval is to

 be decremented continuously.

 WAIT specifies that the time interval is to

 be decremented continuously and that

 the task is to be placed in wait state

 until the interval has elapsed.

 exit (optional) specifies the address of an exit ____

 routine to be called when the interval

 expires. If not specified, no routine is

 called.

 units is one of the following: _____

 TUINTVL time is an unsigned 32-bit binary ____

 integer giving the time interval in

 "OS timer units", where one OS timer

 unit is 26 1/24 microseconds. Note

 that an OS timer unit does not match

 any actual hardware timer unit.

 BINTVL time is an unsigned 32-bit binary ____

 integer giving the time interval in

 hundredths of a second.

 DINTVL time is an 8-byte character string ____

 giving the time interval in the form

 HHMMSSTH, where HH is hours, MM is

 minutes, SS is seconds, T is tenths

 of a second, and H is hundredths of

 a second.

 TOD time is an 8-byte character string ____

 giving the time of day at which the

 interval is to expire, in the form

 HHMMSSTH (see above). If TASK is

 specified, TOD is equivalent to

 DINTVL.

 134 STIMER Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 time is the location of the 4- or 8-byte ____

 fullword-aligned quantity described by the

 units parameter. _____

 This macro destroys the contents of registers 14 and 15.

 Register 13 must point to the calling program’s save

 area. The condition code may be changed.

 Description: This macro generates a call to the STIMER subroutine,

 located in *LIBRARY.

 When it is executed, a timer interrupt is set up, which

 will expire after the specified time interval. When the

 interval expires, the subroutine exit will be called, if ____

 the exit parameter is specified. At the time of this ____

 call, the registers will be as follows:

 GR1 = address of an exit region containing the

 following information.

 bytes 0-7: PSW at time of interrupt

 bytes 8-71: GR0-GR15 at time of interrupt

 GR13 = address of a 72-byte save area

 GR14 = return address

 GR15 = address of exit subroutine entry ____

 FPRS unchanged from time of interrupt

 If the exit subroutine returns, the program will be

 restarted from the point of the interrupt.

 There can be at most one STIMER interval set up at a

 time. If a second STIMER macro call is executed before

 the first has expired, the second call overrides the

 first call.

 The STIMER macro and the corresponding subroutine are

 provided primarily for programs converted from IBM

 System/360 Operating System (OS) which use the OS STIMER

 macro.

 MTS users are advised to use the SETIME, TIMNTRP, RSTIME,

 GETIME, TWAIT, or TICALL subroutines, described in MTS

 Volume 3, System Subroutine Descriptions. ______________________________

 The parameters for the STIMER subroutine, as generated by

 the macro, are:

 GR0 - bits 0-3: 0=TUINTVL

 1=BINTVL

 3=DINTVL

 7=TOD

 STIMER Macro 135

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 bits 4-7: 0=TASK

 1=WAIT

 3=REAL

 bits 8-31: exit address or zero

 GR1 - address of time interval, as described by GR0,

 bits 0-3.

 See the TTIMER macro description in this volume for

 further information.

 Example: STIMER WAIT,,TOD=TWO30

 STIMER TASK,EXIT,BINTVL=TENSEC

 .

 .

 EXIT STM 14,12,12(13)

 .

 .

 TWO30 DC C’02300000’

 TENSEC DC F’1000’

 136 STIMER Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 SYSTEM ______

 Macro Description

 Purpose: To assemble a transfer to the SYSTEM subroutine. See the

 SYSTEM subroutine description in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Prototype: [label] SYSTEM

 Description: This will generate

 label L 15,=V(SYSTEM)

 BR 15

 SYSTEM Macro 137

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 TRL, TRTL _________

 Macro Description

 Purpose: To provide a long form of the Translate and Translate and

 Test machine instructions similar to the MVCL and CLCL

 formats.

 Prototype: [label] TRL r1,d2(b2)

 [label] TRTL r1,d2(b2)

 Parameters:

 r1 is an even register specifying an even-odd __

 register pair giving the location and length

 (respectively) of the operand to be trans-

 lated or tested.

 d2(b2) is the location of the translate or test ______

 table just as it would be for the TR or TRT

 instructions.

 Description: Instructions are generated which perform the translate or

 translate and test machine instructions on operands of

 any length. The operation proceeds just as described in

 the IBM Principles of Operation manuals for TR and TRT ________________________

 instructions.

 Only bits 8-31 of r1 and r1+1 are used in the operation. __ __

| The contents of r1 and r1+1 are undefined when the __ __

| operation is terminated. The condition code for TRL is

| unpredictable. The condition code for TRTL is similar to

| that of the TRT instruction.

 TRTL should not use register pairs 0-1 or 2-3 for the ___

 first operand, since registers 1 and 2 are potentially

 changed by the macro.

 138 TRL,TRTL Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 TRTAB _____

 Macro Description

 Purpose: To set up a translate or translate-and-test table.

 Prototype: [label] TRTAB item,item,...[,SIZE=size][,START=offset]

 [,RULER=rule][,FILL=filler][,BASE=filler]

 Parameters:

 item is one of the following: ____

 (1) BEGIN

 (2) END

 (3) value

 (4) (value1,value2,...,insert)

 Form (1) is used to specify a series of

 TRTAB macros for a single table. "BEGIN"

 should be the first item of the TRTAB

 macro; TRTAB macros may be issued until the

 item "END" is encountered. If the first

 item is not "BEGIN" and the table has not

 been initialized by a previous TRTAB macro

 whose first item was "BEGIN", the table is

 automatically initialized and the code is

 generated after the last item has been

 processed. If "BEGIN" is specified, the

 parameters SIZE, START, BASE, and FILL will

 be ignored in the TRTAB macros other than

 the first, until "END" is encountered.

 Form (2) generates the code of the table.

 It is required when the first operand of a

 previous or the current TRTAB macro is

 "BEGIN". Any remaining items after "END"

 in the TRTAB macro are ignored.

 Form (3) indicates that the "value" is

 placed at the offset "value" from the label

 of the table. For example, ’ABC’ places

 ’A’, ’B’, ’C’ at the offsets ’A’, ’B’, ’C’

 of the table, respectively.

 "value" can be a one-byte or a multibyte

 string. A one-byte value is any valid

 absolute integer expression, with all terms

 already defined. Examples are: X’FA’,

 C’?’, 64, C’0’-C’A’. Multibyte values are

 TRTAB Macro 139

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 processed one byte at a time from left to

 right. They are of two forms: character

 string (’string’) or hexadecimal string

 (X’hex’ or ’hex’X). Each character in

 ’string’ can be any valid EBCDIC character

 with every prime and ampersand doubled;

 ’’’’ is same as C’’’’, ’XYZ’ same as C’X’,

 C’Y’, C’Z’. Each byte in "hex" must con-

 sist of two valid hexadecimal digits (0-9,

 A-F). For example, ’00FF’X or X’00FF’ is

 same as X’00’, X’FF’.

 Optionally, "value" may be of the form

 "value1...value2", that is, the two values

 are separated by an ellipsis. This is

 interpreted as going from "value1" through

 "value2", inclusively. Thus, ’A’...’F’ is

 same as ’A’,’B’,’C’,’D’,’E’,’F’. The di-

 rection may be backwards, e.g., ’F’...’A’

 is same as ’FEDCBA’. Both "value1" and

 "value2" should be within (0,255), inclu-

 sively. The old form "value1-value2",

 where values are separated by a minus-sign

 "-" and "value1" is less than "value2",

 will be interpreted as the equivalent of

 "value1...value2".

 Form (4), enclosed within parentheses, is

 used most often. First, "insert" is gener-

 ated into a list of one-byte replacement

 values. The list "insert" may be a sublist

 enclosed within parentheses. For example,

 (’A’,’B’,’C’) for insert is equivalent to ______

 ’ABC’. Alternatively, "insert" may be

 expressed of form "*+disp" or "*-disp",

 where "disp" is any valid absolute integer

 expression. Examples are "*", "*+1",

 "*-C’0’". For compatibility with the old

 form, "+disp" and "-disp" will be inter-

 preted as "*+disp" and "*-disp", respec-

 tively. The displacement is added to (or

 subtracted from) the relative table offset

 of each byte it replaces. For example, to

 put the character equivalent of the digits

 in their own relative table locations,

 TRTAB (’0’...’9’,*)

 and to replace each letter by the next

 higher letter, wrapping around from Z to A,

 TRTAB (’A’...’H’,*+1), +

 (’J’...’Q’,*+1), +

 140 TRTAB Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 (’S’...’Y’,*+1), +

 (’IRZ’,’JSA’)

 If the list of replacement values is

 exhausted before the values are exhausted, ______

 the first value will be reused, and then

 the second, etc. This wraparound feature

 can be used to place the same replacement

 value in all offsets, e.g., (’ABCDEF’,8)

 places 8 at offsets ’A’ through ’F’ in the

 table.

 size specifies the number of bytes of translate ____

 table to generate. It defaults to 256.

 offset is the offset of the table generated from ______

 the label of the table. It defaults to 0.

 "offset" can be any valid one-byte absolute

 assembly expression, character or hexadeci-

 mal string (e.g., 240, ’0’, X’F0’, or

 ’F0’X).

 rule If YES, a ruler will be written around the ____

 generated code of this table. This may be

 overridden by RULER=NO. The default is

 YES. This parameter remains in effect for

 all remaining TRTAB macros until it is

 overridden by the RULER parameter of an-

 other TRTAB macro.

 filler specifies what value is generated for each ______

 table entry not specified by the items. It ____

 defaults to 0. This may be any absolute

 integer expression (e.g., X’FA’, C’.’, or

 12) which is evaluated within (0,255),

 inclusively. A one-byte character string

 (e.g., ’?’) or a one-byte hexadecimal

 string (e.g., ’11’X) is allowed. An alter-

 nate form FILL=* fills the entire table

 with values X’00’ through X’FF’ and can be

 used for translating.

 Examples: This example generates a translate table for hexadecimal

 output:

 HEXTRA TRTAB (X’FA’...X’FF’,’ABCDEF’), +

 FILL=*,START=’0’,SIZE=16

 This is same as:

 HEXTRA EQU *-240,256,C’X’

 DC C’0123456789ABCDEF’

 The following example marks with 0 all characters legal

 in any floating-point number and the remaining characters

 with 4.

 TRTAB Macro 141

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 FLTABLE TRTAB (’+-.E’,’0’...’9’,0),FILL=4

 The following table is used to translate all uppercase

 letters to lowercase letters.

 LCTABLE TRTAB (’ABCDEFGHIJKLMNOPQRSTUVWXYZ’, +

 ’abcdefghijklmnopqrstuvwxyz’), +

 FILL=*

 The following table translates all unprintable characters

 to ’?’. Note the use of "BEGIN" and "END".

 PRNTBL TRTAB BEGIN,FILL=’?’

 TRTAB ’0123456789’

 TRTAB ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

 TRTAB ’abcdefghijklmnopqrstuvwxyz’

 TRTAB ’=<;:%’’>*()_+-&&¢@!"$#|¬?,./’

 TRTAB END

 142 TRTAB Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 TTIMER ______

 Macro Description

 Purpose: MTS support for the OS TTIMER macro.

 Prototype: [label] TTIMER [CANCEL]

 Parameters:

 CANCEL if specified, the currently set up timer

 interval will be cancelled; otherwise, it

 will not be cancelled.

 This macro destroys the contents of registers 14 and 15.

 Register 13 must point to the calling program’s save

 area. The condition code may be changed.

 Description: The TTIMER macro generates a call to the TTIMER sub-

 routine, located in *LIBRARY.

 The TTIMER macro returns, in GR0, the time remaining in

 the time interval set up by the STIMER macro. If no such

 time interval is currently active, GR0 will contain zero.

 The remaining time is returned in OS timer units (an

 unsigned 32-bit integer; one OS timer unit is 26 1/24

 microseconds).

 The TTIMER macro and the corresponding subroutine are

 provided primarily for programs converted from IBM

 System/360 Operating System (OS) which use the OS TTIMER

 macro.

 MTS users are advised to use the SETIME, TIMNTRP, RSTIME,

 GETIME, TWAIT, or TICALL subroutines, described in MTS

 Volume 3, System Subroutine Descriptions. ______________________________

 The parameters for the TTIMER subroutine, as generated by

 the macro, are:

 GR1 - 0 -> no cancel

 1 -> cancel

 See the STIMER macro description in this volume for

 further details.

 Example: TTIMER

 TTIMER CANCEL

 TTIMER Macro 143

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 WRITE _____

 Macro Description

 Purpose: To assemble a call to the WRITE subroutine. See the

 WRITE subroutine description in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Prototype: [label] WRITE unit,reg[,regl][,modifs][,lnr]

 [,EXIT=exitseq][,MF=mod][,TREG=(r1,r2)]

 [label] WRITE unit,’comment’[,modifs][,lnr]

 [,EXIT=exitseq][,MF=mod][,TREG=(r1,r2)]

 Parameters:

 unit specifies the corresponding parameter to be ____

 given to the WRITE subroutine. This parame-

 ter is either a number from 0 through 19,

 the name of a logical I/O unit enclosed in

 primes, the location of a fullword-aligned

 fullword containing a FDUB-pointer, or the

 number of a register (which contains a

 FDUB-pointer) in parentheses.

 reg is the location of the region from which the ___

 record is to be written. This may be

 expressed as a symbol or as the number of a

 register (which contains the location of the

 region) in parentheses.

 regl (optional) specifies the length of the out- ____

 put region for the WRITE subroutine. This

 may be either the name of a halfword con-

 taining the length, or the number of a

 register (which contains the length) in

 parentheses. If it is omitted, L’REG is

 assumed.

 modifs (optional) stands for several parameters ______

 separated by commas. Each parameter con-

 sists of the name of an MTS modifier pre-

 ceded by either an at sign (@), an at sign

 and a not sign (@¬), or an at sign and a

 minus sign (@-). If no modifiers are given,

 zero is used for the modifiers parameter to

 WRITE. See the "I/O Modifiers" description

 in MTS Volume 1 or MTS Volume 3.

 lnr (optional) specifies the line number parame- ___

 ter for the WRITE subroutine. This may be

 the location of a fullword containing the

 line number, a self-defining term which is

 the line number, or the number of a

 144 WRITE Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 register(which contains the line number) in

 parentheses. If a register is specified, it

 will be stored in the line number parameter

 before the call and loaded from it after the

 call (if the @RETURNLINE# modifier is speci-

 fied or if the MF=(E,...) form is used).

 If omitted, the macro generates a fullword

 if needed. If the @INDEXED modifier is

 specified in this macro or elsewhere, the

 value of the lnr parameter before the call ___

 to the WRITE subroutine is used. See the

 "I/O Modifiers" description in MTS Volume 1

 or MTS Volume 3 for further discussion of

 this. If both regl and lnr are registers, ____ ___

 lnr should not be GR1. ___

 exitseq (optional) is a keyword parameter specifying _______

 the exits to be taken for nonzero return

 codes. If exitseq is a single symbol, any _______

 nonzero return code will cause a branch to

 this symbol. If exitseq is a parenthesized _______

 list of symbols, a return code of 4 will

 cause a branch to the first symbol, a return

 code of 8 will cause a branch to the second

 symbol, etc. If a return code larger than

 that corresponding to the last symbol

 occurs, a branch to the last symbol will be

 taken.

 mod (optional) is a keyword parameter. See ___

 below for a description of the MF= keyword.

 r1,r2 (optional) is a keyword parameter specifying _____

 two temporary registers to be used in

 expanding calls when MF=E. If omitted, GR14

 and GR15 are assumed.

 This macro destroys the contents of registers 1, 14, and

 15. If modifs includes NOPROMPT and/or NOTIFY, the ______

 called subroutine will destroy the contents of register

 0. If MF=(E,...) is specified, the contents of regis-

 ters r1 and r2 are also destroyed. Register 13 must __ __

 point to the calling program’s save area. The condition

 code may be changed.

 Description: If MF=L is included in the parameter list, only the

 parameter list will be generated. In this case, no

 executable code is produced, and all other parameters are

 optional. Parameters specified as registers will be

 ignored.

 If MF=(E,listadr) is specified, listadr is assumed to be _______

 the name assigned to an MF=L form of the macro, and only

 the executable code required to call the subroutine is

 generated. listadr may be the name of an MF=L form of _______

 the macro or the number of a register (which contains the

 WRITE Macro 145

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 location of an MF=L form) in parentheses. If any other

 parameters are given, they are used to modify the list

 generated by the MF=L macro before the call. In this

 case, the TREG keyword specifies two registers to be used

 for modifying the parameter list. If omitted, registers

 14 and 15 are used, and they should not contain parame-

 ters. Any other parameter may be used with an MF=E form

 of the call. If any modifiers are given, the new

 modifiers completely replace the old modifiers unless the

 MF parameter is given as MF=(E,listadr,SEP), in which

 case only the modifiers specified are changed.

 Examples: LAB1 WRITE 6,REG,LEN,EXIT=(EOF,OUCH)

 This example calls WRITE, specifying that a record is to

 be written to logical I/O unit 6 from the region at

 location REG of length specified by location LEN. A

 branch is made to EOF upon a return code of 4 from WRITE;

 a branch is made to OUCH upon a return code of 8 or

 greater.

 LAB2 WRITE ’SPRINT’,REGION,LENG,@I,EXIT=DONE

 This example calls WRITE, specifying that a record is to

 be written to SPRINT from the region at location REGION

 of length specified by location LENG. The record is

 written with the @I modifier specified. A branch is made

 to DONE upon a nonzero return code from WRITE.

 LAB3 WRITE 7,’THIS IS A COMMENT’

 This example calls WRITE, specifying that the text

 enclosed in primes is to be written to logical I/O unit

 7.

 146 WRITE Macro

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 THE MESSAGE MACROS __________________

 This section describes a group of three macros which assist the

 360/370-assembler language programmer in the construction and output of

 messages. These three MSG macros, PHRASE, MSG, and PMSG, accept

 identical operators. PHRASE assembles a partial (unterminated) message,

 while MSG and PMSG assemble complete messages.

 The operators to the macros are translated into sequences of message

 items which are translated into message text at execution time by the

 resident MSG routine. The PMSG macro differs from the MSG macro only in

 that it invokes that routine to print the message. As each item is

 processed, the MSG routine may act on an internal buffer (the message

 buffer) in some way. The most common operation is the addition of text

 to the buffer, but other items can cause the buffer to be printed or

 modify the position at which the next addition will be placed.

 There is a limit of 255 characters per output line in a message.

 EXAMPLES ________

 (1) PHRASE Macro

 PHRASE ’Hello ’

 PHRASE (NAME),’.’

 PHRASE END

 This trivial example shows a complete message built of a series

 of PHRASE’s. There can be several operators in one PHRASE

 statement. Notice that the message is eventually terminated by

 the END operator.

 (2) MSG macro

 MSG ’Hello ’,(NAME),’.’

 This example shows the same complete message. In this case, the

 terminating END is not given since it is generated by the MSG

 macro.

 (3) PMSG Macro

 PMSG ’Hello ’,(NAME),’.’

 The Message Macros 147

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 This example still assembles the same complete message, but also

 prints it.

 PMSG HELLOMSG

 .

 .

 .

 HELLOMSG MSG ’Hello ’,(NAME),’.’

 This is another way of saying the same thing.

 MSG MACRO OPERATORS ___________________

 Messages consist of a sequence of message-items. Each message-item

 is an operator followed by zero or more operands. Operands which refer

 to addresses in storage generally use S-type address constants for these

 references. The S-type constants are resolved by reference to the

 registers in use when the MSG routine was called. The CALLER operator

 may be used to back up to the previous savearea and thus use the

 registers of the program that called the caller of MSG. In cases where

 an S-type address constant is used, the special case with base register

 0 and displacement less than or equal to 15 is taken to mean that the

 quantity to be processed is contained in the register equal to the

 displacement.

 Messages may be nested either statically (by means of BEGIN/END

 blocks) or dynamically (by means of the MESSAGE operator). An entire

 message is allowed anywhere that a single message-item can appear (e.g.,

 following IF(...)).

 The overall syntax of legal messages is as follows.

 <message> ::= <phrase> ... END

 <phrase> ::= BEGIN <phrase> ... END

 | LOOP <phrase> ... END

 | IF(...) <phrase>

 | IF(...) <phrase> ELSE <phrase>

 | WIDTH(...) <phrase>

 | PACKET <phrase>

 | <other operator>

 The following operators are recognized by this version of MSG. Any

 text which is not preceded by a valid operator is treated as text to be

 inserted in the message.

 In the descriptions below, where LEN is specified, BLEN, HLEN, or

 FLEN may be specified to explicitly indicate a relocatable byte,

 halfword or fullword length. If LEN is used with a relocatable

 expression, the MSG routine accepts a length stored in either a halfword

 or a fullword.

 148 The Message Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 In the following, "re" means "relocatable expression" (i.e., an

 S-type address constant), and "nre" means "nonrelocatable expression"

 (i.e., a constant). In the following macro prototypes, keywords

 (xxx=...) indicate optional items.

 MSG Operator Explanation ____________ ___________

 / or PRINT Print the message.

 Prints the current contents of the message

 buffer to all output routes currently request-

 ed, and empties the buffer.

 Examples:

 ’Hi There.’,/

 ’It’’s me!!’,PRINT

 ’xxxx’ Literal string.

 The text of the literal is inserted into the

 message.

 Example:

 ’This is a message.’

 (name[,LEN={re|nre}][,{END|DELIM}=nre])

 Generalized insertion by length and/or

 delimiter.

 This operator provides generalized insertion

 in which either a length and/or a delimiter

 may be given. If both are given, then the

 specified number of bytes or up to the delim-

 iter, whichever comes first, are moved to the

 buffer.

 The length may be given as either an "nre" or

 "re"; if "re" is given, the length may be

 either a halfword or a fullword. If both the

 length and delimiter field are omitted, L’name ____

 is assumed.

 Examples:

 (X,LEN=Y,DELIM=C’ ’)

 (X,LEN=Y)

 (X,DELIM=X’FF’)

 (X,LEN=6)

 (X)

 The Message Macros 149

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 name Nested message name.

 Nested messages are included where their invo-

 cations are encountered. Note that a nested

 message behaves as an inner block. (See the

 BEGIN and END operator descriptions below.)

 If the value of the message name is a number ____

 less than or equal to 15, then it is assumed

 to be the number of a register which contains

 the location of the message.

 Examples:

 MSG2

 R2

 ADDR(name[,LEN={nre|re}]) Hexadecimal output conversion.

 This is the same as HEX, except that left-

 zeros are suppressed.

 Examples:

 ADDR(X,LEN=3)

 ADDR(X,LEN=XLEN)

 BEGIN Begins a message block.

 A BEGIN...END group defines the limits of a

 message block. They are mainly used to enable

 a false IF to skip an entire group of message

 operations at once, or to cause a WIDTH item

 to process a group of message items. A common

 construction is:

 IF(...),BEGIN,...,END

 The current fill character is saved by BEGIN

 and restored by END.

 Example:

 BEGIN,FILL(C’0’),WIDTH(4),DEC(RC),END

 CALL(re¹,re²,...,re⁶) Subroutine call.

 The subroutine indicated by the relocatable

 expression re¹ is called with a standard OS ___

 S-type calling sequence. The re² up to re⁶ ___ ___

 (maximum) are relocatable expressions passed

 to the subroutine as the second up to sixth

 arguments. The first argument is the location

 150 The Message Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 of a vector of three fullwords containing the

 location of the end of the output buffer, the

 location of the next character in the output

 buffer, and the location of the beginning of

 the output buffer, respectively. Also, at the

 time of the call, register 0 contains the

 location of a null message.

 On return, the internal condition code (which

 may be tested by the IF operator) is set to

 bits 24-31 of register 15 unless the value in

 register 15 is negative, in which case the

 internal condition code is not changed. Also,

 it is assumed that the subroutine has placed

 into register 0 the location of a message to

 be nested in the current message. Note that

 if the subroutine restores the register 0

 supplied on the call, the null message will be

 used.

 Example:

 CALL(SUBR,P1,P2)

 CALLER(name) Changing register references for a nested

 message.

 The nested message, name, will be expanded ____

 with all register-references resolved from the

 previous savearea. The caller of MSG must ________

 have been called with a standard OS calling

 sequence.

 This operator is used when an intermediary

 routine exists between the MSG routine and the

 message emitting routine.

 Examples:

 CALLER(MESS)

 CALLER(R4)

 DEC(name[,LEN={nre|re}]) Decimal output conversion.

 The number starting at the location name is ____

 converted to decimal and placed in the output

 line. Leading zeros are omitted. LEN speci-

 fies the number of bytes in the number, it

 defaults to L’name and must not exceed 4. ____

 If LEN is even, the number is treated as a

 signed integer; otherwise, it is treated as

 unsigned.

 The Message Macros 151

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Examples:

 DEC(N,LEN=2)

 DEC(NUM)

 DEC(N,LEN=Z)

 DEC(R2,LEN=4)

 END Ends the current BEGIN block, LOOP loop, or

 the entire message.

 Note that the END operator is what terminates

 every message. An END is automatically supp-

 lied by the MSG and PMSG (but not PHRASE)

 macros. This automatic END is the only dif-

 ference between the MSG and the PHRASE Macros.

 Example:

 BEGIN,...,END

 ELSE The ELSE operator combines with a preceding IF

 (any of the three varieties). If the message

 following the IF was skipped, then the message

 following the ELSE will be included, and vice

 versa.

 Example:

 IF(X,EQ,Y),’True’,ELSE,’False’

 EXIT Exits the closest enclosing LOOP loop.

 Example:

 LOOP,...,IF(...),EXIT,END

 FILL(nre) Setting the fill character.

 This sets the fill character, used in tabbing

 or width padding, to nre. The default fill ___

 character is a blank.

 Example:

 FILL(C’*’)

 GOTO(re) Transfer control.

 The message scan continues from the address

 given as re which should be the label on a MSG __

 or PHRASE macro. Note that it does not detect

 branching out of a block, etc. It is the

 152 The Message Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 user’s responsibility to ensure the message

 nesting level is correct.

 Example:

 GOTO(MSG2)

 HEX(name[,LEN={nre|re}]) Hexadecimal output conversion.

 The value starting at location name is con- ____

 verted to hexadecimal output form and placed

 in the output line. LEN specifies the number

 of bytes to be converted and may be either

 nonrelocatable or relocatable. LEN defaults

 to L’name. ____

 Examples:

 HEX(X,LEN=10)

 HEX(A)

 IF(re,op,nre) Conditional (one-byte compare).

 The byte specified by re is compared (as __

 specified by op) with the comparand nre. __ ___

 Complete details are given in the section on

 IF operators.

 Example:

 IF(X,EQ,5),MSG

 IF(re¹,op,re²[,LEN={nre|re}])

 Generalized conditional.

 This is a generalization of IF that allows a

 length to be specified. The two operators are

 relocatable symbols, and the length is speci-

 fied as an nre or re. Complete details are ___ __

 given in the section on IF operators.

 Example:

 IF(X,EQ,Y,LEN=100),MSG

 IF(*,op,nre) Conditional (internal condition code.)

 This form is used to test the internal condi-

 tion code, for example, as set by the CALL

 operator. Complete details are given in the

 section on IF operators.

 The Message Macros 153

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Example:

 IF(*,EQ,4),MSG

 LOOP The following message items, down to the

 matching END, are processed repeatedly until

 the loop is terminated with an EXIT operator.

 Example:

 LOOP,...,END

 LNR(name[,LEN={nre|re}]) Line-number conversion.

 This is the same as the DEC operator, except

 name is assumed to have the internal form of ____

 an MTS line number. The value is divided by

 1000 and printed with a decimal point with up

 to three digits after the decimal point.

 Leading zeros, and trailing zeros after the

 decimal point are omitted.

 Example:

 LNR(N)

 OUTPUT(...) Set output routing.

 Specifies the place or places to which subse-

 quent output is to be directed. Complete

 details are given in the section on OUTPUT

 routing.

 Note that several routes may be specified with

 one OUTPUT operator.

 Example:

 OUTPUT(SERCOM,CONTROL(FDUB=MSINKFDUB))

 PACKET The PACKET operator specifies that the message

 buffer is composed of a one-byte field giving

 the message length followed by the message

 text.

 Examples:

 PACKET,’HELLO’

 PACKET,BEGIN,...,END

 154 The Message Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 PICTURE(name[,LEN={nre|re}],’pattern’)

 Decimal conversion with "picture" format.

 This operator performs decimal conversion of

 the binary value given by name with length ____

 LEN. The picture specifies the resulting

 output format. It is a PL/I-like picture

 specification, more fully discussed in the

 PICTURE operator section.

 Example:

 PICTURE(X,LEN=2,’zzz9.zzz’)

 RETURN(nre) Returning from a message.

 The current message buffer is written and the

 message routine returns to the caller with a

 return code equal to nre. ___

 Note this causes an immediate exit, regardless

 of the message nesting depth.

 Examples:

 RETURN(4)

 RETURN(A-B)

 SKIP(nre) Moving buffer pointer.

 The output buffer pointer is moved by the

 specified number of positions to the left or

 right of its current position. If nre is ___

 negative, the movement is to the left; if nre ___

 is positive, the movement is to the right.

 The maximum value for nre is 127. When ___

 "skipping" to the right, the intervening

 spaces are filled with the current fill

 character.

 Example:

 SKIP(-5)

 SYMBOL(name[,LEN={nre|re}])

 Address conversion to character string.

 If loader information is available, the

 address starting at location name with length ____

 LEN is printed in the form:

 symbol+displacement

 The Message Macros 155

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Otherwise, the address is treated the same as

 ADDR.

 Example:

 SYMBOL(Y)

 TAB(nre) Tabbing.

 The output buffer pointer is moved to the

 column given by nre. The first column has ___

 column number 1. TAB(0) is a no-op. Tabbing

 to the right causes intervening spaces to be

 filled with the current fill character. Tab-

 bing left is allowed but does not start a new

 output line. Note: COL is a synonym for TAB.

 Example:

 TAB(20)

 WIDTH(nre,posn) Specifying the width of a message item.

 This causes the next message item (either ____

 single item, block or embedded message) to be

 placed in a fixed-width field of nre columns, ___

 positioned in that field as specified by the

 second operator. The padding is done with the

 current fill character. The default position-

 ing is right-justified.

 posn may be LEFT, RIGHT, CENTRE, or CENTER. ____

 Example:

 WIDTH(20,RIGHT),MSG

 THE "IF" OPERATORS __________________

 The IF operator causes the next message item or message block (see

 BEGIN operator) to be included if the condition is true; otherwise, it

 will be skipped. If the message item being skipped is another IF

 operator, then that and any other IF’s immediately following, are

 skipped up to and including the first message item or block that is not ___

 an IF.

 156 The Message Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 IF Operator Formats ___________________

 The IF operator exists with three different but similar formats. In

 the examples below, re is a relocatable expression while nre is a __ ___

 nonrelocatable expression. op specifies the comparison operator. __

 The IF operators are:

 (1) IF(re,op,nre) or IF(re)

 This version of the IF operator compares a one-byte field re to __

 nre. In the case of the single field, it is assumed that re is ___ __

 a flag defined by the FLAGS macro.

 Examples: IF(SWS,EQ,X’08’),’Switch flag = 08’

 ’Batch Flag is ’,IF(BATCH),’on’,ELSE,’off’

 (2) IF(*,op,nre)

 The one-byte internal condition code of MSG (indicated by the

 "*") is to be compared with nre. ___

 Note that the internal condition code is set by the CALL

 operator return code and by various I/O routes designated by the

 OUTPUT operator.

 Example: IF(*,EQ,4),’Internal Code = 4’

 (3) IF(re¹,op,re²,LEN={nre|re})

 This is a generalized version of the IF operator and compares

 re¹ to re². LEN specifies the length of the compare to be used. ___ ___

 If it is omitted, L’re¹ is used. ___

 Example: IF(ORL,ALT,F55,LEN=4),SHORTMSG,ELSE,LONGMSG

 IF Comparison Operators _______________________

 An IF comparison operator indicates two things to the MSG routine:

 the comparison "type" and the branch condition for the operation.

 There are three types of comparison operators (flagged by op in the __

 above IF prototype statements).

 (1) "Compare Logical" comparison

 The "compare logical" comparison operators are: EQ, NE, GT, GE,

 LT, and LE (they use the "CLC" machine instruction).

 The Message Macros 157

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 (2) "Test under Mask" comparison

 The "test under mask" comparison operators are: OA, ZA, MA, NA

 or OT, ZT, MT, NT (they use the "TM" machine instruction).

 (To help understand the meaning of these mnemonics, OA means

 "ones when anded with," while OT means "ones when tested with."

 Note these are equivalent.)

 (3) "Arithmetic Compare" comparison

 The "arithmetic compare" operators are: AEQ, ANE, AGT, AGE,

 ALT, and ALE (MSG uses a "CR" machine instruction to perform the

 comparison).

 OUTPUT OPERATOR _______________

 The OUTPUT operator¹ specifies the place or places to which subse-

 quent output is to be directed.

 It should be noted that if the OUTPUT operator is omitted from a

 message, then, by default, the message will be routed through SERCOM.

 In the following lists of OUTPUT operators, parameters in square

 brackets "[]" are optional and may be omitted. The optional parameters

 are discussed later.

 OUTPUT operators ________________

 (1) OUTPUT(SERCOM[(MODS=nre,LNR=re,ORL=re)])

 Write message to SERCOM.

 (2) OUTPUT(SPRINT[(MODS=nre,LNR=re,ORL=re)])

 Write message to SPRINT.

 (3) OUTPUT(SPUNCH[(MODS=nre,LNR=re,ORL=re)])

 Write message to SPUNCH.

 ¹This operator replaces the OPTIONS operator from MSG (Version I). The

 OPTIONS operator is obsolete and should not be used any more.

 158 The Message Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 (4) OUTPUT(WRITE(FDUB=re[,MODS=nre,LNR=re,ORL=re]))

 Write message using the FDUB-pointer at the location specified

 by FDUB=re.

 (5) OUTPUT(SUBROUTINE(ADDR=re[,FDUB=re,MODS=nre,LNR=re,ORL=re]))

 The location specified by ADDR=re contains the address of a __

 subroutine with ’WRITE-like’ parameters that is to be used to

 dispose of the message.

 (6) OUTPUT(OPER)

 Write message to the operator’s console.

 (7) OUTPUT(CMD)

 Call the CMD subroutine with the output line.

 (8) OUTPUT(MTSCMD)

 Call the MTSCMD subroutine with the output line.

 (9) OUTPUT(CMDNOE)

 Call the CMDNOE subroutine with the output line.

 (10) OUTPUT(CONTROL(FDUB=re))

 Call the CONTROL subroutine using the fdub pointer from FDUB=re.

 (11) OUTPUT(MEMORY(ADDR=re[,ORL=re]))

 Store the resulting output line at the address specified by

 ADDR=re. (Note that the PACKET operator can be used to cause

 the message length to be stored in the byte at the head of the

 message.)

 Optional OUTPUT Operators _________________________

 The following optional operators are only allowed with certain of the

 OUTPUT operators, as illustrated in the above descriptions.

 (1) MODS=nre

 This operator specifies the modifier bits for the I/O routines.

 It is a nonrelocatable expression which may be either a

 hexadecimal string or it may be a parenthesized expression _____________

 suitable for the MTSMODS macro.

 The Message Macros 159

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Examples: ...(MODS=40000040) or ...(MODS=(@¬CC,@ERRRTN))

 (2) LNR=re

 This operator specifies the location of a linenumber to be used

 by the I/O routines.

 (3) ORL=re

 This operator specifies a halfword or fullword containing the

 maximum output record length for the I/O operation. If OUTPUT

 (MEMORY) was specified, then this is taken to be a maximum

 length. In the case of OUTPUT(SERCOM,SPRINT,SPUNCH,WRITE,

 SUBROUTINE), MSG will break down the output buffer into smaller

 segments based upon the value of the expression at re. MSG will __

 split lines at the last blank character in the buffer before the

 record length specified; if there is no blank, then MSG will

 split the line at the given length.

 (4) FDUB=re

 (Optional for the SUBROUTINE operator.) This operator supplies

 the location of an FDUB which will be passed to the subroutine.

 PICTURE OPERATOR ________________

 The PICTURE operator can be used to convert numeric values to many

 different forms of character representation. The form of the output

 string is described by a "picture" specification similar to those of

 COBOL or PL/I.

 A picture is a sequence of characters describing the format desired

 for the converted string. The characters forming the picture may be any

 of the following:

 9 Specifies the position is to be occupied by a digit.

 z,Z Used in place of "9" to indicate suppression of leading or

 trailing zeros.

 . Specifies literal insertion of a ".", if the position is

 followed by a digit. That is, the decimal point does not

 appear if it is passed over by right zero suppression.

 d,D Specifies literal insertion of a "." even if there is no

 following character.

 , Specifies literal insertion of a comma; suppressed if not

 preceded and followed by a digit.

 160 The Message Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 v,V Indicates the position at which to align the decimal point of

 the number being converted (i.e., the right-hand end of the

 number). If this is omitted, it is assumed to be at the

 right-hand end of the picture. The "V" has the effect of

 scaling the value.

 p,P Is used to allow a "V" to appear past the last digit character

 of the picture. "P"’s may appear only at the right of the

 picture. They have the effect of discarding the rightmost

 digits.

 A valid picture may have a format like

 (Z)(9)[.(9)(Z)(P)]

 where (x) indicate 0 or more occurrences of the "x" and everything in []

 is optional. Commas may appear anywhere in the picture, and a "D" may

 appear instead of ".". One "V" may appear, with the restriction that

 "Z" and "P" are not allowed to the right of the "V".

 If the number is negative, a sign will be placed in the rightmost

 unused "Z" position left of the decimal. The pattern must provide at

 least one "Z" if the number is negative.

 MSG EXAMPLES ____________

 The following examples illustrate some of the versatility of the MSG

 routine and macros:

 PHRASE TAB(9),’<--’

 PHRASE TAB(6),’|’

 PHRASE TAB(1),’-->’

 PHRASE END

 generates:

 "--> | <--"

 A more comprehensive example in the form of a complete program is given

 on the following page. This program contains examples of the various

 uses of the OUTPUT operator.

 The Message Macros 161

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MSGDEMO CSECT

 REQU TYPE=DEC

 ENTER R12,SA=SA1 Normal S-type entry sequence

 * Output with OUTPUT(SUBROUTINE(...))

 PMSG OUTPUT(SUBROUTINE(ADDR=VSPUNCH)),’ -> SPUNCH’

 * Output with WRITE(FDUB(...))

 LA R1,MSOUNAME We need a FDUB for this

 L R15,=V(GETFD) GETFD will give us one.

 BALR R14,R15

 ST R0,MSOUFDUB

 PMSG OUTPUT(WRITE(FDUB=MSOUFDUB)),’ -> WRITE(FDUB)’

 * Output with WRITE(MEMORY(...))

 PMSG OUTPUT(MEMORY(ADDR=BUFFER,ORL=H30)),’ -> MEMORY’

 SERCOM BUFFER,10 Print the buffer normally

 * Subroutine calling and return code checking

 PMSG CALL(BR14),IF(*,EQ,0),’ OK’,ELSE,’ Bad return code’

 * Miscellaneous examples

 LA R2,147 Load register 2 with a number

 PMSG ’ Register 2 contains: ’,DEC(R2,LEN=4)

 EXIT Normal S-type exit sequence

 * This is a very small subroutine

 BR14 ENTER R12,SA=SA2,BASE=MSGDEMO

 EXIT 0,(0)

 * Data area follows:

 SA1 DS 18A

 SA2 DS 18A

 H30 DC H’30’

 BUFFER DS CL30

 MSOUNAME DC C’*MSINK* ’

 MSOUFDUB DC A(0)

 VSPUNCH DC V(SPUNCH)

 END

 162 The Message Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The following program segment illustrates the use of MSG to format a

 quite complicated record:

 ...

 PMSG OUTPUT(SPUNCH),STATMSG

 ...

 STATMSG PHRASE (ONDATE),’ ’,(ONTIME)

 PHRASE ’ ’,WIDTH(6),DEC(CONNSECS)

 PHRASE ’ ’,IF(MSOURCE),’R’,ELSE,’I’

 PHRASE ’ ’,WIDTH(4),(INODE,LEN=2)

 PHRASE ’ ’,(STYPE,LEN=2)

 PHRASE ’ ’,WIDTH(4),(RNODE,LEN=2)

 PHRASE ’ ’,WIDTH(12),(USERID)

 PHRASE ’ ’,BEGIN,FILL(C’0’),WIDTH(2),DEC(OPENRC),END

 PHRASE ’ ’,WIDTH(8),DEC(RECORDS_IN)

 PHRASE ’ ’,WIDTH(8),DEC(RECORDS_OUT)

 PHRASE ’ ’,WIDTH(10),DEC(BYTESI)

 PHRASE ’ ’,WIDTH(10),DEC(BYTESO)

 PHRASE ’ ’,WIDTH(4),(HOSTCODE,LEN=2)

 PHRASE ’ ’,(DEVJOB,LEN=4)

 PHRASE ’ ’,(OPEN_OPT,BLEN=OPEN_OPT_LEN)

 PHRASE END

 The Message Macros 163

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 164 The Message Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 STRUCTURED PROGRAMMING MACROS _____________________________

 The following section describes a set of macros which allow assembly

 language users to make use of structured programming techniques in

 coding their programs. Two types of control structures are provided by

 these macros: (1) decision structures which provide for selection among

 sections of code to follow, and (2) loop structures which provide a

 means of repeating sections of code.

 In the first category are the IF-ELSEIF-ELSE-ENDIF and DOCASE-CASE-

 ELSECASE-ENDCASE macros. The IF...ENDIF macros permit a structure to be

 coded that selects among many parallel sections of code with many

 parallel conditions. The DOCASE...ENDCASE macros permit the selection

 of one of a number of groups of statements depending upon some integer

 value.

 In the second category are the DO-ENDDO macros which provide several

 different looping structures. The DO-ENDDO macros provide an iteration

 structure that allows the loop termination condition to be specified at

 the beginning of the loop (on the DO macro) or at the end of the loop

 (on the ENDDO macro) or both. In addition, the FOR clause of the DO

 macro provides a labelless looping structure which is similar to the

 FORTRAN DO statement. The REDO, NEXTDO, and EXITDO macros provide ways

 of branching around in these looping structures without specifying

 labels.

 In addition, the FLAGS, SET, and TEST macros allow the assembly

 language programmer to define, set, and test single bit program flags

 (switches) without remembering which flag belongs to which switch byte.

 The DEFCC macro allows the user to define additional conditions for

 comparisons in logical relations in IF and DO macros. Finally, the

 MACSET macro is provided to set various global options and parameters

 for the structured programming macros.

 LOGICAL EXPRESSIONS ___________________

 The IF and DO macros provide decision-making control structures and

 thus require specification of a condition for selection (IF) and

 repetition (DO). In a typical macro prototype like

 [label] IF lexp

 .

 .

 ENDIF [label]

 Structured Programming Macros 165

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 this condition is termed a logical expression lexp. A logical expres- ____

 sion consists of a simple or compound condition which when evaluated has

 the value true or false.

 Simple Conditions _________________

 Simple conditions are of two types: those which generate only a

 conditional branch instruction, and those which generate a compare

 instruction followed by a conditional branch instruction.

 For the first type of simple condition which generates only a branch

 instruction, the user must have set the machine condition code appropri-

 ately with an instruction preceding the macro call. The logical

 expression lexp in this case has the form ____

 cond

 where cond specifies the condition to be tested and may be one of: ____

 (a) EQ NE LT GT LE GE

 (b) P M H L E O Z

 (c) NP NM NH NL NE NO NZ

 (d) POS ZERO NEG ONE ONES MIXED

 where (a) are the FORTRAN compare operation mnemonics, (b) and (c) are

 the extended-branch mnemonic suffixes and their negations, and (d) are

 some spelled-out mnemonics. The DEFCC macro may be used to define

 additional condition mnemonics. An example lexp of this type is ____

 LTR R0,R15

 IF Z

 The second type of simple condition specifies a logical valued

 expression of the form

 operand1,cond,operand2,compare-op

 which defines a relationship between two quantities. Two instructions

 are assembled, a compare instruction specified as

 compare-op operand1,operand2

 and a branch instruction to test the relation cond, defined above. ____

 Examples of simple conditions of this type are:

 R1,LT,=H’4’,CH

 =C’ABC’,EQ,STRING,CLC

 0(R2),NE,X’FF’,CLI

 166 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Normally, four operands are required to specify logical expressions

 of this form. However, for certain relations it is possible to omit one

 or more of these operands and appropriate default values will be used.

 Two-Part Relations

 Two-part relations specify two operands and are defined as follows:

 register,cond

 or

 ’instruction’,cond

 In the first form, an LTR instruction is assembled to test the specified

 register in order to set the condition code. The second form allows an

 arbitrary assembler instruction to be generated to set the condition

 code. All primes within the instruction must be doubled according to

 normal 360/370 assembler conventions. The second form is particularily

 useful for instructions that require more than two operands since the

 syntax for a lexp allows only two compare instruction operands (operand1 ____ ________

 and operand2). Examples are: ________

 IF R2,NZ

 IF ’CLM R1,B’’1000’’,PREFIX’,EQ

 These are equivalent to

 LTR R2,R2

 IF NZ

 and

 CLM R1,B’1000’,PREFIX

 IF EQ

 Three-Part Relations

 Three-part relations specify three operands (compare-op is omitted). __________

 The compare instruction that is assembled is determined from the type of

 the operands according to the following table:

 Structured Programming Macros 167

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ┌───┐ ┌ ┌
 | Relation | Compare-Op | Example |

 |─────────────────────────────────┼────────────┼──────────────────| ┌ ┘
 | register,cond,register | CR | R1,EQ,R2 |

 |─────────────────────────────────┼────────────┼──────────────────| ┌ ┘
 | register,cond,fullword | C | R4,NE,=F’5’ |

 |─────────────────────────────────┼────────────┼──────────────────| ┌ ┘
 | register,cond,halfword | CH | R0,LT,=Y(256) |

 |─────────────────────────────────┼────────────┼──────────────────| ┌ ┘
 | symbol,cond,self-defining term | CLI | 0(R8),EQ,X’FF’ |

 | symbol,cond,’c’ | | BUFF,NE,’$’ |

 | ’c’,cond,symbol | | ’ ’,EQ,LINE |

 |─────────────────────────────────┼────────────┼──────────────────| ┌ ┘
 | symbol,cond,symbol | CLC | X,NE,Z |

 | ’string’,cond,symbol | | ’ESD’,EQ,CARD+1 |

 | symbol,cond,’string’ | | CMD(4),EQ,’STOP’ |

 |─────────────────────────────────┼────────────┼──────────────────| ┌ ┘
 | packed,cond,packed | CP | PSYM,NE,=P’-2’ |

 └───┘ ┘ ┘

 In order for the macros to generate the appropriate compare instruction

 listed in the table above, the following requirements must be met:

 (1) If an operand is defined by an EQU instruction (e.g., a register

 name), the definition must appear before it is used in a logical

 relation.

 (2) If an operand is defined by a macro, its definition must appear

 before it is used in a logical relation.

 (3) The operands symbol, fullword, halfword, and packed must have an ______ ________ ________ ______

 assembler-type attribute other than "U" (unknown). This will be

 true if the operands are defined via DS or DC statements

 anywhere in the assembly.

 (4) A self-defining term must have a value of less than or equal to _____________ ____

 255 in order for a CLI instruction to be generated. An absolute

 symbol may be specified for operand2 if it is defined before ________

 being used in a logical relation.

 (5) ’string’ specifies a primed character string of more than one ________

 character. The macros will generate a literal for the primed

 string by prefixing the operand with "=C" in the CLC

 instruction.

 (6) ’c’ specifies a single character enclosed in primes. ___

 (7) The operand packed is a symbol defined with the packed-decimal ______

 format.

 If a three-part logical relation does not satisfy the above conditions

 (e.g., both operand1 and operand2 have unknown attributes), the compare ________ ________

 instruction generated will be a fullword compare (C). This will most

 likely cause an assembly error. Hence, the compare instruction compare- ________

 op should be explicitly specified as part of the logical expression. __

 168 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Flag Variables

 If the logical expression specifies only one operand, then operand1 ________

 is assumed to specify a "flag variable" defined via the FLAGS macro, if

 it is not one of the predefined conditions. Flag variables are

 analogous to FORTRAN or PL/I logical variables. A flag variable is

 basically a symbol equated to a single bit in a byte of storage and has

 the value "1" (corresponding to the ON state) or "0" (corresponding to

 OFF). A test-under-mask (TM) instruction is generated for simple

 conditions of this type to test the state of the flag variable. The

 conditional branch instruction generated depends on the value of the

 flag variable to be tested. The ON state is tested simply by writing

 the flag variable name as the lexp, e.g., ____

 flag

 The OFF state may be tested by preceding the variable flag with a not ____

 symbol (¬ or -), e.g.,

 ¬flag (or -flag)

 In this case, the condition is satisfied if the flag variable is 0

 (OFF).

 The syntax to specify the ON condition of a flag is identical to a ____

 simple condition of the first type, i.e., cond. Because of this, a flag ____

 variable must not have the same name as one of the predefined

 conditions. The FLAGS macro will print an error message if an attempt

 is made to redefine a condition as a flag variable. See the FLAGS macro

 for a description of how flag variables are defined and also how

 instructions to set and test them are formed.

 Several flag variables may be tested with one TM instruction by

 specifying a flag expression flagexp of the form _______

 flag1+flag2+...+flagn

 or

 flag1*flag2*...*flagn

 The first form tests for the condition that at least one flag is ON; the

 second form tests for the condition that all of the flags are ON. The

 flags must be defined in the same byte by the FLAGS macro since the TM ____

 instruction tests only one byte of storage. The macros will enforce

 this restriction if the flags are defined before being used. For

 example, the macro

 IF BATCH*QUIT

 will test for the condition that both the BATCH and QUIT flags are ON.

 Structured Programming Macros 169

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Individual bits of a byte may be tested in a logical expression (via

 the TM instruction), even if they are not defined by the FLAGS macro, by

 coding flag expressions flagexp of the form _______

 bitn:scon

 (bit1+bit2+...+bitn):scon

 (bit1*bit2*...*bitn):scon

 where "bitn" is a self-defining term or a symbol defined by an EQU

 pseudo-op and "scon" is any assembler base-displacement expression

 specifying the byte containing the bit(s) to test. The first form tests

 for a single bit being on, the second form tests for at least one bit

 being on, and the third form tests for all bits being on. Examples are:

 IF ¬GDCONCAT:GDSWS

 IF (GDEXBLN+GDEXELN):GDSWS2

 IF X’80’:4(R1)

 Program Interrupt Condition

 The IF macro recognizes a special one-part logical expression that

 tests for a program interrupt in the preceding instruction. The syntax

 of the lexp is ____

 IF PGNT(type)

 or

 IF ¬PGNT(type) (or IF -PGNT(type))

 The IF macro generates a BPI macro using "type" as the first operand.

 If "type" is omitted, e.g., PGNT(), then PGNT(OPND) is defaulted. The

 PGNT() lexp is allowed only in simple IF statements. For example, the ____

 following sequence may be used to test for an OPND-type program

 interrupt:

 L R2,0(,R1)

 IF PGNT(OPND)

 .

 code to execute if there is a program interrupt

 in the LOAD instruction, e.g., if register 1

 contains an invalid address.

 .

 ENDIF

 See the description of the BPI macro in this volume for further details.

 170 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Compound Conditions ___________________

 A compound condition is formed by combining simple conditions with

 the logical operators AND and OR. The form of a compound condition is

 thus:

 (lexp1),lop,(lexp2),lop,(lexp3),...

 where lop is either AND or OR. The simple conditions lexp1, lexp2, and ___ _____ _____

 lexp3 must be enclosed in parentheses because they consist of a variable _____

 number of operands (from one to four).

 A compound condition consisting of simple conditions joined together

 by only AND operators is satisfied if and only if all simple conditions

 are satisfied. Failure of any simple condition results in a failure for

 the entire compound condition. Once a failure is detected, the

 remaining simple conditions are not evaluated.

 A compound condition consisting of simple conditions joined together

 by only OR operators is satisfied if one (or more) simple conditions is

 satisfied. The entire compound condition fails if and only if all

 simple conditions are not satisfied. Once a success is detected, the

 remaining simple conditions are not tested.

 Compound conditions may be formed by joining simple conditions

 together with both the AND and OR operators in one logical expression.

 The expression will be evaluated from left to right with the AND

 operator given higher precedence than OR. For example, the expression ______

 (lexp1),OR,(lexp2),AND,(lexp3)

 is satisfied if lexp1 is true or both lexp2 and lexp3 are true. It _____ _____ _____

 fails if lexp1 is false and either lexp2 or lexp3 or both are false. _____ _____ _____

 The normal order of evaluation of logical expressions may be changed by

 enclosing simple condition groups in parentheses. In the example above,

 the OR operator may be given higher precedence than the AND as follows:

 ((lexp1),OR,(lexp2)),AND,(lexp3)

 This compound condition is satisfied if either lexp1 or lexp2, or both, _____ _____

 is true and lexp3 is true. _____

 Compound conditions may thus consist of compound conditions combined

 together with ANDs and ORs. This rule permits arbitrarily complex

 logical expressions to be formed. Some examples of compound conditions

 are:

 (R1,NZ),AND,(’ESD’,EQ,CARD+1)

 (R0,EQ,F2),OR,(R0,EQ,F5),OR,(R0,EQ,F7)

 ((R1,POS),AND,(R1,LE,F2)),OR,((R1,GE,F5),AND,(R1,LT,F9))

 (BATCH),OR,(¬CMDMODE)

 Structured Programming Macros 171

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Note the compound condition formed by combining the two simple condi-

 tions consisting of the flag variables BATCH and CMDMODE.

 The NOT logical operator may be used to negate a condition. In any

 context where lexp is valid, the form ____

 NOT,(lexp)

 may be used. The logical expression that is being negated must be

 enclosed in parentheses. For example,

 NOT,(R1,Z)

 (ATTN),AND,NOT,(BATCH)

 (A,EQ,B),AND,(NOT,((C,EQ,D),OR,(E,EQ,F)))

 Set Expressions

 A simple type of "set" expression may be used in logical expression.

 The syntax is

 value,setop,(set)

 where

 "value" is a register number or storage reference,

 "setop" is IN, ¬IN, -IN, or NOTIN, and

 "set" is a list of operands "S1,S2,...,Sn" that make up the set,

 where each "Sn" may be a range expression of the form

 (Si,...,Sj) meaning all elements between Si and Sj,

 inclusive.

 The "set" expression is basically a shorthand method of writing a series

 of OR or AND compound expressions. Examples are:

 R1,IN,(ONE,=H’3’,(=F’7’,...,=F’9’))

 T,¬IN,(X,...,Y)

 These are equivalent to

 (R1,EQ,ONE),OR,(R1,EQ,=H’3’),OR,((R1,GE,=F’7’),AND,(R1,LE,=F’9’))

 NOT,((T,GE,X),AND,(T,LE,Y))

 172 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 IF, THEN, ELSE, ELSEIF, ENDIF _____________________________

 Macro Description

 Purpose: To provide conditional if-then-else control structures

 for assembly language users. See also the DO-ENDDO and

 DOCASE-ENDCASE macro descriptions for iteration and se-

 lection control structures.

 Prototype: (1) [label] IF lexp

 [THEN]

 .

 user code to be executed if lexp ____

 is true

 .

 ENDIF [label]

 (2) [label] IF lexp

 [THEN]

 .

 user code to be executed if lexp ____

 is true

 .

 ELSE

 .

 user code to be executed if lexp ____

 is false

 .

 ENDIF [label]

 (3) [label] IF lexp1

 [THEN]

 .

 user code to be executed if lexp1 _____

 is true

 .

 ELSEIF lexp2

 [THEN]

 .

 user code to be executed if lexp1 _____

 is false and lexp2 is true _____

 .

 ELSEIF lexp3

 [THEN]

 .

 user code to be executed if lexp1 _____

 and lexp2 are false and lexp3 is _____ _____

 true

 .

 .

 Structured Programming Macros 173

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 as many ELSEIF statements as

 necessary

 .

 [ELSE

 .

 user code to be executed if none

 of the preceding lexps was true ____

 .]

 ENDIF [label]

 Parameters:

 lexp specifies a logical expression which evalu- ____

 ates to either true or false. See the

 beginning of this section for a complete

 description of logical expressions.

 These macros may change the condition code and the

 contents of the registers depending on the logical

 expressions specified.

 Description: The simple IF of form (1) is used when the execution of

 one section of code depends on the value of one

 condition.

 The IF...ELSE structure of form (2) is used when one of

 two sections of code is to be selected based on the value

 of one condition.

 Form (3) illustrates an IF...ELSEIF structure which may

 be used when selecting among many parallel sections of

 code with many parallel conditions. The logical expres-

 sions (lexps) of the IF...ELSEIF structure are tested ____

 sequentially until the first successful test. The clause

 following the macro which specifies the successful condi-

 tion is executed and then control proceeds with the first

 statement after the ENDIF macro. This construction could

 instead be coded equivalently with IF statements within

 the ELSE clause of the preceding IF. However, the ELSEIF

 construction permits the parallel program flow to be seen

 easily. Any number of ELSEIF clauses may be specified

 within the structure. The ELSE clause is optional and if

 present is executed if none of the preceding conditions

 were true.

 The THEN macro is optional and may be used with any of

 the above forms to precede the true clause. However, its

 use is not recommended since it generates an extra

 statement label.

 For all forms of the IF control structures, the optional

 label on the ENDIF must be the same as the label on the

 matching IF statement. If an outer level IF label is

 174 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 specified, additional ENDIFs are automatically generated,

 but each with a MNOTE warning. If the label does not

 match any previous IF labels, only one ENDIF is produced

 and an error MNOTE is issued. The label on the ENDIF is

 optional even if a label is given on the preceding IF.

 Examples: The first two examples are different ways of saying the

 same thing.

 CLC =C’YES’,READAREA

 IF EQ

 CALL SUB,(A,B,C)

 ENDIF

 IF ’YES’,EQ,READAREA

 CALL SUB,(A,B,C)

 ENDIF

 CALL SUB,(D)

 IF R15,ZERO

 ST R0,RESULT

 ELSEIF (R15,EQ,=F’4’),OR,(R15,EQ,=F’8’)

 CALL WARNING

 ELSE

 CALL ERROR

 ENDIF

 IF (R0,ZERO),AND,(R1,EQ,A),AND,(R2,EQ,B)

 ...

 ELSEIF (A,GT,B,CLC),OR,((SORT),AND,(¬ORDERED))

 ...

 ENDIF

 The final example illustrates logical expressions con-

 sisting of compound conditions. Note the use of the flag

 variables SORT and ORDERED which must be defined by the

 FLAGS macro, described elsewhere in this section.

 Structured Programming Macros 175

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 DOCASE, CASE, ELSECASE, ENDCASE _______________________________

 Macro Description

 Purpose: To provide case selection control structures for assembly

 language users. See also the IF-ENDIF and DO-ENDDO macro

 descriptions for conditional and iteration control

 structures.

 Prototype: [label] DOCASE caseno[,TREG=reg][,SCALE=num]

 [,MAXCASE=max]

 CASE (icon,...)

 .

 statements to be executed if

 caseno equals any of the icons ______ ____

 .

 CASE (icon,...)

 .

 statements to be executed if

 caseno equals any of the icons ______ ____

 .

 .

 as many cases as required

 .

 .

 [ELSECASE

 .

 user code to be executed if caseno ______

 is less than zero or greater than

 the maximum icon, or caseno equal ____ ______

 to some unspecified icon. ____

 .]

 ENDCASE

 Parameters:

 caseno is the number of the case to be selected. ______

 It may be an expression, the name of a

 halfword or fullword location, or a register

 number enclosed in parentheses.

 icon specifies the case number of the following ____

 group of statements. It must be a nonnega-

 tive integer, or a predefined symbol equated

 to an appropriate integer value.

 reg (optional) is a keyword parameter specifying ___

 the temporary register to be used in the

 code generated to select the proper case.

 GR0 may not be used. If omitted, GR14 is

 used unless caseno specifies a register, in ______

 which case the register containing caseno is ______

 176 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 used. The contents of this register will be

 changed unless the scale factor num is 4. ___

 If num is not 1, 2, or 4, then reg must ___ ___

 specify an even-odd register pair (GR14 and

 GR15 by default), since a divide instruction

 will be generated by the macro to compute

 the proper case. The MACSET macro, de-

 scribed elsewhere in this section, may be

 used to set the default temporary register

 to something other than GR14.

 num (optional) is a keyword parameter specifying ___

 the scale factor used in numbering the

 cases. It must be a positive integer, or a

 predefined symbol equated to an appropriate

 integer value. This parameter is required

 only if the case number corresponding to num ___

 is not specified in a CASE macro.

 max (optional) is a keyword parameter specifying ___

 the maximum case number to select. It must

 be a positive integer, or a predefined

 symbol equated to an appropriate integer

 value. This parameter is required only if

 the case number corresponding to max is not ___

 specified in a CASE macro.

 Description: The CASE macros permit the selection of one of a number

 of groups of statements depending upon an integer value.

 Control passes to the appropriate case and then, unless

 otherwise exited, continues execution following the END-

 CASE macro. If the control value is not specified in a

 CASE macro, execution proceeds with the ELSECASE clause.

 If there is no ELSECASE clause, execution continues past

 the ENDCASE.

 The ELSECASE macro is optional. If present, the state-

 ments following are executed if caseno is less than zero ______

 or greater than the maximum case number, or equal to an

 unspecified case number. If ELSECASE is omitted, then no __

 code is generated to check the caseno value for a valid ______

 case number, i.e., less than zero or greater than max. ___

 It is assumed that the user will test caseno before the ______

 DOCASE macro is executed.

 Normally, cases are numbered consecutively beginning with

 zero (0,1,2,...) corresponding to a scale factor of one.

 However, cases may be numbered according to another scale

 factor; for example, SCALE=2 implies that cases are

 numbered as (0,2,4,...), SCALE=3 implies (0,3,6,...), and

 SCALE=4 implies (0,4,8,...). If the SCALE keyword param-

 eter is not specified, the default scale factor num is ___

 taken as the smallest nonzero case number specified. If

 the case number corresponding to the desired scale factor

 Structured Programming Macros 177

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 is not specified in a subsequent CASE macro, the parame-

 ter SCALE=num must be given on the DOCASE macro call.

 Execution of the DOCASE macro begins with the prologue

 code generated by the ENDCASE macro. If there is an

 ELSECASE macro, the prologue code tests the control value

 caseno for a valid case number. The control is converted ______

 to a branch index and the proper case is selected by an

 indexed branch into the branch table generated by the

 prologue code. Because case selection is done with a

 branch table, the DOCASE structure should not be used if

 the case values are sparsely spread over a large region.

 The IF statement with appropriate ELSEIF clauses should

 be used instead.

 Example: The following example illustrates the CASE structure.

 CALL GETLST,(UNIT,LASTLNR)

 DOCASE (R15) Test return code

 CASE (0) RC=0

 ...OK...

 CASE (4) RC=4

 ...File empty...

 CASE (12,24) RC=12 or 24

 ...File doesn’t exist or no access...

 ELSECASE RC=8,16, or 20

 ...Deadlock, etc...

 (case < 0 or = 8,16,20 or > 24)

 ENDCASE

 Note that the CASE macro computes SCALE=4 and MAXCASE=24.

 Case numbers 8, 16, and 20 are missing and will cause a

 branch to the ELSECASE clause if selected.

 178 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 DO, ENDDO _________

 Macro Description

 Purpose: To provide do-end iteration control structures for assem-

 bly language users. See also the IF-ENDIF and DOCASE-

 ENDCASE macro descriptions for conditional and selection

 control structures.

 Prototype: [label] DO [iterargs][loopargs][SIGNAL=signal]

 .

 user code

 .

 ENDDO [loopargs]

 Parameters:

 loopargs specifies the conditions for repetition and ________

 may be given on either the DO or ENDDO

 macros or both. If omitted from the ENDDO

 macro, an unconditional branch back to the

 front of the loop is generated. Otherwise,

 the type of loop termination test generated

 is as follows for the following cases of

 loopargs: ________

 COUNT=reg generates a BCT instruction

 using register reg. ___

 BXLE=(r1,r3) generates a BXLE instruction

 using the registers specified.

 BXH=(r1,r3) generates a BXH instruction

 using the registers specified.

 WHILE=(lexp) generates the appropriate code

 to evaluate the logical ex-

 pression lexp. ____

 UNTIL=(lexp) generates the appropriate code

 to evaluate the logical ex-

 pression lexp. ____

 lexp specifies a logical valued expression which ____

 evaluates to either true or false. Because

 lexp may consist of more than one operand, ____

 it must be enclosed in parentheses to

 conform to the keyword syntax of macro

 parameters. However, if lexp is either a ____

 predefined condition cond or a user defined ____

 flag variable flag, then it must not be ____ ___

 enclosed in parentheses, since both cond ____

 and flag are specified as single operands. ____

 For example,

 Structured Programming Macros 179

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 WHILE=cond

 UNTIL=flag

 See the beginning of this section for a

 complete description of lexp, cond, and ____ ____

 flag. ____

 iterargs specifies an iteration control statement of ________

 the form:

 FOR=reg[,FROM=beg],TO=end[,BY=incr]

 which implements the equivalent of a FOR-

 TRAN DO loop with the following parameters:

 reg specifies a register number to be used as ___

 the loop control index. The contents of

 this register will change.

 beg (optional) is a keyword parameter specify- ___

 ing the beginning value for the loop con-

 trol index reg. It may be a self-defining ___

 term, an expression, the name of a loca-

 tion, or a register number enclosed within

 parentheses. If beg is omitted, then the ___

 initial value is assumed to be in reg. ___

 end is a keyword parameter specifying the test ___

 value for the termination of the DO FOR

 loop. It may be a self-defining term, an

 expression, the name of a location, or a

 register number enclosed within

 parentheses.

 incr (optional) is a keyword parameter specify- ____

 ing the increment to be added to the loop

 control index reg at the end of each ___

 iteration. It may be a self-defining term,

 an expression, the name of a location, or a

 register number enclosed within parenthe-

 ses. If incr is omitted, then a default ____

 increment of 1 will be used. An explicit

 sign may precede incr (e.g., BY=-1) to ____

 subtract the increment (decrement) at each

 iteration. In this case, end should be ___

 less than (or equal) to beg. The minus ___

 sign must be specified in order to decre-

 ment the loop; specifying a location con-

 taining a negative value is not valid.

 signal specifies a flag variable defined via the ______

 FLAGS macro or a character string enclosed

 in primes (e.g., ’BIG LOOP’) which identi-

 fies the loop for subsequent embedded REDO,

 NEXTDO, or EXITDO macro statements. A list

 of signals may be specified by enclosing ______

 them (separated by commas) in parentheses.

 180 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 Description: The DO macro provides an iteration control structure with

 the termination condition specified at either the begin-

 ning of the loop (on the DO macro) or at the end of the

 loop (on the ENDDO macro) or both. It is possible to

 specify more than one loop termination condition on a

 single macro call (DO or ENDDO) although due to the

 keyword syntax, the loopargs left-hand sides must be ________

 different (e.g., DO COUNT=R1,COUNT=R2 is not valid). If

 more than one looparg is specified, all conditions must _______

 be satisfied before the iteration will continue. The

 keyword conditions will be processed in the order listed

| in the loopargs description (i.e., COUNT, BXLE, BXH, ________

| WHILE, UNTIL in that order).

 If the arguments are omitted from both the DO and ENDDO

 macros, an unconditional branch to the beginning of the

 loop is generated at the ENDDO macro, in effect, an

 endless loop.

 The WHILE and UNTIL clauses provide similar structures

 except that the condition for repetition is expressed in

 opposite manners, e.g., WHILE=EQ is the same as UNTIL=NE.

 The loop iteration will continue when the WHILE condition

 is true and terminates when the UNTIL condition is true.

 Both the WHILE and UNTIL clauses may be specified on

 either the DO or ENDDO macros or both.

 The COUNT, BXLE, and BXH parameters specify the type of

 branch instruction (BCT, BXLE, and BXH, respectively) to

 be generated to perform the iteration. If specified on

 the ENDDO macro, a branch to the DO macro is generated.

 However, if specified on the DO macro, two branch

 instructions are generated. The first is a conditional

 branch using the specified opcode and register(s) around

 the next instruction (into the body of the loop),

 followed by an unconditional branch to the statement

 following the ENDDO macro (out of the loop).

 The FOR clause of the DO macro (iterargs specified) ________

 provides an iteration control structure similar to the

 FORTRAN DO loop. The register reg is initialized to the ___

 value beg and compared to the terminating value end. If ___ ___

 reg is less than or equal to end when incr is greater ___ ___ ____

 than zero, or if reg is greater than or equal to end when ___ ___

 incr is less than zero, then the statements in the range ____

 of the loop are executed. At the end of each iteration,

 reg is incremented by incr and a branch is made to the ___ ____

 test at the beginning of the loop. Note that, unlike

 FORTRAN, the body of the loop may not be executed if the

 test condition is satisfied initially. It is also

 possible to specify loopargs with iterargs (the FOR ________ ________

 clause) on the DO macro, but the test specified by

 Structured Programming Macros 181

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 loopargs will be performed after the iterargs clause is ________ ________

 processed.

 Branching within a loop may be performed with the REDO,

 EXITDO, and NEXTDO macros, described elsewhere in this

 writeup.

 The SIGNAL clause on the DO macro serves two functions.

 First, it provides a means of identifying the loop to be

 used by REDO, NEXTDO, or EXITDO macro statements which

 may be nested within several embedded loops. Second, it

 provides a means of recording a special condition which

 caused the loop termination. Either form of signal (flag ______

 variable or character string) may be used to identify the

 loop for REDO, NEXTDO, or EXITDO statements. However,

 the use of a flag variable as the signal specification ______

 allows the specific condition that caused the loop

 termination to be recorded. Each flag variable specified

 in the SIGNAL clause is set to the false (OFF) state at

 the beginning of the loop. The execution of an EXITDO

 macro statement specifying one of these signal flags will

 cause the flag to be set to true (ON) and the loop to be

 exited. The REDO and NEXTDO macro statements do not

 alter the value of any of these flag variables.

 Examples: The following examples illustrate several of the avail-

 able DO loop structures.

 L R10,LISTHEAD

 DO , search for the end of a linked list

 LR R9,R10 Save predecessor

 L R10,NXTPTR Follow link

 LTR R10,R10 Continue until it’s null.

 ENDDO WHILE=NZ (or ENDDO UNTIL=ZERO)

 Note that in the above example the test for the loop

 termination (when the link pointer is null) is made at

 the end of the loop. Below is a similar example but with

 the test made at the beginning of the loop.

 L R10,LISTHEAD

 DO WHILE=(R10,NZ)

 LR R9,R10 Save predecessor

 L R10,NXTPTR Follow link

 ENDDO Continue while link is nonzero

 In the above example, the statements in the body of the

 loop will not be executed if the condition is satisfied

 initially, unlike the previous example.

 182 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 LH R2,LEN

 LA R3,AREA-1

 DO , look for last nonblank character in AREA

 LA R1,0(R2,R3)

 CLI 0(R1),C’ ’

 EXITDO NE

 ENDDO COUNT=R2

 The following is a similar example with termination

 conditions specified on both the DO and ENDDO macros.

 LH R2,LEN

 LA R1,AREA-1(R2) Address of last character

 DO WHILE=(0(R1),EQ,’ ’)

 S R1,=F’1’ Back up to next character

 ENDDO COUNT=R2

 The following example illustrates the FOR clause of the

 DO macro. The loop will be performed twelve times.

 DO FOR=R8,FROM=1,TO=12

 ST R8,LINCT

 CALL BLOKLETR,(CHARS,LINCT,OUTPUT,FLEN)

 SPRINT OUTA,OLEN

 ENDDO

 The following example illustrates a routine to process

 commands coded using several of the structured program-

 ming macros.

 CALL READCMD,(COMMAND)

 DO WHILE=((R15,ZERO), +

 AND,(’STOP ’,NE,COMMAND), +

 AND,(’RETURN ’,NE,COMMAND))

 LA R1,CMDTAB

 DO FOR=R2,FROM=1,TO=NUMCMDS

 IF COMMAND,EQ,0(R1)

 ...process command...

 EXITDO

 ENDIF

 LA R1,CMDTABL(,R1)

 ENDDO

 CALL READCMD,(COMMAND)

 ENDDO

 CALL SYSTEM

 Structured Programming Macros 183

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The following example illustrates the SIGNAL clause of a

 DO macro.

 LA R1,TABLE

 DO WHILE=(R1,LT,ATABEND),SIGNAL=FOUND

 IF ITEM,EQ,0(R1)

 EXITDO SIGNAL=FOUND

 ENDIF

 LA R1,L’ITEM(,R1)

 ENDDO

 IF ¬FOUND

 PMSG ’ ***Item "’,(ITEM),’" not found***’

 EXIT 4

 ENDIF

 184 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 REDO, EXITDO, NEXTDO ____________________

 Macro Description

 Purpose: To provide labelless branching within do-end iteration

 control structures for assembly language users. See the

 DO-ENDDO macro descriptions for the available iteration

 control structures.

 Prototype: REDO [lexp][SIGNAL=signal]

 EXITDO [lexp][SIGNAL=signal]

 NEXTDO [lexp][SIGNAL=signal]

 Parameters:

 lexp specifies a logical expression which evalu- ____

 ates to either true or false. See the

 beginning of this section for a complete

 description of logical expressions.

 signal specifies a flag variable defined via the ______

 FLAGS macro or a character string enclosed

 in primes (e.g., ’BIG LOOP’) which identi-

 fies the loop to be repeated (REDO or

 NEXTDO) or to be exited (EXITDO). The

 signal must be specified in the SIGNAL ______

 clause of an enclosing DO loop.

 These macros may change the condition code and the

 contents of the registers depending on the logical

 expressions specified.

 Description: The REDO macro causes execution to continue with the

 statement immediately following the innermost enclosing

 DO macro if lexp is true. The loop index incrementing ____

 for the FOR clause of the DO macro and the loop

 termination testing on the DO macro are skipped. A

 branch to the statement following the DO macro is

 generated.

 The EXITDO macro causes execution to continue with the

 statement immediately following the end of the innermost

 enclosing DO-ENDDO macros if lexp is true. A branch to ____

 the statement following the ENDDO macro is generated.

 The NEXTDO macro causes execution to continue with the

 loop terminating statement (i.e., ENDDO) of the innermost

 enclosing DO macro if lexp is true. A branch to the ____

 ENDDO macro is generated. This macro will cause the next

 loop iteration to take place if the loop condition is

 successfully met.

 Structured Programming Macros 185

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 If lexp is omitted from the REDO, EXITDO, or NEXTDO macro ____

 statement, an unconditional branch will be generated.

 Branching is normally done at the current nesting level.

 The SIGNAL clause may be specified to identify which of

 several enclosing loops is to be repeated or exited. If

 no signal is specified, the branch is made at the current ______

 nesting level. If the signal is a character string, the ______

 enclosing loop which specifies the signal in its SIGNAL ______

 clause will be repeated (if REDO or NEXTDO) or exited (if

 EXITDO). If the signal is a flag variable defined via ______

 the FLAGS macro, the EXITDO macro will set the flag to

 true (ON) and the enclosing loop which specified the flag

 in its SIGNAL clause will be exited. The REDO and NEXTDO

 macro statements will not change the value of the signal ______

 flag; it serves only to identify the loop.

 Example: LH R2,LEN

 LA R3,AREA-1

 DO , look for last nonblank character in AREA

 LA R1,0(R2,R3)

 CLI 0(R1),C’ ’

 EXITDO NE

 ENDDO COUNT=R2

 The following example illustrates the use of the SIGNAL

 clause for identifying the loop to be exited.

 DO FOR=R1,FROM=1,TO=N,SIGNAL=’BIG LOOP’

 DO FOR=R2,FROM=1,TO=M

 ...

 EXITDO SIGNAL=’BIG LOOP’

 ...

 ENDDO

 ENDDO

 186 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 DEFCC _____

 Macro Description

 Purpose: To define additional conditions for comparisons in logi-

 cal relations used by the structured-programming macros.

 Prototype: DEFCC cond,value[,TYPE=compare-op]

 Parameters:

 cond specifies the name of the condition mne- ____

 monic being defined.

 value is either a constant in the range 0-15 or _____

 the name of a predefined condition which

 specifies the numeric value of the

 condition.

 compare-op (optional) specifies an assembler in- __________

 struction opcode to be used in generating

 the comparison for three-part logical

 relations.

 Description: The DEFCC macro allows the user to define condition

 mnemonics for comparisons in addition to the predefined

 conditions (EQ, NE, etc.). The optional parameter TYPE

 may be specified to associate a particular assembler

 instruction opcode compare-op with the condition being __________

 defined. In this case, for three-part logical relations

 of the form

 operand1,cond,operand2

 the compare instruction generated would be the specified

 compare-op. If no instruction is specified, the compare __________

 opcode is determined from context, if possible; other-

 wise, it defaults to C. See the beginning of this

 section for a description of the predefined conditions

 and logical relations.

 Example: The following examples illustrate several DEFCC macro

 calls and some typical logical relations using the

 user-defined conditions.

 DEFCC EQUAL,EQ

 DEFCC LEQ,8,TYPE=CL

 DEFCC ON,O,TYPE=TM

 ...

 IF R1,EQUAL,=F’1’

 ...

 IF R2,LEQ,=CL4’WMTS’

 Structured Programming Macros 187

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ...

 IF GDSWS,ON,X’02’

 The above IF statements are equivalent to the following:

 C R1,=F’1’

 IF EQ

 ...

 CL R2,=CL4’WMTS’

 IF EQ

 ...

 TM GDSWS,X’02’

 IF O

 188 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 FLAGS _____

 Macro Description

 Purpose: To define one or more symbols as single bit program flag

 variables to be used with the structured programming

 macros. See also the SET and TEST macro descriptions.

 Prototype: [label] FLAGS flag1,flag2,...,flagn

 [,DS=NO][,DC=YES]

 Parameters:

 flagi specifies a symbol to be defined as a _____

 program switch. An initial value may be

 assigned to the flag variable by enclosing

 the symbol flagi in parentheses as follows: _____

 (flagi,b)

 where b is ON or OFF. If b is omitted, then _ _

 OFF is used. If flagi is "*", then the next _____

 available flag bit position in label will be _____

 reserved but unnamed. There may be at most

 248 symbols defined as flags in one macro

 call.

 DS=NO (optional) specifies that a DS (define stor-

 age) pseudo-op is not to be assembled for

 label to reserve the appropriate amount of _____

 storage for the specified flag variables.

 In this case the user must code a separate

 instruction to define the symbol label. If _____

 DS is omitted, then storage is reserved

 unless a MACSET macro has specified

 otherwise.

 DC=YES (optional) specifies that a DC (define con-

 stant) pseudo-op is to be assembled for

 label to initialize the specified flag vari- _____

 ables. Each flag variable will have a zero

 initial value unless specified otherwise.

 If DC is omitted, no storage is initialized

 unless initial values are given for one or

 more flag variables, in which case all flags

 will be initialized.

 Description: The FLAGS macro allows the assembly language user to

 define program flag variables to be used in structured

 programming macros so it is not necessary to remember

 which flag belongs to which switch byte. The name field

 of the macro call, label, designates the location to _____

 Structured Programming Macros 189

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 contain the flag variables to be defined. Each symbol

 flagi defined will be assigned to one bit beginning with _____

 the high-order bit of the first byte of label. One byte _____

 of storage is required for every eight flag variables

 defined. Flag variables are defined by equating each

 symbol flagi to a byte beginning with location label, _____ _____

 specifying the assigned bit position as the length

 attribute of the symbol flagi. For example, the code _____

 assembled to define n symbols as flag variables is: _

 flag1 EQU label,X’80’ bit 0

 flag2 EQU label,X’40’ bit 1

 ...

 flag8 EQU label,X’01’ bit 7

 flag9 EQU label+1,X’80’ bit 8

 ...

 flagn EQU label+(n-1)/8,X’zz’ bit n-1

 where zz is the bit mask for flagn. This definition __ _____

 allows a flag to be set with the instruction

 OI flag,L’flag

 or reset by

 NI flag,255-L’flag

 and tested via

 TM flag,L’flag

 The SET and TEST macros provide convenient ways of

 generating these instructions. See their macro descrip-

 tions for details; see also the introduction to this

 section for details on the use of flag variables with the

 structured programming macros.

 The label field may be omitted from a FLAGS macro call.

 In this case, the flag variables will be assigned

 beginning with the next available bit position in the

 location specified by the last nonblank label field of a

 previous FLAGS macro. Additional storage will be

 reserved as required. Because of this, user code should

 not intervene between such FLAGS macro calls.

 Example: The following example shows both a sample macro call and

 the corresponding instructions assembled. Note that only

 the flag variable PROMPT is initialized to the ON state

 (the bit corresponding to the mask X’20’ is 1), the

 remaining three bits are initialized to the OFF state.

 The low-order four bits of the byte SWS are unused.

 190 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SWS FLAGS BATCH, On if batch mode +

 ATTN, On if attention +

 (PROMPT,ON), On to prompt user +

 TERSE On for short output

 generates

 SWS DC BL1’00100000’

 BATCH EQU SWS,X’80’

 ATTN EQU SWS,X’40’

 PROMPT EQU SWS,X’20’

 TERSE EQU SWS,X’10’

 Below is an equivalent example which defines the same

 flags in separate macro calls instead of using one macro

 call with several continued statements.

 SWS FLAGS BATCH

 FLAGS ATTN

 FLAGS (PROMPT,ON)

 FLAGS TERSE

 Structured Programming Macros 191

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 FLAGVAL _______

 Macro Description

 Purpose: To initialize one or more bytes to specified flag mask

 values.

 Prototype: label FLAGVAL flagexp1,flagexp2,...,flagexpn

 Parameters:

 flagval specifies any valid flag expression. Each _______

 operand allocates and initializes one byte

 of storage. If flagexp is omitted or is _______

 "*", a zero-valued byte is allocated. If

 flagexp specifies a self-defining term, a _______

 byte with that value will be allocated.

 Examples: WAITMASK FLAGVAL WAITING

 ...

 NC 0(1,R1),WAITMASK

 DEFFLAGS FLAGVAL TERM+PROMPT,0

 ...

 MVC FLAGS(2),DEFFLAGS

 192 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SET ___

 Macro Description

 Purpose: To set a flag variable defined via the FLAGS macro ON or

 OFF. See also the FLAGS and TEST macro descriptions.

 Prototype: [label] SET flag-list[,{ON|OFF}] __

 Parameters:

 flag-list specifies a list of flag variables (sepa- _________

 rated by commas) to be set. Each flag

 must be defined using the FLAGS macro.

 Description: The SET macro is used to change the state of one or more

 flag variables as defined via the FLAGS macro. If the

 last positional parameter is ON or not OFF, the following

 instruction is assembled to set each flag variable flag ____

 to 1:

 label OI flag,L’flag

 If the last parameter to the macro is OFF, then an

 instruction of the following form is assembled to set

 each flag variable flag to 0: ____

 label NI flag,255-L’flag

 A separate instruction will be generated to set each flag

 specified. If all flag variables are defined via FLAGS

 macros before the SET macro invocation, the macro will

 detect which flags are defined in the same bytes and

 generate as few instructions as necessary to set them.

 See the introduction to this section for further details

 on flag variables.

 Examples: The following two examples are equivalent.

 SET ATTN,ON

 SET ATTN

 CALL CANREPLY

 IF R15,NZ

 SET BATCH,QUIT User in batch mode

 ENDIF

 .

 .

 Structured Programming Macros 193

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 IF BATCH Batch user?

 CALL QUIT Yes, $SIGNOFF

 ELSE , Allow $RESTART from terminal

 CALL ERROR

 ENDIF

 .

 .

 SWS FLAGS (BATCH,OFF) On if batch user

 FLAGS (QUIT,OFF)

 This example illustrates the use of the flag variable

 BATCH in SET, IF, and FLAGS macro calls.

 194 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 TEST ____

 Macro Description

 Purpose: To test if a flag variable defined via the FLAGS macro is

 ON or OFF. See also the FLAGS and SET macro

 descriptions.

 Prototype: [label] TEST flag[,ON=tloc][,OFF=floc][,MIXED=mloc]

 Parameters:

 flag specifies the flag expression to be tested. ____

 tloc (optional) is the location to branch to if ____

 the flag variable is ON.

 floc (optional) is the location to branch to if ____

 the flag variable is OFF.

 mloc (optional) is the location to branch to if ____

 the flag bits are not all ON or OFF.

 Description: The TEST macro generates a test-under-mask (TM) instruc-

 tion to check the state of the specified flag variable.

 The instruction assembled has the form:

 label TM flag,L’flag

 where flag is a flag variable defined via the FLAGS ____

 macro. If the keyword ON is specified, a branch on

 condition one (BO) instruction to the specified location

 tloc is assembled, corresponding to the flag variable ____

 state ON. If the keyword OFF is specified, a branch on

 condition zero (BZ) instruction to the specified location

 floc is assembled, corresponding to the flag variable ____

 state OFF. If the keyword MIXED is specified, a branch-

 on-mixed (BM) instruction to the specified location mloc ____

 is assembled. In this case, flag should be a flag ____

 expression specifying more than one flag bit to be

 tested. All three keywords may be specified on one macro

 call.

 Note that flag variables may also be tested by specifying

 them as conditions in logical expressions (lexps) of IF ____

 and DO macros. See the introduction to this section for

 further details on flag variables.

 Examples: The following three examples are equivalent.

 TM ATTN,L’ATTN

 BO ATTNXIT

 Structured Programming Macros 195

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 TEST ATTN

 BO ATTNXIT

 TEST ATTN,ON=ATTNXIT

 196 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MACSET ______

 Macro Description

 Purpose: To establish global switch settings and parameter values

 to be used in following macros.

 Prototype: MACSET keyword[,keyword,...]

 Parameters:

 keyword specifies a keyword option. See below for _______

 the description of the available keywords.

 Keywords: LITADDR={YES|NO} __

 This keyword sets the global SETB (GBLB) switch

 &LITADDR to 1 if the keyword value is YES, or to 0

 if the right-hand side is NO. This switch is tested

 by certain macros, such as CALL, to see whether it

 can generate a literal instead of an inline adcon.

 See also the LITADDR macro description.

 LABTYPE={STMT|LINE}[(NR)] ____

 This keyword sets the global SETC (GBLC) symbol

 &LBLTYPE to the value of the keyword right-hand side

 if it is STMT or LINE. This symbol is tested by the

 conditional and iteration control structure macros

 (IF, DOCASE, and DO) when generating internal labels

 for these control structures. If the symbol is STMT

 (the default), the labels generated for a control

 structure will have as a suffix the source statement _________

 number of the macro beginning the control group.

 For example, a DO macro at statement number 123 will

 generate an internal label of the form "#DO123". If

 the symbol is LINE, then labels generated for a

 control structure will have as a suffix the source

 line number of the macro beginning the control ____

 group. For example, a DO macro at source file line

 number 123.000 will generate an internal label of

 the form "DO#123". Note that the label prefix is

 different for the two cases to distinguish between

 statement and line numbers. Fractional line numbers

 are encoded by replacing the decimal point with a

 pound sign. For example, a DO macro at line number

 88.52 will generate an internal label of the form

 "DO#88#52".

 Structured Programming Macros 197

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 If (NR) is appended to STMT or LINE, then all

 control-structure internal labels except for the

 IFxxx and DOxxx types will be generated as nonrelo-

 catable symbols with no SYM record entries produced

 for them.

 LABPFX={XXc|cXX}

 This keyword may be used to change the form of the

 label prefix for internal labels generated by the

 macros. "c" may be any one of "#", "@", "_", or

 "$". For example, the macro

 MACSET LABPFX=#XX,LABTYPE=LINE

 generates labels of the form "#IFlinenumber" instead

 of the default "IF#linenumber". This keyword may be

 used to isolate all internal labels into one section

 of the cross-reference listing (if the postprocessor

 *PEXIT is not used to remove such labels).

 CASEREG=reg

 This keyword sets the default temporary register to

 be used in computing the case index for the DOCASE

 macro to reg. By default, GR14 is used. See the ___

 DOCASE macro description for further details.

 FLAGDS={YES|NO} ___

 This keyword specifies whether the FLAGS macro is to

 generate a DS (define storage) instruction to

 reserve storage for the specified flag variables or

 not. By default, a DS instruction will be assembled

 for each FLAGS macro. See the FLAGS macro descrip-

 tion for further details.

 EXLIT={YES|NO} __

 If the EXLIT=YES option is specified, the syntax of

 the execute (EX) instruction is extended to allow

 specification of the executed instruction as a

 "literal" operand. For example,

 EX R1,=I’MVC PAR(0),0(R2)’

 may be coded in addition to

 EX R1,MVC1

 ...

 MVC1 MVC PAR(0),0(R2)

 198 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The executed "literal" instructions will be included

 at the end of the literal pool that is generated by

 the next LTORG or END statement. This literal pool

 must be in the same control section as the EX

 instructions which refer to it. Since the assembler

 does not support literal instructions, the EXLIT

 option causes the EX instruction to be OPSYNed to a

 macro which processes the "literal" instruction.

 The EXLIT=NO option may be specified to restore the

 original definition of the execute instruction.

 If the EXLIT=YES option is used allow "literal"

 instructions on EX instructions, then all ORG state-

 ments in the assembly must specify nonblank oper-

 ands. If the operand is omitted from the ORG

 statement, then the assembler will be unable to

 resolve the reference; hence the error message

 IEV080 ***ERROR*** STATEMENT IS UNRESOLVABLE

 will be printed for the forward referencing ORG

 generated by the extended EX instructions.

 Example: MACSET LITADDR=YES,LABTYPE=LINE,EXLIT=YES

 Structured Programming Macros 199

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 200 Structured Programming Macros

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 IOH ___

 INTRODUCTION ____________

 IOH is an input/output conversion package that provides format-

 directed input and output for 360/370-assembler language programs and

 programs using the Plot Description System. Programs written in FORTRAN

 must use a different format-directed input/output package, which is

 similar in appearance to IOH, but different in detail. This package is

 described in the section "FORTRAN I/O Library" in MTS Volume 6, FORTRAN _______

 in MTS. ______

 A Simple Case _____________

 To illustrate the input and output of data items under format

 conversion, consider a small portion of an assembly language program

 that reads an integer N, computes its factorial N!, and prints the

 result:

 RDFMT FMT1,(N,0) Read N

 L GR2,N

 SR GR3,GR3

 LA GR4,1

 LOOP MR GR3,GR2 Compute N!

 BCT GR2,LOOP

 ST GR4,RESULT

 PRFMT FMT1,(RESULT,0) Print result

 .

 .

 N DS F

 RESULT DS F

 FMT1 DC C’I10*’

 To perform format-directed input and output in this program, three

 things must be specified:

 (1) the logical I/O units to be used,

 (2) the list of data items that are to be read or written, and

 (3) the formats in which the data items are to appear.

 Since the calling sequences for IOH are rather complex, there is a set

 of macros in the system macro library (*SYSMAC) to generate these

 calling sequences. These macros are easy to use and since it is

 uncommon to write the calling sequences by hand, all examples given will

 IOH 201

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 use the macros. The complete calling sequences are given in Appendix B

 to this section.

 The most commonly used macros are:

 RDFMT - generates a call to SCARDS

 PRFMT - generates a call to SPRINT

 PCFMT - generates a call to SPUNCH

 The sample program will read the value N from SCARDS and print the

 result on SPRINT. Thus, to read N through logical I/O unit SCARDS, the

 macro RDFMT is used:

 RDFMT FMT,(N,0)

 The first parameter FMT specifies the location of the format, and the ______

 second parameter (N,0) is the list of data items to be read. In this ____

 case, there is one item in the list, N. Since the list can be of any

 length, the list must have a terminator; this terminator is a zero item

 in the list.

 The format is supplied at the location FMT. The format is a

 character string that specifies how the data items are to be treated.

 The type of conversion desired and the column range in which the data

 items will appear must be specified. The type of conversion is

 specified by giving a format control character. In the above example, _______ _________

 the format control character is "I" which specifies that the data items

 are to be treated as a decimal integers. The number of columns that a

 data item occupies in the input line is called the external field width. ________ _____ _____

 The external field width follows the control character. In the above

 example, N will occupy 10 columns. A format always starts at column 1,

 hence a format beginning with I10 indicates columns 1 to 10.

 The format so far is "I10". One more thing remains. A control

 character must be added that will terminate the format character string.

 This control character is called the format terminator and is the ______ __________

 asterisk "*". The final format is

 I10*

 Now that the format has been specified, it must be inserted into the

 program. Since a format is a string of characters, it can be inserted

 as a character constant:

 FMT DC C’I10*’

 The control character I determines which characters are legal in the

 input field. Since I specifies an integer, the only legal characters

 are the digits 0 to 9, the + and - signs, and blanks. Decimal points,

 equal signs, etc., are not legal; if they are found, an error comment

 will be given and the conversion will be terminated. The data item may

 appear anywhere in the input field.

 202 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 When the data item is read from the input line, it is converted from

 its external character form into its corresponding internal form. For

 an integer, the internal form is a binary integer. The size of the

 internal form is called the internal field width. For the above ________ _____ _____

 example, the internal field width is a fullword (4 bytes).

 Looking at the program again, once the number N has been read and its

 factorial computed, it is necessary to print the result. The statement

 to do this is:

 PRFMT FMT,(RESULT,0)

 The only differences between this statement and the RDFMT statement are

 the name of the macro used and the location named in the list, in this

 case RESULT. The action, however, is different. The contents of RESULT

 are printed on SPRINT. The same format is used, but the meaning is

 slightly different. Here I10 means convert the number from a binary

 integer into its character representation, and place it in the next 10

 columns of the print line, right-justified, and fill the unused columns

 to the left with blanks. The "*" not only terminates the format, but

 also causes the line to be printed. The printed line is blanked out

 except for the data items inserted.

 Format Terms ____________

 Formats are used to specify how data elements are to be converted _______

 between the internal and external forms. For input, the line image is ____ _____

 the input line containing the data items to be read; these data items

 are taken from the line image area and converted from their external

 character form into the appropriate internal form by IOH. For output,

 the line image is the output line containing the data items to be

 printed; these data items are converted from their internal forms to

 their appropriate external character form and placed in the line image

 area by IOH.

 In the preceding example, the format "I10*" was used to read one

 integer. Suppose that 3 integers were to be read; the first is in the

 first 10 columns of the line image, the second in the next 5 columns,

 and the last in the next 20 columns. A possible statement to do this

 would be:

 RDFMT FMT1,(A,B,C,0)

 and the format would be:

 FMT1 DC C’I10,I5,I20*’

 Each subset of characters, separated by commas and by the final

 asterisk, is called a format term. Items in the list and terms in the ______ ____

 format are matched. The first format term corresponds to the first item

 IOH 203

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 in the list, A. The integer read will be placed in the location named

 A. Similarly, the integer specified by I5 is placed into B, and the

 integer specified by I20 is placed into C.

 TYPES OF FORMAT SPECIFICATIONS ______________________________

 The following paragraphs describe the most common types of format

 specifications available. These paragraphs are only introductory in

 nature. For the complete descriptions of each of the format specifica-

 tions, see Appendix A to this section.

 Integer _______

 The control character for integer conversion is "I". The format term

 is given in the form

 Iw

 where "w" is the external field width. The default internal field width

 is a fullword. To specify a halfword integer, a H modifier can be used ________

 in the format term. The H modifier specifies that a halfword should be

 used as the internal field width. For example,

 HI8

 For input, the next "w" columns of the input line image are scanned

 for the number. Blanks are ignored; they are not considered the same as

 zeros. Thus, the character "3" placed anywhere in the next "w" columns ________

 will cause the value 3 to be read. If "w" is omitted on input, standard

 format input is assumed (see the subsection "Standard Format I/O"); in

 this case, the entire input line image is scanned for a legal integer

 terminated by a blank, comma, or right parenthesis.

 On output, the number is converted to an integer and placed

 right-justified in the next "w" columns of the output record. If "w" is

 omitted, the external field width defaults to 8.

 Floating-Point (F-type) _______________________

 There are two ways to specify floating-point numbers in a format:

 F-type and E-type. F-type specifies integers and fractions. Examples

 of numbers of this type are 30.12, 3.14159, .025, and 10000. The format

 term used to read or print F-type floating-point numbers is:

 204 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Fm.n.w

 where "F" is the control character, "w" is the total external field

 width, "m" is the number of digits before the decimal point, and "n" is

 the number of digits after the decimal point. The period is used as a

 delimiter for the three field widths and must be present. ____

 For output, the "F" format causes the number to be converted, rounded

 to "n" digits after the decimal point, and placed right-justified in the

 next "w" columns of the output line image. If "w" is omitted, it

 defaults to m+n+2. For example:

 F5.3.10

 is the same as

 F5.3

 Printing floating-point numbers according to this format would give such

 output as:

 3.150 -1235.000 .000 10.520

 If no digits are desired after the decimal point, the format could be

 written as "F10.0". It is possible to suppress the decimal point using

 the M modifier in the format term. For example,

 MF10.0

 When an F format is used to read a number, the action is slightly ____

 different. If the number has a decimal point (e.g., 30.12), the "n" has

 no effect, and the number is taken as read. If there is no decimal

 point, "n" specifies where the decimal point belongs. The decimal point

 is assumed to be "n" digits to the left of the rightmost digit. For ______ _________

 example, according to the format F5.3, the following three numbers are

 the same:

 3.142 3142 3 14 2

 Note that blanks are ignored. Also the following are the same:

 .003 3

 By default, floating-point numbers are stored internally in short-

 precision (4-byte) form. To specify long-precision (8-byte) form, the D

 modifier must be included in the format term. For example,

 DF5.3

 The following points should be noted:

 (1) It is the responsibility of the user to make sure that when a

 floating-point conversion is specified, the associated list ______________

 IOH 205

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 element actually contains a floating-point number. Similarly, ______________

 if integer conversion is specified, the number to printed should _______

 be an integer. Since there is no possible way to determine _______

 whether the contents of a storage location is an integer, a

 floating-point number, or any other item, IOH has no choice but

 to convert the number according to the specification given. For

 example, the fullword containing X’41100000’ can be interpreted

 as meaning the floating-point number 1.0 or the integer

 1091567616.

 (2) The user must be sure to specify a field width that will be

 large enough for the number when converted. For example, the

 specification F6.3 allows 6 columns for the integer part of the

 number. This means that the maximum number that can be printed

 by this format is 999999.999. If larger numbers are used, an

 error will occur and the program will be terminated. This

 action can be changed by setting a switch; see the subsection

 "Additional Entry Points to IOH."

 (3) The user must be sure to specify the correct internal size of

 the number. If the variable is long-precision floating-point,

 the "D" modifier must be specified for input or output.

 Floating-Point (E-type) _______________________

 The second way to specify floating-point numbers is by using a

 fraction and an exponent. Examples of numbers of this type are

 30.12E 02 .314159E+01 .025E-01 1.E+05

 The first means 30.12 times 10 to the power 2, the second means .314159

 times 10 to the first power, etc. The format term used to read or write

 E-type floating-point numbers is

 Em.n.w

 where each of the fields has the same meaning as for the F-type

 specification:

 m - number of digits before the decimal point

 n - number of digits after the decimal point

 w - external field width

 Because of the form of the number, the external field width

 specification on output must be large enough to include not only the

 number of digits before and after the decimal point, but also the

 decimal point, the sign of the number, the "E", the sign of the

 exponent, and the two digits of the exponent. If "w" is not given, it

 defaults to the value m+n+6.

 206 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 For input, the entire number, both fraction and exponent, must be in ______

 the field specified. If there is no decimal point in the input field,

 an assumed decimal point is placed "n" places to the left of the

 rightmost digit of the fractional part. Thus, according to format E6.3 __________ ____

 39764E2

 is the same as

 39.764E2

 Character _________

 The control character for reading or printing characters is "C". The

 format term is given in the form

 Cw.n

 where "w" is the external field width and "n" is the internal field

 width. If "n" is omitted, the internal width is assumed to be the same

 as "w".

 For output, the "n" characters are placed left-justified in the field

 of "w" columns. For input, the first "n" characters are taken from the

 field of "w" columns.

 Hexadecimal ___________

 The control character for hexadecimal conversion is "X". The format

 term is given in the form

 Xw.n

 where "w" is the external field width, and "n" is the internal field

 width. If "w" is omitted, a default of 8 is assumed; if "n" is omitted,

 a default of (w+1)/2 is taken, rounded down to the nearest integer

 value.

 For output, "n" internal bytes are unpacked and placed into "w"

 columns of the output line image. For input, "w" digits are packed and

 placed right-justified into "n" bytes.

 IOH 207

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Packed Decimal ______________

 The control character for packed decimal conversion is "P". The

 format term is given in the form

 Pw.n

 where "w" is the external field width and "n" in the internal field

 width. If "w" is omitted, a default of 8 is assumed.

 For output, "n" bytes are unpacked and placed into "w" columns in the

 output line image. If "n" is omitted, standard format is used (see the

 subsection "Standard Format I/O"). For input, "w" digits from the input

 line image are packed and placed into "n" bytes.

 Literals ________

 It is often desirable to place labels and titles into the output line

 image directly from the format. This can be done by enclosing the

 material to be "transferred literally" to the output line in either

 primes (’) or double-quotes (").

 For example, when printing the result for the factorial example given

 above, the result could be labeled as follows:

 PRFMT FMT2,(RESULT,0)

 .

 .

 FMT2 DC C’" RESULT = ",I10*’

 This format would print the result in the form

 RESULT = 120

 Note that for integer conversion, the number is placed right-justified

 in the output line field.

 If the literal string is initiated with a prime, it must be

 terminated with a prime. Likewise, if the string is initiated with a

 double-quote, it must be terminated with a double-quote.

 The first character of each record of printed output is usually

 interpreted as a carriage-control character for controlling the posi-

 tioning of the paper in the printer. It is convenient to use literal

 format items to insert this character. The first character of the

 output line produced by FMT2 in the previous example is a blank which

 causes single spacing (a single line is skipped before the output line

 is printed). The format

 208 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 "-",2F3.3*

 will cause triple spacing (three lines are skipped before the line

 containing two floating-point numbers is printed). A list of legal

 carriage-control characters is given in the Appendix H to the section

 "Files and Devices" in MTS Volume 1, The Michigan Terminal System. The ____________________________

 most commonly used are:

 blank - single space

 0 - double space

 - - triple space

 1 - skip to top of next page

 2 - skip to next half page

 4 - skip to next quarter page

 Spaces and Tabs _______________

 It is often desirable to space numbers in the output line and to

 provide "tabulator stops". One method of spacing numbers is to give

 large field widths; because the numbers are right-justified, spacing is

 provided as such. However, control characters can be used for explicit

 skips and transfers.

 Spaces

 The control character "S" is used to specify the number of

 columns to be spaced. The format term is given as

 Sn

 where "n" specifies the number of columns to be spaced. "n" may

 be either a positive or negative number. For example, S20 will

 space twenty columns.

 For output, the line image may be considered similar to a line

 being typed on a typewriter. At any instance, the carriage is

 sitting at the next column to be used. The S format term is

 equivalent to hitting the space bar "n" times (if "n" is

 positive) or hitting the backspace key "n" times (if "n" is

 negative).

 For input, a similar analogy may be used. The S format term may

 be used to space forwards or backwards over the input line

 image.

 Tabs

 The control character "T" is used to tab (transfer) to a

 particular column in the input or output line image. The format

 term is given as

 IOH 209

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Tn

 where "n" is the column number to tab to. The typewriter

 analogy falls apart a little here, because in a typewriter the

 tab only goes forward, whereas here the "carriage" can be

 tabulated either forwards or backwards. For example, T20 causes

 the next item to start in column 20, regardless of where the

 carriage currently is.

 Note that nothing is done to the columns that are spaced or tabbed

 over. If they contained information, it still remains; if they

 contained blanks, they remain blank.

 Line Skips __________

 It is often desirable to print more than one line or read more than

 one input line with a single format. For this reason, the control

 character "/" (slash) is provided. For output, whenever a slash is

 encountered, the current line is printed, and a new line is started,

 beginning in column 1. For example, to skip to a new page, print a

 floating-point number, double space, and print another number, the

 format could be:

 "1",F10.9/"0",F5.3*

 For input, whenever a slash is encountered, a new input line is read

 starting at column 1. For example,

 I3/6F4.2.8*

 reads a 3-column integer from one line and six 8-column floating-point

 numbers from the following line.

 Modifiers _________

 Modifiers may be used to alter the effect of input or output

 conversion. For example, the two modifiers discussed earlier, H and M,

 specify that conversion is to take place from or into a halfword and

 that the decimal point is to be suppressed for F output conversion,

 respectively.

 A modifier may be specified in the form of a letter, a special

 character, or a format variable. The modifier must always appear with

 the control character. A modifier that does not require a count may

 appear anywhere in the format term, for example,

 210 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 RC8.6 or CR8.6

 specifies that a 6-byte character string is to be right-justified into

 an 8-column field on output or that the rightmost 6 bytes of an 8-column

 character field are to be placed into 6 bytes on input. A modifier that

 does require a count must appear after the control character and must be

 separated from the preceding fields with a colon ":". For example,

 C8.6:A20

 specifies on output that the 8-byte character string is to be centered

 at column 20. If there are two modifiers requiring counts, they must be

 separated by colons, for example,

 I4:G8:A16

 specifies that an integer is to be converted using octal base conversion

 and placed into a 4-column output field that is centered at column 16.

 The table below gives the modifiers that are available for IOH. The

 complete description of each of these modifiers is given in Appendix A

 to this section.

 ┌───┐ ┌
 | | |

 | Modifier| Function |

 |─────────┼───────────────────────────────────| ┌ ┘
 | | |

 | A | Centering control (output only) |

 | B | Byte conversion |

 | D | Doubleword conversion |

 | G | Base conversion |

 | H | Halfword conversion |

 | J | Ignore field width (output only) |

 | L | Left justification |

 | M | Suppress decimal point |

 | N | Null fill character (input only) |

 | R | Right justification |

 | U | Fill, if zero |

 | W | Fullword conversion |

 | Y | Forced plus sign |

 | Z | Zeros fill character |

 | $ | Floating dollar sign (output only)|

 | @ | Scale factor (output only) |

 | ¬ | Packed decimal sign |

 └───┘ ┘

 IOH 211

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Multiplicities, Groups, and Blocks __________________________________

 If the same format term is to be repeated several times, a

 multiplicity factor may be used. For example, ____________

 I10,I10,I10

 may be written more compactly as

 3I10

 where the integer 3 (the multiplicity) means that the following

 specification is to be taken three times. In this case, one format term

 will match three items in the list. Whenever there is no integer

 preceding the control character, a multiplicity of 1 is assumed.

 It is often desirable to repeat groups of format terms. This can be ______

 done by enclosing the group in parentheses and placing the multiplicity

 in front of the left parenthesis. For example,

 E5.3,E5.3,E5.3,I2,F5.1,F5.1,F5.1,I2,F5.1,F5.1,F5.1,S10,I10*

 may be written more compactly as

 3E5.3,2(I2,3F5.1),S10,I10*

 Such grouping parentheses can be nested as deeply as desired.

 A multiplicity of zero in front of a format term or a group means "do

 it zero times", i.e., "do not do it at all". Therefore, 0F5.5.11 will

 do nothing and

 S10,0(S10,F5.5.11,’TRA ’/),I3*

 will skip 10 columns and print a 3-column integer; nothing inside of the

 parentheses will be printed. This is most useful where there is some

 kind of format-variable, rather than an explicit zero multiplicity in

 front of the left parenthesis.

 A range of locations may be specified by using a block specification. _____ _____________

 A block is given in the form

 x,...,y

 where "x" and "y" are the first and last elements in the range,

 respectively. The following statement may be used to print 5 integers

 which occupy consecutive locations in storage, each occupying a

 fullword:

 PRFMT FMT3,(B,...,B+4*4,0)

 212 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 (the reason for the "*4" is that each integer occupies 4 bytes of

 storage). Note that this is equivalent to specifying five items in the

 list. The format FMT3 could be

 FMT3 DC C’5I*’

 The list elements are printed, starting with the first one and going in

 the proper direction through and including the last one, B+4*4. The

 address of the last element need not be higher than the address of the

 first element in a block specification, i.e., the block may specify that

 the items are to be taken in reverse order. The above block could have

 been specified as

 PRFMT FMT3,(B+4*4,...,B,0)

 Format-Break Characters _______________________

 Format terms may be separated either explicitly or implicitly. When

 the format terms are separated explicitly, a format-break character, is ____________ _________

 used to separate the terms. The format-break character may be either a

 comma or a matched pair of parentheses, for example,

 I10,I5 or I10(I5)

 When the format terms are separated implicitly, an implicit comma is

 inserted into the format by IOH. The format terminator "*" has an

 implicit comma to its left, e.g.,

 I5*

 is equivalent to

 I5,*

 The characters "/" (line terminator), "|" (line terminator), "?"

 (parameter list terminator), "#" (default indicator), and literal fields

 have implicit commas both to their left and to their right. Because

 implicit commas exist for these positions, it is not necessary to

 explicitly insert a comma in those places, e.g., it is not necessary to

 insert a comma before a literal field. However, when a multiplicity

 factor is used with a literal field, for example,

 F5.3,3(’HEADING ’)

 then an explicit comma must appear to separate the format correctly.

 IOH 213

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Rescanning the Format _____________________

 It has been stated that the list consists of a set of names of

 variables to which or from which information is to flow, and that each

 list item matches a field specification in the format. What happens if

 (1) the list has more items than the format has fields, or (2) the list

 has fewer items than the format has fields?

 In all cases, all the list items must be accounted for. During

 execution, IOH scans the format. When it finds a field specification,

 it goes to the list to determine where to place (for output) or where to

 get (for input) the information that is to be transferred. If IOH does

 not find a list item, because they have all been "used up", it stops at

 that point, just as if it had encountered an asterisk while scanning the

 format.

 If IOH reaches the end of the format (as designated by the asterisk),

 it looks at the list to determine if there are any items on the list

 that have not been "used up". If the list is exhausted, normal format

 termination occurs, i.e., if this was an output format, the line is

 printed, and control returns to the user’s program. If the list is not

 exhausted, the line is printed (if output) or a new line is read (if

 input) and the format is rescanned. If no parentheses are used in the

 format, the format is restarted from the beginning. For example, the

 format

 10I8*

 from the statement

 RDFMT FMT4,(BLOCK,...,BLOCK+100*4,0)

 will read 101 integers from 11 lines; 10 integers will be read from each

 of the first 10 lines, and the 1 integer from the eleventh line. If

 this were a print statement, 11 lines would be printed, 10 integers on

 each of the first 10 lines and 1 integer on the eleventh line.

 If there are parentheses used in the format, format scanning starts

 at the end of the format and works toward the front of the format, until

 a zero-level left parenthesis is found (one that is not inside another

 left parenthesis). Format scanning again starts forwards using any

 multiplicity that may be in front of this parenthesis. For example, the

 format

 I3,F5.3,F10.3*

 will read input lines containing an integer in columns 1-3 and

 floating-point numbers in columns 4-13 and 14-28 until the list is

 exhausted. The format

 (I3,2(F5.3,F10.3))*

 214 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 will read input lines containing an integer in columns 1-3 and

 floating-point numbers in columns 4-13, 14-28, 29-38, and 39-53. The

 format

 I3,2(F5.3,F10.3)*

 will read an input line containing an integer in columns 1-3 and

 floating-point numbers in columns 4-13, 14-28, 29-38, and 39-53,

 followed by input lines containing floating-point numbers in columns

 1-10, 11-25, 26-35, and 36-50. And as a final example, the format

 I3/2(F5.3,F10.3)*

 will read an integer from columns 1-3 of the first input line, and all

 other list items from successive lines, four floating-point numbers per

 line. This type of format is often used to read a data count from the

 first line, and the data items from the remaining lines.

 STANDARD FORMAT I/O ___________________

 If a data-transmission format term (C, E, F, I, P, or X) consists of

 only the control character, i.e, the field widths and delimiting decimal

 points are omitted, standard format input or output is assumed. For

 input, the data items in the input line-image are in free format (not in

 any specific columns) and are separated by a character, e.g., a comma,

 that could not normally appear in the input field. For numeric output,

 the default field widths are used. For character output, the default

 field width of 1 is used, and the resulting character is placed between

 literal-break characters. Initially, a prime is used as the literal-

 break character, but in general, the "latest-used" literal-break charac-

 ter delimits standard format character output.

 For standard format numeric input (E, F, I, P, and X), the input

 line-image is scanned for the next occurrence of a character that is not

 an input fill character (initially a blank). The first such character

 is set as the initiator character. After setting this character, the

 scan proceeds until the occurrence of the next comma, the next input

 fill character, or the end of the input line-image (any of which is set

 as the terminator character). All characters between the initiator

 character (including it) and the terminator character (excluding it) are

 taken as the input field. For example, the format term

 3I

 may be used with the input line

 1,2,3

 to read the values 1, 2, and 3. If the scan reaches the end of the

 input line-image before setting the initiator character, a new line-

 IOH 215

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 image is requested (i.e., a call to CLOSE followed by a call to OPEN is

 made). If two consecutive commas appear in the input line-image, the

 input data item is taken as null, no conversion takes place, and the

 next argument in the parameter list is skipped. If one or more

 consecutive input data items are the same, the input data item may be

 enclosed in parentheses with the corresponding multiplicity inserted

 before the left parenthesis. For example, the input line

 4,4,4,2.0,2.1,2.1

 may be written as

 3(4),2.0,2(2.1)

 For standard format character input, the input line-image is scanned

 for the next occurrence of any nonblank character, except a comma. If

 such a nonblank character occurs, it is checked to see if it is a

 literal-break character. If it is not, an error condition results; if

 it is, the scan continues looking for the next occurrence of the same

 literal-break character. All characters between the initial literal-

 break character and the terminal literal-break character are taken as

 the input field. With standard format character input, a comma or an

 input fill character must be used to separate the data items. For

 example, the format term

 2C

 may be used with the input line

 ’ABCDEF’,’WXYZ’

 to read the character strings "ABCDEF" and "WXYZ". If the input data

 item contains a literal-break character as part of the data item, two

 successive literal-break characters must be used in the data item (the

 first of the pair is used and the second is discarded). The scan then

 continues until a literal-break character not immediately followed by

 another literal-break character occurs. For example, the above format

 may be used with the input line

 ’ABC’’123’,’’’456’

 to read the character strings "ABC’123" and "’456". Warning: the blank

 and the comma should not be used as literal-break characters when

 standard format character input is being used.

 As a more complex example, the input format

 2I,2F,C*

 may be used to read the following input lines:

 10 23 6.4 5.9 ’DATA 1’

 4, 27, 3.2, 10., ’DATA 2’

 216 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 2(4) , 2(3.2), ’DATA 3’

 6 ,, 3.2 ,, ’DATA 4’

 In the last line, the second and fourth input items are null, and the

 corresponding arguments in the parameter list are skipped.

 IOH MACROS __________

 Since the calling sequence for IOH is rather complicated, a set of

 macro definitions is provided to allow the user to easily call IOH.

 These macros may be subdivided into two groups; macros that may be

 used to initially call IOH and macros that may be used to continue the

 processing of an input or output line by IOH. The macros that may be

 used to initially call IOH are:

 RDFMT - Read formatted input (defaults to SCARDS)

 WRFMT - Write formatted output (defaults to SPRINT)

 PCFMT - Punch formatted output (defaults to SPUNCH)

 PRFMT - Print formatted output (defaults to SPRINT)

 SERFMT - Print formatted output (defaults to SERCOM)

 GUSFMT - Read formatted input (defaults to GUSER)

 LKFMT - Look at formatted input (defaults to SCARDS)

 The macros that may be used to continue processing are:

 MOREIO - Continue reading or writing formatted input or output

 ONEIO - Continue reading or writing formatted input or output one

 element at a time

 ENDIO - Terminate I/O processing

 IOP - I/O parameter (acts like ONEIO or MOREIO depending on the

 number of arguments given)

 REFMTC - Repeat format call

 ACCEPT - Close LKFMT buffer

 IOPMOD - Set I/O FDname modifiers

 The general form of the macro calls that may be used to initially

 call IOH is as follows (the RDFMT macro is as an example prototype):

 RDFMT format,list,OPEN=subr,CLOSE=subr,EOF=subr,ERROR=subr,

 LUNIT=unit,SECT={sect|*},POOLSW={0|1},NC=name,TYPE={A|S},

 SYMTBL=table

 where "format" is the user-supplied format and "list" is the list of

 data items to be used. The format specifies how to interpret fields

 being read or written. "format" is the label of the format statement.

 Whenever the term "list" is used in the following descriptions, it will

 have the following meaning:

 IOH 217

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The "list" is a list of arguments that may be either a single

 element, a list of elements, or null. Block arguments may also be

 specified, such as A(1),...,A(10). In this case, IOH will use all

 arguments from A(1) to A(10), inclusive. There may be no other

 arguments between A(1) and A(10). If there is more than one

 element in the list, the entire list must be enclosed in

 parentheses.

 The keyword parameters in the macro call are optional. Any or all may

 be specified and they may appear in any order. For example,

 PRFMT FMT1,(A,B,A+100,...,A+200,0),POOLSW=1,TYPE=S,CLOSE=MFCLOSE,

 OPEN=MLOPEN,SECT=PQSECT,NC=12

 The optional keyword parameters are

 OPEN=subr "subr" specifies the name of a user-supplied sub-

 routine that IOH will call when it needs to read a

 new line-image; this subroutine may be internal or

 external to the calling program; if it is external,

 the name must be defined by an EXTRN assembler

 language statement.

 CLOSE=subr "subr" specifies the name of a user-supplied sub-

 routine that IOH will call when it needs to write a

 line-image (i.e., release a line-image); this sub-

 routine may be internal or external to the calling

 program; if it is external, the name must be defined

 by an EXTRN assembler language statement.

 Note: If the user is supplying either an OPEN or a CLOSE

 subroutine, he should supply both (especially when using the read

 format macro). See the description of OWNCONVR in the subsection

 "Additional Entry Points to IOH" for details of writing an OPEN or

 a CLOSE routine.

 The user may specify that on each return from IOH, the return code

 should be checked. If either the EOF or ERROR parameters are

 specified, code is generated to check the return code and to route

 the return to the point specified by the user. Note: IOH returns

 to the user with a nonzero return code only if the correct flag

 bits have been previously set by a call to SETIOHER. See the

 description of SETIOHER in the subsection "Additional Entry Points

 to IOH."

 EOF=subr "subr" specifies the name of a user-defined or

 system-defined subroutine to handle end-of-file re-

 turns from IOH; the subroutine may be internal or

 external to the calling program; if it is external,

 it must be defined by an EXTRN assembler language

 statement. Note: IOH allows an end-of-file return

 only if the user has set the appropriate flag (hex

 40) by calling SETIOHER; if this flag is not set, a

 218 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 return is made to the system subroutine SYSTEM with

 the comment:

 ALL INPUT DATA HAS BEEN PROCESSED AT LOCATION

 xxxxxx.

 ERROR=subr "subr" specifies the name of a user-defined or

 system-defined subroutine to handle error returns

 from IOH; the subroutine may be internal or external

 to the calling program; if it is external, it must be

 defined by an EXTRN assembler language statement.

 Note: IOH allows an error return only if the user

 has set the appropriate flag (hex 80) by calling

 SETIOHER; if this flag is not set, a return is made

 to the system subroutine ERROR with the comment:

 ERROR RETURN TO SYSTEM.

 LUNIT=unit "unit" specifies the logical I/O unit number (between

 0 and 9) to be used in reading or writing formatted

 input or output. If LUNIT is omitted, the subrou-

 tines given in the table below will be used for input

 and output. If LUNIT is specified, the logical I/O

 unit named (e.g., LUNIT=0) will be used to read in

 input (using the READ subroutine) or write output

 (using the WRITE subroutine). "unit" may also be the

 address of an FDUB-pointer; the line-image length in

 this case is 256.

 SECT={sect|*} "sect" specifies the name of a control section or

 location counter in which the parameter lists gener-

 ated by the current macro call are to be placed. The

 SECT parameter need not be given on every call. The

 effect of a previous SECT parameter is retained until

 the appearance of a new SECT parameter. Initially,

 macro calls are generated with in-line parameter

 lists. The user may specify that these parameter

 lists be placed in the control section or location

 counter designated by the last SECT argument. If

 SECT=* is specified, in-line parameter lists are

 again generated.

 POOLSW={0|1} This parameter specifies whether halfword constants

 are to be regenerated. Each time a macro call is

 expanded, halfword constants are generated which form

 the counts for the lists and sublists. By default,

 halfword constants previously generated are not ___

 regenerated; the previously defined halfwords are

 used (i.e., the macro processor keeps track of labels

 assigned to halfword constants that it has generated __

 previously). By using this parameter, the user may

 avoid generating redundant halfword constants; it is

 a space-saver in this respect. Each time POOLSW is

 IOH 219

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 explicitly used (whether it is set to 0 or 1) in a

 macro call, all previous halfword constant reference

 accumulation is lost (i.e., the halfword constant

 pool is rebuilt from scratch). The initial value of

 POOLSW is 0 specifying that constants are not

 regenerated. If POOLSW is set to 1, then new

 constant pools are generated for each macro call ____

 thereafter until it is reset to 0.

 NC=name The NC parameter used to assign names to macro calls.

 The user may then refer the assigned name in a later

 macro call using the same format and list defined in

 the named macro call. This allows the user to use

 the same format and parameter list for many macro

 calls; it is a space-saver. "name" may be any string

 of characters up to eight characters in length. Only

 twenty-five such (different) names may be used in a

 single assembly. When the NC parameter is specified

 in a macro call, a search is made of a table that

 contains the names of the previously defined macro

 calls using the NC parameter. If the NC parameter

 name is not found, then an entry for the macro call ___

 is made in the table and processing proceeds as if

 the NC parameter was omitted. If the NC parameter is

 found in the table, then both the "format" and the ____

 "list" of the present macro call are ignored and the

 "format" and the "list" of the macro call that

 originally defined the present name are used. When _______

 the NC parameter is used in a REFMTC macro call, it

 specifies that, in addition to using the "list" and

 "format" of a previous macro call, the OPEN and CLOSE

 arguments are also to be used (see the REFMTC

 description below).

 TYPE={A|S} This parameter specifies the type of adcon lists to

 be generated. The lists that the macro processor

 generates may be in one of two types. The first type

 consists of fullword adcons (A-type adcons) and the

 second type consists of halfword adcons (S-type

 adcons). Initially, an A-type list is generated.

 TYPE may be set to either A or S, to generate A-type

 adcons and S-type adcons, respectively. The type

 selected is used in all succeeding macro calls until

 the TYPE is changed.

 SYMTBL=table "table" specifies the address of the symbol table to

 be used with format variable input and output. See

 the subsection "Format Variables" for further details

 and examples using format variables.

 If the OPEN, CLOSE, and LUNIT parameters are omitted, the macros will

 generate adcons with the names of the appropriate system-supplied OPEN

 and CLOSE routines. They are as follows:

 220 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Macro Call OPEN CLOSE Routine Called _____ ____ ____ _____ _______ ______

 RDFMT ROPEN RCLOSE SCARDS

 WRFMT POPEN PCLOSE SPRINT

 PCFMT PCOPEN PCCLOSE SPUNCH

 PRFMT POPEN PCLOSE SPRINT

 SERFMT SEROPEN SERCLOSE SERCOM

 GUSFMT GOPEN GCLOSE GUSER

 LKFMT LOPEN LCLOSE SCARDS

 Notes:

 (1) PRFMT is normally used for writing output to a line printer.

 WRFMT is normally used for writing output to any I/O device ___

 capable of receiving the line-image. PRFMT and WRFMT actually

 generate the same calls.

 (2) A call to RCLOSE causes the input line-image transmitted by a

 previous call to LOPEN or ROPEN to be closed.

 (3) The line length is dependent upon the file or device attached.

 Whenever a zero is used as an argument, I/O processing is terminated ________

 (the line is closed and a return is made to the caller). The zero

 element may appear anywhere in the argument list. If the argument list

 is exhausted, all translations are completed, and no zero element is

 found, control returns to the caller. The user has the option of

 returning to IOH with another argument list and/or a new format. If he

 does not return or if he makes a new initial call to IOH (the initial

 types of call have been defined above), the remainder of the previous

 line-image is discarded. If he returns with another parameter list, I/O

 processing continues with the previous format and line-image. This

 process can continue until a zero element is encountered or until no

 return is made.

 The return to IOH to continue processing of the input or output line

 can be made with any of the following macros:

 MOREIO The MOREIO macro is used to specify a new format or a new

 argument list, or to specify the EOF, ERROR, SECT, NC, POOLSW,

 or TYPE parameters. The general form of the call is

 MOREIO list,EOF=subr,ERROR=subr,SECT={sect|*},CFMT=format

 POOLSW={0|1},NC=name,TYPE={A|S}

 If CFMT is specified, the information about the previous

 format is discarded (i.e., the new format is used as if it

 were the original one). In particular, information about the

 placement of parentheses and their associated multiplicities

 in the previous format is discarded. With the CFMT parameter,

 the user may build a format during program execution (only ______

 part of the format need be present at any one time). The user

 should remember to supply enough of the format each time for

 IOH 221

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 the number of arguments in the associated parameter list or to __

 to terminate each such format with an asterisk "*". If the

 format is terminated with an asterisk, format scanning resumes

 at the beginning of the format, or with the last level of

 multiplicity. If the NC parameter refers to a previously

 macro call, then the "list" and CFMT arguments of the present

 call are ignored and the "list" and "format" (or CFMT

 "format") of the previous macro call are used.

 ONEIO The ONEIO macro is used to specify one list item at a time

 during input or output. The EOF and ERROR arguments may also

 be specified. The general form of the call is:

 ONEIO arg,EOF=subr,ERROR=subr

 "arg" is the list item to be used. If "arg" is zero (i.e.,

 ONEIO 0), I/O processing is terminated. If "arg" is omitted,

 general register 1 is assumed to contain the address of the

 list item.

 ENDIO The ENDIO macro is used to terminate I/O processing. This is

 equivalent to ONEIO 0. The general form of the call is:

 ENDIO

 IOP The IOP macro is used to specify either a single list item or

 a single blocked-pair list item. The EOF and ERROR parameters

 may be used in the macro call. The general form of the call

 is:

 IOP arg1[,...,arg2],EOF=subr,ERROR=subr

 IOP arg

 is equivalent to

 ONEIO arg

 and

 IOP arg1,...,arg2

 is equivalent to

 MOREIO (arg1,...,arg2)

 REFMTC The REFMTC macro is used to "execute" previously defined

 initial-type macro calls. The general form of the call is:

 REFMTC NC=name,ERROR=subr,EOF=subr

 The NC parameter must be present and refers to a previously ____

 defined initial-type macro call using that NC parameter. The

 222 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 effect of this type of call is to generate code which uses the

 OPEN and CLOSE parameters of the initial-type call (even if

 they are defaulted), in addition to using the "format" and

 "list" of that call. The use of this macro call would, for

 example, allow the user to read an input line from several

 different places in a program using the exact same "format", _____

 "list", and OPEN and CLOSE options. It is a space-saver in

 this respect.

 ACCEPT The ACCEPT macro is used to close the input buffer that is

 being "looked at" by a LKFMT call. The general form of the

 call is

 ACCEPT LUNIT=unit

 The LUNIT parameter specifies the logical unit that the input

 buffer was read from; if this parameter is omitted, SCARDS is

 assumed.

 The IOPMOD macro may be used to call the IOH entry point IOPMOD.

 This allows the user to specify the modifiers and the line number that

 will be used by the IOH OPEN and CLOSE routines when such routines call

 the system subroutines READ, WRITE, SCARDS, SPRINT, SPUNCH, SERCOM, or

 GUSER. The IOPMOD entry point is described in detail in the subsection

 "Additional Entry Points to IOH."

 The LKFMT macro call is used to "look at" an input line. When the

 LKFMT macro is invoked, the current input line that is in the input

 buffer is processed by IOH according to the specified format; if the

 input buffer is empty, a new input line is read into the buffer. The

 ACCEPT macro call is used to close the input buffer. After the input

 buffer is closed, another LKFMT call will read a new input line into the

 buffer. The LKFMT and ACCEPT macro calls are most useful when an input

 line is to be scanned under several different formats. For example, the

 following program segment illustrates how LKFMT can be used to read an

 input field both as a character string and as a floating-point number.

 LKFMT FMT1,(CHAR,0)

 LKFMT FMT2,(FLT,0)

 ACCEPT

 .

 .

 CHAR DS CL10

 FLT DS E

 FMT1 DC C’C10*’

 FMT2 DC C’F5.3.10*’

 The first 10 columns of the input line will be read into CHAR as a

 character string and into FLT as a floating-point number.

 To avoid conflicts between user-program names and names generated

 during a macro call, all names generated during macro processing begin

 with a pound sign "#" and have an identifier immediately following the

 IOH 223

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 pound sign; The first character of the identifier is numeric. All

 generated names are at least three characters in length. All global

 set-symbols used during macro call compilation begin with a pound sign.

 The names of the macros that are used in expanding the IOH macros

 described above are:

 #IOHPRLS

 #IOHOCCK

 #IOHERCK

 Thus, the user should not define his own macros with any of the above

 names.

 The following example illustrates the use of macro calls.

 PRFMT FORMAT1,(A,B,C,...,C+8,A+5,A+10,...,A+15,0),OPEN=IOPEN,

 CLOSE=ICLOSE

 In this example, two user-defined input and output are specified. The

 above example may also be specified using the following set of macro

 calls:

 PRFMT FORMAT1,OPEN=IOPEN,CLOSE=ICLOSE

 IOP A

 IOP B

 IOP C,...,C+8

 IOP A+5

 IOP A+10,...,A+15

 ENDIO

 SPECIAL FEATURES OF IOH _______________________

 Additional Entry Points to IOH ______________________________

 SETFRVAR

 General register 1 points to the beginning of a format variable

 vector. The beginning of the vector must be halfword-aligned. See

 the subsection "Format Variables" for further details on the use of

 format variable vectors.

 SETIOHER

 General register 1 points to a 4-byte area (which need not be

 halfword- or fullword-aligned) that contains flags to specify

 actions to be taken in special situations. These flags are ORed

 with the flags that are currently set. The flags in the first byte

 are:

 224 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Bit 0 (Hex 80) If set, an error return is to user.

 If not set, an error return is to the system (the

 default).

 Bit 1 (hex 40) If set, an end-of-file return is to user.

 If not set, end-of-file return is to the system

 (the default).

 Bit 2 (hex 20) If set, full recovery is attempted after an error;

 I/O processing will attempt to continue. Note: _______

 Bit 0 or bit 3 must also be set.

 If not set, no error recovery is attempted (the

 default); I/O processing is terminated.

 Bit 3 (hex 10) If set, error comments via SERCOM are suppressed.

 Note: Bit 0 must also be set.

 If not set, error comments are printed (the

 default).

 Bit 4 (hex 08) If set, a new line will start if a converted

 output line exceeds the maximum length (note:

 an error is still flagged if a T format item

 caused the error.) Note: Bit 0 or bit 3 must

 also be set.

 If not set, an error will result if a converted

 output line exceeds the maximum length (the

 default).

 Bit 5 (hex 04) If set and a field width exceeded error occurs on

 output, the output field will be filled with

 the overflow character and processing will

 continue (the default).

 If not set, an error condition is flagged.

 Bit 6 (hex 02) If set, extended error messages are produced (de-

 fault for batch mode).

 If not set, abbreviated error messages are pro-

 duced (default for conversational mode).

 Currently, none of the other bits in this 4-byte area are used.

 DROPIOER

 General register 1 points to the 4-byte area that corresponds to

 the 4-byte area of SETIOHER. Any bit that is set by a call to

 DROPIOERR causes the corresponding flag bit in the SETIOHER area to

 be reset to zero. Thus, the 4-byte area used to set the flags by a

 call to SETIOHER can be be used to reset them by a call to

 DROPIOER.

 The following program segment illustrates how calls to SETIOHER and

 DROPIOER may be used to control end-of-file processing by IOH. In

 this example, input lines are read until an end-of-file is

 IOH 225

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 encountered, at which point an exit is made to another segment of

 the program which resets the end-of-file exit.

 LA 1,SETAREA Enable EOF exit

 L 15,=V(SETIOHER)

 BALR 14,15

 DATARD RDFMT FMT,(INT,0),EOF=DATAEND Read input data

 .

 .

 B DATARD

 DATAEND LA 1,DRPAREA Disable EOF exit

 L 15,=V(DROPIOER)

 BALR 14,15

 .

 .

 SETAREA DC XL4’40000000’ Specify EOF flag

 DRPAREA DC XL4’40000000’

 FMT DC C’I6*’ Format

 INT DS F

 GETIOHER

 General register 1 points to a 4-byte area into which the 4-byte

 area of the last call to SETIOHER is moved. Using this, the user

 can determine which bits are currently set.

 OWNCONVR

 With the O format term, the user may use his own conversion routine

 for either input or output conversion. Before using such a

 conversion routine, the user must specify the entry point address

 of his routine. The calling sequence

 LA 1,myconv

 L 15,=V(OWNCONVR)

 BALR 14,15

 or

 LA 1,myconv

 CALL OWNCONV

 specifies "myconv" as the entry point address. The routine

 "myconv" need only save general register 14 (so that it can

 return). If and when the return is made, general register 15

 should be 0 if the conversion was successful, 4 if an end-of-file

 condition was encountered on the call to the OPEN routine, or 8 if

 the conversion was unsuccessful. All other codes are illegal and

 will be treated as errors. When IOH calls such a routine, general

 register 1 points to the beginning of an area which has the

 following layout:

 226 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 OWNW1 DS F

 OWNW2 DS F

 OWNW3 DS F

 OWNARG DS F

 OWNOPEN DS F

 OWNCLOSE DS F

 OWNCUR DS F

 OWNLAS DS F

 OWNPUT DS F

 OWNFLAGS DS XL2

 where

 OWNW1 - first field width (e.g., the "m" in Em.n.w).

 OWNW2 - second field width (e.g., the "n" in Em.n.w).

 OWNW3 - third field width (e.g., the "w" is Em.n.w).

 OWNARG - the address of the conversion argument (i.e., from

 or to where the conversion is to take place).

 OWNOPEN - the address of the routine that the user’s routine

 should call if he wishes to get a new input or

 output line-image.

 OWNCLOSE - the address of the routine that the user’s conver-

 sion routine should call if he wishes to close out

 the input or output line-image.

 OWNCUR - the pointer to the current byte in the input or

 output line-image.

 OWNLAS - the pointer to the last byte in the input or output

 line-image.

 OWNPUT - the address of a routine that the user may call to

 place an item into the output line-image.

 OWNFLAGS - two bytes of flag bits:

 byte 1: bit 0 - set if R was specified

 1 - set if L was specified

 2 - set if N was specified

 3 - set if DD was specified

 4 - set if D was specified

 5 - set if W was specified

 6 - set if H was specified

 7 - set if B was specified

 Only one of bits 3,4,5,6, or 7 may be ___

 set.

 byte 2: bit 0 - set if standard format was

 specified

 (i.e., no 0’s or field widths)

 1 - set if field width 1 was a blank

 2 - set if field width 2 was a blank

 3 - set if field width 3 was a blank

 4 - set if field width 3 was found

 5 - set if any period "." was found

 6 - set if for output, not set for

 IOH 227

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 input

 7 - set if this was the first time

 through this format term

 Note:

 (1) On input, the user will get the same input line-image as

 on the previous call, if he does not call OWNCLOSE before

 calling OWNOPEN. Thus, the user may rescan a line-image

 (starting at column 1) by calling OWNOPEN without calling

 OWNCLOSE for the previous line-image.

 (2) The user may change any of the fields specified.

 On input:

 The user should do all of his own conversion into an area

 specified in OWNARG; on return, OWNCUR should contain the

 address of the byte to which the line-pointer is to point in

 the input line-image.

 On output:

 The user has two options:

 (1) The user may move his conversion into the output line-

 image starting at the address in OWNCUR and not going past ___

 the address in OWNLAS for each line-image. He may use

 successive line-images. Each time a new line-image is

 obtained, OWNCUR and OWNLAS are changed appropriately.

 (2) The user may call OWNPUT to place his output into the

 output line-image and thus take advantage of the L, R, Y,

 Z, and $ modifiers and the default fill character. When

 OWNPUT is called, register 1 points to a list of 3 adcons:

 the first adcon points to the beginning of the user’s

 conversion output area; the second adcon points to the

 fullword number of bytes in that area; the third adcon

 points to the fullword conversion width. Adcon three must

 be greater than or equal to adcon two, or an error will

 result.

 IOPMOD

 The entry point IOPMOD allows the user to specify the I/O modifier

 bits and line numbers that will be used by the IOH OPEN and CLOSE

 routines when they call the system subroutines READ, WRITE, SCARDS,

 SPRINT, SPUNCH, SERCOM, and GUSER. The calling sequence using the

 IOPMOD macro is

 IOPMOD unit,mod,lnum,MF=mf

 228 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 or, alternatively, using the CALL macro

 CALL IOPMOD,(mod,unit,lnum),MF=mf

 "unit" is either the name of the location of an FDUB-pointer or

 fullword logical I/O unit number, a logical I/O unit number, or a

 logical I/O unit name enclosed in primes. "mod" (optional) is a

 parenthesized list of I/O FDname modifiers or the name of the

 location of a fullword containing the I/O FDname modifiers to be

 used in I/O calls by IOH. "lnum" (optional) is the line number or

 the name of a fullword containing the line number to be used; the

 line number is specified in its internal format (external-format x

 1000). MF (optional) specifies special calling sequence generation

 formats (see the CALL macro description in MTS Volume 14, 360/370 _______

 Assemblers in MTS, for details). _________________

 The following example illustrates a call to IOPMOD which causes

 logical carriage-control to be suppressed for output written to

 SPRINT by IOH. This example is first given in assembly language

 and then in FORTRAN:

 IOPMOD ’SPRINT’,(@NOCC)

 INTEGER*4 UNIT(2)/’SPRI’,’NT ’/,MOD/64/

 CALL IOPMOD(MOD,UNIT,0)

 Format Variables ________________

 The use of a format variable allows a program calling IOH to ______ ________

 substitute the value of a variable into a format wherever a number would

 otherwise occur. This substitution is made at the time the format

 variable is encountered during the scan of the format by IOH. The

 less-than sign "<" begins a format variable and the greater-than sign

 ">" terminates a format variable. The format variable may be a single

 format variable name or an expression containing several format variable

 names. For example,

 <VAR1>

 defines the format variable name VAR1.

 The format variable names are looked up in a user-defined symbol table

 and their appropriate values are substituted in place of the format

 variable in the format expression. For example, if VAR1 has the value

 3, then the format expression

 <VAR1>I

 would become, after substitution

 IOH 229

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 3I

 The address of the user-defined symbol table is specified in the

 macro call to IOH by the SYMTBL keyword, e.g,

 RDFMT format,list,SYMTBL=table

 PRFMT format,list,SYMTBL=table

 "table" is the fullword address of the user-defined symbol table. This

 symbol table has the following format:

 (1) the first word is a fullword count of the number of symbol

 entries.

 (2) the second and following words are the symbol entries in the

 form:

 <──────── 4 bytes ────────>

 ┌───────────────────────────┐
 | |

 | location |

 | |

 |───────────────────────────| ┌ ┌ ┌ ┌ ┘
 | | | | |

 | mode | 00 | not | not |

 | | | used | used |

 |──────┼────────────────────| ┌ ┘ ┘ ┘
 |length| |

 | of | name |

 | name | |

 |──────┘ | ┌
 | |

 | |

 | |

 └───────────────────────────┘

 "location" is the address of the value that is to be substituted

 for the format variable name in the format. "mode" indicates

 the length and data type of the value to be substituted; mode

 may be one of the following:

 0 - short-precision floating point (converted to integer)

 1-4 - fullword integer

 5 - byte value

 6 - halfword integer

 7 - byte value

 "length of name" is the number of characters in the symbol name

 (not including blanks); the name is padded with blanks so that

 each entry is fullword aligned.

 The format variable may be of any of the above modes, but the

 resulting value of the format variable must be between -32768 and 32767.

 230 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 When using a format variable as a multiplicity, varying the multiplicity

 does not vary the number of items in the list. If it is necessary to

 skip items, format terms with zero external field widths may be used

 (see the example below).

 The following short program segment illustrates the use of format

 variables to read a list of variable-width integers into an array. Both

 the macros RDFMT and MOREIO are used to illustrate how a single input

 line may be read by two separate I/O calls.

 RDFMT FMT1,(M,W),SYMBTL=TABLE Read mult. and width

 LA 1,20 Compute remainder

 S 1,M

 ST 1,REM

 MOREIO (ARRAY,...,ARRAY+4*19,CHARS,0)

 . Read integers and string

 .

 ARRAY DS 20F Array of integers

 CHARS DS CL32 Character string

 M DS F Number of integers read

 W DS F External field width

 REM DS F 20 - number of integers read

 FMT1 DC C’2I5,<VARM>I<VARW>,<REM>I0,C*’ Format

 TABLE DC F’3’ Number of entries

 ENTRY1 DC A(M) Address of M

 DC X’01’ Mode is fullword integer

 DC X’00’

 DS XL2

 DC X’04’ Length of name

 DC C’VARM ’ Format variable name

 ENTRY2 DC A(W) Address of W

 DC X’01’ Mode is fullword integer

 DC X’00’

 DS XL2

 DC X’04’ Length of name

 DC C’VARW ’ Format variable name

 ENTRY3 DC A(REM) Address of REM

 DC X’01’ Mode is fullword integer

 DC X’00’

 DS XL2

 DC X’03’ Length of name

 DC C’REM ’ Format variable name

 If the multiplicity and field width is to be 10 and 4, then execution of

 the program segment will read 10 integers of external field width 4 and

 place them into ARRAY; the last 10 elements of ARRAY will be set to zero

 by the I0 format term. After the integers are read, the string "DATA

 STRING" is read using standard format character input. The input data

 line would be set up as

 10 4 1 2 3 4 5 6 7 8 9 10 ’DATA STRING’

 |

 └Column 1

 IOH 231

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The second format term, whose value will be 14I0, is needed to exhaust

 to list of input data items for ARRAY, i.e., zero-length integers are

 read into the last 14 elements of the array.

 A second type of format variable is the list format variable which is ____ ______ ________

 specified by a V in the format. Whenever a V is encountered in a format

 term, IOH assumes that the next data item in the list points to a

 halfword integer, the contents of which is substituted into the format

 in place of the V. For each V used in the format, there must be a

 corresponding data item in the list. For example, if the next two list

 items point to halfwords containing 2 and 6, respectively, then the

 format term

 VIV

 is equivalent to

 2I6

 The following program segment illustrates how the above example may be

 set up.

 PRFMT FMT2,(M,W,INT1,INT2,0)

 .

 .

 M DC H’2’

 W DC H’6’

 INT1 DC F’12345’

 INT2 DC F’67890’

 FMT2 DC C’VIV*’

 This will print INT1 and INT2 in the following format:

 12345 67890

 A third type of format variable is the vector index format variable ______ _____ ______ ________

 which is given in the form

 n=

 where "n" is an index into a "user-defined" vector of halfword integers.

 When IOH encounters a vector index format variable in a format term, the

 index "n" is used to index the "n"th integer in the vector; this integer

 is then substituted into the format in place of the format variable.

 The index must be greater than zero; if the index is omitted, an index

 of 1 is assumed. For example, if the first, second, and third entries

 of the vector are 3, 2, and 4, respectively, then the format term

 1=F2=.3=.10

 is equivalent, after substitution, to the format term

 232 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 3F2.4.10

 Vector index format variable processing must be initialized by the

 calling the IOH entry point SETFRVAR. This can be done with the

 following type of call:

 LA 1,vector

 L 15,=V(SETFRVAR)

 BALR 14,15

 where "vector" is the beginning of the vector of halfword integers. The

 following short program segment illustrates how the above example might

 be set up.

 LA 1,VECTOR

 L 15,=V(SETFRVAR)

 BALR 14,15

 PRFMT FMT3,(A,B,C,0)

 .

 .

 A DC E’1’

 B DC E’2’

 C DC E’3’

 VECTOR DC H’3’

 DC H’2’

 DC H’4’

 FMT3 DC C’1=F2=.3=.10*’

 This will print A, B, and C in the following format:

 1.0000 2.0000 3.0000

 Changing Defaults _________________

 The user may change the default field widths and modes initially set

 by IOH and may change the interpretation that IOH makes for any of the

 characters in a format term. For example, the user may change the

 literal-break character to another character (e.g., $).

 The command to change defaults must be delimited by the pound sign

 "#" (the default indicator). There are two modes of changing defaults:

 normal mode and keyword mode.

 IOH 233

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Normal Mode

 The user may change certain default internal and external field

 widths for C, E, F, I, P, and X format terms. The following table

 indicates which field width defaults may be changed.

 Conversion Type Changeable Defaults __________ ____ __________ ________

 Cw.n "w" and "n"

 Em.m.w "m" and "n" only

 Fm.n.w "m" and "n" only

 Iw "w"

 Pw.n "w" only

 Xw.n "w" only

 The defaults are changed in the following manner. If any field

 widths are explicitly present in the format term, only those

 corresponding defaults are set to the values given in the format

 term (the other defaults are unchanged). For example,

 #E2#

 sets the default "m" field width value to 2, and

 #F3.3#

 sets both the default "m" and "n" field width values to 3. If both

 the field widths and the decimal points are omitted from the format

 term, all of the default field widths are reset to their initial

 values. For example,

 #E#

 resets the default "m" and "n" field widths to their initial values

 of 1 and 3, respectively.

 The default mode for E, F, and I format terms may be changed by

 specifying the desired mode using the length modifier (i.e., B, D,

 H, W) with the format term. For example,

 #DE#

 sets the default mode for E conversion to doubleword and resets the

 default "m" and "n" values to 1 and 3, respectively, and

 #WI10#

 resets the default mode for I conversion to fullword and sets the

 default "w" value to 10.

 234 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Keyword Mode

 Keyword mode is used to change the default values for input and

 output fill characters, literal-break characters, and other IOH

 parameters. Keyword mode is entered when the keyword indicator is

 specified (initially an ampersand "&"). The keyword is normally

 terminated by an equal sign "=" (the exception is PUSH and POP);

 the terminator may not be changed as it is treated as a part of the ___

 keyword. A variable length operand may follow the equal sign for

 certain keywords. The keywords are not translated by IOH (except ___

 to be translated so that all characters are uppercase); thus, the

 keywords must always appear as shown in this section (e.g., if the

 EXCHANGE keyword is used to exchange the interpretations of A and

 B, the BREAK keyword spelling would not change to AREBK).

 The following is a list of keywords that may be used to change

 default values. Initially, upper- and lowercase letters have

 equivalent interpretations; however, they may be set such that, for

 example, "a" has a different interpretation than "A". The pound

 sign "#" is always interpreted as the default indicator; however,

 other characters may also take on this function.

 OUTFILL=x change the current output fill character to the

 character "x". For example, the following format

 changes the output fill character to "@".

 #&OUTFILL=@#

 INFILL=x change the current input fill character to the

 character "x". For example, the following format

 changes the input fill character to the character

 zero "0".

 #&INFILL=0#

 OVCHR=x change the overflow fill character to the character

 "x". The overflow fill character (initially an

 asterisk) fills the entire field on output when the

 field width has been exceeded and when the bit is set ___

 (done on a call to SETIOHER) which allows such

 filling to occur. For example, the following format

 sets the overflow fill character to the dollar sign.

 #&OVCHR=$#

 BREAK=x interpret the character "x" as a literal-break char-

 acter. The user may have any number of literal-break

 characters. For example, the following format allows

 the dollar sign to be interpreted as a literal-break

 character.

 #&BREAK=$#

 IOH 235

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 EQUIV=xy interpret the first character "x" the same as the

 second character "y". For example, the following

 format allows an A in a format to have the same

 interpretation as a B (e.g., as the byte modifier).

 #&EQUIV=AB#

 EXCHANGE=xy exchange the interpretation of the two characters "x"

 and "y". For example, after processing the following

 format, D specifies character conversion and C speci-

 fies the doubleword modifier (assuming that their

 interpretations have not been changed previously).

 #&EXCHANGE=DC#

 REPLACE=xy the first character "x" is given the interpretation

 of the second character "y" and the interpretation of

 "y" is made null (i.e., illegal). For example, after

 processing the following format, C specifies E-type

 conversion and E is illegal (assuming that their

 interpretations have not been changed previously).

 #&REPLACE=CE#

 If both characters are identical, then the interpre-

 tation of that character is made null.

 MODE={BCD|EBCDIC} specifies either BCD or EBCDIC. Initially, MODE

 is set to EBCDIC. The MODE setting determines

 whether plus signs, when put into the output line-

 image in a numeric conversion, will be either in

 BCD-mode (a 12-punch) or in EBCDIC-mode (a 12-6-8-

 punch). IOH accepts either the BCD or EBCDIC repre-

 sentations of the plus sign on input regardless of _____

 the mode setting. For example, after processing the

 following format, all plus signs produced on a

 numeric conversion by IOH will be in BCD-mode.

 #&MODE=BCD#

 {PUSH|POP} transfer from one default level to another. PUSH is

 used to transfer to a new default level. After this

 transfer, the user has at this level all the default

 values as they are initially given. given. POP is

 used to return to a previous default level. After

 this return, the user regains the previous default

 values and the default values from the level from

 which he returned are lost. This allows the user to

 have one interpretation for A at one level and

 another interpretation for A at a different level.

 For example,

 236 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 #&BREAK=$&REPLACE=’’&PUSH&BREAK=?#

 makes the dollar sign the only literal-break charac-

 ter at the first level while both the dollar sign and

 the question mark are legal literal-break characters

 at the second level; &REPLACE=’’ has made the prime

 an illegal character at the first level.

 POPALL return the user to level 0 with respect to the

 default levels.

 STATUS the next item in the parameter list is assumed to

 point to a halfword into which the present default

 level (PUSH-POP) level number is placed. The initial

 default level number is 0.

 RESET={key|x} reset default values at the present default level.

 The defaults that may be reset to their initial

 conditions are specified by the second parameter

 "key". "key" may be one of the following:

 ALL - all characters will have their initial

 interpretations, and all default field

 widths and modes for all data-transmission ___

 conversion will have their initial values.

 TABLE - only the interpretations of the format

 characters will be reset.

 DEFAULT - only the default field widths and modes for

 data-transmission terms will be reset.

 BREAK - the literal-break characters are reset to

 the prime and double quote, and all other

 current literal-break characters are reset

 to their initial interpretations.

 OUTFILL - the output fill character is reset to a

 blank.

 INFILL - the input fill character is reset to a

 blank.

 OVCHR - the overflow fill character is reset to an

 asterisk.

 MODE - the mode is reset to EBCDIC.

 If "key" is not specified, the character "x" is given

 its initial interpretation.

 IOH 237

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 APPENDIX A: IOH FORMAT SPECIFICATIONS ______________________________________

 This appendix contains the complete descriptions of the format

 control characters and modifiers that may appear in an IOH format.

 A Centering Control

 The centering control character is used to indicate in which _________ _______

 column in the output line-image the converted field is to be ______

 centered. Thus, with the format

 F1.4.10:A14

 if the converted number were

 ■■■2.1000

 (where "■" represents a blank), the decimal digit 2 in the
 converted number would appear in column 13 with three blanks

 before it and the characters ".1000" after it.

 If "n" represents the number found after the A in the format term,

 and if "w" represents the total field width in the line-image,

 then the beginning of a field with field width "w" and centering

 in column "n" will start in column "n-[w/2]+1", rounded down to

 the nearest integer.

 B Byte Modifier

 The byte modifier indicates that the conversion is to take place ____ ________

 from or into an internal field that is one-byte long. The byte

 modifier may be used for C, I, O, P, or X conversion. When using

 the B modifier with I conversion, the number is assumed positive

 on output and must be positive on input. For example, ____

 BI2, BC1, BI3

 See also the subsection "General Structure of Calling Sequences"

 for an implicit use with block addressing.

 C Character Conversion

 The normal form of a character format term is

 Cw.n

 where

 238 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 "w" is the width of the external line-image, and

 "n" is the width of the internal character string.

 Output:

 "n" characters are left-justified and placed into a output

 field "w" columns wide with trailing output fill characters

 added if necessary. The output fill character is initially a

 blank. If the R modifier is specified, "n" characters are

 right-justified and placed into the output field with preced-

 ing output fill characters added if necessary. If "w" is

 omitted, a default value of 1 is assumed. If "n" is omitted,

 "n" is set to the value of "w". If both "w" and "n" are

 omitted, but a decimal point appears in the format term, a

 default value of 1 for "w" is assumed and "n" is set to the

 value of "w". If standard format I/O is used, a default of 1

 for "n" is assumed, and the output character string is

 inserted into the line-image with literal-break characters

 surrounding it. The maximum allowable value for "w" is 132.

 For example, let the argument be a seven-byte character

 string, "ABCDEFG"; then

 C7.1 gives A■■■■■■
 C7.3 gives ABC■■■■
 RC7.3 gives ■■■■ABC
 C7.7 gives ABCDEFG

 C7 gives ABCDEFG

 C3 gives ABC

 C.1 gives A

 C.3 gives A

 C.7 gives A

 C. gives A

 C gives ’A’

 ■ represents a blank.

 Input:

 The first "n" of "w" characters are taken from the input

 line-image and are placed in "n" bytes. If the R modifier is

 specified, the last "n" of "w" characters are used. If "w"

 is omitted, a default value of 1 is assumed. If "n" is

 omitted, "n" is set to the value of "w". If both "w" and "n"

 are omitted and no decimal point appears in the format term,

 then standard format input is assumed (see the subsection

 "Standard Format I/O"). For example, if columns 1 through 7

 contain the character string "ABCDEFG", then

 C1.7 gives A■■■■■■
 C6.7 gives ABCDEF■
 RC6.7 gives ■ABCDEF
 C7.10 gives ABCDEFG■■■

 IOH 239

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Applicable Modifiers:

 B, D, DD, H, L, R, W, Z - for input or output

 N - for input only

 A - for output only

 The default value for both "w" and "n" is 1.

 D Doubleword Modifier

 The doubleword modifier in a format term indicates that the __________ ________

 conversion is to take place from or into an internal field that is

 eight bytes long and that begins on a doubleword boundary. __________

 However, if DD appears in a format term, conversion is to take

 place from or into an internal field that is sixteen bytes long

 and that begins on a doubleword boundary. The doubleword modifier __________

 may be used for C, E, F, I, O, P, and X conversion. For E and F

 conversions, when DD appears, long-precision floating-point num-

 bers are assumed. For example,

 DE, DDE1.30.40, DE0.15.22

 See also the subsection "General Structure of Calling Sequences"

 for an implicit use with block addressing.

 E Exponential Floating-Point (Real) Conversion

 The normal form of an exponential floating-point format term is

 Em.n.w

 where

 "m" is the number of digits to the left of the decimal point,

 "n" is the number of digits to the right of the decimal

 point, and

 "w" is the total external field width.

 Output:

 If "m", "n", and "w" are omitted and no decimal points appear

 in the format term, the default values of 1 and 3 for "m" and

 "n" for E-type formats are used; "w" is taken as m+n+6 in

 this case (the 6 includes the sign, the decimal point, and

 the four characters in the exponent). If either "m" or "n"

 is omitted (but either a decimal point is present or "w" is

 present, implying that two decimal points are present), the

 default values of 1 and/or 3 are assumed for "m" and/or "n",

 respectively (one or the other or both may be defaulted). If

 "w" is omitted, it is set to m+n+6. For example, the number

 240 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 123.456 would print as the following with the indicated

 formats:

 123.456E+00 E3.3.11

 12.346E+01 E2.3.10

 1.235E+02 E1.3.9

 .124E+03 E0.3.8

 1.235E+02 E.3.9

 1.235E+02 E

 Input:

 If neither any widths nor any decimal points appear in the

 format term, standard format input is assumed (see the

 subsection "Standard Format I/O"). Otherwise, if "m" or "n"

 or both are omitted, the default values of 1 and/or 3 are

 assumed for "m" and/or "n", respectively. If "w" is omitted,

 it is set to m+n+6. If there is no decimal point in the

 input field, the input number is scaled by 10**-n (i.e., a

 decimal point is assumed to be to the left of the "n"th digit

 counting from the right). The appearance of a decimal point

 in the input image overrides any specification for "m" and

 "n". For example, the following numbers are all converted to

 an internal floating-point number equal to 123.456 with

 respect to the formats given:

 123.456E+00 E

 12.3456E+01 E1.4

 123456E+01 E2.4

 Applicable Modifiers:

 D, DD, W - for input or output

 A, J, L, R, U, Y, Z, $, @ - for output only

 The default value for "m" is 1 and for "n" is 3. The mode default

 is W (fullword).

 An exponential floating-point number is represented by

 [sign][digits][.][digits][E|+|-|D][digits]

 where the "E" and "D" represent single- or double-precision,

 respectively. Note that a string such as 1+5 is equivalent to the

 string 1E+05. On output, all floating-point numbers in E-format

 are in the following form:

 [sign][m digits].[n digits]E[±][exponent]

 IOH 241

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 F Nonexponential Floating-Point (Real) Conversion

 The normal form of a nonexponential floating-point term is

 Fm.n.w

 where

 "m" is the number of digits to the left of the decimal point,

 "n" is the number of digits to the right of the decimal

 point, and

 "w" is the total external field width.

 Output:

 If "m" or "n" is omitted, it is replaced by its respective

 default value of 5 or 4, respectively. If "w" is omitted and

 "n" is nonzero, "w" is taken as m+n+2 (the 2 includes the

 sign and decimal point). If "w" is omitted and "n" is zero,

 "w" is taken as m+n+1. If all three widths are omitted and

 there are no decimal points present in the format term, the

 number to be converted is examined with respect to the

 default value for "m"; if the number has an absolute value

 less than 10**-1 or greater than or equal to 10**(m-1),

 E-type standard format is used. Otherwise, "m" and "n" are

 set to their default values and "w" is set to m+n+2. When

 "n" is zero, the decimal point is still printed, but may be

 suppressed by using the M modifier. In this case, the

 default field width is m+n+1 rather than m+n+2. If the

 converted term is too large to fit in the output field, the

 output field is filled with the current overflow character

 (initially an asterisk).

 Note: If the F is immediately followed by another F (i.e.,

 FF), and, if the number of digits in the converted number

 exceeds "w", the "w" high-order characters (including the

 sign, if present) of the converted number are used (the last

 digit is not rounded). For example, the number 123.456 would ___

 print as the following with the indicated formats:

 123.456 F3.3

 123.45 F3.2

 123. F3.0

 123.4560 F

 123.456 FF3.4.7

 123.4 FF3.3.5

 **** F2.1

 Input:

 F-type input is identical to E-type input. See the descrip-

 tion of E above.

 242 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Applicable Modifiers:

 D, DD, W - for input or output

 A, J, L, M, R, U, Y, Z, $, @ - for output only

 The default value for "m" is 5 and for "n" is 4. The mode default

 is W (fullword).

 G Base Modifier

 The base modifier may be used only with I-type format terms and ____ ________

 must appear after the specification of the field width and must be

 separated from the main part of the format term by modifier

 separator ":". The number after the G is taken as the conversion

 base. Conversion bases from 2 through 36 inclusive may be used.

 The letters A through Z may be used represent the "digits" 10

 through 35, respectively. For example, I10:G16 or I10:GG converts

 an integer field using base-16 arithmetic.

 H Halfword Modifier

 The halfword modifier indicates that the conversion is to take ________ ________

 place from or into a halfword. The halfword modifier may be used

 with C, I, O, P, and X conversion. For example,

 IH5, HC4

 See also the subsection "General Structure of Calling Sequences"

 for an implicit use with block addressing.

 I Integer Conversion

 The normal form of an integer conversion format term is

 Iw

 where "w" is the total external field width.

 Output:

 If "w" is omitted, the default value of 8 for "w" for integer

 fields is assumed. A field of size "w", into which an

 integer conversion takes place, is used.

 Input:

 If "w" is omitted, standard format input is assumed (see

 "Standard Format I/O"). If "w" is present, "w" columns on

 the input are scanned for an integer number and are

 converted.

 IOH 243

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Applicable Modifiers:

 B, D, G, H, W - for input or output

 A, J, L, R, U, Y, Z, $ - for output only

 The default value for "w" is 8. The default mode is W (fullword).

 Note: See the description of the byte flag B for a restriction.

 J Ignore Field Width Modifier

 The ignore field width modifier causes the external field width to ______ _____ _____ ________

 be taken with the least number of characters which can accommodate _____

 the converted field without the use of any fill characters. The J _______

 modifier may be used with E, F, I, O, P, or X conversion. Note

 that with the specification of J, the R, L, and Z modifiers have

 no effect. This modifier is applicable to output only.

 L Left-Justification Modifier

 The L modifier in a C, E, F, I, O, P, or X output format term ______

 indicates that the field is to be left-justified with trailing

 output fill characters. For example, if "■" stands for a blank,
 then on output, if a number were converted as

 ■+1.234

 according to the format term FY1.3.7, it will be converted as

 +1.234■

 with the format term LFY1.3.7. On input, the L modifier pertains _____

 only to C conversion and causes the leftmost characters to be

 moved from the line-image.

 M Suppress Decimal Point Modifier

 The M modifier is used only in output with F format terms. It

 causes the suppression (omission) of the decimal point. For

 example, the number 123.456 would print as the following with the

 indicated formats:

 123 MF3.0

 123456 MF3.3

 b123456 MF3.3.7

 N Nulls Modifier

 The nulls modifier is used only with character conversion on _____ ________

 input. It specifies that the fill character (if needed) is to be

 244 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 a hexadecimal zero X’00’. For example, if columns 1 through 7

 contain the character string "ABCDEFG", then

 NC1.7

 would place the character A followed by six hexadecimal zeros into

 the 7-byte input area.

 O "Own" Conversion

 The normal form for the "own" conversion format term is

 Om.n.w

 where the "m", "n", and "w" fields are the same as the E-type and

 F-type format terms. The user may specify that he wants to do his

 own conversion. He may access the "m", "n", and "w" fields and

 their corresponding switches that indicate whether these fields

 are blank (if the field widths are zero). See "Additional Entry

 Points to IOH: Own Conversion" for information on setting up a

 program to use this type of conversion.

 Applicable Modifiers:

 B, D, DD, H, W, - for input or output

 A, J, L, R, $ - for output only

 P Packed Decimal

 The normal form for the packed-decimal conversion format term is

 Pw.n

 where

 "w" is the external field width, and

 "n" is the internal field width (the number of internal

 packed-decimal bytes to be used).

 Output:

 If "w" and "n" are present, "n" bytes are unpacked and placed

 in "w" output columns; the "¬" modifier may be used to

 include the low-order digit of the last byte as a decimal

 digit and not as a sign. If standard format is specified,

 the internal representation is scanned until either a legal

 sign appears as a low-order digit or an illegal digit occurs

 in a byte (only numerics may appear in the high-order portion

 of a byte). If the "¬" modifier is specified, the scan stops

 at the last byte containing legal digits (after which there

 is a byte containing illegal digits). Omission of the "¬"

 IOH 245

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 modifier implies that a sign must appear. A field width ____

 equivalent to one plus the number of possible digits is used

 for the output image field. If "n" is omitted, the same

 internal scan as that used for standard format is used, and

 "n" is determined accordingly. If "w" is omitted, a default

 value of 8 is assumed.

 Input:

 "w" digits are packed into "n" bytes with the sign in the

 low-order byte (see the "¬" modifier, if the sign is not

 desired). If standard format is specified, "n" is set to the

 minimum number of bytes into which the external field can be

 packed - leading zeros count as digits in this case. If

 standard format is not specified and if "w" is omitted, "n"

 is set to the minimum number of bytes into which the digits

 can be packed.

 Applicable Modifiers:

 B, D, H, W - for block-addressing

 U, ¬ - for input and output

 A, J, L, R, Y, Z, $ - for output only

 The default value for "w" is 8.

 Note: Decimal points may appear in an input P field (but only one

 per field); however, they are ignored. Thus, the user must know

 the scaling factor implied by the placement of the decimal point,

 if it appears.

 Q Quit, If List Is Empty

 The appearance of a Q in a format (except within a literal string)

 causes a switch to be tested. This switch is set only if the next

 parameter address is zero (i.e., if the next list element

 signifies the termination of format conversion). If the switch

 has been set, the line-image is closed by a call to the CLOSE

 routine and control returns to the user. If the switch is not

 set, the format scan continues after the Q. For example, with the

 output format

 Q’ NUMBER=’,I5

 the literal ’ NUMBER=’ will be printed only if there is a

 conversion argument for the I5 format term following. If the Q

 were not present in the format, there would be a portion of the

 output line with the literal ’ NUMBER=’ with nothing on the line

 after the literal.

 246 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 R Right-Justification Modifier

 The appearance of an R in a C, E, F, I, O, P or X output format ______

 term causes the output field to be right-justified with the

 leading output fill characters added, if needed. The output fill

 character is initially a blank. This is the normal case for

 numeric conversions. On input, the R modifier pertains only to C _____

 conversion and causes the rightmost (instead of leftmost) charac-

 ters to be moved from the line-image.

 S Space: Column Manipulator

 The normal form for column spacing is

 Sn

 where "n" is a integer that indicates the number of columns to

 space. "n" may be either positive or negative. If "n" is

 omitted, it is assumed to be 1. For example, if the line-pointer

 is at column 18, S5 moves the line-pointer to column 23, whereas

 S-5 moves the line-pointer to column 13.

 T Tab: Column Manipulator

 The normal form for tabulation is

 Tn

 where "n" is the column number to which the line-pointer is to be

 moved. For example, T50 moves the line-pointer to column 50.

 U Fill, If Zero

 If the argument to an E, F, I, P, or X output format term is zero,

 the external field will be filled with output fill characters.

 The output fill character is initially a blank. On input, if the

 input field for an E, F, I, P, or X format is all blanks or null,

 the value is unchanged and the format is skipped. Normally, the

 value is set to zero.

 V List Format Variable

 Whenever a V is encountered in a format term, IOH assumes that the

 next item on the list points to a halfword integer; the contents

 of the halfword are substituted for the V in the format term. For

 example, if the next two list elements point to halfwords

 containing 5 and 8, respectively, then the format term

 IOH 247

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 VFV.2.16

 is equivalent to

 5F8.2.16

 W Fullword Modifier

 The fullword modifier indicates that conversion is to take place ________ ________

 from or into a fullword. This may be used for C, E, F, I, O, P,

 or X conversion. For example,

 WI6, WE1.3.10

 See the subsection "General Structure of Calling Sequences" for an

 implicit use with block addressing.

 X Hexadecimal Conversion

 The normal form of a hexadecimal conversion format term is

 Xw.n

 where

 "w" is the external field width (the number of hexadecimal

 digits to be packed or unpacked), and

 "n" is the number of bytes from or into which conversion is

 to take place.

 Output:

 "n" internal bytes are unpacked and placed in "w" line-image

 columns. If "w" is omitted, it is set to its default value

 of 8. If "n" is omitted, it is set to (m+1)/2, rounded down

 to the nearest integer.

 Note: The field width is never exceeded in X-type output _____

 conversions. Thus, if internally (in two bytes) one had 0123

 and if one specified X3 (which is equivalent to X3.2), the

 digit string 012 would be moved to the output field.

 Input:

 "w" digits in the input image are packed and right-justified

 in a field "n" bytes wide. If both "w" and "n" are missing

 and no decimal point appears in the format, standard format

 is assumed and "n" is set to the minimum number of bytes into

 which the field can be packed. Otherwise, if "w" is omitted,

 it is set to its default value of 8. If "n" is omitted, it

 is set to (m+1)/2, rounded down to the nearest integer. Note

 248 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 that leading zeros are not ignored on input. The case of ___

 w>2n is detected as an error, terminating format processing.

 Applicable Modifiers:

 B, D, H, U, W - for input or output

 A, J, L, R, Z - for output only

 The default value for "w" is 8.

 Y Forced Plus-Sign Modifier

 The Y modifier is for output only. If the argument to an E, F, I,

 or P field is positive or zero, a plus sign is forced. For

 example, if the conversion term is I6, 12345 might result; if it

 is YI6, then +12345 would then result.

 Z Zeros Modifier

 The Z modifier can be used on input for C fields only. It _____

 specifies that the input fill character is to be a character zero

 for this conversion. On output, it can be used in an C, E, F, I, ______

 O, P, or X field to specify that the output fill character is to

 be a character zero for this conversion. If the output is numeric

 and right-justified (the default case), the zeros will be placed

 between the prefix characters "$", "+", or "-", if they appear,

 and the actual number. On nonnumeric output and numeric output

 without prefix characters, zeros will fill in on the right if L

 was specified or on the left if R was specified (or if L was not ___

 specified). Note: O-type conversion is considered as numeric

 output.

 $ Floating Dollar-Sign Modifier

 When the dollar-sign modifier is used in E, F, I, O, or P output ___________ ______

 format terms, a dollar sign is inserted in the output field

 immediately to the left of the first digit (or to the left of the

 sign, if it appears). Note: the dollar sign is illegal as a

 character in an input line-image for numeric fields.

 @ Scale Factor Modifier

 The scale factor modifier is used to specify a scale factor to be _____ ______ ________

 applied to E- or F-type output fields. The scale factor modifier ______ ______

 is followed by a numeric scale factor. The appearance of the at

 sign must come after all field widths have been specified for the ____

 accompanying format term and must be preceded by the modifier ____

 separator ":".

 IOH 249

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 If "p" is the number given after the at sign, then the scale

 factor is applied to an F-type number according to the formula:

 External number = Internal number * (10**p)

 The scaling factor is essentially applied after the conversion and

 causes the decimal point to be moved and/or zeros to be supplied

 in front of or after the converted number. For example, let the

 format be 2F5.5.11:@1,F5.5.11*; then the three numbers which would

 print as

 .56789 .98765 .12345

 according to 3F5.5.11 will print

 5.67890 9.87650 .12345

 Note that in F-type terms, application of the scale factor

 actually changes the number by some factor of ten by the movement

 of the decimal point.

 In E-type formats, only the exponent is changed; the scale factor

 is added to the exponent. Thus, a number which would print as

 .9321E-03

 according to a format E0.4.10 will print as

 .9321E-01

 according to the format E0.4.10:@2.

 ¬ Packed-Decimal Sign Modifier

 The not sign is used only for packed decimal conversion. For ___ ____

 input, the not sign specifies that the low-order byte of the

 packed-decimal number is to contain two decimal digits rather than

 the normal sign and digit. On output, the low-order byte of the

 last byte is used as a decimal digit instead of a sign.

 ’ Literal-Break Character

 The prime is used as a literal-break character, i.e., as the left _____

 and right delimiter for a literal string. A literal string is

 used to provide characters in the format which are inserted into

 the line-image on output or are replaced by characters from the

 line-image on input. This is typically used for titles, labels,

 and other constant information. When a prime is encountered, all

 of the characters (including blanks) that follow the prime, up to,

 but not including, the next occurrence of a prime, are taken as

 the literal string; the length of the literal string is taken as

 250 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 the number of such characters. There is one exception: to place

 a prime in the literal string, two consecutive primes are placed

 in the literal string where the single prime is desired. Such a

 pair of primes is interpreted as a single prime within the literal

 string, i.e., a literal prime, rather than as a literal-break

 character. Thus, the format

 ’THIS IS A LITERAL ’’’*

 would print as

 THIS IS A LITERAL ’

 whereas

 ’THIS IS A LITERAL ’’*

 is not a legal format since the second and third primes are

 interpreted as a single literal prime and the "*" is interpreted

 as the next character in the literal string rather than as the

 format terminator.

 Note: For the convenience of 360/370-assembler language users,

 the double quote is also interpreted as a literal-break character ______ _____

 and may be used as described above for the prime. Regardless of

 the literal-break character used, the left delimiter and the right

 delimiter for any single literal string must be the same charac-

 ter; the other literal-break character will not be recognized as a

 delimiter. In this context, a prime between delimiting double

 quotes is interpreted as a literal prime, and conversely, a double

 quote between delimiting primes is interpreted as a literal double

 quote. Thus, the format above could be written as

 " THIS IS A LITERAL ’"*

 and in 360/370-assembler language as

 FMT DC C’" THIS IS A LITERAL’’"*’

 rather than as

 FMT DC C’’’ THIS IS A LITERAL ’’’’’’*’

 It is permissible to place a multiplicity before a literal string.

 For example,

 3(’THREE COPIES’)

 would produce:

 THREE COPIESTHREE COPIESTHREE COPIES

 IOH 251

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 " Literal-Break Character

 The double quote is used as a literal-break character. See the ______ _____

 description of the prime (’) above.

 () Group Indicators

 A group of format terms is indicated by enclosing the group in

 parentheses. The left parenthesis may be preceded with a multi-

 plicity to indicate the number of times the group is to be

 repeated. If the multiplicity is omitted, a multiplicity of 1 is

 assumed. For example,

 3E1.5.15,2(I2,3F2.5.10),2C8*

 is equivalent to

 E1.5.15,E1.5.15,E1.5.15,I2,F2.5.10,F2.5.10,F2.5.10,I2,

 F2.5.10,F2.5.10,F2.5.10,C8,C8*

 Nested parentheses are allowed; there is no limit to the nesting

 depth. If the multiplicity is zero, the group is repeated zero

 times, i.e., it is ignored.

 / Line-Image Terminator (with reset)

 The slash terminates the line-image with a reset. This causes a _____

 call to be made to the CLOSE routine followed by a call to the

 OPEN routine. Thus, it releases the current line-image and

 requests a new line-image. The line-pointer is reset to column 1.

 | Line-Image Terminator (without reset)

 The vertical stroke terminates the line-image without a reset. ________ ______

 This causes a call to be made to the CLOSE routine without a _______

 succeeding call to the OPEN which means that the line-image area

 and the line-pointer are not reset, i.e., the line-image status

 remains as it was before the call to CLOSE.

 . Field Width Separator

 The period is used to separate field width specifications. This ______

 is used only with the C, E, F, O, P, and X format specifications.

 * Format Terminator

 The asterisk is the format terminator, the last logical character ________

 in the format. It causes a call to be made to the CLOSE routine.A

 252 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 test is then made to determine whether or not the next conversion

 address is a zero (a zero adcon). If a zero adcon is not found,

 resumption of the format scan continues at the last zero-level

 left parenthesis, or, if this does not exist, at the beginning of

 the present format. The OPEN routine will be called before the

 format scan is resumed. If a zero adcon is found, control is

 returned to the user at the statement which follows the last call

 to IOH.

 - Sign Inversion

 The minus sign inverts the sign of a number (i.e., --40 is _____ ____

 equivalent to 40).

 % Current Line-Image Length Indicator

 The percent sign indicates that the current line-image length is _______ ____

 to be used in place of the percent sign. For example,

 T%,S-1

 sets the line-pointer at the second character from the end of the

 current line-image.

 ? Parameter List Terminator

 The question mark causes IOH to return immediately to the user and ________ ____

 ignores the rest of the present parameter list. The question mark

 is to be used in conjunction with the secondary entry point

 IOHETC. The user may return to the IOH via IOHETC and specify in

 the parameter list a new format address to be taken as the present

 format address. Any references to a previous format address will

 no longer exist. In particular, the placement of parentheses

 previously found and their associated multiplicities will be

 "forgotten". If the user specifies a null format address on entry

 to IOHETC (i.e., a zero in the format adcon), the format scan is

 resumed at the character immediately following the question mark.

 : Modifier Separator

 The colon separates the control portion of a format term from the _____

 optional modifiers that require counts (i.e., @, G, and A). It

 also separates these modifiers from each other if there are more

 than one of them. For example,

 I5:G8 or F4.6.20:A50:@+5

 IOH 253

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 # Default Indicator

 The pound sign is used to change default values in normal mode. _____ ____

 & Keyword Indicator

 The ampersand is used to change default values in keyword mode. _________

 < > Format Variable Indicators

 The less-than sign ’<’ is used to begin a format variable and the _________ ____

 greater-than sign is used to terminate a format variable. For ____________ ____

 example,

 <FMTVAR>

 defines the format variable FMTVAR. The format variable name is

 looked up in a user-defined symbol table, and its value is

 substituted in place of the format variable term.

 = Format Variable Vector Index

 The equal sign is used to specify a vector index format variable. _____ ____

 The index preceding the equal sign must be greater than zero or

 omitted (in which case, an index of 1 is assumed). The index is

 used to index into a user-defined "format variable vector" that

 consists of halfword integers. The indexed entry from the vector

 "replaces" the format variable in the format term. For example,

 assume that the third and fourth entries in the vector contain a 4

 and a 2, respectively; then the format term

 3=F4=.4=.20

 is equivalent to the format term

 4F2.2.20

 254 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 APPENDIX B: IOH CALLING SEQUENCES __________________________________

 In this appendix, the basic calling sequences for the IOH conversion

 subroutines are given in 360/370-assembler language format. Since the

 manual coding of these calling sequences is quite tedious, the general

 user is urged to use the macros provided for generating these calling

 sequences (see the subsection "IOH Macros").

 General Structure of the Calling Sequence ___

 The typical calling sequence for an IOH subroutine consists of four

 parts. A general example is given at the end of this appendix and will

 be referred to in the following discussion.

 The first part is the executable code to call the subroutine; the

 other three parts are the parameter lists. When the call is made,

 general register 1 points to the beginning of the first parameter list

 PLIST1. The first two adcons in PLIST1 point to the OPEN and CLOSE

 routines (explained later in this appendix). The third adcon points to

 the head of the third parameter list PLIST3. If the third adcon is

 zero, PLIST3 is not present. The fourth adcon points to the head of the

 second parameter list PLIST2.

 PLIST2 is made up of a variable number of adcons. This list has at

 its head a fullword adcon pointing to an halfword integer location that

 contains the total number of adcons following the head. If this

 halfword integer is positive, the rest of the list consists of fullword

 A-type adcons; if it is negative, the list is made up of S-type adcons.

 The first adcon following the head of PLIST2 points to the beginning of

 the format to be used by the IOH subroutine. The format must be present ____

 in calls to IOHIN or IOHOUT. It may be null in a call to IOHETC, in

 which case the adcon should be zero. If the format adcon is nonzero in

 a call to IOHETC, the contents of this adcon is taken as a pointer to a

 new format and all information about the previous format is erased. The ___

 adcons following the format adcon constitute a variable number of

 sublists. Each sublist also has a header that points to adcons in the

 sublist following the sublist header. These adcons (that follow the

 sublist header) point to the locations from which or to which I/O-

 conversion is to take place. The halfword integer to which the header

 of a sublist points may be positive or negative. If it is positive,

 each adcon in the sublist is used for only one conversion. If it is

 negative, the (negative) number must be even. The adcons in this kind ____

 of sublist are taken as pairs for block addresses. The first adcon of a _____

 pair contains the end address of the block. The block addresses may run

 either forwards or backwards in virtual memory. The incrementing (or

 decrementing) of a block address is determined by the format term being

 processed. If an explicit length modifier is given or if the format

 term has a default length, that length is used in computing the next

 block address, i.e., a length modifier of D will give a change of 8

 IOH 255

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 bytes for the address, while an H will give a change of only 2 bytes.

 If there is no length modifier (as in a C, P, or X conversion), the

 internal field width is used to compute the next block address, i.e.,

 C5.3 will give an increment of 3; P10.6, an increment of 6. I/O

 processing is terminated whenever one of the adcons in a sublist

 following a header is zero. A count of zero in the halfword integer

 constant to which the sublist header points causes IOH to interpret the

 next adcon in the list as a pointer to a new sublist header.

 PLIST3 is of variable length. The first word of this list points to

 a halfword integer that contains the number of arguments in the list.

 The second adcon in the list points to a doubleword-aligned location

 that is the beginning of the user’s symbol table. If this adcon is

 zero, no symbol table is present. The third adcon (if present) points

 to a fullword location containing either a logical I/O unit number or a

 FDUB-pointer. If this adcon is zero, input (or output) is done on

 SCARDS (or SPRINT or SPUNCH). Note that if the LUNIT address is given,

 but the symbol table is not, the count must be 2 and SYMTBL must be a

 fullword zero.

 The three parameter lists may also be described using the following

 BNF notation.

 <PLIST1>::=<pointer to OPEN> <pointer to CLOSE> <optional pointer

 to PLIST3> <pointer to PLIST2>

 <PLIST2>::=<pointer to total number of arguments in PLIST2> <point-

 er to format> <list>

 <PLIST3>::=<pointer to total number of arguments in PLIST3>

 [<pointer to SYMBTBL [<pointer to unit number>]]

 <list>::=<sublist> | <list> <sublist>

 <sublist>::=<pointer to number of arguments in sublist> <slist>

 <slist>::=<argument> | <slist> <argument>

 <argument>::=<legal 360/370-assembler expression>

 256 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Example of a complete IOH calling sequence:

 LA 1,PLIST1 Pointer to PLIST1

 LA 13,SAVAREA Pointer to SAVEAREA

 L 15,=V(IOHSUB) Address of desired IOH subroutine

 BALR 14,15 Branch to subroutine (where IOHSUB is

 IOHIN, IOHOUT, IOHETC, etc.)

 PLIST1 DC A(OPEN) Pointer to OPEN routine

 DC A(CLOSE) Pointer to CLOSE routine

 DC A(PLIST3) Pointer to third parameter list

 DC A(PLIST2) Pointer to second parameter list

 PLIST2 DC A(FULCNT) Pointer to full list count (+12)

 DC A(FORMAT) Pointer to beginning of format

 DC A(S1) Pointer to first sublist count (+1)

 DC A(ARG1) Pointer to single argument

 DC A(S2) Pointer to second sublist count (-4)

 DC A(ARRAY) Beginning address of first block

 DC A(ARRAY)+100 End address of first block

 DC A(BLCK) Beginning address of second block

 DC A(BLCK-10) End address of second block

 DC A(S3) Pointer to third sublist count (+3)

 DC A(ARG3) Pointer to single element

 DC A(ARG4) Pointer to single element

 DC A(0) End of I/O conversion

 PLIST3 DC A(FLCNT) Pointer to full list count (+2)

 DC A(SYMTBL) Pointer to symbol table

 DC A(LUNIT) Logical I/O unit number or FDUB-pointer

 FULCNT DS H’12’

 S1 DC H’1’

 S2 DS H’-4’

 S3 DS H’3’

 FLCNT DS H’2’

 Description of the OPEN and CLOSE Routines __

 The names OPEN and CLOSE to be used henceforth are generic names:

 they stand only for the concepts embodied in the following paragraphs.

 The user may supply his own specific OPEN and CLOSE routines for

 obtaining and releasing logical line-images. The OPEN and CLOSE

 routines are called by the IOH subroutines either to close out a

 line-image or to get a new line-image.

 If the user is forming his own lists rather than using the macros

 (i.e., RDFMT, PRFMT, etc.), he must supply the adcons pointing to the

 OPEN and CLOSE routines whether these routines are provided by the

 system or by the user.

 IOH 257

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 On input, the OPEN routine returns to IOH with general register 1

 pointing to a two-word adcon area. The first adcon contains the address

 of the beginning of the input image. The second adcon points to a

 halfword location containing the length of the input image. When IOH

 calls the OPEN routine, register 1 points to a four-word adcon area, the

 fourth adcon of which points to an FDUB-pointer or logical I/O unit

 number. If this adcon is zero, the standard logical I/O unit is assumed

 (SCARDS for input, SERCOM, SPRINT, or SPUNCH for output). The OPEN

 routine should take this into account. Although it need not do so, a

 call to the CLOSE routine may cause the present line-image to be

 accepted so that a subsequent call to the OPEN routine will transmit

 information about a new line-image with which IOH is to work. When IOH

 calls the CLOSE routine, register 1 points to a four-word adcon area.

 The first adcon contains the address of the beginning of the line-image.

 The second adcon points to a halfword location containing the length of

 the line-image. The third adcon points to a halfword location contain-

 ing the greatest excursion of the line-pointer during the conversion of

 the line-image. The fourth adcon points to the fullword logical I/O

 unit number or FDUB-pointer. If this adcon is zero, the standard

 logical unit is assumed (see above). The CLOSE routine may or may not

 use this information. Successive calls to OPEN without intervening

 calls to CLOSE should present IOH with the same input line-image. The

 return code must be given by the OPEN and CLOSE routines: 0 - ____

 successful, 4 - end-of-file.

 On output, the OPEN routine returns to IOH with general register 1

 pointing to a two-word adcon area. The first adcon points to the

 beginning of the output line-image. The second adcon points to a

 halfword location containing the length of the line-image. Note that

 IOH only inserts converted terms in the line-image; it does not blank ___

 out the line-image before processing - it is the responsibility of the

 OPEN routine to do this if this is desired (the normal procedure). The

 OPEN routines provided by the system will blank out the line-image. On ____

 a call to the CLOSE routine, register 1 points to a four-word adcon

 area. The adcons point respectively to the line-image, the halfword

 containing the length of the line-image, the halfword containing the

 greatest excursion of the line-pointer, and a fullword containing the

 logical I/O unit number or an FDUB-pointer. If the fourth adcon is

 zero, the standard logical unit is assumed (see above). Again, use of

 this information is at the discretion of the user. The return code must ____

 be given by the OPEN and CLOSE routines: 0 - successful, 4 -

 end-of-file.

 The following examples illustrate the use of OPEN and CLOSE routines.

 258 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 (1) Return from an OPEN routine to IOH

 LA 1,PLIST Pickup address of return list

 SR 15,15 Return code

 BR 14 Return

 .

 .

 .

 PLIST DC A(IMAGE)

 DC A(AH)

 .

 .

 .

 AH DC H’256’ Length of line-image region

 IMAGE DS 256C Line-image region

 (2) Call from IOH to a CLOSE routine

 LA 1,LIST Pointer to parameter list

 L 15,=V(CLOSE) Address of CLOSE routine

 BALR 14,15

 .

 .

 .

 LIST DC A(IMAGE) Pointer to line-image region

 DC A(COUNT) Pointer to length of line-image

 region

 DC A(LASTCOL) Pointer to highest excursion of

 line-pointer

 DC A(LUNIT) Pointer to logical I/O unit number

 .

 .

 .

 IMAGE DS 256C Line-image region

 COUNT DS H Line-image length

 LASTCOL DS H Highest excursion of line-pointer

 LUNIT DS F Logical I/O unit number or

 FDUB-pointer

 IOH 259

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 260 IOH

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 EXTENSIONS TO THE AMDAHL 470/5860 OPERATIONS __

 MTS running on the Amdahl 5860 computer that is installed at the

 University of Michigan supports four machine instructions that are not

 standard to the IBM System/370 architecture. Two of these instructions

 are executed by the Amdahl 5860 hardware and hence are as fast as other

 similar instructions; the other two are simulated by the supervisor in

 MTS and are much slower. If MTS is running on a non-Amdahl 470/5860

 computer, all four instructions are simulated. The instructions are

 described below as they would appear in the IBM publication IBM ___

 System/370 Principles of Operation, form GA22-7000, if they were _____________________________________

 standard. This section may be considered as a local addendum.

 EXTENDED-BRANCH OPERATIONS __________________________

 Branch and Store ________________

 BASR R1,R2 {RR}

 ┌──────────────────────┐ ┌ ┌
 | 0D | R1 | R2 |

 └──────────────────────┘ ┘ ┘
 0 8 12

 BAS R1,D2(X2,B2) {RX}

 ┌──┐ ┌ ┌ ┌ ┌
 | 4D | R1 | X2 | B2 | D2 |

 └──┘ ┘ ┘ ┘ ┘
 0 8 12 16 20

 These instructions are executed by the Amdahl 470/5860 hardware.

 The 24-bit updated instruction from the current PSW is loaded as link

 information into the general register designated by R1; the high-order 8

 bits of R1 are set to zero. Subsequently, the instruction address is

 replaced by the branch address.

 In the RX format, the second-operand address is used as the branch

 address. In the RR format, the contents of bit positions 8-31 of the

 general register designated by R2 are used as the branch address.

 However, when the R2 field contains zeros, the operation is performed

 without branching. The branch address is computed before the link

 information

 Extensions to the Amdahl 470/5860 Operations 261

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Condition Code: The code remains unchanged.

 Program Interruptions: None.

 Note: This instruction was designed for use with programs using 31-bit

 addressing. 31-bit addressing in not available in MTS at the present

 time.

 EXTENDED-PRECISION FLOATING-POINT OPERATIONS __

 Divide ______

 DXR R1,R2 {RR, Extended Operands}

 ┌──┐ ┌ ┌ ┌
 | B22D | 00000000 | R1 | R2 |

 └──┘ ┘ ┘ ┘
 0 16 24 28

 This instruction is supported in MTS by simulation within the

 supervisor.

 The extended first operand (the dividend) is divided by the extended

 second operand (the divisor) and replaced by the extended normalized

 quotient. No remainder is preserved.

 Floating-point division consists of characteristic subtraction and

 fraction division.

 The divisor is prenormalized. The dividend is prenormalized if the

 absolute value of the normalized dividend fraction is smaller than the

 absolute value of the normalized divisor fraction; otherwise, the

 dividend fraction is shifted so as to introduce one leading hexadecimal

 zero, and the characteristic is adjusted accordingly, thus yielding the

 adjusted dividend. The adjusted dividend has a fraction of 28 or 29

 hexadecimal digits. The divisor characteristic is subtracted from the

 adjusted dividend characteristic, and the difference plus 64 is used as

 the quotient characteristic. The above process yields a normalized

 quotient without requiring postnormalization or right shifting of its

 fraction.

 The quotient fraction has 28 hexadecimal digits and is developed such

 that it is the largest number for which the absolute value of the

 product of the quotient and divisor fractions is either equal to or

 smaller than the absolute value of the adjusted dividend fraction. All

 digits of the dividend and divisor fractions participate in the

 operation, and the dividend fraction is considered to be extended with

 low-order zeros.

 262 Extensions to the Amdahl 470/5860 Operations

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The sign of the quotient is determined by the rules of algebra,

 unless the quotient is made a true zero, in which case its sign is made

 plus.

 Unless the quotient is made a true zero, the characteristic, sign,

 and high-order 14 hexadecimal digits of the normalized quotient fraction

 (the high-order quotient) replace the high-order part of the first

 operand. The low-order 14 hexadecimal digits of the quotient fraction

 replace the low-order fraction of the first operand. The low-order sign

 is made equal to the high-order sign. The low-order characteristic is

 made 14 less than the high-order characteristic unless subtraction of 14

 causes it to become less than zero, in which case it is made 128 greater

 than its correct value.

 An exponent-overflow exception is recognized when the characteristic

 of the normalized quotient exceeds 127 and the fraction of the quotient

 is not zero. The operation is completed by making the high-order

 characteristic 128 less than the correct value. If the low-order

 characteristic also exceeds 127, it is decreased by 128. The quotient

 fraction and sign remain unchanged. A program interruption for exponent

 overflow then occurs.

 An exponent-underflow exception exists when the characteristic of the

 normalized quotient is less than zero and neither operand fraction is

 zero. If the exponent-underflow mask bit is one, the operation is

 completed by making the characteristics of both parts 128 greater than

 their correct values, and a program interruption for exponent underflow

 occurs. The quotient fraction and its sign remain unchanged. If the

 exponent-underflow mask bit is zero, program interruption does not take

 place; instead, the operation is completed by making both the high-order

 and low-order parts of the quotient a true zero. Exponent underflow is

 not recognized when the low-order characteristic is less than zero but

 the high-order characteristic is zero or above. Similarly, exponent

 underflow is not recognized when one or both of the operands underflow

 during prenormalization but the quotient can be expressed without

 encountering exponent underflow.

 A floating-point divide exception is recognized when the divisor

 fraction is zero. The operation is suppressed, and a program interrup-

 tion for floating-point divide occurs.

 When the dividend fraction is zero, the quotient is made a true zero,

 and a possible exponent overflow or exponent underflow is not recog-

 nized. A division of zero by zero causes the operation to be suppressed

 and a program interruption for floating-point divide to occur.

 Resulting Condition Code:

 The code remains unchanged.

 Extensions to the Amdahl 470/5860 Operations 263

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Program Interruptions:

 Specification: The R1 or R2 field designates a register other

 than 0 or 4, or bit positions 16-23 do not contain zeros. The

 operation is suppressed.

 Exponent Overflow: The characteristic of the normalized quotient

 exceeds 127, and neither operand fraction is zero. The operation

 is completed.

 Exponent Underflow: The characteristic of the normalized quotient

 is less than zero, neither operand fraction is zero, and the

 exponent-underflow mask bit is one. The operation is completed.

 Floating-Point Divide: The divisor fraction is zero. The opera-

 tion is suppressed.

 SEARCH LIST INSTRUCTION _______________________

 This instruction is supported in MTS by simulation within the

 supervisor. This support exists only for compatibility with the IBM

 System/360 Model 67; the execution time is slow and therefore is not

 recommended for general use.

 The description of this instruction is given in the section "Exten-

 sions to the System/360 Model 67 Operations" in this volume.

 264 Extensions to the Amdahl 470/5860 Operations

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 EXTENSIONS TO THE SYSTEM/360 MODEL 67 OPERATIONS __

 The IBM System/360 Model 67 that was installed at the University of

 Michigan from 1967 to 1974 had several nonstandard instructions. They

 are described below as they would appear in the IBM publication IBM ___

 System/360 Principles of Operation, form GA22-6821, if they were _____________________________________

 standard. This section may be considered a local addendum. Other Model

 67 systems may not have these operations installed; System/360 machines

 that are not Model 67 systems do not have these instructions. These

 instructions are made available in *ASMH via the INSTSET macro instruc-

 tion as described in this volume.

 The IBM System/370 Model 168, the Amdahl 470, and the Amdahl 5860

 computers that have subsequently replaced the Model 67 do not have these

 instructions¹. These machines do have an extended-precision floating-

 point feature which is not precisely the same as that described below.

 Furthermore, the System/370 instruction set in a few cases uses the same

 operation codes but for different functions. For example, the extended

 add (ADDR) described below has an operation code of hex 26; on a

 370-compatible machine, the operation code of hex 26 is used for

 extended multiply (MXR). Thus, object modules from the Model 67 which

 use the extended-precision floating-point instructions may run on a

 370-compatible machine but will produce incorrect results. Use of other

 extended operations listed below for which there is not an operation

 code on the System/370 will produce an operation exception. The 370

 instruction set is described in the IBM publication IBM System/370 ______________

 Principles of Operation, form GA22-7000. _______________________

 EXTENDED-PRECISION FLOATING-POINT OPERATIONS __

 The following extended-precision operations are similar to the

 corresponding long-precision operations with the following differences:

 The address of the first operand location must be 0 or 4; otherwise a

 specification exception is recognized, the instruction is suppressed,

 and a program interrupt occurs. In the RR format, the second operand

 may be any one of the floating-point registers. The contents of the ___

 first operand location are replaced by a high-order result (64 bits) and

 the contents of the next higher addressed register, 2 or 6, are replaced

 with a low-order result (64 bits). It should be noted that both

 ¹The SLT instruction is supported in MTS by simulation. This support

 exists only for compatibility with the Model 67; the execution time is

 slow and therefore is not recommended for general use.

 Extensions to the System/360 Model 67 Operations 265

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 operands are long-precision (64 bits) and the result is extended-

 precision (128 bits). Double-precision arithmetic must still be pro-

 grammed; e.g., double-precision addition can be accomplished with four

 ADD or ADDR operations.

 The sign, characteristic, and high-order 14 hexadecimal digits of the

 normalized fraction, the high-order result, is placed in the first

 operand location. The low-order result is placed in the next higher

 addressed register. The low-order sign, bit 0 of this register, is made

 equal to the high-order sign; the low-order characteristic, bits 1-7, is

 made 14 less than the high-order characteristic; and the low-order

 fraction occupies bits 8-63.

 Exponent overflow occurs if the final characteristic of the high-

 order result exceeds 127. The operation is terminated and a program

 interruption occurs. Exponent underflow occurs when the characteristic

 of the low-order result is less than zero. The low-order result is made

 true zero and a program interruption occurs if the corresponding mask

 bit is one. The high-order result is not changed if its characteristic

 is in the representable range. When the characteristic of the high-

 order result becomes zero, both high-order and low-order results are

 made true zero; an exponent underflow exists and a program interruption

 occurs if the corresponding mask bit is one.

 Add Double __________

 ADDR R1,R2 {RR,Long Operands}

 ┌──────────────────────┐ ┌ ┌
 | 26 | R1 | R2 |

 └──────────────────────┘ ┘ ┘
 0 8 12

 ADD R1,D2(X2,B2) {RX,Long Operands}

 ┌──┐ ┌ ┌ ┌ ┌
 | 66 | R1 | X2 | B2 | D2 |

 └──┘ ┘ ┘ ┘ ┘
 0 8 12 16 20

 The second operand is added to the first operand and the normalized

 extended-precision sum is placed in the first operand location and the

 next higher addressed location.

 The intermediate sum consists of 28 hexadecimal digits and a possible

 carry; no guard digit is retained. After addition, the intermediate sum

 is left-shifted as necessary to form a normalized fraction; vacated

 low-order digit positions are filled with zeros and the characteristic

 is reduced by the amount of shift.

 266 Extensions to the System/360 Model 67 Operations

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 When the intermediate sum is zero and the significance mask bit is

 one, a significance exception is recognized and a program interruption

 occurs. There is no normalization; the intermediate sum characteristic

 remains unchanged and becomes the high-order characteristic. The

 low-order characteristic is 14 less than the high-order characteristic;

 if it underflows, the low-order sum is made true zero and a significance

 exception rather than the underflow exception is recognized. In the

 case that the significance mask bit is zero, no significance exception

 is recognized and the high-order and low-order sums are made true zero.

 Exponent underflow cannot occur in this case.

 The sign of an intermediate sum with zero fraction is always

 positive.

 Condition Code:

 0 Result fractions are zero

 1 High-order fraction is less than zero

 2 High-order fraction is greater than zero

 3 Result exponent overflows

 Program Interruptions:

 Addressing (ADD only)

 Specification

 Significance

 Exponent overflow

 Exponent underflow

 Programming note: The sign of the low-order sum agrees with that of the

 high-order sum, except when the low-order fraction is a true zero. The

 low-order sum may be unnormalized.

 Subtract Double _______________

 SDDR R1,R2 {RR,Long Operands}

 ┌──────────────────────┐ ┌ ┌
 | 27 | R1 | R2 |

 └──────────────────────┘ ┘ ┘
 0 8 12

 SDD R2,D2(X2,B2) {RX,Long Operands}

 ┌──┐ ┌ ┌ ┌ ┌
 | 67 | R1 | X2 | B2 | D2 |

 └──┘ ┘ ┘ ┘ ┘
 0 8 12 16 20

 Extensions to the System/360 Model 67 Operations 267

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The second operand is subtracted from the first operand and the

 normalized extended-precision difference is placed in the first operand

 location and the next higher addressed location.

 SUBTRACT DOUBLE is similar to ADD DOUBLE except that the sign of the

 second operand is inverted before addition.

 Multiply Double _______________

 MDDR R1,R2 {RR, Long Operands}

 ┌──────────────────────┐ ┌ ┌
 | 25 | R1 | R2 |

 └──────────────────────┘ ┘ ┘
 0 8 12

 MDD R1,D2(X2,B2) {RX, Long Operands}

 ┌──┐ ┌ ┌ ┌ ┌
 | 65 | R1 | X2 | B2 | D2 |

 └──┘ ┘ ┘ ┘ ┘
 0 8 12 16 20

 The normalized extended-precision product of the second operand

 (multiplier) and the first operand (multiplicand) is placed in the first

 operand location and the next higher addressed location.

 The intermediate product consists of 28 hexadecimal digits. It is

 left-shifted as necessary to form a normalized fraction; vacated

 low-order digit positions are filled with zeros and the characteristic

 is reduced by the amount of the shift.

 When all 28 result fraction digits are zero, both high-order and

 low-order results are made true zero without exponent underflow and

 exponent overflow causing a program interruption.

 There is no program interruption for lost significance.

 Condition Code: The code remains unchanged

 Program Interruptions:

 Addressing (MDD only)

 Specification

 Exponent overflow

 Exponent underflow

 268 Extensions to the System/360 Model 67 Operations

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MIXED-PRECISION FLOATING-POINT OPERATIONS ___

 Load Mixed __________

 LX R1,D2(X2,B2) {RX, Long Operand, Short Operand}

 ┌──┐ ┌ ┌ ┌ ┌
 | 74 | R1 | X2 | B2 | D2 |

 └──┘ ┘ ┘ ┘ ┘
 0 8 12 16 20

 The short-precision second operand is placed in the long-precision

 first operand location. The second operand is not changed. The

 low-order half (bits 32-63) of the result register R1 is made zero.

 Condition Code: The code remains unchanged

 Program Interruptions:

 Protection

 Addressing

 Specification

 Add Mixed _________

 AX R1,D2(X2,B2) {RX, Long Operand, Short Operand}

 ┌──┐ ┌ ┌ ┌ ┌
 | 76 | R1 | X2 | B2 | D2 |

 └──┘ ┘ ┘ ┘ ┘
 0 8 12 16 20

 Subtract Mixed ______________

 SX R1,D2(X1,B2) {RX, Long Operand, Short Operand}

 ┌──┐ ┌ ┌ ┌ ┌
 | 77 | R1 | X2 | B2 | D2 |

 └──┘ ┘ ┘ ┘ ┘
 0 8 12 16 20

 The short-precision second operand is added (subtracted) to the

 long-precision first operand, and the normalized result is placed in the

 first operand location. The second operand is not changed.

 Extensions to the System/360 Model 67 Operations 269

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ADD MIXED (SUBTRACT MIXED) is similar to ADD NORMALIZED (SUBTRACT

 NORMALIZED) with long-precision operands, except that the second operand

 is short-precision and is extended to the long-precision format with

 low-order zeros (bits 32-63) prior to addition.

 Condition Code

 0 Result fraction is zero

 1 Result is less than zero

 2 Result is greater than zero

 3 Result exponent overflows

 Program Interruptions:

 Protection

 Addressing

 Specification

 Significance

 Exponent overflow

 Exponent underflow

 Multiply Mixed ______________

 MX R1,D2(X2,B2) {RX, Long Operand, Short Operand}

 ┌──┐ ┌ ┌ ┌ ┌
 | 72 | R1 | X2 | B2 | D2 |

 └──┘ ┘ ┘ ┘ ┘
 0 8 12 16 20

 Divide Mixed ____________

 DX R1,D2(X2,B2) {RX, Long Operand, Short Operand}

 ┌──┐ ┌ ┌ ┌ ┌
 | 73 | R1 | X2 | B2 | D2 |

 └──┘ ┘ ┘ ┘ ┘
 0 8 12 16 20

 For MULTIPLY MIXED, the normalized product of the short-precision

 second operand (multiplier) and the long-precision first operand (multi-

 plicand) is placed in the first operand location. For DIVIDE MIXED, the

 long-precision first operand (dividend) is divided by the short-

 precision second operand (divisor) and the long-precision quotient is

 placed in the first operand location. The second operand is not

 changed.

 270 Extensions to the System/360 Model 67 Operations

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MULTIPLY MIXED (DIVIDE MIXED) is similar to MULTIPLY (DIVIDE) with

 long-precision operands, except that the second operand is short-

 precision and is extended to the long-precision format with low-order

 zeros (bits 32-63) prior to the operation.

 Condition Code: The code remains unchanged

 Program Interruptions:

 Protection

 Addressing

 Specification

 Exponent overflow

 Floating-point divide (DX only)

 SWAP REGISTER INSTRUCTION _________________________

 SWPR R1,R2 {RS, Long Operands}

 ┌──┐ ┌ ┌ ┌
 | A3 | R1 | R2 | Ignored |

 └──┘ ┘ ┘ ┘
 0 8 12 16

 The first operand replaces the second operand and the second operand

 replaces the first. The first operand is a doubleword contained in an

 adjacent pair of general registers; R1 designates the leftmost register

 of the pair. The second operand is a doubleword contained in the

 floating-point register R2, R1 must be even and R2 must 0,2,4, or 6;

 otherwise a specification exception is recognized.

 Bit positions 16-31 of this instruction are ignored.

 Condition Code: The code remains unchanged

 Program Interruptions:

 Specification

 SEARCH LIST INSTRUCTION _______________________

 The instruction SEARCH LIST is designed to facilitate searching a

 chained list of data entries (elements) to locate elements by comparison

 with a data field value, key value, and/or entry count. The instruction

 is designed for searching list-organized data where the relative

 positions of the data field, key field, and chain addresses within an

 element are constant for the full set of elements traversed in a single

 instruction execution.

 Extensions to the System/360 Model 67 Operations 271

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The instruction makes use of up to six implied general registers (0

 through 5) to hold the dynamic and fixed parameters of the search and

 one explicitly referenced general register to provide a base for the

 origin of the list-structured data area being searched.

 The instruction is designed so that legitimate relocation exceptions,

 which may occur during the course of a chained search in a dynamic

 paging environment, will leave the general registers in a stage where

 the search can be resumed by supervisor action. Thus the effects of

 dynamic paging can be transparent to the using program.

 Name Mnemonic Type Exceptions Code ____ ________ ____ __________ ____

 SEARCH LIST SLT RS P,A,S,Reloc. A2

 SLT M1,L2,D2(B2) OS format

 SLT M1,D2(L2,B2) TSS format

 ┌──┐ ┌ ┌ ┌ ┌
 | A2 | M1 | L2 | B2 | D2 |

 └──┘ ┘ ┘ ┘ ┘
 0 8 12 16 20

 A sequence of list elements is searched by a data comparison and a

 key test.

 The list is located in storage relative to the base address in the

 general register designated by B2. Each list element is identified by

 an element address. Within a list element there is found a chain

 address, a data field and a key. The chain addresses establish the

 sequence of the list elements. The data and keys are used as criteria

 for completing the search. The types of tests to be performed are

 specified by the M1 field of the instruction. The comparand for the

 data, the mask for the key and the necessary offsets to locate the data

 field and the key within the list element reside in the general

 registers. The general registers also contain a count which limits the

 number of elements searched. When the search ends, the address of the

 last list element inspected, the current element address, as well as the

 address of the preceding list element, the predecessor address, are

 inserted in general registers.

 Element Addressing __________________

 As searching proceeds from element to element, the address of the

 list element to be inspected, the current element address, is obtained

 by adding the chain address of the preceding element and the base

 address designated by B2. The current element address is inserted in

 general register 2 when the necessary data, key and count tests of the

 current element are completed and remains available in that register

 during the testing of the subsequent list element. As the current

 272 Extensions to the System/360 Model 67 Operations

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 element address is inserted in general register 2, the former content

 ofthis register is inserted as a predecessor address in general register

 1.

 The chain address occupies the word designated by the sum of the

 element address in register 2 and the displacement D2.

 When searching is initiated, the contents of general register 2 are

 used to locate a chain address which points to the first element. Thus

 the first element address is the sum of the base address designated by

 B2 and the chain address at the location designated by the contents of

 register 2 and D2.

 An element must be located on a doubleword boundary, i.e., bits 29-31

 of the element address must be zero, otherwise a specification exception

 is recognized. The chain address must be located on a fullword

 boundary, i.e., bits 30-31 of the D2 field must be zero, otherwise a

 specification exception is recognized. In either case, a program

 interruption results and the operation is terminated.

 A B2 field of zero indicates the absence of the base address and the

 use of the chain address as an element address.

 In the 24-bit mode, the chain address occupies bits 8-31 of its word

 location. Bits 0-7 of this word location are ignored. As the element

 address is inserted in general register 2, the high-order eight bits are

 made zero. The high-order 8 bits of the offsets in general registers 4

 and 5 are ignored. The entire 32-bit contents of general register 2 are

 placed in general register 1 when the predecessor address is recorded.

 In the 32-bit mode, all bits of word locations and registers

 participate.

 Data Comparison _______________

 The contents of the data field within the list element are compared

 with the contents of general register 3. The criterion for comparison

 is determined by bits 8-10 of the mask field M1 of the instruction.

 The data field is variable in length and is located at the byte

 address designated by the sum of element address and the contents of

 general register 4. The length of the data field is designated by the

 length field L2, bits 12-15 of the instruction. The length specifica-

 tion must be 0, 1, 2, or 3, designating a length of 1, 2, 3, or 4 bytes,

 respectively. Otherwise, a specification exception is recognized, a

 program interruption is taken and the instruction is suppressed.

 The comparand in general register 3 is right aligned in the register.

 Only the number of bytes specified by L2 is used in the comparison. Any

 other bytes in the register are ignored. Comparison is logical and

 temporarily sets the condition code as in the instruction Compare

 Logical. Bits 8, 9, and 10 of the mask field M1 identify a successful

 condition as in the instruction Branch on Condition. When a comparison

 Extensions to the System/360 Model 67 Operations 273

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 condition has the corresponding bit in the mask field M1 set to one, the

 search is completed, and the condition code is set to indicate that the

 search is completed by a successful comparison.

 When all three mask bits, 8, 9, 10, are zero, no comparison is

 identified as successful. In this case no comparison is made and the

 contents of general registers 3 and 4 are not used.

 Key Test ________

 The key within the list elements is tested by a key mask in general

 register 0. The key occupies an 8-bit byte and is located at the byte

 address designated by the sum of the element address and the contents of

 general register 5. The key mask occupies bits 16-23 of general

 register 0.

 The key test is performed as in the instruction Test under Mask. The

 criterion for a successful test is determined by bit 11 of the mask

 field M1 of the instruction. For any one bit in the key mask, the

 corresponding bit in the key is tested for a one. When bit 11 is zero

 and any of the bits so tested is one, or when bit 11 is one and all the

 bits so tested are one, the key test is considered successful. In that

 case the search is completed and the condition code is set to indicate

 that the search is completed by a successful key test.

 When all bits of the key mask are zero, no key test is performed and

 the contents of general register 5 as well as bits 16-23 of general

 register 0 are not used.

 Counting ________

 The count, which specifies the number of elements to be inspected,

 resides in general register 0, bits 24-31. A count of zero specifies

 256 elements to be inspected, the maximum number of elements which can

 be inspected in one instruction.

 After the data comparison and key test are completed, the count is

 reduced by one.

 When no successful comparison or key test has occurred, the new count

 is tested for zero. If zero, the search is completed and the condition

 code is set to indicate that the search is completed due to count

 run-out. If the count is not zero, the search continues.

 Ending ______

 When searching is completed due to a successful comparison or key

 test or exhausted count, the current element address resides in register

 2, the predecessor address resides in register 1, and the count

 274 Extensions to the System/360 Model 67 Operations

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 indicates the number of elements not inspected. The chain address of

 the current element is not used in this case.

 The contents of general register 0 bits 0-15 are unpredictable at the

 end of the instruction.

 This instruction differs from others in that it may be terminated by

 a relocation exception rather than being suppressed. The relocation

 exception may be due to the chain address location, the data field

 location, or the key location. The condition code is unpredictable. In

 each case register 2 contains the address of the element which precedes

 the element tested. Thus the operation may be resumed by reissuing the

 instruction.

 Condition Code:

 0 Unsuccessful comparison or key test, completion due to count

 1 Successful comparison, unsuccessful key test

 2 Unsuccessful comparison, successful key test

 3 Successful comparison and key test

 Program Interruptions:

 Operation (if feature is not installed)

 Addressing

 Specification

 Protection

 Relocation

 Programming Notes _________________

 Upon instruction completion, condition code zero indicates that all

 the elements specified by the initial count were inspected without

 encountering a successful data comparison or key test. However, due to

 a successful comparison or key test a nonzero condition code may also

 occur for the last element specified by the initial count.

 The recording of the predecessor address in general register 1

 facilitates insertion or deletion of list elements. When searching is

 completed with the first element, the contents of register 1 point to a

 virtual predecessor element which contains the first chain address.

 Thus uniform insert and delete procedures can be used.

 When the B2 field specifies general register 2, the chain address

 designates the location of the successor element relative to the current

 element location. When the B2 field specifies general register 1, the

 location of the successor element is designated relative to the

 predecessor element.

 Warning: Because IBM has improperly engineered this instruction, B2 ________

 cannot specify general registers 1, 2, or 4.

 Extensions to the System/360 Model 67 Operations 275

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Warning: Because IBM has improperly engineered this instruction, a ________

 program interrupt will occur under the following conditions:

 (1) Instruction bits 8-10 are not all zero, indicating that the data

 comparison feature is being used,

 (2) The count in GR0 is reduced to zero without a data comparison

 succeeding, and

 (3) The next element address computed from the chain address field

 of the last element and the register specified in the B2 field

 of the instruction is not a valid address.

 This interrupt does not occur when only the key test is performed or

 when the data comparison succeeds on the last element.

 It is almost certain that the above two errors will never be fixed.

 Engineering Notes _________________

 Performance improvements are obtained for each of the following

 cases:

 (1) Instruction bits 8, 9, and 10 are zero, indicating the absence

 of a data comparison.

 (2) Bits 16-23 of general register 0 are zero, indicating the

 absence of a key test.

 (3) The key and chain address are located in the same doubleword.

 Summary _______

 Registers:

 ┌───────────────────────────────────────┐ ┌ ┌ ┌
 GR0 | | |key mask |count |

 └───────────────────────────────────────┘ ┘ ┘ ┘
 0 8 16 24

 GR1 Previous element address (doubleword aligned)

 GR2 Current element address (doubleword aligned)

 GR3 Data for comparison (right-justified)

 Contents(GR3) - Data in element

 GR4 Offset in element for data

 GR5 Offset in element for key

 276 Extensions to the System/360 Model 67 Operations

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 B2 + Chain address = Element address (EA) (doubleword aligned)

 |

 | EA + D2 (fullword aligned) EA + GR5 EA + GR4

 | | | |

 | | | |

 ┌──┐ ┌ ┌ ┌ ┌ ┌ ┌
 | list element |chain address | |key| |data| |

 └──┘ ┘ ┘ ┘ ┘ ┘ ┘

 Initializing:

 L B2,=A(BASE)

 LA GR2,=A(firstlistelement-BASE)

 SLT M1,L2,D2(B2)

 BZ *-4 (If infinite count desired)

 ...

 Extensions to the System/360 Model 67 Operations 277

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SEARCH LIST Instruction Flow

 START

 |

 ┌───────────────────────────────┐ ┘
 | Is L2 0, 1, 2,3? | No Specification exception

 | Are bits 30-31 of D2 zero? |──────────> Program interruption ┌
 | Are bits 29-31 of reg 2 zero? |

 └───────────────────────────────┘ ┌
 |

 ┌─────────────────>| Yes
 | |

 | ┌───────────────────────────────┐ ┘
 | | CA = (reg 2) + D2 | No Specification exception

 | | Are bits 30-31 of CA zero? |──────────> Program interruption ┌
 | └───────────────────────────────┘ ┌
 | | Yes

 | |

 | ┌───────────────────────────────┐ ┘
 | | Fetch (CA) | Yes Relocation exception

 | | Relocation exception? |──────────> Program interruption ┌
 | └───────────────────────────────┘ ┌
 | | No

 | |

 | ┌───────────────────────────────┐ No Specification exception ┘
 | | Are bits 29-31 of (CA) zero? |──────────> Program interruption ┌
 | └───────────────────────────────┘ ┌
 | | Yes

 | |

 | ┌───────────────────────────────┐ ┘
 | | TEMP = (CA) + (regB2) |

 | | Fetch (TEMP + (reg4)) | Yes Relocation exception

 | | Fetch (TEMP+(reg5)) |──────────> Program interruption ┌
 | | Relocation exception? |

 | └───────────────────────────────┘ ┌
 | | No

 | |

 | ┌───────────────────────────────────────┐ ┘
 | | Decrement count by 1 |

 | | Move (reg 2) to (reg 1) |

 | | Move (TEMP) to (reg2) | Yes

 | | Compare data |─────────> Set CC 1, 2, 3 ─┐ ┌
 | | Key test | |

 | | Is comparison or key test successful? | |

 | └───────────────────────────────────────┘ <────| ┌ ┘
 | | No END |

 | | |

 | ┌───────────────────────────────┐ Yes | ┘
 | | Is count zero? |─────────────────> Set CC 0 ──────┘ ┌
 | └───────────────────────────────┘ ┌
 | |

 | | No CA=Chain Address Location

 └──────────────────┘

 278 Extensions to the System/360 Model 67 Operations

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 THE MACRO-LIBRARY EDITOR ________________________

 The MTS macro-library editor is used for the editing of macro

 libraries containing 370 assembler language macros. Many OBJUTIL

 facilities, such as replacing macros, are incorporated in this macro-

 library editor. The macro-library editor provides facilities to

 replace, add, delete, or correct a macro. The macro-library editor is

 available in the file *MACUTIL and is invoked via the $RUN command. The

 macro-library editor uses the following MTS logical I/O units:

 SCARDS - the input file containing the macros to be replaced.

 SPRINT - printed output produced by the macro-library editor.

 SERCOM - diagnostic messages.

 GUSER - a sequence of commands or user responses in conversational

 mode.

 0 - default unit for the macro library to be edited.

 Those users who want only to update their macro library can simply

 issue the following command:

 $RUN *MACUTIL SCARDS=inFDname 0=editFDname

 In the above case, macros are read from "inFDname", and written on

 "editFDname" replacing any previous macros. The logical structure of

 the macros is completely preserved except that the duplicate macros from

 "inFDname" are discarded. Unless the parameter REPLACE is specified,

 additional macros are also added to the macro library.

 A typical example is a file consisting of several macros in the file

 MAC. While assembling the macros, the user discovers an error in one of

 the macros. This error may be corrected in the source file by the MTS

 file editor. After the macro is checked, the macro-library editor may

 be used to replace the erroneous macro in the macro library as follows:

 $RUN *MACUTIL SCARDS=MAC 0=MACLIB

 In this example, the source code for the macros replaces corresponding

 macros in the file MACLIB. In addition, any macro that exists in MAC

 but not in MACLIB is also added.

 Users who only want to build the directory in the macro library can

 simply issue the following command:

 $RUN *MACUTIL 0=editFDname PAR=BUILDIR

 The first record of the file "editFDname" should not start at line 1;

 otherwise, MACUTIL will not be able to build the directory properly (the

 The Macro-Library Editor 279

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 directory starts at line 1). It is recommended that the first record

 start at line 1000; this will allow enough room for the directory.

 The PAR field allows the user some control over the processing done

 by the macro-library editor. Those users who wish to use the more

 advanced features of the macro-library editor must use the macro-library

 editor command language described below. Commands are read from GUSER

 and printed output is written on SPRINT. The typical $RUN command to

 use the macro-library editor in command mode is:

 $RUN *MACUTIL

 Command input is terminated by an end-of-file or by the STOP command.

 The following parameters may be specified in the PAR field of the

 $RUN command. The parameters must be separated by commas or blanks.

 Parameters may be negated by "-", "¬", "NO", or "N". The minimum

 acceptable abbreviation for each parameter is underlined.

 BREAK=n __

 Each new macro or copy section added to the edit file begins at

 the next highest multiple of the line number "n" after the last

 line in the macro library. Lines currently in the edit file are

 not changed to reflect the new value. The default value is

 100.000. No fractions are permitted.

 BUILDIR __

 The BUILDIR parameter specifies that the macro library editor is

 to produce a directory in the macro library. The library is

 assumed to have no directory but just a series of macros and/or

 copy sections. The default is NOBUILDIR; i.e., the macro

 library should not have the directory generated.

 COMSAVE ___

 The COMSAVE parameter specifies that the macro-library editor is

 to retain comments before the MACRO header and all macro

 comments starting with ".*". NOCOMSAVE specifies that such

 comments should be deleted. Assembler-G does not allow ".*"

 comments before MACRO headers. The default is COMSAVE.

 EMPTY ___

 The EMPTY parameter specifies that the macro library assigned to

 unit 0 is to be emptied before use. NOEMPTY specifies that the

 macro library is not to be emptied. The default is NOEMPTY.

 EMPTY has no effect in command mode.

 280 The Macro-Library Editor

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 FULL _

 The FULL parameter specifies that macros used in the ADD, COPY,

 INCLUDE, LIST, REPLACE, and UPDATE commands are to be fully

 listed on SPRINT. The default is NOFULL.

 HDRGEN ___

 The HDRGEN parameter specifies that MACUTIL generate a copy-

 section header whenever a copy section is added with the NAME

 modifier in the ADD, INCLUDE, REPLACE, and UPDATE commands.

 NOHDRGEN specifies that the copy-section header should not be

 generated. The default is HDRGEN.

 INCREMENT=n ___

 The INCREMENT parameter may be used to increment each successive

 line in the macro library. The default is 1.000.

 LIST _

 The LIST parameter specifies that the macro-library editor lists

 each macro name, its beginning and ending line numbers, and its

 line count for the following commands: ADD, COPY, INCLUDE,

 REPLACE, and UPDATE. The default is NOLIST.

 QUIT ____

 The QUIT parameter specifies that if the macro-library editor

 encounters any errors in batch mode, the user is signed off.

 NOQUIT specifies that the batch user is not to be signed off if

 an error occurs. The default is NOQUIT.

 SEQ ___

 The sequence numbers in columns 73-80 are normally not removed.

 But if SEQ=OFF, they are deleted and the SEQ parameter can be

 used to truncate any new macros. The default is SEQ=ON.

 SORT={LNR|NAME} ____

 The SORT parameter controls how the LIST command will list

 macros. If SORT=NAME is specified, the macro-library editor

 will list macros alphabetically. If SORT=LNR is specified,

 macros are listed according to their beginning line numbers in

 ascending order. The default is SORT=NAME.

 START=n __

 The START parameter specifies that, if a macro library is empty

 or is to be renumbered, the first line of a first macro should

 start at MTS line number n. The parameter should be an integral _

 number, and the default is 1000.

 The Macro-Library Editor 281

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 TERSE/VERBOSE ___ ____

 The TERSE/VERBOSE parameters control the amount of information

 produced by the verification of some commands. TERSE specifies

 that minimal information is requested; VERBOSE specifies that

 full information is desired. TERSE is an antonym for VERBOSE.

 The default is the setting of the MTS TERSE option. This

 parameter pair has no effect if NOVERIFY is specified.

 UPDATE/REPLACE ___ ___

 The UPDATE/REPLACE parameters control whether the file assigned

 to SCARDS is an update or replacement file in no-command mode.

 UPDATE specifies that macros or copy sections read from SCARDS

 not in the edit file will be included. REPLACE specifies that

 new macros will be excluded. The default is UPDATE. The

 parameters are effective only if SCARDS is specified in the $RUN

 command.

 VERIFY _

 The VERIFY parameter specifies that verification for each

 command is requested. NOVERIFY suppresses the verification.

 The default is VERIFY.

 The complete description of the macro-library editor command language

 is given on the following pages.

 MACRO-LIBRARY EDITOR COMMAND LANGUAGE _____________________________________

 The general form of a command is:

 commandname[@modifier]...[operand]...

 Modifiers may be prefixed by "¬", "-", "NO", or "N" if they are to be

 negated. In some commands, "slist" as an operand of a command stands

 for:

 {ALLBUT|[ONLY]} symbol [[,]symbol] ...

 The following notation conventions are used in the description of the

 macro-library editor command language:

 ... denotes zero or more repetitions of the preceding words.

 | denotes a choice of options, e.g., x|y means choose "x" or

 "y".

 [] denotes optional words.

 { } denotes alternatives.

 ___ denotes a minimum acceptable abbreviation for a word, e.g.,

 INCLUDE indicates I is the minimum acceptable abbreviation for _

 INCLUDE.

 282 The Macro-Library Editor

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The following rules apply to command usage:

 (1) A command starts with the first nonblank character, which need

 not start at position 1.

 (2) There should be no embedded blanks in the command name and

 command modifiers.

 (3) At least one blank should separate the command name and the

 first operand.

 (4) There must be a blank or a comma between any two operands.

 (5) If the last character of the current input line is a minus sign

 "-", the next input line will be taken as a continuation of the

 current line. The first character of the next line replaces the

 continuation character. There is no limit to the number of

 continuation lines, however, the total number of characters in a

 command line may not exceed 256. For batch use, the continua-

 tion character must be punched in column 80, since all 80

 columns of a card are read.

 (6) Any command or command modifier may be abbreviated by entering

 only an initial substring, which is underscored in each command

 or command modifier description.

 (7) A command line beginning with an asterisk "*" is considered to

 be a comment and is not processed, other than possibly being

 echoed by the macro-library editor.

 (8) A command line beginning with a dollar sign "$" is assumed to be

 an MTS command and is executed by a call to the system CMD

 subroutine.

 The following table summarizes the macro-library editor commands and

 their applicable modifiers.

 The Macro-Library Editor 283

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Command Operand Applicable Modifiers _______ _______ ____________________

 ADD [FROM] FDname [slist] BREAK=, COMSAVE, FULL, HDRGEN, ___ __ ___ _ ___

 INCREMENT=, LIST, NAME=, SEQ, ___ _ _ ___

 TERSE, VERBOSE, VERIFY ___ ____ _

 BUILDIR [filename] TERSE, VERBOSE, VERIFY __ ___ ____ _

 CLEAR None VERIFY __ _

 COMMENT comment None ___

 COPY [FROM] inFDname [TO] outFDname [slist] ___

 BREAK=, COMSAVE, FULL, HDRGEN, __ ___ _ ___

 INCREMENT=, LIST, NAME=, SEQ, ___ _ _ ___

 TERSE, VERBOSE, VERIFY ___ ____ _

 CREATE filename [lhs=rhs]... VERIFY ___ _

 DELETE slist TERSE, VERBOSE, VERIFY __ ___ ____ _

 DISPLAY item ... None _

 EDIT filename EMPTY __ ___

 EMPTY filename VERIFY ___ _

 EXPLAIN [ON FDname] [item]... EMPTY __ ___

 HELP None None _

 INCLUDE [FROM] FDname [slist] BREAK=, COMSAVE, FULL, HDRGEN, _ __ ___ _ ___

 INCREMENT=, LIST, NAME=, SEQ, ___ _ _ ___

 TERSE, VERBOSE, VERIFY ___ ____ _

 LIST [ON FDname] [slist] EMPTY, FULL, SORT= _ ___ _ ____

 MCMD MTS command None __

 MTS [optional command] None __

 PUNCH [ON] FDname [slist] COMSAVE, EMPTY, SEQ, TERSE, _ ___ ___ ___ ___

 VERBOSE, VERIFY ____ _

 RENAME old1[=]new1[[,]old2[=]new2]]... _

 VERIFY _

 RENUMBER [name] [[start,]increment]] BREAK=, INCREMENT=, START=, VERIFY ____ __ ___ __ _

 REPLACE [FROM] FDname [slist] BREAK=, COMSAVE, FULL, HDRGEN, ___ __ ___ _ ___

 INCREMENT=, LIST, NAME=, SEQ, ___ _ _ ___

 TERSE, VERBOSE, VERIFY ___ ____ _

 RETURN None None ___

 SET lhs=rhs [[,] lhs=rhs]... None _

 STOP None None __

 UPDATE [FROM] FDname [slist] BREAK=, COMSAVE, FULL, HDRGEN, ___ __ ___ _ ___

 INCREMENT=, LIST, NAME=, SEQ, ___ _ _ ___

 TERSE, VERBOSE, VERIFY ___ ____ _

 284 The Macro-Library Editor

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Macro-Library Editor Commands _____________________________

 Command: ADD [FROM] FDname [slist] _______ ___

 Modifiers: BREAK, COMSAVE, FULL, HDRGEN, INCREMENT, LIST, NAME, SEQ,

 TERSE, VERBOSE, VERIFY

 Example: ADD FILE1+FILE2(100,199) ALLBUT QQ

 Explanation: Macros are added to the macro library from the specified

 file or devices. Input is terminated by an end-of-file.

 Command: BUILDIR [filename] _______ __

 Example: BUILDIR MAC

 Modifiers: TERSE, VERBOSE, VERIFY

 Explanation: The MACUTIL reads the file, if specified, and builds the

 directory establishing it as a macro library. If the

 directory already exists, MACUTIL will ask the user if

 the directory is to be rebuilt. If so, the directory

 will be deleted and built up. If not, MACUTIL estab-

 lishes the file as a macro library by simply reading in

 the directory.

 Command: CLEAR _______ __

 Modifiers: VERIFY

 Example: CLEAR@NV

 Explanation: The CLEAR command completely clears out the current

 internal representation of the macro library. The macro-

 library editor will then rebuild its internal representa-

 tion by reading the macro library. This command is

 necessary whenever the user changes the macro library

 without letting the macro-library editor know (via MTS,

 MCMD, or $ commands; in particular, via an MTS $RENUMBER

 command).

 The Macro-Library Editor 285

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Command: COMMENT comment _______ ___

 Modifiers: None

 Example: COMMENT - Now we delete some macros.

 Explanation: The COMMENT command is useful for documenting sequences

 of commands given to the macro-library editor. Note that

 command lines beginning with an asterisk "*" are also

 treated as comments.

 Command: COPY [FROM] inFDname [TO] outFDname [slist] _______ ___

 Modifiers: BREAK, COMSAVE, FULL, HDRGEN, INCREMENT, LIST, NAME, SEQ,

 TERSE, VERBOSE, VERIFY

 Example: COPY FROM NEWMACS TO MACLIB

 Explanation: This COPY command copies macros and copy sections from an

 input file (possibly a macro library) to an output macro

 library file, which then becomes the active macro

 library. This command is identical to running *MACUTIL

 in no-command mode with SCARDS and 0 assigned; and is

 provided only to make that mode of operation available at

 the command level.

 Command: CREATE filename [lhs=rhs]... _______ ___

 Modifiers: VERIFY

 Example: CREATE MAC SIZE=100P

 Explanation: The CREATE command creates a macro library. The filename

 is acquired and becomes the active macro library. The

 optional keywords are:

 SIZE=nP

 MAXSIZE=nP

 TYPE=LINE

 VOLUME=volname

 The keywords are the same as those for the MTS command

 $CREATE except that the SIZE and MAXSIZE are expressed in

 terms of pages and that sequential files are not allowed.

 286 The Macro-Library Editor

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Command: DELETE slist _______ __

 Modifiers: TERSE, VERBOSE, VERIFY

 Example: DELETE MACRA, MACRB

 Explanation: Through the DELETE command, the macros implied by the

 symbols in "slist" are deleted from the macro library.

 This allows the replacement of macro definitions.

 Command: DISPLAY item ... _______ _

 Modifiers: None

 Example: DISPLAY DIRECTORY

 Explanation: The DISPLAY command can be used to display the current

 status of the macro library, its directory, or any of

 options that can be used by the SET command. "item" may

 be one of the following:

 BREAK, COMSAVE, DIRECTORY, ECHO, FULL, HDRGEN,

 INCREMENT, LIST, OPTIONS, QUIT, SEQ, SORT, START,

 STATUS, TERSE, TYPE, VERBOSE, VERIFY.

 DIRECTORY displays all names of macros and copy sections _________

 as listed in the directory.

 OPTIONS displays all options that can be used by the SET _______

 command.

 STATUS displays the name of the macro library, the count ______

 of macros and copy sections, and the count of the lines.

 Command: EDIT filename _______ __

 Modifiers: EMPTY

 Example: EDIT MACLIB

 Explanation: The current macro library is set to filename. This

 command must be specified if unit 0 is not initially

 assigned. The macro-library editor reads the file

 "filename" and builds an internal directory of the

 location of each macro or copy section in the file.

 Currently, "filename" must be a single file with no

 explicit concatenation or explicit line-number increment

 specified.

 The Macro-Library Editor 287

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The EMPTY modifier may be specified to request the

 macro-library editor to empty "filename" before setting

 it to the current macro library.

 Command: EMPTY filename _______ ___

 Modifiers: VERIFY

 Example: EMPTY MACLIB

 Explanation: The specified filename is emptied and then becomes the

 current macro library.

 Note: This command is the same as the EDIT command with the

 @EMPTY modifier specified.

 Command: EXPLAIN [ON FDname] [item]... _______ __

 Modifiers: EMPTY

 Example: EXPLAIN @HDRGEN, COMMANDS

 Explanation: The EXPLAIN command prints an explanation of the speci-

 fied items on SPRINT or on FDname if specified. The

 following items can be explained:

 $, *, ?, -, ADD, BUILDIR, CLEAR, commands, COMMENT,

 continuations, COPY, CREATE, DELETE, description,

 DISPLAY, EDIT, EMPTY, everything, example, EXPLAIN,

 HELP, INCLUDE, LIST, macutil, MCMD, modifiers, MTS,

 operations, parameters, PUNCH, QUIT, RENAME, RE-

 NUMBER, REPLACE, RETURN, SET, slist, STOP, syntax,

 TYPE, UPDATE, @BREAK, @COMSAVE, @EMPTY, @FULL, @HDR-

 GEN, @INCREMENT, @LIST, @NAME, @SEQ, @SORT, @START,

 @TERSE, @VERBOSE, @VERIFY.

 Items listed in lowercase are generic and produce a

 general explanation; items listed in uppercase refer to a

 particular command, modifier, or parameter and produce a

 specific explanation. The EMPTY modifier may be speci-

 fied to empty the output file first.

 288 The Macro-Library Editor

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Command: HELP _______ _

 Modifiers: None

 Example: HELP

 Explanation: The HELP command prints a list of all valid macro-library

 editor commands.

 Command: INCLUDE [FROM] FDname [slist] _______ _

 Modifiers: BREAK, COMSAVE, FULL, HDRGEN, INCREMENT, LIST, NAME, SEQ,

 TERSE, VERBOSE, VERIFY

 Example: INCLUDE FILE1+FILE2(100,199) ALLBUT QQ

 Explanation: Macros are added to the macro library from the specified

 file or devices. Input is terminated by an end-of-file.

 Note: This is a synonym of the ADD command.

 Command: LIST [ON FDname] [slist] _______ _

 Modifiers: EMPTY, FULL, SORT

 Example: LIST ON *PRINT*

 Explanation: The LIST command allows the user to obtain information

 about the macros currently in the macro library. The

 information about the macros shows their starting and

 ending line numbers, and gives a count of the lines

 present. If the modifier @FULL is specified, then macros

 are listed in full. Macros are listed in alphabetic

 order according to their names. SORT=LNR may be speci-

 fied to list the macros according to their beginning line

 numbers.

 If "slist" is not specified, the "short" information is

 listed for all relevant macros. LIST information is

 written to SPRINT unless "ON FDname" is given, in which

 case it is written to the specified file or device. The

 EMPTY modifier may be specified to empty the output file

 before printing the list.

 The Macro-Library Editor 289

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Command: MCMD MTS command _______ __

 Modifiers: None

 Example: MCMD EMPTY MACLIB OK

 Explanation: The MTS command specified is executed by MTS, and control

 is returned to the macro-library editor. Alternatively,

 the user may issue the MTS command directly in macro-

 library editor command mode by prefixing it with a dollar

 sign, e.g., $EMPTY -MAC.

 Note: The macro-library editor will not know if the user

 changes the active macro library.

 Command: MTS [MTS command] _______ __

 Modifiers: None

 Example: MTS EMPTY MAC OK

 MTS

 Explanation: If the MTS command is specified, it is executed by MTS,

 and the macro-library editor may be reentered with an MTS

 $RESTART command. Alternatively, the user may issue just

 the MTS command. Control then reverts to MTS command

 mode in such a way that the macro-library editor may be

 reentered with a $RESTART command.

 Note: The macro-library editor will not know if the user

 changes the current macro library.

 Command: PUNCH [ON] FDname [slist] _______ _

 Modifiers: COMSAVE, EMPTY, SEQ, TERSE, VERBOSE, VERIFY

 Example: PUNCH ON -X ONLY SORT

 Explanation: If no "slist" is given, all macros of the current macro

 library are punched on FDname. Otherwise, the specified

 macros are punched. In addition, if the EMPTY modifier

 is specified, the FDname is first emptied before

 punching.

 290 The Macro-Library Editor

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Command: RENAME old1[=]new1 [[,]old2[=]new2] ... _______ _

 Modifiers: VERIFY

 Example: RENAME MIN=MINER

 Explanation: The RENAME command causes one or more specified macros to

 be renamed. Renaming is done first in the directory.

 The macro prototype is also changed if it was the same as

 the old name.

 Command: RENUMBER [name] [{increment|start,increment}] _______ ____

 Modifiers: BREAK, INCREMENT, START, VERIFY

 Example: RENUMBER MINE 2

 RENUMBER@BREAK=1000 .5

 Explanation: The RENUMBER command is used either to renumber a

 specified macro "name" or to renumber the entire macro

 library.

 If "name" is specified in the command, only that macro

 will be renumbered according to "start" and "increment".

 The defaults are its actual beginning line number and the

 INCREMENT parameter, respectively. Renumbering a macro

 with a different first line number will not be done if

 the macro would have to be moved out of the usual order

 of the macros in the library.

 If "name" is not specified, the entire macro library will

 be renumbered according to the BREAK, INCREMENT, and

 START parameters. The defaults are 100., 1., and 1000.,

 respectively. Optionally, "start" and "increment" can be

 specified as operands of the command instead of corre-

 sponding modifiers. At first, lines are internally

 renumbered just to check if any line will not be out of

 range (over 99999.999). All macros are then actually

 renumbered starting at the specified START parameter

 (defaults to 1000.) with the increment=0.001. The BREAK

 parameter is ignored during this intermediate renumber-

 ing. Beginning with the last macro and ending with the

 first macro, MACUTIL renumbers each macro according to

 the parameters BREAK and INCREMENT. Finally, the direc-

 tory of the macro library is updated with correct

 beginning line numbers of macros.

 The Macro-Library Editor 291

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Command: REPLACE [FROM] FDname [slist] _______ ___

 Modifiers: BREAK, COMSAVE, FULL, HDRGEN, INCREMENT, LIST, NAME, SEQ,

 TERSE, VERBOSE, VERIFY

 Example: REPLACE FROM -LOAD

 Explanation: The REPLACE command reads potential replacement macros

 from "FDname" and selectively replaces those modules in

 the macro library according to "slist". Any additional

 macros in "FDname" are ignored. The REPLACE command can

 be thought of as a convenient way of performing the

 following operations:

 DELETE slist

 INCLUDE FROM FDname slist

 with the additional feature that the original ordering of

 the macros in the macro library are preserved if possi-

 ble. Note that the UPDATE command performs a very

 similar function.

 Command: RETURN _______ ___

 Modifiers: None

 Example: RETURN

 Explanation: Control reverts to MTS command mode in such a way that

 the macro-library editor may be reentered via the $RES-

 TART command. The RETURN command is identical to the MTS

 command with no operands specified.

 Command: SET lhs=rhs[[,]lhs=rhs]... _______ _

 Modifiers: None

 Example: SET ECHO=ON VERIFY=OFF

 Explanation: Most of the items which can be specified in a SET command

 are also available as modifiers to the individual com-

 mands. The SET command simply changes the global default

 value for such modifiers so that the same modifier values

 need not be given repeatedly. The available keywords

 are:

 BREAK=n Defaults to 100.000 __

 COMSAVE={ON|OFF} Defaults to ON ___

 ECHO={ON|OFF} (see below) ____

 292 The Macro-Library Editor

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 FULL={ON|OFF} Defaults to OFF _

 HDRGEN={ON|OFF} Defaults to ON ___

 INCREMENT=n Defaults to 1.000 ___

 LIST={ON|OFF} Defaults to OFF _

 MODCHAR=character Defaults to @ ___

 QUIT={ON|OFF} (see below) ____

 SEQ={ON|OFF} Defaults to ON ___

 SORT={LNR|NAME} Defaults to NAME ____

 START=n Defaults to 1000.000 if file is ___

 empty, where the first source

 line will start.

 TERSE={ON|OFF} Defaults to OFF ___

 VERBOSE={ON|OFF} Defaults to ON (antonym of TERSE) ____

 VERIFY={ON|OFF} Defaults to ON _

 Note that most of these items may be specified as

 execution parameters in the PAR field of the $RUN command

 (see the description of the parameters available at the

 beginning of this section).

 If ECHO is turned ON, macro-library editor commands are

 ECHOed on SPRINT. ECHO defaults to ON unless the

 commands are being entered directly from a terminal.

 If the macro-library editor encounters any errors when

 QUIT is turned ON in batch mode, the user is signed off.

 QUIT defaults OFF for batch and is always OFF for

 conversational use.

 Command: STOP _______ __

 Modifiers: None

 Example: STOP

 Explanation: The macro-library editor terminates processing. An end-

 of-file in the command stream also terminates the

 processing.

 The Macro-Library Editor 293

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Command: UPDATE [FROM] FDname [slist] _______ ___

 Modifiers: BREAK, COMSAVE, FULL, HDRGEN, INCREMENT, LIST, NAME, SEQ,

 TERSE, VERBOSE, VERIFY

 Example: UPDATE FROM -SECTION

 Explanation: The UPDATE command reads potential replacement macros

 from "FDname" and selectively replaces those macros in

 the macro library according to "slist". Any additional

 macros in "FDname" are also included. The UPDATE command ________

 can be thought of as a convenient way of performing the

 following operations:

 DELETE slist

 INCLUDE FROM FDname

 with the additional feature that the original ordering of

 the macros in the macro library are preserved if possi-

 ble. Note that the REPLACE command performs a very

 similar function.

 294 The Macro-Library Editor

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Command Modifiers _________________

 The modifiers are prefixed by "@" or MODCHAR as set by the SET

 MODCHAR command (see the SET command) and appended to the commands. A

 modifier may be negated by prefixing it with "¬", "-", "NO", or "N".

 Modifier: BREAK=n ________ __

 Example: ADD@BREAK=100 MACFILE

 Explanation: The BREAK modifier may be appended to the ADD, COPY,

 INCLUDE, RENUMBER, REPLACE, and UPDATE commands to set

 the beginning line number of each new macro added to the

 macro library to the next highest multiple of "n". The

 default is 100.000.

 Modifier: COMSAVE ________ ___

 Example: ADD@¬COMSAVE ASMTMAC

 Explanation: The COMSAVE modifier may be appended to the ADD, COPY,

 INCLUDE, PUNCH, REPLACE, and UPDATE commands. The COM-

 SAVE modifier specifies that comments before MACRO head-

 ers and comments starting with ".*" are to be saved. The

 default is COMSAVE.

 Modifier: EMPTY ________ ___

 Example: PUNCH@EMPTY ON SORTFILE ONLY SORT

 Explanation: The EMPTY modifier may be applied to the EDIT, EXPLAIN,

 LIST, and PUNCH commands to request that the output file

 is to be emptied before output from the macro-library

 editor is written to it.

 Modifier: FULL ________ _

 Example: LIST@FULL MINER

 Explanation: The FULL modifier may be appended to the ADD, COPY,

 INCLUDE, LIST, REPLACE, and UPDATE commands. The FULL

 modifier specifies that the entire macro is to be listed.

 The Macro-Library Editor 295

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Modifier: HDRGEN ________ ___

 Example: INCLUDE@¬HDR@NAME=GDINFO *GDINFODSECT

 Explanation: The HDRGEN modifier specifies that the macro-library

 editor should supply the copy-section name header in form

 ’*COPY SECTION name’, where "name" is specified by the

 NAME modifier.

 Modifier: INCREMENT=n ________ ___

 Example: ADD@INCREMENT=20 HISFILE

 Explanation: This INCREMENT modifier is used in the ADD, COPY,

 INCLUDE, RENUMBER, REPLACE, or UPDATE commands to set the

 increment line number. The default is 1.000.

 Modifier: LIST ________ _

 Example: UPDATE@¬LIST MAC

 Explanation: The LIST modifier may be appended to the ADD, COPY,

 INCLUDE, REPLACE, and UPDATE commands. Macro names,

 their beginning and ending line numbers, and their line

 counts are listed. The VERIFY option is overridden by

 the LIST modifier.

 Modifier: NAME=symbol ________ _

 Example: ADD@NAME=GDINFO *GDINFODSECT

 Explanation: The NAME modifier is used in the ADD, COPY, INCLUDE,

 REPLACE, or UPDATE commands to specify that the input

 file is a copy section with name "symbol".

 Modifier: SEQ ________ ___

 Example: ADD@NOSEQ OSMAC ONLY DXR

 Explanation: SEQ specifies that macro-library editor is to retain the

 sequence ID in columns 73 through 80. NOSEQ requests

 that the editor should remove the sequence IDs.

 296 The Macro-Library Editor

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Modifier: SORT={LNR|NAME} ________ ____

 Example: LIST@SORT=LNR@FULL

 Explanation: The SORT modifier may be appended to the LIST command.

 Macros to be listed are first sorted according to their

 macro names in alphabetic order (SORT=NAME) or according

 to their beginning line numbers in ascending order

 (SORT=LNR). The default is SORT=NAME.

 Modifier: START=lnr ________ __

 Example: RENUMBER@START=500

 Explanation: The START modifier may be specified in the RENUMBER

 command so that the first source line starts at the line

 number "lnr". The default is the START parameter (usual-

 ly 1000.).

 Modifier: TERSE ________ ___

 Example: REPLACE@TERSE FROM IMPROVEDMACS

 Explanation: The TERSE modifier may be applied to some commands to

 abbreviate the information produced for verification.

 VERBOSE is an antonym of TERSE. The default is the

 setting of the MTS TERSE option.

 Modifier: VERBOSE ________ ____

 Example: UPDATE@VERBOSE FROM NEWMACROS

 Explanation: If TERSE has been turned on globally via SET TERSE=ON,

 then full information for the verification of a particu-

 lar command can be produced via the VERBOSE modifier.

 VERBOSE is an antonym of TERSE. The default is the

 setting of the MTS VERBOSE option. This modifier has no

 effect if verification is suppressed via the @¬VERIFY

 modifier or the command SET VERIFY=OFF.

 Modifier: VERIFY ________ _

 Example: ADD@V -LOAD

 Explanation: If verification has been turned off globally via SET

 VERIFY=OFF, then it can be enabled for a particular

 command via the VERIFY modifier.

 The Macro-Library Editor 297

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 PRINCIPLES OF OPERATION _______________________

 MACUTIL determines if the file being edited is a macro library in the

 following way. The file specified should be a line file with no

 explicit beginning, ending, or increment MTS line numbers. If the file

 is found to be empty, MACUTIL will consider it to be an empty macro

 library. Otherwise, it will attempt to read a line at 1.000. If there

 is no such line, the file is not a macro library. But if there is, that

 line, plus successive lines, until "00000000" at columns 1-8 is

 encountered, are called directory lines. If the file is a valid macro

 library, all directory lines should conform to the following rules:

 (1) First column should be alphabetic.

 (2) There should be two fields each terminated by a blank.

 (3) The first field starts at column 1 and must only consist of not

 more than 80 alphanumeric characters. This field indicates the

 macro name.

 (4) The second field is separated from the first field by a series

 of blanks. This designates a valid MTS line number for the

 beginning line of the macro.

 If any of the directory lines do not conform to the rules, MACUTIL

 indicates that the file being edited is not a macro library. If all

 directory lines are valid, the line number associated with EOD (end of

 directory, with eight zeros at columns 1-8) is remembered. The next

 line read is considered as the first source line; all directory lines

 will always precede this line. MACUTIL then sorts the directory lines

 in ascending order according to the beginning line numbers. Each

 beginning line number is checked. If it is not greater than the EOD

 line number, an error message is produced and the directory line is

 discarded. If the beginning line number is not integral, a warning will

 be produced but MACUTIL will nevertheless accept the directory line.

 Since the directory lines are already sorted with their beginning line

 numbers in ascending order, MACUTIL proceeds to determine the ending

 line number of a macro in the following way. The beginning line number

 of the next macro, less 0.001, is first calculated (if the macro is the

 last macro, the actual last line number of the file will be set,

 instead). MACUTIL then reads backwards until it encounters "$ENDFILE"

 or MEND. It will also stop reading backwards whenever it discovers the

 line number is less than the beginning line number. Once the ending

 line number is found, all lines between the beginning and ending line

 numbers are counted. If the count is zero, an error message is produced

 and the directory line discarded.

 The next section describes the operation of MACUTIL when including

 macros or copy sections from an external file in the ADD, COPY, INCLUDE,

 REPLACE, and UPDATE commands. It also uses the same method of scanning

 when it is building a directory for an existing macro library except

 that only macro names with their associated beginning line numbers are

 placed in the directory.

 298 The Macro-Library Editor

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 If the NAME modifier was specified on the command, the (copy section)

 name in the directory is set to that name. A copy-section header is

 generated according to the HDRGEN modifier. The NAME modifier is then

 blanked out to prevent any more copy sections with the same name.

 MACUTIL then sequentially reads lines of the file until it either

 encounters "$ENDFILE" or the actual end of the file. "$ENDFILE" is

 automatically generated, if the "$ENDFILE" trailer is not present. If

 "$ENDFILE" was encountered, MACUTIL will then proceed to process any

 remaining macros or copy sections in the file being included in the

 manner described below (i.e., as if the NAME modifier was not

 specified).

 If the NAME modifier was not specified on the command, MACUTIL will

 scan the file being included for "MACRO" ... "MEND" pairs or "*COPY

 SECTION name" ... "$ENDFILE" pairs. If COMSAVE is ON and "MACRO" was

 found, MACUTIL will also include any preceding comments (lines that

 start with an "*" or ".*"). For each pair, it generates a directory

 entry and automatically inserts "$ENDFILE" after "MEND". A line is a

 copy-section header if columns 1-5 contain "*COPY", column 6 a blank, a

 hyphen, or an underscore, columns 7-14 "SECTION ", and remaining columns

 specify the copy section name, terminated by a blank.

 MACUTIL utilizes an alternate method whenever the program discovers

 the external file being included is a macro library. This is indicated

 by the presence of a valid directory line number 1.000. In this case,

 the NAME modifier is invalid and ignored. MACUTIL (selectively if an

 slist is specified) includes macros and copy sections by interrogating _____

 the directory of the external file. MACUTIL must check if it is

 including a macro or a copy section. It will be a macro if the

 prototype statement’s operation code matches the macro name; otherwise,

 MACUTIL is including a copy section. MACUTIL reads all lines of a macro

 until MEND, matching the first MACRO is encountered. For all copy

 sections, "$ENDFILE" terminates a copy section.

 As an illustration, consider the file being included by the ADD

 command is:

 ...

 MACRO

 XXX

 ...

 MEND

 ...

 MACRO

 YYY

 ...

 MEND

 ...

 *COPY SECTION AAA

 ...

 $ENDFILE

 ...

 The Macro-Library Editor 299

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 *COPY SECTION BBB

 ...

 $ENDFILE

 ...

 The macro library will be:

 1. XXX 1000

 2. YYY 1100

 3. AAA 1200

 4. BBB 1300

 5. 00000000

 1000. MACRO

 1001. XXX

 ...

 1009. MEND

 1010. $ENDFILE

 1100. MACRO

 1101. YYY

 ...

 1109. MEND

 1110. $ENDFILE

 1200. *COPY SECTION AAA

 ...

 1210. $ENDFILE

 1300. *COPY SECTION BBB

 ...

 1310. $ENDFILE

 300 The Macro-Library Editor

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MACRO-LIBRARY EDITOR EXAMPLE ____________________________

 A sample terminal run is given below to illustrate several of the

 features of the macro-library editor. In this example, user input is in

 lowercase while macro-library editor output is in uppercase. Note also

 that the macro-library editor uses two slashes (//) as the prompting

 prefix.

 #$run *macutil

 #EXECUTION BEGINS

 MACUTIL VERSION(PR148) 09:40:22 04-17-78

 //*

 //*comment - Example #1: to set up a macro library from macros

 //*

 //edit -mac

 //display status

 Macro library "-MAC" has 0 macros and 0 lines.

 //add minimac

 ADDED:

 MIN MINR MINH MINL MINLR MINE MINER

 MIND MINDR

 //display directory

 --- 9 macros ---

 MIN MIND MINDR MINE MINER MINH MINL

 MINLR MINR

 //*

 //*comment - Example #2: to extract macros from a macro library

 //*

 //add@full from *sysmac only mts

 Macro MTS: 6 lines added

 1900 MACRO

 1901 &SLB MTS

 1902 &SLB L 15,=V(MTS)

 1903 BALR 14,15

 1904 MEND

 1905 $ENDFILE

 //delete mine

 DELETED:

 MINE

 //update@terse from minimac

 REPLACED:

 8 macros

 ADDED:

 1 macro

 //display directory

 --- 10 macros ---

 The Macro-Library Editor 301

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MIN MIND MINDR MINE MINER MINH MINL

 MINLR MINR MTS

 //*

 //comment - Example #3: another way to extract a macro

 //*

 //edit *sysmac

 *** WARNING: The macro library "*SYSMAC" cannot be used for output.

 //display status

 Macro library "*SYSMAC" has 170 macros, 1 copy section,

 and 5684 lines.

 //list spie

 Macro SPIE (5600.,5745.) 146 lines

 //punch on -spie only spie

 PUNCHED:

 SPIE

 //*

 //comment - Example #4: to build a directory in the file being edited

 //*

 //buildir -mac

 *** ERROR: The macro library file "-MAC" already has the directory.

 A new directory is to be rebuilt. OK? ok

 Done.

 //display status

 Macro library "-MAC" has 10 macros and 59 lines.

 //list@full mine

 Macro MINE (2000.,2005.) 6 lines

 2000 MACRO

 2001 &LABEL MINE &RA,&SB

 2002 &LABEL CE &RA,&SB

 2003 BNH *+8

 2004 LE &RA,&SB

 2005 MEND

 //list

 Macro MIN (1000.,1005.) 6 lines

 Macro MIND (1700.,1705.) 6 lines

 Macro MINDR (1800.,1805.) 6 lines

 Macro MINE (2000.,2005.) 6 lines

 Macro MINER (1600.,1605.) 6 lines

 Macro MINH (1200.,1205.) 6 lines

 Macro MINL (1300.,1305.) 6 lines

 Macro MINLR (1400.,1405.) 6 lines

 MACUTIL ATTN

 //stop

 CPU time = 1.81 seconds.

 #EXECUTION TERMINATED 09:50.05 T=1.912 $.62

 302 The Macro-Library Editor

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ASSIST ASSEMBLER AND INTERPRETER ________________________________

 This section is intended to serve as a basic reference guide for

 programmers using Assembler Language and the ASSIST assembler/

 interpreter system for the IBM 370/168, Amdahl 470V/6, or equivalent

 computer running under MTS. ASSIST (Assembler System for Student _ _ _

 Instruction and Systems Teaching) is a small, high-speed, low-overhead _ _ _

 assembler/interpreter system especially designed for use by students

 learning assembler language. The assembler program accepts a large

 subset of the standard Assembler language, and includes most commonly

 used features. The execution-time interpreter simulates the full 370

 instruction set, with complete checking for errors, meaningful diagnos-

 tics, and completion dumps of much smaller size than the normal system

 dumps.

 This section describes the necessary commands for running ASSIST, the

 assembly language commands and instructions permitted by the ASSIST

 assembler, error messages given by both the assembler and the interpret-

 er, and gives other useful information.

 It is assumed that the reader is already familiar with the IBM

 Assembler/370 language and the basic MTS commands. A basic familiarity

 with the following two publications is also assumed: IBM System/360 _______________

 Principles of Operation (form GA22-6821) and IBM System/370 Principles _________________________ _________________________

 of Operation (form GA22-7000). ____________

 ASSIST follows the basic IBM linkage conventions. That is, when the

 user’s ASSIST program is entered, GR13 points to an 18-word save area,

 GR1 points to a count and parameter list, and the program is called by a

 BALR 14,15.

 Parts of the following manuals have been used in the preparation of

 this section:

 ASSIST Introductory Assembler User’s Manual, John R. Mashey, Pennsyl- ___

 vania State University, August 1971.

 ASSIST User’s Guide, W. C. Jackson, University of Alberta, Edmonton, ____________________

 Alberta, Canada, January 1973.

 UBC STASS, The Stass Assembler, P. Campbell, I. Raudzins, W. Dett- ___________________

 wiler, and L. Horvath, University of British Columbia Computing

 Centre, Vancouver, British Columbia, Canada, November 1971.

 ASSIST 303

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 RUNNING ASSIST UNDER MTS ________________________

 THE MTS $RUN COMMAND AND LOGICAL UNIT SPECIFICATIONS __

 The command to run ASSIST is:

 $RUN *ASSIST [logical I/O unit assignments] [PAR=parameters]

 where the logical unit assignments are as follows:

 SCARDS the file or device for assembler input (i.e., control

 cards, source deck, and data). The default is *SOURCE*.

 SPRINT the file or device for assembler output (i.e., source

 listing, diagnostic messages, program results, and job

 accounting information). The default is *SINK*.

 SERCOM the file or device for a few terminal error messages. The

 default is *SINK*.

 0,2,3 macro library files, formatted as per *MACGEN. See the

 section, "ASSIST Macro Libraries," later in this volume

 for further details. In order to use a macro library, the

 user must provide a *SYSLIB card.

 CONTROL CARDS _____________

 All the control cards described below must have their text beginning

 in column one of the input card to be recognized as a control card.

 They may all be abbreviated by their first 4 alphabetic characters.

 /ASSEMBLE _________

 This control card may be used to identify the beginning of an

 assembler program for ASSIST to assemble (and possibly execute).

 Its presence is required only between separate assembler pro- ________

 grams being assembled under a single $RUN of ASSIST (see the

 BATCH parameter and examples later in this volume). However, it

 may appear at the beginning of any assembler program to identify

 the program and set local assembly options before its assembly

 and execution.

 The control card contains a comment field and a parameter field.

 The comment field may consist of any string of characters,

 excluding a colon (:), and follows the "/ASSEMBLE" after one or

 more intervening blanks. The comment field is terminated by a

 304 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 colon, after which an optional list of compiler parameters may

 appear (see the "Parameters" section below for their descrip-

 tion). For example,

 /ASSEMBLE FIRST PROGRAM CHECKOUT : TIME=.2,LIBMC

 /EXECUTE ________

 This control card may optionally be present at the end of the

 assembler program source deck. A parameter string may be

 specified following the "/EXECUTE". This will then be passed to

 the student’s program via the standard conventions (i.e., GR1

 points to a halfword location, which contains the length of the

 string, followed by the PAR string exactly as given on the

 /EXECUTE card). For example,

 /EXECUTE PAR=YES,CHECK

 would cause GR1 to contain the address of a halfword location

 containing 9 (the length of the string), followed by the

 characters YES,CHECK. The first blank after the PAR= terminates

 the string.

 /DATA _____

 This control card may be used in place of /EXECUTE.

 /STOP _____

 This control card may be used at the end of a batch to terminate

 ASSIST. An end-of-file on SCARDS behaves in the same manner, so

 /STOP is optional in this case.

 PARAMETERS __________

 The ASSIST parameters listed in the table on the following pages are

 of two types. The first group consists of on/off type parameters and

 are negated by placing ’NO’ in front of them. The second group of

 parameters requires assigned values.

 Parameters may be set from two different locations. The first is via

 the PAR= field on the $RUN command; the second is after a colon (:) on

 the /ASSEMBLE card. If specified on the $RUN command, they apply to all

 jobs in a batch, whereas the parameters specified on the /ASSEMBLE card

 apply only to that particular job. Certain parameters may be specified

 only on the $RUN card, and not on the /ASSEMBLE card. These are flagged

 by an asterisk (*) in the table. Others can be reset, but never to a

 value higher than a previously set value. These are flagged by a plus

 sign (+) in the table. (See Key at end of table.)

 ASSIST 305

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The parameters may be specified in any order. Some examples follow:

 $RUN *ASSIST SCARDS=*SOURCE* PAR=NOLIST,PX=5,BATCH

 This command would suppress the source listing, set a limit of 5 on the

 number of pages of output allowed during execution, and permit batching

 of jobs.

 /ASSEMBLE JOHN DOE :NOLIST,PX=5

 This card would again suppress the source listing and limit the number

 of pages of output allowed during execution to 5. However, if, on the

 $RUN command, ’PAR=PX=2’ had been specified, the ’PX=5’ on the /ASSEMBLE

 card would have no effect since PX cannot be set to a value higher than

 the value previously set.

 306 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Table of ASSIST Parameters __________________________

 ┌──┐ ┌ ┌ ┌
 |Parameter | Default | Maximum | Description | _________ _______ _______ ___________

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 |*BATCH | NOBATCH | | Allows more than one job to be run at |

 | | | | a time. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | CMPRS | NOCMPRS | | Gives a compressed source listing of |

 | | | | 2 columns/page. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | COMNT | NOCOMNT | | Requires 80% of the source statements |

 | | | | to have a comment. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 |*CPAGE | CPAGE | | Forces control of paging. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | LIBMC | NOLIBMC | | Macros fetched from the library will |

 | | | | be printed. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | LIST | LIST | | Produces assembly source listing. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | LOAD | LOAD | | Produces object code and runs it. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | SS | NOSS | | Singlespaces assembly (if CPAGE is |

 | | | | turned on). |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | SSD | NOSSD | | Singlespaces dump (if CPAGE is turned |

 | | | | on). |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | SSX | NOSSX | | Singlespaces execution (if CPAGE is |

 | | | | turned on). |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 |*SIZE= | 15 | | Indicates the amount of virtual |

 | | | | memory to be used for working stor- |

 | | | | age. This is effectively the only |

 | | | | limit on the size of the program |

 | | | | which can be assembled. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | KP= | 029 | | Type of keypunch used (026 or 029). |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 |+L= | 60 | 66 | Number of lines per page if CPAGE is |

 | | | | turned on. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | MACTR= | 200 | | Default value for starting ACTR coun- |

 | | | | ters in all macros used. Can be |

 | | | | overridden by explicit ACTR |

 | | | | statements. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | MNEST | 15 | | Limits level of nested macro calls, |

 | | | | thereby preventing unwanted recursion |

 | | | | in macros. |

 └──┘ ┘ ┘ ┘

 ASSIST 307

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ┌──┐ ┌ ┌ ┌
 |Parameter | Default | Maximum | Description | _________ _______ _______ ___________

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | MSTMG= | 4000 | | Limits total number of statements |

 | | | | processed in all macro expansions.

 | | | | Another caution against looping |

 | | | | macros. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | NERR= | 0 | | Maximum number of assembly errors |

 | | | | permitted, before execution is |

 | | | | disallowed. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 |+P= | 25 | 100 | Number of pages for the job-assembly, |

 | | | | execution, and dump (if CPAGE is |

 | | | | turned on). |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 |+PAGES= | 10 | 100 | Number of pages allowed for execution |

 | | | | (if CPAGE is on). |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 |+PD= | 2 | 100 | Number of pages to be saved for a |

 | | | | dump (if CPAGE is turned on). |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 |+PX= | 10 | 100 | Number of pages allowed for execution |

 | | | | (if CPAGE is turned on). |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 |+T= | 10 | 100 | Time allowed for the entire job- |

 | | | | assembly, execution, and dump. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 |+TD= | 0.5 | 10 | Time to be saved for the dump. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 |+TIME= | 10 | 100 | Time allowed for execution. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 |+TX= | 10 | 100 | Time allowed for execution. |

 |──────────┼─────────┼─────────┼───────────────────────────────────────| ┌ ┘
 | XREF= | 0 | | Gives a cross-reference of the varia- |

 | | | | bles. To get a simple cross- |

 | | | | reference, set XREF= 2. A detailed |

 | | | | description on how to use this param- |

 | | | | eter will be found in a later |

 | | | | section. |

 └──┘ ┘ ┘ ┘

 Key ___

 * -parameters that may be specified only on the $RUN card.

 + -parameters which may be reset, but never to a higher level than

 previously set.

 308 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SAMPLE DECK SETUPS __________________

 The following example is for a single run, and is the most common way

 of running ASSIST.

 $RUN *ASSIST [PAR= parameters]

 /ASSEMBLE [comments] [:parameters] (may be omitted)

 source cards

 /EXECUTE [PAR= parameter string] (may be omitted)

 data (if any)

 /STOP (may be omitted)

 $ENDFILE

 The following would be the setup for a batch of assemblies:

 $RUN *ASSIST PAR=BATCH [,parameters]

 /ASSEMBLE [comments] [:parameters] (may be omitted)

 source cards for program 1

 /EXECUTE [PAR= parameter string]

 data for program 1 (if any)

 /ASSEMBLE [comments] [:parameters] (required)

 source cards for program 2

 /EXECUTE [PAR= parameter string]

 data for program 2 (if any)

 .

 .

 .

 /STOP (may be omitted)

 $ENDFILE

 ASSIST 309

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 THE ASSEMBLY LANGUAGE UNDER ASSIST __________________________________

 This part deals with the subset of the standard MTS/370 Assembler

 Language accepted by the ASSIST assembler. Headings and subheadings in

 this part have been taken directly from the IBM publication GC28-6514,

 IBM System/360 and 370 Operating System Assembler Language. Because the __

 standard is followed very closely, only those language features which

 ASSIST omits or treats differently are described here. Users should

 consult the IBM Assembler/370 reference manuals for most of the

 information on the Assembler Language.

 INTRODUCTION ____________

 Macro Instructions __________________

 Many system macros are available (see later section). Macros may

 also be programmer defined. Many execution time services are provided

 by the interpreter through system subroutines (see later section);

 macros are provided to call these subroutines.

 The Assembler Program _____________________

 The assembler program produces a listing of the source program, and

 creates an object program directly in main memory, using no secondary

 storage devices. An object deck cannot be punched.

 GENERAL INFORMATION ___________________

 General Restrictions on Symbols _______________________________

 A symbol may be defined only once in an assembly (i.e., it may appear

 in the name field of no more than one statement). The same symbol may

 not be used as a label in two different control sections and control

 sections may not be resumed. In the standard language, this is the only

 case where the same symbol is allowed on more than one statement.

 Location Counter Reference __________________________

 ASSIST allows full use of the location counter *, with the following

 exceptions:

 310 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 (1) The programmer may not refer to the location counter inside a

 literal address constant. Thus, the following statement will

 produce incorrect results:

 L 1,=A(*+20)

 (2) The programmer may not refer to the location counter in an

 A-type address constant having a duplication factor greater than

 one, if the reference is made in such a way that the various

 duplications of the specified constant have different values.

 For instance, under Assembler/370, the following statement would

 produce the values 0,1,...,255, but ASSIST would produce 256

 bytes of zero:

 NAME DC 256AL1(*-NAME)

 Literals ________

 Literal constants may not contain more than 112 characters, counting

 the beginning equal sign (=) and the ending delimiter (i.e., literal

 constants may not require more than two cards when placed in the literal

 pool).

 Literal Pool ____________

 Unless otherwise specified by the use of the LTORG instruction, the

 literal pool is placed after the program’s END card, rather than at the

 end of the first control section in the program.

 Expressions ___________

 Use of general expressions is permitted for most statements. Any

 restrictions are noted under the individual statements.

 ADDRESSING - PROGRAM SECTIONING AND LINKING ___

 USING - Use Base Register _________________________

 The first expression (address) in a USING statement must be relocat-

 able. However, the use of a base register in ASSIST is not always

 necessary.

 Control Sections ________________

 Multiple control sections are allowed. A program must contain at

 least one control section.

 ASSIST 311

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Control Section Location Assignment ___________________________________

 Control sections may not be intermixed under ASSIST (i.e., all the

 statements of one control section must be coded before another is

 begun).

 First Control Section _____________________

 Under ASSIST, the first control section has no properties different

 from the other sections (i.e., its initial location counter value must

 be relocatable), and it does not normally contain unassigned literal

 constants unless it is the only control section.

 START - Start Assembly ______________________

 The START instruction may be preceded by listing control instructions

 and comment cards. The same label may not be used on a START statement

 and a later CSECT statement. START may be used to name the first (or

 only) control section of a program.

 CSECT - Identify Control Section ________________________________

 No more than one CSECT may use a given symbol as a name, and

 statements from different CSECTs may not be interspersed.

 DSECT - Identify Dummy Section ______________________________

 No more than one DSECT may use a given symbol as a name, and

 statements from different DSECTs may not be interspersed.

 External Dummy Sections (Assembler F only) __

 External dummy sections are not supported, so the commands CXD and

 DXD are not recognized.

 COM - Define Blank Common Control Section ___

 COM is not allowed.

 312 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 MACHINE-INSTRUCTIONS ____________________

 Instruction Alignment and Checking __________________________________

 If any statement requires alignment and causes bytes to be skipped,

 the bytes skipped are NOT set to hexadecimal zeros.

 Operand Fields and Subfields ____________________________

 ASSIST permits the same use of expressions in machine-instruction

 operand fields as does the standard assembler, with one restriction:

 registers may be specified by single absolute symbols, by single

 self-defining terms (B, X, C), or by decimal numbers within the range 0

 to 15, having no leading zeros. Thus, general expressions may not be

 used to specify registers.

 ASSEMBLER LANGUAGE STATEMENTS _____________________________

 OPSYN - Equate Operation Code _____________________________

 This statement is not accepted.

 DC - Define Constant ____________________

 Multiple operands (up to 10 operands in a single DC statement), and

 multiple constants within operands are both permitted. Bytes skipped to

 align a DC statement are NOT zeroed.

 Operand Subfield 3: Modifiers

 The following modifiers are not permitted by ASSIST: Bit-Length

 Specification, Scale Modifier, and Exponent Modifier.

 Operand Subfield 4: Constant

 Fixed-Point Constants: - F and H

 Fixed-point constants may not contain decimal points or exponents.

 While lengths may range from one to eight bytes, the minimum and

 maximum values permitted are those for length 4.

 Floating-Point Constants: - E and D

 No scale or exponent modifiers are allowed, but exponents are

 accepted within each constant.

 ASSIST 313

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Decimal Constants: - P and Z

 If no explicit length is supplied for an operand containing multiple

 constants, each of the operands is assembled to the length of the

 last constant in the operand, even if truncation is thus required.

 Under the standard assembler, for example, the following needs four

 bytes:

 DC P’ 0,20,1’

 Under ASSIST, it is assembled into three bytes, with the second

 constant truncated.

 Address Constants

 Only A and V address constants are allowed.

 Complex Relocatable Expressions

 These are not allowed.

 A-type Address Constant

 Adcons may not be used in a literal constant if it refers to the

 location counter. It will be assembled improperly if it does so.

 Y-Type, S-Type, and Q-Type Address Constants

 These are not allowed.

 CCW - Define Channel Command Word _________________________________

 The CCW is recognized and allocated storage, but is not otherwise

 assembled. It will be flagged ’NOT CURRENTLY IMPLEMENTED’.

 Listing Control Instructions ____________________________

 TITLE - Identify Assembly Output

 No title may have a symbol in the name field.

 PRINT - Print Optional Data

 All operands are accepted, but DATA and NODATA have no effect (i.e.,

 no more than eight bytes of data are ever printed). Any statement

 flagged with an error or warning is always printed, even if the print

 control is OFF, or NOGEN for generated statements is in effect.

 314 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Program Control Instructions ____________________________

 The following four control instructions are not accepted by ASSIST:

 ICTL - input format control.

 ISEQ - input sequence checking.

 PUNCH - punch a card.

 REPRO - reproduce following card.

 LTORG - Begin Literal Pool

 Any literals used after the last LTORG are placed after the END

 card, instead of at the end of the first control section.

 Duplicate literals are never stored, since programmers may not

 refer to the location counter in a literal A-type address

 constant; this is the only case under the regular system that

 requires the storing of duplicate literals.

 COPY - Copy Predefined Source Coding

 COPY is not allowed.

 INTRODUCTION TO THE MACRO LANGUAGE __________________________________

 ASSIST allows macros compatible with Assembler (F). These macros may

 be either programmer-defined macros, or macros included from the system

 macro library, or both. The use of macros from the ASSIST system macro

 library requires a special comment card, *SYSLIB. See the section on

 "Macro Libraries" later.

 Open Code Conditional Assembly ______________________________

 With certain restrictions (noted below), ASSIST will allow the use of

 conditional assembly statements and SET variables outside macros (i.e.,

 in the open code, or main body of the program).

 The Macro Definition ____________________

 COPY statements are not allowed.

 System and Programmer Macro Definitions _______________________________________

 System macros are described in a later section. Macros may also be

 programmer defined.

 ASSIST 315

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 HOW TO PREPARE MACRO DEFINITIONS ________________________________

 Macro Instruction Prototype ___________________________

 Two formats are allowed for statements, the normal one used by all

 other statements, and the alternate one allowed only for macro prototype

 and macro call statements. ASSIST does allow macro prototypes and macro

 calls to be continued on an indefinite number of cards. When there are

 no more than two continuation cards, ASSIST is completely compatible

 with other assemblers. If the total number of cards in a statement

 exceeds three, the following restriction must be observed: every third

 card in the statement must use the alternate format, unless it is the

 last one. (This is done because ASSIST processes cards in groups of

 three.) The two prototypes which follow illustrate this restriction:

 PROTOTYPE ACCEPTED BY ASSEMBLERS F, G, H, VS, BUT NOT ASSIST:

 &LABEL LONGPROT &PARM1,&PARM2, PARMS,ALTERNATE FORMAT X

 &PARM3,&PARM4,&PARM5, PARMS,ALTERNATE FORMAT X

 &PARM6,&PARM7=XXXXXXX,&PARM8=YYYYYYYYYY,&PARM9=ZZ,&X

 PARM7=A LAST LINE

 EQUIVALENT PROTOTYPE, ACCEPTED BY ASSIST:

 &LABEL LONGPROT &PARM1,&PARM2, PARMS,ALTERNATE FORMAT X

 &PARM3,&PARM4,&PARM5, PARMS,ALTERNATE FORMAT X

 &PARM6,&PARM7=XXXXXXX,&PARM8=YYYYYYYYYY,&PARM9=ZZ, X

 &PARM7=A LAST LINE

 Given this restriction, it is best to place early in the list any

 positional parameters that may require long values needing continuation.

 Model Statements ________________

 Variable symbols may be used to generate the operation field inside ______

 macros only. One extension is that they are allowed to generate PRINT

 and END instructions if desired.

 Copy Statements _______________

 COPY statements are not allowed.

 316 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 HOW TO WRITE MACRO INSTRUCTIONS _______________________________

 There are no changes from the IBM standard.

 HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS __

 All of the conditional assembly instructions may be used inside

 macros. They may be used outside, but there are restrictions as given

 below.

 Attributes __________

 ASSIST is a two-pass assembler, performing macro-processing during

 pass 1. Consequently, it is usually impossible for it to know the

 attribute of a symbol, so there are definite restrictions. In effect,

 the only attributes that are allowed in a conditional assembly instruc-

 tion are those which can be found by looking at a macro call statement

 itself. The attributes allowed are listed as follows:

 Attribute Notation _________ ________

 Type T’ only values N, O, and U possible

 Count K’

 Number N’

 Thus, Length (L’), Scaling (S’), and Integer (I’) attributes are not

 supported in conditional assembly instructions. The only values for

 Type are N (Numeric), O (Omitted), and U (Undefined), so that in many

 cases the value is U under ASSIST where it would be something else under

 IBM assemblers.

 AIF - Conditional Branch ________________________

 IBM assemblers normally assign 4096 as the usual limit for the number

 of AIF and AGO branches. See ACTR for a description of the manner in

 which ASSIST handles this.

 The sequence symbol named in the AIF may precede or follow the AIF

 statement inside macros. Outside macros, it may only follow AIF (i.e.,

 only forward branches are allowed). If a branch is taken to a

 previously defined sequence symbol in open code, ASSIST does not know

 that it was defined, and so will read to the END card, skipping the rest

 of the program.

 ASSIST 317

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 AGO - Unconditional Branch __________________________

 AGO follows the same restriction as AIF: backwards branches are

 allowed in macros, but not in open code.

 ACTR - Conditional Assembly Loop Counter __

 ASSIST supports the standard ACTR. However, the default value of the

 ACTR counter is set differently, via the MACTR= option supplied by the

 user. This has a default value which is normally smaller than the IBM

 default value of 4096. The MACTR= value is used for all macro

 definitions, unless explicitly overridden via ACTR statements.

 Conditional Assembly Elements _____________________________

 There are no changes, except that attributes L’, S’, and I’ are not

 supported.

 EXTENDED FEATURES OF THE MACRO LANGUAGE _______________________________________

 MNOTE - Request for Error Message _________________________________

 The MNOTE statements accepted by ASSIST follow the standard, but

 ASSIST effectively ignores the use of severity codes. MNOTEs with a

 numerical severity code are printed as errors, while those with an

 asterisk (*) are printed in another format.

 &SYSECT _______

 CSECT or DSECT statements processed in a macro definition do not ___

 affect the value of &SYSECT for any subsequent inner macros in their

 definition.

 Macro Definition Compatibility ______________________________

 ASSIST does not accept AGOB or AIFB.

 318 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 EXECUTION-TIME SERVICES _______________________

 ASSIST provides execution-time services in three ways. First,

 additional mnemonics are provided which allow input/output statements.

 Second, a type of supervisor call is provided which gives various dumps,

 more input/output services, and a method of termination. Third, a group

 of system subroutines which allow for various types of services is

 provided by the interpreter.

 INPUT/OUTPUT MNEMONICS ______________________

 Eight input/output instructions have been added to the instruction

 set to provide the facility for reading a single card or writing a

 single line of integer, real, or alphanumeric data according to fixed

 formats. In terms of implementation, the instructions use a modified

 version of the FORTRAN format scan and conversion routines. The eight

 instructions are all of the SI type and the mnemonics are as follows:

 Input _____

 RI A,n

 reads n (n≤8) fullword integers into the location starting at A.

 FORMAT: (8I10)

 RHI A,n

 as above, but reads halfword integers.

 REI A,n

 reads n (n≤8) fullword real numbers into the location starting at

 A.

 FORMAT: (8G10.0)

 RCI A,n

 reads n (n≤80) consecutive alphanumeric characters into the n

 consecutive bytes starting at A.

 FORMAT: (80A1)

 ASSIST 319

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Output ______

 WI A,n

 writes n (n≤8) fullword integers from the location starting at A.

 FORMAT: (1X,8I15)

 WHI A,n

 as above, but writes halfword integers.

 WEI A,n

 writes n (n≤8) fullword real numbers from the location starting at

 A.

 FORMAT: (1X,8G15.6)

 WCI A,n

 writes n (n≤120) consecutive alphanumeric characters from the

 location starting at A.

 FORMAT: (1X,120A1)

 Notes _____

 Following execution of an input instruction, the condition code is

 set to:

 0 - when an end-of-file has been encountered (no read performed, so A

 remains unchanged), or to

 3 - when the read operation was successful.

 The condition code is unchanged by execution of an output instruction.

 As in FORTRAN (MTS), input data fields may be shortened with a comma

 on the data card. For example, the data card for the instruction

 RI A,2

 could be

 1,2,

 with the ’1’ in column 1 of the card. The commas then have the effect

 of reducing the input field from 10 columns (I10) to 1 column (I1).

 320 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SUPPLEMENTARY MNEMONICS _______________________

 SUP 0 _____

 Normally this will terminate the simulation of the current program,

 and return control to the monitor.

 SUP 1 _____

 This will terminate the simulation of the current program, cause a

 register and memory dump, and return control to the monitor.

 SUP 2 _____

 This will print the contents of the general and floating-point

 registers in hexadecimal, and then continue with the following

 instruction.

 SUP 3 _____

 This will print the contents of the general and floating-point

 registers in decimal, and then continue with the following instruction.

 SUP 4 _____

 This will print the words located between two 4-byte addresses in

 hexadecimal as follows. The setup is:

 SUP 4

 DC A(A)

 DC A(B)

 where A is the starting address and B is the ending address of the area

 to be printed. Execution then continues with the first statement past

 the DCs.

 SUP 5 _____

 This will read a line under a FORTRAN-type FORMAT. The setup is:

 SUP 5

 DC A(FORMAT)

 DC AL1(COUNT)

 DC AL3(ARRAY1)

 DC AL1(COUNT)

 DC AL3(ARRAY2)

 .

 .

 .

 DC X’FF’

 ASSIST 321

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 where FORMAT is the address of a format. For example, in the following:

 FORMAT DC C’(2I5,5F5.2)’

 ’COUNT’ is the number of items in the ARRAY specified by the address in

 the following instruction. To simplify the specification of single-word

 items, a count of zero is equivalent to a count of 1. ’FF’ in the count

 position terminates the data list.

 Condition code settings are:

 0 - if an end-of-file has been read

 3 - if a normal read occurred.

 Note that all addresses specified for the I/O list must be fullword

 items. Hence halfword integers, doubleword real numbers, or alpha-

 numeric strings which are not fullword-aligned may give disastrous

 results. Note also that L- and D-type format specifiers are not allowed

 in the format.

 SUP 6 _____

 This will print a line under a FORTRAN-type FORMAT. The setup is the

 same as in SUP 5, but the condition code remains unchanged. Note

 however, that a carriage-control character must be provided, but if it

 is nonblank, it is set to zero.

 SYSTEM SUBROUTINES __________________

 The following pages contain a description of system services avail-

 able through the following subroutines:

 CTI

 ERROR

 FREESPAC

 GETSPACE

 ITC

 READ - SCARDS

 SYSTEM

 TOD

 TROFF

 TRON

 WRITE - SPRINT

 The subroutines listed above require standard MTS linkages. The

 subroutine names are not reserved names, i.e., they may be used as ___

 labels or variable names; however, if this is done, they may not be used

 as V-type external references. For example, if the user has a statement

 labeled WRITE, then V(WRITE) will be flagged as an invalid external

 reference. If the symbol WRITE was an external symbol defined by the

 322 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 program (by CSECT or ENTRY), then V(WRITE) would be resolved to the

 program entry point WRITE, not to the system subroutine WRITE.

 Note that when using these subroutines, unusual address locations may

 show up in dumps, traces, error messages, etc. These have the form of

 "FFxx" where "xx" will be two hexadecimal numbers. These are used for

 the internal addresses of the subroutines listed above.

 ASSIST 323

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 CTI ___

 Function ________

 To convert a character string to a binary fullword integer.

 Parameters __________

 GR0 - length of character string in bytes.

 GR1 - address of the character string.

 Return Value ____________

 GR2 - result of character-to-integer conversion.

 Error Exits ___________

 A data exception will occur if there are invalid characters in the

 string (not +, -, 0-9), or if the string is invalid (such as having

 more than one sign). A data exception will also occur if the number

 is not in the range -2³¹≤X≤2³¹-1. A protection exception will occur
 if the string, as defined by GR1 and GR0, is not within the user’s

 program. A specification exception will occur if the length in GR0

 is greater than 10.

 Description ___________

 The specified character string is checked for errors as explained

 above. If the string is valid, conversion is performed and the

 result is placed in GR2. If the conversion fails, a dump is given

 and the contents of GR0 and GR1 are unchanged.

 Example _______

 .

 .

 .

 L GR0,LENGTH LOAD STRING LENGTH

 LA GR1,STRING LOAD ADDR OF STRING

 L GR15,=V(CTI) LOAD EP ADDRESS

 BALR GR14,GR15 LINK TO CTI

 ST GR2,RESULT SAVE INTEGER ANSWER

 .

 .

 .

 324 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ERROR _____

 Function ________

 To cause the program to terminate abnormally and produce a dump of

 the state of the program.

 Parameters __________

 None.

 Return Value ____________

 None - the subroutine never returns.

 Error Exits ___________

 None.

 Description ___________

 The program terminates with actions identical to those of SUP 1;

 i.e., a register dump, a memory dump, and a branching trace history

 will be displayed.

 Example _______

 .

 .

 .

 LTR 15,15 NON-ZERO RETURN CODE?

 BZ OK IT’S ZERO - EVERYTHING’S FINE

 L 15,=V(ERROR) NONZERO - MUST HAVE AN ERROR SOMEPLACE

 BALR 14,15

 ASSIST 325

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 FREESPAC ________

 Function ________

 To release an area of main storage obtained with a GETSPACE

 subroutine call.

 Parameters __________

 GR1 contains the address of the area to be released. (This address

 must be the same as the area address supplied in GR1 after a

 successful GETSPACE subroutine call.)

 Return Value ____________

 GR15 - return code

 0 - free complete

 4 - free unsuccessful

 Error Exit __________

 None.

 Description ___________

 This subroutine allows the user to release an area of main storage

 dynamically obtained with the GETSPACE subroutine. When FREESPAC is

 called, GR1 must contain the address of an allocated area. If the

 address in GR1 is not the same as the address returned on a previous

 successful call to GETSPACE, a return code of 4 is given, indicating

 that the specified region has not been released.

 Example _______

 .

 .

 .

 L GR1,COREADDR LOAD AREA ADDR

 L GR15,=V(FREESPAC) LOAD EP ADDR

 BALR GR14,GR15 LINK TO SUBR

 LTR GR15,GR15 TEST RET CODE

 BNZ NOTFREED BR IF NOT FREED

 .

 .

 .

 326 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 GETSPACE ________

 Function ________

 To obtain space dynamically in main storage.

 Parameters __________

 GR1 contains the amount of storage required in bytes.

 Return Value ____________

 GR15 - return code

 0 - request successful

 4 - request unsuccessful

 If the request was successful:

 GR1 - contains the address of the first byte of the allocated area.

 The first fullword of the allocated area is set to the area’s

 length.

 If the request was unsuccessful, GR1 is unchanged.

 Error Exit __________

 None.

 Description ___________

 A request for main storage is made by placing the number of bytes

 required in GR1 and calling GETSPACE. Upon return, GR15 will contain

 a return code. If the return code is 4, it indicates that the

 requested amount of storage was not available, and the contents of

 GR1 is unchanged. If the return code is 0, the amount of storage

 requested has been allocated. Storage is only allocated in double-

 word increments starting on doubleword boundaries. GR1 will contain

 the area address, and the first fullword of the area will contain the

 amount of storage allocated (always a multiple of 8 bytes).

 Example _______

 .

 LA GR1,200

 L GR15,=V(GETSPACE) LOAD EP ADDR

 BALR GR14,GR15 LINK TO SUBR

 LTR GR15,GR15 TEST RET CODE

 BNZ NOGOTIT BR IF NOSPACE

 MVC AMOUNT(4),0(GR1) SAVE AMOUNT

 ST GR1,COREADDR SAVE LOCATION

 .

 ASSIST 327

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ITC ___

 Function ________

 To convert a binary integer to a character string.

 Parameters __________

 GR0 - contains the length of character string in bytes.

 GR1 - contains the address of first byte of string where the result

 will be placed.

 GR2 - contains the integer to be converted to a character string.

 Error Exits ___________

 A specification error will occur if the length in GR0 is greater than

 256 bytes. A protection exception will occur if the string as

 defined by GR1 and GR0 is not in the user’s program.

 Description ___________

 The binary integer contained in GR2 is converted to a character

 string and is placed in the area defined by GR1 and GR0. If

 necessary, the string is right-justified and padded with blanks on

 the left-hand side. If the converted string is too large for the

 defined area, the area is filled with asterisks.

 Example _______

 .

 .

 .

 L GR0,LENGTH LOAD STRING LENGTH

 LA GR1,STRING LOAD ADDRESS OF STRING

 L GR2,NUMBER LOAD INTEGER

 L GR15,=V(ITC) LOAD EP ADDRESS

 BALR GR14,GR15 LINK TO ITC

 .

 .

 .

 328 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 READ, SCARDS ____________

 Function ________

 To read a card into the specified area.

 Parameters __________

 GR1 - load with address of the input buffer.

 Return Value ____________

 GR0 - contains the length of the data read. This is always 80.

 GR15 - return code

 0 - successful read

 4 - end-of-file

 Error Exit __________

 If the address specified is outside the program, a protection or

 addressing exception is indicated, and the program is terminated with

 a dump.

 Description ___________

 A card is read and placed in the specified area. If there are no

 remaining data cards, an end-of-file condition is indicated and the

 contents of the input buffer remain unaltered. A subsequent attempt

 to read past the end-of-file will cause the user’s program to be

 terminated abnormally. Note that the buffer will always be padded

 with blanks to fill the 80-byte area.

 Example _______

 .

 .

 .

 CARD DS CL80 INPUT BUFFER

 .

 .

 LA GR1,CARD LOAD BUFFER ADDR.

 L GR15,=V(READ) GET EPA

 BALR GR14,GR15 LINK TO READ

 LTR GR15,GR15 TEST RETURN CODE

 BNZ ENDFYLE BRANCH ON EOF

 .

 .

 .

 ASSIST 329

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 or

 .

 .

 .

 CARD DS CL80 INPUT BUFFER

 .

 .

 LA GR1,CARD LOAD BUFFER ADDR.

 L GR15,=V(SCARDS) GET EPA

 BALR GR14,GR15 LINK TO SCARDS

 LTR GR15,GR15 TEST RETURN CODE

 BNZ ENDFYLE BRANCH ON EOF

 .

 .

 .

 330 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SYSTEM ______

 Function ________

 To terminate execution of the program in a normal fashion.

 Parameters __________

 None.

 Return Values _____________

 None; the subroutine never returns.

 Error Exits ___________

 None.

 Description ___________

 The action of this subroutine is identical to that of the execution

 of the SUP 0 instruction; the program terminates execution.

 Example _______

 .

 .

 .

 L 15,=V(SYSTEM) TH-TH-THAT’S ALL, FOLKS!

 BALR 14,15

 ASSIST 331

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 TOD ___

 Function ________

 To obtain time of day and date as a character string.

 Parameters __________

 None.

 Return Value ____________

 GR0 and GR1 - contain the time of day

 GR2 and GR3 - contain the date

 Error Exit __________

 None.

 Description ___________

 The time is in the form

 HH:MM.SS

 where HH, MM, and SS are hours, minutes, and seconds, respectively.

 For example, 23:14.33 indicates the time as being 14 minutes and 33

 seconds past 11 p.m.

 The date is in the form

 MM-DD-YY

 where MM, DD, and YY are month, day, and year, respectively. For

 example, February 23, 1970 is indicated 02-23-70.

 Example _______

 .

 .

 .

 TIMEDATE DC 4F’0’ SAVE TIME/DATE HERE

 .

 .

 L GR15,=V(TOD) LOAD EP ADDR

 BALR GR14,GR15 LINK TO TOD

 STM GR0,GR3,TIMEDATE SAVE RESULTS

 .

 .

 .

 332 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 TROFF _____

 Function ________

 To turn off branching trace.

 Parameters __________

 None.

 Return Value ____________

 None.

 Error Exit __________

 None.

 Description ___________

 This subroutine is used to stop the branch trace initiated by

 subroutine TRON. If trace is off, this subroutine has no effect.

 Example _______

 .

 .

 .

 L GR15,=V(TROFF) LOAD EP ADDR.

 BALR GR14,GR15 LINK TO TROFF

 .

 .

 .

 ASSIST 333

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 TRON ____

 Function ________

 To turn on branching trace.

 Parameters __________

 None.

 Return Value ____________

 None. Return is to the address in general register 14.

 Error Exit __________

 None.

 Description ___________

 Every time a branch instruction is executed, a line of format is

 printed as follows:

 BRANCH from XXXX to XXXX MM YYYYYYYY

 Where: XXXX are hexadecimal addresses

 MM is the assembler mnemonic, e.g., BC, BCT, ...

 YYYYYYYY is the branch instruction in hexadecimal.

 Notes _____

 1. This subroutine does not change the condition code.

 2. This should be used with care, as every branch executed after

 returning from this subroutine will cause a line to be printed

 until TROFF is called. Therefore, it is very easy to exceed the

 page limit.

 3. If trace is on and this subroutine is called, it has no effect.

 Example _______

 .

 .

 .

 L GR15,=V(TRON) GET EP ADDR.

 BALR GR14,GR15 LINK TO TRON

 .

 .

 .

 334 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 WRITE, SPRINT _____________

 Function ________

 To write a line of specified length from the specified buffer.

 Parameters __________

 GR1 - contains the address of output buffer.

 GR0 - contains the length of output buffer in bytes.

 Return Value ____________

 None.

 Error Exit __________

 If the specified buffer is outside the program, a protection or

 addressing exception is indicated and the program is terminated with

 a dump. If the specified length in GR0 is not in the range 1 to 133,

 the program is terminated with an error message and a dump.

 Description ___________

 A line of specified length is written taking the data from the

 specified area. The first byte of the buffer is used as carriage

 control.

 Carriage Control ________________

 C’1’ - skip to top of a logical page before printing.

 C’ ’ - space 1 line before printing.

 C’0’ - space 2 lines before printing.

 C’-’ - space 3 lines before printing.

 C’+’ - print without spacing.

 C’2’ - skip to next 1/2 page before printing.

 C’4’ - skip to next 1/4 page before printing.

 C’6’ - skip to next 1/6 page before printing.

 C’8’ - skip to bottom of logical page before printing.

 C’9’ - print single-space and suppress logical page overflow.

 C’;’ - skip to top of physical page before printing.

 C’>’ - skip to bottom of physical page before printing.

 Note: If the "CPAGE" option is in effect, only the carriage

 controls "1", " ", "-", and "+" are recognized; all others

 cause single-spacing to be performed.

 ASSIST 335

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Example _______

 .

 .

 .

 LINE DC C’1PAGE SKIP’ OUTPUT BUFFER

 .

 .

 .

 LA GR0,L’LINE LOAD BUFFER LENGTH

 LA GR1,LINE LOAD ADDR OF LINE

 L GR15,=V(WRITE) LOAD EP ADDR.

 BALR GR14,GR15 LINK TO WRITE

 .

 .

 .

 LA GR0,L’LINE LOAD BUFFER LENGTH

 LA GR1,LINE LOAD ADDR OF LINE

 L GR15,=V(SPRINT) LOAD EP ADDR.

 BALR GR14,GR15 LINK TO SPRINT

 336 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 OUTPUT AND ERROR MESSAGES _________________________

 ASSEMBLY LISTING ________________

 Assembly Listing Format _______________________

 The assembly listing produced by the ASSIST assembler is essentially

 the same as that produced by the standard MTS/370 Assembler, with the

 following minor differences:

 (1) Error messages are not printed at the end of the assembly

 listing, but are printed after the statement causing the

 message. A scan pointer ’$’ indicates the column where the

 error was discovered.

 (2) No more than four messages are printed for any single source

 statement. Some errors cause termination of statement scan, and

 errors following in the same statement may not be discovered.

 However, an error in a statement does not normally prevent its

 statement label from being defined, which is usually the case

 with the standard assembler.

 (3) Statements that are flagged are printed regardless of print

 status at the time.

 (4) As noted under PRINT earlier, no more than eight bytes of data

 are printed for a statement, even if PRINT DATA is used.

 Assembler Error Messages ________________________

 The assembler produces error messages consisting of an error code

 followed by an error description. The code is of the form AS###, with

 the value of ### indicating one of three types of errors.

 (1) Warnings - ### is in the range 000-099. These never prevent the

 execution of the program, and have messages beginning with

 characters ’W-’.

 (2) Errors - ### is in the range 100-899. Execution is deleted if

 the total number of errors exceeds the NERR parameter.

 (3) Disastrous errors - ### is in the range 900-999. Some condition

 prevents successful completion of the assembly process. Execu-

 tion of the user program may or may not be permitted.

 The following is a list of the codes and messages issued by the

 ASSIST assembler.

 ASSIST 337

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 AS000 W-ALIGNMENT ERROR-IMPROPER BOUNDARY

 The address used in a machine instruction is not aligned to the

 correct boundary required by the type of instruction used.

 AS001 W-ENTRY ERROR-CONFLICT OR UNDEFINED

 A symbol named in an ENTRY statement is either undefined, or is

 named in a DSECT or EXTRN statement.

 AS002 W-EXTERNAL NAME ERROR OR CONFLICT

 A symbol named in an EXTRN statement is either defined in the

 program or is named in an ENTRY statement.

 AS003 W-REGISTER NOT USED

 The register flagged in a DROP statement is not available for use

 as a base register at this point in the program. This may be

 caused by an error in a USING statement naming the register.

 AS004 W-ODD REGISTER USED-EVEN REQUIRED

 An odd register is coded in a machine instruction requiring the

 use of an even register for a specific operand. Instructions

 which may be flagged are Multiply, Divide, Double Shifts, and all

 floating-point instructions.

 AS005 W-END CARD MISSING-SUPPLIED

 The assembler creates an END card because the user has supplied

 none before an end-of-file occurred.

 AS100 ADDRESSABILITY ERROR

 An implied address is used which cannot be resolved into base

 displacement form. No base register is available which satisfies

 the following conditions: first, it must contain an address

 which is less than, but in the same CSECT as, the implied

 address. Second, the implied address must fall within 4095 bytes

 of the address in the base register.

 AS101 CONSTANT TOO LONG

 Too many characters are coded for the type of constant specified.

 This message appears if a literal constant contains more than 112

 characters, including the equal sign and delimiters.

 AS102 ILLEGAL CONSTANT TYPE

 An unrecognizable type of constant is specified.

 AS103 CONTINUATION CARD COLS. 1-15 NONBLANK

 A continuation card contains nonblank characters in columns 1-15.

 This may be caused by an accidental punch in column 72 of the

 preceding card.

 AS104 MORE THAN 2 CONTINUATION CARDS

 Three or more continuation cards are used, which is illegal.

 338 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 AS105 COMPLEX RELOCATABILITY ILLEGAL

 ASSIST does not permit complex relocatable expressions.

 AS106 TOO MANY OPERANDS IN DC

 ASSIST allows no more than ten operands in a DC statement.

 AS107 MAY NOT RESUME SECTION CODING

 The assembler requires that any section be coded in one piece.

 The label flagged has already appeared on a CSECT or DSECT.

 AS108 ILLEGAL DUPLICATION FACTOR

 A duplication factor exceeds the maximum value of 32,767; in a

 literal constant, the duplication factor has a value of zero or

 is not specified by a decimal term.

 AS109 EXPRESSION TOO LARGE

 The value of the flagged expression or term is too large for the

 given usage. For example, a constant length is greater than the

 maximum permissible for the type of constant.

 AS110 EXPRESSION TOO SMALL

 The value of the flagged expression or term is too small for the

 given usage, or has a negative value. Coding a V-type constant

 with a length of two would generate this message.

 AS111 INVALID CNOP OPERAND(S)

 The operands of a CNOP have values which are illegal combinations

 of values for a CNOP, such as a first operand greater than the

 second, an odd value, etc. The only legal value combinations are

 0,4 2,4 0,8 2,8 4,8 6,8.

 AS112 LABEL NOT ALLOWED

 A label is used on a statement which does not permit one, such as

 a CNOP or USING statement.

 AS113 ORG VALUE IN WRONG SECTION OR TOO LOW

 The expression in an ORG statement has either a value smaller

 than the initial location counter value for the current control

 section, or has a relocatability attribute different from that of

 the current control section.

 AS114 INVALID CONSTANT

 A constant contains invalid characters for its type, or is

 specified improperly in some other way.

 AS115 INVALID DELIMITER

 The character flagged cannot appear where it does in the

 statement. This message is used whenever the scanner expects a

 certain kind of delimiter to be used, and it is not there.

 AS116 INVALID FIELD

 The field flagged has an unrecognizable value, or is otherwise

 incorrectly coded. PRINT OFF is flagged this way.

 ASSIST 339

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 AS117 INVALID SYMBOL

 The symbol flagged either contains nine or more characters or

 does not begin with an alphabetic character as required.

 AS118 INVALID OP-CODE

 The statement contains an unrecognizable mnemonic op-code, or no

 op-code.

 AS119 PREVIOUSLY DEFINED LABEL

 The symbol in the label field has been previously used as a

 label.

 AS120 ABSOLUTE EXPRESSION REQUIRED

 A relocatable expression is used where an absolute one is

 required, such as in constant duplication factor or for a

 register.

 AS121 MISSING DELIMITER

 A delimiter is expected but not found. For instance, a C-type

 constant coded with no ending prime (’) is flagged this way.

 AS122 FEATURE NOT CURRENTLY IMPLEMENTED

 The version of ASSIST being used does not support the language

 feature used.

 AS123 MISSING OPERAND

 The instruction requires an operand, but it is not specified.

 AS124 LABEL REQUIRED

 An instruction requiring a label, such as a DSECT, is coded

 without one.

 AS126 RELOCATABLE EXPRESSION REQUIRED

 An absolute expression or term is used where a relocatable one is

 required by ASSIST, such as in the first operand of a USING

 statement. This message may also appear if the final relocatabi-

 lity attribute of the value in an address constant is that of a

 symbol in a DSECT.

 AS127 INVALID SELF-DEFINING TERM

 The self-defining term flagged contains an illegal character for

 its type, has a value too large for 24 bits to contain, or is

 otherwise incorrectly specified.

 AS128 ILLEGAL START CARD

 One or more statements, other than listing controls or comments,

 appear before the START card.

 AS129 ILLEGAL USE OF LITERAL

 The literal constant appears in the receiving field of an

 instruction which modifies memory. For example, ST 0,=F’1’.

 340 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 AS130 UNDEFINED SYMBOL

 The symbol shown is either completely undefined, or has not been

 defined when required. Symbols used in ORG instructions, in

 constant lengths, or in duplication factors must be defined

 before they are used.

 AS131 UNRESOLVED EXTERNAL REFERENCE

 The symbol used in a V-type constant is not defined in the

 assembly, or, it is defined but not declared a CSECT or ENTRY.

 ASSIST does not link multiple assemblies, so this is an error.

 AS132 ILLEGAL CHARACTER

 The character flagged is either used in an illegal way, or is not

 in the set of acceptable characters.

 AS133 TOO MANY PARENTHESES LEVELS

 Parentheses are nested more than five deep in an expression.

 AS134 RELOCATABLE EXPRESSION USED WITH * OR /

 Relocatable terms or expressions may not be used with either of

 these operators.

 AS135 SYNTAX

 The character flagged is improperly used. This catchall message

 is given by the general expression evaluator when it does not

 find what is expected during a scan.

 AS136 TOO MANY TERMS IN EXPRESSION

 The expression contains more than the legal maximum of 16 terms.

 AS137 UNEXPECTED END OF EXPRESSION

 The expression terminates without having enough right parentheses

 to balance the left parentheses that were used.

 The following messages are issued only during macro processing:

 AS201 OPERAND NOT ALLOWED

 During macro expansion, an extra operand was found, i.e., an

 extra positional parameter beyond those given in the prototype.

 AS202 STATEMENT OUT OF ORDER

 The statement flagged is in an incorrect place in the deck. For

 example, LCLx before GBLx, ACTR after both, or GBLx, LCLx, ACTR

 in middle of macro definition or open code. This is often caused

 by a missing MEND card.

 AS203 SET SYMBOL DIMENSION ERROR

 A dimension set symbol was used without a dimension, or one which

 was not dimensioned was written with a dimension.

 ASSIST 341

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 AS204 INVALID NBR OF SUBSCRIPTS

 There was an error in specifying substring notation, sublists, or

 set symbol dimension.

 AS205 ILLEGAL CONVERSION

 During macro editing, a SET instruction was found with an

 obviously incorrect conversion, as in the following:

 &I SETA C

 AS206 MISSING QUOTES IN CHAR EXPR

 Single quotes were not supplied as required in character

 expressions.

 AS207 ILLEGAL OR DUP MACRO NAME

 A macro prototype name is either completely illegal (i.e., has

 too many characters), or duplicates the name of a previously

 given macro, machine instruction, or assembler instruction.

 AS208 OPRND NOT COMPATIBLE WITH OPRTR

 An operand is used with an incompatible operator. For example,

 if &C is LCLA, &B LCLB ; &B SETB (NOT &C).

 AS209 UNDFND OR DUPLICATE KEYWORD

 In calling a macro, a keyword is used which does not appear in

 the macro prototype. In defining or calling a macro, a keyword

 operand appears twice or more in the list of operands.

 AS210 MNEST LIMIT EXCEEDED

 The MNEST option provides a maximum limit to the nested depth of

 macro calls. This limit has been exceeded. Note that after the

 MSTMG limit has been exceeded, the MNEST is effectively 0.

 AS211 ILLEGAL ATTRIBUTE USE

 ASSIST does not support S’, I’, or L’ for macro operands.

 AS212 GENERATED STATEMENT TOO LONG

 A statement having more than two continuation cards was

 generated.

 AS217 STMT #### NOT PROCESSED BECAUSE OF PREV ERROR

 During expansion, the statement numbered #### was ignored,

 because it was already flagged with a previous error.

 AS218 STORAGE EXCEEDED BY FOLLOWING MACRO EXPANSION

 The following call to the macro listed caused overflow of

 storage, probably due to looping. Use ACTR, MACTR=, or MSTMG= .

 AS220 UNDEFINED SEQUENCE SYMBOL IN STATEMENT #####

 This may appear following an entire macro definition, and gives

 the number of a statement referencing a sequence symbol which was

 never defined.

 342 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 The following messages may be issued during macro expansion. The ####

 gives the number of a statement in some macro definition in which an

 error has occurred during expansion. Some messages also display an

 appropriate value, such as an offending subscript. Note that the

 messages below use ## as an abbreviation for the actual output, which is

 normally printed by ASSIST in the form STMT/MACRO ####/name.

 AS221 STMT #### ACTR COUNTER EXCEEDED ##

 The ACTR count has been exceeded. The ACTR is set by the MACTR

 option, or by an ACTR statement. This indicates looping within a

 macro.

 AS222 STMT #### INVALID SYM PAR OR SET SYMBOL SUBSCRIPT ## --> value

 A subscript is out of range. The offending value is given.

 AS223 STMT #### SUBSTRING EXPRESSION OUT OF RANGE ## --> value

 This is most often caused by the first subscript in a substring

 expression having a nonpositive value, or by a subscript larger

 than the size of the string.

 AS224 STMT #### INVALID CONVERSION, CHAR TO ARITH ## --> value

 The value could not be converted to an arithmetic form.

 AS225 STMT #### INVALID CONVERSION,ARITH TO BOOLEAN ## --> value

 The value was not 0 or 1.

 AS226 STMT #### INVALID CONVERSION, CHAR TO BOOLEAN ## --> value

 The value was not ’0’ or ’1’, so it could not be converted.

 AS227 STMT #### ILLEGAL ATTRIBUTE USE ##

 An attribute was used incorrectly.

 AS228 STMT #### &SYSLIST SUBSCRIPT OUT OF RANGE ##

 The subscript has a value greater than the maximum number of

 fields which can be supplied.

 AS229 STMT #### CALL FRIENDLY ASSIST REPAIRMAN ##

 Internal error; please bring your input deck and the output to

 the attention of a member of the Computing Center staff.

 AS230 STMT #### INTERNAL CHAR BUFFER EXCEEDED ##

 Too much concatenation was done in the statement. Reduce the

 complexity of the statement.

 AS231 STMT #### MSTMG LIMIT EXCEEDED ##

 The MSTMG limit (total number of statements processed during

 macro expansion) has been exceeded. Use MSTMG= to increase this.

 AS232 STMT #### ZERO DIVIDE OR FIXED POINT OVERFLOW ##

 One of these interrupts was caused by the statement given.

 ASSIST 343

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 AS241 FOLLOWING SEQUENCE SYMBOL NOT FOUND --> symbol

 During the processing of an AIF or AGO in open code, an END card

 was encountered before the sequence symbol. Either the label was

 not defined or a backwards branch was being attempted (not

 allowed).

 AS242 BACKWARDS AIF/AGO ILLEGAL

 This message immediately follows an AGO or successful AIF in open

 code which references a previously defined sequence symbol.

 ASSIST allows backwards branches only in macros, not in open

 code.

 AS288 MACRO xxxxxxxx COULD NOT BE FOUND

 This is issued by the macro library processor when it tries to

 get a macro and cannot find it in the library. The macro may be

 named on a *SYSLIB card, or referenced by another macro.

 AS289 UNABLE TO OPEN MACRO LIBRARY: OPTION CANCELLED

 This is issued after a *SYSLIB card is encountered, but the macro

 library cannot be opened. Please bring your input deck and the

 output to the attention of a member of the Computing Center

 staff.

 AS298 GENERATED STMTS OVERWRITTEN

 During macro expansion, one or more generated statements were

 lost due to internal table management, probably because a

 statement near the beginning of a macro generated a long literal

 constant. One solution is to insert several comment cards at the

 beginning of the macro definition.

 AS999 DYNAMIC STORAGE EXCEEDED

 The dynamic storage area available to ASSIST has been exceeded,

 so that assembly cannot proceed. Reassemble with a larger SIZE

 parameter value.

 Assist Monitor Error Messages _____________________________

 The ASSIST monitor may also issue one of the following messages,

 which are of the form AM###, and usually indicate errors:

 AM003 STORAGE OVERFLOW BEFORE EXECUTION, EXECUTION DELETED

 The user program assembled properly, but there is insufficient

 memory remaining to set up control blocks required for execution.

 The user should attempt to reduce the amount of storage used by

 his program. This message should seldom occur.

 AM005 TIME OR PAGES HAVE BEEN EXCEEDED

 This message is printed if the time or page limits have been

 exceeded at any time, other than execution, during a job.

 344 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Assembler Statistics Summary ____________________________

 Following the assembly listing, the assembler prints three or four

 lines of statistical information, as follows:

 *** ##### STATEMENTS FLAGGED - ##### WARNINGS, ##### ERRORS

 This notes the total number of statements flagged, warning messages,

 and error messages given during the assembly.

 ***** NUMBER OF ERRORS EXCEEDS LIMIT OF ##### ERRORS - PROGRAM EXECUTION

 DELETED *****

 This tells the user that the maximum number of errors, NERR, which

 may occur before execution will be inhibited, has been exceeded.

 *** DYNAMIC CORE AREA USED: LOW: ###### HIGH: ###### LEAVING: ######

 FREE BYTES. AVERAGE: ###### BYTES/STMT ***

 The ASSIST assembler acquires a single memory area at execution time.

 The LOW area is used to store source statements and generated object

 code, the HIGH area is used to store the symbol and literal tables.

 The space remaining indicates how close the program is to causing a

 storage overflow. The average use of memory printed includes that

 used in both LOW and HIGH areas.

 *** ASSEMBLY TIME = #.### SECS. ##### STATEMENTS/SEC ***

 This notes the total time used by the assembler, along with the rate

 of assembly.

 EXECUTION PHASE - THE INTERPRETER _________________________________

 The interpreter executes the given object code by interpreting each

 instruction separately, thus trapping any program interrupt that may

 occur. If execution is possible after an interrupt, a message as to the

 cause and the action taken is given, and the interpretation continues.

 Four interrupts may occur for each type of interruption, after which the

 interrupt is treated as an abnormal end and execution is terminated.

 The last ten branch instructions are then printed, and the registers and

 memory are dumped.

 The user can trace branching in a specified area of his or her

 program, via the TRON and TROFF subroutines (described previously), and

 can request dumps of registers or areas of memory via special supplemen-

 tary instructions.

 ASSIST 345

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Type of Printout ________________

 Explanation of Symbols Used ___________________________

 ┌──┐ ┌
 | hhhh | indicates the current relative address in hexadecimal.

 |──────────┼───| ┌ ┘
 | pppp | is the program mask in binary. |

 |──────────┼───| ┌ ┘
 | c | indicates the condition code, 0, 1, 2, or 3. |

 |──────────┼───| ┌ ┘
 | xxxxxxxx | indicates the hexadecimal instruction or contents of a |

 | | register or word. |

 |──────────┼───| ┌ ┘
 | dddddddd | indicates the contents of a register in decimal. |

 |──────────┼───| ┌ ┘
 | s | indicates the sign, either a blank for plus or a minus. |

 |──────────┼───| ┌ ┘
 | aaaa | indicates the hexadecimal address from which a core |

 | | dump is to be printed. |

 |──────────┼───| ┌ ┘
 | bbbb | indicates the hexadecimal address up to which a core |

 | | dump is to be printed. |

 |──────────┼───| ┌ ┘
 | xxxx | indicates the hexadecimal address on a doubleword |

 | | boundary. |

 |──────────┼───| ┌ ┘
 | hhha | indicates the hexadecimal address. |

 |──────────┼───| ┌ ┘
 | hhhb | indicates the hexadecimal address. |

 |──────────┼───| ┌ ┘
 | l | is the instruction length in halfwords. |

 |──────────┼───| ┌ ┘
 | ic | is the interrupt code in decimal. |

 |──────────┼───| ┌ ┘
 | 000000n | indicates the number of branches executed so far, in |

 | | decimal with leading zeros. |

 |──────────┼───| ┌ ┘
 | mmmm | is mnemonic for a branch instruction. |

 └──┘ ┘

 346 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Supplementary Calls ___________________

 SUP 0 _____

 This terminates the execution with the message:

 END OF EXECUTION NUMBER OF INSTRUCTIONS EXECUTED = n.

 SUP 1 _____

 This produces an abnormal termination, which causes the program to stop

 executing, and a dump of the following items to be printed:

 (1) the current location, program mask, and condition code;

 (2) the last 10 branches executed by the program;

 (3) a register dump in hex;

 (4) a register dump in decimal;

 (5) a dump of all core associated with the assembled program,

 including any GETSPACE allocations.

 SUP 2 _____

 REGISTER DUMP (HEX) AT LOCATION hhhh PROGRAM MASK= pppp CONDITION CODE=

 c

 GPR 0 xxxxxxx xxxxxxx

 GPR 8 xxxxxxx

 FPR 0 xxxxxxxxxxxxxxxx FPR 2 x.

 SUP 3 _____

 REGISTER DUMP (DEC) AT LOCATION hhhh PROGRAM MASK= pppp CONDITION CODE=

 c

 GPR 0 sdddddddd

 GPR 8 sdddddddd

 FPR s.ddddddddddddddddDsdd

 SUP 4 _____

 CORE DUMP AT LOCATION hhhh PROGRAM MASK= pppp CONDITION CODE= c

 LOCATIONS aaaa TO bbbb

 xxxx xxxxxxxx xxxxxxxx

 (xxxx+8) etc.

 If a multiple of 8 words is the same, the following line is printed:

 WORDS hhha TO hhhb CONTAIN xxxxxxxx

 ASSIST 347

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 Execution-Time Error Messages _____________________________

 All the messages are one line long and one of two types:

 **** WARNING AT LOCATION hhhh. Reason for error.

 INSTRUCTION action. PROGRAM CONTINUED.

 ’action’ is either:

 TERMINATED - The result may or may not be correct, depending

 at which stage the interrupt causing the error

 was found.

 NOT EXECUTED - Nothing is altered.

 COMPLETED - The instruction is executed, probably giving an

 erroneous result.

 **** FATAL ERROR AT LOCATION hhhh. Reason for error. PROGRAM

 TERMINATED.

 This is followed by:

 *ABNORMAL END AT LOCATION hhhh. PROGRAM MASK= pppp CONDITION CODE=

 c INSTRUCTION LENGTH= l INTERRUPT CODE= ic.

 The last message is also invoked by SUP 1, or when the allowed

 number of warnings has been exceeded. This is followed by:

 LAST 10 BRANCHES (IN REVERSE ORDER OF EXECUTION)

 TOTAL NUMBER OF BRANCHES = 000000n

 and then a minimum of n or 10 branch instructions of the form

 BRANCH FROM hhha TO hhhb mmmm xxxxxxxx

 The register dumps in hexadecimal and decimal then follow as

 described under SUP 2 and SUP 3, respectively. Finally, the memory

 dump is given in the same format as described under SUP 4. The

 entire object program is printed in hexadecimal. Note that memory

 is not zeroed before the object code is generated and areas such as

 those defined by a DS may contain junk. The program is terminated

 as described under SUP 0.

 Each error message has an associated interrupt code. The only time the

 code is printed is when an abnormal termination occurs. At other times

 the message is printed.

 00 ABNORMAL END

 Invoked by SUP 1.

 348 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 01 INVALID OPERATION

 The current instruction address points to a location which contains

 an invalid operation code.

 02 PRIVILEGED OPERATION

 An operation which is privileged (e.g., LOAD PSW) has been

 encountered in the problem program state. All SVCs are privileged

 in ASSIST.

 03 EXECUTE SUBJECT OF EXECUTE

 04 CORE REFERENCED OUTSIDE OF USER’S AREA

 This corresponds to the protection exception. The memory specified

 by the operand of an instruction lies outside the area reserved for

 the user’s program. See the IBM Principles of Operation manuals. _______________________

 05 ADDRESSING EXCEPTION

 The address specified is outside of the available machine storage.

 06 INCORRECT BOUNDARY ALIGNMENT, REG., I/O COUNT

 This corresponds to the specification exception. An operand is not

 on a proper boundary for the instruction being executed, or the

 length for the CTI or ITC subroutine is incorrect.

 06 DEC ARITH - MULT OR DIV LENGTH SPECS

 Either the multiplier or divisor in decimal arithmetic exceeds 15

 digits and sign or the first operand field is shorter than or equal

 to the second operand field in decimal multiplication or division.

 06 ERROR IN ARGUMENT TO SYSTEM SUBROUTINE

 This arises when the arguments presented to one of the system

 subroutines are not of the proper size, type, or alignment. Check

 the subroutine description and the code calling the subroutine for

 bad parameters.

 07 DEC ARITH - DIGIT CODES OR FIELD DEFINITION

 This corresponds to the data exception. The sign of digit codes of

 operands in decimal arithmetic or editing operations or in CONVERT

 TO BINARY are incorrect, fields in decimal arithmetic overlap

 incorrectly, or the decimal multiplicand has too many high-order

 significant digits.

 08 FIXED POINT OVERFLOW

 A high-order carry occurs, or high-order significant bits are lost

 in fixed point add, subtract, shift, or sign-control operation.

 09 FIXED POINT DIVIDE

 A quotient exceeds the register size in fixed point division,

 including division by zero.

 09 CONVERT TO BINARY EXCEEDS 31 BITS

 ASSIST 349

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 10 DECIMAL OVERFLOW

 The destination field is too small to contain the result field in a

 decimal operation. (The operation is completed by ignoring the

 overflow information.)

 11 DECIMAL DIVIDE

 A quotient exceeds the specified data field size. (The operation is

 suppressed.)

 12 EXPONENT OVERFLOW

 The result characteristic in floating-point addition, subtraction,

 multiplication, or division exceeds 127 and the result fraction is

 not zero. (The operation is completed. The fraction is normalized,

 and the sign and fraction of the result remain correct. The result

 characteristic is made 128 smaller than the correct characteristic.)

 13 EXPONENT UNDERFLOW

 The result characteristic in floating-point addition, subtraction,

 multiplication, halfing, or division is less than zero, and the

 result fraction is not zero. (The operation is completed. The

 setting of the exponent-underflow mask (PSW BIT 38) effects the

 result of the operation. When the mask bit is zero, the sign,

 characteristic, and fraction are set to zero, making the result a

 true zero. When the mask bit is one, the fraction is normalized,

 the characteristic is made 128 larger than the correct characteris-

 tic, and the sign and fraction remain correct.)

 14 SIGNIFICANCE - ALL-ZERO EXPONENT FRACTION

 The result of a floating-point addition or subtraction has an

 all-zero fraction. (The operation is completed.)

 15 FLOATING-POINT DIVIDE

 Division by a floating-point number with zero fraction is attempted.

 (The operation is suppressed.)

 16 INVALID REG-MULT, DIV,DBL,SHFT,FLT PT ARITH

 The R field of an instruction specifies an odd register address for

 a pair of registers that contain a 64-bit operand (e.g., divide,

 shift double instruction, etc.) Or a floating-point register other

 than 0, 2, 4, or 6 is specified.

 17 BRANCH OUT OF USER’S AREA

 This corresponds to the protection exception and causes a fatal

 error.

 18 BRANCH TO ODD LOCATION

 This corresponds to the specification exception and causes a fatal

 error. The branch instruction specifies an address that is not on a

 halfword boundary.

 19 TIME OR PAGES EXCEEDED

 The time or pages allowed has been exceeded during execution and an

 abnormal termination occurs.

 350 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 22 YOU RAN OUT OF DATA

 An attempt has been made to read past the end of data indication.

 Result is an abnormal termination.

 23 I/O LIST ADDRESS OUTSIDE PROGRAM

 The address for the I/O list in the SUP 5 or SUP 6 instruction is

 outside the user’s program area.

 24 INVALID TYPE OF FORMAT

 The FORMAT specified in the SUP 5 or SUP 6 instruction is not valid.

 Abnormal termination results.

 25 LINE TOO LONG, BAD FORMAT

 May be caused by SUP 5 or 6 and also by the WRITE or SPRINT

 subroutines, if the length given is not between 1 and 133 inclusive.

 26 INVALID CHARACTER IN DATA

 The data to be input or output contain an invalid character.

 27 INVALID HEXADECIMAL DATA

 Data being read or written with a hexadecimal FORMAT contain invalid

 hexadecimal characters.

 28 INVALID I/O LIST ADDRESS ALIGNMENT

 SUP 5 or SUP 6 address list pointers are not multiples of 4.

 ASSIST 351

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 THE CROSS-REFERENCE OPTION __________________________

 This option provides a short, but informative cross-reference listing

 following the assembly listing. Besides noting where every symbol is

 defined in the assembly, it distinguishes between two types of

 references. A modify reference is one in which a symbol is used in a

 machine instruction field denoting an operand to be modified: ST 0,X

 for example. All other references are considered fetch references: B

 X, L 0,X, DC A(X). The cross-reference output shows a symbol, its

 value, and statement numbers of referencing statements, with modify

 references flagged as negative statement numbers. Control of the

 output is obtained both by the XREF= option, and by *XREF cards inserted

 in the source program as desired. The latter permit explicit control of

 how references are gathered.

 A brief note on the XREF mechanism is necessary to make use of the

 flexible control provided. During Pass 1 of an assembly, the SD (Symbol

 Definition) flag is attached to each symbol as it is defined. The flag

 consists of two bits (M for Modify and F for Fetch, in that order), and

 shows what kinds of references may possibly be collected for each

 symbol. For example, SD=10 indicates that no fetch references are ever

 to be printed for a specific symbol. The SD flag may be changed during

 a program by *XREF cards, so that symbols in different sections of the

 program can be treated differently: SD=00 will eliminate all following

 symbols completely, until it is changed again.

 During Pass 2, a Symbol Reference (SR) flag is used to determine what

 types of references are being collected from the code. A reference to a

 symbol is logged if and only if the SD bit and the SR bit for the given

 type of reference are both on. For example, if SD=10 for a symbol,

 SR=11 at the current time, and a fetch reference is made, no reference

 will be logged, since the SD fetch bit is 0. Note that references are

 only logged during Pass 2: some symbol references occur only during

 Pass 1, and these are ignored, such as symbols in EQU, ORG, and DC and

 DS length modifiers or duplication factors.

 The XREF parameter requests a cross-reference, indicates the type of

 output produced, and possibly gives initial values to the SD and SR

 flags. Two forms are permitted as follows:

 XREF=a or XREF=(a,b,c)

 a - indicates overall control and output format.

 = 0: no cross-reference is generated.

 = 2: cross-reference is printed, with one symbol per output

 line.

 = 3: cross-reference is printed, but with minimal output wasted

 (more than one symbol may appear on a line -- this form is

 recommended).

 b - indicates initial value of SD flag in decimal corresponding to

 352 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 binary (i.e., 0: 00, 1: 01, 2: 10, 3: 11).

 c - indicates initial value of SR flag, same format as b.

 Illegal values are ignored, and it is allowable to omit items as

 desired, showing this by comma usage: XREF=(2,,2) for example. The

 default value is XREF=(0,3,3) so that all that is needed to obtain a

 complete listing is to code XREF=2 or XREF=3, as the other values are

 not changed or zeroed.

 The SR and SD flags may be changed at any time during the program, by

 placing *XREF comment cards anywhere in the source program following the

 first machine instruction or assembler opcode used (SD options used

 before these will work, but SRs will be ignored). The format is:

 *XREF [SD=nn] [SR=nn]

 The operands(s) may be specified in any order, and if the same option is

 used several times, requested actions are performed in order. The

 options are:

 SD=<M><F> give the modify and fetch bits for the SD flag.

 SR=<M><F> give the modify and fetch bits for the SR flag.

 Possible values for <M> and <F> are:

 0 - turn bit off.

 1 - turn bit on.

 * - leave bit in previous state.

 If an <F> specification is omitted, this is equivalent to a *.

 It is suggested that the user begin by simply specifying XREF=2 or 3

 and then cutting out unnecessary references later. Although complex,

 the facilities allow unwanted output to be eliminated easily. The

 following gives an example (assumed to be a large program):

 *XREF SD=10 following symbols will have only

 modify references.

 large number of DS and

 DC statements (global

 table, for example).

 *XREF SD=*1 add modify and fetch references

 both.

 more symbols in DSECTS,

 tables, etc.

 *XREF SD=00,SR=10 collect no references to symbols

 defined from here on, collect

 and modify references created.

 section of code which is

 referencing tables above.

 *XREF SD=11,SR=11 collect all references from fol-

 lowing code to second part of

 table, modify references to

 ASSIST 353

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 first part and all references to

 itself.

 section of code which is

 referencing tables.

 354 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ASSIST MACRO LIBRARIES ______________________

 SOURCES OF MACRO LIBRARIES __________________________

 ASSIST assemblies may draw on macros defined in any of three places:

 the system macro library (*ASSISTMAC), the beginning of the assembler

 program, or a private macro library. Macros whose definitions appear at

 the beginning of the assembly do not need to be brought to the attention

 of ASSIST in any special manner.

 However, ASSIST must be notified of macros whose definitions are to

 be obtained from system or private libraries. Private macro libraries

 should be in line files adhering to the standard assembly library format

 (as produced by *MACUTIL), and should be attached to the logical I/O

 units 0, 2, or 3 by their specification on the $RUN *ASSIST MTS command

 (see the earlier section, "Running ASSIST Under MTS"). Whenever the

 macro libraries are searched for a macro definition, the libraries

 attached to logical I/O units 2, 3, and 0 are searched, in that order,

 for the macro; its first instance terminates the search. If unit 0 is

 not assigned, *ASSISTMAC is implicitly assigned to it. Therefore, any

 program using only the system macro library need not specify the

 assignment.

 THE *SYSLIB CARD ________________

 It is desirable that users specify whether the macro library should

 be searched; this prevents searching automatically for a misspelled

 opcode name in the library. A special comment card, *SYSLIB, is used to

 inform ASSIST that it should actually perform a library search, and

 lists those system macros which are referenced in the open code. The

 format of the *SYSLIB card is:

 *SYSLIB name1,name2,... comments

 where "name1,name2,..." is a list of the names of each system macro,

 separated by commas in free format.

 The *SYSLIB card should follow all programmer macros (if any), and

 must precede any of the statements of the open code, except for comment

 and listing control (PRINT, TITLE, EJECT, SPACE) statements. The user

 may supply one or more *SYSLIB cards, as long as these conditions are

 fulfilled.

 When finding any *SYSLIB card in a proper location, ASSIST does the

 following:

 ASSIST 355

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 (1) Scans the card, adding any name found there to the list of macro

 names. If the name is already in the list, it is totally

 ignored.

 (2) Scans the list of macro names. If a macro is not defined, it

 searches the macro library for it. If the macro cannot be

 obtained, it internally marks the macro as "searched for," and

 never looks for it again.

 (3) If the macro is found during step 2, the print control is turned

 OFF, unless the user specified LIBMC, in which case the print

 control is unchanged. The macro is then read and edited, like a

 programmer macro.

 (4) During step 3, the macro being read may refer to other macros

 not yet defined, and these are added to the macro list also.

 The loop of steps 2,3,4 continues until all macros in the list

 have either been found or searched for. Thus, it is possible

 for a reference to one macro to cause a number of macros to be

 fetched from the library. At this point, print control is

 restored to its original value, and a list of undefined macros

 is produced.

 The following gives the overall layout of a program:

 0 or more programmer macro definitions, with print control

 statements interspersed if desired.

 1 or more *SYSLIB cards.

 0 or more GBLx declarations.

 0 or more LCLx declarations.

 ACTR.

 Open code (main body of program).

 The following shows appropriate *SYSLIB use, although the program itself

 should not be expected to make sense:

 MACRO

 MYCALL &PARA

 CALL &PARA

 MEND

 *SYSLIB SAVE,RETURN CALL WILL AUTOMATICALLY BE INCLUDED

 USING *,15

 SAVE (14,12)

 MYCALL TRON

 RETURN (14,12)

 END

 356 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 HINTS ON OPTIMAL USE OF A MACRO LIBRARY _______________________________________

 The user should be aware of the following when using the macro

 library facility:

 (1) The macro processor is mainly intended to process programmer-

 written macros. Among other things, all macro dictionaries and

 tables are kept in memory because it is faster than keeping them

 in files.

 (2) Many of the macros have inner macro expansions which cause more

 than one macro to be brought in from the library.

 (3) If a macro is referenced, it is fetched from the library,

 whether or not it is actually ever called.

 (4) ASSIST operates in a fixed size work space that must contain all

 macros, tables, and source code. To allow the assembly of large

 programs in this small area, the user must avoid the excessive

 use of macros which consume a large amount of space.

 MACRO DESCRIPTIONS __________________

 The following macros are available in the system macro library

 supported by ASSIST, *ASSISTMAC. These macros allow compatibility with

 some MTS macros found in *SYSMAC, and will generate the code required by

 ASSIST to perform the equivalent functions. This will allow a program

 to be run under ASSIST and then be assembled under *ASMG by making use

 of the macros in *SYSMAC.

 ASSIST 357

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ENTER _____

 Purpose _______

 To generate a subroutine prolog which:

 (1) Saves general registers.

 (2) Establishes a base register.

 (3) Establishes a new save area and provides forward and

 backward pointers linking save areas.

 Prototype _________

 [label] ENTER reg[,TREG=tempreg] [,SA=savearea] [,LENGTH=length]

 where:

 reg is used as a base register by the subroutine. ___

 tempreg is a register used by the generated code. If omitted, R15 _______

 is used.

 savearea is the location of an 18-word save area. If omitted, a ________

 save area is dynamically obtained via GETSPACE.

 length is the length in bytes of the save area obtained via ______

 GETSPACE. If omitted, the length is assumed to be 72;

 otherwise, it should be at least 72.

 Comments ________

 The generated prolog assumes that the subroutine is entered, with

 register 15 containing the address of the entry point. The call to

 GETSPACE uses registers 1, 14, and 15, so that they cannot be used

 as a base register if the save area is obtained dynamically. If

 the length parameter is coded, it must be at least 72 or an ______

 addressing exception will result. A SUP 1 is generated if the

 GETSPACE is unsuccessful.

 reg and tempreg must specify different registers. Neither reg nor ___ _______ ___

 tempreg may specify registers 0 or 13. _______

 Examples ________

 ENTER 12,SA=MYSAVE

 ENTER 11,TREG=8,LENGTH=200

 ENTER 10,LENGTH=100

 ENTER 9

 358 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 EXIT ____

 Purpose _______

 To generate a subroutine epilog which:

 (1) Restores general registers.

 (2) Reestablishes the calling program’s save area.

 (3) Sets the return code in register 15.

 (4) Sets value to be returned in register 0.

 Prototype _________

 [label] EXIT [rc][,value][,MF=FS]

 where:

 rc is a self-defining term, or the location of a fullword return __

 value to be loaded into GR15. If omitted, the return code is

 zero. rc may be expressed as a register number in __

 parentheses.

 value is a self-defining term, or the location of a fullword return _____

 value to be loaded into GR0. It may be expressed as a

 register number in parentheses.

 MF=FS specifies that the save area pointed to by register 13 was _____

 obtained dynamically and is to be released. A SUP 1 is

 generated if the FREESPAC is unsuccessful.

 Comments ________

 This macro requires that the save area be properly linked on entry

 to the subroutine, as is done by the ENTER macro.

 Examples ________

 EXIT

 EXIT 0

 EXIT 12,15,MF=FS

 EXIT ,RESULT,MF=FS

 EXIT (4),(5)

 ASSIST 359

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 CALL ____

 Purpose _______

 To cause control to be passed to a control section at a specified

 entry point.

 Prototype _________

 [label] CALL {epname|(15)} [,{parameter|(parameters)}] [,VL]

 where:

 epname is the name of the external entry point to be given ______

 control. If (15) is designated, register 15 must

 contain the address of the entry point.

 parameter is a symbolic name. _________

 parameters is one or more symbolic name(s) or null parameters. __________

 VL specifies that the list of addresses generated is to __

 contain a 1 in bit 0 of the last parameter.

 Comments ________

 Registers are not allowed as parameters, nor are the list and

 execute forms implemented. The convention followed is that regis-

 ter 1 contains an address that in turn points to a sequential list

 of address constants which point to the actual parameters. If

 parameters are omitted, register 1 will be unchanged and no address

 constants will be generated. Before the call is made, register 13

 must point to the calling program’s save area. Upon entry to the

 called subroutine, register 14 will contain the return address, and

 register 15 will contain the address of the entry point in the

 called subroutine.

 The expanded code destroys the contents of registers 14 and 15. If

 VL and/or other parameters are given, the contents of register 1

 are also destroyed.

 The called program may change the contents of registers 0 and 1,

 and the condition code.

 Examples ________

 CALL PROCESS

 CALL CONVERT,BUFFER

 CALL MYWRITE,(BUFFER,,LENGTH),VL

 CALL READ

 CALL (15)

 360 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SCARDS, READ ____________

 Purpose _______

 To read a card.

 Prototypes __________

 [label] SCARDS {buffer,length} [,EXIT=exit]

 [label] READ {unit,buffer,length} [,EXIT=exit]

 where:

 buffer is the location of the input buffer. It may be specified as ______

 a symbol or as a register enclosed in parentheses which

 contains the address of the buffer.

 length is the address of a halfword where the length of the record ______ ________

 read will be placed. It may be specified as a symbol, or a ______

 register name or number in parentheses. If a symbol, the

 length of the record will be placed in the specified

 halfword. If length specifies a register, the length will ______

 be placed there.

 exit specifies the exit to be taken for a nonzero return code ____

 (end-of-file exit). It may be specified as a symbol or a

 register containing the exit routine address.

 unit is the logical I/O unit to be read from. This parameter is ____

 ignored because ASSIST does not have this facility.

 Comments ________

 The contents of registers 0, 1, 14, and 15 are destroyed during the

 call. Register 13 must point to the calling program’s save area.

 The condition code will be changed.

 Examples ________

 SCARDS CARD,LENGTH,EXIT=EOF

 SCARDS (5),(6)

 SCARDS BUFFER,(GR5),EXIT=(4)

 READ 4,BUFF,LEN,EXIT=(4)

 ASSIST 361

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SAVE ____

 Purpose _______

 The SAVE macro instruction causes the contents of the specified

 registers to be stored in the save area at the address contained in

 register 13. An entry point identifier can optionally be speci-

 fied. The SAVE macro instruction should be written only at the

 entry point of a program because the code resulting from the macro

 expansion requires that register 15 contain the address of the save

 macro instruction.

 Prototype _________

 [label] SAVE (reg1[,reg2]),[T] [,id name]

 where:

 reg1,reg2 is the range of registers to be stored in the save area _________

 at the address contained in register 13. The registers

 should be designated so they are stored in the order 14,

 15, and 0 through 12 when used in a STM instruction. The

 registers are stored in words 4 though 18 of the save

 area. If only one register is designated, only that

 register is saved.

 T specifies that registers 14 and 15 are to be stored in _

 words 4 and 5, respectively, of the save area. If both T

 and reg2 are designated, and reg1 is either 14, 15, 0, 1,

 or 2, all of the registers 14 through the reg2 value are

 saved.

 id name is an identifier to be associated with the SAVE macro _______

 instruction. The name may be up to 70 characters and may

 be a complex name. If an asterisk is coded, the

 identifier is the symbol label associated with the SAVE

 macro instruction; if the name field is blank, the

 identifier is the control section name. If the CSECT

 instruction name field is blank, the operand is ignored.

 Comments ________

 This macro is provided for compatibility with the OS/360 SAVE

 macro. ENTER is recommended for MTS compatibility.

 Examples ________

 SAVE (14,12),T,*

 SAVE (6)

 SAVE (14),T,KRUNCH

 362 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 RETURN ______

 Purpose _______

 The RETURN macro instruction is used to return control to the

 calling program and to signal normal termination of the returning

 program. The return of control is always made by executing a

 branch instruction using the address in register 14. The RETURN

 macro instruction can be written to restore a designated range of

 registers, to provide the proper return code in register 15, and to

 flag the save area used by the returning program.

 Prototype _________

 [label] RETURN [(reg1[,reg2])][,T][,RC=ret]

 where:

 reg1,reg2 is the range of registers to be restored from the save _________

 area pointed to by the address in register 13. The

 registers should be designated to cause the loading of

 registers 14, 15, and 0 through 12 when used in a LM

 instruction. If reg2 is not designated, only the regis-

 ter designated by reg1 is loaded. If the operand is

 omitted, the register contents are not altered.

 T causes the control program to flag the save area used by _

 the returning program. After the registers have been

 loaded, a byte of all ones (X’FF’) is placed in the

 high-order byte of word four of the save area.

 ret is the return code to be passed to the calling program. ___

 The return code should have a maximum value of 4095; it

 will be placed right-adjusted in register 15 before

 return is made. If RC=(15) is coded, it indicates that

 the return code has been previously loaded into register

 15; in this case the contents of register 15 are not

 altered or loaded from the save area. (If this operand

 is omitted, the contents of register 15 is determined by

 the reg1, reg2 operands.)

 Comments ________

 This macro is provided for OS/360 compatibility. MTS users should

 use EXIT.

 Examples ________

 RETURN (14,12),T,RC=(15)

 RETURN (6),,RC=8

 RETURN (14,2),,RC=0

 ASSIST 363

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SPRINT, WRITE _____________

 Prototypes __________

 [label] SPRINT {’text’|buffer,length} [,EXIT=exits]

 [label] WRITE unit,{’text’|buffer,length}[,EXIT=exits]

 where:

 text is a literal message to be written. ____

 buffer is the location of the output buffer. It may be specified ______

 as a symbol or as a register enclosed in parentheses which

 contains the address of the buffer.

 length is the size of the output buffer in bytes. It may be ______

 specified as the name of a halfword containing the length, ________

 as a self-defining term, or as a register enclosed in

 parentheses which contains the length. Unlike what is

 allowed by the macro in *SYSMAC, it may not be omitted.

 exits specify exits to be taken for nonzero return codes. Since _____

 no return codes are returned by the ASSIST write routines,

 this parameter is ignored.

 unit is the logical I/O unit. This parameter is ignored since ____

 ASSIST does not have this facility.

 Comments ________

 The list and execute form of these macros presently available in

 *SYSMAC.

 The contents of registers 0, 1, 14, and 15 are destroyed during the

 call. Register 13 must point to the calling program’s save area.

 The condition code will be changed.

 Examples ________

 SPRINT ’ MESSAGE’

 WRITE 6,BUFFER,121,EXIT=ERROR

 WRITE 1,(4),(5),EXIT=(EOT,INVBSP,ERROR)

 SPRINT (7),100

 364 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 ERROR _____

 Purpose _______

 To assemble a call to the ERROR subroutine.

 Prototype _________

 [label] ERROR

 Comments ________

 The ERROR system subroutine is called and the program terminates

 abnormally.

 The contents of registers 14 and 15 are destroyed during the call.

 Register 13 must point to the calling program’s save area.

 The condition code will be changed.

 Examples ________

 BOMB ERROR

 ASSIST 365

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 DFIX, EFIX __________

 Purpose _______

 To convert a floating-point number (in a floating-point register)

 to an integer (in a general register).

 Prototypes __________

 [label] DFIX fpr,gr[,WA=wkarea]

 [label] EFIX fpr,gr[,WA=wkarea]

 where:

 fpr is the floating-point register. ___

 gr is the general register. __

 wkarea (optional) is a keyword parameter designating a doubleword- ______

 aligned work area of 16 bytes. If omitted, the macro will

 allocate an in-line work area.

 Comments ________

 DFIX converts a long-precision, floating-point number (8 bytes);

 EFIX converts a short-precision, floating-point number (first 4

 bytes of a floating-point register). The contents of the specified

 floating-point register are restored at the end of the macro call.

 Note that it is possible to convert a floating-point number that is

 too big to fit (as an integer) into a general register, but the

 results will be meaningless since in order to make the floating-

 point number fit into a general register, the number is truncated.

 No attempt is made to signal this error.

 After execution, the condition code will be set as follows:

 0 if value=0

 1 if value<0

 2 if value>0

 Example _______

 LBL DFIX 0,0

 366 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 FLOAT _____

 Purpose _______

 To convert the contents of a general register or a fullword aligned

 area in storage into a floating-point number and leave the

 converted number in a floating-point register.

 Prototype _________

 [label] FLOAT arg1,arg2

 where:

 arg1 can either be a general register or a fullword-aligned ____

 location; if arg1 specifies a general register, the argument ____

 must be enclosed in parentheses. The contents of GR0 are

 destroyed if arg1 specifies a storage location. ____

 arg2 is the floating-point register into which the results are ____

 placed.

 Comments ________

 Addressability of the literal pool is required.

 The condition code will be changed.

 Examples ________

 LABEL FLOAT (6),4

 LABEL FLOAT FULLWORD,0

 ASSIST 367

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 FREESPAC ________

 Purpose _______

 To assemble a call to the FREESPAC subroutine.

 Prototype _________

 [label] FREESPAC [loc]

 where

 loc (optional) is the location of a fullword containing the address ___

 of a region allocated by a call to the GETSPACE subroutine, or

 the number of a register (in parentheses) which contains the

 address of such a region. If this parameter is omitted, it is

 assumed that the location is given in GR1.

 Comments ________

 This macro is not identical to the *SYSMAC version of the FREESPAC

 macro.

 The contents of registers 1, 14, and 15 are destroyed during the

 call. Register 13 need not point to a save area.

 The condition code will be changed.

 Examples ________

 .

 .

 .

 LABEL FREESPAC , FREE UP THE GETSPACE REGION

 .

 .

 .

 .

 LABEL FREESPAC AREA RELEASE OUR AREA

 .

 .

 368 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 GETSPACE ________

 Purpose _______

 To assemble a call to the GETSPACE subroutine.

 Prototype _________

 [label] GETSPACE [length]

 where:

 length (optional) is a number or symbolic expression specifying the ______

 number of bytes of storage wanted. If omitted, the length

 is assumed to be in GR1.

 Comments ________

 The contents of registers 1, 14, and 15 are destroyed during the

 call. Register 13 need not point to a save area.

 The condition code will be changed.

 Examples ________

 LABEL GETSPACE 4096

 LABEL GETSPACE AMOUNT

 LABEL GETSPACE

 ASSIST 369

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 REQU ____

 Purpose _______

 To generate EQU statements for the general registers.

 Prototype _________

 REQU

 Comments ________

 The code generated is:

 R0 EQU 0

 R1 EQU 1

 R2 EQU 2

 R3 EQU 3

 R4 EQU 4

 R5 EQU 5

 R6 EQU 6

 R7 EQU 7

 R8 EQU 8

 R9 EQU 9

 RA EQU 10

 RB EQU 11

 RC EQU 12

 RD EQU 13

 RE EQU 14

 RF EQU 15

 370 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 SYSTEM ______

 Purpose _______

 To assemble a call to the SYSTEM subroutine.

 Prototype _________

 [label] SYSTEM

 Comments ________

 The SYSTEM macro produces the following code:

 [LABEL] L 15,=V(SYSTEM)

 BALR 14,15

 Example _______

 FINIS SYSTEM

 ASSIST 371

 MTS 14: 360/370 Assemblers in MTS

 May 1983

 372 ASSIST

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 INDEX _____

 &SYSCCID symbol, 18 FLAG, 15, 15

 &SYSLINE symbol, 18 LINECNT, 16, 26

 &SYSNEST symbol, 19 LIST, 16

 &SYSSTMT symbol, 18 LOAD, 16, 27

 &SYSSTYP symbol, 18 MACREF, 16

 MACXREF, 16

 $ modifier, 249 MSGLEVEL, 15

 MULT, 15

 *ASMH, 14 NUM, 16

 *ASMTIDY, 42 OBJECT, 16

 *ASSIST, 303-371 PEXIT, 16.1

 *ASSISTMAC, 355 REL2, 16.1

 *MACUTIL, 52, 279-302 RENT, 16.1

 *OSMAC, 52 RLD, 16.1

 *PEXIT, 47 SYSPARM, 17

 *SYSLIB, 355 TERM, 17

 *SYSMAC, 14, 24, 51-54 TEST, 17, 27

 UMAP, 17

 ¬ modifier, 250 XREF, 17

 Assembler H output, 26

 /xPEXIT, 16.1 Assembler H postprocessor, 47

 ASSIGN macro, 58

 @ modifier, 249 ASSIST assembler, 303-371

 ASSIST options,

 A modifier, 238 BATCH, 307

 ACCEPT macro, 217, 223 CMPRS, 307

 ADD, 266 COMNT, 307

 ADD command, *MACUTIL, 285 CPAGE, 307

 Add-double instruction, 266 KP, 307

 Add-mixed instruction, 269 LIBMC, 307

 ADDR, 266 LIST (L), 307

 ALIGN (ALGN) option, 15 LOAD, 307

 ASMH entry point, 30 MACTR, 307

 ASMTYPE macro, 55 MNEST, 307

 ASSEMBLE ASSIST command, 304 MSTMG, 308

 Assembler H, 13-31 NERR, 308

 Assembler H input, 24 PAGES (P), 308

 Assembler H options, 14-17 PD, 308

 ALIGN (ALGN), 15 PX, 308

 BATCH, 15, 18 SIZE, 307

 CALIGN, 15 SS, 307

 DECK, 15, 27 SSD, 307

 ESD, 15 SSX, 307

 EXTEN, 15, 18 TD, 308

 Index 373

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 TIME (T), 308 Assembler H, 17, 26

 TX, 308 CTI ASSIST function, 324

 XREF, 308, 352

 AX, 269 D modifier, 240

 A8 macro, 56 DATA ASSIST command, 305

 A8R macro, 56 DCI macro, 70.1

 DCINIT macro, 70.1

 B modifier, 238 DECK option, 15, 27

 BAS, 261 Default indicator, IOH, 233,

 Base conversion, 211, 243 254

 BASR, 261 DEFCC macro, 187

 BATCH option, 15, 18, 307 DELETE command, *MACUTIL, 287

 Block conversion, 211 DFAD macro, 70

 BPI macro, 59 DFIX ASSIST macro, 366

 Branch-on-program-interrupt DFIX macro, 71

 macro, 59 DFMP macro, 70

 BREAK modifier, *MACUTIL, 295 DFSB macro, 70

 BREAK option, *MACUTIL, 280, Diagnostics,

 292 Assembler H, 15, 27-30

 BREAK parameter, 235 ASSIST, 337-345, 348-351

 BUILDIR command, *MACUTIL, DISMOUNT macro, 72

 285 DISPLAY command, *MACUTIL,

 BUILDIR option, *MACUTIL, 280 287

 Byte conversion, 211, 238 Divide-extended instruction,

 262

 C modifier, 238 Divide-mixed instruction, 270

 CALIGN option, 15 DO macro, 179

 CALL ASSIST macro, 360 DOCASE macro, 176

 CALL macro, 62 Double precision arithmetic,

 CASE macro, 176 265

 Centering control, 211, 238 Doubleword conversion, 211,

 Character conversion, 207, 240

 238 DROPIOER, 225

 CLEAR command, *MACUTIL, 285 DX, 270

 CLOSE parameter, 218 DXR, 262

 CLOSE routine, 257

 CMD macro, 65 E modifier, 240

 CMDNOE macro, 66 ECHO option, *MACUTIL, 292

 CMPRS option, 307 EDIT command, *MACUTIL, 287

 CNTRL macro, 67 EFIX ASSIST macro, 366

 COMMENT command, *MACUTIL, EFIX macro, 71

 286 ELSE macro, 173

 COMNT option, 307 ELSECASE macro, 176

 COMSAVE modifier, *MACUTIL, ELSEIF macro, 173

 295 EMPTY command, *MACUTIL, 288

 COMSAVE option, *MACUTIL, EMPTY modifier, *MACUTIL, 295

 280, 292 EMPTY option, *MACUTIL, 280

 Control character, IOH, 202 ENDCASE macro, 176

 COPY command, *MACUTIL, 286 ENDDO macro, 179

 COPY instruction, 24 ENDIF macro, 173

 CPAGE option, 307 ENDIO macro, 217, 222

 CREATE command, *MACUTIL, 286 ENTER ASSIST macro, 358

 Cross-reference listing, ENTER macro, 73

 374 Index

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 EOF parameter, 218 G modifier, 243

 EQUIV parameter, 236 GETIOHER, 226

 ERROR ASSIST function, 325 GETSPACE ASSIST function, 327

 ERROR ASSIST macro, 365 GETSPACE ASSIST macro, 369

 ERROR macro, 76 GETSPACE macro, 81

 ERROR parameter, 219 Groups, 211, 252

 ESD option, 15 GUSER macro, 82

 EXCHANGE parameter, 236 GUSFMT macro, 87, 217

 EXECUTE ASSIST command, 305

 EXIT ASSIST macro, 359 H modifier, 243

 EXIT macro, 77 Halfword conversion, 211, 243

 EXITDO macro, 185 HDRGEN modifier, *MACUTIL,

 EXPLAIN command, *MACUTIL, 296

 288 HDRGEN option, *MACUTIL, 281,

 Exponent overflow, 266 293

 Exponent underflow, 266 HELP command, *MACUTIL, 289

 EXTEN option, 15, 18 Hexadecimal conversion, 207,

 Extended-branch instructions, 248

 261

 Extended-precision floating- I modifier, 243

 point instructions, 262, IF macro, 173

 265 Ignore field width, 211, 244

 External field width, 202 INCLUDE command, *MACUTIL,

 External symbol dictionary, 289

 Assembler H, 15, 26 INCREMENT modifier, *MACUTIL,

 296

 F modifier, 242 INCREMENT option, *MACUTIL,

 Field width separator, 252 281, 293

 Fill, if zero, 211, 247 INFILL parameter, 235

 FLAGS macro, 189 Input fill character, 235

 FLAGVAL macro, 192 INSTSET macro, 85

 FLOAT ASSIST macro, 367 Integer conversion, 204, 243

 FLOAT macro, 79 Internal field width, 203

 Floating-dollar sign, 249 IOH, 201

 Floating-point (E-type) con- IOH calling sequence, 255

 version, 206, 240 IOH defaults, 233

 Floating-point (F-type) con- IOH macros, 87, 217

 version, 204, 242 IOH modifiers, 210

 Forced plus sign, 211, 249 IOP macro, 217, 222

 Format, 202 IOPMOD, 228

 Format break character, 213 IOPMOD macro, 217, 223

 Format rescanning, 214 ITC ASSIST function, 328

 Format term, 203

 Format terminator, 202, 252 J modifier, 244

 Format variable, 229, 254

 FREESPAC ASSIST function, 326 Keyword indicator, IOH, 254

 FREESPAC ASSIST macro, 368 Keyword mode, IOH, 235

 FREESPAC macro, 80 KP option, 307

 FULL modifier, *MACUTIL, 295 KWLHT macro, 89

 FULL option, *MACUTIL, 281, KWRHT macro, 90

 293 KWSET macro, 98

 Fullword conversion, 211, 248

 L modifier, 244

 Index 375

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 LABEL macro, 99 point instructions, 269

 Left justification, 211, 244 MNEST option, 307

 LIBMC option, 307 MODCHAR option, *MACUTIL, 293

 Line image, IOH, 203, 215 MODE parameter, 236

 Line skips, 210 Modifier separator, 253

 Line terminator, 214, 252 Modifiers, IOH, 210

 LINECNT option, 16, 26 MOREIO macro, 217, 221

 LINECOUNT option, 16 MOUNT macro, 104

 LIST (L) option, 307 MSG macro, 105, 147-163

 LIST command, *MACUTIL, 289 MSGLEVEL option, 15

 List format variable, 232, MSTMG option, 308

 247 MTS command, *MACUTIL, 290

 LIST modifier, *MACUTIL, 296 MTS macro, 106

 LIST option, 16 MTSCMD macro, 107

 LIST option, *MACUTIL, 281, MTSMODS macro, 108

 293 MULT option, 15

 LITADDR macro, 100 Multiple stream assemblies,

 Literal conversion, 208 15, 18

 Literal-break character, 215, Multiplicity factor, 211

 235, 250, 252 Multiply-double instruction,

 LKFMT macro, 217, 223 268

 LOAD option, 16, 27, 307 Multiply-mixed instruction,

 Load-mixed instruction, 269 270

 LUNIT parameter, 219 MX, 270

 LX, 269

 N modifier, 244

 MACREF option, 16 NAME modifier, *MACUTIL, 296

 Macro libraries, NC parameter, 220

 Assembler H, 24 NERR option, 308

 Macro-library editor, 52, NEXTDO macro, 185

 279-302 Normal mode, IOH, 234

 MACSET macro, 197 Null fill character, 211, 244

 MACTR option, 307 NUM option, 16

 MACXREF option, 16

 MAX macro, 101 O modifier, 245

 MAXC macro, 101 Object module,

 MAXD macro, 101 Assembler H, 15, 16, 27

 MAXE macro, 101 OBJECT option, 16

 MAXH macro, 101 ONEIO macro, 217, 222

 MAXL macro, 101 OPEN parameter, 218

 MAXP macro, 101 OPEN routine, 257

 MCMD command, *MACUTIL, 290 OUTFILL parameter, 235

 MDD, 268 Output fill character, 235

 MDDR, 268 OVCHR parameter, 235

 Message macros, 147-163 Overflow, 266

 MIN macro, 101 Overflow fill character, 235

 MINC macro, 101 Own conversion, 226, 245

 MIND macro, 101 OWNCONVR, 226

 MINE macro, 101

 MINH macro, 101 P modifier, 245

 MINL macro, 101 Packed decimal, 207

 MINP macro, 101 Packed decimal conversion,

 Mixed-precision floating- 245

 376 Index

 MTS 14: 360/370 Assemblers in MTS

 May 1983 Page Revised September 1986

 Packed decimal sign, 211, 250 RHI ASSIST instruction, 319

 PAGES (P) option, 308 RI ASSIST instruction, 319

 Parameter list terminator, Right justification, 211, 247

 253 RLD option, 16.1

 PCFMT macro, 87, 202, 217

 PD option, 308 S modifier, 247

 PEXIT option, 16.1 SAVE ASSIST macro, 362

 PHASE macro, 105 SAVE macro, 118

 PHRASE macro, 147-163 Scale factor, 211, 249

 PMSG macro, 105, 147-163 SCARDS ASSIST function, 329

 POOLSW parameter, 219 SCARDS ASSIST macro, 361

 POP parameter, IOH, 236 SCARDS macro, 120

 POPALL parameter,IOH, 237 SDD, 267

 PRFMT macro, 87, 202, 217 SDDR, 267

 PUNCH command, *MACUTIL, 290 SDS, 17

 PUSH parameter, IOH, 236 Search-list instruction, 264,

 PX option, 308 271

 SECT parameter, 219

 Q modifier, 246 SEQ modifier, *MACUTIL, 296

 QUIT macro, 109 SEQ option, *MACUTIL, 281,

 QUIT option, *MACUTIL, 281, 293

 293 SERCOM macro, 123

 Quit, if list empty, 246 SERFMT macro, 87, 217

 SET command, *MACUTIL, 292

 R modifier, 247 SET macro, 193

 RCI ASSIST instruction, 319 SETC variable, 19

 RDFMT macro, 87, 202, 217 SETFRVAR, 224

 READ ASSIST function, 329 SETIOHER, 224

 READ ASSIST macro, 361 Sign inversion, 253

 READ macro, 110 SIZE option, 307

 REDO macro, 185 SLT, 264, 272

 Reentrancy check, 16.1 SORT modifier, *MACUTIL, 297

 REFMTC macro, 217, 222 SORT option, *MACUTIL, 281,

 REI ASSIST instruction, 319 293

 Relocation dictionary, Source listing,

 Assembler H, 16.1, 26 Assembler H, 16, 26

 REL2 option, 16.1 Spaces, 209, 247

 RENAME command, *MACUTIL, 291 SPIE macro, 126

 RENT option, 16.1 SPRINT ASSIST function, 335

 RENUMBER command, *MACUTIL, SPRINT ASSIST macro, 364

 291 SPRINT macro, 128

 REPLACE command, *MACUTIL, SPUNCH macro, 131

 292 SS option, 307

 REPLACE option, *MACUTIL, 282 SSD option, 307

 REPLACE parameter, 236 SSX option, 307

 REQU ASSIST macro, 370 Standard format I/O, 215

 REQU macro, 113 START modifier, *MACUTIL, 297

 Rescanning format, 214 START option, *MACUTIL, 281,

 RESET parameter, 237 293

 RETURN ASSIST macro, 363 STATUS parameter, 237

 RETURN command, *MACUTIL, 292 STIMER macro, 134

 RETURN macro, 115 STOP ASSIST command, 305

 REWIND macro, 117 STOP command, *MACUTIL, 293

 Index 377

 MTS 14: 360/370 Assemblers in MTS

 Page Revised September 1986 May 1983

 Structured programming mac- TTIMER macro, 143

 ros, 165-199 TX option, 308

 Subtract-double instruction, TYPE parameter, 220

 267

 Subtract-mixed instruction, U modifier, 247

 269 UMAP option, 17

 SUP n ASSIST instructions, Underflow, 266

 321, 347 UPDATE command, *MACUTIL, 294

 Suppress decimal point, 211 UPDATE option, *MACUTIL, 282

 Swap-register instruction,

 271 V modifier, 247

 SWPR, 271 Vector index format variable,

 SX, 269 232, 254

 Symbolic Debugging System, 17 VERBOSE modifier, *MACUTIL,

 SYMBTL parameter, 230 297

 SYMTBL parameter, 220 VERBOSE option, *MACUTIL,

 SYSPARM option, 17 282, 293

 SYSTEM ASSIST function, 331 VERIFY modifier, *MACUTIL,

 SYSTEM ASSIST macro, 371 297

 SYSTEM macro, 137 VERIFY option, *MACUTIL, 282,

 S8 macro, 56 293

 S8R macro, 56

 W modifier, 248

 T modifier, 247 WCI ASSIST instruction, 320

 Tabs, 209, 247 WEI ASSIST instruction, 320

 TD option, 308 WHI ASSIST instruction, 320

 TERM option, 17 WI ASSIST instruction, 320

 TERSE modifier, *MACUTIL, 297 WRFMT macro, 87, 217

 TERSE option, *MACUTIL, 282, WRITE ASSIST function, 335

 293 WRITE ASSIST macro, 364

 TEST macro, 195 WRITE macro, 144

 TEST option, 17, 27

 THEN macro, 173 X modifier, 248

 TIME (T) option, 308 XREF option, 17, 308, 352

 TOD ASSIST function, 332

 TRL macro, 138 Y modifier, 249

 TROFF ASSIST function, 333

 TRON ASSIST function, 334 Z modifier, 249

 TRTAB macro, 139 Zeros fill character, 211,

 TRTL macro, 138 249

 378 Index

 Reader’s Comment Form

 360/370 Assemblers in MTS

 Volume 14

 May 1983

 Errors noted in publication:

 Suggestions for improvement:

 379

 Your comments will be much appreciated. The completed form may be sent

 to the Computing Center by Campus Mail or U.S. Mail, or dropped in the

 Suggestion Box at the Computing Center, NUBS, or UNYN.

 Date ────────────────────

 Name ───

 Address ──

 ──

 ──

 Publications

 Computing Center

 University of Michigan

 Ann Arbor, Michigan 48109

 380

 Update Request Form

 360/370 Assemblers in MTS

 Volume 14

 May 1983

 Updates to this manual will be issued periodically as errors are noted

 or as changes are made to MTS. If you desire to have these updates

 mailed to you, please submit this form.

 Updates are also available in the memo files at the Computing Center,

 NUBS, and UNYN; there you may obtain any updates to this volume that may

 have been issued before the Computing Center receives your form. Please

 indicate below if you desire to have the Computing Center mail to you

 any previously issued updates.

 Name ───

 Address ──

 ──

 ──

 Previous updates needed (if applicable):──────────

 The completed form may be sent to the Computing Center by Campus Mail or

 U.S. Mail, or dropped in the Suggestion Box at the Computing Center,

 NUBS, or UNYN. Campus Mail addresses should be given for local users.

 Publications

 Computing Center

 The University of Michigan

 Ann Arbor, Michigan 48109

 Users associated with other MTS installations (except the University of _______________________

 British Columbia) should return this form to their respective installa-

 tions. Addresses are given on the reverse side.

 381

 Addresses of other MTS installations:

 Publications Clerk

 352 General Services Bldg.

 Computing Services

 The University of Alberta

 Edmonton, Alberta

 Canada T6G 2H1

 Information Officer, NUMAC

 Computing Laboratory

 The University of Newcastle upon Tyne

 Newcastle upon Tyne

 England NE1 7RU

 Rensselaer Polytechnic Institute

 Documentation Librarian

 310 Voorhees Computing Center

 Troy, New York 12181

 Simon Fraser University

 Computing Centre

 User Services Information Group

 Burnaby, British Columbia

 Canada V5A 1S6

 Wayne State University

 Computing Services Center

 Academic Services Documentation Librarian

 5950 Cass Ave.

 Detroit, Michigan 48202

 382

