
 

 

 

                                   M T S 

 

 

 

                        The Michigan Terminal System 

 

 

 

 

 

 

 

 

 

 

                           Volume 7:  PL/I in MTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                               September 1982 

 

|                      Updated September 1985 (Update 1) 

 

 

 

 

 

 

 

 

 

 

                The University of Michigan Computing Center 

                            Ann Arbor, Michigan 

 

           ***************************************************** 

           *                                                   * 

           *        This obsoletes the July 1977 edition.      * 

           *                                                   * 

           ***************************************************** 

 

 

                                                                         1 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 DISCLAIMER 

 

     The MTS Manual is intended to represent  the  current  state  of  the 

  Michigan  Terminal  System  (MTS),  but because the system is constantly 

  being developed, extended, and refined, sections  of  this  volume  will 

  become  obsolete.   The  user  should  refer  to  the  Computing  Center                                                          _________  ______ 

  Newsletter, Computing Center Memos, and future Updates  to  this  volume   __________ 

  for the latest information about changes to MTS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Copyright 1982 by the Regents of the University of Michigan.  Copying is 

  permitted  for  nonprofit, educational use provided that (1) each repro- 

  duction is done without alteration and (2) the volume reference and date 

  of publication are included.  Permission to republish  any  portions  of 

  this  manual  should  be  obtained  in  writing from the Director of the 

  University of Michigan Computing Center. 

 

 

 

 

  2 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 

 

 

                                  PREFACE                                   _______ 

 

 

 

 

     The  software  developed  by  the  Computing  Center  staff  for  the 

  operation  of  the  high-speed  processor computer can be described as a 

  multiprogramming supervisor that handles a number of resident, reentrant 

  programs.  Among  them  is  a  large  subsystem,  called  MTS  (Michigan 

  Terminal  System),  for  command interpretation, execution control, file 

  management, and accounting maintenance.  Most users  interact  with  the 

  computer’s resources through MTS. 

 

     The  MTS  Manual  is  a series of volumes that describe in detail the 

  facilities provided by the  Michigan  Terminal  System.   Administrative 

  policies  of  the  Computing Center and the physical facilities provided 

  are described in a separate publication  entitled  Introduction  to  the                                                      _____________________ 

  Computing Center.   ________________ 

 

     The  MTS  volumes  now in print are listed below.  The date indicates 

  the most recent edition of  each  volume;  however,  since  volumes  are 

  updated  by means of CCMemos, users should check the Memo List, copy the 

  files *CCMEMOS or *CCPUBLICATIONS, or watch  for  announcements  in  the  

  Computing  Center Newsletter, to ensure that their MTS volumes are fully   ____________________________ 

  up to date. 

 

 

|    Volume  1:  The Michigan Terminal System, January 1984                  ____________________________ 

|    Volume  2:  Public File Descriptions, April 1982                  ________________________ 

|    Volume  3:  System Subroutine Descriptions, April 1981                  ______________________________ 

|    Volume  4:  Terminals and Networks in MTS, March 1984                  _____________________________ 

|    Volume  5:  System Services, May 1983                  _______________ 

|    Volume  6:  FORTRAN in MTS, October 1983                  ______________ 

|    Volume  7:  PL/I in MTS, September 1982                  ___________ 

|    Volume  8:  LISP and SLIP in MTS, June 1976                  ____________________ 

|    Volume  9:  SNOBOL4 in MTS, September 1975                  ______________ 

|    Volume 10:  BASIC in MTS, December 1980                  ____________ 

|    Volume 11:  Plot Description System, August 1978                  _______________________ 

|    Volume 12:  PIL/2 in MTS, December 1974                  ____________ 

|    Volume 13:  The Symbolic Debugging System, September 1985                  _____________________________ 

|    Volume 14:  360/370 Assemblers in MTS, May 1983                  _________________________ 

|    Volume 15:  FORMAT and TEXT360, April 1977                  __________________ 

|    Volume 16:  ALGOL W in MTS, September 1980                  ______________ 

|    Volume 17:  Integrated Graphics System, December 1980                  __________________________ 

|    Volume 18:  The MTS File Editor, August 1985                  ___________________ 

|    Volume 19:  Tapes and Floppy Disks, February 1983                  ______________________ 

 

     Other volumes are in preparation.  The numerical order of the volumes 

  does  not  necessarily  reflect  the  chronological   order   of   their 

  appearance;  however,  in  general,  the  higher  the  number,  the more 

  specialized the volume.  Volume 1, for example, introduces the  user  to 

 

                                                                         3 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 

  MTS  and  describes in general the MTS operating system, while Volume 10 

  deals exclusively with BASIC. 

 

     The attempt to make each volume complete  in  itself  and  reasonably 

  independent  of  others  in  the  series  naturally results in a certain 

  amount of repetition.  Public file descriptions, for example, may appear 

  in more than one volume.  However, this arrangement permits the user  to 

  buy only those volumes that serve his or her immediate needs. 

 

 

                                          Richard A. Salisbury 

 

                                               General Editor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  4 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 

 

 

                        PREFACE TO REVISED VOLUME 7                         _________________________ _ 

 

 

 

 

     The  September 1982 revision reflects the changes that have been made 

  to MTS since July 1977.  Some of these changes were described in Updates 

  1 (February 1979) and 2 (October 1980) and  which  are  incorporated  in 

  this  revision.   However,  with  the  addition  of  MTS PL/I Optimizing 

  compiler, it was felt that a complete revision of  this  volume  was  in 

  order.   The  revision  bars  have  been deleted and the pages have been 

  renumbered to facilitate the future issuing of updates. 

 

     Acknowledgments for the descriptions contained in this volume are  as 

  follows: 

 

       The  sections  "PL/I  Optimizing Compiler," "Run-Time Options," and 

       "Program Checkout" are  reprinted  with  permission  from  the  IBM 

       publication, OS PL/I Optimizing Compiler:  Programmer’s Guide, form                     ________________________________________________ 

       SC33-0007. 

 

     The remainder of the descriptions in this volume were either produced 

  or  extensively  modified  from other documentation by the editorial and 

  programming staffs of the University of Michigan Computing Center. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                         5 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  6 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 

                                                                   Contents                                                                   ________

 

 

 

 

 

  Preface . . . . . . . . . . . .  3      Specifying Run-Time Options 

                                          and Main-Procedure 

  Preface to Revised Volume 7 . .  5      Parameters in the $RUN 

                                          command . . . . . . . . . . . 73 

  Overview of PL/I  . . . . . . . 11      Run-Time Options  . . . . . . 74 

                                          Using PLIXHD to Identify 

  Compiling a PL/I (F) Program  . 13      COUNT and REPORT Output . . . 76 

    MTS Logical I/O Units . . . . 13      Run-Time Storage 

    Compiler Options  . . . . . . 14      Requirements  . . . . . . . . 77 

      Control Options . . . . . . 16      Using the REPORT Option . . . 78 

      Preprocessor Options  . . . 17      Using the REPORT Output . . . 78 

      Input Options . . . . . . . 18      Run-Time COUNT Option . . . . 80 

      Object Options  . . . . . . 20      Run-Time FLOW Option  . . . . 81 

      Listing Options . . . . . . 21 

      Diagnostic Options  . . . . 25    Debugging PL/I (F) Programs . . 83 

    Multiple Compilation  . . . . 27      Introduction to Debug Mode 

    Return Codes  . . . . . . . . 28      for PL/I  . . . . . . . . . . 83 

                                          Organization of a PL/I (F) 

  PL/I Optimizing Compiler  . . . 29      Program . . . . . . . . . . . 91 

    MTS Logical I/O Units . . . . 29      Data Variable Specification . 93 

    Specifying Compiler Options . 30      Special Data Specifications . 95 

      Specifying Compiler 

      Options in the $RUN               Program Checkout  . . . . . . . 99 

      Command . . . . . . . . . . 30      Compile-Time Checkout . . . . 99 

      Specifying Compiler                 Run-Time Checkout . . . . . .100 

      Options in the /PROCESS             Statement Numbers and 

      statement . . . . . . . . . 30      Tracing . . . . . . . . . . .103 

    Compiler Options  . . . . . . 31      Dynamic Checking Facilities .104 

    Messages  . . . . . . . . . . 52      Control of Exceptional 

    Return Codes  . . . . . . . . 53      Conditions  . . . . . . . . .105 

    Multiple Compilation  . . . . 54      On-Codes  . . . . . . . . . .106 

    Compile-Time Processing               Dumps . . . . . . . . . . . .106 

    (Preprocessing) . . . . . . . 55        Trace Information . . . . .108 

      Invoking the Preprocessor . 56        File Information  . . . . .108 

      The %INCLUDE Statement  . . 58        Hexadecimal Dump  . . . . .108 

                                          Run-Time Return Codes . . . .109 

  Loading a PL/I Program  . . . . 61 

      Link-Editing a PL/I               PL/I Input/Output in MTS  . . .111 

      Program . . . . . . . . . . 63      Stream I/O  . . . . . . . . .111 

                                            Stream I/O on Terminals . .112 

  Running a PL/I Program  . . . . 67        List-Directed I/O . . . . .113 

    PL/I File Specifications  . . 71        Data-Directed I/O . . . . .114 

    UNDEFINEDFILE Condition . . . 72        Edit-Directed I/O . . . . .115 

                                            Format Items  . . . . . . .116 

  Run-Time Options  . . . . . . . 73        Use of PRINT Files  . . . .118 

    Specifying Run-Time Options             Tab Control Table . . . . .118 

    in the PLIXOPT String . . . . 73      Record I/O  . . . . . . . . .121 

 

 

                                                                         7 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 

      Use of BACKWARDS Files  . .121      IHEDUMC, IHEDUMP  . . . . . .167 

      Use of KEYED Files  . . . .122      IHENOTE, IHEPNT . . . . . . .168 

      Consecutive KEYED Files . .122      IHEREAD, IHERITE  . . . . . .169 

      Indexed KEYED Files                 IHESARC . . . . . . . . . . .171 

      without GENKEY Option . . .123      IHETABS . . . . . . . . . . .172 

      Indexed KEYED Files with            MAXLEN  . . . . . . . . . . .173 

      GENKEY Option . . . . . . .124      NEXTKEY, LASTKEY  . . . . . .174 

    PL/I Files, MTS Files and             RAND  . . . . . . . . . . . .175 

    Devices, and Logical I/O              SIGNOFF . . . . . . . . . . .176 

    Units . . . . . . . . . . . .125      USERID  . . . . . . . . . . .177 

      Standard Files  . . . . . .126 

      Record Formats  . . . . . .127    Interlanguage Communication 

      Magnetic Tape I/O . . . . .130    Facilities  . . . . . . . . . .179 

      Default Record Size . . . .132      Calling PL/I Procedures 

                                          from FORTRAN Subprograms  . .185 

  Other PL/I Statements . . . . .133      PL/I (F) Interlanguage 

    The DISPLAY Statement . . . .133      Subroutines . . . . . . . . .191 

    FETCH and RELEASE Statements 134      PLCALL, PLCALLD, PLCALLE, 

    The DELAY Statement . . . . .136      PLCALLF . . . . . . . . . . .192 

                                          PL1ADR  . . . . . . . . . . .195 

  PL/I Data Representations . . .137      PL1RC . . . . . . . . . . . .196 

    Arithmetic Data . . . . . . .137      PL1BEG, PL1END  . . . . . . .197 

      Fixed-Decimal Data  . . . .138      CDFCN, CPXFCN, IPLFCN, 

      Fixed-Binary Data . . . . .138      I2FCN, LGLFCN,  . . . . . . .198 

      Float-Binary and Decimal            LG1FCN, PLDFCN, PL1FCN, 

      Data  . . . . . . . . . . .139      PL1SUB  . . . . . . . . . . .198 

      Complex Data  . . . . . . .139      IPL1RC  . . . . . . . . . . .201 

    String Data . . . . . . . . .139 

      Character-String Data . . .140    Calling System Subroutines 

      Bit-String Data . . . . . .140    from PL/I (F) . . . . . . . . .202.1

    Program-Control Data  . . . .141        R-Type Subroutines  . . . .202.7

      Labels  . . . . . . . . . .141        Special Cases . . . . . . .202.10

      Pointers  . . . . . . . . .141 

      Areas . . . . . . . . . . .142    Calling System Subroutines 

      Offsets . . . . . . . . . .143    from *PL1OPT  . . . . . . . . .202.11

    Arrays  . . . . . . . . . . .144        R-Type Subroutines  . . . .202.16

    Structures  . . . . . . . . .144        Special Cases . . . . . . .202.19

    External and Internal 

    Attributes  . . . . . . . . .145    PL/I Built-In Functions and 

    Storage Allocation  . . . . .146    Pseudo-Variables  . . . . . . .203 

                                          String Handling Functions . .203 

  PL/I Public File Descriptions .149      Arithmetic Functions  . . . .204 

    *PL1SCAN  . . . . . . . . . .150      Mathematical Functions  . . .204 

    *PL1TIDY  . . . . . . . . . .152      Array Manipulation Functions 205 

                                          Condition Functions . . . . .205 

  PL/I Library Subroutines  . . .157      Storage Control Functions . .206 

    ATTACH  . . . . . . . . . . .158      I/O Functions . . . . . . . .206 

    BATCH . . . . . . . . . . . .159      Preprocessor Functions  . . .206 

    CNTL  . . . . . . . . . . . .160      Miscellaneous Functions . . .207 

    CPUTIME . . . . . . . . . . .161      Pseudo-Variables  . . . . . .207 

    ELAPSED . . . . . . . . . . .162 

    FINFO, TFINFO, RFINFO . . . .163    PL/I (F) Object-Time Error 

    IHEATTN . . . . . . . . . . .165    Messages  . . . . . . . . . . .209 

 

 

  8 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 

                                            Tracing and Snapshot 

  PL/I Optimizer Run-Time Error             Dumping . . . . . . . . . .246 

  Messages  . . . . . . . . . . .223        Final Diagnostic Dump . . .248 

                                          Error Messages  . . . . . . .248 

  Differences between OS and              Differences between PL/I 

  MTS PL/I (F)  . . . . . . . . .225      (F) and PL/C  . . . . . . . .267 

                                            General Differences . . . .267 

  Differences between OS and                Comments  . . . . . . . . .270 

  MTS PL/I Optimizing Compilers .227        Statements  . . . . . . . .271 

                                            Attributes  . . . . . . . .279 

  PL/C  . . . . . . . . . . . . .229        Built-In Functions and 

    Overview  . . . . . . . . . .229        Pseudo-Variables  . . . . .284 

    Introduction  . . . . . . . .231        Conditions  . . . . . . . .287 

    Running PL/C in MTS . . . . .232        Prefixes  . . . . . . . . .290 

      The $RUN Command  . . . . .232        The PL/C Macro Feature  . .292 

      Control Card Descriptions .233      PL/C Post-Mortem Dump 

      Example Control Card                Statistics Report . . . . . .294 

      Sequences . . . . . . . . .242      Efficient Programming in 

      Input Card Format . . . . .243      PL/C  . . . . . . . . . . . .296 

    Diagnostic Assistance . . . .244      Internal Structure of PL/C  .297 

      Error Correction  . . . . .244 

      Control of Printed Output .246    PL/I Bibliography . . . . . . .303 

 

                                        Index . . . . . . . . . . . . .307 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                         9 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  10 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 

 

 

                              OVERVIEW OF PL/I                               ________________ 

 

 

 

 

     This volume describes the three PL/I language processors available in 

  MTS: 

 

     (1)  the PL/I (F) compiler 

     (2)  the PL/I Optimizing compiler 

     (3)  the PL/C compiler 

 

     The MTS version of the PL/I (F) compiler  is  derived  from  the  IBM 

  OS/360  F-level PL/I compiler (version 5).  This compiler resides in the 

  public file *PL1.  The PL/I  language  supported  by  this  compiler  is 

  described  in  the  IBM  publication,  IBM  System/360  Operating System                                          _________________________________ 

  PL/I (F) Language Reference  Manual,  form  GC28-8201.   Extensions  and   ___________________________________ 

  restrictions in MTS are given in the sections that follow. 

 

     The  MTS  version of the PL/I Optimizing compiler is derived from the 

  IBM OS PL/I Optimizing compiler (release 1.3).  This compiler resides in 

  the public file *PL1OPT.  The PL/I language supported by  this  compiler 

  is  described  in  the  IBM publication, OS PL/I Checkout and Optimizing                                            _______________________________ 

  Compilers:  Language Reference Manual, form GC33-0009.   _____________________________________ 

 

     The differences between the PL/I (F) compiler and the PL/I Optimizing 

  compiler are given in the IBM publication, OS PL/I Optimizing  Compiler:                                              _____________________________ 

  General Information, form GC33-0001.   ___________________ 

 

     The  PL/C  compiler  is  a compile-and-execute processor developed at 

  Cornell University.  This compiler resides  in  the  public  file  *PLC. 

  PL/C  recognizes  only a subset of the PL/I language as described in the 

  above IBM publication.  However,  PL/C  has  extended  the  language  in 

  certain  areas  and  also  has  superior compile-time and execution-time 

  error-checking facilities. 

 

     Object modules produced by the  PL/I (F)  compiler  may  be  debugged 

  using SDS (the Symbolic Debugging System) and saved for later execution. 

  PL/C, not being a true compiler, does not produce object modules; hence, 

  PL/C-compiled  programs cannot be debugged via SDS.  Since each use of a 

  PL/C program requires recompilation  of  the  source  program,  programs 

  compiled  using  PL/I (F)  or  Optimizing  compilers  are generally more 

  suitable for production work. 

 

     In addition to the descriptions of the two language processors,  this 

  volume also contains descriptions of several auxiliary programs and PL/I 

  subroutines  available  for  PL/I users and a bibliography of other PL/I 

  reference materials. 

 

     This volume  is  not  intended  as  a  replacement  for  other  texts 

  describing  the  PL/I  language specifications.  Except for the sections 

 

                                                      Overview of PL/I  11 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 

  describing data representation and introductory input/output,  only  the 

  differences  between the OS and MTS implementations of the PL/I language 

  are described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  12  Overview of PL/I 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 

 

 

                        COMPILING A PL/I (F) PROGRAM                         ____________________________ 

 

 

 

 

     The public file *PL1 contains the IBM System/360  PL/I (F)  compiler. 

  An  alternate  name for *PL1 is *PL/1.  This compiler loads and executes 

  under its supervision a series of  phases  that  translate  PL/I  source 

  statements into an object module, a set of machine instructions required 

  to  represent  the  source program.  During compilation, *PL1 produces a 

  listing which contains information about  the  source  program  and  the 

  object module, together with possible diagnostic messages.  In addition, 

  the compiler has a facility, the preprocessor or compile-time processor,                                    ____________    ____________ _________ 

  which modifies source statements before the compilation. 

 

     The PL/I compiler is invoked as follows: 

 

       $RUN *PL1 [I/O unit assignments] [PAR=compiler options] 

 

  The  information  in  brackets  is optional and is explained below.  For 

  example, 

 

       $RUN *PL1 SCARDS=T SPUNCH=TT SPRINT=*PRINT* PAR=OPT=2,DIAG 

 

 

 

  MTS LOGICAL I/O UNITS   _____________________ 

 

 

     The compiler uses five logical I/O units: 

 

       SCARDS  - PL/I  source  language  statements.   This  defaults   to 

                 *SOURCE*. 

 

       SPRINT  - compiler  output  listings,  including error messages and 

                 diagnostics.  This defaults to *SINK*. 

 

       SERCOM  - compiler error messages and  diagnostics  when  the  DIAG 

                 option is in effect. 

 

       SPUNCH  - preprocessor-generated  output  source  when  the  MACDCK 

                 option is specified or the object module  when  the  DECK 

                 option (the default) is specified. 

 

       0       - the object module when the LOAD option is specified. 

 

 

 

 

                                          Compiling a PL/I (F) Program  13 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 

  COMPILER OPTIONS   ________________ 

 

 

     Compiler  options  can  be specified in the PAR field of the MTS $RUN 

  command.  For example: 

 

       $RUN *PL1 SCARDS=SOU SPUNCH=OBJ SPRINT=-LIST PAR=LIST,DIAG 

 

  specifies the LIST and DIAG  options.   Options  must  be  separated  by 

  commas  and/or  blanks  and may be specified in any order.  Most options 

  may be abbreviated as indicated in the following table.   These  options 

  are divided into six groups: 

 

     (1)  control  options  used  to  set  the  conditions for compilation 

          (e.g., size of text and dictionary blocks); 

 

     (2)  preprocessor options used to request  the  preprocessor  and  to 

          specify how its output is to be handled; 

 

     (3)  input options used to specify the format of the input; 

 

     (4)  object  options  used to specify the output of the object module 

          and the manner in which it is handled; 

 

     (5)  listing options used to specify the information to  be  included 

          in the compiler listing; 

 

     (6)  diagnostic options used to specify the diagnostics to be printed 

          and the manner in which they are handled. 

 

     The  table below lists all options with abbreviated forms and default 

  values. 

 

 

 

 

 

 

 

 

 

 

 

 

  14  Compiling a PL/I (F) Program 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 

                              Compiler Options                               ________ _______ 

 

  ┌──────────────────────────────────────────────────────────────────────┐                                               ┌              ┌ 
  |          Compiler Options                 |Abbreviated   |Default    | 

  |                                           |Name          |           | 

  |───────────────────────────────────────────┼──────────────┼───────────|   ┌             ┌                                                        ┘ 
  |Control      |SIZE=nP                      |SIZE=nP       |SIZE=4P    | 

  |Options      |EXTDIC/NOEXTDIC              |ED/NED        |NOEXTDIC   | 

  |─────────────┼─────────────────────────────┼──────────────┼───────────|   ┌                                                                      ┘ 
  |Preprocessor |MACRO/NOMACRO                |M/NM          |NOMACRO    | 

  |Options      |SOURCE2/NOSOURCE2            |S2/NS2        |SOURCE2¹   | 
  |             |MACDCK/NOMACDCK              |MD/NMD        |NOMACDCK   | 

  |             |COMP/NOCOMP                  |C/NC          |COMP       | 

  |─────────────┼─────────────────────────────┼──────────────┼───────────|   ┌                                                                      ┘ 
  |Input        |EBCDIC/BCD/TTY               |EB/B/T        |EBCDIC     | 

  |Options      |SORMGIN=(m,n,c)/FREE         |SM=(m,n,c)/F  |SM=(1,72)  | 

  |             |CHAR48/CHAR60                |C48/C60       |CHAR60     | 

  |─────────────┼─────────────────────────────┼──────────────┼───────────|   ┌                                                                      ┘ 
  |Object       |DECK/NODECK                  |D/ND          |DECK       | 

  |Options      |LOAD/NOLOAD                  |LD/NLD        |NOLOAD     | 

  |             |STMT/NOSTMT                  |ST/NST        |STMT       | 

  |             |OPT=n                        |O=n           |OPT=1      | 

  |             |TEST/NOTEST                  |TEST/NOTEST   |NOTEST     | 

  |             |MTS/OS                       |MTS/OS        |MTS        | 

  |─────────────┼─────────────────────────────┼──────────────┼───────────|   ┌                                                                      ┘ 
  |Listing      |LINECNT=nn                   |LC=nn         |LINECNT=60 | 

  |Options      |OPLIST/NOOPLIST              |OL/NOL        |OPLIST¹    | 
  |             |SOURCE2/NOSOURCE2            |S2/NS2        |SOURCE2¹   | 
  |             |SOURCE/NOSOURCE              |S/NS          |SOURCE¹    | 
  |             |NEST/NONEST                  |NT/NNT        |NEST       | 

  |             |NUM/NONUM                    |NUM/NONUM     |NUM        | 

  |             |ATR/NOATR                    |A/NA          |ATR¹       | 
  |             |XREF/NOXREF                  |X/NX          |XREF¹      | 
  |             |EXTREF/NOEXTREF              |E/NE          |NOEXTREF   | 

  |             |LIST/NOLIST                  |L/NL          |NOLIST     | 

  |             |DUMP                         |DP            |           | 

  |─────────────┼─────────────────────────────┼──────────────┼───────────|   ┌                                                                      ┘ 
  |Diagnostic   |DIAG/NODIAG                  |DIAG/NODIAG   |DIAG²      | 
  |Options      |FLAGW/FLAGE/FLAGS            |FW/FE/FS      |FLAGW      | 

  |             |SYNCHKE/SYNCHKS/SYNCHKT      |SKE/SKS/SKT   |SYNCHKS    | 

  └──────────────────────────────────────────────────────────────────────┘                 ┘                             ┘              ┘ 
  ¹This is the default except  when  SPRINT  output  is  assigned  to  the 
   terminal by default. 

  ²DIAG  is the default if SPRINT and SERCOM do not refer to the same file 
   or device or if SPRINT output  is  to  be  suppressed;  otherwise,  the 

   default is NODIAG. 

 

     In  the  option  descriptions  which  follow,  the default values are 

  underlined.  The prefix NO, where applicable, reverses the effect of the 

  option. 

 

 

 

                                          Compiling a PL/I (F) Program  15 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Control Options   _______________ 
 
 
 
  SIZE=nP 
 
       The SIZE option is used to specify the page-size of  the  text  and 
       dictionary  blocks  allocated by the compiler.  These blocks may be 
       one, two, or four pages according  to  the  SIZE  option  (SIZE=1P, 

       SIZE=2P, SIZE=4P).  The default is SIZE=4P.  The text blocks should 

       be  allocated  large enough so that each program statement will fit 

       into the block; DECLARE statements may be  subdivided  into  parts, 

       each  ending  with a level-one comma or a semicolon.  In specifying 

       the  SIZE  option,  consideration  should  also  be  given  to  the 

       expansion of constants such as 

 

            DECLARE A PICTURE ’(4000)X’; 

 

       This  statement fits into one complete dictionary block of SIZE=1P; 

       however, if the statement is written as 

 

            DECLARE A PICTURE ’(8000)X’; 

 

       the statement will not fit into a block of this  size.   When  this 

       occurs, the following error message is generated: 

 

            IEM3844I  IMPLEMENTATION RESTRICTION.  DICTIONARY ENTRY 

            FOR STRING CONSTANT, PICTURE,  DOPE  VECTOR  OR  STATIC 

            INITIAL STRING IS TOO LONG FOR THIS SIZE OPTION. 

 

       In this case, the SIZE option must be increased. 

 

  EXTDIC or NOEXTDIC             ________ 

 

       The EXTDIC option is used to extend the dictionary to 3.5 times the 

       normal dictionary capacity.  If the following message is generated: 

 

            IEM3853I  IMPLEMENTATION  RESTRICTION.   SOURCE PROGRAM 

            TOO LARGE.  DICTIONARY IS FULL. 

 

       the program should be recompiled with the EXTDIC option.   In  most 

       cases,  the  compilation  will  be  successful.   If,  however, the 

       following message is generated: 

 

            IEM3909I  EXTENDED  DICTIONARY  EXCEEDED.   COMPILATION 

            TERMINATED. 

 

       the  program  must be subdivided and recompiled.  The EXTDIC option 

       is recommended  for  large  programs.   The  default  is  NOEXTDIC. 

       Increasing the SIZE option will also alleviate this condition. 

 

 

 

  16  Compiling a PL/I (F) Program 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  Preprocessor Options   ____________________ 
 
 
 
  MACRO or NOMACRO            _______ 
 
       The  MACRO  option  must  be  specified  if the source contains the 
       compile-time statements as  listed  in  the  chapter  "Compile-Time 

       Facilities"  of  the  IBM System/360 Operating System PL/I (F) Lan-                              _____________________________________________ 

       guage Reference  Manual,  form  number  GC28-8201.   The  sole  MTS        _______________________ 

       restriction  to  the  compile-time  statements is that the %INCLUDE 

       statement must be given in the following format: 

 

            %INCLUDE identifier [, ..., identifier ]; 

 

       where "identifier" refers to an MTS file.  The name  of  the  file, 

       however,  must  conform  to  the  PL/I nomenclature of identifiers. 

       That  is,  the  first  letter  must  be  alphabetic,  and  only  31 

       alphanumeric characters are allowed.  The default is NOMACRO. 

 

       In  general,  instead  of  using  the  %INCLUDE  statement,  it  is 

       preferable to use the MTS $CONTINUE  WITH  facility.   This  allows 

       more  freedom for file names and does not require the MACRO option, 

       thus decreasing the cost of the compilation. 

 

  SOURCE2 or NOSOURCE2   _______ 

 

       The SOURCE2 option specifies that a listing of  the  input  to  the 

       preprocessor is to be generated.  NOSOURCE2 suppresses the listing. 

       The  default  is  SOURCE2  if  SPRINT output is not assigned to the 

       terminal by default. 

 

  MACDCK or NOMACDCK             ________ 

 

       The MACDCK option specifies that the preprocessor source output  is 

       to  be written to the file attached to the logical I/O unit SPUNCH. 

       The default is NOMACDCK.  If this output  deck  is  to  be  further 

       processed,  the source margins must be specified as SORMGIN=(2,72). 

       The program *PL1TIDY may be invoked to remove irrelevant blanks and 

       to properly indent statements.  The standard MACDCK  output  format 

       is: 

 

            Column 1       blank 

 

            Columns 2-72   the generated source field 

 

            Columns 73-77  the  input  line  number  from which the source 

                           statement was generated.  This  corresponds  to 

                           the  line  number  in  the  preprocessor  input 

                           listing. 

 

 

 

                                          Compiling a PL/I (F) Program  17 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
            Columns 78-79  a two-digit number giving the maximum depth  of 
                           replacement  for  this line.  If no replacement 
                           occurred, these columns are blank. 
 
            Column 80      E signifies that an error occurred  during  the 
                           replacement.  If no error occurred, this column 
                           is blank. 
 
       The  logical  I/O unit SPUNCH is also used for the DECK option.  If 
       the object module must be separated from  the  preprocessor  source 
       output,  the  option  sequence "MACRO,LOAD,NODECK,MACDCK" should be 
       specified.  This causes the compiler to write the object module  to 
       logical I/O unit 0, and the preprocessor output to the unit SPUNCH. 
 
  COMP or NOCOMP   ____ 
 
       The COMP option specifies that the compiler should compile the PL/I 
       source  output  produced  by the preprocessor.  If NOCOMP is speci- 
       fied, the PL/I source output is not compiled.  The default is COMP. 
 
 
 
  Input Options   _____________ 
 
 
 
  EBCDIC, BCD, or TTY   ______ 
 
       The compiler accepts source written in one of three codes:   EBCDIC 
       (Extended Binary-Coded Decimal Interchange Code), BCD (Binary-Coded 
       Decimal), or TTY (Teletype).  The default is EBCDIC.  EBCDIC is the 
       code  used  by the IBM 029 keypunch and most terminals supported by 
       MTS.  Whenever possible, EBCDIC should be used.  BCD  is  used  for 
       source  statements punched on an IBM 026 keypunch.  TTY is the same 
       as EBCDIC except  for  three  characters  that  are  not  generally 
       available  on Teletypes.  These are represented by other characters 
       as shown below: 
 
          For "|" (vertical bar), enter "\" (reverse slant) with  L-shift. 
 
          For  "_" (underscore), enter either "←" (left-arrow) or "_" both 
                  with O-shift. 
 
          For "¬" (not-sign), enter either "↑" (up-arrow) or  "ˆ"  (caret) 
                  both with N-shift. 
 
  CHAR48 or CHAR60             ______ 
 
       This  option  specifies  which  character set is to be used for the 
       source statements:   the  48-character  set  (CHAR48)  or  the  60- 
       character  set (CHAR60).  The default is CHAR60.  The CHAR48 option 
       should be regarded as a preprocessor option; this  option  must  be 
       specified  if  the  source  to  the  compiler  was  written  in the 

 
  18  Compiling a PL/I (F) Program 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       48-character set instead of the standard  60-character  set.   With 
       the 48-character set, many PL/I symbols are represented by multiple 
       characters.   For  example,  "GE" represents ">=", "CAT" represents 

       "||", ".."   represents  ":";  these  special  representations  are 

       listed  in  "Section  B:  Character Sets with EBCDIC and Card Punch 

       Codes" in the IBM PL/I (F) Language Reference  Manual.   There  are                      _______________________________________ 

       several  restrictions  in using the 48-character set; therefore, it 

       is preferable to use the 60-character set (CHAR60 option), as  this 

       option  completely  skips  the  CHAR48  preprocessor, thus reducing 

       significantly the cost of the compilation. 

 

  SORMGIN=(m,n,c) or FREE 

 

       The SORMGIN  option  specifies  the  beginning  and  ending  column 

       position  of  each input record.  The compiler will not process any 

       data outside these limits.  Optionally,  SORMGIN  can  specify  the 

       position to be used as the carriage-control character in the source 

       listing.  The general format of the SORMGIN option is 

 

            SORMGIN=(m,n[,c]) 

 

       where    "m" represents the beginning column position, 

                "n" represents the ending column position, and 

                "c" represents the carriage-control column position 

 

       There  is  a  restriction  that  1  ≤  m  ≤  n ≤ 100.  The compiler 
       terminates the compilation if it encounters a record with more than 

       100 characters.  Records of length less than the  beginning  column 

       position  "m" are flagged with an "*" in the source listing and are 

       ignored.  The default is SORMGIN=(1,72), which means  the  compiler 

       will  use only the first 72 characters of each record, although the 

       complete record will be printed if the SOURCE option is in  effect. 

 

       Optionally,  "c"  may  be  added  to  specify  the  position of the 

       carriage-control character in each record.  This  must  be  outside 

       the  range (m,n).  For example, SORMGIN=(2,72,1) indicates that the 

       first position is taken as the carriage control and that  positions 

       2  through  72  indicate the field of the source statements.  Valid 

       carriage-control characters are: 

 

                1    start a new page before printing 

                b    skip one line before printing                 / 

                0    skip two lines before printing 

                -    skip three lines before printing 

                +    suppress spacing before printing 

 

       Another option,  FREE,  is  equivalent  to  SORMGIN=(1,100).   FREE 

       specifies  free-formatted source; the source margins are set to the 

       first and the last  characters  of  the  largest  record  that  the 

       compiler can handle. 

 

 

 

                                          Compiling a PL/I (F) Program  19 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Object Options   ______________ 
 
 
 
  DECK or NODECK   ____ 
 
       The  DECK option specifies that an object module is to be generated 
       and written to the logical I/O unit SPUNCH.   Note  that  the  unit 
       SPUNCH is also used by the preprocessor MACDCK option.  The default 
       is DECK. 
 
  LOAD or NOLOAD           ______ 
 
       The  LOAD option specifies that an object module is to be generated 
       and written to logical I/O unit 0.  Note that it  is  possible  for 
       the  compiler  to produce two identical object modules if both DECK 
       and LOAD options are specified.  The default is NOLOAD. 
 
  MTS or OS   ___ 
 
       The MTS option specifies that an object module is to  be  generated 
       for  the MTS system.  The OS option specifies that an object module 
       is to be generated for the OS system.  The default is MTS. 
 
  STMT or NOSTMT   ____ 
 
       The STMT option  specifies  that  the  object  module  include  the 
       necessary  instructions for inserting a statement number into every 
       executable statement.  This statement number is  printed  in  error 
       messages at execution time.  The STMT option slightly increases the 
       execution  time  and the size of the object module.  The default is 
       STMT. 
 
  OPT=n 
 
       The OPT specifies the optimization level.  There are  three  levels 
       of optimization that can affect the object module: 
 
         OPT=0   The  execution-time  storage  requirements  are kept to a 
                 minimum at the expense of  the  object-program  execution 
                 time. 
         OPT=1   The  execution  speed  is  improved  at  the  expense  of 
                 storage.  OPT=1 is the default. 
         OPT=2   This is same as  OPT=1,  but  in  addition  DO-loops  and 
                 subscript  expressions are optimized.  This specification 
                 increases the compilation time but improves the execution 
                 time. 
 
       For the complete  description  of  optimization,  see  the  chapter 
       "Optimization  and  Efficient  Performance"  in  the  IBM  PL/I (F)                                                              _____________ 

       Language Reference Manual.        _________________________ 

 

 

  20  Compiling a PL/I (F) Program 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  TEST or NOTEST           ______ 
 
       The TEST option specifies that the  compiler  produce  SYM  records 
       containing  the  symbolic  data suitable for the Symbolic Debugging 
       System (SDS).  This option is handy for  debugging  PL/I  programs. 

       The default is NOTEST. 

 

 

 

  Listing Options   _______________ 

 

 

 

  LINECNT=nn 

 

       The  LINECNT  option  specifies  the  maximum number of lines to be 

       printed for each page of the  compiler  listing.   The  default  is 

       LINECNT=60. 

 

  OPLIST or NOOPLIST   ______ 

 

       The  OPLIST  option  specifies  that  a complete list of options in 

       effect is to be printed at the start of the compiler listing.   The 

       default  is OPLIST if SPRINT output is not assigned to the terminal 

       by default. 

 

  SOURCE or NOSOURCE   ______ 

 

       The SOURCE option specifies that a listing of either  the  original 

       source  program  or  the  output  from  the  preprocessor  is to be 

       generated if SPRINT output is  not  assigned  to  the  terminal  by 

       default.   The  default  is  SOURCE.  Each source record is printed 

       with the associated statement number and the MTS line  number.   If 

       the  NEST option is in effect, the PROCEDURE and BEGIN block levels 

       and DO-group levels are printed.  If the NUM option is  in  effect, 

       the  line  numbers  of  the  source are also printed.  The table of 

       storage requirements and the  statistics  are  also  printed.   The 

       following  is a sample source listing for a typical source program. 

 

       Example: 

 

           STMT LEVEL NEST 

             1               1.000 SAMPLE: PROCEDURE OPTIONS(MAIN); 

             2     1         2.000         DECLARE ARRAY(15) FIXED BINARY, 

                             3.000                 XYZ FLOAT; 

             3     1         4.000           BEGIN; 

             4     2         5.000 LABEL:      DO; 

             5     2   1     6.000               DO I=1 TO 15; 

             6     2   2     7.000               ARRAY(I)=I; 

             7     2   2     8.000             END LABEL; 

             9     2         9.000           END; 

            10     1        10.000         PUT LIST(ARRAY) ; 

            11     1        11.000         END; 

 

                                          Compiling a PL/I (F) Program  21 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       Below is a sample listing of storage requirements and statistics. 
 
       Example: 
 
                 STORAGE REQUIREMENTS                  ____________________ 
 
                 THE STORAGE AREA FOR THE PROCEDURE  LABELED  SAMPLE 
                 IS 224 BYTES LONG. 
 
                 THE STORAGE AREA (IN STATIC) FOR THE BEGIN BLOCK AT 

                 STATEMENT NO. 3 IS 180 BYTES LONG. 

 

                 THE  PROGRAM CSECT IS NAMED SAMPLE AND IS 454 BYTES 

                 LONG. 

 

                 THE STATIC CSECT IS NAMED *SAMPLEA AND IS 292 BYTES 

                 LONG. 

 

          *STATISTICS* SOURCE RECORDS = 11, PROG TEXT STMNTS  =  11, 

          OBJECT BYTES = 454 

 

       The  storage  areas are shown for every procedure, begin block, and 

       ON-unit.  Some  storage  areas  are  already  initialized  to  save 

       execution  time;  they  are  shown by the words "(IN STATIC)".  The 

       lengths of two control sections are shown in bytes.  The  first  is 

       the  program  control  section,  which  contains  all  the  machine 

       instructions.  The second is  the  static  control  section,  which 

       contains  all internal static variables, static dynamic save areas, 

       and constants. 

 

       The last two lines in the example above show the number  of  source 

       records,  the  number  of  statements,  and  the size of the object 

       modules in bytes.  If the preprocessor  was  used,  the  number  of 

       input records to the preprocessor is also shown. 

 

  ATR or NOATR   ___ 

 

       The  ATR  option specifies that the compiler produce a table of all 

       identifiers, in  alphabetic  order,  with  their  attributes.   The 

       default  is ATR if SPRINT output is not assigned to the terminal by 

       default.  Identifiers with precision FIXED BINARY  (15,0)  or  less 

       are  flagged  with "********", which indicates that the identifiers 

       contain binary 16-bit halfwords (15 binary bits plus a  sign  bit). 

       If  the  variable  has  been  declared, the statement number of the 

       DECLARE statement  is  shown  under  the  heading  "DCL  NO."   The 

       attributes  INTERNAL and REAL may be assumed unless the conflicting 

       attributes EXTERNAL or COMPLEX appear in the attribute listing.  If 

       the variable is an  array,  its  dimension  is  printed  first  but 

       expressions within bounds are replaced by asterisks.  Similarly, if 

       the variable is a character or bit string, its length is shown just 

       after  the word STRING; however, if the length was determined by an 

       expression, it is shown by an asterisk. 

 

 

  22  Compiling a PL/I (F) Program 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       In addition, the compiler  produces  the  Aggregate  Length  Table, 
       giving  the  length  in  bytes  for  arrays and structures.  If the 
       length is not  known  at  compilation  time  because  an  aggregate 
       contains elements with adjustable lengths or dimensions, or because 
       the aggregate is dynamically defined, the length is shown as either 
       ADJUSTABLE or DEFINED. 
 
  XREF or NOXREF   ____ 
 
       The  XREF option specifies that the compiler produce a table of all 
       identifiers in alphabetical order, together with statement  numbers 
       of  all  statements  in  which  they  occur if SPRINT output is not 
       assigned to the terminal by default.  The default is XREF.  If both 
       ATR and XREF are  specified  (the  default),  the  two  tables  are 

       combined into one. 

 

       The  sample  source  program  shown  above  will produce a table of 

       attributes and cross-references as follows. 

 

       Example: 

 

 

                           ATTRIBUTES AND CROSS-REFERENCE TABLE 

 

       DCL NO.         IDENTIFIER   ATTRIBUTES AND REFERENCES 

 

         2   ********  ARRAY      (15)AUTOMATIC,ALIGNED,BINARY,FIXED(15,0) 

                                  6,10 

 

             ********  I          AUTOMATIC,ALIGNED,BINARY,FIXED(15,0) 

                                  5,6,6 

 

         4             LABEL      STATEMENT LABEL CONSTANT 

 

         1             SAMPLE     ENTRY,DECIMAL,FLOAT(SINGLE) 

 

                       SPRINT     FILE,EXTERNAL 

                                  10 

 

         2             XYZ        AUTOMATIC,ALIGNED,DECIMAL,FLOAT(SINGLE) 

 

 

                            AGGREGATE LENGTH TABLE 

 

       STATEMENT NO.   IDENTIFIER   LENGTH IN BYTES 

 

         2             ARRAY           30 

 

       Note that labels referenced by END statements are not  included  in 

       the  cross-reference  listing.   Here,  the  compiler  replaces the 

       statement "END LABEL;" by two "END;" statements. 

 

 

                                          Compiling a PL/I (F) Program  23 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  EXTREF or NOEXTREF             ________ 
 
       The option EXTREF specifies that the  compiler  list  the  External 
       Symbol  Dictionary  (ESD).  The default is NOEXTREF.  The first ESD 

       in the listing is the program control section, usually named as the 

       first label of the external procedure statement.   The  second  ESD 

       entry  is  the  static  control  section.  The standard ESD entries 

       follow.  Finally, all  entry  labels,  external  static  variables, 

       controlled  variables, pseudo-registers for each PROCEDURE or BEGIN 

       statement, and all external routines are listed in the ESD listing. 

 

       Example: 

 

                             EXTERNAL SYMBOL DICTIONARY 

                         SYMBOL   TYPE  ID    ADDR   LENGTH 

 

                        SAMPLE     SD  0001  000000  0001C6 

                        *SAMPLEA   SD  0002  000000  000124 

                        IHEQINV    PR  0003  000000  000004 

                        IHESADA    ER  0004  000000 

                        IHESADB    ER  0005  000000 

                        IHEQERR    PR  0006  000000  000004 

                        IHEQTIC    PR  0007  000000  000004 

                        IHEMAIN    SD  0008  000000  000004 

                        IHENTRY    SD  0009  000000  00000C 

                        IHESAPC    ER  000A  000000 

                        IHEQLWF    PR  000B  000000  000004 

                        IHEQSLA    PR  000C  000000  000004 

                        IHEQLW0    PR  000D  000000  000004 

                        *SAMPLEB   PR  000E  000000  000004 

                        *SAMPLEC   PR  000F  000000  000004 

                        IHELDOB    ER  0010  000000 

                        IHEIOBT    ER  0011  000000 

                        IHEIOBA    ER  0012  000000 

                        IHESAFA    ER  0013  000000 

                        IHESPRT    SD  0014  000000  000038 

                        IHEQSPR    PR  0015  000000  000004 

 

       The headings in an ESD table have the following meanings: 

 

           SYMBOL     The eight-character name of the external symbol. 

 

           TYPE       The two-character type of the external symbol: 

 

                      SD - section definition 

                      LD - label definition 

                      PR - pseudo-register 

                      ER - external reference 

                      CM - common section 

 

           ID         A four-digit hexadecimal  number,  numbered  sequen- 

                      tially starting from 0001. 

 

 

  24  Compiling a PL/I (F) Program 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
           ADDR       The  six-digit  hexadecimal  address  of the symbol, 
                      always zero. 
 
           LENGTH     The six-digit hexadecimal length of the symbol. 
 
  LIST or NOLIST           ______ 
 
       The LIST option specifies that a complete list of the object module 
       is to be generated.  The default is NOLIST.  The  list  contains  a 
       map  of  the  static  control  sections  and  a list of the machine 
       instructions as described in IBM System/370  Principles  of  Opera-                                     ______________________________________ 
       tion,  form number GA22-7000.  The list is printed in double-column        ____ 
       format, unless the LINECNT option specifies more than 72 lines  per 
       page  or  the  total lines remaining are less than the LINECNT.  In 
       these cases, single-column format is used. 
 
       For full details of the object module listing,  the  reader  should 
       consult  the  IBM System/360 Operating System PL/I (F) Programmer’s                      _____________________________________________________ 

       Guide, form number GC28-6594.        _____ 

 

       If SOURCE, NOSTMT, and NOLIST are in effect, the compiler  produces 

       a  table  of  offsets  and  statement  numbers  with procedures and 

       ON-units.  This should be useful,  for  example,  if  an  execution 

       error  shows  the  offsets  from  a  certain procedure but gives no 

       statement number. 

 

       Example: 

 

         TABLE OF OFFSETS AND STATEMENT NUMBERS WITHIN PROCEDURE SAMPLE 

 

         OFFSET (HEX)   0000  0068  0068  0070  0082  009A  009A  00A0 

         STATEMENT NO.     1     4     5     6     7     8     9    10 

 

         OFFSET (HEX)   00E0 

         STATEMENT NO.    11 

 

  DUMP 

 

       The DUMP option, used only in case of a compiler failure, specifies 

       that the compiler should dump on SPRINT a listing of  the  compiler 

       modules, compiler storage, and all text and dictionary blocks. 

 

 

  Diagnostic Options   __________________ 

 

 

 

  DIAG or NODIAG   ____ 

 

       The  DIAG  option  specifies that the compiler print the diagnostic 

       messages on SERCOM.  The default is DIAG if SPRINT  and  SERCOM  do 

       not  refer  to the same file or device or if SPRINT output is to be 

       suppressed.  Otherwise, the the default is NODIAG. 

 

                                          Compiling a PL/I (F) Program  25 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       Example: 
 
            #$RUN *PL1 SCARDS=T SPUNCH=Q SPRINT=*PRINT* PAR=DIAG 

            #EXECUTION BEGINS 

 

             PROCEDURE T: SYNTAX CHECK COMPLETED. COMPILATION CONTINUES. 

 

                 COMPILER DIAGNOSTICS. 

 

             WARNINGS. 

 

                 IEM0227I         NO FILE/STRING  OPTION  SPECIFIED 

                 IN  ONE OR MORE GET/PUT STATEMENTS.  SCARDS/SPRINT 

                 HAS BEEN ASSUMED IN EACH CASE. 

 

             END OF DIAGNOSTICS. 

            #EXECUTION TERMINATED 

 

       The compiler generates diagnostic messages beginning with "IEMnnnI" 

       where "nnn"  represents  the  message  number.   The  IBM  PL/I (F)                                                              _____________ 

       Programmer’s  Guide lists all messages in numeric order.  If one or        ___________________ 

       both of the CHAR48 or MACRO options are  in  effect,  the  compiler 

       also  produces  preprocessor  diagnostic messages immediately after 

       the listing of the source to the preprocessor. 

 

       The messages are grouped according to their severity: 

 

            WARNING             (W)  A  warning  calling  attention  to  a 

                                     possible error. 

            ERROR               (E)  An  error  was  found in a statement, 

                                     but was corrected by the compiler. 

            SEVERE ERROR        (S)  A severe error was found which cannot 

                                     be  corrected  by  the  compiler.   A 

                                     partial   or   whole   statement   is 

                                     deleted. 

            TERMINATION ERROR   (T)  An error was found which forces  ter- 

                                     mination of the compilation. 

 

 

  FLAGW, FLAGE, or FLAGS   _____ 

 

       The FLAG option controls printing of the diagnostics by setting the 

       minimum severity. 

 

            FLAGW     prints all diagnostics. 

            FLAGE     prints all diagnostics except warnings. 

            FLAGS     prints only severe and termination errors. 

 

       The default is FLAGW. 

 

 

 

  26  Compiling a PL/I (F) Program 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  SYNCHKE, SYNCHKS, or SYNCHKT            _______ 
 
       After  the  syntax  checking,  the  compiler  tests the severity of 
       errors produced.  It prints one of two messages: 
 
            PROCEDURE p: SYNTAX CHECK COMPLETED. COMPILATION CONTINUES. 
 
       or 
 
            PROCEDURE p: SYNTAX CHECK COMPLETED. COMPILATION TERMINATED. 
 
       where "p" is the first label of the external procedure. 

 

       If  the  compiler  terminates  compilation,  no  object  module  is 

       produced.   The  conditions for terminating depend on the choice of 

       options: 

 

            SYNCHKE - terminates compilation if there are  any  errors  of 

                      severity ERROR or above. 

 

            SYNCHKS - terminates  compilation if errors of severity SEVERE 

                      ERROR or above exist. 

 

            SYNCHKT - terminates compilation only if there are TERMINATION 

                      errors. 

 

       The default is SYNCHKS. 

 

 

 

  MULTIPLE COMPILATION   ____________________ 

 

 

     More than one program may be processed during a  single  run  of  the 

  compiler.  This is achieved by placing, before the second and subsequent 

  external procedures, a %PROCESS statement of the form: 

 

       %PROCESS(’options’); 

 

  where  "options"  indicates  a list of compiler options, enclosed within 

  primes.  The percent sign must be in the first character of the  record. 

  There can be any number of blanks 

 

     (1)  between the percent sign and the word PROCESS; 

     (2)  between the word PROCESS and the left parenthesis "("; 

     (3)  between a parenthesis and a prime; 

     (4)  between the right parenthesis ")" and the semicolon ";". 

 

     If no options are to be specified, the statement may be given as 

 

       %PROCESS; 

 

 

                                          Compiling a PL/I (F) Program  27 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  The  option  values will be carried over from the preceding option list, 
  whether specified in a PAR field or in a previous %PROCESS statement. 

 

     Example: 

 

       $RUN *PL1 SPUNCH=OBJ1 0=OBJ2 

 

            (external procedure 1) 

 

       %PROCESS(’LOAD,NODECK’); 

 

            (external procedure 2) 

 

       %PROCESS; 

 

            (external procedure 3) 

 

       $ENDFILE 

 

  In this  example,  there  is  only  one  $RUN  command;  thus,  all  I/O 

  assignments necessary for the three external procedures must be included 

  on  it.   The  file  OBJ1,  assigned  to the unit SPUNCH, has the object 

  module for the first external procedure, and the file OBJ2, assigned  to 

  the  unit  0,  has  the  object  module  of the second and last external 

  procedures. 

 

 

 

  RETURN CODES   ____________ 

 

 

     At the end of single or multiple compilation, the compiler  sets  the 

  return  code,  which is printed on the message beginning with "EXECUTION 

  TERMINATED" provided that the MTS RCPRINT option is not set to OFF.  The 

  return codes and their meanings are indicated below: 

 

 

       Code                     Meaning        ____                     _______ 

 

         0   No diagnostic messages issued; compilation completed  without 

             error; successful execution anticipated. 

 

         4   Warning messages only issued; compilation completed; success- 

             ful execution probable. 

 

         8   Error   messages  issued;  compilation  completed,  but  with 

             errors; execution may fail. 

 

        12   Severe error  messages  issued;  compilation  may  have  been 

             completed,  but with errors; successful execution improbable. 

 

        16   Termination error  messages  issued;  compilation  terminated 

             abnormally; successful execution impossible. 

 

  28  Compiling a PL/I (F) Program 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                          PL/I OPTIMIZING COMPILER                           ________________________ 
 
 
 
 
     The  public  file  *PL1OPT  contains  the  MTS version of IBM OS PL/I 

  Optimizing Compiler (release 3.1 with PTF 070).  This compiler loads and 

  executes, under its supervision, a series of phases that translate  PL/I 

  source  statements  into an object module, a set of machine instructions 

  required to represent the source program.  During  compilation,  *PL1OPT 

  produces  a  listing  that contains information about the source program 

  and the object module, together with possible diagnostic  messages.   In 

  addition,  the compiler has a facility, the preprocessor or compile-time                                               ____________    ____________ 

  processor, that modifies source statements before the compilation.   _________ 

 

     The compiler provides a number of options, both at  compile-time  and 

  at run-time.  Options that can be specified at compile-time are known as 

  compiler  options.   Options that can be specified at run-time are known   ________  _______ 

  as run-time options.      ________ _______ 

 

     Compiler options, their abbreviated forms,  and  their  defaults  are 

  shown  in Figures 1 and 2; run-time options are shown in Figure 1 in the 

  section "Run-Time Options." 

 

     Also provided is the ability to pass an argument  to  the  PL/I  main 

  procedure.   This facility is described in "Specifying Run-Time Options" 

  in the section "Run-Time Options." 

 

     The PL/I Optimizing Compiler is invoked as follows: 

 

       $RUN *PL1OPT [I/O unit assignments] [PAR=compiler options] 

 

  The information in brackets is optional and  is  explained  below.   For 

  example, 

 

       $RUN *PL1OPT SCARDS=T SPUNCH=TT SPRINT=*PRINT* PAR=OPT(TIME),SMSG 

 

 

 

  MTS LOGICAL I/O UNITS   _____________________ 

 

 

     The compiler uses the following logical I/O units: 

 

       SCARDS  - PL/I   source  language  statements.   This  defaults  to 

                 *SOURCE*. 

 

       SPRINT  - compiler output listings,  including  diagnostics.   This 

                 defaults to *SINK*. 

 

 

                                              PL/I Optimizing Compiler  29 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       SERCOM  - output for TERMINAL option, especially diagnostics.  This 
                 defaults to *MSINK*. 

 

       SPUNCH  - preprocessor-generated  output  source  when the MDECK is 

                 specified, or  the  object  module  when  the  DECK  (the 

                 default) is specified. 

 

       0       - the object module when the OBJECT option is specified. 

 

       1-19    - macro libraries for %INCLUDE statements. 

 

     In  addition, the compiler also uses the temporary file -##SYSUT1 for 

  a spill file as a logical extension to main storage.  If the SIZE option     _____ ____ 

  is too small, some parts of main storage will be spilled  to  the  file. 

  These parts consist of text and dictionary information. 

 

 

 

  SPECIFYING COMPILER OPTIONS   ___________________________ 

 

 

     For  each  compilation,  the default for a compiler option will apply 

  unless it is overridden by specifying the option in a PROCESS  statement 

  or in the PAR field of a $RUN command. 

 

     An option specified in the PAR field overrides the default value, and 

  an option specified in a PROCESS statement overrides both that specified 

  in the PAR field and the default value. 

 

     Where  conflicting  attributes  are  specified,  either explicitly or 

  implicitly by the specification of other options, the latest implied  or 

  explicit  option  is  accepted.   No  diagnostic  message  is  issued to 

  indicate that any options are overridden in this way. 

 

 

 

  Specifying Compiler Options in the $RUN Command   _______________________________________________ 

 

 

     To specify options in the $RUN command, code  PAR=  followed  by  the 

  list  of  options,  in  any order, separating the options with commas or 

  blanks.  For example: 

 

       $RUN *PL1OPT PAR=OBJECT,LIST 

 

 

 

  Specifying Compiler Options in the /PROCESS statement   _____________________________________________________ 

 

 

     To specify options in the PROCESS statement, code as follows: 

 

 

  30  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       / PROCESS options; 
 
  where "options" is a list of compiler options.  The list of options must 

  be terminated with a semicolon and should not extend beyond  column  72. 

  The slash must appear in column 1.  (An asterisk "*" may be used instead 

  of  the slash.)  The keyword PROCESS may follow in column 2 or after any 

  number of blanks.  Option keywords must be separated by a  comma  and/or 

  at least one blank. 

 

     Blanks  are  permitted before and after any nonblank delimiter in the 

  list, with the exception of strings within quotation marks, for  example 

  MARGINI(’*’), in which padding blanks should not be inserted. 

 

     The number of characters is limited only by the length of the record. 

  If no options are to be specified, code: 

 

       / PROCESS ; 

 

     Should  it  be  necessary  to continue the PROCESS statement onto the 

  next card or record, terminate the first part  of  the  list  after  any 

  delimiter,  up  to  column  72, and continue on the next card or record. 

  Option keywords or keyword arguments may be  split,  if  required,  when 

  continuing  onto  the next record, provided that the keyword or argument 

  string terminates in column 72, and the remainder of the  string  starts 

  in  column  1.   A  PROCESS statement may be continued in several state- 

  ments, or a new PROCESS statement started.  For the use of  the  PROCESS 

  statement with multiple compilation, see "Multiple Compilation" later in 

  this section. 

 

 

 

  COMPILER OPTIONS   ________________ 

 

 

     The compiler options are of the following types: 

 

     (1)  Simple  pairs  of  keywords:   a positive form, e.g., NEST, that 

          requests a facility, and an  alternative  negative  form,  e.g., 

          NONEST, that rejects that facility. 

 

     (2)  Keywords  that  allow  a  value-list  that qualifies the option, 

          e.g., NOCOMPILE(E). 

 

     (3)  A combination of (1) and (2) above. 

 

     The following paragraphs describe the options  in  alphabetic  order. 

  For those options that specify that the compiler is to list information, 

  only a brief description is included. 

 

     Figure  1 lists all the compiler options with their abbreviated forms 

  and their default values.  Figure 2 lists the  options  by  function  so 

  that  the  user  can,  for  example,  determine  the  options  that  are 

  applicable to preprocessing. 

 

                                              PL/I Optimizing Compiler  31 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  ┌──────────────────────────────────────────────────────────────────────┐                                     ┌                      ┌ 
  | Compiler Option                 | Abbreviation         | Default     | 
  |─────────────────────────────────┼──────────────────────┼─────────────|   ┌                                                                      ┘ 
  |                                 |                      |             | 
  | AGGREGATE|NOAGGREGATE           | AG|NAG               | NOAGGREGATE | 
  | ATTRIBUTES[(FULL|SHORT)]|       | A[(F|S)]|NA          | Print:      | 

  |   NOATTRIBUTES                  |                      | ATTRIBUTES  | 

  |                                 |                      |   (FULL)    | 

  |                                 |                      | Nonprint:   | 

  |                                 |                      | NOATTRIBUTES| 

  | CHARSET([48|60] [EBCDIC|BCD])   | CS([48|60] [EB|B])   | CHARSET     | 

  |                                 |                      |   (60 EB)   | 

  | COMPILE|NOCOMPILE[(W|E|S)]      | C|NC[(W|E|S)]        | NOCOMPILE(S)| 

  | COUNT|NOCOUNT                   | CT|NCT               | NOCOUNT     | 

  | DECK|NODECK                     | D|ND                 | DECK        | 

  | DUMP|NODUMP                     | DU|NDU               | NODUMP      | 

  | ESD|NOESD                       | -                    | NOESD       | 

  | FLAG[(I|W|E|S)]                 | F[(I|W|E|S)]         | Print:      | 

  |                                 |                      | FLAG(I)     | 

  |                                 |                      | Nonprint:   | 

  |                                 |                      | FLAG(W)     | 

  | FLOW[(n,m)]                     | -                    | NOFLOW      | 

  | GONUMBER|NOGONUMBER             | GN|NGN               | NOGONUMBER  | 

  | GOSTMT|NOGOSTMT                 | GS|NGS               | GOSTMT      | 

  | INCLUDE|NOINCLUDE               | INC|NINC             | NOINCLUDE   | 

  | INSOURCE|NOINSOURCE             | IS|NIS               | Print:      | 

  |                                 |                      | INSOURCE    | 

  |                                 |                      | Nonprint:   | 

  |                                 |                      | NOINSOURCE  | 

  | INTERRUPT|NOINTERRUPT           | INT|NINT             | NOINTERRUPT | 

  | LINECOUNT(n)                    | LC(n)                | LC(60)      | 

  | LIST[(m[,n])]|NOLIST            | -                    | NOLIST      | 

  | LMESSAGE|SMESSAGE               | LMSG|SMSG            | Print:      | 

  |                                 |                      | LMESSAGE    | 

  |                                 |                      | Nonprint:   | 

  |                                 |                      | SMESSAGE    | 

  | MACRO|NOMACRO                   | M|NM                 | NOMACRO     | 

  | MAP|NOMAP                       | -                    | NOMAP       | 

  | MARGINI(’c’)|NOMARGINI          | MI(’c’)|NMI          | MARGINI(’|’)| 

  | MARGINS(m,n[,c])                | MAR(m,n[,c])         | MAR(1,72)   | 

  | MDECK|NOMDECK                   | MD|NMD               | NOMDECK     | 

  | NEST|NONEST                     | -                    | NEST        | 

  | NUMBER|NONUMBER                 | NUM|NNUM             | NONUMBER    | 

  | OBJECT|NOOBJECT                 | OBJ|NOBJ             | NOOBJECT    | 

  | OFFSET|NOOFFSET                 | OF|NOF               | NOOFFSET    | 

  | OPTIMIZE(TIME|0|2)|NOOPTIMIZE   | OPT(TIME|0|2)|NOPT   | NOOPTIMIZE  | 

  └──────────────────────────────────────────────────────────────────────┘                                     ┘                      ┘ 
 

  Figure 1 (Part 1 of 2).  Compiler options, abbreviations, and  defaults. 

 

 

 

  32  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  ┌──────────────────────────────────────────────────────────────────────┐                                     ┌                      ┌ 
  | Compiler Option                 | Abbreviation         | Default     | 
  |─────────────────────────────────┼──────────────────────┼─────────────|   ┌                                                                      ┘ 
  | OPTIONS|NOOPTIONS               | OP|NOP               | Print:      | 
  |                                 |                      | OPTIONS     | 
  |                                 |                      | Nonprint:   | 
  |                                 |                      | NOOPTIONS   | 
  | SEQUENCE(m,n)|NOSEQUENCE        | SEQ(m,n)|NSEQ        | NOSEQUENCE  | 

  | SIZE([-]yyyyy[K|P]|MAX)         | SZ([-]yyyyy[K|P]|MAX)| SIZE(50P)   | 

  | SOURCE|NOSOURCE                 | S|NS                 | Print:      | 

  |                                 |                      | SOURCE      | 

  |                                 |                      | Nonprint:   | 

  |                                 |                      | NOSOURCE    | 

  | STMT|NOSTMT                     | -                    | STMT        | 

  | STORAGE|NOSTORAGE               | STG|NSTG             | NOSTORAGE   | 

  | SYNTAX|NOSYNTAX[(W|E|S)]        | SYN|NSYN[(W|E|S)]    | NOSYNTAX(S) | 

  | TERMINAL[(optlist)]|NOTERMINAL  | TERM[(optlist)]      | Batch:      | 

  |                                 | NTERM                | NOTERMINAL  | 

  |                                 |                      | Terminal:   | 

  |                                 |                      | TERMINAL    | 

  | XREF[(FULL|SHORT)]              | X[(F|S)]|NX          | Print:      | 

  |                                 |                      | XREF(FULL)  | 

  |                                 |                      | Nonprint:   | 

  |                                 |                      | NOXREF      | 

  └──────────────────────────────────────────────────────────────────────┘                                     ┘                      ┘ 
 

  Figure  1 (Part 2 of 2).  Compiler options, abbreviations, and defaults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              PL/I Optimizing Compiler  33 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
  ┌──────────────────────────────────────────────────────────────────────┐ 
  | Compiler Options Listed by Function (Part 1)                         | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | LISTING OPTIONS                                                      | 

  |                                                                      | 

  | Control listings produced                                            | 

  |                                                                      | 

  |   AGGREGATE                 list of aggregates and their sizes.      | 

  |   ATTRIBUTES[(FULL|SHORT)]  list of attributes of identifiers.       | 

  |   ESD                       list of external symbol dictionary.      | 

  |   INSOURCE                  list of preprocessor input.              | 

  |   FLAG(I|W|E|S)             suppress diagnostics messages below  a   | 

  |                             certain severity.                        | 

  |   LIST                      list   compiled   code   produced   by   | 

  |                             compiler.                                | 

  |   MAP                       lists offsets of variables  in  static   | 

  |                             control sections and DSAs.               | 

  |   OFFSET                    list  of  statement numbers with their   | 

  |                             associated offsets.                      | 

  |   OPTIONS                   list of options used.                    | 

  |   SOURCE                    list of source program or preprocessor   | 

  |                             output.                                  | 

  |   STORAGE                   list of storage used.                    | 

  |   XREF[(SHORT|FULL)]        list of statements in which each iden-   | 

  |                             tifier is used.                          | 

  |                                                                      | 

  | Improve readability of source listing                                | 

  |                                                                      | 

  |   NEST                      indicates do-group and block level  by   | 

  |                             numbering in margin.                     | 

  |   MARGINI                   highlights any source outside margins.   | 

  |                                                                      | 

  | Control lines per page of listing                                    | 

  |                                                                      | 

  |   LINECOUNT                 specifies  number of lines per page on   | 

  |                             listing.                                 | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | INPUT OPTIONS                                                        | 

  |                                                                      | 

  |   CHARSET                   identify the  character  set  used  in   | 

  |                             source.                                  | 

  |   MARGINS                   identify position of PL/I source and a   | 

  |                             carriage control character.              | 

  |   SEQUENCE                  specify  the columns used for sequence   | 

  |                             numbers.                                 | 

  └──────────────────────────────────────────────────────────────────────┘ 
 

  Figure 2 (Part 1 of 3).  Compiler options arranged by function. 

 

 

 

  34  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
  ┌──────────────────────────────────────────────────────────────────────┐ 
  | Compiler Options Listed by Function (Part 2)                         | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | OPTIONS TO PREVENT UNNECESSARY PROCESSING                            | 

  |                                                                      | 

  |   NOSYNTAX(W|E|S)           stop processing after errors are found   | 

  |                             in preprocessing.                        | 

  |   NOCOMPILE(W|E|S)          stop processing after errors are found   | 

  |                             in syntax checking.                      | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | OPTIONS FOR PREPROCESSING                                            | 

  |                                                                      | 

  |   INCLUDE                   allows secondary input to be  included   | 

  |                             without using preprocessor.              | 

  |   MACRO                     allows preprocessor to be used.          | 

  |   MDECK                     produces a source deck from preproces-   | 

  |                             sor output.                              | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | OPTIONS TO IMPROVE PERFORMANCE                                       | 

  |                                                                      | 

  |   OPTIMIZE/NOOPTIMIZE       OPTIMIZE  improves  execution  perfor-   | 

  |                             mance but increases compilation  time.   | 

  |                             NOOPTIMIZE does the reverse.             | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | OPTIONS TO USE WHEN PRODUCING AN OBJECT MODULE                       | 

  |                                                                      | 

  |   OBJECT                    produce an object module from compiled   | 

  |                             output.                                  | 

  |   DECK                      produce an object module in punch card   | 

  |                             format.                                  | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | OBJECT TO CONTROL STORAGE USED                                       | 

  |                                                                      | 

  |   SIZE                      controls the amount of storage used by   | 

  |                             the compiler.                            | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | OPTIONS TO IMPROVE USABILITY AT A TERMINAL                           | 

  |                                                                      | 

  |   TERMINAL                  specifies   how  much  of  listing  is   | 

  |                             transmitted to terminal.                 | 

  |   SMESSAGE/LMESSAGE         specifies  concise  or  full   message   | 

  |                             format.                                  | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | OPTIONS TO SPECIFY STATEMENT NUMBERING SYSTEM USED                   | 

  |                                                                      | 

  |   NUMBER & GONUMBER         numbers  statements  according to line   | 

  |                             on which they start.                     | 

  |   STMT & GOSTMT             numbers statements sequentially.         | 

  └──────────────────────────────────────────────────────────────────────┘ 
 

  Figure 2 (Part 2 of 3).  Compiler options arranged by function. 

 

 

                                              PL/I Optimizing Compiler  35 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
  ┌──────────────────────────────────────────────────────────────────────┐ 
  | Compiler Options Listed by Function (Part 3)                         | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | OPTIONS FOR USE WHEN DEBUGGING                                       | 

  |                                                                      | 

  |   COUNT                     generate code that, if run-time  COUNT   | 

  |                             is  specified,  will result in a count   | 

  |                             of the number of times each  statement   | 

  |                             is executed.                             | 

  |   FLOW                      generate  code  that, if run-time FLOW   | 

  |                             is specified, will result in  a  trace   | 

  |                             of statements executed being retained.   | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | OPTIONS TO CONTROL EFFECT OF ATTENTION INTERRUPTS                    | 

  |                                                                      | 

  |   INTERRUPT                 specifies that the ATTENTION condition   | 

  |                             will  be  raised  after  an  attention   | 

  |                             interrupt occurs.                        | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | OPTIONS FOR USE WHEN DEBUGGING COMPILER                              | 

  |                                                                      | 

  |   DUMP                      produces a dump if the compiler termi-   | 

  |                             nates abnormally (ignored if  used  in   | 

  |                             /PROCESS statement).                     | 

  └──────────────────────────────────────────────────────────────────────┘ 
 

  Figure 2 (Part 3 of 3).  Compiler options arranged by function. 

 

  AGGREGATE Option   ________________ 

 

       The  AGGREGATE  option specifies that the compiler is to include in 

       the compiler listing an aggregate length table, giving the  lengths 

       of all arrays and major structures in the source program. 

 

       Output example: 

                              AGGREGATE LENGTH TABLE 

 

       DCL NO.   IDENTIFIER   LVL    DIMS      OFFSET  ELEMENT    TOTAL 

                                                        LENGTH.    LENGTH. 

       2         ARRAY                  1                     2         30 

                                          SUM OF CONSTANT LENGTHS       30 

 

  ATTRIBUTES[(FULL|SHORT)] Option   _______________________________ 

 

       The  ATTRIBUTES option specifies that the compiler is to include in 

       the compiler listing a  table  of  source-program  identifiers  and 

       their  attributes.   If  both  ATTRIBUTES  and  XREF apply, the two 

       tables are combined. 

 

       Unreferenced identifiers are marked by a series of asterisks. 

 

 

  36  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       If SHORT is specified, unreferenced identifiers are omitted, making 
       the listing more manageable. 
 
       If both ATTRIBUTES and XREF apply, and there is a conflict  between 
       SHORT  and  FULL, the usage is determined by the last option found. 
       For example, ATTRIBUTES(SHORT) XREF(FULL) results in FULL  applying 

       to the combined listing. 

 

       The  suboption  default FULL means that FULL applies, if the option 

       is specified with no suboption. 

 

       Output example: 

                           ATTRIBUTE AND CROSS-REFERENCE TABLE (FULL) 

 

       DCL NO.    IDENTIFIER    ATTRIBUTES AND REFERENCES 

 

       2          ARRAY         (15) AUTOMATIC ALIGNED BINARY FIXED (15,0) 

                                9 

                                6 

       ********   I             AUTOMATIC ALIGNED BINARY FIXED (15,0) 

                                5,5,6,6 

       4          LABEL         /* STATEMENT LABEL CONSTANT */ 

       1          SAMPLE        EXTERNAL ENTRY RETURNS(DECIMAL 

                                /* SINGLE */ FLOAT (6)) 

       ********   SYSPRINT      EXTERNAL FILE PRINT 

                                9 

       2          XYZ           AUTOMATIC ALIGNED DECIMAL 

                                /* SINGLE */ FLOAT (6) 

 

  CHARSET Option   ______________ 

 

       The CHARSET option specifies the character set and data  code  that 

       is  used  to  create  the source program.  The compiler will accept 

       source programs written in the 60-character set or the 48-character 

       set, and in the Extended  Binary  Coded  Decimal  Interchange  Code 

       (EBCDIC) or Binary Coded Decimal (BCD). 

 

       60-  or  48-character Set:  If the source program is written in the        _________________________ 

       60-character set, specify CHARSET(60); if  it  is  written  in  the 

       48-character  set,  specify  CHARSET(48).   The  language reference 

       manual for this compiler lists both of these character sets.   (The 

       compiler  will  accept  source programs written in either character 

       set if CHARSET(48) is specified.  However,  if  the  reserved  key- 

       words,  for  example CAT or LE, are used as identifiers, errors may 

       occur.) 

 

       BCD or EBCDIC:  If the source program is written  in  BCD,  specify        _____________ 

       CHARSET(BCD);  if it is written in EBCDIC, specify CHARSET(EBCDIC). 

       The language reference manual for this compiler  lists  the  EBCDIC 

       representation  of  both  the 48-character set and the 60-character 

       set. 

 

 

                                              PL/I Optimizing Compiler  37 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       If both arguments (48 or 60, EBCDIC or BCD) are specified, they may 

       be in any order and should be separated by a blank or a comma. 

 

  COMPILE Option   ______________ 

 

       The COMPILE option specifies that the compiler is  to  compile  the 

       source  program  unless  an unrecoverable error was detected during 

       preprocessing or syntax checking.  The NOCOMPILE option without  an 

       argument  causes  processing  to  stop unconditionally after syntax 

       checking.  With an argument, continuation depends on  the  severity 

       of errors detected so far, as follows: 

 

       NOCOMPILE(W) No  compilation  if a warning, error, severe error, or 

                    unrecoverable error is detected. 

 

       NOCOMPILE(E) No compilation if error, severe error,  or  unrecover- 

                    able error is detected. 

 

       NOCOMPILE(S) No  compilation  if  a  severe  error or unrecoverable 

                    error is detected. 

 

       If the compilation is  terminated  by  the  NOCOMPILE  option,  the 

       cross-reference  listing and attribute listing may be produced; the 

       other listings that follow the source program will not be produced. 

 

  COUNT Option   ____________ 

 

       The COUNT option specifies (1) that the compiler is to produce code 

       that, when the run-time COUNT (or FLOW) option is specified, counts 

       and the lists the number of times each statement is  executed,  and 

       (2)  that  the  default run-time option for COUNT/NOCOUNT be set to 

       COUNT. 

 

       The COUNT option implies the  GOSTMT  option  if  the  STMT  option 

       applies, or the GONUMBER option if the NUMBER option applies. 

 

  DECK Option   ___________ 

 

       The DECK option specifies that the compiler is to produce an object 

       module in the form of 80-column card images and write it to the MTS 

       logical I/O unit SPUNCH.  Columns 73-76 of each card contain a code 

       to  identify  the object module; this code comprises the first four 

       characters of the first label in the external procedure represented 

       by the object module.  Columns  77-80  contain  a  4-digit  decimal 

       number:   the  first card is numbered 0001, the second 0002, and so 

       on. 

 

  DUMP Option   ___________ 

 

       The DUMP option  specifies  that  the  compiler  is  to  produce  a 

       formatted  dump  of  main  storage,  if  the compilation terminates 

       abnormally (usually due to a compiler error).  This dump is written 

       on the MTS logical I/O unit SPRINT. 

 

  38  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  ESD Option   __________ 
 
       The ESD option specifies that the external symbol dictionary  (ESD) 

       is to be listed in the compiler listing.  The default is NOESD. 

 

       Output example: 

 

                           EXTERNAL SYMBOL DICTIONARY 

 

                   SYMBOL         TYPE     ID      ADDR     LENGTH 

 

                  PLISTART         SD     0001    000000    000050 

                  *SAMPLE1         SD     0002    000000    000150 

                  *SAMPLE2         SD     0003    000000    000108 

                  PLITABS          WX     0004    000000 

                  PLIXOPT          WX     0005    000000 

                  IBMBPOPT         WX     0006    000000 

                  PLIXHD           WX     0007    000000 

                  IBMBEATA         WX     0008    000000 

                  PLIFLOW          WX     0009    000000 

                  PLICOUNT         WX     000A    000000 

                  IBMBPIRA         ER     000B    000000 

                  IBMBPIRB         ER     000C    000000 

                  IBMBPIRC         ER     000D    000000 

                  PLICALLA         LD             000006 

                  PLICALLB         LD             00000A 

                  PLIMAIN          SD     000E    000000    000008 

                  IBMBSLOA         ER     000F    000000 

                  IBMBCACA         ER     0010    000000 

                  IBMBCHFD         ER     0011    000000 

                  IBMBCWDH         ER     0012    000000 

                  IBMBOCLA         ER     0013    000000 

                  IBMBOCLC         WX     0014    000000 

                  IBMBSIOA         ER     0015    000000 

                  IBMBSIOT         WX     0016    000000 

                  IBMBSLOB         WX     0017    000000 

                  IBMBSXCA         WX     0018    000000 

                  IBMBSXCB         WX     0019    000000 

                  IBMBSIST         WX     001A    000000 

                  SAMPLE           LD             000008 

                  SYSPINT          SD     001B    000000    000020 

 

       The headings in an ESD table have the following meanings: 

 

       SYMBOL    The eight-character name of the external symbol. 

 

       TYPE      The two-character type of the external symbol: 

 

                 SD - section definition 

                 LD - label definition 

                 PR - pseudo-register 

                 ER - external reference 

 

 

                                              PL/I Optimizing Compiler  39 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                 WX - weak external reference 
                 CM - common section 
 
       ID        A  four-digit  hexadecimal  number, numbered sequentially 
                 starting from 0001. 
 
       ADDR      The six-digit hexadecimal address of the symbol. 
 
       LENGTH    The six-digit hexadecimal length of the symbol. 
 
  FLAG Option   ___________ 
 
       The FLAG option  specifies  the  minimum  severity  of  error  that 
       requires  a  message  to  be  listed  in the compiler listing.  The 
       format of the FLAG option is shown below. 
 
       FLAG(I)   List all messages. 

 

       FLAG(W)   List all except informatory messages.  If FLAG is  speci- 

                 fied, FLAG(W) is assumed. 

 

       FLAG(E)   List all except warning and informatory messages. 

 

       FLAG(S)   List only severe error and unrecoverable error messages. 

 

  FLOW Option   ___________ 

 

       The  FLOW option specifies (1) that the compiler is to produce code 

       that, when the run-time FLOW option is specified, lists the flow of 

       control when the program is executed,  and  (2)  that  the  default 

       run-time  option for FLOW|NOFLOW be set to FLOW.  The format of the 

       FLOW option is: 

 

            FLOW[(n,m)] 

 

       where 

 

         n    is the maximum number of  entries  to  be  included  in  the 

              lists.  It should not exceed 32767. 

 

         m    is  the maximum number of procedures for which the lists are 

              to be generated.  It should not exceed 32767. 

 

       The default, if (n,m) is not specified, is (25,10). 

 

       The output produced by the FLOW option is described under "Run-Time 

       FLOW Option" in the section "Run-Time Options." 

 

  GONUMBER Option   _______________ 

 

       The GONUMBER option specifies  that  the  compiler  is  to  produce 

       additional information that will allow line numbers from the source 

       programs to be included in run-time messages.  Alternatively, these 

 

  40  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       line  numbers  can be derived by using the offset address, which is 
       always included in run-time messages, and the table produced by the 
       OFFSET option.  (The NUMBER option must also apply.) 

 

       Use of the GONUMBER option implies NUMBER,  NOSTMT,  and  NOGOSTMT. 

       If NUMBER applies, GONUMBER is forced by the COUNT option. 

 

  GOSTMT Option   _____________ 

 

       The  GOSTMT  option  specifies  that  the  compiler  is  to produce 

       additional information that will  allow  statement  numbers  to  be 

       included  in  run-time  messages.   Alternatively,  these statement 

       numbers can be derived by using the  offset  addresses,  which  are 

       always included in run-time messages, and the table produced by the 

       OFFSET option.  (The STMT option must also apply.) 

 

       Use  of  the  GOSTMT option implies STMT, NONUMBER, and NOGONUMBER. 

       If STMT applies, GOSTMT is forced by the COUNT option. 

 

  INCLUDE Option   ______________ 

 

       The INCLUDE option requests the compiler to handle the inclusion of 

       PL/I source statements for programs that use  the  %INCLUDE  state- 

       ment.   For  programs  that use the %INCLUDE statement but no other 

       PL/I preprocessor statements, this method is faster than using  the 

       preprocessor.   If  the MACRO option is also specified, the INCLUDE 

       option has no effect. 

 

  INSOURCE Option   _______________ 

 

       The INSOURCE option specifies that the compiler  is  to  include  a 

       listing  of  the source program (including preprocessor statements) 

       in the compiler listing.  This option is applicable only  when  the 

       preprocessor is used, therefore the MACRO option must also apply. 

 

  INTERRUPT Option   ________________ 

 

       If  INTERRUPT  was  in effect during compilation, an established ON 

       ATTENTION on-unit will be  executed  when  an  attention  interrupt 

       occurs.   If  the on-unit is not established, a message is printed. 

       The compiler inserts code to check the occurrence of  an  attention 

       interrupt  at execution of stream I/O, at branching points.  Due to 

       overhead, it is recommended that the compiler option INTERRUPT  not 

       be specified and the run-time option ATTN be specified instead. 

 

       If  NOINTERRUPT  was  in  effect during compilation, then attention 

       interrupts will be handled by the PL/I error handler provided  that 

       the run-time option ATTN is specified. 

 

 

 

 

                                              PL/I Optimizing Compiler  41 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  LINECOUNT Option   ________________ 
 
       The  LINECOUNT  option  specifies  the  number  of lines, including 
       heading lines and blank lines, to be included in each page  of  the 
       compiler listing.  The format of the LINECOUNT option is: 
 
            LINECOUNT(n) 

 

       where 

 

         n    is  the  number of lines.  It must be in the range 1 through 

              32767, but only headings are generated if  less  than  7  is 

              specified. 

 

  LIST Option   ___________ 

 

       The LIST option specifies that the compiler is to include a listing 

       of the object module (in a form similar to IBM System/360 assembler 

       language  instructions) in the compiler listing.  The format of the 

       LIST option is: 

 

            LIST[(m[,n])] 

 

       where "m" is the number of the first, or only, source statement for 

       which an object listing is required and "n" is the  number  of  the 

       last  source statement for which an object listing is required.  If 

       "n" is omitted, only statement m is listed.  If the  option  NUMBER 

       applies, m and n must be specified as line numbers. 

 

       If  LIST  is  used  in conjunction with MAP, additional listings of 

       static storage are produced (see the MAP option). 

 

  LMESSAGE Option   _______________ 

 

       The LMESSAGE and SMESSAGE options specify that the compiler  is  to 

       produce  messages  in  a long form (specify LMESSAGE) or in a short 

       form (specify SMESSAGE).  Short messages can have advantages due to 

       the comparatively slow printing speed of a terminal. 

 

 

 

 

 

 

 

 

 

  42  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       LMESSAGE output example:        ________ 
 
       COMPILER DIAGNOSTIC MESSAGES 
 
       ERROR ID L   STMT    MESSAGE DESCRIPTION 
 
       WARNING DIAGNOSTIC MESSAGES 
 
       IEL0916I W   1       ITEM(S) ’I’ MAY BE UNINITIALIZED WHEN USED IN 

                            THIS BLOCK. 

       IEL0385I W   7       MULTIPLE CLOSURE OF BLOCK.    1 EXTRA ’END’ 

                            STATEMENT(S) ASSUMED. 

 

       COMPILER INFORMATORY MESSAGES 

 

       IEL0533I I           NO ’DECLARE’ STATEMENT(S) FOR ’SYSPRINT’,’I’. 

       IEL0541I I   1, 3    ’ORDER’ OPTION APPLIES TO THIS BLOCK. 

                            OPTIMIZATION MAY BE INHIBITED. 

 

       END OF COMPILER DIAGNOSTIC MESSAGES 

 

       COMPILE TIME    0.00 MINS    SPILL FILE:     0 RECORDS, SIZE  4051 

 

       SMESSAGE output example:        ________ 

 

       COMPILER DIAGNOSTIC MESSAGES 

 

       ERROR ID L   STMT    MESSAGE DESCRIPTION 

 

       WARNING DIAGNOSTIC MESSAGES 

 

       IEL0916I W   1       ITEM(S) ’I’ MAY BE UNINITIALIZED. 

       IEL0385I W   7       1 EXTRA ’END’ STATEMENT(S) ASSUMED. 

 

       COMPILER INFORMATORY MESSAGES 

 

       IEL0533I I           NO ’DECLARE’ STATEMENT(S) FOR ’SYSPRINT’,’I’. 

       IEL0541I I   1, 3    ’ORDER’ MAY INHIBIT OPTIMIZATION. 

 

       END OF COMPILER DIAGNOSTIC MESSAGES 

 

       COMPILE TIME    0.00 MINS    SPILL FILE:     0 RECORDS, SIZE  4051 

 

  MACRO Option   ____________ 

 

       The MACRO option  specifies  that  the  source  program  is  to  be 

       processed by the preprocessor. 

 

  MAP Option   __________ 

 

       The  MAP  option  specifies  that the compiler is to produce tables 

       showing the organization of  the  static  storage  for  the  object 

       module.   A  table  showing  the  mapping  of  static and automatic 

 

                                              PL/I Optimizing Compiler  43 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       variables with offsets from their defining  bases  is  always  pro- 
       duced.   If  the  LIST  option  is  also  used, a map of the static 
       internal and external control sections is also generated. 
 
       Output example: 
 
                     VARIABLE STORAGE MAP 
 
       IDENTIFIER      LEVEL    OFFSET     (HEX)    CLASS      BLOCK 

 

       ARRAY               1       200        C8    AUTO       SAMPLE 

       XYZ                 1       192        C0    AUTO       SAMPLE 

       I                   1       196        C4    AUTO       SAMPLE 

 

  MARGINI Option   ______________ 

 

       The MARGINI option specifies that the  compiler  is  to  include  a 

       specified  character  in the column preceding the left-hand margin, 

       and in the column following the right-hand margin of  the  listings 

       resulting  from  the  INSOURCE and SOURCE options.  Any text in the 

       source input which precedes the left-hand margin  will  be  shifted 

       left  one  column,  and any text that follows the right-hand margin 

       will be shifted right one column.  For input records  that  do  not 

       extend  as  far as the right-hand margin, the character is inserted 

       in the column following the end of the record.  Thus, text  outside 

       the source margins can be easily detected. 

 

       The MARGINI option has the format: 

 

            MARGINI(’c’) 

 

       where "c" is the character to be printed as the margin indicator. 

 

  MARGINS Option   ______________ 

 

       The  MARGINS  option  specifies  the part of each input record that 

       contains PL/I statements.  The compiler will not process data  that 

       is  outside  these  limits  (but  it  will include it in the source 

       listings). 

 

       The option can also specify  the  position  of  a  printer  control 

       character  to  format  the  listing  produced  if the SOURCE option 

       applies.  This is an alternative to using %PAGE  and  %SKIP  state- 

       ments  (described in the language reference manual for this compil- 

       er).  If neither method is used, the input records will  be  listed 

       without  any  intervening  blank  lines.  The format of the MARGINS 

       option is: 

 

            MARGINS(m,n[,c]) 

 

       where 

 

 

  44  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
         m    is the column number of the leftmost character that will  be 
              processed by the compiler.  It should not exceed 100. 
 
         n    is the column number of the rightmost character that will be 
              processed by the compiler.  It should be greater than m, but 
              not greater than 100. 
 
         c    is  the  column number of the printer control character.  It 
              should not exceed 100  and  should  be  outside  the  values 
              specified  for  m and n.  Only the following control charac- 
              ters can be used: 
 
              (blank)     Skip one line before printing. 

                 0        Skip two lines before printing. 

                 -        Skip three lines before printing. 

                 +        No skip before printing. 

                 1        Start new page. 

 

       The default is MARGINS(1,72).  This  specifies  that  there  is  no                                                                         __ 

       printer control character. 

 

  MDECK Option   ____________ 

 

       The  MDECK  option  specifies that the preprocessor is to produce a 

       copy of its output (see the MACRO option) and write it to  the  MTS 

       logical  I/O  unit  SPUNCH.   The  option  MARGINS(2,72)  should be 

       specified, if the output deck is to be compiled. 

 

  NEST Option   ___________ 

 

       The NEST option specifies  that  the  listing  resulting  from  the 

       SOURCE  option  will  indicate, for each statement, the block level 

       and the do-group level. 

 

  NUMBER Option   _____________ 

 

       The NUMBER option specifies  that  the  numbers  specified  in  the 

       sequence  fields  in  the  source  input  records are to be used to 

       derive the statement numbers in the  listings  resulting  from  the 

       AGGREGATE, ATTRIBUTES, LIST, OFFSET, SOURCE, and XREF options. 

 

       If  NONUMBER is specified, STMT and NOGONUMBER are implied.  NUMBER 

       is implied by NOSTMT or GONUMBER. 

 

       The position of the sequence field can be specified in the SEQUENCE 

       option, usually the last 8 columns for source input records. 

 

       It is necessary to specify  the  SEQUENCE  option,  or  change  the 

       MARGINS  defaults.   Note  that  the  preprocessor has fixed-length 

       records irrespective of the original input.  Any  sequence  numbers 

       in the input are repositioned in columns 73-80. 

 

 

                                              PL/I Optimizing Compiler  45 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       The  line  number is calculated from the five right-hand characters 
       of the sequence number (or  the  number  specified,  if  less  than 

       five).   These  characters  are  converted  to  decimal  digits  if 

       necessary.  Each time a  sequence  number  is  found  that  is  not 

       greater than the preceding line number, a new line number is formed 

       by  adding  the  minimum  integral multiple of 100,000 necessary to 

       produce a line number that is greater than the preceding  one.   If 

       the  sequence  field  consists only of blanks, a new line number is 

       formed by adding 10 to the preceding one.  The maximum line  number 

       permitted  by  the  compiler is 134,000,000, or, when FLOW/COUNT is 

       specified, the  maximum  becomes  33,000,000;  numbers  that  would 

       normally  exceed  this  are  set to this maximum value.  Only eight 

       digits are printed in the source listing; line numbers of  100,000, 

       000 or over will be printed without the leading "1" digit. 

 

  OBJECT Option   _____________ 

 

       The  OBJECT  option  specifies  that  the  compiler is to write the 

       object module that it creates to the MTS logical I/O unit 0. 

 

  OFFSET Option   _____________ 

 

       The OFFSET option specifies that the compiler is to print  a  table 

       of  statement  or line numbers for each procedure with their offset 

       addresses relative to the primary entry  point  of  the  procedure. 

       This  information  is  of  use  in  identifying the statement being 

       executed when an error occurs and a listing of  the  object  module 

       (obtained  by  using  the  LIST  option)  is  available.  If GOSTMT 

       applies, statement numbers, as well as offset  addresses,  will  be 

       included  in run-time messages.  If GONUMBER applies, line numbers, 

       as well as offset addresses, will be included in run-time messages. 

 

       Output example: 

 

                     TABLES OF OFFSETS AND STATEMENT NUMBERS 

 

                     WITHIN PROCEDURE SAMPLE 

 

       OFFSET (HEX)       0     66     70     B4 

       STATEMENT NO.      1      3      9     10 

 

                     WITHIN BEGIN BLOCK 

 

       OFFSET (HEX)       0     4E     56     62     66     6A 

       STATEMENT NO.      3      4      5      6      5      6 

 

       OFFSET (HEX)      6E     6E     70     78     78 

       STATEMENT NO.      7      6      7      5      8 

 

  OPTIMIZE Option   _______________ 

 

       The OPTIMIZE option specifies the type of optimization required: 

 

 

  46  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       NOOPTIMIZE       specifies fast  compilation  speed,  but  inhibits 
                        optimization for faster execution and reduced main 
                        storage requirements. 
 
       OPTIMIZE(TIME)   specifies  that  the  compiler  is to optimize the 

                        machine instructions generated to produce  a  very 

                        efficient  object  program.  A secondary effect of 

                        this type of optimization can be  a  reduction  in 

                        the amount of main storage required for the object 

                        module.  The use of OPTIMIZE(TIME) could result in 

                        a   substantial  increase  in  compile  time  over 

                        NOOPTIMIZE. 

 

       OPTIMIZE(0)      is the equivalent of NOOPTIMIZE. 

 

       OPTIMIZE(2)      is the equivalent of OPTIMIZE(TIME). 

 

       The language reference manual for this  compiler  includes  a  full 

       discussion of optimization. 

 

  OPTIONS Option   ______________ 

 

       The OPTIONS option specifies that the compiler is to include in the 

       compiler  listing,  a  list showing the compiler options to be used 

       during this compilation.  This list includes all those  applied  by 

       default,  those  specified  in the PAR field of a $RUN command, and 

       those specified in a PROCESS statement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              PL/I Optimizing Compiler  47 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       Output example: 
 
       OPTIONS SPECIFIED 
 
       AG,ESD,NMI,OPT(TIME),STORAGE,OFFSET,LIST; 

 

       OPTIONS USED 

 

       AGGREGATE      NOCOUNT        ATTRIBUTES(FULL) 

       DECK           NOFLOW         CHARSET(60,EBCDIC) 

       ESD            NOGONUMBER     NOCOMPILE(S) 

       GOSTMT         NOIMPRECISE    FLAG(I) 

       INSOURCE       NOINCLUDE      LINECOUNT(60) 

       LIST           NOINTERRUPT    MARGINS(1,72,0) 

       LMESSAGE       NOMACRO        OPTIMIZE(TIME) 

       NEST           NOMAP          SIZE(50P) 

       OFFSET         NOMARGINI      NOSYNTAX(S) 

       OPTIONS        NOMDECK        XREF(FULL) 

       SOURCE         NONUMBER       TERMINAL(NOAGGREGATE, 

       STMT           NOOBJECT                NOATTRIBUTES, 

       STORAGE        NOSEQUENCE              NOESD, 

                                              NOINSOURCE, 

                                              NOLIST, 

                                              NOMAP, 

                                              NOOFFSET, 

                                              NOOPTIONS, 

                                              NOSOURCE, 

                                              NOSTORAGE, 

                                            NOXREF) 

 

       SCARDS    = sample 

       SPRINT    = sample.p 

       SPUNCH    = sample.o 

       SERCOM    = *MSINK* 

 

  SEQUENCE Option   _______________ 

 

       The SEQUENCE option specifies the extent of the part of each  input 

       line  or  record  that  contains a sequence number.  This number is 

       included in the source listings produced by the INSOURCE and SOURCE 

       option.  Also, if the NUMBER option applies, line numbers  will  be 

       derived  from  these  sequence  numbers and will be included in the 

       source listings in place of statement numbers.  No attempt is  made 

       to  sort  the  input  lines or records into the specified sequence. 

       The SEQUENCE option has the format: 

 

            SEQUENCE(m,n) 

 

       where 

 

         m    specifies the column number of the left-hand margin. 

 

 

  48  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
         n    specifies the column number of the right-hand margin. 
 
       The extent specified should not overlap with the source program (as 

       specified in the MARGINS option). 

 

       The default, NOSEQUENCE, indicates  the  absence  of  the  sequence 

       numbers. 

 

  SIZE Option   ___________ 

 

       This option can be used to limit the amount of main storage used by 

       the  compiler.   This  is  of  value, for example, when dynamically 

       invoking the compiler, to ensure  that  space  is  left  for  other 

       purposes.  The SIZE option can be expressed in seven forms: 

 

       SIZE(yyyyyyy)  specifies  that  "yyyyyyy" bytes of main storage are 

                      to be requested.  Leading zeros are not required. 

 

       SIZE(yyyyK)    specifies that "yyyyK" bytes of main storage are  to 

                      be  requested  (1K=1024).   Leading  zeros  are  not 

                      required. 

 

       SIZE(yyyP)     specifies that "yyyP" bytes of main storage  are  to 

                      be  requested  (1P=4096).   Leading  zeros  are  not 

                      required. 

 

       SIZE(-yyyyyyy) specifies that the compiler is  to  obtain  as  much 

                      main  storage  as it can, and then release "yyyyyyy" 

                      bytes to the operating system.   Leading  zeros  are 

                      not required. 

 

       SIZE(-yyyyK)   specifies  that  the  compiler  is to obtain as much 

                      main storage as it can,  and  then  release  "yyyyK" 

                      bytes  to  the  operating system (1K=1024).  Leading 

                      zeros are not required. 

 

       SIZE(-yyyP)    specifies that the compiler is  to  obtain  as  much 

                      main  storage  as  it  can,  and then release "yyyP" 

                      bytes to the operating  system  (1P=4096).   Leading 

                      zeros are not required. 

 

       SIZE(MAX)      specifies  that  the  compiler  is to obtain as much 

                      main storage as it can.  This is currently 256 pages 

                      (or 1,048,576 bytes). 

 

       The default is SIZE(50P), which permits the compiler to allocate 50 

       pages. 

 

       The value, once determined, cannot be changed after processing  has 

       begun.   This  means,  that  in  a  multiple compilation, the value 

       established when the compiler is  invoked  cannot  be  changed  for 

       later  external  procedures.  Thus, it is ignored if specified in a 

       PROCESS statement. 

 

                                              PL/I Optimizing Compiler  49 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  SMESSAGE Option   _______________ 
 
       See LMESSAGE option. 
 
  SOURCE Option   _____________ 
 
       The SOURCE option specifies that the compiler is to include in  the 
       compiler  listing  a  listing  of  the  source program.  The source 
       program is either the original source input or, if the MACRO option 
       applies, the output from the preprocessor. 
 
       Output example: 
 
                                   SOURCE LISTING 
       STMT LEV NT   MTS LINE# 

 

          1      0       1.    SAMPLE: PROCEDURE OPTIONS(MAIN); 

          2   1  0       2.            DECLARE ARRAY(15) FIXED BINARY, 

                         3.                    XYZ FLOAT; 

          3   1  0       4.              BEGIN; 

          4   2  0       5.    LABEL:      DO; 

          5   2  1       6.                  DO I=1 TO 15; 

          6   2  2       7.                  ARRAY(I)=I; 

          7   2  2       8.                END LABEL; 

          8   2  0       9.              END; 

          9   1  0      10.            PUT LIST(ARRAY); 

         10   1  0      11.            END; 

 

  STMT Option   ___________ 

 

       The STMT option specifies that statements in the source program are 

       to be counted, and that this "statement number" is used to identify 

       statements in the compiler listings resulting from  the  AGGREGATE, 

       ATTRIBUTES,  LIST,  OFFSET,  SOURCE,  and  XREF  options.   STMT is 

       implied by NONUMBER or GOSTMT.  If NOSTMT is specified, NUMBER  and 

       NOGOSTMT are implied. 

 

  STORAGE Option   ______________ 

 

       The STORAGE option specifies that the compiler is to include in the 

       compiler  listing  a table giving the main storage requirements for 

       the object module. 

 

 

 

 

 

 

 

  50  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       Output example: 
 
                           STORAGE REQUIREMENTS 
 
       BLOCK, SECTION  TYPE             LENGTH   (HEX)    DSA SIZE   (HEX) 

         OR STATEMENT 

 

       *SAMPLE1        PROGRAM CSECT       336     150 

       *SAMPLE2        STATIC CSECT        264     108 

       SAMPLE          PROCEDURE BLOCK     204      CC         304     130 

       BLOCK.02        BEGIN BLOCK         130      82         224      E0 

 

  SYNTAX Option   _____________ 

 

       The SYNTAX option specifies that the compiler is to  continue  into 

       syntax  checking  after  initialization (or after preprocessing, if 

       the  MACRO  option  applies)  unless  an  unrecoverable  error   is 

       detected.   The  NOSYNTAX option without an argument causes proces- 

       sing to stop unconditionally after  initialization  (or  preproces- 

       sing).   With  an argument, continuation depends on the severity of 

       errors detected so far, as follows: 

 

       NOSYNTAX(W)    No syntax  checking  if  a  warning,  error,  severe 

                      error, or unrecoverable error is detected. 

 

       NOSYNTAX(E)    No  syntax  checking  if  an error, severe error, or 

                      unrecoverable error is detected. 

 

       NOSYNTAX(S)    No syntax checking if a severe error  or  unrecover- 

                      able error is detected. 

 

       If the SOURCE option applies, the compiler will generate a compiler 

       listing even if syntax checking is not performed. 

 

       If  the  compilation  is  terminated  by  the  NOSYNTAX option, the 

       cross-reference listing, attribute listing, and other listings that 

       follow the source program will not be produced. 

 

       The use of this option can prevent wasted  runs  when  debugging  a 

       PL/I program that uses the preprocessor. 

 

  TERMINAL Option   _______________ 

 

       The  TERMINAL  option  specifies  that  a  subset  of or all of the 

       compiler listing produced during compilation is to  be  printed  on 

       the  MTS  logical  I/O  unit  SERCOM (usually at the terminal).  If 

       TERMINAL is specified without an argument, diagnostic and  informa- 

       tory  messages  are  printed  on SERCOM.  An argument can be added, 

       which takes the form of an option list, to specify other  parts  of 

       the compiler listing that are to be printed on SERCOM. 

 

       The  listing  on  SERCOM  is independent of that written on SPRINT. 

       However, if SPRINT is associated with SERCOM, only one copy of each 

 

                                              PL/I Optimizing Compiler  51 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       option requested will be printed even if it  is  requested  in  the 
       TERMINAL  option  and also as an independent option.  The following 
       option keywords, their negative forms, or their abbreviated  forms, 
       can be specified in the option list: 
 
            AGGREGATE, ATTRIBUTES, ESD, INSOURCE, LIST, 
            MAP, OPTIONS, SOURCE, STORAGE, and XREF. 
 
       If  the  option does not apply to the SPRINT listing, specifying it 
       in the TERMINAL option has  no  effect.   The  other  options  that 
       relate   to  the  listing  (that  is,  FLAG,  GONUMBER,  LINECOUNT, 

       LMESSAGE/SMESSAGE, MARGINI, NEST, NUMBER, and the  SHORT  and  FULL 

       suboptions  of  ATTRIBUTES  and  XREF)  will be the same as for the 

       SPRINT listing. 

 

  XREF[(SHORT|FULL)] Option   _________________________ 

 

       The XREF option specifies that the compiler is to  include  in  the 

       compiler  listing  a  cross-reference  table  of  names used in the 

       program together with the numbers of the statements in  which  they 

       are declared or referenced. 

 

       If  the  suboption SHORT is specified, unreferenced identifiers are 

       not listed, making the listing more manageable. 

 

       The default suboption FULL means that FULL applies if the option is 

       specified with no suboption. 

 

       If both XREF and ATTRIBUTES are specified,  the  two  listings  are 

       combined.  If there is a conflict between SHORT and FULL, the usage 

       is   determined   by  the  last  option  specified.   For  example, 

       ATTRIBUTES(SHORT)  XREF(FULL)  results  in  FULL  applying  to  the 

       combined listing. 

 

       For an example of XREF table, see the ATTRIBUTES option. 

 

 

  MESSAGES   ________ 

 

 

     Messages  are  generated  automatically  if  the  preprocessor or the 

  compiler detects an error, or the possibility  of  an  error.   Messages 

  generated  by  the  preprocessor appear in the listing immediately after 

  the listing of the statements processed by the preprocessor.   The  user 

  may  generate  messages  in  the preprocessing stage by use of the %NOTE 

  statement.  Such messages might  be  used  to  show  how  many  times  a 

  particular  replacement  had  been  made.   Messages  generated  by  the 

  compiler appear at the end of the  listing.   All  messages  are  graded 

  according to their severity, as follows: 

 

    •  An  informatory  (I)  message calls attention to a possible ineffi- 

       ciency in the program or gives other information generated  by  the 

       compiler that may be of interest to the programmer. 

 

  52  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
    •  A warning (W) message calls attention to a possible error, although 

       the statement to which it refers is syntactically valid. 

 

    •  An  error  (E)  message describes an error detected by the compiler 

       for which the compiler has applied a "fix-up" with confidence.  The 

       resulting program will  execute  and  will  probably  give  correct 

       results. 

 

    •  A  severe  error  (S)  message  specifies  an error detected by the 

       compiler for which  the  compiler  cannot  apply  a  "fix-up"  with 

       confidence.   The  resulting program will execute but will not give 

       correct results. 

 

    •  An unrecoverable error (U) message describes an error  that  forces 

       termination of the compilation. 

 

     The  compiler  lists  only those messages with a severity equal to or 

  greater than that specified by the FLAG option, as shown in Figure 3. 

 

     Each message is  identified  by  an  8-character  code  of  the  form 

  IELnnnnI, where: 

 

    •  The  first  three  characters  "IEL" identify the message as coming 

       from the optimizing compiler. 

 

    •  The next four characters are a 4-digit message number. 

 

    •  The last character "I" is an operating system code indicating  that 

       the message is for information only. 

 

     The  text  of  each  message,  an  explanation,  and  any recommended 

  response, are given in the messages publication for this compiler. 

 

           Type of message               Option            _______________               ______ 

 

           Informatory                   FLAG(I) 

           Warning                       FLAG(W) 

           Error                         FLAG(E) 

           Severe Error                  FLAG(S) 

           Unrecoverable Error           Always listed 

 

  Figure 3.   Selecting the lowest severity of  messages  to  be  printed, 

              using the FLAG option. 

 

 

 

  RETURN CODES   ____________ 

 

 

     For  every compilation run, the compiler generates a return code that 

  indicates to the operating system the degree of success  or  failure  it 

  achieved.  This code is printed on the message beginning with "Execution 

  terminated"  provided  that  the  MTS  RCPRINT option is not set to OFF. 

 

                                              PL/I Optimizing Compiler  53 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  This code can also be referenced as RUNRC in the MTS $IF  command.   The 

  preprocessor %NOTE statement may also be used to set the return code for 

  user-generated  messages.  The meanings of the codes are given in Figure 

  4. 

 

        Return            Meaning         ______            _______ 

         Code          ____ 

 

           0        No error detected; compilation  completed;  successful 

                    execution anticipated. 

 

           4        Possible  error  (warning)  detected; compilation com- 

                    pleted; successful execution probable. 

 

           8        Error detected; compilation completed; successful exe- 

                    cution probable. 

 

          12        Severe  error  detected;  compilation  may  have  been 

                    completed; successful execution improbable. 

 

          16        Unrecoverable  error  detected; compilation terminated 

                    abnormally; successful execution impossible. 

 

  Figure 4.      Return codes from compilation of a PL/I program. 

 

 

 

  MULTIPLE COMPILATION   ____________________ 

 

 

     Multiple compilation allows the compiler to  compile  more  than  one 

  external  PL/I procedure in a single $RUN command.  The compiler creates 

  an object module for each external procedure and stores it  sequentially 

  on  logical  I/O  units  SPUNCH or 0.  Multiple compilation can increase 

  compiler throughput by reducing operating system and compiler  initiali- 

  zation overheads. 

 

     To specify multiple compilation, include a compiler PROCESS statement 

  as  the  first  statement of each external procedure except possibly the 

  first.  The PROCESS statements  identify  the  start  of  each  external 

  procedure  and  allow  compiler options to be specified individually for 

  each compilation.  The first procedure may require a  PROCESS  statement 

  of  its  own,  because  the options in the PAR field of the $RUN command 

  apply to all external procedures, and may conflict with the requirements 

  of subsequent procedures. 

 

     The method of coding a PROCESS statement and the options that may  be 

  included  are  described  under  "Optional  Facilities," earlier in this 

  section.  The options specified in a  PROCESS  statement  apply  to  the 

  compilation  of the source statements between that PROCESS statement and 

  the next PROCESS  statement.   Options  other  than  these,  either  the 

  defaults  or  those  specified  in the PAR field, will also apply to the 

  compilation of these source statements. 

 

  54  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  SIZE Option   ____ ______ 
 
     In a multiple compilation, the SIZE specified in the  first  external 
  procedure (by a PROCESS statement or a PAR field of the $RUN command, or 

  by  default)  is  used  throughout.   If SIZE is specified in subsequent 

  external procedures, it is diagnosed and ignored.  The compiler does not 

  reorganize its storage between external procedures. 

 

  Return Codes in Multiple Compilation   ______ _____ __ ________ ___________ 

 

     The return code generated by a multiple compilation  is  the  highest 

  code that would be returned if the procedures were compiled separately. 

 

  Example: 

 

       $RUN *PL1OPT SPUNCH=OBJ1 0=OBJ2 

       /PROCESS DECK; 

 

            First PL/I source program 

 

       /PROCESS NODECK,OBJECT; 

 

            Second PL/I source program 

 

       /PROCESS; 

 

            Third PL/I source program 

 

       $ENDFILE 

 

  In  this  example,  there  is  only  one  $RUN  command;  thus,  all I/O 

  assignments necessary for the three external procedures must be included 

  on it.  Since the  compiler  options  are  not  specified  in  the  $RUN 

  command,  the  defaults  DECK  and NOOBJECT apply to all external proce- 

  dures, unless overridden by a PROCESS statement.  Hence, the file  OBJ1, 

  assigned  to  the  unit  SPUNCH, has the object module for the first and 

  last external procedures, and the file OBJ2, assigned to the unit 0, has 

  the object module of the second external procedures. 

 

 

 

  COMPILE-TIME PROCESSING (PREPROCESSING)   _______________________________________ 

 

 

     The preprocessing facilities of the compiler  are  described  in  the 

  language reference manual for this compiler.  Statements can be included 

  in  a  PL/I program that, when executed by the preprocessor stage of the 

  compiler, modify the source program or cause  additional  source  state- 

  ments  to  be included from a library.  The following discussion supple- 

  ments the information contained in  the  language  reference  manual  by 

  providing  some  illustrations  of  the  use  of  the  preprocessor  and 

  explaining how to establish and use source statement libraries. 

 

 

                                              PL/I Optimizing Compiler  55 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Invoking the Preprocessor   _________________________ 
 
 
     The preprocessor stage of the  compiler  is  executed  if  the  MACRO 
  compiler  option  is specified.  The compiler and the preprocessor use a 
  line file named -##SYSUT1 during the processing.   They  also  use  this 

  file  to store the preprocessed source program until compilation begins. 

  This file is automatically created and emptied by the compiler  whenever 

  necessary. 

 

     The term MACRO owes its origin to the similarity of some applications 

  of the preprocessor to the macro language available with such processors 

  as  the IBM System/360 Assembler.  Such a macro language allows the user 

  to write a single instruction in a program to represent  a  sequence  of 

  instructions  that  have  previously  been  defined.   The format of the 

  preprocessor output is given in Figure 5. 

 

     Three other  compiler  options,  MDECK,  INSOURCE,  and  SYNTAX,  are 

  meaningful only when the MACRO option is specified. 

 

     A  simple  example of the use of the preprocessor to produce a source 

  deck for a procedure SUBFUN is shown in Figure 6; according to the value 

  assigned to the preprocessor variable USE, the  source  statements  will 

  represent either a subroutine or a function.  The preprocessor output is 

  written  to the logical I/O unit SPUNCH.  Note that the program *MACUTIL 

  is invoked to generate the actual source library.  Normally  compilation 

  would  continue  and  the preprocessor output would be compiled.  If the 

  object module is desired, NODECK and OBJECT should be specified so  that 

  the  logical  I/O  unit SPUNCH will not be a mixture of the preprocessor 

  output and object modules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  56  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
      Column 1        Printer control character, if any, transferred  from 
                      the position specified in the MARGINS option. 
 
      Columns 2-72    Source program.  If the original source program used 
                      more  than  71  columns,  then  additional lines are 
                      included for any lines that need  continuation.   If 
                      the  original  source  program  used  less  than  71 
                      columns, then extra blanks are added on the right. 
 
      Columns 73-80   Sequence number, right-aligned.  If either  SEQUENCE 
                      or  NUMBER  apply,  this  is taken from the sequence 
                      number  field.   Otherwise,  it  is  a  preprocessor 
                      generated number in the range 1 through 99999.  This 
                      sequence number will be used in the listing produced 
                      by  the  INSOURCE  and  SOURCE  options  and  in any 
                      preprocessor diagnostic messages. 
 
      Column 81       blank 
 
      Columns 82,83   Two-digit number giving the  maximum  depth  of  the 
                      replacement  by  the preprocessor for this line.  If 
                      no replacement occurs, the columns are blank. 
 
      Column 84       "E" signifying that  an  error  has  occurred  while 

                      replacement  is  being  attempted.   If no error has 

                      occurred, the column is blank. 

 

  Figure 5.      Format of the preprocessor output 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              PL/I Optimizing Compiler  57 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
       $empty -source 

       $run *pl1opt spunch=-source par=MACRO,NOSYNTAX,MDECK 

        SUBFUN: PROCEDURE(CITY); 

           DECLARE IN FILE RECORD, 

               1 DATA, 

                 2 NAME CHARACTER(10), 

                 2 POP FIXED(7), 

               CITY CHARACTER(10); 

           %DECLARE USE CHARACTER; 

           %USE=’FUN’;  /* FOR SUBROUTINE, SUBSTITUTE %USE=’SUB’ */ 

           OPEN FILE(IN); 

        NEXT: READ FILE(IN) INTO(DATA); 

           IF NAME=CITY THEN DO; 

           CLOSE FILE(IN); 

           %IF USE=’FUN’ %THEN %GOTO L1; 

           PUT FILE(SYSPRINT) SKIP LIST(DATA); END; 

           %GO TO L2; 

        %L1:; RETURN (POP); END; 

        %L2:; 

        END SUBFUN; 

       $ENDFILE 

       $run *macutil 0=newlib guser=*source* 

       update@name=fun@¬hdrgen -source 

       stop 

       $ENDFILE 

 

  Figure 6.      Using the preprocessor to produce a source deck which  is 

                 placed on a source program library. 

 

 

 

  The %INCLUDE Statement   ______________________ 

 

 

     The  language reference manual for this compiler describes how to use 

  the %INCLUDE statement to incorporate source text from a library into  a 

  PL/I  program.  (A library is a file that consists of "macros".)  Source                      _______ 

  text that is inserted into  a  PL/I  program  by  means  of  a  %INCLUDE 

  statement  must  exist either as a "macro" within a library or as a file 

  with the same name.  Source  libraries  used  by  the  compiler  can  be 

  defined as logical I/O units 1 through 19. 

 

     The  syntax  of  %INCLUDE  statements  is  different  than  in the OS 

  version.  The %INCLUDE statement may include one  or  more  identifiers. 

  Each identifier may be up to 31 characters.  The identifier is usually a 

  "macro"  in a library.  If no macro exists, the PL/I Optimizing compiler 

  will search for a file that has the same name as  the  identifier.   For 

  example, 

 

       %INCLUDE INVERT, LOOPX; 

 

 

  58  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  specifies that the source statements in "macros" INVERT and LOOPX are to 

  be inserted consecutively into the source program. 

 

     A  PROCESS  statement in source text included by a %INCLUDE statement 

  will result in an error in the compilation. 

 

     The use of a %INCLUDE statement to include the source statements  for 

  SUBFUN  in  the procedure TEST is shown in Figure 7.  The library NEWLIB 

  is defined in the logical I/O unit 1. 

 

 

       $empty -obj 

       $empty -prt 

       $run *pl1opt 1=newlib spunch=-obj sprint=-prt par=M 

        TEST: PROCEDURE OPTIONS(MAIN); 

               DECLARE NAME CHAR(10), 

                       NO FIXED(7); 

               ON ENDFILE(SYSIN) GO TO FINISH; 

        AGAIN: GET FILE(SYSIN) LIST(NAME); 

               NO=SUBFUN(NAME); 

               PUT DATA(NAME,NO); 

               GO TO AGAIN; 

         %INCLUDE FUN; 

         FINISH: END TEST; 

       $ENDFILE 

 

  Figure 7.      Including source statements from a library. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              PL/I Optimizing Compiler  59 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  60  PL/I Optimizing Compiler 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                           LOADING A PL/I PROGRAM                            ______________________ 
 
 
 
 
     The PL/I object program  should  be  concatenated  with  one  of  two 
  standard  PL/I  libraries.   The  PL/I (F) library resides in the public 

  file *PL1LIB (an  alternate  name  is  *PL/1LIB);  the  PL/I  Optimizing 

  Compiler  library  resides  in  the public file *PL1OPTLIB.  *PL1LIB can 

  only be used  with  the  PL/I (F)  programs,  and  *PL1OPTLIB  with  the 

  programs  produced  by  the PL/I Optimizing compiler.  A typical command 

  showing such concatenation is given below: 

 

       $RUN object+*PL1LIB SCARDS=input SPRINT=output 

 

  where "object" is the file or device containing the  PL/I  object  deck, 

  "input" is any file or device name (defaults to *SOURCE*) to be attached 

  to  the  logical  I/O unit SCARDS, and "output" is a file or device name 

  for the logical I/O unit SPRINT (defaults to  *SINK*).   Other  commands 

  that  load a PL/I program are $LOAD and $DEBUG.  $LOAD loads the program 

  without executing it; execution may be started by  the  $START  command. 

  $DEBUG initiates a debugging session using the Symbolic Debugging System 

  (SDS). 

 

     Should  the  user forget to specify *PL1LIB or *PL1OPTLIB, he will be 

  prompted as follows: 

 

       $run pgm 

       .  THERE ARE 9 UNDEFINED SYMBOLS 

       .  ENTER LOCN OF MORE LOADING INPUT, "CANCEL", "IGNORE", 

       .  "USMSG", "UXREF", OR "MAP": 

       ?*pl1lib 

 

  Here, the MTS loader loads the object file PGM.  The message "THERE  ARE 

  9  UNDEFINED  SYMBOLS"  indicates  that  the user forgot to add the PL/I 

  library required to resolve these undefined PL/I library symbols. 

 

     There are two methods  to  run  a  PL/I  program  without  having  to 

  explicitly  specify  the  PL/I  library.   One  method  is  to issue the 

  following MTS command before running a program: 

 

       $SET LIBSRCH=*PL1LIB 

 

  or 

 

       $SET LIBSRCH=*PL1OPTLIB 

 

  This causes the loader to automatically search *PL1LIB  when  there  are 

  unresolved  symbols.   (Setting the LIBSRCH option for PL/I (F) programs 

  is not recommended if the user will also be  running  non-PL/I  programs 

  since  *PL1LIB  contains a special version of the subroutine SYSTEM that 

 

                                                Loading a PL/I Program  61 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  will cause a program  interrupt  if  called  from  a  non-PL/I  program. 
  SYSTEM,  on  the  other hand, does not reside in *PL1OPTLIB.)  The other 

  method is to use implicit concatenation by inserting the following  line 

  at the end of the user’s object program file: 

 

       $CONTINUE WITH *PL1LIB 

 

  or 

 

       $CONTINUE WITH *PL1OPTLIB 

 

  The  object  file  is  then  implicitly  concatenated  with  *PL1LIB  or 

  *PL1OPTLIB.  There must be exactly one blank between the words $CONTINUE                              _______ ___ _____ 

  and WITH and between WITH and *PL1LIB or *PL1OPTLIB.  The word $CONTINUE 

  must start in the first column position. 

 

     To ensure that the program will run, only one external procedure with 

  OPTIONS(MAIN) should exist.  If none exists, execution will promptly  be 

  terminated by the following message: 

 

       IHE006I - NO MAIN PROCEDURE 

 

  or 

 

       IBM006I - NO MAIN PROCEDURE, PROGRAM NOT EXECUTED 

 

     The following is the list of reserved symbols that cannot be declared 

  EXTERNAL during any PL/I (F) compilation: 

 

           DDEF#          PGNTTRP        SCANSTOR       SPIE 

           ERROR#         PL1SYM         SERCOM         STDDMP 

           GETSPACE       QUIT$          SNAP           SYSTEM# 

           LCSYMBOL 

 

  These,  plus all symbols beginning with letters IHE, are normally called 

  by PL/I (F) routines. 

 

     The following is the list of reserved symbols that cannot be declared 

  EXTERNAL other than EXTERNAL ENTRY during any compilation of  a  program 

  by the PL/I Optimizing Compiler: 

 

           ATTNTRP        GUINFO         LOAD           PGNTTRP 

           ERROR#         GUSER          LOADINFO       SERCOM# 

           FREESPAC       LCSYMBOL       MTS#           UNLOAD 

           GETSPACE 

 

  These,  plus all symbols beginning with letters IBM, are normally called 

  by PL/I Optimizer routines. 

 

     In addition, there is a limit  for  the  number  of  pseudo-registers 

  used.  A pseudo-register is assigned for every file and every controlled 

  variable.   The  PL/I (F)  compiler  assigns a pseudo-register for every 

  PROCEDURE statement and for every BEGIN statement.  The PL/I  Optimizing 

 

  62  Loading a PL/I Program 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  compiler assigns a pseudo-register for every fetched procedure.  The sum 
  of  these  pseudo-registers  may  not  exceed  1000.   If this number is 
  exceeded, the following message is generated: 
 
       IHE005I - PSEUDO-REGISTER VECTOR TOO LONG - PROGRAM NOT EXECUTED. 
 
  or 
 
       IBM005I - TOO MANY FILES AND CONTROLLED VARIABLES 
 
     The PL/I compiler also changes the names of some external  files,  so 
  that  the  file names are not confused with actual MTS subroutines.  The 
  list is: 
 
                 File          PL/I (F)       PL/I Optimizer                  ____          ________       ______________ 

 

                 GUSER         IHEGUSR            _GUSER 

                 SCARDS        IHESCDS            _SCARDS 

                 SERCOM        IHESRCM            _SERCOM 

                 SPRINT        IHESPRT            _SPRINT 

                 SPUNCH        IHESPCH            _SPUNCH 

 

 

 

  Link-Editing a PL/I Program   ___________________________ 

 

 

 

  ┌──────────────────────────────────────────────────────────────────────┐ 
  |                                                                      | 

  |    WARNING:  There exist current serious problems  with  *LINK-      | 

  |    EDIT  with  object  programs  produced  by  PL/I  Optimizing      | 

  |    compiler.  A  message  "IBM534I  PROTECTION  EXCEPTION"  may      | 

  |    result during the execution of the link-edited programs.          | 

  |                                                                      | 

  └──────────────────────────────────────────────────────────────────────┘ 
 

     Object  modules  produced  by  the  PL/I  compiler  are  particularly 

  noncompact, i.e., they are not optimized either with respect to  loading 

  time  or file-storage requirements.  The basic compiler-generated loader 

  records consist of a 16-byte header and a  variable-length  field  which 

  can  be  up to 240 bytes in length.  However, the PL/I compiler produces 

  card-image object modules with an average length  that  is  considerably 

  less  than  80  bytes.   Hence,  a  very  simple but effective method of 

  reducing both the loading time and file-storage requirements of  a  PL/I 

  program  is  to  reduce  the  total  number of records by increasing the 

  average record length, i.e., by making the object modules as compact  as 

  possible.   The  object-file  editor  (*OBJUTIL)  and the linkage editor 

  (*LINKEDIT) are programs available for this purpose. 

 

     Users who only want to reformat their PL/I object modules may  simply 

  issue the command 

 

 

                                                Loading a PL/I Program  63 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       $RUN *LINKEDIT SCARDS=inFDname SPUNCH=outFDname 

 

  In  this  case,  object modules are read from "inFDname", converted into 

  maximum-sized records, and written to  "outFDname".   A  2800-line  PL/I 

  test  program, for example, was compiled into an object module with 2696 

  records.  By using the linkage  editor  to  reformat  the  module,  this 

  module  was  compressed  into 265 records in a line file.  The effect on 

  loading time (on the Amdahl 470V/8) and file-storage requirements was as 

  follows: 

 

                                   Load Time     File Storage                                    ____ ____     ____ _______ 

 

      Original PL/I module        0.42 seconds     62 pages 

      Compressed PL/I module      0.15 seconds     39 pages 

 

     Either the object-file editor or the linkage editor may  be  used  to 

  compress  an  object file.  The linkage editor is more expensive, but it 

  produces a slightly more compressed object module since it reorders  the 

  RLD  items.   However,  only  the  linkage editor may be used to combine 

  object modules (see below). 

 

     A second, and more complex, method of reducing the loading  time  and 

  file-storage  requirements is to combine into one module a collection of 

  object modules which are always  loaded  together.   This  can  be  very 

  effective  for  programs  that  consist of a large number of subprograms 

  which were written and compiled independently  for  debugging  purposes, 

  and  are now reliable enough to be heavily used.  This further optimiza- 

  tion may be accomplished by use of the linkage editor command  language. 

  The  following sequence of commands will convert the PL/I object program 

  in "inFDname" to a completely optimized form in "outFDname": 

 

       $RUN *LINKEDIT 

       INCLUDE inFDname 

       COMBINE 

       PURGE ALLBUT IHEMAIN IHENTRY IHESPRT 

       PUNCH outFDname 

       STOP 

 

  It should be noted that this process is irreversible.  No information is 

  retained concerning the previously independent status of a  module.   As 

  an  example  of  this  further optimization, consider a collection of 11 

  independent modules that were compressed into a line file by the linkage 

  editor: 

 

                                     Records     Load Time    File Storage                                      _______     ____ ____    ____ _______ 

 

      Original PL/I module          8063 lines  1.02 seconds   182 pages 

      Compressed module              981 lines  0.38 seconds   116 pages 

      Compressed and combined        145 lines  0.20 seconds    69 pages 

 

     In the linkage editor command sequence above, the  PURGE  command  is 

  used  to  remove the entry point names that were required by the dynamic 

  loader to link the independent  modules.   These  names  are  no  longer 

 

  64  Loading a PL/I Program 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  required  after  the  combination  operation  performed  by  the COMBINE 
  command.  However, the symbols IHEMAIN and IHENTRY which are  referenced 
  by  the  PL/I library should not be purged.  This can be achieved by the 
  use of the ALLBUT option, e.g., 
 
       PURGE ALLBUT IHEMAIN IHENTRY 
 
  In addition, if only part of a PL/I object program is combined into  one 
  module,  those  PL/I external variables to be shared with other routines 
  must not be purged.  For example, consider a program consisting of  four 
  modules  A,  B,  C,  and  D,  all  of  which share a variable X declared 
  EXTERNAL.  If modules A, B, and C are combined into one  module  by  the 
  command 
 
       COMBINE A B C 
 
  the  symbol  X  must  not be purged since the module D refers to it.  In 
  this case, the PURGE command should be specified as 
 
       PURGE ALLBUT X IHEMAIN IHENTRY 
 
     Complete details on the object-file editor  and  linkage  editor  are 
  given in MTS Volume 5, System Services.                          _______________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                Loading a PL/I Program  65 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  66  Loading a PL/I Program 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                           RUNNING A PL/I PROGRAM                            ______________________ 
 
 
 
 
     The PL/I program may be executed with the MTS command: 
 
       $RUN object+pl1lib [logical I/O specifications] 

            [PAR=[run-time options][;program parameters]] 

 

  The components of the $RUN command are as follows: 

 

 

  Object Program 

 

       "object"  is  the  MTS  file  or  device containing the object code 

       compiled by PL/I (F) or PL/I Optimizing compiler. 

 

       "pl1lib" is either *PL1LIB or *PL1OPTLIB according to  whether  the 

       "object"  was  compiled  by  the  PL/I (F)  or  the PL/I Optimizing 

       compiler, respectively. 

 

 

  Logical I/O Specifications 

 

       "logical I/O specifications" are MTS logical I/O units,  each  with 

       its  assigned  file  or  device.   Record  formats  should  not  be 

       explicitly specified.  The list of valid MTS logical I/O units plus 

       the default assignments are: 

 

            SCARDS=*SOURCE* 

            SPRINT=*SINK* 

            SPUNCH=*PUNCH*  (default in batch mode, if global card output 

                             estimate is greater than zero; otherwise, no 

                             default) 

            SERCOM=*MSINK*  (output produced by the DISPLAY statement) 

            GUSER=*MSOURCE* (input read by the REPLY option of the DISPLAY 

                             statement) 

 

       The PL/I Optimizing compiler equates the standard PL/I files  SYSIN 

       and  SYSPRINT  to  MTS logical I/O units SCARDS and SPRINT, respec- 

       tively.  The PL/I (F) compiler uses the PL/I file names SCARDS  and 

       SPRINT,  where  GET  and  PUT  statements  do  not specify the FILE 

       options. 

 

       The logical I/O units 0 through 99 have no  default  specifications 

       and  can  be  used  in  PL/I only if a PL/I file is opened with the 

       TITLE option, e.g., 

 

            OPEN FILE(TEMP) TITLE(’0’); 

 

 

                                                Running a PL/I Program  67 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       This is due to a severe PL/I nomenclature requiring that each  PL/I 
       identifier,  including file names, start with a letter instead of a 
       number. 
 
 
  Run-Time Options 
 
       The only run-time options allowed for PL/I (F)  users  are  program 

       file  specifications  discussed  below.  In addition to the program 

       file  specifications,  PL/I  Optimizing  compiler  allows  Run-Time                                                                   ________ 

       Options discussed in the next section.        _______ 

 

 

  Program File Specifications 

 

       PL/I  routines  allow  the user freedom in choosing PL/I file names 

       other than the 105 MTS logical I/O units.  Each PL/I file should be 

       associated with an MTS file or device  name,  and  each  PL/I  file 

       specification  must  be  separated  from  the  other by one or more 

       blanks (commas are not allowed  as  separators).   For  example,  a 

       program  having  two  PL/I  file  names  INPUT  and  OUTPUT  may be 

       specified thus: 

 

            $RUN PGM+*PL1LIB PAR=INPUT=*SOURCE* OUTPUT=*SINK* 

 

       Here *SOURCE* is attached to the PL/I file INPUT, and *SINK* to the 

       PL/I file OUTPUT.  If a terminal PL/I (F) user neglects to  specify 

       PL/I  files  in  the  $RUN  command, he will be prompted to specify 

       them; thus, 

 

            #$run pgm+*pl1lib 

            #EXECUTION BEGINS 

             INPUT   - SPECIFY FDNAME OR SEND END-OF-FILE 

            ?*source* 

             OUTPUT  - SPECIFY FDNAME OR SEND END-OF-FILE 

            ?*sink* 

             ... 

 

       Here the PL/I routines print the  PL/I  file  name  INPUT  and  the 

       message  "SPECIFY  FDNAME  OR  SEND  END-OF-FILE".  The user should 

       enter an MTS file  or  device  name  following  the  question  mark 

       prefix.   Should  the  user enter an end-of-file, the UNDEFINEDFILE 

       condition will be raised and unless the program has been written to 

       handle this condition, it will be terminated with an error comment. 

       This will always happen in  batch  mode  if  such  a  file  is  not 

       specified in the PAR field of the $RUN command. 

 

       Alternatively,  the  user  may call the subroutine ATTACH to attach 

       FDnames to PL/I files.  For example, he can insert in the  program: 

 

            CALL ATTACH (’PROMPT=*MSOURCE*’); 

 

 

  68  Running a PL/I Program 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
       which attaches *MSOURCE* to the PL/I file PROMPT. 

 

       The  PL/I  Optimizing  Compiler  always  raises  the  UNDEFINEDFILE 

       condition if the user neglects to specify the  PL/I  files  in  the 

       $RUN command.  The following statements can prompt the user: 

 

            ON UNDEFINEDFILE(PROMPT) BEGIN; 

               DECLARE CANREPLY ENTRY OPTIONS(RETCODE ASSEMBLER), 

                       PLIRETV BUILTIN, 

|                      ATTACH ENTRY CHARACTER(*)), 

                       ANSWER  CHARACTER(72) VARYING; 

               ON UNDEFINEDFILE(PROMPT) SYSTEM; 

               CALL CANREPLY; 

               DISPLAY (’PROMPT FILE IS NOT SPECIFIED’); 

               IF PLIRETV=0 THEN 

                  DISPLAY (’SPECIFY FDNAME OR CANCEL’) 

                          REPLY (ANSWER); 

|                 IF ANSWER=’CANCEL’ THEN SIGNAL UNDEFINEDFILE(PROMPT); 

                  CALL ATTACH (’PROMPT=’||ANSWER); 

                  OPEN FILE (PROMPT); 

|              ELSE SIGNAL UNDEFINEDFILE(PROMPT); 

               END; 

 

  Program Parameters 

 

       The  semicolon must be used to separate the program file specifica- 

       tions from the program parameters.  (The  IBM  equivalent  for  the 

       semicolon  is  the  slash "/".  Since, however, slashes are allowed 

       for MTS FDnames, the semicolon is chosen for  MTS  implementation). 

       This  is  true even if no PL/I file assignments are made in the PAR 

       field.  The parameter string may contain any options that the  PL/I 

       program offers. 

 

       For PL/I (F) programs, the parameter string in the PAR field of the 

       $RUN  command  is  passed  intact  to  the  main  procedure.   This 

       parameter string includes PL/I file specifications such as below: 

 

            $RUN PGM+*PL1LIB PAR=SPRINT=FILEOUT;ABC 

 

       Here  the  parameter  string  passed  to  the  main  procedure   is 

       "SPRINT=FILEOUT;ABC". 

 

       For  PL/I  Optimizer programs, only the string after the semicolon, 

       if any, in the PAR field is passed, e.g., "ABC". 

 

       If the PL/I (F) user desires to separate in  the  parameter  string 

       the file specifications and the program parameters, he may code the 

       following in the program. 

 

            PGM:     PROCEDURE (STRING) OPTIONS(MAIN); 

                     /* Specify the string declarations */ 

                     DECLARE (STRING, PARSTRING) 

                             CHARACTER(255) VARYING; 

 

                                                Running a PL/I Program  69 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
                     /* Search for the semicolon */ 

                          I = INDEX ( STRING, ’;’ ); 

                     /* Check if the semicolon really exists */ 

                          IF I = 0 |    /* None */ 

                             I = LENGTH(STRING); /* Or just at end */ 

                             THEN PARSTRING=’’; 

                                  /* It is a null string */ 

                          ELSE /* Otherwise, set it to a substring 

                                  after the semicolon */ 

                             PARSTRING=SUBSTR(STRING,I+1); 

                                  •

                                  •

                                  •

 

       For  the  PL/I  Optimizer  programs,  program  parameters  are very 

       simple.  The above program should be replaced as follows: 

 

            PGM:      PROCEDURE (PARSTRING) OPTIONS (MAIN); 

                      DECLARE PARSTRING CHARACTER(255) VARYING; 

                           •

                           •

                           •

                      END PGM;        /* End of program */ 

 

       If the user wants only the MTS logical I/O units and does not  want 

       any  PL/I  file specifications (or the semicolon) in the PAR field, 

       two methods exist depending on whether the program was compiled  by 

       the PL/I (F) compiler or the PL/I Optimizing compiler. 

 

       If  the program was compiled by the PL/I (F) compiler, the user may 

       run *LINKEDIT and rename IHESAPA or IHESAPC as IHESAPE.  IHESAPA is 

       invoked if no optimization is requested, i.e., OPT=0,  and  IHESAPC 

       is  used  if either OPT=1 or OPT=2 is specified during the compila- 

       tion of the PL/I program.  Both IHESAPA  and  IHESAPC  process  the 

       PL/I  file  specifications  in the PAR field; IHESAPE, on the other 

       hand, does not process them but passes the entire PAR field to  the 

       main procedure. 

 

       If  the  program  was compiled by the PL/I Optimizing compiler, the 

       user should copy the object program in the file PL1:PASS_PAR to the 

       front of his program.  This causes PL/I routines to treat  the  PAR        _____ 

       field  as  the user’s PAR field.  The assembler source lines are in 

       the negative lines of the file as follows: 

 

            PASS_PAR CSECT 

                     USING PASS_PAR,15 

                     MVC   LOCPAR,0(1)     Move locator. 

                     NI    LOCPAR,X’7F’ 

                     L     1,0(0,1)        Need to copy length. 

                     LH    1,0(0,1) 

                     STH   1,LOCLEN 

                     LA    1,MYPAR         Points to the locator. 

                     L     15,PLICALL      Now call it. 

 

  70  Running a PL/I Program 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
                     BR    15 
            PLICALL  DC    V(PLICALLA) 

            MYPAR    DC    X’80’,AL3(LOCPAR) 

            LOCPAR   DS    A               Where is the string. 

            LOCLEN   DS    H               The length. 

                     DC    X’8000’         It’s a varying string. 

                     END   PASS_PAR 

 

 

  PL/I FILE SPECIFICATIONS   ________________________ 

 

 

     Each PL/I file name can be associated with  an  MTS  file  or  device 

  name; thus, 

 

       filename=FDname[(b,e,i)][@modifiers •••][+•••] 

 

  where: 

 

       filename    is a PL/I file name or corresponding TITLE option of an 

                   OPEN statement.  Only the first eight characters of the 

                   PL/I file name are used. 

 

       FDname      is the name of a file or device. 

 

       (b,e,i)     is  the  line  number range.  "b" is the beginning line 

                   number,  "e"  the  ending  line  number,  and  "i"  the 

                   increment.  The defaults are (1.000, 99999.999, 1.000). 

 

       @modifiers  are  any  legal MTS I/O modifiers (see MTS Volume 1) or 

                   PL/I record format modifiers.  If  PL/I  record  format 

                   modifiers are given, the assignment must be made in the 

                   PAR field of the $RUN command rather than as a standard 

                   MTS logical I/O unit assignment. 

 

       +•••        is an explicit concatenation of FDnames composed of the 

                   above parts. 

 

  PL/I  record  formats are usually specified either at run time or in the 

  ENVIRONMENT attribute of the PL/I file.  The  following  record  formats 

  are supported: 

 

       U[A|M][(maximum blocksize)] 

       V[B][S][A|M][(maximum blocksize[,maximum recordsize])] 

       F[B][A|M][(maximum blocksize[,recordsize])] 

 

  PL/I Optimizer users can also add: 

 

       D[B][A][(maximum blocksize[,recordsize])] 

       RECSIZE(recordsize) 

       BLKSIZE(maximum blocksize) 

       ASCII 

       BUFOFF(buffer_offset) 

 

                                                Running a PL/I Program  71 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     The  use  of  record  formats  is  explained  in  the  section  "PL/I 

  Input/Output in MTS." 

 

     Record format specification at run time allows the user to change the 

  default record formats of PL/I input and output files without having  to 

  recompile the program.  In the following example, the record formats are 

  specified at execution time in the PAR field of the $RUN command. 

 

       $RUN FMAINT+*PL1LIB PAR=INTER=*TAPE*@FB(2400,600) 

            MASTER=*OLDMAS*@U(132) EXCEPTN=E@U(300) SCARDS=*SOURCE*@F(80) 

 

  Note that the specifications are separated by blanks, not by commas. 

 

     Alternatively,  record  format  specifications  can  be  given in the 

  source program, using the ENVIRONMENT attribute of a PL/I  file.   Refer 

  to  the  section "PL/I Input/Output in MTS" or to the language reference 

  manual for the compiler being used, for details. 

 

 

 

  UNDEFINEDFILE CONDITION   _______________________ 

 

 

     When a PL/I file is not specified or is  incorrectly  specified,  the 

  PL/I  Optimizer  routines  will  raise the UNDEFINEDFILE condition.  The 

  user may provide an ON UNDEFINEDFILE unit to prompt the file  specifica- 

  tion.   This  uses the ONCODE built-in function, which returns an oncode 

  that indicates what happened.  The oncodes are: 

 

  Oncode  Condition   ______ 

 

    80    UNDEFINEDFILE condition was raised by the SIGNAL statement. 

    81    Conflict in file attributes  between  attributes  in  a  DECLARE 

          statement and in an OPEN statement. 

    82    Conflict  in  file  attributes with actual file or device, e.g., 

          read-only file opened with  the  output  attribute  or  terminal 

          opened with the backwards attribute. 

    83    Incomplete  file  or  device  specification.   No block size, no 

          record format, or no key length.  Usually does not  occur  since 

          defaults apply. 

    84    PL/I  file is not specified with a file or device.  The file can 

          be specified in a  PLIXOPT  external  static  varying  character 

          string, in the PAR field, or by a call to the ATTACH subroutine. 

    86    Line  size  greater  than  the  maximum  or  invalid value in an 

          ENVIRONMENT option such as invalid KEYLOC or BUFOFF. 

    87    Invalid record or block size; conflict with record format. 

    92    Nonexistent or invalid file or device, access not allowed,  wait 

          interrupt, or file deadlock. 

    93    Files  attributes that cannot be implemented in MTS, e.g., KEYED 

          files, VSAM environment option, etc. 

 

 

 

  72  Running a PL/I Program 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                              RUN-TIME OPTIONS                               ________________ 
 
 
 
 
     For each execution of a PL/I Optimizer program, the  default  for  an 
  run-time  option will apply, unless it is overridden by a PLIXOPT string 
  in the source program or by the PAR field of the $RUN command. 

 

     An option specified in  the  PLIXOPT  string  overrides  the  default 

  value, and an option specified in the PAR field overrides that specified 

  in the PLIXOPT string. 

 

 

 

  SPECIFYING RUN-TIME OPTIONS IN THE PLIXOPT STRING   _________________________________________________ 

 

 

     Run-time options can be specified in a source program by means of the 

  following declaration: 

 

       DECLARE PLIXOPT CHARACTER(len) VARYING 

               INITIAL(’strg’) STATIC EXTERNAL; 

 

  where  "strg"  is  a list of options separated by commas, and "len" is a 

  constant equal to or greater than the length of "strg". 

 

     If more than one  external  procedure  in  a  $RUN  command  declares 

  PLIXOPT as STATIC EXTERNAL, only the first string will be used. 

 

 

 

  SPECIFYING RUN-TIME OPTIONS AND MAIN-PROCEDURE PARAMETERS IN THE $RUN   _____________________________________________________________________ 

  COMMAND   _______ 

 

 

     Run-time options may be specified in the PAR field as follows: 

 

       $RUN OPT+*PL1OPTLIB PAR=ISA(10P) 

 

     The  PAR  field also can be used to pass an argument to the PL/I main 

  procedure.  To do so, place the argument, preceded by a semicolon, after 

  the run-time options.  For example: 

 

       $RUN OPT+*PL1OPTLIB PAR=ISA(10P);ARGUMENT 

 

     If an argument is to be passed without specifying options, it must be 

  preceded by a semicolon.  For example: 

 

       $RUN OPT+*PL1OPTLIB PAR=;ARGUMENT 

 

 

                                                      Run-Time Options  73 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  RUN-TIME OPTIONS   ________________ 
 
 
     The following paragraphs describe the run-time options, which can  be 
  specified in the PAR field of the $RUN command or in the PLIXOPT string. 

  Figure 1 lists the options by function. 

 

  ┌──────────────────────────────────────────────────────────────────────┐ 
  |      Run-Time Options Listed by Function                             | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | OPTION(default underlined)                     USE                   | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | Storage Control                                                      |     _______ _______ 

  |                                                                      | 

  | ISASIZE                          Control initial allocation of work- | 

  |                                  ing storage.                        | 

  |                                                                      | 

  | REPORT|NOREPORT                  Generate report of storage usage.   |            ________ 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | Debugging                                                            |     _________ 

  |                                                                      | 

  | COUNT¹|NOCOUNT                   List number of times each statement | 
  |                                  is executed.                        | 

  | FLOW(n,m)¹|NOFLOW                List  last  "n"  branches  and  "m" | 
  |                                  changes of procedure.               | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | Error Handling                                                       |     _____ ________ 

  |                                                                      | 

  | PGNT|NOPGNT                      Allow program check  interrupts  to |     ____ 

  |                                  be handled by PL/I (PGNT) or passed | 

  |                                  to system (NOPGNT).                 | 

  | ATTN²|NOATTN                     Allow  attention  interrupts  to be |           ______ 

  |                                  handled by PL/I (ATTN) or passed to | 

  |                                  system (NOATTN).                    | 

  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | Program File Specification                                           |     _______ ____ _____________ 

  |                                                                      | 

  | PL1FILE=MTSFILE                  If an equal sign is  present  after | 

  |                                  an  "run-time option", then the op- | 

  |                                  tion is considered as the name of a | 

  |                                  PL/I  file  and  specifies  an  MTS | 

  |                                  file/device to be attached.         | 

  └──────────────────────────────────────────────────────────────────────┘ 
 

    ¹Only  works  if  the  FLOW  or COUNT was specified at compile time. 
     Default is what was specified at compile time. 

    ²ATTN option is ignored if INTERRUPT was specified at compile time. 
 

     Figure 1.  Run-time options 

 

 

 

  74  Run-Time Options 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  COUNT          specifies that a count is to be kept  of  the  number  of 
                 times  each  statement in the program is executed and the 
                 results are to be printed when  the  program  terminates. 
                 This  option  is  discussed in greater detail under "Run- 

                 Time COUNT Option" later in this section. 

 

  NOCOUNT        specifies that statement counting is not to be performed. 

 

  FLOW[(n,m)]    specifies that a list of the  most  recent  transfers  of 

                 control  in  the  execution  of  the  program  is  to  be 

                 generated.  This option is discussed  in  greater  detail 

                 under "Run-Time FLOW Option" later in this section. 

 

  NOFLOW         specifies that a flow list is not to be produced. 

 

  ISASIZE        specifies  the  size  of  the Initial Storage Area (ISA). 

                 The ISA is the main storage acquired by the PL/I  program 

                 and  retained for particular uses during execution.  This 

                 option may be abbreviated to ISA.   The  option  has  the 

                 format: 

 

                      ISASIZE([-]x|[-]xK|[-]xP|0) 

 

                 For example: 

 

                      ISASIZE(2000) or ISASIZE(2P) or ISASIZE(-8000) 

 

                 where: 

 

                     x     is  the  size  of the initial storage area.  If 

                           "x" is positive, it specifies the ISASIZE.   If 

                           it  is  negative,  the  maximum  storage amount 

                           (currently 256 pages)  is  first  obtained  and 

                           then  reduced  by  the  "x"  bytes.   If "x" is 

                           postfix by "K" or "P", then "x"  is  multiplied 

                           by 1024 or 4096, respectively. 

 

                     0     Obtains  the  maximum  storage amount.  This is 

                           currently 256 pages or 1,048,576 bytes. 

 

  REPORT         specifies that a report  of  the  use  of  storage  by  a 

                 program  will  be generated and placed on the MTS logical 

                 I/O unit SERCOM at the end of execution.  This option may 

                 be abbreviated to R.  A description of the output and how 

                 to make use of it is given later in  this  section  under 

                 "Run-Time Storage Requirements". 

 

                 REPORT output is headed by the name of the main procedure 

                 and  the  time  and  date  at  the end of execution.  The 

                 user’s own identifier also  can  be  supplied  using  the 

                 PLIXHD  string  (see  "Using PLIXHD to identify COUNT and 

                 REPORT Output"). 

 

 

                                                      Run-Time Options  75 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                 The use of the REPORT option degrades performance. 
 
  NOREPORT       specifies that a report is not required.  This option may 
                 be abbreviated to NR. 
 
  PGNT           specifies that when a program interrupt occurs, the  PL/I 
                 error  handler  is  to be invoked.  Under certain circum- 
                 stances the ERROR condition will be raised. 
 
  NOPGNT         specifies that program interrupts will not be trapped  by 
                 the PL/I error handler. 
 
  ATTN           specifies  that  when  an attention interrupt occurs, the 
                 PL/I error handler is to be invoked.  If there is  no  ON 
                 ATTENTION  unit,  or  if  the ON ATTENTION unit specifies 
                 SYSTEM, the following is printed: 
 
                      IBM091I ONCODE=’0400’. ’ATTENTION’ CONDITION RAISED. 
 
                 And then MTS is called.  The user may  issue  a  $RESTART 

                 command to resume the execution. 

 

                 If,  on the other hand, there exists an ON ATTENTION unit 

                 without SYSTEM, the unit is  entered;  upon  return,  the 

                 program  is  restarted  unless  the ON-unit issues a GOTO 

                 statement. 

 

                 If a program  happens  to  be  compiled  with  an  option 

                 INTERRUPT,  only  a switch indicating an attention inter- 

                 rupt occurred is set on.   The  ATTENTION  condition  can 

                 only  be  raised  at  the  breakpoints  inserted  by  the 

                 compiler, and the stream  I/O  routines.   The  ATTENTION 

                 condition  can  be  raised  nowhere else; so it is recom- 

                 mended that all external procedures  should  be  compiled 

                 with NOINTERRUPT option. 

 

  NOATTN         specifies  that  attention interrupts will not be trapped 

                 by the PL/I error handler. 

 

  Program file specifications 

 

       These are indicated  by  the  presence  of  the  equal  sign.   For 

       example,  FLOW=OUTPUT indicates that an MTS file named OUTPUT is to 

       be attached to a PL/I file FLOW.  Without the presence of the equal 

       sign, they are considered as run-time options, e.g., FLOW(25,10). 

 

 

 

  USING PLIXHD TO IDENTIFY COUNT AND REPORT OUTPUT   ________________________________________________ 

 

 

     When COUNT or REPORT output is generated and the program  contains  a  

  static external character variable called PLIXHD, the value in PLIXHD is   ______ ________ 

 

  76  Run-Time Options 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  printed  at  the head of the output after the name of the main procedure 
  and the date and time of execution.  This allows  an  identifier  to  be 
  supplied for such output. 
 
     To  do  this,  PLIXHD  must  be declared as STATIC EXTERNAL CHARACTER 
  VARYING.  (STATIC may be omitted because all EXTERNAL data is STATIC  by 

  default).  For example: 

 

       DECLARE PLIXHD EXTERNAL CHARACTER(50) VARYING 

               INITIAL (’THIS IS A PLIXHD MESSAGE’); 

 

  The printed output of PLIXHD is limited to one line and is truncated, if 

  necessary.  The result of using PLIXHD as shown above would be: 

 

       STORAGE MANAGEMENT REPORT FOR PROCEDURE P 

       DATE 21 JULY 1982 TIME 14.47.15.00 

       THIS IS A PLIXHD MESSAGE 

       (Report Output goes here) 

 

 

 

  RUN-TIME STORAGE REQUIREMENTS   _____________________________ 

 

 

     During  the execution of a program, the storage is divided into three 

  areas:  the program itself, the ISA  (Initial  Storage  Area),  and  the 

  remainder, called residual storage in this discussion. 

 

     The  program, including the compiled code, constants, and storage for 

  STATIC variables, occupies the first area.  The  second  area  (ISA)  is 

  used  for  storage  of  all  variables  that  are not STATIC and certain 

  housekeeping fields.  These are referred to as PL/I storage.  The  third 

  area,  residual  storage,  is  used as an overflow area for the ISA and, 

  consequently, may be used for PL/I storage. 

 

     The ISA is acquired by the PL/I program at the start of execution and 

  retained until termination.   Consequently,  obtaining  and  freeing  of 

  storage  within  it can be managed by the PL/I program without resorting 

  to system facilities.  Thus,  the  overhead  of  obtaining  and  freeing 

  storage  within  the ISA are small compared with using the residual area 

  where GETSPACE and FREESPAC subroutines have to  be  called.   Execution 

  is,  therefore,  faster  if  all  PL/I  storage is contained in the ISA. 

  However, if significant parts of the ISA remain unused  throughout  long 

  periods  during  the  execution of a program, space is wasted.  The fact 

  that ISA storage is quickly acquired and freed, but conversely may  only 

  be used for certain items makes the choice of ISA size a critical factor 

  in determining both the time and space requirements of the program. 

 

     When  the  REPORT option is in force, the use of storage is monitored 

  and a report is generated at the end of  the  program.   The  report  is 

  transmitted  to the file associated with the MTS logical I/O unit SERCOM 

  and is identified by the name of the main procedure  and  the  date  and 

  time  of  execution.  Optionally, the user can generate a further report 

 

                                                      Run-Time Options  77 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  identifier by use of PLIXHD.  The REPORT  option  should  only  be  used 
  while  the  ISA  size is being determined.  Report generation involves a 
  considerable execution-time overhead and should be removed  as  soon  as 
  possible.  REPORT should be used after COUNT and FLOW have been removed, 
  because  COUNT  and  FLOW  use  extra  storage  and thus make the report 
  inaccurate. 
 
 
 
  USING THE REPORT OPTION   _______________________ 
 
 
     When using the REPORT option, the best strategy to  ensure  satisfac- 
  tory  results  is to specify a very large ISASIZE so that the chances of 
  all PL/I storage being within the ISA are high.   This  gives  the  most 
  accurate  estimate  of  PL/I  storage  used,  and thus the most accurate 
  indication of the ISA size required.  The ISA size should then be set to 
  the size of the PL/I storage used, and the program should be  run  again 
  with  the  REPORT  option  to determine if the ISA size is satisfactory. 
  Bear in mind that different data or different paths through the  program 
  may  result  in different storage requirements.  If it is impractical to 
  specify a large ISA, an alternative is to specify a value  of  1.   This 
  results  in  the minimum acceptable ISASIZE being used.  This minimum is 
  such that PL/I storage for the first and all subsequent blocks  will  be 
  met  from  residual storage.  The disadvantage of this method is that it 
  may slightly  overestimate  the  total  amount  of  PL/I  storage  used. 
  Because of the method of measurement used, an ISASIZE where PL/I storage 
  is partly inside and partly outside the ISA gives the least satisfactory 
  result. 
 
     The  output  caused  by the REPORT option for a program is shown with 
  explanatory notes in Figure 2. 
 
 
 
  USING THE REPORT OUTPUT   _______________________ 
 
 
     Figure 2 shows the output from the REPORT option.  An ISA size  equal 
  to  the  "Amount of PL/I Storage Required" value in the report will give 

  the fastest execution time, because it will allow all PL/I storage to be 

  obtained within the ISA.  However, the overall size requirements may  be 

  increased,  for  example,  if  a  program uses large BASED or CONTROLLED 

  variables  for  a  short  time  during  execution.   If  a  seldom  used 

  subroutine contains a number of large variables, use of an ISASIZE equal 

  to  the  "PL/I  Storage  Required" figure may be uneconomical as it will 

  require an unnecessarily large storage area. 

 

 

 

 

  78  Run-Time Options 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  ┌──────────────────────────────────────────────────────────────────────┐ 
  |             Example of Report Output                                 | 
  |──────────────────────────────────────────────────────────────────────|   ┌                                                                      ┘ 
  | STORAGE MANAGEMENT REPORT FOR PROCEDURE J                            | 
  | DATE 4 JULY 1976 12.00.00.00                                         | 
  |                                                                      | 
  | ISASIZE SPECIFIED 2680 BYTES     The size specified in the ISASIZE   | 
  |                                  option.  If  the  option  is  not   | 
  |                                  used, 0 is given.                   | 
  | LENGTH OF INITIAL STORAGE AREA (ISA) 2680 BYTES                      | 

  |                                  The  length used.  Normally, this   | 

  |                                  is the length  specified  or  the   | 

  |                                  default.  However, if this is not   | 

  |                                  large enough for the requirements   | 

  |                                  of the first block, another value   | 

  |                                  is used.                            | 

  | AMOUNT OF PL/I STORAGE REQUIRED 2680 BYTES                           | 

  |                                  The  maximum  amount  of  storage   | 

  |                                  that could have used the ISA.  It   | 

  |                                  is the optimum  ISASIZE  in  most   | 

  |                                  conditions,   but  see  text  for   | 

  |                                  provisos.                           | 

  | AMOUNT OF STORAGE OBTAINED OUTSIDE THE ISA 0 BYTES                   | 

  |                                  Overflow of ISA, if any.  0 means   | 

  |                                  none.                               | 

  | NUMBER OF GETMAINS 0             Number of times ISA overflowed.     | 

  | NUMBER OF FREEMAINS 0            Number of times ISA overflow  was   | 

  |                                  freed.                              | 

  | NUMBER OF GET NON-LIFO REQUESTS 2                                    | 

  | NUMBER OF FREE NON-LIFO REQUESTS 1                                   | 

  |                                  Non-LIFO  storage is storage that   | 

  |                                  is not attached to  a  block,  as   | 

  |                                  opposed to AUTOMATIC storage that   | 

  |                                  is.   For example, BASED and CON-   | 

  |                                  TROLLED storage.  For a full  de-   | 

  |                                  scription,   see   the  Execution   | 

  |                                  Logic manual.                       | 

  └──────────────────────────────────────────────────────────────────────┘ 
 

  Figure 2.  Report output and its meaning. 

 

     If a program has to run in the smallest possible area, it is normally 

  best to use an ISA size of 1.  This  results  in  all  storage  requests 

  being made within the residual area, thus all spare storage is available 

  for  all purposes.  However, this method does have a disadvantage when a 

  large number of small  items,  such  as  based  variables,  have  to  be 

  allocated since each item requires eight additional bytes for chaining. 

 

     When  an  optimum ISA size has been determined, the program should be 

  rerun with this size specified and the REPORT option still in  force  so 

  that the results can be checked.  When they are satisfactory, the REPORT 

  option should be removed. 

 

 

                                                      Run-Time Options  79 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  RUN-TIME COUNT OPTION   _____________________ 
 
 
     Statement  count  information can be obtained at run time only if one 
  of the compiler options COUNT or FLOW was specified at compile time (see 

  "Compiler Options" earlier in this section.)  If FLOW but not COUNT  was 

  specified  at  compile  time,  COUNT  must  be specified at execution to 

  obtain count information.  If COUNT was specified at compile time, count 

  information will be produced unless NOCOUNT is specified at run time. 

 

     Count information can be produced only when a statement number  table 

  exists.  If COUNT is specified at compile time, a table is automatically 

  produced.   If  only  FLOW  is  specified  at compile time, and COUNT is 

  specified at run time, then  to  obtain  count  information,  GOSTMT  or 

  GONUMBER must also be specified at compile time. 

 

     Count  output  is  written on the PLIDUMP file or, if no dump file is 

  provided, on the SPRINT file.  The output has the following format: 

 

       PROCEDURE name1 

           FROM       TO   COUNT 

              1       20       1 

             21       30      10 

              .        .       . 

              .        .       . 

            200      210       1 

 

       PROCEDURE name2 

           FROM       TO   COUNT 

              1       10       5 

              .        .       . 

              .        .       . 

 

  Three such columns are printed per page. 

 

     To draw attention to statements that have not been  executed,  ranges 

  for which the count is zero are listed separately after the main tables. 

 

     The count tables are printed when the program terminates. 

 

     Count output is headed by the name of the main procedure and the time 

  and  date  the  output  was generated.  The user’s own identifier can be 

  supplied for the output using the PLIXHD string (see  "Using  PLIXHD  to 

  Identify COUNT and REPORT Output"). 

 

     Count and flow output can be produced only for the main procedure and 

  inner procedures compiled with it.  When control is passed to a separate 

  external  PL/I  procedure,  any  COUNT  or  FLOW  options  in  force are 

  suspended until control is returned to the  main  procedure.   Only  the 

  compiler options that applied for compilation of the main procedure have 

  any effect on run-time COUNT and FLOW facilities. 

 

 

  80  Run-Time Options 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  RUN-TIME FLOW OPTION   ____________________ 
 
 
     Flow  information  can  be  obtained  at  run time only if one of the 
  compiler options COUNT or  FLOW  was  specified  at  compile  time  (see 

  "Compiler  Options" earlier in this section.)  If FLOW was not specified 

  at compile time, it must  be  specified  at  run  time  to  obtain  flow 

  information.   If  FLOW  was specified at compile time, flow information 

  will be produced unless NOFLOW is specified at run time. 

 

     The format of the run-time FLOW option is the same  as  that  of  the 

  compile-time FLOW option, that is: 

 

       FLOW[(n,m)] 

 

  where  "n"  is  the  maximum  number  of  entries to be made in the flow 

  output, and "m" is the maximum number of procedures  for  which  entries 

  are to be made.  Neither "n" or "m" may exceed 32,767. 

 

     If  "n"  and  "m"  are  not  specified  at  run time, they are set as 

  follows: 

 

    •  If FLOW was specified or defaulted at compile time, the  values  of 

       "n"  and "m" specified or defaulted at compile time are used at run 

       time. 

 

    •  If FLOW was specified at compile time without subparameters  (n,m), 

       the default values (25,10) are used. 

 

    •  If  NOFLOW  was specified or defaulted at compile time, the default 

       values, (25,10), are used. 

 

     FLOW output is written on the SPRINT file whenever  an  on-unit  with 

  the  SNAP  option  is  executed.  It is also included as part of PLIDUMP 

  output, if "T" is included in the dump options string. 

 

     The format of each line of flow output is: 

 

       sn1  TO   sn2  [IN name] 

 

  where 

 

    sn1     is the number of the statement from which the branch was  made 

            (the branch out point).                  ______ ___ 

 

    sn2     is  the  number  of the statement to which the branch was made 

            (the branch in point).                  ______ __ 

 

    name    is the name of the procedure or the type of the  on-unit  that 

            contains  "sn2",  if  this  is  different from that containing 

            "sn1". 

 

 

                                                      Run-Time Options  81 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     The branches are listed in the order in which they occur.   The  last 
  "n"  branch-in/branch-out points and the last "m" procedures or on-units 

  are listed.  If more than "m" procedures or on-units are entered in  the 

  course  of  "n"  branches,  changes  prior to the last "m" procedures or 

  on-units are indicated by printing "UNKNOWN" for "name". 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  82  Run-Time Options 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                        DEBUGGING PL/I (F) PROGRAMS                         ___________________________ 

 

 

 

 

  INTRODUCTION TO DEBUG MODE FOR PL/I   ___________________________________ 

 

 

     The Symbolic Debugging System (SDS) is a conversational facility  for 

  testing  and  debugging programs.  This facility was originally provided 

  for assembly language programs, but it has now been extended to  include 

  PL/I (F)  programs.  Using SDS, the user may initiate the execution of a 

  program and monitor its performance by displaying or modifying variables 

  at strategic points in the  program.   This  section  provides  a  brief 

  introduction to the debug mode command language for PL/I users.  A small 

  sample PL/I program is given to illustrate the use of SDS.  The complete 

  description of SDS is given in the section "Debug Mode" in MTS Volume 1. 

 

  ┌──────────────────────────────────────────────────────────────────────┐ 
  |                                                                      | 

  |    Users debugging programs produced by PL/I Optimizing Compil-      | 

  |    er should refer to the section "Program Checkout", since the      | 

  |    compiler does not produce SYM (symbol table) records.             | 

  |                                                                      | 

  └──────────────────────────────────────────────────────────────────────┘ 
 

     Figure  1  is  a  sample  program  to  compute  the mean and standard 

  deviation of an array of real numbers.   The  program  consists  of  two 

  procedures:   the main procedure MAIN which reads in the data values and 

  prints the final results and the internal procedure CALC which  computes 

  the desired quantities. 

 

     This  program  is compiled by the PL/I (F) compiler in *PL1 using the 

  MTS command 

 

       $RUN *PL1 SCARDS=MEANPROG SPUNCH=MEAN PAR=TEST 

 

  The source for the program is  read  from  the  file  MEANPROG  and  the 

  compiled  object  module  is  written  into  the  file  MEAN.   The TEST 

  parameter must be specified when use of SDS is expected in order to have 

  the PL/I compiler produce SYM  (symbol  table)  records  in  the  object 

  module.  These symbol table records are used by SDS and are necessary to 

  enable the user to debug a program symbolically. 

 

     The  most  common  method  of  invoking SDS for debugging this sample 

  program is with the MTS command 

 

       $DEBUG MEAN+*PL1LIB 

 

  The $DEBUG command is the same as the MTS $RUN command in the manner  in 

  which  logical I/O units and the parameter field are specified.  Here it 

 

                                          Debugging PL/I (F)  Programs  83 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  is assumed that the program uses SCARDS for reading the input  data  and 
  SPRINT  for  printing  the  output  results.  For the present purpose of 
  debugging this program  interactively,  all  input  test  data  will  be 
  entered from the terminal (*SOURCE*) and all output results will printed 

  on  the  terminal (*SINK*).  If the user wishes to assign these units to 

  files, he may specify them on the $DEBUG command, e.g., 

 

       $DEBUG MEAN+*PL1LIB SCARDS=INPUTFILE SPRINT=OUTPUTFILE 

 

     SDS signals its readiness to accept a command by printing the  prefix 

  character  "+"  in  column  one.  This prefix character precedes all SDS 

  messages and diagnostics. 

 

     When the program has been successfully loaded, the message 

 

       +READY 

       + 

 

  is printed, at which point SDS  is  ready  to  accept  its  first  debug 

  command. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  84  Debugging PL/I (F) Programs 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       STMT 
         1      MAIN:    PROCEDURE OPTIONS (MAIN); 

         2               DECLARE DATA (50) FLOAT BINARY (16), 

                               (MEAN,STD) FLOAT BINARY (16), 

                               N FIXED BINARY (31); 

         3               ON ENDFILE (SCARDS) STOP; 

         5      DATAIN:  PUT FILE (SPRINT) EDIT 

                                (’ENTER NUMBER OF DATA POINTS’) (A); 

         6               PUT SKIP; 

         7               GET FILE (SCARDS) LIST (N); 

         8               PUT FILE (SPRINT) EDIT 

                                (’ENTER DATA POINTS’) (A); 

         9               PUT SKIP; 

        10               GET FILE (SCARDS) LIST ((DATA(I) DO I=1 TO N)); 

        11               CALL CALC(MEAN,STD); 

        12               PUT FILE (SPRINT) LIST (’MEAN=’,MEAN); 

        13               PUT SKIP; 

        14               PUT FILE (SPRINT) LIST (’STD=’,STD); 

        15               PUT SKIP; 

        16               GO TO DATAIN; 

 

        17      CALC:    PROCEDURE (MEAN,STD); 

        18               DECLARE (MEAN,STD) FLOAT BINARY (16), 

                                 (MEAN2,X,Y) FLOAT BINARY (16); 

        19               X = 0.0; 

        20               Y = 0.0; 

        21               DO I = 1 TO N; 

        22                  X = X + DATA(I); 

        23                  Y = Y + DATA(I)*2; 

        24                  END; 

        25               MEAN = X/N; 

        26               MEAN2 = Y/N - MEAN**2; 

        27               STD = SQRT(MEAN2); 

        28               END CALC; 

 

        29               END MAIN; 

 

  Figure 1.  Sample Program 

 

     Figure  2 gives the sample output from a sequence of commands used to 

  debug the program.  Input from the user is given in lowercase and output 

  from SDS and the program is given in uppercase. 

 

     Since most users are incurable optimists when it comes to  running  a 

  program  for the first time, the RUN debug command is given to determine 

  what the program will do on the first try.  The comments  "ENTER  NUMBER 

  OF DATA POINTS" and "ENTER DATA POINTS" are produced by the program, and 

  therefore these two lines in the sample output do not start with the "+" 

  prefix  character.   The  program  requires  as  a response an integer N 

  giving the number of data points to be used in the program.   The  input 

  points are read into the array DATA. 

 

 

                                          Debugging PL/I (F)  Programs  85 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       #debug mean+*pl1lib  

       +READY  

       +run  

  

        ENTER NUMBER OF DATA POINTS  

        2,  

        ENTER DATA POINTS  

        4.0,4.0,  

  

        IHE200I IHESQL X LT 0 IN SQRT (X) IN STATEMENT 00027  

                AT OFFSET +00170 FROM ENTRY POINT CALC  

  

       +USER PROGRAM RETURN  

       +READY  

       +break #19 #27  

       +DONE.  

       +run  

  

        ENTER NUMBER OF DATA POINTS  

        2,  

        ENTER DATA POINTS  

        4.0,4.0,  

       +*** AT BREAKPOINT #0019 IN SECTION MAIN  

       +READY  

       +display n data(1) data(2)  

       +N  ’F’  +2    (4 BYTES)  

       +DATA(1)  ’E’  4.    (4 BYTES)  

       +DATA(2)  ’E’  4.    (4 BYTES)  

       +continue  

       +*** AT BREAKPOINT #0027 IN SECTION MAIN  

       +READY  

       +display mean mean2  

       +MEAN  ’E’  4.    (4 BYTES)  

       +MEAN2  ’E’  -8.    (4 BYTES)  

       +modify mean2 e’0.0’  

       +MEAN2  ’E’   WAS -8.    NOW 0.  

       +continue  

        MEAN=                    4.0000E+00  

        STD=                     0.0000E+00  

        ENTER NUMBER OF DATA POINTS  

        $endfile  

  

       +USER PROGRAM RETURN  

       +READY  

       +stop  

       #  

 

  Figure 2.  Sample Output  

 

     A very simple set of test data is chosen for the first run.  The size 

  of  the data set is 2 and consists of the points 4.0 and 4.0.  This data 

  set, using a simple mental calculation, will yield the  results  of  4.0 

  for  the  mean  and  0.0 for the standard deviation.  In choosing a test 

 

  86  Debugging PL/I (F) Programs 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  data set, it is wise to choose data  which  will  give  an  obvious  and 
  simple  answer  so  that  any  errors  in  the  program  will be readily 
  apparent. 
 
     After the program is run, a PL/I error  message  appears,  indicating 
  that  an  erroneous  call to the SQRT library subroutine was made in the 
  CALC procedure.  The PL/I library has intercepted the call to  SQRT  and 
  produced the message indicating that the value of the variable MEAN2 was 
  negative.   SDS intercepted the PL/I library return and returned control 
  to debug mode.  Whenever any type of abnormal  condition  occurs  during 
  the  execution  of the program, such as a program interrupt or attention 
  interrupt, SDS will step in and return control to  debug  command  mode. 
  This  will  also  happen in the event of a call by the user’s program to 
  the system library subroutines SYSTEM, MTS, or ERROR. 
 
     At this point, if the user has a serially reusable  program,  he  may 
  rerun  it and monitor its performance more closely.  For a program to be 
  serially reusable, it must be  capable  of  being  rerun  several  times 
  without  being  reloaded.   All  locations which contain constant values 
  which are changed by the program must  be  initialized  by  the  program  
  during execution.  For example, a program containing the statements   ______ _________ 
 
       DECLARE I FIXED BINARY (31) STATIC INITIAL(3); 

       K = I; 

         . 

         . 

         . 

       I = 6; 

 

  would  not be reusable, since I would not be reinitialized to a value of 

  3; but a program containing 

 

       I = 3; 

       K = I; 

         . 

         . 

         . 

       I = 6; 

 

  would be reusable, since I is set to 3 each time the  program  is  used. 

  In general, serially reusable programs are easier to debug with SDS than 

  are nonserially reusable programs, since they can be rerun several times 

  without being reloaded.  If the program were not serially reusable, then 

  the  user  would  have  to  reload  the  program  again using the $DEBUG 

  command. 

 

     As an aid to monitoring the execution of the  program,  SDS  provides 

  the capability of setting breakpoints.  When a breakpoint is encountered 

  during  execution  of  the program, execution is stopped, and control is 

  returned to debug mode.  The instruction at which the breakpoint is  set 

  has not yet been executed when execution is stopped.       ___ ___ ____ ________ 

 

 

                                          Debugging PL/I (F)  Programs  87 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     The  BREAK  command  may be used to set breakpoints by specifying the 
  statement numbers or statement  labels  at  which  execution  is  to  be 
  stopped.   To  refer  to  a  statement  number  in  a  PL/I program, the 
  statement number must be prefixed by a "#", e.g., 

 

       BREAK #5 

 

  sets a breakpoint at statement number 5.  If the statement has a  label, 

  the statement label may also be used, e.g., 

 

       BREAK DATAIN 

 

  sets  a  breakpoint  at the statement labeled DATAIN.  Only those state- 

  ments which define  executable  PL/I  statements  may  be  used  to  set                       __________ 

  breakpoints.   All  others,  such  as  those  defining  DECLARE, FORMAT, 

  PROCEDURE, and ENTRY statements will be  undefined.   Statement  numbers 

  must be specified without leading zeros.                     _______ _______ _____ 

 

     The breakpoints at the statements 19 and 27 of CALC were chosen so as 

  to  allow  a  closer  inspection  of the program near the area where the 

  error was indicated.  At statement 19, the input data  may  be  examined 

  before  any actual calculations are made.  At statement 27, the argument 

  to the SQRT call may be examined. 

 

     After the breakpoints are  set,  the  program  is  rerun.   When  the 

  breakpoint  at  statement  19  is  reached, execution is stopped and the 

  message 

 

       *** AT BREAKPOINT #0019 IN SECTION MAIN 

 

  is printed.  At this point, the user may enter another debug command. 

 

     The DISPLAY command may be used to display variable locations in  the 

  program.   Scalar  variables  are displayed by giving the variable name; 

  e.g., 

 

       DISPLAY MEAN 

 

  will display the contents of the variable MEAN  converted  according  to 

  its  type and length.  In this case, MEAN is a float binary variable and 

  its value is printed as 

 

       MEAN ’E’ 4.    (4 BYTES) 

 

  The code E indicates that the variable is floating-point.  Other  common 

  codes for PL/I variables are: 

 

       E    Float Decimal and Binary Real (floating-point) 

       P    Fixed Decimal (packed-decimal) 

       F    Fixed Binary (fixed-point) 

       C    Character String 

 

 

  88  Debugging PL/I (F) Programs 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     Array  variables  are  displayed  by  giving  the  array name and its 
  subscripts in the same manner as in the PL/I program; e.g., 
 
       DISPLAY DATA(1) 

 

  will display the contents of the first element in the array DATA. 

 

     After the breakpoint at statement 19 has been reached, the next  step 

  is to display some of the input data values for the program to determine 

  whether  or  not everything seems to be in reasonable order.  The values 

  of 2 for N and 4.0 for DATA(1) and DATA(2) indicate that the input  data 

  was correctly entered. 

 

     A  CONTINUE  command  may  then  be  given to resume execution of the 

  program.  After the breakpoint at statement 27 is reached, the user  can 

  again  check the progress of the program.  By displaying MEAN and MEAN2, 

  the user discovers that the values are 4.0 and  -8.0,  respectively.   A 

  quick arithmetic check using the appropriate formulas 

 

       MEAN = (DATA(1)+DATA(2))/N 

 

  and 

 

       MEAN2 = (DATA(1)²+DATA(2)²)/N-MEAN² 
 

  yields  the  values 4.0 and 0.0, respectively.  Hence, the value -8.0 is 

  in error. 

 

     Looking back over the sample program, the  user  can  see  that  this 

  error  was  introduced  in  statement 23 of CALC.  That statement should 

  read 

 

       Y = Y + DATA(I)**2 

 

     Since it is not possible to recompile the program in  SDS,  the  best 

  that can be done at this point is to modify MEAN2 to contain the correct 

  value.   The MODIFY command may be used to do this.  The first parameter 

  for this command gives the name of the variable  to  be  modified.   The 

  second  parameter  gives  the  value to be used in the modification; the 

  value must be enclosed in primes, e.g., 

 

       MODIFY MEAN2 E’0.0’ 

 

     The value for MEAN2 is now modified to  0.0,  and  execution  of  the 

  program  may  be  resumed  to  determine if the remainder of the program 

  seems to be correct.  This time, the correct values for  the  test  data 

  are printed by the program. 

 

     Instead of entering a second set of test data, the user will probably 

  want  to  recompile  the  program  to  correct  the  error  in CALC.  To 

  terminate the program, the user enters a $ENDFILE (or equivalent).   SDS 

  intercepts  the  termination of the program and returns control to debug 

  mode.  The STOP command may be then used to return control to MTS. 

 

                                          Debugging PL/I (F)  Programs  89 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     The user may use the RESTORE and CLEAN commands to remove breakpoints 
  from the program that were  set  by  the  BREAK  command.   The  RESTORE 
  command will remove a specified breakpoint; e.g., 
 
       RESTORE #27 

 

  will  remove  the  breakpoint  set  at  statement 27 in CALC.  The CLEAN 

  command will remove all breakpoints that are set in the program. 

 

     Multidimensioned arrays are specified in the same  manner  as  linear 

  arrays.   For  example,  the third element in the array specified by the 

  PL/I source statement 

 

       DECLARE ALPHA(10,10) FLOAT BINARY (16); 

 

  may be displayed by 

 

       DISPLAY ALPHA(3,1) 

 

     A sequence of elements of an array may be displayed using  the  block 

  notation  format.   For  example,  to  display the first ten elements of 

  ALPHA, the user may specify 

 

       DISPLAY ALPHA(1,1)...(1,10) 

 

     Arrays may also be displayed using symbolic subscripts.  If,  in  the 

  PL/I  program,  the  variables  I  and  J  have  the  values  2  and  3, 

  respectively, then 

 

       DISPLAY ALPHA(I,J) 

 

  will display the element ALPHA(2,3). 

 

     Most debug commands may be  given  in  an  abbreviated  format.   The 

  minimum abbreviations that may be used are underlined in the list below. 

 

                     BREAK               MODIFY                      _                   _ 

                     CLEAN               RESTORE                      __                  _ 

                     CONTINUE            RUN                      _                   __ 

                     DISPLAY             STOP                      _                   ___ 

 

     An  automatic  error-dumping facility similar to that provided by the 

  MTS $ERRORDUMP command is provided for batch users.  In the event of  an 

  error  condition  occurring  during  the  execution  of  the  program, a 

  symbolic dump will be given of the program.  This dump will include  all 

  variable  locations  in the program.  This facility may be activated for 

  the sample program by the command sequence 

 

       $SET DEBUG=ON 

       $SDS SET ERRORDUMP=ON 

       $RUN MEAN 

       2, 

 

 

  90  Debugging PL/I (F) Programs 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       4.0,4.0, 
       $ENDFILE 

 

  Note that the MTS $RUN command has been  given  instead  of  the  $DEBUG 

  command.  The error-dump facility may be deactivated by the command 

 

       $SET DEBUG=OFF 

 

     The  symbolic  dump  will  give  the  variable storage for the sample 

  program in a format similar to the following: 

 

 

     DUMP OF SECTION MAIN     VA=6003D0  RF=6003D0  LEN=0004D8  SI#=0080 

 

       RA     SYMBOL   TYPE    VALUE                          HEX VALUE 

 

       AUTOMATIC STORAGE  LEVEL=0001  PROCEDURE=MAIN    BASE=6028A8 

 

     0000A0  MEAN      ’E’  4.                                 41400000 

     0000A8  STD       ’E’  0.                                 00000000 

     0000AC  N         ’F’  +2                                 00000002 

     0000B4  DATA(1)   ’E’  4.                                 41400000 

     0000B8  DATA(2)   ’E’  4.                                 41400000 

     0000BC  DATA(3)   ’E’  -.699021601E-76                    81818181 

      ...      ...            ... 

     000178  DATA(50)  ’E’  -.699021601E-76                    81818181 

 

     The following sections give details for more advanced use of SDS with 

  PL/I programs. 

 

 

 

  ORGANIZATION OF A PL/I (F) PROGRAM   __________________________________ 

 

 

     This section describes the basic organization of a PL/I (F)  external 

  procedure.   Knowledge  of  this will aid the user in displaying program 

  data variables and managing the program. 

 

     An external procedure has several control  sections,  the  most  per- 

  tinent of which are described below. 

 

       The  program  control  section  is  the  first  control section and             _______  _______  _______ 

       contains all machine language instructions for the procedure.   The 

       name  of  this section is the first label of the external procedure 

       statement.  If the label is longer than seven characters, the first 

       four and last three characters of the label are used  to  form  the 

       section name.  This is the control section in which breakpoints and 

       at-points are set by the user. 

 

       The  static  internal control section is the second control section             ______  ________ _______ _______ 

       and contains storage for all static  internal  variables  and  con- 

       stants.   The  section name is that of the program control section, 

 

                                          Debugging PL/I (F)  Programs  91 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       extended on the right with a single letter A and padded on the left 
       with asterisks to eight characters, e.g., for  the  procedure  name 
       PROG, the static internal control section name is ***PROGA. 

 

       IHEMAIN  is  a 4-byte control section which contains the address of        _______ 

       the main procedure.  IHEMAIN  is  produced  only  if  there  is  an 

       external procedure with the option MAIN specified. 

 

       IHENTRY  is  a  12-byte control section which is the entry point to        _______ 

       the program.  IHENTRY is always produced if there  is  an  external 

       procedure.   This  section  immediately  transfers  to  one  of six 

       library routines which initialize the PL/I environment  before  the 

       start of execution in the main procedure. 

 

       Static  external  variables are control section entries if they are        ______  ________  _________ 

       initialized, or common  section  entries  if  they  are  not.   All 

       variables  which  are  declared  as  external by the program are in 

       separate  sections,  one  section  allocated  for   each   variable 

       declared. 

 

     The  program  control section is subdivided into units called blocks.                                                                    ______ 

  Each block is a delimited sequence  of  statements  that  constitutes  a 

  section  of  the  program.   There  are  two kinds of blocks:  procedure 

  blocks and begin blocks. 

 

     Blocks within an external procedure are either  active  or  inactive. 

  Each  time a block is entered, a dynamic storage area (DSA) is allocated 

  for that block; a block is considered active  after  its  DSA  has  been 

  allocated  and  before  an  exit  has been made from the block.  The DSA 

  contains the control information and the automatic variable storage  for 

  the  block.  When the block is exited, the DSA is released and the block 

  becomes inactive.  At this point the automatic storage for the block  is 

  released  and variables declared as automatic are no longer available to 

  the program or SDS.  The DSAs for all blocks that are active within  the 

  procedure  are  chained  together.   This chaining of DSAs allows SDS to 

  access all of the program’s currently allocated automatic data variables 

  at one time. 

 

     The following four SDS modifiers are used for specifying the location 

  and block level of program data variables: 

 

       The @P=xxx keyword modifier, where "xxx" is the name of an external                                                                   ________ 

       procedure, may be used to refer to a variable within  a  particular 

       external procedure.  The scope of "xxx" includes all of the control 

       sections  of  the  procedure,  all  of  the internal procedures and 

       blocks contained in the procedure, and all  of  the  static,  auto- 

       matic,  based,  and  controlled  data variables declared within the 

       procedure.  External variables which are stored in common  sections 

       are not included in the scope of "xxx". 

 

       The  @B=i  keyword modifier, where "i" is a block level number, may 

       be used to refer to a variable within  a  particular  block  of  an 

       external  procedure.  Each block within an external procedure has a 

 

  92  Debugging PL/I (F) Programs 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       block level number associated with it; this number is given in  the 
       compilation  listing  under  the  level  column.   In  order  for a 
       reference to a particular block to be  valid,  the  block  must  be 
       active,  i.e.,  the  block must have been entered and a DSA must be 
       currently allocated for it. 
 
       The @#nn keyword modifier, where "nn" is the compilation  statement 

       number  of the statement in which the variable was declared, may be 

       used to refer to any variable that was  explicitly  declared  in  a 

       DECLARE statement.  This modifier is necessary in those cases where 

       there  are  multiple occurrences of automatic variables of the same 

       name at the same block level or where  there  are  multiple  occur- 

       rences  of  static  variables of the same name in the same external 

       procedure. 

 

       The @I=i keyword modifier, where "i" is an invocation  number,  may 

       be used to refer to separate invocations of recursive procedures or 

       controlled  data  variables.  The use of this modifier is discussed 

       in more detail below. 

 

 

 

  DATA VARIABLE SPECIFICATION   ___________________________ 

 

 

     All PL/I (F) data variables exist in either static, automatic, based, 

  or controlled storage.  The conventions for specifying  these  different 

  data types are given below. 

 

  Static Variables 

 

       Static variables (either external or internal) are always available 

       within the program and may be displayed at any time before, during, 

       or after program execution.  The @P modifier may be used to specify 

       a  particular  procedure  for an internal variable; the @C modifier 

       may be used to specify a particular common section for an  external 

       variable if the specification would otherwise be ambiguous, e.g., 

 

            DISPLAY SDATA@P=FIRST (for internal SDATA) 

            DISPLAY SDATA@C=SDATA (for external SDATA) 

 

  Automatic Variables 

 

       Automatic variables may be displayed only when the blocks declaring 

       them  are  active.   If  the  block  is inactive, the variables are 

       assumed to be unallocated.  When the same  automatic  variable  has 

       been declared within several active blocks, the declaration associ- 

       ated  with  the  most  recently  entered  block  is  assumed unless 

       overridden by the @B modifier; e.g., 

 

            DISPLAY ADATA@B=2 

 

 

                                          Debugging PL/I (F)  Programs  93 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       displays the value of ADATA associated with the second block level. 
       If ADATA was declared in block level 2 at statement 15, the command 
 
            DISPLAY ADATA@#15 

 

       could also be used to display its value. 

 

       If a block has been entered recursively,  the  automatic  variables 

       associated  with the latest entry will be assumed unless overridden 

       by the @I modifier, e.g., 

 

            DISPLAY RDATA@I=1 

 

       displays the value of RDATA associated with the first invocation of 

       the block in which it was declared. 

 

  Based Variables 

 

       Based variables may be displayed only when they are  active,  i.e., 

       after  they  are allocated by an ALLOCATE statement and before they 

       are released by a FREE statement in the program.  If  the  variable 

       is  not  currently  allocated, a message is printed to that effect. 

       Each  allocation  of  a  based  variable  has  a  pointer  variable 

       associated  with  it.   If  no  pointer  variable is specified, the 

       pointer variable given with the declaration statement  is  assumed. 

       This may be overridden by specifying another pointer variable using 

       the standard PL/I "->" notation, e.g., 

 

            DISPLAY PTR->BDATA 

 

       displays  the value of BDATA which has PTR as its pointer variable. 

       The pointer variable name may be qualified with the @P, @B, @#, and 

       @I modifiers to obtain the desired base address; the based variable 

       name may be qualified with the @P modifier to  obtain  the  desired 

       base attributes. 

 

  Controlled Variables 

 

       Controlled  variables  may  be displayed only when they are active, 

       i.e., after they are allocated by an ALLOCATE statement and  before 

       they  are  released  by  a  FREE  statement in the program.  If the 

       variable is not currently allocated, a message is printed  to  that 

       effect.   When  the  same  controlled  variable  has been allocated 

       several times, the most recent allocation is assumed unless  it  is 

       overridden by the @I modifier, e.g., 

 

            DISPLAY CDATA@I=1 

 

       displays  the  value  of  the  first  invocation  of the controlled 

       storage variable CDATA. 

 

     The  following  data-type  codes  are  used  for  variables  in  PL/I 

  programs: 

 

  94  Debugging PL/I (F) Programs 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       E   Float Decimal and Binary Real (floating-point) 

       M   Float Decimal and Binary Complex (floating-point) 

       P   Fixed Decimal (packed decimal) 

       F   Fixed Binary (fixed-point) 

       C   Character string 

       B   Bit string 

       A   Pointer and Label Data (address) 

       X   Area Data and File Data (hexadecimal) 

       I   Instruction 

 

 

 

  SPECIAL DATA SPECIFICATIONS   ___________________________ 

 

 

     The following paragraphs describe special considerations that must be 

  followed for certain data variable classifications. 

 

  Arrays 

 

       Array  variables  in  a  PL/I  program  must be specified with sub- 

       scripts.  An array  element  specified  without  a  subscript  will 

       generate an error message. 

 

  Label Variables 

 

       Label variables are normally displayed as A-type address constants. 

       If  they are displayed in hexadecimal format, they are displayed as 

       8-byte elements. 

 

  Fixed-Decimal Variables 

 

       Fixed-decimal variables are currently displayed  in  packed-decimal 

       format  with  no  scaling  performed.  A fixed-decimal variable de-                ____  __  _______  _________ 

       clared as 

 

            DECLARE FDATA FIXED DECIMAL (7,2) INITIAL(6) 

 

       is displayed in the format 

 

            FDATA ’P’ +0000600 

 

  Varying-Length Character Strings 

 

       Varying-length character strings are  displayed  at  their  current 

       length.   This  may  range from zero to the maximum length declared 

       for the string. 

 

  Bit Strings 

 

       Bit-string  variables  are  displayed  as  binary  constants.    An 

       asterisk  is used to indicate the offset of the variable within the 

       first byte, e.g., 

 

                                          Debugging PL/I (F)  Programs  95 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
            BITDATA ’B’ ****1110 

 

       indicates a four-bit variable beginning  at  bit  position  4  (bit 

       positions  are  numbered  0 through 7).  Varying-length bit strings 

       are displayed at their current length.  This may range from zero to 

       the maximum length declared for the string. 

 

  Picture Data 

 

       Pictured-data variables are  displayed  as  character  string  data 

       using  the  internal  format  of the variable.  A pictured variable 

       declared as 

 

            DECLARE PICDATA PICTURE ’$ZZ9V.99’ INITIAL(’12.34’) 

 

       is displayed in the format 

 

            PICDATA ’C’ "$ 12.34" 

 

  Structures 

 

       A structured variable must be specified using its  fully  qualified 

       name  even  though  a partially qualified name is unique within the 

       program.  Currently, the total length of the fully  qualified  name 

       may  not  exceed  31  characters;  if  the  name  is longer than 31 

       characters, only the first 31 characters are retained in the symbol 

       table  and  may  be  used.   For  structured  array  elements,  all 

       subscripts must appear at the end of the variable name, e.g., 

 

            DISPLAY X.Y.Z(1,2) 

 

       must  be used to display the variable even though X(1).Y.Z(2) might 

       be valid within the program syntax.  Aggregate groups of structured 

       elements may not be displayed; each element must  be  displayed  at 

       its lowest level specification. 

 

  Statement Labels 

 

       Statement  labels  may  be  specified  either  by  using a symbolic 

       statement label name or by using the statement number given in  the 

       compilation  listing.   Only  statement  labels for executable PL/I 

       statements may be specified.  Statements such as  DECLARE,  FORMAT, 

       PROCEDURE,  and  ENTRY  are  not  defined.   Statement  numbers are 

       specified in the form "#nn", where "nn" is the compilation  listing 

       statement number, e.g., 

 

            BREAK #27 

 

       sets  a  breakpoint at statement number 27 in the program.  Leading 

       zeros must be omitted. 

 

 

 

  96  Debugging PL/I (F) Programs 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  Area Variables and Offsets 
 
       Based area variables may be displayed using  either  their  pointer 
       variables  or  offsets  within the area.  When using an offset, the 
       offset must be added to the address of the area variable to form  a 
       pointer, i.e., 
 
            (area+offset)->variable 

 

       For example, consider the following sequence of instructions: 

 

            DECLARE BAREA AREA(256) BASED(APTR), 

                    1 BAS BASED(BPTR), 

                      2 OFF OFFSET(BAREA), 

                      2 VALUE FIXED DECIMAL(6,2), 

                    QPTR POINTER; 

 

            ALLOCATE BAREA; 

            ALLOCATE BAS IN (BAREA); 

            ALLOCATE BAS IN (BAREA) SET(QPTR); 

            BAS.OFF = QPTR; 

            BPTR -> VALUE = 25; 

            QPTR -> VALUE = 50; 

 

       After  execution  of  these instructions, a structured link list is 

       constructed in which the first element has the  value  25  and  the 

       second  element has the value 50.  Either of the following commands 

       may be used to display the first element: 

 

            DISPLAY BAS.VALUE 

            DISPLAY BPTR->BAS.VALUE 

 

       Any of the following commands may be used  to  display  the  second 

       element: 

 

            DISPLAY QPTR->BAS.VALUE 

            DISPLAY (BAREA+BAS.OFF)->BAS.VALUE 

            DISPLAY (BAREA+(BPTR->BAS.OFF))->BAS.VALUE 

 

  File Variables 

 

       File  variables  are  displayed  in hexadecimal format.  The region 

       displayed for the  file  variable  is  the  declare  control  block 

       (DCLCB)  which  specifies  the attributes of the file.  The name of 

       the file is at location 19 (hex) within the DCLCB. 

 

 

 

 

 

                                          Debugging PL/I (F)  Programs  97 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  98  Debugging PL/I (F) Programs 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                              PROGRAM CHECKOUT                               ________________ 
 
 
 
 
     Program checkout is the application of diagnostic and test  processes 
  to  a  program.   Adequate attention should be given to program checkout 
  during the development of a program so that: 
 
     (1)  A program becomes fully operational after  the  fewest  possible 

          test  runs,  thereby  minimizing  the  time  and cost of program 

          development. 

 

     (2)  A program is proved to have fulfilled all the design  objectives 

          before it is released for production work. 

 

     (3)  A  program  has complete and clear documentation to enable users 

          to use and maintain the  program  without  assistance  from  the 

          original programmer. 

 

     The  data  used  for  the checkout of a program should be selected to 

  test all parts of the program.  While the data  should  be  sufficiently 

  comprehensive  to  provide  a thorough test of the program, it is easier 

  and more practical to monitor the behavior of the  program  if  data  is 

  kept to a minimum. 

 

 

 

  COMPILE-TIME CHECKOUT   _____________________ 

 

 

     At  compile  time, both the preprocessor and the compiler can produce 

  diagnostic messages and  listings  according  to  the  compiler  options 

  selected  for a particular compilation.  The listings and the associated 

  compiler options are discussed in the section "PL/I  Optimizing  Compil- 

  er."   The  diagnostic  messages produced by the optimizing compiler are 

  identified by a number prefixed "IEL".  These  diagnostic  messages  are 

  available  in  both  a  long  form  and a short form.  The long messages 

  (obtained by the  LMESSAGE  compiler  option)  are  designed  to  be  as 

  self-explanatory  as  possible.   The  short  messages  are designed for 

  reproduction  at  a  terminal.   The  short  messages  are  obtained  by 

  specifying  the SMESSAGE compiler option.  Each message is reproduced in 

  the IBM  publication:   OS  PL/I  Optimizing  Compiler  Messages.   This                           __  ____  __________  ________  ________ 

  publication  includes  explanatory  notes,  examples, and the corrective 

  action to be taken. 

 

     Always  check  the  compilation  listing  for  occurrences  of  these 

  messages  to  determine  whether  the  syntax of the program is correct. 

  Messages of greater severity than warning (that is, error, severe error, 

  and unrecoverable error) should be acted upon if the  message  does  not 

  indicate  that  the compiler has been able to "fix" the error correctly. 

 

                                                      Program Checkout  99 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  The compiler, in making an assumption about the intended meaning of  any 
  erroneous  statement  in  the  source  program, can introduce a further, 
  perhaps more severe, error which in turn can produce yet another  error, 
  and so on.  When this occurs, the result is that the compiler produces a 
  number  of  diagnostic  messages which are all caused either directly or 
  indirectly by the original error. 
 
     Other useful  diagnostic  aids  produced  by  the  compiler  are  the 
  attribute  table and cross-reference table.  The attribute table, speci- 
  fied by the ATTRIBUTES option,  is  useful  for  checking  that  program 
  identifiers,  especially  those  whose  attributes  are contextually and 
  implicitly declared, have the correct  attributes.   Undeclared  identi- 
  fiers  are  indicated in the attribute table with a series of asterisks. 
  The cross-reference table is requested by the XREF option and indicates, 
  for each program variable, the number of each statement that  refers  to 
  the variable. 
 
     To  prevent  the  unnecessary  waste of time and resources during the 
  early stages of developing programs, use the NOOPTIMIZE,  NOSYNTAX,  and 
  NOCOMPILE  options.   The  NOOPTIMIZE  option will suppress optimization 
  unconditionally, and the remaining options will suppress compilation and 
  execution should the appropriate error conditions be detected. 
 
     The NOSYNTAX option specified with the severity level  "W",  "E",  or 

  "S"  will cause compilation of the output from the PL/I preprocessor, if 

  used, to be suppressed prior to the  syntax-checking  stage  should  the 

  preprocessor  issue  diagnostic  messages at or above the severity level 

  specified in the option. 

 

     The NOCOMPILE option specified with the severity level "W",  "E",  or 

  "S"  will  cause  compilation to be suppressed after the syntax-checking 

  stage if syntax checking or preprocessing causes the compiler  to  issue 

  diagnostic  messages  at  or  above  the severity level specified in the 

  option. 

 

 

 

  RUN-TIME CHECKOUT   _________________ 

 

 

     At run time, errors can occur in a  number  of  different  operations 

  associated  with  running a program.  For instance, an error can cause a 

  program to fail.  Most errors that can be detected are  indicated  by  a 

  diagnostic  message.   The  diagnostic messages detected at run time are 

  listed in the IBM publication, OS PL/I Optimizing  Compiler:   Messages,                                  ________________________________________ 

  form  SC33-0027,  and  are identified by the prefix "IBM".  The messages 

  are always printed on either MTS logical I/O unit SPRINT or SERCOM. 

 

     A failure in the execution of a PL/I program could be caused  by  one 

  of the following: 

 

    •  Logical errors in source programs. 

 

 

  100  Program Checkout 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
    •  Invalid use of PL/I. 
 
    •  Unforeseen errors. 
 
    •  Invalid input data. 
 
    •  Unidentified program failure. 
 
    •  A compiler or library subroutine failure. 
 
 
  Logical Errors in Source Programs   _______ ______ __ ______ ________ 
 
     Logical  errors  in source programs can often be difficult to detect. 
  Such errors can sometimes cause a compiler  or  library  failure  to  be 
  suspected.   The more common errors are the failure to convert correctly 
  from arithmetic data, incorrect arithmetic operations and string manipu- 
  lation operations, and failure to match data  lists  with  their  format 
  items. 
 
 
  Invalid Use of PL/I   _______ ___ __ ____ 
 
     Often  a misunderstanding of the language or a failure to provide the 
  correct environment for using PL/I can result in an apparent failure  of 
  a  PL/I  program.   For example, the use of uninitialized variables, the 
  use of controlled  variables  that  have  not  been  allocated,  reading 
  records  into  incorrect structures, the misuse of array subscripts, the 
  misuse of pointer variables,  conversion  errors,  incorrect  arithmetic 
  operations,  and incorrect string manipulation operations can cause this 
  type of failure. 
 
 
  Unforeseen Errors   __________ ______ 
 
     If an error is detected during execution of a PL/I program  in  which 
  no  on-unit  is provided to terminate execution or attempt recovery, the 
  program will be terminated abnormally.  However, the status of a program 
  at the point where the error occurred, can be recorded by the use of  an 
  ERROR on-unit that contains the statements: 
 
       ON ERROR BEGIN; 
          ON ERROR SYSTEM; 
          PUT DATA; 
       END; 
 
     The  statement ON ERROR SYSTEM; contained in the on-unit ensures that 
  further errors caused by attempting to transmit uninitialized  variables 
  do not result in a permanent loop. 

 

 

 
                                                     Program Checkout  101 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Invalid Input Data   _______ _____ ____ 
 
     A  program  should  contain checks to ensure that any incorrect input 
  data is detected before it can cause the program to fail. 
 
     The COPY option of the GET statement should be used to  check  values 
  obtained  by  stream-oriented  input.   The values will be listed on the 
  file named in the COPY option.  If no  file  name  is  given,  SYSPRINT, 
  which defaults to MTS logical I/O unit SPRINT, is assumed. 
 
 
  Unidentified Program Failure   ____________ _______ _______ 
 
     In  most  circumstances,  an  unidentified program failure should not 
  occur when using the optimizing  compiler.   Exceptions  to  this  could 
  include the following: 
 
    •  When  the program is executed in conjunction with non-PL/I modules, 
       such as FORTRAN. 
 
    •  When the program obtains, by means of record-oriented transmission, 
       incorrect values  for  use  in  label,  entry,  locator,  and  file 
       variables. 
 
     If execution of a program terminates abnormally without an accompany- 
  ing  PL/I run-time diagnostic message, the error that caused the failure 
  may also inhibit the production of a message.  In this situation, it  is 
  still  possible  to  check the PL/I source program for errors that could 
  result in overwriting areas of the main storage that contain  executable 
  instructions, particularly the communications region, which contains the 
  address  tables  for  the run-time error-handling routine.  The types of 
  PL/I program that  might  cause  the  main  storage  to  be  overwritten 
  erroneously are: 
 
    •  Assignment of a value to a nonexistent array element.  For example: 
 
            DECLARE ARRAY(10); 

              . 

              . 

              . 

            DO I = 1 TO 100; 

              ARRAY (I) = VALUE; 

 

            END; 

 

       To  detect this type of error, enable the SUBSCRIPTRANGE condition. 

       For each attempt to access an element outside the declared range of 

       subscript values, the SUBSCRIPTRANGE condition will be raised.   If 

       there  is  no on-unit for this condition, a diagnostic message will 

       be printed and the ERROR condition raised.  This facility, although 

       expensive in run time and storage space,  is  a  valuable  program- 

       checkout aid. 

 

 

  102  Program Checkout 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
    •  The  use  of  incorrect  locator  values  for a locator (pointer or 

       offset) variable.  This type of error  is  possible  if  a  locator 

       value  is obtained by means of record-oriented transmission.  Check 

       that locator values created in a program, transmitted to a file  or 

       device,  and  subsequently retrieved for use in another program are 

       valid for use in the second program. 

 

       An error could also be caused by  attempting  to  free  a  nonbased 

       variable.   This  could  be caused by freeing a based variable when 

       its qualifying pointer value has been changed.  For example: 

 

            DECLARE A STATIC, B BASED (P); 

            ALLOCATE B; 

            P = ADDR(A); 

            FREE B; 

 

    •  The use of incorrect values for label, entry, and  file  variables. 

       Errors  similar  to  those  described  above for locator values are 

       possible for label, entry, and file values that are transmitted and 

       subsequently retrieved. 

 

    •  The use of the SUBSTR pseudo-variable  to  assign  a  string  to  a 

       position  beyond  the  maximum  length  of  the target string.  For 

       example: 

 

            DECLARE X CHARACTER(3); 

            I = 3; 

            SUBSTR(X,2,I) = ’ABC’; 

 

       The STRINGRANGE condition can be used to detect this type of error. 

 

 

  Compiler or Library Subroutine Failure   ________ __ _______ __________ _______ 

 

     If you are absolutely convinced that  the  failure  is  caused  by  a 

  compiler  failure or a library subroutine failure, you should notify the 

  Computing Center staff, who will  initiate  the  appropriate  action  to 

  correct  the  error.   Meanwhile, you can attempt to find an alternative 

  way to perform the operation that is causing the trouble.  A  bypass  is 

  often  feasible, since the PL/I language frequently provides an alterna- 

  tive method of performing a given operation. 

 

 

 

  STATEMENT NUMBERS AND TRACING   _____________________________ 

 

 

     The compiler FLOW option provides a  valuable  program-checkout  aid. 

  The  FLOW(n,m)  option  creates  a  table of the numbers of the last "n" 

  branch-out and branch-in statements and  the  last  "m"  procedures  and 

  on-units  to  be  entered.   (A branch-out statement is a statement that 

  transfers control to a statement other than  the  one  that  immediately 

  follows  it,  such  as  a  GOTO  statement.   A branch-in statement is a 

 

                                                     Program Checkout  103 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  statement that receives control from a statement other than the one that 
  immediately precedes it, such  as  a  PROCEDURE,  ENTRY,  or  any  other 
  labeled statement.)  The figure chosen for "n" should be large enough to 

  provide  a  usable  trace  of  the  flow of control through the program. 

  Alternatively, if "n" and "m" are not explicitly specified, defaults for 

  the FLOW option will be used. 

 

     The trace table can be obtained  by  any  of  the  methods  described 

  below. 

 

     The  trace  is  printed  whenever  an on-unit with the SNAP option is 

  encountered.  The trace gives both the statement numbers and  the  names 

  of the containing procedures or on-units.  For example, an ERROR on-unit 

  that  results  in  both  the  listing  of  the program variables and the 

  statement number trace can be included in a PL/I program as follows: 

 

       ON ERROR SNAP BEGIN; 

       ON ERROR SYSTEM; 

       PUT DATA; 

       END; 

 

  A flow trace can be specified as part of the output from the  PL/I  dump 

  facility PLIDUMP, discussed later in this section. 

 

 

 

  DYNAMIC CHECKING FACILITIES   ___________________________ 

 

 

     It  is  possible  for  a  syntactically-correct  program  to  produce 

  incorrect results without raising any PL/I error conditions.   This  can 

  be  attributed  to the use of incorrect logic in the PL/I source program 

  or to invalid input data.  Detection of such errors from  the  resultant 

  output  (if  any)  can  be a difficult task.  It is sometimes helpful to 

  have a record of each of the values assigned to a variable, particularly 

  label, entry, loop control, and array subscript  variables.   The  CHECK 

  prefix option can be used to obtain this information.  Note that, unless 

  care  is  exercised,  the indiscriminate use of the facilities described 

  below will result in a flood of unwanted or unusable information. 

 

     A CHECK prefix option  can  specify  program  variables  in  a  list. 

  Whenever  a variable that has been included in a checklist is assigned a 

  new value, the CHECK condition is raised.  The  standard  system  action 

  for  the  CHECK  condition  is  to  print  the name and new value of the 

  variable that caused the CHECK condition to be raised.  An example of  a 

  CHECK prefix options list is: 

 

       (CHECK(A,B,C,L)):  /* CHECKOUT PREFIX LIST */ 

       TEST:  PROCEDURE OPTIONS(MAIN); 

       DECLARE A, etc., 

       . 

       . 

       . 

 

  104  Program Checkout 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     If  the CHECK condition is to be raised for all the variables used in 
  a program, the CHECK prefix option can be more simply specified  without 
  a  list  of  items.   This  is  only  possible using the PL/I Optimizing 
  compiler.  For example, 
 
       (CHECK):  TEST:  PROCEDURE; 

 

 

 

  CONTROL OF EXCEPTIONAL CONDITIONS   _________________________________ 

 

 

     During execution of a PL/I object program, a  number  of  exceptional 

  conditions  can be raised, either as a result of program-defined action, 

  or as a result  of  exceeding  a  hardware  limitation.   PL/I  contains 

  facilities  for detecting such conditions.  These facilities can be used 

  to determine the circumstances of an  unexpected  interrupt,  perform  a 

  recovery operation, and permit the program to continue to run.  Alterna- 

  tively,  the  facilities  can be used to detect conditions raised during 

  normal processing  and  to  initiate  program-defined  actions  for  the 

  condition.   Note  that  some  of  the  PL/I  conditions  are enabled by 

  default, some  cannot  be  disabled,  and  others  have  to  be  enabled 

  explicitly  in  the program.  Refer to the IBM language reference manual 

  for this compiler, OS PL/I Optimizing and Checkout Compilers, for a full                      _________________________________________ 

  description of each condition. 

 

     Note that the SIGNAL statement can be used to raise any of  the  PL/I 

  conditions.   Such  use permits any on-units in the program to be tested 

  during debugging. 

 

     The standard system action for the ERROR condition, for  which  there 

  is  no  on-unit, is to raise the FINISH condition.  The FINISH condition 

  is also raised for the following: 

 

    •  When a SIGNAL FINISH statement is executed. 

 

    •  When a PL/I program completes execution normally. 

 

    •  On completion of an ERROR on-unit that does not return  control  to 

       the PL/I program by means of a GOTO statement. 

 

    •  When an EXIT or STOP statement is executed. 

 

     The  standard  system action for the FINISH condition is to terminate 

  the program. 

 

 

  Use of the PL/I Preprocessor in Program Checkout   ___ __ ___ ____ ____________ __ _______ ________ 

 

     During program checkout, it is often necessary to use a number of the 

  PL/I conditions (and the on-units associated with them) and subsequently 

  to remove them from the program when it is  found  to  be  satisfactory. 

  The PL/I preprocessor can be used to include program-checkout statements 

 

                                                     Program Checkout  105 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  from the source statement library.  When the program is fully operation- 
  al,  the  %INCLUDE  statement  can  be removed, and the resultant object 

  program compiled for execution. 

 

     PL/I program checkout statements would include both the  enabling  of 

  any  conditions  that  are  disabled by default and the provision of the 

  appropriate on-units.  An %INCLUDE statement that causes  the  inclusion 

  of  the program checkout statements should be placed after any permanent 

  on-units in the program in order to cancel their effect  during  program 

  checkout. 

 

 

 

  ON-CODES   ________ 

 

 

     On-codes  can indicate more precisely what type of error has occurred 

  in those cases in which a condition can  be  raised  by  more  than  one 

  error.   For  example,  the ERROR condition can be raised by a number of 

  different errors, each of  which  is  identified  by  an  on-code.   The 

  on-code  can be obtained by using the condition built-in function ONCODE 

  in the  on-unit.   The  on-codes  are  described  in  the  IBM  language 

  reference  manual  for  this  compiler,  OS PL/I Optimizing and Checkout                                            _______________________________ 

  Compilers.   _________ 

 

 

 

  DUMPS   _____ 

 

 

     Should the checks given above fail to reveal the cause of the  error, 

  it may be necessary to obtain a printout, or dump, of all or part of the 

  storage  used  by  the program.  The PL/I Optimizing Compiler produces a 

  run-time dump only by  calling  PLIDUMP.   PL/I (F)  users  should  call 

  IHEDUMP or IHEDUMC (see the subroutine description of IHEDUMP). 

 

     Refer to the IBM execution-logic manual, OS PL/I Optimizing Compiler:                                               ____________________________ 

  Execution  Logic, form SC33-0025, for information about the organization   ________________ 

  of the object programs produced by the optimizing compiler, and  how  to 

  interpret the PLIDUMP outputs. 

 

     In  batch,  if  neither  PLIDUMP  or  PL1DUMP was specified, the dump 

  output will be on *SINK* by default.  If  in  conversational  mode,  the 

  user  will be prompted to specify a file or device (such as *PRINT*) for 

  the dump output. 

 

     The page size of the PLIDUMP output is taken from the PAGESIZE  field 

  of PLITABS. 

 

     To obtain a formatted PL/I dump, PLIDUMP must be called.  PLIDUMP can 

  be  invoked with two optional arguments.  The format of the CALL PLIDUMP 

  statement is: 

 

 

  106  Program Checkout 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       CALL PLIDUMP[(options-list[,user-identification])]; 

 

     The first argument, options-list, is  a  character-string  expression                          ____________ 

  that  specifies the type of information to be included in the dump.  The 

  options-list may include the following: 

 

    T     To request a trace of active procedures, begin blocks, on-units, 

          and library modules. 

 

    NT    To suppress the output produced by T above. 

 

    F     To request a complete set of attributes for all files  that  are 

          open, and the contents of the buffers used by the files. 

 

    NF    To suppress the output produced by F above. 

 

    S     To  request  the termination of the program after the completion 

          of the dump.  Note:  the FINISH condition is not raised. 

 

    C     To request continuation of execution  after  completion  of  the 

          dump. 

 

    H     To  request  a  hexadecimal  dump  of  the  storage  used by the 

          program. 

 

    NH    To suppress the hexadecimal dump. 

 

    B     If T is specified, to produce a  separate  hexadecimal  dump  of 

          control  blocks  such as the TCA and the DSA chain that are used 

          in the trace analysis.  If F is specified, to produce a separate 

          hexadecimal dump of control blocks used in  the  file  analysis, 

          such as the FCB. 

 

    NB    To suppress hexadecimal dump of control blocks. 

 

     The  defaults  assumed for the above options not specified explicitly 

  are: 

 

       T  F  C  NH  NB 

 

     The second argument, user-identification, specifies  the  identifica-                           ___________________ 

  tion  to  be  printed  at  the head of the dump.  It can be a character- 

  string expression of up to 90 characters or a decimal constant. 

 

  Example   _______ 

 

     An example of the CALL PLIDUMP statement is: 

 

       CALL PLIDUMP(’TFCNH’, ’DUMP AFTER READ’); 

 

 

 

                                                     Program Checkout  107 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Trace Information   _________________ 
 
 
     Trace information produced by PLIDUMP includes a  trace  through  all 
  the  active  DSAs.   (DSAs  will be present for compiled blocks, such as 

  procedures and on-units, and for library routines.)  For  on-units,  the 

  dump  gives the values of any condition built-in functions that could be 

  used in the on-unit, regardless of whether the on-unit actually used the 

  condition built-in function.  If a hexadecimal dump is  also  requested, 

  the trace information will also include: 

 

    •  The address of each DSA (Dynamic Storage Area). 

 

    •  The address of the TCA (Task Communications Area). 

 

    •  The  contents  of  the registers on entry to the PL/I error-handler 

       module. 

 

    •  The PSW or the address from which the PL/I error-handler module was 

       invoked. 

 

    •  The addresses of the library module DSAs back to the most  recently 

       used compiled code DSA. 

 

     DSAs  and the TCA are described in the IBM execution logic manual for 

  this compiler.  A table of statement  numbers  indicating  the  flow  of 

  control through the program is produced if the FLOW option is in effect. 

 

 

 

  File Information   ________________ 

 

 

     File  information  produced by PLIDUMP includes the attributes of all 

  open files, and the contents of all buffers that are accessible  to  the 

  dump  routine.   The  information  is  given in EBCDIC notation, and, if 

  hexadecimal output is also requested, in hexadecimal notation also.  The 

  address and contents of the FCB are then  printed.   For  varying-length 

  records, the RECSIZE is the length of the last processed record. 

 

 

 

  Hexadecimal Dump   ________________ 

 

 

     To  use  a  hexadecimal  storage dump, the user should know assembler 

  language programming and understand object  program  organization.   The 

  hexadecimal  dump  is  a  dump  of  the region of storage containing the 

  program.  The dump is given as three columns  of  printed  output.   The 

  left-hand  and  middle  columns  contain  the  contents  of  storage  in 

  hexadecimal notation.  The third column contains an  EBCDIC  translation 

  of  the  first  two  columns.  For hexadecimal characters that cannot be 

  represented by a printable EBCDIC character, a period is printed. 

 

  108  Program Checkout 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  RUN-TIME RETURN CODES   _____________________ 
 
 
     It is possible to pass a return code  from  a  PL/I  program  to  the 
  program that invoked the PL/I program.  For example, if the PL/I program 
  is  invoked  by  the operating system, a return code can be displayed on 
  the "Execution terminated" message  or  passed  as  RUNRC  for  the  $IF 

  command. 

 

     The return code generated by a PL/I program consists of two elements. 

  One  element is specified if the program calls PLIRETC or is set to zero 

  by default.  The other element is specified by  the  program  management 

  routines  of  the  PL/I  library  and  indicates the manner in which the 

  program terminated.  Unless an error is detected which prevents the PL/I 

  program management routines from operating correctly, the  two  elements 

  are  added  together  to form a global return code.  The thousands digit 

  indicates the manner in which  the  program  terminated;  the  hundreds, 

  tens, and units digits are set by the program when PLIRETC is called and 

  can be used to allow conditional execution of the next program. 

 

     When  a  PL/I program calls PLIRETC, the argument (return code value) 

  can be either a  constant  or  a  variable  with  the  attributes  FIXED 

  BINARY(31,0).   If  a  return  code  greater  than 999 is specified, the 

  return code is set to 999 and a diagnostic message is issued. 

 

     The meaning of the thousands digit  generated  by  the  PL/I  program 

  management routines is as follows: 

 

     0000   Normal termination. 

 

     1000   STOP  or  EXIT  statement,  or  a  call  to PLIDUMP with the S 

            option, or insufficient storage in the ISA. 

 

     2000   ERROR condition raised and program terminated  without  return 

            from ERROR or FINISH on-unit. 

 

     4000   Error  prevented  program management routines from functioning 

            correctly.  In this situation the remaining digits are used to 

            further identify the error as shown below, and any  set  by  a 

            call to PLIRETC are ignored. 

 

     4004   Code  returned  if  the  PRV  (pseudo-register  vector) is too 

            large. 

 

     4008   Code returned if PL/I program has no main procedure. 

 

     4012   Not enough main storage available. 

 

 

 

 

                                                     Program Checkout  109 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  110  Program Checkout 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                          PL/I INPUT/OUTPUT IN MTS                           ________________________ 
 
 
 
 
     The following section provides an overview of PL/I  input/output  and 
  describes  how  PL/I  I/O  as  implemented  in  MTS differs from the IBM 
  implementation as described  in  either  the  IBM  System/360  Operating                                                 __________________________ 
  System  PL/I (F)  Language  Reference  Manual, form GC28-8201 or OS PL/I   _____________________________________________                    _______ 

  Checkout and Optimizing  Compilers:   Language  Reference  Manual,  form   _________________________________________________________________ 

  GC33-0009.   These  IBM manuals remain the source for information on the 

  many details of PL/I I/O. 

 

     There are two basic types  of  input/output  in  PL/I:   stream  I/O, 

  accomplished  using  the  GET and PUT statements, and record I/O, accom- 

  plished using the READ, WRITE, REWRITE, LOCATE, and DELETE statements. 

 

     With stream  I/O,  the  boundaries  between  individual  records  are 

  ignored.   (Exceptions  are  made  when  during  the execution of a PL/I 

  Optimizer program stream files  are  assigned  to  a  terminal.)   Lines 

  entered  at  a  terminal  or read from a file or card deck appear to the 

  PL/I program as a continuous stream of characters except when  the  SKIP 

  option is used on input, e.g., "GET SKIP(2);" skips two lines.  Data PUT 

  to a file or device is buffered by PL/I until the current buffer is full 

  or until a SKIP, PAGE, or LINE option is encountered; at this point, the 

  current  buffer  is  written and the buffering process is started again. 

  With record I/O, record boundaries are not ignored.  Each READ statement 

  causes a single record to be made available for processing.  Each  WRITE 

  or  REWRITE  statement  causes  one  record  to be written.  Each LOCATE 

  statement points to the next record to be written in the  buffer.   Each 

  DELETE statement causes a record to be deleted. 

 

     Stream  I/O  does  whatever  data  conversions  are  necessary to map 

  between the external character form and the internal  representation  of 

  the  data.   Record  I/O  never  causes  any  data conversions.  If data 

  conversions are necessary, they must be accomplished within the  program 

  after  the  data is read or written.  Record I/O is often used where the 

  data is presented in its internal form and therefore no data conversions 

  are necessary. 

 

     Stream I/O is  always  performed  sequentially;  record  I/O  may  be 

  performed sequentially or nonsequentially using KEYED files. 

 

 

 

  STREAM I/O   __________ 

 

 

     Stream  I/O may be divided into three basic types:  list-directed I/O 

  which is similar to the format-free I/O  provided  by  the  FORTRAN  I/O 

  Library  and  WATFIV;  data-directed  I/O  which  is  similar to FORTRAN 

 

                                             PL/I Input/Output in MTS  111 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  NAMELIST  I/O;  and  edit-directed  I/O  which  is  similar  to  FORTRAN 
  formatted I/O. 
 
 
 
  Stream I/O on Terminals   _______________________ 
 
 
     Stream  I/O  on  a  terminal is simplified for a user especially when 
  running a PL/I Optimizer program.  The confusion due  to  a  concept  of 
  continuous  stream  of  characters  is  eliminated.   Stream  files on a 
  terminal are synchronized.  For example, a  "PUT  SKIP;"  is  no  longer 

  required  before  a  GET  statement,  since  the  terminal  stream-input 

  transmitter will automatically check for any outstanding terminal output 

  stream, which is printed immediately on the terminal. 

 

 

  Terminal Input   ______________ 

 

     When using a GET statement on a terminal, the user will  be  prompted 

  for  the  input by a colon prefix (:).  The data should then be entered. 

  If data does not complete the GET statement, the user  will  be  further 

  prompted with a two-character prefix (+:). 

 

     An input line can also be continued by putting in a hyphen (-) as the 

  last  character of the line.  This is known as a continuation character.                                                    ______________________ 

  A few more lines can then be entered. 

 

     If the GET statement specifies the COPY option and  both  input  file 

  and  COPY file are on a terminal, then no copy of data is printed.  Note 

  that the default COPY file is SYSPRINT, which is equated to MTS  logical 

  I/O unit SPRINT and is assigned to *SINK* by default. 

 

 

  Terminal Output   _______________ 

 

     All stream terminal output will have a PRINT attribute applied.  Data 

  on  a  terminal is not, however, formatted into pages.  There is no easy 

  way to tell how many lines will fit a terminal page.  For  this  reason, 

  ENDPAGE  is  never  raised.   The PAGELENGTH option, which specifies the 

  length of a page on a terminal, is currently ignored. 

 

     Although some terminals have a tabulating facility, tabulating during 

  list-directed and data-directed output is always achieved  by  transmis- 

  sion  of  blank  characters  according  to PLITABS (see the section "Tab 

  Control Table"). 

 

 

 

 

 

 

 

  112  PL/I Input/Output in MTS 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  List-Directed I/O   _________________ 
 
 
     With list-directed I/O, the data items to  be  read  or  written  are 
  specified in a data list.  It is the data type of the items in this list 
  that  determines  the  conversions that will be necessary to map between 
  the internal and external data representations, i.e.,  if  the  internal 
  data  type  is  FIXED  BINARY,  the  external  form  should  be numeric. 
  List-directed I/O is free-format with individual data elements separated 
  by blanks or commas.   Strings  must  be  enclosed  in  primes  (’)  and 

  character  strings  that contain primes must use two primes to represent 

  one prime.  During input, when the end of the current line  is  reached, 

  the  next  line  is automatically read.  Data elements may be split over 

  more than one line providing that no blanks or commas intervene  between 

  data  elements.   A  data  element  in  the  list  is  unchanged  if two 

  consecutive commas appear in  the  input  stream  in  the  corresponding 

  place.   The  number of data items that will appear on an output line is 

  determined by the LINESIZE associated with the PL/I file being used  and 

  the program tab settings, if it is a print file (see the section PLITABS 

  below).   For  example, the following program segment uses list-directed 

  stream I/O to read values from SYSIN and to  echo  the  same  values  on 

  SYSPRINT: 

 

       DECLARE (I,J) FIXED BINARY(15); 

       DECLARE TITLE CHARACTER(30) VARYING; 

       ON ENDFILE(SYSIN) STOP; 

       DO WHILE(’1’B);  /*  FOREVER  */ 

          GET LIST(TITLE,I,J); 

          PUT LIST(TITLE,I,J); 

       END; 

 

  A  short  terminal session using the above program segment could produce 

  the following  (user  input  is  in  lowercase,  program  output  is  in 

  uppercase): 

 

       :’example #1’,10,100 

        EXAMPLE #1                10                100 

       :’example #2’ 

       +:, 

       +:200 

        EXAMPLE #2                10                200 

       :’example #3’, 

       3 

       0 

        EXAMPLE #3                 3                  0 

 

     For  a  GET  LIST operation from a terminal during the execution of a 

  PL/I Optimizer program, a comma is automatically inserted at the end  of 

  a  line unless an item is continued by the continuation character (-) as 

  the last character of the line.  For this reason, there is  no  need  to 

  enter  intervening  blanks  or commas unless a PL/I (F) program is being 

  run. 

 

 

                                             PL/I Input/Output in MTS  113 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Data-Directed I/O   _________________ 
 
 
     With data-directed I/O as with list-directed I/O, the data  items  to 
  be  read  or written are specified in a data list.  The conversions that 
  are required to map between the internal and external  data  representa- 
  tions  are  determined  by  the  data types of the variables in the data 
  list.  Data-directed I/O is free-format with the individual values to be 
  read or written appearing  in  a  form  very  similar  to  a  series  of 
  assignment  statements;  that  is,  with the name of the variable to the 
  left of an equal sign and the  value  of  the  variable  to  the  right. 
  Individual  assignments  are  separated by blanks or commas, and strings 
  are enclosed in single quotes.  Since each assignment contains the  name 
  of the variable involved, the order of data in the input stream need not 
  match  the  order  in  the  data  list.   A  data-directed GET statement 
  continues to process assignments until terminated by  a  semicolon;  the 
  values  of  any variables included in the data list but omitted from the 
  input stream remain unchanged.  Consider the following program  segment: 
 
       DECLARE (I,J) FIXED BINARY(15); 

       DECLARE TITLE CHARACTER(30) VARYING; 

       ON ENDFILE(SYSIN) STOP; 

       DO WHILE(’1’B);  /*  FOREVER  */ 

          GET DATA(TITLE,I,J); 

          PUT DATA(TITLE,I,J); 

       END; 

 

  A  short  terminal session using the above program segment could produce 

  the following  (user  input  is  in  lowercase,  program  output  is  in 

  uppercase): 

 

       :title=’example #1’, i=10  j=-8 ; 

        TITLE=’EXAMPLE #1’      I=       10             J=       -8; 

       :title=’example #2’  i=’10’ 

       +:j=001 ; 

        TITLE=’EXAMPLE #2’      I=       10             J=        1; 

       :title=3, j=4 ; 

        TITLE=’   3’            I=       10             J=        4; 

 

     For  a  GET  DATA operation from a terminal during the execution of a 

  PL/I Optimizer program, there is no need to enter intervening blanks  or 

  commas.   PL/I  Optimizer  routines will automatically insert a comma at 

  the end of a line unless the  line  is  continued  by  the  continuation 

  character (-) as the last character. 

 

     An  abbreviated  form  of data-directed I/O that uses no data list is 

  allowed and is treated as if a data list  that  included  all  variables 

  within  the current scope of the program were included in the data list. 

  This form of data-directed I/O is often handy during debugging, but  can 

  result is a large amount of output in a program with large structures or 

  arrays, e.g., 

 

 

  114  PL/I Input/Output in MTS 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       PUT DATA; 
 
 
 
  Edit-Directed I/O   _________________ 
 
 
     With  edit-directed I/O, the operations to be performed are specified 
  by a data list and an associated format list.  The conversions necessary 
  to convert  between  internal  and  external  data  representations  are 
  determined  by  the  data types of the items in the data list and by the 
  format items in the format list.  Edit-directed I/O is not  free-format, 
  no  explicit  delimiters are required between data elements, and strings 
  are not enclosed in quotes.  An edit-directed I/O statement continues to 
  process data in order until  the  end  of  the  data  list  is  reached. 
  Consider the following program segment: 
 
       DECLARE (I,J) FIXED BINARY(15); 

       DECLARE TITLE CHARACTER(30) VARYING; 

       ON ENDFILE(SYSIN) STOP; 

       DO WHILE(’1’B);  /*  FOREVER  */ 

          GET EDIT(TITLE,I,J) (A(10),F(3),F(3)); 

          PUT EDIT(TITLE,I,J) (A,2(F(3))); 

       END; 

 

  A  short  terminal session using the above program segment could produce 

  the following  (user  input  is  in  lowercase,  program  output  is  in 

  uppercase; b represents one blank):              / 

 

       :abcdefghij123456 

        ABCDEFGHIJ123456 

       :aeiou     1  2bb                       // 

        AEIOU       1  2 

       :example #3  3  4 

        EXAMPLE #3  3  4 

       :example #4 

       +:5 

       +:-08 

       EXAMPLE #4  5 -8 

 

     For  a  GET  EDIT operation from a terminal during the execution of a 

  PL/I Optimizer program, the last item being entered on a  line  will  be 

  padded  to  the  correct  length  unless  the  line has the continuation 

  character (-) as the last character, in which  case  the  item  will  be 

  continued  onto  the  next  input  line.   For  example,  the  following 

  statement: 

 

       GET EDIT (NAME) (A(25)); 

 

  The user can just enter his name: 

 

       :John Doe 

 

 

                                             PL/I Input/Output in MTS  115 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  The name "John Doe"  is  automatically  padded  to  25  characters  with 

  necessary blanks. 

 

     While  edit-directed  I/O and FORTRAN-formatted I/O are very similar, 

  there are some important differences.  FORTRAN format items specify both 

  the internal and external form  of  the  data  to  be  converted.   PL/I 

  edit-directed  I/O  uses  the  data type of the item in the data list to 

  determine the internal form and the type of the items in the format list 

  to determine the external form. 

 

 

  Format Items   ____________ 

 

 

     There are two types of format items in PL/I:  data format  items  and 

  control  format  items.   Data  format  items describe data items in the 

  input or output data stream.  Control format items  specify  positioning 

  within the data stream or on the printed page. 

 

     The  fixed-point  format  item  specifies the appearance of a decimal 

  fixed-point data item.  It is given in the form 

 

       F(w,d) 

 

  where "w" represents the width of the field,  or  the  total  number  of 

  characters, including the sign and decimal point; and "d" represents the 

  number  of digits to the right of the decimal point.  If "d" is omitted, 

  the decimal point is assumed to be to the right of the rightmost  digit. 

  On  output,  an  actual  decimal  point  is inserted, trailing zeros are 

  supplied, if necessary, and a minus sign is inserted if the value of the 

  data item is less  than  zero.   For  example,  using  the  format  item 

  F(10,3), the number -123.4567 would be specified as 

 

       -12345.670 

 

  The  F  format item is also used to write fixed-point binary data, which 

  is converted on output to decimal notation. 

 

     The floating-point format item specifies the appearance of a  decimal 

  floating-point data item.  It is given in the form 

 

       E(w,d) 

 

  where  "w"  represents  the  width  of  the field or the total number of 

  characters, including signs, decimal point, and the E exponent flag; and 

  "d" represents the number of digits to the right of the  decimal  point. 

  On  output,  a  decimal point is inserted and blanks are inserted to the 

  left if the actual number of characters is less than "w".  A minus  sign 

  is  supplied  for  the  exponent  if the implied location of the decimal 

  point is to the left of its actual location; a minus sign is inserted to 

  the left of the first character if the value of the data  item  is  less 

  than  zero.   For  example,  using  the  format item E(13,7), the number 

  -123.4567 would be specified as 

 

  116  PL/I Input/Output in MTS 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       -.1234567E+03 

 

  The E format is used on output for either decimal  or  binary  floating- 

  point data.  Binary data is always converted to decimal notation. 

 

     The  character-string  format item specifies character strings in the 

  data stream.  It is given in the form 

 

       A(w) 

 

  where "w" represents the number of characters in the string.  The "w" is 

  always required on input; for output, if "w" is omitted, the  length  is 

  taken  as  the  actual  length of the specified string.  Quotation marks 

  should not appear in the input stream because a  single  quotation  mark 

  would  be  considered  as  a  single character.  Quotation marks are not 

  written on output. 

 

     The bit-string format item specifies bit strings in the data  stream. 

  If is given in the form 

 

       B(w) 

 

  where  "w"  represents  the  number  of  bits in the string.  The "w" is 

  always required on input; for output, if "w" is omitted, the  length  is 

  taken  as  the  actual  length  of  the  specified  bit string.  Neither 

  quotation marks nor the letter B should  appear  in  the  input  stream. 

  They are not written on output. 

 

     The  spacing-control  format  item  specifies the relative horizontal 

  spacing in a line.  It is given in the form 

 

       X(n) 

 

  On input, it specifies the number of characters "n" to be  ignored.   On 

  output,  it  specifies  that "n" blanks are to be inserted into the data 

  stream. 

 

     The printing-control format items specify how output is to appear  on 

  the printed page.  They are PAGE, SKIP(n), LINE(n), and COLUMN(n). 

 

     The  PAGE  format  item  specifies that the next output line is to be 

  written on a new page. 

 

     The SKIP(n) format item specifies that n-1 lines are  to  be  skipped 

  and  the  next  data  item  is to be written on the nth line.  If "n" is                                                       _ 

  omitted, it indicates that the next data item is to be  written  on  the 

  next line.  The SKIP format item is often used in the PUT SKIP statement 

  to force the current output buffer to be written. 

 

     The  LINE(n)  format  item  specifies that lines are to be skipped so 

  that the next data item will be written on the nth line of  the  current                                                  _ 

  page. 

 

 

                                             PL/I Input/Output in MTS  117 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     The COLUMN(n) format item specifies that blanks are to be inserted so 

  that the first character of the next data item will be the nth character                                                              _ 

  of the current line. 

 

     Note  that  the  SKIP  format item, like the X format item, specifies 

  relative spacing, while LINE and COLUMN specify absolute spacing. 

 

     The above paragraphs provide a brief introduction to PL/I stream I/O; 

  however, only the barest details are covered.  For  further  details  on 

  the  many  specialized  format  items  available in PL/I, and details on 

  stream I/O using arrays, structures, etc., the reader  should  refer  to 

  the  sections  "Stream-Oriented  Transmission" and "Edit-Directed Format 

  Items" in one of the IBM PL/I Language Reference Manuals or one  of  the 

  texts included in the bibliography at the end of this volume. 

 

 

 

  Use of PRINT Files   __________________ 

 

 

     For  PL/I (F)  programs, if the PRINT files are attached to a printer 

  or to HASP, the first character of a line is immediately  translated  to 

  an  equivalent  machine  carriage control character so that MTS will not 

  automatically issue a page skip.  If the PRINT  files  are  attached  to 

  files  or  devices  other  than  printers, the first characters of lines 

  remain unchanged.  If these are then copied to a printer, a program *ASA 

  should be run to override the MTS automatic page skip, especially when a 

  page has more than 60 lines. 

 

     For PL/I Optimizer programs, any line with a line count greater  than 

  60 will now contain several lines with the carriage control "9".  Hence, 

  if  PRINT  files are attached to files or devices, the output can safely 

  be copied to a printer. 

 

 

 

  Tab Control Table   _________________ 

 

 

     Data-directed and list-directed output to a PRINT file  is  automati- 

  cally aligned on preset tabulator positions; the tab settings are stored 

  in  a table, an assembler language control section, IBMBSTAB (see Figure 

  1). 

 

 

 

 

 

 

  118  PL/I Input/Output in MTS 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  ┌──────────────────────────────────────────────────────────────────────┐ 
  |                                                                      | 
  | IBMBSTA1 CSECT                                                       | 
  |          ENTRY IBMBSTAB                                              | 
  | IBMBSTAB EQU   *                                                     | 

  |          DC    C’IBMBSTAB’                                           | 

  |          DC    H’14’          OFFSET OF TAB COUNT                    | 

  |          DC    H’60’          PAGESIZE                               | 

  |          DC    H’120’         LINESIZE                               | 

  |          DC    H’0’           PAGELENGTH FOR TERMINALS               | 

  |          DC    3H’0’          FILLERS (RESERVED)                     | 

  |          DC    H’5’           TAB COUNT                              | 

  |          DC    H’25’          TAB 1                                  | 

  |          DC    H’49’          TAB 2                                  | 

  |          DC    H’73’          TAB 3                                  | 

  |          DC    H’97’          TAB 4                                  | 

  |          DC    H’121’         TAB 5                                  | 

  |          END                                                         | 

  |                                                                      | 

  └──────────────────────────────────────────────────────────────────────┘ 
 

  Figure 1.  Tab control library module IBMBSTAB. 

 

     The standard settings are given in the IBM language reference  manual 

  for  this  compiler.   The  functions  of the fields in the table are as 

  follows: 

 

    OFFSET OF 

    TAB COUNT:       Halfword binary integer  that  gives  offset  of  the 

                     field, indicating the number of tabs used. 

 

    PAGESIZE:        Halfword binary integer that defines the default page 

                     size. 

 

    LINESIZE:        Halfword binary integer that defines the default line 

                     size. 

 

    PAGELENGTH:      Halfword binary integer that defines the default page 

                     length  for  printing at a terminal.  The page length 

                     is the number of  lines  between  perforations.   The 

                     default  value  is  zero,  a  special  convention  to 

                     indicate unformatted output.  PAGELENGTH is currently 

                     ignored. 

 

    FILLERS:         Reserved for future use. 

 

    Tab count:       Number of tab position entries in  a  table  (maximum 

                     255).   If tab count = 0, any specified tab positions 

                     are ignored; each data  item  is  positioned  at  the 

                     start of a new line. 

 

    Tab 1-Tab n:     Tab  positions  within  the  print  line.   The first 

                     position is numbered 1, and the highest  position  is 

 

                                             PL/I Input/Output in MTS  119 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                     numbered  255.   The  value  of  each  tab  should be 
                     greater than that of the  tab  preceding  it  in  the 
                     table; otherwise, it will be ignored.  The first data 
                     field  in  the  printed  output  begins  at  the next 
                     available tab position. 
 
  Note that the first item on the line is always printed in column 1.  The 
  first tab sets the position of the second item. 
 
     The standard PL/I tab settings in IBMBSTAB  can  be  overridden.   If 
  PLITABS  is present, the module IBMBSTAB will not be used.  Instead, the 
  stream-oriented input/output routines will refer to the control  section 
  PLITABS for the tab settings. 
 
     There  are  two methods of altering the tab settings for a particular 
  program.  One method is to create an assembler-language control  section 
  called  PLITABS and include it with the program.  The alternative method 
  is to include a PL/I structure in the source program.  The  organization 
  of  the  structure  is similar to the assembler-language control section 
  for PLITABS given in Figure 1.   The  name  of  the  structure  must  be 
  PLITABS  and  must  be  declared  STATIC EXTERNAL.  An example of a PL/I 
  structure to create three tab settings in positions 30, 60, and 90,  and 
  use the defaults for page size and line size is given in Figure 2. 
 
  ┌──────────────────────────────────────────────────────────────────────┐ 
  |                                                                      | 
  | DECLARE 1 PLITABS STATIC EXTERNAL,                                   | 
  |         2 (OFFSET INITIAL(6),                                        | 

  |           PAGESIZE INITIAL(60),                                      | 

  |           LINESIZE INITIAL(120),                                     | 

  |           NO_OF_TABS INITIAL(3),                                     | 

  |           TAB1 INITIAL(30),                                          | 

  |           TAB2 INITIAL(60),                                          | 

  |           TAB3 INITIAL(90)) FIXED BINARY(15,0);                      | 

  └──────────────────────────────────────────────────────────────────────┘ 
 

  Figure 2.      PL/I  structure  PLITABS  for  modifying the standard tab 

                 settings (alternative method). 

 

     The equivalent fields for PAGELENGTH and FILLERS are omitted from the 

  structure, and the value given in the offset field is set to 6. 

 

     Note that the PAGESIZE field in PLITABS is used by PLIDUMP to  define 

  the page size for the dump output. 

 

 

 

 

 

 

  120  PL/I Input/Output in MTS 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  RECORD I/O   __________ 
 
 
     Record  I/O  may be used to access MTS files and devices sequentially 
  or randomly.  Sequential access may be performed on any valid  MTS  file 
  or  device,  but  random  access only may be performed using MTS line or 
  sequential files.  Random access is performed using KEYED files; the MTS 
  implementation of this type of record I/O differs considerably from  the 
  standard IBM implementation. 
 
     All  PL/I  stream  I/O statements can be used in MTS just as they are 
  described in the IBM PL/I (F) Language Reference Manual.  However, there                    ______________________________________ 

  are some restrictions on record I/O statements.  A list  of  the  record 

  I/O statements and options which can be used in MTS is given below. 

 

 

                           ┌ INTO (variable)  ┌ KEY (expression) ┐  ┐ 
     READ FILE(filename)   | SET (pointer)    └ KEYTO (variable) ┘  |; 
                           └ IGNORE (expression)                    ┘ 
 

     WRITE FILE(filename)  FROM (variable) [ KEYFROM (expression) ]; 

 

     LOCATE based_variable FILE (filename) [ SET (pointer) ] 

                           [ KEYFROM (expression) ]; 

 

     REWRITE FILE (filename) [ FROM (variable) ] [ KEY (expression) ]; 

 

     DELETE FILE (filename) [ KEY (expression) ]; 

 

 

     Note:   The  PL/I  Optimizing compiler does not currently support the      ____ 

  DELETE statement and KEY, KEYTO, KEYFROM options. 

 

 

 

  Use of BACKWARDS Files   ______________________ 

 

 

     BACKWARDS files are implemented only by the PL/I Optimizing compiler. 

  This applies not only to magnetic tapes but also on *DUMMY* and MTS line 

  or sequential files, which can be read backwards.  Only READ  statements 

  can  be  used with these files, starting with the last record and ending 

  with the first record.  If a file FYLE(1,3) is attached to  a  backwards 

  file,  this file will be read from MTS line 3 to MTS line 1.  Any use of 

  BACKWARDS files on other than *DUMMY*, MTS files,  and  magnetic  tapes, 

  will raise an UNDEFINEDFILE condition with ONCODE=82. 

 

 

 

 

 

 

                                             PL/I Input/Output in MTS  121 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Use of KEYED Files   __________________ 
 
 
     To access a file randomly, KEYED files must be used.  This subsection 
  modifies  the  information  on  KEYED  files  given  in the IBM PL/I (F)                                                               ____________ 

  Language Reference Manual and is intended to be used in conjunction with   _________________________ 

  the Reference Manual. 

 

     The KEYED attribute must be specified for a PL/I  file  whenever  the 

  user  desires  to  use  KEY,  KEYTO,  or  KEYFROM  options in record I/O 

  statements.  Only formats U and F are supported,  and  records  must  be 

  unblocked.   In  MTS,  two  types  of  organization  in  the ENVIRONMENT 

  attribute are recognized for KEYED files:   INDEXED,  which  applies  to 

  line files, and CONSECUTIVE which applies to sequential files.  REGIONAL 

  organization is not supported in MTS. 

 

     There are three types of keyed PL/I files: 

 

     (1)  FILE KEYED ENVIRONMENT (CONSECUTIVE) 

     (2)  FILE KEYED ENVIRONMENT (INDEXED) 

     (3)  FILE KEYED ENVIRONMENT (INDEXED GENKEY) 

 

  Refer  to  the previous section for input/output statements which can be 

  used with KEYED files.  Some are shown in the examples which follow. 

 

 

 

  Consecutive KEYED Files   _______________________ 

 

 

     For consecutive KEYED files,  the  keys  are  four-character  strings 

  internally representing record pointers for the corresponding records in 

  a  sequential  file.   A  special  key, having the value of binary zero, 

  points to the beginning of the file.  Since it is difficult to determine 

  keys of records due to the structure of sequential  files,  two  subrou- 

  tines  NEXTKEY  and  LASTKEY  are  available to provide keys of the next 

  record and one past the last record of the file, respectively. 

 

     The PL/I (F) compiler often issues the message  that  the  attributes 

  KEYED  and CONSECUTIVE are conflicting.  They conflict in OS, but not in 

  MTS.  This message may be ignored.  For example: 

 

 

 

 

 

 

 

  122  PL/I Input/Output in MTS 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  MAIN: PROCEDURE OPTIONS(MAIN); 

        DECLARE (LASTKEY,NEXTKEY) ENTRY(FILE) RETURNS (CHAR(4)), 

                (LAST, NEXT) CHARACTER(4), BUFF CHAR(32767) VARYING, 

        ZOT FILE KEYED UPDATE ENVIRONMENT(CONSECUTIVE); 

        OPEN FILE (20T) KEYED UPDATE; 

        NEXT = LOW(4); /* To set the file at the beginning */ 

        LAST = LASTKEY(ZOT); /* To determine key after last record */ 

  A:    READ FILE (ZOT) KEY (NEXT) INTO (BUFF); /* Read into buffer */ 

        /* If the record starts with a "1", change tenth and eleventh 

           characters to "1" and "0", and rewrite the record */ 

        IF SUBSTR(BUFF,1,1) = ’1’ THEN DO; 

           SUBSTR(BUFF,10,2) = ’10’; 

           REWRITE FILE (ZOT) FROM (BUFF); 

           END; 

        NEXT = NEXTKEY (ZOT); /* Set key NEXT to the key of next record */ 

        IF NEXT ¬= LAST /* Are we done with last record? */ 

           THEN GO TO A;    /* No. */ 

        END; 

 

 

 

  Indexed KEYED Files without GENKEY Option   _________________________________________ 

 

 

     A key without the GENKEY option is  a  four-character  string  corre- 

  sponding  to  a  FIXED  BINARY(31) internal form of the MTS line number, 

  i.e., the line number times 1000.  This type of PL/I file  can  be  used 

  only with MTS line files.  For example: 

 

           DECLARE L# FIXED BINARY (31), 

                   KEY# CHARACTER(4) DEFINED L#, 

                   ZE FILE KEYED DIRECT ENVIRONMENT (INDEXED), 

                   BUFF CHARACTER (255) VARYING; 

           L# = 1000;  /* This refers to MTS line number 1.000 */ 

           DELETE FILE (ZE) KEY (KEY#); /* Deletes the line */ 

           L# = 14000; /* Now refers to MTS line number 14.000 */ 

           READ FILE (ZE) INTO (BUFF) KEY (KEY#); 

           PUT DATA (BUFF); /* To see that correct line was obtained */ 

 

     The variables used with the PL/I KEY, KEYTO, and KEYFROM options must 

  always  be  character-string  variables,  while  the actual keys used to 

  access MTS line files without the GENKEY option are  fullword  integers. 

  Because  of  this  conflict,  it  is  necessary  to  associate  two PL/I 

  variables  using  the  DEFINED  attribute.   These  are  a  CHARACTER(4) 

  variable  and  a  FIXED  BINARY(31)  variable.   In  the  above program, 

  defining L# and KEY# to occupy the same storage location will produce  a 

  PL/I warning message that may be ignored. 

 

 

 

 

 

 

                                             PL/I Input/Output in MTS  123 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Indexed KEYED Files with GENKEY Option   ______________________________________ 
 
 
     A key with the GENKEY option is a character string of either fixed or 
  varying  length that represents the external form of an MTS line number. 
  This key must conform to the format: 
 
       ±ddddd.ddd 
 
  where: 
 
       ±         The sign, either "-" or "+", is optional but must  appear 

                 if a line number is to be negative. 

       d         There  must  be  at  least  one  digit, no more than five 

                 digits to the left of the decimal point, and no more than 

                 three digits to the right.  The decimal point is general- 

                 ly optional but must appear if any of three digits to the 

                 right of the decimal point is nonzero. 

       blank     There may be any number of blanks  on  the  left  or  the 

                 right.  No intervening blanks are allowed. 

 

  All  character strings not conforming to the above rules (such as ’A’ or 

  ’1.2.3’) will raise the KEY conversion error.  This type  of  PL/I  file 

  may be used only with MTS line files. 

 

     The  KEYTO  option may be used to return key values, typically when a 

  KEYED indexed file is being read sequentially.  When the KEYTO option is 

  used to read indexed files with  the  GENKEY  option,  the  line  number 

  returned will be formatted according to the following rules: 

 

     (1)  If  the  KEYTO option is too short, the line number is truncated 

          on the right without raising KEY  error.   For  example,  a  key 

          string of length 2 for the line number ’-123’ appears as ’-1’. 

 

     (2)  If  the  KEYTO string is of varying length, leading and trailing 

          zeros are eliminated and the form  is  compressed,  allowing  no 

          blanks  at the left or right.  For example, a key string for the 

          line number ’-001.230’ appears as ’-1.23’. 

 

     (3)  If the KEYTO string is of fixed length less than 10  characters, 

          the  number  is  first  compressed  and  then  padded  with  any 

          necessary blanks on the right.  For example,  a  key  string  of 

          fixed   length  8  for  the  line  number  -001.230  appears  as 

          ’   -1.23’. 

 

     (4)  If the KEYTO string is fixed and is of length 10 or  more,  only 

          leading  zeros  on the left of the decimal point are eliminated. 

          The number is then right-justified with blanks.  For example,  a 

          key string for the same number appears as ’      -1.230’. 

 

     In  the  following  example,  an MTS line file is read beginning from 

  line 20, and then sequentially up to and including line 30. 

 

 

  124  PL/I Input/Output in MTS 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       MAIN:   PROCEDURE OPTIONS(MAIN); 

               DECLARE GKF FILE KEYED ENVIRONMENT(INDEXED GENKEY), 

                       KT CHARACTER(10) VARYING, 

                       BUFF CHARACTER(255) VARYING; 

               READ FILE (GKF) INTO (BUFF) KEY (’20’); 

       LOOP:   READ FILE (GKF) INTO (BUFF) KEYTO (KT); 

               PUT DATA (BUFF, KT); 

               IF KT < ’30’ THEN GO TO LOOP; 

               END MAIN; 

 

 

  PL/I FILES, MTS FILES AND DEVICES, AND LOGICAL I/O UNITS   ________________________________________________________ 

 

 

     All PL/I input/output statements use PL/I files either explicitly  or 

  implicitly.   These  PL/I files are in turn associated with an MTS file, 

  or more properly, and MTS file or device  (FDname).   With  this  rather 

  indirect  method  of  associating  an I/O statement with the MTS file or 

  device on which the actual I/O is to be done, it is  possible  to  avoid 

  building  the  MTS  FDnames  into  the  PL/I  source  program.   Another 

  advantage is that PL/I I/O statements  may  be  written  in  a  somewhat 

  device-independent  manner.   This is only partially true, however.  For 

  example, KEYED I/O may only be performed using MTS  line  or  sequential 

  files.  A disadvantage to this method of associating I/O statements with 

  real files and devices is that documentation that refers to a "file" may 

  not  specify whether a PL/I or MTS file is meant.  In the terminology of 

  the PL/I Language Reference Manual, the term "file" always refers  to  a       ______________________________ 

  PL/I  file,  while  the  term "data set" would be known as a file/device 

  name (FDname) in MTS. 

 

     There are several paths that may be followed to associate a PL/I file 

  with an MTS FDname.  The most direct is to choose a PL/I file name  that 

  is  the  same  as  one  of the MTS logical I/O unit names, i.e., SCARDS, 

  SPRINT, SPUNCH, SERCOM, or GUSER.  In this case,  the  MTS  logical  I/O 

  unit  may  be  assigned  to  an  MTS  FDname  on the $RUN command in the 

  standard manner or it may be allowed to default (see MTS  Volume  1  for 

  details).   The PL/I Optimizing compiler also equates SYSIN and SYSPRINT 

  to MTS logical I/O units SCARDS and SPRINT, respectively. 

 

     Another method is almost as direct and does not require the choice of 

  any special names.  In this case, the PL/I file name is assigned  to  an 

  MTS  FDname  in  the  PAR  field  of  the  $RUN command (see the section 

  "Running a PL/I Program" in this  volume).   If  a  PL/I  record  format 

  modifier  is  to  be  used  in  the  assignment of a PL/I file to an MTS 

  FDname, this method must be used even if the PL/I file name  corresponds 

  to one of the MTS logical I/O unit names. 

 

     Finally,  a  PL/I file name may be associated with a PL/I title which 

  corresponds to an MTS logical I/O unit  number  (see  below).   The  MTS 

  logical  I/O  unit  number  may then be assigned to an MTS FDname in the 

  standard fashion on the $RUN command.  Once  again,  if  a  PL/I  record 

  format  modifier is to be used in the assignment, the assignment must be 

  made in the PAR field of the $RUN command. 

 

                                             PL/I Input/Output in MTS  125 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     The use of the TITLE option in  the  OPEN  statement  makes  possible 
  references to logical I/O units 0 to 99.  For example, using the logical 
  I/O unit 2: 
 
       OPEN FILE(NUMBER) OUTPUT PRINT TITLE(’2’); 

 

  A corresponding PUT statement and $RUN command would be: 

 

       PUT FILE (NUMBER) DATA (A); 

        ... 

       $RUN -OBJ+*PL1LIB 2=FILEA 

 

  A  single PL/I file variable can refer to more than one logical I/O unit 

  (but only one at a time) by  closing  and  reopening  the  file  with  a 

  different TITLE option. 

 

     The  PL/I-callable  subroutine ATTACH (described in the section "PL/I 

  Library Subroutines" in this volume) provides the capability to  perform 

  the  same  type of assignment between PL/I files and MTS FDnames that is 

  allowed in the PAR field of the $RUN command. 

 

 

 

  Standard Files   ______________ 

 

 

     PL/I includes two standard files, SYSIN for input  and  SYSPRINT  for 

  output.   If  the  PL/I  Optimizer program includes a GET statement that 

  does not include  the  FILE  or  STRING  option,  the  compiler  inserts 

  FILE(SYSIN);  if  it includes a PUT statement without the FILE or STRING 

  option, the compiler inserts FILE(SYSPRINT).  The PL/I (F) compiler uses 

  SCARDS and SPRINT instead of SYSIN and SYSPRINT as standard files. 

 

     If SYSPRINT is not declared, the compiler  will  give  the  file  the 

  attribute  PRINT  in  addition  to  the  normal default attributes.  The 

  complete file declaration will be: 

 

       SYSPRINT FILE STREAM OUTPUT PRINT EXTERNAL 

 

     Since SYSPRINT is a PRINT file, the compiler also supplies a  default 

  line  size  of  120  (or  less  to  fit  a  terminal).  SYSPRINT will be 

  associated with MTS logical I/O unit SPRINT, which defaults to *SINK*. 

 

     The attributes given to SYSPRINT by the compiler may be overridden by 

  explicitly declaring or opening the file.  The user must  bear  in  mind 

  that  this  file  is  also  used  by  the error-handling routines of the 

  compiler, and that any change made in the  format  of  the  output  from 

  SYSPRINT will also apply to the format of run-time error messages.  When 

  an  error  message is printed, eight blanks are inserted at the start of 

  each line except the first.  If a line of size less than  72  characters 

  is specified, the messages will not be output to SYSPRINT. 

 

 

  126  PL/I Input/Output in MTS 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     If SYSPRINT cannot be used for error messages, run-time messages will 
  appear  on  MTS  logical I/O unit SERCOM.  For example, if SYSPRINT is a 
  RECORD file, messages will appear on SERCOM, instead. 
 
     The compiler does not supply any special attributes for the  standard 
  input  file  SYSIN;  if  it is not declared, it receives only the normal 
  default attributes.  SYSIN is usually associated with  MTS  logical  I/O 
  unit SCARDS. 
 
 
 
  Record Formats   ______________ 
 
 
     Record formats are given in the following form: 
 
       U[A|M][(maximum blocksize)] 

       V[B][S][A|M][( maximum blocksize[,maximum recordsize])] 

       F[B][A|M][(maximum blocksize[,recordsize])] 

       D[B][A][(maximum blocksize[,recordsize])] 

 

  where: 

 

       U                   Undefined   formatted  records  have  no  fixed                            _________ 

                           length  and  no  internal  count  data  in  the 

                           record.   They  are  probably  most useful with 

                           respect to MTS line  files.   Trailing  blanks, 

                           however, are not trimmed. 

 

       V                   Variable formatted records are also of variable                            ________ 

                           length  but contain count fields as part of the 

                           record:  one for the block length, and one  for 

                           each  record  length.  They may be blocked.  If 

                           the maximum record size is not specified, it is 

                           assumed  to  be  4  less   than   the   maximum 

                           blocksize. 

 

       F                   Fixed formatted records are of fixed length and                            _____ 

                           may be blocked.  Due to the trim feature in MTS 

                           file  handling, PL/I routines automatically pad 

                           the records to the right length with blanks  as 

                           necessary. 

 

       D                   ASCII variable-length are of different lengths.                            _____________________ 

                           They  contain  4  control  bytes describing the 

                           length of a record.  They also may  be  blocked 

                           (DB). 

 

       B                   Blocked  records  for formats F and V (i.e., FB                            _______ 

                           and VB) increase efficiency of  I/O  operations 

                           since the number of blocks is reduced by having 

                           every block contain two or more records instead 

                           of  one.   This is particularly useful for mag- 

 

                                             PL/I Input/Output in MTS  127 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                           netic tapes.  B should not be specified in  the 
                           ENVIRONMENT  file  attribute--it is inferred by 
                           the difference between the block size  and  the 
                           record  size;  the  exception  is  VBS  blocked 
                           spanned variables. 
 
       S                   Spanned variable-length  records  (VS  or  VBS)                            _______ 

                           permit  a  record  to  be  spanned over several 

                           blocks. 

 

       A or M              This option specifies that the records  contain 

                           ANS  standard  (A)  or  machine  (M)  carriage- 

                           control characters respectively  as  the  first 

                           character  of  each data record.  These will be 

                           used to effect carriage control if written to a 

                           printer or  terminal.   ANS  standard  carriage 

                           control  is  normally  used  in  MTS.   A and M 

                           should not be specified in the ENVIRONMENT file 

                           attribute--the  equivalent   are   CTLASA   and 

                           CTL360, respectively, for record I/O files; for 

                           stream  I/O,  A  is  assumed  automatically for 

                           print files only. 

 

       Maximum Blocksize   is the length or maximum length of a  block  in 

                           the  file,  including  the control fields in V, 

                           VB, D, or DB format records.  It is an integral 

                           multiple of the  record  size  in  FB-formatted 

                           records. 

 

       Maximum Recordsize  is  the length or maximum length of the records 

                           in the file.  It includes the record length  of 

                           the    control   word   for   V-formatted   and 

                           D-formatted records. 

 

  Examples: 

 

       U(255)              specifies a file  of  records  with  a  maximum 

                           length  of 255.  Since there is no count field, 

                           the user  may  like  to  determine  the  record 

                           length.  For example: 

 

                                DECLARE IN CHARACTER(255) VARYING; 

                                READ FILE(INPUT) INTO (IN); 

                                I=LENGTH(IN); 

 

                           Here  I  contains  the  actual  length  of  the 

                           record. 

 

       UA(133)             specifies  an  undefined  format  item  with  a 

                           standard  carriage-control  character and up to 

                           132 positions of data to be printed. 

 

 

  128  PL/I Input/Output in MTS 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       V(88,84)            specifies a file with variable-length  records. 

                           Each  record  will  contain  up  to 80 bytes of 

                           data, a 4-byte record-descriptor  word,  and  a 

                           4-byte  block-descriptor  word.  The record and 

                           block  descriptors  both  contain  a   halfword 

                           length  followed  by  a  halfword of flags.  An 

                           80-byte data file may be  specified  as  V(88), 

                           which is same as V(88,84). 

 

       F(80)               specifies  a file with fixed-length records--80 

                           bytes of data in each record.   Blanks  may  be 

                           appended  for all records shorter than 80 bytes 

                           so that their length equals 80. 

 

       FB(8000,80)         specifies  a  blocked  file  with  fixed-length 

                           records--one-hundred 80-byte records per block. 

 

     The  following  sample program can be executed giving the file OUTPUT 

  various record format specifications. 

 

       $RUN *PL/1 SPUNCH=-OBJ 

        P: PROCEDURE OPTIONS(MAIN); 

                DECLARE 

                   OUTAREA CHAR(255) VARYING, 

                   FIELD CHAR(255); 

                DO I=1 TO 5; 

                   OUTAREA=SUBSTR(FIELD,1,5*I); 

                   WRITE FILE(OUTPUT) FROM (OUTAREA); 

                END; 

           END P; 

       $ENDFILE 

 

  Execution with the record format on the following $RUN command: 

 

                  $RUN -OBJ+*PL1LIB PAR=OUTPUT=-OUT@V(255) 

 

  will produce in the file -OUT five lines: 

 

                ┌────────────────────────┐                      ┌    ┌ 
        line 1  | 13 |  9 |  5 data bytes| 

                |────┼────┼─────────────────────┐                 ┌                        ┘ 
        line 2  | 18 | 14 | 10 data bytes       | 

                |────┼────┼────────────────────────────┐                 ┌                               ┘ 
        line 3  | 23 | 19 | 15 data bytes              | 

                |────┼────┼───────────────────────────────────┐                 ┌                                      ┘ 
        line 4  | 28 | 24 | 20 data bytes                     | 

                |────┼────┼──────────────────────────────────────────┐                 ┌                                             ┘ 
        line 5  | 33 | 29 | 25 data bytes                            | 

                └────────────────────────────────────────────────────┘                      ┘    ┘ 
 

  This file is unblocked.  The same file would be  produced  if  the  file 

  specification  had  been  V(33,29).  The specification of a blocked file 

  for the output of the same program could be given as follows: 

 

                                             PL/I Input/Output in MTS  129 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
              $RUN -OBJ+*PL1LIB PAR=OUTPUT=-FILE@VB(1004,100) 

 

  -FILE will have several variable-length logical records written in  each 

  block.   Each  record can contain up to 96 bytes of data plus the 4-byte 

  recordsize control field.  Each block can  contain  up  to  1004  bytes, 

  including the 4-byte blocksize control field. 

 

     When the program is run, the file -FILE will contain a single line in 

  the following format: 

 

      ┌──────────────────────────────────────────────────────────────┐            ┌    ┌              ┌    ┌              ┌   ┌ 
      |99  | 9  | 5 data bytes | 14 |10 data bytes |19 |15 data bytes| ••• 

      └──────────────────────────────────────────────────────────────┘            ┘    ┘              ┘    ┘              ┘   ┘ 
 

      ┌───────────────────────────────────────┐            ┌              ┌    ┌ 
      |24  |20 data bytes | 29 | 25 data bytes| 

      └───────────────────────────────────────┘            ┘              ┘    ┘ 
 

  The  same  file  would  have been created for this program if the format 

  specification had been VB(1004,29).  If the record format  specification 

  were  U(25  or larger), five separate lines would be written with 5, 10, 

  15, 20, and 25 data bytes, respectively. 

 

 

  Magnetic Tape I/O   _________________ 

 

 

     When opening a PL/I file on a  magnetic  tape,  detailed  information 

  such  as record size, block size, and record format can be obtained from 

  the current data set labels for labeled tapes (the default is U(255)  in 

  the  case  of  unlabeled  tapes).  This is merged with the record format 

  specified in either the PAR field parameter  string  or  by  the  ATTACH 

  routine.   This,  in  turn,  is  merged  with  the environment attribute 

  options of the PL/I file.  This becomes the  final  record  format  (see 

  examples  below).   If  a  new  data set is about to be written, the new 

  record format is passed to the MTS magnetic tape routines  so  that  the 

  data  set  characteristics and the record format do match, thus ensuring 

  the correct record format when the data set is read in.  If the tape  is 

  on  a 7-track drive and is to be V-formatted, the data converter feature 

  is enabled.  Finally, because PL/I (F) routines do their  own  blocking, 

  the  normal  MTS blocking support is disabled and not reenabled when the                                                     ___ _________ 

  file is closed.  To reenable the MTS blocking support, the  user  should 

  issue the following command after the program is terminated: 

 

       $CONTROL *T* BLK=ON 

 

  where *T* represents the pseudo-device name of the tape.  PL/I Optimizer 

  routines  do  not disable the normal MTS blocking support, and hence the 

  command above is not necessary. 

 

     There is a slight discrepancy between PL/I routines and MTS  magnetic 

  tape  routines,  namely  that V-formatted and D-formatted record size in 

  PL/I must be LRECL (logical record length) plus 4.                                              ____ _ 

 

  130  PL/I Input/Output in MTS 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     At the CLOSE statement, all output tapes have an end-of-file  written 
  and then are backspaced to just before the end-of-file.  Finally, unless 
  the  LEAVE environment option is specified, every tape, whether input or 
  output, is rewound to the start of the first data set of the tape. 
 
  Example 1 
 
       Unlabeled tape default:      U(255) 

       PAR field:                   PAR=TAPE=*T*@V(500,80) 

       Environment option:          PL/I (F): DECLARE TAPE FILE 

                                            ENV (F(400)); 

                                    PL/I OPT: DECLARE TAPE FILE 

                                            ENV (F BLKSIZE(400)); 

 

            The record format in effect is  FB(400,80).   Note  the  order 

            which gives the result. 

 

  Example 2 

 

       $MOUNT XXX 9TP *XXX* VOL=ABC ’ID’ 

       $CONTROL *XXX* POSN=ZOO 

       $RUN PGM+*PL1LIB PAR=TAPE=*XXX* 

 

            There is no need to specify the record format since the labels 

            on the tape automatically specify it. 

 

  Example 3 

 

       $MOUNT YYY 7TP *YYY* VOL=BEE RING=IN ’VALE’ 

       $CONTROL *YYY* POSN=*EOT* 

       $CONTROL *YYY* DSN=SAMPLE 

       $RUN ABC+*PL1LIB PAR=TAPE=*YYY*@FB(4000,80) 

 

            where in the program ABC there appears the statement: 

 

       PL/I (F): DECLARE TAPE FILE ENVIRONMENT (V(5000)); 

 

            or 

 

       PL/I OPT: DECLARE TAPE FILE ENVIRONMENT (V BLKSIZE(5000)); 

 

            The  record format in effect will be VB(5000,80), not FB(4000, 

            80).  Note that because this is a V-formatted tape, the labels 

            generated by MTS will specify  VB(5000,76)  according  to  MTS 

            since  MTS  itself  always  deals  with the true record length 

            (without the control word) whereas the PL/I record length must 

            be specified with the 4 extra  bytes  for  the  control  word. 

            Also note that because this is a V-formatted 7-track tape, the 

            data converter feature is enabled. 

 

 

 

                                             PL/I Input/Output in MTS  131 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Default Record Size   ___________________ 
 
 
     If  a  PL/I  file  record  size is not explicitly specified at either 
  compile-time or execution-time, the following defaults are used: 
 
     Files with the PRINT attribute: 
 
          The default print line size (121),  the  maximum  output  record 

          length, or the terminal width. 

 

     Files with the OUTPUT or UPDATE attribute: 

 

          The maximum output record length or the terminal width. 

 

     Files with the INPUT attribute: 

 

          The maximum input record length of the MTS file or device. 

 

  For  PL/I  (F)  output  nonprint  files,  the  record length will be the 

  minimum of 80 or the output record length (ORL). 

 

     The record size of a file may be  explicitly  given  at  compile-time 

  using  an  option  of  the  ENVIRONMENT file description attribute or by 

  using the LINESIZE option of the OPEN statement.   For  files  with  the 

  PRINT  attribute, LINESIZE does not include the carriage-control charac- 

  ter, thus for these files, the record size is  equal  to  LINESIZE  plus 

  one, e.g., 

 

       OPEN FILE(DATA) LINESIZE(120); 

 

     The record size of a file may also be explicitly given at run-time in 

  the PAR field of the $RUN command.  Record-size information specified at 

  compile-time  takes  precedence  over information specified at run-time, 

  e.g., 

 

       $RUN PROGRAM PAR=DATA@U(121) 

 

 

 

 

 

 

 

 

 

  132  PL/I Input/Output in MTS 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                           OTHER PL/I STATEMENTS                            _____________________ 
 
 
 
 
     Below are the statements (besides stream and record PL/I statements), 

  which have different implementations than described in the  PL/I  Refer- 

  ence  Manual.   Currently,  these are DISPLAY, FETCH, RELEASE, and DELAY 

  statements. 

 

 

  THE DISPLAY STATEMENT   _____________________ 

 

 

     The PL/I DISPLAY statement has the form 

 

       DISPLAY (element-expression) [REPLY(character-variable)]; 

 

  and may be used to write varying-length character  strings  to  the  MTS 

  logical  I/O  unit  SERCOM  and  to  optionally  read  a  varying-length 

  character string from MTS logical I/O unit GUSER.   By  default,  SERCOM 

  and  GUSER  correspond  to *MSINK* and *MSOURCE*, respectively, which is 

  usually  the  user’s  terminal  in   conversational   mode.    "element- 

  expression" is converted as necessary before it is displayed. 

 

     Output  from  the  DISPLAY  statement  is  written  with  the @CC I/O 

  modifier as the default for the PL/I  (F)  compiler  and  the  @¬CC  I/O 

  modifier as the default for the PL/I Optimizing Compiler. 

 

     The following example illustrates the use of the DISPLAY statement. 

 

       TEST: PROCEDURE OPTIONS(MAIN); 

             DECLARE (ANS1,ANS2) CHARACTER(30) VARYING; 

             DISPLAY (’Please enter your given name’) 

                REPLY (ANS1); 

             DISPLAY (’Please enter your surname’) 

                REPLY (ANS2); 

             DISPLAY (’Thank you, ’||ANS1||’ ’||ANS2); 

       END TEST; 

 

  Terminal session: 

 

       Please enter your given name 

       John Doe 

       Please enter your surname 

       MD. 

       Thank you, John Doe MD. 

 

     In  addition  to  its  normal  use, the DISPLAY statement can be very 

  useful for debugging when  used  to  print  intermediate  results.   For 

  example, 

 

                                                Other PL/I Statements  133 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
        DECLARE A FIXED DECIMAL(3,1); 

        A = 2.3; 

        DISPLAY (’A=’||A); 

 

  will output A=2.3 when executed.  Note that the || operator in the above 

  two examples indicates concatenation. 

 

     The end of file is ignored for the REPLY option. 

 

 

 

  FETCH AND RELEASE STATEMENTS   ____________________________ 

 

 

     Through  the use of FETCH and RELEASE statements, the PL/I Optimizing 

  compiler allows the dynamic loading of PL/I  external  procedures.   The 

  PL/I  Reference Manual lists restrictions on using fetched procedures in 

  Chapter  6:   Program  Organization,  section  "Dynamic  Loading  of  an                 _____________________ 

  External Procedure." 

 

     All  fetchable  (dynamically loaded) procedures should be placed in a 

  loader library that is to be attached to the  PL/I  file  LINKLIB.   The 

  LINKLIB  should be specified in one of several ways:  a PLIXOPT external 

  varying character string,  an  ATTACH  subroutine,  or  as  a  "run-time 

  option"  in  the  PAR  field.   *OBJUTIL  can  be  used to create a link 

  library.  It is recommended that all external  entries  other  than  the 

  actual  name  of  the  fetched  procedure  be  deleted  from the library 

  directory.  At the end of this link library, there should be the line: 

 

       $CONTINUE WITH *PL1OPTLIB 

 

  which will resolve all needed library references. 

 

     A fetched procedure should have  the  same  external  name  that  the 

  called  program invokes.  Various control sections of fetched procedures 

  can be deleted such as PLISTART.  Unfortunately, the  *LINKEDIT  program 

  cannot  be  used  to  delete these control sections because this program 

  still has serious problems with objects produced by the PL/I  Optimizing 

  compiler. 

 

     Below  is  an  example that illustrates the use of dynamically loaded 

  PL/I external procedures. 

 

  #$list test 

  >     1     MAIN: PROCEDURE OPTIONS(MAIN); 

  >     2           DECLARE ABC FLOAT DECIMAL, 

  >     3                   SUBR EXTERNAL ENTRY (FLOAT DECIMAL), 

  >     4                   SYSPRINT PRINT FILE; 

  >     5           /* Define link library to use */ 

  >     6           DECLARE PLIXOPT CHARACTER(100) VARYING STATIC 

  >     7                   EXTERNAL INITIAL (’LINKLIB=MYLIB’); 

  >     8           ABC = 0; 

  >     9           FETCH SUBR; 

 

  134  Other PL/I Statements 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  >    10           OPEN FILE(SYSPRINT); 

  >    11           CALL  SUBR (ABC); 

  >    12           PUT SKIP LIST(ABC); 

  >    13           RELEASE SUBR; 

  >    14           CLOSE FILE(SYSPRINT); 

  >    15           STOP; 

  >    16           END; 

  #$run *pl1opt scards=test spunch=object sprint=-p 

   PL/I OPTIMIZER V1 R3.1        TIME: 09.41.20  DATE: 18 AUG 82 

 

   NO MESSAGES PRODUCED FOR THIS COMPILATION 

 

   COMPILE TIME    0.00 MINS        SPILL FILE:     0 RECORDS, SIZE  4051 

  #09:41:38  T=0.261  $0.13 

  #$list subr 

  >     1     SUBR: PROCEDURE (ABC); 

  >     2           DECLARE ABC FLOAT DECIMAL; 

  >     3           PUT SKIP LIST (ABC); 

  >     4           ABC = 1; 

  >     5           PUT SKIP DATA (ABC); 

  >     6           ABC = 2; 

  >     7           RETURN; 

  >     8           END; 

  #$run *pl1opt scards=subr spunch=-obj sprint=-pp 

   PL/I OPTIMIZER V1 R3.1        TIME: 09.42.26  DATE: 18 AUG 82 

 

   COMPILER DIAGNOSTIC MESSAGES 

 

   ERROR ID L   STMT    MESSAGE DESCRIPTION 

 

   COMPILER INFORMATORY MESSAGES 

 

   IEL0533I I           NO ’DECLARE’ STATEMENT(S) FOR ’SYSPRINT’. 

   IEL0430I I   1       NO ’MAIN’ OPTION ON EXTERNAL PROCEDURE. 

 

   END OF COMPILER DIAGNOSTIC MESSAGES 

   COMPILE TIME    0.00 MINS        SPILL FILE:     0 RECORDS, SIZE  4051 

  #09:42:36  T=0.26  $0.13 

  #$create mylib 

  #$run *objutil 

  *set library=on 

  *EDIT MYLIB 

  *ADD -OBJ 

   ADDED:    ***SUBR1 

  *LIST ENTRYS 

    ***SUBR1- PLISTART ***SUBR1 ***SUBR2 PLICALLA PLICALLB SUBR 

              SYSPINT 

  *COMMENT - DELETE UNNECESSARY ENTRY POINTS. 

  *DELETE@DIRECTORY ***SUBR1 ***SUBR2 PLISTART PLICALLA PLICALLB SYSPINT 

   DELETED:  ***SUBR1 ***SUBR2 PLISTART PLICALLA PLICALLB SYSPINT 

  *LIST OMS 

    ***SUBR1      3.000 

  *STOP 

 

                                                Other PL/I Statements  135 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  #09:44:15  T=0.056  $0.05 

  #$edit mylib 

  :i *L ’$CONTINUE WITH *PL1OPTLIB’ 

  :    15     $CONTINUE WITH *PL1OPTLIB 

  :stop 

  #$run object+*pl1optlib 

 

    0.00000E+00 

   ABC= 1.00000E+00; 

    2.00000E+00 

  #09:44:49  T=0.053  RC=1000  $0.02 

 

 

 

  THE DELAY STATEMENT   ___________________ 

 

 

     The DELAY statement  is  implemented  only  by  the  PL/I  Optimizing 

  compiler, not by the PL/I (F) compiler.  The DELAY statement can suspend 

  a  program  for  a  specified  period  of  time  in  terms  of real-time 

  milliseconds.  For example, 

 

       DELAY (50); 

 

  The program is then suspended for 50 milliseconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  136  Other PL/I Statements 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                         PL/I DATA REPRESENTATIONS                          _________________________ 
 
 
 
 
     Data in PL/I fall into  two  categories:   problem  data  or  program 
  control  data.   Problem data contains values that are either arithmetic 
  or string.  Program-control data controls program execution and includes 
  labels, events, tasks, locators, and areas.  Since tasks and events  are 
  not supported in MTS, they are not discussed in this section. 
 
 
 
  ARITHMETIC DATA   _______________ 
 
 
     Arithmetic  data  represent  numbers  such  as  2, -1000, 2.71828, or 
  4.15E-9.  They have four basic characteristics:  base, scale, precision, 
  and mode. 
 
     Any number can be written in PL/I in DECIMAL or BINARY notation, that 
  is, base 10 or 2, respectively.  For example, 33.75 can  be  written  in       ____ 
  decimal  notation  as  3•10¹  + 3•10⁰ + 7•10⁻¹ + 5•10⁻² = 30 + 3 + 0.7 + 
  0.05 = 33.75.  In binary notation, there are only two digits, 0  and  1; 

  the  same  number  is  written as 10011.11 = 1•2⁴ + 0•2³ + 0•2² + 1•2¹ + 

  1•2⁰ + 1•2⁻¹ + 1•2⁻² = 32 + 2 + 1 + 0.5 +  0.25  =  33.75.   People  are 

  inclined  to  use  decimal  numbers  while their computers prefer binary 

  numbers. 

 

     The scale of a number is either FIXED or FLOAT.   Fixed  numbers  are          _____ 

  only  a  series  of  digits  with  an  optional decimal or binary point. 

  Floating numbers consists of two fixed  numbers,  one  representing  the 

  mantissa,  which  consists  only  of  significant  digits, and the scale 

  factor, which increases or decreases the magnitude  of  the  number.   A 

  floating  number  is  generally  written  as  4.15E-9, where 4.15 is the 

  mantissa and -9 is the exponent scale factor.  It is same as  4.15•10⁻⁹. 

 

     The  precision of a number is generally written in PL/I in either one           _________ 

  of the two forms (p) or (p,q) where "p" and "q" are  integers.   "p"  is 

  the  number  of significant digits, and "q", used only in fixed numbers, 

  specifies the position of a binary or  decimal  point  relative  to  the 

  rightmost digit.  The number 17.76 has the precision (4,2) because there 

  are four significant digits and the decimal point is two digits from the 

  right. 

 

     The  mode  of  a  number is either REAL or COMPLEX.  Real numbers are           ____ 

  only single fixed-point or floating-point numbers.  Complex numbers  are 

  written in the format a + bI, where "a" and "b" are real numbers and "I" 

  is  the  square root of -1.  "a" is the real part of the complex number, 

  and "b" the imaginary part.  In PL/I, both parts of a  complex  variable 

  should have identical base, scale, and precision.  FORTRAN users use (a, 

 

                                            PL/I Data Representations  137 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  b)  instead of a + bI, and FORTRAN allows only floating-point parts.  In 

  PL/I, real and imaginary parts occupy adjacent  fields,  with  the  real 

  part first.  Examples of complex numbers are:  1+5I, -3.14I. 

 

     Variables  not  declared  explicitly  (such as DECLARE statements) or 

  contextually (such as FILE option in a PUT  statement)  are  arithmetic. 

  If the first letter of the variable name is one of I through N, then the 

  variable  is  real  binary  fixed with precision (15,0).  Otherwise, the 

  variable is real decimal float with precision 6.  This is  the  same  as 

  FORTRAN except that variables starting with I through N are of length 2 

 

     The  DEFAULT  statement,  implemented  only  by  the  PL/I Optimizing 

  compiler, can be used to override  the  standard  default  rules  or  to 

  specify a complete set of programmer-defined default rules. 

 

 

 

  Fixed-Decimal Data   __________________ 

 

 

     Many  computers  such  as  the  Amdahl  470  still operate on decimal 

  numbers with decimal arithmetic operations such  as  addition,  subtrac- 

  tion, multiplication, and division.  Fixed-decimal data usually have the 

  default precision (5,0), and the maximum precision is 15.  Fixed-decimal 

  data  is  represented  in  the  computer as packed-decimal numbers.  For 

  example, 1234 appears as ’01234C’.  A leading zero  is  applied  to  the 

  left  as necessary, and the last hexadecimal digit is interpreted as the 

  sign digit  ("C"  is  positive  and  "D"  is  negative).   The  rest  of 

  hexadecimal  digits  represent  the  actual  decimal digits 0 through 9. 

  Thus, a fixed-decimal number with precision "p" occupies the ceiling  of 

  ((p+1)/2) bytes, since every two digits except the last occupy one byte. 

  Fixed-decimal  operations  are generally slower than fixed-binary opera- 

  tions in the computer.  There is no FORTRAN equivalent for fixed-decimal 

  data.  Examples of  fixed-decimal  numbers  are  3,  3.14,  -40.   These 

  constants  are  automatically converted into fixed-binary numbers by the 

  PL/I  compiler  if  they  are  used  in  conjunction  with  fixed-binary 

  variables. 

 

 

 

  Fixed-Binary Data   _________________ 

 

 

     Fixed-binary  numbers  are written in binary notation followed by the 

  letter "B", e.g., 101B is same as fixed decimal 5 (101B = 1•2² + 0•2¹  + 
  1•2⁰  =  4 + 1 = 5).  These numbers are internally represented either by 

  signed 16-bit binary numbers with precision equal to or less than 15  or 

  by  signed 32-bit binary numbers with precision over 15.  The equivalent 

  in FORTRAN  is  INTEGER*2  and  INTEGER*4,  respectively.   The  default 

  precision  is (15,0) with the maximum being 31.  Positive numbers in the 

  computer are represented as binary numbers with the  leftmost  bit  (the 

  sign  bit)  zero.   Negative  numbers are put in two’s-complement binary 

  notation with the sign bit equal to 1.  Thus, -1  is  represented  as  a 

 

  138  PL/I Data Representations 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  number  with  all  bits  1,  i.e.,  hexadecimal  FFFF.   Note that it is 
  impossible to represent a negative zero as a fixed-binary  number  since 
  the  hexadecimal  8000  is  interpreted  as -32768 (not -0), the minimum 

  value of the fixed-binary numbers with precision less than 16.  Examples 

  of fixed-binary numbers are 11B, 11.001B, -10101B.  The value  range  is 

  -32768  to  32767,  inclusive,  in  short  precision  and -2147483648 to 

  2147483647 in long precision. 

 

 

 

  Float-Binary and Decimal Data   _____________________________ 

 

 

     Both float-binary and decimal numbers are represented  internally  as 

  hexadecimal  floating-point  numbers.  These numbers have a scale factor 

  appended such as float binary 11.01E-27B  or  float  decimal  314.16E-2. 

  Note  that  these  numbers are written as fixed binary or fixed decimal, 

  and the scale factors, here represented as the letter "E" followed by an 

  optionally signed decimal integer exponent.   For  binary  numbers,  the 

  mantissa is written in binary notation, the exponent in decimal, and the 

  letter  "B"  is  added at the right.  The AMDAHL 470 computer implements 

  only three precisions of floating-point numbers:   short  (float  binary 

  with  precision  ≤  21 or float decimal with precision ≤ 6), long (float 
  binary with precision > 21 or float decimal with  precision  >  6),  and 

  extended  (float  binary  with  precision  >  53  or  float decimal with 

  precision > 16).  The maximum precision is 109 for  binary  and  33  for 

  decimal.   The  extended  precision  is  not  supported  by the PL/I (F) 

  compiler.  The value range is approximately from 5.4•10⁻⁷⁹ (or 16⁻⁶⁵) to 

  7.2•10⁷⁵ (or 16⁶³). 

 

 

 

  Complex Data   ____________ 

 

 

     Complex numbers consist of  two  parts:   real  and  imaginary.   The 

  imaginary  part  is  written in PL/I as a signed real number immediately 

  followed by the letter "I".  Thus,  0I,  -1.45I,  28-0.09I  are  complex 

  numbers.   Unlike FORTRAN, PL/I allows fixed numbers as complex numbers. 

  Complex numbers have their two real and imaginary parts occupy  adjacent 

  fields,  with  the  real part first.  Both real and imaginary parts of a 

  complex  variable  must  have  the  same  base,  same  scale,  and  same 

  precision. 

 

 

 

  STRING DATA   ___________ 

 

 

     PL/I  recognizes  two types of string data:  character and bit.  Both 

  are contiguous sequences of characters or bits with  length  from  0  to 

  32767.  These strings can be treated by a program as data.  Their length 

  can be either fixed or varying. 

 

                                            PL/I Data Representations  139 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Character-String Data   _____________________ 
 
 
     Character  strings  are sequences of EBCDIC characters delimited by a 
  pair of primes (’).  If a prime is to be a part of the character string, 

  it must be written as two adjacent primes with  no  intervening  blanks. 

  Examples are: 

 

            ’ABC’       ’HOLY COW’        ’’          ’It’’s A-OK.’ 

 

  These  examples  represent  "ABC",  "HOLY COW", a null string, and "It’s 

  A-OK.".  Note that lengths of these are 3, 8, 0,  and  9,  respectively. 

  Null  strings have no characters between the primes, and their length is 

  zero, e.g., ’’. 

 

     The character string consists of the string value.  In addition,  the 

  PL/I  Optimizing  compiler represents varying strings with their current 

  lengths followed by the string values.  For example, the varying  string 

  ’ABC’ with maximum length of 5 occupies 7 storage bytes and is shown as: 

 

                ┌─────────────────────────────┐                      ┌              ┌ 
                |    |              |         | 

                | 3  |   ’ABC’      | Unused  | 

                |    |              |         | 

                └─────────────────────────────┘                      ┘              ┘ 
 

  If  varying  strings  have  the  ALIGNED  attribute, the PL/I Optimizing 

  compiler will align them on halfword boundaries. 

 

 

 

  Bit-String Data   _______________ 

 

 

     Bit strings are the same as  character  strings  with  the  following 

  differences.  Each character in the sequence can only be a binary digit, 

  i.e.,  either  ’0’  or ’1’.  The second prime in the bit strings must be 

  followed immediately by the letter "B".  Examples of bit strings are: 

 

                 ’010’B    ’1’B       ’0’B        ’’B 

 

  Lengths of these examples are 3, 1, 1, and 0,  respectively.   The  last 

  example  is  a null bit string.  The length can be up to 32767 bits.  In 

  the computer, each byte has 8 bits; hence the  maximum  byte  length  is 

  4096  (4095  bytes  plus  7  bits).   In  addition,  the PL/I Optimizing 

  compiler prefixes each varying bit string with a halfword current length 

  (in bits). 

 

 

 

 

 

 

  140  PL/I Data Representations 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  PROGRAM-CONTROL DATA   ____________________ 
 
 
     Program-control data controls  the  program.   Examples  are  labels,      _______________ ____ 
  pointers, areas, and offsets. 
 
 
 
  Labels   ______ 
 
 
     Labels  are  identifiers  that  have  either  a  colon  prefixed to a 
  statement or declared as LABEL.  Those having colons  are  called  label 
  constants.   An  example  shows  the  label constant NEXT in a statement 
  assigning the value 3.141592 to PI: 
 
       NEXT:      PI = 3.141592; 
 
  The other type of labels are label variables, which should  be  declared 
  with the LABEL attribute: 
 
       DECLARE TOGO LABEL; 
 
  Label  variables  can  have  statement  labels  assigned  to  them.  The 
  exceptions are ENTRY and PROCEDURE labels, which cannot be  assigned  to 
  label  variables.  The example below shows how label variables are used: 
 
              DECLARE TOGO LABEL (FIRST, LAST); 

               ... 

              TOGO = FIRST; 

              GO TO PROCESS; 

       FIRST: TOGO = LAST; 

               ... 

              GO TO PROCESS; 

       LAST:  STOP; 

               ... 

       PROCESS: 

               ... 

              GO TO TOGO; 

 

  The DECLARE statement indicates that the label variables can have one of 

  two labels, FIRST or LAST, as values. 

 

 

 

  Pointers   ________ 

 

 

     Pointers are used as locator variables to point at any  data.   These 

  pointers  occupy  4-byte  words  in  the  computer.   A  pointer, say P, 

  pointing to the string variable XYZ will have as a value the address  of 

  XYZ.   In  assembly  language  code,  it  is A(XYZ).  Note that the dope 

  vector of XYZ is not pointed to.  A  pointer  can  be  assigned  a  NULL                    ___ 

 

                                            PL/I Data Representations  141 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  value,  as  a  value that cannot have an address in the computer.  It is 
  the hexadecimal FF000000.  The pointer P is assigned the value of XYZ by 
  the use of the built-in function ADDR: 
 
       P = ADDR (XYZ); 

 

  Based variables can  be  allocated  by  the  ALLOCATE  statement,  which 
  obtains  storage  of the length rounded up to the nearest multiple of 8. 
  For full information  on  the  pointers,  consult  Chapter  8,  "Storage 

  Control,"  section "Based Storage," of the OS PL/I Checkout and Optimiz-                                              _____________________________ 

  ing Compilers:  Language Reference Manual.   _________________________________________ 

 

     Another kind of locator variable is used in conjunction  with  areas. 

  These  are  called  offsets, which point to a based variable relative to 

  the start of a based area.  The contents of an offset is similar as that 

  of a pointer, except that the address in the offset is not  an  absolute 

  machine address, but the address relative to the start of an area. 

 

 

 

  Areas   _____ 

 

 

     Areas are used in PL/I to allocate based variables.  The length of an 

  area may be specified; if not, it is assumed to be 1000.  Area variables 

  can be declared thus: 

 

       DECLARE A AREA (2000); 

 

  Here,  the area variable A has length 2000.  The actual size of the area 

  should include 16 control bytes, controlling  the  allocation  of  based 

  variables.   Thus,  the  area  size  of  A is 2016.  Based variables are 

  allocated in the area by the following statement: 

 

       DECLARE B BASED (P); 

       ALLOCATE B IN (A); 

 

  When B has been allocated, the pointer P contains the actual location of 

  B.  Each based variable is allocated on a doubleword boundary.   Actual- 

  ly,  it is not necessary to use the defined pointer P of the variable B, 

  since another pointer, say Q, can be used: 

 

       DECLARE Q POINTER; 

       ALLOCATE B IN (A) SET (Q); 

 

  Here Q will point to  the  based  variable  B;  the  pointer  P  remains 

  unchanged. 

 

     The two allocations of the variable B can be freed, respectively: 

 

       FREE B IN (A); 

       FREE B IN (A) SET(Q); 

 

 

  142  PL/I Data Representations 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  In  both  cases, free lists replace the allocations and then are chained 
  to all previous free lists of the area A.  The user  should  be  careful 
  not  to  free  an  "unallocated"  based  variable.  In that case, he may 

  obtain unexpected results such as an addressing interrupt. 

 

     Areas can be emptied, that is, all allocated elements may  be  freed. 

  This  is  accomplished  by  a single assignment statement with the EMPTY 

  built-in function: 

 

       A = EMPTY(); 

 

  When areas are allocated, they are always emptied. 

 

 

 

  Offsets   _______ 

 

 

     Offset variables are always associated with area  variables.   Unlike 

  the  PL/I  Optimizing Compiler, the PL/I (F) compiler restricts the area 

  variables to be an unsubscripted level 1 based area  variable.   Offsets 

  are  similar to pointers except that they point to the location relative 

  to the start of the area.  An advantage of offsets becomes evident  when 

  an  area  is  assigned or transmitted to another area, since the offsets 

  remain the same while the pointers of the based variables  in  the  area 

  will  have  to  be  changed.   The  offsets  are  always declared in the 

  following manner: 

 

       DECLARE O1 OFFSET (A); 

 

  where "A" is a based area variable.  The actual contents of an offset is 

  a fullword pointing to the real location minus the actual start  of  the 

  area.   16  control  bytes are added to the area and are counted for the 

  offsets.  Thus, the first allocated variable in the area will  have  the 

  offset 16 (not 0). 

 

     The offsets are set in various ways: 

 

     (1)  ALLOCATE B IN (A) SET (O1); 

 

     (2)  ALLOCATE B IN (A); 

          O1 = OFFSET (P, A); 

 

     (3)  ALLOCATE B IN (A); 

          O1 = P; 

 

  where  P  is  the  pointer  for the based variable.  Example (2) is only 

  possible with the  PL/I  Optimizing  compiler,  since  both  OFFSET  and 

  POINTER  are built-in functions that are not available with the PL/I (F) 

  compiler.  For more information, consult Chapter 8,  "Storage  Control," 

  of  the  OS  PL/I Checkout and Optimizing Compilers:  Language Reference            _______________________________________________________________ 

  Manual, form GC33-0009.   ______ 

 

 

                                            PL/I Data Representations  143 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  ARRAYS   ______ 
 
 
     Arrays in PL/I are arranged in row-major order,  upward  in  storage. 
  The  main difference between PL/I and other languages is that arrays are 
  in column-major order but always contiguous in other languages.   Arrays 
  in PL/I are not necessarily contiguous, especially for array structures. 
  Besides,  the  subscripts  in PL/I are limited to the range of -32768 to 
  +32767.  In FORTRAN, lower bounds are 1, but  upper  bounds  may  exceed 

  +32767 provided that the total amount of the array storage in bytes does 

  not  exceed  one segment (1,048,576 bytes).  For arrays declared without 

  lower bounds, the PL/I compiler will set the lower bounds to  1.   Thus, 

  if the user inserts: 

 

       DECLARE VAR (5,6); 

 

  The  bounds are 1 through 5 for the first dimension, and 1 through 6 for 

  the second dimension.  Arrays can  be  declared  with  lower  and  upper 

  bounds thus: 

 

       DECLARE TABLE(2:5); 

 

  2  is  the  lower  bound,  and  5  the  upper bound.  The lower bound is 

  separated from the upper bound by a colon, and each pair  of  bounds  is 

  separated from the others by a comma. 

 

 

 

  STRUCTURES   __________ 

 

 

     A  structure is an aggregate of data that can be subdivided into data 

  items.  It can be thought of as a hierarchical collection of  variables, 

  the  top  of  which  is  the  structure  itself,  and  at bottom are the 

  individual variables.  Every variable in a structure should be  preceded 

  by  a  level number from 1 to 255 indicating its level.  In general, the 

  variable at the top is the entire structure with level 1 and is called a 

  major structure.  This structure in turn can have some other  structures   _____ _________ 

  (called  minor  structures)  or  any  other  variables.   Although level            _____  __________ 

  numbers cannot exceed 255, the maximum number of levels that may be used 

  is 63. 

 

     A page, for example, can be thought of as a structure, thus: 

 

 

 

 

 

 

  144  PL/I Data Representations 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
       DECLARE 1 PAGE, 
                 2 TITLE CHARACTER(120), 

                 2 SUBTITLE CHARACTER(120), 

                 2 LINES (52), 

                   3 PRINT_LINE CHARACTER(120), 

                   3 UNDERSCORE_LINE BIT(120), 

                 2 FOOTNOTES (5), 

                   3 PRINT_LINE CHARACTER(120), 

                   3 UNDERSCORE_LINE BIT(120), 

                 2 BOTTOM CHARACTER(120); 

 

  Here a page is laid out with a title, a subtitle, 52 lines,  5  footnote 

  lines,  and  a  bottom  line.   The  structure variable is PAGE, a major 

  structure.  This in turn consists of  five  subdivisions:   TITLE,  SUB- 

  TITLE, LINES, FOOTNOTES, BOTTOM.  Two of these, LINES and FOOTNOTES, are 

  called  minor  structures  since  they  can  be  divided into two lines: 

  PRINT_LINE which holds the text line and UNDERSCORE_LINE which indicates 

  what position of the PRINT_LINE is underscored.  Note that PRINT_LINE is 

  ambiguous because it is a  part  of  two  minor  structures,  LINES  and 

  FOOTNOTES.   So  the  PL/I  compiler allows qualified identifiers, e.g., 

  LINES.PRINT_LINE refers to PRINT_LINE of the structure LINES.   Similar- 

  ly, FOOTNOTES.PRINT_LINE is that of FOOTNOTES. 

 

     Before  assigning  the  addresses  to the members of a structure, the 

  PL/I compiler first considers the alignment of  each  structure  member, 

  its  length,  and  its  relative  position  from  the start of the major 

  structure.   This  process  is  called  the  "structure  mapping."    It 

  attempts,  for  instance,  to minimize padding while ensuring the proper 

  alignment of each member.  Data, such as  bit  strings,  may  be  either 

  aligned  or  unaligned, while some other data (especially labels, point- 

  ers, offsets, and areas) must be aligned.  Fixed-length bit strings, for 

  example, are aligned on  byte  boundaries  if  declared  with  attribute 

  ALIGNED;  otherwise,  they  are  aligned  on  the  first  available bit. 

  Complete details of the structure mapping can be  found  in  Section  K: 

  "Data  Mapping"  of  the  PL/I  Language  Reference Manual, GC28-8201 or                             ________________________________ 

  GC33-0009. 

 

 

 

  EXTERNAL AND INTERNAL ATTRIBUTES   ________________________________ 

 

 

     A variable is either INTERNAL or EXTERNAL.  An internal  variable  is 

  known  only  in  the  declaring  block  and  its  containing blocks.  An 

  external variable, on the other hand,  is  known  by  any  two  external 

  procedures  provided  that  the  variable  is  declared  with  the  same 

  attributes as well as EXTERNAL.  An internal variable in a procedure  is 

  not  known  by any external procedure unless it is passed as a parameter 

  to the procedure.  If not declared explicitly, a variable is assumed  to 

  be  internal,  unless  it  is  a  file,  an  entry  name of the external 

  procedure, or a user-defined CONDITION.  There  is  a  PL/I  restriction 

  that the name of the external variable should not be more than 7 letters 

  long.   Otherwise,  the  compiler  will  issue  the  message IEM2867I or 

 

                                            PL/I Data Representations  145 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  IEL0966I and form a 7-letter name from the first four and the last three 
  letters of the original name. 
 
 
  STORAGE ALLOCATION   __________________ 
 
 
     There are four  different  kinds  of  storage  allocations  for  PL/I 
  variables:  STATIC, AUTOMATIC, CONTROLLED, and BASED.  A static variable                                                            ______ 
  is  allocated at the start of a program and remains allocated throughout 
  the execution.  An automatic variable is automatically allocated when  a                      _________ 
  PROCEDURE  or  BEGIN  block defining the variable is entered.  Automatic 
  variables are automatically freed when the block is no longer active.  A 
  controlled variable is directly controlled by the user through the means   __________ 
  of the ALLOCATE and FREE statements.  In addition, a controlled variable 
  can have two or more allocations at a time.  Allocations  of  controlled 
  variables  are  stacked,  only  the  latest allocation can be referenced 
  until the FREE statement pops the allocation out of the stack.  The PL/I 
  compiler provides the built-in function ALLOCATION so that the  program- 
  mer  can  test  whether  the controlled variable is allocated or not.  A  
  based variable is similar  to  a  controlled  variable  in  that  it  is   _____ 
  allocated by the ALLOCATE statement and freed by the FREE statement.  By 
  use  of  pointer  variables,  the  programmer  can  address a particular 
  allocation of the based variable, e.g., P->B or Q->B. 
 
     Static variables are allocated depending whether they are internal or 
  external.  Internal static variables are always  stored  in  the  static 
  internal  control  section  of the external procedure.  The name of this 
  control section is formed from the external procedure name, extended  on 
  the right with the letter "A" for PL/I (F) or "2" for PL/I Optimizer and 

  padded  with  asterisks  to  eight  characters.   For  example,  for the 

  external procedure BLOCK,  the  name  of  the  internal  static  control 

  section  is  **BLOCKA  or  **BLOCK2.   An  external  static  variable is 

  allocated in a control section with same name as that of the variable. 

 

     Automatic variables are allocated only at the start of a PROCEDURE or 

  BEGIN block that declares  them.   There  are  two  kinds  of  automatic 

  variables.  If the total length of an automatic variable is known at the 

  compile  time,  the  PL/I  compiler will allocate it in the dynamic save                                                               _______ ____ 

  area (DSA) of the declaring block.  All other automatic variables,  such   ____ 

  as  strings  with  adjustable lengths and arrays with adjustable bounds, 

  are allocated in the variable data areas (VDA).  The VDA is  chained  to                        ________ ____ _____ 

  the previous VDA or DSA. 

 

     Controlled   variables  are  allocated  by  means  of  their  pseudo- 

  registers.  If the variable is external, the name of the pseudo-register 

  is the same as that  of  the  variable.   If  internal,  then  the  PL/I 

  compiler will automatically generate a unique name based on the external 

  procedure name.  When a controlled variable is allocated, the address is 

  placed  in  the  contents of its pseudo-register, and the new allocation 

  has the chain-back address set to the previous allocation.  If there  is 

  no  previous  allocation,  the  address  will be zero in PL/I (F) or the 

  address of a dummy FCB in PL/I Optimizer. 

 

  146  PL/I Data Representations 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     Based variables are allocated either within the area or without.   If 
  allocated  within  the  area, space in the area is set for the variable. 
  Otherwise, a storage core is obtained via the GETSPACE call.  Each  time 
  a  based  variable is allocated, its pointer is set to the first byte of 
  the variable.  Allocations of a based variable are not stacked, as  each 
  allocation is referenced by an appropriate pointer value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
                                            PL/I Data Representations  147 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  148  PL/I Data Representations 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                       PL/I PUBLIC FILE DESCRIPTIONS                        _____________________________ 
 
 
 
 
     The  following  public file descriptions are taken from MTS Volume 2,  
  Public File Descriptions.  These are public files which may be of use to   ________________________ 
  PL/I programmers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
                                        PL/I Public File Descriptions  149 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
                                  *PL1SCAN                                   ________ 

 

 

 

  Contents:      The IBM PL/I (F) source program scanner with  a  modified 

                 interface for operation under MTS. 

 

  Purpose:       To  provide a rough prescan (or syntax check) of programs                                _____ 

                 written in PL/I (F). 

 

  Use:           The program is invoked by the $RUN command. 

 

  Alt. Name:     *PL/1SCAN 

 

  Logical I/O Units Referenced: 

                 SCARDS - source program to be scanned. 

                 SERCOM - error messages from the scanner. 

                 SPRINT - listing of the input source program. 

                 SPUNCH - file to which the source is written. 

 

  Parameters:    The following parameters may  be  specified  in  the  PAR 

                 field of the $RUN command or in the %PROCESS batch option 

                 statement.   The  parameters must be separated by a comma 

                 or by one or more blanks. 

 

                 SOURCE         prints the source on SPRINT (this defaults 

                 NOSOURCE       to SOURCE in batch only). 

 

                 CHAR48         specifies the 48-character set. 

                 CHAR60         specifies  the   60-character   set   (the 

                                default). 

 

                 SORMGIN=(m,n)  specifies the left-hand (m) and right-hand 

                                (n)  source  margins.   These default to 1 

                                and 72, respectively.  The right-hand mar- 

                                gin must be equal to or less than 100. 

 

                 The parameters  SOURCE,  NOSOURCE,  CHAR48,  CHAR60,  and 

                 SORMGIN  may  be  abbreviated to S, NS, C48, C60, and SM, 

                 respectively. 

 

  Description:   *PL1SCAN scans  a  PL/I (F)  source  program  for  syntax 

                 errors.  However, it cannot detect all errors, because it                                       ______ 

                 only  scans  one  statement  at a time and does not check 

                 interstatement dependencies  (i.e.,  DECLARE  statements, 

                 undefined labels, etc.). 

 

                 If  SPUNCH  is specified, the PL/I scanner will write the 

                 source program to the file specified.  This is especially 

                 useful if SCARDS is assigned to the terminal  (*SOURCE*). 

 

 

  150  *PL1SCAN 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  Comments:      It  is  often  advantageous to run *PL1SCAN since it uses 

                 considerably less CPU time and virtual  memory  than  the 

                 PL/I compiler. 

 

                 When  a  listing  of  the  source  code is obtained, each 

                 source line is preceded by its line number  (in  a  style 

                 similar to MTS). 

 

                 The error messages are of the form 

 

                      IKMxxx line# error-message-text 

 

                 where  "line#"  is  the  line  number  of  the  offending 

                 statement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             *PL1SCAN  151 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
                                  *PL1TIDY                                   ________ 

 

 

 

  Contents:      The object file of the PL/I "tidy" program. 

 

  Purpose:       To edit PL/I source  programs  into  an  easily  readable 

                 format. 

 

  Use:           The program is invoked by the $RUN command. 

 

  Alt. Name:     *PL/1TIDY 

 

  Logical I/O Units Referenced: 

                 SCARDS - the source program to be edited. 

                 SPRINT - a  listing  of  the  edited  source  program and 

                          diagnostics. 

                 SPUNCH - the edited source program. 

                 SERCOM - error messages plus a message for each  external 

                          procedure. 

 

  Parameters:    The  following  parameters  may  be  specified in the PAR 

                 field of the $RUN command or inserted in the PL/I comment 

                 /*TIDYPAR=..  .*/.  The parameters must be separated by a 

                 comma or by one or more blanks.  In case  of  conflicting 

                 parameters,  the  rightmost  parameter  takes precedence. 

                 The default case is underlined. 

 

                 LIST              produces a listing of the edited source                  ____ 

                                   program.  This  is  the  default.   If, 

                                   however, SPRINT is assigned to a termi- 

                                   nal by default, then the default becom- 

                                   es NOLIST. 

 

                 NOLIST            suppresses  the  listing  of the edited 

                                   source program. 

 

                 DECK              produces the edited source program.                  ____ 

 

                 NODECK            suppresses the edited source program. 

 

                 LOGICAL           produces an easily readable form of the                  _______ 

                                   source program in which each  statement 

                                   is  indented by an amount corresponding 

                                   to its nesting depth. 

 

                 COMPRESS          produces  a  compressed  form  of   the 

                                   source   program   in  which  all  non- 

                                   significant blanks are removed. 

 

                 INSET=n           specifies that  statements  are  to  be 

                                   indented  "n"  additional  columns  for 

 

  152  *PL1TIDY 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
                                   each level of nesting depth.   The  de- 
                                   fault is 3 columns. 
 
                 MARGIN=m          A  statement at level one starts at the 
                                   margin "m".  The default is 10. 

 

                 COMMENT           Blanks within comment brackets will  be 

                                   retained. 

 

                 NOCOMMENT         Two  or  more  adjacent  blanks  within                  _________ 

                                   comment brackets will  be  replaced  by 

                                   one blank. 

 

                 DECLARE           Each  DECLARE  statement will be broken 

                                   into parts separated by level-one  com- 

                                   mas.   Each  part will then be properly 

                                   indented. 

 

                 NODECLARE         Declare  statements  will  be  entirely                  _________ 

                                   compressed. 

 

                 PAGE              The  next  or current statement will be 

                                   on the next page.  If the  output  car- 

                                   riage control is specified by OSORMGIN, 

                                   its location will contain a "1". 

 

                 DEFAULT           All   defaults  are  restored  at  this 

                                   point. 

 

                 RESET             The logical level is set  to  zero.   A 

                                   skip  to the top of a new page is done. 

 

                 STMT=n            The current statement number is set  to 

                                   "n". 

 

                 PAR               PL1TIDY  parameters  in /*TIDYPAR=...*/ 

                                   are retained in the output. 

 

                 NOPAR             Comments of  the  form  /*TIDYPAR=...*/                  _____ 

                                   are removed. 

 

                 ISORMGIN=(a,b,c)  specifies  the  left  margin  "a",  the 

                                   right  margin  "b",  and  the  optional 

                                   carriage-control  location  "c" for the 

                                   input source text (from  SCARDS).   The 

                                   default  is (1,72).  The left and right 

                                   margin specifications must  be  in  the 

                                   range  (1,255).   The  carriage-control 

                                   location, if specified, must be in  the 

                                   interval   1≤c<a  or  in  the  interval 
                                   b<c≤255. 

 

 

                                                             *PL1TIDY  153 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                 OSORMGIN=(a,b,c)  specifies  the  left  margin  "a",  the 

                                   right  margin  "b",  and  the  optional 

                                   carriage-control location "c"  for  the 

                                   edited  source  program  (onto SPUNCH). 

                                   The default is (1,72).  The  left-  and 

                                   right-margin  specifications must be in 

                                   the  range  (1,255).    The   carriage- 

                                   control location, if specified, must be 

                                   in  the interval 1≤c<a or in the inter- 
                                   val b<c≤255. 
 

                 LC                specifies  that  the  input  is  to  be 

                                   converted  to lower case.  Comments and 

                                   character strings are not converted. 

 

                 MC                specifies that no conversion  to  upper                  __ 

                                   case or lower case takes place. 

 

                 UC                specifies  that  the  input  is  to  be 

                                   converted to upper case.  Comments  and 

                                   character strings are not converted. 

 

                 CHAR48            specifies  that the 48-character set is 

                                   used for the  input  source.   See  the 

                                   Language  Reference Manuals for the PL/ 

                                   I (F) and Optimizing compilers for  the 

                                   character set. 

 

                 CHAR60            specifies  that  the  input  source  is                  ______ 

                                   written in the 60-character  set.   See 

                                   the  Language Reference Manuals for the 

                                   PL/I (F) and Optimizing  compilers  for 

                                   the character set. 

 

                 BCD               specifies  that  the  input  source  is 

                                   written in BCD (Binary Coded  Decimal). 

                                   See  the Language Reference Manuals for 

                                   the PL/I (F) and  Optimizing  compilers 

                                   for the BCD code. 

 

                 EBCDIC            specifies  that  the  input  source  is                  ______ 

                                   written  in  EBCDIC  (Extended   Binary 

                                   Coded  Decimal  Interchange Code).  See 

                                   the Language Reference Manuals for  the 

                                   PL/I (F)  and  Optimizing compilers for 

                                   the EBCDIC code. 

 

                 SEQ               specifies that the edited  source  pro-                  ___ 

                                   gram  shall  have  a  sequence-ID field 

                                   which consists of the nesting level  of 

                                   the  statement  and the sequence number 

                                   of the statement.  This sequence  field 

                                   is  placed in the eight columns immedi- 

 

  154  *PL1TIDY 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
                                   ately to the right of the right  margin 
                                   of the edited source program. 
 
                 SEQ=xxxx          specifies  that  the edited source pro- 
                                   gram shall have a sequence-ID field  of 
                                   xxxx0001  on  the  first output record, 
                                   xxxx0002  on  the  second,  etc.   This 
                                   sequence-ID  field  is  placed  in  the 
                                   eight columns immediately to the  right 
                                   of  the  right  margin  of  the  edited 
                                   source program. 
 
                 NOSEQ             specifies that the edited  source  pro- 
                                   gram shall have no sequence-ID field. 
 
  Description:   *PL1TIDY  edits  PL/I  source  programs  into  an  easily 

                 readable form.  This feature is especially  desirable  to 

                 clean  up files containing modifications made from termi- 

                 nals.  The program  will  indent  each  statement  by  an 

                 amount  corresponding to its nesting depth.  This program 

                 can also be used to edit programs into an acceptable form 

                 which cannot be compiled because of the rather  stringent 

                 SORMGIN  constraints of *PL1 and *PLC.  Programs also can 

                 be edited into "compressed" form with all  nonsignificant 

                 blanks  removed, thus minimizing the size requirements of 

                 the file containing the source program. 

 

                 *PL1TIDY  processes  the  following  control  statements, 

                 which  are  implemented  by the PL/I Optimizing compiler: 

                 %PRINT, %NOPRINT, %PAGE and %SKIP(n).   These  statements 

                 are  produced  on  the  output  SPUNCH,  and  the  SPRINT 

                 listing, if the LIST option, is in effect  is  controlled 

                 by  the  statements.   %PRINT resumes the printing of the 

                 output; and %NOPRINT suppresses  it.   %PAGE  causes  the 

                 skip  to  the  top  of  the next page.  %SKIP or %SKIP(n) 

                 prints "n" blank lines; if  "n"  is  not  specified,  one 

                 blank  line  is  printed.   All  these control statements 

                 should be terminated by a semicolon. 

 

                 When the program detects an error, it places the  comment 

                 "*ERROR*"  is  the  sequence-ID  field  (even if NOSEQ is 

                 specified). 

 

                 For each external procedure, a  message  is  produced  on 

                 SERCOM: 

 

                      Procedure ABC:  4 statements, 2 errors. 

 

  Examples:      $RUN *PL1TIDY SCARDS=IN SPUNCH=OUT 

 

                      In  the  above  example, the input source program is 

                      read from the file IN.  The edited output is written 

                      to the file OUT. 

 

                                                             *PL1TIDY  155 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                 $RUN *PL1TIDY SCARDS=IN SPUNCH=OUT PAR=NOSEQ,INSET=2 

 

                      The above  example  is  the  same  as  the  previous 

                      example  except  that  sequence-ID  fields  are  not 

                      produced for each output record and that INSET is  2 

                      instead of the default of 3. 

 

                 $RUN *PL1TIDY SCARDS=IN SPUNCH=OUT PAR=ISORMGIN=(1,255) 

 

                      The  example  converts free-format source input with 

                      SORMGIN=(1,255)   to   an   edited    format    with 

                      SORMGIN=(1,72). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  156  *PL1TIDY 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                          PL/I LIBRARY SUBROUTINES                           ________________________ 
 
 
 
 
     This section contains descriptions of the subroutines that are a part 
  of  the  PL/I  library  *PL1LIB.  Only one of these subroutines, ATTACH, 

  resides in *PL1OPTLIB. 

 

     For PL/I (F) programs,  each  of  these  subroutines  may  be  called 

  directly.   Many  other  subroutines  that  require  an  S-type  calling 

  sequence may be called by using the PLCALL subroutine which is described 

  in the section "Interlanguage Communication Facilities." 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             PL/I Library Subroutines  157 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
                                   ATTACH                                    ______ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To associate a PL/I file variable name with an appropriate 
                MTS file or device name. 
 
  Location:     *PL1LIB and *PL1OPTLIB 

 

  Calling Sequences: 

 

                PL/I:     CALL ATTACH(string); 

 

                Parameters: 

 

                     string  is a character  string  of  either  fixed  or                      ______ 

                             variable   length  which  must  follow  these 

                             restrictions: 

 

                             (1)  the string must not be a null string, 

                             (2)  the length of the  string  must  not  be 

                                  more than 255 characters, and 

                             (3)  the  string  must  conform  to  that  of  

                                  PAR=string.                                       ______ 

 

  Description:  The subroutine passes string to an internal routine  which                                       ______ 

                processes the PAR=string format (see "PL/I File Specifica-                                   ______ 

                tions"  in  the  section  "Running a PL/I Program" in this 

                volume). 

 

  Example:                CALL ATTACH(’A=X B=Y@F(80)’); 

 

                This example associates PL/I files A and B with X (an  MTS 

                file)  and  with  Y (another MTS file with fixed format of 

                length 80). 

 

 

 

 

 

 

 

 

 

  158  ATTACH 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
                                   BATCH                                    _____ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To determine whether the user is in batch or conversation- 
                al mode. 
 
  Location:     *PL1LIB 

 

  Calling Sequences: 

 

                PL/I:     DECLARE BATCH ENTRY 

                          RETURNS (BIT(1)); 

 

  Description:  The subroutine returns ’1’B if the user is in batch  mode; 

                otherwise, it returns ’0’B. 

 

  Example:                IF BATCH THEN STOP; 

                          ELSE GOTO RETRY; 

 

                In  this example, if the program is running in batch mode, 

                it stops; otherwise, it transfers to the label RETRY. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                BATCH  159 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
                                    CNTL                                     ____ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To provide an interface between  the  PL/I  user  and  the 
                CONTROL entry in the device support routines (DSRs).  This 

                subroutine  allows the PL/I user to execute control opera- 

                tions on files and devices.  See  the  CONTROL  subroutine 

                description in MTS Volume 3. 

 

  Location:     *PL1LIB 

 

  Calling Sequence: 

 

                PL/I:     CALL CNTL(fdname,info) 

 

                Parameters: 

 

                     fdname  is a CHARACTER variable or constant giving an                      ______ 

                             MTS file or device name. 

                     info    is  a  CHARACTER  variable or constant giving                      ____ 

                             the control information to be passed  to  the 

                             device support routines. 

 

                Return Codes: 

 

                     0  Successful return from CONTROL. 

                     >0 Unsuccessful  return from CONTROL.  The PL1RC sub- 

                        routine may be  used  to  interrogate  the  return 

                        code. 

 

  Note:         The  user  should  exercise  care when using the CNTL sub- 

                routine if the PL/I file to which fdname  refers  is  open                                                   ______ 

                since  the  PL/I library routines do not search PL/I files 

                for an fdname that would match.                        ______ 

 

  Examples:               CALL CNTL(’*T*’,’REW’); 

                          IF PL1RC¬=0 THEN GOTO NOREW; 

 

                This example calls CONTROL to rewind  the  tape  *T*,  and 

                then checks to see if the rewind operation was successful. 

 

                          CALL CNTL(’*SINK*’,’DON’’T’); 

 

                This  example  calls CONTROL with the Data Concentrator or 

                Memorex device support command DON’T. 

 

 

 

  160  CNTL 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
                                  CPUTIME                                   _______ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To obtain  the  CPU  time  (in  seconds)  used  since  the 

                beginning of execution of the current program. 
 
  Location:     *PL1LIB 

 

  Calling Sequences: 

 

                PL/I:     DECLARE CPUTIME ENTRY 

                          RETURNS (FLOAT BINARY); 

 

  Description:  The subroutine returns the floating-point value of the CPU 

                time  (in  seconds)  used  since  the beginning of program 

                execution. 

 

  Example:                START_TIME: PROC; 

                             DCL (TIME1, TIME2) STATIC FLOAT BIN, 

                                 CPUTIME ENTRY RETURNS (FLOAT BIN); 

                             TIME2 = CPUTIME; 

                             RETURN; 

                          TIME:  ENTRY FLOAT BIN; 

                             TIME1 = TIME2; 

                             TIME2 = CPUTIME; 

                             RETURN (TIME2 - TIME1); 

                          END; 

 

                This example determines the amount of CPU  time  taken  in 

                executing a loop.  It first calls START_TIME to initialize 

                the  variable  TIME2;  then,  on every call, the procedure 

                TIME returns the CPU time in seconds  since  the  previous 

                call. 

 

 

 

 

 

 

 

 

 

                                                              CPUTIME  161 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
                                  ELAPSED                                   _______ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To  obtain  the  elapsed  time (in seconds) used since the 

                beginning of execution of the current program. 
 
  Location:     *PL1LIB 

 

  Calling Sequences: 

 

                PL/I:     DECLARE ELAPSED ENTRY 

                          RETURNS (FLOAT BINARY); 

 

  Description:  The subroutine returns the floating-point value  (in  sec- 

                onds) used since the beginning of program execution. 

 

  Example:                PUT EDIT (’ELAPSED TIME - ’,ELAPSED,’SECS’) 

                                   (A,F(15,3),A); 

 

                This  example prints out the elapsed time in seconds since 

                the beginning of the program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  162  ELAPSED 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
                           FINFO, TFINFO, RFINFO                            _____________________ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To obtain information on a file or device  attached  to  a 
                PL/I file. 
 
  Location:     *PL1LIB 

 

  Calling Sequence: 

 

                PL/I:     DECLARE FINFO ENTRY(FILE) RETURNS(POINTER); 

                          DECLARE RFINFO ENTRY(POINTER); 

                            infob=FINFO(pl1file); 

                            CALL RFINFO(infob); 

 

                          DECLARE TFINFO ENTRY(FILE,CHARACTER(*)) 

                            RETURNS(POINTER); 

                          DECLARE RFINFO ENTRY(POINTER); 

                            infob=TFINFO(pl1file,title); 

                            CALL RFINFO(infob); 

 

  Description:  Given  the  PL/I file as an argument, the FINFO subroutine 

                returns the pointer value as the address pointing  to  the 

                GDINFO  buffer  infob.  If the buffer is not available, it                                 _____ 

                returns the null  pointer.   This  buffer  is  exactly  as 

                described  in  the  GDINFO  subroutine  description in MTS 

                Volume 3. 

 

                The TFINFO subroutine does exactly the same as  the  FINFO 

                subroutine  except  that  it associates the PL/I file name 

                with the second argument declared as a  character  string. 

                If  a  PL/I  user wants to open a PL/I file with the TITLE 

                option and wants to inquire for  the  information  on  the 

                file,  then  he  should use the TFINFO subroutine with the 

                second argument equal  to  the  expression  in  the  TITLE 

                option. 

 

                The  RFINFO  subroutine  should  be  called to release the 

                information buffer infob when it is no longer needed.                                    _____ 

 

  Example:                DECLARE FINFO ENTRY(FILE) RETURNS(POINTER), 

                            1 INFO BASED(INFOB), 

                                2 FDUB POINTER, 

                                2 TYPE CHARACTER(4), 

                                2 INP_MAX FIXED(15) BINARY, 

                                2 OUT_MAX FIXED(15) BINARY, 

                                2 FDUBTYPE BIT(8), 

                                2 TYPEINDX BIT(8), 

                                2 SWITCHES BIT(8), 

 

                                                FINFO, TFINFO, RFINFO  163 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                                2 RESERVED BIT(8), 

                                2 IOMODIFIER BIT(32), 

                                2 START_L# FIXED(31) BINARY, 

                                2 LAST_L# FIXED(31) BINARY, 

                                2 END_L# FIXED(31) BINARY, 

                                2 L#_INCR FIXED(31) BINARY, 

                                2 FDNAME_PTR POINTER, 

                                2 ERROR_PTR POINTER, 

                            1 FDNAME BASED(FDNAME_EQU_PTR), 

                                2 LTH FIXED(15) BINARY, 

                                2 NAME CHARACTER(I REFER (LTH)); 

                          DECLARE RFINFO ENTRY(POINTER); 

                                . 

                                . 

                          INFOB=FINFO(SPRINT); 

                          FDNAME_EQU_PTR=INFO.FDNAME_PTR 

                                . 

                                . 

                          CALL RFINFO(INFOB); 

 

                The FINFO subroutine is called to obtain information about 

                SPRINT; then, the RFINFO subroutine is called  to  release 

                the information buffer after it is no longer needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  164  FINFO, TFINFO, RFINFO 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
                                  IHEATTN                                   _______ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To  allow  a PL/I program to be notified of the occurrence 
                of an attention interrupt. 
 
  Location:     *PL1LIB 

 

  Calling Sequence: 

 

                PL/I:     CALL IHEATTN; 

 

  Description:  The IHEATTN subroutine is automatically called before  the 

                main  procedure  obtains  control.   This  is to allow all 

                attention interrupts to be controlled by  the  subroutine. 

                The  user may override this call to IHEATTN by calling the 

                MTS subroutine ATTNTRP,  thus  effectively  resetting  the 

                attention  interrupt  conditions  as  if  IHEATTN  was not 

                called.  These  conditions  can  be  restored  by  calling 

                IHEATTN. 

 

                Once  IHEATTN  has  been called and an attention interrupt 

                occurs, IHEATTN scans through all active  procedures  (the 

                most  recent  first) and tests for any statement beginning 

                with "ON CONDITION(ATTN)".  If no such statement has  been 

                executed,  the  condition  "ON CONDITION(ATTN) SYSTEM;" is 

                assumed. 

 

                The subroutine will take one of the following actions: 

 

                   (1)  If the keyword "SYSTEM;" is specified,  a  message 

                        such as 

 

                                       ┌           ┐    ┌       ┐ 
                                       | STMT dddd |    | PROC  | 

                               ATTN AT |    or     | IN |  or   | name 

                                       |OFFSET xxxx|    |ON-UNIT| 

                                       └           ┘    └       ┘ 
 

                        is  printed to identify the location of the inter- 

                        rupt.  After the  message  is  printed,  the  sub- 

                        routine  MTS is called and a return is made to MTS 

                        command mode (or debug mode).  The  user  may  use 

                        the contents of general register 1 which points to 

                        the  standard  72-byte  save  area from ATTNTRP to 

                        obtain the PSW and registers at the  time  of  the 

                        interrupt.  The first eight bytes contain the PSW, 

                        and  the  remainder  of  the  region  contains the 

                        contents of the registers.  A $RESTART command may 

 

                                                              IHEATTN  165 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                        be given to restart the program. 
                   (2)  If the  keyword  "SNAP"  is  specified  after  "ON 

                        CONDITION(ATTN)", then the above message is print- 

                        ed  followed by a list of all active procedures at 

                        the time of the interrupt. 

                   (3)  If the keyword "SYSTEM;" is  not  specified,  then 

                        the  ON-unit  is  entered  as a procedure with the 

                        attention conditions  restored.   If  the  ON-unit 

                        returns,  IHEATTN  automatically  returns  to  the 

                        interrupted statement.  Caution  should  be  exer- 

                        cised  to  prevent  infinite loops in the ON-unit. 

                        It  is  recommended  that  the  user  insert   "ON 

                        CONDITION(ATTN) SYSTEM;" after "ON CONDITION(ATTN) 

                        BEGIN;".   No  I/O may be performed on a PL/I file 

                        being interrupted by an attention. 

 

  Examples:     If the PL/I program that contains no  statement  beginning 

                with "ON CONDITION(ATTN)" is executed, an attention inter- 

                rupt will produce a message such as 

 

                          ATTN AT STMT 0021 IN PROC PROGRAM 

 

                Attention  interrupts  may be controlled in a PL/I program 

                by the following sequence: 

 

                          DECLARE ATTNSW BIT(1) INIT(’0’B); 

                          ON CONDITION(ATTN) SNAP BEGIN; 

                             ON CONDITION(ATTN) SYSTEM; 

                             IF ATTNSW = ’1’B THEN CALL MTS; 

                             ATTNSW = ’1’B; 

                             END; 

 

                When an attention interrupt occurs for the first time, the 

                attention interrupt message is printed followed by a  list 

                of  the  active  procedures.   Then the BEGIN block, which 

                resets the ON-condition for attention interrupts and  sets 

                ATTNSW  to  ’1’, is executed; a return is then made to the 

                statement in which the attention  interrupt  occurred  and 

                program  execution  is  resumed.   A  subsequent attention 

                interrupt will cause the program to print  another  inter- 

                rupt  message  and  then  return to MTS command mode.  The 

                switch ATTNSW may be used by the program to  test  whether 

                the first attention interrupt has occurred. 

 

 

 

 

 

 

  166  IHEATTN 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
                              IHEDUMC, IHEDUMP                               ________________ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To dump the program. 
 
  Location:     *PL1LIB 

 

  Calling Sequence: 

 

                PL/I:     CALL IHEDUMx; 

 

                where x is                       _ 

 

                     C    dump  the  contents of storage and then continue 

                          processing, or 

                     P    dump the contents of storage and then  terminate 

                          processing. 

 

  Description:  Storage  dumps  are rarely, if ever, used when programming 

                in PL/I because of the powerful debugging  aids  available 

                to  help  pinpoint source-program errors.  If, however, it 

                becomes necessary to get a storage dump, the  user  should 

                insert the following statement in the program: 

 

                                      CALL IHEDUMP; 

 

                The  name  of  the dump file used by IHEDUMP or IHEDUMC is 

                PL1DUMP.   "PL1DUMP=*SINK*"  is  assumed  in  batch  mode, 

                unless  overridden  by  the  execution parameter or by the 

                ATTACH subroutine.  In conversational mode,  the  user  is 

                prompted to supply a file/device name for the dump output, 

                e.g., 

 

                           PL1DUMP - SPECIFY FDNAME OR SEND END-OF-FILE 

                          ?*PRINT* 

 

                If  the  user  sends  an  end-of-file, storage will not be 

                dumped.  Both IHEDUMP and IHEDUMC provide a good  deal  of 

                information  on  files  currently  used plus chain-back of 

                save areas and the dump output of the storage contents. 

 

  Example:                ON ERROR BEGIN; 

                             CALL ATTACH(’PL1DUMP=*PRINT*’); 

                             CALL IHEDUMP; 

                             STOP; 

                          END; 

 

                This example  automatically  dumps  the  contents  of  the 

                storage on *PRINT* when an error occurs. 

 

                                                     IHEDUMC, IHEDUMP  167 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
                              IHENOTE, IHEPNT                               _______________ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To provide an interface between the PL/I user and the NOTE 
                and POINT subroutines. 
 
  Location:     *PL1LIB 

 

  Calling Sequence: 

 

                PL/I:     CALL IHENOTE(file,ptrs); 

                          CALL IHEPNT(file,ptrs,bits); 

 

                Parameters: 

 

                     file is  a  FILE  variable which must first be opened                      ____ 

                          either implicitly or explicitly. 

                     ptrs is an array of four fullword elements.                      ____ 

                     bits is a  BIT(4)  variable  or  constant.   The  bit                      ____ 

                          switches are: 

 

                          ’0001’B - set read pointer 

                          ’0010’B - set write pointer 

                          ’0100’B - set last pointer 

                          ’1000’B - set last line number 

 

                          More  than  one  switch  may  be set to give the 

                          desired combination of pointers,  e.g.,  ’1111’B 

                          sets all pointers. 

 

                Return Codes: 

 

                     The  subroutine  PL1RC  may  be used to determine the 

                     return codes from NOTE and POINT. 

 

  Note:         These two subroutines are intended  for  interaction  with 

                the two PL/I subroutines IHEREAD and IHERITE. 

 

  Example:                DECLARE IHEPNT ENTRY(FILE,(4) FIXED BINARY(31), 

                            BIT(4)), QQSV FILE, 

                            PTRS (4) FIXED BINARY(31); 

                          PTRS=0; 

                          CALL IHEPNT(QQSV,PTRS,’0001’B); 

 

                This example rewinds the file QQSV for input only. 

 

 

 

  168  IHENOTE, IHEPNT 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
                              IHEREAD, IHERITE                               ________________ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To  read (IHEREAD) or write (IHERITE) a record from a PL/I 

                file. 

 

  Location:     *PL1LIB 

 

  Calling Sequences: 

 

                PL/I:     CALL IHEREAD(buff,[len,]mod,lnr,file); 

                          CALL IHERITE(buff,[len,]mod,lnr,file); 

 

                Parameters: 

 

                     buff is the CHARACTER variable or constant to be read                      ____ 

                          or written.  If IHEREAD is called, buff must  be                                                              ____ 

                          a  varying CHARACTER variable if len is omitted;                                                            ___ 

                          otherwise, buff must be a fixed-length CHARACTER                                      ____ 

                          variable if len is supplied.                                       ___ 

                     len  (optional) is the FIXED BINARY(15)  variable  or                      ___ 

                          constant  giving  the length of the record to be 

                          read or written.  If omitted, the length of buff                                                                       ____ 

                          is used as the record length. 

                     mod  is the BIT(32) variable or constant defining  32                      ___ 

                          modifier  bits used to control the action of the 

                          I/O subroutine (see the section "I/O  Modifiers" 

                          in  MTS  Volume  3,  System  Subroutine Descrip-                                                ___________________________ 

                          tions).  First eight bits should be set to zero.                           _____ 

                     lnr  is the FIXED DECIMAL(9,3) variable  or  constant                      ___ 

                          giving  the  line  number to be read or written. 

                          Notice that this declaration restricts the line- 

                          number range to (-999999.999, +999999.999). 

                     file is the PL/I FILE variable to be used in the  I/O                      ____ 

                          operation.   This  must  be  a  record file with 

                          undefined format or unblocked fixed format.   It 

                          cannot  be  an  output  file for IHEREAD, nor an 

                          input file for IHERITE.  An update file  can  be 

                          used for both IHEREAD and IHERITE. 

 

  Description:  The PL/I user should note the following restrictions: 

 

                   (1)  Care  must be taken if these subroutines are to be 

                        mixed with READ, WRITE, or REWRITE statements. 

                   (2)  If the indexed bit of a modifier  is  on,  a  line 

                        number must be provided.  Otherwise, a data excep- 

                        tion  (program interrupt) may occur, or unpredict- 

                        able results will occur.  In addition, in case  of 

                        IHEREAD,  the  character string will become a null 

 

                                                     IHEREAD, IHERITE  169 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                        string or length set to zero when there is no line 
                        associated with the line number. 
                   (3)  With IHEREAD, a line number  must  be  within  the 

                        range (-999999.999,+999999.999).  If not, a fixed- 

                        overflow exception (program interrupt) will occur. 

 

                IHEREAD and IHERITE can raise seven error conditions: 

 

                   (1)  An  ENDFILE condition is raised on an input opera- 

                        tion with return code=4 and @INDEXED modifier  bit 

                        off.   The  message  is  "IHE140I  -  END  OF FILE 

                        ENCOUNTERED." 

                   (2)  A RECORD condition is raised if length of a record 

                        exceeds the maximum length of the buffer  argument 

                        for  IHEREAD  call.   The  message  is  "IHE111I - 

                        RECORD VARIABLE SMALLER THAN RECORD SIZE." 

                   (3)  An input  TRANSMIT  condition  is  raised  if  the 

                        return  code  >  4  on  IHEREAD.   The  message is 

                        "IHE120I - PERMANENT INPUT ERROR." 

                   (4)  An output TRANSMIT  condition  is  raised  if  the 

                        return  code  >  0  on  IHERITE.   The  message is 

                        "IHE121I - PERMANENT OUTPUT ERROR." 

                   (5)  An ERROR condition is raised if the file is stream 

                        I/O or is V-formatted or blocked F-formatted.  The 

                        message is "IHE029I - UNSUPPORTED FILE OPERATION." 

                   (6)  An ERROR condition is raised if IHEREAD is used on 

                        an OUTPUT file.  The message is "IHE020I - ATTEMPT 

                        TO READ OUTPUT FILE." 

                   (7)  An ERROR condition is raised if IHERITE is used on 

                        an INPUT file.  The message is "IHE021I -  ATTEMPT 

                        TO WRITE INPUT FILE." 

 

  Example:      MAIN:  PROCEDURE OPTIONS(MAIN); 

                     DCL (IHEREAD,IHERITE) ENTRY 

                          (,BIT(32),DEC FIXED(9,3),FILE), 

                          BUFFER CHAR(121)VARYING, 

                          MOD BIT(32) INIT((32) ’0’B), 

                          LINENR DEC FIXED (9,3), NUTS FILE; 

                     ON ENDFILE (NUTS) GO TO FINISH; 

 

                OVER:  CALL IHEREAD(BUFFER,MOD,LINENR,NUTS); 

                     PUT SKIP LIST (LINENR,BUFFER); 

                     GO TO OVER;   /*THIS ACTS LIKE A "$LIST" COMMAND*/ 

 

                FINISH: 

                     CLOSE FILE(NUTS); OPEN FILE(NUTS) UPDATE; 

                     SUBSTR(MOD,31) = ’1’B; /* TURN INDEXED BIT ON */ 

                     CALL IHERITE(’’,MOD,1.0,NUTS); /* DELETE LINE 1 */ 

                     CALL IHERITE(’ THIS IS LINE #2.5’,MOD,2.5,NUTS); 

                               /* INSERT THE LINE #2.5 */ 

 

                RETURN; 

                END MAIN; 

 

  170  IHEREAD, IHERITE 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
                                  IHESARC                                   _______ 
 
 
 
  Purpose:      To set the return code from inside a PL/I procedure. 
 
  Location:     *PL1LIB 

 

  Calling Sequence: 

 

                PL/I:     DECLARE IHESARC ENTRY(FIXED BINARY(31)); 

                          CALL IHESARC(x); 

 

                Parameter: 

 

                     x    is the value of the return code to be set.                      _ 

 

  Description:  This  subroutine  sets the return code to the value x from                                                                     _ 

                inside a PL/I procedure.  This return code may be interro- 

                gated by the PL1RC  subroutine  after  the  procedure  has 

                returned. 

 

  Example:                DECLARE IHESARC ENTRY(FIXED BINARY(31)); 

                          CALL IHESARC(8); 

 

                The above example sets the return code to the value 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                              IHESARC  171 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
                                  IHETABS                                   _______ 
 
 
 
  Purpose:      To  set  the  tab  positions  for  list-directed and data- 
                directed output print files and to  provide  default  page 
                and line sizes. 
 
  Location:     *PL1LIB 

 

  Description:  The  360/370-assembly  code  below  describes  the IHETABS 

                module in *PL1LIB.  This module may be changed or replaced 

                to fit the user’s own requirements. 

 

                TAB     TITLE ’IHETAB - PRINT FILE LAYOUT’ 

                IHETAB  CSECT 

                        ENTRY IHETABS 

                IHETABS DC    H’60’      Default page size 

                        DC    H’121’     Default line size 

                        DS    X          Reserved for left and right 

                        DS    X            margin facilities 

                        DC    FL1’5’     Number of tab positions. 

                *                         If zero, then tab positions are 

                *                         not used. The maximum is 255. 

                        DC    FL1’25,49,73,97,121’ 

                *                        Tab positions within the print 

                *                          file. Each tab should have its 

                *                          value greater than the previous 

                *                          tab; otherwise, it is ignored. 

                *                          The first data field begins at 

                *                          the left margin (position 1) 

                *                          and thereafter each field 

                *                          begins at the next available 

                *                          tab position. 

                        END 

 

 

 

 

 

 

 

 

 

 

  172  IHETABS 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
                                   MAXLEN                                    ______ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To obtain the maximum length for a PL/I varying string. 
 
  Location:     *PL1LIB 

 

  Calling Sequence: 

 

                PL/I:     DECLARE MAXLEN ENTRY RETURNS(FIXED BIN(15)); 

                          len = MAXLEN(string); 

 

                Parameters: 

 

                     len     is the maximum length that the  variable  may                      ___ 

                             assume. 

                     string  is the CHARACTER or BIT variable in question.                      ______ 

 

  Description:  Each PL/I character or bit string has two halfword lengths 

                with  which  it  is associated:  the current length of the 

                string which is returned by  the  PL/I  built-in  function 

                LENGTH,  and  the  maximum length which is returned by the 

                function MAXLEN.  For a varying-length string,  the  value 

                returned  by  LENGTH  is  always less than or equal to the 

                value returned by MAXLEN, while the  values  returned  for 

                fixed-length  character  strings  will  always  be  equal. 

                Because MAXLEN is  not  a  GENERIC  function,  any  arrays 

                passed  as  arguments  to  MAXLEN must include subscripts, 

                i.e., MAXLEN(ARRAY(1,1)) and not MAXLEN(ARRAY). 

 

  Example:                MAIN: PROCEDURE OPTIONS(MAIN); 

                          DECLARE MAXLEN ENTRY  RETURNS(FIXED BIN(15)); 

                          DECLARE BUFF1 CHAR(100) VARYING, 

                                  BUFF2 CHAR(150), 

                                  BUFF3 BIT(32) VARYING; 

                          BUFF1 = ’12345’; 

                          BUFF3 = ’11111111’B; 

                          PUT SKIP LIST(LENGTH(BUFF1),MAXLEN(BUFF1), 

                              LENGTH(BUFF2),MAXLEN(BUFF2), 

                              LENGTH(BUFF3),MAXLEN(BUFF3)); 

                          PUT SKIP; 

                          END MAIN; 

 

                This example would print the values: 

 

                     5  100  150  150  8  32 

 

 

 

                                                               MAXLEN  173 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
                              NEXTKEY, LASTKEY                               ________________ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To determine the key of the next record (NEXTKEY)  or  the 

                end-of-file record (LASTKEY) in a sequential file. 

 

  Location:     *PL1LIB 

 

  Calling Sequences: 

 

                PL/I:     DECLARE (NEXTKEY,LASTKEY) ENTRY 

                          (FILE) RETURNS (CHARACTER (4)); 

 

  Description:  NEXTKEY:  FILE is opened as: 

                          output - returns  the  key of the next record to 

                                   be written. 

                          input or update - returns the key  of  the  next 

                                   record to be read. 

 

                LASTKEY:  returns the key of the end-of-file record. 

 

                FILE:     a   PL/I   file   variable   conforming  to  the 

                          following: 

 

                          (1)  a KEYED file of the  consecutive  organiza- 

                               tion,  i.e.,  referring  to  an  actual MTS 

                               sequential file. 

                          (2)  must be already opened by  either  an  OPEN 

                               statement   or   by   an   appropriate  I/O 

                               statement. 

 

                If an error occurs, the returned key will have  the  value 

                of HIGH(4). 

 

  Example:                POINT=NEXTKEY(KEYED_FILE); 

                          LOCATE BASED FILE(KEYED_FILE) KEYFROM(POINT); 

                          BASED=’ABC’; 

 

                This  example  writes the character string ABC on the next 

                record.  BASED is a string variable declared with  a  PL/I 

                BASED attribute. 

 

 

 

 

 

  174  NEXTKEY, LASTKEY 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
                                    RAND                                     ____ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To  compute  uniformly  distributed random numbers between 
                0.0 and 1.0. 
 
  Location:     *PL1LIB 

 

  Calling Sequences: 

 

                PL/I:     DECLARE RAND ENTRY (FIXED BINARY(31)) 

                                  RETURNS (FLOAT BINARY); 

 

  Description:  The  argument  I  as  in  RAND  (I)  must  be  a  variable 

                initialized within the range 0 to 2³¹-1 (2147483647).  The 

                value  returned  by  RAND  (I) is between 0.0 and 1.0.  In 

                addition, the variable is  changed  so  that  a  different 

                random  number  is generated on a subsequent call.  If the 

                argument I contains zero, a random number will be generat- 

                ed depending upon the time of day. 

 

                The algorithm is taken from  "Coding  the  Lehmer  Pseudo- 

                Random  Number  Generator,"  Communications  of  the  ACM,                                              ____________________________ 

                Volume 12, Number 2 (February 1969). 

 

  Example:                RANDOM:  PROC FLOAT BIN; 

                             DCL I FIXED BIN (31) STATIC 

                                   INIT (524287), 

                                RAND ENTRY (FIXED BIN (31)) 

                                   RETURNS (FLOAT BIN); 

                                RETURN (RAND (I)); 

                                END; 

 

                This example generates a random number  using  the  number 

                524287 as the initial base. 

 

 

 

 

 

 

 

 

                                                                 RAND  175 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
                                  SIGNOFF                                   _______ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To sign the user off. 
 
  Location:     *PL1LIB 

 

  Calling Sequences: 

 

                PL/I:     DECLARE SIGNOFF ENTRY; 

 

  Description:  The  subroutine  closes  all  open files, if any, and then 

                signs the user off. 

 

  Example:                IF BATCH THEN CALL SIGNOFF; 

 

                This example signs off the user if he is running in  batch 

                mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  176  SIGNOFF 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
                                   USERID                                    ______ 
 
                           SUBROUTINE DESCRIPTION 
 
 
 
  Purpose:      To  obtain  the  current  four-character  Computing Center 
                signon ID. 
 
  Location:     *PL1LIB 

 

  Calling Sequences: 

 

                PL/I:     DECLARE USERID ENTRY RETURNS (CHARACTER(4)); 

 

  Description:  The subroutine returns the user signon ID. 

 

  Example:                PUT LIST (USERID); 

 

                This example prints out the user’s signon ID. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                               USERID  177 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  178  USERID 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
 
 
                   INTERLANGUAGE COMMUNICATION FACILITIES                    ______________________________________ 
 
 
 
 
     The PL/I Optimizing Compiler provides  the  interlanguage  facilities 
  for  users  who want to call non-PL/I routines from their PL/I programs. 
  (PL/I (F) users should use the subroutines such as PLCALL  described  at 

  the  end  of this section.)  This section describes only what users need 

  to know in order to call non-PL/I routines.  Full details  are  included 

  in  Chapter  19,  "Interlanguage  Communication  Facilities," of the IBM 

  publication,  OS  PL/I  Checkout  and  Optimizing  Compilers:   Language                 __  ____  ________  ___  __________  __________   ________ 

  Reference  Manual,  form  GC33-0009.  Also included in that chapter is a   _________  ______ 

  description  of  how  FORTRAN  subprograms  can   call   PL/I   external 

  procedures. 

 

     PL/I,  FORTRAN,  and  most  MTS  system subroutines use the OS S-type 

  calling sequence (see MTS Volume 3, System Subroutine Descriptions,  for                                       ______________________________ 

  the complete description of this calling sequence).  Among other things, 

  this  calling  sequence  requires  that  arguments  to be passed between 

  routines be represented by a parameter list, a vector of addresses  that 

  point  to the arguments.  FORTRAN and most MTS system subroutines expect 

  the addresses in the list to  point  to  the  actual  data  items  being 

  passed.   Parameter  lists  produced  by PL/I follow this convention for 

  some types of arguments, but for some other types (strings,  structures, 

  arrays  and  areas)  the parameter-list addresses point to a "locator",¹
  which in turn points to the actual data  items.   The  format  of  these 

  locators  and  other details of PL/I data representation is given in the 

  IBM publication, OS PL/I Optimizing  Compiler:   Execution  Logic,  form                    __ ____ __________  ________    _________  _____ 

  SC33-0025.   If  a  routine  whose  entry  points  are declared with the 

  ASSEMBLER (abbreviated as ASM), COBOL, or FORTRAN attributes,  the  data 

  addresses of the arguments are always passed instead of locators. 

 

     The  following  example  tests if a command starts with a dollar sign 

  "$", representing an MTS command.  If so,  the  MTS  subroutine  CMD  is 

  called. 

 

       Declare CMD external entry 

                   (character(*), fixed binary(31)) 

                   options (assembler, inter), 

               COMMAND character(80); 

          ... 

       Get list (COMMAND); 

       If substr(COMMAND,1,1)=’$’ then 

          call CMD (COMMAND,80); 

       Else ...; 

 

  -------------------- 

 

  ¹This "locator" was called a "dope vector" in PL/I (F) terminology.

 

 

                               Interlanguage Communication Facilities  179 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
     Note  that in the example above the option INTER was specified.  This 
  means that any interrupts not handled by the assembler routine CMD  will 
  be dealt with by the PL/I interrupt handler. 
 
     Another  difference between the PL/I calling sequence and the calling 
  sequence used by FORTRAN is the method  by  which  function  subprograms 
  return results.  FORTRAN functions return integer and logical results in 
  general  register  0, real results in floating-point register 0, complex 
  results or extended real results in floating-point registers  0  and  2, 
  and  complex extended results in floating-point registers 0, 2, 4 and 6. 
  PL/I takes a different approach by appending an  additional  address  to 
  the  parameter  list  used  to  call procedures that may return results. 
  This additional address points to either a  location  or  to  a  locator 
  pointing  to  a location where the result is to be returned.  Here, too, 
  the PL/I Optimizing compiler will also automatically return  the  result 
  if  the  entry  point  being  called has both the FORTRAN option and the 
  RETURNS attribute, e.g.: 
 
       Declare ARSIN external entry (float(6)) 

                     returns (decimal float(6)) 

                     options (fortran), 

               DARCOS external entry (decimal float(16)) 

                     returns (decimal float(16)), 

               (ARCSIN, ANGLE) decimal float(6), 

               (ARCCOS, DANGLE) decimal float(16); 

       ARCSIN = ARSIN (ANGLE); 

       ARCCOS = DARCOS (DANGLE); 

 

     In addition, many non-PL/I routines set the return  code  in  general 

  register  15.   Their  entry points should then be declared with OPTIONS 

  (RETCODE).  The lower half  of  general  register  15  is  stored  in  a 

  halfword,  which is also set by means of the PLIRETC built-in subroutine 

  called by any PL/I Optimizer procedure.  This value can be  interrogated 

  using the PLIRETV built-in function. 

 

  Example: 

 

       Declare SKIP external entry 

               (fixed binary(31),  /* number of files */ 

                fixed binary(31),  /* number of records */ 

                fixed binary(31))  /* unit number */ 

|              options (assembler, inter, retcode), 

               NFILES fixed binary(31), 

               NRECORDS fixed binary(31), 

               FDUB fixed binary(31), 

               PLIRETV builtin; 

          ... 

       Call SKIP (NFILES, NRECORDS, FDUB); 

       If PLIRETV¬=0 then do;

          ... 

          End; 

 

 

  180  Interlanguage Communication Facilities 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     If  PLIRETV is not explicitly declared, it should be specified with a 
  null argument list, e.g., PLIRETV(), so that the subroutine is contextu- 

  ally declared with BUILTIN attribute. 

 

     The following example illustrates the use of  the  PL/I  to  non-PL/I 

  interface  routines.   This procedure copies a file from the logical I/O 

  unit 0 to the logical I/O unit 1 by  calling  the  MTS  READ  and  WRITE 

  subroutines.   The  procedure  terminates  when  a zero-length line or a 

  nonzero return code from READ occurs. 

 

       MAIN: Procedure options(main); 

 

             Declare BUFF character(200), 

                     LEN  fixed binary(15), /* Halfword */ 

                     IMOD fixed binary(31) 

                          initial (16385),  /* @SEQ@¬TRIM */ 

                     OMOD fixed binary(31) 

                          initial (16384),  /* ¬TRIM      */ 

                     LINE fixed binary(31), 

                     (READ, WRITE) external entry 

                          (character(*),      /* buffer */ 

                           fixed binary(15),  /* length */ 

                           fixed binary(31),  /* modifiers */ 

                           fixed binary(31),  /* line number */ 

                           fixed binary(31))  /* unit number */ 

                          options (retcode, assembler, inter), 

                     PLIRETV builtin; 

 

             Do while (’1’b);         /* FOREVER */ 

                Call READ (BUFF, LEN, IMOD, LINE, 0); 

                If PLIRETV ¬=0 | LEN=0 then leave; 

                Call WRITE (BUFF, LEN, OMOD, LINE, 1); 

             End; 

 

             Stop; 

             End MAIN; 

 

     If a parameter to a FORTRAN subprogram is an array, the parameter  is 

  passed directly only if the array is of one  dimension,  is  connected², 
  and  is  aligned  as  an identical FORTRAN array.  If an array parameter 

  does not meet the condition or has more than  one  dimension,  the  PL/I 

  Optimizing  compiler  automatically creates a dummy array, into which it 

  will map the array in the FORTRAN manner.  Upon the termination  of  the 

 

  -------------------- 

 

  ²"Connected"  attribute  means that all of the elements in the array are 
   contiguous.  If a structure is declared as: 

 

       1 ABC(5), 2 A, 2 B, 2 C 

 

   Three arrays ABC.A, ABC.B, ABC.C are not connected. 

 

 

                               Interlanguage Communication Facilities  181 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  FORTRAN  subprogram,  it  then  remaps  the dummy array back to the real 
  array. 
 
     This example calls SORTIT with a two-dimensional array VECTOR.  Here, 
  VECTOR is first mapped into a dummy array before the call  and  then  is 
  remapped back from the dummy array after call. 
 
       Declare SORTIT external entry 
                      ((3,5) fixed binary(31)) 

                      options (fortran), 

               VECTOR (3,5) fixed binary(31); 

         ... 

       Call SORTIT (VECTOR); 

 

     These  two  languages  differ  in  the method used to map arrays into 

  memory.  In PL/I, the rightmost subscript varies most rapidly, while  in 

  FORTRAN,  the  leftmost subscript varies most rapidly.  For example, the 

  two-dimensional array in the above example is mapped in PL/I as follows: 

 

       VECTOR: (1,1), (1,2), (1,3), 

               (2,1), (2,2), (2,3), 

               (3,1), (3,2), (3,3), 

               (4,1), (4,2), (4,3), 

               (5,1), (5,2), (5,3) 

 

  Before calling the routine SORTIT, a dummy array is created, and  mapped 

  from the VECTOR as follows: 

 

       DUMMY:  (1,1), (2,1), (3,1), (4,1), (5,1), 

               (1,2), (2,2), (3,2), (4,2), (5,2), 

               (1,3), (2,3), (3,3), (4,3), (5,3) 

 

  And  after the call to SORTIT, the contents of the dummy array are moved 

  to the actual array VECTOR. 

 

     There are three options NOMAP,  NOMAPIN,  NOMAPOUT  that  will  avoid 

  mapping from/to a dummy array. 

 

     NOMAP  will  pass the array directly to a FORTRAN subroutine.  To use 

  this array, one will have to declare an array in FORTRAN as follows: 

 

       INTEGER*4 VECTOR (3,5) 

 

  And the subscripts of the  VECTOR  should  be  reversed  in  the  entire                                                  ________ 

  FORTRAN subroutine. 

 

     NOMAPIN  option  indicates the dummy array if created is not initial- 

  ized from the argument.  NOMAPOUT indicates the dummy array  if  created 

  is not to be assigned back into the argument.  These options can be used 

  to save CPU time. 

 

     Generally,  if  NOMAP,  NOMAPIN,  or NOMAPOUT is specified, they will 

  apply to all arguments of a FORTRAN routine  being  called.   Users  can 

 

  182  Interlanguage Communication Facilities 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
  also  specify  to which arguments these three options should apply.  For 
  example, an option NOMAP(ARG1,ARG3) applies NOMAP to the first and third 

  arguments. 

 

  The following example illustrates the use of the  NOMAPIN  and  NOMAPOUT 

  options.   Suppose we have a simple FORTRAN subroutine that will convert 

  the integer array INPUT into the real array OUTPUT. 

 

       Declare INOUT external entry 

                     ((3,4) fixed binary(31), 

                      (3,4) float (6)) 

                     options (FORTRAN nomapout(ARG1) 

                              nomapin(ARG2)), 

               INPUT (3,4) fixed binary(31), 

               OUTPUT (3,4) float (6); 

         ... 

       Call INOUT (INPUT,OUTPUT); 

 

  The efficiency of the program is improved because a dummy array does not 

  have to be copied from the OUTPUT array before the  call  to  INOUT  and 

  another  dummy  array  is not copied back into the INPUT array after the 

  call. 

 

     Logical (LOGICAL*4) arguments may be passed to  FORTRAN  routines  as 

  BIT(32) variables.  Any nonzero bit, usually 

 

       ’00000000000000000000000000000001’B) 

 

  indicates the value "true", and all zero bits indicate "false". 

 

     Logical  (LOGICAL*1)  arguments  may be passed to FORTRAN routines as 

  BIT(8) variables,  that  is,  bit  strings  of  length  8.   ’00000001’B 

  represents "true", and ’00000000’B represents "false". 

 

     Many  MTS  system  subroutines  that return results in the general or 

  floating-point registers should be declared with option FORTRAN but  not 

  ASSEMBLER.   The  following  example  calls  the system subroutine COST. 

  Note that a FORTRAN function must have at least one argument. 

 

       Declare  COST external entry (fixed binary(31)) 

                     returns (float decimal(16)) 

                     options (fortran), 

                DOLLARS float decimal(16); 

         ... 

       DOLLARS = COST (0); 

         ... 

       End; 

 

     Below is an example that illustrates the  use  of  varying  character 

  strings  in  a  call  to  a  system  subroutine.  Data representation of 

  varying strings have first two bytes holding their current  lengths,  in 

  bytes.   This  is  then  followed by the actual contents of the strings. 

  Character strings are not available in FORTRAN. 

 

                               Interlanguage Communication Facilities  183 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
 
       Declare DISMNT external entry 
                (character(*) varying) 

                options (assembler, inter), 

               PAR character(32) varying 

                initial (’*T*’); 

       Call DISMNT (PAR); 

 

     Many system subroutines do not conform to the S-type linkage.   Here, 

  a  subroutine  RCALL  should be used to provide an R-type linkage to the 

  system subroutine GETFD.  Note that F2 and F1 are used as  arguments  to 

  RCALL  instead  of  2 and 1 because these two constants, which are to be 

  expected to have the attributes FIXED BINARY(31),  have  the  attributes 

  FIXED DECIMAL(1). 

 

       Declare RCALL external entry 

                     options (assembler, inter), 

               GETFD external entry, 

               FILNAM character(18), 

               DUMMY fixed binary(31), 

               F1 fixed binary(31) initial (1), 

               F2 fixed binary(31) initial (2), 

               FDUB  pointer; 

|              FILPTR pointer; 

|      FILPTR = ADDR(FILNAM); 

|      Call RCALL (GETFD, F2, DUMMY, FILPTR, F1, FDUB); 

 

     There  is  another  way  a  PL/I  procedure can pass information to a 

  FORTRAN subprogram besides using the arguments.  External static  varia- 

  bles  in  PL/I  can also be considered as FORTRAN common labeled blocks. 

  Here is an example: 

 

       PL/I:    Declare ABC fixed binary(31) external static; 

       FORTRAN: COMMON /ABC/ XYZ 

                INTEGER*4 XYZ 

 

  The FORTRAN variable XYZ is equated to the PL/I variable ABC. 

 

     If the labeled common block has more than one FORTRAN variable,  then 

  the common block should be represented as a PL/I structure. 

 

       FORTRAN:   COMMON  /ABC/ A, B, C, R(100) 

                  REAL    A, B, C 

                  INTEGER R 

 

  can be represented as: 

 

       PL/I:      Declare 1 ABC external static, 

                  2 (A, B, C) decimal float(6), 

                  2 R(100)    fixed binary(31,0); 

 

     This  method  is  only possible in PL/I Optimizer programs, since the 

  PL/I (F) compiler actually inserts dope vectors for all external  static 

 

  184  Interlanguage Communication Facilities 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
  variables  except  scalar  arithmetic  variables.   All  external static 
  variables in PL/I Optimizer programs do not have any  locators  attached 
  to them. 
 
  Table showing the data equivalents for FORTRAN and PL/I data. 
 
    ┌────────────────────────────────────────────────────────────────────┐                               ┌
    | FORTRAN                  | PL/I                                    | 
    |──────────────────────────┼─────────────────────────────────────────|    ┌                                                                    ┘
    | INTEGER*2                | REAL FIXED BINARY(15,0)                 | 

    | INTEGER*4                | REAL FIXED BINARY(31,0)                 | 

    | REAL*4                   | REAL FLOAT DECIMAL(6)                   | 

    | REAL*8                   | REAL FLOAT DECIMAL(16)                  | 

    | REAL*16                  | REAL FLOAT DECIMAL(33)                  | 

    | COMPLEX*8                | COMPLEX FLOAT DECIMAL(6)                | 

    | COMPLEX*16               | COMPLEX FLOAT DECIMAL(16)               | 

    | COMPLEX*32               | COMPLEX FLOAT DECIMAL(33)               | 

    | LOGICAL*1                | BIT(8) ALIGNED                          | 

    | LOGICAL*4                | BIT(32) ALIGNED                         | 

    └────────────────────────────────────────────────────────────────────┘                               ┘
 

  Note  that FORTRAN variables of type LOGICAL*4 are aligned on fullwords. 

  If this alignment is necessary, then they should at least be equated  to 

  a PL/I equivalent using the DEFINED or BASED attributes. 

 

 

 

  CALLING PL/I PROCEDURES FROM FORTRAN SUBPROGRAMS   ________________________________________________ 

 

 

     FORTRAN  subprograms  can  also  call  external PL/I procedures.  The 

  external PL/I procedures should then have  a  FORTRAN  option.   If  the 

  procedures  are  being  called  as  FORTRAN  functions, then they should 

  specify an appropriate RETURNS attribute.  The following example shows a 

  FORTRAN subprogram calling the PL/I external procedure SQRT. 

 

       FORTRAN:   REAL*4 SQRT, ARG, RESULT 

                  RESULT = SQRT (ARG) 

       PL/I:      SQRT:  Procedure (ARG) returns (float decimal(6)) 

                                   options (FORTRAN); 

                         Declare (ARG, RESULT) float decimal(6); 

                           ... 

                         Return (RESULT); 

                         End SQRT; 

 

     The external PL/I procedure can  also  have  other  options  such  as 

  NOMAP,  NOMAPIN,  NOMAPOUT.   Dummy  arguments  may  be  created so that 

  FORTRAN arrays are mapped into PL/I arrays according to PL/I  rules  and 

  then  mapped  back  into  the  FORTRAN  arrays  upon the return from the 

  external  procedure.   NOMAPIN  inhibits  the  first  mapping,  NOMAPOUT 

  inhibits the second mapping, and NOMAP passes FORTRAN arrays directly to 

  PL/I arrays. 

 

 

                               Interlanguage Communication Facilities  185 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
  Examples: 
 
       (1)  ABC:  Procedure (A, B, C) 

                  options (FORTRAN); 

       (2)  ABC:  Procedure (A, B, C) 

                  options (FORTRAN NOMAP); 

       (3)  ABC:  Procedure (A, B, C) 

                  options (FORTRAN NOMAPIN(A) NOMAPOUT(B) NOMAP(C)); 

 

  The  first example will map all three arguments, in case dummy arguments 

  are required.  In the second example, all arguments are passed directly. 

  In the third example, the argument A will not be  copied  into  a  dummy 

  array  at start; the argument B will not be copied from a dummy array at 

  return; and the argument C is passed directly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  186  Interlanguage Communication Facilities 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  Example 1:   _________ 
 
 
  In the following example, the two-dimensional array A is  printed  first 
  by  the FORTRAN program, then by a PL/I procedure, and then again by the 
  FORTRAN main program.  Note that the  procedure  TSUB  creates  a  dummy 
  array,  remapping the FORTRAN array into the dummy array.  At the end of 
  execution, this dummy array is then remapped into the FORTRAN array. 
 
 
 
   #$list main.s 

   >     1     C  A simple FORTRAN main program that calls the PL/I 

   >     2     C  external procedure TSUB. 

   >     3     C 

   >     4           INTEGER A(3,2) 

   >     5           DATA K /0/ 

   >     6           DO 10 J=1,2 

   >     7              DO 10 I=1,3 

   >     8                 K = K + 1 

   >     9                 A(I,J) = K 

   >    10        10 CONTINUE 

   >    11           WRITE (6,100) (( I,J,A(I,J), I=1,3), J=1,2) 

   >    12       100 FORMAT (’ A(’,I1,’,’,I1,’)=’,I1) 

   >    13           CALL TSUB (A) 

   >    14           WRITE (6,100) (( I,J,A(I,J), I=1,3), J=1,2) 

   >    15           STOP 

   >    16           END 

   #$list tsub.s 

   >     1     TSUB:  Procedure (A) options (FORTRAN); 

   >     2            Declare A(3,2) fixed binary(31), 

   >     3                    K      fixed binary(31) init(6); 

   >     4            Do J=1 to 2; 

   >     5               Do I=1 to 3; 

   >     6                  Put skip edit (’A(’,I,’,’,J,’)=’,A(I,J)) 

   >     7                                (a,f(1),a,f(1),a,f(1)); 

   >     8                  A(I,J) = K; 

   >     9                  K = K - 1; 

   >    10               End /* Do I=1 to 3 */; 

   >    11            End /*Do J=1 to 2 */; 

   >    11.5          Put skip; 

   >    12            Return; 

   >    13            End TSUB; 

 

 

 

 

 

 

                               Interlanguage Communication Facilities  187 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
   #run *ftn scards=main.s sprint=-print spunch=-obj 

    No errors in MAIN 

   #14:35:02  T=0.178  $0.08 

   #run *pl1opt scards=tsub.s sprint=-print(last+1) spunch=-obj(last+1) 

    PL/I OPTIMIZER V1 R3.1        TIME: 14.35.33  DATE: 14 JULY 82 

 

     NO MESSAGES OF SEVERITY W AND ABOVE PRODUCED FOR THIS COMPILATION 

 

     MESSAGES SUPPRESSED BY THE FLAG OPTION:  7 I. 

 

  - COMPILE TIME    0.00 MINS     SPILL FILE:     0 RECORDS, SIZE  4051 

   #14:36:07  T=0.397  $0.20 

   #run -obj+*pl1optlib 

    A(1,1)=1 

    A(2,1)=2 

    A(3,1)=3 

    A(1,2)=4 

    A(2,2)=5 

    A(3,2)=6 

 

    A(1,1)=1 

    A(2,1)=2 

    A(3,1)=3 

    A(1,2)=4 

    A(2,2)=5 

    A(3,2)=6 

 

    A(1,1)=6 

    A(2,1)=5 

    A(3,1)=4 

    A(1,2)=3 

    A(2,2)=2 

    A(3,2)=1 

 

   #14:36:59  T=0.02  $0.01 

 

 

 

 

 

 

 

 

 

 

  188  Interlanguage Communication Facilities 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  Example 2:   _________ 
 
 
  The following program reads lines from SCARDS and breaks  them  up  into 
  words,  placing  the  word count into the variable COUNT.  Since FORTRAN 
  does not allow character variables, PL/I character variables  should  be 
  equated  to  the  arguments.   Either  the  DEFINED  attribute  or BASED 
  variables can be used to equate the variables.  The example  illustrates 
  the use of BASED variables. 
 
 
 
  #$list ftntest(1,999) 

  >  1        REAL*8 WORDS(4095), SENTEN(4096) 

  >  2        INTEGER*2 LEN, I 

  >  3        INTEGER*4 COUNT, QQSV, BREAK 

  >  4      1 CALL SCARDS (SENTEN, LEN, 0, QQSV, &999) 

  >  5        COUNT = BREAK (SENTEN, LEN, WORDS) 

  >  6        IF (COUNT.EQ.0) GO TO 1 

  >  7        COUNT = 3*COUNT 

  >  8        WRITE (6,9) (WORDS(I),I=1,COUNT) 

  >  9      9 FORMAT (1X,9A8) 

  > 10        GO TO 1 

  > 11    999 STOP 

  > 12        END 

  #$list pl1test(1,999) 

  >  1  BREAK: Procedure (SENTEN, LEN, WORDS#) 

  >  2                   returns (FIXED BINARY(31)) 

  >  3                   options (FORTRAN NOMAP); 

  >  4 

  >  5         Declare (SENTEN(4096), WORDS#(4095)) float(16) connected, 

  >  6                 LEN                           fixed binary(15), 

  >  7                 SENTENCE                      character(32767) 

  >  8                                               based (SENPTR), 

  >  9                 WORDS(10920)                  character(24) 

  > 10                                               based (WORDPTR), 

  > 11                 (SENPTR, WORDPTR)             pointer, 

  > 12                 (COUNT, INDX, JNDX)           fixed binary(31), 

  > 13                 (LENGTH, INDEX, SUBSTR, ADDR) builtin; 

  > 14 

  > 15         COUNT = 0; 

  > 16         SENPTR = addr (SENTEN(1)); 

  > 17         WORDPTR = addr (WORDS#(1)); 

  > 18         INDX = 1; 

  > 19  LOOP:  Do until (INDX>LEN); 

  > 20            JNDX = index( substr(SENTENCE,INDX,LEN-INDX+1), ’ ’); 

  > 21            If JNDX=0 then JNDX = LEN+1; 

  > 22                      else JNDX = INDX+JNDX-1; 

  > 23            If INDX=JNDX then do; 

  > 24               If INDX>LEN then leave LOOP; 

  > 25               INDX = INDX+1; 

  > 26               Go to LOOP; 

  > 27            End; 

 

                               Interlanguage Communication Facilities  189 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  > 28            COUNT = COUNT+1; 

  > 29            WORDS(COUNT) = substr(SENTENCE,INDX,JNDX-INDX); 

  > 30            INDX = JNDX+1; 

  > 31         End; 

  > 32 

  > 33         Return (COUNT); 

  > 34 

  > 35         End BREAK; 

 

 

 

 

 

 

   #run ftntest(1000)+pl1test(1000)+*pl1optlib 

    My name is Michigan Terminal System, 

    My                      name                    is 

    Michigan                Terminal                System, 

    and I come from University of Michigan at Ann Arbor, Michigan. 

    and                     I                       come 

    from                    University              of 

    Michigan                at                      Ann 

    Arbor,                  Michigan. 

   #14:03:36  T=0.022  $0.02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  190  Interlanguage Communication Facilities 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  PL/I (F) INTERLANGUAGE SUBROUTINES   __________________________________ 

 

 

     The following descriptions on PL/I subroutines apply only to PL/I (F) 

  programs.   These  subroutines  do  not reside in *PL1OPTLIB because the 

  ease  of  the  interlanguage  communication  facilities   renders   them 

  irrelevant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                               Interlanguage Communication Facilities  191 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
 
 
                     PLCALL, PLCALLD, PLCALLE, PLCALLF                      _________________________________ 
 
 
 
  Purpose:      To  enable  PL/I (F) users to call non-PL/I (e.g., FORTRAN 

                and assembler)  procedures  requiring  a  standard  S-type 

                linkage. 

 

  Location:     *PL1LIB 

 

  Calling Sequences: 

 

                PL/I (F): CALL PLCALL(fn,n,pl); 

 

                          DECLARE PLCALLD RETURNS(FLOAT(16)); 

                          PLCALLD(fnd,n,pl); 

 

                          DECLARE PLCALLE RETURNS(FLOAT(6)); 

                          PLCALLE(fne,n,pl); 

 

                          DECLARE PLCALLF RETURNS(FIXED BINARY(31)); 

                          PLCALLF(fnf,n,pl); 

 

                Parameters: 

 

                     fn   is  a subroutine which has been declared to have                      __ 

                          the ENTRY attribute and which does not return  a 

                          value. 

                     fnd  is  a  function  which has been declared to have                      ___ 

                          the ENTRY attribute and which returns a  double- 

                          precision  floating-point  value (REAL*8 in FOR- 

                          TRAN; long floating-point register 0 in assembly 

                          code). 

                     fne  is a function which has been  declared  to  have                      ___ 

                          the  ENTRY attribute and which returns a single- 

                          precision floating-point value (REAL*4  in  FOR- 

                          TRAN;  short floating-point register 0 in assem- 

                          bly code). 

                     fnf  is a function which has been  declared  to  have                      ___ 

                          the ENTRY attribute and which returns an integer 

                          value  (INTEGER*4 in FORTRAN; general register 0 

                          in assembly code). 

                     n    is a number  with  attributes  FIXED  BINARY(31)                      _ 

                          which  is equal to the number of arguments being 

                          passed to fn, fnd, fne, or fnf.  n may be 0.                                     __  ___  ___     ___   _ 

                     pl   is a parameter list of the  n  arguments  to  be                      __                               _ 

                          passed  to  fn,  fnd,  fne,  or fnf in the order                                       __   ___   ___      ___ 

                          required by the subprogram.  The  arguments  are 

                          separated  by  commas.   If  the  argument  is a 

                          string variable, array  variable,  or  structure 

 

  192  Interlanguage Communication Facilities 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
                          variable,  the name of the argument or a pointer 
                          to the argument may be used; for example, ARG or 
                          ADDR(ARG).  Note that  if  the  argument  is  an 

                          array  variable, the reference passed will be to 

                          the location of the element having all zeros for 

                          subscripts (e.g., A(0,0)), even if that  element 

                          does not exist.  Therefore, it may be preferable 

                          to  use  a  pointer  to  an element of the array 

                          instead of the array itself (e.g.,  ADDR(A(1,1)) 

                          instead  of  A).   If  the  argument is a scalar 

                          variable, a pointer  to  the  argument  must  be 

                          used;  for  example, ADDR(ARG).  If the argument 

                          is a scalar constant, a pointer to the argument, 

                          which can be produced by the subroutine  PL1ADR, 

                          must  be  used.   The high-order bit of the last 

                          word in the parameter list passed  to  fn,  fnd,                                                                  __   ___ 

                          fne,  or  fnf  is set to 1.  If n=0, there is no                           ___       ___                   _ 

                          parameter list and no comma after n.                                                             _ 

 

                Return Codes: 

 

                     The return code placed in general register 15 by  fn,                                                                        __ 

                     fnd,  fne,  or fnf may be tested using the subroutine                      ___   ___      ___ 

                     PL1RC. 

 

  Description:  PL/I program interrupt ON conditions are disabled on entry 

                to the subprogram and reenabled on return to  the  calling 

                program.   The values of PLCALLD, PLCALLE, and PLCALLF are 

                the values returned by fnd, fne, and fnf, respectively.                                        ___  ___      ___ 

 

  Examples:          DECLARE PLCALLE RETURNS(FLOAT(6)); 

                     DECLARE PLCALLD RETURNS(FLOAT(16)); 

                     DECLARE (ARSIN, DARCOS) ENTRY; 

                     DECLARE (ARCSIN, ANGLE) FLOAT(6); 

                     DECLARE (ARCCOS, DANGLE) FLOAT(16); 

                     DECLARE F1 FIXED BINARY(31) INIT(1) STATIC; 

                     ARCSIN=PLCALLE(ARSIN, F1, ADDR(ANGLE)); 

                     ARCCOS=PLCALLD(DARCOS, F1, ADDR(DANGLE)); 

 

                The above example  calls  the  FORTRAN  library  functions 

                ARSIN and DARCOS. 

 

                     /* PAR IS A STRUCTURE VARIABLE */ 

                     DECLARE DISMNT ENTRY; 

                     DECLARE 1 PAR ALIGNED STATIC, 

                               2 LEN INIT(3), 

                               2 TAPE CHAR(3) INIT(’*T*’); 

                     DECLARE F1 FIXED BINARY(31) INIT(1) STATIC; 

                     CALL PLCALL(DISMNT, F1, PAR); 

 

                The above example calls the system subroutine DISMNT. 

 

 

                               Interlanguage Communication Facilities  193 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                     /* FILNAM IS A STRING. F1, F2, AND FDUB ARE SCALAR */ 

                     DECLARE RCALL ENTRY; 

                     DECLARE F6 FIXED BINARY(31) INIT(6) STATIC; 

                     DECLARE PL1ADR RETURNS(POINTER); 

                     DECLARE GETFD ENTRY; 

                     DECLARE F2 FIXED BINARY(31) INIT(2) STATIC; 

                     DECLARE FILNAM CHARACTER(18); 

                     DECLARE F1 FIXED BINARY(31) INIT(1) STATIC; 

                     DECLARE FDUB POINTER; 

                     CALL PLCALL(RCALL,F6,PL1ADR(GETFD),ADDR(F2), 

                          ADDR(DUMMY),PL1ADR(ADDR(FILNAM)),ADDR(F1), 

                          ADDR(FDUB)); 

 

                The above example produces an R-type linkage to the system 

                subroutine GETFD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  194  Interlanguage Communication Facilities 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
 
                                   PL1ADR                                    ______ 
 
 
 
  Purpose:      To   obtain   a  pointer  to  PL/I  scalar  constants  and 
                variables. 
 
  Location:     *PL1LIB 

 

  Calling Sequence: 

 

                PL/I (F): DECLARE PL1ADR ENTRY RETURNS(POINTER); 

                          PL1ADR(arg); 

 

                Parameter: 

 

                     arg  is any scalar constant or variable (not strings,                      ___ 

                          arrays, or structures). 

 

  Description:  The value of PL1ADR is the address of the  argument.   The 

                primary purpose of this subroutine is to pass pointers for 

                scalar  constants  to  the  subroutines  PLCALL,  PLCALLD, 

                PLCALLE, and PLCALLF since a constant cannot be used as an 

                argument to the PL/I function ADDR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                               Interlanguage Communication Facilities  195 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
 
 
                                   PL1RC                                    _____ 
 
 
 
  Purpose:      To interrogate the return code passed  back  by  the  last 
                call  on  PLCALL,  PLCALLD,  PLCALLE, or PLCALLF or set by 
                IHESARC. 
 
  Location:     *PL1LIB 

 

  Calling Sequence: 

 

                PL/I (F): DECLARE PL1RC ENTRY RETURNS(FIXED BINARY(31)); 

                          PL1RC; 

 

  Description:  The value of PL1RC is the contents of general register  15 

                when  the procedure called using PLCALL, PLCALLD, PLCALLE, 

                or PLCALLF returns,  or  is  the  value  set  by  IHESARC, 

                whichever  is  most  recent.  For FORTRAN subroutines, the 

                value returned in general register 15 is  four  times  the 

                value of the integer after RETURN. 

 

  Example:           DECLARE PL1RC ENTRY RETURNS(FIXED BINARY(31)); 

                     IF PL1RC=4 THEN GO TO ERROR; 

 

                A branch is made to ERROR if the return code from the last 

                call on PLCALL, PLCALLD, PLCALLE, or PLCALLF is 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  196  Interlanguage Communication Facilities 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
 
                               PL1BEG, PL1END                                ______________ 
 
 
 
  Purpose:      To   establish   and   release  explicitly  the  PL/I  (F) 

                environment. 

 

  Calling Sequence: 

 

                FORTRAN:  CALL PL1BEG 

                          CALL PL1END 

 

                Assembly: CALL PL1BEG 

                          CALL PL1END 

 

  Comments:     Calling  PL1BEG  explicitly   establishes   the   PL/I (F) 

                environment  that  is required if non-PL/I routines are to 

                call PL/I (F) procedures.  The  PL/I  environment  remains 

                established  until  the PL1END subroutine is called or the 

                program is unloaded.  Calling  PL1BEG  explicitly  is  not 

                usually necessary, because it will be called implicitly by 

                the  other  interface routines if the PL/I (F) environment 

                has not been established.  Calls to PL1BEG are ignored  if 

                the PL/I (F) environment has been established. 

 

                PL1END should be called to close PL/I files and to release 

                the  PL/I (F)  environment  after all PL/I procedures have 

                been called.  Calls to PL1END are ignored if the  PL/I (F) 

                environment has not been established. 

 

 

 

 

 

 

 

 

 

 

 

 

                               Interlanguage Communication Facilities  197 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 
 
 
                   CDFCN, CPXFCN, IPLFCN, I2FCN, LGLFCN,                    _____________________________________ 
                       LG1FCN, PLDFCN, PL1FCN, PL1SUB                        ______________________________ 
 
 
  Purpose:      To call PL/I procedures from non-PL/I routines, establish- 
                ing the PL/I (F) environment if necessary. 

 

  Calling Sequence: 

 

                FORTRAN:  CALL PL1SUB(entry,arg1,type1,...,argn,typen) 

                          real  =PL1FCN(entry,arg1,type1,...,argn,typen) 

                          dreal =PLDFCN(entry,arg1,type1,...,argn,typen) 

                          int   =IPLFCN(entry,arg1,type1,...,argn,typen) 

                          sint  =I2FCN(entry,arg1,type1,...,argn,typen) 

                          cmplx =CPXFCN(entry,arg1,type1,...,argn,typen) 

                          dcmplx=CDFCN(entry,arg1,type1,...,argn,typen) 

                          logel =LGLFCN(entry,arg1,type1,...,argn,typen) 

                          slogel=LG1FCN(entry,arg1,type1,...,argn,typen) 

 

                Assembly: 

 

                     The VL option of the CALL macro should be used to set 

                     the  high-order  bit  of  the  final  address  in the 

                     variable-length parameter list. 

 

                Parameters: 

 

                   entry         The entry point of the PL/I (F)  external                    _____ 

                                 procedure  that is to be called.  FORTRAN 

                                 users must define this entry  point  name 

                                 using  the  EXTERNAL statement.  If it is 

                                 necessary to call a PL/I procedure with a 

                                 name that is more than 6 characters long, 

                                 a "dummy" name should  be  used  and  ALI 

                                 loader  records added to equate the names 

                                 (see MTS Volume 5). 

 

                   arg1...argn   The  arguments  to  be  passed,  if  any.                    ___________ 

                                 Arrays  are passed by omitting subscripts 

                                 or by using all ones for subscripts. 

 

                   type1...typen A  fullword  integer  (INTEGER*4)  or  an                    _____________ 

                                 array  of  integer numbers describing the 

                                 type of the previous arguments follows: 

 

                                   0  LOGICAL*4 or BIT(32) where .TRUE. 

                                      is represented as 

                                      ’00000000000000000000000000000001’B 

                                      and .FALSE.  is represented as 

                                      (32)’0’B. 

 

  198  Interlanguage Communication Facilities 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
                                   1  LOGICAL*1 or BIT(8) where .TRUE.  is 

                                      represented as ’00000001’B and 

                                      .FALSE.  is represented as 

                                      ’00000000’B. 

 

                                   2  INTEGER*4 or FIXED BINARY(31). 

 

                                   3  INTEGER*2 or FIXED BINARY(15). 

 

                                   4  REAL*4 or FLOAT DECIMAL(6) REAL. 

 

                                   5  REAL*8 or FLOAT DECIMAL(16) REAL. 

 

                                   6  COMPLEX*8 or FLOAT DECIMAL(6) 

                                      COMPLEX. 

 

                                   7  COMPLEX*16 or FLOAT DECIMAL(16) 

                                      COMPLEX. 

 

                                   8  Single  character  or   CHARACTER(1) 

                                      FIXED.   In  standard FORTRAN, there 

                                      is no true character data type,  but 

                                      Hollerith  literals  and  characters 

                                      stored left-justified in other  data 

                                      types can be passed using this type. 

 

                                   9  Character   string  or  CHARACTER(n) 

                                      FIXED.  This data type, like type 8, 

                                      does not actually exist in  FORTRAN, 

                                      but  can  be  passed  as a Hollerith 

                                      literal or LOGICAL*1 array.  In this 

                                      case, "type" must be  a  two-element 

                                      array  with the first element set to 

                                      9 (TYPE(1)=9) and the second element 

                                      set  to  the  string   length   "n", 

                                      (TYPE(2)=n). 

 

                                 128  A LOGICAL*4 array. 

                                 129  A LOGICAL*1 array. 

                                 130  An INTEGER*4 array. 

                                 131  An INTEGER*2 array. 

                                 132  A REAL*4 array. 

                                 133  A REAL*8 array. 

                                 134  A COMPLEX*8 array. 

                                 135  A COMPLEX*16 array. 

                                 136  An array of single characters. 

                                 137  An array of character strings. 

 

                                 For  types  128 through 136, the variable 

                                 type must be specified as an  array  with 

                                 the  first  element  set to the type code 

                                 (128 to 136), the second element set to a 

                                 number between 1 and 7  representing  the 

 

                               Interlanguage Communication Facilities  199 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                                 number  of  dimensions in the array being 
                                 passed, and the third through  the  tenth 
                                 elements  set  to the upper bound associ- 
                                 ated with each dimension  of  the  array. 
                                 The  lower  bound  of  each  dimension is 
                                 assumed to be 1. 
 
                                 For type 137, the variable type  is  also 
                                 specified  as  an  array  with  the first 
                                 element set  to  137  (TYPE(1)=137),  the 

                                 second  element  set to the length of the 

                                 strings, the third element is set to  the 

                                 number  of  dimensions  in the array, and 

                                 the fourth through possibly the  eleventh 

                                 elements  set  to the upper bound of each 

                                 dimension of the array. 

 

                Values Returned: 

 

                     real      A REAL*4 or FLOAT DECIMAL(6) REAL value.                      ____ 

 

                     dreal     A  DOUBLE  PRECISION  (REAL*8)   or   FLOAT                      _____ 

                               DECIMAL(16) REAL value. 

 

                     int       A  INTEGER  (INTEGER*4) or FIXED BINARY(31)                      ___ 

                               value. 

 

                     sint      An INTEGER*2 or FIXED BINARY(15) value.                      ____ 

 

                     cmplx     A COMPLEX (COMPLEX*8) or  FLOAT  DECIMAL(6)                      _____ 

                               COMPLEX value. 

 

                     dcmplx    A DOUBLE PRECISION COMPLEX (COMPLEX(16)) or                      ______ 

                               FLOAT DECIMAL(16) COMPLEX value. 

 

                     logel     A LOGICAL (LOGICAL*4) or BIT(32) value.                      _____ 

 

                     slogel    A LOGICAL*1 or BIT(8) value.                      ______ 

 

  Comments:     Assembler users should note that INTEGER*4, INTEGER*2, and 

                LOGICAL*4  values  are  returned  in  general  register 0. 

                LOGICAL*1 values are returned right-justified  in  general 

                register 0.  REAL*4, REAL*8, and the real part of COMPLEX* 

                16  values are returned in floating-point register 0.  The 

                imaginary parts of COMPLEX*8  and  COMPLEX*16  values  are 

                returned in floating-point register 2. 

 

                As  arrays  are passed to a PL/I (F) procedure, the neces- 

                sary transformations  on  the  PL/I (F)  dope  vector  are 

                accomplished  so  that  the  array  will  be referenced in 

                column-major order rather than the row-major order normal- 

                ly standard in PL/I. 

 

 

  200  Interlanguage Communication Facilities 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
 
                                   IPL1RC                                    ______ 
 
 
 
  Purpose:      To return the return code from a PL/I (F) procedure  which 

                was  called while using the non-PL/I (F) to PL/I interface 

                routines. 

 

 

  Calling Sequence: 

 

                FORTRAN:  int=IPL1RC(0) 

 

                Assembly: CALL IPL1RC 

 

                Value Returned: 

 

                     int  The fullword integer (INTEGER*4) return code for                      ___ 

                          the last PL/I (F)  procedure  called  using  the 

                          interface.  Assembler users will find this value 

                          in general register 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                               Interlanguage Communication Facilities  201 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  202  Interlanguage Communication Facilities 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
 
 
                  CALLING SYSTEM SUBROUTINES FROM PL/I (F)                   ________________________________________ 

 

 

 

 

     PL/I(F)  programs  may call both S-type and R-type system subroutines 

  by using the special interface routines PLCALL,  PLCALLD,  PLCALLE,  and 

  PLCALLF. 

 

     System  subroutines that are called using the standard S-type conven- 

  tions are called by using the PLCALL routine: 

 

       DECLARE subr   EXTERNAL ENTRY, 

               PLCALL EXTERNAL ENTRY; 

       CALL PLCALL(subr,fn,p1,p2,...,pn); 

 

  where "subr" is the name of the system subroutine being called, "fn"  is 

  the  number of parameters to the subroutine, and "pn" are the individual 

  parameters.  If the subroutine returns a double-precision (8-byte) value 

  in floating-point register 0, it  is  called  as  a  function  by  using 

  PLCALLD: 

 

       DECLARE subr    EXTERNAL ENTRY, 

               PLCALLD EXTERNAL ENTRY RETURNS (REAL FLOAT(16)), 

               value   REAL FLOAT(16); 

       value = PLCALLD(subr,fn,p1,p2,...,pn); 

 

  where "value" is the double-precision value returned.  If the subroutine 

  returns  a single-precision (4-byte) value in floating-point register 0, 

  it is called as a function by using PLCALLE: 

 

       DECLARE subr    EXTERNAL ENTRY, 

               PLCALLE EXTERNAL ENTRY RETURNS (REAL FLOAT(6)), 

               value   REAL FLOAT(6); 

       value = PLCALLE(subr,fn,p1,p2,...,pn); 

 

  where "value" is the single-precision value returned.  If the subroutine 

  returns an integer (4-byte) value in general register 0, it is called as 

  a function by using PLCALLF: 

 

       DECLARE subr    EXTERNAL ENTRY, 

               PLCALLF EXTERNAL ENTRY RETURNS (FIXED BINARY(31)), 

               value   FIXED BINARY(31); 

       value = PLCALLF(subr,fn,p1,p2,...,pn); 

 

  where "value" is the integer value returned. 

 

     The equivalences of data types for PL/I(F) are given below: 

 

 

 

                           Calling System Subroutines from PL/I (F)  202.1 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
       Data Type           PL/I(F) Declaration        ____ ____           ___________________ 

 

       Fullword integer    FIXED BINARY(31) 

 

       Halfword integer    FIXED BINARY(15) 

 

       One-Byte integer    BIT(8) 

 

       8-Byte integer      FIXED BINARY(31) array of two elements 

 

       Fullword real       REAL FLOAT(16) 

 

       Doubleword real     REAL FLOAT(6) 

 

       Fullword logical    FIXED BINARY(31) or BIT(32) 

                           (0 is FALSE, 1 is TRUE) 

 

       One-Byte logical    BIT(8) 

 

       Character string    CHARACTER(n) 

                           ("n" is the length of the string) 

 

       Array               Array of appropriate data type 

 

       Region              Structure of appropriate data types 

 

  Normally, when calling PL/I(F) procedures from within PL/I(F), the value 

  of the parameter is passed instead  of  the  address  of  the  parameter 

  (except for character strings, arrays, and structures, in which case the 

  address  is  passed).   All  S-type  system  subroutines  and all R-type 

  subroutines that are  called  using  the  RCALL  subroutine  expect  the 

  address  to  be  passed  in  the  parameter  list  instead of the value. 

  Therefore, the PL/I ADDR routine (a built-in  function)  or  the  PL1ADR 

  routine  (a  PL/I(F)  library  function)  must  be  used to generate the 

  address.  ADDR (which is the simplest and most direct) may be used  only 

  for variables.  It returns a pointer value and is called in the form 

 

       ptr = ADDR(pn); 

 

  PL1ADR  must  be  used for scalar constants such as subroutine names and 

  pointers to addresses.  It returns a pointer value and is called in  the 

  form 

 

       DECLARE PL1ADR EXTERNAL ENTRY RETURNS (POINTER); 

       ptr = PL1ADR(pn); 

 

     The   following   programs   illustrate   PL/I(F)   calls  to  system 

  subroutines. 

 

 

 

 

  202.2  Calling System Subroutines from PL/I (F) 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
       TEST: PROCEDURE OPTIONS(MAIN); 

 

         DECLARE MTS    EXTERNAL ENTRY, 
                 PLCALL EXTERNAL ENTRY, 
                 F0     FIXED BINARY(31) INITIAL(0); 

 

         CALL PLCALL(MTS,F0); 

         RETURN; 

 

       END TEST; 

 

  The above example calls the MTS subroutine, which  requires  no  parame- 

  ters.  Since it is a standard S-type subroutine, PLCALL is used. 

 

       TEST: PROCEDURE OPTIONS(MAIN); 

 

         DECLARE CMD    EXTERNAL ENTRY, 

                 PLCALL EXTERNAL ENTRY, 

                 STRING CHARACTER(255), 

                 LENGTH FIXED BINARY(15), 

                 F2     FIXED BINARY(31) INITIAL(2); 

 

         STRING = ’$Display Timespelledout’; 

         LENGTH = 23; 

         CALL PLCALL(CMD,F2,STRING,ADDR(LENGTH)); 

         RETURN; 

 

       END TEST; 

 

  The  above  example  calls  the  CMD  subroutine  to  execute a $DISPLAY 

  command.  The subroutine requires two  parameters,  the  first  being  a 

  character  string  giving  the  command  string  and  the second being a 

  halfword integer command length (CMD also allows a fullword  integer  to 

  be  used).   The  ADDR  function  is used to generate the address of the 

  LENGTH parameter in the parameter list.  Since  STRING  is  a  character 

  string,  the address is automatically generated in the parameter list by 

  PL/I(F). 

 

       TEST: PROCEDURE OPTIONS(MAIN); 

 

         DECLARE GUINFO EXTERNAL ENTRY, 

                 PLCALL EXTERNAL ENTRY, 

                 ITEMNO FIXED BINARY(31) INITIAL(2), 

                 USERID CHARACTER(4), 

                 F2     FIXED BINARY(31) INITIAL(2); 

 

         CALL PLCALL(GUINFO,F2,ADDR(ITEMNO),USERID); 

         PUT EDIT(’User ID = ’,USERID) (A,A(4)); 

         RETURN; 

 

       END TEST; 

 

 

                           Calling System Subroutines from PL/I (F)  202.3 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
  The above example calls the GUINFO subroutine to obtain the current user 
  ID.  The subroutine also requires two parameters, the first of which  is 
  a  fullword  integer and the second a character string.  Again, the ADDR 
  function must be used to generate the address of the ITEMNO parameter. 
 
       TEST: PROCEDURE OPTIONS(MAIN); 

 

         DECLARE CHKFILE EXTERNAL ENTRY, 
                 PLCALLF EXTERNAL ENTRY RETURNS (FIXED BINARY(31)), 

                 PL1RC   EXTERNAL ENTRY RETURNS (FIXED BINARY(31)), 

                 FILENAM CHARACTER(18), 

                 ACCESS  FIXED BINARY(31), 

                 F1      FIXED BINARY(31) INITIAL(1); 

 

         FILENAM = ’WABC:DATA1 ’; 

         ACCESS  = PLCALLF(CHKFILE,F1,FILENAM); 

         IF PL1RC > 0 THEN 

            PUT EDIT(’File does not exist’) (A); 

         ELSE 

            PUT EDIT(’Access = ’,ACCESS) (A,F(2)); 

         RETURN; 

 

       END TEST; 

 

  The  above  example  calls  the  CHKFILE  subroutine  to  determine  the 

  program’s access to the file WABC:DATA.  Since the access is returned in 

  general  register  0,  the  subroutine  must be called using the PLCALLF 

  routine. 

 

     Return codes from system subroutines  are  obtained  by  calling  the 

  PL1RC  routine  (a  PL/I(F) library function).  PL1RC returns the return 

  code from the subroutine and is called in the form 

 

       DECLARE PL1RC EXTERNAL ENTRY RETURNS (FIXED BINARY(31)); 

       rcode = PL1RC; 

 

  PL1RC may be used to obtain the return code from subroutines  called  by 

  PLCALL, PLCALLD, PLCALLE, and PLCALLF. 

 

       TEST: PROCEDURE OPTIONS(MAIN); 

 

         DECLARE GFINFO  EXTERNAL ENTRY, 

                 PLCALL  EXTERNAL ENTRY, 

                 PL1RC   EXTERNAL ENTRY RETURNS (FIXED BINARY(31)), 

                 UNIT    CHARACTER(8), 

                 FLAG    FIXED BINARY(31) INITIAL(2), 

                 ERCODE  FIXED BINARY(31), 

                 ERRMSG  CHARACTER(80), 

                 F8      FIXED BINARY(31) INITIAL(8); 

 

         DECLARE 1 RTN, 

                   2 CHR    CHARACTER(20), 

                   2 INT    FIXED BINARY(31); 

 

  202.4  Calling System Subroutines from PL/I (F) 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
         DECLARE 1 CINFO, 
                   2 CIAL   FIXED BINARY(31), 

                   2 CIRL   FIXED BINARY(31), 

                   2 CIONID CHARACTER(4), 

                   2 CIVOL  CHARACTER(8), 

                   2 CIUC   FIXED BINARY(31), 

                   2 CILRD  FIXED BINARY(31), 

                   2 CICD   FIXED BINARY(31), 

                   2 CIFO   FIXED BINARY(31), 

                   2 CIDT   FIXED BINARY(31), 

                   2 CIFLG  FIXED BINARY(31), 

                   2 CILCD  FIXED BINARY(31), 

                   2 CIPKEY CHARACTER(16), 

                   2 CILCCT (2) FIXED BINARY(31), 

                   2 CILNCD FIXED BINARY(31), 

                   2 CILNCT (2) FIXED BINARY(31), 

                   2 CICDT  (2) FIXED BINARY(31), 

                   2 CILRDT (2) FIXED BINARY(31); 

         DECLARE 1 FINFO, 

                   2 FIAL   FIXED BINARY(31) INITIAL(0); 

         DECLARE 1 SINFO, 

                   2 SIAL   FIXED BINARY(31) INITIAL(0); 

 

         UNIT    = ’SCARDS  ’; 

         RTN.INT = 0; 

         CINFO.CIAL = 25; 

         CALL PLCALL(GFINFO,F8,UNIT,RTN,ADDR(FLAG),CINFO,FINFO,SINFO, 

                     ADDR(ERCODE),ERRMSG); 

         IF PL1RC = 4 THEN 

            PUT EDIT(ERCODE,ERRMSG) (F(2),X(2),A(80)); 

         ELSE IF PL1RC > 4 THEN 

            PUT EDIT(’Error return from GFINFO subroutine’) (A); 

         ELSE 

            PUT EDIT(RTN.CHR,’  Owner = ’,CINFO.CIONID) (A(20),A,A(4)); 

         RETURN; 

 

       END TEST; 

 

  The  above  example  calls  the  GFINFO  subroutine  to  obtain  catalog 

  information about the file attached to the logical I/O unit SCARDS.  The 

  structure CINFO is passed to the subroutine; upon return, the subroutine 

  will insert the catalog  information  into  this  region.   By  using  a 

  structure, a packed region of varying data types can be defined.  Again, 

  the PL1RC routine is called to obtain the return code from GFINFO. 

 

       TEST: PROCEDURE OPTIONS(MAIN); 

 

         DECLARE CHKACC  EXTERNAL ENTRY, 

                 RENAME  EXTERNAL ENTRY, 

                 PLCALL  EXTERNAL ENTRY, 

                 PLCALLF EXTERNAL ENTRY RETURNS (FIXED BINARY(31)), 

                 PL1RC   EXTERNAL ENTRY RETURNS (FIXED BINARY(31)), 

                 UNSPEC  BUILTIN, 

 

                           Calling System Subroutines from PL/I (F)  202.5 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
                 ACCESS  FIXED BINARY(31), 

                 OLDNAM  CHARACTER(18), 

                 NEWNAM  CHARACTER(18), 

                 MASK    FIXED BINARY(31) INITIAL(16), 

                 F2      FIXED BINARY(31) INITIAL(2); 

 

         DECLARE 1 TRIPLE, 

                   2 CCID CHARACTER(4), 

                   2 PROJ CHARACTER(4), 

                   2 PKEY CHARACTER(18); 

 

         OLDNAM = ’DATA1 ’; 

         NEWNAM = ’NEWDATA1 ’; 

         TRIPLE.CCID = ’WABC’; 

         TRIPLE.PROJ = ’WXYZ’; 

         TRIPLE.PKEY = ’*EXEC ’; 

         ACCESS = PLCALLF(CHKACC,F2,OLDNAM,TRIPLE); 

         IF PL1RC > 0 THEN 

            PUT EDIT(’File does not exist’) (A); 

         ELSE IF (UNSPEC(ACCESS) & UNSPEC(MASK)) ¬= UNSPEC(MASK) THEN

            PUT EDIT(’Rename access not allowed’) (A); 

         ELSE DO; 

            CALL PLCALL(RENAME,F2,OLDNAM,NEWNAM); 

            IF PL1RC > 0 THEN 

               PUT EDIT(’Error return from RENAME subroutine’) (A); 

            ELSE 

               PUT EDIT(’File successfully renamed’) (A); 

            END; 

         RETURN; 

 

       END TEST; 

 

  In  the  above  example,  the CHKACC subroutine is called via PLCALLF to 

  obtain the access of the file WABC:DATA1.  If rename access is  allowed, 

  then  the RENAME subroutine is called using PLCALL to rename the file to 

  NEWDATA. 

 

     In PL/I(F), there are no  special  problems  connected  with  calling 

  subroutines  that have a variable number of parameters, since PLCALL and 

  friends can readily accept a variable-length  parameter  list.   In  the 

  example  below,  the  COMMAND  subroutine  is  called  once  with  three 

  parameters and again with five parameters. 

 

       TEST: PROCEDURE OPTIONS(MAIN); 

 

         DECLARE COMMAND EXTERNAL ENTRY, 

                 PLCALL  EXTERNAL ENTRY, 

                 CMDTEXT CHARACTER(255), 

                 CMDLEN  FIXED BINARY(31), 

                 SWS     FIXED BINARY(31) INITIAL(0), 

                 SUMMARY FIXED BINARY(31), 

                 ERCODE  FIXED BINARY(31), 

                 F3      FIXED BINARY(31) INITIAL(3), 

 

  202.6  Calling System Subroutines from PL/I (F) 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
                 F5      FIXED BINARY(31) INITIAL(5); 

 

         CMDTEXT = ’$Display Timespelledout ’; 

         CMDLEN  = LENGTH(CMDTEXT); 

         CALL PLCALL(COMMAND,F3,CMDTEXT,ADDR(CMDLEN),ADDR(SWS)); 

         CMDTEXT = ’$Display Timemisspelledout ’; 

         CMDLEN  = LENGTH(CMDTEXT); 

         CALL PLCALL(COMMAND,F5,CMDTEXT,ADDR(CMDLEN),ADDR(SWS), 

                     ADDR(SUMMARY),ADDR(ERCODE)); 

         IF SUMMARY > 0 THEN 

            PUT EDIT(’Command Error Code = ’,ERCODE) (A,F(3)); 

         RETURN; 

 

       END TEST; 

 

 

 

  R-Type Subroutines   __________________ 

 

 

     R-type subroutines can be called from PL/I(F) by using the the PLCALL 

  routine to call the RCALL subroutine.  The RCALL subroutine  sets  up  a 

  call to an R-type subroutine by inserting the parameters into the proper 

  registers  for  the  actual  call  to the system subroutine.  The PL1ADR 

  routine must be used to obtain the address of system subroutine name  as 

  required for the RCALL subroutine. 

 

     The call to the RCALL subroutine is made in the following manner: 

 

       DECLARE RCALL  EXTERNAL ENTRY, 

               subr   EXTERNAL ENTRY, 

               PLCALL EXTERNAL ENTRY, 

               PL1ADR EXTERNAL ENTRY RETURNS (POINTER); 

       CALL PLCALL(RCALL,fn,PL1ADR(subr),r1,p1,...,r2,p2,...); 

 

  where "r1" is the number of registers to be set up on the call to "subr" 

  and "p1,..."  are the values to be inserted into the registers beginning 

  with  general  register  0;  "r2"  is the number of registers to contain 

  return values from "subr" and "p2,..."   are  the  variables  that  will 

  contain the returned values starting with general register 0. 

 

       TEST: PROCEDURE OPTIONS(MAIN); 

 

         DECLARE RCALL   EXTERNAL ENTRY, 

                 GETFD   EXTERNAL ENTRY, 

                 RENUMB  EXTERNAL ENTRY, 

                 PL1RC   EXTERNAL ENTRY RETURNS (FIXED BINARY(31)), 

                 PL1ADR  EXTERNAL ENTRY RETURNS (POINTER), 

                 FIRST   FIXED BINARY(31) INITIAL(1000), 

                 LAST    FIXED BINARY(31) INITIAL(100000000), 

                 BEG     FIXED BINARY(31) INITIAL(1000), 

                 INC     FIXED BINARY(31) INITIAL(1000), 

                 FILENAM CHARACTER(18), 

 

                           Calling System Subroutines from PL/I (F)  202.7 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
                 FDUB    POINTER, 
                 DUMY    FIXED BINARY(31), 

                 F1      FIXED BINARY(31) INITIAL(1), 

                 F2      FIXED BINARY(31) INITIAL(2), 

                 F5      FIXED BINARY(31) INITIAL(5), 

                 F6      FIXED BINARY(31) INITIAL(6); 

 

         FILENAM = ’DATA1 ’;                 /* SET FILE NAME */ 

         CALL PLCALL(RCALL,F6,PL1ADR(GETFD),ADDR(F2),ADDR(DUMY), 

                     PL1ADR(ADDR(FILENAM)),ADDR(F1),ADDR(FDUB)); 

         CALL PLCALL(RENUMB,F5,ADDR(FDUB),ADDR(FIRST),ADDR(LAST), 

                     ADDR(BEG),ADDR(INC));   /* RENUMBER FILE */ 

         IF PL1RC > 0 THEN                   /* TEST RETURN CODE */ 

            PUT EDIT(’Error return from RENUMB subroutine’) (A); 

         ELSE 

            PUT EDIT(’File successfully renumbered’) (A); 

         RETURN; 

 

       END TEST; 

 

  In  the  above  example,  the  GETFD  subroutine  is  called to obtain a 

  FDUB-pointer for the file DATA1; the FDUB-pointer is then passed  on  to 

  the  RENUMB  subroutine  to  renumber  the  file.   The GETFD subroutine 

  requires that register  1  contain  the  address  of  the  name  of  the 

  subroutine  as returned by the PL1ADR routine.  The register count is 2, 

  since RCALL initializes registers beginning with  register  0  (in  this 

  case, register 0 is called with a dummy argument of zero).  Upon return, 

  GETFD  returns the FDUB-pointer in register 0.  Hence the register count 

  is 1 and the FDUB-pointer is inserted in the variable FDUB. 

 

       TEST: PROCEDURE OPTIONS(MAIN); 

 

         DECLARE RCALL    EXTERNAL ENTRY, 

                 GDINFO   EXTERNAL ENTRY, 

                 FREESPAC EXTERNAL ENTRY, 

                 PLCALL   EXTERNAL ENTRY, 

                 PL1RC    EXTERNAL ENTRY RETURNS (FIXED BINARY(31)), 

                 PL1ADR   EXTERNAL ENTRY RETURNS (POINTER), 

                 UNIT1    CHARACTER(4), 

                 UNIT2    CHARACTER(4), 

                 DUMY     FIXED BINARY(31), 

                 F0       FIXED BINARY(31) INITIAL(0), 

                 F2       FIXED BINARY(31) INITIAL(2), 

                 F5       FIXED BINARY(31) INITIAL(5), 

                 F7       FIXED BINARY(31) INITIAL(7), 

                 INFOPTR  POINTER; 

 

         DECLARE 1 INFO BASED (INFOPTR), 

                   2 FDUB   FIXED BINARY(31), 

                   2 DEVTYP CHARACTER(4), 

                   2 INLEN  FIXED BINARY(15), 

                   2 OUTLEN FIXED BINARY(15), 

                   2 USE    CHARACTER(1), 

 

  202.8  Calling System Subroutines from PL/I (F) 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
                   2 DEVICE CHARACTER(1), 

                   2 SWS1   CHARACTER(1), 

                   2 SWS2   CHARACTER(1), 

                   2 MODS   FIXED BINARY(31), 

                   2 BEGLNR FIXED BINARY(31), 

                   2 PRVLNR FIXED BINARY(31), 

                   2 ENDLNR FIXED BINARY(31), 

                   2 INCLNR FIXED BINARY(31), 

                   2 NAMPTR FIXED BINARY(31), 

                   2 MSGPTR FIXED BINARY(31), 

                   2 IOSAVE FIXED BINARY(31), 

                   2 LASTRC FIXED BINARY(31), 

                   2 REGLEN FIXED BINARY(15), 

                   2 WIDTH  FIXED BINARY(15), 

                   2 MACID  FIXED BINARY(31); 

 

         UNIT1 = ’SCAR’;                /* SET I/O UNIT NAME */ 

         UNIT2 = ’DS  ’; 

         CALL PLCALL(RCALL,F7,PL1ADR(GDINFO),ADDR(F2),UNIT1,UNIT2, 

                     ADDR(F2),ADDR(DUMY),ADDR(INFOPTR)); 

         IF PL1RC > 0 THEN 

            PUT EDIT(’Error return from GDINFO subroutine’) (A); 

         ELSE DO; 

            PUT EDIT(’Type = ’,INFO.DEVTYP) (A,A(4)); 

            CALL PLCALL(RCALL,F5,PL1ADR(FREESPAC),ADDR(F2),ADDR(F0), 

                        ADDR(INFOPTR),ADDR(F0);  /* RELEASE STORAGE */ 

            END;                                 /* FROM GDINFO     */ 

         RETURN; 

 

       END TEST; 

 

  In this example, the GDINFO subroutine  is  called  by  the  RCALL  sub- 

  routine.   Two  registers  (general registers 0 and 1) are set up on the 

  call  to  contain  the  eight-character  logical  I/O  unit  name.   Two 

  registers  are  also set up for the return.  Register 1 will contain the  

  address of the GDINFO information region; register 0 is not used,  hence   _______ 

  a  dummy  argument must be inserted into the RCALL parameter list.  This 

  example also illustrates a case where  a  system  subroutine  returns  a 

  pointer  to an area of storage acquired by the subroutine itself.  Hence 

  the variable INFOPTR, which upon return will contain the address of  the 

  acquired storage, must be declared as a pointer variable.  The statement 

  following  the subroutine call is then used to copy the contents of that 

  storage into the BASED structure INFO so that the  individual  items  of 

  GDINFO  information  can  be accessed by the program.  At the end of the 

  program, the FREESPAC subroutine is called by the  RCALL  subroutine  to 

  release  the  storage  acquired by the GDINFO subroutine.  Note that the 

  GDINF alternative entry to the GDINFO subroutine also  could  have  been 

  called; this would circumvent the problem of using pointer variables and 

  based  structures  in  the  PL/I  program and having to call FREESPAC to 

  release the GDINFO area. 

 

 

 

                           Calling System Subroutines from PL/I (F)  202.9 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
  Special Cases   _____________ 
 
 
     Several system subroutines cannot be directly called by PL/I programs 
  because they require nonstandard calls for exit routines (e.g.,  ATTNTRP 

  or  TIMNTRP).   However,  most of these subroutines have S-type alterna- 

  tives that perform similar functions.  Some of the more common  alterna- 

  tive entries (or subroutines) are given in the table below. 

 

       System Subroutine        Alternative Entry        ______ __________        ___________ _____ 

 

           ATTNTRP                  ATNTRP 

           LINK                     LINKF 

           LOAD                     LOADF 

           REWIND#                  REWIND 

           TIMNTRP                  TICALL 

           UNLOAD                   UNLDF 

           XCTL                     XCTLF 

 

     Further  information  about calling external subroutines from PL/I(F) 

  is given in the section "Interlanguage Communication Facilities" in this 

  volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  202.10  Calling System Subroutines from PL/I (F) 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
 
 
                  CALLING SYSTEM SUBROUTINES FROM *PL1OPT                   _______________________________________ 

 

 

 

 

     PL/I programs compiled by the *PL1OPT Optimizing  Compiler  may  call 

  both  S-type and R-type system subroutines.  The calling conventions are 

  more direct than with PL/I (F), since the  special  PL/I  (F)  interface 

  routines PLCALL, PLCALLD, PLCALLE, and PLCALLF are not used. 

 

     System  subroutines that are called using the standard S-type conven- 

  tions are simply declared as external entry points: 

 

       DECLARE subr EXTERNAL ENTRY (par1,par2,...,parn) 

                    OPTIONS (ASSEMBLER,INTER,RETCODE); 

       CALL subr(p1,p2,...,pn); 

 

  where "subr" is the name of the system subroutine being  called,  "parn" 

  are  the  data  type  declarations  for the parameters, and "pn" are the 

  individual parameters.  If the subroutine returns  a  value  in  general 

  register  0  or in floating-point register 0, it is called as a function 

  and declared as follows: 

 

       DECLARE subr EXTERNAL ENTRY (par1,par2,...,parn) 

                    RETURNS (type) 

                    OPTIONS (FORTRAN,INTER,RETCODE); 

       value = subr(p1,p2,...,pn); 

 

  where "type" is the data  type  of  the  value  to  be  returned  (FIXED 

  BINARY(31),  REAL  FLOAT(6),  or  REAL  FLOAT(16))  and  "value"  is the 

  function value returned. 

 

     The equivalences of data types for PL/I are given below: 

 

       Data Type           PL/I Declaration        ____ ____           ________________ 

 

       Fullword integer    FIXED BINARY(31) 

 

       Halfword integer    FIXED BINARY(15) 

 

       One-Byte integer    BIT(8) 

 

       8-Byte integer      FIXED BINARY(31) array of two elements 

 

       Fullword real       REAL FLOAT(16) 

 

       Doubleword real     REAL FLOAT(6) 

 

       Fullword logical    FIXED BINARY(31) or BIT(32) 

                           (0 is FALSE, 1 is TRUE) 

 

 

                           Calling System Subroutines from *PL1OPT  202.11 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
       One-Byte logical    BIT(8) 

 

       Character string    CHARACTER(n) 

                           ("n" is the length of the string) 

 

       Character string¹   CHARACTER(n) VARYING
                           ("n" is the length of the string) 

 

       Array               Array of appropriate data type 

 

       Region              Structure of appropriate data types 

 

  ¹Halfword length followed by character string.
 

  Normally, when calling PL/I procedures from within PL/I, the address  of 

  the parameter is passed instead of the value of the parameter as opposed 

  to  PL/I  (F) which passes the value of the parameter instead; hence the 

  ADDR and PL1ADR routines are not used. 

 

     The following programs illustrate PL/I calls to system subroutines. 

 

       Test: Procedure Options(Main); 

 

         Declare MTS External Entry 

                     Options (Assembler,Inter); 

 

         Call MTS; 

         Return; 

 

       End Test; 

 

  The above example calls the MTS subroutine which requires no parameters. 

 

       Test: Procedure Options(Main); 

 

         Declare CMD External Entry (Character(*), Fixed Binary(15)) 

                     Options (Assembler,Inter), 

                 String Character(255), 

                 Length Fixed Binary(15); 

 

         String = ’$Display Timespelledout’; 

         Length = 23; 

         Call CMD(String,Length); 

         Return; 

 

       End Test; 

 

  The above example  calls  the  CMD  subroutine  to  execute  a  $DISPLAY 

  command.   The  subroutine  requires  two  parameters:   the  first is a 

  character string giving the command string and the second is a  halfword 

  integer command length (CMD also allows a fullword integer to be used). 

 

 

  202.12  Calling System Subroutines from *PL1OPT 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
       Test: Procedure Options(Main); 

 

         Declare GUINFO External Entry (Fixed Binary(31), Character(4)) 

                        Options (Assembler,Inter,Retcode), 

                 Itemno Fixed Binary(31) Initial(2), 

                 Userid Character(4); 

 

         Call GUINFO(Itemno,Userid); 

         Put Edit(’User ID = ’,Userid) (A,A(4)); 

         Return; 

 

       End Test; 

 

  The above example calls the GUINFO subroutine to obtain the current user 

  ID.   The subroutine also requires two parameters, the first of which is 

  a fullword integer and the second a character string. 

 

       Test: Procedure Options(Main); 

 

         Declare CHKFILE External Entry (Character(*)) 

                         Returns (Fixed Binary(31)) 

                         Options (Fortran,Inter,Retcode), 

                 PLIRETV Builtin, 

                 Filenam Character(18), 

                 Access  Fixed Binary(31); 

 

         Filenam = ’WABC:DATA1 ’; 

         Access  = CHKFILE(Filenam); 

         If PLIRETV > 0 Then 

            Put Edit(’File does not exist’) (A); 

         Else 

            Put Edit(’Access = ’,Access) (A,F(2)); 

         Return; 

 

       End Test; 

 

  The  above  example  calls  the  CHKFILE  subroutine  to  determine  the 

  program’s access to the file WABC:DATA.  Since the access is returned in 

  general  register  0,  the  subroutine  must be called as a Fixed Binary 

  function. 

 

     Return codes from system subroutines  are  obtained  by  calling  the 

  PLIRETV  routine (a built-in function).  PLIRETV returns the return code 

  from the subroutine and is called in the form 

 

       DECLARE PLIRETV BUILTIN; 

       rcode = PLIRETV; 

 

  PLIRETV is similar to the PLIRETC built-in function  which  is  used  to 

  obtain return codes from PL/I procedures. 

 

 

 

                           Calling System Subroutines from *PL1OPT  202.13 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
       Test: Procedure Options(Main); 

 

         Declare GFINFO  External Entry 

                           (Character(8), *, Fixed Binary(31), *, *, *, 

                            Fixed Binary(31), Character(80)) 

                         Options (Assembler,Inter,Retcode), 

                 PLIRETV Builtin, 

                 STORAGE Builtin, 

                 Unit    Character(8), 

                 Flag    Fixed Binary(31) Initial(2), 

                 Ercode  Fixed Binary(31), 

                 Errmsg  Character(80); 

 

         Declare 1 Rtn, 

                   2 Chr    Character(20), 

                   2 Int    Fixed Binary(31); 

         Declare 1 Cinfo, 

                   2 Cial   Fixed Binary(31), 

                   2 Cirl   Fixed Binary(31), 

                   2 Cionid Character(4), 

                   2 Civol  Character(8), 

                   2 Ciuc   Fixed Binary(31), 

                   2 Cilrd  Fixed Binary(31), 

                   2 Cicd   Fixed Binary(31), 

                   2 Cifo   Fixed Binary(31), 

                   2 Cidt   Fixed Binary(31), 

                   2 Ciflg  Fixed Binary(31), 

                   2 Cilcd  Fixed Binary(31), 

                   2 Cipkey Character(16), 

                   2 Cilcct (2) Fixed Binary(31), 

                   2 Cilncd Fixed Binary(31), 

                   2 Cilnct (2) Fixed Binary(31), 

                   2 Cicdt  (2) Fixed Binary(31), 

                   2 Cilrdt (2) Fixed Binary(31); 

         Declare 1 Finfo, 

                   2 Fial   Fixed Binary(31) Initial(0); 

         Declare 1 Sinfo, 

                   2 Sial   Fixed Binary(31) Initial(0); 

 

         Unit    = ’SCARDS  ’; 

         Rtn.Int = 0; 

         Cinfo.Cial = Storage(Cinfo)/4; 

         Call GFINFO(Unit,Rtn,Flag,Cinfo,Finfo,Sinfo,Ercode,Errmsg); 

         If PLIRETV = 4 Then 

            Put Edit(Ercode,Errmsg) (F(2),X(2),A(80)); 

         Else If PLIRETV > 4 Then 

            Put Edit(’Error return from GFINFO subroutine’) (A); 

         Else 

            Edit(Rtn.Chr,’  Owner = ’,Cinfo.Cionid) (A(20),A,A(4)); 

         Return; 

 

       End Test; 

 

 

  202.14  Calling System Subroutines from *PL1OPT 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
  The  above  example  calls  the  GFINFO  subroutine  to  obtain  catalog 
  information about the file attached to the logical I/O unit SCARDS.  The 
  structure CINFO is passed to the subroutine; the subroutine upon  return 
  will  insert  the  catalog  information  into  this  region.  By using a 
  structure, a packed region of varying data types can be defined.  Again, 
  the PLIRETV routine is called to obtain the return code from GFINFO. 
 
       Test: Procedure Options(Main); 

 

         Declare CHKACC  External Entry 

                           (Character(*), *) 

                         Returns (Fixed Binary(31)) 

                         Options (Fortran,Inter,Retcode), 

                 RENAME  External Entry 

                           (Character(*),Character(*)) 

                         Options (Assembler,Inter,Retcode), 

                 PLIRETV Builtin, 

                 UNSPEC  Builtin; 

                 Access  Fixed Binary(31), 

                 Oldnam  Character(18), 

                 Newnam  Character(18), 

                 Mask    Fixed Binary(31) Initial(16); 

 

         Declare 1 Triple, 

                   2 Ccid Character(4), 

                   2 Proj Character(4), 

                   2 Pkey Character(18); 

 

         Oldnam = ’DATA1 ’; 

         Newnam = ’NEWDATA1 ’; 

         Triple.Ccid = ’WABC’; 

         Triple.Proj = ’WXYZ’; 

         Triple.Pkey = ’*EXEC ’; 

         Access = CHKACC(Oldnam,Triple); 

         If PLIRETV > 0 Then 

            Put Edit(’File does not exist’) (A); 

         Else If (UNSPEC(Access) & UNSPEC(Mask)) ¬= UNSPEC(Mask) Then

            Put Edit(’Rename access not allowed’) (A); 

         Else Do; 

            Call RENAME(Oldnam,Newnam); 

            If PLIRETV > 0 Then 

               Put Edit(’Error return from RENAME subroutine’) (A); 

            Else 

               Put Edit(’File successfully renamed’) (A); 

            End; 

         Return; 

 

       End Test; 

 

  In the above example, the CHKACC subroutine is called as a Fixed  Binary 

  function  to obtain the access of the file WABC:DATA1.  If rename access 

  is allowed, then the RENAME subroutine is called to rename the  file  to 

  NEWDATA. 

 

                           Calling System Subroutines from *PL1OPT  202.15 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
     In  PL/I,  there  are  no  special  problems  connected  with calling 
  subroutines that have a variable number of parameters if the  subroutine 
  is declared without a parameter list (if the parameter is specified, the 

  compiler  will  generate  a  warning message if the number of parameters 

  given in the actual call does not agree with the declaration).   In  the 

  example  below,  the  COMMAND  subroutine  is  called  once  with  three 

  parameters and again with five parameters. 

 

       Test: Procedure Options(Main); 

 

         Declare COMMAND External Entry 

                         Options (Assembler,Inter,Retcode), 

                 Cmdtext Character(255), 

                 Cmdlen  Fixed Binary(31), 

                 Sws     Fixed Binary(31) Initial(0), 

                 Summary Fixed Binary(31), 

                 Ercode  Fixed Binary(31); 

 

         Cmdtext = ’$Display Timespelledout ’; 

         Cmdlen  = LENGTH(Cmdtext); 

         Call COMMAND(Cmdtext,Cmdlen,Sws); 

         Cmdtext = ’$Display Timemisspelledout ’; 

         Cmdlen  = LENGTH(Cmdtext); 

         Call COMMAND(Cmdtext,Cmdlen,Sws,Summary,Ercode); 

         If Summary > 0 Then 

            Put Edit(’Command Error Code = ’,Ercode) (A,F(3)); 

         Return; 

 

       End Test; 

 

 

 

  R-Type Subroutines   __________________ 

 

 

     R-type subroutines can  be  called  from  PL/I  by  using  the  RCALL 

  subroutine.  The RCALL subroutine sets up a call to an R-type subroutine 

  by  inserting  the  parameters into the proper registers for the call to 

  the system subroutine. 

 

     The call to the RCALL subroutine is made in the following manner: 

 

       DECLARE RCALL EXTERNAL ENTRY 

                     OPTIONS (ASSEMBLER,INTER,RETCODE), 

               subr  EXTERNAL ENTRY; 

       CALL RCALL(subr,r1,p1,...,r2,p2,...); 

 

  where "r1" is the number of registers to be set up on the call to "subr" 

  and "p1,..."  are the values to be inserted into the registers beginning 

  with general register 0; "r2" is the  number  of  registers  to  contain 

  return  values  from  "subr"  and  "p2,..."  are the variables that will 

  contain the returned values starting with general register 0. 

 

 

  202.16  Calling System Subroutines from *PL1OPT 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
       Test: Procedure Options(Main); 

 

         Declare RCALL   External Entry 

                         Options (Assembler,Inter,Retcode), 

                 GETFD   External Entry, 

                 RENUMB  External Entry 

                           (Pointer,Fixed Binary(31),Fixed Binary(31), 

                            Fixed Binary(31),Fixed Binary(31)) 

                         Options (Assembler,Inter,Retcode), 

                 PLIRETV Builtin, 

                 First   Fixed Binary(31) Initial(1000), 

                 Last    Fixed Binary(31) Initial(100000000), 

                 Beg     Fixed Binary(31) Initial(1000), 

                 Inc     Fixed Binary(31) Initial(1000), 

                 Filenam Character(18), 

                 Fdub    Pointer, 

                 Dumy    Fixed Binary(31), 

                 F1      Fixed Binary(31) Initial(1), 

                 F2      Fixed Binary(31) Initial(2); 

 

         Filenam = ’DATA1 ’;                    /* Set file name */ 

         Call RCALL(GETFD,F2,Dumy,ADDR(Filenam),F1,Fdub);  /* Get FDUB */ 

         Call RENUMB(Fdub,First,Last,Beg,Inc);  /* Renumber file */ 

         If PLIRETV > 0 Then                    /* Test return code */ 

            Put Edit(’Error return from RENUMB subroutine’) (A); 

         Else 

            Put Edit(’File successfully renumbered’) (A); 

         Return; 

 

       End Test; 

 

  In the above example,  the  GETFD  subroutine  is  called  to  obtain  a 

  FDUB-pointer  for  the file DATA1; the FDUB-pointer is then passed on to 

  the RENUMB subroutine  to  renumber  the  file.   The  GETFD  subroutine 

  requires  that  register  1  contain  the  address  of  the  name of the 

  subroutine as returned by the  ADDR  built-in  function.   The  register 

  count  is 2, since RCALL initializes registers beginning with register 0 

  (in this case, register 0 is called with  a  dummy  argument  of  zero). 

  Upon  return,  GETFD  returns the FDUB-pointer in register 0.  Hence the 

  register count is 1 and the FDUB-pointer is  inserted  in  the  variable 

  FDUB. 

 

       Test: Procedure Options(Main); 

 

         Declare RCALL    External Entry 

                          Options (Assembler,Inter,Retcode), 

                 GDINFO   External Entry, 

                 FREESPAC External Entry, 

                 PLIRETV  Builtin, 

                 Unit1    Character(4), 

                 Unit2    Character(4), 

                 Dumy     Fixed Binary(31), 

                 F0       Fixed Binary(31) Initial(0), 

 

                           Calling System Subroutines from *PL1OPT  202.17 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
                 F2       Fixed Binary(31) Initial(2), 

                 Infoptr  Pointer; 

 

         Declare 1 Info Based (Infoptr), 

                   2 Fdub   Fixed Binary(31), 

                   2 Devtyp Character(4), 

                   2 Inlen  Fixed Binary(15), 

                   2 Outlen Fixed Binary(15), 

                   2 Use    Character(1), 

                   2 Device Character(1), 

                   2 Sws1   Character(1), 

                   2 Sws2   Character(1), 

                   2 Mods   Fixed Binary(31), 

                   2 Beglnr Fixed Binary(31), 

                   2 Prvlnr Fixed Binary(31), 

                   2 Endlnr Fixed Binary(31), 

                   2 Inclnr Fixed Binary(31), 

                   2 Namptr Fixed Binary(31), 

                   2 Msgptr Fixed Binary(31), 

                   2 Iosave Fixed Binary(31), 

                   2 Lastrc Fixed Binary(31), 

                   2 Reglen Fixed Binary(15), 

                   2 Width  Fixed Binary(15), 

                   2 Macid  Fixed Binary(31); 

 

         Unit1 = ’SCAR’;                /* Set I/O unit name */ 

         Unit2 = ’DS  ’; 

         Call RCALL(GDINFO,F2,Unit1,Unit2,F2,Dumy,Infoptr); 

         If PLIRETV > 0 Then 

            Put Edit(’Error return from GDINFO subroutine’) (A); 

         Else Do; 

            Put Edit(’Type = ’,Info.Devtyp) (A,A(4)); 

            Call RCALL(FREESPAC,F2,F0,Infoptr,F0); /* Release storage */ 

            End;                                   /* from GDINFO     */ 

         Return; 

 

       End Test; 

 

  In  this  example,  the  GDINFO  subroutine  is called by the RCALL sub- 

  routine.  Two registers (general registers 0 and 1) are set  up  on  the 

  call  to  contain  the  eight-character  logical  I/O  unit  name.   Two 

  registers are also set up for the return.  Register 1 will  contain  the  

  address  of the GDINFO information region; register 0 is not used, hence   _______ 

  a dummy argument must be inserted into the RCALL parameter  list.   This 

  example  also  illustrates  the case where a system subroutine returns a 

  pointer to an area of storage acquired by the subroutine itself.   Hence 

  the  variable INFOPTR, which upon return will contain the address of the 

  acquired storage, must be declared as a pointer variable.  The statement 

  following the subroutine call is then used to copy the contents of  that 

  storage  into  the  BASED structure INFO so that the individual items of 

  GDINFO information can be accessed by the program.  At the  end  of  the 

  program,  the  FREESPAC  subroutine  is  call by the RCALL subroutine to 

  release the storage acquired by the GDINFO subroutine.   Note  that  the 

 

  202.18  Calling System Subroutines from *PL1OPT 



                                                        MTS 7: PL/I in MTS 

  September 1982                               Page Revised September 1985 

 
  GDINF  alternative  entry  to the GDINFO subroutine also could have been 
  called; this would circumvent the problem of using pointer variables and 
  based structures in the PL/I program and  having  to  call  FREESPAC  to 
  release the GDINFO area. 
 
 
 
  Special Cases   _____________ 
 
 
     Several system subroutines cannot be directly called by PL/I programs 
  because  they require nonstandard calls for exit routines (e.g., ATTNTRP 

  or TIMNTRP).  However, most of these subroutines  have  S-type  alterna- 

  tives  that perform similar functions.  Some of the more common alterna- 

  tive entries (or subroutines) are given in the table below. 

 

       System Subroutine        Alternative Entry        ______ __________        ___________ _____ 

 

           ATTNTRP                  ATNTRP 

           LINK                     LINKF 

           LOAD                     LOADF 

           REWIND#                  REWIND 

           TIMNTRP                  TICALL 

           UNLOAD                   UNLDF 

           XCTL                     XCTLF 

 

     Further information about calling external subroutines from  PL/I  is 

  given  in  the  section "Interlanguage Communication Facilities" in this 

  volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           Calling System Subroutines from *PL1OPT  202.19 



  MTS 7: PL/I in MTS 

  Page Revised September 1985                               September 1982 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  202.20  Calling System Subroutines from *PL1OPT 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                PL/I BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES                 ____________________________________________ 
 
 
 
 
     The  following  lists briefly the PL/I built-in functions and pseudo- 
  variables.  A few of them, such as POINTER built-in  function,  are  not 
  available  in the PL/I (F) language.  Several others such as DATE, TIME, 

  UNSPEC have different meanings depending on whether they are  used  with 

  the PL/I (F) or Optimizing compilers. 

 

  String Handling Functions   _________________________ 

 

  BIT(expr[,size])         Converts  "expr"  to  a bit string of the given 

                           length "size". 

  BOOL(x,y,w)              Performs a Boolean operation "w" on  two  given 

                           bit strings "x" and "y". 

  CHAR(expr[,size])        Converts  "expr"  to  a character string of the 

                           given length "size". 

  HIGH(i)                  Forms a character string of  the  given  length 

                           "i",  with each character being hexadecimal FF. 

  INDEX(str,config)        Searches for a bit or character string "config" 

                           in the string "str". 

  LENGTH(string)           Finds the current length of "string". 

  LOW(i)                   Forms a character string of  the  given  length 

                           "i",  with each character being hexadecimal 00. 

  REPEAT(string,i)         Forms  a  string  with  "string"  repeated  "i" 

                           times. 

  STRING(x)                Forms a string by concatenating all elements of 

                           an aggregate variable "x". 

  SUBSTR(string,i[,j])     Extracts  a  substring  of  length  "j"  from a 

                           "string" starting at position "i".  If  "j"  is 

                           omitted,  it is equivalent to LENGTH(string) -i 

                           +1. 

  TRANSLATE(s,r[,p])       Translates from the source string  "s"  by  re- 

                           placing characters in the positional string "p" 

                           with  the  corresponding  characters in the re- 

                           placement string "r".  If "p" is omitted,  then 

                           "p"  represents  256 EBCDIC characters arranged 

                           in  ascending  order,  from   00   to   FF   in 

                           hexadecimal. 

  UNSPEC(x)                Returns a bit string that internally represents 

                           "x". 

  VERIFY(str1,str2)        Returns  0  if all characters or bits in "str1" 

                           can be found in "str2", otherwise  returns  the 

                           index  of  the first character or bit in "str1" 

                           that cannot be found in "str2". 

 

 

 

                         PL/I Built-In Functions and Pseudo-Variables  203 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Arithmetic Functions   ____________________ 
 
  ABS(x)                   Absolute value of "x". 

  ADD(x,y,p[,q])           x+y with precision (p,q). 

  BINARY(x[,p[,q]])        Converts  "x"  to  binary  value  of  precision 

                           (p,q). 

  CEIL(x)                  Smallest integer ≥ real "x". 

  COMPLEX(x,y)             Forms a complex number x+yI, x and y being both 

                           real. 

  CONJG(x)                 Returns  a  complex  conjugate  of  "x",  i.e., 

                           REAL(x)-IMAG(x). 

  DECIMAL(x[,p[,q]])       Converts "x" to a decimal  value  of  precision 

                           (p,q). 

  DIVIDE(x,y,p[,q])        Divides "x" by "y" with result precision (p,q). 

  FIXED(x[,p[,q]])         Converts  "x"  to  a  fixed  value of precision 

                           (p,q). 

  FLOAT(x[,p])             Converts  "x"  to  a  floating-point  value  of 

                           precision (p,q). 

  FLOOR(x)                 Largest integer < "x". 

  IMAG(x)                  Imaginary part of complex number "x". 

  MAX(x1,x2,...,xn)        Highest value of x1, x2, ..., xn. 

  MIN(x1,x2,...,xn)        Lowest value of x1, x2, ..., xn. 

  MOD(x,y)                 Remainder  from  x/y, i.e., the lowest positive 

                           value "z" such that (x-z)/y=n where "n"  is  an 

                           integer. 

  MULTIPLY(x,y,p[,q])      Multiplies  "x"  and  "y" with result precision 

                           (p,q). 

  PRECISION(x,p[,q])       Converts "x" to a value of precision (p,q). 

  REAL(x)                  Real part of complex number "x". 

  ROUND(expr,n)            "expr" is rounded to nth digit to the right  of                                                 _ 

                           decimal  (or binary) point if n > 0; at (n+1)th 

                           digit to the left of decimal (or binary)  point 

                           if n ≤ 0. 

  SIGN(x)                  Returns +1 if x > 0, 0 if x = 0, -1 if x < 0. 

  TRUNC(x)                 Truncates  value "x" to an integer by returning 

                           CEIL(x) if x < 0, FLOOR(x) if x ≥ 0. 

 

  Mathematical Functions   ______________________ 

 

  ACOS(x)                  Inverse cosine in radians. 

  ASIN(x)                  Inverse sine in radians. 

  ATAN(x[,y])              Arctangent of x or x/y, in radians. 

  ATAND(x[,y])             Arctangent of x or x/y, in degrees. 

  ATANH(x)                 Inverse hyperbolic tangent of x. 

  COS(x)                   Cosine of x, "x" in radians. 

  COSD(x)                  Cosine of x, "x" in degrees. 

  COSH(x)                  Hyperbolic cosine of x. 

  ERF(x)                   Error function of x 

 

 

 

 

  204  PL/I Built-In Functions and Pseudo-Variables 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  ERFC(x)                  Complement of the error function  of  x,  i.e., 

                           1-ERF(x). 

  EXP(x)                   Returns the value of "e" raised to the power of 

                           "x".   "e" is the base of the natural logarithm 

                           system, 2.718281828. 

  LOG(x)                   Natural logarithm (i.e., base e) of "x". 

  LOG10(x)                 Common logarithm (i.e., base 10) of "x". 

  LOG2(x)                  Binary logarithm (i.e., base 2) of "x". 

  SIN(x)                   Sine of x, "x" in radians. 

  SIND(x)                  Sine of x, "x" in degrees. 

  SINH(x)                  Hyperbolic sine of x. 

  SQRT(x)                  Square root of x. 

  TAN(x)                   Tangent of x, "x" in radians. 

  TAND(x)                  Tangent of x, "x" in degrees. 

  TANH(x)                  Hyperbolic tangent of x. 

 

  Array Manipulation Functions   ____________________________ 

 

  ALL(x)                   Returns a bit string with length of the longest 

                           element of array  "x".   If  ith  bits  of  all                                                         _ 

                           elements  exist  and are 1, then the ith bit is                                                                 _ 

                           set to 1; otherwise, it is set to 0. 

  ANY(x)                   Returns a bit string with length of the longest 

                           element of array "x".  If the ith  bit  of  any                                                          _ 

                           element  in  "x"  exists and is 1, then the ith                                                                        _ 

                           bit of the result is set to 1; otherwise, it is 

                           set to 0. 

  DIM(x,n)                 Current extent for the nth dimension  of  array                                                   _ 

                           "x".   It is equivalent to HBOUND(x,n) - LBOUND 

                           (x,n) + 1. 

  HBOUND(x,n)              Current upper bound of nth dimension  of  array                                                   _ 

                           "x". 

  LBOUND(x,n)              Current  lower  bound of nth dimension of array                                                     _ 

                           "x". 

  POLY(a,x)                Forms a polynomial  from  one-dimension  arrays 

                           "a"  and  "x".   If declared a(m:n) and x(p:q), 

                           then the result is 

 

 

 

 

 

                           If "x" is an element, it is interpreted  as  an 

                           array of one element. 

  PROD(x)                  Product of all elements of array "x". 

  SUM(x)                   Sum of all elements of array "x". 

 

  Condition Functions   ___________________ 

 

  DATAFIELD                Returns  a  varying-length  character string of 

                           the data field that caused the  NAME  condition 

                           to be raised. 

  ONCHAR                   Returns  a  character  string of length 1, con- 

 

                         PL/I Built-In Functions and Pseudo-Variables  205 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                           taining the character that caused  the  CONVER- 
                           SION condition to be raised. 
  ONCODE                   Returns a binary integer defining the interrupt 
                           that  caused  the entry into ON-unit.  See Sec- 
                           tion H:  "ON-Conditions" in PL/I Language  Ref-                                                        ___________________ 

                           erence Manual.                            _____________ 

  ONCOUNT                  Returns  the  number  of  single I/O interrupts 

                           that remain to be handled. 

  ONFILE                   Returns a varying-length character string show- 

                           ing the name of the file for which  an  I/O  or 

                           CONVERSION condition was raised. 

  ONKEY                    Returns  a  varying-length character of the key 

                           for which the I/O condition was raised. 

  ONLOC                    Returns a varying-length character string, giv- 

                           ing the name of the entry point  for  which  an 

                           ON-condition was raised. 

  ONSOURCE                 Returns a varying-length character string show- 

                           ing the field being processed when a CONVERSION 

                           was raised. 

 

  Storage Control Functions   _________________________ 

 

  ADDR(x)                  Returns  a  pointer value identifying the loca- 

                           tion at which "x" was allocated. 

  ALLOCATION(x)            Returns ’1’B if the controlled variable "x" has 

                           been allocated; otherwise ’0’B. 

  CURRENTSTORAGE(x)        Returns the current storage of variable "x"  in 

                           bytes. 

  EMPTY                    Returns   an   area   of   zero  size  with  no 

                           allocations. 

  NULL                     Returns a null pointer or offset value. 

  OFFSET(x1,x2)            Returns the offset value  of  pointer  "x1"  in 

                           area "x2". 

  POINTER(x1,x2)           Returns the pointer value of offset "x1", given 

                           area "x2". 

  STORAGE(x)               Returns  the  storage  required by the variable 

                           "x" in bytes. 

 

  I/O Functions   _____________ 

 

  COUNT(file)              Returns the number of  data  items  transmitted 

                           during  the  last  GET  or PUT operation on the 

                           stream "file". 

  LINENO(file)             Returns the current line number for  the  PRINT 

                           "file". 

  SAMEKEY(file)            Returns ’1’B if a record is followed by another 

                           record with the same key. 

 

  Preprocessor Functions   ______________________ 

 

  COMPILETIME              Returns  a  character  string of 18 characters, 

                           indicating the date and the  time  of  compila- 

                           tion.   It is in the form "DD MMM YY HH.MM.SS", 

 

  206  PL/I Built-In Functions and Pseudo-Variables 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
                           where "DD" is the day of the month,  "MMM"  the 

                           first  three  characters  of  the  month’s name 

                           (e.g.  JAN), "YY" the year,  "HH"  the  current 

                           hour,  "MM" the number of minutes, and "SS" the 

                           number of seconds. 

  COUNTER                  Returns a  character  string  of  five  digits, 

                           starting  with  00001  and  then incremented by 

                           00001. 

  INDEX(x1,x2)             Returns FIXED value indicating the position  of 

                           "x2" in "x1". 

  LENGTH(x)                Returns  FIXED  value  of the current length of 

                           the string "x". 

  PARMSET(x)               Returns ’1’B if the parameter has been set. 

  SUBSTR(x1,x2[,x3])       Returns a  substring  of  the  string  "x1"  at 

                           position "x2" with length "x3". 

 

  Miscellaneous Functions   _______________________ 

 

  DATE                     Returns a character string of six characters in 

                           the  form  "yymmdd",  where "yy" is the current 

                           year, "mm" is the current month,  and  "dd"  is 

                           the current day of the month. 

  PLIRETV                  Returns  the  current  value of the PL/I return 

                           code, which is set by calling PLIRETC or  after 

                           calling non-PL/I routines with RETCODE option. 

  TIME                     Returns  a  character string of nine characters 

                           in the form  "hhmmssttt",  where  "hh"  is  the 

                           current  hour, "mm" the number of minutes, "ss" 

                           the number of seconds, and "ttt" the number  of 

                           milliseconds. 

 

  Pseudo-Variables   ________________ 

 

     Pseudo-variables  are functions that can be used as receiving fields. 

  They need to appear not only on the  left-hand  side  of  an  assignment 

  statement but also in the data list of a GET statement and as the string 

  name  in  the STRING option of a PUT statement.  Pseudo-variables cannot 

  be nested, however. 

 

  COMPLEX(a,b)             The real part of the value is assigned to  "a", 

                           and  the  imaginary  part to "b".  Both "a" and 

                           "b" are complex variables or arrays. 

  IMAG(c)                  The real part of the complex value is  assigned 

                           to  the  imaginary part of the complex variable 

                           or array "c". 

  ONCHAR                   The expression being assigned is converted to a 

                           character string of length 1 and  replaces  the 

                           character  that  caused the CONVERSION error to 

                           be raised. 

  ONSOURCE                 The expression being assigned is converted to a 

                           character string, padded with blanks if  neces- 

                           sary  to  match  the  length  of  the erroneous 

                           character string  that  caused  the  CONVERSION 

 

                         PL/I Built-In Functions and Pseudo-Variables  207 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                           error to be raised. 
  REAL(c)                  The  real part of the complex value is assigned 

                           to the complex variable or array "c". 

  STRING(x)                "x" is an element, array, or structure variable 

                           composed entirely  of  character  strings  with 

                           numeric  character data, if any, or entirely of 

                           bit strings.  The expression being assigned  is 

                           converted to a character string or a bit string 

                           depending on "x".  It is then assigned piece by 

                           piece  to  "x".  When none remains, the rest of 

                           "x" will have varying strings null,  and  fixed 

                           strings filled with either blanks or zeros. 

  SUBSTR(string,i[,j])     The  value  is  converted to a bit or character 

                           string and then assigned to a substring of  the 

                           variable "string". 

  UNSPEC(v)                The  value  is  converted  to a bit string with 

                           length as that of "v" and then assigned to  "v" 

                           without  any conversion.  "v" may be an element 

                           or array variable that is  arithmetic,  string, 

                           area, pointer, or offset.  If "v" is a varying- 

                           length  string,  its two-byte prefix will be in 

                           the returned bit-string. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  208  PL/I Built-In Functions and Pseudo-Variables 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                    PL/I (F) OBJECT-TIME ERROR MESSAGES                     ___________________________________ 

 

 

 

 

     The error messages in this section may  be  generated  on  SPRINT  or 

  SERCOM  (if  SPRINT  cannot  be used) as the result of an exceptional or 

  error condition occurring during the execution of a PL/I program. 

 

     Error messages are generated at execution time for two main  reasons: 

 

     (1)  An  error condition for which no specific ON-condition exists in 

          PL/I.  A error message is printed, and the ERROR ON-condition is 

          raised. 

 

     (2)  An ON-condition is raised, by compiled code or by  the  library, 

          and the action required is system action, for which the language 

          specifies COMMENT as part of the necessary action. 

 

     The object-time messages will take one of the following forms: 

 

       IHEnnnI FILE name - message AT location 

 

       IHEnnnI rtname - message AT location 

 

       IHEnnnI message AT location 

 

  where: 

 

     nnn      is the message number, 

 

     name     is  the  name  of  the file associated with the error (given 

              only in I/O error messages), 

 

     message  is the text of the error message, 

 

     rtname   is the name of the PL/I library routine in which  the  error 

              occurred (given only for computational subroutines), and 

 

     location is either 

 

                    OFFSET ±xxxxx FROM ENTRY POINT yyyyyy 

 

              or 

 

                    OFFSET ±xxxxx FROM ENTRY POINT OF zzzz ON-UNIT 

 

  If  the  statement-number  compiler option STMT has been specified, each 

  message will also contain 

 

 

                                  PL/I (F) Object-Time Error Messages  209 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
       IN STATEMENT nnnnn 
 
  prior to "AT location".  "nnnnn" gives the number of  the  statement  in 

  which the condition occurred. 

 

     The  error  messages  for  other than ON-type errors are mainly self- 

  explanatory.  Explanations in the following lists are  given  only  when 

  the  message  is  not  self-explanatory.  For brevity, the "AT location" 

  portion of each message is omitted. 

 

 

  General Error Messages   ______________________ 

 

     IHE001I FINISH 

 

          The FINISH condition has been raised. 

 

     IHE002I ERROR 

 

          The ERROR condition has been  raised  and  a  SNAP  message  was 

          requested. 

 

     IHE003I SOURCE PROGRAM ERROR IN STATEMENT nnnnn 

 

          This  message  will always contain a statement number whether or 

          not the compiler STMT option is specified. 

 

     IHE004I INTERRUPT IN ERROR HANDLER 

 

          An unexpected program interrupt occurred during the handling  of 

          another error.  This indicates that the program has a disastrous 

          error  in it, such as DSA (Dynamic Save Area) chain out of order 

          or instructions overwritten.  The program is  terminated  and  a 

          dump is produced if the MTS $SET ERRORDUMP option is ON, and, if 

          in batch mode, the job is terminated.  The user should retry the 

          program with STRINGRANGE and SUBSCRIPTRANGE enabled. 

 

     IHE005I PRV GREATER THAN 4096 BYTES 

 

          This  error arises when the sum of the number of procedures, the 

          number of files, and the number of controlled variables  exceeds 

          1000.  It causes a return to the system; the PL/I program is not 

          entered. 

 

     IHE006I NO MAIN PROCEDURE 

 

          No  external  procedure in the program has been given the option 

          MAIN.  The program is not executed. 

 

 

 

 

  210  PL/I (F) Object-Time Error Messages 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     IHE009I IHEDUMP - NO DUMP OUTPUT 
 
          The conversational user does not wish to specify the dump output 
          to be produced on the PL/I file PL1DUMP.   In  batch  mode,  the 
          output is produced on *SINK*. 

 

 

  I/O Errors   __________ 

 

     IHE018I FILE name - FILE TYPE NOT SUPPORTED 

 

     IHE020I FILE name - ATTEMPT TO READ OUTPUT FILE 

 

     IHE021I FILE name - ATTEMPT TO WRITE INPUT FILE 

 

     IHE022I FILE name - GET/PUT STRING EXCEEDS STRING SIZE 

 

          For  input:   programmer  has  requested more than exists on the 

          input string. 

 

          For output:  programmer is trying to write more than his  output 

          string will hold. 

 

     IHE023I FILE name - OUTPUT TRANSMIT ERROR NOT ACCEPTABLE 

 

          The  ERROR  condition is raised, (a) upon return from a TRANSMIT 

          ON-unit, if the device in error is other than a printer, or  (b) 

          if  access  to a file by RECORD I/O has been attempted after the 

          TRANSMIT condition has been raised for output. 

 

     IHE024I FILE name - PRINT/OPTION FORMAT ITEM FOR NON-PRINT FILE 

 

          Attempt to use PAGE, LINE, or SKIP ≤0 for a non-print file. 
 

     IHE025I DISPLAY - MESSAGE OR REPLY AREA LENGTH ZERO 

 

          This message appears only if the REPLY option specifies  a  null 

          string or the user issues an end-of-file. 

 

     IHE026I FILE name - DATA DIRECTED INPUT - INVALID ARRAY DATUM 

 

          The  number  of  subscripts  on  the  external  medium  does not 

          correspond to the number of declared subscripts. 

 

     IHE027I GET STRING - UNRECOGNIZABLE DATA NAME 

 

          For GET DATA:  the name of the data item found in the string  is 

          not known at the time of the GET statement. 

 

          For  GET DATA data list:  the name of the data item found in the 

          string is not specified in the list. 

 

 

                                  PL/I (F) Object-Time Error Messages  211 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     IHE029I FILE name - UNSUPPORTED FILE OPERATION 
 
          The program has executed an I/O statement with an option or verb 
          not applicable to the specified file.  For example: 
 
          I/O Option or Verb                File Attribute           ___ ______ __ ____                ____ _________ 
 
          READ {SET|LOCATE}         {DIRECT|SEQUENTIAL UNBUFFERED} 
 
          REWRITE (without FROM)    {SEQUENTIAL {INPUT|OUTPUT|UPDATE} | 

                                     DIRECT {INPUT|OUTPUT}} 

 

          {LINESIZE|PAGESIZE}       STREAM {INPUT|OUTPUT} 

 

     IHE030I FILE name - REWRITE/DELETE NOT IMMEDIATELY PRECEDED BY READ 
 
     IHE036I FILE name - IMPLICIT OPEN FAILURE - CANNOT PROCEED 
 
          There has been a failure in an implicit OPEN operation. 
 
     IHE038I FILE name - ENDFILE FOUND UNEXPECTEDLY IN MIDDLE OF DATA ITEM 
 
          The ERROR condition is raised when an end-of-file is encountered 
          before  the  delimiter  when  scanning  list-directed  or  data- 
          directed  input,  or  if  the  field width in the format list of 
          edit-directed input would take the scan beyond the  end-of-file. 
 
 
  I/O ON-Conditions   _________________ 
 
     All of these conditions may be raised by the SIGNAL statement. 
 
     IHE100I FILE name - UNRECOGNIZABLE DATA NAME 
 
          Initiating ON-condition:  NAME 
 
             (1)  GET DATA:  name of data item found on external medium is 

                  not known at the time of the GET statement. 

             (2)  GET DATA data list:  name of data item found on external 

                  medium is not specified in the list. 

 

     IHE110I FILE name - RECORD CONDITION SIGNALED 

 

     IHE111I FILE name - RECORD VARIABLE SMALLER THAN RECORD SIZE 

 

          The  variable specified in the READ statement INTO option allows 

          fewer characters than exist in the record. 

 

          F-format records:  a WRITE statement attempts to  put  a  record 

          smaller than the record size. 

 

 

 

  212  PL/I (F) Object-Time Error Messages 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     IHE112I FILE name - RECORD VARIABLE LARGER THAN RECORD SIZE 
 
          The  variable  specified  in  the  READ  statement  INTO  option 
          requires more characters than exist in the record;  or  a  WRITE 
          statement  attempts  to  put  out  a  record  greater  than  the 
          available record  size;  or  a  REWRITE  statement  attempts  to 
          replace a record with one of a greater size. 
 
     IHE113I ATTEMPT TO WRITE/LOCATE ZERO LENGTH RECORD 
 
          A  WRITE  or  REWRITE  statement attempts to put out a record of 
          zero length, or a LOCATE statement attempts to get buffer  space 
          for a record of zero length. 
 
     IHE114I FILE name - ZERO LENGTH RECORD READ 
 
          A  record  of zero length has been read from a KEYED file.  This 
          message normally should not occur. 
 
     IHE120I FILE name - PERMANENT INPUT ERROR 
 
          Initiating ON-condition:  TRANSMIT 
 
     IHE121I FILE name - PERMANENT OUTPUT ERROR 
 
          Initiating ON-condition:  TRANSMIT 
 
     IHE122I FILE name - TRANSMIT CONDITION SIGNALED 
 
     IHE130I FILE name - KEY CONDITION SIGNALED 
 
     IHE131I FILE name - KEYED RECORD NOT FOUND 
 
          A READ, REWRITE, or DELETE  statement  specified  a  record  key 
          which does not exist in a KEYED file. 
 
     IHE132I FILE name - ATTEMPT TO ADD DUPLICATE KEY 
 
          A  WRITE  statement  specified  a key value which already exists 
          within the KEYED file. 
 
     IHE135I FILE name - KEY SPECIFICATION ERROR 
 
          Without the GENKEY option, keys must have a length of  4.   With 
          the  GENKEY  option,  keys  must conform to the form ±ddddd.ddd. 
          For sequential files, this error appears if keys are invalid. 
 
     IHE140I FILE name - END OF FILE ENCOUNTERED 
 
          Initiating ON-condition:  ENDFILE 

 

 
 
                                  PL/I (F) Object-Time Error Messages  213 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     IHE150I FILE name - IS NOT SPECIFIED 
 
          This message is generated if the file name is not specified. 
 
     IHE151I FILE name - CONFLICTING DECLARE AND OPEN ATTRIBUTES 
 
          Initiating ON-condition:  UNDEFINEDFILE 
 
          There is a conflict between the declared PL/I  file  attributes. 
          For example: 
 
          Attribute          Conflicting Attributes           _________          ___________ __________ 
 
          PRINT      INPUT, UPDATE, RECORD, DIRECT, SEQUENTIAL, BUFFERED, 
                     UNBUFFERED, KEYED 
 
          STREAM     UPDATE, RECORD, DIRECT, SEQUENTIAL, BUFFERED, 
                     UNBUFFERED, KEYED 
 
          DIRECT     SEQUENTIAL, BUFFERED, UNBUFFERED 
 
          UPDATE     INPUT, OUTPUT 
 
          OUTPUT     INPUT 
 
          BUFFERED   UNBUFFERED 
 
          Some  attributes  may  have  been supplied when a file is opened 
          implicitly.  Examples of attributes implied  by  I/O  statements 
          are: 
 
             I/O              ___ 
          Statement          Implied Attributes           _________          _______ __________ 
 
          DELETE     RECORD, DIRECT, UPDATE 
 
          GET        INPUT 
 
          LOCATE     RECORD, OUTPUT, SEQUENTIAL, BUFFERED 
 
          PUT        OUTPUT 
 
          READ       RECORD, INPUT 
 
          REWRITE    RECORD, UPDATE 
 
          WRITE      RECORD, OUTPUT 

 

 

 

 
  214  PL/I (F) Object-Time Error Messages 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
          In turn, certain attributes may imply other attributes: 
 
          Attribute          Implied Attributes           _________          _______ __________ 
 
          BUFFERED   RECORD, SEQUENTIAL 
 
          DIRECT     RECORD, KEYED 
 
          KEYED      RECORD 
 
          PRINT      OUTPUT, STREAM 
 
          SEQUENTIAL RECORD 
 
          UNBUFFERED RECORD, SEQUENTIAL 
 
          UPDATE     RECORD 
 
          Finally, a group of alternate attributes has one of the group as 
          a  default.   The  default  is  implied  if none of the group is 
          specified explicitly or is implied by other attributes or by the 
          opening I/O statement.  The groups of alternates are: 
 
              Group                 Default               _____                 _______ 
 
          {STREAM|RECORD}           STREAM 
 
          {INPUT|OUTPUT|UPDATE}     INPUT 
 
          {SEQUENTIAL|DIRECT}       SEQUENTIAL 
 
          {BUFFERED|UNBUFFERED}     BUFFERED 
 
     IHE152I FILE name - FILE TYPE NOT SUPPORTED 
 
          Initiating ON-condition:  UNDEFINEDFILE 
 
          In MTS, the following file types are not supported:   BACKWARDS, 
          EXCLUSIVE, REGIONAL, TELEPROCESSING, and TRANSIENT. 
 
     IHE154I FILE name - UNDEFINEDFILE CONDITION SIGNALED 
 
     IHE156I FILE name - CONFLICTING ATTRIBUTE AND ENVIRONMENT PARAMETERS 
 
          Initiating ON-condition:  UNDEFINEDFILE 
 
          Examples of conflicting parameters are: 

 

 

 

 
                                  PL/I (F) Object-Time Error Messages  215 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
          ENVIRONMENT Parameter     File Attribute           ___________ _________     ____ _________ 
 
          INDEXED                   STREAM 
 
          CONSECUTIVE               DIRECT 
 
          INDEXED                   DIRECT OUTPUT 
 
          INDEXED                   OUTPUT without KEYED 
 
          Blocked records           BUFFERED 
 
     IHE157I FILE name - CONFLICTING ENVIRONMENT AND/OR DDEF MODIFIERS 
 
          Initiating ON-condition:  UNDEFINEDFILE 
 
          One of the following conflicts exists: 
 
             (1)  The  device attached to a KEYED file is not an MTS file. 

             (2)  KEYED files are V-formatted. 

 

     IHE159I FILE name - INCORRECT BLOCKSIZE AND/OR LOGICAL RECORD SIZE 

 

          Initiating ON-condition:  UNDEFINEDFILE 

 

          One of the following situations exists: 

 

             (1)  F-format records: 

 

                  (a) The specified block size is less  than  the  logical 

                      record length. 

                  (b) The  specified  block  size is not a multiple of the 

                      logical record length. 

 

             (2)  V-format records: 

 

                  (a) The specified block size is less  than  the  logical 

                      record length + 4. 

                  (b) The  logical  record  length  is  less than 14 for a 

                      RECORD file or 15 for a STREAM file. 

                  (c) The logical record  length  of  spanned  records  is 

                      greater than 32,767 bytes or less than 5 bytes. 

                  (d) The  block  size  of  spanned records is less than 9 

                      bytes. 

 

             (3)  Logical record length is negative. 

 

 

 

 

 

  216  PL/I (F) Object-Time Error Messages 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     IHE160I FILE name - LINESIZE GT IMPLEMENTATION DEFINED MAX LENGTH 
 
          Initiating ON-condition:  UNDEFINEDFILE 
 
          The implementation-defined maximum line size is: 
 
             F-format records:  32759 
             V-format records:  32751 
 
 
  Computational Errors   ____________________ 
 
     IHE200I rtname - X LT 0 IN SQRT (X) 

 

     IHE202I rtname - X LT OR = 0 IN LOG(X) OR LOG2(X) OR LOG10(X) 

 

     IHE203I rtname - ABS(X) GE (2**50)*K IN SIN(X) OR COS(X) (K=PI) OR 

                      SIND(X) OR COSD(X) (K=180) 

 

     IHE204I rtname - ABS(X) GE (2**50)*K in TAN(X) (K=PI) OR TAND(X) 

                      (K=180) 

 

     IHE206I rtname - X=Y=0 IN ATAN(Y,X) or ATAND(Y,X) 

 

     IHE208I rtname - ABS(X) GT OR = 1 IN ATANH(X) 

 

     IHE209I rtname - X=0, Y LE 0 IN X**Y 

 

     IHE210I rtname - X=0, Y NOT POSITIVE REAL IN X**Y 

 

     IHE211I rtname - Z=+I OR -I IN ATAN(Z) OR Z=+1 OR -1 IN ATANH(Z) 

 

     IHE212I rtname - ABS(X) GE (2**18)*K IN SIN(X) OR COS(X) (K=PI) OR 

                      SIND(X) OR COSD(X) (K=180) 

 

     IHE213I rtname - ABS(X) GE (2**18)*K IN TAN(X) (K=PI) OR TAND(X) 

                      (K=180) 

 

 

  Computational ON-Conditions   ___________________________ 

 

     All of these conditions may be raised by the SIGNAL statement. 

 

     IHE300I OVERFLOW 

 

          This condition  is  raised,  by  PL/I  library  routines  or  by 

          compiled  code,  when  the  exponent  of a floating-point number 

          exceeds the permitted maximum, as defined by the implementation. 

 

 

 

 

                                  PL/I (F) Object-Time Error Messages  217 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     IHE310I SIZE 
 
          This condition  is  raised,  by  PL/I  library  routines  or  by 
          compiled  code, when an assignment is attempted where the number 
          to be assigned  will  not  fit  into  the  target  field.   This 
          condition can be raised by allowing the fixed-overflow interrupt 
          to  occur on account of SIZE.  If associated with I/O, the "FILE 

          name" will be  inserted  between  the  message  number  and  the 

          message text. 

 

     IHE320I FIXEDOVERFLOW 

 

          This  condition  is  raised,  by  PL/I  library  routines  or by 

          compiled code, when  the  result  of  a  fixed-point  binary  or 

          decimal  operation exceeds the maximum field width as defined by 

          the implementation. 

 

     IHE330I ZERODIVIDE 

 

          This condition  is  raised,  by  PL/I  library  routines  or  by 

          compiled  code,  when  an  attempt is made to divide by zero, or 

          when the quotient exceeds the precision allocated for the result 

          of  a  division.   The  condition  can  be  raised  by  hardware 

          interrupt or by special coding. 

 

     IHE340I UNDERFLOW 

 

          This  condition  is  raised,  by  PL/I  library  routines  or by 

          compiled code, when the exponent of a floating-point  number  is 

          smaller  than the implementation-defined minimum.  The condition 

          does not occur when equal floating-point numbers are subtracted. 

 

     IHE350I STRINGRANGE 

 

          This condition is  raised  by  PL/I  library  routines  when  an 

          invalid  reference  by  the  SUBSTR built-in function or pseudo- 

          variable has been detected. 

 

     IHE360I AREA CONDITION RAISED IN ALLOCATE STATEMENT 

 

          There is not enough room in the area in which  to  allocate  the 

          based variable. 

 

     IHE361I AREA CONDITION RAISED IN ASSIGNMENT STATEMENT 

 

          There is not enough room in the area to which the based variable 

          is being assigned. 

 

     IHE362I AREA SIGNALED 

 

 

 

  218  PL/I (F) Object-Time Error Messages 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  Structure and Array Errors   __________________________ 
 
     IHE380I IHESTR - STRUCTURE OR ARRAY LENGTH GE 16**6 BYTES 

 

          During  the  mapping  of a structure or array, the length of the 

          structure or array has been found to be greater than or equal to 

          16**6 bytes. 

 

     IHE381I IHESTR - VIRTUAL ORIGIN OF ARRAY GE 16**6 OR LE -16**6 

 

          During the mapping of a structure, the address  of  the  element 

          with  zero subscripts in an array, whether it exists or not, has 

          been computed to be outside the range (-16**6 to 16**6). 

 

     IHE382I IHESTR - UPPER BOUND LESS THAN LOWER BOUND 

 

          During the mapping of an array or structure, an upper bound of a 

          dimension has been found to be less than the corresponding lower 

          bound.  If only  an  upper  bound  was  declared,  then  it  may 

          currently be less than one, the implied lower bound. 

 

 

  Control Program Restrictions   ____________________________ 

 

     IHE400I DELAY STATEMENT EXECUTED, NOT PERMITTED IN MTS 

 

 

  Condition Type ON-Conditions   ____________________________ 

 

     IHE500I SUBSCRIPTRANGE 

 

          This  condition  is  raised,  by  PL/I  library  routines  or by 

          compiled code, when a subscript is evaluated and  found  to  lie 

          outside its specified bounds, or by the SIGNAL statement. 

 

     IHE501I CONDITION 

 

          This  condition  is raised by execution of a SIGNAL (identifier) 

          statement,   referencing   a    programmer-specified    EXTERNAL 

          identifier. 

 

 

  Conversion ON-Conditions   ________________________ 

 

     Conversion errors occur most often on input, either owing to an error 

  in  the  input  data,  or  because  of  an  error in a format list.  For 

  example, in edit-directed input, if the field width of one of the  items 

  in  the data list is incorrectly specified in the format list, the input 

  stream will get out of step with the format list and a conversion  error 

  is likely to occur. 

 

     IHE600I CONVERSION 

 

 

                                  PL/I (F) Object-Time Error Messages  219 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     IHE601I CONVERSION ERROR IN F-FORMAT INPUT 
 
     IHE602I CONVERSION ERROR IN E-FORMAT INPUT 
 
     IHE603I CONVERSION ERROR IN B-FORMAT INPUT 
 
     IHE604I ERROR IN CONVERSION FROM CHARACTER STRING TO ARITHMETIC 
 
     IHE605I ERROR IN CONVERSION FROM CHARACTER STRING TO BIT STRING 
 
     IHE606I ERROR IN CONVERSION FROM CHARACTER STRING TO PICTURED CHARAC- 
             TER STRING 
 
     IHE607I CONVERSION ERROR IN P-FORMAT INPUT (DECIMAL) 

 

     IHE608I CONVERSION ERROR IN P-FORMAT INPUT (CHARACTER) 

 

     IHE609I CONVERSION ERROR IN P-FORMAT INPUT (STERLING) 

 

 

  Conversion Errors, Non-ON-Type   ______________________________ 

 

     IHE700I INCORRECT E(W,D,S) SPECIFICATION 

 

     IHE701I F FORMAT W SPECIFICATION TOO SMALL 

 

     IHE702I A FORMAT W UNSPECIFIED AND LIST ITEM NOT TYPE STRING 

 

     IHE703I B FORMAT W UNSPECIFIED AND LIST ITEM NOT TYPE STRING 

 

     IHE704I A FORMAT W UNSPECIFIED ON INPUT 

 

     IHE705I B FORMAT W UNSPECIFIED ON INPUT 

 

     IHE706I UNABLE TO ASSIGN TO PICTURED CHARACTER STRING 

 

          A  source  datum  which  is  not  a  character  string cannot be 

          assigned to a pictured character string because  of  a  mismatch 

          with the PICTURE description of the target. 

 

     IHE798I ONSOURCE TO ONCHAR PSEUDO-VARIABLE USED OUT OF CONTEXT 

 

          This  message  is  printed  and the ERROR condition raised if an 

          ONSOURCE or ONCHAR pseudo-variable is used outside  an  ON-unit, 

          or  in  an  ON-unit other than either a CONVERSION ON-unit or an 

          ERROR  or  FINISH  ON-unit  following  from  system  action  for 

          CONVERSION. 

 

     IHE799I RETURN ATTEMPTED FROM CONVERSION ON-UNIT BUT SOURCE FIELD NOT 

             MODIFIED 

 

          A  CONVERSION ON-unit has been entered as a result of an invalid 

          conversion, and an attempt has been made to  return,  and  hence 

 

  220  PL/I (F) Object-Time Error Messages 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
          reattempt  the conversion, without using one or the other of the 
          pseudo-variables  ONSOURCE  or  ONCHAR  to  change  the  invalid 
          character. 
 
 
  Non-Computational Program Interrupt Errors   __________________________________________ 
 
     Certain  program  interrupts  may occur in a PL/I program because the 
  source program has an error which is severe but which cannot be detected 
  until execution time.  An example is a call  to  an  unknown  procedure, 
  which  will  result  in  an  illegal operation program interrupt.  Other 
  program interrupts, such as addressing, specification,  protection,  and 
  data  interrupts,  may arise if PL/I control blocks have been destroyed. 
  This can occur if an assignment  is  made  to  an  array  element  whose 
  subscript  is  out  of  range,  since,  if  SUBSCRIPTRANGE  has not been 
  enabled, the  compiler  does  not  check  array  subscripts;  a  program 
  interrupt may occur at the time of the assignment or at a later stage in 
  the program.  Similarly, an attempt to use the value of an array element 
  whose subscript is out of range may cause an interrupt. 
 
     Care must be taken when parameters are passed to a procedure.  If the 
  data  attributes  of the arguments of the calling statement do not agree 
  with those of the invoked entry point, or if an argument is  not  passed 
  at all, a program interrupt may occur. 
 
     The  use of the value of a variable that has not been initialized, or 
  has had no assignment made to it, or the  use  of  CONTROLLED  variables 
  that have not been allocated, may also cause one of these interrupts. 
 
     IHE800I INVALID OPERATION 
 
     IHE801I PRIVILEGED OPERATION 
 
     IHE802I EXECUTE INSTRUCTION EXECUTED 
 
     IHE803I PROTECTION VIOLATION 
 
     IHE804I ADDRESSING INTERRUPT 
 
     IHE805I SPECIFICATION INTERRUPT 
 
     IHE806I DATA INTERRUPT 
 
          This condition can be caused by an attempt to use the value of a 
          FIXED DECIMAL variable when no prior assignment to, or initiali- 
          zation of, the variable has been performed. 

 

 

 

 
 
                                  PL/I (F) Object-Time Error Messages  221 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Storage Management Errors   _________________________ 
 
     The  following errors are associated with the handling of storage and 
  transfer of control out of blocks.  In some cases, these  errors  are  a 
  result  of  program  error,  but it is possible that the messages may be 
  printed because the  save  area  chain,  allocation  chain,  or  pseudo- 
  register vector have been overwritten. 
 
     IHE902I GO TO STATEMENT REFERENCES LABEL IN AN INACTIVE BLOCK 
 
          The  label  referred  to  cannot  be  found in any of the blocks 
          currently active; blocks are not freed.   The  statement  number 
          and offset indicate the GO TO statement causing the error. 
 
     IHE904I TOO MANY ACTIVE ON UNITS AND ENTRY PARAMETER PROCEDURES 
 
          There  is  an  implementation  limit  to  the number of ON-units 
          and/or entry parameter procedures which can  be  active  at  any 
          time.   An entry parameter procedure is one that passes an entry 
          name as  a  parameter  to  a  procedure  it  calls.   The  total 
          permissible  number of these ON-units/entry parameter procedures 
          is 127. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
  222  PL/I (F) Object-Time Error Messages 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                    PL/I OPTIMIZER RUN-TIME ERROR MESSAGES                     ______________________________________ 
 
 
 
 
        The error messages are listed  in  the  IBM  publication  OS  PL/I                                                                   ________ 
     Optimizing  Compiler:   Messages,  SC33-0027.   The  PL/I  Optimizing      ________________________________ 
     compiler error messages are like the PL/I (F) error  messages  except 

     that  most  of  the  messages  are of the form:  "IBMnnnI" instead of 

     "IHEnnnI".  Here is an example of an error message: 

 

          IBM204I ’ONCODE’=0084 ’UNDEFINEDFILE’ CONDITION RAISED 

             FILE OR DEVICE NOT SPECIFIED (’ONFILE’= XOKZ) 

             IN STATEMENT 2 AT OFFSET +000078 IN PROCEDURE WITH ENTRY ABC 

 

        Below are some changes and additions to the error messages printed 

     in the IBM publication. 

 

          IBM013I  FILE PLIDUMP NOT SPECIFIED 

 

          IBM090I  ’ONCODE’=0400  ’ATTENTION’ CONDITION 

                   RAISED BY ’SIGNAL’ STATEMENT 

 

          IBM091I  ’ONCODE’=0400  ’ATTENTION’ CONDITION RAISED 

 

          IBM926I  CHECKPOINT/RESTART NOT SUPPORTED IN MTS 

 

          IBM204I  ’ONCODE’=0084  ’UNDEFINEDFILE’ CONDITION RAISED 

                   FILE OR DEVICE NOT SPECIFIED 

 

          IBM229I  ’ONCODE’=0092   ’UNDEFINEDFILE’ CONDITION RAISED 

                   FILE OR DEVICE DOES NOT EXIST 

 

          IBM230I  ’ONCODE’=0092   ’UNDEFINEDFILE’ CONDITION RAISED 

                   FILE OR DEVICE IS INVALID 

 

          IBM231I  ’ONCODE’=0092   ’UNDEFINEDFILE’ CONDITION RAISED 

                   FILE ACCESS NOT ALLOWED 

 

          IBM232I  ’ONCODE’=0092   ’UNDEFINEDFILE’ CONDITION RAISED 

                   FILE WAIT INTERRUPTED 

 

          IBM233I  ’ONCODE’=0092   ’UNDEFINEDFILE’ CONDITION RAISED 

                   FILE DEADLOCK 

 

          IBM236I  ’ONCODE’=0093   ’UNDEFINEDFILE’ CONDITION RAISED 

                   FILE NOT SUPPORTED BY MTS 

 

          IBM881I  ’ONCODE’=9201  SORT/MERGE NOT SUPPORTED IN MTS 

 

 

                               PL/I Optimizer Run-Time Error Messages  223 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  224  PL/I Optimizer Run-Time Error Messages 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                  DIFFERENCES BETWEEN OS AND MTS PL/I (F)                   _______________________________________ 

 

 

 

 

     (1)  Standard system PL/I files are SCARDS for input and  SPRINT  for 

          output instead of SYSIN and SYSPRINT, respectively. 

 

     (2)  The  TIME built-in function returns in MTS an 8-character string 

          in  form  "hh:mm:ss"   instead   of   the   9-character   string 

          "hhmmssttt".  ttt is the number of milliseconds.                         ___ 

 

     (3)  The  DATE built-in function returns in MTS an 8-character string 

          "mm-dd-yy" instead of the OS 6-character string "yymmdd". 

 

     (4)  The DISPLAY statement does not cause a message to  be  displayed 

          to a machine operator but to a terminal user.  Logical I/O units 

          SERCOM  and GUSER are used.  The length of a message can be more 

          than 72 characters long. 

 

     (5)  The %INCLUDE compile-time statement is implemented in  MTS  with 

          many  differences  from  OS.  See the description of %INCLUDE in 

          the section "Compiling a PL/I Program." 

 

     (6)  The KEYED files are different than in  OS.   GENKEY  and  DIRECT 

          have different meanings.  Also REGIONAL files are not supported. 

 

     (7)  Multitasking is not supported in MTS. 

 

     (8)  Following PL/I keywords should not be used: 

 

          BACKWARDS       G(size)         PRIORITY        TRANSIENT 

          BUFFERS(n)      INDEXAREA(size) R(size)         TRKOFL 

          COMPLETION      NCP(n)          REGIONAL(1|2|3) UNLOCK 

          EVENT           NOLOCK          STATUS          WAIT 

          EXCLUSIVE       PENDING(file)   TASK 

 

     (9)  The  equivalent  ENVIRONMENT options CTLASA and CTL360 in OS are 

          CC and MCC, respectively. 

 

     (10) There are additional subroutines described in this volume. 

 

 

 

 

 

 

                              Differences between OS and MTS PL/I (F)  225 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  226  Differences between OS and MTS PL/I (F) 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
          DIFFERENCES BETWEEN OS AND MTS PL/I OPTIMIZING COMPILERS           ________________________________________________________ 
 
 
 
 
     (1)  All the object modules produced by the optimizing compiler  have 

          as the first record an MTS loader record " OPT SAVESD=ON".  This 

          record  should  not  be  deleted  unless  the  objects are to be 

          distributed to an OS installation.  Using  this  loader  record, 

          appropriate  library routines are loaded from the PL/I Optimizer 

          library, and the programs will successfully run without fear  of 

          branching into the location 0. 

 

     (2)  If  a  source  program  declares  PLIXOPT  as an external static 

          varying character string, the MTS optimizing compiler  does  not 

          process  it  and  then  produce  a csect IBMBPOPT as does the OS 

          version.  This will allow  the  optimizer  library  to  directly 

          process  the  run-time  options  in the string.  In addition, if 

          PLIXOPT was declared of fixed length, an error message about the 

          invalid length may be printed. 

 

     (3)  If a user declares any MTS logical I/O unit name as a PL/I file, 

          the optimizing compiler will prefix the name with an underscore: 

          e.g., SCARDS to _SCARDS, since the optimizing compiler does  not 

          allow  the  user to declare a PL/I identifier with an underscore 

          as the first letter.   This  applies  to  external  PL/I  files: 

          SCARDS,  SPRINT,  SERCOM,  SPUNCH,  and  GUSER.  The change will 

          allow any subroutine  to  call  the  MTS  subroutines  directly; 

          otherwise,  an operation interrupt may occur, because the exter- 

          nal file control sections do not contain any executable code. 

 

     (4)  The preprocessor %INCLUDE statement has a different syntax. 

 

     (5)  Either the /PROCESS or the *PROCESS statement can  be  used  for 

          multiple  compilation.   The  OS  version  allows  only *PROCESS 

          statements. 

 

     (6)  The DISPLAY statement does not cause a message to  be  displayed 

          to a machine operator but to a terminal user.  Logical I/O units 

          SERCOM and GUSER are used. 

 

     (7)  The KEYED files are not supported in MTS. 

 

     (8)  Multitasking is not supported in MTS. 

 

     (9)  Asynchronous I/O with events is not supported in MTS. 

 

     (10) The following PL/I keywords should not be used in MTS: 

 

 

 

             Differences between OS and MTS PL/I Optimizing Compilers  227 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
          ADDBUFF         GENKEY          NCP(n)          STATUS(x) 

          BKWD            INDEXAREA       NOLOCK          TASK 

          BUFFERS(n)      INDEXED         PASSWORD        TP(M|R) 

          BUFND(n)        KEY             PENDING(file)   TRANSIENT 

          BUFNI(n)        KEYED           PRIORITY        TRKOFL 

          BUFSP(n)        KEYFROM(x)      REGIONAL(1|2|3) UNBUFFERED 

          COMPLETION(x)   KEYLENGTH(n)    REUSE           UNLOCK 

          DIRECT          KEYLOC(n)       SAMEKEY         VSAM 

          EVENT           KEYTO           SIS             WAIT 

          EXCLUSIVE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  228  Differences between OS and MTS PL/I Optimizing Compilers 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                                    PL/C                                     ____ 
 
 
 
 
  OVERVIEW   ________ 
 
 
     PL/C  is  a  compile-and-execute  system recognizing a dialect of the 
  PL/I language.  The system is  oriented  toward  those  developing  PL/I 
  programs,  and the novice PL/I programmer.  With this clientele in mind, 
  PL/C provides a degree of  source-language-level  diagnostic  assistance 
  unattained  by  compilers for other high-level languages, even those for 
  languages less complex than PL/I. 
 
     PL/C takes the point of view that, no matter how blatantly  incorrect 
  a  program  is,  some useful information can be extracted from it to aid                    ____ 
  the programmer in the next attempt to produce a correct program.  PL/C’s 
  error-correcting repertoire  ranges  from  the  correction  of  spelling 
  errors  in  the  source program to the repair of every erroneous source- 
  language statement in  such  a  way  that  the  program  can  always  be                                                                 ______ 
  executed.   Furthermore,  errors  which  it  does  detect,  and possibly 
  corrects, are always clearly indicated.  For example, errors in a source 
  statement cause the statement to be repaired, if at  all  possible,  and 
  the  PL/C  text of the repaired statement to be presented, unambiguously 
  indicating  the  correct  (though  necessarily  speculative)   statement 

  formulation. 
 
     By default, PL/C performs a prodigious amount of error checking on an 
  executing  program;  this  checking  may  be  disabled  for  well-tested 
  programs to increase execution speed.  Consonant  with  its  compilation 
  behavior,  PL/C  attempts to repair execution errors in order to prolong 
  the lifetime of a computationally unhealthy program. 
 
     PL/C also provides debugging facilities for those programs  that  run 
  but  produce  something  other than the desired result.  By extension of 
  selected PL/I language constructs, PL/C permits the  flow  of  execution 
  and  the  change  in the value of any program variable to be dynamically 
  monitored in a conceptually clean and concise way.   PL/C  also  permits 
  the  selective  displaying  of  the  values  of  program  variables  and 
  execution information at program termination. 
 
     Despite its behavior during compilation with respect to errors,  PL/C 
  compiles  at  a rate faster than that of the MTS PL/I (F) compiler.  The 

  combination of a high compilation rate and  tolerance  of  errors  makes 

  PL/C  attractive  as a PL/I program development tool and as an "instruc- 

  tional" compiler, where recompilation of the  program  is  the  dominant 

  event  in  the program’s lifetime.  However, in production use, that is, 

  in the continual use of the program for  problem-solving  purposes,  the 

  fact  that  recompilation  is  required  before  every  execution of the 

  program diminishes the attractiveness of PL/C.  Further detracting  from 

 

                                                                 PL/C  229 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  production  use  of  PL/C  is  the  requirement that all portions of the 
  compiler reside in the user’s virtual memory space at all  times  during 
  program compilation and execution.  This may contribute significantly to 
  the  cumulative  cost  of  many  uses  of a well-tested program.  In the 
  balance, the positive aspects of PL/C far outweigh  the  negative  ones, 
  and,  unless  features  of the PL/I language not in the PL/C lexicon are 
  used, PL/C should always be considered as a program development tool. 
 
     The major restrictions of PL/C as opposed to MTS PL/I (F) are: 

 

     (1)  none of PL/I’s list processing,  controlled  storage,  or  based 

          storage facilities are available, 

 

     (2)  the PICTURE, DEFINED, and LIKE attributes are not recognized. 

 

  PL/C  is  further  restricted in that it does not have the PL/I compile- 

  time preprocessor facilities; it prohibits the use of statement names as 

  identifier names and the passing of PAR field information  to  the  PL/C 

  and it does not offer the full PL/I range of features on some statements 

  and  variable  attributes.  PL/I and PL/C also differ in the area of I/O 

  at the level of its interface  between  MTS  and  the  source  language. 

  Whereas  MTS  PL/I  offers  a general, complex facility for the detailed 

  specification of I/O transmission modes, PL/C offers a subset, but  with 

  subsequent ease in specification from the source-language level. 

 

     PL/C  has  extended  the  PL/I  language  in  the  area  of debugging 

  facilities.  However, the presence of these features  does  not  prevent 

  programs  using  them  from  being  compiled under PL/I, since PL/C also 

  contains a  facility  whereby  portions  of  PL/C  source  code  may  be 

  considered  PL/I,  but  not  PL/C,  comments.  If those program sections                           ___ 

  peculiar to  PL/C  are  sheltered  by  the  above,  this  area  of  PL/I 

  incompatibility can be removed. 

 

     The detailed differences between PL/I and PL/C occupy a major portion 

  of  the  succeeding section, and specifics may be found there.  The text 

  is written assuming one has a knowledge of PL/I or is learning  it  from 

  some source; it is not intended as an instructional text for either PL/I 

  or  PL/C.   The  section  "PL/I Bibliography" contains a bibliography of 

  some instructional publications. 

 

     An attempt has been  made  to  structure  this  description  so  that 

  information  immediately  needed  to run PL/C is presented in the front, 

  while the more detailed reference material appears  later.   The  novice 

  PL/C  user  is  urged  to  read  "Running  PL/C  in MTS" and "Diagnostic 

  Assistance."  The user should also read  "Differences  between  PL/I (F) 

  and  PL/C"  in  order  to  become  familiar  with  general  and specific 

  differences between the two programs.  The section "Error  Messages"  is 

  intended  for  reference  only.  "Differences between PL/I (F) and PL/C" 

  contains a subsection "The PL/C Macro Feature" which is provided for the 

  sake of completeness, as  the  feature  is  little  used.   The  section 

  "Internal  Structure  of PL/C" is intended for casual reading and is not 

  pertinent to the running of PL/C. 

 

 

  230  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  INTRODUCTION   ____________ 
 
 
     PL/C was  designed  to  permit  efficient  instruction  in  the  PL/I 
  language.   It  provides  high-speed  compilation,  reasonably efficient 
  execution, extraordinary diagnostic assistance, and upward compatibility 
  with the IBM PL/I F-level compiler. 
 
     PL/C does not support the full PL/I language.   The  major  omissions 
  are: 
 
     •  list processing, 
 
     •  multitasking, 
 
     •  compile-time  facilities  (except  for INCLUDE and a non-PL/I-type 

        macro processor). 

 

  There are  other  minor  omissions  described  in  "Differences  between 

  PL/I (F) and PL/C." 

 

     Some  features  have  been  added  to PL/C that are not part of PL/I. 

  These features are intended to provide additional diagnostic facilities. 

  They include special options on the PUT statement, the  FLOW  condition, 

  statements  to control FLOW and CHECK printing, and pseudo-comments that 

  can optionally be converted to source text.  These  pseudo-comments  can 

  be  used to shelter the incompatible PL/C features so that a program can 

  still be run under the PL/I (F) compiler. 

 

     This description is  not  intended  to  teach  a  beginner  to  write 

  programs in PL/C.  It specifically describes how PL/C differs from PL/I, 

  and  gives  information  necessary  to  use  PL/C  and  interpret output 

  provided by PL/C.  Except as noted in this guide, PL/C is consistent and 

  compatible with PL/I as defined by the IBM PL/I  F-level  compiler  (see 

  IBM  references in the section "PL/I Bibliography").  The MTS version of 

  PL/C (Release 7.6) is covered in this description. 

 

 

 

 

 

 

 

 

 

 

                                                                 PL/C  231 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  RUNNING PL/C IN MTS   ___________________ 
 
 
  The $RUN Command   ________________ 

 

 

     PL/C is invoked by issuing the MTS $RUN command: 

 

      $RUN *PLC [logical I/O unit assignments] [PAR=compiler options] 

 

  where the bracketed items are optional. 

 

  Logical I/O Units Referenced: 

 

     SCARDS - for PL/C source program input  and  the  SCARDS/SYSIN  input 

              files.  The default is *SOURCE*. 

 

     SPRINT - for  PL/C  source program listing and diagnostic output, and 

              the SPRINT/SYSPRINT output files.  The default is *SINK*. 

 

     Others - as needed in  the  PL/C  program.   The  logical  I/O  units 

              SPUNCH, GUSER, and SERCOM can be directly referenced as PL/I 

              file  variables.   Units  0-19 can be referenced through the 

              TITLE option of the OPEN statement (see notes  on  the  OPEN 

              statement in "Differences between PL/I (F) and PL/C"). 

 

  Compiler Parameters: 

 

  In  the  PAR  field  of  the $RUN command, PL/C recognizes the following 

  parameters with the associated effects.  They may be  specified  in  any 

  order  in the PAR field, and must be separated by commas.  Abbreviations 

  are underlined. 

 

     DEFAULTS= - define the default compiler options which will be set  at      _ 

                 the  beginning  of each PL/C program to be compiled.  Any 

                 of the compilation options defined in "Compiler  Options" 

                 below  may appear on the right-hand side of this keyword. 

                 If more than one compilation option is to  be  specified, 

                 they must be enclosed within parentheses and separated by 

                 commas.   A listing of the default parameters will appear 

                 at the beginning of the compilation if the OPTLIST option 

                 is selected. 

 

     HARDSTOP  - suppress the trapping  of  program  interrupts  by  PL/C. 

                 This  is  of  dubious value except to those debugging the 

                 PL/C compiler; the default action is to let PL/C  process 

                 program interrupts. 

 

     STAT      - print  compilation  and execution statistics on SERCOM if      __ 

                 PL/C is being run in  conversational  mode  and  compiler 

                 output  is being diverted to a file/device other than the 

                 terminal.  STAT is the default option. 

 

 

  232  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     NOSTAT    - suppress  the  printing  of  statistics  in   the   above      _ __ 
                 situation. 
 
     SIZE=n    - define  the  amount  of  virtual memory to be acquired by      _ 
                 PL/C for (PL/C) program code and dynamic storage  alloca- 

                 tion  during  execution.   "n" specifies region size in K 

                 (multiples of 1024 bytes), such that 32 ≤ n ≤ 1024.   The 
                 default is 40. 

 

  Example $RUN Commands: 

 

       $RUN *PLC PAR=SIZE=35 

 

       $RUN *PLC SCARDS=PLCFILE SPRINT=*PRINT* PAR=NOSTAT,D=(ALIST,HDRPG) 

 

       $RUN *PLC SCARDS=PROGRAM SPRINT=LISTING SPUNCH=AUX1 0=AUX2 

 

 

 

  Control Card Descriptions   _________________________ 

 

 

     The  control cards described below are those required or permitted by 

  the PL/C compiler.  There are ten PL/C control cards which are  used  to 

  set up programs for PL/C compilation and execution: 

 

       /COMPILE 

       /PROCESS 

       /OPTIONS 

       /DATA 

       /EXECUTE 

       /INCLUDE 

       /ATTACH 

       /MACRO 

       /MEND 

       /STOP 

 

  The slash (/) as shown above is the PL/C control card identifier in MTS. 

  The  (/) is preferred in MTS, but the identifier (*) is also recognized. 

 

     Control cards are not considered part of the source program  and  are 

  not  affected  by  the  use of the SORMGIN option.  That is, the control 

  cards must always have the format described below. 

 

 

 

 

 

 

                                                                 PL/C  233 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     (1)  The COMPILE Control Card           ________________________ 

 

          Each PL/C program can be optionally  preceded  by  this  control                                    __________ 

          card  to signify the start of a new PL/C program.  /COMPILE must 

          be present in  columns  1-8,  and  the  card  may  also  contain 

          specification  of  various PL/C options, to override the default 

          specifications built into the PL/C compiler  (see  the  compiler 

          options below).  The COMPILE card is required when it is desired 

          to  process two or more PL/C programs back-to-back.  The COMPILE 

          card is placed between programs to reinitialize the compiler and                          _______ 

          signify the start of the next PL/C program.   A  separator  page 

          may  precede  each program to facilitate separating the programs 

          in a batch job.  If the ID option is given on the COMPILE  card, 

          the text from this option will appear on the separator page. 

 

          For  compatibility  with  other  documentation  on PL/C (see the 

          section "PL/I Bibliography"), the COMPILE card  may  be  synony- 

          mously written as *PL/C. 

 

     (2)  The PROCESS Control Card           ________________________ 

 

          If  a program consists of several external procedures, the first 

          procedure is optionally preceded by the COMPILE card,  and  each 

          external  procedure  following  the first procedure must be pre-                                                               ____ 

          ceded by a card with /PROCESS in columns 1-8; /PROCESS  will  be 

          supplied by PL/C, if it is omitted.  Any of the compiler options 

          given  below, except as noted, can appear on a PROCESS card.  If 

          the PROCESS card changes any  options  defined  on  a  preceding 

          COMPILE card, the changes affect only the one external procedure 

          following  the PROCESS card.  /PROCESS can be also be written as 

          *PROCESS. 

 

     (3)  The OPTIONS Control Card           ________________________ 

 

          The OPTIONS card  permits  compilation  options  to  be  changed  

          within  the  source  deck of a program.  Any option available on           ______ 

          the COMPILE card can appear on an OPTIONS card, except as  noted 

          below.   An  OPTIONS card may appear anywhere in the PL/C source                                                ________ 

          program, and the options mentioned on it are immediately applied                                                        ___________ 

          to the source program  compilation.   /OPTIONS  must  appear  in 

          columns  1-8.   Specifying  an option on an OPTIONS card changes 

          the option only for that portion of the one  external  procedure 

          following the OPTIONS card. 

 

     (4)  The DATA Control Card           _____________________ 

 

          If  data  is  required  for execution of the program, it must be 

          preceded by a card with /DATA in columns 1-5.   If  no  data  is 

          required,  this card is optional.  If data is present, it starts 

          on the card following the /DATA card, and not on the /DATA  card 

          itself.   The  data  card margins default to 1 and 100.  See the 

          subsection "Input Card Format"  below  for  further  information 

          regarding data cards.  /DATA can also be written as *DATA. 

 

  234  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     (5)  The EXECUTE Control Card           ________________________ 

 

          The  EXECUTE  control  can be used interchangeably with the DATA 

          control card, described above. 
 
     (6)  The INCLUDE Control Card           ________________________ 

 

          The INCLUDE card is used to direct PL/C to begin  reading  input 
          records  from  a  source  other than the current file or device. 
          Following the /INCLUDE, which must be present in columns 1-8  of 
          the  input  record, is a list of file or device names from which 
          input records will be read in sequence.  For example, 
 
               /INCLUDE FILE1,FILE2,FILE3 
 
          will cause the compiler to read from the MTS files FILE1, FILE2, 
          and FILE3, continuing  from  one  file  to  the  next  after  an 
          end-of-file  is  reached on its predecessor.  The file or device 
          names (FDnames) may also specify MTS line-number ranges and  I/O 

          modifiers, for example, 

 

               /INCLUDE FILE1(1,25)@UC 

 

          is acceptable. 

 

          INCLUDEs  may  appear in any input read by PL/C, and the text to 

          be included may  contain  any  type  of  PL/C  input,  including                                     ___ 

          control  cards  and  other INCLUDE cards.  If encountered in the 

          compilation phase, INCLUDE  input  has  the  SORMGIN  parameters 

          applied to it.  /INCLUDE may also be written as *INCLUDE. 

 

     (7)  The ATTACH Control Card           _______________________ 

 

          In  order  to  provide the capability of attaching arbitrary MTS 

          files or devices to file variables in a PL/C program, the ATTACH 

          command has been added in the MTS version of PL/C. 

 

          The ATTACH command has the following form: 

 

               /ATTACH plcfile=mtsfdname[@F(nn)] 

 

          where "plcfile" is the name of a file variable used in the  PL/C 

          program,  and  "mtsfdname"  is  an MTS file or device name, with 

          optional  MTS-recognized  modifiers  and  optional   line-number 

          range.   "nn"  specifies  a  record  length  to  which all input 

          records (if the file is used for  input)  will  be  padded  with 

          blanks,  and  the  length  to which output records will be trun- 

          cated.  If no @F modifier is given, the length  will  depend  on 

          the  various  attributes  and  options  applied to the PL/C file 

          variable on declaration and opening.  See the notes for the OPEN 

          statement in "Differences between PL/I (F) and PL/C" below. 

 

 

                                                                 PL/C  235 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
          ATTACH cards may appear anywhere in a PL/C  input  stream.   The                                   ________ 
          mapping  they  define  is  noted immediately, but is not applied 
          until the "plcfile"  is  opened  (or  reopened),  implicitly  or 

          explicitly,  by  the  executing  PL/C  program.  ATTACHments are 

          recognized, once defined, for an entire invocation of  the  PL/C 

          compiler, but may be redefined at any time. 

 

          Examples of /ATTACH Commands: 

 

               /ATTACH INFILE=*SOURCE* 

               /ATTACH OUTFILE=*SINK*@F(132) 

               /ATTACH SCRATCH=-RECYCLE(100,200)@F(100) 

               /ATTACH INPUT=MYFILE(1000)@-IC@F(40) 

 

          For  similar  facilities  that  may  be  specified  at  the PL/C 

          language level, see the description of the ENVIRONMENT attribute 

          and the  OPEN  statement  description  in  "Differences  between 

          PL/I (F) and PL/C." 

 

     (8)  The MACRO Control Card           ______________________ 

 

          See  "The  PL/C  Macro  Feature."   The  MACRO  card may also be 

          written as *MACRO. 

 

     (9)  The MEND Control Card           _____________________ 

 

          See "The PL/C Macro Feature."  The MEND card may also be written 

          as *MEND. 

 

     (10) The STOP Control Card           _____________________ 

 

          The STOP control card is used to present a  logical  end-of-file 

          to  PL/C.   When  /STOP is encountered in a PL/C input stream in 

          columns 1-5, an end-of-file condition is generated.  A STOP card 

          may be used to  signify  the  end  of  an  INCLUDE  section,  to 

          terminate  the  input  data  to  the  executing  program,  or to 

          terminate the compiler. 

 

     (11) Compiler Options           ________________ 

 

          Options on the control cards  are  separated  by  blanks  and/or 

          commas,  and  may  be  continued  onto  subsequent  cards.   The 

          continuation of any of these cards has a (/) or (*) in column  1 

          with  columns  2  and  3 blank.  An individual option may not be 

          split over a card boundary. 

 

          Options specified on the /COMPILE card, and the  default  values 

          for  the  options  not  specified,  are in effect throughout the 

          program, except as overridden by  specifications  on  subsequent 

          /PROCESS  and  /OPTIONS  cards.   After  each external procedure 

          options are reset to the "global" /COMPILE and  default  values. 

          To  facilitate  complete  suppression  of  the  source  listing, 

 

 

  236  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
          specifying NOSOURCE on the /COMPILE card  overrides  any  subse- 
          quent SOURCE options. 
 
          The  default options vary depending on whether PL/C is being run 
          in batch or conversational mode.  If in conversational mode  and 
          SPRINT  is  assigned  to  the  terminal  printer,  the output is 
          generally as abbreviated  as  possible.   In  the  options  list 
          below,  those  options which are underlined are the defaults for 
          batch and conversational use when SPRINT output is not  directed 
          to  the  terminal  printer.  For all other cases, a note is made 
          indicating the conversational default if it  is  different  from 
          the batch default. 
 
          ATR, A, NOATR                   _____ 
 
               Produce  attribute  listing for all variables declared when 
               ATR is in effect. 
 
          ALIST, AL, NOALIST                      _______ 
 
               Produce assembler listing of generated object code. 
 
          AUXIO=n, AU (on /COMPILE only) 

 

               Limit on number of auxiliary input/output operations.   The 

               default is n=10000. 

 

          CMNTS, CMNTS=(n1,n2,...), C, NOCMNTS                                        _______ 

 

               Contents of comments beginning with a colon (:)  considered 

               source  text.   If  parameter(s)  are  given  (1 ≤ ni ≤ 7), 
               comments beginning with "ni"  are  also  considered  source 

               text. 

 

          CMPRS, CP, NOCMPRS           _____ 

 

               Source listing to be given in compressed form (certain page 

               ejects  replaced by 3 line skips).  The terminal default is 

               NOCMPRS. 

 

          CTIME=(s), CT (on /COMPILE only) 

 

               Time limit for compilation.  "s" is seconds and can  be  an 

               unsigned  number  with  at most two fractional digits.  The 

               default is s=(remaining portion of global time limit) if in 

               batch  mode  and  no  local  time   limit   is   specified, 

               s=(remaining  portion  of local time limit) if a local time 

               limit is specified, or s=(infinite) if neither of the above 

               is applicable.  The CTIME value can  never  be  set  higher 

               than the remaining local or global time limit. 

 

 

 

                                                                 PL/C  237 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
          DUMP, D, NODUMP, {NO}DUMP=(d1,d2,...), {NO}DUMP=l1l2... 

               (on /COMPILE only) 

 

               Produce  post-mortem  dump.   The  dump  options  are given 

               below.  For d1,d2,..., use the single-letter  or  full-name 

               form.   For  l1l2...,  only  the  single-letter form may be 

               used. 

 

                 BLOCKS, B    Traceback of blocks active at termination. 

                 SCALARS, S   Final values of scalar variables  in  active 

                              blocks.  (Implies BLOCKS.) 

                 ARRAYS, A    Final  values  of  arrays  in active blocks. 

                              (Implies SCALAR and BLOCKS.) 

                 FLOW, F      History of last 18 transfers of  control  if 

                              the FLOW condition is enabled. 

                 LABELS, L    List  of labels with frequency of encounter. 

                 ENTRIES, E   List of entry names with frequency of  call. 

                 REPORT, R    Statistics on run (time, virtual memory use, 

                              auxiliary I/O operations, etc.). 

                 UNREAD, U    List  of first 5 or fewer unread data cards. 

                              (Logical ends-of-file are never read  past.) 

                 depth        An  integer giving limit on number of active 

                              blocks for B, S, and A dump options.   If  0 

                              is given, depth is unlimited. 

                 DFLTS, D     Equivalent to S, F, L, E, R, U. 

 

               The  batch  default  DUMP  options  are (S,F,L,E,R,U).  The 

               terminal default is NODUMP. 

 

          DUMPE, DE, NODUMPE, {NO}DUMPE=(d1,d2,...), {NO}DUMPE=l1l2... 

               (on /COMPILE only) 

 

               Produce post-mortem dump  only  if  error  was  encountered 

               during  execution.   The  batch  default  DUMPE options are 

               (S,F,L,E,R,U).  The terminal default is NODUMPE. 

 

          DUMPT, DT, NODUMPT, {NO}DUMPT=(d1,d2,...), {NO}DUMPT=l1l2... 

               (on /COMPILE only) 

 

               Produce post-mortem dump only if execution  was  terminated 

               by an error.  The batch default DUMPT options are (S,F,L,E, 

               R,U).  The terminal default is NODUMPT. 

 

          DUMPS,  DS,  NODUMPS,  {NO}DUMPS=(d1,d2,...),  {NO}DUMPS=l1l2... 

               (on /COMPILE only) 

 

               Specifies  DUMP,  DUMPE,  and  DUMPT.   The  batch  default 

               options   are   (S,F,L,E,R,U).   The  terminal  default  is 

               NODUMPS. 

 

 

 

  238  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
          ERRORS=(c,r), E (on /COMPILE only) 

 

               Suppress execution if "c" or more compile errors.  If  c=0, 

               suppress  execution  unconditionally.   Terminate execution 

               after "r" run-time errors.  If r=0, there is  no  limit  on 

               run-time  errors.   The  defaults  are  c=50 and r=50.  The 

               maximum for each is 255. 

 

          ETIME=(s), ET (on /COMPILE only) 

 

               Time limit for execution.  "s" is seconds  and  can  be  an 

               unsigned  number  with  at most two fractional digits.  The 

               default is s=(remaining portion of global time limit) if in 

               batch  mode  and  no  local  time   limit   is   specified, 

               s=(remaining  portion  of local time limit) if a local time 

               limit is specified, or s=(infinite) if neither of the above 

               is applicable.  The ETIME value can  never  be  set  higher 

               than the remaining local or global time limit. 

 

          FLAGE, FE, FLAGW, FW                      _____ 

 

               FLAGW  prints  both  warnings  and  error  messages.  FLAGE 

               suppresses warnings and prints only error messages. 

 

          HDRPG, H, NOHDRPG (on /COMPILE only)                     _______ 

 

               Print header-separator page before program.  This option is 

               invalid if PL/C output is  being  directed  to  a  terminal 

               printer. 

 

          ID=’name’, I (on /COMPILE only) 

 

               Program  identification  name (20 characters maximum).  The 

               default name is ’JOB WITH NO ID’. 

 

          LINES=n, L (on /COMPILE only) 

 

               Maximum number of lines to  be  printed.   The  default  is 

               n=60*(page limit). 

 

          LINECT=n, LC 

 

               Lines  per  page  to  be  printed  during compilation.  The 

               default is n=60.  The PAGESIZE option of the OPEN statement 

               may be used to control the run-time page size. 

 

          MCALL, MC, NOMCALL           _____ 

 

               Print macro calls. 

 

 

 

                                                                 PL/C  239 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
          MONITOR, M, NOMONITOR, {NO}MONITOR=(d1,d2,...)           _______ 

               {NO}MONITOR=l1l2... 

 

               The MONITOR option specifies that an error message is to be 

               given whenever a program uses  a  monitored  feature.   The 

               error  will  count  towards  the compile- or run-time error 

               limit, and the standard PL/C correction  will  be  applied. 

               MONITOR  options  are  given below.  For d1,d2,..., use the 

               single-letter or full-name form.   For  l1l2...,  only  the 

               single-letter form may be used. 

 

                 BNDRY, B     Monitor  strings and comments extending over 

                              card boundaries. 

                 UDEF, U      Monitor use of initialized  variables.   (On 

                              /COMPILE only.) 

                 SUBRG, S     Monitor   subscripts   (i.e.,  disallow  the 

                              NOSUBRG  condition  prefix).   (On  /COMPILE 

                              only.) 

                 AUTO, A      Monitor  implied  arithmetic/string  conver- 

                              sion.  (On /COMPILE only.) 

                 DFLTS, D     Equivalent to specifying  MONITOR=(B,U,S,A). 

                              (On /COMPILE only.) 

 

               Only  the  listed  options  are  altered  (i.e., enabled or 

               disabled) except when MONITOR is used on the /COMPILE card.                          ______ 

               In this case, the designated options are enabled,  and  all 

               others  are  disabled.  For compatibility with earlier ver- 

               sions of PL/C, the BNDRY, UDEF, and FREE  options  will  be 

               accepted outside of a MONITOR specification. 

 

          MTEXT, MT, NOMTEXT           _____ 

 

               Print  macro  text  expansion.   The  terminal  default  is 

               NOTEXT. 

 

          M91, M9, NOM91 (on /COMPILE only)                    _____ 

 

               Generate code to run on an IBM 360 Model 91.   This  option 

               is never valid in PL/C. 

 

          OPLIST, O, NOOPLIST           ______ 

 

               Print  list  of options in effect.  The terminal default is 

               NOOPLIST. 

 

          PAGES=n, P (on /COMPILE only) 

 

               Maximum number of pages to  be  printed.   The  default  is 

               n=(global  page  limit)-1  (if  in  batch and no local page 

               limit supplied), n=(local  page  limit)-1  (if  local  page 

               limit  specified),  and n=32766 (if neither of the above is 

               applicable).  The PAGES value can  never  be  reset  higher 

 

 

  240  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
               than  the  remainder, if any, of a local or global MTS time 
               limit which PL/C is running under. 
 
          SORMGIN=(s,e), SORMGIN=(s,e,c), SM 

 

               Establish  source  card  margins:   "s"  is  first   column 

               scanned;  the  default is s=1.  "e" is last column scanned; 

               the default is e=100.  "c" is carriage-control column;  the 

               default is c=0. 

 

          SOURCE, S, NOSOURCE           ______ 

 

               Print  source  program  listing.   The  terminal default is 

               NOSOURCE. 

 

          TIME=(s), T (on /COMPILE only) 

 

               Time limit for compilation and execution.  "s"  is  seconds 

               and  can  be an unsigned number with at most two fractional 

               digits.  The default is s=(remaining portion of global time 

               limit) if  in  batch  mode  and  no  local  time  limit  is 

               specified,  s=(remaining  portion of local time limit) if a 

               local time limit is specified, or s=(infinite)  if  neither 

               of  the  above  is applicable.  The TIME value can never be 

               set higher than the remaining local or global time limit. 

 

          TABSIZE=n, TS (on /COMPILE only) 

 

               Determines amount of PL/C region allocated to symbol table. 

               "n" must be given in fullwords.   The  default  is  1/2  of 

               usable area up to 32767 fullwords. 

 

          XREF, NOXREF                 ______ 

 

               Produce  cross-reference listing for any variables declared 

               and referenced while XREF is in effect. 

 

          PL/C is reasonably  tolerant  in  its  scanning  of  the  option 

          phrases.   Commas  are  optional  and spaces may be added except 

          within the parentheses after ERRORS and SORMGIN; these  must  be 

          exactly  as  shown above.  The argument of the ID option must be 

          enclosed in primes.  The following examples will both yield  the 

          same results: 

 

             /COMPILE I=’CORNELL, EZRA’ X A T=1.5 P=50 

 

             /COMPILE IX=’CORNELL, EZRA’,,XRFE,ATTRIBUTE TIM=1.5, PAGE=50 

 

     PL/C  is  a  compile-and-execute  system.   However, execution can be 

  suppressed by specifying ERRORS=(0,0) on the /COMPILE card.   It  should 

  also be noted that the "assembly listing" produced when the ALIST option 

  is  specified is only an approximation to a true assembly listing of the 

  object code generated  by  PL/C.   (This  was  intended  as  an  aid  in 

 

                                                                 PL/C  241 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  debugging the compiler rather than to show the user exactly what code is 
  executed.   The  PL/C  object  code includes certain in-line data struc- 
  tures, and the "assembly listing" does not correctly interpret these  in 

  all cases.) 

 

 

 

  Example Control Card Sequences   ______________________________ 

 

 

 

     (1)  Single program without data, with an increased PL/C region size: 

 

          $RUN *PLC PAR=SIZE=80 

               source program cards 

 

     (2)  Single program with data, compiler output directed to other than 

          *SINK*: 

 

          $RUN *PLC SPRINT=file 

          /COMPILE options (required only if "options" are specified)                             ________ 

          /ATTACH ... (possibly needed for reference to an MTS file) 

               source program cards 

          /OPTIONS options 

               more source program cards 

          /DATA 

               data cards 

          /STOP 

 

     (3)  Program with two external procedures and data: 

 

          $RUN *PLC (plus any needed I/O device assignments) 

          /COMPILE options 

               source program cards for 1st external procedure 

          /PROCESS 

               source program cards for 2nd external procedure 

          /OPTIONS options 

               2nd external procedure continued 

          /OPTIONS options 

               2nd external procedure continued 

          /EXECUTE 

               data cards 

          /INCLUDE datafile 

               more data cards read from "DATAFILE" 

          /STOP 

 

     (4)  Three independent programs run in batch mode (back-to-back): 

 

          $RUN *PLC SCARDS=*SOURCE* SPRINT=*PRINT* 

               source program cards for program 1 

          /INCLUDE sourcefile 

               more program source cards included from "sourcefile" 

          /DATA 

 

  242  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
               data cards for program 1 
          /COMPILE options (note this card is necessary) 

               source program cards for program 2 

          /PROCESS 

               source program cards for program 2 

          /EXECUTE 

               data cards for program 2 

          /COMPILE options (note this card is necessary) 

               source program cards for program 3 

          /STOP 

 

 

  Input Card Format   _________________ 

 

 

     The standard field for input records is columns 1 through 100.  As in 

  PL/I,  an  input  column  may  be specified to contain logical carriage- 

  control characters which affect the  spacing  of  the  program  listing. 

  Only  five  logical  carriage-control  codes  are  recognized  for  this 

  purpose: 

 

      blank     space 1 line before printing (normal mode) 

      0         space 2 lines before printing 

      -         space 3 lines before printing 

      +         do not space before printing (overprint) 

      1         skip to next page 

 

  Carriage-control characters do not appear on the source listing. 

 

     The default source card format  can  be  altered  by  specifying  the 

  SORMGIN option on the /COMPILE, /OPTIONS, or /PROCESS card.  The form is 

 

       SORMGIN=(a,b,c) 

 

  where  "a"  is  the leftmost column to be included, "b" is the rightmost 

  column to be included, and "c" is the column for carriage control. 

 

  In MTS, the default is SORMGIN=(1,100,0).  This default  was  chosen  to 

  facilitate  input  from  wide-carriage  terminals  and  to  disable  the 

  sometimes troublesome carriage-control  features.   The  maximum  column 

  specification is 100, and the carriage-control column must be outside of 

  the  "a,b"  field.   Control cards are not considered part of the source 

  program and thus are not affected by the SORMGIN option.  Control  cards 

  must always be formatted as described above. 

 

     When  the  default  MONITOR=BNDRY  option is in effect, PL/C does not 

  permit any element to be split over a card boundary.  That is, keywords, 

  identifiers, constants, and comments cannot start on  one  card  and  be                               ________ 

  continued  on the next.  This limits the length of string constants that 

  may be included in a PL/C  program.   It  also  means  that  in  program 

  documentation  with  long comments, each card must be a separate comment 

  with an opening /* and a closing */.   This  is  more  restrictive  than 

  PL/I (F), which will allow very long comments. 

 

                                                                 PL/C  243 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     When the NOMONITOR=BNDRY option is specified, quoted string-constants 
  and  comments may be continued over a card boundary.  The maximum length 
  of a string-constant is 256 characters;  there  is  no  maximum  on  the 
  length  of  a comment.  Note that the card boundary is as defined by the 
  SORMGIN option and not the physical card boundary.  For  example,  if  a 
  SORMGIN  parameter  of  (2,72,1)  were used, column 2 of an input record 

  would be considered to directly follow column 72 of the preceding  input 

  record--no  blank would be supplied.  Note also that the NOMONITOR=BNDRY 

  option applies only to string-constants and comments.  One still  cannot 

  continue a keyword, an identifier, or an arithmetic constant over a card 

  boundary. 

 

     The  card field for SCARDS/SYSIN data cards defaults to 1 to 100 (any 

  records shorter will be padded with blanks), but may be redefined by  an 

  explicit  OPEN.   Data cards are not affected by the SORMGIN or BOUNDARY 

  options.  Data cards  are  considered  to  be  a  continuous  stream  of 

  characters  and  the card boundary is of no significance whatever.  That 

  is, the first column of a card directly follows the last of the previous 

  card, and any element may be continued over a card boundary. 

 

 

 

  DIAGNOSTIC ASSISTANCE   _____________________ 

 

 

     PL/C is unusual, and not compatible with PL/I,  in  its  approach  to 

  program  testing.   The  PL/C  compiler  is  "error-correcting"  and  it 

  includes some options and statements that are not part of PL/I. 

 

 

 

  Error Correction   ________________ 

 

 

     When errors are encountered in a PL/C program, an attempt  at  repair 

  is  made,  and both the error condition and repair action are announced. 

  Translation is completed for  every  program,  and  execution  continues 

  until  a preset number of errors have been detected.  This number may be 

  specified on the /COMPILE card; if specified as  ERRORS=(0,0)  execution 

  will  be  suppressed.   PL/C will correctly repair some minor syntax and 

  punctuation errors.  More importantly, by briefly prolonging the life of 

  an obviously moribund program, it  often  yields  additional  diagnostic 

  information  which helps to reduce the number of submissions required to 

  achieve satisfactory execution. 

 

     One type of PL/C correction that  is  often  successful  is  spelling 

  correction for keywords.  This is attempted only in situations where the 

  context demands a certain type of keyword. 

 

     When  errors  are  detected  and  repaired  during  compilation, PL/C 

  conveys this information to the  programmer  by  displaying  the  recon- 

  structed  form  of the source statement.  The usual explanatory messages 

  are also provided, but the reconstruction of  the  statement  that  PL/C 

 

  244  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  actually  uses often provides the best information as to what was wrong. 
  PL/C will give the error messages only for the first  six  errors  on  a 
  particular  statement.   After  the first few errors have been detected, 
  further analysis is heavily dependent upon the corrections that PL/C has 
  attempted.  Reporting additional messages is more often  confusing  than 
  useful.   By  this  point  PL/C  has usually abandoned the statement and 
  called it "untranslatable."  In that case, a null statement  is  substi- 

  tuted for the faulty source statement. 

 

     To enhance this error-correcting capability, two special restrictions 

  have been placed on the source language: 

 

     (1)  Comments  are normally limited to a single card, eliminating the 

          catastrophic confusion of program  with  comments  when  a  user 

          omits  the  closing  "*/"  after  a comment.  The programmer can 

          override this restriction and process standard  long  PL/I  com- 

          ments  by  specifying the NOMONITOR=BNDRY option on the /COMPILE 

          card. 

 

     (2)  Thirty-nine keywords have been reserved and cannot  be  used  as 

          identifiers.  These are the statement keywords and six auxiliary 

          keywords.   Although  this  reservation is not necessary for the 

          analysis of a correct program, the redundancy that it introduces 

          is extremely useful in attempting to unscramble a  program  that 

          contains  numerous  errors.   These reserved words are "recovery 

          points" for the compiler; whenever it finds a  statement  to  be 

          unintelligible, it can always scan for the beginning of the next 

          statement. 

 

  Examples of PL/C Error Correction: 

 

   STMT 2             DECLARE  ( A1 B1 CHARACTER VARYING ; 

   IN   2         ERROR  SY06 MISSING COMMA 

   IN   2         ERROR  SY02 MISSING ( 

   IN   2         ERROR  SY11 MISSING EXPRESSION 

   IN   2         ERROR  SY04 MISSING ) 

   IN   2         ERROR  SY04 MISSING ) 

   PL/C USES          DECLARE ( A1, B1 CHARACTER (1) VARYING ); 

 

   STMT 4             P2 PROC ORDER FIXED REORDER ; 

   IN   4         ERROR  SY09 MISSING : 

   IN   4         ERROR  SY0F MISSING KEYWORD 

   IN   4         ERROR  SY02 MISSING ( 

   IN   4         ERROR  SY04 MISSING ) 

   IN   4         ERROR  SY20 IMPROPER OPTION 

   PL/C USES          P2: PROCEDURE ORDER RETURNS (FIXED); 

 

   STMT 9             PUT LIST ( X(I) Y(I) DO I = 1 TO N); 

   IN   9         ERROR  SY06 MISSING COMMA 

   IN   9         ERROR  SY02 MISSING ( 

   IN   9         ERROR  SY04 MISSING ) 

   PL/C USES          PUT LIST ((X (I),Y (I) DO I=1 TO N)); 

 

 

                                                                 PL/C  245 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  An interesting one-card PL/I program is the following: 
 
   STMT 1             PTU FILE(OUTPUT A+1 ’CORRECTION. 

   IN   1         ERROR  SY00 MISSPELLED KEYWORD 

   IN   1         ERROR  SY1D MISSING EXTERNAL PROC 

   IN   1         ERROR  SY3B MISSING LABEL OR ENTRY NAME 

   PL/C USES          $L001$: PROCEDURE; 

 

   IN   2         ERROR  SY04 MISSING ) 

   IN   2         ERROR  SY22 IMPROPER I/O PHRASE 

   IN   2         ERROR  SY02 MISSING ( 

   IN   2         ERROR  SYEB STRING CONSTANT RUNS ACROSS CARD BOUNDARY 

   IN   2         ERROR  SY06 MISSING COMMA 

   IN   2         ERROR  SY04 MISSING ) 

   PL/C USES          PUT FILE (OUTPUT) LIST (A+1,’CORRECTION.’); 

 

   IN   3         ERROR  SY0E  MISSING END 

   PL/C USES          END; 

 

   ERROR SY1C  MISSING MAIN PROC 

 

 

 

  Control of Printed Output   _________________________ 

 

 

     PL/C  offers  flexible  means  of  controlling  the volume of printed 

  output in both compilation and execution.  Like PL/I (F),  PL/C  permits 

  the  suppression of the printing of the source program by specifying the 

  NOSOURCE option on the /COMPILE,  /OPTIONS,  or  /PROCESS  cards;  error 

  messages  will  still  appear.   By  using  SOURCE  and  NOSOURCE on the 

  /OPTIONS card, it is possible to selectively suppress  the  printing  of 

  program segments. 

 

     Similar control of execution output is provided by the PUT ON and PUT 

  OFF  statements.   These  statements  control  only  PUT to FILE(SPRINT/ 

  SYSPRINT).  This permits the programmer  to  suppress  the  output  from 

  portions  of program known to be correct while attacking errors in other 

  sections.  The PUT ON and PUT  OFF  statements  are  dynamic,  and  take 

  effect as they are encountered in execution. 

 

 

 

  Tracing and Snapshot Dumping   ____________________________ 

 

 

     The  most  powerful  techniques  for  program debugging are still the 

  classic trace (dynamically following the progress of the  program),  and 

  dump (periodically displaying the instantaneous status of relevant parts 

  of  storage).   Unfortunately,  most high-level programming languages do 

  not particularly assist the user in either regard.  PL/I  provides  some 

  facilities  for  this  purpose,  and  PL/C has extended these facilities 

  considerably. 

 

  246  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     The principal tracing facility of PL/I is the CHECK prefix.   Applied 
  to a PROCEDURE or BEGIN block, this lists the names of identifiers to be 
  dynamically monitored during execution of that block.  Unfortunately, it 
  is  somewhat  inflexible (it can only be applied to an entire block), is 

  static rather than dynamic in control, and tends to produce prohibitive- 

  ly voluminous output.  PL/C has adopted a  different  interpretation  of 

  the  CHECK  of an array or structure (see the subsection "Conditions" in 

  "Differences between PL/I (F) and PL/C") in order to reduce  the  volume 

  of  output, and has introduced the CHECK and NOCHECK statements in order 

  to give flexible and dynamic control over the CHECK action.   The  CHECK 

  and  NOCHECK  statements  are effective only in a block that has a CHECK 

  prefix and affect only the  identifiers  listed  in  that  prefix.   The 

  NOCHECK  statement  simply suppresses the printing that results from the 

  raising of the CHECK condition, and  the  CHECK  statement  resumes  the 

  printing.   Even  finer  control over the checking action is provided by 

  means of parameters on  the  CHECK  statement  (see  "Incompatible  PL/C 

  Diagnostic Statements" in "Differences between PL/I (F) and PL/C"). 

 

     The  tracing facility is further extended by the addition of FLOW and 

  NOFLOW prefixes and the FLOW and NOFLOW statements.   The  prefixes  and 

  statements are quite similar to CHECK but are concerned with the flow of 

  control  of the program.  When the FLOW condition is not disabled, it is 

  raised whenever a statement is encountered that would potentially  alter 

  the  normal  sequential  flow-of-control.  The statements that raise the 

  condition are  CALL,  DO,  GOTO,  IF,  and  RETURN.   In-line  procedure 

  reference (function reference) also raises the condition.  An exception- 

  al  condition  (except  FLOW  for  obvious reasons) which would cause an 

  ON-unit to be entered will also raise the FLOW condition.  The  standard 

  system  action  is  to make an origin-destination entry in a queue whose 

  contents may be displayed by the PUT FLOW statement and the  post-mortem 

  dump.   Depending upon the appearance of FLOW and NOFLOW statements, the 

  standard system action may instead be  to  print  an  origin-destination 

  line  on SPRINT/SYSPRINT.  This standard action can of course be altered 

  by a user-supplied ON FLOW unit (see "Differences between  PL/I (F)  and 

  PL/C"). 

 

     A dumping facility is provided by the addition of nonstandard phrases 

  in the PUT statement: 

 

     (1)  PUT FLOW; displays the recent flow history. 

 

     (2)  PUT SNAP; displays the recent "calling" history. 

 

     (3)  PUT  ALL;  displays  the  current values of all automatic scalar 

          variables in the blocks which are active when the  statement  is 

          encountered. 

 

     (4)  PUT  ARRAY;  displays  the  values  of  arrays as well as simple 

          variables. 

 

  A DEPTH(exp) phrase can be used with any of these  except  PUT  FLOW  to 

  limit  the  nesting  depth  for  which  the  display is to be given (see 

  "Differences between PL/I (F) and PL/C"). 

 

                                                                 PL/C  247 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Final Diagnostic Dump   _____________________ 
 
 
     When the execution of a PL/C program is  terminated,  a  "post-mortem 

  dump"  is produced according to the options on the /COMPILE card’s DUMP, 

  DUMPE, and DUMPT parameters.  See the  section  "PL/C  Post-Mortem  Dump 

  Statistics Report" for details. 

 

 

 

  ERROR MESSAGES   ______________ 

 

 

     In  the  text  of  the  following messages, the uppercase letters are 

  shown as they appear on the PL/C  program  listing,  but  the  lowercase 

  words are replaced by variable information as follows: 

 

           iden      - a variable or label name will be printed 

           string    - a character string will be printed 

           number    - a fixed- or floating-point number will be printed 

           rtn       - the name of a subroutine will be printed 

           line      - a statement number will be printed 

           attribute - an attribute will be printed 

 

     The error message numbers in PL/C are prefixed with a two-letter code 

  indicating  the  phase in which the error occurred.  The codes and their 

  meanings are: 

 

     SY or MD - syntactic analysis  phase  (MD  for  errors  during  macro 

                definitions) 

           SM - semantic-analysis phase 

           XR - cross-reference phase 

           CG - code-generation phase 

           EX - execution phase 

           PM - post-mortem dump phase 

 

     One group of messages, numbered E2-EA, can appear in any phase of the 

  compiler.   Hence,  these  messages  will be given with a prefix for the 

  phase in which the error occurs.  All of the other  messages  appear  in 

  only one phase and are grouped in the list below by phase and prefix. 

 

     A  line beginning PROGRAM CHECK or COMPILER ERROR indicates a problem 

  in the PL/C compiler and not a user error (although it most often occurs 

  in response to some user error).  Please  bring  such  programs  to  the 

  attention  of  the  Computing  Center  staff  so that the problem can be 

  remedied. 

 

 

 

 

 

  248  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  Variable Prefix (errors that can occur in any phase)   ________ ______ 

 

  Number              Message   ______              _______ 

 

   E2       ERROR LIMIT EXCEEDED 
   E3       LINE LIMIT EXCEEDED 
   E4       PAGE LIMIT EXCEEDED 
   E5       TIME LIMIT EXCEEDED 
   E6       TIME LIMIT EXCEEDED - PROBABLE COMPILER LOOP 
               (The specified time limit has expired and an additional 

               second has passed without the completion of a source state- 
               ment.  This is probably a compiler error, see beginning of 
               this section.) 

   E7       string 

               (Improper ATTACH card formation.  See "Running PL/C in MTS" 

               for the proper format.) 

   E8       UNABLE TO PROCESS INCLUDE COMMAND 

               (See "Running PL/C in MTS.") 

   E9       SYMBOL-TABLE OVERFLOW.  USE LARGER REGION OR INCREASE TABSIZE. 

               (See TABSIZE option in "Running PL/C in MTS.") 

   EA       STRING TOO LONG FOR LINE IN ABOVE MESSAGE (OR COMPILER ERROR) 

               (PL/C tried to print an error message containing a string 

               longer than an output line.  The message is terminated and 

               execution continues.) 

 

 

  SY or MD Prefix (errors during the syntactic analysis phase)   __ __ __ ______ 

 

  In some cases, particularly in declarations, errors are  discovered  too 

  late  in  the analysis of the statement for PL/C to conveniently correct 

  the text of the statement.  The internal form of the  program  has  been 

  altered to a correct construction (often just a null statement), but the 

  usual  display  of  corrected  source  text  is  omitted.  Messages that 

  frequently are issued in such circumstances are marked with an  asterisk 

  (*) in the following list. 

 

  Number              Message   ______              _______ 

 

   00       MISSPELLED KEYWORD 

               (Apparent misspelling of one of the reserved keywords.  See 

               list under DECLARE in "Differences between PL/I (F) and 

               PL/C.") 

   01       EXTRA ( 

               (The extra left parenthesis is deleted.) 

   02       MISSING ( 

               (A left parenthesis is supplied.) 

   03       EXTRA ) 

               (The extra right parenthesis is deleted.) 

   04       MISSING ) 

               (Possibly missing operator, a right parenthesis is 

               supplied.) 

   05       EXTRA COMMA 

               (The extra comma is deleted.) 

 

                                                                 PL/C  249 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
   06       MISSING COMMA 
               (A comma is supplied.) 

   07       EXTRA SEMI-COLON 

               (The extra semicolon is deleted.) 

   08       MISSING SEMI-COLON (OR MISUSE OF RESERVED WORD) 

               (A semicolon is supplied.  A frequent cause of this error 

               is the use of a reserved keyword as an identifier.  This 

               forces the start of a new statement so the statement prema- 

               turely ended apparently lacks a semicolon.  The user may 

               need to choose a nonreserved identifier rather than supply 

               a semicolon.) 

   09       MISSING : 

               (A colon is supplied.) 

   0A       MISSING = 

               (An equal sign is supplied.) 

   0B *     IMPROPER ATTRIBUTE ON PARAMETER 

   0C       INEFFECTIVE IF 

               (Warning:  A pointless IF statement has been given; the 

               THEN unit is null and there is no ELSE unit.) 

   0D *     IMPROPER ENTRY/RETURNS ATTRIBUTE 

   0E       MISSING END 

               (/PROCESS, /DATA, /STOP, or end-of-program encountered with 

               a block still open; END supplied.) 

   0F       MISSING KEYWORD 

               (The required keyword is supplied.) 

   10       INCOMPLETE EXPRESSION 

   11       MISSING EXPRESSION 

   12       MISSING VARIABLE 

   13       MISSING ARGUMENT, ONE SUPPLIED 

   14       EMPTY LIST 

   15       IMPROPER NOT 

               (¬ cannot be used as a binary operator; an equal sign "=" 

               is substituted.) 

   16       IMPROPER ELEMENT 

               (An element which has appeared in a syntactically 

               incorrect position has been discarded.) 

   17       IMPROPER SYNTAX, TRANSLATION SUSPENDED 

               (The statement has been abandoned and replaced by a null 

               statement.  PL/C scans ahead for a semicolon or reserved 

               word to start the next statement.) 

   18       INCONSISTENT OPTION, STATEMENT DELETED 

               (After the statement was completed, it was found to contain 

               inconsistent options.  It is deleted and replaced by a null 

               statement.) 

   19       NOT ENOUGH CORE, TRY LARGER REGION 

               (Program will not be executed as is.  The program should be 

               run with a larger SIZE parameter.  See "Running PL/C in 

               MTS.") 

   1A       NESTING TOO DEEP 

               (Nesting depth exceeds capacity of PL/C.  See restrictions 

               in "Running PL/C in MTS.") 

   1B       INACCESSIBLE STATEMENT 

               (Warning:  This statement cannot be reached in execution.) 

 

  250  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
   1C       MISSING MAIN PROC 
               (Warning:  No procedure has OPTIONS(MAIN) phrase; the first 

               procedure is assumed to be MAIN.) 

   1D       MISSING PROCEDURE STATEMENT 

               (A statement is not contained in an external procedure, or 

               an identifier declared ENTRY appears as a nonentry label. 

               A PROC statement is supplied by PL/C.  This condition is 

               sometimes a byproduct of another error; for example, an 

               extra END in the interior of a procedure ends it premature- 

               ly and causes subsequent statements to be apparently out- 

               side of any procedure.) 

   1E       MISSING /PROCESS (OR EXTRA END) 

               (Either the required /PROCESS between external procedures 

               has been omitted, or an extra END has prematurely ended a 

               procedure.  PL/C supplies a /PROCESS.) 

   1F       MISPLACED ENTRY STATEMENT 

               (ENTRY cannot be in a BEGIN block or in an iterative DO 

               loop.) 

   20       IMPROPER OPTION(S) 

               (Improper option on statement, or invalid option on /COM- 

               PILE, /PROCESS, or /OPTIONS card.  See "Running PL/C in 

               MTS.") 

   21       IMPROPER FORMAT ITEM 

   22       IMPROPER I/O PHRASE 

   23       IMPROPER TO PHRASE 

   24       IMPROPER BY PHRASE 

   25       IMPROPER WHILE PHRASE 

   26       IMPROPER SPECIFICATION 

               (Error in iteration specification of DO statement.) 

   27       MULTIPLE DECLARATION 

               (This identifier has already been used in a way that pre- 

               cludes its appearance here.  In most contexts, the identi- 

               fier is replaced by a new identifier generated by PL/C.) 

   28 *     IMPROPER attribute ATTRIBUTE FOR iden 

               (The attribute indicated cannot be applied to this identi- 

               fier, usually because of previous attributes.) 

   29       IMPROPER FACTORING 

   2A *     IMPROPER DIMENSION 

   2B *     IMPROPER PRECISION 

   2C *     IMPROPER SCALE 

   2D *     IMPROPER VARYING ATTRIBUTE 

               (String type not specified; VARYING deleted.) 

   2E       IMPROPER FILE-NAME 

               (The identifier in a FILE phrase is not a valid file name.) 

   2F       EXTERNAL NAME TOO LONG 

               (Warning:  PL/I allows a maximum of 7 characters for an 

               identifier in this context.) 

   30 *     IMPROPER INIT ATTRIBUTE 

               (INITIAL is incompatible with previous attributes.) 

   31 *     IMPROPER STRUCTURE LEVEL 

               (This may be improper construction of a structure 

               declaration.  It also arises from any stray 

               integer in a faulty declaration.) 

 

                                                                 PL/C  251 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
   32 *     IMPROPER ATTRIBUTE IN STRUCTURE 

               (Major and minor structure names cannot have type attri- 

               butes, leaves cannot have storage class attributes.) 

   33       TOO MANY IDENTIFIERS 

               (There is a PL/C limit of 88 identifiers in a single factor 

               or structure; the program is not executed.) 

   34       IMPROPER THEN OR ELSE 

               (THEN or ELSE given on a statement not following an IF.) 

   35       IMPROPER THEN OR ELSE UNIT 

               (This statement is not allowed as a THEN or ELSE unit. 

               ELSE is deleted; a null statement inserted after THEN.) 

   36       MISSING THEN 

               (THEN supplied.) 

   37       IMPROPER CHECK OR NOCHECK 

               (Prefix applied to a statement other than BEGIN or PROCE- 

               DURE; prefix deleted.) 

   38       IMPROPER PREFIX ORDER 

               (Warning:  Executes correctly under PL/C but incompatible 

               with PL/I (F).) 

   39       EXTRA LABEL 

   3A       IMPROPER LABEL 

   3B       MISSING LABEL OR ENTRY NAME 

               (A new identifier is generated by PL/C.) 

   3C       IMPROPER ON-CONDITION 

               (Often triggered by an extra left parenthesis, for example 

               around the left side of an assignment, which is taken to be 

               the beginning of a condition prefix.) 

   3D       IMPROPER ON-UNIT 

               (This statement is not allowed as a simple ON-unit.  BEGIN 

               and END are supplied.) 

   3E       IMPROPER SPACE 

               (’NO’ is improperly separated from rest of keyword; the 

               space is removed.  Example:  NO CHECK becomes NOCHECK.) 

   3F       PL/I FEATURE NOT IN PL/C 

               (The feature used is not included in current PL/C.) 

   40       FEATURES INCOMPATIBLE WITH PL/I (F) HAVE BEEN USED 

               (Warning:  An incompatible PL/C feature has been used and 

               is not enclosed in a pseudo-comment.  The program will not 

               be accepted by PL/I (F).) 

   41       INCOMPATIBLE OPTION 

   42       MISSING OPTION 

               (A "required" option is not given.  For example, ENV re- 

               quires CONSECUTIVE.) 

   44       MISSING DECIMAL INTEGER 

   45       NON-* BOUND/LENGTH FIELD 

               (* and not an expression must be given for subscript bound 

               or string length in this context.) 

   46       DECLARATION FOR ENTRY iden DOES NOT AGREE WITH CORRESPONDING 

            PROC OR ENTRY POINT.  DCL IGNORED 

   47       PROCEDURE iden IS NOT PRESENT 

               ("iden" has been declared as an entry name, but no corre- 

               sponding procedure definition appears.) 

   48       *-LENGTH NOT ALLOWED.  256 USED 

 

  252  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
   49       TOO MANY DIGITS IN EXPONENT 
   4A       ILLEGAL EXPONENT 
               (Illegal character appeared after E.  A space is inserted 

               before the E.) 

   4B       ILLEGAL BINARY NUMBER 

               (The number is treated as decimal.) 

   4C       ILLEGAL USE OF COLUMN 1 ON CARD 

               (If SM=(2,X,1), the value in column 1 is concatenated with 

               the string beginning in column 2.  This error should not 

               appear in MTS-PL/C.) 

   4D       */ NOT IN COMMENT 

               (The comment is ignored.) 

   4E       NAME > 31 CHARACTERS 

               (The first 256 or fewer characters are used.  PL/C allows 

               up to 256 characters while PL/I (F) allows only 31 charac- 

               ters and would use the first 16 and last 15 bits.) 

   4F       ILLEGAL CHARACTER 

               (The character is ignored.) 

   50       STRING CONSTANT RUNS ACROSS CARD BOUNDARY 

               (A prime is supplied.) 

   51       IMBEDDED BLANK(S) IN OPERATOR 

               (The blanks are ignored.  Example:  * * becomes **.) 

   52       COMMENT RUNS ACROSS CARD BOUNDARY 

               (The comment is terminated at the end of the card.) 

   53       2 DECIMAL POINTS IN NUMBER 

               (The number is terminated at the second decimal point.) 

   54       EXPONENT RUNS ACROSS CARD BOUNDARY 

               (The exponent is ignored.) 

   55       SPACE MISSING BETWEEN NUMBER AND LETTER 

               (The required space is supplied.) 

   56       MISSING */ BEFORE END OF FILE OR CONTROL CARD 

   57       INVALID BIT STRING 

   58       MISSING QUOTE BEFORE END OF FILE OR CONTROL CARD 

   59       STRING LENGTH > 255 

   5A       MISPLACED /MEND CARD 

   5B       ERROR STACK OVERFLOW - MESSAGE(S) LOST 

   5C       TABSIZE TOO LARGE.  DEFAULT USED 

   5D       OPTION(S) NOT ALLOWED AT THIS INSTALLATION 

               (Option specified on /COMPILE, /PROCESS, or /OPTIONS card 

               is not valid in MTS.) 

   5E       TOO MANY SIGNIFICANT DIGITS, 16 USED 

   5F       TOO MANY SIGNIFICANT DIGITS, 53 USED 

   60       EXPONENT TOO LARGE 

   60       MACROS NOT ALLOWED.  COMPILATION TERMINATED 

               (Will never appear in MTS.) 

   61       TOO MANY OPERANDS IN CHECK OR FLOW STATEMENT 

               (0 or 10**75 is supplied, as appropriate.) 

   63       MISSING /MEND BEFORE END-OF-FILE OR CONTROL CARD 

   64       MISSING MACRO NAME 

   65       MISSING %; BEFORE END-OF-FILE OR CONTROL CARD 

   66       MACRO NAME ILLEGAL OR ALREADY IN USE 

   67       MISSING PARAMETER NAME IN MACRO DEFINITION 

   68       MACRO PARAMETER NAME > 31 CHARACTERS.  FIRST 31 USED. 

 

                                                                 PL/C  253 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
   69       TOO MANY MACRO PARAMETERS.  LIST TRUNCATED. 
   6A       MACRO PARAMETER NAME APPEARS TWICE IN LIST. 
   6B       SYMBOL TABLE AREA OVERFLOW.  INCREASE CORE AVAILABLE. 
               (The SIZE parameter on the $RUN command should be 

               increased.  See "Introduction.") 

   6C       ILLEGAL CHARACTER(S) ON CARD.  BLANK(S) USED. 

   6D       MACRO EXPANSION CAUSES REPRINTING OF ABOVE LINE 

   6E       DYNAMIC CORE OVERFLOW DURING MACRO EXPANSION.  INCREASE 

            REGION. 

               (That is, the SIZE parameter on the $RUN command.  See 

               "Introduction.") 

   70       COMPILER ERROR--ILLEGAL INTERNAL MACRO PARM ID. 

               (Compiler error, see beginning of this section) 

   71       MISSING ( IN MACRO CALL 

   72       MACRO ARGUMENT > 256 CHARACTERS.  FIRST 256 USED. 

   73       TOO FEW ARGUMENTS IN MACRO CALL.  NULL STRING(S) SUPPLIED. 

   74       MISSING COMMA IN MACRO CALL 

   75       MISSING ) IN MACRO CALL 

   76       END-OF-FILE OR CONTROL CARD WITHIN MACRO CALL 

   77       PICTURE SPECIFICATION FOR IDEN TOO LONG; COMPLEX ATTRIBUTE 

            DELETED 

   78       NUMERIC SPECIFICATION FOLLOWING SIGN IN PICTURE SPECIFICATION 

   79       IMPROPER NUMERIC SPECIFICATION FOLLOWING V IN PICTURE 

            SPECIFICATION 

   7A       IMPROPER CHARACTER IN CHARACTER PICTURE SPECIFICATION 

   7B       MORE THAN ONE SIGN OR CR/CB IN PICTURE SPECIFICATION 

   7C       MORE THAN ONE V IN PICTURE SPECIFICATION 

   7D       V IN EXPONENT IN PICTURE SPECIFICATION 

   7E       MORE THAN ONE E OR K IN PICTURE SPECIFICATION 

   7F       MISSING EXPONENT FIELD IN PICTURE SPECIFICATION 

   80       INCOMPLETE CR/DB IN PICTURE SPECIFICATION 

   81       CR$B USED IN FLOATING PICTURE SPECIFICATION 

   82       MIXED Z AND * IN PICTURE SPECIFICATION 

   83       Z OR * FOLLOWS 9,I,R OR T IN PICTURE SPECIFICATION 

   84       Z OR * FOLLOWS DRIFTING FIELD IN PICTURE SPECIFICATION 

   85       INVALID Z OR * FOLLOWING V IN PICTURE SPECIFICATION 

   86       A OR X USED IN NUMERIC PICTURE SPECIFICATION 

   87       F USED IN FLOATING PICTURE SPECIFICATION 

   88       CHARACTER(S) FOLLOWING SCALE FACTOR IN PICTURE SPECIFICATION 

   89       VALUE OF REPETITION FACTOR TOO LARGE IN PICTURE SPECIFICATION 

   8A       CR/DB OR MISPLACED SIGN IN FLOATING PICTURE SPECIFICATION. 

            EXPONENT DELETED 

   8B       MORE THAN ONE DRIFTING FIELD IN PICTURE SPECIFICATION 

   8C       PL/I RESTRICTS THE USE OF S + - $ IN FLOATING PICTURE 

            SPECIFICATION 

   8D       TOO MANY $’S IN PICTURE SPECIFICATION 

   8E       ILLEGAL PICTURE SPECIFICATION.  SEE STMT LINE 

   8F       SCALE FACTOR IS < -128 OR > 127 IN PICTURE SPECIFICATION 

   90       NO DIGITS SPECIFIED IN NUMERIC PICTURE SPECIFICATION 

   91       MORE THAN 15 DIGITS SPECIFIED IN FIXED NUMERIC PICTURE 

            SPECIFICATION 

   92       MORE THAN 16 DIGITS SPECIFIED IN FLOAT NUMERIC PICTURE 

            SPECIFICATION 

 

  254  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
   93       EXPONENT MORE THAN 2 DIGITS LONG IN PICTURE SPECIFICATION 
   94       TOO MANY DIGITS IN SCALE OR REPETITION FACTOR IN PICTURE 
            SPECIFICATION 
   95       NON-NUMERIC CHARACTER IN SCALE OR REPETITION FACTOR IN PICTURE 
            SPECIFICATION 
   96       INVALID CHARACTER IN PICTURE SPECIFICATION 
   97       PICTURE SPECIFICATION IS TOO LONG 
 
  SM Prefix (errors during the semantic analysis phase)   __ ______ 

 

  When  statements in error are reconstructed during the semantic analysis 

  phase, an additional line is printed, labeled DECLARED IN  BLOCK.   This 
  line specifies the block in which each variable has been declared. 
 
  Number              Message   ______              _______ 
 
   40       VARIABLE NOT PERMITTED 
               (There must be a constant in this context.) 

   41       WRONG TYPE FOR EXPRESSION 

               (Expression types are arithmetic, string, label, or file, 

               and the wrong one has been used here.) 

   42       WRONG STRUCTURE OR DIMENSIONALITY FOR EXPRESSION 

               (A scalar needed where an array or matching structure has 

               been used.) 

   43       ILLEGAL SUBSCRIPTING 

               (Subscripts are not allowed in certain contexts, e.g., GET 

               DATA.) 

   44       ILLEGAL USE OF PSEUDO-VARIABLES 

               (E.g., CHECK prefixes, GET/PUT DATA.) 

   45       NAME NEEDED 

               (A name is needed in this context, e.g., initializing label 

               constants.) 

   46       ENTRY-NAME NEEDED 

               (CALL must have entry name.) 

   47       NO STRUCTURE APPEARED 

               (No structure appeared in a BY NAME assignment.) 

   48       STRUCTURES DO NOT MATCH 

               (Structures do not match in a BY NAME assignment.) 

   49       FUNCTION ARGUMENTS MISSING 

   4A       OPERAND OF BINARY OPERATOR string HAS IMPROPER TYPE 

   4B       OPERANDS OF BINARY OPERATOR string DISAGREE IN TYPE, STRUCTURE 

            OR DIMENSIONALITY 

   4C       OPERAND OF UNARY OPERATOR string HAS IMPROPER TYPE 

   4D       SUBSCRIPT number OF iden NOT NUMERIC 

   4E       iden HAS TOO MANY SUBSCRIPTS.  SUBSCRIPT LIST DELETED 

   4F       iden HAS TOO FEW SUBSCRIPTS.  SUBSCRIPT LIST DELETED 

   50       NAME NEVER DECLARED, OR AMBIGUOUSLY QUALIFIED 

               (Expression replaced or CALL deleted.) 

   51       SUBSCRIPT number OF iden NOT SCALAR 

   52       iden HAS TOO MANY ARGUMENTS.  FUNCTION REFERENCE DELETED 

   53       ARGUMENT number OF FUNCTION iden DISAGREES WITH CORRESPONDING 

            PARAMETER 

   54       iden HAS TOO FEW ARGUMENTS.  FUNCTION REFERENCE DELETED 

 

                                                                 PL/C  255 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
   55       ARGUMENT number OF FUNCTION iden WAS *.  ILLEGAL ARGUMENT 

   56       TABLE OVERFLOW.  EXPRESSION DELETED 

               (Processing expression, try larger SIZE parameter value.) 

   57       TABLE OVERFLOW.  EXPRESSION DELETED 

               (Processing expression skeleton, try larger SIZE parameter 

               value.) 

   58       TABLE OVERFLOW.  EXPRESSION DELETED 

               (Processing expression tree, try larger SIZE parameter 

               value.) 

   59       TABLE OVERFLOW.  EXPRESSION DELETED 

               (Processing entry parameter, try larger SIZE parameter 

               value.) 

   5A       iden HAS WRONG # OF SUBSCRIPTS 

               (Wrong number of subscripts in a BY NAME assignment; struc- 

               tures do not match.) 

   5B       MISMATCHED DIMENSIONALITY 

               (Mismatched dimensionality in a BY NAME assignment; struc- 

               tures do not match.) 

   5C       ILLEGAL LABEL VARIABLE iden 

               (Subscripted label not declared in block.) 

   5D       ILLEGAL ASSIGNMENT TARGET 

   5E       ASSIGNMENT SOURCE INCOMPATIBLE WITH TARGET 

   5F       MAJOR STRUCTURE NAME NEEDED 

   60       DEFAULT ATTRIBUTES FOR ENTRY NAME iden CONFLICT WITH RETURNS 

            OPTION IN STMT line 

   61       iden IS ASSUMED A VARIABLE, NOT A BUILT-IN FUNCTION 

 

  XR Prefix (errors during the cross-reference phase)   __ ______ 

 

  Number    Message   ______    _______ 

 

   62       NOT ENOUGH CORE FOR CROSS-REFERENCE 

               (The program should be run with a larger SIZE parameter. 

               See "Running PL/C in MTS.") 

   63       CROSS REFERENCE ABBREVIATED DUE TO LACK OF SPACE 

               (The program should be run with a larger SIZE parameter. 

               See "Running PL/C in MTS.") 

   64       COMPILER ERROR IN XREF PHASE--INVALID STATEMENT CODE 

               (A compiler error.  See beginning of "Error Messages.") 

 

  CG Prefix (errors during the code-generation phase)   __ ______ 

 

  Number    Message   ______    _______ 

 

   00       FORMAT WILL BE EXECUTED ONLY ONCE 

               (The format specification of the EDIT statement does not 

               contain any format items which would cause data to be 

               transferred between the I/O list and the I/O buffer, i.e., 

               no A, B, C, E, F, or R format item.  If run under PL/I (F), 

               the program would loop.) 

   01       CONSTANT BOUND, LENGTH, SUBSCRIPT OR ITERATION FACTOR EXCEEDS 

            32767 IN MAGNITUDE.  10 IS USED 

               (PL/I language restriction.) 

 

  256  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
   02       WORKSPACE OVERFLOW IN STATEMENT PROCESSING 
               (The combined nesting of BEGIN and PROCEDURE blocks, itera- 

               tive DO groups, and IF statements is too deep for the code- 

               generation phase.  The rest of the program is not scanned 

               for code-generation errors.  Increasing the SIZE parameter 

               will not help.  The nesting depth must be reduced.) 

   03       iden REQUIRES TOO MUCH SPACE.  UPPER BOUND OF SUBSCRIPT number 

            IS SET TO LOWER BOUND 

               (More than 2**31 bytes would be required for the array as 

               declared.) 

   04       PRIMARY DATA STORAGE AREA FOR BLOCK # number EXCEEDS SIZE LIM- 

            IT BY number BYTES 

               (Primary data storage does not include space for arrays or 

               strings.  Try adding some more BEGIN blocks.) 

   05       LENGTH OF iden (number) IS NOT IN PROPER RANGE.  80 IS USED 

               (Length is < 0 or > 256.) 

   06       iden REQUIRES TOO MUCH SPACE.  LOWER BOUND OF SUBSCRIPT number 

            IS SET TO ZERO 

               (The array element with all subscripts zero must be within 

               2**31 bytes of the array element with all subscripts at 

               their lower bound.  The lower bounds should be moved closer 

               to zero.) 

   07       ARITHMETIC FIRST ARGUMENT TO SUBSTR PSEUDO-VARIABLE.  A STRING 

            TEMPORARY IS USED 

               (Arithmetic argument remains unchanged.) 

   08       SEVERE ERRORS.  EXECUTION SUPPRESSED. 

               (A previous code-generation error has made it impossible to 

               continue into execution.  All code-generation errors have 

               been reported.) 

   09       CONVERSION REQUIRED TO MATCH ARGUMENT iden OF iden 

               (Warning:  PL/C has generated code to convert the argument 

               of a procedure call so that the attributes of the value 

               passed will match the attributes of the corresponding pa- 

               rameter.  PL/I (F) would not do this conversion because the 

               attributes of the parameter have not been specified in an 

               ENTRY declaration.) 

   0A       SCALAR ARGUMENT SUPPLIED TO AGGREGATE PARAMETER iden OF iden. 

            ((1:10) USED FOR ALL BOUNDS) 

               (This is a PL/C restriction.  See "Differences between PL/ 

               I (F) and PL/C."  Assign the constant to an array with the 

               proper bounds and pass that array to the procedure.) 

   0B       WORKSPACE OVERFLOW IN EXPRESSION PROCESSING 

               (Either the situation which would generate error CG02 ex- 

               ists or the nesting of array expressions, array subscript- 

               ing, function references, or parenthesized expressions is 

               too deep.  Simplify the expression.  Increasing the SIZE 

               parameter will not help.) 

   0C       NO FILE SPECIFIED.  SYSIN/SYSPRINT ASSUMED 

               (A warning message.) 

   0D       iden IS A PARAMETER IN I/O LIST OR CHECK PREFIX 

               (Warning:  PL/I (F) does not allow parameters in DATA- 

               directed I/O lists nor in CHECK prefixes.  PL/C will accept 

               the parameter.) 

 

                                                                 PL/C  257 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
   0E       BOTH FORMS OF INITIALIZATION USED FOR LABEL VARIABLE iden 
               (PL/I (F) does not permit a LABEL variable to be initial- 

               ized via both the INITIAL attribute and subscripted state- 

               ment label constants.  Both forms are accepted by PL/C. 

               Where there is conflict the INITIAL attribute takes 

               precedence.) 

   0F       STORAGE CAPACITY IS EXCEEDED 

               (Object code exceeds available space, rerun with a larger 

               SIZE parameter.  See "Running PL/C in MTS.") 

   10       ILLEGAL COMPLEX COMPARE.  REAL PARTS WILL BE COMPARED 

   11       iden IS ILLEGAL OPERAND IN INITIAL, LENGTH OR DIMENSION ATTRI- 

            BUTE OF STATIC VARIABLE constant IS USED. 

               (The bounds, lengths, and iteration factors used with a 

               STATIC or EXTERNAL variable must be optionally signed deci- 

               mal constants.  A nonconstant has appeared in this context 

               and has been replaced by a constant of appropriate type.) 

   12       NON-CONSTANT OPERAND(iden) IN INITIAL, LENGTH OR DIMENSION 

            ATTRIBUTE OF STATIC VARIABLE 

               (Warning:  A STATIC or EXTERNAL variable, BUILT-IN func- 

               tion, or EXTERNAL user-defined function has been used in 

               the bounds, length, or iteration factor for a STATIC/ 

               EXTERNAL variable.  This is not allowed in PL/I.  PL/C uses 

               the value of the operand in error.) 

   13       PL/C BUILT-IN FUNCTION USED 

               (Warning:  A built-in function has been used that is not 

               included in PL/I (F).) 

   14       ARGUMENT TO MAX OR MIN IS COMPLEX.  REAL PART IS USED 

   15       NO SCALE FACTOR ARGUMENT APPEARED.  RESULT IS SET FLOAT 

               (See explanation of error CG16.) 

   16       UNNECESSARY SCALE FACTOR ARGUMENT APPEARED.  RESULT IS SET 

            FIXED 

               (For ADD, DIVIDE, or MULTIPLY, both a precision argument 

               (P) and a scale factor argument (Q) must be present if the 

               result is to have FIXED scale.  Only argument P may appear 

               if the result is to have FLOAT scale.  If either require- 

               ment is violated, PL/C converts the argument to the scale 

               implied by the number of arguments given.) 

   17       ARGUMENT SHOULD BE A CONSTANT.  10 IS USED 

               (Certain arguments to the built-in functions ADD, BINARY, 

               DECIMAL, DIVIDE, FIXED, FLOAT, MULTIPLY, PRECISION, and 

               ROUND must be decimal constants in PL/I (F).) 

   18       ABS(ARGUMENT) > 32767.  10 IS USED 

               (Constant arguments to built-in functions mentioned in ex- 

               planation of error CG17 must be less than 32768.) 

   19       ARGUMENT SHOULD BE REAL.  IMAGINARY PART IS USED 

               (Constant of the form "nI" appeared where real constant was 

               required.  The "nI" is ignored.) 

   1A       ILLEGAL COMPLEX ARGUMENT.  REAL PART IS USED 

   1B       ILLEGAL ARGUMENT TO BUILT-IN FUNCTION.  SHOULD BE REAL, FIXED 

            DECIMAL CONSTANT 

               (Warning:  PL/I (F) requires that certain arguments of the 

               built-in functions BIT, CHAR, HIGH, LOW, and REPEAT be 

               unsigned decimal constants.  PL/C will take the argument as 

 

  258  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
               written.) 

   1C       RESULT SCALE FACTOR = number > 127 IN MAGNITUDE.  RESULT 

            SCALED INCORRECTLY TO 127*SIGN(number) 

               (Following the rules for PL/I expression evaluation, the 

               scale factor (Q) of the result would be outside the per- 

               mitted range -127 to 127.  So that execution may be 

               attempted, the result is scaled to the closest bound of the 

               legal range.  The value of the result will be incorrect.) 

   1D       PROGRAM MAY LOOP IF THIS FORMAT IS EXECUTED 

               (The FORMAT statement does not specify a data transmission 

               format item.  See explanation of error CG00.) 

   1E       VARIABLE iden HAS A * BOUND OR LENGTH FIELD.  10 IS USED 

               (Only parameters in PL/C may have * bound or length.) 

   1F       PARAMETER iden HAS A NON-* BOUND OR LENGTH FIELD 

               (Parameters must have an * in this field in PL/C) 

   20       LOWER BOUND OF SUBSCRIPT number OF iden EXCEEDS UPPER BOUND. 

            (0:10) IS USED 

   21       SPECIFIED P(number) TOO LARGE.  MAX PRECISION IS USED 

               (Hardware maximum precision, i.e., 31 for FIXED BINARY, 15 

               for FLOAT DECIMAL.) 

   22       STRING ARGUMENT TO COMPLEX PSEUDO-VARIABLE 

               (The assignment is performed anyway.) 

   23       TOO MANY ERRORS DURING COMPILATION.  EXECUTION SUPPRESSED 

   24       COMPILER ERROR DURING CODE GENERATION.  PROGRAM ABORTED 

               (A compiler error, see beginning of this section.) 

   25       ILLEGAL ARGUMENT TO REAL OR IMAG PSEUDO-VARIABLE 

               (The assignment is performed anyway.  Argument must be com- 

               plex arithmetic.) 

   26       IMPLIED ARITHMETIC-TRING CONVERSION INVOKED 

               (MONITOR message.  Conversion is performed.) 

   27       STRING CONSTANT IN INITIAL, LENGTH OR DIMENSION ATTRIBUTE OF 

            STATIC VARIABLE 

               (Conversion is performed.) 

   28       BIT STRING IN GET OR PUT STRING.  STATEMENT DELETED 

 

  EX Prefix (errors during the execution phase)   __ ______ 

 

       ON        __ 

   No Code            Message    __ ____            _______ 

 

   00 0004  PROGRAM RETURNS FROM MAIN PROCEDURE 

   01 0004  PROGRAM IS STOPPED 

               (Normal termination; a STOP or EXIT has been executed.) 

   02 0070  END OF FILE REACHED 

               (The ENDFILE condition is raised.  System action terminates 

               the program.) 

   03 0300  EXPONENT OVERFLOW.  RESULT IS SET TO 1 

   04 0300  EXPONENT OVERFLOW.  RESULT IS LEFT UNCHANGED 

   05 0310  FIXED-POINT OVERFLOW 

               (Low-order digit set to 1.) 

   06 0310  FIXED-DECIMAL OVERFLOW 

   07 0310  NUMBER TOO LARGE TO CONVERT TO FIXED BINARY.  1 IS USED 

   08 0320  FIXED-POINT QUOTIENT TOO LARGE.  PROBABLE DIVISION BY 0.  RE- 

 

                                                                 PL/C  259 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
            SULT IS SET TO 0 
   09 0320  FIXED-POINT QUOTIENT TOO LARGE.  PROBABLE DIVISION BY 0.  RE- 
            SULT IS LEFT UNCHANGED 
   0A 0320  FLOATING-POINT DIVISION BY 0.  RESULT IS SET TO 1 
   0B 0320  FLOATING-POINT DIVISION BY 0.  RESULT IS LEFT UNCHANGED 
   0C 0330  EXPONENT UNDERFLOW.  RESULT IS SET TO 0 
   0D 0330  EXPONENT UNDERFLOW.  RESULT IS LEFT UNCHANGED 
   0E 0340  SIZE RAISED.  RESULT IS LEFT UNCHANGED 
               (Occurs when the value of an expression is assigned to a 

               variable whose precision is too small to hold the value. 
               In PL/C, no left-truncation occurs.  Instead the computed 
               value is assigned to the variable, regardless of its de- 
               clared precision.) 

   0F 0340  SIZE RAISED DURING CONVERSION.  RESULT IS SET TO 0 

   10 0340  SIZE RAISED DURING STRING-TO-ARITHMETIC CONVERSION.  VALUE 

            USED IS number 

   11 0340  NUMBER TOO LARGE TO CONVERT TO SPECIFIED BIT STRING.  (SIZE 

            CONDITION) NUMBER IS number STRING USED IS string 

   12 0340  RESULT OF BIT-TO-ARITHMETIC CONVERSION GREATER THAN 2**56-1. 

            (SIZE CONDITION) STRING IS string VALUE USED IS number 

   13 0341  NUMBER TOO LARGE FOR FIELD.  TRUNCATED ON LEFT.  FULL FIELD 

            WOULD BE string 

               (In a PUT statement, the value is too large to fit in the 

               specified field [for EDIT] or the field implied by the 

               attributes of the item [for LIST].  Signs and digits are 

               lost on the left as in PL/I.  The message indicates the 

               full field before truncation.) 

   14 0350  INDEX OF SUBSTRING < 1 (number) 

               (Second argument of SUBSTR is less than one.) 

   15 0350  INDEX OF SUBSTRING > STRING LENGTH (number) 

               (Second argument of SUBSTR is greater than the length of 

               the first argument.) 

   16 0350  LENGTH OF SUBSTRING < 0 (number) 

               (Value of third argument of SUBSTR is negative.  It is re- 

               placed by 0.) 

   17 0350  SUBSTRING REQUESTED RUNS OVER END OF STRING 

   19 0520  SUBSCRIPT number OF iden IS OUT OF BOUNDS (number).  number IS 

            USED 

   1A 0602  TOO MANY CHARACTERS FOLLOWING CLOSING QUOTE.  ALL ARE IGNORED. 

            FIELD IS string 

   1B 0603  TOO MANY DIGITS IN NUMBER, PRECISION LOST.  STRING IS string 

   1C 0604  TOO MANY EXPONENT DIGITS, EXTRA DIGITS IGNORED.  STRING IS 

            string 

   1D 0605  INVALID CHARACTER(S) IN FIELD.  0 USED FOR EACH.  ORIGINAL 

            STRING IS string.  FIRST BAD CHARACTER IS string 

               (The CONVERSION condition has been raised.) 

   1E 0615  ILLEGAL CHARACTER(S) IN CHARACTER-TO-BIT CONVERSION.  0’S USED 

   1F 0900  ATTEMPT TO USE MATH BUILT-IN FUNCTION IN "CALL" STATEMENT. 

            STATEMENT IGNORED 

   20 0901  iden REFERENCED RECURSIVELY.  "RECURSIVE" ATTRIBUTE HAS NOW 

            BEEN APPLIED 

               (Indicated PROCEDURE is being used recursively but did not 

               have RECURSIVE option.) 

 

  260  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
   21 0902  iden HAS IMPROPER LENGTH (number).  80 IS USED 

               (Length is less than zero or greater than 256 and violates 

               a PL/C restriction.) 

   22 0903  LOWER BOUND ON SUBSCRIPT number OF iden EXCEEDS UPPER BOUND. 

            (1:10) IS USED 

               (Expressions for array bounds are evaluated before any 

               statements in the block in which the array is declared are 

               executed.  Variables used in these expressions must be ini- 

               tialized in an outer block.) 

   23 0904  RETURN FROM iden VIA STMT line DOESN’T RETURN A VALUE AS 

            EXPECTED IN STMT line.  0 IS USED 

   24 0905  RETURN FROM iden VIA STMT line REQUIRES ILLEGAL CONVERSION. 

            BLANKS OR 0 IS USED 

               (PL/C restriction; PL/I (F) would convert.) 

   25 0906  RETURN FROM iden VIA STMT line RETURNS A VALUE TO "CALL" IN 

            STMT line.  VALUE IGNORED 

               (Results would be unpredictable in PL/I (F).) 

   26 0907  CALL TO iden FROM STMT line RETURNS VIA STMT line WITH STRING 

            LONGER THAN DECLARED LENGTH.  RETURNED LENGTH IS USED 

   27 0908  CALL TO iden FROM STMT line RETURNS VIA STMT line WITH STRING 

            SHORTER THAN DECLARED LENGTH.  IT IS PADDED 

   28 0909  BOUNDS OF iden DO NOT MATCH BOUNDS IN THE REST OF THE 

            EXPRESSION. 

               (Execution is terminated.) 

   29 0910  iden HAS NOT BEEN ALLOCATED 

               (In a procedure invoked to initialize a variable, a refer- 

               ence has been made to an array, structure, or string which 

               has not been allocated space.  Variables are allocated and 

               initialized in the order in which they are declared.  See 

               "Order of Evaluation in DECLARE Statements" in "Differences 

               between PL/I (F) and PL/C.") 

   2A 0911  FORMAT LABEL IN GOTO 

               (Execution is terminated.) 

   2B 0912  VALUE OF LABEL VARIABLE (iden IN STMT line) IS IN A CURRENTLY 

            INACTIVE BLOCK 

               (Execution is terminated.) 

   2C 0913  iden INVOKED FOR INITIALIZATION IN STMT line TERMINATES VIA 

            GOTO 

               (Execution is terminated.) 

   2D 0914  iden IN STMT line IS IN A CURRENTLY INACTIVE ITERATIVE DO 

            GROUP 

               (Execution is terminated.) 

   2E 0915  SECOND ARGUMENT OF BIT/CHAR IS NOT POSITIVE.  IMPLIED LENGTH 

            IS USED 

   2F 0916  STRING > 256 CHARACTERS LONG 

               (PL/C limitation.  Only the 256 leftmost characters are 

               retained.) 

   30 0917  ATTEMPT TO ASSIGN INVALID BIT STRING TO FIXED-DECIMAL DATA 

            ITEM.  0 IS USED 

               (May occur in UNSPEC pseudo-variable, or during a READ 

               statement.  See "Built-in Functions and Pseudo-variables" 

               in "Differences between PL/I (F) and PL/C.") 

   31 0918  UNDEFINED ENTRY.  STATEMENT IGNORED 

 

                                                                 PL/C  261 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
               (The procedure $UENTRY, supplied by PL/C to repair some 

               semantic error, has been referenced.) 

   32 0919  DELETED STATEMENT ENCOUNTERED 

               (This message is produced during execution of a program 

               when a statement deleted by an earlier phase of the compil- 

               er is encountered.) 

   33 0920  UNDEFINED LABEL IN GOTO 

               (Execution is terminated.) 

   34 0921  UPPER BOUND ON SUBSCRIPT FOR iden > 32767 IN MAGNITUDE.  10 IS 

            USED 

   35 0922  LOWER BOUND ON SUBSCRIPT FOR iden > 32767 IN MAGNITUDE.  1 IS 

            USED 

   36 0923  LABEL COUNTER OVERFLOW.  IT IS RESET TO 0 

               (Warning:  A labeled statement has been executed more than 

               10 million times causing an internal PL/C counter to over- 

               flow.  This may indicate a loop in the program.) 

   39 0925  RECORD I/O STRUCTURE VARIABLE iden CONTAINS VARYING STRINGS. 

            MAXIMUM LENGTHS ARE USED 

               (Only fixed length strings may be members of structures 

               used by RECORD I/O.) 

   39 0926  INVALID PARAMETER REFERENCE (OR COMPILER ERROR) 

               (A parameter has been referenced which was not in the pa- 

               rameter list of the entry point used to call the 

               procedure.) 

   3A 0927  ATTEMPT TO USE AUTOMATIC ARITHMETIC-STRING CONVERSION 

               (An arithmetic variable or expression in an I/O list has 

               been associated with a string format item or string data, 

               or vice-versa.  MONITOR message.  Conversion is performed.) 

   3B 0928  OUTPUT STRING TOO LONG.  FIRST 32767 CHARACTERS USED 

   3C 0929  INVALID BLANK FIELD IN GET EDIT.  0 IS USED 

   3D 0930  DIMENSION SPECIFIED IN HBOUND, LBOUND OR DIM < 1.  1 IS USED 

   3E 0931  DIMENSION SPECIFIED IN HBOUND, LBOUND OR DIM > MAXIMUM.  MAXI- 

            MUM IS USED 

   3F 1002  ATTEMPT TO WRITE OVER END OF STRING.  STATEMENT TERMINATED 

   40 1002  ATTEMPT TO READ OVER END OF STRING.  STATEMENT TERMINATED 

   41 1018  CLOSING QUOTE MISSING IN INPUT FIELD:  string QUOTE SUPPLIED 

   42 3798  ONSOURCE/ONCHAR PSEUDO-VARIABLE USED OUT OF CONTEXT 

               (ONCHAR or ONSOURCE may be changed by the program only when 

               they have been set to point to a string in error at the 

               time the CONVERSION condition arises.  At other times an 

               attempt to change [assign to] either is an error.) 

   43 3799  IMPROPER RETURN FROM CONVERSION ON-UNIT.  SOURCE IS string 

               (The CONVERSION ON-unit did not change the character which 

               was in error.) 

   44 0936  FEATURE NOT AVAILABLE IN THIS RELEASE 

               (PL/I (F) feature used that is not implemented in the cur- 

               rent release of PL/C.) 

   45 0937  iden IS AN ILLEGAL FORMAT LABEL 

               (The label referenced by the R(label) format item is ille- 

               gal.  This may be: 

                  (a) because it is not the label of a FORMAT statement, 

                      or 

                  (b) because it labels a statement internal to some block 

 

  262  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
                      other than the block containing the R(label). 

               The remote format item is ignored.) 

   46 0010  string IS AN ILLEGAL NAME 

               (Something other than an identifier was read during a GET 

               DATA statement, where an identifier should have appeared. 

               The NAME condition is raised.) 

   47 0938  INVALID FORMAT OPTION 

               (An option in the format used with a GET or PUT EDIT state- 

               ment appeared in an illegal context: 

                  (a) A or B format:  appeared without a field-width pa- 

                      rameter on input, 

                  (b) COLUMN format:  appeared without a target column pa- 

                      rameter, or was used in GET/PUT STRING statement, 

                  (c) F format:  appeared without a field-width parameter, 

                  (d) LINE format:  appeared without a target line 

                      parameter, 

                  (e) LINE or PAGE:  was used in a GET statement, a PUT 

                      STRING, or a PUT FILE(X) where X was not a PRINT 

                      file, 

                  (f) P format:  appeared without a valid PICTURE 

                      specification, 

                  (g) SKIP format:  was used in a GET/PUT STRING 

                      statement, 

                  (h) X format:  appeared without a field-width parameter. 

               The format item and corresponding list item are dropped.) 

   48 0939  INVALID FORMAT ITEM OPERAND 

               (In formats E(W,Q), F(W,Q), or F(W,Q,P), either: 

                  (a) a negative Q appeared on input, or 

                  (b) on output, either 0>W, W>255, 0>Q, or Q>W 

               The format item and corresponding list item are skipped.) 

   49 0010  string IS NOT KNOWN TO PROGRAM 

               (In a GET DATA statement, the name on the data card has not 

               been used in the program.  The NAME condition is raised. 

               The data-card assignment is skipped.) 

   4A 0010  INCOMPATIBLE STRUCTURE FOR iden 

               (In a GET DATA statement, a name in the input was quali- 

               fied, although it was declared without substructures, or an 

               unqualified name appeared in the data, although it was de- 

               clared as a structure in the program.  The NAME condition 

               is raised.  The data-card assignment is skipped.) 

   4B 0010  iden IS NOT IN GET LIST 

               (In a GET DATA statement, a name appeared in the input 

               which was not in the data list.  This error can arise for a 

               qualified name if its first identifier (major structure 

               identifier) is not in the data list.  The NAME condition is 

               raised.  The data-card assignment is skipped.) 

   4C 0010  ARRAY ERROR FOR iden 

               (In a GET DATA statement, subscripts appeared on a name in 

               the input, but the name was not declared as an array and 

               may not be subscripted.  The data-card assignment is 

               ignored.) 

   4D 0520  string BOUND ERROR.  number IS USED 

               (In a GET DATA statement, a subscript on a name in the in- 

 

                                                                 PL/C  263 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
               put is out-of-bounds.  The upper or lower bound is used, as 
               indicated.) 

   4E 0010  NO BOUNDS SPECIFIED FOR iden 

               (In a GET DATA statement, no subscript appeared in the in- 

               put following an array name.  The data-card assignment is 

               ignored.) 

   4F 0081  CONFLICTING FILE ATTRIBUTES SPECIFIED OR IMPLIED.  CODE=number 

               (The codes are: 

                  0:  PUT to RECORD file (SYSPRINT will be used, if 

                      possible). 

                  1:  GET from OUTPUT or RECORD file. 

                  2:  More than one of INPUT, OUTPUT, UPDATE specified. 

                  3:  STREAM file specifying non-CONSECUTIVE organization. 

                  4:  Both RECORD and STREAM specified. 

                  5:  Both DIRECT and SEQUENTIAL specified. 

                  6:  Both DIRECT and CONSECUTIVE specified. 

                  7:  SEQUENTIAL CONSECUTIVE and KEYED specified. 

                  8:  DIRECT OUTPUT and INDEXED specified.) 

   50 0084  FILE CANNOT BE OPENED.  CODE=number 

               (The MTS-PL/C interface refuses to open a file.  The codes 

               are: 

                  0:  PL/C workspace overflow during file open buffer al- 

                      location.  Try using a larger SIZE parameter value 

                      on the $RUN command. 

                  1:  BLKSIZE not a multiple of LRECL (RECFM=F or FB). 

                  3:  Attempt to open unassigned device or nonexistent 

                      file. 

                  5:  Unable to retrieve blocking information from a mag- 

                      netic tape. 

                  6:  No LRECL, BLKSIZE, or LINESIZE specified. 

                  7:  Spanned records not supported. 

                  8:  BLKSIZE not large enough (RECFM=V or VB). 

                 10:  Input file assigned to punch. 

                 11:  Invalid logical device name. 

                 12:  Invalid physical device type. 

                 13:  Auxiliary I/O not permitted. 

                 15:  File not RECFM=F or V. 

                 16:  Key length not specified. 

                 17:  Only one buffer is allowed for a DIRECT file. 

                 18:  RKP out of range (too high or less than 4 for V for- 

                      mat file). 

                 19:  DELETE option cannot be specified with the key occu- 

                      pying first byte on the record.) 

   51 0932  SYSTEM DATA SET CANNOT BE RE-ALLOCATED WHILE OPEN UNDER AN- 

            OTHER FILE 

               (An attempt has been made to open SCARDS/SYSIN or SPRINT/ 

               SYSPRINT while it is open under another filename.) 

   52 0933  FILE NOT OPENED IN UNDEFINEDFILE ON-UNIT 

   53 0934  INVALID ARGUMENT TO LINENO.  iden NOT A PRINT FILE 

   54 0935  INVALID ARGUMENT TO COUNT.  iden NOT A STREAM FILE 

   55 1004  string OPTION INVALID.  FILE DOES NOT HAVE "PRINT" ATTRIBUTE 

               (The LINE and PAGE options are invalid in a PUT FILE(X), 

               unless X has the PRINT attribute.  The option is ignored.) 

 

  264  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
   56 1009  FILE CANNOT BE USED FOR STREAM INPUT 
               (File is open as a RECORD or OUTPUT file.) 

   57 1009  FILE CANNOT BE USED FOR STREAM OUTPUT 

               (File is open as a RECORD or INPUT file.  SYSPRINT will be 

               used if possible.) 

   58 1009  FILE CANNOT BE USED FOR RECORD I/O 

               (File is open for STREAM I/O.) 

   59 1009  FILE CANNOT BE USED FOR INPUT 

               (File is open for OUTPUT.) 

   5A 1009  FILE CANNOT BE USED FOR OUTPUT 

               (File is open for INPUT.) 

   5B 1009  I/O STATEMENT AND/OR OPTIONS INCOMPATIBLE WITH FILE 

            CODE=number 

               (Given for special RECORD I/O options.  Codes are: 

                  0:  KEY/KEYTO/KEYFROM specified for non-KEYED file. 

                  1:  "KEY" not valid for this type of file. 

                  2:  "KEY" or "KEYFROM" required. 

                  3:  Other incompatibility.) 

   5C 0940  COMPILER ERROR - NO NAME FOR UNINITIALIZED VARIABLE AT OFFSET 

            number 

               (May occur if SUBSCRIPTRANGE is disabled and an uninitia- 

               lized value is referenced.  If this occurs when SUBSCRIPT- 

               RANGE is enabled, it is a compiler problem.) 

   5D 0941  iden HAS NOT BEEN INITIALIZED.  IT IS SET TO string 

   5E 0942  FORMAT iden HAS INVALID CONDITION PREFIXES 

               (The conditions in effect for a FORMAT statement must be 

               the same as those in effect for the EDIT statement which 

               references the FORMAT statement.  The conditions on the 

               FORMAT statement are ignored and execution continues.) 

 

  Note:  For errors EX5F through EX6D, see the IBM publication, IBM System                                                                 __________ 

  360  PL/I  Subroutine  Library,  Computational  Subroutines, form number   ___________________________________________________________ 

  GC28-6590, for the exact formulas used. 

 

   5F 1509  rtn ABS(X) ≥ (2**50)*K; FOR TAN(X), K=PI.  FOR TAND(X), K=180. 

            RESULT IS SET TO 1 

               (Issued by TAN or TAND.  TAN(X) is called directly by TANH 

               (A+BI) and TAN(A+BI).  The argument is too large in abso- 

               lute value.) 

   60 1513  rtn ABSOLUTE VALUE OF REAL ARGUMENT (number) IS > 175.366. 

            RESULT IS SET TO 1 

               (Issued by SINH or COSH.) 

   61 1507  rtn ARGUMENT(number) IS GREATER THAN PI*2**50 = .3537E+16. 

            RESULT IS SET TO 1 

               (Issued by COS or SIN.  COS(X) and/or SIN(X) 

               are called by COSD, SIND, SIN(A+BI), COS(A+BI), 

               SINH(A+BI), COSH(A+BI), and EXP(A+BI).) 

   62 1501  rtn ARGUMENT (number) IS NEGATIVE.  RESULT IS SET TO 

            SQRT(ABS(ARG)) 

               (Issued by SQRT(X).  SQRT(A**2+B**2) is used to calculate 

               ABS(A+BI), and various real SQRT calls are made in calcu- 

               lating SQRT(A+BI).  In these indirect cases, message EX8D 

               should not occur, but calculation errors might produce it.) 

 

                                                                 PL/C  265 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
   63 1511  rtn BOTH ARGUMENTS ARE 0.  RESULT IS SET TO 1 
               (Issued by ATAN(Y,X) or ATAND(Y,X).  ATAN(Y,X) is used in 

               calculating LOG(A+BI), ATAN(A+BI), and (A+BI)**(C+DI).) 

   64 1505  rtn ARGUMENT(number) ≤ 0.  RESULT IS SET TO 1 
               (Issued by LOG(X).  LOG(X) is called to compute LOG2(X), 

               LOG10(X), (A+BI)**(C+DI), LOG(A+BI), and ATANH(Y).  ATANH 

               (Y) is in turn used in ATAN(A+BI) and ATANH(A+BI).) 

   65 1559  rtn Z=+I OR -I IN ATAN(Z) OR Z=+I OR -I IN ATANH(Z).  RESULT 

            IS SET TO 1+0I 

               (Issued by ATAN(A+BI) or ATANH(A+BI).) 

   66 1515  rtn ABSOLUTE VALUE OF ARGUMENT IS ≥ 1.  RESULT IS SET TO 1 

               (Issued by ATANH(X).  ATANH(X) is used in calculating 

               ATANH(A+BI) and ATAN(A+BI).) 

   67 1557  rtn Z1=0 AND IMAG(Z2) = 0 OR REAL(Z2) ≤ 0.  RESULT IS SET TO 1 

               (Issued by (A+BI)**(C+DI).) 

   68 1556  rtn IN COMPLEX EXPONENTIAL FUNCTION REAL ARGUMENT IS > 174.673 

            RESULT IS SET TO 1+0I 

               (Issued by EXP(A+BI).  EXP(A+BI) is used in calculating 

               Z**W, when W or Z is complex.) 

   69 1556  rtn IN COMPLEX EXPONENTIAL FUNCTION IMAGINARY ARGUMENT IS > 

            PI*2**50 = .3534E+16.  RESULT IS SET TO 1+0I 

               (Issued by EXP(A+BI).  See explanation of message EX61.) 

   6A 1555  rtn Z=0 AND N <= 0 IN Z**N.  RESULT IS SET TO 1+0I 

               (Issued by X**Y.) 

   6B 1505  rtn BOTH REAL AND IMAG ARGUMENTS ARE 0.  RESULT IS SET TO 1+0I 

               (Issued by LOG(A+BI).  LOG(A+BI) is used in calculating 

               Z**W, when W or Z is complex.) 

   6C 1553  rtn ARGUMENT (number) IS > 174.673.  RESULT IS SET TO 1 

               (Issued by EXP(X).  EXP(X) is called in calculating ERF, 

               ERFC, TANH, SIN(A+BI), COS(A+BI), SINH(A+BI), COSH(A+BI), 

               and EXP(A+BI).  EXP(A+BI) is in turn used in calculating 

               Z**W, when W or Z is complex.) 

   6D 1551  rtn X=0 AND Y ≤ 0 IN X**Y.  RESULT IS SET TO 1 

   71       FILE CANNOT BE USED FOR UPDATE. 

               (File is opened for INPUT or OUTPUT.) 

   75 0943  FILE BEING CLOSED IS IN USE IN INTERRUPTED I/O STATEMENT.  IT 

            IS NOT CLOSED. 

   76 0944  INVALID ATTRIBUTES FOR SYSTEM FILE 

   77 0023  FILE name - ATTEMPT TO READ/WRITE RECORD OF ZERO LENGTH 

      0024 

   78 0021  FILE name - LENGTH OF VARIABLE(number) ¬= LENGTH OF 

      0022  RECORD(number) 

               (The number of bytes of storage occupied by the variable 

               must equal the number of bytes in the record.  See notes on 

               the RECORD attribute, in "Differences between PL/I (F) and 

               PL/C.") 

   79       CONDITION (iden) SIGNALLED.  NO ON-UNIT PENDING 

   7A       iden SIGNALLED.  "ERROR" RAISED AS STANDARD SYSTEM ACTION 

   7B       KEY CONDITION RAISED.  ONCODE=number 

   7C       NORMAL RETURN FROM "ERROR" ON-UNIT.  PROGRAM IS STOPPED 

   7D       NORMAL RETURN FROM "FINISH" ON-UNIT.  PROGRAM IS STOPPED 

   7E       ABOVE ERROR IS FATAL.  PROGRAM IS STOPPED 

   7F       NOT ENOUGH CORE.  TRY LARGER REGION 

 

  266  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
               (A larger SIZE parameter should be specified on the $RUN 

               command.  See "Running PL/C in MTS.") 

   80       AUXILIARY I/O LIMIT EXCEEDED 

               (See AUXIO option in "Running PL/C in MTS.") 

   81       ATTEMPT TO SWITCH FILE TO SYSPRINT HAS FAILED 

 

 

 

  DIFFERENCES BETWEEN PL/I (F) AND PL/C   _____________________________________ 

 

 

  General Differences   ___________________ 

 

 

 

 

  PL/I (F) Features Not Included in PL/C: 

 

     (1)  Regional auxiliary files. 

     (2)  Controlled and based storage, and list processing. 

     (3)  Multitasking. 

     (4)  Compile-time facilities, except for INCLUDE and an  incompatible 

          MACRO facility. 

     (5)  48-character set option. 

     (6)  Message DISPLAY to the operator. 

     (7)  DEFINED and LIKE attributes. 

     (8)  A few built-in functions and pseudo-variables. 

 

 

  Additional Restrictions Imposed by PL/C: 

 

     (1)  33  statement keywords and 6 auxiliary keywords are reserved and 

          cannot be used as identifiers. 

     (2)  The names of built-in functions  and  pseudo-variables  are  not 

          reserved  and  may be used as identifiers, but if they are to be 

          used in this way they should be explicitly declared;  contextual 

          declaration of these particular identifiers may succeed (depend- 

          ing upon context) but will produce a warning message. 

     (3)  Parameters  cannot  be  passed  to  the MAIN PROCEDURE of a PL/C 

          program from the MTS $RUN command. 

     (4)  String constants and comments must  be  contained  in  a  single 

          source card unless the PL/C NOBOUNDARY option is specified. 

     (5)  String constants cannot have repetition factors. 

     (6)  There  are  restrictions  on  the END, ENTRY, FORMAT, PROCEDURE, 

          READ, and WRITE statements. 

     (7)  There are restrictions on dimension,  ENTRY,  ENVIRONMENT,  INI- 

          TIAL, LABEL, and length attributes. 

     (8)  Not all of the PL/I (F) condition codes are used by PL/C and the 

          default  condition states under PL/C are not exactly the same as 

          those under PL/I (F). 

 

 

 

                                                                 PL/C  267 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Incompatible Features Added to PL/C: 
 
     (1)  CHECK, NOCHECK, FLOW, and NOFLOW statements;  a  FLOW  condition 

          ONORIG, ONDEST, STMTNO built-in functions. 

     (2)  Diagnostic options on the PUT statement. 

     (3)  A built⁻in function to generate pseudo-random numbers. 

     (4)  Comments  that are convertible to source text depending upon the 

          first letter of their contents. 

     (5)  A text-replacement MACRO processor. 

 

 

  Differences in Internal Representation of Data: 

 

     Internally, PL/C carries out all floating-point arithmetic operations 

  in double-precision form,  adopting  user-specified  precision  only  on 

  output.  This means that computation is often somewhat more precise than 

  would  be  the  case  under  PL/I (F).   The  result is usually a slight 

  difference in the least-significant figures of results, but of course it 

  is possible for the differences to become highly significant. 

 

     PL/C assigns a fullword of storage to each FIXED BINARY variable  and 

  a  doubleword  of  storage to each FIXED DECIMAL variable, regardless of 

  the declared precision.  This means that PL/C variables may hold  values 

  larger than their PL/I (F) counterparts.  However, the default state for 

  the SIZE condition in PL/C is "enabled" so that situations in which PL/C 

  would give different results from PL/I (F) are detected. 

 

     Each  bit in a PL/C bit-string is actually assigned an entire byte in 

  storage.  Each PL/C string variable also has an eight-byte control block 

  called a dope  vector  so  that  an  array  of  short  strings  takes  a 

  surprising amount of memory. 

 

     Decimal-base variables in PL/C are maintained internally in floating- 

  binary form and converted on output. 

 

     This  internal  representation  does not apply to record files, which 

  are written in standard PL/I representation, and assumed to be  in  that 

  representation  when read.  This means that PL/C and PL/I are compatible 

  with respect to record files; files written by either  compiler  can  be 

  read by the other. 

 

 

  Order of Evaluation in DECLARE Statements: 

 

     PL/I (F)  will  reorder  the evaluation of bounds and lengths and the 

  initialization  of  variables  so  that,  in  the  absence  of  circular 

  dependencies,  variables  will  be allocated and initialized before they 

  are used to allocate or initialize other variables.  PL/C uses a simpler 

  strategy which depends upon the order in which DECLARE statements appear 

  in the block, and the order in which variables are listed in  a  DECLARE 

  statement: 

 

 

  268  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     (1)  First, all scalar arithmetic and label variables are given their 

          initial value. 

 

     (2)  Then,  proceeding  in  the  order  in  which  they are declared, 

          strings, arrays, and structures are allocated space and initial- 

          ized.  Any expressions  in  the  bounds  or  length  fields  are 

          evaluated  before  space  is  allocated.   After  space has been 

          allocated, the variable is  initialized  before  processing  the 

          next variable in the order of declaration. 

 

     This  strategy  does not eliminate any allocation scheme available in 

  PL/I (F) but does require the programmer to  order  his  declaration  of 

  variables  to  avoid  the  use of unallocated or uninitialized variables 

  declared in the same block. 

 

 

  Dimensional Limits in the Compiler: 

 

     The internal structure of the PL/C compiler is  very  different  from 

  that  of  the PL/I (F) compiler and it was not feasible to limit certain 

  critical dimensions of the source program in exactly the same way.  This 

  means that there are probably some unusually large and complex  programs 

  that  would  be accepted by PL/C but would exceed some dimensional limit 

  in PL/I (F); the opposite is certainly true.  The compilation limits  in 

  PL/C are the following: 

 

     (1)  Maximum nesting of IF statements is 12. 

     (2)  Maximum  static  (syntactic) nesting of PROCEDURE, BEGIN, and DO 

          statements is 11. 

     (3)  Maximum nesting of factors in DECLARE is 6. 

     (4)  Maximum number of label prefixes on a single statement is 87. 

     (5)  Maximum depth of parenthesis nesting in expressions is 14. 

     (6)  Maximum number of  identifiers  in  a  factor  or  structure  in 

          DECLARE is 88. 

     (7)  No single expression can contain more than 256 symbols. 

 

  These  limits  are  fixed by the structure of the compiler and cannot be 

  changed by increasing the memory made available  to  the  compiler.   In 

  most  other  respects the compiler’s limits are related to the amount of 

  memory available; for example, length of program and size of arrays.  In 

  these cases when the compiler indicates that a limit has been  exceeded, 

  the  user  can resubmit the program with a larger virtual memory region. 

  An indication of which errors involve fixed  limits  and  which  can  be 

  alleviated  with  additional  memory  can be found in the section "Error 

  Messages." 

 

 

 

 

 

                                                                 PL/C  269 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  Comments   ________ 
 
 
     PL/C is a subset of PL/I.  It is intended to be  "upward  compatible" 

  with  PL/I.   A  program that runs without error under the PL/C compiler 

  should run under PL/I (F) and produce the same results. 

 

     Due to the many diagnostic features peculiar only  to  PL/C,  if  the 

  programmer  wishes  to use these features for diagnostic runs under PL/C 

  and still be able to run the same program under PL/I,  he  must  enclose 

  such features in the "pseudo-comments" described below. 

 

     PL/C  permits  sections of source to be treated either as source text 

  or as comments, depending upon an option specified on  the  /COMPILE  or 

  /PROCESS  card.   The  appropriate  text  is  written  as  a normal PL/I 

  comment, except that a colon or one of the integers from 1 to 7 is given 

  as the first character of the comment.  For example: 

 

       /*5 X(I) = P(I+K); */ 

 

       /*: PUT DATA(X(I)); */ 

 

  With normal default options, PL/C will treat these  as  normal  comments 

  (as  will  the  PL/I (F)  compiler).  However, if the option COMMENTS is 

  given on the /COMPILE or /PROCESS card then PL/C  will  scan  as  source 

  text  the  content  of  all  comments  whose first character is a colon; 

  hence, the PUT DATA statement will be included in  the  source  program. 

  If the option COMMENTS=(5) is given on the /COMPILE card, PL/C will scan 

  as  source  text  the  content  of all comments whose first character is 

  either a 5 or a colon; hence, both of these statements would be included 

  in the source program.  Since the integers 1 to 7 may be used,  one  can 

  establish  seven different classes of "compilable comments" in a program 

  and selectively include and exclude their contents from compilation just 

  by changing the option  specification  on  the  /COMPILE,  /OPTIONS,  or 

  /PROCESS  card.   If  NOCOMMENTS  is specified on a /OPTIONS or /PROCESS 

  card, it negates the effect of a previous COMMENTS option. 

 

     Compilable comments were originally designed to permit the  introduc- 

  tion  of non-PL/I constructions in PL/C and still preserve compatibility 

  with the PL/I (F) compiler.  By simply enclosing all such  constructions 

  in  what  appear  to  PL/I (F)  to  be  normal comments, one can run the 

  program under  either  compiler  without  the  necessity  of  physically 

  removing cards.  It would appear that the capability can have much wider 

  use than this.  Even a steadfast PL/I programmer who disdains the use of 

  the  special  PL/C  diagnostic  statements  might find occasions when it 

  would be convenient  to  selectively  include  or  exclude  sections  of 

  source. 

 

     Note:   In  studying  the source listing of a PL/C program, it is not 

  always easy to keep track of what has been compiled and what is in  fact 

  a  comment.  The /COMPILE, /OPTIONS, or /PROCESS specification of course 

  determines this, but a good local indication is the statement numbering; 

  comments do not receive statement numbers. 

 

  270  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  Statements   __________ 
 
 
 
 
  Standard PL/I Statements: 
 
     The PL/I (F) statements that are not included in PL/C are: 

 

       ALLOCATE, DELAY, DISPLAY, FREE, LOCATE, UNLOCK, WAIT 

 

     The statements that are included in PL/C are listed below.  Except as 

  noted below these statements are exactly like  their  PL/I (F)  counter- 

  parts  as  described  in  Section  J  of  the  IBM  publication, IBM/360                                                                    _______ 

  Operating  System  PL/I (F)  Language  Reference  Manual,  form   number   ________________________________________________________ 

  GC28-8201. 

 

     BEGIN 

 

        •  The  ORDER and REORDER options are accepted by PL/C but are not 

           effective; they do not alter the object code that is generated. 

 

     CALL 

 

        •  The TASK, EVENT, and PRIORITY options are not included. 

 

        •  Scalars may not be used as arguments  for  array  or  structure 

           parameters. 

 

     CLOSE 

 

        •  All files are rewound when CLOSEd by PL/C, either explicitly or 

           implicitly.   On  succeeding  file OPENs, the first record read 

           from a file will be the first line of the file. 

 

        •  When a tape file is CLOSEd, if data has been written  onto  the 

           tape,  a tape mark is written.  In every case, the tape is then 

           repositioned to the beginning of the tape file. 

 

     DECLARE, DCL 

 

        •  The  following  words  are  reserved  and  cannot  be  used  as                                        ________ 

           identifiers: 

 

 

 

 

 

 

                                                                 PL/C  271 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                    ALLOCATE   BEGIN      CALL      CLOSE 
                    DECLARE    DCL        DELETE    DO 
                    END        ENTRY      EXIT      FORMAT 
                    FREE       GET        GO        GOTO 
                    IF         ON         OPEN      PROCEDURE 
                    PROC       PUT        READ      RETURN 
                    REVERT     REWRITE    SIGNAL    STOP 
                    WRITE 
 
                    TO         BY         WHILE     THEN 
                    ELSE 
 
                    NO         CHECK      NOCHECK   FLOW 
                    NOFLOW 
 
           All of the other keywords are available for use as identifiers, 
           but note the next requirement below. 
 
        •  The  names  of  built-in functions and pseudo-variables are not 
           reserved and may be used as identifiers, but if they are to  be 
           used in this way they should be explicitly declared; contextual 
           declaration  of  these  particular identifiers may succeed (de- 

           pending upon context) but will produce a warning message.   For                                  ___ ____ _______ _ _______ _______ 

           example,  HIGH can be used as a variable name, but it should be 

           listed in a DECLARE statement.  Explicit declaration as a label 

           or entry name is also accepted. 

 

        •  PL/C does not support all of the attributes of PL/I (F). 

 

        •  Attributes may be factored exactly as in PL/I (F).  The maximum 

           depth of factoring is 6. 

 

        •  The maximum number of identifiers that can be included  in  one 

           factor or one structure is 88. 

 

     DELETE 

 

        •  The  FILE  and  KEY options are included.  KEY must be used for 

           DIRECT files. 

 

     DO 

 

     END 

 

        •  If a label (entry name) follows END,  it  must  have  been  the 

           first  (leftmost)  label (entry name) on a preceding BEGIN, DO, 

           or PROCEDURE statement to be effective. 

 

     ENTRY 

 

        •  Scalars may not be used as arguments  for  array  or  structure 

           parameters. 

 

 

  272  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
        •  The  entry  name  on  an  ENTRY  statement  in  PL/C  cannot be 
           identical to an identifier that has been  declared  earlier  in 
           the  procedure  that  contains  the ENTRY statement.  PL/C will 
           reject such an entry name  as  a  "multiple  declaration"  even 

           though this is a valid PL/I construction. 
 
     EXIT 
 
        •  Since PL/C does not include multitasking, the EXIT statement is 
           exactly equivalent to the STOP statement. 
 
     FORMAT 
 
     GET 
 
        •  The files SYSIN and SCARDS are synonymous in PL/C.  Their input 
           record lengths default to 100 characters, but may be redefined. 
 
        •  See notes on the OPEN statement below. 
 
     GO TO, GOTO 
 
     IF 
 
        •  The maximum nesting depth for IF statements is 12. 
 
     Null 
 
     ON 
 
        •  The  default  states  for  all PL/C conditions except CHECK and 
           FLOW are enabled.  This differs from PL/I (F) where the default 

           states for SIZE, STRINGRANGE,  and  SUBSCRIPTRANGE  are  "disa- 

           bled."   If  SUBSCRIPTRANGE  is disabled (by a NOSUBSCRIPTRANGE 

           prefix), the integrity of the compiler cannot be guaranteed and 

           batch operation is threatened. 

 

        •  The AREA, KEY, and PENDING conditions are not included in PL/C. 

 

        •  Not all of the PL/I (F) ON codes are included in PL/C. 

 

        •  An incompatible FLOW option has been added to PL/C. 

 

        •  As in PL/I (F), an ON-unit cannot consist of a DO, END, RETURN, 

           FORMAT, PROCEDURE, or DECLARE statement. 

 

        •  A FLOW condition that is not part of PL/I  has  been  added  to 

           PL/C. 

 

     OPEN 

 

        •  The following options are included: 

 

 

                                                                 PL/C  273 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
              TITLE,  PRINT,  LINESIZE,  PAGESIZE,  INPUT, OUTPUT, RECORD, 
              SEQUENTIAL, STREAM, KEYED, DIRECT, and UPDATE 
 
        •  The following options are not included: 
 
              BUFFERED, UNBUFFERED, BACKWARDS, EXCLUSIVE, and TRANSIENT 
 
        •  All PL/C files have the EXTERNAL default attribute. 
 
        •  The TITLE option, in PL/C, is used to specify the  name  of  an 
           MTS  file or device, or a logical I/O unit name or number, with 
           which all I/O operations associated with the PL/C file variable 
           will be performed.  If the option is not  used  and  no  ATTACH 
           control card naming the file variable has been encountered, the 
           PL/C  file  variable  name  is assumed to be the name of an MTS 
           file or device with which I/O will be done,  i.e.,  if  a  file 
           variable  MONIES  was  specified  in an OPEN statement, the MTS 
           file MONIES would be referred to for I/O, or if SERCOM was  the 
           file  variable,  all  its  I/O would be done on the logical I/O 
           unit SERCOM.  If the TITLE option were not available, the  only 
           MTS files which could be referred to in this way would be files 
           or  devices  whose  names obeyed PL/I identifier naming conven- 
           tions, which are somewhat restrictive.  Hence, if one wants  to 
           refer to an MTS file named ...OOPS, the option TITLE(’...OOPS’) 

           should  be  included  on the OPEN statement for the file in the 

           PL/C program.  Note that the logical  I/O  units  0-19  may  be 

           referred to in this way, e.g., TITLE(’0’). 

 

        •  The  PL/C  compiler input (SCARDS/SYSIN) stream defaults to 100 

           characters in  length.   The  length  of  the  output  (SPRINT/ 

           SYSPRINT)  stream  defaults  to  either  133 characters, or the 

           maximum file/device length, whichever is shorter.  Both may  be 

           redefined by explicit OPENing. 

 

        •  For  other PL/C files, record-length defaulting is presented in 

           the figure below.  Length-definition processing  proceeds  from 

           left to right, top to bottom.  As soon as a value is defined by 

           one level of choice, that is the ultimate definition.  Vertical 

           lines  represent  mutually  exclusive  paths of choice.  If any 

           file has the PRINT  option/attribute,  one  character  carriage 

           control is added. 

 

 

 

 

 

 

 

  274  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
                                                   ┌────@F spec. length 
                                          ATTACHed | 
                                       ┌───────────| 
                                       |   file    | 
            LINESIZE────ENVIRONMENT────|           └────80 
             value      information    | 
                                       | 
                                       |           ┌────system input:100 
                                       |           |    [INCLUDEd files] 
                                       └───────────| 
                                           other   |────PRINT:120 
                                                   | 
                                                   └────MTS max. device 
                                                               length 
 
 
                    Figure 1:  Record-Length Defaulting 
 
           See the ENVIRONMENT option notes below. 
 
     PROCEDURE, PROC 
 
        •  The TASK option is not included. 
 
        •  The  RECURSIVE  option  is included.  All procedures under PL/C 
           are recursive, but unless the RECURSIVE  option  is  specified, 
           recursive  use  of  the  procedure  will  result  in a run-time 
           diagnostic message. 
 
        •  The ORDER and REORDER options are accepted,  but  are  ineffec- 
           tive.  They have no effect on the object code generated. 
 
        •  Scalars  may  not  be  used as arguments for array or structure 
           parameters. 
 
        •  Like PL/I, but unlike previous releases of  PL/C,  an  asterisk                           ______ ________ ________ __  ____ 
           (*)  may  not be given as a length specification in the RETURNS                      ___ 

           option.  CHAR(256) VAR or BIT(256) VAR may be used to declare a 

           procedure which returns a string of arbitrary length. 

 

     PUT 

 

        •  All of the PL/I (F) options are included. 

 

        •  Additional diagnostic options that are not part of PL/I (F) are 

           included in PL/C.  See  "Incompatible  PL/C  Diagnostic  State- 

           ments" below. 

 

        •  The  files  SPRINT  and SYSPRINT are synonymous in PL/C.  Their 

           output record lengths are the minimum of 133 characters and the 

           MTS maximum output record length, but may be redefined. 

 

 

                                                                 PL/C  275 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
        •  See the notes on the OPEN statement, above. 
 
     READ 
 
        •  Only the FILE, INTO, KEY, KEYTO, and IGNORE options of PL/I (F) 

           are included. 

 

        •  PL/C-written fixed-length records  are  fully  compatible  with 

           PL/I (F).   But  note  that  LABEL  variables  written by PL/C- 

           compiled programs can be meaningful only when read back  in  by 

           the same PL/C program in the same compiler run. 

 

        •  See  also  the  notes  on  the  RECORD  attribute  and the OPEN 

           statement. 

 

     RETURN 

 

     REVERT 

 

     REWRITE 

 

        •  FILE, FROM, and KEY supported.  File must be opened for update. 

           If KEY is specified, file must be DIRECT. 

 

     SIGNAL 

 

     STOP 

 

     WRITE 

 

        •  Only the FILE,  KEYFROM,  and  FROM  options  of  PL/I (F)  are 

           included. 

 

        •  FILE and FROM must be present. 

 

        •  PL/C-written  fixed-length  records  are  fully compatible with 

           PL/I (F).  But note  that  LABEL  variables  written  by  PL/C- 

           compiled  programs  can be meaningful only when read back in by 

           the same PL/C program in the same compiler run. 

 

        •  See also the  notes  on  the  RECORD  attribute  and  the  OPEN 

           statement. 

 

 

  Incompatible PL/C Diagnostic Statements: 

 

     The  following  PL/C  statements  are  not PL/I (F) statements.  When                                             ___ 

  these statements are used in a program, compatibility with  PL/I (F)  is 

  lost.   However,  compatibility  may  be  preserved  by  enclosing these 

  statements in a "compilable comment." 

 

 

 

  276  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     NOCHECK 
 
        •  When NOCHECK is encountered in the execution of a block that is 
           within the scope of a CHECK prefix,  the  printing  that  would 
           normally  result  from  the  raising  of the CHECK condition is 
           suppressed.  If a CHECK prefix  is  not  present,  the  NOCHECK 
           statement is ineffective. 
 
     CHECK 
 
        •  When  CHECK is encountered in the execution of a block, that is 
           within the scope of a CHECK prefix, the printing  that  results 
           from  the  raising  of the CHECK condition (which may have been 

           suppressed by a previous NOCHECK statement) is resumed.  If  no 

           CHECK prefix is present, or there has been no preceding NOCHECK 

           statement,  the  CHECK statement is ineffective.  Note that the 

           normal action is to do  the  printing  that  results  from  the 

           raising  of  the CHECK condition, so that the NOCHECK statement 

           is provided to  override  this  normal  action.   This  is  the 

           opposite of the situation for the FLOW condition. 

 

        •  Alternate forms have one or two control parameters: 

 

                      CHECK(exp1) or CHECK(exp1,exp2) 

 

           "exp1"  specifies  the  maximum number of items in the printing 

           resulting from raising of the CHECK condition  in  the  current                                                           __  ___  _______ 

           block   that  will  appear.   After  the  specified  number  of            _____ 

           instances, NOCHECK is automatically applied.  "exp2" gives  the 

           maximum  number  of  times  the printing of the CHECK condition 

           will be permitted in each block dynamically  entered  from  the                                 ____ _____ ___________  _______  ____  ___ 

           current block.  That is,            _______ _____ 

 

           CHECK(N,M) is equivalent to 

 

                      CHECK(N) in the current block, and 

                      CHECK(M,M) as the first statement in every 

                            block entered from the current block. 

 

           CHECK(N) is equivalent to 

 

                      CHECK(N) in the current block, and 

                      CHECK is the first statement in every 

                            block entered from the current block. 

 

           CHECK is equivalent to 

 

                      CHECK in the current block, and 

                      CHECK as the first statement in every block 

                            entered from the current block. 

 

           Each  time  that a CHECK statement is encountered, the control- 

           ling counters are reset to the new limiting values. 

 

                                                                 PL/C  277 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     NOFLOW 
 
        •  When NOFLOW is encountered in the scope of a FLOW  prefix,  the 
           printing  that  results  from  raising  the  FLOW  condition is 
           suppressed.  If the FLOW  condition  is  disabled,  the  NOFLOW 
           statement is ineffective. 
 
     FLOW 
 
        •  When  FLOW  is  encountered  in the scope of a FLOW prefix, the 
           printing resulting from the raising of the  FLOW  condition  is 
           resumed.   If the FLOW condition is disabled, or there has been 
           no preceding NOFLOW statement, the FLOW statement  is  ineffec- 
           tive.   Note  that  the normal action is not to do the printing                                                     ___ __ __ ___ ________ 
           that results from the raising of the FLOW  condition,  so  that 
           the  FLOW statement is provided to override this normal action. 
           This is the opposite of the situation for the CHECK  condition. 
 
        •  Alternate forms have one or two control parameters: 
 
                       FLOW(exp1) or FLOW(exp1,exp2) 

 

           These  have  exactly  the  same  interpretation as for CHECK as 

           described above. 

 

        •  The FLOW condition is raised by  any  action  that  potentially 

           alters  the normal sequential flow-of-control.  That is, by the 

           CALL, DO, GOTO, RETURN, and IF statements, by  any  exceptional 

           condition  (except  FLOW)  which  would  cause an ON-unit to be 

           entered, and by in-line procedure references. 

 

 

  Diagnostic Options on the PUT Statement: 

 

     OFF        - suppresses   printing    of    execution    output    on 

                  SPRINT/SYSPRINT. 

 

     ON         - resumes printing of execution output on SPRINT/SYSPRINT. 

 

     FLOW       - displays the recent FLOW history of the program. 

 

     SNAP       - displays the recent calling history of the program. 

 

     ALL        - displays  the  current  values  of all automatic, scalar 

                  variables in the blocks active at the time of encounter, 

                  and the current values of all static or external  scalar 

                  variables. 

 

     ARRAY      - same  as  ALL  but  includes  array  as  well  as scalar 

                  variables. 

 

 

 

  278  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     DEPTH(exp) - specifies the depth  of  block  nesting  for  which  the 

                  display is to be produced.  Used only with SNAP, ALL, or 

                  ARRAY options. 

 

  If  an  ON  or  OFF  option  appears,  it must be the only option on the 

  statement.  FLOW, SNAP, ALL, and ARRAY can  appear  in  any  combination 

  with  each  other,  and with the standard SKIP, PAGE, or LINE options of 

  PL/I.  They cannot be combined with FILE, STRING, LIST,  DATA,  or  EDIT 

  options. 

 

 

 

  Attributes   __________ 

 

 

 

 

  Standard PL/I (F) Attributes: 

 

     The PL/I (F) attributes not included in PL/C are listed below.  These                              ___ 

  words  are  recognized  by  PL/C  as  attributes,  but  deleted  with an 

  appropriate message: 

 

     AREA 

     BACKWARDS 

     BASED 

     BUFFERED, BUF 

     CONTROLLED, CTL 

     EVENT 

     EXCLUSIVE, EXCL 

     GENERIC 

     IRREDUCIBLE 

     LIKE 

     OFFSET 

     PACKED 

     POINTER, PTR 

     POSITION, POS 

     REDUCIBLE 

     TASK 

     UNBUFFERED, UNBUF 

 

     The attributes that are included in PL/C are listed below.  Except as 

  noted below these attributes are exactly like  their  PL/I (F)  counter- 

  parts  as  described in section I of the IBM publication, IBM System/360                                                             ______________ 

  Operating  System  PL/I (F)  Language  Reference  Manual,  form   number   ________________________________________________________ 

  GC28-8201. 

 

     ALIGNED 

 

     AUTOMATIC, AUTO 

 

     BINARY, BIN 

 

 

                                                                 PL/C  279 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     BIT 
 
     BUILTIN 
 
     CHARACTER, CHAR 
 
     COMPLEX, CPLX 
 
     DECIMAL, DEC 
 
     DIMENSION 
 
        •  *’s  must  be  used  for the bounds in all DIMENSION attributes                 ____ 

           associated with a parameter.  This includes the bounds  in  the 
           DIMENSION  attributes  used in the ENTRY attribute for an ENTRY 
           parameter.  *’s may not be used for the bounds under any  other 

           circumstances. 

 

     DIRECT 

 

        •  See   "Indexed   I/O   in  PL/C"  for  an  explanation  of  the 

           differences. 

 

     ENTRY 

 

        •  Structure parameters cannot  be  declared  in  the  list  after 

           ENTRY.   This  means  an  entry  name  cannot  be  passed as an 

           argument if any of its parameters is a structure. 

 

        •  In the absence of explicit attributes, PL/C supplies  a  scalar 

           parameter  with  FLOAT,  DECIMAL,  and REAL attributes, whereas 

           PL/I (F) makes no assumption as to attributes. 

 

        •  The bounds in all dimension attributes and the  length  in  all 

           BIT or CHAR attributes in the parameter list that follows ENTRY 

           must be *’s. 

 

     ENVIRONMENT, ENV 

 

        •  The  CONSECUTIVE,  INDEXED, F, V, U, CTLASA, CTL360, and GENKEY 

           options are recognized; CTL360 and GENKEY are ignored. 

 

           When the associated PL/C file is attached to a  magnetic  tape, 

           the  F,  V, or U specification in the ENV attribute is taken to 

           define the blocking  parameters  for  the  tape.   The  record- 

           length/blocking  parameter  processing  procedure  for magnetic 

           tapes is as follows: 

 

           In the following, BLKSI refers  to  the  block  size  parameter 

           specified  in  the  ENV  options  list, and LRECL refers to the 

           logical record length.  Their ultimate definitions are used  by 

           the MTS tape routines. 

 

 

  280  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
              If an F, U, or V format specification has not been given, or 
              no ENV option has been specified, the current DSR format and 
              blocking  parameters  are used.  If a format has been speci- 
              fied, the following actions take place: 
 
              (a)  If a LINESIZE value has been defined, it overrides  any 

                   LRECL  specification,  and  sets LRECL=LINESIZE (+1, if 

                   PRINT). 

              (b)  If a LRECL has not been defined, a BLKSI must have been                                                             ____ 

                   defined, or else an error  occurs.   LRECL  is  set  to 

                   BLKSI (-8, if V format), if BLKSI is defined. 

              (c)  If  a  LRECL  has  been defined (either by the LINESIZE 

                   override or explicitly), BLKSI is set to LRECL (+8,  if 

                   V format), if not explicitly given. 

 

           When  attached  to an MTS file or device, only the F specifica- 

           tion is meaningful.  It is taken as defining a record length to 

           which all input records will be padded and all  output  records 

           to  be  truncated.   The  length  is  defined precisely as with 

           magnetic tapes, described above.  The resultant LRECL value  is 

           taken as the file’s record length. 

 

     EXTERNAL, EXT 

 

     FILE 

 

        •  Only EXTERNAL files are permitted. 

 

        •  Variables  declared  with the FILE attribute are presumed to be 

           the name of an MTS file, device, or logical I/O unit with which 

           all I/O associated with the FILE variable is to  be  performed. 

           For  example,  all  I/O  performed  with  a FILE variable named 

           SPUNCH would be done on the MTS logical I/O unit SPUNCH.   This 

           would  also  be the case for a FILE variable PAYROLL and an MTS 

           file PAYROLL.  To perform I/O  operations  upon  MTS  files  or 

           devices  which  cannot be referred to in this way (because they 

           do not follow PL/I variable naming conventions), see the  TITLE 

           option description notes. 

 

     FIXED 

 

     FLOAT 

 

     INITIAL, INIT 

 

        •  Iteration  factors,  but  not  string  repetition  factors, are 

           allowed in the INITIAL list.  This means that  the  phrase  (x) 

           (1)  ’---’ in PL/I (F) would have to be given as (x) (’---’) in 

           PL/C.  But the phrase (x) ’---’ is not allowed in PL/C. 

 

     INPUT 

 

 

                                                                 PL/C  281 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     INTERNAL, INT 
 
     KEYED 
 
        •  PL/C KEYED I/O is not compatible with PL/I (F) KEYED  I/O,  but 

           is almost identical to PL/I KEYED I/O on MTS.  The KEYs used in 

           PL/C  correspond  to the MTS line number for the I/O operation. 

           Thus, the KEYED attribute should only be applied to PL/C  files 

           that are attached to MTS line files. 

 

        •  The  KEYED attribute must be specified for a PL/C file whenever 

           KEYED I/O is desired.  Unlike  PL/I  on  MTS,  the  CONSECUTIVE 

           attribute  is  not  recognized  in  PL/C for KEYED files.  Also 

           unlike PL/I on MTS, the GENKEY attribute is ignored in PL/C. 

 

        •  The  key  used  in  KEY,  KEYTO,  or  KEYFROM  clauses  in  I/O 

           statements  is  the internal form of the MTS line number of the 

           line read or written (e.g., the line number times  1000).   The 

           KEY  must  be  convertible  to  FIXED  BINARY(31).   PL/C  will 

           automatically  perform  conversion  to  the  appropriate   form 

           whenever  possible.   The  automatic  string/numeric conversion 

           feature of PL/C allows the user to perform  operations  similar 

           to  KEYED  I/O  with  the  GENKEY  option  in PL/I on MTS.  For 

           example, the following program will read  line  number  123.000 

           from the file MYFILE. 

 

              MAIN:  PROCEDURE OPTIONS(MAIN); 

                     DECLARE BUFF CHARACTER(80) VARYING, 

                             LINENUM CHARACTER(10) VARYING, 

                             MYFILE FILE KEYED ENVIRONMENT(INDEXED); 

                     LINENUM = ’123000’; 

                     READ FILE (MYFILE) INTO (BUFF) KEY(LINENUM); 

                     END MAIN; 

 

        •  Sequential  I/O  may  be performed on KEYED files in PL/C.  The 

           line number read or written by the sequential I/O operation may 

           be obtained through the KEYTO clause. 

 

        •  The condition ONKEY  (oncode  =  69)  may  be  used  to  detect 

           end-of-file conditions resulting from KEYED I/O. 

 

     LABEL 

 

        •  The  optional  list of statement-label constants of PL/I (F) is 

           not permitted in PL/C and will be discarded if given. 

 

     LENGTH 

 

        •  An (*) must be  used  for  the  length  in  all  CHAR  and  BIT 

           attributes  associated with a parameter.  This includes lengths 

           in the ENTRY attribute.  *’s may not be used for lengths  under 

           any other circumstances. 

 

 

  282  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
        •  Length cannot be greater than 256. 
 
     OUTPUT 
 
     PICTURE, PIC 
 
        •  Sterling PICTURE data-types are not supported. 
 
        •  PL/C will not provide for drifting signs in exponents. 
 
     PRECISION 
 
     PRINT 
 
     REAL 
 
     RECORD 
 
        •  Only  a limited form of RECORD I/O is implemented (see READ and 

           WRITE above). 

 

        •  PL/C expects all input records read from a RECORD file to be  a 

           fixed  length,  the  length  being  the  size, in bytes, of the 

           internal representation of the variable appearing in  the  READ 

           statement’s INTO option.  It should be noted that since MTS may 

           trim  excess  blanks  off  of  ends  of input records, PL/C may 

           complain about some records in a RECORD FILE.  To prevent  this 

           occurrence,  the  use  of  the  ATTACH  control  card  and  the 

           ENVIRONMENT option should be considered. 

 

     RETURNS 

 

     SEQUENTIAL, SEQL 

 

     STATIC 

 

     STREAM 

 

     UNALIGNED, UNAL 

 

     UPDATE 

 

     VARYING, VAR 

 

     Factoring 

 

        •  The maximum depth of factoring is 6. 

 

        •  The maximum number of identifiers in a factor is 88. 

 

 

 

                                                                 PL/C  283 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     Structures 
 
        •  The maximum number of identifiers in a structure is 88. 
 
 
 
  Built-In Functions and Pseudo-Variables   _______________________________________ 
 
 
     The PL/I (F) built-in functions listed  below  are  not  included  in                                                          ___ 

  PL/C.   A  plus sign (+) after the name indicates that a pseudo-variable 

  of the same name is not included. 

 

     Based Storage: 

 

        ADDR, EMPTY, NULL, NULLO 

 

     Multitasking: 

 

        COMPLETION+, PRIORITY+, STATUS+ 

 

     Array Generic: 

 

        POLY 

 

     String Generic: 

 

        STRING pseudo-variable 

 

     Miscellaneous: 

 

        ALLOCATION 

 

  Notes: 

 

     (1)  The following built-in functions and  pseudo-variables  are  in- 

          cluded in PL/C: 

 

          Pseudo-Variables: 

 

             SUBSTR, REAL, IMAG, COMPLEX, ONCHAR, ONSOURCE, UNSPEC 

 

             Incompatibility  with  the  PL/I (F):  The right-hand side of 

             the assignment 

 

                UNSPEC(decimal-fixed-variable) = bit-string; 

 

             must be a bit string that represents valid  IBM  360  packed- 

             decimal decimal data. 

 

 

 

  284  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
          Arithmetic Generic: 
 
             ABS, ADD, DIVIDE, MAX, MIN, MOD, MULTIPLY, SIGN, FLOOR, CEIL, 
             TRUNC, COMPLEX, CONJG, IMAG, REAL, ROUND 
 
             Incompatibility:  FLOOR and CEIL (FLOAT scale) under PL/I (F) 

             treat  all  numbers of magnitude less than 16**(-16) as zero; 

             under PL/C only true zeros are treated as zero. 

 

          Mathematical Generic: 

 

             EXP, LOG, LOG10, LOG2, ATAND, ATAN,  TAND,  TAN,  SIND,  SIN, 

             COSD, COS, TANH, ERF, ERFC, SQRT, COSH, SINH, ATANH 

 

          String Generic: 

 

             BOOL,  HIGH,  INDEX,  LENGTH,  LOW,  REPEAT,  STRING, SUBSTR, 

             TRANSLATE, UNSPEC, VERIFY 

 

          Array Generic: 

 

             ALL, ANY, DIM, HBOUND, LBOUND, PROD, SUM 

 

             Incompatibility:  In PL/C the built-in functions DIM, LBOUND, 

             and HBOUND  operate  without  actually  evaluating  an  array 

             expression,  if  such  an  expression  is  given as the first 

             argument.  Since PL/I (F)  evaluates  the  expression  before 

             performing  the function, there could be "side effects" under 

             PL/I (F) that will not occur in PL/C. 

 

          Type Conversion: 

 

             BINARY, BIT, CHAR, DECIMAL, FIXED, FLOAT, PRECISION 

 

          Condition: 

 

             DATAFIELD, ONCHAR, ONCODE,  ONCOUNT,  ONFILE,  ONKEY,  ONLOC, 

             ONSOURCE 

 

             PL/C has an additional condition:  KEY condition with ONCODE= 

             69.  This will be raised if: 

 

             (a)  A  REWRITE  or  DELETE  is  issued  and the previous I/O 

                  operation was not a READ. 

             (b)  A DELETE is invalid because the file is not  opened  for 

                  UPDATE. 

 

             PL/C does not include all of the ON codes of PL/I (F). 

 

          Miscellaneous: 

 

             COUNT, DATE, LINENO, TIME 

 

 

                                                                 PL/C  285 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
          PL/C Built-in Functions Not Included in PL/I (F): 

 

             RAND, ONORIG, ONDEST, STMTNO 

 

             See notes (5), (6), and (7) below. 

 

     (2)  Except  as  noted  otherwise,  all  built-in  functions  perform  

          exactly as do their PL/I (F) counterparts.  In other words,  the           _______ 

          values  of  SIN(x),  for  example,  in  PL/C and in PL/I (F) are 

          identical floating-point numbers when the functions are  applied 

          to  the  same  floating-point value of "x".  The methods used in 

          PL/C are those described in the IBM publication, IBM  System/360                                                            _______________ 

          Operating System, PL/I Subroutine Library, Computational Subrou-           ________________________________________________________________ 

          tines, form number GC28-6590.           _____ 

 

     (3)  The  names  of  built-in  functions and pseudo-variables are not 

          reserved and may be used as identifiers, but if they are  to  be 

          used  in this way they should be explicitly declared; contextual 

          declaration of these particular identifiers may succeed (depend- 

          ing upon context) but  will  produce  a  warning  message.   For 

          example,  HIGH  can be used as a variable name, but it should be 

          listed in a DECLARE statement.  Explicit declaration as a  label 

          or entry name is also accepted. 

 

     (4)  Note  on  UNSPEC:   Although  the  PL/I (F)  and  PL/C  internal 

          representation  of  certain  data-types  differ,  the  PL/C  and 

          PL/I (F)  UNSPEC functions produce identical results (except for 

          the packed-decimal error case noted under note (1) above).   The 

          PL/C  UNSPEC is somewhat more complicated (and time-consuming to 

          execute) than its PL/I (F) counterpart, since  the  PL/C  UNSPEC 

          must convert to and from the PL/I (F) representation. 

 

     (5)  A  built-in  function  to  produce  a  sequence of pseudo-random 

          numbers has been included  in  PL/C.   There  is  no  comparable                                                  _____  __  __  __________ 

          built-in  function  in  PL/I (F).  When this function is used, a           ________  ________  __  ________ 

          PL/C program will not run under PL/I (F).  Therefore, a  program 

          that  includes  the use of this built-in function will receive a 

          warning message from PL/C. 

 

          Definition: 

 

             RAND finds the next number in a pseudo-random number sequence 

             in which the argument was the last element, and  returns  the 

             next number to the point of invocation. 

 

          Reference: 

 

             RAND(x) 

 

          Argument: 

 

             The  argument  "x"  may  be an element or array expression of 

             coded-arithmetic type.  It must be REAL.  If it is  not  also 

 

  286  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
             FLOAT,  it  will  be converted to FLOAT by the RAND function. 
             The value must be in the range 0 < x < 1. 
 
          Result: 
 
             The value returned will be FLOAT with the same base  (BINARY, 

             DECIMAL) as the argument. 

 

          Use: 

 

             RAND is normally used in an assignment statement: 

 

                                x = RAND(x); 

 

             Repeated execution of such a statement will cause "x" to take 

             on  the  successive  values  in  a  sequence of pseudo-random 

             numbers uniformly distributed over the interval  (0.0,  1.0), 

             so  long as the initial, or "seed", value of "x" was properly 

             chosen.  The "seed" value should be between 0 and 1, and have 

             nine significant figures, the  rightmost  of  which  is  odd. 

             This  will  maximize the period of the sequence.  The genera- 

             tion method used in the PL/C RAND function is  based  on  the 

             method  of Coveyou and Macpherson described in Journal of the                                                             ______________ 

             ACM, 14:1(1967), pp.  100-119.              ___ 

 

     (6)  The ONORIG and ONDEST built-in functions have no  arguments  and 

          are  nonzero  only  within  an ON FLOW unit.  ONORIG returns the 

          statement number of the statement that caused the FLOW condition 

          to be raised, and ONDEST returns the  statement  number  of  the 

          statement that is the target of that transfer. 

 

     (7)  The  STMTNO  built-in  function has a single argument giving the 

          label of a source statement, and it returns the statement number 

          of that statement.  It is intended primarily for use  in  an  ON 

          FLOW unit, but may appear in any context. 

 

 

 

  Conditions   __________ 

 

 

     The PL/I (F) conditions not included in PL/C are:                              ___ 

 

       AREA, PENDING 

 

     All  of  the  other  PL/I (F)  conditions  are included, and the FLOW 

  condition has been added.  The PL/C conditions are equivalent  to  their 

  PL/I (F)  counterparts,  which  are  described  in  section H of the IBM 

  publication, IBM PL/I (F) Language Reference Manual, form  number  GC28-                ______________________________________ 

  8201,  except  as  noted below.  The conditions and acceptable abbrevia- 

  tions are listed below, with the default state underlined: 

 

 

                                                                 PL/C  287 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     CHECK NOCHECK            _______ 
 
        The default PL/C output for the CHECK condition is  not  identical 
        to  that  of  PL/I (F).   When  an element of a "checked" array is 

        changed, PL/C displays only that particular element  (rather  than 

        the  entire  array).   Similarly,  when  a  member  of a "checked" 

        structure is changed, only that member is displayed  (rather  than 

        the entire structure).  The timing of the PL/C display is also not 

        exactly  the  same  as  that of PL/I (F).  The PL/C display occurs 

        immediately after the  CHECK  condition  is  raised,  rather  than 

        waiting  until the end of the statement.  See also the description 

        of the CHECK statement. 

 

     CONVERSION CONV NOCONVERSION NOCONV      __________ ____ 

 

     ENDFILE      _______ 

 

     ENDPAGE      _______ 

 

     ERROR      _____ 

 

        The PL/C ERROR condition is not entirely compatible with PL/I (F). 

        The standard system action in PL/I (F)  is  to  raise  the  FINISH 

        condition  and  stop.   In  PL/C, the standard system action is to 

        apply the  automatic  PL/C  error  correction  and  then  continue 

        execution;  the  FINISH  condition  is  not  raised  (unless  that 

        particular PL/C "correction" terminates execution).  Normal return 

        (if there is a pending  ON  unit)  is  compatible--both  PL/C  and 

        PL/I (F) signal FINISH and terminate execution. 

 

     FINISH      ______ 

 

     FIXEDOVERFLOW FOFL NOFIXEDOVERFLOW NOFOFL      _____________ ____ 

 

     FLOW NOFLOW           ______ 

 

        The  FLOW  condition  has been added to PL/C to permit the dynamic 

        monitoring of the flow-of-control.  When  the  FLOW  condition  is 

        enabled by a FLOW prefix, the condition is raised by any statement 

        that  potentially  will alter the normal sequential flow of execu- 

        tion.  These are the CALL, DO, GOTO, IF,  and  RETURN  statements, 

        any exceptional condition (except FLOW) which causes an ON-unit to 

        be entered, and references to user-defined functions. 

 

        The  standard  system  action  depends  on  the  FLOW  and  NOFLOW 

        statements.  If the condition is raised  within  the  scope  of  a 

        NOFLOW  statement,  the origin and destination of the transfer are 

        saved in a first-in-first-out queue  which  will  hold  up  to  18 

        entries.   A  PUT  FLOW  statement will cause the contents of this 

        queue to be printed in the form: 

 

       oooo -> dddd   or   nnn*(ooo -> ddd) 

 

 

  288  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
        where "oooo"  is  the  origin  statement  number,  "dddd"  is  the 

        destination  statement  number, and "nnn" is a count of the number 

        of times the transfer was made in succession.  If the condition is 

        raised within the scope  of  a  FLOW  statement,  the  origin  and 

        destination  of  the transfer are immediately printed on SPRINT in 

        the same format as used by the PUT FLOW statement.  This  may,  of 

        course, be replaced with a user-supplied ON FLOW unit.  The ONORIG 

        and  ONDEST built-in functions are useful in such an ON-unit.  The 

        NOFLOW  and  FLOW  statements  will  still  serve  to  dynamically 

        suppress  and resume the printing that may result from the raising 

        of the FLOW condition.  The user should disable the FLOW condition 

        in any FLOW ON-unit supplied (by using a NOFLOW prefix)  to  avoid 

        an infinite loop. 

 

        If  the  FLOW  or NOFLOW prefix is applied to a PROCEDURE or BEGIN 

        statement, its scope is the entire block.   If  applied  to  a  DO 

        statement,  its  scope  is  the DO group.  Applied to other state- 

        ments, its scope is the single statement. 

 

     KEY 

 

        See "Indexed I/O in PL/C" for a description of KEY condition 69. 

 

     NAME      ____ 

 

     OVERFLOW OFL NOOVERFLOW NOOFL      ________ ___ 

 

     RECORD      ______ 

 

     SIZE NOSIZE (Note default is different from PL/I (F).)      ____ 

 

        When the SIZE condition is raised, the arithmetic results in  PL/C 

        will  differ  from  those  produced  by  PL/I (F).  In particular, 

        PL/I (F) may truncate results on the left  to  the  user-specified 

        precision,  while  PL/C  always retains the implementation-defined 

        maximum precision. 

 

     STRINGRANGE STRG NOSTRINGRANGE NOSTRG      ___________ ____ 

          (Note default is different from PL/I (F).) 

 

     SUBSCRIPTRANGE SUBRG NOSUBSCRIPTRANGE NOSUBRG      ______________ _____ 

          (Note default is different from PL/I (F).) 

 

        The NOSUBSCRIPTRANGE prefix  will  not  be  effective  unless  the 

        NOMONITOR=(SUBRG)  suboption  is  specified.   Since  out-of-range 

        subscripts can damage the compiler (if PL/C is  not  in  the  link 

        pack  area) and interfere with batch operation, many installations 

        elect to inhibit (override) this option. 

 

     TRANSMIT      ________ 

 

     UNDEFINEDFILE UNDF      _____________ ____ 

 

 

                                                                 PL/C  289 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     UNDERFLOW UFL NOUNDERFLOW NOUFL      _________ ___ 
 
     User-Defined Condition 
 
     ZERODIVIDE ZDIV NOZERODIVIDE NOZDIV      __________ ____ 
 
  Notes: 
 
     (1)  All of the PL/I (F) condition prefixes are included in PL/C. 

 

     (2)  All of the conditions listed above can be given in  ON,  REVERT, 

          and  SIGNAL statements.  These include conditions beginning with 

          "NO", e.g., NOCHECK statements. 

 

     (3)  As noted in the ERROR condition, PL/C will  attempt  to  correct 

          run-time  errors  and  continue.   In  the  case  of  arithmetic 

          condition, if the condition is disabled (i.e., a NO-prefix is in 

          effect), the correction will be suppressed.  If a  user-supplied 

          ON-unit is pending, the correction will be applied, but no error 

          message will be given. 

 

 

 

  Prefixes   ________ 

 

 

 

     (1)  Prefixes  can  be  given  in PL/C in any order.  For the sake of 

          compatibility, a warning message will be issued if they are  not 

          in the order required by PL/I (F): 

 

               THEN or ELSE 

 

                  condition prefixes 

 

                     labels or entry names 

 

          They  will,  however, perform correctly, regardless of the order 

          of appearance. 

 

     (2)  Multiple labels and entry names may be given (with a maximum  of 

          87  on  one  statement),  but only the first (leftmost) label or 

          entry name on a statement can be referenced by a subsequent  END 

          statement. 

 

     (3)  All of the PL/I (F) condition prefixes are included in PL/C, and 

          FLOW  and  NOFLOW  have been added.  These are listed below with 

          the default state underlined: 

 

          CHECK NOCHECK                 _______ 

 

             As in PL/I (F) the CHECK and NOCHECK prefixes  may  be  given 

             only on PROCEDURE and BEGIN statements.  Unlike PL/I (F), the 

 

  290  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
             raising of the CHECK condition may be suppressed and restored 
             dynamically  within  the block by means of the PL/C CHECK and              ___________ 
             NOCHECK statements. 
 
          CONVERSION CONV NOCONVERSION NOCONV           __________ ____ 
 
          FIXEDOVERFLOW FOFL NOFIXEDOVERFLOW NOFOFL           _____________ ____ 
 
          FLOW NOFLOW (not a PL/I prefix)           ____ 

 

             If the FLOW or NOFLOW prefix is applied  to  a  PROCEDURE  or 

             BEGIN  statement,  its scope is the entire block.  If applied 

             to a DO statement, its scope is the  DO  group.   Applied  to 

             other statements, its scope is the single statement. 

 

          OVERFLOW OFL NOOVERFLOW NOOFL           ________ ___ 

 

          SIZE NOSIZE           ____ 

 

          STRINGRANGE STRG NOSTRINGRANGE NOSTRG           ___________ ____ 

 

          SUBSCRIPTRANGE SUBRG NOSUBSCRIPTRANGE NOSUBRG           ______________ _____ 

 

             If  SUBSCRIPTRANGE is disabled, the integrity of the compiler 

             cannot be guaranteed and batch operation is threatened. 

 

          UNDERFLOW UFL NOUNDERFLOW NOUFL           _________ ___ 

 

          ZERODIVIDE ZDIV NOZERODIVIDE NOZDIV           __________ ____ 

 

             Note that the default state for all  PL/C  conditions  except 

             CHECK  is  "enabled."   This  differs from PL/I (F) where the 

             default  for  SIZE,  STRINGRANGE,   and   SUBSCRIPTRANGE   is 

             "disabled." 

 

             Multiple condition prefixes may be given on a statement. 

 

             If  a condition prefix is otherwise correct, PL/C will accept 

             a space after NO in the condition name.  That  is,  NO  CHECK 

             will  be  accepted  for  NOCHECK.   A warning message will be 

             given. 

 

     (4)  The entry name on an ENTRY statement in PL/C cannot be identical 

          to an identifier that has been declared earlier in the PROCEDURE 

          that contains the ENTRY statement.  PL/C  will  reject  such  an 

          entry  name  as  a  "multiple declaration" even though this is a 

          valid PL/I construction. 

 

 

 

 

                                                                 PL/C  291 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  The PL/C Macro Feature   ______________________ 
 
 
 
 
  Macro Definition: 
 
     A macro definition must be given within a "macro packet."   A  packet 

  begins  with a /MACRO card (/ in column 1) and ends with a /MEND card (/ 

  in column 1).  One or more macro definitions comprise a  packet.   There 

  is  no limit to the length of a packet, or to the number of packets that 

  may be used, although the  memory  available  will  restrict  the  total 

  amount  of macro text in a program.  Packets may be inserted anywhere in 

  the source program,  but  each  macro  must  be  defined  before  it  is                                          ____  __  _______  ______  __  __ 

  referenced.  A macro definition has the form:   __________ 

 

       <macro name> = <macro body> %; 

 

  or 

 

       <macro name>(formal-param-1,formal-param-2,..., 

            formal-param-n) = <macro body> %; 

 

     The  macro  body  may  contain any text except the sequence "%;".  No 

  requirement is made regarding balanced quotes or partial comments.  Care 

  should be taken about card boundaries, since macro text  is  interpreted 

  as a series of lines, each with its own indentation.  Two separate lines                  _____ 

  will  never be put on the same line during expansion, although it may be 

  necessary to split a line to fit within source margins. 

 

     The macro name may consist of up to 255 characters, starting with  an 

  alphabetic  character.   Like all symbols in PL/C, macro names cannot be 

  split over card boundaries.  (This is independent of the BNDRY  option.) 

  The  name  must  be  distinct  from  all  other  identifiers used in the 

  program.  PL/C keywords may be used as macro names, but such names  will 

  not  be  recognized as macros in any text which is syntactically scanned 

  before the definitions are processed. 

 

     The formal parameters are recognized  only  within  the  macro  being 

  defined.  A maximum of 10 formal parameters is allowed in a macro.  They 

  may  contain  up  to  31  characters,  again starting with an alphabetic 

  character.  Formal parameters are PL/C symbols, and therefore cannot  be 

  split  over  card  boundaries.   Formal  parameters are local to a macro 

  definition, and will override within that definition any  other  use  of 

  the  symbol  (identifier,  keyword, or macro name).  They are recognized 

  only when surrounded by any of the PL/C delimiters (including blanks and 

  source-text  boundaries).   Parameters  appearing  within  comments  and 

  strings  are  also  recognized, although, again only when properly deli- 

  mited.  Thus, if E is a formal parameter in the text 

 

       E = 12;    /* SET E TO UPPER BOUND */ 

 

 

  292  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
  the E’s in SET and UPPER will not be considered parameter instances.                                 ___ 
 
 
  Macro Expansion: 
 
     Within PL/C source text, macro calls are  expanded  when  encountered 
  during  syntactic  analysis.   This  means  that  macro  calls inside of 
  strings and comments will not be recognized.   Macro  text  may  contain                             ___ 
  further  macro  references,  either explicit or parameter substitutions, 
  which are expanded when encountered during  the  scan  of  the  original 
  expansion.  A macro call is of the form: 
 
       <macro name> 
 
  or 
 
       <macro name>(actual-param-1, actual-param-2,...,actual-param-n) 

 

  The  second  form  may be split over a card boundary, but the macro name 

  itself must not be split.  The number of actual  parameters  must  equal 

  the  number  of  formal  parameters  in  the  macro  definition.  During 

  expansion, each actual parameter is substituted  for  the  corresponding 

  formal parameter in the macro body before the syntactic-analysis scan of 

  the macro text is performed. 

 

     Actual  parameters are treated as pure text during substitution; that 

  is, embedded parameters are not recognized.  Macro  references  are  not 

  detected  until the macro text containing the parameter is syntactically 

  scanned.  Blanks surrounding actual parameters in the call are  ignored. 

  As  a  convenience, there are two additional rules governing the text of 

  actual parameters: 

 

     (1)  If a parameter begins with a single quote, all text  up  to  and 

          including  the  next single quote will be considered part of the 

          parameter.  (Two consecutive quotes  within  such  text  do  not 

          terminate the parameter and remain unchanged.) 

 

     (2)  If  an actual parameter begins with a left parenthesis, all text 

          up to the matching right parenthesis is considered part  of  the 

          parameter.   The  outer parentheses, however, are discarded from 

          the text of the parameter before substitution. 

 

          For example, given the macro packet 

 

               /MACRO 

                ASGN(P,Q,R) = SUBSTR(P,Q) = R; %; 

               /MEND 

 

          and the macro call 

 

               ASGN(X,(10,3),’ABC’’XYZ’) 

 

 

                                                                 PL/C  293 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
          the expansion would be 
 
               SUBSTR(X,10,3) = ’ABC’’XYZ’; 

 

 

  Macro Display: 

 

     Unless NOSOURCE is specified, macro definitions are  always  printed. 

  Macro calls are printed by default; NOMCALL may be used to suppress this 

  printing.   Macro  expansions  are  normally printed; the NOMTEXT option 

  will cause them not to appear.  If NOMTEXT and NOMCALL  are  both  used,                                                                ____ 

  the default options, MTEXT and MCALL, are applied. 

 

 

  PL/C POST-MORTEM DUMP STATISTICS REPORT   _______________________________________ 

 

 

     The  PL/C post-mortem dump statistics report is generated in response 

  to the R suboption on the DUMP, DUMPE, or DUMPT options.   Much  of  the 

  report is self-explanatory.  However, note the following: 

 

     (1)  PAGES  and  LINES  refer  to  output  to the system output file, 

          SPRINT.  CARDS refers to  input  from  the  system  input  file, 

          SCARDS.   INCL’S  refers  to the total number of cards read from 

          all /INCLUDEd files.   AUXIO  refers  to  the  total  number  of 

          records  read  from,  written to, or updated in auxiliary files. 

          This includes auxiliary input file cards that are /INCLUDEd. 

 

     (2)  BYTES USED figures are given exactly and then rounded up to  the 

          nearest K (=1024 bytes).  BYTES UNUSED figures are given exactly 

          and then rounded down to the nearest K. 

 

          For example:   USED 1025 (2K) 

                       UNUSED 1025 (1K) 

 

          Since  some  internal  PL/C  tables  grow and shrink, BYTES USED 

          means the maximum amount used at  any  time,  and  BYTES  UNUSED 

          means the minimum amount unused at any time. 

 

     (3)  SYMBOL  TABLE  refers  to  the  PL/C internal table that records 

          information about identifiers,  variables,  constants,  entries, 

          files,  and  blocks  used  in  the  program.   It exists through 

          compilation and execution.  Symbol  table  space  is  also  used 

          during  compilation for storing macro definitions.  (See diagram 

          below.) 

 

     (4)  INTERMEDIATE CODE refers to the PL/C internal representation  of 

          the  program during compilation.  It exists only during compila- 

          tion.  (See diagram below.) 

 

     (5)  OBJECT CODE refers to the machine code generated by PL/C for the 

          program.  It is  created  by  compilation,  and  exists  through 

          execution.  (See diagram below.) 

 

  294  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     (6)  STATIC  CORE  refers to memory for storing STATIC (and EXTERNAL) 

          variables.  It exists during execution time.  Even if no  STATIC 
          or  EXTERNAL  variables  are  declared, STATIC CORE USED will be 
          approximately  350  bytes  for  fixed  overhead.   (See  diagram 

          below.) 

 

     (7)  AUTOMATIC CORE refers to memory for storing AUTOMATIC variables. 

          It  exists  during  execution  time.   Even if no 2582 AUTOMATIC 

          variables exist in the program,  AUTOMATIC  CORE  USED  will  be 

          approximately 200 bytes.  (See diagram below.) 

 

     (8)  DYNAMIC  CORE  refers  to memory for auxiliary and /INCLUDE file 

          DCBs, buffers, macro expansions, and several other miscellaneous 

          2586 functions.  It is used dynamically through compilation  and 

          execution time.  (See diagram below.) 

 

     (9)  TOTAL  STORAGE  refers to the total through both compilation and 

          execution.  As noted above, TOTAL STORAGE USED  is  the  maximum 

          amount used at any time, and TOTAL STORAGE UNUSED is the minimum 

          amount unused at any time.  (See diagram below.) 

 

     (10) In  the  line  "THIS  PROGRAM  MAY  BE RERUN WITHOUT CHANGE IN A 

          REGION rK BYTES SMALLER USING TABLESIZE=t", "r" is simply  taken 

          from  TOTAL STORAGE UNUSED and "t" is CEIL(SYMBOL TABLE USED/4). 

          This statement means that if you: 

 

             (a)  Decrease the region available to PL/C by rK 

             (b)  Specify TABSIZE=t on the /COMPILE card 

             (c)  Change nothing else                          _______ 

 

          and then rerun the program,  you  will  get  the  same  results. 

          Specifically,  you  will  not  run  out  of  core  (assuming the 

          original program did not). 

 

 

 

 

 

 

 

 

 

 

 

                                                                 PL/C  295 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
                          PL/C CORE USAGE DIAGRAM                           ____ ____ _____ _______ 
 
                 |     COMPILATION TIME      |         |  EXECUTION | 
                 |            | |            |         |    TIME    | 
                 | SYNTACTIC  | |            |         |            | 
                 | & SEMANTIC | |    CODE    |         |            | 

                 |  ANALYSIS  | | GENERATION |         |            | 

          -------+------------+-+------------+---------+------------+ 

           A     |   SYMBOL  || |            |    A    |            | 

           |     |   TABLE   || |   SYMBOL   |    |    |   SYMBOL   | 

      TABSIZE*4  |           || |   TABLE    |    |    |   TABLE    | 

     BYTES    (OR|           V| |            |    |    |            | 

     1/2 OF TOTAL|            | |            |    |    |            | 

     IF  TABSIZE |            | +------------+    |    +------------+ 

     IS NOT SPEC-|            | |   OBJECT | |    |    |            | 

     IFIED) - MAX|           A| |    CODE  | |    |    |   OBJECT   | 

     128K BYTES. |           || |          | |    |    |    CODE    | 

           |     |   MACRO   || |          V |    |    |            | 

           V     |DEFINITIONS|| |            |    |    |            | 

          -------+------------+ |            |  TOTAL  +------------+ 

                 |INTERMEDIATE| |            | STORAGE |   STATIC   | 

                 |    CODE   || +------------+    |    |    CORE    | 

                 |           || |            |    |    |            | 

                 |           || |INTERMEDIATE|    |    +------------+ 

                 |           V| |    CODE    |    |    | AUTOMATIC || 

                 |            | |            |    |    |    CORE   || 

                 |            | |            |    |    |           V| 

                 |           A| +------------+    |    |            | 

                 |           || |            |    |    |           A| 

                 |  DYNAMIC  || |  DYNAMIC   |    |    |  DYNAMIC  || 

                 |    CORE   || |    CORE    |    V    |    CORE   || 

                 +------------+-+------------+---------+------------+ 

 

       Note:  This diagram is slightly simplified 

 

 

 

  EFFICIENT PROGRAMMING IN PL/C   _____________________________ 

 

 

     PL/C was designed to  emphasize  speed  of  compilation  rather  than 

  execution.   If  execution  is  substantial it may be worthwhile running 

  under the PL/I (F) compiler once the program has been thoroughly checked 

  out.  However, if a program is to be run under PL/C  and  the  execution 

  time  is significant, there are a number of options and devices that can 

  be employed to improve execution speed.  These all have  the  effect  of 

  suppressing  or  disabling  some  of  the diagnostic provisions that are 

  normally compiled into PL/C programs.  While this will improve execution 

  speed it obviously reduces the degree of protection and  the  amount  of 

  information  provided.  Execution speed will be increased by each of the 

  following: 

 

 

  296  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     (1)  Disabling  the  FLOW  condition.   This  is  done  by  giving  a 

          (NOFLOW):  prefix for each external procedure.  Even if the FLOW 

          events are not being printed (as a result of execution of a FLOW 

          statement)  the  tracing  code is present and active if the FLOW 

          condition is enabled.  (Similarly the CHECK  condition  must  be 

          disabled--by removing CHECK prefixes.  Suppressing printing with 

          the NOCHECK statement does not eliminate the checking code.) 

 

     (2)  Disabling  the SUBSCRIPTRANGE condition.  This is done by giving 

          a (NOSUBSCRIPTRANGE):  prefix on each external procedure.   This 

          is  only  possible  if the NOMONITOR=(SUBRG) suboption is speci- 

          fied.  Note that  some  installations  inhibit  (override)  this 

          suboption  since  subscript  testing  is  vital  to  ensure  the 

          integrity of the compiler.  If run  in  NOMONITOR=(SUBRG)  mode, 

          the  elimination  of  subscript  testing will make a substantial 

          improvement  in  the  execution  of  a  program  with   frequent 

          references to subscripted variables. 

 

     (3)  Disabling  the  SIZE  condition.   This  is  done  by  giving  a 

          (NOSIZE):  prefix on each external procedure. 

 

     (4)  Specifying the NOMONITOR=(UDEF) suboption.  This will  eliminate 

          the  code  required  to test for use of uninitialized variables. 

          All variables (including strings) will be initialized  to  (hex) 

          zero. 

 

     In  order  to  limit  the  amount  of  printing  from a PL/C program, 

  consider the use of the CMPRS, NODUMP,  FLAGE,  NOHDRPG,  NOOPLIST,  and 

  NOSOURCE  options.  To reduce the amount of printing during execution of 

  the program, consider using  the  PUT  OFF  and  PUT  ON  statements  in 

  sections that are not of current interest. 

 

     Because  of the differences in internal representation in PL/C, there 

  are certain operations that  are  relatively  inefficient  (compared  to 

  PL/I (F)).   These are RECORD I/O, bit-string operations, and the UNSPEC 

  and TRANSLATE built-in functions.  To the  extent  that  a  program  can 

  avoid  use  of  these features, its execution speed relative to PL/I (F) 

  will be improved. 

 

 

 

  INTERNAL STRUCTURE OF PL/C   __________________________ 

 

 

     The material in this section has been included to offer a very  brief 

  idea  of  how  the PL/C compiler is organized and how it operates.  More 

  complete descriptions of compilers in general, and PL/C  in  particular, 

  are listed in the section "PL/I Bibliography." 

 

     A  compiler  is a computer program that translates a problem descrip- 

  tion from one language to another.  The initial language is  called  the  

  source  language,  in  this case PL/I or PL/C, and the final language is   ______  ________ 

  called the object language, in this case the internal  machine  language              ______ ________ 

 

                                                                 PL/C  297 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  of  the  Amdahl  470 computer.  The compiler is a program that reads the 
  source-language statements in as data and produces  the  object-language 
  instructions  as  output.   Most  compilers  will  actually deliver this 
  output to the user, e.g., on punched cards.  The PL/C compiler,  on  the 
  other  hand,  retains  this  output  in  computer  storage, and once the 
  compilation process is completed begins  the  execution  of  the  object 
  program  that has just been produced.  This type of compiler is called a 
  "compile-and-execute" system.  PL/C is unique in that it always produces 

  a syntactically correct object program and  executes  it  regardless  of 

  errors that may have been made in the source program. 

 

     Compilers  can  be  used in many different environments, and for many 

  very different purposes.  A compiler that must serve  many  purposes  is 

  necessarily  a  compromise  and  is  probably  not  optimal  for any one 

  particular use.  The computer manufacturers, of necessity,  must  supply 

  general-purpose  compilers.  Their bias is generally in the direction of 

  producing efficient object programs.  That is, the compiler is  designed 

  to  produce  an object program that will consume as little computer time 

  as possible in  its  execution,  even  though  the  production  of  this 

  relatively  efficient object program will take more computer time during 

  compilation.  For production programs that will have a long life and  be 

  repeatedly  executed, this makes admirable sense.  However, for teaching 

  purposes and program testing, where the  execution  is  very  brief  and 

  usually  not  ever  repeated,  the  translation  process  dominates  the 

  situation.  Moreover, in this environment a program may be  expected  to 

  contain  errors (sometimes more than a few), and the translation process 

  must be repeated until all  of  those  errors  have  been  detected  and 

  eliminated  in  the source program.  By concentrating on this particular 

  environment, it is possible to produce a specialized compiler that  will 

  translate  relatively  rapidly,  will  not  become unduly flustered when 

  errors in the source program  are  encountered,  and  will  provide  the 

  programmer  with  as  much  assistance  as possible in the detection and 

  correction of those errors.   PL/C  was  designed  to  be  just  such  a 

  compiler. 

 

     The  heart of the compiler is a program section named CONTROL (CONT). 

  When MTS detects that it has a PL/C program to translate and execute, it 

  loads a copy of the PL/C compiler and passes control to CONT.  If given, 

  CONT analyzes the /COMPILE card to confirm that it is  in  fact  a  PL/C 

  program,  and  to  determine  what options the user requires.  CONT then 

  passes control to a program section called  SYNTACTIC  ANALYSIS  (SYNA). 

  SYNA’S  task  is  to  make a complete pass over the source program while 

  doing the following: 

 

     (1)  Printing a copy of the source program. 

 

     (2)  Constructing an internal representation,  called  beta-code,  of                                                             _________ 

          the  source program so that the compiler never again has to deal 

          with the card  images  of  the  actual  source  program.   (Some 

          compilers  make  more  than  a  score  of passes over these card 

          images.) 

 

 

  298  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     (3)  Constructing a region of storage called a symbol descriptor  for                                                     ______ __________ 

          each  identifier  in  the source program.  This space is used to 

          record all of the various attributes of the identifier which the 

          compiler must have to correctly manipulate the values represent- 

          ed by the identifiers. 

 

     (4)  Detecting and repairing as many errors in the source program  as 

          possible,  reporting  each  such  action to the user by means of 

          messages on the source program listing, and reflecting each such 

          action in corrections to the beta-code. 

 

  SYNA scans the source  program  by  calling  upon  a  subroutine  called 

  LEXICAL  ANALYSIS  (LEXI)  to  deliver the next element (token) from the 

  source program.  LEXI is responsible for the  tasks  of  reading  cards, 

  breaking the character strings that the cards contain down into distinct 

  symbols,  and  encoding each symbol in a way that is convenient for SYNA 

  to handle.  In the process, LEXI takes care of comments, which are never 

  seen by SYNA, and prints the source  program  listing.   LEXI  insulates 

  SYNA from the actual form of the source program and permits SYNA to deal 

  entirely with a continuous stream of highly encoded symbols. 

 

     Macros  are  processed by the MDEF program, which is called when LEXI 

  encounters a /MACRO card.  MDEF reads in the macro definition and enters 

  the macro name in a dictionary of macros  defined  so  far.   When  MDEF 

  finds  a  /MEND  card  (or  suspects that one is missing), it returns to 

  LEXI, giving it the new list of macro names.  LEXI  uses  this  list  to 

  look for macros as it is processing the program source code.  As soon as 

  it finds a macro name, LEXI calls the macro expansion program MEXP which 

  generates the text of the macro call and passes this back to LEXI.  SYNA 

  is thereby shielded from macros entirely. 

 

     Because  the PL/I language permits identifiers to be used before they                                                           ____ 

  are declared, SYNA must be prepared to deal with identifiers  before  it       ________ 

  has  complete  knowledge of what they represent.  This means that on the 

  first  pass  over  the  source  program,  SYNA  can  detect  syntactical 

  (grammatical)  errors,  but  cannot  ensure that a syntactically correct 

  construction has any meaning.  For example, SYNA  can  ensure  that  the 

  keyword  GOTO  is followed by an identifier, but it may develop later in 

  the program that that particular identifier refers to a floating-decimal 

  variable and hence the GOTO statement does not  make  any  sense.   This 

  "use  before  declare"  possibility  in  PL/I  makes it impossible for a 

  single pass over the source program to detect  all  "static"  errors  of 

  construction.   To  avoid  this  difficulty,  and  permit  a single-pass 

  scanner, many specialized compilers for PL/I subsets have ruled out "use 

  before declare."  PL/C does not place this restriction on  the  program- 

  mer, and as a consequence a second scanning pass is required. 

 

     When  the  first  pass  over  the  source  program is completed, SYNA 

  returns control to CONT, which in  turn  passes  control  to  a  section 

  called  SEMANTIC  ANALYSIS  (SEMA).   SEMA  is  responsible for making a 

  second pass over the source program,  but  does  so  entirely  from  the 

  internal  beta-code  representation  rather  than from the original card 

  images.  Since all of the declarations have been processed by  the  time 

 

                                                                 PL/C  299 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
  that  the SEMA pass begins, SEMA can check to see that the attributes of 
  each identifier are correct for the context  in  which  that  identifier 
  appears.   Even  SEMA  cannot  do  a  complete  job  of  this since some 
  identifiers (for example, parameters) assume attributes "dynamically" in 

  program execution, and checking must be performed during  the  execution 

  of the object program.  Since the same identifier can be used repeatedly 

  in  PL/I and have different meanings in different scopes, it is also the 

  task of SEMA to "resolve" each identifier reference to determine exactly 

  which "object" it refers to.   Also  during  this  pass,  SEMA  "parses" 

  expressions  into  a  "postfix  operator  notation" that facilitates the 

  generation of machine instructions in the next pass.  See R. Conway  and 

  D. Gries,  An  Introduction  to Programming, A Structured Approach Using              _____________________________________________________________ 

  PL/I and PL/C-7 (Winthrop, 1975.)   SEMA  is  concerned  only  with  the   _______________ 

  identifiers  and  expressions in beta-code and modifies these, producing 

  an internal representation of the source program called gamma-code.                                                           __________ 

 

     When the second pass is completed,  SEMA  returns  control  to  CONT, 

  which in turn passes control to a program section called CODE GENERATION 

  (CGEN).   CGEN  translates  gamma-code  into actual machine language in- 

  structions for the Amdahl 470 computer.  This is  a  rather  complicated 

  process  in  a  "block  structured"  language  with  a  rich  variety of 

  data-types.  The technique employed by PL/C is unusual and  interesting, 

  but  it  is  beyond the scope of this brief section.  It is described in 

  the Cornell University Research Report by T. R. Wilcox  entitled,  "Code 

  Generation in PLC." 

 

     Code  generation  in some compilers includes a task called "optimiza- 

  tion."  This involves such exercises as the search  for  common  expres- 

  sions, loop analysis to move operations to the outermost level possible, 

  and  very careful allocation of machine registers.  Careful optimization 

  can make very significant improvements in the efficiency of  the  object 

  program,  but  it  also  significantly  increases  the  time required to 

  compile the program.  PL/C CGEN does not include optimization.   Consid- 

  ering  the  environment  in which PL/C is primarily used, a process that 

  increases compilation time to achieve a reduction in execution time  did 

  not  seem  appropriate.   PL/I (F) is not an optimizing compiler either. 

  Some PL/I programs will actually execute faster under  PL/C  than  under 

  PL/I (F),  but typically the opposite is true.  This is primarily due to 

  various diagnostic features built into the PL/C object  program,  rather 

  than  an  inherent  inefficiency of the object program itself.  The most 

  important, and  expensive,  of  these  features  is  the  monitoring  of 

  subscript  values (which the user can suppress with the NOSUBSCRIPTRANGE 

  prefix to improve execution efficiency).   The  essential  compatibility 

  between  PL/C  and PL/I makes optimization in PL/C even less attractive, 

  since when a program reaches the stage where execution time is  becoming 

  important,  one  can  switch  to an optimizing compiler.  PL/C is a true 

  compiler, even though the degree of diagnostic  assistance  provided  by 

  PL/C  is  usually  associated  only  with a type of translator called an 

  "interpreter."  Interpretive execution is at least ten (and sometimes as 

  much as thirty) times as time-consuming as the execution of a  compiled- 

  object program. 

 

 

  300  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
     When  the  generation of the object program is complete, CGEN returns 
  control to  CONT  which,  in  turn,  passes  control  to  the  EXECUTION 
  SUPERVISOR  (EXEC).   EXEC  begins  the execution of the object program. 

  The  object  program  intermittently  calls  upon  EXEC  for  diagnostic 

  services,  for  built-in  functions, and for I/O services.  These latter 

  tasks require the presence of other program sections which are  in  fact 

  major  pieces  of  the compiler.  The I/O service module, in turn, calls 

  upon LEXICAL ANALYSIS to scan data cards.  When  the  execution  of  the 

  object  program  terminates  (or is terminated), EXEC returns control to 

  CONT.  If CONT is  sitting  with  another  /COMPILE  card  in  hand,  it 

  reinitializes  the  compiler  and begins the process all over again.  If 

  not, CONT returns to MTS. 

 

     PL/C can also be characterized as a "memory-resident compiler."  This 

  refers to the fact that no use is made of  auxiliary  storage  (tape  or 

  disk)  during  the  compilation  process, and that major sections of the 

  compiler itself remain in memory along with  the  object  program.   The 

  entire compiler remains resident throughout execution. 

 

     The  PL/C  compiler  was  written  in  IBM 360/370 assembly language. 

  Extensive use was made of the macro capability in the assembler but this 

  could not be considered  a  "translator-writing  system"  in  the  sense 

  described by Gries.  This is an old-fashioned way to produce a compiler, 

  but  at the current state-of-the-art, it may be the only way to obtain a 

  high-performance compiler. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                 PL/C  301 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  302  PL/C 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
 
 
                             PL/I BIBLIOGRAPHY                              _________________ 
 
 
 
 
     The  following  bibliography  lists  material  that  is  relevant  to 
  programming  in PL/I and PL/C.  Most of these books are available in the 
  University of Michigan library system. 
 
  Textbooks Related to PL/I and PL/C   _________ _______ __ ____ ___ ____ 
 
     Abel, P.  Structured Programming in PL/I and PL/C, Reston, 1981.                _______________________________________ 
     Anger, A. L.  Computer Science:  The PL/I Language, Wiley, 1972.                    ____________________________________ 
     Bates, F., and Douglas, M.  Programming Language/One, 3d ed.,                                  ________________________ 
          Prentice-Hall, 1975. 
     Bauer, C., et al.  Basic PL/One Programming, Addison-Wesley, 1968.                         ________________________ 
     Bohl, M., and Walter, A.  Introduction to PL/I Programming and PL/C,                                _________________________________________ 
          Science Research Associates, 1973. 
     Brown, G. D.  FORTRAN to PL/I Dictionary, PL/I to FORTRAN Dictionary,                    ______________________________________________________ 
          Wiley, 1975. 
     Cassel, D.  Programming Language One, Reston, 1972.                  ________________________ 
     Clark, F. J.  Introduction to PL/I Programming, Allyn and Bacon,                    ________________________________ 
          1971. 
     Cole, R. W.  Introduction to Computing, McGraw-Hill, 1969.                   _________________________ 
     Conway, R.  Primer on Disciplined Programming, Winthrop, 1977.                  _________________________________ 
     ------.  Programming for Poets, Winthrop, 1977.               _____________________ 
     Conway, R., and Gries, D.  An Introduction to Programming:  A Struc-                                 _________________________________________ 
          tured Approach Using PL/I and PL/C, 2d ed., Winthrop, 1975.           __________________________________ 
     ------.  A Primer on Structured Programming, Winthrop, 1976.               __________________________________ 
     Davidson, M.  PL/I Programming With PL/C, Houghton Mifflin, 1973.                    __________________________ 
     Edwards, L. E.  PL/I for Business Applications, Reston, 1973.                      ______________________________ 
     Fike, C. T.  PL/I for Scientific Programmers, Prentice-Hall, 1970.                   _______________________________ 
     Germain, C. B.  PL/I for the IBM 360, Prentice-Hall, 1972.                      ____________________ 
     Groner, G. F.  PL/I Programming in Technological Applications, Wiley,                     ______________________________________________ 
          1971. 
     Hughes, J. K.  PL/I Programming, Wiley, 1973.                     ________________ 
     Hume J., and Holt, R. C.  Structured Programming Using PL/I and SP/k,                                __________________________________________ 
          Reston, 1975. 
     Katzen, H.  A PL/I Approach to Programming, Auerback Publishers,                  ______________________________ 
          1972. 
     Kennedy, M., and Solomon, M. B.  Eight Statement PL/C (PL/ZERO) Plus                                       ___________________________________ 

          PL/ONE, Prentice-Hall, 1972.           ______ 

     ------.  Structured PL/ZERO Plus PL/ONE, Prentice-Hall, 1977.               ______________________________ 

     Kieburtz, R. B.  Structured Programming and Problem-Solving with                       _______________________________________________ 

          PL/1, Prentice-Hall, 1977.           ____ 

     Lecht, C. P.  The Programmer’s PL/I:  A Complete Reference, McGraw-                    ____________________________________________ 

          Hill, 1968. 

     Kochenburger, R. J., and Turcio, C. J.  Introduction to PL/1 and PL/C                                              _____________________________ 

          Programming, Hamilton, 1974.           ___________ 

     Maisel, H.  Computers:  Programming and Applications, Science                  ________________________________________ 

          Research Associates, 1976. 

 

                                                    PL/I Bibliography  303 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
     Marcotty, M.  Structured Programming With PL/I, Prentice-Hall, 1977.                    ________________________________ 
     Mazlack, L. J.  PL/C Essentials, McGraw-Hill, 1977.                      _______________ 
     Meek, B.  Fortran, PL/I and the Algols, North-Holland, 1978.                ____________________________ 
     Mott, T. H., et al.  Introduction to PL/I Programming for Library and                           ________________________________________________ 
          Information Science, Academy Press, 1972.           ___________________ 
     Neuhold, E., and Lawson, H.  The PL/I Machine:  An Introduction to                                   _____________________________________ 
          Programming, Addison-Wesley, 1972.           ___________ 
     Pollack, S. V., and Sterling, T. D., A Guide to PL/I, 3rd ed., Holt,                                           _______________ 
          Rinehart and Winston, 1980. 
     ------.  Essentials of PL/I, Holt, Rinehart and Winston, 1974.               __________________ 
     Rich, R. P.  Internal Sorting Methods Illustrated with PL/I Program-                   _______________________________________________________ 
          ming, Prentice-Hall, 1972.           ____ 
     Richardson, G., and Birkin, S.  Problem Solving Using PL/C, Wiley,                                      __________________________ 
          1975. 
     Roper.  PL/I in Easy Stages, Dickenson, 1976.              ___________________ 
     Scott, G. L., and Scott, J.  PL/I, A Self-Instructional Manual, Dic-                                   _________________________________ 
          kenson, 1969. 
     Scott, R. C., and Sondak, N. E.  PL/I for Programmers, Addison-                                       ____________________ 
          Wesley, 1970. 
     Shortt, and Wilson.  Problem Solving and the Computer:  A Structured                           _______________________________________________ 
          Concept with PL/I (PL/C), Addison-Wesley, 1976.           ________________________ 

     Smith, C. L., and Murrill, P. W.  PL/I Programming with PL/C, Intext                                        __________________________ 

          Educational Publishers, 1973. 

     Sprowls, R. C.  PL/C:  A Processor for PL/I, Canfield, 1972.                      ___________________________ 

     Sprowls, R. C.  Introduction to PL/I Programming, Harper & Row, 1969.                      ________________________________ 

     Walker.  Fundamentals of PL/I, Programming with PL/C, Allyn and               ___________________________________________ 

          Bacon, 1975. 

     Weinberg, G. M.  PL/I Programming Primer, McGraw-Hill, 1966.                       _______________________ 

     ------.  PL/I Programming:  A Manual of Style, McGraw-Hill, 1970.               ____________________________________ 

     Weinberg, G. M., et al.  Structured Programming in PL/C, Wiley, 1973.                               ______________________________ 

 

  PL/C References   ____ __________ 

 

     PL/C Release 7.6 Installation Instructions, Department of Computer      __________________________________________ 

          Science, Cornell University, Ithaca, New York. 

     Conway, R. W., and Wilcox, T. R.  "The Design and Implementation of a 

          Diagnostic Compiler for PL/I," Communications of the ACM, 16:3,                                          _________________________ 

          March 1973. 

     Dunigan, T. H.  PLCD, PL/I for the DEC PDP-11/45, University of North                      ________________________________ 

          Carolina, 1973. 

     Dunigan, T. H.  and Kehs, D. R., User’s Guide to PLCD, University of                                       ____________________ 

          North Carolina, 1975. 

     Kehs, D. R.  Extensions to the PLCD Compiler, University of North                   _______________________________ 

          Carolina, 1974. 

     Moore, C. G., and Conway, R. W.  "PL/CT - An Interactive Terminal 

          Version of PL/C," Department of Computer Science and Office of 

          Computer Services, Cornell University, Ithaca, New York. 

     Morgan, H. L.  "Spelling Correction in Systems Programs," Communica-                                                                __________ 

          tions of the ACM, 16:2, February 1973.           ________________ 

     Uzgalis, R., et al.  "Compiler Measures in the Perspective of Program 

          Development," Sixth Hawaii International Conference on System                         _______________________________________________ 

          Science, 1973.           _______ 

     Wagner, R. A.  "Common Phrases and Minimum Space Text Storage," Com-                                                                      ____ 

 

  304  PL/I Bibliography 



                                                        MTS 7: PL/I in MTS 

  September 1982 

 
          munications of the ACM, 16:3, March 1973.           ______________________ 
     Wilcox, T. R.  Code Generation in PL/C, Research Report No.  70-89,                     _______________________ 
          Department of Computer Science, Cornell University, Ithaca, New 
          York. 
     Wolfe, J. M.  User’s Guide to PL/C, Department of Computer and Infor-                    ____________________ 
          mation Science, Brooklyn College, City University of New York, 
          New York, New York. 
 
  IBM PL/I (F) Publications   ___ ________ ____________ 

 

     IBM System/360 Operating System PL/I (F) Language Reference Manual,      __________________________________________________________________ 

          form GC28-8201. 

     IBM System/360 Operating System PL/I (F) Programmer’s Guide, form      _______________________________ ___________________________ 

          GC28-6594. 

     IBM System/360 PL/I (F) Subroutine Library, Computational Subrou-      _________________________________________________________________ 

          tines, form GC28-6590.           _____ 

 

  IBM PL/I Optimizing Compiler Publications   ___ ____ __________ ________ ____________ 

 

     OS PL/I Checkout and Optimizing Compilers:  Language Reference Manu-      ____________________________________________________________________ 

          al, form GC33-0009.           __ 

     OS PL/I Optimizing Compiler:  General Information, form GC33-0001.      _________________________________________________ 

     OS PL/I Optimizing Compiler:  Programmer’s Guide, form SC33-0007.      ________________________________________________ 

     OS PL/I Optimizing Compiler:  Execution Logic, form SC33-0025.      _____________________________________________ 

     OS PL/I Optimizing Compiler:  Messages, form SC33-0027.      ______________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    PL/I Bibliography  305 



  MTS 7: PL/I in MTS 

                                                            September 1982 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  306  PL/I Bibliography 



                                                         MTS 7: PL/I in MTS 

  September 1982 

 
                                                                      INDEX                                                                       _____ 
 
 
 
 
 
 
 
 
  *LINKEDIT, 63                         Bit-string variables, 95, 140 

  *OBJUTIL, 63                          Blocked record format, 127 

  *PL/1SCAN, 150                        Built-in functions, 203 

  *PL/1TIDY, 152                           PL/C, 284 

  *PLC, 11, 232 

  *PL1, 11, 13                          Carriage-control record format, 

  *PL1LIB, 61, 67                          128 

  *PL1OPT, 11, 29                       CDFCN subroutine, 198 

  *PL1OPTLIB, 61, 67                    Character-string format item, 117 

  *PL1SCAN, 150                         Character-string variables, 95, 

  *PL1TIDY, 152                            140, 173 

                                        CHARSET option, 37 

  _GUSER, 63                            CHAR48 option, 18 

  _SCARDS, 63                           CHAR60 option, 18 

  _SERCOM, 63                           CHECK option, 104 

  _SPRINT, 63                           CMNTS option (PL/C), 237 

  _SPUNCH, 63                           CMPRS option (PL/C), 237 

                                        CNTL subroutine, 160 

  #nn SDS modifier, 93                  COLUMN format item, 118 

                                        COMP option, 18 

  A record format, 128                  COMPILE control card, 234 

  AGGREGATES option, 36                 COMPILE option, 38, 100 

  ALIST option (PL/C), 237              Compile-time statements, 17 

  Area variables, 97, 142               Compiler control card (PL/C), 

  Arrays, 95, 144                          ATTACH, 235 

  ASCII record format, 127                 COMPILE, 234 

  ATR option, 22                           DATA, 234 

  ATR option (PL/C), 237                   EXECUTE, 235 

  ATTACH control card, 235                 INCLUDE, 235 

  ATTACH subroutine, 68, 158               MACRO, 236 

  Attention interrupts, 165                MEND, 236 

  ATTN option, 76                          OPTIONS, 234 

  Attribute listing, 22, 36, 237           PROCESS, 234 

  ATTRIBUTES option, 36, 100               STOP, 236 

  Automatic variables, 93, 146          Compiler options (*PL1), 

  AUXIO option (PL/C), 237                 ATR, 22 

                                           BCD, 18 

  B record format, 127                     CHAR48, 18 

  B SDS modifier, 92                       CHAR60, 18 

  BACKWARDS files, 121                     COMP, 18 

  Based variables, 94, 147                 DECK, 20 

  BATCH subroutine, 159                    DIAG, 25 

  BCD option, 18                           DUMP, 25 

  Bit-string format item, 117              EBCDIC, 18 

 

                                                                        307 



  MTS 7: PL/I in MTS 

                                                             September 1982 

 
     EXTDIC, 16                            OFFSET, 46 
     EXTREF, 24                            OPTIMIZE, 46, 100 
     FLAGE, 26                             OPTIONS, 47 
     FLAGS, 26                             SEQUENCE, 48 
     FLAGW, 26                             SIZE, 49, 55 
     FREE, 19                              SMESSAGE, 42, 99 
     LINECNT, 21                           SOURCE, 50 
     LIST, 25                              STMT, 50 
     LOAD, 20                              STORAGE, 50 
     MACDCK, 17                            SYNTAX, 51, 100 
     MACRO, 17                             TERMINAL, 51 
     MTS, 20                               XREF, 52 
     OPLIST, 21                         Compiler options (PL/C), 

     OPT, 20                               ALIST, 237 

     OS, 20                                ATR, 237 

     SIZE, 16                              AUXIO, 237 

     SORMGIN, 19                           CMNTS, 237 

     SOURCE, 21                            CMPRS, 237 

     SOURCE2, 17                           CTIME, 237 

     STMT, 20, 209                         DUMP, 238 

     SYNCHKE, 26                           DUMPE, 238 

     SYNCHKS, 26                           DUMPS, 238 

     SYNCHKT, 26                           DUMPT, 238 

     TEST, 21, 83                          ERRORS, 239 

     TTY, 18                               ETIME, 239 

     XREF, 23                              FLAGE, 239 

  Compiler options (*PL1OPT),              FLAGW, 239 

     AGGREGATE, 36                         HDRPG, 239 

     ATTRIBUTES, 36, 100                   ID, 239 

     CHARSET, 37                           LINECT, 239 

     COMPILE, 38, 100                      LINES, 239 

     COUNT, 38                             MCALL, 239 

     DECK, 38                              MONITOR, 240, 243 

     DUMP, 38                              MTEXT, 240 

     ESD, 39                               M91, 240 

     FLAG, 40                              OPLIST, 240 

     FLOW, 40                              PAGES, 240 

     GONUMBER, 40                          SORMGIN, 241, 243 

     GOSTMT, 41                            SOURCE, 241 

     INCLUDE, 41                           TABSIZE, 241 

     INSOURCE, 41                          TIME, 241 

     INTERRUPT, 41                         XREF, 241 

     LINECOUNT, 42                      Compiler parameters (PL/C), 

     LIST, 42                              DEFAULTS, 232 

     LMESSAGE, 42, 99                      HARDSTOP, 232 

     MACRO, 43, 56                         NOSTAT, 233 

     MAP, 43                               SIZE, 233 

     MARGINI, 44                           STAT, 232 

     MARGINS, 44                        Complex variables, 139 

     MDECK, 45                          Control options (*PL1), 15, 16 

     NEST, 45                           Controlled variables, 94, 146 

     NUMBER, 45                         COUNT option, 38, 74, 80 

     OBJECT, 46                         CPUTIME subroutine, 161 

 

  308 



                                                         MTS 7: PL/I in MTS 

  September 1982 

 
  CPXFCN subroutine, 198                FLAGE option, 26 
  Cross-reference listing, 23, 52,      FLAGE option (PL/C), 239 

     241                                FLAGS option, 26 

  CTIME option (PL/C), 237              FLAGW option, 26 

                                        FLAGW option (PL/C), 239 

  D record format, 127                  Floating-binary variables, 139 

  DATA control card, 234                Floating-decimal variables, 139 

  Data-directed I/O, 114, 172           Floating-point format item, 116 

  DECK option, 20, 38                   FLOW option, 40, 75, 81 

  DEFAULTS parameter (PL/C), 232        Format items, 

  DELAY statement, 136                     bit-string, 117 

  DIAG option, 25                          character-string, 117 

  Diagnostic messages, 25, 28, 52,         COLUMN, 118 

     99, 209, 223                          fixed-point, 116 

     PL/C, 244, 248                        floating-point, 116 

  Diagnostic options (*PL1), 15, 25        LINE, 117 

  DISPLAY statement, 133, 225              PAGE, 117 

  DSA (dynamic save area), 146             SKIP, 117 

  DUMP option, 25, 38                      spacing-control, 117 

  DUMP option (PL/C), 238               FORTRAN subroutines, 185 

  DUMPE option (PL/C), 238              FREE option, 19 

  Dumping (PL/C), 246 

  DUMPS option (PL/C), 238              GENKEY option, 124, 225, 227 

  DUMPT option (PL/C), 238              GONUMBER option, 40 

                                        GOSTMT option, 41 

  EBCDIC option, 18 

  Edit-directed I/O, 115                HARDSTOP parameter (PL/C), 232 

  ELAPSED subroutine, 162               HDRPG option (PL/C), 239 

  ENVIRONMENT attribute, 71 

  ERROR condition, 210                  I SDS modifier, 93 

  Error correction (PL/C), 244          IBMBSTAB, 118 

  Error messages, 25, 28, 52, 99,       ID option (PL/C), 239 

     209, 223                           IHEATTN subroutine, 165 

     PL/C, 244, 248                     IHEDUMC subroutine, 106, 167 

  ERRORS option (PL/C), 239             IHEDUMP subroutine, 106, 167 

  ESD listing, 24, 39                   IHEGUSR, 63 

  ESD option, 39                        IHEMAIN, 65, 92 

  ETIME option (PL/C), 239              IHENOTE subroutine, 168 

  EXECUTE control card, 235             IHENTRY, 65, 92 

  EXTDIC option, 16                     IHEPNT subroutine, 168 

  EXTERNAL attribute, 145               IHEREAD subroutine, 169 

  EXTREF listing, 24                    IHERITE subroutine, 169 

                                        IHESARC subroutine, 171 

  F record format, 127                  IHESCDS, 63 

  FETCH statement, 134                  IHESPCH, 63 

  File variables, 97                    IHESPRT, 63 

  FINFO subroutine, 163                 IHESRCM, 63 

  FINISH condition, 105, 210            IHETABS subroutine, 172 

  Fixed record format, 127              INCLUDE control card, 235 

  Fixed-binary variables, 138           INCLUDE option, 41 

  Fixed-decimal variables, 95, 138      INCLUDE statement, 17, 41, 58, 

  Fixed-point format item, 116             106, 225, 227 

  FLAG option, 40                       Input options (*PL1), 15, 18 

 

                                                                        309 



  MTS 7: PL/I in MTS 

                                                             September 1982 

 
  Input record format, 19, 243          NOSTAT parameter (PL/C), 233 

  INSOURCE option, 41                   NUMBER option, 45 

  INTERNAL attribute, 145 

  INTERRUPT option, 41                  Object module listing, 25, 42 

  IPLFCN subroutine, 198                OBJECT option, 46 

  IPL1RC subroutine, 201                Object options (*PL1), 15, 20 

  ISA storage area, 77                  OFFSET option, 46 

  ISASIZE option, 75                    Offset variables, 97, 143 

  I2FCN subroutine, 198                 On-codes, 106 

                                        OPLIST option, 21 

  KEY option, 122                       OPLIST option (PL/C), 240 

  KEYED files, 122, 225, 227            OPT option, 20 

     consecutive, 122                   Optimization, 20, 46, 64 

     indexed, 123-124                   OPTIMIZE option, 46, 100 

  KEYFROM option, 122                   OPTIONS control card, 234 

  KEYTO option, 122, 124                Options listing, 21 

                                        OPTIONS option, 47 

  Label variables, 95, 141              OS option, 20 

  LASTKEY subroutine, 174 

  LGLFCN subroutine, 198                P SDS modifier, 92 

  LG1FCN subroutine, 198                PAGE format item, 117 

  LIBSRCH option, 61                    PAGES option (PL/C), 240 

  LINE format item, 117                 PAR field, 69, 232 

  LINECNT option, 21                    PGNT option, 76 

  LINECOUNT option, 42                  Picture variables, 96 

  LINECT option (PL/C), 239             PL/C attributes, 279 

  LINES option (PL/C), 239              PL/C built-in functions, 284 

  LIST option, 25, 42                   PL/C Compiler, 11 

  List-directed I/O, 113, 172           PL/C conditions, 287 

  Listing options (*PL1), 15, 21        PL/C dump statistics, 294 

  LMESSAGE option, 42, 99               PL/C macros, 292 

  LOAD option, 20                       PL/C prefixes, 290 

  Logical I/O units, 67, 125, 232       PL/C pseudo-variables, 284 

                                        PL/C restrictions, 230, 267 

  M record format, 128                  PL/C statements, 271 

  MACDCK option, 17                     PL/I (F) Compiler, 11, 13 

  MACRO control card, 236               PL/I files, 71, 125, 158, 163, 

  MACRO option, 17, 43, 56                 169, 174, 235 

  Magnetic tape I/O, 130                PL/I Optimizing Compiler, 11, 29 

  MAP option, 43                        PLCALL subroutine, 192 

  MARGINI option, 44                    PLCALLD subroutine, 192 

  MARGINS option, 44                    PLCALLE subroutine, 192 

  MAXLEN subroutine, 173                PLCALLF subroutine, 192 

  MCALL option (PL/C), 239              PLDFCN subroutine, 198 

  MDECK option, 45                      PLIRETC subroutine, 109 

  MEND control card, 236                PLITABS, 120 

  MONITOR option (PL/C), 240, 243       PLIXHD variable, 76 

  MTEXT option (PL/C), 240              PLIXOPT string, 73, 227 

  MTS option, 20                        PL1ADR subroutine, 195 

  M91 option (PL/C), 240                PL1BEG subroutine, 197 

                                        PL1DUMP subroutine, 106-108 

  NEST option, 45                       PL1END subroutine, 197 

  NEXTKEY subroutine, 174               PL1FCN subroutine, 198 

 

  310 



                                                         MTS 7: PL/I in MTS 

  September 1982 

 
  PL1RC subroutine, 196                 SOURCE option (PL/C), 241 

  PL1SUB subroutine, 198                SOURCE2 option, 17 

  Pointer variables, 141                Spacing-control format item, 117 

  Preprocessor options (*PL1), 15,      Spanned record format, 128 

     17                                 SPRINT file, 225, 227 

  PROCESS control card, 234             STAT parameter (PL/C), 232 

  PROCESS statement, 27, 30, 54         Statement number listing, 50 

  Program files, 68                     Statement number option, 20 

  Program parameters, 69, 232           Statement numbers, 96, 103 

  Program-control data, 141             Static variables, 93, 146 

  Pseudo-registers, 62, 146             STMT option, 20, 50, 209 

  Pseudo-variables, 203                 STOP control card, 236 

     PL/C, 284                          STORAGE option, 50 

                                        Stream I/O, 111 

  RAND subroutine, 175                  Structures, 96, 144 

  Random numbers, 175                   SYM records, 21, 83 

  Record format modifiers, 71           SYNCHKE option, 26 

  Record formats, 71, 127               SYNCHKS option, 26 

  Record I/O, 121                       SYNCHKT option, 26 

  Record size, 132                      SYNTAX option, 51, 100 

  RELEASE statement, 134                SYSIN file, 126 

  REPORT option, 75, 78                 SYSOUT file, 126 

  Return codes, 28, 171, 196, 201 

  RFINFO subroutine, 163                TABSIZE option (PL/C), 241 

  Run-time options,                     TERMINAL option, 51 

     ATTN, 76                           TEST option, 21, 83 

     COUNT, 74, 80                      TFINFO subroutine, 163 

     FLOW, 75, 81                       TIME option (PL/C), 241 

     ISASIZE, 75                        TITLE option, 67, 126 

     PGNT, 76                           Tracing (PL/C), 246 

     REPORT, 75, 78                     TTY option, 18 

 

  S record format, 128                  U record format, 127 

  SCARDS file, 225, 227                 Undefined record format, 127 

  SDS, 21, 83                           UNDEFINEDFILE condition, 72 

  SEQUENCE option, 48                   USERID subroutine, 177 

  SIGNOFF subroutine, 176 

  SIZE option, 16, 49, 55               V record format, 127 

  SIZE parameter (PL/C), 233            Variable record format, 127 

  SKIP format item, 117                 VDA (variable data area), 146 

  SMESSAGE option, 42, 99 

  SORMGIN option, 19                    XREF option, 23, 52 

  SORMGIN option (PL/C), 241, 243       XREF option (PL/C), 241 

  Source listing, 21, 50, 237, 241 

  SOURCE option, 21, 50 

 

 

 

 

 

 

                                                                        311 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  312 



 

 

 
                           Reader’s Comment Form 
 
 
 
                                PL/I in MTS 
                                  Volume 7 
                               September 1982 
 
 
 
  Errors noted in publication: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Suggestions for improvement: 

 

 

 

 

 

 

 

 

 

 

 
 
                                                                       313 



 

 

 
  Your comments will be much appreciated.  The completed form may be  sent 
  to  the  Computing Center by Campus Mail or U.S. Mail, or dropped in the 
  Suggestion Box at the Computing Center, NUBS, or BSAD. 
 
 
                                     Date ──────────────────── 
 
 
            Name ───────────────────────────────────────────── 
 
 
            Address ────────────────────────────────────────── 
 
 
                    ────────────────────────────────────────── 
 
 
                    ────────────────────────────────────────── 
 
 
                           Publications 
                           Computing Center 
                           University of Michigan 
                           Ann Arbor, Michigan 48109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
  314 



 

 

 
                            Update Request Form 
 
 
                                PL/I in MTS 
                                  Volume 7 
                               September 1982 
 
 
  Updates to this manual will be issued periodically as errors  are  noted 
  or  as  changes  are  made  to MTS.  If you desire to have these updates 
  mailed to you, please submit this form. 
 
  Updates are also available in the  memo  files  at  both  the  Computing 
  Center  and  NUBS;  there you may obtain any updates to this volume that 
  may have been issued before the Computing  Center  receives  your  form. 
  Please indicate below if you desire to have the Computing Center mail to 
  you any previously issued updates. 
 
 
 
            Name ───────────────────────────────────────────── 
 
 
            Address ────────────────────────────────────────── 
 
 
                    ────────────────────────────────────────── 
 
 
                    ────────────────────────────────────────── 
 
 
            Previous updates needed (if applicable):────────── 
 

 

  The completed form may be sent to the Computing Center by Campus Mail or 

  U.S. Mail,  or  dropped  in  the Suggestion Box at the Computing Center, 
  NUBS, or BSAD.  Campus Mail addresses should be given for local users. 
 
 
                           Publications 
                           Computing Center 
                           The University of Michigan 
                           Ann Arbor, Michigan 48109 
 
 
  Users associated with other MTS installations (except the University  of                         _______________________ 

  British  Columbia) should return this form to their respective installa- 

  tions.  Addresses are given on the reverse side. 

 

 

 

                                                                       315 



 

 

 
 
  Addresses of other MTS installations: 
 
       Publications Clerk 
       352 General Services Bldg. 
       Computing Services 
       The University of Alberta 
       Edmonton, Alberta 
       Canada T6G 2H1 
 
       Information Officer, NUMAC 
       Computing Laboratory 
       The University of Newcastle upon Tyne 
       Newcastle upon Tyne 
       England NE1 7RU 
 
       Rensselaer Polytechnic Institute 
       Documentation Librarian 
       310 Voorhees Computing Center 
       Troy, New York 12181 
 
       Simon Fraser University 
       Computing Centre 
       User Services Information Group 
       Burnaby, British Columbia 
       Canada V5A 1S6 
 
       Wayne State University 
       Computing Services Center 
       Academic Services Documentation Librarian 
       5950 Cass Ave. 
       Detroit, Michigan 48202 
 
 

 

 

 

 

 

 

 

 

 

 
 
  316 




