
 M T S

 The Michigan Terminal System

 Volume 6: FORTRAN in MTS

 October 1983

 Updated February 1988 (Update 1)

 The University of Michigan Computing Center

 Ann Arbor, Michigan

 * *

 * This obsoletes the December 1978 edition. *

 * *

 1

 DISCLAIMER

 The MTS Manual is intended to represent the current state of the

 Michigan Terminal System (MTS), but because the system is constantly

 being developed, extended, and refined, sections of this volume will

 become obsolete. The user should refer to the U-M Computing News, ___ _________ ____

 Computing Center Memos, and future Updates to this volume for the latest

 information about changes to MTS.

 Copyright 1983 by the Regents of the University of Michigan. Copying is

 permitted for nonprofit, educational use provided that (1) each repro-

 duction is done without alteration and (2) the volume reference and date

 of publication are included. Permission to republish any portions of

 this manual should be obtained in writing from the Director of the

 University of Michigan Computing Center.

 2

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 PREFACE _______

 The software developed by the Computing Center staff for the

 operation of the high-speed processor computer can be described as a

 multiprogramming supervisor that handles a number of resident, reentrant

 programs. Among them is a large subsystem, called MTS (Michigan

 Terminal System), for command interpretation, execution control, file

 management, and accounting maintenance. Most users interact with the

 computer’s resources through MTS.

 The MTS Manual is a series of volumes that describe in detail the

 facilities provided by the Michigan Terminal System. Administrative

 policies of the Computing Center and the physical facilities provided

 described in other publications.

 The MTS volumes now in print are listed below. The date indicates

 the most recent edition of each volume; however, since volumes are

 updated by means of CCMemos, users should check the file *CCPUBLICA-

 TIONS, or watch for announcements in the U-M Computing News, to ensure ___ _________ ____

 that their MTS volumes are fully up to date.

 Volume 1: The Michigan Terminal System, January 1984 ____________________________

 Volume 2: Public File Descriptions, January 1987 ________________________

 Volume 3: System Subroutine Descriptions, April 1981 ______________________________

 Volume 4: Terminals and Networks in MTS, March 1984 _____________________________

 Volume 5: System Services, May 1983 _______________

 Volume 6: FORTRAN in MTS, October 1983 ______________

 Volume 7: PL/I in MTS, September 1982 ___________

 Volume 8: LISP and SLIP in MTS, June 1976 ____________________

 Volume 9: SNOBOL4 in MTS, September 1975 ______________

 Volume 10: BASIC in MTS, December 1980 ____________

 Volume 11: Plot Description System, August 1978 _______________________

 Volume 12: PIL/2 in MTS, December 1974 ____________

 Volume 13: The Symbolic Debugging System, September 1985 _____________________________

 Volume 14: 360/370 Assemblers in MTS, May 1983 _________________________

 Volume 15: FORMAT and TEXT360, April 1977 __________________

 Volume 16: ALGOL W in MTS, September 1980 ______________

 Volume 17: Integrated Graphics System, December 1980 __________________________

 Volume 18: The MTS File Editor, February 1988 ___________________

 Volume 19: Tapes and Floppy Disks, November 1986 ______________________

 Volume 20: Pascal in MTS, December 1985 _____________

 Volume 21: MTS Command Extensions and Macros, April 1986 _________________________________

 Volume 22: Utilisp in MTS, February 1988 ______________

 Volume 23: Messaging and Conferencing in MTS, March 1987 _________________________________

 Other volumes are in preparation. The numerical order of the volumes

 does not necessarily reflect the chronological order of their

 3

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 appearance; however, in general, the higher the number, the more

 specialized the volume. Volume 1, for example, introduces the user to

 MTS and describes in general the MTS operating system, while Volume 10

 deals exclusively with BASIC.

 The attempt to make each volume complete in itself and reasonably

 independent of others in the series naturally results in a certain

 amount of repetition. Public file descriptions, for example, may appear

 in more than one volume. However, this arrangement permits the user to

 buy only those volumes that serve his or her immediate needs.

 Richard A. Salisbury

 General Editor

 4

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 PREFACE TO VOLUME 6 ___________________

 Volume 6 contains the descriptions of the various system components

 related to the use of the FORTRAN programming language in MTS.

 Acknowledgments for the descriptions and programs contained in this

 volume are as follows:

 The section "Interactive FORTRAN" is taken from the document UBC IF ______

 by Dennis O’Reilly (June 1975) which was produced by the University

 of British Columbia Computing Centre. The program was developed by

 the programming staff at that installation.

 The subsections "FORTRAN-G Source Module Error/Warning Messages,"

 "FORTRAN-H Optimization Facilities," and "FORTRAN-H Source Module

 Error/Warning Messages" are reprinted with permission from the IBM

 publication, IBM System/360 Operating System FORTRAN IV (G and H) ___

 Programmer’s Guide, form GC35-0002. __________________

 The subsection "The FORTRAN Debug Facility" is reprinted with

 permission from the IBM publication, IBM System/360 and System/370 _____________________________

 FORTRAN IV Language, form GC28-6515. ___________________

| The subsection "Compiler Options" of section "VS FORTRAN" is

| reprinted with permission from the IBM publication, VS FORTRAN __________

| Version 2: Programming Guide, form SC26-4222. _____________________________

 The remainder of the descriptions in this volume were either produced

 or extensively modified from other documentation by the editorial and

 programming staffs at the University of Michigan Computing Center.

 5

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 6

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 Contents ________

 Preface 3 Assignment Option

 Descriptions 74

 Preface to Volume 6 5 Use of FORTRAN-H As a

 Subroutine 75

 Overview of FORTRAN in MTS . . 13 Use of the FORTRAN-H

 Compiler As a Stand-Alone

 *FTN Interface 17 Language Processor 80

 Introduction 17 FORTRAN-H Optimization

 Description of the Interface 18 Facilities 80

 Options 19 Program Optimization . . . 80

 Simple Option Descriptions 21 Programming

 Assignment Option Considerations Using the

 Descriptions 26 Optimizer 81

 Input/Output Assignment . . . 28 Use of Loops 83

 Source Statement Formats . . 29 Movement of Code into

 IBM Format 29 Initialization of a Loop . 84

 LONG Format 30 Common Expression

 LINE Format 30 Elimination 85

 EDITED Format 31 Induction Variable

 Batch Examples 32 Optimization 85

 Conversational Examples . . . 35 Register Allocation 86

 Appendix A: Input/Output COMMON Blocks 86

 Using Assignment Options . . 40 EQUIVALENCE Statements . . 87

 Input/Output Modifiers . . 41 Multidimensional Arrays . . 87

 Program Structure 88

 FORTRAN G 43 Logical IF Statements . . . 89

 Compiler Options 44 Branching 90

 Simple Option Descriptions 45 FORTRAN-H Source Module

 Assignment Option Error/Warning Messages . . . 90

 Descriptions 48

 The OPTIONS Statement . . . 49 VS FORTRAN 119

 Use of FORTRAN-G As a Compiling a VS FORTRAN

 Subroutine 50 Program119

 Use of the FORTRAN-G Executing a VS FORTRAN

 Compilers As Stand-Alone Program120

 Language Processors 55 Compiler Options 120

 FORTRAN-G Source Module Conflicting Compiler

 Error/Warning Messages . . . 57 Options126

 The FORTRAN Debug Facility . 64 Modifying Compilation

 Debug Facility Statements . 65 Options-@PROCESS Statement 126

 Programming Considerations 68 The INCLUDE Feature126

 VS FORTRAN I/O Library . . .126

 FORTRAN H 69

 Introduction 69 WATFIV 127

 Compiler Options 69 Introduction 127

 Simple Option Descriptions 70 Logical I/O Unit

 Specifications 128

 7

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 The SIZE Parameter 129 Subroutine TRAPS 186

 Control Commands 129 Subroutines DVCHK and

 Using Control Commands . .132 OVERFL 188

 /COMPILE Command Format . .134 Notes188

 Conversational Use of

 WATFIV 136 Interactive FORTRAN191

 Job-Accounting Output . . .137 Introduction 191

 Diagnostics137 Compatibility with

 Introduction to FORTRAN 66 and FORTRAN 77 .191

 Diagnostic Features137 The Beginning IF

 Glossary of Terms140 Programmer 192

 Notes143 A Few Definitions192

 Language Accepted by WATFIV .144 Immediate Execution193

 Extensions 144 Invoking the IF System . .193

 Free-Format I/O148 Immediate Execution Mode .193

 CHARACTER Variables150 Compilation of Routines . . .194

 Additional CHARACTER Commands for Compiling:

 Features 157 /COMPOSE and /COMPILE . . .194

 Restrictions 159 Creating FORTRAN

 Debugging Aids 161 Programs: The /COMPOSE

 Incompatibilities of WATFIV .162 Command194

 Incompatibilities with Compiling Existing

 WATFOR 162 FORTRAN Programs: The

 Incompatibilities with /COMPILE Command 195

 FORTRAN G and H164 Compilation Errors and

 Subprogram Facilities166 Editing196

 Sources of Subprograms . .166 Useful Commands Related

 FORTRAN-Supplied Routines .167 to Compiling Routines . . .197

 Subprogram Arguments . . .168 Editing Routines 199

 Subprograms in Edit Mode199

 Object-Module Form 170 Implicit Invoking of the

 Additional Subprograms Editor: Compilation Errors 199

 Supported172 Explicit Invoking of the

 Structure of a Subroutine Editor: The /EDIT Command .200

 Library172 Free-Format Entry of

 Generating a Subroutine FORTRAN Statements in the

 Library174 Editor 201

 360-Assembly Language Bypassing Recompilation:

 Subprograms175 The IF Command 201

 Subprogram Calling Execution of Routines202

 Sequences176 Executing Routines 202

 STAR Routines for Array Invoking Main Routines:

 Arguments178 The /RUN Command 203

 Other Conventions for Suspended Execution203

 Assembler Subprograms . . .179 Suspended Execution Mode .203

 A Compiler-Generated STAR Similarity Between

 Routine180 Immediate Execution Mode

 Notes on the STAR Routine .181 and Suspended Execution

 Object Modules from Other Mode 204

 Compilers184 Entering Suspended

 Source Statement Execution FORTRAN

 Compression Subroutines . . .185 Statements 204

 Interrupts 186

 8

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 Restarting from Suspended Tabularized Summary of

 Execution: The /RESTART Commands for Compiling . .222

 Command205 Supplement to Editing

 Expression Statements: Routines 223

 Free-Format Output 206 Entry of Comment

 Debugging Features 207 Statements in the Editor .223

 Breakpoints207 The SET FIXED=ON,OFF

 Atpoints 208 Command224

 The /STEP Command209 Editing Atpoints 224

 Qualified Variables210 Supplement to Execution of

 External Routines210 Routines 225

 Explicitly Loading Logical Unit Assignments

 External Routines: The and the /RUN Command . . .225

 /LOAD Command211 Invoking Subroutines and

 Library Searches: The Functions226

 /LIBRARY Command 211 Supplement to Suspended

 The /UNLOAD Command212 Execution227

 The /DISPLAY EXTERNAL Valid Statements and

 Command212 Commands 227

 The Advantages and More Commands Related to

 Disadvantages of External Suspended Execution227

 Routines 212 IMMEX, a Predefined

 External Common Blocks . .213 Routine229

 Miscellaneous Features . . .213 Referencing Compiled

 Error Messages 213 Program Labels from

 Supplement to Immediate Suspended Execution230

 Execution214 Tabularized Summary of

 Immediate Execution Mode .215 Commands Related to

 Free-Format Input215 Suspended Execution230

 Valid Statements and Supplement to Debugging

 Commands 216 Features 231

 Transiency of Statements .216 Subprogram Linkage Tracing .231

 Labeled Statements 217 Execution Flow Tracing . .232

 Effect of Errors 217 Attribute Checking 232

 Erasing Immediate Cross-Referencing233

 Execution: The /ERASE Common and Equivalence Maps .233

 Command218 Advanced Example of

 Modifying the Output Atpoint Usage234

 Produced by an Expression Supplement to External

 Statement218 Routines 234

 Attention Interrupts in Predefined Routines235

 Immediate Execution218 External Suspensions . . .236

 Supplement to Compilation Supplement to Miscellaneous

 of Routines219 Features 236

 More Information About Dumps237

 the /COMPOSE Command . . .219 Spelling Error Detection .237

 More Than One Main Program 220 IF in Batch Mode 238

 Restarting an Interrupted Compilation in Batch Mode .238

 Compilation220 Execution in Batch Mode . .238

 Undefined Statement Label Batch Example238

 References 220 Appendix A: Command

 The Workfile 221 Descriptions 240

 Saving the Source Code . .222 /AT242

 9

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 /ATTRIBUTE 244 OVERDRIVE297

 /BREAK 245 Introduction 297

 /CLEAR 246 Compatibility with

 /COMPILE 247 FORTRAN 77 297

 /COMPOSE 249 Criteria for OVERDRIVE

 /CONTINUE251 Features 298

 /COPY252 Portability298

 /DESTROY 253 Definition of Terms298

 /DISPLAY 254 Usage in MTS 299

 /EDIT255 Source Program Format299

 /ERASE 256 Source Listing 300

 /EXECUTE 257 Internal Statement Numbers 300

 /EXPLAIN 258 File Line Numbers300

 /GET 259 Generated Labels 300

 /HELP260 Source Indentation 301

 /IMMEX 261 Continuation Lines 301

 /INPUT 262 Listing of FORMATs 301

 /LIBRARY 263 Target Module301

 /LINK264 Created Labels 302

 /LIST265 Created Integer Variables .303

 /LOAD266 Target Module Code 303

 /MTS 267 Control Structures 303

 /OUTPUT268 IF...ENDIF 303

 /REFERENCE 269 IF...ELSE...ENDIF304

 /RELEASE 270 IF...ELSEIF...ENDIF . . .305

 /REMOVE271 DOCASE...ENDCASE 306

 /REPEAT272 Loop Structures308

 /RESTART 273 LOOP 308

 /RUN 274 LOOP FOR(iteration) . . .309

 /SET 276 LOOP WHILE(lexp) 309

 /STEP280 LOOP UNTIL(lexp) 310

 /STOP281 LOOP EXIT(signal,...) . .310

 /TRACE 282 ENDLOOP [REPEAT [while]

 /UNLOAD283 [until]] 311

 /WORKFILE284 EXITLOOP [(signal)] . . .312

 Appendix B: Language NEXTLOOP [(signal)] . . .312

 Features Supported 286 Internal Procedures313

 Multiple-Assignment PROCEDURE...ENDPROCEDURE 314

 Statements 286 Calling an Internal

 Free-Format I/O286 Procedure314

 Implied DO-Loops in DATA EXITPROCEDURE statement .315

 Statements 287 Formats315

 Extended Ranges on FMT= Format Specification .316

 DO-Loops 287 Imbedded Formats 316

 Debug Facility 287 Implied Formats316

 Call by Location 288 PARAMETER statement317

 Predefined Functions . . .288 Comment Statements 318

 Comments 288 FORTRAN Comment Lines . . .319

 NAMED COMMON Restriction .288 OVERDRIVE Comment Lines . .319

 Declaration of OVERDRIVE Appended

 Dimensioning Restriction .288 Comments 319

 Appendix C: Detailed Listing Control Statements .319

 Examples 289

 10

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 EJECT [icon] 320 Inappropriate Calls for

 TITLE ’text of title’ . . .320 I/O Operations 379

 SUBTITLE ’text of Errors During I/O

 subtitle’320 Operations 382

 SPACE icon 320 Define File Errors 384

 LIST [option]321 Format Errors386

 INDENT...ENDINDENT 321 NAMELIST Errors388

 OPTION Statement 321 List-Directed I/O Errors .391

 OPTION {COM|NOCOM} 321 Miscellaneous Errors . . .392

 OPTION

 COMPILER={FTNG|FTNH} . . .322 The Elementary Function

 OPTION Library395

 {INDENT=string|NOINDENT} .322

 OPTION LABEL={LINE|icon} .322 FREAD/FWRITE: Free-Format I/O

 OPTION {LIST|NOLIST} . . .323 Subroutines409

 OPTION LPFX=digit323 Introduction 409

 OPTION {XREF|NOXREF} . . .323 Using FREAD to Input Data . .409

 Efficiency Considerations . .323 General Calling Sequence .410

 Restrictions 324 Reading Numeric Data . . .411

 Appendix A: Example Reading Character Data . .412

 OVERDRIVE Program327 Reading Other Types Of

 Data 413

 FORTRAN I/O Library331 Reading from a

 Logical Unit Assignments . .332 User-Supplied Buffer . . .414

 MTS Unit Assignments . . .332 Error Recovery 415

 FORTRAN Unit Assignments .333 Using FWRITE to Output Data .417

 FORTRAN I/O Access 334 General Calling Sequence .417

 Sequential I/O 335 Writing Numeric Data . . .418

 Direct Access I/O337 Writing Character Data . .419

 FORTRAN I/O Conversions . . .339 Writing Other Types of

 Formatted Conversion . . .341 Data 419

 Unformatted Conversion . .348 Special Controls 420

 NAMELIST Conversion350 Writing To A

 Other FORTRAN I/O Statements 354 User-Supplied Buffer . . .421

 The REWIND Statement . . .354 Input and Output Options . .421

 The BACKSPACE Statement . .354 Special Input Options for

 The ENDFILE Statement . . .355 FREADC 422

 The PAUSE Statement355 Special Output Options

 The STOP Statement 355 for FWRITE 424

 The OPEN Statement 356 Advanced Uses of FREAD and

 The CLOSE Statement356 FWRITE 445

 The INQUIRE Statement . . .356 Reading Arrays 445

 FORTRAN-II Statements . . .356 Indexed Input and Output .445

 The FORTRAN I/O Command Using FREAD Without

 Language Monitor 357 Transferring Data446

 FORTRAN I/O Commands . . .357 Input Subroutines447

 The FTNCMD Subroutine . . .371 Creating Text Lines For

 Error processing 374 Other Routines 447

 Appendix A: FORTRAN I/O FREAD/FWRITE Examples448

 Library Error Messages . . .377 Data Descriptions450

 Variable-Format Decoder

 Errors 377 Calling Subroutines from

 FORTRAN454

 11

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 R-Type Subroutines 454 ANSI Standard Bit

 Special Cases454 Manipulation Subroutines . . .523

 IOR524

 Dynamic Loading in FORTRAN . .455 IAND 525

 LINKF456 IEOR 526

 XCTLF461 NOT527

 LOADF466 ISHFT528

 STARTF 471 BTEST529

 UNLDF473 IBSET530

 IBCLR531

 Array Management Subroutines .475 ISHFTC 532

 ARINIT 477 IBITS533

 ARRAY, ARRAY2478 MVBITS 534

 EXTEND, XTEND2 480 DATE 535

 ERASE482 ANSITM 536

 ERASAL 482

 ANSI Standard File Control

 Character Manipulation Subroutines537

 Routines 483 CFILW539

 BTD485 DFILW541

 COMC 486 OPENW542

 DTB487 MODAPW 544

 EQUC 489 CLOSEW 545

 FINDC490 RDRW 546

 FINDST 492 WRTRW547

 IGC493

 LCOMC495 Miscellaneous FORTRAN

 MOVEC496 Subroutines549

 SETC 497 ADROF550

 TRNC 498 ATNTRP 551

 TRNST499 CHKPAR 552

 DUMP, PDUMP555

 Logical Operators501 GDINF557

 NPAR 558

 Bitwise Logical Functions . . .505 RCALL560

 REWIND 562

 BMS (Bit Manipulation SIOERR 563

 Subroutines) 507

 BCLEAR 509 *PROFORT: The FORTRAN

 BSET 511 Execution Profiler 565

 BFLIP511

 BCOPY512 Miscellaneous FORTRAN Programs 581

 BSWAP513 *DAVE583

 BAND 514 *FTNTIDY 585

 BOR515 *FTNTOPL1593

 BXOR 515 *PFORT 595

 BFETCH 516 *RATFOR597

 BCOMP517

 BOOLE518 Exceptional Conditions 599

 BINSRT 519

 BDLETE 520 Introduction to Debug Mode

 BSCAN521 for FORTRAN603

 BCOUNT 522

 Index615

 12

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 OVERVIEW OF FORTRAN IN MTS __________________________

 This volume is intended for those users who wish to use the FORTRAN

 IV language in MTS. It is assumed that the user is already familiar

 with the FORTRAN language; therefore, only those cases where the

 language accepted by a particular FORTRAN language processor differs

 from the standard language specifications are described in detail.

 Documentation for the FORTRAN language is available from several

 sources. The following reference publications are available through the

 local bookstores.

 IBM System/360 and System/370 FORTRAN IV Language, form GC28-6515. ___

 This IBM publication describes the FORTRAN IV language which is

 accepted by the IBM FORTRAN-G and FORTRAN-H compilers. This is

 the language reference publication.

| VS FORTRAN Version 2: Language and Library Reference, form ___

| SC26-4221.

 This IBM publication describes the FORTRAN 77 language which is

 accepted by the IBM VS FORTRAN compiler.

| FORTRAN 77 With MTS and the IBM PC, Brice Carnahan and James _______________________________________

| O. Wilkes (1985).

|

| This publication provides an introduction to the FORTRAN 77

| language and MTS.

 FORTRAN IV with WATFOR and WATFIV, Paul Cress, Paul Dirksen, and _________________________________

 J. Wesley Graham, Prentice-Hall (1970).

 This publication provides an introduction to programming with

 WATFIV.

 There are five different FORTRAN language processors available in

 MTS. These are FORTRAN-G, FORTRAN-H, VS FORTRAN, WATFIV, and IF. Each

 of these is oriented toward the differing needs of the FORTRAN user. A

 brief description of each is given below.

 (1) FORTRAN-G

 FORTRAN-G is the IBM standard FORTRAN IV compiler and the one

 most often used for production FORTRAN programs. The compiler

 produces relatively efficient object code. Object modules

 produced may be debugged interactively via the Symbolic Debug-

 Overview of FORTRAN in MTS 13

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 ging System (SDS). This compiler is generally invoked via the

 *FTN compiler interface program.

 (2) FORTRAN-H

 FORTRAN-H is the IBM optimizing FORTRAN IV compiler. This

 compiler is intended for programs which are fully debugged and

 ready for production use. The compiler produces very efficient

 object code which generally executes 25% to 50% faster than the

 equivalent FORTRAN-G object code. Compilation with FORTRAN-H is

 more expensive than with FORTRAN-G due to the complicated

 optimizing operations performed by the compiler. The difference

 in cost is the greatest for programs which consist of a single

 large main program and the least for programs which are

 subdivided into smaller subroutines. Object modules produced

 may be debugged interactively via the Symbolic Debugging System,

 although not as easily as with FORTRAN-G object modules. This

 compiler is generally invoked via the *FTN compiler interface

 program.

 (3) VS FORTRAN

 The IBM VS FORTRAN compiler supports the most recent standard

 for FORTRAN 77 published by the American National Standards

 Institute (ANSI). It also supports IBM extensions to the

 language and contains features and extensions that are not

 available with FORTRAN 66 compilers (FORTRAN-G and FORTRAN-H).

 (4) WATFIV

 The WATFIV compiler (Waterloo FORTRAN IV) is a compiler oriented

 toward batch program development. It provides fast compilation,

 stringent error checking, and good diagnostics. Since WATFIV

 produces object code which incorporates extensive error check-

 ing, it is not economical for fully debugged production pro-

 grams. WATFIV programs generally must be self-contained and

 cannot easily call subroutines produced by other language

 processors. The language accepted by WATFIV differs somewhat

 from that accepted by other FORTRAN compilers. The extensions

 and restrictions are described in the section "WATFIV."

 (5) IF

 The IF (Interactive FORTRAN) compiler is a processor oriented

 toward interactive program development. IF enables the user to

 enter entire programs either from a terminal or a file, to

 dynamically debug and correct the errors, and to save the

 debugged source program. IF is an interpretive processor; it

 will not produce object modules and does not execute the

 compiled program efficiently. However, it is very flexible and

| useful for error-checking purposes. There are two versions of

| this processor. *IF66 accepts the FORTRAN 66 (FORTRAN-IV)

| standard which is the same as the source language for the

 14 Overview of FORTRAN in MTS

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

| FORTRAN-G and FORTRAN-H compilers. *IF77 accepts the FORTRAN 77

| standard which is the same as the source language for VS

| FORTRAN.

 In addition to the descriptions of the above compilers, this volume

 also contains descriptions of the *FTN compiler-interface program, the

 MTS FORTRAN I/O library, the OVERDRIVE preprocessor program, and several

 useful subroutines for FORTRAN programs.

 The *FTN compiler interface program enables the user to invoke either

 the FORTRAN-G or FORTRAN-H compilers. It also provides several useful

 facilities for both conversational and batch users which are not

 provided directly by the compilers themselves. The compiler interface

 is described in the section "*FTN Interface."

 The FORTRAN I/O library provides an interface to the MTS I/O

 facilities for FORTRAN programs and provides a limited amount of error

 recovery from I/O errors for conversational users. This is described in

 the section "FORTRAN I/O Library."

 The OVERDRIVE preprocessor is a program that allows the use of

 structured programming techniques in FORTRAN. This is described in the

 section "OVERDRIVE."

 Overview of FORTRAN in MTS 15

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 16 Overview of FORTRAN in MTS

 MTS 6: FORTRAN in MTS

 October 1983

 *FTN INTERFACE ______________

 INTRODUCTION ____________

 The FORTRAN compiler interface program in *FTN is a single program

 which allows the user to employ either of the two IBM FORTRAN

 compilers--FORTRAN G and FORTRAN H--available in MTS. This interface is

 designed to give the user a standard means of interaction with both

 compilers. The interface also provides a large range of user services.

 Among the auxiliary services provided are:

 (1) conversational entry and correction of interface and compiler

 options,

 (2) four source statement formats,

 (3) availability of the reformatted source program in standard IBM

 format,

 (4) incorporation of the MTS line numbers in the source listings and

 terminal diagnostics,

 (5) an object module format employing CSI-type (core storage image)

 loader records to decrease loading time,

 (6) availability of SYM (symbol) records in the object module, and

 (7) availability of different optimization levels from the FORTRAN-H

 compiler.

 At a few points, the reader is referred to the sections "FORTRAN G"

 and "FORTRAN H" in this volume. These are references to detailed

 descriptions of some aspects of the compiler output listings, and thus

 may be ignored unless such detailed knowledge is desired. In no case

 are they crucial to an understanding of the features of *FTN considered

 herein. The explanations of the error messages in these sections may be

 useful in identifying problems noted by the compiler diagnostic

 messages.

 For a complete description of the FORTRAN programming language, see

 the IBM publication, IBM System/360 and System/370 FORTRAN IV Language, __

 form number GC28-6515.

 *FTN Interface 17

 MTS 6: FORTRAN in MTS

 October 1983

 DESCRIPTION OF THE INTERFACE ____________________________

 The *FTN interface is invoked by a command of the form

 $RUN *FTN SCARDS=source SPRINT=listing SPUNCH=object PAR=options

 The logical I/O units are used primarily for specifying the location of

 the source program, the destination for compiler output listings and

 diagnostics, and the destination for the generated object module. The

 options are used primarily for specifying the compiler to be used and

 the compiler services that are desired.

 The logical I/O unit assignments are as follows:

 SCARDS - source program (defaults to *SOURCE*)

 SPRINT - compiler source program and object module listings

 (defaults to *SINK* in batch mode)

 SPUNCH - object module generated (defaults to *PUNCH* in batch

 mode)

 In addition, four other logical I/O units may be assigned. They are as

 follows:

 SERCOM - interface and compiler diagnostic error messages (defaults

 to *MSINK*)

 GUSER - responses to interface prompting messages (defaults to

 MSOURCE)

 0 - object module generated (if DECK option is specified)

 1 - edited source module generated (if EDIT option is

 specified)

 The logical I/O units GUSER and SERCOM are used to communicate with

 the conversational user. When an error message or request message is

 printed on SERCOM, *FTN will prompt the user for an appropriate reply

 via GUSER. This method of interface-user communication is used for

 option entry and correction. GUSER and SERCOM default to *MSOURCE* and

 MSINK, respectively; however, they may be reassigned to other files or

 devices.

 When *FTN requests the user to enter options, it reads from GUSER

 using the characters ":PAR=" to prompt. The response may be continued

 on successive lines by using the current MTS command line continuation

 character (default is "-"); however, the total length of the response

 must not exceed 240 characters. If the response is an MTS command,

 i.e., if it begins with a dollar sign "$", then it is executed as such

 and control is returned to MTS command mode. Control similarly returns

 to MTS with an end-of-file response. In either case, if execution is

 resumed via a $RESTART command, another GUSER prompt will be made.

 In scanning the response to a GUSER prompt, *FTN assembles all

 unknown option names and any keyword option names assigned illegal

 values into a single character string. This string is subsequently

 18 *FTN Interface

 MTS 6: FORTRAN in MTS

 October 1983

 enclosed in quotation marks, suffixed with a question mark, and printed

 on SERCOM. In addition, any problems associated with the assignment or

 defaulting of any of the input/output options are noted on SERCOM. If

 the option scan detects any errors, the conversational user will be

 given an opportunity to correct them, i.e., another GUSER prompt will be

 made.

 If the logical I/O unit SCARDS is assigned to the terminal, *FTN uses

 the question mark "?" to prompt for the next source statement line.

 The null response is treated as an end-of-file and thus serves to

 terminate the source stream. If a command is entered, i.e., if the

 response begins with a dollar sign, the current source module is

 regarded as complete. When compilation is completed, the command is

 executed and control passes to MTS. The current MTS command line

 continuation character may be used for these commands; however, succes-

 sive lines of the command are not read until the compilation has been

 completed. The total length of the command must not exceed 240

 characters. Note that in batch mode, the QUIT option may be used to

 prevent the execution of any command given.

 The logical I/O unit SERCOM is also used for various comments and

 diagnostics generated during the compilation. By default, conversation-

 al users will also have all source program diagnostics reproduced on

 SERCOM in a condensed form, which, for the LINE and EDITED statement

 formats (see the section "Source Statement Formats"), includes the MTS

 line numbers. This does not occur in batch mode since SERCOM defaults

 to *MSINK*.

 Attention interrupts are processed by *FTN only while it is printing

 EXPLAIN output on SERCOM. If an attention is received, the printing is

 stopped and a return is made to MTS command mode. A subsequent $RESTART

 will result in a prompt for more options. In all other cases, MTS

 processes attention interrupts.

 OPTIONS _______

 The compiler options provide for user control of the optional

 compiler services.

 Option names which are not recognized by *FTN or which are assigned

 illegal values are noted on SERCOM. Conversational users will be

 subsequently prompted to enter new or additional options to correct

 their errors. Any unrecognizable option values or illegal assignments

 result in termination of batch mode jobs unless the NOQUIT option (see

 the section "Simple Option Descriptions" below) has been specified, in

 which case the erroneous options and any others dependent upon them are

 ignored.

 Simple options may be negated by prefixing "NO", "¬", or "-". The

 option names may be specified in any order; however, if the same option

 *FTN Interface 19

 MTS 6: FORTRAN in MTS

 October 1983

 is repeated, the previous occurrence(s) in the left to right scan are

 overridden. The options must be separated either by blanks or commas,

 and blanks should not be embedded in a option name or anywhere within a

 option assignment. The option names may be abbreviated by truncation

 from the right. The following table gives the minimum acceptable

 abbreviations and the defaults used if the option is not specified.

 Simple Shortest Batch Conversational

 Option Abbreviation Default Default ______ ____________ _______ _______

 BCD B NOBCD NOBCD

 COMMENT (H only) COM COMMENT COMMENT

 COND (G only) C COND COND

 DECK D NODECK NODECK

 EDIT E NOEDIT NOEDIT

 EJECT (H only) EJ EJECT EJECT

 ERR ER ERR ERR

 EXPLAIN EX or ? NOEXPLAIN NOEXPLAIN

 ID I ID ID

 LIB LIB NOLIB NOLIB

 LIST L NOLIST NOLIST

 LOAD LO LOAD LOAD

 MAP M NOMAP NOMAP

 MTS MT NOMTS NOMTS

 OVER OV NOOVER NOOVER

 QUIT Q QUIT NOQUIT

 SCAN SC NOSCAN NOSCAN

 SM SM NOSM NOSM

 SML SML NOSML NOSML

 SOURCE S SOURCE NOSOURCE

 STRUC (H only) ST NOSTRUC NOSTRUC

 TEST T NOTEST NOTEST

 XL (H only) XL NOXL NOXL

 XREF (H only) X XREF NOXREF

 Assignment Shortest Batch Conversational

 Option Abbreviation Default Default ______ ____________ _______ _______

 CALIGN (H only) CA 0 0

 CSHIFT (H only) CS 0 0

 FORMAT F EDITED EDITED

 LINE LI 57 57

 NAME N MAIN MAIN

 OPT O G G

 OVER OV (See text) (See text)

 SIZE (G only) SI 4 4

 20 *FTN Interface

 MTS 6: FORTRAN in MTS

 October 1983

 Simple Option Descriptions __________________________

 Options which are employed by default in both batch and conversation-

 al use are noted as such.

 BCD ___

 The BCD option indicates that the source module lines are coded in

 Binary Coded Decimal (as on the IBM 026 keypunch). The standard

 for the System/370 is Extended Binary Coded Decimal Interchange

 Code (EBCDIC). Most terminals and the 029 keypunch produce EBCDIC

 code. If the BCD option is specified, statement numbers passed as

 arguments must be coded as "$n", and the dollar sign "$" must not

 be used as an alphabetic character. With EBCDIC, statement numbers

 in argument lists would be coded "&n", so that "$" would be a

 legitimate alphabetic character. The default is NOBCD.

 The FORTRAN-G and FORTRAN-H compilers do not support BCD characters

 in either literal data or as print control characters; such

 characters are treated as EBCDIC. Consequently, for example, a BCD

 "+", used as a carriage-control character will not cause printing

 to continue on the same line. Programs keypunched in BCD should be

 carefully scanned for possible errors relating to print control

 characters and literal data.

 COMMENT _______

 The NOCOMMENT option inhibits the listing of comment statements

 when the FORTRAN-H compiler is used. The default is COMMENT.

 COND ____

 The COND option specifies that compilation is to be terminated

 without producing an object module if serious errors (those with

 severity levels of 4 or 8) are found in the source program. A list

 of the FORTRAN-G diagnostic messages and severity levels is given

 in the section "FORTRAN G." The default is COND. The option

 applies only to FORTRAN-G.

 DECK ____

 If the DECK option is specified, each object module is suffixed

 with the first four characters of the module name in columns 73-76

 and the line sequence number in columns 77-80. DECK has no effect

 if the SCAN option is enabled. The default is NODECK.

 EDIT ____

 The EDIT option indicates that the edited source modules are to be

 written on logical I/O unit 1. The default is NOEDIT.

 *FTN Interface 21

 MTS 6: FORTRAN in MTS

 October 1983

 EJECT _____

 The NOEJECT option causes the FORTRAN-H compiler to change all page

 ejects to triple spaces. This may be useful for some terminals.

 The default is EJECT.

 ERR ___

 The ERR option requests that source diagnostics are to be printed

 on SERCOM. It is assumed that this logical I/O unit corresponds to

 SINK so that if the output listings are also assigned to *SINK*,

 the ERR option will be ignored. The default is ERR.

 EXPLAIN _______

 The EXPLAIN option prints a synopsis of the interface and compiler

 options on SERCOM. An attention interrupt can be used to stop the

 printing of this information. After the explanation has been

 printed, the interface again prompts the conversational user for

 options. The default is NOEXPLAIN.

 ID __

 The ID option generates internal statement numbers (ISN) following

 external function references in the object code produced by the

 compiler. (An internal statement number is that number which would

 be attached to the statement if each executable statement were

 numbered sequentially from the beginning of the program.) In the

 generated code, each BALR (branch) to an external program is

 followed by a four-byte no-operation with an address field equal to

 the ISN of the source statement containing the external reference.

 For example, for a call from statement 1000, the four bytes would

 appear in a hexadecimal dump as 470003E8 (3E8 of base 16 = 1000 of

 base 10). This is useful as a debugging aid, but it is not

 necessary when debugging with SDS. The default is ID.

 LIB ___

 The LIB option (available only for FORTRAN-G, OPT=G, the default)

 specifies that each object module generated by the compiler is to

 be preceded by a LIB record containing its module name. This

 option affects both the LOAD and DECK output. The LIB record

 immediately precedes the first ESD record of the object module.

 The format of the LIB record is as follows:

 Columns Contents _______ ________

 2-4 LIB

 17-24 the module name (1 to 8 characters).

 For main programs the module name is determined by the value of the

 NAME assignment option. For subroutines it is always the name

 22 *FTN Interface

 MTS 6: FORTRAN in MTS

 October 1983

 given in the FUNCTION or SUBROUTINE statement. The default is

 NOLIB.

 LIST ____

 The LIST option includes a pseudo-assembly-language format listing

 of the generated object module in the output listings. Unless the

 user understands some machine code and can read hexadecimal dumps,

 this listing is generally not useful and is in all cases expensive

 to obtain. The use of the SCAN option overrides the LIST option as

 there is no object module produced when that option is employed.

 The COND option can prevent production of the object module and

 hence the listing. The default is NOLIST.

 LOAD ____

 The LOAD option specifies that object modules are to be produced by

 the compiler and included in the object module output. LOAD has no

 effect if used with the SCAN option. If the DECK option is

 specified, each record will be 80 characters long; otherwise, the

 object records will be variable in length with a possible maximum

 length equal to the maximum record length of the file or device

 receiving the object module. The default is LOAD.

 Object module lines contain a 12-2-9 punch in the first column and

 the characters ESD, TXT, RLD, or END, in columns 2-4. The

 compilers generate four types of ESD items: type 0 items contain

 the module name, entry point, and module length; type 1 items

 contain the entry point names corresponding to ENTRY statements;

 type 2 items contain the external references made in CALL or

 EXTERNAL statements and implicit or explicit function references;

 and type 5 items contain the names for each COMMON block. The

 compilers do not generate type 3 or type 4 ESD items. The TXT

 records contain user- and compiler-generated constants, translated

 FORMAT statements, and the generated machine instructions. The

 information contained in the RLD records is used by the loader to

 complete external references. External references are resolved by

 adjusting the constant pointed to by the address in the RLD item by

 the address of the appropriate external symbol contained in one of

 the type 2 ESD items. The END record for each module is described

 below:

 Columns Contents _______ ________

 1 12-2-9

 2-4 END

 37-39 FTN

 41-48 Module name

 49-56 Date as MM-DD-YY

 57-64 Time as HH:MM.SS

 65-68 Number of warning errors

 69-72 Number of serious errors

 *FTN Interface 23

 MTS 6: FORTRAN in MTS

 October 1983

 If the output record length is less than 255, the object is

 generated in the form of 80-byte card images. Otherwise, the

 interface automatically concatenates successive RLD records to form

 255-character RLD records and successive TXT records to form either

 255-character TXT records or, if the object text is longer, CSI

 records. (See MTS Volume 5, System Services, section entitled "The _______________

 Dynamic Loader," for an explanation of the different types of

 loader records.) This editing is applied to all object modules

 included in the LOAD data set.

 Any LIB records generated will contain the characters LIB in

 columns 2-4 and the module name in columns 17-24.

 Note that when the SCAN option is specified, no punched output will __

 be generated regardless of the LOAD, DECK, or LIB option specifica-

 tions. Similarly, if the COND option is specified, then no punched

 output will be generated for any source module containing serious

 errors, i.e., diagnostics with severity level 4 or 8.

 MAP ___

 The MAP option specifies that a storage map is to be included in

 the output listings. The map consists of tables containing

 variable names and locations for COMMON, EQUIVALENCE, NAMELIST,

 scalar and array variables, subprograms referenced, and FORMAT

 statements. The default is NOMAP.

 MTS ___

 The MTS option returns control immediately to MTS. If the *FTN

 interface is restarted by the $RESTART command, the user is again

 prompted for a option list which will augment all previously

 entered options. The default is NOMTS.

 OVER ____

 The OVER option causes *FTN to invoke the OVERDRIVE preprocessor on

 the source program before it passes it to the appropriate compiler.

 The default is NOOVER. See the section "OVERDRIVE" in this volume

 for the description of the OVERDRIVE preprocessor.

 QUIT ____

 The QUIT option terminates a batch job if serious errors, i.e.,

 severity levels 4 and 8, are found in the source program. In such

 a case the entire job is terminated, no more commands are executed,

 and the user is signed off. In addition, if option errors are

 found in batch mode, the job is terminated without invoking the

 compiler. For example, the batch command

 $RUN *FTN SPUNCH=MYFILE PAR=QUIT

 24 *FTN Interface

 MTS 6: FORTRAN in MTS

 October 1983

 causes termination if the user file MYFILE does not exist. If

 NOQUIT is specified and option errors are found, then compilation

 continues if the source data set is available. However, any output

 options for which data sets are not readily available and any

 unrecognized options are ignored. In the example given above, no

 LOAD output would be generated. The default is QUIT for batch mode

 and NOQUIT for conversational mode.

 SCAN ____

 The SCAN option causes the compiler to scan the source module for

 syntax and compilation errors. All appropriate error diagnostics

 are generated for each source module, but no object code is

 generated and consequently neither the object listing nor the

 program size can be included in the output listings. In addition,

 no object module output is produced. Use of the SCAN option will __

 decrease the cost of scanning the source program for errors. The

 default is NOSCAN.

 SM __

 The SM option is an abbreviation for SOURCE and MAP combined.

 SML ___

 The SML option is an abbreviation for SOURCE, MAP, and LIST

 combined.

 SOURCE ______

 The SOURCE option specifies that a source listing is to be included

 in the output listings. The source listing always corresponds to

 the edited source module. When the source format is either LINE or

 EDITED (see the section "Source Statement Formats"), the MTS line

 numbers are incorporated in this listing immediately to the right

 of the source statement. The first line number given corresponds

 to the line containing the first character appearing in the

 reformatted source statement, while the second, if given, corre-

 sponds to the line from which the last character was obtained. If

 any LIST output is to be generated, then all source diagnostics are

 included. The default is SOURCE for batch mode and NOSOURCE for

 conversational mode.

 STRUC _____

 The STRUC option is effective only with optimization level 2 of the

 FORTRAN-H compiler (see the description of the OPT assignment

 option). It requests a structured source listing which is included

 on the PRINT data set. The default is NOSTRUC.

 *FTN Interface 25

 MTS 6: FORTRAN in MTS

 October 1983

 TEST ____

 The TEST option generates SYM records in the object module. This

 facilitates execution-time debugging with the Symbolic Debugging

 System (SDS). See the section "Introduction to Debug Mode for

 FORTRAN" for further information. The default is NOTEST.

 XL __

 The XL option is used only by the FORTRAN-H compiler and allows the

 use of extended language features which are supported by FORTRAN-H

 and described in IBM System/360 Operating System FORTRAN IV (H) __

 Compiler Program Logic Manual, form GY28-6642. This is not the ________________________________ ___

 same as the FORTRAN-H Extended compiler (an IBM program product),

 which is not available at the Computing Center. The default is

 NOXL.

 XREF ____

 The XREF option is used only by the FORTRAN-H compiler and

 generates a cross-reference listing of variable names and statement

 numbers. The cross-reference listing appears on the PRINT data

 set. This option has no effect when used with the FORTRAN-G

 compiler. See the description of the OPT keyword option for an

 explanation of the method for specifying which compiler is to be

 used. The default is XREF for batch mode and NOXREF for conversa-

 tional mode.

 Assignment Option Descriptions ______________________________

 CALIGN=n ______

 CSHIFT=n ______

 By specifying the CALIGN=n or CSHIFT=n options (where 1 ≤ n ≤ 72),

 the body of comment lines may be positioned to start in column "n".

 The comment lines are denoted by column 1 containing the comment

 symbol "C". CALIGN aligns the first nonblank character after the

 initial "C" at column "n". CSHIFT shifts the entire comment

 (including the "C") to column "n", thus preserving the indentation

 of structured comments. For both CALIGN and CSHIFT, a "C" is

 printed at column 1 in the listing. Blank comments are not

 shifted. If "n" is 72, the comments will be printed in the

 normally blank area to the right of the source statement listing.

 If truncation would occur, the comment is continued on the next

 line. Standard output is printed with CALIGN=0 and CSHIFT=0 (the

 defaults). CALIGN=1 is treated as if CALIGN=2 were specified. If

 "n" is greater than 72, 72 will be used. CALIGN and CSHIFT are

 "coupled" options, i.e., the last one specified overrides all

 previous occurrences of either. These options are available only

 with the FORTRAN-H compiler.

 26 *FTN Interface

 MTS 6: FORTRAN in MTS

 October 1983

 FORMAT={LINE|IBM|EDITED|LONG} ______ _ _ _ __

 The value assigned to this option specifies which of the four

 source statement formats (LINE, IBM, EDITED, and LONG) should be

 used; statement formats are fully described in the section "Source

 Statement Formats." The default is EDITED.

 LINE=n ____

 The LINE assignment option specifies the number of lines per page

 for output listings. "n" must be an integer in the range

 (3,32767). This may be used to control the spacing of the page

 headers, etc., as they are only produced at the beginning of each

 set of lines. The default is 57 lines per page.

 NAME=xxxx ____

 The NAME assignment option specifies the name to be used as the

 module name for all main programs compiled. Subprogram module ____

 names are always the name given in the FUNCTION or SUBROUTINE

 statement. The module name appears in the page headers, LIB

 records, the ESD type 0 lines, the END lines, and the object code

 at relative address 000005. The name "xxxx" may be from 1 to 8

 characters in length. The default is MAIN.

 OPT={G|0|1|2|H} ___

 The OPT assignment option specifies either the FORTRAN-G compiler

 (OPT=G) or one of the three levels of optimization available with

 the FORTRAN-H compiler (OPT=0, OPT=1, or OPT=2). Optimization

 level 0 provides the least optimization; level 2 provides the most

 optimization. For convenience, OPT=H may be used interchangeably

 with OPT=2, since level 2 is used by most FORTRAN-H users. The

 default is G.

 OVER=parlist ____

 The OVER assignment option may be used to pass options to the

 OVERDRIVE preprocessor. A single option is placed directly after

 the "=" character; multiple options must be enclosed in parenthe-

 ses, e.g.,

 OVER=LIST

 OVER=(LIST,COM)

 All options passed to OVERDRIVE must be included in a single

 assignment. *FTN automatically passes the appropriate COMPILER=

 FTNG or COMPILER=FTNH option to OVERDRIVE. By default, other no

 options are passed. See the section "OVERDRIVE" in this volume for

 the description of the OVERDRIVE preprocessor.

 *FTN Interface 27

 MTS 6: FORTRAN in MTS

 October 1983

 SIZE=n ____

 The SIZE assignment option specifies the number of pages of virtual

 memory to be used for the FORTRAN-G working storage. "n" must be

 an integer in the range (1,255). The default is 4 pages. This

 option is more fully described in the section "FORTRAN G." It is

 not used by the FORTRAN-H compiler.

 INPUT/OUTPUT ASSIGNMENT _______________________

 The *FTN interface handles from one to five data sets, depending on

 user-supplied options. These data sets may be explicitly assigned via

 the logical I/O units or may be defaulted as follows:

 Batch Conversational _____ ______________

 SCARDS *SOURCE* *SOURCE*

 SPRINT *SINK* -PRINT

 SPUNCH -LOAD -LOAD

 0 *PUNCH* -DECK

 1 *PUNCH* -EDIT

 Notice that these defaults are not the same as the standard MTS defaults ___

 for these logical I/O units. For example, if the conversational user

 did not assign SPRINT to an FDname but did request compiler options

 specifying printed output (e.g., SOURCE, MAP, or LIST), the file -PRINT

 is created and used. If -PRINT already exists, it is emptied prior to

 use. If no compiler options specifying printed output were requested,

 the printed output is suppressed. For both the batch user and the

 conversational user, SPUNCH defaults to the file -LOAD. If -LOAD

 already exists, it is emptied before compilation begins. If the user

 explicitly specifies the files to be used for the printed output or the

 object module output, the files are not emptied by the interface; it is

 the user’s responsibility to do this.

 In general, the LOAD data set corresponds to SPUNCH and the DECK data

 set corresponds to logical I/O unit 0. This correspondence may be

 reversed if the user specifies the DECK option and does not assign

 logical I/O unit 0. In this case, if LOAD has not been specified, the ___

 DECK data set is generated on SPUNCH.

 A data set, if not assigned to an FDname, defaults to a file or

 device depending on the type of job (batch or conversational). Data set

 defaults are accomplished by setting the corresponding logical I/O unit

 to use the default file/device. Unassigned output data sets which

 default to temporary files are emptied automatically before use.

 28 *FTN Interface

 MTS 6: FORTRAN in MTS

 October 1983

 SOURCE STATEMENT FORMATS ________________________

 Four types of source statements are supported by *FTN: IBM, LONG,

 LINE, and EDITED. These are specified by the FORMAT assignment option;

 the default is EDITED.

 The IBM format corresponds to the card-oriented format in general use

 and passes statements directly to the compiler. The LINE format allows

 free placement of the optional statement number and statements within

 the line, and a continuation convention similar to the standard system

 technique for MTS command lines. The EDITED format is an attempt to

 bridge the gap between LINE and IBM formats by using the format which

 appears to be appropriate for the source line being processed. A series

 of tests is used to determine which format is to be employed. LONG

 format allows IBM formatted lines to extend beyond column 72.

 Because *FTN employs IBM FORTRAN compilers (which accept only the IBM

 format), the source statements are actually reformatted within *FTN.

 There are two immediate consequences of this arrangement. First, the

 source listing and any source statement diagnostics produced on SERCOM

 correspond to the reformatted source module. This should not be a major

 problem, however, since LINE, EDITED, and LONG formats retain the MTS

 line numbers so that they may be incorporated into these listings.

 FORTRAN-H retains line numbers for all formats. Second, the edited

 source may be obtained by using the EDIT option during the compilation

 process.

 IBM Format __________

 With IBM format, each line is assumed to contain 80 characters. To

 obtain this number, shorter lines are padded on the right with blanks,

 while longer lines are truncated on the right after an appropriate error

 comment has been given on SERCOM.

 With IBM format, the optional statement number, consisting of 1 to 5

 decimal digits, should be placed within columns 1 through 5 of the first

 line of the statement; if there is no statement number, these columns

 must be blank. The source statements are written one per line between

 columns 1 and 72; however, if a statement is too long for one line it

 may be continued to a maximum of 19 successive lines by placing a

 nonzero, nonblank character in column 6 of each such continuation line.

 Column 6 of the first line of a statement must either be blank or

 contain the digit zero (0). Columns 73 through 80 of each line are not

 inspected by the compiler, and though usually employed for program

 identification and sequencing, may be used for any purpose.

 *FTN Interface 29

 MTS 6: FORTRAN in MTS

 October 1983

 LONG Format ___________

 LONG format is identical to IBM format except that there is no

 sequence ID field and the source statement may continue beyond column

 72. The maximum length of one line is 1300 characters. Lines may be

 continued in the usual manner by using column 6 as the continuation

 indicator; however, the LINE format and MTS continuation conventions are

 not recognized. Lines exceeding 72 characters will be reformatted to

 the IBM format using continuation lines for statements and additional

 COMMENT lines for comments (the continuation character used will be

 "#"). Strings should not be split across lines as this may lead to

 erroneous results. *FTN treats all lines as if they were padded on the

 right with enough blanks to create an integral number of IBM-format

 lines after reformatting.

 LINE Format ___________

 With LINE format, there are no restrictions on the length of the

 source lines and the entire line is the object of the editing process,

 i.e., no field comparable to the usual identification field is

 available.

 Comment lines are denoted by a quotation mark (") in the first

 position. If the last nonblank character of a comment line is a percent

 sign (%), the line is presumed to be continued on the next line,

 beginning with the first character of that line. The percent sign and

 all trailing blanks are ignored. When comment lines are reformatted, a

 reasonable attempt is made to break them at a blank.

 A statement is presumed to be labeled if the first nonblank character

 of the first line of the statement is numeric. The statement number is

 interpreted to consist of this first numeric character together with all

 subsequent numeric characters up to the first nonnumeric character. If

 the resulting label consists of more than 5 decimal digits, the line,

 together with its MTS line number, is printed on SERCOM followed by the

 diagnostic message

 LABEL EXCEEDS 5 DIGITS TRUNCATED ON THE RIGHT

 and the sixth and all subsequent digits are ignored.

 If a statement is labeled, it begins with the first nonblank

 character following the statement number; otherwise, it begins with the

 first nonblank character of the line. If the last nonblank character of

 a statement line is a percent sign (%), the statement is presumed to

 continue on the next line, beginning with the first character of that

 line. The percent sign and any trailing blanks are ignored. The total

 length of a LINE format statement should not exceed 1300 characters.

 30 *FTN Interface

 MTS 6: FORTRAN in MTS

 October 1983

 EDITED Format _____________

 With EDITED format, a series of tests is used to determine if the

 current line is to be edited according to LINE format or passed directly

 to the compiler as in the IBM format. The following conditions are

 tested in the sequence given:

 (1) If the previous line was processed in LINE format and the last

 nonblank character of the line was a percent sign, then the

 current line is also processed in LINE format.

 (2) If the line contains more than 72 characters and there are

 nonblank characters beyond position 72, the line is processed in

 LINE format. Either a C or a quotation mark in the first

 position treats the line as a comment line.

 (3) If the first character of the line is a C, the line is passed

 directly to the compiler.

 (4) If positions 1 through 5 are blank, the line is passed directly

 to the compiler. The sixth character of the line is not

 examined.

 (5) If a nonblank, nonnumeric character is found in positions 1

 through 5, the line is processed in LINE format.

 (6) If positions 1 through 5 contain only blanks or numeric

 characters and the sixth character is neither a blank nor a

 zero, the line is processed in LINE format.

 (7) If none of the above conditions are true, the line is passed

 directly to the compiler.

 Note that a source module in IBM format will be correctly compiled in

 EDITED format only if the identification field, positions 73 through 80,

 of each line is blank. A source module in LINE format may not

 necessarily compile correctly in the EDITED format. For example, the

 source lines

 99999 PAUSE ’THIS WILL NOT %

 COMPILE IN EDITED FORMAT’

 will not be correctly interpreted in EDITED format since the first line

 appears to correspond to IBM format. Consequently, the LINE format

 continuation convention is not recognized. In this particular example,

 the second line is taken as a comment in IBM format. The problem with

 the EDITED format occurs whenever the first six characters of a source

 line correspond to IBM format.

 *FTN Interface 31

 MTS 6: FORTRAN in MTS

 October 1983

 BATCH EXAMPLES ______________

 In the batch examples given below, commands and compiler options are

 deliberately not abbreviated so that the user may more readily under-

 stand them. The examples which actually contain illustrative programs

 use the EDITED statement format available by default. The left margin

 is used to represent column 1 of the input cards.

 Example 1 _________

 This example illustrates the very common compile-and-execute situa-

 tion. The program performs the simple function of reading two numbers,

 forming their product, and printing the results.

 $RUN *FTN

 10 READ 100,A,B

 100 FORMAT (2F10.4)

 PROD=A*B

 PRINT 200,A,B,PROD

 200 FORMAT (’0’,F8.4,’ TIMES ’,F8.4,’ = ’,F15.8)

 GO TO 10

 END

 $RUN -LOAD

 2,2/

 .111,.222/

 The following lines are a portion of the output produced by

 the preceding input program.

 $RUN -LOAD

 EXECUTION BEGINS

 2.0000 TIMES 2.0000 = 4.00000000

 0.1110 TIMES 0.2220 = 0.02464198

 Example 2 _________

 This example is essentially equivalent to the preceding example

 except that the program has been recoded to form a main program, two

 subroutines, and a function subprogram. An OPTIONS statement is used in

 each subprogram to selectively obtain storage maps and object listings.

 Note that the OPTIONS statement is only valid with the G compiler.

 $RUN *FTN

 OPTIONS: NAME=PROGRAM

 10 CALL READER(A,B)

 F=FUNCT(A,B)

 CALL WRITER(A,B,F)

 If this statement had begun in the first column, it would have

 been interpreted as a comment.

 32 *FTN Interface

 MTS 6: FORTRAN in MTS

 October 1983

 GO TO 10

 END

 OPTIONS: NAME=READER,SML

 SUBROUTINE READER(U,V)

 READ 100,U,V

 100 FORMAT (2F10.4)

 RETURN

 END

 OPTIONS: NAME=FUNCT,NOSML,SM

 The occurrence of NOSML disables all listing options, while

 the subsequent SM reenables the SOURCE and MAP options. This

 ensures that no unwanted listing options are enabled. The

 specifications of NOL and SM are equivalent. Note that since

 the previous OPTIONS statement in the READER subroutine

 enabled the LIST option, it would remain enabled unless

 explicitly disabled in this OPTIONS statement.

 FUNCTION FUNCT(A,B)

 FUNCT=A*B

 RETURN

 END

 OPTIONS: NAME=WRITER,NOSML,S

 SUBROUTINE WRITER (X,Y,Z)

 PRINT 100,X,Y,Z

 100 FORMAT (’ FUNCTION(’,2F8.4,’) = ’,F15.8)

 RETURN

 END

 $RUN -LOAD

 2,2.

 .111,.222

 The following is a portion of the source listing produced for

 the subroutine WRITER.

 MICHIGAN TERMINAL SYSTEM FORTRAN IV COMPILER WRITER

 C OPTIONS: NAME=WRITER,NOSML,S 20.000

 0001 SUBROUTINE WRITER (X,Y,Z) 21.000

 0002 PRINT 100,X,Y,Z 22.000

 The OPTIONS statement is not deleted, instead it is incorpo-

 rated into the source listing as a comment. The numbers on

 the left side of the listing are the internal statement

 numbers (ISN). The numbers on the right side are the MTS line

 numbers, which are retained when the source statement format

 is either LINE or EDITED. If two line numbers appear on the

 right side, then the first character of the statement came

 from the first line number, and the last character of the

 statement from the second. The number of intermediate lines

 and the location of the breaks is not retained.

 *FTN Interface 33

 MTS 6: FORTRAN in MTS

 October 1983

 Example 3 _________

 If, in the previous example, the $RUN *FTN command is replaced by the

 command

 $RUN *FTN PAR=NOSML

 and nothing else is changed, then the NOSML and S options in the OPTIONS

 statements are ignored. The explanation for this follows: In Example

 2, the PRINT assignment is defaulted to *SINK* because SOURCE is a

 default option, and hence it is expected that the PRINT data set will be

 required. Accordingly, any output listing may be requested in an

 OPTIONS statement because a PRINT data set is available to handle the

 output. In Example 3, the interface presumes that the PRINT data set is

 not needed because of the NOSML option. Consequently, even though the

 subsequent OPTIONS statements request various output listings, in the

 absence of a PRINT data set the interface ignores any output listing

 lines produced by the compiler.

 This particular aspect of *FTN may at first seem somewhat peculiar,

 but it does have some redeeming value. Specifically, it allows the $RUN

 command options to override any embedded OPTIONS statements. For

 example, since a DECK data set is not allocated by default, the

 appearance of the DECK option on embedded OPTIONS statements is ignored.

 This situation evolved because the OPTIONS statement was added very late

 in the development of *FORTRANG and *FTN, and *FTN was constructed in

 such a manner that dynamic allocation of data sets would be extremely

 awkward. Further, it was felt that the ability to override OPTIONS

 statements as described above might in fact prove to be more advanta-

 geous than dynamic allocation of the data sets.

 Example 4 _________

 This example is also related to Example 2. It is presumed that a

 file, MYFILE, exists and contains old, unneeded information. Also, for

 one reason or another, the user desires to save PROGRM, READER, FUNCT,

 and WRITER in this file. This can be accomplished as follows.

 $EMPTY MYFILE

 $COPY *SOURCE* MYFILE

 Between this command and the one that follows, the four source

 decks for PROGRM, READER, FUNCT, and WRITER should be

 inserted.

 $ENDFILE

 $RUN *FTN SCARDS=MYFILE

 $RUN -LOAD

 This command sequence would give the desired result. The file

 MYFILE will contain an exact copy of the source modules.

 34 *FTN Interface

 MTS 6: FORTRAN in MTS

 October 1983

 Example 5 _________

 The following RUN command would be used to invoke the FORTRAN-H

 compiler at optimization level 2.

 $RUN *FTN SCARDS=MYFILE SPUNCH=OBJECT PAR=OPT=H

 The object module is placed in the file OBJECT as a result of this

 command.

 CONVERSATIONAL EXAMPLES _______________________

 In these conversational examples, commands and interface options are

 generally abbreviated. The left margin represents the left margin of

 the terminal, and hence generally contains the prefix character which is

 printed by the system. For example, the pound sign (#) generally is a

 request for the next command. All characters printed by the system are

 in uppercase, while all user-entered characters are in lowercase. The

 notation "(eol)" represents the end-of-line sequence, e.g., carriage

 return for most terminals. The notation "(attn)" represents an

 attention-interrupt signal.

 Example 1 _________

 Although *FTN can read the source statements from the terminal, the

 procedure is more expensive than placing the source module in a file and

 then compiling from the file. The following example illustrates a short

 program used to test new versions of the elementary function routines in

 the FORTRAN library.

 #create tester

 #FILE "TESTER" HAS BEEN CREATED.

 #edit tester

 :insert 1

 ?rewind 9

 ?namelist /in/ n,a,b,check

 ?logical check

 ?10 read (5,in)

 ?h=(b-a)/(n-1)

 ?x=a

 ?if (chcek) goto 30

 ?c generate the table

 ?do 20 i=1,n

 ?y=sqrt(x)

 ?write (9) x,y

 ?20 x=x+h

 ?go to 10

 ?c generate and check the results

 ?30 do 32 i=1,n

 ?y=sqrt(x)

 *FTN Interface 35

 MTS 6: FORTRAN in MTS

 October 1983

 ?read (9) cx,cy

 ?if (cx.ne.x) pause ’wrong args’

 ?if (cy.ne.y) print 100,x,y,cy

 ?32 x=x+h

 ?go to 10

 ?c

 ?100 format (f15.6,2(4x,z8))

 ?end

 ?$endfile

 :mts

 In the preceding lines, the MTS file editor was used to enter

 the source program into the file TESTER.

 #r *ftn scards=tester

 #EXECUTION BEGINS

 8.000 IF (CHCEK) GO TO 30

 $

 01) SYNTAX

 1 SERIOUS ERROR IN MAIN, NO OBJECT GENERATED.

 The syntax error occurs because the variable CHCEK is entered

 as REAL. Thus, the logical IF is erroneously entered as an

 arithmetic IF and hence the syntax error.

 #EXECUTION TERMINATED

 #edit tester

 :a 8 ’chcek’check’

 : 8 IF (CHECK) GO TO 30

 :mts

 #r *ftn scards=tester

 #EXECUTION BEGINS

 NO ERRORS IN MAIN

 #EXECUTION TERMINATED

 #r -load 9=-test

 #EXECUTION BEGINS

 &in a=1,b=1000,n=1000,check=f &end

 $endfile

 #EXECUTION TERMINATED

 #r -load+-p 9=-test

 The file -P contains a new version of the SQRT routine. On

 the previous run, the standard SQRT routine would be loaded

 from *LIBRARY.

 #EXECUTION BEGINS

 &in a=1,b=1000,n=1000,check=t &end

 3.000000 411BB67B 411BB67A

 8.000000 412D413D 412D413C

 #EXECUTION TERMINATED

 36 *FTN Interface

 MTS 6: FORTRAN in MTS

 October 1983

 Example 2 _________

 This example illustrates how the user might use the EDIT facility to

 obtain a copy of a short program being entered directly from the

 terminal. This technique has the advantage that the whole program need

 not be reentered just because of a typing error.

 #r *ftn 1=-s par=edit

 The EDIT option is assigned so that output will be written to

 a line file for ease in future correction.

 #EXECUTION BEGINS

 ?real*8 x,y

 ?10 read (5,100)x

 ?100 format (f20.0)

 ?y=dsqrt(x)

 ?priny 200,y

 ?print 200,y

 The user sees the typing error, and enters the correct

 statement. In this case, no additional errors will occur due

 to the duplication.

 ?200 format (4x,z16)

 5.000 PRINY 200,Y

 $

 01) SYNTAX

 ?go to 10

 ?end

 ?(eol)

 1 SERIOUS ERROR IN MAIN, NO OBJECT GENERATED

 #EXECUTION TERMINATED

 #edit -s

 :delete 5

 This deletes line number 5 in the file -S.

 :stop

 #r *ftn scards=-s

 #EXECUTION BEGINS

 NO ERRORS IN MAIN

 #EXECUTION TERMINATED

 #r -load

 #EXECUTION BEGINS

 3/

 411BB67AE8584CAA

 Example 3 _________

 This example illustrates some of the interface error comments

 associated with option scanning.

 *FTN Interface 37

 MTS 6: FORTRAN in MTS

 October 1983

 #r *ftn scards=aaaa sprint=list par=glitch

 #EXECUTION BEGINS

 "GLITCH"?

 AAAA DOES NOT EXIST

 ENTER REPLACEMENT OR CANCEL

 >ccid:notro

 CCID:NOTRO CANNOT BE READ

 ENTER REPLACEMENT OR CANCEL

 >ccid:notro.s

 LIST DOES NOT EXIST

 ENTER REPLACEMENT OR CANCEL

 >cancel

 #create list

 When "cancel" was entered, *FTN returned to MTS command mode.

 The user then created the file missing file LIST. By

 $RESTARTING *FTN, the user is again prompted for the

 replacement.

 #restart

 ENTER REPLACEMENT OR CANCEL

 >list

 :par=nosml

 *FTN prompts for options because the user entered the

 erroneous option "GLITCH" on the $RUN command.

 ?$run -load

 NO ERRORS IN MAIN

 #$RUN -LOAD

 This echo of the command is given by the system when it is

 requested to execute the command.

 #EXECUTION BEGINS

 THERE

 Example 4 _________

 The two LINE format editor error comments which may be produced are

 illustrated in this example. These comments may be produced when the

 source statement format is either LINE or EDITED.

 #r *ftn

 #EXECUTION BEGINS

 ?123456789 a=b

 2.000 123456789 A=B

 EDITOR:LABEL EXCEEDS 5 DIGITS. TRUNCATED ON THE RIGHT

 ?123

 3.000 123

 EDITOR: LABELED NULL STATEMENT? LINE IGNORED

 ?(attn)

 #ATTENTION INTERRUPT AT xxxxxxxx

 38 *FTN Interface

 MTS 6: FORTRAN in MTS

 October 1983

 In response to the attention interrupt, MTS receives control

 in the usual way.

 *FTN Interface 39

 MTS 6: FORTRAN in MTS

 October 1983

 APPENDIX A: INPUT/OUTPUT USING ASSIGNMENT OPTIONS __

 This appendix is included for the benefit of users who are using old

 card decks or source files with *FTN. The features described herein are

 no longer recommended for general use and may be discontinued at some

 future time. They are included here for reference only.

 The following assignment options may be used for input/output to

 *FTN.

 DECK=FDname ____

 If the generated object modules are desired in object deck format,

 the appropriate FDname may be assigned to this option. Generally,

 the logical I/O unit 0 is used for this purpose. Use of the DECK

 assignment option enables the corresponding simple option DECK.

 The default FDname is the file -DECK which is emptied before use.

 EDIT=FDname ____

 If an edited source module is desired, this option may be assigned

 to an FDname. Use of the EDIT assignment option enables the

 corresponding simple option EDIT. If the EDIT simple option is

 specified but the EDIT assignment option is not assigned to a

 file/device and logical I/O unit 1 was not assigned on the $RUN

 command, *PUNCH* is used as the default for the batch user and the

 file -EDIT is used as the default for the conversational user.

 -EDIT is emptied prior to use.

 LOAD=FDname ____

 The LOAD assignment option may be assigned the FDname corresponding

 to the object module output. Use of the LOAD assignment option

 enables the corresponding simple option LOAD. If the LOAD option

 is not assigned to a file or device, the logical I/O unit SPUNCH is

 used for the LOAD output.

 PRINT=FDname _____

 The PRINT assignment option may be assigned the FDname correspond-

 ing to the various compiler output listings available through the

 options SOURCE, MAP, and LIST, or their abbreviated combinations,

 SM and SML. Use of the PRINT assignment option enables the simple

 option SOURCE. It is assumed that these output listings will

 eventually be printed on a device providing at least a 120-

 character line. No method for adjusting the output line length is

 provided. The format and content of these listings are given in

 the FORTRAN-G and FORTRAN-H descriptions in this volume. If PRINT

 is not assigned to a file or device, the logical I/O unit SPRINT is

 used for the PRINT data set.

 40 *FTN Interface

 MTS 6: FORTRAN in MTS

 October 1983

 SOURCE=FDname ______

 The SOURCE assignment option may be assigned the FDname correspond-

 ing to the compiler input stream. If SOURCE is not assigned to a

 file or device, the logical I/O unit SCARDS is used to obtain the

 compiler input.

 Input/Output Modifiers ______________________

 Five special FDname modifiers are provided by *FTN to assist the user

 in initializing and managing files and devices. These modifiers are

 EMP, REW, LRECL, BLKSIZE, and RECFM. Since these modifiers are special

 only to *FTN and are not valid MTS I/O FDname modifiers, they may be

 used only with FDnames which are specified by assignment options. They

 are invalid on FDnames which are assigned by MTS logical I/O units.

 The special FDname modifiers EMP (empty) and REW (rewind) may be used

 to initially empty or rewind a file or device. These initialization

 modifiers may be applied to any FDname; however, EMP is ignored unless

 it is attached to an output file, and REW is ignored unless it is

 applied to a rewindable device. These modifiers may be negated by

 prefixing "NO", not "¬", or minus "-" to the modifier name. If both the

 positive and negative of an initialization modifier are specified, then

 the default initialization is performed. Default initialization is

 NOEMP and NOREW for all files except temporary output files which are

 being used by default. Such temporary files are emptied by default.

 The three special modifiers, RECFM, LRECL, and BLKSIZE, serve the

 same functions that the corresponding mnemonics do in the IBM Operating

 System Job Control Language (JCL). RECFM stands for record format,

 LRECL for logical record length, and BLKSIZE for block size. The

 permissible values for these options are dependent upon the input/output

 keyword name and the data set characteristics, and are more fully

 discussed below. The values assigned LRECL and BLKSIZE must be decimal

 integers, while the permissible values for RECFM are F (fixed), FB

 (fixed, blocked), V (variable), VB (variable, blocked), and U (un-

 defined). If an FDname modifier is not recognized, or one of these

 keywords is assigned a value other than those prescribed above, the

 FDname will be listed as not existing. For example (user input is in

 lowercase),

 #$run *ftn par=source=*tape*@rew@recfm=fba

 #EXECUTION BEGINS

 ILLEGAL FDNAME MODIFIER

 TAPE@RECFM=FBA DOES NOT EXIST

 RE-ASSIGN SOURCE

 Note that the legal extended modifier has been removed from the file or

 device name, leaving only the illegal extended modifier. Also, if the

 MTS magnetic tape routines are being used to block or deblock the tape,

 these modifiers should not be used.

 *FTN Interface 41

 MTS 6: FORTRAN in MTS

 October 1983

 Use of the special modifiers described above (REW, EMP, LRECL,

 BLKSIZE, RECFM) in conjunction with either implicit or explicit concate-

 nation may cause problems.

 42 *FTN Interface

 MTS 6: FORTRAN in MTS

 October 1983

 FORTRAN G _________

 Each of the two public files, *FORTRANG and *FTNGTEST, contains a

 version of the IBM Operating System/360/370 FORTRAN-G compiler. These

 versions of the compiler were designed for use as subroutines by

 programs to compile FORTRAN source modules which they generate. Al-

 though these compilers may be used as stand-alone processors invoked via

 a $RUN command, it is recommended that the general user utilize the *FTN

 interface instead. Since the compilers were not intended to be used as

 stand-alone processors, they do not provide many of the rudimentary user

 services expected, e.g., SPUNCH is not defaulted and the compiler

 options are not dependent on whether the job is batch or conversational.

 A description of *FTN is given in the section "*FTN Interface" in this

 volume.

 This section is a description of the compilers and their use. It is

 not a description of the FORTRAN-IV G language. For such a description,

 see the IBM publication, System/360 and System/370 FORTRAN IV Language, ___

 form GC28-6515. The compilers conform mostly to the language as

 described in that publication, but there are restrictions and extensions

 of the standard language which are noted in later parts of this section

 concerning I/O, programming considerations, and miscellaneous FORTRAN

 features.

 These versions of the compiler assume that the input stream contains

 only FORTRAN source statements in the standard IBM format. Each card

 image should consist of 80 characters. The first 72 characters are

 scanned for statements; columns 73-80 are ignored. The compiler options

 may be dynamically altered during compilation via the use of a

 pseudo-FORTRAN statement. The OPTIONS statement provides the ability to

 selectively request various options without having these options in

 effect for all the source modules compiled.

 The difference between the two versions of the G compiler lies in the

 object modules that they produce. The version of the compiler in

 *FORTRANG produces a standard object module containing ESD, TXT, RLD,

 and END records. The *FTNGTEST version produces an object module which

 includes also SYM records. These SYM records allow the resulting object

 module to be debugged with the Symbolic Debugging System (SDS). The

 *FTNGTEST version is slower than the standard version and requires more

 virtual memory. However, use of this version and SDS can greatly

 simplify the debugging of programs. A short description of the SDS for

 FORTRAN users is given in the section "Introduction to Debug Mode for

 FORTRAN."

 The SDS debug facility is not the same as that internal to the

 FORTRAN-IV compilers. A description of the internal debug facility,

 which allows the programmer to check for arrays exceeding bounds and to

 FORTRAN G 43

 MTS 6: FORTRAN in MTS

 October 1983

 trace flow of control through the program, is given in the subsection

 "The FORTRAN Debug Facility."

 The following subsections apply to both versions of the G compiler

 unless otherwise noted. In addition, all references to the IBM

 System/360 also refer to the IBM System/370, unless otherwise noted.

 COMPILER OPTIONS ________________

 The compiler options allow the user to control various compiler

 functions such as which output listings should be produced, which object

 module format should be used, and what action should be taken if serious

 compilation errors are discovered. The options are passed to the

 compiler when it is called, but may be subsequently altered by the

 occurrence of one or more OPTIONS statements in the input stream.

 Unrecognizable options are ignored.

 Simple options may be negated by prefixing them with either "NO",

 "¬", or "-". The options may be specified in any order and must be

 separated by blanks or commas. Option names may be abbreviated by

 truncation from the right. The following table gives the minimum

 acceptable abbreviations and the defaults used if the option is not

 specified. Note that the functions of these options and their defaults

 are not necessarily the same if the *FTN interface is used. When using

 *FTN, see the section "*FTN Interface" for the appropriate defaults.

 Simple Shortest Default

 Option Abbreviation Value ______ ____________ _____

 BCD B NOBCD (EBCDIC)

 COND C COND

 DECK D DECK

 ID I ID

 LIB LIB NOLIB

 LIST L NOLIST

 LOAD LO NOLOAD

 MAP M NOMAP

 QUIT Q NOQUIT

 SCAN SC NOSCAN

 SM SM NOSM

 SML SML NOSML

 SOURCE S SOURCE

 Assignment Shortest Default

 Option Abbreviation Value ______ ____________ _____

 LINE L 57

 NAME N MAIN

 SIZE S 4

 44 FORTRAN G

 MTS 6: FORTRAN in MTS

 October 1983

 Simple Option Descriptions __________________________

 BCD or EBCDIC _____________

 The BCD option indicates that the source module lines have been

 coded in binary coded decimal (as on the 026 keypunch). The

 standard for the System/370 is Extended Binary Coded Decimal

 Interchange Code (EBCDIC). Most terminals and the 029 keypunch

 produce EBCDIC code. If the BCD option is specified, statement

 numbers passed as arguments must be coded as $n and $ must not be

 used as an alphabetic character. With EBCDIC, statement numbers in

 argument lists would be coded &n, so that $ would be a legitimate

 alphabetic character. The default is EBCDIC.

 The compilers do not support BCD characters in either literal data

 or as print control characters; such characters are treated as

 EBCDIC. Consequently, for example, a BCD +, used as a carriage-

 control character will not cause printing to continue on the same

 line. Programs keypunched in BCD should be carefully scanned for

 possible errors relating to print control characters and literal

 data.

 COND ____

 The COND option specifies that compilation is to be terminated

 without producing an object module if serious errors (those with

 severity levels of 4 or 8) are found in the source program. The

 default is COND.

 DECK ____

 The DECK option specifies that object modules are to be produced by

 the compiler and that an identification field is to be generated ___

 for positions 73-80 of each object module record. The identifica-

 tion field consists of the first four characters of the module

 name, while the last four are sequentially numbered 0001, 0002, ...

 The default is DECK.

 ID __

 The ID option generates internal statement numbers (ISN) following

 external function references in the object code produced by the

 compiler. (An internal statement number is that number which would

 be attached to the statement if each executable statement were

 numbered sequentially from the beginning of the program.) In the

 generated code, each BALR (branch) to an external program is

 followed by a four-byte no-operation with an address field equal to

 the ISN of the source statement containing the external reference.

 For example, for a call from statement 1000, the four bytes would

 appear in a hexadecimal dump as 470003E8 (3E8 of base 16 = 1000 of

 FORTRAN G 45

 MTS 6: FORTRAN in MTS

 October 1983

 base 10). This is useful as a debugging aid, but it is not

 necessary when debugging with SDS. The default is ID.

 LIB ___

 The LIB option specifies that each object module generated by the

 compiler is to be preceded by a LIB record containing its module

 name. This option affects both the LOAD and DECK output. The LIB

 record immediately precedes the first ESD record of the object

 module. The format of the LIB record is as follows:

 Columns Contents _______ ________

 2-4 LIB

 17-24 the module name (1 to 8 characters).

 For main programs the module name is determined by the value of the

 NAME assignment option. For subroutines it is always the name

 given in the FUNCTION or SUBROUTINE statement. The default is

 NOLIB.

 LIST ____

 The LIST option includes a pseudo-assembly-language format listing

 of the generated object module in the output listings. This

 listing consists of six columns labeled LOCATION, STA NUM, LABEL,

 OP, OPERAND, and BCD OPERAND. LOCATION refers to the hexadecimal

 address of the machine instruction relative to the beginning of the

 program. STA NUM refers to the first instruction generated for the

 FORTRAN statement with the indicated ISN. LABEL refers to the

 FORTRAN statement numbers and compiler-generated statement labels.

 The OP and OPERAND columns represent the actual machine instruction

 generated, while the BCD OPERAND attempts to give symbolic inter-

 pretation to any variable referenced by the instruction. Unless

 one understands some machine code and can read hexadecimal dumps,

 this listing is generally not useful and is in all cases expensive

 to obtain. The use of the SCAN option overrides the LIST option as

 there is no object module produced when that option is employed.

 The COND option can prevent production of the object module and

 hence the listing. The default is NOLIST.

 LOAD ____

 The LOAD option specifies that object modules are to be produced by

 the compiler and included in the object module output. LOAD has no

 effect if used with the SCAN option. If the DECK option is

 specified, each record will be 80 characters long; otherwise, the

 object records will be 72 characters long. The default is NOLOAD.

 Object module lines contain a 12-2-9 punch in the first column and

 the characters ESD, TXT, RLD, or END, in columns 2-4. The compiler

 generates four types of ESD items: type 0 items contain the module

 name, entry point, and module length; type 1 items contain the

 46 FORTRAN G

 MTS 6: FORTRAN in MTS

 October 1983

 entry point names corresponding to ENTRY statements; type 2 items

 contain the external references made in CALL or EXTERNAL statements

 and implicit or explicit function references; and type 5 items

 contain the names for each COMMON block. The FORTRAN-G compilers

 do not generate type 3 or type 4 ESD items. The TXT records

 contain user- and compiler-generated constants, translated FORMAT

 statements, and the generated machine instructions. The informa-

 tion contained in the RLD records is used by the loader to complete

 external references. External references are resolved by adjusting

 the constant pointed to by the address in the RLD item by the

 address of the appropriate external symbol contained in one of the

 type 2 ESD items. The END record for each module is described

 below:

 Columns Contents _______ ________

 1 12-2-9

 2-4 END

 37-39 FTN

 41-48 Module name

 49-56 Date as MM-DD-YY

 57-64 Time as HH:MM.SS

 65-68 Number of warning errors

 69-72 Number of serious errors

 If the DECK option is specified, then each object module record is

 suffixed with the first four characters of the module name in

 columns 73-76 and the line sequence number in columns 77-80.

 Any LIB records generated will contain the characters LIB in

 columns 2-4 and the module name in columns 17-24.

 Note that when the SCAN option is specified, no punched output will __

 be generated regardless of the LOAD, DECK, or LIB option specifica-

 tions. Similarly, if the COND option is specified, then no punched

 output will be generated for any source module containing serious

 errors, i.e., diagnostics with severity level 4 or 8.

 MAP ___

 The MAP option specifies that a storage map is to be included in

 the output listings. The map produced consists of tables contain-

 ing variable names and locations for common, EQUIVALENCE, NAMELIST,

 scalar and array variables, subprograms referenced, and FORMAT

 statements. The default is NOMAP.

 QUIT ____

 The QUIT option terminates the job if there are serious compilation

 errors detected in one or more of the source modules or if a fatal

 compiler error occurs. The compiler terminates the job by calling

 the QUIT subroutine (see MTS Volume 3, System Subroutine Descrip- ____________________________

 tions, for a description of this subroutine). The QUIT option is _____

 FORTRAN G 47

 MTS 6: FORTRAN in MTS

 October 1983

 effective for both batch and conversational users. The QUIT

 subroutine does not immediately terminate the job but sets a flag

 so that when the job returns to MTS command mode, it will be

 terminated, i.e., signed off. If the compiler is being used as a

 stand-alone language processor, then calling QUIT is tantamount to

 terminating the job, since immediately after calling QUIT the

 compiler returns to its caller, MTS. When the compiler is being

 used as a subroutine, job termination is dependent on the actions

 taken by the calling program. The default is NOQUIT.

 SCAN ____

 The SCAN option causes the compiler to scan the source module for

 syntax and compilation errors. All appropriate error diagnostics

 are generated for each source module, but no object code is

 generated and consequently neither the object listing nor the

 program size can be included in the output listings. In addition,

 no object module output is produced. Use of the SCAN option will __

 decrease the cost of scanning the source program for errors. The

 default is NOSCAN.

 SM __

 The SM option is the abbreviation for SOURCE and MAP combined.

 SML ___

 The SML option is the abbreviation for SOURCE, MAP, and LIST

 combined.

 SOURCE ______

 The SOURCE option produces a listing of the source deck in the

 output listings. If NOSOURCE is specified and source errors are

 found, the source statement in error and the diagnostic message are

 still included in the output listings. The default is SOURCE.

 Assignment Option Descriptions ______________________________

 LINE=n ____

 The LINE assignment option specifies the number of lines per page

 for the output listings. "n" must be an integer in the range

 (3,32767). This may be used to control the spacing of the page

 headers, etc., as they are only produced at the beginning of each

 set of lines. The default is 57 lines per page.

 48 FORTRAN G

 MTS 6: FORTRAN in MTS

 October 1983

 NAME=xxxx ____

 The NAME assignment option specifies the name to be used as the

 module name for all main programs compiled. Subprogram module ____

 names are always the name given in the FUNCTION or SUBROUTINE

 statement. The module name appears in the page headers, LIB

 records, the ESD type 0 lines, the END lines, and the object code

 at relative address 000005. The name "xxxx" may be from 1 to 8

 characters in length. The default is MAIN.

 SIZE=n ____

 The SIZE assignment option specifies the number of pages of virtual

 memory to be used for compiler working storage. "n" must be an

 integer in the range of 1 to 255. Internally, the FORTRAN-G

 compiler allocates all dynamically acquired working storage in

 page-size (4096 bytes) blocks. In order to avoid problems caused

 by the assumption that the storage is sequentially available, and

 to increase efficiency, this has been altered so that the compiler

 obtains "n" pages from the system and suballocates the remainder on

 a page basis. If additional storage is required and available, it

 is again obtained in units of "n" pages. The default is 4 pages.

 The OPTIONS Statement _____________________

 Any source line beginning with the character string

 "OPTIONS:"

 starting in column 7 is recognized as an OPTIONS statement. The source

 line must begin with precisely this string; i.e., it cannot be labeled,

 the letters of the word OPTIONS must be consecutive with no intervening

 blanks, and the colon must appear in column 14. This rigid set of rules

 will prevent any valid FORTRAN source line from being mistakenly

 interpreted as an OPTIONS statement.

 When an OPTIONS statement is encountered, columns 15 through 72

 inclusive are scanned for valid compiler options. The simple options

 SCAN, COND, LIB, and QUIT, and the assignment option SIZE are not legal

 in an OPTIONS statement and are ignored. Following the option scan, the

 character "C" is placed in column 1 so that the OPTIONS statement will

 appear in the source listing as a comment line.

 The options appearing in an OPTIONS statement modify the existing

 options; they do not replace them. These modified options will take

 effect with the first source module which follows the OPTIONS statement,

 and remain in effect until another OPTIONS statement is encountered. If

 an OPTIONS statement is the first source line of a module, i.e., it

 precedes all source statements and comments, then the modified options ___

 will be effective for that module. If an OPTIONS statement follows the

 FORTRAN G 49

 MTS 6: FORTRAN in MTS

 October 1983

 first comment or source line of a module, then the modified options will

 not take effect until the next source module is encountered. Since the

 modified options are retained until the next OPTIONS statement, care

 should be used in ordering the source modules unless each source module

 is preceded by an OPTIONS statement which completely specifies the

 options desired for that source module. This is particularly appropri-

 ate if the LIST option is being changed.

 USE OF FORTRAN-G AS A SUBROUTINE ________________________________

 Both the standard version and the test version of the compiler may be

 called as a subroutine. The compiler to be called must be concatenated

 to the object (calling) program on the $RUN command, e.g.,

 $RUN object+*FORTRANG [logical I/O units]

 or

 $RUN object+*FTNGTEST [logical I/O units]

 Each compiler is called using the same calling sequence and the same

 arguments. The calling sequence is

 CALL FTNG(options,reader,printer,punch,break,&rc4,...,&rc32)

 All of the arguments except the first are optional. The calling

 sequence must conform to the FORTRAN standard described in MTS Volume 3,

 System Subroutine Descriptions. Specifically, since most of the argu- ______________________________

 ments are not required, the high-order byte of the last argument address

 must contain X’80’. Although only the first argument is required, in

 order to specify one of the optional arguments, all of the preceding

 arguments must also be specified, i.e., if one wanted to specify the

 printer, he would also have to specify the reader, e.g.,

 CALL FTNG(options,reader,printer,&rc4,...,&rc32)

 All of the optional arguments are subroutine names and must be declared

 in an EXTERNAL statement in a FORTRAN program. For assembly language

 users, these optional arguments are passed by placing a pointer to the

 appropriate V-type address constant in the parameter list.

 The arguments to FTNG are described below:

 Options _______

 This is the only mandatory argument and may be specified in

 either of two ways: as a standard parameter field or in the

 direct form. The standard parameter field is a halfword

 character count immediately followed by the parameter charac-

 ters, e.g.,

 50 FORTRAN G

 MTS 6: FORTRAN in MTS

 October 1983

 INTEGER*2 PAR(5)/7,’SM’,’ Q’,’UI’,’T ’/

 The parameters may appear in any order in the field. When

 given in this manner, the options modify the default options.

 If the parameter field length is negative, then the options

 parameter is the address of an eight (8) halfword vector

 formatted as follows: four halfwords containing the eight-

 character default main program name, left-justified with

 trailing blanks, two halfwords containing the option bits, one

 halfword containing the number of lines per page, and one

 halfword containing the memory block size. Within the first

 option bit halfword, the parameter is enabled if the corre-

 sponding bit is set; otherwise, it is disabled. The bit

 assignments are as follows:

 Bit Hex Function Default ___ ___ ________ _______

 0 80000000 MAP 0

 1 40000000 LOAD 0

 2 20000000 DECK 1

 3 10000000 LIST 0

 4 08000000 SOURCE 1

 5 04000000 BCD 0

 6 02000000 ID 1

 7 01000000 ---- 0

 8 00800000 ---- 0

 9 00400000 ---- 0

 10 00200000 ---- 0

 11 00100000 ---- 0

 12 00080000 LIB 0

 13 00040000 QUIT 0

 14 00020000 SCAN 0

 15 00010000 COND 1

 The remaining bits should be 0 (zero).

 The following example from a BLOCK DATA program illustrates

 how the default options may be set up to be passed in the

 direct form:

 COMMON /OPTION/ NAME,OPT,LINE,SIZE

 REAL*8 NAME/’MAIN’/

 INTEGER*2 OPT(2)/Z2A01,0/,LINE/57/,SIZE/4/

 Note that when the options are passed directly that they

 completely replace the default options, rather than modify

 them. If the options are passed directly, i.e., the high-

 order bit of the first argument is one, then the options must

 be completely specified. It is not possible to simply change

 some of the options bits and pass them directly. Note that

 the high-order bit of any alphanumeric character is a one; it

 FORTRAN G 51

 MTS 6: FORTRAN in MTS

 October 1983

 is for this reason that the default main program name appears

 first in the options vector described above.

 Reader ______

 This argument is the name of an external function to be called

 to obtain the source input lines. If this optional argument

 is not given, the default value is SCARDS. The parameter list

 is the same as that described for the MTS READ subroutine in

 MTS Volume 3. The unit described for the READ subroutine is

 set to logical I/O unit 0. Although there are several

 parameters in the READ subroutine calling sequence, the user

 need only be concerned with the first. FTNG passes the

 address of an 80-character, preblanked buffer, and expects

 that the source will be placed in the buffer. For example:

 SUBROUTINE READER(BUFFER,*)

 REAL*8 BUFFER(10)

 .

 .

 RETURN

 100 RETURN 1

 END

 Any nonzero return code passed by the reader routine to the

 compiler will be interpreted as an end-of-file. On an

 end-of-file indication the buffer contents are ignored. Any

 attempt to place more than 80 characters in the buffer will

 result in a fatal compiler error. If fewer than 80 characters

 are placed in the buffer, then the blanks that are placed in

 the buffer prior to the call may be used to pad the input

 line. The set of source modules to be compiled must be in

 standard IBM format and terminated by an end-of-file condi-

 tion, i.e., a nonzero return code from the routine.

 Printer _______

 This argument is the name of an external function to be called

 to dispose of the output listing lines produced by the

 compiler. If the optional argument is not given, a default

 value of SPRINT is used. The printer parameter list corre-

 sponds to that described for the WRITE subroutine in MTS

 Volume 3. The unit described in that parameter list is set to

 MTS logical I/O unit 1. Although there are several arguments,

 the programmer need only be concerned with the first, the

 120-character output line.

 The printer output line consists of 120-character output lines

 with the logical carriage-control characters 0, 1, or blank.

 The amount and type of information is controlled by the

 options SOURCE, MAP, and LIST. Each source module will

 52 FORTRAN G

 MTS 6: FORTRAN in MTS

 October 1983

 generally produce at least two lines, a page heading contain-

 ing the module name, date, and time, and a line giving the

 total memory storage requirements of the program in bytes.

 Any diagnostics are included regardless of the options

 requested.

 See the descriptions of the SOURCE, MAP, and LIST parameters

 for a description of the output that is produced for each

 option.

 Punch _____

 This argument is the name of an external function which will

 be called to dispose of any object module lines produced by

 the compiler. If the argument is not given, a default value

 of SPUNCH is supplied. It should be noted that unless one is

 running a batch job, with a nonzero card estimate, SPUNCH is

 not defaulted. When defaulted, SPUNCH defaults to *PUNCH*. ___

 The parameter list for the call to the punch routine is the

 same as that for the system subroutine WRITE as described in

 MTS Volume 3. Unit corresponds to logical I/O unit 2. Of the

 arguments in the call, only the first two are of importance to

 a user-supplied routine. These arguments are the buffer

 containing the object module line and a halfword integer

 (INTEGER*2) output line length, respectively. The object

 module lines will be 80 character if the DECK parameter is

 specified; otherwise, they will be 72. If the LIB parameter

 is specified, then each module will be preceded by a LIB card.

 For a description of object module output see the LOAD, DECK,

 and LIB parameters. Note that when the SCAN parameter is

 given, no punched output will be generated regardless of the

 LOAD, DECK, or LIB parameters. Similarly, if the default

 parameter COND is not changed, then no punched output will be

 generated for any source modules containing diagnostics with

 severity levels 4 or 8.

 Break _____

 This argument is the name of an external function to be called

 after each source module is compiled and before the next

 compilation has begun; however, because of the way in which

 the compiler operates, the first line of the next source

 module will already have been read. If this optional argument

 is not given, the compiler simply proceeds to the compilation

 of the next source module.

 The argument to the BREAK routine is a six-element integer _____

 vector containing the following information:

 FORTRAN G 53

 MTS 6: FORTRAN in MTS

 October 1983

 Word Information ____ ___________

 1-2 The six-character module name of the program

 just compiled, left-justified with trailing

 blanks.

 3 Current compiler options.

 4 Number of severity level 0 diagnostics for this

 source module.

 5 Number of severity level 4 diagnostics for this

 source module.

 6 Number of severity level 8 diagnostics for this

 source module.

 If the BREAK routine gives a nonzero return code to the

 compiler, it will immediately halt and return to its calling

 program with the appropriate return code.

 Return Codes ____________

 The compiler returns in the normal FORTRAN manner (see a

 description of FORTRAN calling sequences in MTS Volume 3,

 System Subroutine Descriptions). In addition, the return code ______________________________

 is also placed in general register 0 (zero), so that FTNG may

 be declared an INTEGER*4 function, and as such, will assume

 the values 0, 4,...,32. The return codes and explanations

 follow.

 Return ______

 Code Meaning ____ _______

 0 All compilations have been completed and no

 errors were found.

 4 All compilations have been completed and only

 diagnostics given have severity level 0.

 8 All compilations have been completed and at

 least one severity level 4 diagnostic was

 given.

 12 All compilations have been completed and at

 least one severity level 8 diagnostic was

 given.

 16 Compiler malfunction. Try compiling the source

 module again and if the error persists, see a

 Computing Center consultant.

 20 Compiler malfunction due to an unanticipated

 program interrupt. Note that a program inter-

 rupt in any of the optional user-supplied

 routines will manifest itself in this manner.

 The compiler interrupt processor ignores

 floating-point overflow and underflow during

 the first phase of the compilation when the

 source module is being read. If it is not

 reading the source module, it immediately

 54 FORTRAN G

 MTS 6: FORTRAN in MTS

 October 1983

 stops. Program interrupt control may be most

 easily removed from FTNG by calling PGNTTRP the

 first time the user input routine is called.

 24 Insufficient memory is available for tables.

 Considering the current size of virtual memory,

 this problem should never arise.

 28 This code is given if a source line containing

 more than 80 characters is passed to the

 compiler. Since the compiler supports only the

 standard IBM format FORTRAN, the input buffer

 is only 80 characters long. Consequently, if a

 line in excess of 80 characters is placed in

 the buffer, the resulting overflow destroys

 information that cannot be recovered.

 32 Insufficient memory is available to buffer the

 object module being generated.

 USE OF THE FORTRAN-G COMPILERS AS STAND-ALONE LANGUAGE PROCESSORS ___

 As indicated earlier, use of the two versions of the FORTRAN-G

 compiler as stand-alone language processors is not recommended. How-

 ever, use of *FORTRANG in this manner does provide an efficient

 batch-oriented interface to the compiler. Conversational users will

 find this version of the compiler inconvenient to use and should refer

 to the section "*FTN Interface" in this volume. The following deck

 structure would be sufficient to compile a set of FORTRAN programs

 punched on cards according to the standard IBM format.

 $SIGNON ccid ’name’

 password

 $RUN *FORTRANG SPUNCH=-LOAD PAR=QUIT

 .

 (source program)

 .

 $ENDFILE

 $RUN -LOAD

 $SIGNOFF

 The characters "ccid" are the user’s four-character Computing Center

 signon ID. The second card contains the user’s password starting in

 column 1. The QUIT option is specified here so that if the compiler

 finds any serious errors, the job will be terminated; otherwise, the

 system would proceed to the second $RUN command and load and execute the

 erroneous program, and hence increase the cost of the job.

 In the second example below, the NOCOND option is specified and the

 default of NOQUIT is allowed to stand. Thus, regardless of how many

 errors are found in the FORTRAN program, the compiler will produce an

 object module that will be loaded and executed. This is not the same as

 simply using the default options since, by default, if serious errors

 FORTRAN G 55

 MTS 6: FORTRAN in MTS

 October 1983

 were found, no object module would be produced. Thus, in an error

 situation, the second $RUN command would cause a loader error comment

 because the file -LOAD would be empty. This example also illustrates

 the defaulting of the logical I/O units 5 and 6, and one of the more

 convenient features of formatted input, namely, the use of a comma (,)

 in a formatted numeric field.

 $SIGNON ccid ’name’

 password

 $RUN *FORTRANG SPUNCH=-LOAD PAR=NOCOND

 READ (5,100) I,J

 100 FORMAT (2I4)

 ISUM=I+J

 WRITE (6,200) I,J,ISUM

 200 FORMAT (I4,’ +’,I4’,’=’,I4)

 END

 $ENDFILE

 $RUN -LOAD

 2,2,

 $SIGNOFF

 This example will produce a single output line of the form

 2 + 2 = 4.

 This final example serves to illustrate the use of the OPTIONS

 statement.

 $SIGNON ccid ’name’

 password

 $RUN *FORTRANG SPUNCH=-LOAD PAR=QUIT,SM

 OPTIONS:NAME=HEATFLOW,SML

 ...

 END

 OPTIONS:NAME=SUB1,NOSML,SOURCE

 ...

 END

 OPTIONS:NAME=FCN1,NOSML,SM

 ...

 END

 $ENDFILE

 $RUN -LOAD

 In the above example, the source programs are omitted except for the END

 statements. The first program would be compiled with SOURCE, MAP, and

 LIST, the second with only SOURCE, and the final one with SOURCE and

 MAP. Note that the SM option given in the PAR field was needlessly

 specified. Note also that each OPTIONS statement completely specifies

 the listing options. The initial NOSML turns off all the listing

 options, while the subsequent options turn back on the desired listings.

 The NAME option was used so that the correct program name would appear

 on all the page headers. Frequently, the first page header for a

 subprogram will use the default main program name instead of the name on

 56 FORTRAN G

 MTS 6: FORTRAN in MTS

 October 1983

 the SUBROUTINE or FUNCTION card, because comment cards precede this card

 and thus the first page header must be generated before the correct

 module name is known. Presumably, the NAME option has been assigned the

 proper module names in this case, though it will cause no problem if it

 has not been assigned correctly.

 FORTRAN-G SOURCE MODULE ERROR/WARNING MESSAGES __

 The diagnostic messages produced by the compiler occur in the source

 listing immediately following the source statement to which they refer.

 The following example illustrates the format of these messages:

 XX = A+B+-C/(X**3-A**-75)

 $

 n) xxx message, n+1) xxx message

 where

 n is an integer noting the positional occurrence of the error

 in the line.

 xxx is a three-digit message number of the form IEYxxxI.

 $ is the symbol used for flagging the individual errors in the

 statement. This symbol is placed underneath the character

 causing the error.

 "message" is a cryptic description of the type of error. The error and

 warning messages are distinguished by the resulting severity levels.

 Serious error messages have a severity level of 4 to 8, while warning

 messages have a severity level of 0.

 IEY001I ILLEGAL TYPE _____________________

 This message is associated with a source module statement

 when the type of a variable is not correct for its usage.

 Examples of situations in which this message would be

 given are: (1) the variable in an assigned GO TO

 statement is not an integer variable; (2) in an assignment

 statement, the variable to the left of the equal sign is

 of logical type and the expression to the right is not.

 Severity Level: 8.

 IEY002I LABEL ______________

 This message appears with a statement which should be

 labeled and is not. Examples of such statements are

 FORMAT statements and statements following GO TO state-

 ments. Severity Level: 0.

 FORTRAN G 57

 MTS 6: FORTRAN in MTS

 October 1983

 IEY003I NAME LENGTH ____________________

 The name of a variable, COMMON block, NAMELIST, or

 subprogram exceeds six characters in length. If two

 variable names appear in an expression without a separat-

 ing operation symbol, this message is produced. Severity

 Level: 0.

 IEY004I COMMA ______________

 A comma is supposed to appear in a statement and it does

 not. Severity Level: 0.

 IEY005I ILLEGAL LABEL ______________________

 The usage of a label is invalid. For example, if an

 attempt is made to branch to the label of a FORMAT

 statement, ILLEGAL LABEL is produced. Severity Level: 8.

 IEY006I DUPLICATE LABEL ________________________

 A label appearing in the label field of a statement is

 already defined (has appeared in the label field of a

 previous statement). Severity Level: 8.

 IEY007I ID CONFLICT ____________________

 The name of a variable or subprogram is used improperly,

 in the sense that a previous statement or a previous

 portion of the present statement has established a type

 for the name, and the present usage is in conflict with

 that type. Examples of such situations are: (1) the name

 listed in a CALL statement is the name of a variable, not

 a subprogram; (2) a single name appears more than once in

 the dummy list of a statement function; (3) a name listed

 in an EXTERNAL statement has already been defined in

 another context. Severity Level: 8.

 IEY008I ALLOCATION ___________________

 Storage assignments specified by a source module statement

 cannot be performed due to an inconsistency between the

 present usage of a variable name and some prior usage of

 that name, or due to an improper usage of a name when it

 first occurred in the source module. Examples of the

 situations causing the error are: (1) a name listed in a

 COMMON block has been listed in another COMMON block; (2)

 a variable listed in an EQUIVALENCE statement is followed

 by more than seven subscripts. Severity Level: 8.

 58 FORTRAN G

 MTS 6: FORTRAN in MTS

 October 1983

 IEY009I ORDER ______________

 The statements of a source module are used in an improper

 sequence. For example, an IMPLICIT statement appears as

 anything other than the first or second statement of the

 source module, or an ENTRY statement appears within a DO

 loop. Severity Level: 8.

 IEY010I SIZE ____________

 A number used in the source module does not conform to the

 legal values for its use. Examples are: (1) the size

 specification in an explicit specification statement is

 not one of the acceptable values; (2) a label which is

 used in a statement exceeds the legal size for a statement ____

 label; (3) an integer constant is too large. Severity

 Level: 8.

 IEY011I UNDIMENSIONED ______________________

 A variable name indicates an array (i.e., subscripts

 follow the name), and the variable has not been dimen-

 sioned. Severity Level: 8.

 IEY012I SUBSCRIPT __________________

 The number of subscripts used in an array reference is

 either too large or too small for the array. Severity

 Level: 8.

 IEY013I SYNTAX _______________

 The statement or part of a statement to which it refers

 does not conform to FORTRAN-IV syntax. If a statement

 cannot be identified, this error message is used. Other

 cases in which it appears are: (1) a nondigit appears in

 the label field; (2) fewer than three labels follow the

 expression in an arithmetic IF statement. Severity Level:

 8.

 IEY014I CONVERT ________________

 In a DATA statement or in an explicit specification

 statement containing data values, the mode of the constant

 is different from the mode of the variable with which it

 is associated. The compiler converts the constant to the

 correct mode. Therefore, this message is simply a notifi-

 cation to the programmer that the conversion is performed.

 Severity Level: 0.

 FORTRAN G 59

 MTS 6: FORTRAN in MTS

 October 1983

 IEY015I NO END CARD ____________________

 The source module does not contain an END statement.

 Severity Level: 0.

 IEY016I ILLEGAL STA. ____________________

 The statement (sta) to which it is attached is invalid in

 the context in which it has been used. Examples of

 situations in which this message appears are: (1) the

 statement in a logical IF statement (the result of the

 true condition) is a specification statement, a DO state-

 ment, etc.; (2) an ENTRY statement appears in the source

 module and the source module is not a subprogram. Severi-

 ty Level: 8.

 IEY017I ILLEGAL STA. WRN __________________________

 This is a warning (WRN) message. A RETURN I statement

 appears in any source module other than a SUBROUTINE

 subprogram. Severity Level: 0.

 IEY018I NUMBER ARG ___________________

 A reference to a library subprogram appears with the

 incorrect number of arguments specified. Severity Level:

 4.

 IEY027I CONTINUATION CARDS DELETED ___________________________________

 More than nineteen continuation lines were read for one

 statement. All subsequent lines are skipped until the

 beginning of the next statement is encountered. Severity

 Level: 8.

 IEY032I NULL PROGRAM _____________________

 This error occurs if an end-of-file comes before any

 identifiable source statement. Severity Level: 0.

 IEY033I COMMENTS DELETED _________________________

 More than thirty comment lines were read between the

 initial lines of two consecutive statements. The thirty-

 first comment line and all subsequent comment lines are

 skipped until the beginning of the next statement is

 encountered. (There is no restriction on the number of

 comment lines preceding the first statement.) Severity

 Level: 0.

 60 FORTRAN G

 MTS 6: FORTRAN in MTS

 October 1983

 IEY036I ILLEGAL LABEL WRN __________________________

 The label on this nonexecutable statement has no valid use

 beyond visual identification, and may produce errors in

 the object module if the same label is the target of a

 branch-type statement. Only branches to executable state-

 ments are valid. This message is produced, for example,

 when an END statement is labeled. Severity Level: 0.

 IEY037I PREVIOUSLY DIMENSIONED WRN ___________________________________

 This message appears when there is an attempt to redimen-

 sion an array. The dimensions given to the first occur-

 rence of the statement are used. The message only occurs

 if the dimensions are changed. Severity Level: 4.

 IEY038I SIZE WRN _________________

 An attempt has been made to initialize a variable with a

 value which exceeds the size of the scalar, array, or

 array element. The message will occur in the following

 circumstances:

 (1) Five bytes of initializing data are given for a

 scalar variable: REAL A/’ABCDE’/

 (2) Excessive bytes are given for an element of an array:

 DATA A(1)/’ABCDEFG’/

 (3) Use of data spill to initialize an array: DIMENSION

 ARRAY (3) ARRAY/’ABCDEFGHIJKL’/

 The warning is given and the normal FORTRAN procedures are

 followed, i.e., the variable is initialized with a trun-

 cated value. Severity Level: 4.

 IEY039I RETURN _______________

 A return statement is needed in a subroutine. Severity

 Level: 0.

 IEY045I SP CONSTANT ____________________

 The constant flagged is typed as single precision in spite

 of the fact that seven or more digits were coded for it.

 Severity Level: 0.

 IEY046I DP CONSTANT ____________________

 The constant flagged is typed double precision (REAL*8)

 because it contains more than 7 digits; the letter D is

 not specified. Severity Level: 0.

 The source module listing, with error indications and error messages

 for the errors detected during initial processing of the source

 FORTRAN G 61

 MTS 6: FORTRAN in MTS

 October 1983

 statements, is produced by phase 1 of the compiler. Certain program

 errors can occur, however, which cannot be detected until storage

 allocation takes place. These errors are detected and reported by phase

 2 and are described in the following paragraphs.

 IEY019I FUNCTION ENTRIES UNDEFINED

 When the program being compiled is a FUNCTION subprogram,

 a check is made to determine whether a scalar with the

 same name as the FUNCTION and each ENTRY is defined. If

 no such scalars are listed on the SCALAR roll, the error

 message is written on the source module listing. The

 message is followed by a list of the undefined names.

 Severity Level: 0.

 IEY020I COMMON BLOCK / / ERRORS

 Errors of two types can exist in the definitions of

 EQUIVALENCE sets which refer to the COMMON area. The

 first type of error exists because of a contradiction in

 the allocation specified, e.g., the EQUIVALENCE sets(A,B(

 6), C(2)) and (B(8),C(1)). The second type of error is

 due to an attempt to extend the beginning of the COMMON

 area, as in COMMON A,B,C and EQUIVALENCE (A,F(10)).

 An additional error in the assignment of COMMON storage

 occurs if the source program attempts to allocate a

 variable to a location which does not fall on the

 appropriate boundary. Since each COMMON block is assumed

 to begin on a double-precision boundary, this error can be

 produced by either (or both) the COMMON statement or an

 EQUIVALENCE statement which refers to COMMON.

 When each block of COMMON storage has been allocated, the

 error message is printed if any error has been detected

 (the block name is provided). The message is followed by

 a list of the variables which could not be allocated due

 to the errors. Severity Level: 4.

 IEY021I UNCLOSED DO LOOPS

 If DO loops are initiated in the source module, but their

 terminal statements do not exist, the second phase of the

 compiler finds pointers to the labels of the nonexistent

 terminal statements on the DO LOOPS OPEN roll. If

 pointers are found on the roll, the error message is

 printed, followed by a list of the labels which appeared

 in all DO statements that were not defined in the source

 module. Severity Level: 8.

 62 FORTRAN G

 MTS 6: FORTRAN in MTS

 October 1983

 IEY022I UNDEFINED LABELS

 If any labels are used in the source module but are not

 defined, they constitute label errors. At the conclusion

 of the check for this situation, the error message is

 printed. If there are undefined labels used in the source

 module, they are listed on the lines following the

 message. Severity Level: 8.

 IEY023I EQUIVALENCE ALLOCATION ERRORS

 Allocation errors due to the arrangement of EQUIVALENCE

 statements which do not refer to COMMON variables may have

 two causes. The first cause is the conflict between two

 EQUIVALENCE sets; for example, (A,B(6),C(3)) and

 (B(8),C(1)).

 The second cause is incompatible boundary alignment in the

 EQUIVALENCE set. The first variable in each EQUIVALENCE

 set is assigned to its appropriate boundary, and a record

 is kept of the size of the variable. Then, as each

 variable in the set is processed, if any variable of a

 greater size requires alignment, the entire set is moved

 accordingly. If any variable is encountered of the size

 which caused the last alignment, or of lower size, and

 that variable is not on the appropriate boundary, this

 type of an equivalence error has occurred.

 If EQUIVALENCE errors of either of these types occur, the

 error message is printed. The message is followed by a

 list of the variables which could not be allocated

 according to source module specifications. Severity

 Level: 4.

 IEY024I EQUIVALENCE DEFINITION ERRORS

 Another category of EQUIVALENCE errors is the specifica-

 tion, in an EQUIVALENCE set, of an array element which is

 outside the array. These errors are summarized under the

 above error message on the source module listing. Severi-

 ty Level: 4.

 IEY025I DUMMY DIMENSION ERRORS

 If variables specified as dummy array dimensions are not

 in COMMON or not global dummy variables, they constitute

 errors. These are summarized under the above error

 message on the source module listing. Severity Level: 4.

 IEY026I BLOCK DATA ERRORS

 If variables specified within the BLOCK DATA subprogram

 have not also been defined in a COMMON, they constitute

 FORTRAN G 63

 MTS 6: FORTRAN in MTS

 October 1983

 errors. The error message is produced on the source

 module listing followed by a sum of the variables in

 error. Severity Level: 4.

 IEY040I COMMON ERROR IN BLOCK DATA

 There was an error in a BLOCK DATA subprogram. The BLOCK

 DATA routine must have at least one named COMMON section

 and cannot contain references to blank COMMON. Severity

 Level: 8.

 IEY041I COMMON INITIALIZATION ERRORS

 An attempt has been made to initialize a variable in blank

 COMMON or an attempt has been made to initialize a labeled

 COMMON area outside of a BLOCK DATA subprogram. The

 variables in error are listed below the message. Severity

 Level: 8.

 THE FORTRAN DEBUG FACILITY __________________________

 The FORTRAN debug facility is a strictly batch-oriented facility and

 is only available with the FORTRAN-G compilers. It is neither flexible

 nor general and users are advised to use the other debugging facilities

 in MTS instead. The Symbolic Debugging System (SDS) used with the

 *FTNGTEST compiler is far superior to the FORTRAN debug facility. For

 program development, users should consider *IF which accepts the same

 language as FORTRAN G and gives better diagnostic messages. The

 following paragraphs are reprinted from the IBM publication, IBM ___

 System/360 and System/370 FORTRAN IV Language, form GC28-6515. ___

 The FORTRAN debug facility consists of a DEBUG specification state-

 ment, an AT debug packet identification statement, and three executable

 statements. These statements, alone or in combination with any FORTRAN

 source language statements, are used to state the desired debugging

 operations for a single program unit in source language. (A program

 unit is a single main program or a subprogram.)

 The source deck arrangement consists of the source language state-

 ments that comprise the program, followed by the debug packets, followed

 by the END statement.

 The statements that make up a program debugging operation must be

 grouped in one or more debug packets. A debug packet is preceded by the

 AT debug packet identification statement and consists of one or more

 executable debug facility statements, and/or FORTRAN source language

 statements. A debug packet is terminated by either another debug packet

 identification statement or the END statement of the program unit.

 64 FORTRAN G

 MTS 6: FORTRAN in MTS

 October 1983

 Debug Facility Statements _________________________

 The specification statement (DEBUG) sets the conditions for operation

 of the debug facility and designates debugging operations that apply to

 the entire program unit (such as subscript checking). The AT statement

 identifies the beginning of the debug packet and the point in the

 program at which debugging is to begin. The three executable statements

 (TRACE ON, TRACE OFF, and DISPLAY) designate actions to be taken at

 specific points in the program. The following text explains each debug

 facility statement and contains several programming examples.

 DEBUG Statement _______________

 There must be one DEBUG statement for each program or

 subprogram to be debugged, and it must immediately precede the

 first debug packet.

 General Form:

 DEBUG option[,...]

 where "option" may be any one of the following:

 UNIT (dsr)

 where "dsr" is an integer constant that represents a

 FORTRAN logical I/O unit number. All debugging output is

 written to this I/O unit. If this option is not

 specified, any debugging output is written to unit 6

 (which defaults to *SINK*). All unit definitions within

 an executable program must refer to the same unit.

 SUBCHK [(n1[,n2,...,nn])]

 where "n1,n2,...,nn" are array names. The validity of

 the subscripts used with the named arrays is checked by

 comparing the subscript combination (by converting it to

 its one-dimensional equivalent) to the size of the array.

 If the subscript exceeds its dimension bounds, a message

 is written to the debug output I/O unit. Note that this

 will not catch all illegal subscripts of a multidimen-

 sioned array, but only those whose converted subscript is

 larger than the size of the array. Program execution

 continues, using the illegal subscript. If the list of

 array names is omitted, all arrays in the program are ___

 checked for valid subscript usage. If the entire option

 is omitted, no arrays are checked for valid subscripts.

 TRACE

 This option must be in the DEBUG statement of each

 program or subprogram for which tracing is desired. If

 FORTRAN G 65

 MTS 6: FORTRAN in MTS

 October 1983

 this option is omitted, there can be no display of

 program flow by statement number within the program.

 Even when this option is used, a TRACE ON statement must

 appear in the first debug packet in which tracing is

 desired.

 INIT (m1,m2,...,mn)

 where "m1,m2,...,mn" are names of variables or arrays

 that are to be written to the debug output I/O unit only

 when the variable or the array values change. If "m1" is

 a variable name, the name and value are displayed

 whenever the variable is assigned a new value in either

 an assignment, READ, or an assigned GO TO statement. If

 "m1" is an array name, the changed element is displayed.

 If the list of names is omitted, a display occurs

 whenever the value of a variable or an array element is

 changed. If the entire option is omitted, no display

 occurs when values change.

 SUBTRACE

 This option specifies that the name of this subprogram is

 to be displayed whenever it is entered. The message

 RETURN is to be displayed whenever execution of this

 subprogram is completed.

 The options in a DEBUG statement may be given in any order and

 they must be separated by commas.

 AT Statement ____________

 The AT statement identifies the beginning of a debug packet

 and indicates the point in the program at which debugging is

 to begin. There must be one AT statement for each debug

 packet; there may be many debug packets for one program or

 subprogram.

 General Form:

 AT n

 where "n" is an executable statement number in the program or

 subprogram to be debugged.

 The debugging operations specified within the debug packet are

 performed prior to the execution of the statement indicated by

 the statement number in the AT statement.

 TRACE ON Statement __________________

 The TRACE ON statement initiates the display of program flow

 by statement number. Each time a statement with an external

 66 FORTRAN G

 MTS 6: FORTRAN in MTS

 October 1983

 statement number is executed, a record of the statement number

 is written to the debug output I/O unit. This statement has

 no effect unless the TRACE option was specified in the DEBUG

 statement.

 General Form:

 TRACE ON

 For a given debug packet, the TRACE ON statement takes effect

 immediately before the execution of the statement specified in

 the AT statement; tracing continues until a TRACE OFF state-

 ment is encountered. The TRACE ON stays in effect through any

 level of subprogram call or return. However, if a TRACE ON

 statement is in effect and control is given to a subprogram in

 which the TRACE option was not specified, the statement

 numbers in that program are not traced. Trace output is

 written to the debug output I/O unit.

 This statement may not appear as the conditional part of a

 logical IF statement.

 TRACE OFF Statement ___________________

 The TRACE OFF statement may appear anywhere within a debug

 packet and stops the recording of program flow by statement

 number.

 General Form:

 TRACE OFF

 This statement may not appear as the conditional part of a

 logical IF statement.

 DISPLAY Statement _________________

 The DISPLAY statement may appear anywhere within a debug

 packet and causes data to be displayed in NAMELIST output

 format.

 General Form:

 DISPLAY list

 where "list" is a series of variable or array names, separated

 by commas.

 The DISPLAY statement eliminates the need for FORMAT or

 NAMELIST and WRITE statements to display the results of a

 debugging operation. The data are written to the debug output

 I/O unit.

 FORTRAN G 67

 MTS 6: FORTRAN in MTS

 October 1983

 The effect of a DISPLAY statement is the same as the following

 FORTRAN source language statements:

 NAMELIST /name/list

 WRITE (n,name)

 where "name" is the same in both statements. Note that array

 elements may not appear in the list. If the DISPLAY statement

 appears in a SUBROUTINE subprogram, a dummy argument may not

 be included in the list. This statement may not appear as the

 conditional part of a logical IF statement.

 Programming Considerations __________________________

 The following precautions must be taken when setting up a debug

 packet:

 (1) Any DO loops initiated within a debug packet must be wholly

 contained within that packet.

 (2) Statement numbers within a debug packet must be unique. They

 must be different from statement numbers within other debug

 packets and within the program being debugged.

 (3) An error in a program should not be corrected with a debug

 packet; when the debug packet is removed, the error remains in

 the program.

 (4) The following statements must not appear in a debug packet:

 SUBROUTINE

 FUNCTION

 ENTRY

 IMPLICIT

 BLOCK DATA

 statement function definition

 (5) The program being debugged must not transfer control to any

 statement number defined in a debug packet; however, control may

 be returned to any point in the program from a packet. In

 addition, a debug packet may contain a RETURN, STOP, or CALL

 EXIT statement.

 The FORTRAN internal debugging facility may provide a useful debug-

 ging aid for batch programmers. Those interested in interactive

 debugging capabilities should note the section on the Symbolic Debugging

 System (SDS). SDS provides many debugging aids including those of the

 Debug Facility.

 68 FORTRAN G

 MTS 6: FORTRAN in MTS

 October 1983

 FORTRAN H _________

 INTRODUCTION ____________

 The public file *FORTRANH contains a version of the IBM Operating

 System/360 FORTRAN-H compiler modified to run under MTS. The compiler

 contained in *FORTRANH (like the two versions of the FORTRAN-IV G

 compiler contained in *FORTRANG and *FTNGTEST) is really meant to be

 used as a subroutine by programs to compile FORTRAN source modules.

 Although this compiler may be used as a stand-alone language processor

 invoked via a $RUN *FORTRANH command, this is not recommended.

 Users wishing to utilize the capabilities of the FORTRAN-H compiler

 should use the *FTN interface (see the section "*FTN Interface" in this

 volume). *FTN provides many services such as defaulting logical I/O

 units, conversational entry and correction of options, etc., which are

 not provided by the simplified compiler in *FORTRANH.

 The primary advantage of using FORTRAN-H instead of FORTRAN-G is that

 FORTRAN-H generates a program which executes more efficiently if the

 optimization features are used. However, the FORTRAN-H compiler pro-

 vides only limited set of debugging facilities:

 (1) a limited set of SYM records are generated for use with the

 Symbolic Debugging System (SDS), and _ _ _

 (2) FORTRAN-H does not support the internal debug feature described

 in the section "FORTRAN G."

 Compilation of a program with the FORTRAN-H compiler can cost signifi-

 cantly more than compilation with either of the FORTRAN-G compilers. It

 is recommended that initial program debugging be done using the

 FORTRAN-G compiler and that the final production version be compiled

 using the FORTRAN-H compiler, if the optimization features are desired.

 This section is not a description of the FORTRAN-IV language. For

 such a description, see the IBM publication, IBM System/360 and ____________________

 System/370 FORTRAN IV Language, form GC28-6515. ______________________________

 COMPILER OPTIONS ________________

 The compiler options allow the user to control various compiler

 functions such as what output listings should be produced, which object

 module format should be used, etc. Unrecognizable options are ignored.

 FORTRAN H 69

 MTS 6: FORTRAN in MTS

 October 1983

 Negation of simple options is accomplished by prefixing them with

 "NO", "-", or "¬". The options must be separated by blanks or commas.

 The option names may be abbreviated by truncation from the right. The

 table below gives the minimum acceptable abbreviations and the default

 values used if the option is not specified.

 Simple Shortest Default

 Option Abbreviation Value ______ ____________ _____

 BCD B NOBCD (EBCDIC)

 COMMENT C COMMENT

 DECK D DECK

 EJECT EJ EJECT

 ERR ER ERR

 ID ID NOID

 LIST L NOLIST

 LOAD LO NOLOAD

 MAP M MAP

 PRINT P PRINT

 SCAN SC NOSCAN

 SOURCE S SOURCE

 STRUC ST NOSTRUC

 TEST T NOTEST

 XL XL NOXL

 XREF X XREF

 Assignment Shortest Default

 Option Abbreviation Value ______ ____________ _____

 CALIGN CA 0

 CSHIFT CS 0

 LINECNT L 57

 NAME N MAIN

 OPT O 2

 Simple Option Descriptions __________________________

 BCD or EBCDIC _____________

 The BCD option indicates that the source module lines have been

 coded in Binary Coded Decimal (as on the 026 keypunch). The

 standard for the System/370 is Extended Binary Coded Decimal

 Interchange Code (EBCDIC). Most terminals and the 029 keypunch

 produce EBCDIC code. If the BCD option is specified, statement

 numbers passed as arguments must be coded as "$n" and "$" must not

 be used as an alphabetic character. Normally, statement numbers

 would be coded "&n", so that "$" would be a legitimate alphabetic

 character. The default is EBCDIC.

 70 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 The compiler does not support BCD characters in either literal data

 or as print control characters; such characters are treated as

 EBCDIC. Consequently, for example, a BCD "+" used as a carriage-

 control character will not cause printing to continue on the same

 line. Programs keypunched in BCD should be carefully scanned for

 possible errors relating to print control characters and literal

 data.

 COMMENT _______

 The NOCOMMENT option inhibits the listing of comment statements.

 The default is COMMENT.

 DECK ____

 The DECK option specifies that object modules are to be produced by

 the compiler and that an identification field is to be generated ___

 for positions 73-80 of each object module record. The identifica-

 tion field consists of the first four characters of the module

 name, while the last four are sequentially numbered 0001, 0002, ...

 The default is DECK.

 EJECT _____

 The NOEJECT option causes the FORTRAN-H compiler to change all page

 ejects to triple spaces. This may be useful for some terminals.

 The default is EJECT.

 ERR ___

 The ERR option requests that source diagnostics be printed on

 SERCOM. The default is ERR.

 ID __

 The ID option generates internal statement numbers (ISN) following

 external function references in the object code produced by the

 compiler. (An internal statement number is that number which would

 be attached to the statement if each executable statement were

 numbered sequentially from the beginning of the program.) In the

 generated code, each BALR (branch) to an external program is

 followed by a four-byte no-operation with an address field equal to

 the ISN of the source statement containing the external reference.

 For example, for a call from statement 1000 the four bytes would

 appear in a hexadecimal dump as 470003E8 (3E8 of base 16 = 1000 of

 base 10). The default is NOID.

 LIST ____

 The LIST option includes a pseudo-assembly-language format listing

 of the generated object module in the output listings. This

 listing consists of several columns that contain the hexadecimal

 representation of each instruction, a symbolic representation of

 FORTRAN H 71

 MTS 6: FORTRAN in MTS

 October 1983

 each instruction, the first instruction of each block corresponding

 to each statement label in the program, and a symbolic interpreta-

 tion of any variable referenced by each instruction. Unless the

 user understands some machine code and can read hexadecimal dumps,

 this listing is generally not useful and is in all cases expensive

 to obtain. The use of the SCAN option overrides the LIST option as

 there is no object module produced when that option is employed.

 The default is NOLIST.

 LOAD ____

 The LOAD option specifies that object modules are to be produced by

 the compiler and included in the object module output. LOAD has no

 effect if used with the SCAN option. If the DECK option is

 specified, each record will be 80 characters long; otherwise, the

 object records will be 72 characters long. The default is NOLOAD.

 Object module lines contain a 12-2-9 punch in the first column and

 the characters ESD, TXT, RLD, or END in columns 2-4. The compiler

 generates four types of ESD items: type 0 items contain the module

 name, entry point, and module length; type 1 items contain the

 entry point names corresponding to ENTRY statements; type 2 items

 contain the external references made in CALL or EXTERNAL statements

 and implicit or explicit function references; and type 5 items

 contain the names for each COMMON block. The FORTRAN-H compiler

 does not generate type 3 or type 4 ESD items. The TXT records

 contain user- and compiler-generated constants, translated FORMAT

 statements, and the generated machine instructions. The informa-

 tion contained in the RLD records is used by the loader to complete

 external references. External references are resolved by adjusting

 the constant pointed to by the address in the RLD item by the

 address of the appropriate external symbol contained in one of the

 type 2 ESD items. The END record for each module is described

 below:

 Columns Contents _______ ________

 1 12-2-9

 2-4 END

 37-39 FTN

 41-48 Module name

 49-56 Date as MM-DD-YY

 57-64 Time as HH:MM.SS

 65-68 Number of warning errors

 69-72 Number of serious errors

 If the DECK option is specified, then each object module record is

 suffixed with the first four characters of the module name in

 columns 73-76 and the line sequence in columns 77-80. The default

 is NOLOAD.

 Note that when the SCAN option is specified, no punched output will __

 be generated regardless of the LOAD or DECK option specifications.

 72 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 MAP ___

 The MAP option specifies that a storage map is to be included in

 the output listings. The map consists of tables containing

 variable names and locations for COMMON, EQUIVALENCE, NAMELIST,

 scalar, and array variables, subprograms referenced, and FORMAT

 statements. In addition, the compiler produces a label map. The

 map includes:

 (1) the statement number of each source label,

 (2) the relative address assigned to each label, and

 (3) the symbol ’NR’ next to each source label that is not

 referenced.

 The default is MAP.

 PRINT _____

 The NOPRINT option causes the FORTRAN-H compiler to suppress all

 printed output including cross-reference and structured listings.

 The default is PRINT.

 SCAN ____

 The SCAN option causes the compiler to scan the source module for

 syntax and compilation errors. All appropriate error diagnostics

 are generated for each source module, but no object code is

 generated and consequently neither the object listing nor the

 program size can be included in the output listings. In addition,

 no object module output is produced. Use of the SCAN option will __

 decrease the cost of scanning the source program for errors. The

 default is NOSCAN.

 SOURCE ______

 The SOURCE option produces a listing of the source deck in the

 output listings. If NOSOURCE is specified and source errors are

 found, the source statement in error and the diagnostic message are

 still included in the output listings. Note that even if NOSOURCE

 is specified, each module will produce at least 9 lines of

 messages. The default is SOURCE.

 STRUC _____

 The STRUC option specifies that a structured source listing is to

 be produced. This listing indicates the loop structure and the

 logical continuity of the source program. The STRUC option is

 effective only if OPT=2 is also specified. The default is NOSTRUC.

 For a complete description of this listing, see the IBM System/360 ______________

 Operating System FORTRAN IV (G and H) Programmer’s Guide, form __

 GC28-6817.

 FORTRAN H 73

 MTS 6: FORTRAN in MTS

 October 1983

 TEST ____

 The TEST option generates SYM records in the object module. This

 facilitates execution-time debugging with the Symbolic Debugging

 System (SDS). See the section "Introduction to Debug Mode for

 FORTRAN" for further information. The default is NOTEST.

 XL __

 The XL option specifies that the FORTRAN-H compiler extended

 language features are permitted in the source deck. For details of

 these features, see the IBM publication IBM System/360 Operating ________________________

 System FORTRAN IV (H) Compiler Program Logic Manual, form GY28- ___

 6642. The NOXL option specifies that the extended language

 features are not permitted. Note that this is not the same as the ___

 FORTRAN-H Extended compiler (an IBM program product), which is not

 available at the Computing Center.

 XREF ____

 The XREF option produces a cross-reference listing of variables and

 labels in the output listings. The variable names are listed in

 alphabetical order according to length. (Variable names of one

 character appear first in the listing.) The labels are listed in

 ascending sequence along with the internal statement number of the

 statement in which the label is defined. For both variable names

 and labels the listing also contains the internal statement number

 of each statement in which the variable or label is used.

 Assignment Option Descriptions ______________________________

 CALIGN=n ______

 CSHIFT=n ______

 By specifying the CALIGN=n or CSHIFT=n options (where 1 ≤ n ≤ 72),

 the body of comment lines may be positioned to start in column "n".

 The comment lines are denoted by column 1 containing the comment

 symbol "C". CALIGN aligns the first nonblank character after the

 initial "C" at column "n". CSHIFT shifts the entire comment

 (including the "C") to column "n", thus preserving the indentation

 of structured comments. For both CALIGN and CSHIFT, a "C" is

 printed at column 1 in the listing. Blank comments are not

 shifted. If "n" is 72, the comments will be printed in the

 normally blank area to the right of the source statement listing.

 If truncation would occur, the comment is continued on the next

 line. Standard output is printed with CALIGN=0 and CSHIFT=0 (the

 defaults). CALIGN=1 is treated as if CALIGN=2 were specified. If

 "n" is greater than 72, 72 will be used. CALIGN and CSHIFT are

 "coupled" options, i.e., the last one specified overrides all

 74 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 previous occurrences of either. These options are available only

 with the FORTRAN-H compiler.

 LINECNT=n _______

 The LINECNT assignment option specifies the number of lines per

 page for the output listings. "n" must be an integer in the range

 (3, 32767). This may be used to control the spacing of the page

 headers, etc., as they are only produced at the beginning of each

 set of lines. The default is 57 lines per page.

 NAME=xxxx ____

 The NAME assignment option specifies the name to be used as the

 module name for all main programs compiled. Subprogram module ____

 names are always the name given in the FUNCTION or SUBROUTINE

 statements. The module name appears in the page headers, LIB

 records, the ESD type 0 items, the END record, and the object code

 at relative address 000005. The name "xxxx" may be from 1 to 8

 characters in length. The default is MAIN.

 OPT=n ___

 The OPT assignment option specifies the optimization level to be

 used in the compilation of the program. The OPT=0 option indicates

 that the compiler uses no optimizing techniques in producing an

 object module. The OPT=1 option indicates that the compiler treats

 each source module as a single program loop and optimizes the loop

 with regard to register allocation and branching. The OPT=2 option

 indicates that the compiler treats each source module as a

 collection of program loops and optimizes each loop with regard to

 register allocation, branching, common expression elimination, and

 replacement of redundant computation. For a more detailed descrip-

 tion of the optimization procedures, see the section "FORTRAN-H

 Optimization Facilities."

 USE OF FORTRAN-H AS A SUBROUTINE ________________________________

 The FORTRAN-H compiler may be called as a subroutine. The compiler

 must be concatenated to the object (calling) program on the $RUN

 command, e.g.,

 $RUN object+*FORTRANH [logical I/O units]

 The calling sequence is

 CALL FTNH(options,reader,printer,punch,break,errrtn,&rc4,...,&rc16)

 All of the arguments except the first are optional. The calling

 sequence must conform to the FORTRAN standard described in MTS Volume 3,

 FORTRAN H 75

 MTS 6: FORTRAN in MTS

 October 1983

 System Subroutine Descriptions. Specifically, since most of the argu- ________________________________

 ments are not required, the high-order byte of the last argument address

 must contain X’80’. Although only the first argument is required, in

 order to specify one of the optional arguments, all of the preceding

 arguments must also be specified, i.e., if one wanted to specify the

 printer, he would also have to specify the reader, e.g.,

 CALL FTNH(options,reader,printer,&rc4,...,&rc16)

 All of the optional arguments are subroutine names and must be

 declared in an EXTERNAL statement in a FORTRAN program. For assembly

 language users, the optional arguments are passed by placing a pointer

 to the appropriate V-type address constant in the parameter list.

 The arguments to FTNH are described below.

 Options _______

 If the parameter field length is negative, then the options

 parameter is the address of an eight (8) halfword vector

 formatted as follows: four halfwords containing the eight-

 character default main program name, left-justified with

 trailing blanks, two halfwords containing the option bits, one

 halfword containing the number of lines per page, and one

 halfword containing the memory block size. Within the first

 option bit halfword, the parameter is enabled if the corre-

 sponding bit is set; otherwise, it is disabled. The bit

 assignments are as follows:

 Bit Hex Function Default ___ ___ ________ _______

 0 80000000 SCAN 0

 1 40000000 EJECT 1

 2 20000000 PRINT 1

 3 10000000 COMMENT 1

 4 08000000 TEST 1

 5 04000000 ERR 1

 6 02000000 XL 0

 7 01000000 XREF 0

 8 00800000 ID 1

 9 00400000 STRUC 0

 10 00200000 MAP 1

 11 00100000 LOAD 0

 12 00080000 DECK 1

 13 00040000 LIST 0

 14 00020000 BCD 0

 15 00010000 SOURCE 1

 18 00002000 CSHIFT 0

 19 00001000 CALIGN 0

 31 00000001 EXTEN 0 (Future option,

 should be 0)

 76 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 The remaining bits should be 0 (zero). Bits 18 and 19 (CSHIFT

 and CALIGN) should not both be 1. If CSHIFT or CALIGN is 1,

 the value of the alignment is passed in a single fullword

 appended to the end of the OPTION area, making the region 10

 halfwords instead of 8.

 The following example from a BLOCK DATA program illustrates

 how the default options may be set up to be passed in the

 direct form:

 COMMON /OPTION/ NAME,OPT,LINE,SIZE,OPTIM

 REAL*8 NAME/’MAIN’/

 INTEGER*2 OPT(2)/Z0129,0/,LINE/57/,SIZE/0/

 INTEGER*4 OPTIM/2/

 Note that when the options are passed directly that they

 completely replace the default options, rather than modify

 them. It is not possible to simply change some of the option

 bits.

 Reader ______

 This argument is the name of an external function to be called

 to obtain the source input lines. If this optional argument

 is not given, the default value is SCARDS. The parameter list

 is the same as that described for the MTS READ subroutine in

 MTS Volume 3. The unit described for the READ subroutine is

 set to logical I/O unit 0. Although there are several

 parameters in the READ subroutine calling sequence, the user

 need only be concerned with the first. FTNH passes the

 address of an 80-character, preblanked buffer, and expects

 that the source will be placed in the buffer. For example:

 SUBROUTINE READER(BUFFER,*)

 REAL*8 BUFFER(10)

 .

 .

 RETURN

 100 RETURN 1

 END

 Any nonzero return code passed by the reader routine to the

 compiler will be interpreted as an end-of-file. On an

 end-of-file indication the buffer contents are ignored. Any

 attempt to place more than 80 characters in the buffer will

 result in a fatal compiler error. If fewer than 80 characters

 are placed in the buffer, then the blanks that are placed in

 the buffer prior to the call may be used to pad the input

 line. The set of source modules to be compiled must be in

 standard IBM format and terminated by an end-of-file condi-

 tion, i.e., a nonzero return code from the routine.

 FORTRAN H 77

 MTS 6: FORTRAN in MTS

 October 1983

 The reader routine may return an MTS line number in the

 appropriate parameter. If this is done, *FORTRANH will print

 the line number in the listing. If the parameter is un-

 changed, no line number will be printed.

 Printer _______

 This argument is the name of an external function to be called

 to dispose of the output listing lines produced by the

 compiler. If the optional argument is not given, a default

 value of SPRINT is used. The printer parameter list corre-

 sponds to that described for the WRITE subroutine in MTS

 Volume 3. The unit described in that parameter list is set to

 MTS logical I/O unit 1. Although there are several arguments,

 the programmer need only be concerned with the first, the

 120-character output line.

 The printer output line consists of 120-character output lines

 with the logical carriage-control characters 0, 1, or blank.

 The amount and type of information is controlled by the

 options SOURCE, MAP, and LIST. Each source module will

 generally produce at least two lines, a page heading contain-

 ing the module name, date, and time, and a line giving the

 total memory storage requirements of the program in bytes.

 Any diagnostics are included regardless of the options

 requested.

 See the descriptions of the SOURCE, MAP, and LIST parameters

 for a description of the output that is produced for each

 option.

 Punch _____

 This argument is the name of an external function which will

 be called to dispose of any object module lines produced by

 the compiler. If the argument is not given, a default value

 of SPUNCH is supplied. It should be noted that unless one is

 running in batch, with a nonzero card estimate, SPUNCH is not ___

 defaulted. When defaulted, SPUNCH defaults to *PUNCH*. The

 parameter list for the call to the punch routine is the same

 as that for the system subroutine WRITE as described in MTS

 Volume 3. Unit corresponds to logical I/O unit 2. Of the

 arguments in the call, only the first two are of importance to

 a user-supplied routine. These arguments are the buffer

 containing the object module line and a halfword integer

 (INTEGER*2) output line length, respectively. The object

 module lines will be 80 character if the DECK parameter is

 specified; otherwise, they will be 72.

 78 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 Break _____

 This argument is the name of an external function to be called

 after each source module is compiled and before the next

 compilation has begun. If this optional argument is not

 given, the compiler simply proceeds to the compilation of the

 next source module.

 If the BREAK routine gives a nonzero return code to the

 compiler, it will immediately halt and return to its calling

 program with the appropriate return code.

 Errrtn ______

 The optional parameter "errrtn" is a subroutine called by

 FORTRAN H to process error messages. All errors will be sent

 to the PRINT subroutine regardless of the presence of this

 parameter. If no errors are encountered, a message to that

 effect is passed to the "errrtn" subroutine. The calling

 sequence is the same as for the other output subroutines. If

 the ERR option is reset, "errrtn" will not be called.

 Return Codes ____________

 The compiler returns in the normal FORTRAN manner (see a

 description of FORTRAN calling sequences in MTS Volume 3). In

 addition, the return code is also placed in general register 0

 (zero), so that FTNG may be declared an INTEGER*4 function,

 and as such, will assume the values 0, 4,...,16. The return

 codes and explanations follow.

 Return ______

 Code Meaning ____ _______

 0 All compilations have been completed and no

 errors were found.

 4 All compilations have been completed and only

 diagnostics given have severity level 4.

 8 All compilations have been completed and at

 least one severity level 8 diagnostic was

 given.

 12 Not used.

 16 Compiler malfunction. Try compiling the source

 module again and if the error persists, consult

 with a Computing Center counselor.

 FORTRAN H 79

 MTS 6: FORTRAN in MTS

 October 1983

 USE OF THE FORTRAN-H COMPILER AS A STAND-ALONE LANGUAGE PROCESSOR ___

 As indicated earlier, it is not recommended that the FORTRAN-H

 compiler be used as a stand-alone language processor. However, use of

 FORTRAN-H in this manner will provide an efficient batch-oriented

 interface to the compiler. Conversational users will find this version

 of the compiler inconvenient to use and should refer to the section

 "*FTN Interface" in this volume. The following deck structure would be

 sufficient to compile a set of FORTRAN-H programs punched on cards

 according to the standard IBM format.

 $SIGNON ccid ’name’

 password

 $RUN *FORTRANH SPUNCH=-LOAD PAR=LIST

 .

 (source program)

 .

 $ENDFILE

 $RUN -LOAD

 $SIGNOFF

 The characters "ccid" are the user’s four-character Computing Center

 signon ID. The second card contains the user’s password starting in

 column 1. The LIST option is specified to produce an object listing.

 Note that the options are passed to the compiler via the PAR field on

 the $RUN command.

 FORTRAN-H OPTIMIZATION FACILITIES _________________________________

 This section contains information relating to the use of the

 FORTRAN-H compiler optimization facilities. It is reprinted with

 permission from the IBM publication, IBM System/360 Operating System __________________________________

 FORTRAN IV (G and H) Programmer’s Guide, form GC28-6817. _______________________________________

 Program Optimization ____________________

 Facilities are available in the FORTRAN IV (H) compiler that enable a

 programmer to optimize execution speed and to reduce the size of the

 object module. There are three levels of optimization available: 0, 1,

 and 2. Optimization level 0 provides no optimization, optimization

 level 1 provides some, and optimization level 2 provides the most

 optimization.

 When using OPT=1, the entire program is treated as a loop, while

 individual sections of coding, headed and terminated by labeled state-

 ments, are blocks. The object code is improved by:

 80 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 (1) Improving local register assignment. (Variables that are de-

 fined and used in a block are retained (if possible) in

 registers during the processing of the block. Time is saved

 because the number of load and store instructions are reduced.)

 (2) Retaining the most active base addresses and variables in

 registers across the whole program. (Retention in registers

 saves time because the number of load instructions is reduced.)

 (3) Improving branching by the use of RX branch instructions. (An

 RX branch instruction saves a load instruction and reduces the

 number of required address constants.)

 When using OPT=2, the loop structure and data flow of the program are

 analyzed. The object code is improved over OPT=1 by:

 (1) Assigning registers across a loop to the most active variables,

 constants, and base addresses within the loop.

 (2) Moving outside the loop many computations which need not be

 calculated within the loop.

 (3) Recognizing and replacing redundant computations.

 (4) Replacing (if possible) multiplication of induction variables by

 addition of those variables.

 (5) Deleting (if possible) references to some variables.

 (6) Using (where possible) the BXLE instruction for loop termina-

 tion. (The BXLE instruction is the fastest conditional branch;

 time and space are saved.)

 The variables that FORTRAN H considers "optimizable" are marked with an

 asterisk "*" in the cross-reference listing.

 Programming Considerations Using the Optimizer __

 In general, the specification of OPT=1 or OPT=2 causes compilation

 time to increase. However, the object code produced is more concise and

 yields shorter execution times.

 The object module logic, when optimized, is identical to the

 unoptimized logic, except in the following cases:

 (1) If the list of statement numbers in an Assigned GO TO statement

 is incomplete, errors, which were not present in the unoptimized

 code, may arise in the optimized code.

 FORTRAN H 81

 MTS 6: FORTRAN in MTS

 October 1983

 (2) With OPT=2, the computational reordering done may produce a

 different execution time behavior than unoptimized code. Con-

 sider the following example:

 DO 11 I=1,10

 DO 12 J=1,10

 IF (B(I).LT.0.) GOTO 11

 12 C(J)=SQRT(B(I))

 11 CONTINUE

 The square root computation will be moved backward outside the

 inner loop and hence will occur before the less-than-zero test.

 This will result in a message if B(I) is negative. A rearrange-

 ment of the program which could avoid this situation can be

 constructed:

 DO 11 I=1,10

 IF (B(I).LT.0.) GOTO 11

 DO 12 J=1,10

 12 C(J)=SQRT(B(I))

 11 CONTINUE

 (3) If a programmer defines a subprogram with the same name as a

 FORTRAN-supplied subprogram (e.g., SIN, ATAN, etc.), errors

 could be introduced during optimization. If the subprogram

 stores into its arguments, refers to COMMON, performs I/O, or

 remembers its own variables from one execution to another, the

 name of the subprogram must be specified in an EXTERNAL ____

 statement to allow the program to be optimized without error.

 (4) In the statements

 COMMON X,Y1(10),W,Z

 EQUIVALENCE (Y1,Y2)

 DIMENSION Y2(12)

 there is an implied equivalence of Y2(11) and W and Y2(12) and

 Z. If the optimization feature is not used, and the statements

 W=Q

 A=Y2(I) (where I=11)

 are executed, the value of Q is assigned to A. However, if

 OPT=2 is used, and the statements

 W=Q

 A=Y2(I) (where I=11)

 are executed, there is no guarantee that the value of Q is __

 assigned to A.

 (5) When a subprogram is called at one entry point for initializa-

 tion of reference-by-name arguments, and at another entry point

 82 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 for subsequent computation, certain argument values may not be

 transmitted. This applies to either arguments of the second

 call or any argument values redefined between calls and not

 explicitly defined in COMMON.

 In the following example the incremented value for I may not be

 transmitted to the subprogram due to the loop initialization

 optimization. This is because the value of I may be contained

 in a register throughout the loop and not stored into the memory

 location for I until the loop is exited.

 CALL INIT(I) SUBROUTINE INIT(/J/)

 . .

 . .

 . .

 I = 0 ENTRY COMP

 10 CALL COMP

 I = I+1

 .

 .

 .

 GOTO 10

 (6) With OPT=2, variables in named COMMON arrays may not be stored

 on exit from a FORTRAN main program if these variables have not

 been used in an I/O statement in that main program, or if there

 is no subroutine call following the definition of these

 variables.

 (7) With OPT=2, implied DO variables may not be stored if an END=

 transfer was made out of a READ statement.

 Use of Loops ____________

 The FORTRAN-H compiler treats a DO-loop as an actual loop. Addition-

 ally, the compiler may treat any other sequence of statements that

 appear to be executed iteratively as a loop. However, the compiler may

 not treat as loops other sequences of statements which the programmer

 perceives as loops.

 If a programmer writes a loop which is preceded by an IF statement, a

 conditional GO TO statement, or READ statement with END or ERR options,

 the loop is not identified and efficiency is lost. A CONTINUE statement

 at the end of the range of a DO also obscures a loop (other than a DO

 loop) that follows the CONTINUE without intervening initialization. The

 insertion of a labeled CONTINUE statement or any other suitable

 rearrangement allows the loop to be recognized.

 The movement of computations from inside a loop to the initialization

 coding is done on the assumption that every statement in the loop is

 FORTRAN H 83

 MTS 6: FORTRAN in MTS

 October 1983

 executed more frequently than the initialization coding. Occasionally,

 this assumption fails and computations are moved to a position where

 they are computed more often. One way to prevent such a move is to make

 a subprogram of the coding (statements and computations) that is

 executed less frequently within a loop than it would be in the

 initialization coding.

 The recognition of loops may also be obscured when the programmer

 knows that some paths through the program cannot occur; for example,

 10 IF (L) GOTO 200

 20 I=1

 30 ASSIGN 40 TO J

 GOTO 100

 40 I=I + 1

 50 IF (I.LE.N) GOTO 30

 .

 .

 .

 100 B(I) = FUNCT(I)

 110 GOTO J, (40, 220)

 200 ASSIGN 220 TO J

 210 GOTO 100

 220 CONTINUE

 From the programmer’s point of view, the statements 30 to 50 comprise

 a loop which is initialized by statement 20. The loop causes an

 internal subprogram consisting of statements 100 and 110 to be executed.

 From the compiler’s point of view, it appears possible to execute

 statements in the order 10, 200, 210, 100, 110, 40, 50, 30. The

 compiler does not recognize the loop, because it appears possible to

 enter it without passing through the initialization coding in statement

 20. A loop can be obscured by the computed GO TO, because the compiler

 always assumes that one of the possible branches is to the succeeding

 statement, even though the programmer knows that such a branch is

 impossible. A loop can also be obscured by a call to the EXIT routine,

 because the compiler assumes there is a path from such a statement to

 the next.

 Movement of Code into Initialization of a Loop __

 Where it is logically possible to do so with OPT=2, the optimizer

 moves computations from inside the loop to the outside. This movement

 permits a programmer to do more straightforward coding without penalty

 in object code efficiency.

 If an expression is evaluated inside a loop and all the variables in

 the expression are unchanged within the loop, the computation is

 generally moved outside the loop into the coding sequence which

 initializes the loop. Even if the constant expression is part of a

 84 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 larger expression, this constant expression may still be recognized and

 moved. However, the movement depends on how the larger expression is

 written. The table below gives examples of expressions and the constant

 parts which are recognized and moved.

 ┌───┐ ┌
 | Expression where C1, C2,... | Constant expression |

 | are constant in the loop | recognized and moved |

 |───────────────────────────────┼─────────────────────────────| ┌ ┘
 | C1 + C2 * C3/SIN (C4) | C1 + C2 * C3/SIN (C4) |

 | C1 + C2 * C3 + B1 | C1 + C2 * C3 |

 | C1 + B1 + C2 * C3 | C2 * C3 |

 | B1 + C1 + C2 * C3 | C2 * C3 |

 | C1 + B1 + B2 + C2 * C3 | C2 * C3 |

 | C1 * C2/B1 | C1 * C2 |

 └───┘ ┘

 Common Expression Elimination _____________________________

 With OPT=2, if an expression occurs twice in such a way that:

 (1) any path starting at an entry to the program always passes

 through the first occurrence of the expression to reach the

 second occurrence (and any subsequent occurrence), and

 (2) any evaluation of the second (third, fourth, etc.) expression

 produces a result identical to the most recent evaluation of the

 first expression, then the value of the first expression is

 saved (generally) and used instead of the value of the second

 (third, fourth, etc.) expression.

 In statements such as

 A = B + C + D

 E = C + D

 the common expression C + D is not recognized, because the first ___

 expression is computed as (B + C) + D.

 Induction Variable Optimization _______________________________

 In a loop with OPT=2, an induction variable is a variable that is

 only incremented by a constant or by a variable whose value is constant

 in the loop.

 When an induction variable is multiplied by a constant in the loop,

 the optimizer may replace the multiplication with an addition by

 FORTRAN H 85

 MTS 6: FORTRAN in MTS

 October 1983

 introducing a new induction variable into the loop. This new induction

 variable may make it possible to delete all references to the original

 induction variable. This deletion is likely to occur if the original

 induction variable is used only as a subscript within the loop, and the

 value of the subscript is not used on exit from the loop.

 Register Allocation ___________________

 Some variables are assigned to a register on entry to a loop and

 retained in the register through part or all of the loop to avoid

 loading and storing the variable in the loop. Within the loop, the

 variable is modified only in the assigned register, the value of the

 variable in storage is not changed. If necessary, the latest value of

 the variable is stored after exit from the loop.

 The value in general register 13, which points to the start of a

 register save area, remains constant during execution of a subprogram.

 This register is used to refer to data, and possibly to branch within

 the program. The value in general register 12 remains constant and is

 used to branch within the program, and possibly is used to refer to

 data.

 General registers 14 and 15 are used for base addresses and index

 values on a strictly local basis. Floating-point register 0 and general

 register 0 are used as locally assigned arithmetic accumulators.

 General register 1 is used in conjunction with general register 0 for

 fixed-point arithmetic operations, and to point to argument lists in

 subprogram linkages.

 The remaining registers are used for accumulators, index values, base

 addresses, and high-speed storage (a register reference is faster than a

 main storage reference).

 Because general registers 12 and 13 are not adequate to provide RX

 branching throughout a large program, general registers 11, 10, and 9

 may be preempted for RX branching (only if the program exceeds 8K, 12K,

 and 16K bytes, respectively). (RR branches preceded by loads are

 required for branching to points beyond the first 16K bytes of the

 program and possibly to the last part of the program if it exceeds 8K,

 12K, or 16K bytes by a small amount.)

 COMMON Blocks _____________

 Because each COMMON block is independently relocatable, each requires

 at least one base address to refer to the variables in it. A sequence

 of coding that refers to a large number of COMMON blocks is slowed down

 by the need to load base addresses into general registers. Thus, if

 86 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 three COMMON blocks can be combined into one block whose total size is

 less than 4096 bytes, one base address can serve to refer to all the

 variables. (Many register loads can be avoided.)

 The order in which data are entered into a COMMON block may also

 affect the number of base addresses needed. For example, if an array of

 5000 bytes is placed in a COMMON block and followed by 200 bytes of

 variables, two base addresses are needed: the beginning address of the

 first variable and the beginning address of the last differ by more than

 4096 bytes. However, if the variables preceded the array, one base

 address would suffice.

 EQUIVALENCE Statements ______________________

 Optimization tends to be weakened by the occurrence of variables in

 EQUIVALENCE statements.

 When an array appears in an EQUIVALENCE statement, a reference to one

 of its elements cannot be eliminated as a common expression, nor can the

 reference be moved out of a loop. However, the elimination and movement

 of subscript calculations used for making the reference is not affected.

 If a variable is made equivalent only to another variable (not in

 COMMON) of the same type and length, optimization is not weakened. The

 net effect is that the compiler accepts the two names as alternate

 pointers to the same storage location. However, if a variable is made

 equivalent to another variable in any other way, all references to it

 are "immobilized": the references cannot be eliminated, moved, confined

 to registers, or altered in any way.

 Multidimensional Arrays _______________________

 In general, references to higher dimensional arrays are slower than

 references to lower dimensional arrays. Thus, a set of one-dimensional

 arrays is more efficient than a single two-dimensional array in any case

 where the two-dimensional array can be logically treated as a set of

 one-dimensional arrays.

 Constants occurring in subscript expressions are accounted for at

 compile time and have no effect at execution time.

 FORTRAN H 87

 MTS 6: FORTRAN in MTS

 October 1983

 Program Structure _________________

 If a large number of variables are to be passed among calling and

 called programs, some of the variables should be placed in the COMMON

 area. For example, in the main program and subroutine EXAMPL

 DIMENSION E(20),I(15)

 READ(10) A,B,C

 CALL EXAMPL(A,B,C,D,E,F,I)

 .

 .

 .

 END

 SUBROUTINE EXAMPL(X,Y,Z,P,Q,R,J)

 DIMENSION Q(20),J(15)

 .

 .

 .

 RETURN

 END

 time and storage are wasted by allocating storage for variables in both

 the main program and subprogram and by the subsequent instructions

 required to transfer variables from one program to another.

 The two programs should be written using a COMMON area, as follows:

 COMMON A,B,C,D,E(20),F,I(15)

 READ(10) A,B,C

 CALL EXAMPL

 .

 .

 .

 END

 SUBROUTINE EXAMPL

 COMMON X,Y,Z,P,Q(20),R,J(15)

 .

 .

 .

 RETURN

 END

 Storage is allocated for variables in COMMON only once and fewer

 instructions are needed to cross-reference the variables between

 programs.

 To reduce compilation time for equivalence groups, the entries in the

 EQUIVALENCE statement should be specified in descending order according

 to offset. For example, the statement

 88 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 EQUIVALENCE (ARR1(10,10),ARR2(5,5),ARR3(1,1),VAR1)

 compiles faster than the statement

 EQUIVALENCE (VAR1,ARR3(1,1),ARR2(5,5),ARR1(10,10))

 To reduce compilation time and save internal table space, equivalence

 groups should be combined, if possible. For example, the statement

 EQUIVALENCE (ARR1(10,10),ARR2(5,5),VAR1)

 compiles faster and uses less internal table space than the statement

 EQUIVALENCE (ARR1(10,10),VAR1),(ARR2(5,5),VAR1)

 Logical IF Statements _____________________

 A statement such as

 IF (A.LT.B .OR. C.GT.F(X) .OR. .NOT.L) GOTO 10

 is compiled as though it were written

 IF (A.LT.B) GOTO 10

 IF (C.GT.F(X)) GOTO 10

 IF (.NOT.L) GOTO 10

 Thus, if A.LT.B is found to be true, the remainder of the logical

 expression is not evaluated.

 Similarly, a statement such as

 IF (D.NE.7.0 .AND. E.GE.G) I=J

 is compiled as

 IF (D.EQ.7.0) GOTO 20

 IF (E.LT.G) GOTO 20

 I=J

 20 CONTINUE

 The order in which a programmer writes logical expressions in an IF

 statement affects the speed of execution.

 If A is true more often than B, then write A .OR. B rather than B

 .OR. A; and write B .AND. A rather than A .AND. B.

 If any of the following occur in a logical expression:

 FORTRAN H 89

 MTS 6: FORTRAN in MTS

 October 1983

 (1) a mixture of both .AND. and .OR. operators, or

 (2) a .NOT. operator followed by a parenthesized expression

 the entire logical expression must be evaluated and efficiency is lost.

 Branching _________

 The statement

 IF (A.GT.B) GOTO 20

 gives equivalent or better code than

 IF (A-B) 10,10,20

 10 CONTINUE

 The assigned GOTO is the fastest conditional branch.

 The computed GOTO should be avoided unless four or more statement

 labels occur within the parentheses.

 The statement

 IF (I-2) 20,30,40

 is significantly faster than

 GOTO (20,30,40), I

 FORTRAN-H SOURCE MODULE ERROR/WARNING MESSAGES __

 At the end of each compilation, the FORTRAN-H compiler prints a set

 of statistics in a format similar to the following:

 **** ERRORS FOR SUBR ****

 0064 162.000 TEST = .FALSE

 IEK224I (08) THE EXPRESSION HAS AN INVALID DOUBLE DELIMITER.

 IEK610I (04) 1006 THE STATEMENT NUMBER OR GENERATED LABEL IS

 UNREACHABLE.

 OPTIONS IN EFFECT NAME= MAIN,OPT=02,LINECNT=58,

 OPTIONS IN EFFECT SOURCE,EBCDIC,NOLIST,DECK,NOLOAD,MAP,NOSTRUC,

 NOID,XREF

 90 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 STATISTICS SOURCE STATEMENTS = 8 ,PROGRAM SIZE = 366

 STATISTICS 2 DIAGNOSTICS GENERATED, HIGHEST SEVERITY CODE

 IS 8

 ******END OF COMPILATION******

 COMPILER STATISTICS: ELAPSED TIME 10.790 SEC.

 CPU TIME .660 SEC.

 The above example indicates how the error messages are denoted. If

 there are no compilation errors, the message:

 STATISTICS NO DIAGNOSTICS GENERATED

 appears in place of the error and diagnostic messages. The letters ISN

 in the error messages refer to the internal statement number of the

 statement in error.

 The following is a list of error messages with a brief explanation of

 each. The messages are sequenced in ascending numerical order according

 to the number "xxx" in IEKxxxI. In addition to the message at the end

 of the compilation, each statement flagged with a serious error is

 followed by the message

 ERROR DETECTED - SCAN POINTER = x.

 where "x" represents the position of the character pointed to by the

 compiler’s internal scan pointer when the error was detected. FORTRAN

 keywords and/or meaningless blanks are ignored in determining the

 position of the pointer. If the statement is found to be invalid during

 the compiler’s classification process, the value of "x" is set to one.

 Error messages which are self-explanatory do not have any additional

 comment.

 IEK001I THE NUMBER OF ENTRIES IN THE ERROR TABLE HAS EXCEEDED THE

 MAXIMUM.

 Too many statements have been found to contain errors.

 Correct those statements found to be in error and resubmit

 the program. Severity Level: 8.

 IEK002I THE DO LOOPS ARE INCORRECTLY NESTED.

 This diagnostic is generated if the statements in the

 range of an inner DO LOOP are not contained in the range

 of the outer DO. This message will also appear if the

 extended range of a DO statement contains another DO with

 an extended range and both DOs are in the same main

 program or subroutine. Severity Level: 8.

 FORTRAN H 91

 MTS 6: FORTRAN in MTS

 October 1983

 IEK003I THE EXPRESSION HAS AN INVALID LOGICAL OPERATOR.

 Look at all the logical operators for misspelling or

 improper placement. Severity Level: 8.

 IEK005I THE STATEMENT HAS AN INVALID USE OF PARENTHESES.

 This diagnostic will occur if there are mismatched paren-

 theses, or if parentheses appear where they are not

 allowed. Severity Level: 8.

 IEK006I THE STATEMENT HAS AN INVALID LABEL.

 This diagnostic will appear if the user attempts to label

 a statement in an invalid manner. For example, this error

 message will appear when the user attempts to branch to

 the label of a format statement. Severity Level: 8.

 IEK007I THE EXPRESSION HAS AN INVALID DOUBLE DELIMITER.

 Look at the use of all commas, parentheses, primes, and

 blanks in the indicated expression. Correct any illegal

 delimiters. Severity Level: 8.

 IEK008I THE EXPRESSION HAS A CONSTANT WHICH IS GREATER THAN THE

 ALLOWABLE MAGNITUDE.

 The constants must be within the following ranges:

 Type Range ____ _____

 INTEGER -2147483647, 2147483647

 REAL .53E-78, .72E+76

 REAL*8 .53E-78, .72E+76

 Severity Level: 8.

 IEK009I THE EXPRESSION HAS A NONNUMERIC CHARACTER IN A NUMERIC

 CONSTANT.

 Severity Level: 8.

 IEK010I THE EXPRESSION HAS A CONSTANT WITH AN INVALID EXPONENT.

 This diagnostic will result if the base and exponent are

 invalid combinations of operand types. For example, a

 real number used in an exponent: 1.06E+.05. Severity

 Level: 8.

 92 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 IEK011I THE ARITHMETIC OR LOGICAL EXPRESSION USES AN EXTERNAL

 FUNCTION NAME AS A VARIABLE NAME.

 To correct this problem, make sure that each name in an

 EXTERNAL statement is not also used as a variable in an

 expression. Use of the MAP option can help determine how

 each name is perceived. Severity Level: 8.

 IEK012I THE EXPRESSION HAS A COMPLEX CONSTANT WHICH IS NOT

 COMPOSED OF REAL CONSTANTS.

 Both parts of the complex constant, real and imaginary,

 must be real numbers. The decimal point must be explicit-

 ly specified in both parts. Severity Level: 8.

 IEK013I AN INVALID CHARACTER IS USED AS A DELIMITER.

 Check use of primes, semicolons, etc. Severity Level: 8.

 IEK014I THE STATEMENT HAS AN INVALID NONINTEGER CONSTANT.

 Severity Level: 8.

 IEK015I THE ARITHMETIC OR LOGICAL EXPRESSION USES A VARIABLE NAME

 AS AN EXTERNAL FUNCTION NAME.

 This is the opposite of IEK011I above. Look at the use of

 all variables in the expression. Severity Level: 8.

 IEK016I THE GO TO STATEMENT HAS AN INVALID DELIMITER.

 Check the format of the statement in use; blanks, commas,

 and parentheses are the only valid delimiters and their

 usage depends on the type of GO TO. Severity Level: 8.

 IEK017I THE ASSIGNED OR COMPUTED GO TO HAS AN INVALID ELEMENT IN

 ITS STATEMENT NUMBER LIST.

 The statement numbers list must contain only labels for

 executable statements. If an assigned GO TO is in

 question, check the ASSIGN statement as well. Severity

 Level: 8.

 IEK019I THE ASSIGNED GO TO HAS THE OPENING PARENTHESIS MIS-PLACED

 OR MISSING.

 Severity Level: 8.

 IEK020I THE ASSIGNED GO TO HAS AN INVALID DELIMITER FOLLOWING THE

 ASSIGNED VARIABLE.

 The delimiter must be a comma. Severity Level: 8.

 FORTRAN H 93

 MTS 6: FORTRAN in MTS

 October 1983

 IEK021I THE COMPUTED GO TO HAS AN INVALID COMPUTED VARIABLE.

 The delimiter must be a comma. Severity Level: 8.

 IEK022I THE VARIABLE IN THE ASSIGNED GO TO STATEMENT IS NOT

 INTEGRAL.

 If the variable appears to be integral, check both type

 and IMPLICIT DECLARATIONS. Severity Level: 8.

 IEK023I THE DEFINE FILE STATEMENT HAS AN INVALID DATA SET REFER-

 ENCE NUMBER.

 The data set reference number must be an unsigned integer

 constant. Severity Level: 8.

 IEK024I THE DEFINE FILE STATEMENT HAS AN INVALID DELIMITER.

 Check the format of the statement, noting especially the

 placement of commas and parentheses. Severity Level: 8.

 IEK025I THE DEFINE FILE STATEMENT HAS AN INVALID INTEGER CONSTANT

 AS THE RECORD NUMBER OR SIZE.

 Severity Level: 8.

 IEK026I THE DEFINE FILE STATEMENT HAS INVALID FORMAT CONTROL

 CHARACTER.

 The valid format control characters are L, E, and U.

 Severity Level: 8.

 IEK027I THE ASSIGN STATEMENT HAS AN INVALID INTEGER VARIABLE.

 The integer variable must not be subscripted. Severity

 Level: 8.

 IEK028I THE ASSIGN STATEMENT HAS AN INVALID DELIMITER.

 Check the format of the ASSIGN statement, noting the comma

 and parenthesis locations. Severity Level: 8.

 IEK030I THE DO STATEMENT HAS AN INVALID END OF RANGE STATEMENT

 NUMBER.

 This diagnostic will occur if the end of range statement

 number labels a nonexecutable statement. Severity Level:

 8.

 94 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 IEK031I THE DO STATEMENT OR IMPLIED DO HAS AN INVALID INITIAL

 VALUE.

 The initial value of a DO must be an unsigned integer

 constant greater than zero, or an unsigned nonsubscripted

 integer variable greater than zero. Severity Level: 8.

 IEK034I THE ASSIGNMENT STATEMENT BEGINS WITH A NONVARIABLE.

 Check other uses of the name on the left side of the equal

 sign. Use the MAP option to determine the nature of the

 unknown. Severity Level: 8.

 IEK035I THE NUMBER OF CONTINUATION CARDS EXCEEDS THE COMPILER

 LIMIT.

 There should not be more than 19 continuation cards in a

 row. Severity Level: 8.

 IEK036I THE STATEMENT CONTAINS INVALID SYNTAX. THE STATEMENT

 CANNOT BE CLASSIFIED.

 This is a catchall diagnostic for anything that the

 compiler cannot identify as a legitimate statement type.

 Look for mispunches, misspellings, etc. Severity Level:

 8.

 IEK039I THE DEFINE FILE STATEMENT HAS AN INVALID ASSOCIATED

 VARIABLE.

 The associated variable must be integral and nonsubscript-

 ed. In addition, it must not appear in an I/O list for a

 READ or WRITE associated with the file of the DEFINE FILE

 statement. Severity Level: 8.

 IEK040I IT IS ILLEGAL TO HAVE A & STATEMENT NUMBER PARAMETER

 OUTSIDE A CALL STATEMENT.

 Look at the statement and see what is meant. Delete the &

 statement number. Severity Level: 8.

 IEK044I ONLY THE CALL, FORMAT, OR DATA STATEMENTS MAY HAVE LITERAL

 FIELDS.

 This diagnostic is generated if an attempt is made to use

 a literal field outside of one of the above statements.

 If an *WATFIV deck is being compiled, check the WRITE

 statements. Severity Level: 8.

 IEK045I THE EXPRESSION HAS A LITERAL WHICH IS MISSING A DELIMITER.

 Literal delimiters, like parentheses, must be paired.

 Severity Level: 8.

 FORTRAN H 95

 MTS 6: FORTRAN in MTS

 October 1983

 IEK047I THE LITERAL HAS MORE THAN 255 CHARACTERS IN IT.

 This diagnostic could be generated by a missing delimiter.

 Insert a delimiter (usually a prime) or shorten the

 expression to correct the problem. Severity Level: 8.

 IEK050I THE ARITHMETIC IF HAS THE SYNTAX OF THE BRANCH LABELS

 INCORRECT.

 There should be three executable statement numbers with

 commas following the first and second statement numbers.

 Severity Level: 8.

 IEK052I THE EXPRESSION HAS AN INCORRECT PAIRING OF PARENTHESES OR

 QUOTES.

 This diagnostic will be generated if an H format specifi-

 cation is larger than the data and encompasses a final

 parenthesis. It will occur if quotes within literals are

 not represented by two successive quotes. Severity Level:

 8.

 IEK053I THE STATEMENT HAS A MISPLACED EQUAL SIGN.

 Severity Level: 8.

 IEK056I THE FUNCTION STATEMENT MUST HAVE AT LEAST ONE ARGUMENT.

 Severity Level: 8.

 IEK057I THE STATEMENT HAS A NONVARIABLE SPECIFIED AS A SUBPROGRAM

 NAME.

 Subprogram names must conform to the usual FORTRAN stan-

 dards for variable names, i.e., 1-6 alphanumeric charac-

 ters, beginning with an alphabetic character. Severity

 Level: 8.

 IEK058I THE SUBPROGRAM STATEMENT HAS AN INVALID ARGUMENT.

 One of the arguments in the subroutine definition is an

 invalid argument. The MAP option can be used to help

 determine the types of all variables in the statement.

 This diagnostic will be generated if an attempt is made to

 specify a constant in place of a dummy argument in the

 subprogram statement. Severity Level: 8.

 96 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 IEK059I THE FUNCTION STATEMENT HAS AN INVALID LENGTH

 SPECIFICATION.

 The length specification must not be given if the function

 is declared DOUBLE PRECISION. In all other cases the

 length specification must be one that is permissible for

 the declared type; e.g., INTEGER*4, INTEGER*2. Severity

 Level: 8.

 IEK061I THE EQUIVALENCE STATEMENT CONTAINS A NONSUBSCRIPTED ARRAY

 ITEM. INCORRECT ADCONS MAY BE GENERATED.

 Make sure that all array references in the associated

 equivalence statements are subscripted to prevent improper

 association. Severity Level: 4.

 IEK062I THE EQUIVALENCE STATEMENT HAS AN ARRAY WITH AN INVALID

 NUMBER OF SUBSCRIPTS.

 The number of subscripts for the array in the equivalence

 statement must be the same as that in the specification

 statement for the array. Severity Level: 8.

 IEK064I THE NAMELIST STATEMENT HAS AN INVALID DELIMITER.

 Check the format of the NAMELIST statement; it should

 contain only ’/’ and ’,’ as delimiters. Severity Level:

 8.

 IEK065I THE NAMELIST STATEMENT HAS A NAMELIST NAME NOT BEGINNING

 WITH AN ALPHABETIC CHARACTER.

 Severity Level: 8.

 IEK066I THE NAMELIST STATEMENT HAS A NONUNIQUE NAMELIST NAME.

 The namelist name must be unique. It cannot be the same

 as a variable or array name, and cannot appear in more

 than one NAMELIST declaration. Severity Level: 8.

 IEK067I THE NAMELIST STATEMENT HAS AN INVALID LIST ITEM.

 The list items must be variables, array items, or array

 names. It is possible for a variable or array name to

 appear in more than one NAMELIST declaration. Check for

 possible conflicts with subroutine or function names.

 Severity Level: 8.

 FORTRAN H 97

 MTS 6: FORTRAN in MTS

 October 1983

 IEK069I THE COMMON STATEMENT HAS AN INVALID DELIMITER.

 Check to see that the common statement is of the form:

 (1) COMMON /JIM/ list (for labeled common)

 (2) COMMON // list (for blank common)

 COMMON list

 Severity Level: 8.

 IEK070I THE EQUIVALENCE STATEMENT HAS A MISSING OR MISPLACED

 DELIMITER.

 Check for unbalanced parentheses and misplaced commas.

 Severity Level: 8.

 IEK071I THE EQUIVALENCE STATEMENT DOES NOT SPECIFY AT LEAST TWO

 VARIABLES TO BE EQUIVALENCED.

 This diagnostic will be generated if commas and/or paren-

 theses are misplaced. Severity Level: 8.

 IEK072I THE EQUIVALENCE STATEMENT HAS AN INVALID VARIABLE NAME.

 Dummy arguments are not legal in equivalence statements.

 Check all variable names for legality and absence of

 conflict in usage. If necessary, the MAP option can be

 used to give indication of conflict in usage. Severity

 Level: 8.

 IEK073I THE EQUIVALENCE STATEMENT HAS A SUBSCRIPT WHICH IS NOT AN

 INTEGER CONSTANT.

 Severity Level: 8.

 IEK074I THE STATEMENT HAS A VARIABLE WITH MORE THAN SEVEN

 SUBSCRIPTS.

 No array variable may have more than seven subscripts.

 Check commas and parentheses. Severity Level: 8.

 IEK075I THE COMMON STATEMENT HAS A VARIABLE THAT HAS BEEN

 REFERENCED IN A PREVIOUS COMMON STATEMENT.

 Variables and/or arrays may not appear in more than one

 COMMON declaration. Severity Level: 8.

 IEK076I THE IMPLICIT STATEMENT IS NOT THE FIRST STATEMENT IN A

 MAIN PROGRAM OR THE SECOND STATEMENT IN A SUBPROGRAM.

 Severity Level: 8.

 98 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 IEK077I THE IMPLICIT STATEMENT HAS A MISPLACED DELIMITER IN THE

 TYPE SPECIFICATION FIELD.

 Check to see that the parentheses are balanced and that

 commas appear in the proper places. Severity Level: 8.

 IEK078I THE IMPLICIT STATEMENT HAS AN INVALID TYPE.

 The type DOUBLE PRECISION cannot appear in the IMPLICIT

 statement. Make sure that the type declared has a valid

 standard or optional length specification. The types and

 lengths are as follows:

 Type Length Standard Length ____ ______ _______________

 INTEGER 2 or 4 4

 REAL 4 or 8 4

 COMPLEX 8 or 16 8

 LOGICAL 1 or 4 4

 IEK079I THE IMPLICIT STATEMENT HAS A MISSING LETTER SPECIFICATION.

 Insert the omitted specification. Severity Level: 8.

 IEK080I THE IMPLICIT STATEMENT HAS AN INVALID LETTER

 SPECIFICATION.

 Only the characters A,B,C,...,Z,$ may appear in an IMPLI-

 CIT declaration. Severity Level: 8.

 IEK081I THE IMPLICIT STATEMENT HAS AN INVALID DELIMITER.

 Severity Level: 8.

 IEK082I THE IMPLICIT STATEMENT DOES NOT END WITH A RIGHT

 PARENTHESIS.

 Severity Level: 8.

 IEK083I THE IMPLICIT STATEMENT HAS A MISPLACED DELIMITER IN ITS

 PARAMETER FIELD.

 Check the format of the statement in question, noting the

 placement of parentheses and commas. Severity Level: 8.

 IEK084I THE IMPLICIT STATEMENT CONTAINS A LITERAL FIELD.

 There should not be any primes or Hollerith (wH) specifi-

 cations in the IMPLICIT statements. Severity Level: 8.

 FORTRAN H 99

 MTS 6: FORTRAN in MTS

 October 1983

 IEK086I THE COMMON STATEMENT SPECIFIES A NONVARIABLE TO BE

 ENTERED.

 Only variable or array names may be specified in a common

 statement. Check for conflicts in name usage. Severity

 Level: 8.

 IEK087I THE COMMON STATEMENT SPECIFIES A NONVARIABLE COMMON BLOCK

 NAME.

 Common block names must follow the normal FORTRAN rules

 for variable names. Severity Level: 8.

 IEK088I A DUMMY ARGUMENT IN A SUBPROGRAM MAY NOT BE IN COMMON.

 Severity Level: 8.

 IEK090I THE EXTERNAL STATEMENT HAS A NONVARIABLE DECLARED AS

 EXTERNAL.

 Names of external functions or subroutines must correspond

 to the normal FORTRAN rules for naming variables. Severi-

 ty Level: 8.

 IEK091I THE EXTERNAL STATEMENT HAS AN INVALID DELIMITER.

 Severity Level: 8.

 IEK092I THE TYPE STATEMENT MULTIPLY DEFINES THE VARIABLE.

 Severity Level: 8.

 IEK093I THE TYPE STATEMENT HAS AN INVALID DELIMITER.

 Severity Level: 8.

 IEK094I THE TYPE STATEMENT HAS A NONVARIABLE TO BE TYPED.

 Look for a variable name which does not conform to the

 FORTRAN standards and check for the delimiters being

 properly placed. Severity Level: 8.

 IEK095I THE TYPE STATEMENT HAS THE WRONG LENGTH FOR THE GIVEN

 TYPE.

 See IEK078I for types and associated legal lengths.

 Severity Level: 8.

 IEK096I THE TYPE STATEMENT HAS A MISSING DELIMITER.

 Severity Level: 8.

 100 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 IEK101I THE DO STATEMENT OR IMPLIED DO HAS AN INVALID DELIMITER.

 Check the format of the DO, implied or stated, and note

 where the commas and equal sign are located. Severity

 Level: 8.

 IEK102I THE BACKSPACE/REWIND/ENDFILE STATEMENT HAS AN INVALID

 DELIMITER.

 There should be no delimiters except blanks in any of

 these statements. Severity Level: 8.

 IEK104I THE BACKSPACE/REWIND/ENDFILE STATEMENT HAS A DATA SET

 REFERENCE NUMBER THAT IS EITHER A NONINTEGER OR AN ARRAY

 NAME.

 The data set reference number must be an unsigned integer

 constant or an unsubscripted integer variable that is of

 length 4. Severity Level: 8.

 IEK109I THE PAUSE STATEMENT HAS A MISPLACED DELIMITER.

 The pause statement should contain (1) no delimiters, or

 (2) a literal constant enclosed in single quotes (e.g.,

 ’HERE’), or (3) an integer constant. Severity Level: 8.

 IEK110I THE PAUSE STATEMENT SPECIFIES A VALUE WHICH IS NEITHER A

 LITERAL NOR AN INTEGER CONSTANT.

 Severity Level: 8.

 IEK111I THE PAUSE STATEMENT HAS MORE THAN 255 CHARACTERS IN ITS

 LITERAL FIELD.

 The most probable cause of this error is a missing second

 prime. Severity Level: 8.

 IEK112I THE DICTIONARY HAS OVERFLOWED.

 The program is too complex and should be divided into

 smaller sections.

 Severity level: 16.

 IEK115I THE VARIABLE RETURN STATEMENT HAS NEITHER AN INTEGER

 CONSTANT NOR VARIABLE FOLLOWING THE KEYWORD.

 This error is most likely caused by an invalid variable

 name following the word RETURN. Severity Level: 8.

 FORTRAN H 101

 MTS 6: FORTRAN in MTS

 October 1983

 IEK116I THE DO STATEMENT OR IMPLIED DO HAS AN INVALID PARAMETER.

 The DO variable must be an unsubscripted integer variable.

 In addition, the initial value, test value, and increment

 value must be represented by unsigned integer constants,

 or unsigned, nonsubscripted integer variables. The values

 of these parameters must be nonnegative and greater than

 zero. Severity Level: 8.

 IEK117I THE BLOCK DATA STATEMENT HAS AN INVALID DELIMITER.

 Severity Level: 8.

 IEK120I THE BLOCK DATA STATEMENT WAS NOT THE FIRST STATEMENT OF

 THE SUBPROGRAM.

 Severity Level: 8.

 IEK121I THE DATA STATEMENT HAS A VARIABLE WHICH HAS A NONALPHABET-

 IC FIRST CHARACTER.

 This problem can occur from the misplacement of commas

 and/or slashes. Check the format of the data statement.

 Severity Level: 8.

 IEK122I THE DATA STATEMENT CONTAINS A SUBSCRIPTED VARIABLE WHICH

 HAS NOT BEEN DEFINED AS AN ARRAY.

 This may result from a missing dimension or type statement

 which defines the variable as an array. Either the

 subscript should be deleted from the variable in question,

 or the variable should be defined as an array. The data

 statement must follow the definition statements. Severity

 Level: 8.

 IEK123I THE DATA STATEMENT HAS AN INVALID DELIMITER.

 Severity Level: 8.

 IEK124I THE DATA STATEMENT HAS A VARIABLE WITH AN INVALID INTEGER

 SUBSCRIPT.

 The subscript must be only integer constants separated by

 commas. Severity Level: 8.

 IEK125I THE DATA STATEMENT HAS A VARIABLE WITH A SUBSCRIPT THAT

 CONTAINS AN INVALID DELIMITER.

 Severity Level: 8.

 102 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 IEK129I THE STATEMENT CONTAINS AN INVALID DATA CONSTANT.

 The constant must be valid for its designated class and

 type. Note that no conversion is done in DATA statements.

 Severity Level: 8.

 IEK132I THE DATA STATEMENT HAS AN INVALID DELIMITER IN ITS

 INITIALIZATION VALUES.

 Severity Level: 8.

 IEK133I THE DO STATEMENT CANNOT FOLLOW A LOGICAL IF STATEMENT.

 To solve this problem, change the DO to a "GO TO n", where

 "n" is the statement label of the DO located elsewhere in

 the program. Severity Level: 8.

 IEK134I THE DO STATEMENT HAS AN INVALID INTEGER DO VARIABLE.

 The DO variable must be a nonsubscripted variable.

 Severity Level: 8.

 IEK135I THE DO STATEMENT OR IMPLIED DO HAS AN INVALID TEST VALUE.

 The test value must be greater than zero and less than

 (2**31)-1. It must be in the form of an unsigned integer

 constant or an unsigned nonsubscripted integer variable.

 Severity Level: 8.

 IEK136I THE NUMBER OF NESTED DO’S EXCEEDS THE COMPILER LIMIT.

 The maximum number of levels for nesting is 25. Severity

 Level: 8.

 IEK137I THE DO STATEMENT OR IMPLIED DO HAS AN INVALID INCREMENT

 VALUE.

 Severity Level: 8.

 IEK138I THE DO STATEMENT HAS A PREVIOUSLY DEFINED STATEMENT NUMBER

 SPECIFIED TO END THE DO RANGE.

 Severity Level: 8.

 IEK139I A LOGICAL IF IS FOLLOWED BY ANOTHER LOGICAL IF OR A

 SPECIFICATION STATEMENT.

 Replace the second logical IF with a "GO TO n" statement,

 where "n" is the label of the second logical IF located

 elsewhere in the program or combine the LOGICAL IFs into

 one statement. The specification statement should be

 placed at the beginning of the program. Conditional

 specifications are not allowed. Severity Level: 8.

 FORTRAN H 103

 MTS 6: FORTRAN in MTS

 October 1983

 IEK140I THE IF STATEMENT BEGINS WITH AN INVALID CHARACTER.

 Severity Level: 8.

 IEK141I THE FORMAT STATEMENT DOES NOT END WITH A RIGHT

 PARENTHESIS.

 Severity Level: 8.

 IEK143I THE STATEMENT FUNCTION HAS AN ARGUMENT WHICH IS NOT A

 VARIABLE.

 Arguments in statement functions must be nonsubscripted

 variables. The naming of variables must correspond to the

 standard FORTRAN conventions. Severity Level: 8.

 IEK144I THE STATEMENT FUNCTION HAS MORE THAN 20 ARGUMENTS.

 Severity Level: 8.

 IEK145I THE STATEMENT FUNCTION HAS AN INVALID DELIMITER.

 Severity Level: 8.

 IEK146I THE STATEMENT FUNCTION HAS A MISPLACED EQUAL SIGN.

 The format of the statement function is: name (arg, ...,

 arg) = exp The expression cannot contain any equal signs,

 and there must be at least one dummy argument. Severity

 Level: 8.

 IEK147I A STATEMENT FUNCTION DEFINITION MUST PRECEDE THE FIRST

 EXECUTABLE STATEMENT.

 Severity Level: 8.

 IEK148I THE DIMENSIONED ITEM HAS A NONINTEGER SUBSCRIPT.

 The construction of any subscript must follow the rules

 outlined in the FORTRAN specifications in the IBM publica-

 tion, IBM System/360 and System/370 FORTRAN IV Language, __

 form GC28-6515. Severity Level: 8.

 IEK149I A VARIABLE TO BE DIMENSIONED USING ADJUSTABLE DIMENSIONS

 MUST HAVE BEEN PASSED AS AN ARGUMENT AND MUST NOT APPEAR

 IN COMMON.

 Severity Level: 8.

 IEK150I THE DIMENSIONED ITEM HAS AN INVALID DELIMITER.

 Severity Level: 8.

 104 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 IEK151I THE STATEMENT SPECIFIES A NONVARIABLE TO BE DIMENSIONED.

 The variable name does not conform to the IBM FORTRAN

 standard. Severity Level: 8.

 IEK152I THE SUBPROGRAM STATEMENT HAS AN INVALID DELIMITER IN THE

 ARGUMENT LIST.

 The arguments must be separated by commas, and no other

 delimiter other than a blank is allowed to precede or

 follow the comma. Severity Level: 8.

 IEK153I THE STATEMENT HAS AN INVALID NAME SPECIFIED AS A FUNCTION

 REFERENCE.

 This diagnostic will result if the function has been

 improperly defined or if the type of name used as a

 reference does not agree with the type of name used in the

 definition of the function. Both the implicit and/or

 actual declarations of type must match. Severity Level:

 8.

 IEK156I THE I/O STATEMENT HAS AN INVALID NAME PRECEDING THE EQUAL

 SIGN.

 Severity Level: 8.

 IEK157I THE I/O STATEMENT HAS A NONVARIABLE SPECIFIED AS A LIST

 ITEM.

 No function references or arithmetic expressions may

 appear in the I/O list. Severity Level: 8.

 IEK158I THE I/O STATEMENT HAS AN IMPROPER PAIRING OF PARENTHESES

 IN AN IMPLIED DO, OR A NONINTEGRAL INDEX.

 Severity Level: 8.

 IEK159I THE FORMAT STATEMENT DOES NOT HAVE A STATEMENT NUMBER.

 Severity Level: 4.

 IEK160I THE I/O STATEMENT HAS AN INVALID DELIMITER IN THE

 PARAMETERS.

 Severity Level: 8.

 IEK161I THE I/O STATEMENT HAS A DUPLICATE PARAMETER.

 Severity Level: 8.

 FORTRAN H 105

 MTS 6: FORTRAN in MTS

 October 1983

 IEK163I THE I/O STATEMENT HAS AN ARRAY WHICH IS NOT DIMENSIONED.

 Severity Level: 8.

 IEK164I THE I/O STATEMENT HAS AN ARITHMETIC EXPRESSION OR A

 FUNCTION NAME SPECIFIED AS A LIST ITEM.

 Severity Level: 8.

 IEK165I THE I/O STATEMENT HAS A PARAMETER WHICH IS NOT AN ARRAY

 AND NOT A NAMELIST NAME.

 This diagnostic can result if there is an undefined

 function reference or reference to an undimensioned array.

 Severity Level: 8.

 IEK166I THE I/O STATEMENT HAS A NONINTEGER CONSTANT OR VARIABLE

 REPRESENTING THE DATA SET REFERENCE NUMBER.

 The data set reference number must be an unsigned integer

 constant or an integer variable of length 4. Severity

 Level: 8.

 IEK167I THE STATEMENT HAS AN INVALID USE OF A STATEMENT FUNCTION

 NAME.

 This error can result if the statement function referenced

 has not yet been defined. There may be other causes.

 Severity Level: 8.

 IEK168I THE STATEMENT SPECIFIES AS A SUBPROGRAM NAME A VARIABLE

 WHICH HAS BEEN PREVIOUSLY USED AS A NONSUBPROGRAM NAME.

 If the variable name duplicates the subprogram name,

 either change the variable name or the subprogram name and

 all references to the one changed. Use of the XREF option

 can be helpful in locating references if the program

 contains numerous statements. Severity Level: 8.

 IEK169I THE DIRECT ACCESS I/O STATEMENT MAY NOT SPECIFY A NAMELIST

 NAME.

 Severity Level: 8.

 IEK170I THE DIRECT ACCESS I/O STATEMENT HAS A NONINTEGER SPECIFY-

 ING THE RECORD’S RELATIVE POSITION.

 Severity Level: 8.

 IEK171I THE NAME SPECIFIED FOR AN ENTRY POINT HAS ALREADY BEEN

 USED AS EITHER A VARIABLE SUBROUTINE OR FUNCTION NAME.

 Severity Level: 8.

 106 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 IEK176I THE I/O STATEMENT CONTAINS INVALID SYNTAX IN ITS IMPLIED

 DO.

 This diagnostic will result when there is invalid syntax,

 and also if there are more than 20 implied DOs in the I/O

 statement. Severity Level: 8.

 IEK192I THE STATEMENT HAS A LABEL WHICH IS SPECIFIED AS BOTH THE

 LABEL OF A FORMAT STATEMENT AND THE OBJECT OF A BRANCH.

 Severity Level: 8.

 IEK193I THE STATEMENT NUMBER HAS BEEN PREVIOUSLY DEFINED.

 Severity Level: 8.

 IEK194I THE TYPE STATEMENT HAS A MISSING DELIMITER IN THE INITIAL-

 IZATION VALUES.

 Severity Level: 8.

 IEK197I THE STOP STATEMENT HAS A NONINTEGER CONSTANT AFTER THE

 KEYWORD.

 The constant must be a string of 1-5 decimal digits.

 Severity Level: 8.

 IEK199I THE SUBROUTINE OR FUNCTION STATEMENT WAS NOT THE FIRST

 STATEMENT.

 No statements other than comment statements may precede

 the SUBROUTINE or FUNCTION statement. Severity Level: 8.

 IEK200I QUOTE LITERALS MAY APPEAR ONLY IN CALL, DATA INITIALIZA-

 TION, FUNCTION, AND FORMAT STATEMENTS.

 Severity Level: 8.

 IEK202I THE STATEMENT HAS A VARIABLE WHICH HAS BEEN PREVIOUSLY

 DIMENSIONED. THE INITIAL DIMENSION FACTORS ARE USED.

 Severity Level: 4.

 IEK203I AN ENTRY STATEMENT MUST NOT APPEAR IN A MAIN PROGRAM. THE

 STATEMENT IS IGNORED.

 Severity Level: 8.

 IEK204I THE STOP STATEMENT HAS AN INVALID DELIMITER.

 The only valid delimiters are blanks. Severity Level: 4.

 FORTRAN H 107

 MTS 6: FORTRAN in MTS

 October 1983

 IEK205I THE ASSIGNED OR COMPUTED GO TO HAS AN INVALID ELEMENT

 FOLLOWING THE CLOSING PARENTHESIS.

 Severity Level: 4.

 IEK206I THE STATEMENT HAS A NONSUBSCRIPTED ARRAY ITEM.

 Severity Level: 4.

 IEK207I THE CONTINUE STATEMENT DOES NOT END AFTER THE KEYWORD

 CONTINUE.

 This error message will result if the statement following

 the CONTINUE has indications that it is a continuation, or

 if there is garbage following the word CONTINUE. Severity

 Level: 4.

 IEK208I THE CONTINUE STATEMENT DOES NOT HAVE A STATEMENT NUMBER.

 Severity Level: 4.

 IEK209I THE STATEMENT HAS AN OCTAL CONSTANT SPECIFIED AS AN

 INITIAL VALUE. THE VALUE IS REPLACED BY ZERO.

 This diagnostic will result if the letter "O" is inadver-

 tently punched in place of a leading zero in a constant.

 If an octal constant is required, convert it to the

 appropriate hexadecimal constant. Severity Level: 4.

 IEK211I THE STATEMENT HAS A COMPLEX CONSTANT WHOSE REAL CONSTANTS

 DIFFER IN LENGTH.

 Both parts of the constant must be either REAL*4 or

 REAL*8, but not a combination of the two. Severity Level:

 4.

 IEK212I THE BLOCK DATA SUBPROGRAM CONTAINS EXECUTABLE STATEMENT-

 (S). THE EXECUTABLE STATEMENT(S) IS IGNORED.

 Severity Level: 4.

 IEK222I THE EXPRESSION HAS A LITERAL WITH A MISSING DELIMITER.

 This diagnostic can result from either a missing delimiter

 or use of an invalid delimiter. Severity Level: 4.

 IEK224I THE STATEMENT AFTER AN ARITHMETIC IF, GO TO, OR RETURN HAS

 NO LABEL.

 Because there is no label on this statement, there is no

 path to it. It cannot be executed. Supply a label or

 make sure there is a path. Severity Level: 4.

 108 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 IEK225I A LABEL APPEARS ON A NONEXECUTABLE STATEMENT. THE LABEL

 IS IGNORED.

 Severity Level: 4.

 IEK226I THE STATEMENT HAS A VARIABLE WITH MORE THAN SIX CHARAC-

 TERS. THE RIGHTMOST CHARACTERS ARE TRUNCATED.

 This can result from a missing delimiter. Either truncate

 the name or insert the delimiter. Severity Level: 4.

 IEK229I ALL THE ARGUMENTS OF AN ARITHMETIC STATEMENT FUNCTION ARE

 NOT USED IN THE DEFINITION.

 The expression to the right of the equal sign should

 contain as many distinct variables as there are dummy

 arguments. Severity Level: 4.

 IEK302I THE EQUIVALENCE STATEMENT HAS EXTENDED COMMON BACKWARDS.

 Look at all implicit and explicit equivalencing or assign-

 ment statements to determine where the error occurred.

 Severity Level: 8.

 IEK303I THE EQUIVALENCE STATEMENT CONTAINS AN ARRAY WHICH IS NOT

 DIMENSIONED.

 Mention of an array in an equivalence statement must

 include a subscript. Severity Level: 8.

 IEK304I THE EQUIVALENCE STATEMENT HAS LINKED BLOCKS OF COMMON

 TOGETHER.

 Severity Level: 8.

 IEK305I THE EQUIVALENCE STATEMENT CONTAINS AN ARRAY WITH A SUB-

 SCRIPT WHICH IS OUT OF RANGE.

 Severity Level: 4.

 IEK306I THE EQUIVALENCE STATEMENT HAS AN INCONSISTENCY.

 This diagnostic will result if the equivalence statement

 contradicts itself or any previously established equiva-

 lencies, implicit or explicit. Severity Level: 8.

 IEK307I THE DATA STATEMENT CONTAINS A VARIABLE THAT IS NOT

 REFERENCED.

 Severity Level: 4.

 FORTRAN H 109

 MTS 6: FORTRAN in MTS

 October 1983

 IEK308I THE EQUIVALENCE STATEMENT HAS EQUIVALENCED TWO VARIABLES

 IN THE SAME COMMON BLOCK.

 Severity Level: 8.

 IEK312I THE EQUIVALENCE STATEMENT CONTAINS AN EXTERNAL REFERENCE.

 The externally referenced name should be either deleted or

 corrected. Severity Level: 8.

 IEK314I THE EQUIVALENCE STATEMENT MAY CAUSE WORD-BOUNDARY ERRORS.

 IEK315I THE EQUIVALENCE STATEMENT WILL CAUSE WORD-BOUNDARY ERRORS.

 Variables should be arranged in fixed descending order

 according to length. If this cannot be done, then proper

 alignment should be forced using dummy variables. The MAP

 option can be used for information on the variables and

 their relative addresses. Severity Level: 4.

 IEK317I THE BLOCK DATA PROGRAM DOES NOT CONTAIN A COMMON

 STATEMENT.

 Severity Level: 8.

 IEK318I THE DATA STATEMENT IS USED TO ENTER DATA INTO COMMON

 OUTSIDE A BLOCK DATA SUBPROGRAM.

 The variable referenced will have to be DATA-initialized

 in a BLOCK DATA program or in an assignment statement.

 Severity Level: 8.

 IEK319I DATA IS ENTERED INTO A LOCAL VARIABLE IN A BLOCK DATA

 PROGRAM.

 Check the spelling of all initialized variables. Delete

 the local variable or make sure that it is included in a

 COMMON block. Severity Level: 8.

 IEK320I DATA MAY NOT BE ENTERED INTO A VARIABLE WHICH HAS BEEN

 PASSED AS AN ARGUMENT.

 Dummy arguments cannot be data initialized. Their value

 may be changed using an assignment statement, however.

 Data initialize the variable in the calling program or use

 an assignment statement. Severity Level: 8.

 IEK322I THE COMMON STATEMENT MAY CAUSE WORD-BOUNDARY ERRORS.

 110 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 IEK323I THE COMMON STATEMENT WILL CAUSE A WORD-BOUNDARY ERROR.

 Ideally, the variables in the COMMON block should be

 arranged in fixed descending order according to length.

 If this is not possible, the proper alignment should be

 forced using dummy variables. Severity Level: 4.

 IEK332I THE STATEMENT NUMBER IS UNDEFINED.

 Severity Level: 8.

 IEK334I THE COMMON STATEMENT HAS A VARIABLE WITH A VARIABLE

 DIMENSION.

 The subscript used in COMMON statements must be 1-7

 unsigned integer constants separated by commas. Severity

 Level: 8.

 IEK350I THE DATA STATEMENT HAS A MISSING PARENTHESIS.

 This can result from a misplacement of quotes. Severity

 Level: 8.

 IEK351I THE DATA INITIALIZATION VALUE IS LARGER THAN THE VARIABLE

 OR ARRAY ELEMENT. TRUNCATION OR SPILL WILL OCCUR.

 An array or variable was initialized with a constant whose

 length was greater than that of the variable or array

 element. If the constant was specified as the first

 element in an array which was not subscripted in the data

 statement, then part of the constant will spill over into

 the other array element(s). All other cases result in

 truncation to the appropriate length. Severity Level: 4.

 IEK352I THE DATA STATEMENT HAS TOO MANY INITIALIZATION VALUES.

 There must be a one-to-one correspondence between the

 initialization values and the total number of items to be

 initialized. Severity Level: 4.

 IEK353I THE DIMENSION STATEMENT HAS A VARIABLE WHICH HAS A

 SUBSCRIPT OF REAL MODE.

 Severity Level: 8.

 IEK354I A VARIABLE TO BE DIMENSIONED USING ADJUSTABLE DIMENSIONS

 MUST HAVE BEEN PASSED AS AN ARGUMENT AND MUST NOT APPEAR

 IN COMMON.

 Severity Level: 8.

 FORTRAN H 111

 MTS 6: FORTRAN in MTS

 October 1983

 IEK355I ADCON TABLE EXCEEDED.

 This will result if an expression is too long and/or

 complex to be evaluated. Restructure the statement into a

 series of less complex statements. Severity Level: 16.

 (Note: For any error of severity level 16, the output

 should be taken to a Computing Center consultant for

 advice.)

 IEK356I A PARAMETER CANNOT ALSO BE IN COMMON.

 Dummy arguments cannot be in common. Severity Level: 8.

 IEK357I THE ARRAY HAS AN INCORRECT ADJUSTABLE DIMENSION.

 Severity Level: 8.

 IEK358I THE ADJUSTABLE DIMENSION IS NOT PASSED AS AN ARGUMENT OR

 IN COMMON.

 Severity Level: 8.

 IEK500I THE ARGUMENT TO A FORTRAN-SUPPLIED FUNCTION IS OF THE

 WRONG TYPE. THE FUNCTION IS ASSUMED TO BE USER-DEFINED.

 Check the argument type required by the standard FORTRAN

 function. If the function is to be user-supplied, make

 sure that it appears in an EXTERNAL statement. Severity

 Level: 4.

 IEK501I THE EXPRESSION HAS A COMPLEX EXPONENT.

 Severity Level: 8.

 IEK502I THE EXPRESSION HAS A BASE WHICH IS COMPLEX, BUT THE

 EXPONENT IS NONINTEGER.

 Severity Level: 8.

 IEK503I A NONSUBSCRIPTED ARRAY ITEM APPEARS IMPROPERLY WITHIN A

 FUNCTION REFERENCE OR A CALL.

 Severity Level: 8.

 IEK504I THE BASE AND/OR EXPONENT IS A LOGICAL VARIABLE.

 The base must be real, complex, or integer. The exponent

 may be real or integer. Severity Level: 8.

 IEK505I THE INPUT/OUTPUT STATEMENT REFERS TO THE STATEMENT NUMBER

 OF A NONFORMAT STATEMENT.

 Severity Level: 8.

 112 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 IEK506I THERE IS A MISSING OPERAND PRECEDING A RIGHT PARENTHESIS.

 Severity Level: 8.

 IEK507I A NONSUBSCRIPTED ARRAY ITEM IS USED AS AN ARGUMENT TO AN

 IN-LINE FUNCTION.

 Severity Level: 8.

 IEK508I THE NUMBER OF ARGUMENTS TO AN IN-LINE FUNCTION IS

 INCORRECT.

 Severity Level: 8.

 IEK509I THE PROGRAM DOES NOT END WITH A STOP, RETURN, OR GO TO

 STATEMENT.

 It is not possible to merely fall through to the END

 statement. Severity Level: 4.

 IEK510I THE EXPRESSION HAS A LOGICAL OPERATOR WITH A NONLOGICAL

 OPERAND.

 Severity Level: 8.

 IEK512I THE LOGICAL IF DOES NOT CONTAIN A LOGICAL EXPRESSION.

 Severity Level: 8.

 IEK515I THE EXPRESSION HAS A RELATIONAL OPERATOR WITH A COMPLEX

 OPERAND.

 If it is necessary to use the operand with the relational

 operator, then equivalence a real array of two elements to

 the operand and then proceed. Severity Level: 8.

 IEK516I THE ARITHMETIC IF CONTAINS A COMPLEX EXPRESSION.

 See IEK515I. Severity Level: 8.

 IEK520I THERE IS A COMMA IN AN INVALID POSITION.

 Severity Level: 8.

 IEK521I THE EXPRESSION HAS AT LEAST ONE EXTRA RIGHT PARENTHESIS.

 Severity Level: 8.

 IEK522I THE EXPRESSION HAS AT LEAST ONE TOO FEW RIGHT PARENTHESES.

 Severity Level: 8.

 FORTRAN H 113

 MTS 6: FORTRAN in MTS

 October 1983

 IEK523I THE EQUAL SIGN IS IMPROPERLY USED.

 Severity Level: 8.

 IEK524I THE EXPRESSION HAS AN OPERATOR MISSING AFTER A RIGHT

 PARENTHESIS.

 Severity Level: 8.

 IEK525I THE EXPRESSION USES A LOGICAL OR RELATIONAL OPERATOR

 INCORRECTLY.

 This diagnostic can result from use of an invalid operand

 expression. Operators must be preceded and followed by

 periods. Severity Level: 8.

 IEK529I A FUNCTION NAME APPEARING AS AN ARGUMENT HAS NOT BEEN

 DECLARED EXTERNAL.

 Severity Level: 8.

 IEK530I THE EXPRESSION HAS A VARIABLE WITH AN IMPROPER NUMBER OF

 SUBSCRIPTS.

 This can result from a misplaced delimiter in the sub-

 script field. There should be as many subscripts as there

 are in the associated dimensioning statement. Severity

 Level: 8.

 IEK531I THE EXPRESSION HAS A STATEMENT FUNCTION REFERENCE WITH AN

 IMPROPER NUMBER OF ARGUMENTS.

 Severity Level: 8.

 IEK541I AN ARGUMENT TO A LIBRARY FUNCTION HAS AN INVALID TYPE.

 Consult the list of library functions in the IBM publica-

 tion, IBM System/360 and System/370 FORTRAN IV Language, ___

 form GC28-6515, to determine the required type of the

 arguments to each function. Severity Level: 8.

 IEK542I A LOGICAL EXPRESSION APPEARS IN AN INVALID CONTEXT.

 Severity Level: 8.

 IEK550I PUSHDOWN, ADCON, OR ASF ARGUMENT TABLE EXCEEDED.

 The program is too complex and should be divided into

 smaller sections.

 Severity Level: 16.

 114 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 IEK552I SOURCE PROGRAM IS TOO LARGE.

 Subdivide the program. Severity Level: 16.

 IEK570I TABLE EXCEEDED. OPTIMIZATION DOWNGRADED.

 Program is too large to permit optimization. OPT=1

 register allocation only is performed. Severity Level:

 0.

 IEK580I COMPILER ERROR.

 Severity Level: 16.

 IEK600I INTERNAL COMPILER ERROR. LOGICALLY IMPOSSIBLE BRANCH

 TAKEN IN A COMPILER SUBROUTINE.

 Severity Level: 16.

 IEK610I THE STATEMENT NUMBER OR GENERATED LABEL IS UNREACHABLE.

 This message will be generated only if OPT=2 is specified.

 The message can be caused by an unlabeled STOP, RETURN, or

 GO TO which immediately follows another STOP, RETURN, or

 GO TO. It may also be generated if an unlabeled statement

 follows an arithmetic IF. Severity Level: 4.

 IEK620I THE STATEMENT LABEL OR GENERATED LABEL IS A MEMBER OF AN

 UNREACHABLE LOOP.

 This message will only be generated if OPT=2 was speci-

 fied. Control statements should indicate correct target

 branches. Severity Level: 4.

 IEK630I INTERNAL TOPOLOGICAL ANALYSIS TABLE EXCEEDED.

 The program is too complex and should be divided into

 smaller sections.

 Severity Level: 16.

 IEK640I COVERAGE BY BASE REGISTER 12 IN OBJECT MODULE EXCEEDED.

 The program is too large and should be divided into

 smaller sections.

 Severity Level: 16.

 FORTRAN H 115

 MTS 6: FORTRAN in MTS

 October 1983

 IEK650I INTERNAL ADCON TABLE EXCEEDED.

 The program is too large and should be divided into

 smaller sections.

 Severity Level: 16.

 IEK660I INTERNAL COMPILER ERROR. TEMPORARY FETCHED BUT NEVER

 STORED.

 Severity Level: 16.

 IEK661I INTERNAL COMPILER ERROR. UNABLE TO FREE A REGISTER.

 Severity Level: 16.

 IEK662I INTERNAL COMPILER ERROR. TEMPORARY NOT ENTERED IN ASSIGN-

 MENT TABLE.

 Severity Level: 16.

 IEK670I LOGICALLY IMPOSSIBLE BRANCH TAKEN IN A COMPILER

 SUBROUTINE.

 Severity Level: 16.

 IEK671I LOGICALLY IMPOSSIBLE BRANCH TAKEN IN A COMPILER

 SUBROUTINE.

 Severity Level: 16.

 IEK710I THE FORMAT STATEMENT SPECIFIES A FIELD WIDTH OF ZERO.

 Severity Level: 8.

 IEK720I THE FORMAT STATEMENT CONTAINS AN INVALID CHARACTER.

 Severity Level: 8.

 IEK730I THE FORMAT STATEMENT HAS UNBALANCED PARENTHESES.

 Severity Level: 8.

 IEK740I THE FORMAT STATEMENT HAS NO BEGINNING LEFT PARENTHESIS.

 Severity Level: 8.

 IEK750I THE FORMAT STATEMENT SPECIFIES A COUNT OF ZERO FOR A

 LITERAL FIELD.

 Severity Level: 8.

 116 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983

 IEK760I THE FORMAT STATEMENT CONTAINS A MEANINGLESS NUMBER.

 Severity level: 8.

 IEK770I THE FORMAT STATEMENT HAS A MISSING DELIMITER.

 Severity Level: 8.

 IEK780I THE FORMAT STATEMENT CONTAINS A NUMERIC SPECIFICATION

 GREATER THAN 255.

 No replication or specification number can be greater than

 255 in a FORMAT statement. Severity Level: 8.

 IEK790I THE FORMAT STATEMENT CONTAINS GROUP FORMAT SPECIFICATIONS

 NESTED TO A LEVEL GREATER THAN TWO.

 This diagnostic is generated when the compiler detects

 more than two left parentheses without an intervening

 right parenthesis in a FORMAT statement. Severity Level:

 8.

 IEK800I SOURCE PROGRAM IS TOO LARGE.

 Severity Level: 16.

 IEK901I NO SOURCE INPUT FOUND AT END OF FILE ON SCARDS.

 No source input is detected by the compiler. Severity

 Level: 4.

 IEK1000I INTERNAL COMPILER ERROR.

 Severity Level: 4.

 FORTRAN H 117

 MTS 6: FORTRAN in MTS

 October 1983

 118 FORTRAN H

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 VS FORTRAN __________

 The public file *FORTRANVS contains Version 2, Release 2.0 of the IBM

 VS FORTRAN compiler. This version runs in native MTS mode and is

 located in shared virtual memory.

 VS FORTRAN meets the most recent standard published by the American

 National Standards Institute (ANSI), FORTRAN 77. It also supports IBM

 extensions to the language and contains features and extensions that are

 not available with FORTRAN 66 compilers.

 This compiler can produce object programs that utilize the IBM

 3090-400 Vector Facility. This will significantly speed up large-scale

 numerical processing, especially arrays inside of DO-loops.

 The MTS version in *FORTRANVS supports all documented features of the

 IBM version except asynchronous I/O and keyed I/O.

 VS FORTRAN is documented in the following IBM publications:

 VS FORTRAN Version 2: Language and Library Reference, Release 1.1 ___

 or 2.0, form SC26-4221.

 VS FORTRAN Version 2: Programming Guide, Release 1.1 or 2.0, form __

 SC26-4222.

 In addition, the FORTRAN 77 standard is documented in Programming ___________

 Language FORTRAN, ANSI Standard X3.9-1978. ________________

 COMPILING A VS FORTRAN PROGRAM ______________________________

 The VS FORTRAN compiler is run by specifying the following command:

 $RUN *FORTRANVS SCARDS=source SPUNCH=object SPRINT=list SERCOM=errs

 0=include 1=deck PAR=options

 where

 "source" is the file containing the VS FORTRAN source program;

 "object" is the file in which the object code will be stored;

 "list" is the file in which the compiler will write source

 listings, error messages, and optionally, object list-

 ings, storage maps, and cross-reference listings;

 "errs" is the file to which error messages will be written;

 "include" is a file containing additional source statements to be

 included in the source program (see the section "The

 VS FORTRAN 119

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 INCLUDE Feature" below);

 "deck" is the file in which the deck code will be stored;

 "options" is one or more compiler options (see the section "Compil-

 er Options" below).

 The default assignments are as follows:

 SCARDS - defaults to *SOURCE* for program input. If SCARDS is not

 assigned and *SOURCE* is assigned to the terminal, the

 compiler will read the source program from the terminal.

 SPRINT - defaults to *SINK* for source listings. If SPRINT is not

 assigned and *SINK* is assigned to the terminal, no

 compiler output listings will be produced.

 SPUNCH - defaults to -LOAD for the object file. If SPUNCH is not

 assigned, -LOAD will be emptied before the object program

 is written; if SPUNCH is explicitly assigned to a file,

 that file is not emptied before the object program is ___

 written.

 SERCOM - defaults to *MSINK* for messages.

 0 - is optional and has no default.

 1 - is optional and is identical to SPUNCH.

 EXECUTING A VS FORTRAN PROGRAM ______________________________

 To execute the compiled program, the following $RUN command should be

 given:

 $RUN object

 The usual FORTRAN library default I/O units apply, that is:

 5 = *SOURCE*

 6 = *SINK*

 Note: If the program is compiled with either the VECTOR or IL(NODIM)

 options or if the program is to use special mathematical functions, the

 IBM SDUMP subroutine, or the IBM extended error-handing subroutines, the

 *FORTRANLIB library must be concatenated to the object program, i.e.,

 $RUN object+*FORTRANLIB

 See "VS Fortran I/O Library" below for details.

 COMPILER OPTIONS ________________

 Compile-time options may be included in the PAR field of the $RUN

 command, or they may be included in the source file in an @PROCESS

 120 VS FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 statement, as described at the end of this section. More than one

 option may be included, but each option must be separated from the next

 by a comma or blank. The available options are described below. See

 the IBM publication, VS FORTRAN Version 2: Programming Guide, for more __

 information. In the following list, the default is given for each

 option and accepted abbreviations are shown.

 AUTODBL(value) Default: AUTODBL(NONE)

 The AUTODBL option specifies the automatic conversion of single-

 precision calculations to double precision, double-precision calcu-

 lations to extended precision. For more information concerning

 "value", consult "Using the Automatic Precision Increase Facility

 -- AUTODBL Option" in the IBM publication, VS FORTRAN Version 2: ________________________

 Programming Guide. AUTODBL may be abbreviated as AD. _________________

 CHARLEN(number) Default: 32767

 The CHARLEN option specifies the maximum length for any CHARACTER

 variable, CHARACTER array element, or CHARACTER function. The

 value of "number" must be an integer in the range of 1 to 32767.

 If an illegal value is specified, the default of 32767 will be

 used. CHARLEN may be abbreviated as CL.

 CI(number1,number2,...) Default: None

 The CI option specifies the identification numbers of the condi-

 tional INCLUDE statements to be processed. The values supplied

 must be in the range of 1 to 255. For further details, see the

 section "The INCLUDE Feature" below and the description of the

 INCLUDE statement in the IBM publication, VS FORTRAN Version 2: _____________________

 Language and Library Reference. ______________________________

 DC(name1,name2,...) Default: None

 The DC option specifies the names of COMMON blocks that are to be

 allocated at execution time. This option allows the specification

 of very large (i.e., more than one megabyte) COMMON blocks.

 DECK / NODECK Default: NODECK _ ___

 The DECK option specifies that the object program is to be written

 on logical I/O unit 1. This option is unnecessary because, by

 default, an identical object program is written on SPUNCH.

 DIRECTIVE(trigger-constant) / NODIRECTIVE[(trigger-constant)] ___ _____

 Default: NODIRECTIVE

 The DIRECTIVE option specifies whether or not the processing of

 selected comments as vector directive statements is enabled or

 disabled. The DIRECTIVE option can only be specified in an

 @PROCESS statement once for each compilation unit. Refer to

 "Vector Directives" in the IBM publication, VS FORTRAN Version 2: _______________________

 VS FORTRAN 121

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 Programming Guide, for more information on vector directive ___________________

 statements.

 "trigger-constant" is a character constant used to identify direc-

 tives in comment statements. If the constant is specified with

 NODIRECTIVE option, the processing of a particular vector directive

 statement will be disabled.

 FIPS(S|F) / NOFIPS Default: NOFIPS

 The FIPS option controls the flagging of statements in the source

 program that are not defined in the FORTRAN 77 standard (see

 Programming Language FORTRAN, ANSI Standard X3.9-1978). ____________________________

 FIPS(S) requests the compiler to flag all those language

 elements not included in the ANSI Subset standard.

 FIPS(F) requests the compiler to flag all language elements not

 included in the ANSI Full standard. See the IBM pubication, VS __

 FORTRAN Version 2: Language and Library Reference, Appendix A, ___

 for a list of items flagged when FIPS(F) is used.

 FIPS flagging is ignored if the FREE or LANGLVL(66) options are in

 effect.

 FLAG(I|W|E|S) Default: FLAG(I)

 The FLAG option specifies the level of diagnostic messages to be

 written. There are four levels of messages: information messages,

 warning messages (those generating a return code of 4), error

 messages (those generating a return code of 8), and severe error

 messages (those generating a return code of 12 or higher).

 FLAG(I) indicates that messages of all four levels are to be

 written.

 FLAG(W) indicates that warning, error, and severe error messages

 are to be written.

 FLAG(E) indicates that only error messages and severe error

 messages are to be written.

 FLAG(S) indicates that only severe error messages are to be

 written.

 FREE / FIXED Default: FIXED

 The FREE option specifies that the source program is written in

 free format. The FIXED option specifies that the source program is

 written in fixed format (column-aligned). See the IBM publication,

 VS FORTRAN Version 2: Language and Library Reference, for further ___

 details.

 122 VS FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 GOSTMT / NOGOSTMT Default: NOGOSTMT

 The GOSTMT option indicates that the internal statement numbers

 (ISNs) are to be generated in the object program for calling

 sequences to subroutines. The ISNs are used when generating a

 traceback map during program debugging. The NOGOSTMT option

 specifies that ISNs are not generated in the object program.

 GOSTMT may be abbreviated as GS and NOGOSTMT as NOGS.

 ICA suboption / NOICA

 The ICA option specifies whether intercompilation analysis is to be

 performed, specifies the files containing ICA information to be

 used or updated, and controls output from the intercompilation

 analyzer. ICA should be specified when there is a group of

 separately-compiled programs and subprograms to be executed togeth-

 er and there is a need to know if there are any conflicting

 external references. The available suboptions are:

 USE(name1,name2,...)

 USE specifies the names of the ICA files to be included in the

 analysis. This option can be repeated any number of times as

 long as the total number of files specified in the USE and

 UPDATE suboptions does not exceed nine (9).

 "name" is the name of an ICA file containing entries describing

 interfaces between program units. The name can be a sequence of

 1 to 8 alphanumeric characters and must begin with a letter.

 Names can be separated by commas or blanks. The actual file

 names are formed by appending the name with ICA.

 UPDATE(name)

 The ICA file name can be a sequence of 1 to 8 alphanumeric

 characters and must begin with a letter. The compiler automati-

 cally appends the file name with ".ICA".

 MXREF / NOMXREF

 This suboption specifies whether to produce external cross-

 reference listings. The default is MXREF.

 CLEN / NOCLEN

 This suboption specifies whether to check the length of named

 common blocks. The default is CLEN.

 CVAR / NOCVAR

 This suboption specifies whether usage information for variables

 in a named common block is to be collected. The default is

 NOCVAR.

 VS FORTRAN 123

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 MSG(NEW|NONE|ALL)

 This suboption specifies the type of diagnostic messages to

 appear in the printout.

 NEW specifies that only messages about the new compilations will

 be printed.

 NONE specifies that only messages about deleting entries in an

 ICA file will be printed.

 ALL specifies that all messages will be printed.

 The default is NEW.

 IL(DIM) / IL(NODIM) Default: IL(DIM)

 The IL option specifies whether the code for adjustably-dimensioned

 arrays is to be placed inline - IL(DIM), or done via library call -

 IL(NODIM). Inline code may result in faster execution, but it does

 not check for user dimensioning errors. The library call method

 may result in slower execution, but it does check for such errors.

 IL(NODIM) may also be specified as NOIL.

 If IL(NODIM) is specified, then the *FORTRANLIB library must be

 concatenated to the object program on the $RUN command.

 LANGLVL(66|77) Default: LANGLVL(77) ___

 The LANGLVL option specifies the language level of the source to be

 compiled, FORTRAN 77 or FORTRAN 66.

 LINECOUNT(number) Default: LINECOUNT(60)

 The LINECOUNT option specifies the number of lines to be printed

 per page of the source listing. The number must be in the range 5

 to 32765. If an illegal value is specified, the default of 60 will

 be used. LINECOUNT may be abbreviated as LC.

 LIST / NOLIST Default: NOLIST _ ___

 The LIST option specifies that an object program listing is to be

 written on SPRINT. The listing consists of statements written in

 pseudo-assembly-language format. This option drastically increases

 the amount of printed output. Unless the user is familiar with

 machine code and can read hexadecimal dumps, the listing is

 generally not useful.

 The LIST output is fully described under "Object Module Listing--

 LIST Output" in the IBM publication, VS FORTRAN Version 2: ________________________

 Programming Guide. _________________

 124 VS FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 MAP / NOMAP Default: NOMAP

 The MAP option specifies that a storage map is to be written on

 SPRINT. The map includes program variables, subroutines and

 functions called, statement labels, and common blocks. These

 symbols are listed with a coded description of the context in which

 they appear and their addresses in storage. Some of this informa-

 tion is also given by the XREF option.

 NAME(name) Default: NAME(MAIN)

 The NAME option specifies the name to be given to the main object

 program. This option is available only with LANGLVL(66). A

 PROGRAM source statement should be used to specify the program name

 for LANGLVL(77).

 OBJECT / NOOBJECT Default: OBJECT ___ _____

 The OBJECT option specifies that the object program is to be

 written on SPUNCH. NOOBJECT specifies that no object program is to

 be produced. The object program produced by OBJECT is identical to

 that produced by DECK.

 OPTIMIZE(0|1|2|3) / NOOPTIMIZE Default: OPTIMIZE(0) ___ _____

 The OPTIMIZE option indicates the optimization level to be used in

 generating the object code for the program. Four levels are

 available; the higher the level, the more efficient is the program,

 and the slower and more expensive the compilation. Through

 optimization techniques, the compiler can create a more efficient

 program both with respect to execution time and storage

 requirements.

 OPTIMIZE(0) indicates that no optimization is to be performed;

 it is equivalent to NOOPTIMIZE. This level provides the fastest

 compile time, but the least efficient program. It is a good

 level for debugging a program or for checking program syntax.

 OPTIMIZE(1) specifies a moderate level of local register and

 branch optimization without considering program loops.

 OPTIMIZE(2) specifies full optimization of the entire program

 without moving code outside of loops if there is any possibility

 of this causing program errors.

 OPTIMIZE(3) specifies full optimization. It is best suited for

 fully debugged programs ready for production use. This level is

 safe for most programs, except that for certain modules it may

 be necessary to reduce the level of optimization if problems

 should arise.

 VS FORTRAN 125

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 See the section "Program Efficiency" in the IBM publication, VS __

 FORTRAN Version 2: Programming Guide, for further information ___

 about optimization.

 Warning: The use of the Symbolic Debugging System (SDS) may not be _______

 completely reliable for debugging programs that have been optimized

 (level 1 or higher) as up-to-date copies of certain program

 variables may not be maintained in storage, but in registers, or

 certain variables such as loop counters may be eliminated all

 together.

 RENT / NORENT Default: NORENT

 The RENT option specifies that the compiler generate a reentrant

 object module for a program being compiled. Currently Fortran

 reentrant object modules are not supported in MTS.

 SDUMP(ISN|SEQ) / NOSDUMP Default: SDUMP(ISN)

 The SDUMP option specifies that symbolic dump information is to be

 generated.

 SDUMP(ISN) specifies SDUMP tables be generated using internal

 statement numbers.

 SDUMP(SEQ) specifies SDUMP tables be generated using sequence

 numbers in columns 73-80 of fixed-form source.

 SDUMP may be abbreviated as SD, and NOSDUMP as NSD.

 SOURCE / NOSOURCE Default: SOURCE _ ___

 The SOURCE option specifies that a source listing is to be written

 on SPRINT. The NOSOURCE option specifies that source listings are

 not to be written at all.

 SRCFLG / NOSRCFLG Default: SRCFLG

 The SRCFLG option specifies that error messages appear in the

 source listing immediately after the statement causing an error.

 The NOSRCFLG option suppresses these error messages. SRCFLG may be

 abbreviated as SF and NOSRCFLG as NOSF.

 Note: These error messages will always appear at the end of the

 source listing for each program unit and again in a summary display

 at the end of all the listings.

 SXM / NOSXM Default: NOSXM

 This option specifies that XREF or MAP listing output be formatted

 for a 72-character-wide terminal screen. The NOSXM option formats

 listing output for a printer. For more details, see "Using the SXM

 126 VS FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 Option" in IBM publication, VS FORTRAN Version 2: Programming ___________________________________

 Guide. _____

 SYM / NOSYM Default: NOSYM

 The SYM option generates SYM records in the object program. This

 allows the program to be debugged using the Symbolic Debugging

 System (SDS). See the section "Introduction to Debug Mode for

 FORTRAN" for further details.

 TERMINAL / NOTERMINAL Default: TERMINAL ____ ______

 The TERMINAL option indicates that error messages are to be written

 on SPRINT at the end of the source listing for each program unit

 and again in a summary display at the end of all the listings.

 NOTERMINAL suppresses the summary display.

 The TERMINAL option does not control error messages that are

 written to SERCOM.

 TEST / NOTEST Default: NOTEST

 The TEST option is the same as the SYM / NOSYM option in MTS.

 TRMFLG / NOTRMFLG Default: TRMFLG

 The TRMFLG option specifies that erroneous statements are to be

 displayed along with their associated error messages on SERCOM (if

 SERCOM is assigned to a terminal). The NOTRMFLG option suppresses

 the printing of the statements. TRMFLG may be abbreviated as TF

 and NOTRMFLG as NOTF.

 Note: Error messages are always displayed on SERCOM.

 VECTOR(options) / NOVECTOR Default: NOVECTOR ___ _____

 The VECTOR option invokes the vectorization process to produce

 programs to be run on the IBM System 3090 Vector Facility. For

 more information on VECTOR, consult Chapter 8, "Vectorizing Your

 Program," in the IBM publication, VS FORTRAN Version 2: Program- _______________________________

 ming Guide. __________

 The VECTOR option has several suboptions: LEVEL, REPORT, INTRIN-

 SIC, REDUCTION, and SIZE. OPTIMIZE(3) is required if LEVEL≥1 in
 the VECTOR option.

 If VECTOR is specified, then the *FORTRANLIB library must be

 concatenated to the object program on the $RUN command.

 XREF / NOXREF Default: NOXREF _ ___

 The XREF option specifies that two cross-reference dictionaries be

 included in the output listings on SPRINT. The first is a listing

 VS FORTRAN 126.1

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 of program variables, subroutine names, and function names; the

 second is a listing of statement labels. Internal statement

 numbers for all references to symbols in the program are given in

 both dictionaries. Some of this information is also given by the

 MAP option.

 Conflicting Compiler Options ____________________________

 The following table lists conflicting compiler options that create an

 error message if both are used. The table also reflects those options

 that are assumed when conflicting compiler options are specified.

 Conflicting Compiler Options Options Assumed ____________________________ _______________

 FIPS FLAG¬=I FIPS FLAG=I

 FIPS LANGLVL(66) NOFIPS LANGLVL(66)

 LANGLVL(77) NAME LANGLVL(77) Ignore NAME

 NOTRMFLG VEC(REP(TERM...)) NOTRMFLG Ignore VEC(REP(...))

 OPT=(0|1|2) VEC(LEV(1|2)) OPT=3 VEC(LEV(1|2))

 SYM NODECK and NOOBJ NOSYM NODECK and NOOBJ

 Modifying Compilation Options-@PROCESS Statement __

 The options specified when the compiler is invoked remain in force

 for all source programs being compiled unless they are overridden with

 the @PROCESS statement.

 Each source program requires its own @PROCESS statement if the

 options specified are to be overridden when the compiler is invoked. If

 any source program does not have its own @PROCESS statement, it is

 compiled according to the compiler-invocation specifications, not ac- ___

 cording to the @PROCESS specifications of the preceding source program

 in the job stream.

 To change the compiler options, place the @PROCESS statement just

 before the first statement in the source program. The following rules

 apply:

 (1) @PROCESS must appear in columns 1 through 8 of the statement.

 (2) The @PROCESS statement can be followed by compiler options in

 columns 9 through 72 of the statement. The options must be

 separated by commas or blanks.

 (3) Multiple process statements can be supplied for a program unit.

 Columns 9 through 72 of a following @PROCESS statement are

 appended to the previous @PROCESS statement. There may be up to

 20 @PROCESS statements.

 126.2 VS FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 All compiler options except OBJECT and DECK are permissible.

 Intervening lines must not appear between @PROCESS statements.

 (4) If NODECK or OBJ has been specified in the PAR field of the $RUN

 command, then DECK or NOOBJ, respectively, cannot be specified

 on the @PROCESS statement.

 (5) TERMINAL and TRMFLG cannot be specified on the @PROCESS state-

 ment if TERMINAL was not specified on the EXEC statement or in

 the system defaults.

 THE INCLUDE FEATURE ___________________

 The INCLUDE feature is supported. For a description of INCLUDE, see

 the IBM publication, VS FORTRAN Version 2: Language and Library ___

 Reference. _________

 The compiler expects to find the user’s INCLUDE file in the form of

 an MTS macro library. A macro library may be built by the public file

 *MACUTIL (see the description of *MACUTIL in MTS Volume 2, Public File ___________

 Descriptions). ____________

 VS FORTRAN I/O LIBRARY ______________________

 The file *FORTRANLIB contains all the necessary routines for vec-

 torized programs produced by the VS FORTRAN compiler. This library is

 also available for all other FORTRAN programs, but only programs

 produced by Version 2 of VS FORTRAN can fully utilize the IBM 3090

 Vector Facility.

 The features available in the library are described briefly below:

 (1) *FORTRANLIB contains new mathematical functions with improved

 precision and greater speed. These functions are not compatible

 with the routines in the Elementary Function Library (EFL).

 Extended-precision mathematical routines, which are rather slow

 and expensive, are also included in *FORTRANLIB, but currently

 FORTRAN I/O does not support I/O conversion for extended-

 precision numbers.

 (2) *FORTRANLIB contains two routines, FCXPC# and FCDCD#, that

 provide exponentiation of a complex base to a complex power,

 which is now allowed in the ANSI FORTRAN 77 standard. The

 Elementary Function Library does not contain these routines.

 (3) The new functions, including all IBM mathematical, character,

 and bit functions as described in Chapter 8 of the IBM

 publication, VS FORTRAN Version 2: Language and Library Refer- ___

 VS FORTRAN 126.3

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 ence, do not recognize the optional arguments described in the ____

 section "The Elementary Function Library" of this Volume 3.

 (4) The new functions do not call the MTS EFL module ERRMON#. The

 IBM error monitor is called instead. Users can take advantage

 of the IBM extended error-handling subroutines ERRMON, ERRSAV,

 ERRSET, ERRSTR, and ERRTRA, as described in Chapter 10 of the

 IBM Language and Library Reference. I/O errors are covered by ______________________________

 MTS FORTRAN I/O routines, but not by the IBM error monitor.

 (5) The symbolic dump subroutine SDUMP is available in *FORTRANLIB

 for VS FORTRAN programs. This subroutine is described in the

 IBM Language and Library Reference and is not the same as the ________________________________

 MTS subroutine SDUMP as described in MTS Volume 3, System ______

 Subroutine Descriptions. A similar subroutine STDDMP can be ________________________

 used instead of the MTS subroutine SDUMP. *FORTRANLIB also

 contains two character-dump subroutines, CDUMP and CPDUMP.

 (6) For the convenience of FORTRAN users, the free-formatted I/O

 routines FREAD and FWRITE, are provided in *FORTRANLIB.

 It is not necessary for Version 2 VS FORTRAN programs to be

 concatenated with *FORTRANLIB unless users want to use the new mathemat-

 ical functions, the IBM SDUMP subroutine, or the IBM extended error-

 handling subroutines. If the programs were compiled with compiler

 options VECTOR or IL(NODIM), they must be concatenated with *FORTRANLIB,

 $RUN object+*FORTRANLIB

 126.4 VS FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 WATFIV ______

 INTRODUCTION ____________

 WATFIV and its predecessor WATFOR¹ are FORTRAN-IV compilers developed
 at the University of Waterloo, Waterloo, Ontario, Canada. These

 compilers were developed to provide extremely fast translation of

 student programs. In addition to fast translation, the WATFIV compiler

 provides an extensive set of both compile-time and execution-time

 diagnostics to aid in the debugging of programs.

 WATFIV is a "compile-and-execute" compiler; this means that source

 programs are compiled, loaded, and executed by the compiler. This

 feature minimizes both compiling and loading times for programs.

 However, since there is no way to obtain an object module, programs must

 be recompiled each time they are used. In addition, the machine code

 produced by the compiler is not particularly efficient. Programs that

 are to be used more than once should only be debugged in WATFIV. The

 program can then be recompiled using either the FORTRAN-G or FORTRAN-H

 compiler under *FTN to produce a more efficient object version.

 FORTRAN G and H do not support all of the WATFIV features described

 in this section. Users intending to compile their programs later using

 another compiler should see the section "Incompatibilities of WATFIV."

 In addition, the IBM publication, IBM System/360 and System/370 FORTRAN _____________________________________

 IV Language, form GC28-6515, should be consulted. ___________

 WATFIV does not use the standard FORTRAN-IV calling sequences for

 subroutines, thus care must be used in attempting to link other object

 modules to WATFIV-compiled routines. Users intending to use previously

 compiled subroutines should note especially the sections "Incompatibili-

 ties of WATFIV" and "360-Assembly Language Subprograms." The WATFIV

 calling conventions essentially require that the subroutines be written

 in PL/360 or 360-assembly language.

 The compiler is invoked by the $RUN command as follows:

 $RUN *WATFIV [logical unit specifications] [PAR=SIZE=n]

 where the information within brackets is optional as explained in the

 following section.

 ¹WATFOR was supported in MTS from 1968 to 1971; in February 1971, it was
 replaced by WATFIV.

 WATFIV 127

 MTS 6: FORTRAN in MTS

 October 1983

 Logical I/O Unit Specifications _______________________________

 The following logical I/O units are used by WATFIV:

 SCARDS - compiler input (control commands and source program) and

 data for READ and READ n statements (defaults to

 SOURCE).

 SPRINT - compiler output (source listing and diagnostic messages),

 output from PRINT and PRINT n statements, and job-

 accounting information (defaults to *SINK*).

 SPUNCH - output from PUNCH and PUNCH n statements (defaults in

 batch mode to *PUNCH* if a nonzero card estimate was

 specified on the $SIGNON command; no default in conversa-

 tional mode).

 SERCOM - error comments and prompting messages in conversational

 mode (defaults to *MSINK*).

 0 - library of subroutines in source or object module form

 (defaults to the file *WATLIB).

 1-19 - input: data for READ (i,n) statements (defaults to the

 file or device assigned to SCARDS). "i" is the logical

 I/O unit number and "n" is a format statement number.

 1-19 - output: output from WRITE (i,n) statements (defaults to

 the file or device assigned to SPRINT). "i" is the

 logical I/O unit number and "n" is a format statement

 number.

 The defaults for the logical units 1-19 are SCARDS on input and SPRINT

 on output. This means that if SCARDS is assigned to a file, e.g.,

 DATAFILE, on the RUN command, and if logical unit 5 is defaulted,

 $RUN *WATFIV SCARDS=DATAFILE

 and a statement of the form

 READ (5,100) X,Y,Z

 is executed, then the program will read the data from DATAFILE, not from

 SOURCE. On output, a similar condition exists. For example, if

 SPRINT is assigned to a file, e.g., -T, on the RUN command, and if

 logical unit 6 is defaulted,

 $RUN *WATFIV SPRINT=-T

 and a statement of the form

 128 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 WRITE (6,200) Z,Q

 is executed, then the program will write the data to the file -T, not to

 SINK. If any question about defaults arises, the best policy is to

 explicitly specify the assignments for each individual logical I/O unit

 if one or more are not being defaulted, e.g.,

 $RUN *WATFIV SCARDS=DATAFILE SPRINT=-T 5=*SOURCE* 6=*SINK*

 Any type of file or device may be used for logical units 1-19 with

 the following restrictions:

 (1) If the "ENDFILE n" or "REWIND n" statements are used, logical

 unit "n" must be assigned to a line file, sequential file, or

 magnetic tape unit.

 (2) If the "BACKSPACE n" statement is used, logical unit "n" must be

 assigned to a line file or a magnetic tape unit.

 (3) If a direct-access statement is used on logical unit "n", the

 unit must be assigned to a line file.

 If unformatted input/output is done on a magnetic tape, the tape must

 be formatted VS (see the section "Magnetic Tapes" in MTS Volume 19,

 Tapes and Floppy Disks. ______________________

 The SIZE Parameter __________________

 The "n" in this parameter specification refers to the number of pages

 (4096 bytes per page) that are used to compile and execute programs.

 The default size is 10 pages. This should provide efficient compilation

 for most programs. If the compiler does not have enough space, it will

 terminate execution with a message indicating the condition. At that

 point enough information about the size requirements is given to

 determine a suitable value for "n".

 Control Commands ________________

 The following control commands may be used with WATFIV. Each control

 command must begin in column 1.

 /COMPILE initiates program compilation. This command must appear

 before the program to be compiled. Usually, it immediately

 follows the $RUN *WATFIV command. Compiler options may be

 included on this command.

 /DATA or

 /EXECUTE initiates program execution. This command must appear

 after the last WATFIV statement and before the data records

 WATFIV 129

 MTS 6: FORTRAN in MTS

 October 1983

 (if any). Lines following this command are treated as data

 for the current job. The end of the data is indicated by

 the next control command or by an end-of-file. This ____

 command must be present even if there are no data records. ___

 /STOP terminates the compiler. This is the last command in the

 compiler input stream. An end-of-file also terminates the

 compiler.

 The following commands provide control over the content and appearance

 of source listings; they are placed in the source program.

 /PRINTOFF terminates the source listing. The /PRINTOFF command

 itself is not printed.

 /PRINTON restarts the source listing if a previous /PRINTOFF command

 was used or if a NOLIST option was specified on the

 /COMPILE command. The /PRINTON command is printed.

 /EJECT skips to a new page.

 /SPACE skips a single line.

 The following control commands allow one to change some of the options

 given on the /COMPILE command. They are placed in the source program.

 /WARN prints warning messages from this point.

 /NOWARN suppresses warning messages from this point.

 /EXT prints extension messages from this point.

 /NOEXT suppresses extension messages from this point.

 /CHECK initiates checking for undefined variables from this point.

 /NOCHECK suppresses checking for undefined variables from this

 point.

 An execution-time trace may be obtained by using the following commands.

 /ISNON turns on the tracing of statements by internal statement

 number (ISN). This control command must be preceded by at

 least two executable statements. ISN tracing remains on

 until a /ISNOFF command is encountered.

 /ISNOFF turns off ISN tracing.

 The /MTS command returns control to MTS. WATFIV processing may be

 resumed with a $RESTART command. This sequence may be used to reassign

 logical units or to modify files. For example, at a terminal:

 130 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 WATFIV: ENTER "/COMPILE" OR "/STOP"

 User: /MTS

 User: $RESTART 3=DATA

 User: /COMPILE

 WATFIV: ENTER STATEMENTS

 This reassigns logical unit 3 to the file DATA. The PAUSE statement has

 the same effect during execution as a /MTS control command during

 compilation, and, in addition, optionally prints a comment on SERCOM.

 The following example illustrates a typical control command and

 source program structure for WATFIV.

 $RUN *WATFIV

 /COMPILE

 (main program source statements)

 /EJECT

 (subroutine SUB1 source statements)

 /SPACE

 (subroutine SUB2 source statements)

 /DATA

 (data cards)

 /COMPILE

 (new main program source statements)

 /PRINTOFF

 (subroutine SUB1 source statements)

 (subroutine SUB2 source statements)

 /DATA

 (data cards)

 /STOP

 The following examples illustrate the use or nonuse of logical I/O unit

 specifications with or without control commands.

 (1) $RUN *WATFIV

 /COMPILE

 (source statements)

 /DATA

 (data cards for READ, or READ n, or READ (i,n), where "n"

 is a FORMAT statement number or *)

 /STOP

 (2) $RUN *WATFIV SCARDS=MINE 5=*SOURCE*

 (data cards for READ (5,n), where "n" is a FORMAT statement

 number or *)

 $ENDFILE

 In example (2), the file MINE contains the control state-

 ments and source statements. The last command of the file

 MINE must be /DATA.

 WATFIV 131

 MTS 6: FORTRAN in MTS

 October 1983

 (3) $RUN *WATFIV SCARDS=PROGRAM

 In example (3), the file PROGRAM contains control commands,

 source statements, and data for READ or READ n statements.

 (4) $RUN *WATFIV 5=DATA

 /COMPILE

 .

 .

 .

 READ (5,10) A

 10 FORMAT(F15.2)

 .

 .

 .

 /DATA

 /STOP

 In example (4), the file DATA contains the data records for

 the READ (5,10) statement.

 (5) $RUN *WATFIV SCARDS=*SOURCE*+DATA+*SOURCE*

 /COMPILE

 .

 .

 .

 READ (5,10) A

 10 FORMAT(F15.2)

 .

 .

 .

 /DATA

 $ENDFILE

 /STOP

 Example (5) has the same effect for reading input data as

 example (4).

 (6) $RUN *WATFIV SPRINT=FILEA

 .

 .

 .

 In example (6), all output is directed to FILEA.

 Using Control Commands ______________________

 WATFIV, like MTS, operates as a command processor. WATFIV expects

 that all commands will originate from the file or device that SCARDS is

 either explicitly assigned to or defaulted to. Control commands

 132 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 appearing in the input stream from SCARDS are detected by the presence

 of the "/" in column one. Data read from any device other than that

 assigned to SCARDS will not be scanned for control commands, thus:

 $RUN *WATFIV 5=*SOURCE*

 will result in all data read from unit 5 being scanned for control

 commands, since, in this case, SCARDS=*SOURCE* by default. However,

 $RUN *WATFIV 5=DATAFILE

 will not detect control commands in the data stream from unit 5. Hence,

 control commands and data sets should be structured carefully.

 Common Problems Using Control Commands

 (1) $RUN *WATFIV

 (program)

 /DATA

 /STOP

 This or a similar deck setup will result in an EXECUTION BEGINS

 and EXECUTION TERMINATED set of messages since there is no

 /COMPILE command.

 (2) Problems often occur with the use of the /STOP command:

 $RUN *WATFIV

 /COMPILE

 (program)

 /DATA

 (data)

 $ENDFILE

 /STOP

 With the deck set up as shown above, if the program terminates

 on an end-of-file condition, control will return to WATFIV.

 WATFIV will then read the /STOP command, terminate execution,

 and pass control to MTS. This deck setup is subject to another

 interpretation, however, for if the program terminates without

 having read the $ENDFILE, this command will be read by WATFIV,

 and WATFIV will terminate execution. MTS will then read in the

 /STOP command, flag it as an illegal command, and (in batch

 mode) proceed to the next legal MTS command.

 (3) When a program is in execution under the control of WATFIV and

 reading data from the device assigned to SCARDS, it may appear

 that WATFIV control commands are not detected. For example, a

 program is reading data followed by a /STOP command from

 SOURCE (SCARDS is assigned to *SOURCE*). WATFIV will detect

 the /STOP command and generate an end-of-file to the program.

 Should the program not be using the END=parameter on the read

 statement, no action will be taken. At this point the program

 WATFIV 133

 MTS 6: FORTRAN in MTS

 October 1983

 will again attempt to read. WATFIV will forget that it read the

 /STOP command and the program will read whatever is next as

 data, unless it is a command, in which case the above sequence

 is repeated. This is true for all control commands read, not

 just for /STOP commands. Execution continues in this manner

 until a program interrupt occurs.

 /COMPILE Command Format _______________________

 Job parameters may be included on the /COMPILE control command. For

 example,

 /COMPILE TIME=30,PAGES=10,NOLIST

 The allowable parameters are described below. Default values will be

 assumed for parameters that are omitted from the /COMPILE command.

 Abbreviations, where available, are underlined.

 KP={26|29} 26 specifies that the source was punched on a 026 _ __

 (BCD) keypunch; 29 specifies that it was punched on a

 029 (EBCDIC) keypunch. The default is KP=29.

 TIME=m "m" is an integer or decimal number specifying the _

 maximum number of seconds to be allowed for execution

 of the program. The default is the time remaining on

 the MTS time limit (local or global), minus one-fifth

 of a second.

 PAGES=n "n" is an integer specifying the maximum number of _

 pages to be printed at execution time. The default is

 the number of pages remaining of the MTS page limit

 (local or global), minus one page.

 LINES=k "k" is an integer specifying the maximum number of _

 lines to be printed per page. (The compiler uses "k"

 to provide automatic page-skipping at both compile and

 execution times.) The default is LINES=60.

 CHECK

 NOCHECK

 RUN=FREE If CHECK is specified, the compiler will check at

 execution time for attempted uses of variables which

 have not been assigned a value (undefined variables).

 The use of NOCHECK suppresses the check, resulting in

 somewhat faster execution time and producing somewhat

 less object code. RUN=FREE is the same as CHECK, but

 the compiler will initiate execution of the program

 even if it contained serious source errors. If an

 executable statement which contained a source error is

 subsequently encountered, execution is terminated.

 134 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 See also the /CHECK and /NOCHECK control commands

 above. The default is CHECK.

 LIST/SOURCE _

 NOLIST/NOSOURCE ___

 LIST produces a source listing of the program; NOLIST

 suppresses the listing. See also the /PRINTON and

 /PRINTOFF control commands. LIST is the default in

 batch mode; NOLIST is the default in conversational

 mode. SOURCE is a synonym for LIST.

 LIBLIST

 NOLIBLIST LIBLIST produces a source listing of the subprograms

 automatically retrieved from a library; NOLIBLIST

 suppresses the listing of library routines. The

 default is NOLIBLIST. The LIST/NOLIST and LIBLIST/

 NOLIBLIST parameters are independent.

 WARN

 NOWARN WARN causes diagnostics to appear in the source

 listing, and NOWARN suppresses all diagnostics of

 severity less than a fatal error. The default is

 WARN. Error severities are discussed in the section,

 "Diagnostics." See also the /WARN and /NOWARN control

 commands listed under "Control Commands."

 EXT

 NOEXT EXT causes the extension messages to appear in the

 source listing, and NOEXT suppresses all extension

 messages. The default is EXT.

 Notes:

 (1) Parameters may be entered in any order, e.g.,

 /COMPILE PAGES=7,NOLIST,TIME=15

 (2) Parameters are separated by commas and/or blanks and may extend

 to column 79.

 (3) If a parameter is in error, the scan for any remaining

 parameters is stopped, and default values will be assumed. For

 example, in

 /COMPILE PAGES=200,NOWARN,TAME=60,KP=29,RUN=NOCHECK

 the PAGES=200 and NOWARN parameters are recognized and used by

 the compiler, but defaults are assumed for all other parameters

 since the TIME parameter is in error (i.e., in the above

 example, "TAME" has been mispunched for "TIME".)

 (4) If any parameter is specified more than once, the rightmost

 value is used, e.g.,

 WATFIV 135

 MTS 6: FORTRAN in MTS

 October 1983

 /COMPILE KP=26,TIME=60,LIST,KP=29

 results in KP=29 being used.

 (5) If the source listing is suppressed (NOLIST) and an error is

 detected, the first line of the last source statement is printed

 before the error comment.

 Conversational Use of WATFIV ____________________________

 If WATFIV is being run from a terminal, a limited amount of prompting

 is provided. If the program to be compiled is entered from the

 terminal, the message

 ENTER "/COMPILE" OR "/STOP"

 is printed. If /STOP is entered, WATFIV processing is terminated. If

 /COMPILE is entered, the message

 ENTER STATEMENTS

 is printed. Each statement entered should follow the standard FORTRAN

 card-column conventions. When the last source statement has been

 entered, the user must enter

 /DATA or /EXECUTE

 to signify the end of his program and initiate execution. If the

 program is sufficiently error-free, the message,

 EXECUTION BEGINS ...

 is printed and execution begins. If there are errors, WATFIV prints

 EXECUTION SUPPRESSED ...

 and asks for another /COMPILE or /STOP command.

 If WATFIV is being run from a terminal, but the program to be

 compiled is stored in a file (i.e., SCARDS is assigned to a file), no

 prompting occurs; however, each WATFIV control command is echoed on the

 user’s terminal.

 The job-accounting information and certain other trivial output are

 not printed when WATFIV is run from a terminal.

 136 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 Job-Accounting Output _____________________

 In batch mode, the last few lines of output for each job processed by

 WATFIV consist of certain accounting information. Specifically, the

 information provided is:

 (1) the time (in seconds) taken to compile the program,

 (2) the time (in seconds) for program execution,

 (3) the amount (in bytes) of object code² generated for the program,

 (4) the amount (in bytes) of storage used by the program for arrays,

 common blocks, and equivalenced variables (the so-called "array

 area"),

 (5) the total storage (in bytes) that was available for the run to

 contain object code and array area, and

 (6) the number of errors, warnings, and extensions issued for the

 program.

 An example of the job-accounting output follows:

 CORE USAGE OBJECT CODE = 320 BYTES, ARRAY AREA = 0 BYTES

 TOTAL AREA AVAILABLE = 40960 BYTES

 DIAGNOSTICS NUMBER OF ERRORS = 2,

 NUMBER OF WARNINGS = 3,

 NUMBER OF EXTENSIONS = 1

 COMPILE TIME = 0.020 SEC, EXECUTION TIME = 1.230 SEC,

 WATFIV - JUL 1973 VIL4

 16:54:31 TUESDAY 13 MAY 75

 DIAGNOSTICS ___________

 Introduction to Diagnostic Features ___________________________________

 WATFIV issues compile-time diagnostic messages at three levels of

 severity--extension, warning, and error. A diagnostic message is

 generated in-line in the source listing, immediately below the statement

 in which the condition was detected.

 ²This includes constants, temporaries, nonequivalenced simple variables,
 save areas, any routines loaded from the object library, etc.

 WATFIV 137

 MTS 6: FORTRAN in MTS

 October 1983

 An extension diagnostic message results if an extension of the _________

 FORTRAN language allowed by WATFIV is used. These are described in the

 section, "Extensions." This diagnostic is issued so that the extension

 may be eliminated before compiling the program with other FORTRAN

 compilers.

 A warning diagnostic message is issued for language violations for _______

 which the compiler can take some reasonable corrective action, e.g.,

 truncating a name of more than 6 characters.

 An error diagnostic message is issued when a language violation _____

 severe enough to prevent execution is encountered. In this case, the

 compiler will suppress execution of the program, unless RUN=FREE was

 specified on the /COMPILE command.

 At execution time, all errors are fatal³ in the sense that the
 compiler will terminate the current job and proceed to the next job (if

 any) in the input stream. For an execution-time error, the compiler

 generates a diagnostic and a subprogram traceback in the printed output.

 This gives the line number of the statement in which the error occurred,

 the name of the subprogram in which the error occurred, the name of the

 subprogram which called it, etc., continuing back to the main program

 (which is referred to as M/PROG). The line number of each statement

 appears to the left of the statement in the source listing. This line

 number is compiler-generated, and is distinct from and should not be

 confused with any FORTRAN statement number the programmer may have

 assigned to a statement.

 Example of a traceback:

 ERROR VALUE OF A IS UNDEFINED

 PROGRAM WAS EXECUTING LINE 15 IN ROUTINE RTN2 WHEN TERMINATION

 OCCURRED

 PROGRAM WAS EXECUTING LINE 9 IN ROUTINE RTN1 WHEN TERMINATION

 OCCURRED

 PROGRAM WAS EXECUTING LINE 4 IN ROUTINE M/PROG WHEN TERMINATION

 OCCURRED

 One of the design goals of WATFIV was to supply good diagnostics.

 The implementors at the University of Waterloo think the goal has been

 well met, but they have heard that a few users of the compiler at their

 installation have found some of the diagnostic messages to be vague,

 obscure, or sarcastic. It is hoped that the following paragraphs will

 simplify, for the user, the interpretation of some of the error messages

 which may, at present, be too brief or may contain special words with

 meanings entirely clear only to the compiler implementors.

 ³Exception: If an I/O error occurs and the programmer has specified an
 ERR return in the affected I/O statement, an error message is given and

 execution proceeds at the statement specified by the ERR parameter.

 138 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 The user should be aware that an error in one statement may lead to

 apparent errors in subsequent statements. Thus, if the first error is

 corrected, the others will disappear as well on a subsequent compila-

 tion. This is particularly true when the first error occurs in a

 specification statement. The reason for this is that the compiler scans

 each source statement, column by column from left to right, and usually

 abandons compilation of a statement when a syntax error is encountered.

 Thus, correct information in a statement may be ignored if it follows a

 column that contains an error.

 Consider the following program as an example:

 DIMENSION A(10),B(104+C(10)

 C(1)=2

 .

 .

 .

 Both the first and second statements will be flagged with error

 messages: the first, since there is no matching parenthesis for the

 dimension of B; the second, since the compiler, lacking knowledge that C

 is an array because of the previous error, assumes that the second

 statement is a definition of a statement function C. (Statement

 function definitions must have variable names, not constants, as dummy

 arguments.) The second error will disappear when the first error has

 been corrected.

 Thus, the programmer, when confronted with an error message, must do

 some analysis to see if it is a real error or merely an apparent error

 arising from an error in a previous statement.

 Certain error messages generated by the compiler rely on the

 programmer’s knowledge of the compilers left-to-right scan of state-

 ments. These messages usually relate to the syntax of statements, and

 contain the word "expecting"; for example, the statement

 GOTO,

 is flagged with the message,

 EXPECTING OPERATOR BUT , BEFORE END-OF-STATEMENT WAS FOUND

 This implies that the compiler, scanning the statement from left to

 right, expected to find an operator after the word GOTO in order to

 consider the statement syntactically correct according to the rules of

 FORTRAN, but did not find such an operator.

 WATFIV 139

 MTS 6: FORTRAN in MTS

 October 1983

 Glossary of Terms _________________

 The following glossary defines some terms which appear in the WATFIV

 diagnostics and which may not have a "standard" or accepted meaning to

 FORTRAN programmers.

 Argument

 A value passed to a subprogram. For example, A, 3.5, and SIN(X)

 are arguments in the following statement:

 CALL SP1(A,3.5,SIN(X))

 Assigned GOTO Index

 A variable used in an ASSIGN statement or assigned GOTO statement,

 e.g., I is an assigned GOTO index in the following statement:

 ASSIGN 5 TO I

 Defined

 At compile time, the mode and/or type of a symbolic name is defined

 when there is no longer any doubt as to what its mode and/or type

 might be. The mode and/or type can be established explicitly from

 information in specification statements which refer to the symbolic

 name, or implicitly from the first use of the name in a program

 segment. Once the mode and/or type of a name have been defined,

 they may not be redefined. Consider the following sequence of

 statements:

 REAL I,J(10),K,L*8/1.D0/

 DIMENSION I(5)

 EXTERNAL K

 M=L + FN(I)

 The first statement defines the type as REAL for all four variable

 names, I, J, K, L. Furthermore, it defines the modes of names J

 and L; J is explicitly declared as an array, and L is assumed to be

 a simple variable since it is initialized. The second and third

 statements explicitly define the modes of names I and K, as array

 and subprogram, respectively. The fourth statement implicitly

 defines the mode and type of names of M and FN since they are used

 in that statement; since this is their first appearance in the

 program, their types are determined from the FORTRAN first-letter

 rule, and their modes are established from their uses; M is a

 simple integer variable, FN is a REAL*4 function. At execution

 time, a variable or array element or function name is defined if it

 has been assigned a value.

 140 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 Dimension

 A value used to declare the maximum value that a subscript of an

 array may assume at execution time. For example, 10, 15, and 5 are

 dimensions of A in the following statement:

 DIMENSION A(10,15,5)

 DO-Loop Parameter

 A simple integer variable or integer constant used to control the

 number of times a DO-loop is performed. For example: I, 3, J, and

 2 are DO-loop parameters in the following statement:

 DO 17 I=3,J,2

 End-of-Statement

 The implied end-of-statement operator that the compiler expects to

 find at the end of a correct statement.

 FORTRAN Keyword

 A word, such as STOP, READ, or GOTO, which identifies a FORTRAN

 statement.

 Mode

 This generally refers to the use of a symbolic name within a

 subprogram, or to a program as a whole. Use means a variable name,

 common block name, subprogram name, etc. Thus, the name AB has

 mode "common block" in the statement:

 COMMON /AB/X,Y,Z

 Sometimes the mode may include type as well, e.g., the symbolic

 name FN has mode "REAL*8 function subprogram" in the following

 example:

 REAL FUNCTION FN*8(A,B)

 Object of a DO

 The last statement of a DO-loop. The statement numbered 15 is the

 object of the DO-loop defined by the statement numbered 7 in the

 following example:

 7 DO 15 I=2,J,2

 A(I)=I*2

 15 X(I)=A(I)*B(I)

 WATFIV 141

 MTS 6: FORTRAN in MTS

 October 1983

 Operator

 This is usually an arithmetic operator such as "+", "-", etc., but

 it may be any delimiter, e.g., "(", "&", ",".

 Parameter

 A symbolic value used in a subprogram and replaced by a real

 argument when the subprogram is referenced at execution time

 (sometimes called "dummy arguments"). For example, A and B are

 parameters in the following statement:

 SUBROUTINE EGGMOR(A,B)

 Program Segment

 A subroutine or function subprogram, or a main program.

 Simple Variable

 A variable which is not an array.

 Statement Number Constant

 The number of a statement preceded by an & in the program. &5 is a

 statement number constant in the following statement:

 CALL SUBR(X,&5)

 Subscript

 A value used to refer to a member of an array. For example, I, 7,

 and 3*K+12 are subscripts of A in the following statement:

 Y=A(I,7,3*K+12)

 Symbol

 A symbolic name, i.e., the name of a variable, array, subprogram,

 etc.

 Temporary

 A value which is the result of evaluating an expression. For

 example, 3.*A+2. is a "temporary" in the following statement:

 CALL RTN(3.*A+2.)

 Type

 This usually refers to one of the types LOGICAL, INTEGER, REAL,

 COMPLEX, and (with WATFIV) CHARACTER. However, it may refer to a

 particular subtype (type with length). For example, the following

 142 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 statements define X to have type REAL*4, A to have type REAL*8, and

 Z to have type LOGICAL.

 REAL X*4, A*8

 LOGICAL Z

 Undefined

 At execution time, a variable or array element is said to be

 undefined if it has not had a value assigned to it. For example,

 if the statement

 X=Y

 were the first statement of a main program, then, at execution

 time, Y will be undefined, since there is no way it could have had

 a value assigned to it. WATFIV will check the program at execution

 time for attempts to use undefined variables unless RUN=NOCHECK is

 specified on the /COMPILE command.

 Notes _____

 (1) The authors of the compiler do not advocate the use of the

 RUN=FREE facility; it is provided for those programmers who feel

 it is desirable to obtain some execution-time output, even from

 a program which may contain serious compile-time errors. Note

 that some errors are of such a serious nature that execution

 will be suppressed even if RUN=FREE is specified, e.g., if

 memory space cannot be allocated to contain arrays declared in

 the program.

 (2) Under RUN=CHECK or RUN=FREE, the compiler will terminate the

 program if an undefined variable is used in an expression, i.e.,

 if some evaluation is attempted that involves a variable which

 has not been assigned a value. However, the compiler will allow

 printing of undefined values without terminating the program.

 Such values appear on the page as a string of U’s. For example,

 if the statements

 I=1

 K=2

 PRINT, I,J,K,

 were the first to be executed in a program, the line of output

 produced by the PRINT statement would appear as

 1 UUUUUUUUUUU 2

 WATFIV 143

 MTS 6: FORTRAN in MTS

 October 1983

 Note that U’s are still printed for undefined variables even

 under RUN=NOCHECK. RUN=NOCHECK suppresses only the check for

 attempted use of undefined variables in the evaluation of

 expressions.

 (3) Extension and warning messages may be suppressed from the source

 listing by specifying NOEXT and NOWARN, respectively, as /COM-

 PILE command parameters. It is a good practice to specify WARN

 in the initial stages of debugging a program.

 (4) The following compiler-generated names appear in some

 diagnostics.

 M/PROG - name of the main program

 // - name of the blank common block

 LANGUAGE ACCEPTED BY WATFIV ___________________________

 WATFIV attempts to support the language described in the IBM

 publication, IBM System/360 and System/370 FORTRAN IV Language, form __

 GC28-6515, subject to the restrictions given below. In addition, WATFIV

 supports a number of extensions to the language which are described

 below.

 Extensions __________

 The following language extensions, except for (1), (2), (12), (13),

 are flagged with extension messages. This means that the program is

 acceptable to WATFIV, but may not compile on other compilers. The

 messages can be suppressed by use of the NOEXT parameter on the /COMPILE

 command.

 (1) Free-Format I/O

 This allows the programmer to perform I/O without reference to a

 FORMAT statement. For example, the statement

 PRINT, A,B

 will print the values of A and B with standard format. For more

 detailed information, see the section "Free-Format I/O."

 (2) CHARACTER Variables

 This is a new type of variable which allows the manipulation of

 data in the form of character strings. As a by-product, in-core

 formatting of data may be performed. See the section "CHARACTER

 144 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 Variables" for complete details. A simple example of the use of

 a CHARACTER variable follows:

 CHARACTER A*7

 .

 .

 .

 A=’FINALLY’

 .

 .

 .

 (3) Multiple-Assignment Statements

 Statements of the form

 v1 = v2 = ... = vn = expression

 are allowed, where the "vi" represent variable names or array

 elements. The effect is the same as the sequence of statements

 v1 = expression

 v2 = v1

 .

 .

 .

 vn = v1

 e.g., A = B(5) = C = 1.5

 (4) Expressions in Output Lists

 Expressions may be placed in output statements, e.g.,

 WRITE (6,2) SIN(X)**2,A*X+(B-C)/2

 The expression may not, however, start with a left parenthesis

 because the compiler interprets this as an implied DO-loop list

 item. For example,

 PRINT, (A+B)/2

 would result in an error message. However, the equivalent

 PRINT, +(A+B)/2

 is acceptable. CHARACTER constants are forms of expressions

 acceptable in output statements, e.g.,

 PRINT, ’VALUE OF X=’,X

 WATFIV 145

 MTS 6: FORTRAN in MTS

 October 1983

 (5) Initializing of Blank Common

 Variables in blank common may be initialized in DATA or type

 statements, e.g.,

 COMMON X

 INTEGER X/3/

 (6) Initializing Common Blocks

 Common blocks may be initialized in other than BLOCK DATA

 subprograms.

 (7) Implied DO-Loops in DATA statements

 Implied DO-loops are allowed in DATA statements, i.e., a

 statement of the form

 DATA (C(I),I=1,5,2)/3*.25/

 is valid. In fact,

 DATA (A(I),I=L,M,N)/constant list/

 is acceptable if L, M, and N have been previously initialized

 and at least [(M-L)/N]+1 constants are present in the constant

 list.

 (8) Subscripts in Statement Function Definitions

 Subscripts may be used on the right-hand side of statement

 function definitions, e.g.,

 F(X) = A(I)+X + B(I)

 (9) Logical, Complex, or Character Subscripts

 The real part of a complex value is converted to an integer, and

 this value is used for indexing into the array. For example, if

 Z is complex, and A is an array, then A(Z) is equivalent to

 A(INT(REAL(Z))). For rules and examples of logical and charac-

 ter values as subscripts, see the section "Additional CHARACTER

 Features."

 (10) Transfer Statements as Objects of DO-Loops

 A logical IF statement used as the last statement (object) of a

 DO-loop may contain a GOTO of any form, PAUSE, STOP, RETURN, or

 arithmetic IF statement. For example,

 146 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 DO 25 I=1,N

 .

 .

 .

 25 IF (X.EQ.A(I)) RETURN

 (11) Exceeding the Continuation Card Limit

 A statement may be continued over more cards than is allowed by

 the FORTRAN-compiler continuation card limit. As many cards as

 needed may be used.

 (12) Multiple Statements Per Line

 WATFIV allows the programmer to enter more than one statement on

 a single line. This is particularly useful for programs that

 are to be stored in libraries since less direct-access storage

 space is required, and fewer input operations are necessary to

 retrieve a subprogram.

 (a) Only columns 7-72 may be used for statements.

 (b) A semicolon is used to indicate the end of a statement.

 (c) The normal continuation card rules are used for a statement

 which is to be continued beyond column 72.

 (d) Statement numbers appear in columns 1-5, as usual, or

 following a semicolon and followed by a colon. A statement

 number may not be split onto a continuation card.

 (e) Comment cards and FORMAT statements must be punched in the

 conventional manner.

 Example:

 Column 6

 |

 25 A=B;C=D;39:PRINT, A,B,

 *C,D;X=A+B*C+D

 PRINT, X; 99: STOP;END

 This could be punched in the conventional manner as

 25 A=B

 C=D

 39 PRINT, A,B,C,D

 X=A+B*C+D

 PRINT, X

 99 STOP

 END

 (13) Comments on FORTRAN Statements

 The compiler terminates the left-to-right scan of a particular

 card when a 12-11-0-7-8-9 multipunch is encountered. Effective-

 ly, this means comments may follow a FORTRAN statement on the

 WATFIV 147

 MTS 6: FORTRAN in MTS

 October 1983

 same line if this multipunch is used to terminate the FORTRAN

 statement. Note that this card code does not have a graphic

 symbol assigned to it. It may be punched using the 6-digit

 multipunch or 3-character multipunch GQZ. Terminal users may

 use the hexadecimal equivalent "FF" if hexadecimal input editing

 is enabled.

 (14) Additional Debugging Aids

 Additional debugging aids have been implemented (see the later

 section "Debugging Aids").

 Free-Format I/O _______________

 Free-format I/O is a programming convenience for two reasons:

 Inexperienced programmers can defer the use of FORMAT statements

 until some experience and confidence have been gained in FORTRAN,

 but can still write programs that involve I/O;

 Experienced programmers will find free-format output statements

 convenient for producing debugging output without having to code

 associated FORMAT statements.

 (1) Source Statement Forms

 Free-format I/O has been implemented in WATFIV for use with

 statements of the following forms:

 READ, list

 PRINT, list

 PUNCH, list

 READ (unit,*,END=m,ERR=n) list

 WRITE (unit,*) list

 The I/O for the first three forms is done on the standard

 reader, printer, and punch units, i.e., SCARDS, SPRINT, SPUNCH,

 respectively. The asterisks in the last two forms imply

 free-format I/O, and "unit" may be a constant or variable unit

 number. Like the conventional READ statement, the END and ERR

 returns are optional. Some examples follow:

 READ, A,B,(X(I),I=1,N)

 PRINT, (J,Z(J),J=N,K,L),I,P

 WRITE (6,*) ’DEBUG OUTPUT’,99,X,Y,Z+3.5

 READ (I,*,END=27) (X(J),J=1,N)

 PUNCH, ’ID=’,ID,’X=’,X

 148 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 (2) Input Data Forms

 Data items may be entered one per line, or many per line; in the

 latter case, data items must be separated by a comma and/or one

 or more blanks. The first data item on a line need not start in

 column 1. A data item may not be continued across two lines,

 i.e., the end of a line acts as a delimiter.

 Successive lines are read until enough items have been found to

 satisfy the requirements of the "list" part of the statement.

 Any items remaining on the last line read for a particular READ

 statement will be ignored since the next READ statement executed

 will cause a new line to be read.

 It is valid to use free-format READ statements and conventional

 READ statements in the same program.

 The forms of data items which may be used for various types of

 FORTRAN variables are:

 Integer - signed or unsigned integer constant.

 Real - signed or unsigned real constant in F, E, or D

 forms.

 Complex - two real numbers enclosed in parentheses and

 separated by a comma, e.g., (1.2,-3.8).

 Logical - a string of characters containing at least one

 T or F. The first T or F encountered deter-

 mines the logical value. If there is no T or F

 in the character string, it is flagged as an

 illegal character string.

 Character - a string of characters enclosed by quotes. If

 a quote is required as input, two successive

 quotes (no blanks between) should be entered.

 The type of a data item must match the type of

 the variable it is being read into.

 A duplication factor may be used as a shortcut when the user

 desires to enter the same constant many times. For example,

 with the statements

 DIMENSION A(25)

 READ, A

 The data for the READ statement could be entered as

 15*0.,10*-3.8

 WATFIV 149

 MTS 6: FORTRAN in MTS

 October 1983

 Examples:

 (a) source statement READ, X,I,Y,J

 typical data 2.5 3,-7.9, -41

 (b) source statement COMPLEX Z(5)

 READ, (Z(I),I=1,3)

 typical data (5.2,-16.0) 2*(0.,.5E-3)

 (c) source statements LOGICAL L1,L2,L3

 READ, L1,L2,L3

 typical data T .FALSE. , CAT

 (d) source statements CHARACTER A*1, B*3

 READ, A,B

 typical data ’A’,’DOG’

 (3) Output Forms

 The compiler supplies formatting for list items written by

 free-format statements. Line overflow is automatically

 accounted for, i.e., several records may result from one output

 statement.

 The formats used are:

 Integer - I12

 Real*4 - E16.7

 Real*8 - D28.16

 Complex*8 - ’(’ E16.7 ’,’ E16.7 ’)’

 Complex*16 - ’(’ D28.16 ’,’ D28.16 ’)’

 Logical - L8

 Character*n - An

 CHARACTER Variables ___________________

 At a meeting held during the SHARE XXVIII Conference in San Francisco

 in February 1967, the SHARE FORTRAN Project proposed that IBM adopt a

 new type of variable as an extension to the FORTRAN language supported

 by the IBM compilers. The following material was adapted from Appendix

 150 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 B of the Minutes of that meeting since it defines, for the most part,

 WATFIV’s implementation of CHARACTER variables.

 Character data are recognized as a legitimate data form which may be

 manipulated to a limited extent. The general effect to the language is:

 CHARACTER is a variable type.

 Core-to-core READ and WRITE statements allow core-to-core

 formatting.

 Implicit record-size for CHARACTER arrays for FORMAT statement

 control is defined in the TYPE statement (not in the READ and WRITE

 statements).

 A WRITE statement may be used to define a variable.

 A variable of type CHARACTER represents a character string (literal

 data). The standard (default) length of a character string is 1; WATFIV

 permits strings of up to 255 characters to be defined. A programmer may

 declare a variable to be of type CHARACTER by use of an IMPLICIT

 statement or a CHARACTER statement.

 (1) IMPLICIT Statement

 The type CHARACTER is permitted in the IMPLICIT statement with a

 specified length. If the length is omitted, the standard length

 of 1 is assumed. For example,

 IMPLICIT CHARACTER*80 (A-D), CHARACTER ($,Z)

 This example declares all variables beginning with the charac-

 ters A through D as CHARACTER type, with each variable or array

 element 80 characters in size. All variables beginning with the

 characters $ and Z are also declared as CHARACTER. Since no

 length specification was explicitly given, 1 character (the

 standard length for CHARACTER) is allocated for each variable.

 (2) CHARACTER Statement: General Form

 The general form of the character statement is

 CHARACTER*s a*s1(k1)/x1/,b*s2(k2)/x2/,...,z*sn(kn)/xn/

 where *s,*s1,*s2,...,*sn (optional) are the character string

 lengths, each between 1 and 255; a,b,...,z are the variable

 and/or array names; (k1),(k2),...,(kn) (optional) are the array

 dimensions,each composed of 1 to 7 unsigned integer constants

 separated by commas, exactly as for integer and real arrays. In

 a subprogram, unsigned integer variables are also permitted.

 /x1/,/x2/,...,/xn/ (optional) are initial data values; each is a

 list of constants separated by commas.

 WATFIV 151

 MTS 6: FORTRAN in MTS

 October 1983

 The dimension information may be included in the CHARACTER

 statement, or may be placed in DIMENSION or COMMON statements.

 Initial data values may be assigned to variables or arrays by

 use of /x/, where "x" is a constant or list of constants

 separated by commas. This set of constants may be in the form

 "r*constant", where "r" is an unsigned integer, called the

 repeat constant. The initial data values may only be literal

 constants and must be the same length as or shorter than the

 corresponding variable or array element. Initial data values

 will be truncated from the right (and diagnosed) if too long,

 and they will be padded with blanks on the right if too short

 (see example 2 below).

 Initial data values may be given for a variable or array in

 blank or labeled common.

 The CHARACTER statement overrides the IMPLICIT statement. If

 the length specification (i.e., *s) is omitted, the standard

 length of 1 is assumed. If an array is used as a parameter to a

 subprogram and is not in a COMMON block, the size of this array

 may be specified implicitly by an integer variable of length 4

 which can appear explicitly in the SUBROUTINE statement or

 implicitly in COMMON (adjustable dimensions). In this respect,

 character arrays behave in exactly the same way as arrays of

 other types.

 Example 1:

 CHARACTER*80 CARDS(10),LINES*132(56,2),TCARD

 This statement declares that the variable TCARD and the arrays

 named CARDS and LINES are of type CHARACTER. In addition, it

 declares the size of the array CARDS to be 10 and array LINES to

 be 112 (2 groups of 56 each). Each element of the array LINES

 is assigned 132 characters for a total of 14,784 (112 times 132)

 for the array. Each element of the array CARDS and the variable

 TCARD is assigned 80 characters (the length associated with the

 type). The array CARDS is assigned a total of 800 characters.

 Example 2:

 CHARACTER X*3(4)/’ABC’,’DEFG’,’HI’,JKL’/

 This statement declares that the array X of four elements of

 three characters each has initial values:

 X(1) ABC

 X(2) DEF

 X(3) HI

 X(4) JKL

 152 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 The statement is incorrectly written, and the value specified

 for X(2) has been altered by truncating the character G. The

 value specified for X(3) has been padded with a blank on the

 right.

 (3) Character Variables in Other FORTRAN Statements

 CHARACTER type variables and array names may appear in the

 following statement types:

 DIMENSION

 COMMON

 NAMELIST

 CALL

 SUBROUTINE

 FUNCTION

 DATA statement: CHARACTER variables, array element names, or

 array names may appear in DATA statements. The data values may

 only be literal constants and must be the same length as, or

 shorter than, the corresponding variable or array element.

 Initial data values will be truncated from the right and

 diagnosed if too long, or padded with blanks on the right if too

 short (see example 2 above).

 EQUIVALENCE statement: CHARACTER variables, arrays, or array

 elements may appear in EQUIVALENCE statements. CHARACTER data

 may be equivalenced to other than CHARACTER data, but the

 equivalence implies storage sharing only. Consider the example:

 CHARACTER A*5,B*2,C*1

 CHARACTER D*1(5)

 EQUIVALENCE (D(1),A),(D(2),B),(D(5),C)

 .

 .

 .

 These statements cause the following alignment of characters:

 A-----

 B --

 C -

 C and B are thus equivalenced to characters in the middle of A.

 FUNCTION reference: CHARACTER variable names, array element

 names, array names, and literal constants may appear as parame-

 ters in a function reference.

 Example:

 CHARACTER CARD*80

 2 READ (6,1) CARD

 WATFIV 153

 MTS 6: FORTRAN in MTS

 October 1983

 1 FORMAT (A80)

 IF (COMPAR(CARD,’END ’)) 2,3,2

 3 STOP

 END

 FUNCTION COMPAR(STR1,STR2)

 CHARACTER*80 STR1

 CHARACTER*4 STR2

 COMPAR=1

 IF(STR1.EQ.STR2) COMPAR=0

 RETURN

 END

 An 80-character image is read into the element CARD. The

 function COMPAR compares CARD with ’END ’ and returns a positive

 or zero numeric value which is used conditionally to terminate

 the program.

 In comparisons with unequal length operands, the shorter operand

 is considered to be padded on the right with blanks to match the

 length of the longer operand.

 Statement function statements: Nonsubscripted CHARACTER varia-

 ble names may appear as parameters in a statement function

 statement.

 (4) Core-to-Core Input/Output Statements

 An additional type of I/O statement provides for core-to-core

 transmission of data under FORMAT control. There are two

 core-to-core I/O statements: READ and WRITE. In a core-to-core

 operation, no actual input/output takes place; data conversion

 and transmission take place between an internal buffer and the

 elements specified by a list.

 (a) WRITE statement: The WRITE statement has the general form _____ _________

 WRITE (a,b) list

 where "a" is a character array, array element, or variable

 name which specifies the starting location of the internal

 buffer to which data is to be transmitted; "b" is a

 statement number of a FORMAT statement or an array name or

 array element indicating the beginning location of a format

 statement which describes the data to be transmitted; and

 "list" is a series of variable or array names (which may be

 indexed and incremented) separated by commas. They specify

 the number of items to be written and the locations in

 storage from which the data are to be taken.

 This form of the WRITE statement causes the data items

 specified by the list to be converted to character strings,

 according to the FORMAT specified by "b", and placed in

 154 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 storage beginning at the first character element specified

 by "a".

 Characters are placed in consecutive character positions in

 the buffer, starting with the first character position of

 the first element specified by "a". When a new record is

 begun, it starts at the first character position of the

 next element.

 The number of characters generated for a record (as

 specified by the FORMAT statement and "list") should not be

 greater than the size of the element specified by "a". If

 fewer characters are generated than necessary to fill the

 element, it is filled with trailing blanks.

 Example 1:

 CHARACTER M*12

 .

 .

 .

 I=15

 J=7

 .

 .

 .

 WRITE (M,2) I,J

 2 FORMAT (2H(F,I2,1H.,I1,1H))

 .

 .

 .

 These statements might be used to create, for later use, a

 format stored in variable M. The format so created would

 appear as:

 (F15.7)bbbbb

 where "b" represents the character blank.

 Example 2:

 CHARACTER M*12,N*132

 .

 .

 .

 K=FUNC(A,B,C,D)

 .

 .

 .

 2 WRITE (M,4) K

 4 FORMAT (1H(,I3,6HX,1H*))

 6 WRITE (N,M)

 WATFIV 155

 MTS 6: FORTRAN in MTS

 October 1983

 .

 .

 .

 Statement 2 creates a format stored in variable M, which

 for a value of K of 96, would appear as:

 (b96X,1H*)bb

 Statement 6 then uses the above format (in the variable M)

 to prepare a character string 132 characters long in the

 variable N which consists of all blanks except for an

 asterisk in the ninety-seventh character.

 (b) READ statement: The READ statement has the general form ____ _________

 READ (a,b) list

 where "a" is a character array, array element, or variable

 name which specifies the starting location of the internal

 buffer from which data are to be transmitted; "b" is either

 the statement number of a FORMAT statement or a character

 array element indicating the beginning location of a FORMAT

 statement which describes the data to be transmitted;

 "list" is a series of array names (which may be indexed and

 incremented) and/or variables, separated by commas. This

 specifies the number of items to be read and the locations

 in storage into which the data are placed.

 This form of the READ statement causes the character string

 beginning at the first character element specified by "a"

 to be converted according to the FORMAT specified by "b",

 and stored in the elements specified by "list".

 Characters are obtained from the buffer starting with the

 first character position of the first element specified by

 "a", from consecutive character positions. When a new

 record is begun, it starts at the first character position

 of the next element.

 The FORMAT statement and "list" should not require more

 characters from an element than the length of that element.

 A new record is begun whenever specified in the FORMAT.

 Example:

 CHARACTER*80 R(10)

 .

 .

 .

 DO 20 I=1,10

 3 READ (R(I),5) J

 5 FORMAT (I1)

 156 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 GOTO (11,12,13,14,15,16,17,18,19), J

 11 READ (R(I),21) (A(K),K=1,10)

 21 FORMAT (1X,10F8.3)

 GOTO 31

 12 READ (R(I),22) K1,K2,K3,K4

 22 FORMAT (1X,4I5)

 GOTO 32

 13 READ (R(I),23) X,Y,Z

 23 FORMAT (1X,3E20.9)

 .

 .

 .

 20 CONTINUE

 The statements illustrate a method of processing randomly

 ordered input lines of varying format and data content.

 The line type is identified by a digit from one to nine in

 the first column. Statement 3 converts the digit from

 character form to integer form. The GOTO then transfers to

 the READ/FORMAT combination which processes the specified

 format.

 (5) Input/Output List

 Character variable names, array element names, and array names

 may appear in input/output lists.

 (6) Replacement Statement: A=B

 A replacement statement in which all variables, constants, or

 array elements are of type CHARACTER is permissible. In such a

 statement the item on the left-hand side may only be a character

 variable name or a character array element; the item on the

 right-hand side may be a character variable name, a character

 array element, or a character (literal) constant.

 The element on the right-hand side must be the same length as,

 or shorter in length than, the element on the left-hand side.

 The value of the right-hand element will be truncated from the

 right during replacement and diagnosed if too long, or padded

 with blanks on the right if too short.

 Additional CHARACTER Features _____________________________

 The features of CHARACTER variables described in the following

 paragraphs were not described in the discussion of the SHARE proposal

 above, and hence are extensions to the proposal.

 It should also be mentioned that WATFIV supplies no particular

 alignment for CHARACTER variables, unless, of course, they are forced to

 WATFIV 157

 MTS 6: FORTRAN in MTS

 October 1983

 some halfword, fullword, or doubleword boundary by COMMON and/or

 EQUIVALENCE statements.

 (1) Use of Subscripts

 Subscripts may be of LOGICAL or CHARACTER value. The first _____

 character (leftmost byte) in the quantity is used as the

 low-order byte of a four-byte integer to form the actual

 subscript. For example, A(’123’) is the same as A(241) since

 the internal representation of the character 1, taken as a

 integer value, is equivalent to 241.

 For example,

 CHARACTER*1 TRANSL(255),CARD(80)

 .

 .

 .

 DO 1 I=1,80

 1 CARD(I)=TRANSL(CARD(I))

 .

 .

 .

 The above loop will translate each character of a line

 according to the table TRANSL.

 (2) Use with Relational Operators

 CHARACTER variables may be used as operands of relational

 operators provided both operands are of type CHARACTER. All

 values are treated as if they were in IBM 360 EBCDIC representa-

 tion. For example,

 CHARACTER A*1,B*5,C*5(10)

 .

 .

 .

 IF (A.EQ.C(I)) GOTO 10

 .

 .

 .

 IF (B.LE.’AAAAA’) GOTO 30

 .

 .

 .

 For the purposes of the comparison, when operands of unequal

 length are involved, the shorter operand is considered to be

 padded with blanks so that it will be equal to the length of the

 longer operand. A warning message is issued at compile time

 when operands of differing lengths are used.

 158 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 Note that this feature is highly dependent on the IBM 360/370

 machine representation of EBCDIC characters.

 Restrictions ____________

 The user of WATFIV should note the following restrictions in language

 and facilities provided by the compiler.

 (1) The name of a COMMON block must be unique; i.e., it may not also

 be used as the name of a variable, array, or statement function.

 This is in violation of the specifications given in IBM ___

 System/360 and System/370 FORTRAN-IV Language, form GC28-6515. ___

 (2) The concept of the extended range of a DO-loop defined in

 GC28-6515 is not supported.

 (3) The service subprograms DUMP and PDUMP defined in Appendix C of

 GC28-6515 are not supported.

 (4) The debug facility described in Appendix E of GC28-6515 is not

 supported.

 (5) There are no facilities in WATFIV which correspond to the

 FORTRAN G/H options MAP, EDIT, XREF, OPT=, DECK, LOAD, NAME=,

 LIST.

 (6) The extended error message facility is not supported.

 (7) No overlay facility is available; no "module map" is produced.

 (8) The FORTRAN direct-access statements work as described in

 GC28-6515 with the following exceptions:

 (a) The maximum record length is 247 bytes.

 (b) The DEFINE FILE statement is optional. If it is used, then

 the "relative position" of a record in the file as used in

 GC28-6515 is the line number of that record. In this case,

 only integral line numbers will be used. If the DEFINE

 FILE statement is not used, then the "relative position"

 expression in a direct-access READ, FIND, or WRITE state-

 ment is taken as the internal form of an MTS line number.

 (9) No more than 255 DO statements are allowed in a program segment.

 (10) FORMAT is a reserved character sequence when used as the first 6

 characters of a statement. It is the only reserved character ____

 sequence. For example,

 FORMAT(I) = 3.5

 WATFIV 159

 MTS 6: FORTRAN in MTS

 October 1983

 will result in FORMAT error messages, whereas,

 X = FORMAT(I)

 is legal, assuming FORMAT to be an array or function name.

 (11) WATFIV is a "one-pass" compiler, and requires several restric-

 tions on statement ordering. These are:

 (a) Specification statements referring to variables used in

 NAMELIST or DEFINE FILE statements must precede the NAME-

 LIST or DEFINE FILE statements.

 (b) COMMON or EQUIVALENCE statements referring to variables

 used in DATA or initializing type statements must precede

 the DATA or initializing type statements. For example,

 REAL I/5.2/

 COMMON I

 will produce error messages, whereas,

 COMMON I

 REAL I/5.2/

 is acceptable.

 (c) A variable may appear in a EQUIVALENCE statement and then

 in a subsequent explicit type statement only if the type

 statement does not declare the length of the variable to be

 different than could be assumed for it. This assumption is

 based on the first letter of the variable name, at the time

 of its appearance in the EQUIVALENCE statement. For

 example,

 EQUIVALENCE (A,B)

 REAL*8 B

 will produce an error message, whereas,

 REAL*8 B

 EQUIVALENCE (A,B)

 will not. Note that

 EQUIVALENCE (A,B)

 INTEGER B

 is acceptable since the length of B is not changed by the

 type statement.

 (12) Only the following characters are allowed as carriage-control

 characters on SPRINT. All other characters will be replaced by

 a blank.

 160 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 blank skip 1 line before printing

 0 skip 2 lines before printing

 - skip 3 lines before printing

 + no skip before printing

 1 skip to first line of next page

 2 skip to next 1/2 page

 4 skip to next 1/4 page

 6 skip to next 1/6 page

 8 Skip to logical bottom of page (line 63)

 9 suppress space and overflow (i.e., ignore the top

 and bottom margins of the page)

 & suppress carriage return after printing

 Debugging Aids ______________

 Some new debugging aids are available in WATFIV. They are the

 DUMPLIST statement, the ON ERROR GOTO statement, and a statement trace

 facility.

 (1) The DUMPLIST statement is designed especially as a program

 debugging aid; it is used as follows:

 (a) A DUMPLIST statement is essentially a NAMELIST statement,

 except that the word DUMPLIST replaces the word NAMELIST.

 The usual rules for NAMELIST statements apply. Sample

 statements are:

 DUMPLIST /XXX/A,XYZ,APE/LOK/XX,NEXT

 DUMPLIST /THIS/N,TWO,SIX,OLD

 (b) A DUMPLIST list name need never appear in a READ or WRITE

 statement.

 (c) A DUMPLIST statement has no effect unless the program in

 which it appears is terminated because of an error condi-

 tion; then, WATFIV will automatically generate NAMELIST-

 like output of all DUMPLIST lists appearing in program

 segments which have been entered. The values printed are

 those which the variables had when the program was termi-

 nated. To avoid producing too much output, only a few key

 variables should be placed in DUMPLIST statements.

 (2) The ON ERROR GOTO statement allows a program which has an error

 to recover and to take some alternate and possibly corrective

 action, such as giving a diagnosis. The error exit will be

 taken only for the first error encountered. The second error

 will be fatal (to prevent infinite loops). There is a separate

 error exit for each program segment (main program or sub-

 routine). The last ON ERROR GOTO statement in a program segment

 determines the error exit location for that program segment. If

 an error occurs within a program segment for which no error exit

 WATFIV 161

 MTS 6: FORTRAN in MTS

 October 1983

 is set up (i.e., no ON ERROR GOTO statement was given in that

 program segment), the error is fatal. The ON ERROR GOTO

 statement is not an executable statement; hence, it may be

 placed anywhere within the program segment it applies to. It is

 not advisable to have the error exit (GOTO portion of the ON

 ERROR GOTO) transfer into the range of a DO-loop, as no checking

 is performed to ensure loop variables are set up properly.

 Thus, infinite looping may result.

 INCOMPATIBILITIES OF WATFIV ___________________________

 By and large, most programs which follow the rules and conventions

 given in the section "Language Accepted by WATFIV" will produce

 virtually the same results when run under any of the four compilers:

 WATFIV, WATFOR, FORTRAN G, or FORTRAN H. However, there will be some

 programs which will produce different results when run under WATFOR and

 WATFIV. The difference could be as minor as, for example, an extra

 warning message issued by WATFIV if a specification statement follows an

 executable statement. These differences arise because of slightly

 different conventions used in WATFIV.

 A similar situation exists for the FORTRAN G and FORTRAN H compilers.

 In this case, the differences arise mainly because our interpretations

 of some vague sections of the IBM FORTRAN publication, IBM System/360 ______________

 and System/370 FORTRAN IV Language, are different than those of the __________________________________

 implementors of the IBM compilers. Again, it should be mentioned that

 the differences are fairly minor.

 To assist the programmer, this section provides information on

 currently known incompatibilities. Additional information (in the form

 of MTS Manual updates) may be distributed from time to time as more

 incompatibilities are discovered.

 Incompatibilities with WATFOR _____________________________

 Since WATFOR, the precursor of WATFIV, has not been available in MTS

 since 1971, this section will be of use to only a few users.

 The most likely cause of difficulty is the use of arrays as

 subprogram arguments, as discussed in number (11) below. However, the

 more straightforward incompatibilities are discussed first.

 (1) WATFOR does not support the NAMELIST, direct-access I/O, and

 CHARACTER variable language features.

 (2) WATFOR does not support the LIST/NOLIST, LIBLIST/NOLIBLIST,

 WARN/NOWARN options on the /COMPILE control command.

 162 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 (3) WATFIV issues warnings if the proper ordering of statements is

 not followed. The proper order is specifications statements

 before statement function definitions before executable

 statements.

 (4) With WATFIV, DO-loops may be nested to any depth.

 (5) An INTEGER*2 variable may not be used as a unit number in an I/O

 statement with WATFIV.

 (6) WATFOR does not accept source statements in compressed form,

 i.e., more than one statement per line.

 (7) With WATFIV, if the index of a computed GOTO is negative or

 zero, control transfers to the next executable statement; this

 follows the specifications of GC28-6515. Under WATFOR, a

 terminating error message is given.

 (8) WATFOR gives special treatment to the $ in IMPLICIT statements.

 WATFIV assumes that the dollar-sign follows Z in alphabetical

 order; this is the convention of GC28-6515.

 (9) If a function subprogram has additional entry points, WATFOR

 does not equivalence the variables which are the names of the

 function and its entry points. WATFIV does this, as prescribed

 by GC28-6515. For example,

 FUNCTION A

 .

 .

 .

 ENTRY B

 .

 .

 .

 B=4

 RETURN

 returns 4 as the value of the function in WATFIV.

 (10) The conventions, used by WATFIV, for intermixing EBCDIC and BCD

 characters in source programs are slightly different than those

 used by WATFOR.

 (a) WATFIV does not allow intermixing of the EBCDIC and

 BCD quote marks in a program.

 (b) If KP=26 is specified, WATFIV uses "$" to denote a

 statement number argument; WATFOR uses a 12-8-6 multi-

 punch (EBCDIC "+") for this.

 (11) WATFIV gives a different treatment to arrays passed to subrou-

 tines as parameters.

 WATFIV 163

 MTS 6: FORTRAN in MTS

 October 1983

 (a) WATFIV allows the actual argument to be an array

 element or a simple variable.

 (b) WATFIV uses the dimensions declared for the dummy

 array in the called subprogram. This ensures compati-

 bility with FORTRAN G and H, and object-time dimen-

 sions work as specified by GC28-6515.

 Under WATFOR, the dimensions for a dummy array are ignored at

 execution time. When an array is passed from subprogram to

 subprogram, the dimensions that are declared for it in the

 program segment in which it is actually allocated storage are

 passed as well. These dimensions are then used for subscript

 calculations.

 In addition, under WATFOR and WATFIV, the results will be

 different if the dimensions of the dummy array differ from those

 of the actual array passed (see point (b) above).

 Incompatibilities with FORTRAN G and H ______________________________________

 The differences listed below do not include the language extensions

 and restrictions given in the section "Language Accepted by WATFIV," nor

 do they include differences which arise either because object programs

 compiled under FORTRAN G and H are freely allowed to violate the

 language rules defined by GC28-6515 (e.g., passing an argument of type

 INTEGER to the SQRT subroutine), or because the FORTRAN-G and -H

 compilers accept syntax not defined in GC28-6515. The major causes of

 differences between WATFIV and FORTRAN G and H are likely to be the

 treatment of FORTRAN-supplied functions and number conversions.

 (1) WATFIV provides execution-time page skipping, controlled by the

 LINES job parameter to the /COMPILE control command.

 (2) WATFIV allows any number of contiguous comment lines; comment

 lines may precede a continuation line. For example,

 INTEGER A(2

 C THIS IS A COMMENT

 *),BC

 (3) WATFIV uses only the high-order byte of a logical quantity in

 logical operations. For example, if A and B are of type

 LOGICAL*4, execution of the statement

 A = B

 causes only one byte to be moved.

 (4) DO-loops may be nested to any depth in WATFIV.

 164 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 (5) WATFIV supports both EBCDIC and BCD "+" as a carriage-control

 character.

 (6) WATFIV considers the program to be in error if it executes a

 "RETURN i" statement in which the value of "i" is undefined,

 zero, negative, or greater than the number of statement-number

 arguments which appeared in the argument list of the CALL

 statement that invoked the subprogram.

 (7) WATFIV prints no message equivalent to the IHC210I ("OLD PSW IS

 ...") message when an interrupt occurs.

 (8) With WATFIV, the use of a T format, which does a backward tab in

 an output buffer, does not cause existing characters in the

 buffer to be blanked out. For example, consider the statements:

 K=9

 J=1

 WRITE (6,7) K,J

 7 FORMAT (’$$$.00’,T3,I2,T6,I2)

 With WATFIV, the line appears as:

 $$9.01

 With FORTRAN G or H, it appears as:

 $ 9. 1

 Actually, this is a consequence of the fact that the WATFIV

 formatting routines assume the buffer to be blanked before any

 filling occurs, i.e., only significant characters are moved into

 the buffer.

 (9) REAL*4 values are printed with a maximum of 7 significant

 digits. If the output format specification calls for more,

 i.e., E20.10, zeros are supplied on the right.

 (10) WATFIV treats FORTRAN-supplied functions differently than FOR-

 TRAN G and H as follows:

 (a) The function type must be explicitly declared if it is

 different than can be assumed from the implicit rules.

 (b) WATFIV makes no distinction between in-line and out-

 of-line functions; all functions are out-of-line.

 (c) WATFIV evaluates all functions that require compli-

 cated approximation formulae in double precision,

 i.e.,

 SQRT(X)

 is calculated as, essentially,

 WATFIV 165

 MTS 6: FORTRAN in MTS

 October 1983

 SNGL(DSQRT(DBLE(X))).

 (11) WATFIV handles FORMAT statements differently than FORTRAN G and

 H as follows:

 (a) Commas are not required between format codes in

 WATFIV; however, a warning message is issued when a

 comma is not provided.

 (b) WATFIV allows an arbitrary number of continuation

 cards for FORMAT statements.

 (c) WATFIV does not allow group or field counts to be

 zero.

 (12) Execution-time data lines read on SCARDS by WATFIV-compiled

 programs may not contain a $ or / in column 1.

 (13) WATFIV treats a floating-point constant of more than 6 or 7

 significant digits as a double-precision constant. In FORTRAN G

 and H, one must denote this with a D at the end to get double

 precision. A constant of this type will cause problems when

 used with a REAL*4 constant in DATA statements. A message will

 be generated that data type and constant type do not match.

 (14) WATFIV will not accept the *FTN extension that input data fields

 can be compressed and separated by commas. Thus, all data to be

 read by a format must be entered according to that format, even

 at a terminal.

 (15) There is a restriction in FORTRAN that the dummy argument for an

 ENTRY point must not be used in an executable statement prior to

 the ENTRY point unless it has been previously defined as a dummy

 argument in an ENTRY, SUBROUTINE, or FUNCTION statement. How-

 ever, WATFIV regards type declarations as "executable" state-

 ments; these will be flagged as errors when they declare type

 for dummy argument of an ENTRY point.

 SUBPROGRAM FACILITIES _____________________

 This section provides information on the subprogram facilities

 available with the WATFIV compiler. Rules for passing values between

 subprograms are also discussed.

 Sources of Subprograms ______________________

 Any subprograms referenced in a FORTRAN program run under WATFIV must

 come from one of three possible sources:

 166 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 (1) source programs or object modules in the input stream (SCARDS),

 i.e., the usual program input;

 (2) resident library routines internal to the compiler itself. For

 example, the routines EXP, DEXP, ALOG, ALOG10, DLOG, DLOG10,

 EXIT, and SQRT are always resident in memory;

 (3) Routines from *WATLIB or other subroutine library files.

 The search for subprograms is made in the order given above, i.e.,

 the user may supply a subprogram EXIT which will be used in preference

 to subprograms which may be resident in memory or in a subroutine

 library file.

 Normally, a user need not be concerned with determining which

 routines are resident in memory.

 FORTRAN-Supplied Routines _________________________

 The WATFIV user has available all function and subroutine subprograms

 (except DUMP and PDUMP) mentioned in Appendix C of IBM System/360 and __________________

 System/370 FORTRAN IV Language, form GC28-6515. The coding used for the ______________________________

 double-precision versions of the mathematical functions is essentially

 that used with the IBM FORTRAN library (without the extended error

 message facility). Consequently, the algorithms used and error esti-

 mates for these routines may be found in the IBM publication, IBM ___

 System/360 FORTRAN IV Library Subprograms, form GC28-6596. ___

 The following additional points should be noted. Single-precision

 versions of many of the mathematical functions used in WATFIV produce

 the truncated value of the corresponding double-precision version.

 (Exceptions are the functions such as ABS, MOD, FLOAT, etc., which do

 not require complicated approximation formulae.) For example, the

 evaluation of SQRT by WATFIV is essentially equivalent to

 SQRT(X)=SNGL(DSQRT(DBLE(X)))

 WATFIV supplies no automatic declarations of FORTRAN mathematical

 functions. Thus, a user must explicitly declare any FORTRAN function

 names which are not declared by implicit rules, e.g.,

 REAL*8 DSIN,DSQRT

 COMPLEX CMPLX,CDSIN*16

 WATFIV 167

 MTS 6: FORTRAN in MTS

 October 1983

 Subprogram Arguments ____________________

 The rules for passing values between subprograms are generally the

 same as those described in the IBM publication, IBM System/360 and ____________________

 System/370 FORTRAN IV Language, form GC28-6515. The relevant sections ________________________________

 in that manual are "Dummy Arguments in a Function or Subroutine

 Subprogram," "Multiple Entry into a Subprogram," and "Object-Time

 Dimensions." The following remarks augment the rules stated in

 GC28-6515.

 (1) Dummy Arguments

 If a dummy argument of a called subprogram is an array, then

 GC28-6515 specifies that the corresponding actual argument

 provided by a calling routine must be (1) an array name, or (2)

 an array element. Furthermore, in case (1), the size of the

 dummy array as declared in the called subprogram must not exceed

 the size of the actual array provided by the calling subprogram.

 (Here "size" means amount, in bytes, of memory allocated.) In

 case (2), the size of the dummy array must not exceed the size

 of that portion of the actual array, which follows and includes

 the specified element.

 WATFIV allows a third possibility; namely, that the actual

 argument may be a simple variable (or expression). The rule is

 similar to that of case (1); the size of the dummy array must

 not exceed the number of bytes occupied by the simple variable.

 All three rules can be stated more briefly, if somewhat less

 precisely, by a single rule: the dummy array must fit into the

 space provided by the actual argument, i.e., the dummy array may

 be smaller, but may not be larger. These rules are in the

 language presumably so that programmers will not index beyond

 the confines of an array, thus possibly destroying other data or

 program areas. WATFIV ensures that the rules are not violated

 at execution time by making checks on arguments that are passed

 to dummy arrays. If a rule is violated, the program is presumed

 to be at fault, and is terminated with an error message and a

 subprogram traceback.

 An example of case (2) follows in which the dummy array is

 smaller than the actual array. Note that, according to the

 rules, B could be dimensioned at, but not larger than, 76.

 DIMENSION A(100)

 .

 .

 .

 CALL RTN(A(25))

 .

 .

 168 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 .

 END

 SUBROUTINE RTN(B)

 DIMENSION B(50)

 .

 .

 .

 END

 Object-time dimensions can be very useful for creating subpro-

 grams, especially when it is not known beforehand what dimen-

 sions should be used for dummy arrays. The following example

 illustrates this point.

 DIMENSION A(100)

 .

 .

 .

 CALL RTN(A(25),76)

 .

 .

 .

 CALL RTN(A(I),101-I)

 .

 .

 .

 END

 SUBROUTINE RTN(B,N)

 DIMENSION B(N)

 .

 .

 .

 END

 (2) Hollerith Constants

 The following remarks pertain to the use of Hollerith (or

 CHARACTER) constants as subprogram arguments. Since CHARACTER

 variables are implemented in WATFIV, a Hollerith constant should

 be passed to a dummy argument that is a CHARACTER variable of

 appropriate length. This is merely an application of the

 general rule that an actual argument should agree in type and

 length with its corresponding dummy argument. An example

 follows.

 .

 .

 .

 CALL RTN(’LENGTH1S9’)

 .

 .

 WATFIV 169

 MTS 6: FORTRAN in MTS

 October 1983

 .

 END

 SUBROUTINE RTN(X)

 CHARACTER*9 X

 .

 .

 .

 However, to allow some compatibility with existing programs,

 Hollerith constants used as subprogram arguments are also

 treated in the following way. The compiler pads the constant on

 the right, with blanks, to make its length a multiple of four,

 if necessary. It is then treated as a REAL or INTEGER vector,

 with a dimension equal to the number of fullwords the constant

 occupies. Thus, the corresponding dummy argument must be a REAL

 or INTEGER vector of appropriate dimension. The following

 example illustrates this.

 .

 .

 .

 CALL RTN(’LENGTH1S9’,3)

 .

 .

 .

 END

 SUBROUTINE RTN(I,N)

 DIMENSION I(N)

 .

 .

 .

 Hollerith constants are always aligned on a fullword boundary.

 Subprograms in Object-Module Form _________________________________

 WATFIV will accept subprograms in object-module form from the input

 stream (SCARDS).

 A subprogram in object-module form may appear in any place that a

 subprogram in source form may appear, but object modules are never

 listed. The example below shows a job composed of a main program and

 two subprograms, R1 and R2, in object-module and source form,

 respectively.

 170 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 /COMPILE parameters

 . ┐
 . |

 . |

 CALL R2(A) | Main program

 . |

 . |

 END ┘
 ┌
 |

 |

 | Object module for R1

 |

 |

 └
 SUBROUTINE R2(X) ┐
 . |

 . |

 . |

 Y=R1(X) | R2 in source form

 . |

 . |

 . |

 END ┘
 /DATA

 ┌
 |

 |

 | Any data

 |

 |

 └

 The question naturally arises, "May object modules acquired from the

 FORTRAN G or H compilers be used?" The answer is, "Yes, but only under

 certain circumstances." However, the circumstances are so restrictive

 that, effectively, the answer is, "No." The intention is that the

 object-module loading facility of WATFIV will be used with special-

 purpose routines, e.g., plotter routines or 360-assembly language

 routines.

 Since the calling-sequence conventions are similar to those used with

 the FORTRAN G or H compiler, anyone who previously has coded 360-

 assembly subroutines should have little difficulty adapting the subpro-

 grams for use with WATFIV. Complete details can be found in the

 section, "360-Assembly Language Subprograms."

 (1) An object module is detected by the 12-2-9 punch or X’02’ that

 appears in the first column of a record. This punch is usually

 put there by most assemblers and compilers. Input records

 without this identifying characteristic are not considered to be

 a part of an object module.

 WATFIV 171

 MTS 6: FORTRAN in MTS

 October 1983

 (2) WATFIV uses an internal loader. This loader is rather simple

 and can handle only the following types of loader records:

 ESD

 TXT

 RLD

 END

 Any other records, such as SYM records, put out under the test

 version of the FORTRAN-G compiler, or REP records are ignored.

 (3) The above loader records are expected to be 80 bytes long.

 Therefore, WATFIV will not accept output from the MTS linkage

 editor unless specification was for 80-byte records.

 Additional Subprograms Supported ________________________________

 WATFIV supports the four function subprograms described in the

 following:

 Function Number of Type of Type of ________ ______ __ ____ __ ____ __

 Name Purpose Arguments Arguments Result ____ _______ _________ _________ ______

 AND¹ Logical ’and’ of 2 or more Word length² REAL*4
 arguments

 OR¹ Logical ’or’ of 2 or more Word length REAL*4
 arguments

 EOR Exclusive ’or’ of 2 or more Word length REAL*4

 arguments

 COMPL Logical 1’s comple- 1 Word length REAL*4

 ment of argument

 ¹The functions AND and OR have alternate entry points LAND and LOR,
 respectively, available in *WATLIB.

 ²The term "word length" refers to any type of variable that occupies
 four bytes; e.g., INTEGER*4, REAL*4, LOGICAL*4, CHARACTER*4, etc. All

 32 bits of each argument are used in composing the result of the

 function evaluation.

 Structure of a Subroutine Library _________________________________

 A WATFIV subroutine library consists of a directory and the WATFIV

 source code or assembled object code for the subroutines. Two different

 library organizations are available; one for line files and one for

 172 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 sequential files. The structure of a line file library is similar to

 the structure of a macro library (see MTS Volume 3, System Subroutine _________________

 Descriptions). ____________

 The Directory:

 (1) Each entry in the directory contains the name of a subroutine in

 columns 1-8 and the line number of the first WATFIV statement or

 object record of the subroutine in columns 10-16. (Both the

 name and the line number must be left-justified with trailing

 blanks.)

 (2) The line number of the first entry in the directory must be 1.

 (3) The terminating entry in the directory is a string of eight

 (character) zeros in columns 1-8.

 The Subroutines:

 (1) The line number of the first statement in the subroutine must be

 a positive integer.

 (2) The first subroutine follows the last entry in the directory.

 (3) Each subroutine must be followed by a line with the /TERM

 control command in columns 1 through 5.

 The structure of a sequential file library is similar to the DIR

 format for object module libraries (see the *OBJUTIL description in MTS

 Volume 2, Public File Descriptions, or the section "The Object File ________________________

 Editor" in MTS Volume 5, System Services). _______________

 The Directory:

 (1) The first line of the sequential file contains the directory.

 This consists of a 12-byte field for each entry; the first 8

 bytes contain the name of the subroutine (left-justified)

 followed by a corresponding 4-byte pointer to the first line of

 the subroutine. WATFIV uses this pointer as the read pointer

 for the MTS POINT subroutine when reading a member of the

 library (see the POINT subroutine description in MTS Volume 3).

 (2) There may be at most 2730 subroutine names in the directory.

 The Subroutines:

 (1) The first subroutine begins with the second line in the file,

 immediately following the directory.

 (2) Each subroutine must be followed by a line with the /TERM

 control command beginning in column 1.

 WATFIV 173

 MTS 6: FORTRAN in MTS

 October 1983

 The sequential file format is more efficient than the line file

 format since it minimizes the number of I/O operations needed to read

 the file. However, the line file format allows easy editing of source

 members and new subroutines may be added quite easily.

 The *WATLIB routine FIVPAK should be used to compress the WATFIV-

 coded library subroutines to minimize storage requirements and to

 increase efficiency. Further details concerning FIVPAK are given in the

 section "Source Statement Compression Routines."

 Generating a Subroutine Library _______________________________

 The program *WATGENLIB may be used for automatically generating

 WATFIV source libraries in either the line file or sequential file

 format. The program is invoked by the $RUN command as follows:

 $RUN *WATGENLIB [logical unit specifications] [PAR=options]

 where the logical I/O unit specifications are as follows:

 SCARDS - WATFIV-coded subroutines and/or object modules.

 SPRINT - listing of the number of library members generated and the

 CPU time used.

 SPUNCH - the generated library.

 SERCOM - error diagnostic messages.

 The following options may be specified in the PAR field of the $RUN

 command. They must be separated by blanks or a comma.

 COUNT=n "n" is the maximum number of subroutine names to be

 included in the library directory. WATGENLIB uses this

 count in allocating workspace for its internal directory.

 If this count is too small, then execution of the program

 will terminate and an error message will be printed. The

 default is 100.

 ENTRY The ENTRY option specifies that names defined as entry

 points (type LR or LD in object module ESD records, or

 the ENTRY statement in a WATFIV source subroutine) are to

 be included in the library directory. NOENTRY specifies

 that they are not to be included. The default is ENTRY.

 SORT The SORT option specifies that the library directory is

 to be sorted into ascending alphanumeric order and that

 the library members will be written in the sorted order.

 NOSORT suppresses the sort. The default is SORT.

 Each input program segment is examined to determine whether it is an

 object module or a WATFIV-coded subroutine or function. If the segment

 is an object module, it must have at least one ESD record with a defined

 174 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 symbol; the last record must be an END record. If the segment is not an

 object module, it is assumed to be a WATFIV-coded source routine. The

 first line of the routine must be either a SUBROUTINE or FUNCTION

 statement; the last line must be an END statement. If the ENTRY option

 is specified (the default), each line of the routine is examined for

 ENTRY statements and the corresponding entry names will be included in

 the library directory. Any WATFIV control commands (/COMPILE, /DATA,

 etc.) are ignored.

 The input program segments are buffered in virtual memory while

 WATGENLIB constructs the library directory. When all input is pro-

 cessed, the directory is sorted (unless NOSORT is specified) and the

 output library is generated with the library members written in

 alphabetical order on SPUNCH. The number of members written (excluding

 entry points) and the total CPU time required to generate the library is

 printed on SPRINT.

 The format of the generated library depends on the type of file

 assigned to SPUNCH. If this is a line file, the resulting source

 library will be in line file format; if this is a sequential file, the

 library will be in sequential file format.

 The following notes apply to generating libraries:

 (1) The output library file should be empty before *WATGENLIB is

 run.

 (2) All line file libraries must be copied indexed as:

 $COPY oldlibrary newlibrary@I

 (3) All sequential file libraries must be copied without trimming

 as:

 $COPY oldlibrary@-TRIM newlibrary@-TRIM

 (4) WATFIV-coded source routines should be compressed to the mul-

 tiple statement per line format via the *WATBLIB routine FIVPAK

 before *WATGENLIB is run. This will improve the compile time

 for the routine and will significantly reduce the amount of file

 space required to store it (about 60% less).

 360-ASSEMBLY LANGUAGE SUBPROGRAMS _________________________________

 This section describes the conventions for coding subprograms in

 360-assembly language for use with WATFIV. The conventions are, in

 fact, similar to those required by the FORTRAN-G and -H compilers. An

 experienced assembly language programmer should have little trouble

 converting existing routines to run under WATFIV.

 WATFIV 175

 MTS 6: FORTRAN in MTS

 October 1983

 Symbolic notation is used for registers throughout the following

 description; Ri means general register "i" and Fj means floating-point

 register "j".

 Subprogram Calling Sequences ____________________________

 Suppose a subroutine or function subprogram "rtn" is referred to by a

 CALL statement or function reference in a FORTRAN source statement,

 e.g.,

 CALL rtn(arg1,arg2,arg3,...,argn)

 Y=rtn(arg1,arg2,arg3,...,argn)

 The calling sequence generated by WATFIV for either case is

 CNOP 2,4

 LA R14,RETURN

 L R15,=V(rtn)

 BALR R1,R15

 DC AL1(c),AL3(addr) argument list

 DC AL1(c),AL3(addr)

 .

 .

 .

 DC AL1(c),AL3(addr)

 RETURN EQU *

 Each "c" is a code which describes the kind of argument list entry; each

 "addr" is either the address of an argument or a pointer to more

 information about the argument. The calling routine also provides an

 18-fullword, OS-type save area.

 Thus, on entry to the called subprogram: ______

 - R15 contains the address of the entry point,

 - R14 contains the normal return address,

 - R13 contains the address of a save area, and

 - R1 contains the address of an argument list aligned on a fullword

 boundary.

 Moreover, it is a WATFIV convention that F6 will contain zero and R12

 will contain the base address of a set of routines, constants, switches,

 etc., internal to the compiler.

 When control is returned to the WATFIV-compiled program, it expects

 that:

 - at least registers R5-R13 have been restored,

 - the result of a function reference is returned in

 176 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 (a) R0, if the function is INTEGER or LOGICAL

 (b) F0, if the function is REAL

 (c) (F0,F2), if the function is COMPLEX

 - F6 still contains zero.

 The six major categories for a code byte "c" and associated meanings

 of "addr" are:

 (1) Unchangeable Quantity - Q: c = B’0000mmmm’

 An argument which should not be changed by the called subprogram

 is flagged with this code byte. Constants, temporaries, DO-

 parameters, and assigned GOTO indices are unchangeable

 quantities.

 The low-order four bits "mmmm" give the type of the argument

 according to Table 1.

 For types 0-7, AL3(addr) = AL3(Q); for types 8 and 9, AL3(addr)

 = AL3(Q), where Q is a fullword of the form _ _

 DC AL1(n),AL3(Q)

 ┌──┐ ┌ ┌ ┌
 | | Type | | |

 | Type | Number | mmmm | s-Value|

 |─────────────────┼────────┼──────┼────────| ┌ ┘
 | | | | |

 | LOGICAL*4 | 0 | 0000 | 2 |

 | LOGICAL*1 | 1 | 0001 | 0 |

 | INTEGER*4 | 2 | 0010 | 2 |

 | INTEGER*2 | 3 | 0011 | 1 |

 | REAL*4 | 4 | 0100 | 2 |

 | REAL*8 | 5 | 0101 | 3 |

 | COMPLEX*8 | 6 | 0110 | 3 |

 | COMPLEX*16 | 7 | 0111 | 4 |

 | CHARACTER*n n=1 | 8 | 1000 | 0 |

 | CHARACTER*n n>1 | 9 | 1001 | 0 |

 └──┘ ┘ ┘ ┘

 Table 1: Type-Code Bits

 (2) Variables, Array Elements - V: c = ’B1000mmmm’

 Here, AL3(addr) = AL3(V), and "mmmm" is as given in Table 1. If

 the argument is an array element, an extra word follows in the _____ _______ _____

 argument list as a special indicator. This has the form

 DC X’8C’,AL3(V*)

 where V* is the so-called STAR routine for an array of which the

 element is a member. STAR routines are described in the section

 WATFIV 177

 MTS 6: FORTRAN in MTS

 October 1983

 below. For example, if V(5) is used as a subprogram argument,

 the corresponding argument list entry would appear as follows:

 DC B’10000100’,AL3(V1+16),X’8C’,AL3(V*)

 where V1 is used as symbol to represent V(1). (V1 is assumed to

 be REAL*4).

 (3) Array Name - A: c = B’1kkkmmmm’

 Here, "kkk" is the number of dimensions of A, "mmmm" is as given

 in Table 1, and

 AL3(addr) = AL3(A*)

 (4) Subprogram Name - R:

 If R is a subroutine, c = B’01010000’; if R is a function, c =

 B’0110mmmm’. In both cases, AL3(addr) = AL3(R), where R is of _ _

 the form

 DC A(R).

 (5) Statement Number - &n: c = B’00110000’

 Here AL3(addr) = AL3(n), where n is a fullword containing the _ _

 address of the statement numbered "n".

 (6) Argument List Terminator:

 This is a special entry to mark the end of the argument list; it

 also provides information about the nature of the called

 routine.

 If the called routine is to be a subroutine, c = B’00010000’; if

 the called routine is to be a function, c = B’0010mmmm’. The

 accompanying adcon contains no information.

 STAR Routines for Array Arguments _________________________________

 All references to any array, say X, in a WATFIV-compiled program are

 made by means of the Subscript Testing and Addressing Routine (STAR

 routine), for X, called X*. The STAR routines for all arrays declared

 in FORTRAN source programs are constructed by the compiler. Each STAR

 routine contains information pertinent to an array (e.g., its dimen-

 sions, starting address, total length), and each is used at execution

 time for indexing into the array, for checking for out-of-range

 subscripts, and for passing the array to subprograms.

 178 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 Knowledge of the form of a STAR routine is required when an assembler

 subprogram must receive (or pass) an array from (or to) a FORTRAN

 routine. For these purposes, it is sufficient to consider a skeleton

 STAR routine, say X*, of the following form:

 DS 0F

 X* EQU *-4

 DC AL1(f),AL3(1st element in array)

 DC AL1(s),AL3(length, in bytes, of array)

 where "f=4k-4" ("k" is the number of dimensions), and "s" is the s-value

 corresponding to the type of array (see Table 1).

 In a STAR routine constructed by the user to pass an array to a

 FORTRAN subprogram, the "f" and "s" bytes may be set to zero; the

 prologue in the FORTRAN routine references only the two AL3 adcons when

 initializing the STAR routine of the dummy array to which the calling

 array is passed.

 The form of a full STAR routine constructed by the compiler is given

 below for documentation purposes.

 Other Conventions for Assembler Subprograms ___

 (1) Only the first 6 characters of CSECT, ENTRY, and EXTRN names are

 used by the WATFIV object-module loader; names longer than 6

 characters are truncated. Names of ENTRY points and CSECTs must

 be unique.

 (2) Blank COMMON may be referred to by the usual COM assembler

 feature. To refer to named COMMON, the V-type address constant

 name V(name of COMMON) is used.

 (3) Assembler subprograms may use the CXD and DXD assembler

 features.

 (4) A logical function returns its value in the low-order byte of

 R0; .TRUE. is X’FF’, .FALSE. is X’00’. WATFIV stores the

 value of a logical variable in the high-order byte.

 (5) To simulate a multiple-return statement "RETURN i", the called

 subprogram must search the argument list for the "i" statement-

 number argument. The address to which control should be

 returned can be determined from this argument list entry.

 (6) To call a FORTRAN subprogram from an assembler subprogram, the

 following must be done:

 WATFIV 179

 MTS 6: FORTRAN in MTS

 October 1983

 - simulate a WATFIV-generated call as described above. This

 will include a properly constructed argument list and any

 required skeleton STAR routines. Provide a save area address

 in R13.

 - pass on the contents of R12 that were passed to the assembler

 subprogram by a high-level FORTRAN routine.

 - ensure that F6 contains zero.

 - upon return from the FORTRAN subprogram, restore the assem-

 bler subprogram’s registers R0-R4, R12, R15, if required,

 from its save area. The FORTRAN subprogram’s epilogue

 restores only R5-R11, R13, and R14. Function values are

 returned in R0, F0, or F0-F2 as described in the section,

 "Subprogram Calling Sequences."

 The special precautions for registers R12 and F6 are required

 since WATFIV assumes that they remain constant through the

 execution of a program. F6 is used for converting single-

 precision values to double-precision; R12 is used as a base

 register for many internal execution-time routines contained in

 compiler csect STARTA. Note 5 gives an example of the above

 linkage. Note that the save areas are chained using the

 standard OS rules.

 A Compiler-Generated STAR Routine _________________________________

 The form of a full STAR routine generated by the compiler for an

 array A is as follows:

 CNOP 2,4

 DC CL6’A’

 A* BAL R15,xrtn See note 1 below

 DC AL1(f),AL3(1st element in array) See note 2 below

 DC AL1(s),AL3(length, in bytes, of array) See note 2 below

 DC A(n) See note 3 below

 DC A(d¹) Only k present
 DC A(d²)
 .

 .

 .

 DC B’c⁰c¹c²c³c⁴c⁵c⁶c⁷’,AL3(a¹) See note 4 below
 DC B’c⁰0000000’,AL3(a²) Only j present
 DC B’c⁰0000000’,AL3(a³)
 .

 .

 .

 180 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 where "k" is the number of dimensions declared for A; "j" is the number

 of variable dimensions; "d¹,d²,..." are the dimensions to be used for
 calculating the position of an element within the array; "f=4k-4"; and

 "s" is the s-value from Table 1.

 Notes on the STAR Routine _________________________

 (1) The symbol "xrtn" stands for XA1 if k=1, or XAN if k>1. XA1 and

 XAN are names of subscript evaluation routines internal to the

 compiler, and are contained in compiler csect STARTA, address-

 able by R12. If the array is of type CHARACTER*n with n>1, the

 instruction is formed with R12 in the index position instead of

 the base position, i.e., "xrtn" is d(R12) instead of d(,R12).

 This fact is used by the error editor, ERROR.

 (2) If the array is a dummy in a subprogram, then, when the

 subprogram is called, the prologue fills in the adcon for the

 first element from information supplied by the corresponding

 actual argument. Similarly, the prologue computes and fills in

 the length adcon if the dummy array has any variable dimensions.

 (3) This word is present only if the array is of type CHARACTER*n

 with n>1; in this case, f=4K. In fact, the compiler treats such

 arrays as if they had k+1 dimensions where the implied first

 dimension is n.

 (4) The first word is present if the array is a dummy array in a

 subprogram. Bits c¹ to c⁷ indicate which, if any, dimensions
 are variable; c¹ is 1 if the last dimension is variable; c² is 1
 if the second last dimension is variable, and so on. If none of

 c¹ to c⁷ are 1, then both c⁰ and a¹ are zero; otherwise, c⁰ and
 a¹ specify the location of the last dimension which is variable,
 as follows:

 if c⁰=0, the AL3(a¹) = AL3(variable dimension)
 if c⁰=1, then AL3(a¹) = AL3(v), where v is defined by _ _

 DC A(variable dimension)

 Bit c⁰ will be 1 if the variable dimension is in COMMON or is a
 call-by-location subprogram parameter. The second, third, etc.,

 words are present if there are two, three, etc., variable

 dimensions; the second word locates the second-to-last dimension

 which is variable, the third word locates the third-to-last

 dimension which is variable, and so on. For these words, c⁰ and
 a², a³, ..., are interpreted as above.

 The set of words described in note 3 are used at execution time

 by the subprogram prologue to fill in the corresponding values

 WATFIV 181

 MTS 6: FORTRAN in MTS

 October 1983

 in the list of dimensions, and to compute the total length of

 the array. The prologue fills in STAR routines for dummy arrays

 only after it has passed down all other variables.

 For example, for source statements

 SUBROUTINE RTN(ALPHA,X,/M/,N)

 COMMON K

 DIMENSION ALPHA(10,K,N,5,M,12)

 The compiler constructs the following STAR routine for ALPHA.

 CNOP 2,4

 DC CL6,’ALPHA’

 ALPHA* BAL R15,XAN

 DC AL1(20),AL3(*-*) 1st element; filled by prol.

 DC AL1(2),AL3(*-*) length; filled by prologue

 DC A(10)

 DC A(*-*) filled by prologue from K

 DC A(*-*) filled by prologue from N

 DC A(5)

 DC A(*-*) filled by prologue from M

 DC A(12)

 DC B’10101100’,AL3(M) _

 DC B’00000000’,AL3(N) _

 DC B’10000000’,AL3(K) _

 The compiler also constructs M and K as _ _

 K DC A(K) _

 M DC A(*-*) filled by prologue _

 A STAR routine is stored in the local data area of the program

 segment in which it is declared; storage for an array which is

 not a dummy is allocated in the array area.

 (5) Shown below is a sample WATFIV program which demonstrates some

 conventions used when coding subprograms in 360-assembly lan-

 guage for use with WATFIV.

 The main program calls an assembly language subprogram RTN. RTN

 in turn calls the WATFIV-written subprogram NEXT. RTN passes a

 value for XX of 12.25 to be used in NEXT. NEXT initializes the

 array B and the variable Y and returns. RTN then passes a value

 for X back to the main program.

 COMMON I

 DIMENSION A(10)

 CALL RTN(A,X)

 PRINT, A,X,I

 STOP

 END

 182 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 SUBROUTINE NEXT(B,Y)

 COMMON J

 DIMENSION B(5)

 PRINT, ’HELLO FROM NEXT’,’ Y=’,Y

 DO 1 J=1,5

 1 B(J)=J

 Y=-17.5

 PRINT, ’GOOD-BYE FROM NEXT’,’ Y=’,Y

 RETURN

 END

 START

 ENTRY RTN

 USING RTN,15

 RTN STM 14,12,12(13) Save caller’s registers

 LR 2,13 Address of caller’s save area

 LA 13,SAVE New save area

 ST 13,8(2) Link the two save areas

 ST 2,SAVE+4

 L 2,0(1) Address of STAR routine for A

 L 3,4(2) Address of 1st element of A

 LA 3,0(3) Get rid of code byte

 ST 3,ASTAR+4 Save in dummy STAR routine

 L 3,8(2) Length of array A

 ST 3,ASTAR+8 Save in dummy STAR routine

 L 2,4(1) Address of second argument X

 ST 2,XADDR Save it for later

 LA 1,ARGLIST Address of argument list for call

 L 15,=V(NEXT) To FORTRAN routine NEXT

 BALR 14,15 And away we go......

 DROP 15

 USING *,14

 L 2,XADDR Addr of X passed from main program

 MVC 0(4,2),XX Return value for X in main program

 L 13,SAVE+4 Old save area pointer

 LM 14,12,12(13) Restore main program’s registers

 BR 14 Return to main program

 XX DC E’12.25’ Changed by Y=-17.5 in NEXT

 *

 * Argument list for the call to NEXT, i.e., CALL NEXT(A,XX)

 *

 ARGLIST DC B’10010100’,AL3(ASTAR) Pointer to STAR routine A

 DC B’10000100’,AL3(XX) Pointer to XX

 DC B’00000000’,AL3(0) End of list indicator

 XADDR DC A(*-*) Save address of X here

 SAVE DS 18F Save area

 ASTAR EQU *-4 This is a STAR routine to

 DC 2A(*-*) pass A to routine NEXT

 END

 WATFIV 183

 MTS 6: FORTRAN in MTS

 October 1983

 OBJECT MODULES FROM OTHER COMPILERS ___________________________________

 Object modules which do not follow the WATFIV calling conventions

 (e.g., those produced by the FORTRAN-G compiler) may be used with WATFIV

 if they are called via the WATFIV object module interface WATSUB, which

 is available in *WATLIB. This subprogram is written in 360-assembly

 language and is callable only from a WATFIV program. The interface is

 used as follows:

 (1) If the object module is a subroutine named "sub", it is called

 from a WATFIV program as:

 EXTERNAL sub

 CALL WATSUB(sub,n1,n2,...)

 where "n1,n2,..." are the actual arguments for "sub".

 (2) If the object module is a real function named "fun", it is

 called as:

 EXTERNAL fun

 x=RFUNC(fun,n1,n2,...)

 where "n1,n2,..." are the actual arguments for "fun" and "x" is

 the real value returned.

 (3) If the object module is an integer function named "ifun", it is

 called as:

 EXTERNAL ifun

 i=IFUNC(ifun,n1,n2,...)

 where "n1,n2,..." are the actual arguments for "ifun" and "i"

 is the integer value returned.

 The subprograms called through WATSUB, RFUNC, or IFUNC must not perform

 any input/output operations. Subroutines compiled with the FORTRAN-G or

 FORTRAN-H compilers may be used as long as none of the actual arguments

 are of type LOGICAL. The example below illustrates a WATFIV job using

 WATSUB.

 $RUN *WATFIV

 /COMPILE

 EXTERNAL SUB

 .

 .

 CALL WATSUB(SUB,A,B)

 .

 .

 $CONTINUE WITH SUB.OBJ RETURN

 /DATA

 .

 184 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 .

 /STOP

 where SUB.OBJ is a file containing the object module for SUB.

 SOURCE STATEMENT COMPRESSION SUBROUTINES __

 The FIVPAK subroutine compresses "one-statement-per-line" FORTRAN

 source programs into "multistatements-per-line" programs usable in

 WATFIV. The UNPACK subroutine reverses the process. FIVPAK and UNPACK

 reside in the WATFIV source library, *WATLIB.

 This form of source input is efficient if programs are to be stored

 in source form in files on disk, since programs in this form compile

 faster and require less disk space (approximately 60 percent less).

 FIVPAK removes all blanks (except those embedded between primes) from

 the FORTRAN source statements. FOR example,

 DATA A,B/2H *,’ *’/

 X=5.0

 C THIS IS A COMMENT

 36 GO TO (3,8),I

 is compressed into

 DATAA,B/2H*,’ *’/;X=5.0

 C THIS IS A COMMENT

 36 GOTO(3,8),I

 The lines produced are sequence-numbered in increments of 10.

 The following example illustrates how to call these routines:

 CALL FIVPAK(nread,nwrite)

 CALL UNPACK(nread,nwrite)

 where "nread" is the unit number for input FORTRAN source, and "nwrite"

 is the unit number of output. Both routines also produce a listing of

 the output on SPRINT.

 Both programs must be called from a program run under WATFIV, since

 they use CHARACTER variables. The job parameters NOEXT and NOWARN

 should be given on the /COMPILE control command to suppress the numerous

 extension and warning messages that result when WATFIV compiles either

 program. For example, to read lines from *SOURCE* and to punch a new

 deck:

 $RUN *WATFIV 7=*PUNCH*

 /COMPILE NOEXT,NOWARN

 WATFIV 185

 MTS 6: FORTRAN in MTS

 October 1983

 CALL FIVPAK(5,7); STOP; END

 /DATA

 one-statement-per-line program to be compressed

 Several programs can be compressed using FIVPAK by placing a line

 with an asterisk "*" in column 1 between each complete program. UNPACK

 does not require such a "separator" line.

 INTERRUPTS __________

 This section provides information on the treatment of interrupts that

 may occur during the execution of a WATFIV program.

 Subroutine TRAPS ________________

 Normally, WATFIV terminates execution of the program at the first

 occurrence of an exponent-overflow, exponent-underflow, fixed-divide, or

 floating-divide interrupt. However, the library subroutine TRAPS is

 provided to allow the programmer to accept interrupts of the above-

 mentioned types. Thus, with the appropriate use of the subroutines

 DVCHK and OVERFL, a programmer may provide, to some extent, his own

 treatment of interrupts.

 The calling sequence is

 CALL TRAPS(fovr,eovr,eund,fdiv,fldiv)

 where the parameters are integer-valued arguments corresponding to the

 number of fixed-overflows, exponent-overflows, exponent-underflows,

 fixed-divide, and floating-divide interrupts the programmer wishes to

 trap. The arguments of TRAPS set up internal counters used by the

 compiler interrupt routine. This routine decrements the appropriate

 counter by 1 when an interrupt occurs; when any counter reaches zero,

 the program is terminated.

 TRAPS may be called (and subsequently recalled) at any point in the

 main program or a subprogram to set (or reset) the interrupt counters.

 Arguments of TRAPS are screened so that the absolute value of any

 negative argument is used as a positive count, and a zero value is taken

 to mean that the current value of the corresponding interrupt counter

 should be left unchanged. If the argument is omitted, execution is

 terminated on the first interrupt for that type.

 186 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 Examples:

 (1) CALL TRAPS(0,5,7,-3,1)

 sets the interrupt counters so that execution will be terminated

 on the occurrence of the first of the:

 1st fixed overflow,

 5th exponent overflow,

 7th exponent underflow,

 3rd fixed divide, or

 1st floating divide exception following the execution of

 this call to TRAPS.

 The statement CALL TRAPS(0,5,7,3) has the same effect.

 (2) LUNFLO = 100

 LOVFLO = LUNFLO

 CALL TRAPS(0,LUNFLO,LOVFLO)

 sets the counts to terminate execution of the program on the

 occurrence of the first of the:

 1st fixed overflow,

 100th exponent overflow,

 100th exponent underflow,

 1st fixed divide, or

 1st floating divide exception following the execution of

 this call.

 (3) An execution-time statement-tracing feature or "ISN trace" is

 available. Internal statement number, or ISN, refers to the

 number of the execution statement given by the WATFIV compiler.

 Executable statements are numbered sequentially from the begin-

 ning of the program or subroutine, this number appears in the

 statement number column to the left of the source statements in

 a WATFIV listing. The trace is turned on using a /ISNON command

 and is turned off using a /ISNOFF command. Several pairs of

 /ISNON, /ISNOFF commands may appear in the same program.

 An extremely simple example of this feature and the resultant output

 follows:

 /COMPILE

 ENTER STATEMENTS

 X=1.

 /ISNON

 /ISNON

 X=X+1.

 /ISNOFF

 /ISNOFF

 X=X+1.

 /ISNON

 WATFIV 187

 MTS 6: FORTRAN in MTS

 October 1983

 /ISNON

 X=X+1.

 /ISNOFF

 /ISNOFF

 STOP

 END

 /DATA

 EXECUTION BEGINS...

 *** ISN = 2 IN ROUTINE M/PROG ***

 *** ISN = 4 IN ROUTINE M/PROG ***

 This feature is very useful for tracing statement flow during

 the debugging process, and can be used to detect infinite loops,

 strange branches, etc.

 Subroutines DVCHK and OVERFL ____________________________

 These subroutines function as follows:

 CALL DVCHK(j)

 where "j" is an integer variable that is set to 1 if the (pseudo-)

 divide-check indicator was on, or to 2 if off. After testing, the

 indicator is turned off. The indicator is set on when a fixed or

 floating-divide exception occurs.

 CALL OVERFL(j)

 where "j" is an integer variable that is set to reflect the most recent

 setting of a (pseudo-) overflow indicator. The variable "j" is set to 1

 if an exponent overflow was the last to occur, to 2 if no exponent

 overflow or underflow condition exists, or to 3 if an exponent underflow

 was the last to occur. After testing, the indicator is set to 2 for no

 condition.

 Notes _____

 (1) The compiler interrupt routine loads the affected machine

 floating-point register with zero or the properly signed,

 largest floating-point number for exponent underflow or over-

 flow, respectively.

 (2) The five interrupt counters are initialized by the compiler to 1

 at the start of each program. The divide-check and overflow

 indicators are not initialized; it is the programmer’s responsi-

 bility to do this, e.g., by dummy calls.

 188 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983

 (3) The terminating message is the only indication given by the

 compiler that interrupts have occurred. It is the programmer’s

 responsibility to monitor these using OVERFL and DVCHK.

 (4) WATFIV operates with the fixed overflow and significance inter-

 rupts masked off entirely.

 (5) WATFIV automatically corrects for boundary alignment errors at

 execution time, but not without some resulting overhead. Thus,

 programmers are advised to ensure that operands are aligned

 properly, where possible, by steps taken at the source program

 level.

 WATFIV 189

 MTS 6: FORTRAN in MTS

 October 1983

 190 WATFIV

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 INTERACTIVE FORTRAN ___________________

 This section is divided into three parts: an introduction to

 Interactive FORTRAN (IF), followed by a detailed description of the

 facilities it provides, and finally several appendices giving command

 descriptions and examples.

 The detailed description is intended to be read in a serial fashion.

 Information presented in later subsections tends to rely heavily on

 concepts presented in earlier subsections. Usually, one main concept is

 presented per subsection.

 The appendices contain more reference material than conceptual

 material. The first appendix contains detailed descriptions of all of

 the IF commands. The second appendix contains a description of the

 features of the FORTRAN language supported by the IF system. The third

 appendix contains detailed examples of complete IF runs.

 Throughout this section, reference is made to the term "the IF

 system." This term is meant to refer to the IF compiler, the IF editor,

 the IF debugging facilities, and any other facilities provided in the

 Interactive FORTRAN package.

 INTRODUCTION ____________

 The IF compiler is a processor oriented toward interactive program

 development. IF enables the user to enter entire programs from a

 terminal or a file, to dynamically debug and correct the errors, and to

 save the debugged source program.

 IF is an interpretive processor; it will not produce object modules

 and does not execute the compiled program efficiently. However, it is

 very flexible and useful for error-checking purposes. In many cases,

 bugs (program errors) which would take longer to find using the

 facilities provided by the other available FORTRAN processors will take

 only minutes to find using IF.

| Compatibility with FORTRAN 66 and FORTRAN 77 __

|

|

| There are two versions of the IF system. The *IF66 processor accepts

| the FORTRAN 66 standard (FORTRAN-IV) language that is supported by the

| FORTRAN-G and FORTRAN-H compilers (except for the extensions and

 Interactive FORTRAN 191

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

| restrictions listed in Appendix B). The *IF77 processor accepts the

| FORTRAN 77 standard that is supported by the VS FORTRAN compiler.

| Additionally, both versions of IF provide complete access to programs in

| the public library (*LIBRARY), and uses the standard system versions of

| the FORTRAN I/O and elementary function libraries. For these reasons,

| the transition from IF to FORTRAN-G, FORTRAN-H, or VS FORTRAN is

| completely straightforward. In fact, almost all programs which can be

| compiled and run using the IF system, can be compiled and run using

| either FORTRAN-G, FORTRAN-H, or VS FORTRAN without changes (and vice _______ _______

| versa).

|

| It must be emphasized that the IF system is not intended to replace

| the existing processors, only to complement them. Once a program has

| been thoroughly debugged using the IF system, then it should be compiled

| using an object code producing compiler (such as FORTRAN-G, FORTRAN-H,

| or VS FORTRAN) in order to benefit from the superior execution speed

| attained with the object code produced.

 The Beginning IF Programmer ___________________________

 The beginning IF programmer should understand that he will be able to

 compile and debug FORTRAN programs by learning how to use only a small

 subset of the features provided by the IF system. It is not necessary

 to have a complete knowledge of all of the features available in order

 to be able to use IF effectively.

 As an aid to the beginning IF programmer, the remainder of this

 description has been divided into two parts. The first part consists of

 eight subsections that contain material which is basic to the under-

 standing of the IF system. After reading these eight subsections and

 reviewing the examples in Appendix C, one should be able to use IF

 effectively.

 Following these eight subsections, there is a second part consisting

 of eight more subsections that contain supplementary information corre-

 sponding to each of the topics covered in the first eight subsections.

 The supplementary material is not basic to the understanding of the IF

 system, but it should be read after the user has had some experience

 with IF.

 A Few Definitions _________________

 A "routine" is one main program, or one SUBROUTINE subprogram, or one

 FUNCTION subprogram, or one BLOCK DATA subprogram. Interdependent

 routines collectively form a "program."

 192 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 "FDname" refers to any MTS file or device name.

 "Csect" refers to any object module such as might be produced by a

 FORTRAN compiler like FORTRAN-G. The terms "csect" and "external

 routine" are used interchangeably.

 "Fixed format" refers to the standard FORTRAN statement format

 (statement label in columns 1-5; statement body in columns 7-72;

 continuation character in column 6; optional sequence field in columns

 73-80).

 "Free-format" FORTRAN statement format implies that statement labels

 are not restricted to appearing in columns 1-5, and that statement

 bodies are not restricted to appearing in columns 7-72, but rather they

 may appear in any columns, provided the statement label precedes the

 statement body.

 IMMEDIATE EXECUTION ___________________

 Invoking the IF System ______________________

| To invoke the IF system, enter the MTS command "$RUN *IF66" or "$RUN

| *IF77". IF will respond by printing a line indicating the date of the

| version of the system which the user has invoked. In this example and

| in the other examples given is this section, user input is shown in

| lowercase.

|

| # $run *if66

| # EXECUTION BEGINS

| * IF(NOV80)

| *

 Immediate Execution Mode ________________________

 The initial mode of the IF system is known as "immediate execution

 mode" or simply "immediate execution." The user can always recognize

 immediate execution because the prefix character will be an asterisk

 (*). The prefix character is not entered by the programmer; it is

 generated by the IF system.

 The user will notice, as he reads further, that the IF system has

 several identifiable modes each with a unique prefix character. He

 should learn to recognize the mode which IF is in by the prefix

 character which is presented.

 Interactive FORTRAN 193

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 Immediate execution mode is basically a "command mode." The asterisk

 prefix tells the user that IF is prepared for him to enter an IF

 command.

 There are many IF commands, just as there are many MTS commands.

 Some IF commands even have names which are the same as MTS command names

 and serve similar functions. IF commands must begin with the command

 prefix character (/); the command prefix character cannot be omitted. ______

 The following illustration shows how the /STOP command can be used in

 immediate execution to terminate the IF run:

 * /stop

 # EXECUTION TERMINATED

 #

 COMPILATION OF ROUTINES _______________________

 Compiling FORTRAN programs or routines using the IF system is a

 process analogous to that required to compile routines using a conven-

 tional compiler (e.g., FORTRAN-G or WATFIV), provided no compilation

 errors are detected. During compilation a series of FORTRAN statements

 is read by the IF system, and code is generated which can subsequently

 be executed by IF (however, no object code is produced). Execution of

 compiled routines does not occur until the programmer issues a command

 specifying the routine in which execution is to begin.

 Commands for Compiling: /COMPOSE and /COMPILE __

 Statements may be compiled from:

 (1) any MTS file,

 (2) any device such as a magnetic tape or a card reader, or

 (3) "on-line" conversational input from a terminal.

 Compilation is initiated by issuing either a /COMPILE command or a

 /COMPOSE command. The choice between these commands is based on the

 format of the FORTRAN source: /COMPILE is used when the source is in

 fixed format, and /COMPOSE when the source is in free-format. The

 result in either case is a program which is prepared for execution.

 194 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 Creating FORTRAN Programs: The /COMPOSE Command __

 The /COMPOSE command is found to be most useful when in the process

 of creating a FORTRAN program (i.e., the program may be written on

 coding sheets, for example, but does not yet exist in machine-readable

 form). A natural way to enter a program is depicted in the following

 illustration. Lines of the program are entered conversationally, in

 free-format, one at a time:

 Interactive FORTRAN 194.1

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 194.2 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 * /compose

 1_ subroutine assign(a,b)

 ROUTINE NAME: ASSIGN

 2_ a=b

 3_ return

 4_ end

 *

 The /COMPOSE command causes a number prefix to be printed as a prompt

 for each statement (like the $NUMBER command in MTS). Entry of an END

 statement causes the number prefixing and compilation to cease. The

 line which reads "ROUTINE NAME: ASSIGN" was printed by the IF system.

 Compiling Existing FORTRAN Programs: The /COMPILE Command __

 The /COMPILE command is used for compiling programs which are already

 in machine-readable form (e.g., in a file, on cards, or on a tape).

 Programs to be compiled with the /COMPILE command must consist of fixed

 format statements (i.e., label in columns 1-5, statement body in columns

 7-72, continuation character in column 6).

 Compiling from an MTS Line File

 To compile fixed format FORTRAN routines from an MTS line file

 simply specify the name of the line file on the /COMPILE command

 (e.g., "/COMPILE MYFILE"). The user must have both read and write

 permit access to the file. Statements will be compiled from the

 specified file until an end-of-file is encountered (therefore, more

 than one routine can be compiled using a single /COMPILE command).

 * /compile draw.f

 ROUTINE NAME: DRAW

 ROUTINE NAME: PUT

 *

 In the above illustration, two routines (DRAW and PUT) are compiled

 from the MTS line file named DRAW.F.

 Compiling from Any File or Device

 To compile fixed format routines from any MTS file or device (not

 necessarily a line file), simply include the keyword FROM immedi-

 ately before the file or device name as in the following example:

 Interactive FORTRAN 195

 MTS 6: FORTRAN in MTS

 October 1983

 * /compile from seq

 ROUTINE NAME: MAIN

 ROUTINE NAME: PURGE

 ROUTINE NAME: ADD

 ROUTINE NAME: SEARCH

 *

 In the above example, four routines were compiled from the

 sequential file named SEQ.

 Compilation Errors and Editing ______________________________

 Up to now no consideration has been given to what happens when a

 compilation error occurs. For compilation errors, the action taken by

 IF differs markedly from the action taken by conventional compilers.

 When a compilation error is encountered, IF immediately invokes the

 MTS editor upon the routine containing the error.

 Using the editor command language, the programmer can easily correct

 the statements of the routine which are in error (as if he were editing

 a file using the system editor). Then, by entering an editor RETURN

 command, control will be returned from the editor to the IF system so

 that recompilation of the routine incorporating any modifications made

 using the editor will automatically take place.

 Study the following example closely:

 * /compose

 1_ subroutine title

 ROUTINE NAME: TITLE

 2_ write(6,6? ...(1)

 WRITE(6,6? ...(2)

 $

 /TITLE:2/ - ERROR: EXPECTING ")"

 : change ’?’)’ ...(3)

 : 2. WRITE(6,6)

 : return ...(4)

 3_ 6 format(’1*****’) ...(5)

 4_ return

 5_ end

 *

 Explanation of the above example:

 (1) Programmer accidentally types a question mark instead of a right

 parenthesis while entering statement 2.

 (2) IF responds by:

 (a) echo printing the line in error.

 (b) placing a marker ($) under the character in error.

 196 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 (c) printing a diagnostic message.

 (d) invoking the editor. Notice that the prefix changes to a

 colon (:) indicating edit mode.

 (3) The programmer issues the editor CHANGE command to change the

 "?" To a ")".

 (4) The programmer issues the editor RETURN command. This causes

 recompilation incorporating the change to statement 2 to take

 place.

 (5) Recompilation was successful, and compilation resumes normally.

 The programmer enters lines 3, 4, and 5 of the routine.

 The editing procedure is described in more detail in the next

 subsection.

 Useful Commands Related to Compiling Routines ___

 The /LIST Command _________________

 The /LIST command lists a routine, or a range of lines of a

 routine, on a specified file or device.

 * /compile from myfile2

 ROUTINE NAME: SQROOT

 * /list sqroot

 * 1. SUBROUTINE SQROOT(R)

 * 2. R=SQRT(R)

 * 3. RETURN

 * 4. END

 *

 The /LIST command is useful because statements which are compiled

 from files may be assigned new line numbers by IF, and these new

 line numbers may be viewed using the /LIST command. In general,

 the /COMPILE command preserves line numbers, while the /COMPOSE

 command does not.

 The /COPY Command _________________

 The /COPY command copies a routine, or a range of lines of a

 routine, to a specified file or device. The statements in the

 routine are copied without necessarily preserving their line

 numbers.

 Interactive FORTRAN 197

 MTS 6: FORTRAN in MTS

 October 1983

 * /compile from *tape*

 ROUTINE NAME: SQROOT

 * /copy sqroot *sink*

 * SUBROUTINE SQROOT(R)

 * R=SQRT(R)

 * RETURN

 * END

 *

 Routines created by using the /COMPOSE command can be permanently

 saved in an MTS file with the /COPY command.

 The /DISPLAY ROUTINES Command _____________________________

 The /DISPLAY ROUTINES command prints the name, the line range, and

 the type (i.e., BLOCK DATA, FUNCTION, MAIN, or SUBROUTINE) for each

 routine which has been compiled.

 * /display routines

 * "PUT" RANGE=(282.,296.) TYPE=SUBROUTINE

 * "DRAW" RANGE=(1.,281.) TYPE=SUBROUTINE

 * "MAIN" RANGE=(15.,311.) TYPE=MAIN

 * "XCXC" RANGE=(1.,9.) TYPE=FUNCTION

 *

 The /DESTROY Command ____________________

 Any routine which has been compiled under IF may be destroyed by

 specifying the routine name on the /DESTROY command. Destroying a

 routine never has any affect on the contents of files.

 * /destroy fodder peat

 *

 The /DESTROY command in the above illustration destroys the

 routines named FODDER and PEAT.

 The /SET ECHO=ON,OFF Command ____________________________

 By default, statements are not echo printed as they are read during ___

 compilation. To force echo printing, the user should issue the

 /SET ECHO=ON command prior to issuing the /COMPILE or /COMPOSE

 command.

 The /SET LENCHK=ON,OFF Command ______________________________

 When compiling using the /COMPILE command, all lines longer than 72

 characters are flagged by IF with warning messages. Thus, if one

 tries to compile a program containing sequence fields (sequence ________ ______

 198 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 numbers in column 73-80 of source statements), one warning message

 is printed for each sequence field. To suppress warning messages

 for lines which are greater than 72 characters long, the user

 should enter the /SET LENCHK=OFF command prior to issuing the

 /COMPILE command.

 The /SET WARN=ON,OFF Command ____________________________

 By default, warning messages are always printed during compilation.

 To suppress all warning messages, the user should issue the /SET

 WARN=OFF command prior to issuing the /COMPILE or /COMPOSE command.

 The /SET WARN=OFF command has no effect on error messages.

 EDITING ROUTINES ________________

 Edit Mode _________

 The editor may be invoked either implicitly or explicitly. As

 illustrated in the previous subsection, the editor is invoked implicitly

 by the IF system itself whenever an error is detected during the

 compilation of a routine, but it may also be invoked explicitly by the

 programmer through the /EDIT command. Regardless of the reason for

 invoking the editor, the user will be able to identify edit mode because

 the prefix character will be a colon (:). Programmers not familiar with

 the editor and the editor command language are referred to MTS Volume

 18, The MTS File Editor. ___________________

 Implicit Invoking of the Editor: Compilation Errors __

 When a compilation error is detected, IF reacts by automatically

 invoking the editor upon the routine containing the error. The invoking

 is implicit in the sense that it happens automatically; it does not

 require a /EDIT command.

 When the editor is invoked implicitly, the current line pointer in

 the editor will generally be predefined to correspond to the line number

 of the statement in error.

 With the editor command language, modifications can be made to the

 routine to correct the compilation error: any statements may be

 changed, deleted, inserted, or replaced. Subsequently, by entering

 either a null line or a RETURN editor command, the editing procedure

 will be terminated, and recompilation of the routine incorporating any

 modifications will automatically take place.

 Interactive FORTRAN 199

 MTS 6: FORTRAN in MTS

 October 1983

 * /compose

 1_ subroutine ploter

 ROUTINE NAME: PLOTER

 2_ common coords(2,100)

 3_ abcisa=coords(1,1

 ABCISA=COORDS(1,1

 $

 /PLOTER:3./ - ERROR: EXPECTING ")"

 : change ’,1’,1)’

 : 3. ABCISA=COORDS(1,1)

 : return

 4_

 If the modifications successfully correct the compilation error, then

 compilation of the routine will resume normally as if an error had never

 occurred (as was the case above where the compilation resumed at line

 4). But if either the modifications fail to correct the compilation

 error or the modifications introduce some new error into the routine,

 then the IF system simply reinvokes the editor (after producing a

 suitable error message).

 Explicit Invoking of the Editor: The /EDIT Command ___

 The editor may be invoked explicitly upon any routine by specifying

 the name of the routine on the /EDIT command (much like editing a file

 in MTS command mode).

 When the editor is invoked explicitly, the current line pointer in

 the editor will be predefined to correspond to the line number of the

 first statement in the routine being edited.

 Using the editor command language, any modifications can be made to

 the logic of the routine: statements may be changed, deleted, inserted,

 or replaced. Subsequently, by entering either a null line or a RETURN

 editor command, recompilation of the routine incorporating any new

 modifications will take place.

 * /edit gander

 : line 11

 : 11. REAL RUNWAY(10,10)

 : change ’10,10’20,20’

 : 11. REAL RUNWAY(20,20)

 : (null line entered)

 *

 If a routine is being created using the /COMPOSE command, then - as

 shown in the following example - it is possible to edit the routine

 while compilation is in progress.

 200 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 * /compose

 1_ namelist folks/dad,mim/

 ROUTINE NAME: MAIN

 2_ /edit

 : change 1 ’mim’mom’

 : 1. NAMELIST FOLKS/DAD,MOM/

 : return

 2_

 Free-Format Entry of FORTRAN Statements in the Editor ___

 Once a routine has been compiled, it is at all times maintained in

 fixed format, regardless of the format in which it was originally

 entered (statements entered for compilation in free-format using the

 /COMPOSE command are automatically converted to fixed format by IF).

 This means that whenever the user edits a routine, he is editing a

 standard fixed format version of the routine. When invoked by IF, the

 editor makes life easier by allowing him to enter FORTRAN statements in

 either fixed format or free-format -- FORTRAN statements entered in

 free-format are automatically converted to fixed format lines.

 : print 95 96

 : 95. 88888 IF(NUM.EQ.10)GOTO 99

 : 96. TOTAL=TOTAL+A(NUM)

 : insert 95

 ? 50 continue

 ? (end of file)

 : print 95 96

 : 95. 88888 IF(NUM.EQ.10)GOTO 99

 : 95.25 50 CONTINUE

 : 96. TOTAL=TOTAL+A(NUM)

 :

 In the illustration above, the statement which reads "50 CONTINUE"

 was entered in free-format (notice that the statement body starts in

 column 4) and was automatically converted to fixed format by the editor

 (statement body starting in column 7).

 Bypassing Recompilation: The IF Command __

 The editor command IF causes the editor to return control directly to

 the IF system; the automatic recompilation which normally happens when

 control is returned from the editor to IF is bypassed. Subsequently,

 the IF system will be in either immediate execution mode or suspended

 execution mode (depending on which mode the editor was invoked from).

 Interactive FORTRAN 201

 MTS 6: FORTRAN in MTS

 October 1983

 The IF command is actually an "escape mechanism" to prevent "locking

 in" to the editor. For instance, if a programmer does not understand

 the cause of a compilation error then it is unlikely that he can correct

 it; a programmer in this situation can use the IF command to escape from

 the editor (entering a null line or a STOP command would result in the

 editor being reinvoked for the same error). This situation is shown in

 the following example:

 * /compose

 1_ i=1

 ROUTINE NAME: MAIN

 2_ print,,i

 PRINT,,I

 $

 /MAIN:2/ - ERROR: EXPECTING EXPRESSION

 : (null line entered)

 PRINT,,I

 $

 /MAIN:2./ - ERROR: EXPECTING EXPRESSION

 : if

 *

 It is not possible to execute a routine which contains a compilation

 error (editing must be explicitly completed using the /EDIT command in

 this case).

 EXECUTION OF ROUTINES _____________________

 Executing Routines __________________

 Any routine which has been prepared for execution using either the

 /COMPOSE or the /COMPILE command is eligible for execution. As might be

 anticipated, more freedom and flexibility is provided when running

 routines under the control of the IF system than when running programs

 in the conventional manner. It is possible, for example, to begin

 execution of a routine which is itself incomplete (missing statements),

 in order to test that section of the routine which has been coded.

 Once the programmer has begun execution of a routine, the IF system

 allows the execution flow to continue until one of the following occurs:

 (1) normal program termination occurs (e.g., STOP statement

 executed),

 (2) the attention key is pressed, or

 (3) some condition is encountered which the IF system cannot resolve

 and which therefore blocks the normal flow of execution.

 202 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 In each of these cases, the execution flow is said to "suspend" while

 the IF system enters a mode which allows the user to examine and perhaps

 modify his routines. Some of the most common conditions which cause

 execution to suspend are:

 (1) an attempt to call a routine which has not been defined,

 (2) an attempt to perform a calculation involving an undefined

 variable,

 (3) an attempt to divide by zero, or

 (4) an attempt to reference an array element outside the bounds of

 the array.

 Invoking Main Routines: The /RUN Command ___

 Execution of a main routine can be initiated by issuing a /RUN

 command. For example:

 * /compose

 1_ write(6,6)

 ROUTINE NAME: MAIN

 2_ 6 format(’how do you like that?’)

 3_ return

 4_ end

 * /run main

 HOW DO YOU LIKE THAT?

 *

 To assign units on the /RUN command, one does so (in the usual MTS

 manner) as indicated in the example following:

 * /run main 6=data 7=*print* 9=-plot

 SUSPENDED EXECUTION ___________________

 Suspended Execution Mode ________________________

 The IF system enters suspended execution mode whenever some condition

 occurs during the execution of a routine which requires programmer

 interaction (e.g., an error encountered during execution is a condition

 which requires programmer interaction).

 * /run speak

 /SPEAK:61./ - ERROR: VARIABLE "VOICE" IS UNDEFINED

 + /list 61 61

 + 61. DX(I)=D(VOICE)-D(VOICE-1)

 +

 Interactive FORTRAN 203

 MTS 6: FORTRAN in MTS

 October 1983

 In the above example, an attempt to use an undefined variable in a

 computation resulted in a suspension of execution at line 61 of routine

 SPEAK. In the example the programmer issued the /LIST command,

 specifying that the statement at which execution actually suspended

 (line 61) is to be printed. The user can recognize suspended execution

 mode because the prefix character becomes the plus sign (+).

 The routine in which the suspension occurs is known as the "currently

 active routine." The statement at which execution actually suspends is

 known as the "current point of suspension." In the example above, SPEAK

 is the currently active routine, and line 61 is the point of suspension.

 Normally, when a suspension occurs, the active routine and the point of

 suspension are printed enclosed within slashes (as above).

 Similarity Between Immediate Execution Mode and Suspended Execution Mode __

 Suspended execution mode (prefix +) and immediate execution mode

 (prefix *) are very nearly equivalent. In fact, all of the commands

 which can be entered in immediate execution can be entered in suspended

 execution.

 The main difference between immediate execution and suspended execu-

 tion is that immediate execution "stands alone", while suspended

 execution is always associated with a routine (the currently active

 routine). If the user is in suspended execution, there is always a

 currently active routine. If one is in immediate execution, there is

 never an active routine.

 Entering Suspended Execution FORTRAN Statements ___

 As well as being able to enter IF commands in suspended execution,

 the programmer may also enter free-format FORTRAN statements and have

 them executed immediately (as if they were commands). Being able to

 enter FORTRAN statements in suspended execution provides a natural way

 of examining (and changing) the status of a program during a suspension.

 The association between suspended execution FORTRAN statements and

 the currently active routine is simple in concept, yet very effective:

 suspended execution statements are simply compiled within the environ-

 ment of the currently active routine, then executed. This means that a

 suspended execution PRINT statement can be used to print the value of

 any variable or array element in the currently active routine, and that

 a suspended execution assignment statement can be used to change the

 value of any variable or array element in the currently active routine.

 204 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 * /compose

 1_ do 100 i=1,200

 ROUTINE NAME: MAIN

 2_ 100 nexp= i**i

 3_ return

 4_ end

 * /run main

 /MAIN:2./ - ERROR: FIXED OVERFLOW; "I" ** "I"

 + print, i

 10

 +

 The above example shows how a suspended execution PRINT statement may

 be used to interrogate the values of variables in the currently active

 routine.

 Notice that suspended execution FORTRAN statements are entered in

 free-format.

 Restarting from Suspended Execution: The /RESTART Command __

 After the user has investigated the status of his active routine

 using suspended execution FORTRAN statements, the next thing that he

 might want to do is to restart program execution from the point at which

 the suspension occurred. This can be accomplished through the /RESTART

 command.

 * /compose

 1_ call sub

 ROUTINE NAME: MAIN

 2_ return

 3_ end

 * /run main

 /MAIN:1./ - ERROR: ROUTINE "SUB" IS UNDEFINED

 + /compose

 1_ subroutine sub

 ROUTINE NAME: SUB

 2_ print,’in sub @@@@’

 3_ return

 4_ end

 + /restart

 IN SUB @@@@

 *

 In the above example, execution suspends at line 1 of routine MAIN

 when an attempt is made to invoke an undefined routine named SUB. In

 this case, the programmer dynamically compiles the undefined routine

 (using /COMPOSE), and then issues the /RESTART command to restart

 execution of the active routine (MAIN) beginning with line 1.

 Interactive FORTRAN 205

 MTS 6: FORTRAN in MTS

 October 1983

 The /RESTART command also provides a facility for restarting execu-

 tion of the active routine at any statement (not necessarily the ___

 statement at which the suspension occurred). To restart execution at a

 particular statement in the active routine simply specify the line

 number of the statement on the /RESTART command.

 * /compose

 1_ i=1

 ROUTINE NAME: MAIN

 2_ print,j

 3_ print,j+1

 4_ print,i

 5_ print,i+1

 6_ stop

 7_ end

 * /run main

 /MAIN:2./ - ERROR: J IS UNDEFINED

 + /restart 4

 1

 2

 + /main:1./ - /stop /

 +

 In the above illustration, execution suspends at line 2 when an

 attempt is made to print an undefined variable J. The programmer issues

 the /RESTART command to restart execution at line 4, causing the

 execution flow to bypass statements 2 and 3 (which both reference J).

 Execution suspends a second time as the STOP statement is reached.

 Expression Statements: Free-Format Output __

 The PRINT statement which has been used in the previous examples is

 not a standard FORTRAN-IV statement, but an extension borrowed from the

 WATFIV compiler to facilitate free-format output. In suspended execu-

 tion, an even simpler way to obtain free-format output is with the use

 of an "expression statement." Take a WATFIV PRINT statement, remove the

 "PRINT," and an expression statement is formed.

 * REAL A(2)/1.0,2.0/

 * A(1)

 1.000000

 * A(2),A(2)

 2.000000 2.000000

 * (A(I),I=1,2)

 1.000000 2.000000

 One difference between the PRINT statement and the expression

 statement is that the expression statement cannot be labeled. Another

 difference is that the PRINT statement directs output to unit 6, while

 the expression statement always directs output to the terminal. Other-

 wise, they are equivalent.

 206 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 DEBUGGING FEATURES __________________

 Four of the more effective debugging features provided by the IF

 system are described in this subsection. Naturally, because they are

 debugging features, they are closely associated with suspended execution

 mode.

 Breakpoints ___________

 In the previous subsection, the concept of "suspended execution" was

 introduced. Execution of a routine was shown to suspend whenever some

 "unexpected condition" (which required programmer interaction) occurred

 during the execution of a routine. In essence, the condition was

 unexpected, and the resulting suspension was therefore also unexpected.

 A breakpoint, by contrast, is a predetermined statement at which the _____________

 programmer has decided that a suspension should occur. The programmer

 can define a breakpoint at any executable statement by specifying the

 line number of the statement on the /BREAK command. When the execution

 of a routine reaches a statement at which a breakpoint has been set, a

 suspension immediately results. The statement associated with the

 breakpoint will not yet have been executed.

 * /compose

 1_ print,’how’

 ROUTINE NAME: MAIN

 2_ print,’are’

 3_ print,’you’

 4_ print,’feeling?’

 5_ (null line entered)

 * /break main(2)

 * /run main

 HOW

 /MAIN:2./ - ***** BREAKPOINT

 + /restart

 ARE

 YOU

 FEELING?

 +

 In the above illustration, a suspension results as the execution flow

 is blocked by the breakpoint defined at line 2. The programmer restarts

 execution of the routine by entering the /RESTART command. Execution

 suspends a second time as the execution flow reaches the end of the

 statements in the program.

 Breakpoints are useful for monitoring a routine as execution pro-

 gresses. As an example, a programmer may have a problem in a routine,

 and it appears that the problem may be caused by bad parameters being

 Interactive FORTRAN 207

 MTS 6: FORTRAN in MTS

 October 1983

 passed to a subroutine. To monitor this situation, the programmer can

 define a breakpoint at the CALL statement referencing the subroutine,

 and examine (using suspended execution statements) the parameters each

 time execution suspends at the breakpoint.

 A list of all breakpoints currently set in all routines is printed by

 using the /DISPLAY BREAKPOINTS command. To remove breakpoints, use the

 /REMOVE command.

 * /display breakpoints

 * BREAKPOINTS IN ROUTINE MAIN

 * 2.

 * /remove main(2)

 * /display breakpoints

 * NO BREAKPOINTS ARE DEFINED

 *

 Atpoints ________

 Atpoints are a special kind of breakpoint. When debugging a routine,

 often execution will suspend at the same breakpoint several times (this

 is particularly true when the breakpoint is embedded in a loop). In

 many cases, the suspended execution operations carried out at the

 breakpoint (such as displaying the value of a certain variable, for

 instance) will be the same on each pass through the breakpoint. If the

 programmer can anticipate such circumstances, then instead of setting a

 breakpoint, he can set an atpoint. The advantage of setting an atpoint

 is that the operations which are to be carried out when the suspension

 occurs can be prespecified, thus avoiding the drudgery of entering the

 same suspended execution statements and commands over and over each time

 the breakpoint is encountered.

 An atpoint, then, can be thought of as a prespecified series of

 suspended execution FORTRAN statements and commands which are automati-

 cally merged into the execution flow. The associated statement at which

 an atpoint has been set will be executed following execution of the _________

 corresponding atpoint statements and commands.

 Atpoints are defined by using the /AT command. Defining an atpoint

 is a procedure very nearly identical to compiling a routine using the

 /COMPOSE command. Like the /COMPOSE command, the /AT command causes

 automatic numbering of input lines. The line number which will be

 assigned to the next line in the atpoint is printed as a prompt at the

 front of each input line.

 * /compose

 1_ do 10 i=1,3

 ROUTINE NAME: MAIN

 2_ 10 continue

 3_ (null line entered)

 208 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 * /at main(2)

 1_ print,’i=’,i

 2_ (null line entered)

 * /run main

 /MAIN:2./ - ***** AT-POINT

 I= 1

 /MAIN:2./ - ***** AT-POINT

 I= 2

 /MAIN:2./ - ***** AT-POINT

 I= 3

 +

 The definition of an atpoint is terminated by a null line, or an

 end-of-file, or an END statement. All suspended execution FORTRAN

 statements and IF commands are valid within atpoints.

 Atpoints, of course, do not become a permanent part of a compiled

 routine since they consist only of suspended execution lines and are

 treated as such during execution.

 Normally, after the series of suspended execution statements which

 comprise an atpoint have been executed, execution of the routine

 continues automatically (resuming with the statement in the program with

 which the atpoint is associated). However, a suspension will occur if

 an error is detected during the processing of an atpoint, or if the

 attention key is pressed during the execution of an atpoint. Further-

 more, the programmer can deliberately force a suspension in an atpoint

 by simply including a PAUSE statement within the atpoint definition. If

 a suspension occurs for any of the above reasons, the point of

 suspension will be the statement in the program with which the atpoint

 is associated.

 A list of all atpoints currently defined in all routines is printed

 using the /DISPLAY ATPOINTS command. To remove atpoints, use the

 /REMOVE command.

 The /STEP Command _________________

 The /STEP command causes a specified number of FORTRAN statements to

 be executed, after which execution again suspends.

 * /compose

 1_ print,1

 ROUTINE NAME: MAIN

 2_ print,2

 3_ print,3

 4_ print,4

 5_ print,5

 6_ return

 7_ end

 Interactive FORTRAN 209

 MTS 6: FORTRAN in MTS

 October 1983

 * /break main:1

 * /run main

 /MAIN:1./ - ***** BREAKPOINT

 + /step

 1

 /MAIN:2./

 + /step 2

 2

 3

 /MAIN:4./

 +

 In the above example, execution suspends at line 1 as the breakpoint

 is encountered. The first /STEP command has no operand, which causes

 one FORTRAN statement to be executed. The second /STEP command causes

 two FORTRAN statements to be executed. See the /STEP command descrip-

 tion in Appendix A for more details.

 Qualified Variables ___________________

 Qualified variables provide a simple technique by which the program-

 mer can interrogate (and modify) the values of the variables and array

 elements in a routine which is not currently active. A qualified

 variable is formed by concatenating a routine name to a variable name,

 as in the following example:

 + print,darwin:thrush

 123.0000

 + darwin:thrush=124.0

 + darwin:thrush

 124.0000

 +

 In the example, the programmer interrogates and assigns a value to

 variable THRUSH of the routine named DARWIN (which is not the active

 routine). Variables in COMMON or which are EQUIVALENCEd may not be

 qualified. The user must /GET the routine containing the COMMON or the

 EQUIVALENCE and then /RELEASE it after accessing the variable.

 EXTERNAL ROUTINES _________________

 One of the major reasons for the effectiveness of the IF system as a

 debugging aid is that it is possible under the control of IF to have a

 routine which has been compiled by IF (using the /COMPILE command, for

 example) invoke a routine which has been compiled by a conventional

 compiler (such as FORTRAN-G or FORTRAN-H). Conversely, it is possible

 to have a routine which has been compiled by a conventional compiler

 invoke a routine which has been compiled by IF.

 210 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 Explicitly Loading External Routines: The /LOAD Command __

 The programmer may explicitly load external routines (or csects, as

 they are sometimes called) from any file or device by specifying the

 file or device name on the /LOAD command. Any object module which

 conforms to standard FORTRAN linkage conventions may be loaded.

 # $run *ftn scards=*source* ...(1)

 # EXECUTION BEGINS

 ? real array(2)/10.0,20.0/

 ? write(6,6)(array(i),i=1,2)

 ? 6 format(1x,2g15.7)

 ? return

 ? end

 ? (end of file)

 NO ERRORS IN MAIN

 # EXECUTION TERMINATED

| # $run *if66 ...(2)

 # EXECUTION BEGINS

| * IF(NOV80)

 * /load -load ...(3)

 * /run main ...(4)

 10.00000 20.00000

 *

 Explanation of the above example:

 (1) The programmer compiles a simple program using the *FTN compil-

 er. Because he did not specify SPUNCH, the object module will

 be placed in the scratch file named -LOAD by default.

 (2) Next he invokes the IF system and...

 (3) ...explicitly loads the object module which was produced by

 *FTN. This is done by specifying the name of the object module

 file on the /LOAD command.

 (4) Once the object module has been loaded, it is "defined" within

 IF. This means it can be invoked in the same way that any

 routine compiled by IF would be invoked. In the above example,

 the programmer invoked MAIN by using the /RUN command.

 Library Searches: The /LIBRARY Command _______________________________________

 If an "undefined routine" (i.e., a routine which has been neither

 compiled by IF nor loaded) is encountered during execution, then the IF

 system will dynamically search a library or libraries for the routine;

 if the routine is found in a library, then it is automatically loaded

 and invoked. By default, IF will search only through the public library

 (*LIBRARY) when such a condition occurs. However, by using the /LIBRARY

 command, the programmer can predefine the libraries to be searched when

 references to undefined routines are encountered.

 Interactive FORTRAN 211

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 * /library numlib

 *

 The above /LIBRARY command, for example, instructs the IF system to

 automatically search the libraries NUMLIB and *LIBRARY (in that order)

 whenever an undefined routine is referenced during execution. For more

 details on the /LIBRARY command refer to Appendix A.

 The /UNLOAD Command ___________________

 Any external routine which has been loaded by using the /LOAD

 command, or as the result of a library search, can be unloaded by

 specifying the routine name (csect name) on the /UNLOAD command.

 * /unload main

 "MAIN" UNLOADED

 *

 For more details on the use of the /UNLOAD command please refer to

 Appendix A.

 The /DISPLAY EXTERNAL Command _____________________________

 The /DISPLAY EXTERNAL command produces a list of all currently

 loaded external routines.

 * /display external

 * EXTERNALLY LOADED CSECTS:

 * TIME ADDRESS=50D450 LENGTH=D0

 * CON ADDRESS=5110C8 LENGTH=630

 * MAIN ADDRESS=517450 LENGTH=8BA0

 *

 The base address of each csect, and the length of each csect are

 also printed (base 16).

 The Advantages and Disadvantages of External Routines ___

 Using the facilities described above, the programmer is able to

 integrate object routines (which have been debugged) with routines _________

 compiled by IF (which presumably have not been completely debugged).

 The major advantage in choosing to load external routines is that

 212 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 external routines execute much more efficiently than routines which have

 been compiled by IF. Routines which have been compiled by IF execute

 interpretively -- a process which affords great debugging flexibility at

 the expense of execution efficiency. A lesser advantage of choosing to

 load external routines is that one saves compilation time.

 As far as the disadvantages of using loaded routines, it must be

 emphasized that IF has no control over the execution of loaded routines

 (in contrast to the complete control IF has over the execution of

 routines compiled by IF itself). A loaded routine which is not

 thoroughly debugged, or which is called with incorrect parameters, may

 produce invalid results, or cause a program interrupt. Usually, when a

 program interrupt occurs in an externally loaded routine, messages like

 those in the latter part of the following example are printed:

 * /load -load

 * /DISPLAY EXTERNAL

 * EXTERNALLY LOADED CSECTS:

 * JINX ADDRESS=515F18 LENGTH=10D8

 * /run jinx

 EXTERNAL INTERRUPT PSW=001D0009 A0516FDE

 IN CSECT JINX OFFSET 0010C6

 *

 External Common Blocks ______________________

 It is permissible to load external routines containing common block

 definitions. Common block definitions in externally loaded routines and

 common block definitions in routines compiled by IF are automatically

 associated.

 External BLOCK DATA can also be loaded. An external csect which is

 being loaded is considered to be BLOCK DATA if it is defined (either

 within IF or externally) as a common block.

 MISCELLANEOUS FEATURES ______________________

 Error Messages ______________

 The error messages produced by the IF system are self-explanatory.

 There are four ascending levels of message verbosity. Level 0 is most

 terse, level 1 is normal, level 2 is slightly verbose, and level 3 is

 most verbose. By default, all messages are produced at normal

 verbosity.

 Interactive FORTRAN 213

 MTS 6: FORTRAN in MTS

 October 1983

 The verbosity level at which messages are produced can be controlled

 by the programmer through the /SET MSGLVL=i command, where i=0,1,2, or

 3. For instance, if the user is on a slow-speed terminal (like a

 Teletype), then likely he will favor a lower level of verbosity.

 * read(5,5

 * READ(5,5

 * $

 * ERROR: EXPECTING ")"

 * /set msglvl=0

 * read(5,5

 * READ(5,5

 * $

 * E: ")"?

 *

 There also exists a message-repetition facility which allows the

 programmer to have the last error message repeated at a specified level

 of verbosity. Entering "? ±i" causes the last error message to be

 repeated at verbosity MSGLVL±i. Entering "? i" (unsigned) causes the

 last error message to be repeated at verbosity i, where i=0,1,2, or 3.

 * real lydumb*3(10)

 * ERROR: ILLEGAL LENGTH MODIFIER *****

 * ? 3

 * ERROR: ILLEGAL LENGTH MODIFIER.

 * FOLLOWING IS A TABLE SHOWING

 * THE LENGTHS WHICH VARIABLES

 * MAY ASSUME:

 * REAL: 4 OR 8

 * INTEGER: 2 OR 4

 * COMPLEX: 8 OR 16

 * LOGICAL: 1 OR 4

 *

 In the above illustration, the programmer did not understand the

 error message produced at normal verbosity (level 1), and entered the

 "? 3" "command" to have the error message repeated at the highest level

 of verbosity (level 3). The message-repetition facility is available in

 the editor as well.

 SUPPLEMENT TO IMMEDIATE EXECUTION _________________________________

 This section presents material supplementary to that presented in the

 subsection "Immediate Execution." Because immediate execution mode

 (prefix *) and suspended execution mode (prefix +) are closely related,

 most of the material presented here applies to both modes.

 214 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 Immediate Execution Mode ________________________

 Immediate execution mode is the initial mode of the IF system. As

 the name suggests, any FORTRAN statements or IF commands are executed

 immediately upon entry.

 * i=123

 * print,i

 123

 *

 Free-Format Input _________________

 Notice that immediate execution lines are entered in free-format.

 Free-format implies that statement labels are not restricted to appear-

 ing in columns 1-5, and that statement bodies are not restricted to

 appearing in columns 7-72, but rather they may appear in any columns,

 provided the statement label precedes the statement body. In fact, more

 than one free-format statement may be entered per line; just separate

 the statements by a semicolon. Multiple statement lines are processed

 from left to right.

 * do 10 i=1,2; print,i; 10 continue

 1

 2

 *

 There are two other significant differences between "free-format"

 input and conventional "fixed format" input. First, lines beginning

 with the character "C" are not interpreted as free-format comment lines. ___

 Instead, a statement is considered to be a comment when the first

 nonblank character is the free-format comment character (").

 * " this is a free-format comment

 * " and so is this; " and so is this

 *

 Second, column 6 has no special meaning in free-format. In fixed

 format no line can be longer than 72 characters. Fixed format

 statements longer than 72 characters must be broken over several lines,

 and the second and subsequent lines are marked with a nonblank, nonzero

 character in column 6 to indicate that they are continuation lines.

 Free-format lines, in contrast, can be up to 255 characters in

 length. A minus sign (-) appearing as the last nonblank character of a ________

 free-format statement signifies that the statement is to be continued on

 the next line. The prefix character changes to the minus sign as a

 prompt to enter the continuation line.

 Interactive FORTRAN 215

 MTS 6: FORTRAN in MTS

 October 1983

 * print,-

 - 3.141592

 3.141592

 *

 Valid Statements and Commands _____________________________

 All IF commands and all FORTRAN statements except BLOCK DATA, ENTRY,

 FUNCTION, and SUBROUTINE are valid in immediate execution. Commands are

 distinguished from FORTRAN statements because they begin with a special

 command prefix character (/).

 * ram=sqrt(4.0)

 * print,ram

 2.0

 * /stop

 # EXECUTION TERMINATED

 #

 Execution of a multiple statement line terminates with the first IF

 command; in other words, no further statements or commands in a line are

 executed following the execution of a command. Complete command

 descriptions are given in Appendix A.

 Transiency of Statements ________________________

 FORTRAN statements entered in immediate execution have a property

 which can be described as "transiency." That is, they are executed, and

 they may have some permanent effect on the immediate execution environ-

 ment (such as assigning a value to a variable or explicitly typing a

 variable), but after the line is executed, they are forgotten.

 The changes to the immediate execution environment vary according to

 the statement type. GOTO statements and IF statements generally have no

 permanent effect; assignment statements and READ statements give values

 to variables and array elements, both of which can be referenced in

 future immediate execution (or program) computations; type statements

 leave attributes (type, length, dimensions, etc.) that define the

 context in which subsequent immediate execution computations will take

 place.

 216 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 * real number

 * number = sqrt(2.0)

 * write(6,66)number; 66 format(1x,f10.5)

 1.41421

 * /attribute number

 * NAME= NUMBER TYPE= REAL *4

 * EXPLICITLY TYPED, IMMEX

 *

 Labeled Statements __________________

 One consequence of the transient property of immediate execution

 statements is that it is not possible to label a statement on one

 immediate execution line, and subsequently refer to that label on

 another line. Statement labels are defined only for the duration of the

 immediate execution line. The one exception to this rule is that format

 statement labels are nontransient; that is, a format statement label

 remains defined from line to line.

 * 10 format(’ hi there mom and dad ’)

 * do 20 i=1,2

 * ERROR: DO-OBJECT LABEL 20 IS UNDEFINED

 * do 20 i=1,2; 20 print 10

 HI THERE MOM AND DAD

 HI THERE MOM AND DAD

 *

 Effect of Errors ________________

 When an error is detected during either the syntax check or the

 execution of an immediate execution line, usually the only effect is

 that a diagnostic message is printed. All the programmer has to do is

 reenter the line correctly.

 * dimension a(4)

 * a(5) = 2**8

 error: subscript number 1

 of "a"=+5; out of range

 * A(4) = 2**8

 * WRITE(6,82) A(4); 82 FORMAT(’A4=’,F5.1)

 a4=256.0

 *

 If an error is detected while the line is being executed, it is not

 clear whether or not the line makes any changes to the immediate

 execution environment. Any computations done up to the point at which

 the error occurred (such as a function reference) will already have

 Interactive FORTRAN 217

 MTS 6: FORTRAN in MTS

 October 1983

 taken effect. Remember, computation normally proceeds from left to

 right.

 Erasing Immediate Execution: The /ERASE Command __

 The /ERASE command provides a facility for removing the effects of

 all previously entered immediate execution statements. All variables,

 arrays, format statement labels, statement function definitions,

 declarations, and so on which existed and were defined prior to the

 /ERASE command do not exist after the /ERASE command is issued. The

 immediate execution environment is cleared to its initial state.

 * real i

 * i= 50+50

 * print,i

 100.0000

 * /erase

 * print,i

 ERROR: I IS UNDEFINED

 * i= 50+50

 * print,i

 100

 *

 Modifying the Output Produced by an Expression Statement __

 The output produced by an expression statement can be modified by ________

 prefixing the expression statement with either @Z or @X (to force

 hexadecimal output), or @A or @C (to force character output).

 * data ilash/’one’/

 * @c ilash

 ONE

 * @x ilash

 D6D5C540

 * integer errrtn/1073741824/

 * @x errrtn

 40000000

 *

 Attention Interrupts in Immediate Execution ___

 Pressing the attention key while in immediate execution mode termi-

 nates the execution of the current immediate execution line (if

 execution is in progress) and otherwise has no effect.

 218 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 * 1 print,’hi friend’; goto 1

 HI FRIEND

 HI FRIEND

 (attention key pressed)

 ***** ATTENTION INTERRUPT

 *

 SUPPLEMENT TO COMPILATION OF ROUTINES _____________________________________

 This section presents material supplementary to that presented in the

 subsection "Compilation of Routines."

 More Information About the /COMPOSE Command ___

 Two facets of the /COMPOSE command warrant more explanation.

 First, the rules for entering free-format statements into routines

 being compiled are the same--with one exception--as the rules for

 entering immediate execution lines. The one exception to the rules is

 that expression statements are not valid while routines are being

 compiled. Note that any IF command entered is executed immediately.

 * /compose

 1_ subroutine title

 ROUTINE NAME: TITLE

 2_ write(6,6)

 3_ 6 format(’ sample program’)

 4_ return

 5_ /run

 SAMPLE PROGRAM

 5_ end

 *

 In the above example, a routine was run while compilation was still

 in progress. After execution terminates, compilation resumes normally.

 Second, as well as being able to compile free-format routines from

 the terminal, the /COMPOSE command allows one to compile free-format

 statements from any file or device. Simply specify the file or device

 name on the /COMPOSE command.

 * /compose regression.s

 ROUTINE NAME: MAIN

 ROUTINE NAME: NONPAR

 ROUTINE NAME: PRTILM

 ROUTINE NAME: SNITCH

 *

 Interactive FORTRAN 219

 MTS 6: FORTRAN in MTS

 October 1983

 The above example compiles four free-format routines from the MTS

 file named REGRESSION.S.

 More Than One Main Program __________________________

 It is permissible under IF to have more than one main routine

 compiled. The first main routine compiled is assigned the name MAIN.

 The second and subsequent main routines compiled are automatically

 assigned the names MAIN1, MAIN2, and so on. Entry, function, and

 subroutine names must be unique.

 Restarting an Interrupted Compilation _____________________________________

 If a compilation has been "interrupted," then it may be restarted by

 using either the /COMPOSE RESTART or the /COMPILE RESTART command.

 Compilation can be interrupted for a number of reasons, but the most

 common reason is an attention interrupt.

 * /compile from custard.s

 ROUTINE NAME: MAIN

 ROUTINE NAME: CGROUP

 ROUTINE NAME: HGROUP

 12 FORMAT(’ TAN(X)=’ G15.7)

 $

 WARNING: OTHER COMPILERS MAY REQUIRE "," HERE

 (attention key pressed)

 ATTN

 * /set warn=off

 * /compile restart

 ROUTINE NAME: IDREAD

 ROUTINE NAME: SORT

 *

 In the above example, the compilation was interrupted by pressing the

 attention key, warning messages were disabled by issuing the /SET

 WARN=OFF command, and then the compilation was restarted. The /COMPILE

 RESTART was issued (rather than the /COMPOSE RESTART command) because

 the compilation was initiated by the /COMPILE command.

 Undefined Statement Label References ____________________________________

 When the END statement is entered into a routine during compilation,

 the IF system checks at that time to see if all statement labels which

 were referenced in the routine have been defined. If one or more labels

 220 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 are undefined, then an error message is printed and the editor is

 invoked so that corrections can be made.

 When the compilation of a routine is terminated by some mechanism

 other than the END statement (e.g., a null line or an end-of-file), the

 IF system defers the check for undefined labels. In this case, the fact

 that a label is undefined will be checked for during the execution of

 the routine when the label is first referenced. Thus, it is possible to

 use the IF system to compile and debug selected portions of an

 incomplete routine.

 * /compose

 1_ goto 99

 ROUTINE NAME: MAIN

 2_ 999 print,’hello’

 3_ (null line entered)

 * /run main

 /MAIN:1./ - ERROR: NO STATEMENT WITH LABEL 99

 +

 The Workfile ____________

 As free-format statements are compiled (/COMPOSE) they are converted

 automatically to fixed format and copied to a scratch line file known as

 the workfile. The fixed format statements are thereafter maintained in

 the workfile. This means that a /LIST command will list the version of

 the routine in the workfile, a /EDIT command will edit the version of

 the routine in the workfile, and a /COPY command will copy the version

 of the routine in the workfile.

 For fixed format compilations (/COMPILE), the situation is slightly

 more complex because only for the "/COMPILE FROM" command are statements

 copied to the workfile. The other form of the /COMPILE command (which

 can only be used for compiling programs from MTS line files) does not

 use the workfile. Rather, in the latter case, statements are maintained

 in the original line file. This means that subsequent /LIST, /EDIT, and

 /COPY commands will all cause processing of the statements in the

 original file.

 For the above reason, sometimes it is more prudent to use the

 "/COMPILE FROM" form of the /COMPILE command (even if the source code is

 stored in a line file) for by doing so processing will affect only the

 duplicate copy of the program being maintained in the workfile, and the

 chances of damaging the contents of the original file accidentally

 (through editing) will be eliminated.

 Interactive FORTRAN 221

 MTS 6: FORTRAN in MTS

 October 1983

 Saving the Source Code ______________________

 After the user has created a program (/COMPOSE), or edited any

 compiled program, he will usually be interested in saving the debugged

 FORTRAN source statements permanently in an MTS file. Normally, to do

 this, the programmer uses the /COPY command which will copy a specified

 routine (or all routines) to a specified file. For example:

 * /copy main pgmsave

 The above /COPY command would copy the routine named MAIN to the MTS

 file named PGMSAVE.

 Of course, if the form of the /COMPILE command which does not use the

 workfile was used to compile a routine, then it is not necessary to

 /COPY the routine. In this case, any changes made to the routine in the

 editor will have affected the statements in the original line file.

 Tabularized Summary of Commands for Compiling ___

 The following table may be used as a quick reminder of the forms of

 the /COMPOSE and the /COMPILE commands that should be used for chosen

 purposes.

 222 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 ┌───┐ ┌ ┌
 | Form of Command | Source | Remarks |

 | | Format | |

 |───────────────────────┼─────────┼─────────────────────────────| ┌ ┘
 | /COMPOSE | free | Compiles free-format |

 | | | routines from the current |

 | | | input stream (the terminal |

 | | | by default). Statements |

 | | | copied to workfile. |

 |───────────────────────┼─────────┼─────────────────────────────| ┌ ┘
 | /COMPOSE FDname | free | Compiles free-format |

 | | | routines from the |

 | | | specified file or device. |

 | | | Statements copied to |

 | | | workfile.¹ |
 |───────────────────────┼─────────┼─────────────────────────────| ┌ ┘
 | /COMPOSE FROM FDname | free | Identical to the above |

 | | | form.¹ |
 |───────────────────────┼─────────┼─────────────────────────────| ┌ ┘
 | /COMPILE filename | fixed | Compiles fixed format |

 | | | routines from the |

 | | | specified line file. |

 | | | "Filename" must be a line |

 | | | file, and one must have |

 | | | both read and write access |

 | | | to it. Statements not | ___

 | | | copied to workfile.² |
 |───────────────────────┼─────────┼─────────────────────────────| ┌ ┘
 | /COMPILE FROM FDname | fixed | Compiles fixed format |

 | | | routines from any file or |

 | | | device. Statements copied |

 | | | to workfile.¹ |
 └───┘ ┘ ┘
 ¹Concatenation of FDnames permitted.
 ²Concatenation of FDnames permitted, but routines must not be split
 across concatenations.

 SUPPLEMENT TO EDITING ROUTINES ______________________________

 This subsection presents material supplementary to that presented in

 the subsection "Editing Routines."

 Entry of Comment Statements in the Editor ___

 In an earlier subsection, it was stated that FORTRAN statements could

 be entered in either fixed or free-format in the editor; FORTRAN

 statements entered in free-format were automatically converted to fixed

 format. The same holds true for FORTRAN comments entered in the editor.

 Interactive FORTRAN 223

 MTS 6: FORTRAN in MTS

 October 1983

 A statement entered in edit mode is considered to be a comment

 statement if the first nonblank character is the free-format comment

 character ("), or if the line begins with a "C" in column 1 followed by

 a nonalphanumeric, nonblank character in column 2.

 : insert 100

 ? " this is a comment

 ? c** and so is this

 ? cbut this isn’t

 ? (null line entered)

 : print 100 c=3

 : 100. C THIS IS A COMMENT

 : 100.25 C** AND SO IS THIS

 : 100.5 CBUT THIS ISN’T

 :

 In the above example, the first line inserted is a free-format

 comment, the second line inserted is a fixed format comment, and the

 third line inserted is not a comment (because an alphanumeric character

 is in column 2). Notice that the editor converts the free-format

 comment character (") to the fixed format comment character (C).

 Multiple statement lines and free-format continuation lines are

 currently not supported by the IF editor. The only way to enter a ___

 FORTRAN continuation line in the editor is by entering a fixed format

 continuation line (i.e., a line consisting of blanks in columns 1-5 and

 a nonblank, nonzero character in column 6).

 The SET FIXED=ON,OFF Command ____________________________

 By default, free-format FORTRAN lines entered in the editor are

 automatically converted to fixed format. This conversion can be

 disabled either by issuing the SET FIXED=ON editor command, or by

 appending the "@F" modifier to editor commands.

 Editing Atpoints ________________

 It is possible to edit atpoint definitions in exactly the same way as

 routines are edited. To edit an atpoint simply specify, on the /EDIT

 command, the routine name and line number (separated by a colon) which

 designate the atpoint. For example:

 224 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 * /compose

 1_ i=10

 ROUTINE NAME: MAIN

 2_ return

 3_ end

 * /at main(2)

 1_ ’i=’,i

 2_ end

 * /run main

 /MAIN:2./ - ***** AT-POINT

 I= 10

 * /edit main(2)

 : replace

 : ’I=’,I

 ? ’i=’,i,’ miles’

 : 1. ’I=’,I,’ MILES’

 : (null line entered)

 * /run main

 /MAIN:2./ - ***** AT-POINT

 I= 10 MILES

 *

 In the above illustration, the atpoint statement which reads ’I=’,I

 is an expression statement.

 SUPPLEMENT TO EXECUTION OF ROUTINES ___________________________________

 This subsection presents material supplementary to that presented in

 the subsection "Execution of Routines."

 Logical Unit Assignments and the /RUN Command ___

 Each time the /RUN command is issued, all logical I/O units other

 than those appearing on the /RUN command automatically become un-

 assigned. The following table lists the I/O units which can be assigned

 on the /RUN command, and their defaults if they are not assigned:

 0-4 do not default

 5 *SOURCE*

 6 *SINK*

 7-19 do not default

 SCARDS *SOURCE*

 SPRINT *SINK*

 SPUNCH *PUNCH*, if in batch mode

 GUSER *MSOURCE*

 SERCOM *MSINK*

 Interactive FORTRAN 225

 MTS 6: FORTRAN in MTS

 October 1983

 Units are assigned on the /RUN command (in the usual manner) as

 follows:

 * /run main 6=data 7=*print* 9=-plot

 Furthermore, each time the /RUN command is issued, every routine is

 automatically "cleared" the first time it is invoked. Clearing a

 routine means setting all variables and arrays in the routine to being

 undefined, and then assigning initial data values to those variables and

 arrays which are given initial data values in DATA and explicit type

 statements.

 Invoking Subroutines and Functions __________________________________

 When subroutines and functions are referenced during the execution of

 a program, they are automatically invoked. It is also possible to

 invoke subroutines and functions directly by using immediate execution

 (or suspended execution) FORTRAN statements.

 * /compose

 1_ subroutine print(array,n)

 ROUTINE NAME: PRINT

 2_ dimension array(n)

 3_ write(6,6)(array(i),i=1,n)

 4_ 6 format(1x,2g15.7)

 5_ return

 6_ end

 * real bb(2)

 * bb(1)=99.; bb(2)=100.

 * call print(bb,2)

 99.00000 100.0000

 *

 In the above illustration, an immediate execution FORTRAN CALL

 statement was used to invoke the subroutine named PRINT. Function

 subprograms can be invoked from immediate execution or suspended

 execution simply as function references.

 * /compose

 1_ function add(a,b)

 ROUTINE NAME: ADD

 2_ add=a+b

 3_ return

 4_ end

 * print,add(2.+3.)

 ERROR: REFERENCING SUBPROGRAM ADD WITH TOO FEW REAL ARGUMENTS

 * add(2.,3.)

 5.000000

 *

 226 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 When subroutines and functions are invoked from immediate execution

 mode in the manner just described, logical I/O unit assignments do not __ ___

 automatically become unassigned, and automatic clearing of routines does ____

 not occur. In these cases, logical I/O unit assignment and clearing may ___

 be controlled explicitly by using the /SET and /CLEAR commands described

 in Appendix A (if desired). Only when the /RUN command is issued do

 these two actions occur automatically.

 SUPPLEMENT TO SUSPENDED EXECUTION _________________________________

 This subsection presents material supplementary to that presented in

 the subsection "Suspended Execution." Suspended execution (prefix +)

 and immediate execution (prefix *) are very similar; most of the

 information presented in the subsection entitled "Supplement to Immedi-

 ate Execution" applies to suspended execution as well.

 Valid Statements and Commands _____________________________

 All IF commands and all FORTRAN statements except BLOCK DATA, COMMON,

 ENTRY, EQUIVALENCE, FUNCTION, and SUBROUTINE are valid in suspended

 execution. Commands are distinguished from FORTRAN statements because

 they begin with a special command prefix character (/).

 More Commands Related to Suspended Execution __

 The /CONTINUE Command _____________________

 Like the /RESTART command, the /CONTINUE command will restart

 execution of the currently active routine. If the suspension was

 caused by an execution error, execution will restart at the

 statement following the statement at which the error occurred

 (i.e., at the statement following the current point of suspension).

 If the suspension was caused intentionally (e.g., breakpoint), then

 execution will restart at the current point of suspension.

 * /compose

 1_ dimension a(3)

 ROUTINE NAME: MAIN

 2_ do 10 i=1,4

 3_ a(i)=i*i

 4_ 10 continue

 5_ write(6,6)a

 6_ 6 format(1x,3g15.7)

 Interactive FORTRAN 227

 MTS 6: FORTRAN in MTS

 October 1983

 7_ return

 8_ end

 * /run main

 /MAIN:3./-ERROR: SUBSCRIPT NUMBER 1 OF "A"=+4; OUT OF RANGE

 + /continue

 1.000000 4.000000 9.000000

 *

 In the above example, execution suspends at line 3 of routine MAIN

 when an attempt is made to store a value into nonexistent array

 element A(4). In this case, the programmer decides to ignore the

 error and let execution of his routine continue at statement 4 by

 issuing the /CONTINUE command. One alternate solution would have

 been to fix the error by using the editor (/EDIT command), and then

 rerun the routine by using the /RUN command.

 The /GET and /RELEASE Commands ______________________________

 The /GET command is used to get a suspension or to make a routine

 active. The /RELEASE command has the opposite effect of the /GET

 command -- it releases or deletes a suspension.

 It is possible to have more than one level of suspension. Levels

 of suspension may be thought of as being maintained on a "push

 down" stack. The /GET command adds a new suspension to the top of

 the stack, while the /RELEASE command deletes the top level of

 suspension from the stack.

 * /get main

 /MAIN:1./

 + /display levels

 + SUSPENSION AT LINE 1. OF ROUTINE MAIN

 + /get draw

 /DRAW:1./

 + /display levels

 + SUSPENSION AT LINE 1. OF ROUTINE DRAW

 + SUSPENSION AT LINE 1. OF ROUTINE MAIN

 + /release

 + /display levels

 + SUSPENSION AT LINE 1. OF ROUTINE MAIN

 + /release

 *

 The rationale for having more than one level of suspension is this:

 it is often more convenient to examine an active routine than it is

 to examine a routine which is not active. While it is possible to

 examine a routine which is not currently active by using qualified

 variables (e.g., MAIN:A), it is not as convenient in general as a

 /GET, examine, /RELEASE combination.

 It is worth noting that the /GET command is not the only way to get

 more than one level of suspension (e.g., invoking a subroutine from

 228 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 suspended execution using a CALL statement may cause a further

 suspension), and the /RELEASE command is not the only way of

 releasing suspensions (e.g., all levels of suspension are released

 by the /RUN command).

 The /IMMEX Command __________________

 The /IMMEX command causes unconditional return from suspended

 execution mode to immediate execution mode. In the course of going

 from suspended execution mode to immediate execution mode the

 prefix character changes from "+" to "*", and all levels of

 suspension are released.

 + /display levels

 + SUSPENSION AT LINE 1. OF ROUTINE DRAW

 + SUSPENSION AT LINE 8. OF ROUTINE MAIN

 + /immex

 * /display levels

 * ERROR: THERE IS CURRENTLY NO SUSPENSION

 *

 There is really no reason for returning to immediate execution mode

 (since almost everything one can do in immediate execution can also

 be done in suspended execution), except that in immediate execution

 there is no chance of a conflict arising between a suspended

 execution variable and a compiled program variable. For example,

 if a variable, say BB, was explicitly typed as REAL*8 in the active

 routine, then an attempt to explicitly type BB in suspended

 execution would produce an error message.

 IMMEX, a Predefined Routine ___________________________

 At the risk of belaboring a point, let it be stated again that aside

 from the prefix character, the main difference between immediate

 execution and suspended execution is that immediate execution "stands

 alone," while suspended execution is always associated with an active

 routine. Actually that is not quite true because immediate execution

 happens to be associated with a routine too. However, it is a null

 routine with no statements but it has a name, IMMEX (the immediate

 execution routine).

 While IMMEX cannot be edited, listed, copied, or destroyed because it

 has no statements, it does have some attributes possessed by all

 routines. In particular, it is possible to /GET IMMEX and to /RELEASE

 IMMEX just like one would /GET or /RELEASE any other routine. The

 advantage of being able to do this is that it enables the user to return

 from suspended execution mode to immediate execution mode without

 releasing or deleting the current suspension (which would be the case if

 one returned to immediate execution mode either by issuing the /IMMEX

 command or by issuing a series of /RELEASE commands).

 Interactive FORTRAN 229

 MTS 6: FORTRAN in MTS

 October 1983

 * /get main

 /MAIN:1./

 + /display levels

 + SUSPENSION AT LINE 1. OF ROUTINE MAIN

 + /get immex

 * /display levels

 * SUSPENSION IN IMMEDIATE EXECUTION

 * SUSPENSION AT LINE 1. OF ROUTINE MAIN

 * /release

 + /display levels

 + SUSPENSION AT LINE 1. OF ROUTINE MAIN

 + /release

 * /display levels

 * ERROR: THERE IS CURRENTLY NO SUSPENSION

 *

 Referencing Compiled Program Labels from Suspended Execution __

 Executable statement labels in the active routine cannot be

 referenced from suspended execution. For instance, if there was an

 assignment statement labeled 99 in the active routine, then a "GO TO 99"

 suspended execution statement would not restart execution in the active

 routine. Rather, it would cause an error message to be produced to the

 effect that 99 could not be used both as a compiled program label and as

 a suspended execution label. The correct way to restart execution at

 statement labeled 99 is to issue a /RESTART #99 command.

 However, it is possible to reference FORMAT statement labels in the

 active routine from suspended execution (or in atpoints) as the

 following example shows:

 * /compose

 1_ i=12

 ROUTINE NAME: MAIN

 2_ write(6,10)i

 3_ 10 format(’ number=’,i2)

 4_ (null line entered)

 * /run main

 NUMBER=12

 + write(6,10)i+i

 NUMBER=24

 +

 Tabularized Summary of Commands Related to Suspended Execution __

 The following table may be used as a quick reminder of what commands

 should be used for what purposes in suspended execution.

 230 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 ┌───┐ ┌
 | Command | Description of Command |

 |────────────┼──| ┌ ┘
 | /RESTART | Restarts program execution beginning with the |

 | | statement at the current point of suspension. |

 | | Execution may be restarted at any other |

 | | executable statement by specifying the |

 | | line number of the statement on this command |

 | | (e.g., "/RESTART 80" would restart execution at |

 | | the statement at line number 80). |

 |────────────┼──| ┌ ┘
 | /CONTINUE | Restarts execution of the currently active |

 | | routine. If the suspension was caused by an |

 | | execution error, execution will restart at the |

 | | next statement (i.e., at the statement |

 | | following the current point of suspension). If |

 | | the suspension was caused intentionally (e.g., |

 | | breakpoint), then execution will restart at the |

 | | current point of suspension. |

 |────────────┼──| ┌ ┘
 | /GET | Makes a specified routine active; the first |

 | | executable statement in the specified routine |

 | | becomes the current point of suspension. |

 |────────────┼──| ┌ ┘
 | /RELEASE | Releases the current suspension; the previously |

 | | active routine once again becomes the currently |

 | | active routine. |

 |────────────┼──| ┌ ┘
 | /IMMEX | Causes an unconditional return from suspended |

 | | execution mode to immediate execution mode. The |

 | | prefix character changes from "+" to "*", and |

 | | all levels of suspension are deleted. |

 └───┘ ┘

 SUPPLEMENT TO DEBUGGING FEATURES ________________________________

 This subsection presents material supplementary to that presented in

 the subsection "Debugging Features."

 SUBPROGRAM LINKAGE TRACING __________________________

 The /TRACE command can be issued to have a subprogram linkage

 traceback produced for the current suspension.

 Interactive FORTRAN 231

 MTS 6: FORTRAN in MTS

 October 1983

 + /trace

 CALLED FROM ROUTINE "BAKER", STATEMENT 96.

 CALLED FROM ROUTINE "ABLE", STATEMENT 11.

 INITIATED FROM IMMEDIATE EXECUTION MODE

 +

 The above traceback indicates that the currently active routine was

 invoked from routine BAKER at line 96, which was invoked from routine

 ABLE at line 11., which was invoked directly from immediate execution

 (perhaps using a /RUN command).

 Execution Flow Tracing ______________________

 The programmer can have the execution flow of his routines automati-

 cally traced by issuing the /SET FLOW=ON command. With flow tracing

 enabled, each time a branch is made to a labeled statement, the label is

 printed.

 * /set flow=on

 * /compose

 1_ goto 1

 ROUTINE NAME: MAIN

 2_ 1 goto 2

 3_ 2 goto 3

 4_ 3 return

 5_ end

 * /run main

 &MAIN:#1

 &:#2

 &:#3

 *

 The routine name is printed when the routine name changes. To flow

 trace only certain sections of routines, turn flow tracing on or off as

 appropriate within atpoints.

 Attribute Checking __________________

 Of all the problems which can arise in a FORTRAN program, some of the

 most difficult to diagnose are those which occur because of the

 programmer’s failure to type his variables and arrays properly. Typical

 of the problems of this nature are instances in which a library

 subprogram, expecting an INTEGER*2 argument, is passed an INTEGER*4

 argument. Often the result of such an oversight is that a program

 interrupt will occur much later during the execution of the program,

 making the actual cause of the problem (an attribute mismatch) very hard

 to detect.

 232 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 There are two ways to detect attribute mismatches. The first way is

 to actually review type statements by using the /LIST command. A second

 simpler way is to use the /ATTRIBUTE command, which will print the

 attributes (type, length, dimensions, and so on) of specified variables,

 arrays, and statement labels.

 * /compose

 1_ logical*4 dice(6,6,6,6,6,6)

 ROUTINE NAME: MAIN

 2_ common dice

 3_ read(5) dice

 4_ (null line entered)

 * /attribute main:dice

 NAME= DICE TYPE= LOGICAL *4

 DIMENSION=(6,6,6,6,6,6)

 A COMMON VARIABLE, AN ARRAY,

 AN EXPLICITLY TYPED VARIABLE

 *

 Cross-Referencing _________________

 The /REFERENCE command will print a cross-reference for any variable,

 array, or statement label.

 * /compile from draw.f

 ROUTINE NAME: DRAW

 ROUTINE NAME: PUT

 * /reference draw:#2

 * "DRAW:#2" DEFINED AT LINE 65.,

 * REFERENCED AT LINES:

 * 65. 82. 123. 147. 198. 212. 226. 235.

 *

 In the above illustration, the programmer uses the /REFERENCE command

 to obtain a cross-reference of statement label 2 in routine DRAW.

 Whenever statement labels are used as command operands (in place of line

 numbers), they must be prefixed by a (#).

 COMMON AND EQUIVALENCE MAPS ___________________________

 The programmer can have common and equivalence storage maps printed

 for the currently active routine by issuing either the /DISPLAY COMMON

 or the /DISPLAY EQUIVALENCE command.

 Interactive FORTRAN 233

 MTS 6: FORTRAN in MTS

 October 1983

 + /display common

 + COMMON MAP FOR ROUTINE MAIN

 + BLOCK=BABEL

 + SIZE= 74 BYTES (BASE 10)

 + NAME=DOG , DISPLACEMENT= 0

 + NAME=BAKER , DISPLACEMENT= 4

 + NAME=FOX , DISPLACEMENT= 44

 +

 Advanced Example of Atpoint Usage _________________________________

 The example which follows demonstrates how an atpoint could be used

 to count the number of times the execution flow of a program passes

 through a certain statement. In the example, a subroutine named RUNG is

 being called repeatedly. It is the programmer’s desire to cause

 execution to suspend on the twentieth call to RUNG. To do this, he sets

 an atpoint in RUNG at statement 1 and counts the number of times RUNG is

 invoked:

 * ic=0

 * /list rung(1,1)

 * 1. SUBROUTINE RUNG(Y,F,Q)

 * /at rung(1)

 1_ immex:ic=immex:ic+1

 2_ if(immex:ic.eq.20)pause ’20th call’

 3_ (null line entered)

 * /run main

 /RUNG:1./ - ***** AT-POINT

 /PAUSE ’20TH CALL’/

 /RUNG:1./ - ***** AT-POINT EXECUTION TERMINATED

 +

 There are a few interesting points in the above example. First,

 notice the mechanism by which the programmer counts the number of times

 the subroutine is called. He uses an immediate execution variable (IC)

 which he initializes to zero with an immediate execution assignment

 statement prior to running his program. IC is referred to from within

 the atpoint as a qualified variable (i.e., IMMEX:IC). Second, examine

 the way in which the programmer forces execution to suspend on the

 twentieth call to RUNG. He uses a FORTRAN PAUSE statement which when

 used in any context under IF causes execution to suspend.

 SUPPLEMENT TO EXTERNAL ROUTINES _______________________________

 This subsection presents material supplementary to that presented in

 the subsection "External Routines."

 234 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 Predefined Routines ___________________

 The following elementary FORTRAN functions are "predefined" to the IF

 system:

 ABS AIMAG AINT ALGAMA ALOG ALOG10

 AMAX0 AMAX1 AMIN0 AMIN1 AMOD ARCOS

 ARSIN ATAN ATAN2 CABS CCOS CDABS

 CDCOS CDEXP CDLOG CDSIN CDSQRT CEXP

 CLOG CMPLX CONJG COS COSH COTAN

 CSIN CSQRT DABS DAIMAG DARCOS DARSIN

 DATAN DATAN2 DBLE DCMPLX DCOS DCOSH

 DCONJG DCOTAN DDIM DERF DERFC DEXP

 DFLOAT DGAMMA DIM DIMAG DINT DLGAMA

 DLOG DLOG10 DMAX1 DMIN1 DMOD DREAL

 DSIGN DSIN DSINH DSQRT DTAN DTANH

 ERF ERFC EXP FLOAT GAMMA HFIX

 IABS IDIM IDINT IFIX IMAG INT

 ISIGN MAX MAX0 MAX1 MIN MIN0

 MIN1 MOD REAL SIGN SIN SINH

 SNGL SQRT TAN TANH

 Attempting to compile a function by the same name as a predefined

 function is not allowed. For example:

 * /compose

 1_ function float(intger)

 ERROR: ENTRY POINT "FLOAT" IS PREVIOUSLY DEFINED

 :

 However, it is possible to unload even predefined functions by using

 the /UNLOAD command. If a /UNLOAD FLOAT command had been issued prior

 to issuing the /COMPOSE command in the example above, an error condition

 would not have resulted.

 As well as being predefined, the elementary FORTRAN functions listed

 above are "pretyped" (e.g., the function DABS is pretyped as REAL*8).

 Several resident system subroutines are also "predefined" to the IF

 system. These are: ERROR, EXIT, MTS, QUIT, SYSTEM, and TRACER. A

 reference to one of these subroutines either from within an IF compiled

 routine or from within an externally loaded routine results in a

 suspension. Execution may be continued by using the /RESTART command

 (in which case execution restarts at the instruction following the call

 to the predefined subroutine).

 * /run main 5=bridgedata

 WARNING: "TRACER" CALLED FROM LOADED OR LIBRARY ROUTINE

 + /restart

 SUM OF SQUARES= 0.0001

 *

 Interactive FORTRAN 235

 MTS 6: FORTRAN in MTS

 October 1983

 External Suspensions ____________________

 If a program interrupt occurs in an externally loaded routine, or if

 the attention key is pressed while an externally loaded routine is

 executing, then an "external suspension" occurs.

 * /compile testprog

 ROUTINE NAME: MAIN

 * /load -load

 * /display external

 * EXTERNALLY LOADED CSECTS:

 * SUBMER ADDRESS=50CEE8 LENGTH=108

 * /run main 4=data

 (attention key pressed)

 EXTERNAL ATTENTION PSW=071D0005 2050CFDE

 IN CSECT SUBMER OFFSET 0000F6

 + /display suspension

 + EXTERNAL SUSPENSION

 + AT LINE 97.2 OF ROUTINE MAIN

 +

 In the above illustration, an external routine named SUBMER was

 executing when the attention key was pressed, and an external suspension

 resulted. The point of suspension corresponding to an external suspen-

 sion is the last statement in an IF-compiled routine which was executed

 (usually this will be the CALL statement or function reference which

 invoked the external routine).

 To restart execution after an external suspension the programmer has

 several choices:

 (1) Issuing the /RESTART command (with no operand) will restart

 execution beginning with the next instruction in the external

 routine.

 (2) Issuing the /CONTINUE command will restart execution beginning

 with the next FORTRAN statement in the active IF compiled

 routine (MAIN in the above example).

 (3) Issuing the /REPEAT command will restart execution beginning

 with the current FORTRAN statement in the active IF compiled

 routine. This causes the external routine to be reinvoked.

 SUPPLEMENT TO MISCELLANEOUS FEATURES ____________________________________

 This subsection presents material supplementary to that presented in

 the subsection "Miscellaneous Features."

 236 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 Dumps _____

 Infrequently, when one is using the IF system, a "dump" will occur.

 Dumps have the following format:

 DUMP 20167F:XLD +002058 071D0006 C020167F

 | 509058 00000000 00508224 00508218 00000016

 | 509068 0022DC50 00506FEC 00508222 00000008

 | 509078 00000000 00218CA8 002280A0 00501000

 | 509088 0022CC50 00501394 4022DAA2 00BADADD

 | PLEASE DIRECT HARD COPY OF THIS DUMP TO

 | A COMPUTING CENTER COUNSELOR.

 | THE RELIABILITY OF THE IF SYSTEM FOR THE

 | REMAINDER OF THIS RUN IS QUESTIONABLE; IT

 | IS RECOMMENDED THAT YOU /COPY ANY ROUTINES

 | THAT YOU WISH TO SAVE, AND THEN ISSUE A

 | /STOP COMMAND TO TERMINATE THE CURRENT RUN

 ATTN

 *

 The numeric information which is printed out when a dump occurs is of

 special interest to the staff of the Computing Center.

 If a dump occurs, do not be alarmed--a dump simply means that a

 failure has been detected internally within the IF system. In rare

 cases dumps are the result of a "bug" in the IF system itself, but more

 often they are the result of a loaded external routine overwriting IF

 system control information. If you suspect a bug in the IF system is

 the cause of a dump, please report the problem to the Computing Center

 so that the problem may be corrected; bring hard-copy output if

 possible.

 Spelling Error Detection ________________________

 The IF system contains a spelling error detection facility which

 allows it to recognize approximately 80% of all FORTRAN keywords which

 are misspelled.

 * /compose

 1_ i=1

 ROUTINE NAME: MAIN

 2_ prnt,i

 PRNT,I

 $

 /MAIN:2./ -WARNING: "PRINT" MISSPELLED

 3_ return

 4_ end

 *

 Interactive FORTRAN 237

 MTS 6: FORTRAN in MTS

 October 1983

 It should be pointed out that IF produces only a warning message when

 it detects a misspelled FORTRAN keyword. Although the statement is

 accepted, IF does not correct the misspelled keyword in the source code.

 IF IN BATCH MODE ________________

 Compilation in Batch Mode _________________________

 In batch mode, IF behaves much like any conventional compiler.

 Compilation continues to completion regardless of the number of compila-

 tion errors, and all compilation errors are clearly flagged with

 diagnostics in the source program listing. In batch mode, a source

 program listing is printed by default. The editor is not invoked in

 batch mode when a compilation error occurs; rather, an error message is

 printed and compilation continues with the next statement.

 In batch mode, only an end-of-file will terminate compilation. This

 means that more than one routine can be compiled in sequence from the

 same file or device.

 Execution in Batch Mode _______________________

 The basic strategy of the IF system is to return to MTS command mode

 whenever an error is detected during execution. An attempt to initiate

 execution of a routine containing a compilation error, an attempt to use

 an undefined variable in a computation, and an attempt to call an

 undefined routine are examples of conditions which would result in a

 return to MTS in batch mode. Of course, an error message is produced

 before the return is made to MTS.

 Breakpoints and atpoints can be used in batch mode just as in

 conversational mode. A suspension due to a breakpoint or atpoint does

 not cause a return to MTS command mode.

 Batch Example _____________

 The following illustration shows a typical batch job setup for

 compiling and executing a FORTRAN source card deck using the IF system:

 238 Interactive FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 ┌───────────────────────────┐
 | $SIGNOFF |

 ┌───────────────────────────┐|
 | /STOP ||

 ┌───────────────────────────┐||
 | /RUN MAIN 5=input ... |||

 ┌───────────────────────────┐||┘
 | $ENDFILE |||

 ┌───────────────────────────┐||┘
 | . |||

 ┌───────────────────────────┐||┘
 | . |||

 ┌───────────────────────────┐||┘
 | . |||

 ┌───────────────────────────┐||┘
 | FORTRAN card decks |||

 ┌───────────────────────────┐||┘
 | . |||

 ┌───────────────────────────┐||┘
 | . |||

 ┌───────────────────────────┐||┘
 | . |||

 ┌───────────────────────────┐||┘
 | /COMPILE |||

 ┌───────────────────────────┐||┘
| | $RUN *IF66 |||

 ┌───────────────────────────┐||┘
 | password |||

 ┌───────────────────────────┐||┘
 | $SIGNON ccid T=n P=n |||

 | ||┘
 | ||

 | |┘
 | |

 └───────────────────────────┘

 Interactive FORTRAN: Appendix A 239

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 APPENDIX A: COMMAND DESCRIPTIONS _________________________________

 This appendix contains a detailed description of each IF command.

 The command descriptions are presented alphabetically with each command ______________

 description starting on a fresh page.

 The table below may be used as a quick reminder of what commands are

 available. For each command, the table gives the minimum acceptable

 abbreviation (indicated by underlining), and a short description of the

 usual purpose of the command. Remember, the command prefix character

 (/) cannot be omitted from IF commands. ______

 /AT - sets atpoints __

 /ATTRIBUTE - prints attributes of variables ____

 /BREAK - sets breakpoints __

 /CLEAR - clears routines ___

 /COMPILE - compiles fixed format routines ____

 /COMPOSE - compiles free-format routines ______

 /CONTINUE - restarts suspended execution ____

 /COPY - copies routines to MTS files __

 /DESTROY - destroys compiled routines ___

 /DISPLAY - prints miscellaneous information __

 /EDIT - edits routines or atpoints __

 /ERASE - clears immediate/suspended execution ___

 /EXECUTE - executes a section of a routine ___

 /EXPLAIN - explains IF commands ____

 /GET - makes a routine active __

 /HELP - a command for beginners __

 /IMMEX - returns to immediate execution ___

 /INPUT - reads IF commands from a file __

 /LIBRARY - specifies libraries to search ____

 /LINK - loads and executes an object program ____

 /LIST - lists a routine __

 /LOAD - loads external routines ___

 /MTS - executes an MTS command __

 /OUTPUT - redefines output file or device __

 /REFERENCE - cross references variables ____

 /RELEASE - releases current suspension ____

 /REMOVE - removes atpoints and breakpoints ____

 /REPEAT - repeats current statement ____

 /RESTART - restarts suspended execution ___

 /RUN - begins execution of main routines __

 /SET - assigns I/O units; sets switches __

 /STEP - steps FORTRAN statements ___

 /STOP - terminates the IF run _____

 /TRACE - prints subprogram linkage traceback __

 /UNLOAD - unloads external routines __

 /WORKFILE - defines workfile for IF to use __

 240 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 The following standard notation conventions are used in the command

 prototype descriptions:

 (1) Command prototype fields appearing in lowercase are generic

 terms which are to be replaced by an item supplied by the

 programmer. Command prototype fields appearing in uppercase are

 fields which are to be repeated verbatim in the command.

 (2) An ellipsis "..." indicates that the preceding field may be

 repeated if necessary.

 (3) Underlining indicates the minimum acceptable abbreviated form of

 the command or command parameter, but longer abbreviations will

 be accepted.

 A few of the generic terms which appear within the command descrip-

 tions require explanation.

 (1) "FDname" means any MTS file or device name.

 (2) "linenumber" refers to the MTS line numbers associated with the

 FORTRAN statements in compiled routines. Each statement has a

 line number with which it can be referenced. If a statement is

 labeled, then it may also be referred to by its label; simply

 prefix the label with "#" (for example, "#10" refers to the

 statement with label "10").

 (3) "rhs" means "right-hand side".

 (4) "csect" refers to any object module such as might be produced by

 a FORTRAN compiler like FORTRAN-G. The terms "csect" and

 "external routine" are used interchangeably.

 Interactive FORTRAN: Appendix A 241

 MTS 6: FORTRAN in MTS

 October 1983

 /AT ___

 Purpose: (a) /AT routine(linenumber) ... __

 /AT linenumber ... __

 (b) /AT routine(#label) ... __

 /AT #label ... __

 Purpose: An atpoint is associated with each executable statement

 specified in the parameter list. If the routine name is

 omitted, the currently active routine is assumed. If the

 line number is omitted, the first executable statement of

 the specified routine is assumed.

 An atpoint is a predefined series of suspended execution

 lines which are automatically executed by IF just prior _____

 to executing the statement with which the atpoint is

 associated. In conversational mode, the /AT command

 causes automatic numbering of input lines. The line

 number which will be assigned to the next line in the

 atpoint being defined is printed as a prompt at the front

 of each input line in the following form:

 /AT MAIN(13)

 1_

 2_

 Each line entered following the /AT command becomes part

 of the atpoint definition until an end-of-file, or a null

 line, or an END statement is entered. It is no accident

 that defining atpoints resembles very closely the compo-

 sition of programs (see the /COMPOSE command).

 Notes: Any FORTRAN statements or commands which are valid in

 suspended execution are valid in atpoints.

 Atpoint definitions can be edited as if they were

 programs. The second form of the /EDIT command is used

 for editing atpoints (e.g., "/EDIT MAIN:44").

 Atpoints may be removed using the /REMOVE command.

 Atpoints may be defined only at executable FORTRAN

 statements. Type statements and DATA statements are not ___

 considered to be executable FORTRAN statements, although

 ENTRY, FUNCTION, and SUBROUTINE are.

 The "/DISPLAY ATPOINTS" command prints a list of all

 currently defined atpoints in all routines.

 242 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 Example: The following example illustrates the use of the /AT

 command:

 * /compose

 1_ do 10 i=1,2

 ROUTINE NAME: MAIN

 2_ 10 continue

 3_ stop

 4_ end

 * /at main(#10)

 1_ ’ i=’,i

 2_ end

 * /run main

 /MAIN:2./ - ***** AT-POINT

 I= 1

 /MAIN:2./ - ***** AT-POINT

 I= 2

 /MAIN:3./ - /STOP /

 +

 Interactive FORTRAN: Appendix A 243

 MTS 6: FORTRAN in MTS

 October 1983

 /ATTRIBUTE __________

 Prototype: (a) /ATTRIBUTE routine:variable ... ____

 /ATTRIBUTE variable ... ____

 (b) /ATTRIBUTE routine:#label ... ____

 /ATTRIBUTE #label ... ____

 Purpose: This command prints the attributes (type, length, dimen-

 sions, etc.) of the variable names and statement labels

 specified in the parameter list. If the routine name is

 omitted, the currently active routine is assumed.

 Examples: /ATTRIBUTE CONT SUBP:II

 would print the attributes of the variable CONT in

 the currently active routine, and the variable II in

 routine SUBP. The attributes are printed in the

 following format:

 NAME= CONT TYPE= INTEGER *2

 DIMENSION=(10)

 AN ARRAY, A VALUE ASSIGNED ITEM

 NAME= II TYPE= INTEGER *4

 A COMMON VARIABLE

 /ATTRIBUTE #99

 would print the attributes of statement label 99 in

 the currently active routine in the following

 format:

 NAME= 99 TYPE= LABEL

 A FORMAT LABEL, A COMPILED PROGRAM LABEL

 244 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /BREAK ______

 Prototype: /BREAK routine(linenumber) ... __

 /BREAK linenumber ... __

 Purpose: A breakpoint is defined at each executable statement

 specified in the parameter list. If the routine name is

 omitted, the currently active routine is assumed. If the

 line number is omitted, the first executable statement of

 the specified routine is assumed.

 When a breakpoint is encountered during program execu-

 tion, execution will suspend at the statement at which

 the breakpoint was defined. The statement at which the

 breakpoint was defined will not yet have been executed. ___

 The /RESTART and the /STEP commands are normal ways to

 restart execution after a suspension caused by a

 breakpoint.

 Notes: Breakpoints may be removed using the /REMOVE command.

 Breakpoints may only be defined at executable FORTRAN

 statements. See the /AT command description.

 The "/DISPLAY BREAKPOINTS" command prints a list of all

 currently defined breakpoints in all routines.

 Examples: /BREAK 23.4

 would define a breakpoint at line 23.4 of the

 currently active routine.

 /BREAK SUB1(13) SUB2(#99)

 would define breakpoints at line 13.0 of routine

 SUB1, and at the statement labeled 99 of routine

 SUB2.

 Interactive FORTRAN: Appendix A 245

 MTS 6: FORTRAN in MTS

 October 1983

 /CLEAR ______

 Prototype: (a) /CLEAR routine ... ___

 (b) /CLEAR * ___

 Purpose: The /CLEAR command clears routines to their initial

 states. A cleared routine is equivalent in every sense

 to a newly compiled routine (except for possible atpoints

 and/or breakpoints which remain defined). Clearing a

 routine is accomplished in two stages: first, all

 variables and arrays in the routine are set to being

 undefined, and then all variables and arrays which are

 given initial values in either DATA statements or explic-

 it type statements are assigned those initial values.

 The first form of the /CLEAR command clears each routine

 specified in the parameter list. If the routine name is

 omitted, the currently active routine is assumed. If the

 parameter is "*", all routines compiled under IF are

 cleared.

 Notes: When execution is initiated by the /RUN command, each

 routine which has been compiled under IF is implicitly

 cleared the first time it is invoked. When execution is

 initiated by some method other than the /RUN command, the

 /CLEAR command is the only method of clearing routines.

 When a routine is cleared, the suspended execution data

 environment associated with the routine is also cleared.

 All suspended execution variables, arrays, format defini-

 tions, and so on become undefined. Note that the /CLEAR

 command has no effect on the immediate execution data

 environment. However, the /ERASE command can be used to

 clear both the immediate execution and suspended execu-

 tion environments.

 The /CLEAR command has no effect on externally loaded

 routines. To clear an externally loaded routine, first

 /UNLOAD it, and then /LOAD a fresh copy of it.

 Example: /CLEAR SUB1 LINPG

 would cause the routines named SUB1 and LINPG to be

 cleared.

 246 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /COMPILE ________

 Prototype: (a) /COMPILE ____

 (b) /COMPILE filename ____

 (c) /COMPILE FROM FDname ____

 (d) /COMPILE routine FROM FDname ____

 (e) /COMPILE RESTART ____

 Purpose: To compile a routine or routines consisting of fixed _____

 format FORTRAN source lines. Compilation continues until ______

 an end-of-file is encountered.

 Prototype (a) of this command compiles a routine from the

 current input file or device. The current input file or

 device is defined by the /INPUT command, and defaults to

 SOURCE. In conversational mode, this form of the

 /COMPILE command causes automatic numbering of input

 lines (if the current input source is the terminal). The

 line number which will be assigned to the next statement

 in the routine being compiled is printed as a prompt at

 the front of each input line in the following form:

 /COMPILE

 1_

 2_

 In conversational mode, this first form of "on-line"

 compiling should be avoided, simply because the /COMPOSE

 command is more convenient (as it accepts free-format

 lines). In batch mode, more than one routine may be

 compiled using a single /COMPILE command.

 Prototype (b) of this command causes a routine or

 routines to be compiled from the specified file. Because

 the file may be used for editing purposes, it must be a

 line file, and the user must have both read and write

 permit access to it.

 Prototype (c) of this command compiles a routine or

 routines from the specified file or device. For this

 form, all the user needs is read access for the specified

 file or device. The keyword FROM must be included.

 Prototype (d) of this command causes compilation of the

 specified routine to continue by including fixed format

 FORTRAN source lines from the specified file or device

 Interactive FORTRAN: Appendix A 247

 MTS 6: FORTRAN in MTS

 October 1983

 (statements are added to the end of the specified

 routine). This is possible only if the specified routine

 does not yet contain an END statement. The keyword FROM

 must be included, and the file or device name cannot be

 omitted.

 Prototype (e) causes compilation to restart if compila-

 tion was interrupted, for example, by an attention

 interrupt. Compilation continues from the same file or

 device as if it had not been interrupted.

 Notes: After the first statement of each routine has been

 compiled, IF prints the routine name in the following

 form:

 ROUTINE NAME: xxxxxx

 More than one main routine may be compiled. Main

 routines other than the first are automatically given

 names MAIN1, MAIN2, and so on. Subroutine, function, and

 entry point names must be unique.

 To find out the names of all the routines compiled by IF,

 use the "/DISPLAY ROUTINES" command.

 The /COPY command can be used to save the edited source

 version of any routine in a MTS file.

 Examples: /COMPILE

 in batch would compile fixed format FORTRAN programs

 from the card reader until a $ENDFILE was

 encountered.

 /COMPILE FILE1

 would compile routines from the MTS file named

 FILE1.

 /COMPILE FROM *TAPE*

 would compile routines from the magnetic tape

 TAPE.

 248 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /COMPOSE ________

 Prototype: (a) /COMPOSE ______

 (b) /COMPOSE FDname ______

 (c) /COMPOSE FROM FDname ______

 (d) /COMPOSE routine FROM FDname ______

 (e) /COMPOSE RESTART ______

 Purpose: To compile a routine or routines consisting of free- _____

 format FORTRAN source lines. Compilation continues until ______

 an end-of-file is encountered.

 Prototype (a) of this command compiles a routine from the

 current input file or device. The current input file or

 device is defined by the /INPUT command, and defaults to

 SOURCE. In conversational mode, this form of the

 /COMPOSE command causes automatic numbering of input

 lines (if the current input source is the terminal). The

 line number which will be assigned to the next statement

 in the routine being composed is printed as a prompt at

 the front of each input line in the following form:

 * /COMPOSE

 1_

 2_

 In conversational mode, this type of "on-line" composing

 can also be terminated by entering a null line, an END

 statement, or an attention interrupt. In batch mode,

 more than one routine may be compiled using a single

 /COMPOSE command.

 Prototypes (b) and (c) of this command are identical.

 They cause a routine or routines to be compiled from the

 specified file or device.

 Prototype (d) causes compilation of the specified routine

 to continue by including free-format FORTRAN source

 statements from the specified file or device (statements

 are added to the end of the specified routine). This is

 possible only if the specified routine does not yet

 contain an END statement. The keyword FROM must be

 included, and the file or device name cannot be omitted.

 Prototype (e) causes compilation to restart if composing

 was interrupted, for example, by an attention interrupt.

 Interactive FORTRAN: Appendix A 249

 MTS 6: FORTRAN in MTS

 October 1983

 Compilation continues from the same file or device as if

 it had not been interrupted.

 Notes: After the first statement of each routine is compiled, IF

 prints the routine name in the following form:

 ROUTINE NAME: xxxxxx

 More than one main routine may be compiled. Main

 routines other than the first are automatically given

 names MAIN1, MAIN2, and so on. Subroutine, function, and

 entry point names must be unique.

 At any time, to find out the names of all the routines

 compiled by IF, use the "/DISPLAY ROUTINES" command. The

 /COPY command can be used to save the edited source

 version of any routine in a MTS file.

 Examples: /COMPOSE

 in batch would compile free-format FORTRAN source

 programs from the card reader until a $ENDFILE was

 encountered.

 /COMPOSE FILE1(1,100)+FILE2

 would compile the free-format FORTRAN source pro-

 grams in the MTS files FILE1(1,100) and FILE2.

 /COMPOSE MAIN FROM *SOURCE*

 would cause compilation of the routine named MAIN to

 continue. In this case FORTRAN source lines would

 be read from *SOURCE* and would be added to the end

 of routine MAIN. This would not be possible if

 routine MAIN already contained an END statement.

 250 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /CONTINUE _________

 Prototype: /CONTINUE ____

 Purpose: To continue execution of a suspended program.

 If the suspension was caused by an error during program

 execution, execution will restart at the statement fol-

 lowing the statement in error. (See also the descrip-

 tions of the /REPEAT and /RESTART statements.)

 If the suspension was intentionally caused by either a _____________

 /BREAK, /AT, /STEP, or /GET command, then execution will

 restart at the current statement.

 Note: The current statement, that is the statement at which

 execution is suspended, is available using the "/DISPLAY-

 LEVELS" command.

 Example: The following example illustrates how the /CONTINUE

 command can be used to restart execution of a routine

 after a suspension caused by a breakpoint.

 * /compose

 1_ i=1

 ROUTINE NAME: MAIN

 2_ print,i

 3_ return

 4_ end

 * /break main(2)

 * /run main

 /MAIN:2./ - ***** BREAKPOINT

 + /continue

 1

 *

 Interactive FORTRAN: Appendix A 251

 MTS 6: FORTRAN in MTS

 October 1983

 /COPY _____

 Prototype: (a) /COPY routine(linenumber1,linenumber2) FDname __

 (b) /COPY routine(#label1,#label2) FDname __

 (c) /COPY * FDname __

 Purpose: Prototype (a) of this command copies a routine, or a

 range of lines of a routine, to the specified file or

 device. The statements in the routine are copied without

 necessarily preserving their line numbers. This command

 is very similar to the MTS $COPY command. If the routine

 name is omitted, the currently active routine is assumed.

 If "linenumber1" is omitted, the first statement in the

 routine is assumed. If "linenumber2" is omitted, the

 last statement in the routine is assumed. If "FDname" is

 omitted, the current output file or device is assumed.

 The current output file or device, which can be redefined

 by the /OUTPUT command, defaults to *MSINK*.

 Prototype (b) is similar to prototype (a) except that the

 copy range is specified by statement numbers instead of

 line numbers.

 If the first parameter is "*", then all routines are ___

 copied to the specified file or device.

 Notes: The /COPY command is the normal way of saving, in MTS

 files, routines which have been developed or debugged

 using IF. Of course, the routine may be in an MTS line

 file already, depending on the mode of compilation.

 The /COPY command may be entered in "free-format"; the

 parentheses and the comma appearing in the prototype form

 above are optional.

 Examples: /COPY CORN CORN.F

 would copy all of the statements in the routine

 named CORN to the MTS file CORN.F.

 /COPY GBAND(#66) GBANDSOURCE

 would copy the statements of routine GBAND (starting

 at statement labeled 66 and continuing to the last

 statement in the routine) to the MTS file

 GBANDSOURCE.

 252 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /DESTROY ________

 Prototype: (a) /DESTROY routine ... ___

 (b) /DESTROY * ___

 Purpose: The /DESTROY command destroys routines compiled under IF.

 Prototype (a) of the /DESTROY command destroys each

 routine specified in the parameter list. If the parame-

 ter is "*", all routines compiled under IF are destroyed. ___

 Notes: The /DESTROY command has no effect on externally loaded

 routines, which can be unloaded using the /UNLOAD

 command.

 An "invoked" routine may not be destroyed. This means

 that neither the active routine, nor any higher-level

 routine may be destroyed. For example, the routine which

 invoked the active routine may not be destroyed.

 Destroying a routine is accomplished internally by simply

 deleting entries from the tables maintained by IF. Under

 no circumstance does destroying a routine have any effect

 on any MTS file.

 Examples: /DESTROY SIMPLX DSIM

 would cause the routines named SIMPLX and DSIM to be

 destroyed.

 /DESTROY *

 would destroy all routines compiled under IF except,

 of course, any invoked routines.

 Interactive FORTRAN: Appendix A 253

 MTS 6: FORTRAN in MTS

 October 1983

 /DISPLAY ________

 Prototype: /DISPLAY keyword ... __

 Purpose: Displays miscellaneous relevant information. "keyword"

 must be one of the following:

 ACTIVE - prints the name of the currently active _

 routine

 ATPOINTS - prints a list of all currently defined __

 atpoints in all routines

 BREAKPOINTS - prints a list of all currently defined _

 breakpoints in all routines

 COMMON - prints a common storage map for the cur- ___

 rently active routine

 COST - prints the accumulated cost of this job _

 since $RUN *IF

 CPUTIME - prints the accumulated CPU time since $RUN __

 *IF

 ELTIME - prints the accumulated elapsed time since _

 $RUN *IF

 ELAPSED - same as ELTIME _

 EQUIVALENCE - prints an equivalence storage map for the __

 currently active routine

 EXTERNAL - prints a list of all externally loaded __

 routines

 LEVELS - prints all points of suspension _

 LINE - same as LEVELS _

 LOADED - same as EXTERNAL __

 MEMORY - prints the current size of the user’s _

 virtual memory as a decimal number of pages

 NAME - same as ACTIVE _

 PROGRAMS - prints a list of all routines compiled by _

 IF

 ROUTINES - same as PROGRAMS _

 STATUS - prints status information including CPU- _

 TIME, ELAPSED, VMSIZE, and COST

 SUSPENSION - same as LEVELS __

 VMSIZE - same as MEMORY _

 XCSECTS - same as EXTERNAL _

 Example: /DISPLAY ATPOINTS BREAKPOINTS

 displays all currently defined breakpoints and

 atpoints in all routines.

 254 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /EDIT _____

 Prototype: (a) /EDIT routine __

 (b) /EDIT routine(linenumber) __

 /EDIT linenumber __

 (c) /EDIT routine(#label) __

 /EDIT #label __

 Purpose: The /EDIT command is used to enter edit mode explicitly

 so that source changes can be made to the source code

 corresponding to either a routine or an atpoint.

 Prototype (a) of the /EDIT command invokes the editor on

 the routine specified in the parameter field. If the

 routine name is omitted, the currently active routine is

 assumed.

 Prototypes (b) and (c) of this command invoke the editor

 on the atpoint which is defined at the specified state-

 ment. Once again, if the routine name is omitted, the

 currently active routine is assumed.

 Notes: After the user has completed making his source changes in

 the editor, he may enter a null line or an editor RETURN

 command to return to IF and have recompilation automati-

 cally performed. To return to IF, but to bypass recompi-

 lation, the user should enter the editor command IF. If

 a routine contains a compilation error, then it may not

 be run until the compilation error has been corrected

 using the editor.

 Examples: /EDIT MAIN1

 would invoke the editor on the routine named MAIN1.

 /EDIT MAIN1(37)

 would invoke the editor on the atpoint defined at

 line 37.0 of routine MAIN1.

 /EDIT OLQF(#120)

 would invoke the editor on the atpoint defined at

 statement labeled 120 of routine OLQF.

 Interactive FORTRAN: Appendix A 255

 MTS 6: FORTRAN in MTS

 October 1983

 /ERASE ______

 Prototype: /ERASE ___

 Purpose: This command can be issued in either immediate execution

 (prefix: *) or suspended execution (prefix: +).

 When issued in immediate execution, the immediate execu-

 tion environment is erased. This means that all varia-

 bles, arrays, format statements, declarations, and so on

 currently defined in immediate execution disappear.

 When issued in suspended execution, the suspended execu-

 tion environment associated with the currently active

 routine is erased. Note that when execution is initiated

 by the /RUN command, the suspended execution environment

 associated with each routine is erased as part of the

 clearing process the first time the routine is

 referenced.

 Example: The following example illustrates the effect of the

 /ERASE command in immediate execution:

 * real i

 * i=100

 * print,i

 100.0000

 * /erase

 * print,i

 ERROR: I IS UNDEFINED

 * i=100

 * print,i

 100

 *

 256 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /EXECUTE ________

 Prototype: /EXECUTE routine(linenumber1,linenumber2) count ___

 Purpose: To execute a set of statements within a specified range.

 A suspension will result if an attempt is made to execute

 a statement outside the specified range; however,

 references to other routines are allowed.

 If the routine name is omitted, the currently active

 routine is assumed. If "linenumber1" is omitted, the

 first executable statement in the routine is assumed. If

 "linenumber2" is omitted, the last executable statement

 in the routine is assumed.

 If "count" is provided, then a suspension will occur

 after "count" FORTRAN statements have been executed. If

 "count" is not specified, it defaults to an infinite

 value.

 Example: The following example illustrates the use of the /EXECUTE

 command:

 * /compose

 1_ limit=2

 ROUTINE NAME: MAIN

 2_ do 10 i=1,limit

 3_ 10 print,i

 4_ /execute 1 3

 1

 2

 4_ stop

 5_ end

 + /immex

 *

 Note that the suspension which would normally occur after

 the execution of the /EXECUTE command is deferred until

 composing is completed.

 Interactive FORTRAN: Appendix A 257

 MTS 6: FORTRAN in MTS

 October 1983

 /EXPLAIN ________

 Prototype: (a) /EXPLAIN ____

 (b) /EXPLAIN command ... ____

 Purpose: If no parameter is given, a list of all the available IF

 commands together with a brief explanation of the command

 syntax is printed.

 Prototype (b) provides information about the particular

 commands specified in the parameter list.

 Note: The command prefix character (/) must appear even on

 commands specified on the /EXPLAIN command.

 Example: /EXPLAIN /COMPOSE /RUN

 would provide detailed information about how to use

 the /COMPOSE and /RUN commands.

 258 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /GET ____

 Prototype: /GET routine __

 Purpose: The specified routine becomes the currently active rou-

 tine. This command has the effect of suspending at the

 first executable statement of the specified routine.

 Subsequently, the prefix character will be "+".

 Notes: If a routine is already active when the /GET command is

 issued, then the existing suspension is stacked on a

 pushdown list before activating the specified routine and

 suspending on it. The levels of stacked suspension are

 printed by using the "/DISPLAY LEVELS" command. To

 delete the current level of suspension and to return to

 the previous level of suspension, the user should use the

 /RELEASE command. To delete all levels of suspension and

 return to immediate execution mode, the user should use

 the /IMMEX command. To return to immediate execution

 mode while preserving all levels of suspension, the user

 should issue a "/GET IMMEX" command.

 The user should be aware that the /RUN command also has

 the effect of deleting all levels of suspension prior to

 beginning execution.

 Example: Assume that the user is suspended at line 25.0 of routine

 MAIN, and that he wishes to activate routine TSP2 in

 order that he may easily examine the values of variables

 in that routine. To do this, he may issue the following

 command:

 /GET TSP2

 which makes TSP2 the currently active routine. Subse-

 quently, by issuing the following command:

 /RELEASE

 routine MAIN would once again be the currently active

 routine, and he would still be suspended at line 25.

 Interactive FORTRAN: Appendix A 259

 MTS 6: FORTRAN in MTS

 October 1983

 /HELP _____

 Prototype: /HELP __

 Purpose: A command which prints information about how to terminate

 the current IF run, and about how to obtain information

 about the other IF commands.

 Example: * /help

 * ***** IF *****

 *

 * IF YOU NEED SOME HELP WITH THE IF COMMANDS, THEN

 * TYPE "/EXPLAIN".

 *

 * IF YOU WISH TO TERMINATE THIS *IF RUN, THEN TYPE

 * "/STOP".

 *

 * IF YOU WISH ONLY TO RETURN TO MTS WITHOUT

 * UNLOADING THE IF SYSTEM, THEN TYPE "/MTS" (AN MTS

 * $RESTART COMMAND WILL CAUSE EXECUTION TO RESUME).

 260 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /IMMEX ______

 Prototype: /IMMEX ___

 Purpose: To unconditionally return from suspended execution (pre-

 fix: +) to immediate execution (prefix: *).

 Notes: Execution of the /IMMEX command causes all levels of

 suspension to be deleted. However, data environments are

 not cleared, and the values of the variables and array

 elements in any routine may still be examined.

 The /IMMEX command has no effect when it is issued in

 immediate execution.

 Example: * /compose

 1_ print,aaa

 ROUTINE NAME: MAIN

 2_ return

 3_ end

 * /run main

 /MAIN:1./ - ERROR: AAA IS UNDEFINED

 + /immex

 *

 Interactive FORTRAN: Appendix A 261

 MTS 6: FORTRAN in MTS

 October 1983

 /INPUT ______

 Prototype: /INPUT FDname __

 Purpose: IF will read subsequent immediate and suspended execution

 commands and FORTRAN source lines from the specified file

 or device. If an end-of-file is encountered on the

 specified input stream or if the attention key is

 pressed, subsequent commands and FORTRAN source lines

 will revert to being read from *MSOURCE* (the terminal in

 conversational mode). Initially, lines are read from

 SOURCE.

 Example: /INPUT IFCMDS

 would cause IF to read and execute commands from the

 MTS file IFCMDS.

 262 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /LIBRARY ________

 Prototype: (a) /LIBRARY ____

 (b) /LIBRARY FDname ____

 Purpose: To define a library or libraries for IF to search when

 references to undefined routines are encountered during

 program execution. By default, only the public library,

 *LIBRARY, is searched.

 Prototype (a) of this command indicates that no libraries

 are to be searched. When a reference to an undefined

 routine is encountered during program execution, IF will

 suspend with an error message like,

 ERROR: ROUTINE "xxxxxx" IS UNDEFINED

 and the user will find himself in either immediate

 execution mode (prefix: *) or suspended execution mode

 (prefix: +).

 Prototype (b) of this command dictates that whenever an

 undefined routine is referenced, IF will search the

 specified library for the undefined symbol. More than

 one library may be provided by concatenating the names of

 libraries. Note that prototype (b) of this command also

 implies that *LIBRARY is automatically searched, but only

 after the programmer’s libraries have been searched.

 Example: /LIBRARY NUMLIB+NEWLIB

 would cause IF to search the libraries residing in

 the MTS files NUMLIB, NEWLIB, and *LIBRARY (in that

 order) whenever an undefined routine was referenced

 during program execution.

 Interactive FORTRAN: Appendix A 263

 MTS 6: FORTRAN in MTS

 October 1983

 /LINK _____

 Prototype: /LINK FDname I/O-assignments PAR=string ___

 Purpose: Load and begin execution of the object program in the

 specified file without leaving IF.

 Logical I/O Unit Assignments

 The following table lists the I/O units which can be

 assigned on the /LINK command, and their defaults if they

 are not assigned:

 0-4 do not default

 5 *SOURCE*

 6 *SINK*

 7-19 do not default

 SCARDS *SOURCE*

 SPRINT *SINK*

 SPUNCH *PUNCH*, if in batch mode

 GUSER *MSOURCE*

 SERCOM *MSINK*

 Note: The /LINK command is useful because it allows the

 programmer to load and run any program without unloading

 IF. After the program which was /LINKed to has completed

 execution, control will be returned to IF -- providing

 the program /LINKed to exits normally.

 Example: The following example shows how a program residing in the

 MTS file TRIP.S may be compiled using the FORTRAN-G

 compiler, and how the object module produced may be

 loaded under IF:

 * /link *ftn scards=trip.s

 NO ERRORS IN TRIP

 * /load -load

 *

 264 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /LIST _____

 Prototype: (a) /LIST routine(linenumber1,linenumber2) FDname __

 (b) /LIST routine(#label1,#label2) FDname __

 (c) /LIST * FDname __

 Purpose: Prototype (a) of this command lists a routine, or a range

 of lines of a routine, on the specified file or device.

 This command is very similar to the MTS $LIST command.

 If the routine name is omitted, the currently active

 routine is assumed. If "linenumber1" is omitted, the

 first statement in the routine is assumed. If "linenum-

 ber2" is omitted, the last statement in the routine is

 assumed. If "FDname" is omitted, the current output file

 or device is assumed. The current output file or device,

 which can be redefined by the /OUTPUT command, defaults

 to *MSINK*.

 Prototype (b) is similar to prototype (a) except that the

 list range is specified by statement numbers instead of

 line numbers.

 If the first parameter is "*", then all routines are ___

 listed on the specified file or device.

 Note: The /LIST command may be entered in "free-format"; the

 parentheses and comma in the prototype form above are

 optional.

 Examples: /LIST MAIN

 would list all of the statements in the routine

 named MAIN.

 /LIST EVAL (#66)

 would list the statements of routine EVAL starting

 at statement labeled 66 and continuing to the last

 statement in the routine.

 /LIST * *PRINT*

 would list all routines on a printer.

 Interactive FORTRAN: Appendix A 265

 MTS 6: FORTRAN in MTS

 October 1983

 /LOAD _____

 Prototype: /LOAD FDname

 Purpose: The /LOAD command dynamically loads all object modules

 residing on the specified file or device. The loaded

 object modules or csects are subsequently callable from

 any routine compiled under IF, and conversely may call

 any routine compiled under IF.

 Notes: The word "csect" is a synonym for "externally loaded

 module" or "externally loaded routine".

 To obtain a list of all currently loaded csects, the user

 should issue the "/DISPLAY EXTERNAL" command.

 To unload all csects, or to unload a particular csect,

 the user should issue the /UNLOAD command.

 If the specified file or device name is a library, then

 only modules with outstanding references are loaded from

 the library. Note that IF automatically searches the

 public library, *LIBRARY, for undefined symbols. To have

 IF automatically search a programmer-supplied library,

 see the /LIBRARY command.

 Example: The following example illustrates how the FORTRAN-G

 compiler may be invoked to compile a FORTRAN source

 program residing in the MTS file ATOMPGM.S. Subsequent-

 ly, the object module generated by *FTN is loaded by

 using the /LOAD command, and the /DISPLAY command is used

 to list the names of the loaded csects:

 * /link *ftn scards=atompgm.s spunch=atompgm.o

 NO ERRORS IN ATOMB

 NO ERRORS IN HEAVYW

 * /load atompgm.o

 * /display external

 * EXTERNALLY LOADED CSECTS:

 * ATOMB ADDRESS=518000 LENGTH=2F20

 * HEAVYW ADDRESS=521000 LENGTH=550

 *

 266 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /MTS ____

 Prototype: (a) /MTS __

 (b) /MTS MTS-command __

 Purpose: Prototype (a) of the /MTS command returns control to MTS

 command mode. IF processing may be resumed by issuing

 the MTS command $RESTART.

 Prototype (b) of the /MTS command executes the specified

 MTS command in the parameter field by calling the system

 subroutine CMD. In this case, control automatically

 returns to IF after the command is executed (unless the

 MTS command is a $LOAD, $RUN, $RERUN, $UNLOAD, or $DEBUG

 command).

 Note: It is not necessary to return to MTS command mode to

 assign or reassign logical I/O units. With IF commands

 there are two ways to assign logical I/O units. Issue

 the /SET command (i.e., "/SET 1=-SCRATCH1"), or assign

 the units on the /RUN command (for example, "/RUN MAIN

 6=OUT").

 Example: /MTS $LIST SUB.S(1,50)

 lists lines 1-50 of the MTS file named SUB.S without

 returning to MTS command mode.

 Interactive FORTRAN: Appendix A 267

 MTS 6: FORTRAN in MTS

 October 1983

 /OUTPUT _______

 Prototype: /OUTPUT FDname __

 Purpose: IF will direct subsequent output lines to the specified

 file or device. This does not include output produced by

 the programmer’s routines, or error messages produced by

 IF which are always written on *MSINK*. It does include

 output like routine listings, and other "less important"

 information. Initially, output lines are printed on

 MSINK (the terminal, in conversational mode).

 Example: /OUTPUT -OUT

 would cause IF to direct output to the MTS file

 named -OUT.

 268 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /REFERENCE __________

 Prototype: (a) /REFERENCE routine:variable ... ____

 /REFERENCE variable ... ____

 (b) /REFERENCE routine:#label ... ____

 /REFERENCE #label ... ____

 Purpose: This command prints the line numbers of the statements at

 which the variable names and the statement labels speci-

 fied in the parameter list are referenced. If the

 routine name is omitted, the currently active routine is

 assumed.

 Examples: /REFERENCE LOOPI MAIN5:BALL

 would print the references of the variable LOOPI in

 the currently active routine, and the variable BALL

 in routine MAIN5. The references are printed in the

 following format:

 "LOOPI" REFERENCED AT LINES:

 140. 209. 224. 241. 250.

 "MAIN5:BALL" REFERENCED AT LINES:

 12. 13.5 18. 19. 55. 56.1

 /REFERENCE #1234

 would print the references of statement label 1234

 in the currently active routine in the following

 format:

 "#1234" DEFINED AT LINE 10.,

 REFERENCED AT LINES:

 10. 88. 89. 101.

 Interactive FORTRAN: Appendix A 269

 MTS 6: FORTRAN in MTS

 October 1983

 /RELEASE ________

 Prototype: /RELEASE ____

 Purpose: Deletes the current level of suspension, and returns to

 the previous level of suspension. If there is only one

 level of suspension, then this results in a return to

 immediate execution mode (prefix: *).

 Notes: The levels of stacked suspension are printed by using the

 "/DISPLAY LEVELS" command.

 To delete all levels of suspension and return to immedi-

 ate execution mode, issue the /IMMEX command.

 Example: The following example illustrates the use of the /RELEASE

 command,

 * /run main

 /MAIN:3./ - ERROR: J IS UNDEFINED

 + /display levels

 + SUSPENSION AT LINE 3. OF ROUTINE MAIN

 + /get subr

 /SUBR:1./

 + /display levels

 + SUSPENSION AT LINE 1. OF ROUTINE SUBR

 + SUSPENSION AT LINE 3. OF ROUTINE MAIN

 + /release

 + /display levels

 + SUSPENSION AT LINE 3. OF ROUTINE MAIN

 + /release

 *

 270 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /REMOVE _______

 Prototype: (a) /REMOVE ____

 (b) /REMOVE routine(linenumber) ... ____

 /REMOVE linenumber ... ____

 (c) /REMOVE * ____

 Purpose: Prototype (a) of this command removes the most recently

 executed atpoint or breakpoint.

 Prototype (b) of this command removes the atpoints or

 breakpoints specified in the parameter list. If the

 routine name is omitted, the currently active routine is

 assumed. If the line number is omitted, the first

 executable statement of the specified routine is assumed.

 If the parameter is "*", then all atpoints and break- ___

 points in all routines are removed. ___

 Notes: The "/DISPLAY BREAKPOINTS" command prints a list of all

 currently defined breakpoints, and the "/DISPLAY

 ATPOINTS" command prints a list of all currently defined

 atpoints.

 If both an atpoint and a breakpoint are defined at the

 same statement, then the breakpoint is removed.

 By using the "/SET BREAK=OFF" command, breakpoints may be

 disabled globally without removing them. Atpoints may be

 disabled in the same way by issuing the "/SET AT=OFF"

 command.

 Examples: /REMOVE 123.4

 would cause the atpoint or breakpoint defined at

 line 123.4 of the currently active routine to be

 removed.

 /REMOVE MAIN(11) MAIN(#8888)

 would cause the atpoints or breakpoints defined at

 line 11.0 of routine MAIN, and at statement labeled

 8888 of routine MAIN to be removed.

 Interactive FORTRAN: Appendix A 271

 MTS 6: FORTRAN in MTS

 October 1983

 /REPEAT _______

 Prototype: /REPEAT ____

 Purpose: Restarts execution of a suspended program by repeating

 the statement at which the suspension occurred. (See

 also the descriptions of the /CONTINUE and /RESTART

 statements.)

 Note: The current statement, that is the statement at which

 execution is suspended, can be found by using the

 "/DISPLAY LEVELS" command.

 Example: The following example illustrates the use of the /REPEAT

 command:

 * /compose

 1_ do 10 i=1,n

 ROUTINE NAME: MAIN

 2_ 10 print,i

 3_ stop

 4_ end

 * /run main

 /MAIN:1./ - ERROR: UNDEFINED DO PARAMETER N

 + n=2

 + /repeat

 1

 2

 /MAIN:3./ - /STOP /

 +

 272 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /RESTART ________

 Prototype: (a) /RESTART ___

 (b) /RESTART routine(linenumber) ___

 /RESTART linenumber ... ___

 (c) /RESTART routine(#label) ... ___

 /RESTART #label ... ___

 Purpose: Restarts execution of a suspended program. Prototype (a)

 of this command causes execution to restart in the

 statement at which the suspension occurred. (See also

 the descriptions of the /CONTINUE and /REPEAT

 statements.)

 Prototypes (b) or (c) of this command explicitly specify

 the routine and statement at which execution is to

 restart. If the routine name is omitted, the currently

 active routine is assumed. If the line number is

 omitted, the first executable statement of the specified

 routine is assumed.

 Notes: The current statement, that is the statement at which

 execution is suspended, can be found by using the

 "/DISPLAY LEVELS" command.

 After a suspension caused by an external interrupt (i.e.,

 after either a program interrupt or an attention inter-

 rupt in an externally loaded module) the first form of

 the /RESTART command has a special interpretation. For

 this type of suspension only, execution is restarted

 within the externally loaded module at the next

 instruction.

 Examples: /RESTART MAIN(24.5)

 would restart execution at line 24.5 of routine

 MAIN.

 /RESTART #8888

 would restart execution at statement labeled 8888 in

 the currently active routine.

 Interactive FORTRAN: Appendix A 273

 MTS 6: FORTRAN in MTS

 October 1983

 /RUN ____

 Prototype: /RUN routine I/O-assignments PAR=string __

 Purpose: Begins execution of the specified routine. The /RUN

 command is a typical method of beginning execution of a

 mainline program, or of a subroutine without arguments.

 Logical I/O Unit Assignments

 All logical unit assignments other than those appearing

 on the /RUN command become unassigned every time the /RUN

 command is issued. The following table lists the I/O

 units which can be assigned on the /RUN command, and

 their defaults if they are not assigned:

 0-4 do not default

 5 *SOURCE*

 6 *SINK*

 7-19 do not default

 SCARDS *SOURCE*

 SPRINT *SINK*

 SPUNCH *PUNCH*, if in batch mode

 GUSER *MSOURCE*

 SERCOM *MSINK*

 The PAR Field

 If the PAR field is specified, then it must be the last

 field on the /RUN command. Any fields following the PAR=

 are assumed to be part of the PAR text. The PAR field

 defaults to being a field of length zero.

 Notes: When execution is initiated by the /RUN command, the data

 environment associated with each routine which has been

 compiled under IF is implicitly "cleared" the first time

 it is invoked. Clearing a routine means setting all

 variables and arrays in the routine to being undefined,

 and then assigning initial data values to those variables

 and arrays which are given initial data values in DATA

 and explicit type statements.

 When execution is initiated by the /RUN command, all

 levels of suspension are automatically deleted.

 The /RUN command can also be used to begin execution of

 any externally loaded routine (csect).

 274 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 Examples: /RUN MAIN 5=LPDATA

 would attach logical unit 5 to the MTS file LPDATA,

 and then begin execution of the routine named MAIN.

 * /load lip.o

 * /display external

 LIP ADDRESS=508400 LENGTH=218

 LIPSUB ADDRESS=50A100 LENGTH=488

 * /run lip par=notab

 loads the external routine in the MTS file LIP.O,

 and transfers control to the entry point of the

 loaded object module called LIP.

 Interactive FORTRAN: Appendix A 275

 MTS 6: FORTRAN in MTS

 October 1983

 /SET ____

 Prototype: /SET keyword=rhs ... __

 Purpose: The /SET command is used to assign or reassign logical

 I/O units, and to set various global switches which

 control the behavior of IF.

 Assigning and Reassigning Logical Units

 Normally, MTS logical units are assigned on the /RUN

 command. However, sometimes it is desirable to change

 logical units halfway through a run, without having to

 /RUN the routine from the beginning. This can be done by

 issuing the /SET command from suspended execution (e.g.,

 /SET 5=DATAFILE). The following table lists the units

 which can be assigned, and their defaults if they are not

 assigned:

 0-4 do not default

 5 *SOURCE*

 6 *SINK*

 7-19 do not default

 SCARDS *SOURCE*

 SPRINT *SINK*

 SPUNCH *PUNCH*, if in batch mode

 GUSER *MSOURCE*

 SERCOM *MSINK*

 Assigning logical units using the /SET command is equiva-

 lent to returning to MTS and assigning the logical units

 on an MTS $RESTART command.

 Other Functions of the /SET Command

 AT={ON|OFF} Default: ON

 If this switch is OFF, then atpoints encountered in

 the execution flow are ignored.

 BREAK={ON|OFF} Default: ON

 If this switch is OFF, then breakpoints encountered

 in the execution flow are ignored.

 CMDCHAR=character Default: /

 The command prefix character becomes the character

 specified by "character". "character" must be cho-

 sen from the set {¢<&!*>?#@’=$/}.

 276 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 CMTCHAR=character Default: "

 The free-format comment character becomes the char-

 acter specified by "character". "character" must be

 chosen from the set {¢<&!*>?#@’=}.

 CONTCHAR=character Default: -

 The free-format continuation character becomes the

 character specified by "character". "character"

 must be chosen from the set {¢<&!*>?#@’=-}.

 DEFCHK={ON|OFF} Default: ON

 If this switch is OFF, then the checks for undefined

 variables and array elements in FORTRAN output

 statements are disabled.

 ECHO={ON|OFF}

 The function of this switch is to turn echo printing

 ON or OFF. When echoing is ON, all FORTRAN source

 lines and commands read from a nonterminal file or

 device are echoed on the terminal (the printer in

 batch mode). In batch mode, echoing defaults to ON.

 In conversational mode, echoing defaults to OFF.

 FLOW={ON|OFF} Default: OFF

 If this switch is ON, then each time a branch is

 made, the routine name and label are printed. This

 is a very useful feature. Sections of programs can

 be flow traced by setting this switch ON or OFF

 within atpoints.

 LC={ON|OFF} Default: OFF

 If this switch is OFF, FORTRAN source lines and

 commands are automatically translated to uppercase.

 This can also be accomplished by specifying /SET

 UC=ON.

 LENGTH=count Default: 72

 "count" must be an integer between 36 and 72

 inclusive. Free-format FORTRAN source statements ___________

 longer than "count" characters are automatically

 broken up into the appropriate number of continua-

 tion lines, with no line in the statement being

 longer than "count" characters.

 Interactive FORTRAN: Appendix A 277

 MTS 6: FORTRAN in MTS

 October 1983

 LENCHK={ON|OFF} Default: ON

 If this switch is ON, then fixed format FORTRAN _____ ______

 source lines longer than 72 characters will be

 flagged with warning messages. This is not a

 desirable action when one wishes to compile a

 program that has sequence fields. ________ ______

 MAP={ON|OFF} Default: OFF

 If this switch is ON, a loader map will be printed

 whenever IF either explicitly or implicitly loads

 object modules (such as compiled by *FTN).

 MSGFILE={ON|OFF} Default: OFF

 If this switch is ON, then the IF error message file

 is released after each error message is printed. In

 the OFF position, the error message file remains

 open between error messages. In the ON position

 approximately four pages of virtual memory are

 saved; in the OFF position, a small amount of CPU

 time is saved (i.e., the CPU time required to open

 and close the file).

 MSGLVL={0|1|2|3} Default: 1

 This controls the verbosity level of error and

 warning messages. There are four ascending levels.

 The most terse level is 0; the most verbose level is

 3.

 PAR=string

 This defines or redefines the PAR field. If PAR is

 specified, it must be the last keyword on the

 command. The default PAR field is a field of length

 zero.

 UC={ON|OFF} Default: ON

 If this switch is ON, FORTRAN source lines and

 commands are automatically translated to uppercase.

 This can also be accomplished by specifying /SET

 LC=OFF.

 WARN={ON|OFF} Default: ON

 If this switch is OFF, then all warning messages are ___

 suppressed.

 278 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 Examples: /SET 5=-INPUT 6=RESULTS

 assigns unit 5 to the MTS file -INPUT, and unit 6 to

 the MTS file RESULTS.

 /SET WARN=OFF

 suppresses all warning messages.

 Interactive FORTRAN: Appendix A 279

 MTS 6: FORTRAN in MTS

 October 1983

 /STEP _____

 Prototype: (a) /STEP ___

 (b) /STEP count ___

 Purpose: Execution resumes at the current point of suspension.

 The specified number of FORTRAN statements are executed,

 after which execution suspends.

 If no parameter is given, the /STEP command executes one

 FORTRAN statement and suspends. If an integer count is

 given, IF executes that number of FORTRAN statements and

 suspends.

 Note: The /STEP command executes "count" executable FORTRAN

 statements, not "count" machine instructions. A refer-

 ence to an elementary FORTRAN function, and a call to an

 externally loaded routine both count as only one FORTRAN

 statement. Furthermore, when an atpoint is encountered

 during program execution, the statements in the atpoint

 are not counted.

 Example: The following example illustrates the action of the /STEP

 command,

 * /compose

 1_ print,’hi there’

 ROUTINE NAME: MAIN

 2_ print,’mom and dad’

 3_ return;end

 * /get main

 /MAIN:1./

 + /step

 HI THERE

 /MAIN:2./

 + /step

 MOM AND DAD

 /MAIN:3./

 + /step

 *

 280 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 /STOP _____

 Prototype: /STOP _____

 Purpose: IF processing is terminated, and control is returned to

 MTS command mode. Execution may not be restarted. This

 is the normal method of terminating an IF run.

 Notes: Some of the other ways of returning to MTS command mode

 are issuing the /MTS command or issuing a FORTRAN STOP

 statement from immediate execution mode (in these cases

 execution may be restarted using the MTS command

 $RESTART).

| Example: # $run *if66

 # EXECUTION BEGINS

| * IF(NOV80)

 * " it worked

 * /stop

 # EXECUTION TERMINATED

 #

 Interactive FORTRAN: Appendix A 281

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 /TRACE ______

 Prototype: /TRACE __

 Purpose: To produce a subprogram linkage traceback.

 Example: The following example illustrates the value of the /TRACE

 command:

 * /run main

 /SUBP:99./ - ERROR: VAR8 IS UNDEFINED

 + /trace

 CALLED FROM ROUTINE "PRINTR", STATEMENT 50.5

 CALLED FROM ROUTINE "LASTS", STATEMENT 18

 CALLED FROM ROUTINE "MAIN", STATEMENT 5

 INITIATED FROM IMMEDIATE EXECUTION MODE

 +

 282 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983

 /UNLOAD _______

 Prototype: (a) /UNLOAD __

 (b) /UNLOAD csect ... __

 (c) /UNLOAD * __

 Purpose: The /UNLOAD command dynamically unloads selected external

 routines. The routines unloaded may have been implicitly

 loaded from a library, or explicitly loaded using the

 /LOAD command. Subsequent references to an unloaded

 routine either from another externally loaded routine, or

 from a routine compiled under IF, will behave as if the

 routine had never been loaded.

 Prototype (a) of this command unloads the most recently

 loaded external routine.

 Prototype (b) unloads each of the external routines

 specified in the parameter list.

 Prototype (c) unloads all currently loaded external ___

 routines.

 Notes: The word "csect" is a synonym for "externally loaded

 routine." To obtain a list of all currently loaded

 csects issue the "/DISPLAY EXTERNAL" command. This will

 produce a list of loaded external csects, ordered start-

 ing with the most recently loaded.

 When an externally routine is unloaded, all entry points

 which were in the routine (if any) also become undefined.

 External block data may be unloaded by /UNLOADing the

 name of each common block for which block data exists.

 Example: To unload all externally loaded csects, enter the "/UN-

 LOAD *" command as follows;

 * /unload *

 "SPSSUB" UNLOADED

 "WRITER" UNLOADED

 *

 Interactive FORTRAN: Appendix A 283

 MTS 6: FORTRAN in MTS

 October 1983

 /WORKFILE _________

 Prototype: /WORKFILE filename __

 Purpose: Compilations initiated either by the /COMPOSE command, or

 the first or third forms of the /COMPILE command, cause

 statements being compiled to be copied automatically to

 the MTS file specified by "filename". This file is known

 as the workfile. While the workfile is for the most part

 transparent to the programmer, the programmer should be

 aware that subsequent processing (i.e., editing, listing,

 copying) will reference only the statements maintained on

 the workfile. If the /WORKFILE command is not issued,

 then IF automatically uses a scratch workfile named

 -FSFILE. The workfile is emptied by IF prior to the

 first compilation.

 Notes: The specified file must be a line file, and the user must

 have both read and write access to it.

 While it is usually not necessary, the user may, if he

 wishes, use as many workfiles as desired. The /WORKFILE

 command overrides the effect of any previous /WORKFILE

 command.

 The /WORKFILE command is sometimes useful when one wishes

 to run IF for a second time during the same terminal

 session. As an example, imagine that a programmer

 composed a series of routines on a first IF run, and that

 the source statements for these routines were copied to

 the default workfile (-FSFILE) by IF. Imagine further

 that on a second IF run the programmer wished to

 recompile the same routines he composed during the first

 run. To do this, he could issue the /WORKFILE command

 specifying an alternate workfile (any file but -FSFILE),

 and then issue the /COMPILE command to compile the

 routines directly from the previous workfile (-FSFILE) as

 follows:

 * /workfile -w

 * /compile from -fsfile

 ROUTINE NAME: MAIN

 ROUTINE NAME: ROOT

 *

 If the programmer did not issue the /WORKFILE command

 before he issued the /COMPILE command, then IF would have

 used -FSFILE as the workfile on the second run. In this

 case, the routines would have been lost as IF would have

 emptied -FSFILE prior to the beginning of the

 compilation.

 284 Interactive FORTRAN: Appendix A

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 Example: * /workfile -w

 ERROR: "-W" IS NOT EMPTY; REPLY "OK" TO EMPTY

 ? ok

 *

 Interactive FORTRAN: Appendix A 285

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 APPENDIX B: LANGUAGE FEATURES SUPPORTED __

| The *IF66 version of the IF system supports the language described in

 the IBM publication, IBM System/360 and System/370 FORTRAN IV Language, __

 form number GC28-6515, except for the following restrictions and

 extensions.

 Multiple-Assignment Statements ______________________________

 Multiple-assignment statements are accepted by the IF system as an

 extension to the FORTRAN language. They are not accepted by the

 FORTRAN-G or FORTRAN-H compilers. For example:

 A=B(3)=DD= 1.234

 Free-Format I/O _______________

 The IF system supports the same free-format I/O statements as the

 WATFIV compiler supports. The following statements may be used to

 achieve free-format I/O:

 READ, list

 PRINT, list

 PUNCH, list

 READ(unit,*,END=label1,ERR=label2) list

 WRITE(unit,*) list

 I/O in the first three forms above is done on units 5, 6, and 7,

 respectively. The asterisks in the last two forms imply free-format I/O

 with "unit" specifying the logical unit number. The END and ERR fields

 are optional as with the standard FORTRAN READ statement. For example:

 READ, A(1),B,I

 2.5,.00001 13

 would assign the value 2.5 to A(1), .00001 to B, and 13 to I.

 Input data items may be entered on as many lines as necessary;

 successive lines are read until all elements of the data list have been

 satisfied. Adjacent data fields must be separated by a comma and/or one

 or more blanks. Individual data fields must be wholly contained on a

 single line--they cannot be continued across two lines.

 Free-format output data items are printed using the following

 predefined format codes:

 286 Interactive FORTRAN: Appendix B

 MTS 6: FORTRAN in MTS

 October 1983

 INTEGER I12

 REAL*4 G16.7

 REAL*8 G28.16

 COMPLEX*8 ’(’,G16.7,’,’,G16.7,’)’

 COMPLEX*16 ’(’,G28.16,’,’,G28.16,’)’

 LOGICAL L8

 For example,

 PRINT,’I=’,I

 I= 13

 More than one line of output is printed if the entire data list will

 not fit onto a single line.

 Notice that the IF system also supports expressions in output lists.

 For example,

 PRINT,’RESULT=’,1*2+A/B

 RESULT= 2.500000

 Implied DO-Loops in DATA Statements ___________________________________

 The IF system supports implied DO loops in DATA statements. For

 example,

 REAL A(10)

 DATA (A(I),I=1,10)/10*1.0/

 Extended Ranges on DO-Loops ___________________________

 The IF system does not support the concept of the "extended range of

 the DO loop" (such as described in the above named IBM manual).

 Furthermore, the value of the DO variable or DO index upon completion of

 a DO loop is undefined when running under IF (for the FORTRAN-G, _________

 FORTRAN-H, and WATFIV compilers the DO index remains defined but the

 value of the index varies--contrary to ANSI FORTRAN specifications).

 Debug Facility ______________

 The IF system does not support the FORTRAN debug facility; thus, one ___

 cannot use IF to compile any FORTRAN programs containing the DEBUG, AT,

 TRACE, or DISPLAY debug statements. Simply remove debug statements from

 FORTRAN programs (or change them into comments).

 Interactive FORTRAN: Appendix B 287

 MTS 6: FORTRAN in MTS

 October 1983

 Call by Location ________________

 The IF system has implemented subroutine "calls by location" as

 subroutine "calls by value." Thus, with the IF system, there is no

 difference in interpretation between the following two FORTRAN

 statements:

 SUBROUTINE SUB(A,/B/)

 SUBROUTINE SUB(A,B)

 Predefined Functions ____________________

 The elementary FORTRAN functions are "pretyped" when using the IF

 system. For example, the double-precision square root function (DSQRT)

 is pretyped to be REAL*8. Functions are "pretyped" using the FORTRAN-G

 and FORTRAN-H compilers, but not the WATFIV compiler.

 Comments ________

 Although ANSI Standard FORTRAN prohibits comment lines interspersed

 with continuation lines and the abovementioned IBM manuals prohibit such

 interspersing, the FORTRAN-G and FORTRAN-H compilers do not enforce this

 restriction. IF does not permit the interspersing of comments and

 continuation lines.

 NAMED COMMON Restriction ________________________

 IF does not permit a COMMON block to be named MAIN. FORTRAN-G and

 FORTRAN-H do not have this restriction.

 Declaration of Dimensioning Restriction _______________________________________

 IF requires that an array be dimensioned before it is referenced by

 another declaration. The following is not permitted in IF:

 EQUIVALENCE X, Y(3)

 DIMENSION Y(5)

 The DIMENSION statement must precede the EQUIVALENCE statement.

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 APPENDIX C: DETAILED EXAMPLES ______________________________

 This appendix contains two detailed examples of conversational usage

 of the IF system. Text appearing in lowercase was entered by the

 programmer, and text appearing in uppercase was printed either by MTS or

 by the IF system.

 Example 1 _________

 In this example, the programmer signs on at a terminal and writes a

 FORTRAN program which reads in a series of real numbers, sorts them in

 ascending order, and prints out the sorted list. An explanation of the

 steps follows the example.

 # $sig ifdo

 # ENTER USER PASSWORD.

 ? xxxxxx

 # TERM,NORMAL,UNIV

 # **LAST SIGNON WAS: 13:37:16

 # USER "IFDO" SIGNED ON AT 16:41:05 ON WED FEB 04/76

| # $run *if66 ...(1)

 # EXECUTION BEGINS

| * IF(NOV80)

 * /compose ...(2)

 1_ " program to do a simple sort

 2_ dimension array(100)

 ROUTINE NAME: MAIN ...(3)

 3_ " first read in the unsorted list

 4_ n=0

 5_ do 20 i=1,100

 6_ read(5,10,end=30)array(i)

 7_ 10 format(i10)

 8_ n=n+1

 9_ 20 continue

 10_ " now sort the list

 11_ 30 nm1=n-1

 12_ do 50 i=1,nm1

 13_ ip1=i+1

 14_ do 40 j=ip1,n

 15_ if(array(i).le.array(j))goto 20

 ERROR: ATTEMPT TO TRANSFER TO 20 WHERE 20 IS IN ...(4)

 THE RANGE OF A DO. TRANSFER FROM LINE 15

 TO LINE 9; WITHIN "DO 20", RANGE=(5,9)

 : change #20#30# ...(5)

 : 15. IF(ARRAY(I).LE.ARRAY(J))GOTO 30

 : stop ...(6)

 16_ itemp=array(i) ...(7)

 17_ array(i)=array(j)

 18_ array(j)=itemp

 19_ 40 continue

 20_ 50 continue

 21_ " now print the sorted list

 Interactive FORTRAN: Appendix C 289

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 22_ do 60 i=1,n

 23_ write(2,10)array(i)

 24_ 60 continue

 25_ stop

 26_ end

 * /run main ...(8)

 1.0 ...(9)

 ERROR FORMAT CODE AND VARIABLE TYPE DO NOT ...(10)

 MATCH. FORMAT CODE IS I10, TYPE IS REAL. CONDITION

 OCCURRED DURING A FORMATTED READ ON FORTRAN UNIT

 5 WHICH IS ATTACHED TO *SOURCE*.

 /MAIN:6./ ...(11)

 + /edit ...(12)

 : line 7

 : 7. 10 FORMAT(I10)

 : change #i10#f10.0#

 : 7. 10 FORMAT(F10.0)

 : stop

 + /restart ...(13)

 1.0

 3.0

 2.0

 $endfile

 (attention key pressed) ...(14)

 /MAIN:13./ - ***** ATTENTION INTERRUPT ...(15)

 + /list 13 13 ...(16)

 + 13. IP1=I+1

 + nm1,n ...(17)

 + 2 3

 + /step ...(18)

 /MAIN:14./ ...(19)

 + /step

 /MAIN:15./

 + /step

 /MAIN:11./ ...(20)

 + /edit ...(21)

 : line 15

 : 15. IF(ARRAY(I).LE.ARRAY(J))GOTO 30

 : change #30#40#

 : 15. IF(ARRAY(I).LE.ARRAY(J))GOTO 40

 : stop

 + /run ...(22)

 1.0

 3.0

 2.0

 $endfile

 ERROR UNIT WAS REFERENCED BUT WAS NOT ...(23)

 ASSIGNED OR DEFAULTED. CONDITION OCCURRED DURING

 A FORMATTED WRITE ON FORTRAN UNIT 2.

 2 WAS CALLED BUT NOT SPECIFIED.

 ENTER NAME OR "CANCEL".

 sink ...(24)

 1.

 290 Interactive FORTRAN: Appendix C

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 2.

 3.

 /MAIN:25./ - /STOP/ ...(25)

 + /mts $create sort.s ...(26)

 # $CREATE SORT.S

 # FILE "SORT.S" HAS BEEN CREATED.

 + /copy main sort.s ...(27)

 + /stop ...(28)

 # EXECUTION TERMINATED

 Explanation of Example 1 ________________________

 (1) The programmer signs on and invokes the IF system with the MTS

 command "$RUN *IF".

 (2) The /COMPOSE command is entered in order to begin compiling

 free-format statements. Notice that this form of the /COMPOSE

 command causes automatic numbering of input lines (like the

 $NUMBER command in MTS).

 (3) The line "ROUTINE NAME: MAIN" is printed by the IF system.

 After the first statement of a routine is compiled the routine

 name is printed.

 (4) A compilation error is detected and an error message is

 produced. The editor is invoked. Notice that the prefix

 character becomes a colon (:), indicating edit mode.

 (5) The editor CHANGE command is used to change the statement label

 20 to 30.

 (6) The editor STOP command is entered to terminate the editing

 process. Recompilation of the line changed in the editor will

 be automatically performed.

 (7) The recompilation was successful, and compilation resumes nor-

 mally. The IF system prompts the programmer to enter line 16.

 (8) The /RUN command is used to begin execution of the main routine

 which has just been compiled.

 (9) This is an input data line.

 (10) An execution error is detected by the FORTRAN I/O interface.

 (11) Because of the I/O error execution suspends. The information

 which is printed between the slashes indicates that the error

 occurred at line 6 of routine MAIN. Notice that the prefix

 character becomes a plus sign (+), indicating suspended execu-

 tion mode.

 (12) The /EDIT command is entered to explicitly edit the active

 routine. In the editor the erroneous I10 format code is changed

 to a F10.0 format code.

 (13) Having returned from the editor--back to suspended execution,

 the /RESTART command is issued. This causes execution to

 restart, beginning with the statement at which the error

 occurred (the READ statement).

 (14) About 15 seconds passed here. It became apparent to the

 programmer that his program was in a loop, which required that

 he press the attention key.

 (15) The attention interrupt is acknowledged by the IF system, and

 Interactive FORTRAN: Appendix C 291

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 execution suspends at line 13.

 (16) The /LIST command is used to view statement 13.

 (17) An expression statement is entered NM1,N to display the values

 of variables NM1 and N. These values seem reasonable.

 (18) The programmer decides to use the /STEP command to step through

 his program one statement at a time. He is trying to determine

 why his program is looping (i.e., which statements are in the

 loop).

 (19) The /STEP command executes one statement, and suspends at the

 next statement.

 (20) Here the reason for the loop becomes clear to the programmer.

 The GOTO 30 statement at line 15 should have been GOTO 40.

 (21) Once again the /EDIT command is used to enter edit mode.

 (22) Having returned from the editor, the /RUN command is entered,

 causing the program to be rerun from the beginning.

 (23) Another error is detected by the FORTRAN I/O interface. In this

 case the programmer forgot to assign unit 2. He should have

 done so on the /RUN command ("/RUN MAIN 2=*SINK*").

 (24) Unit 2 is assigned to the terminal (*SINK*).

 (25) The program executed correctly; the list of input data has been

 sorted into ascending order. Here execution suspends as the

 STOP statement is executed.

 (26) The /MTS command is used to execute the MTS "$CREATE SORT.S"

 command. Here the intention is to create a permanent file in

 which to save the routine that has just been compiled.

 (27) The /COPY command is used to save the routine MAIN in the MTS

 file named SORT.S.

 (28) The /STOP command is entered to terminate the IF run.

 Example 2 _________

 In this example, the programmer’s project is to convert the sorting

 program which he compiled in the previous example into a subroutine.

 The program which was compiled in the previous example reads in a series

 of real numbers, sorts them into ascending order, and prints out the

 sorted list. The programmer’s task is to convert this main program into

 a subroutine which is passed a list of real numbers as an argument

 (rather than reading in an unsorted list), and which returns a sorted

 list (rather than printing out a sorted list).

| # $run *if66 ...(1)

 # EXECUTION BEGINS

| * IF(NOV80)

 * /compile from sort.s ...(2)

 ROUTINE NAME: MAIN

 * /display routines ...(3)

 * "MAIN" RANGE=(1. , 26.) TYPE=MAIN

 * /edit main ...(4)

 : insert 1 #subroutine sort(array,n)#

 : change 2 #100#n#

 : 2. DIMENSION ARRAY(N)

 : delete 3 9

 292 Interactive FORTRAN: Appendix C

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 : delete 21 24

 : replace 25 ’return’

 : 25. RETURN

 : stop

 ROUTINE NAME: SORT ...(5)

 * /list sort ...(6)

 * 1. C PROGRAM TO DO A SIMPLE SORT

 * 1.25 SUBROUTINE SORT(ARRAY,N)

 * 2. DIMENSION ARRAY(N)

 * 10. C NOW SORT THE LIST

 * 11. 30 NM1=N-1

 * 12. DO 50 I=1,NM1

 * 13. IP1=I+1

 * 14. DO 40 J=IP1,N

 * 15. IF(ARRAY(I).LE.ARRAY(J))GOTO 40

 * 16. ITEMP=ARRAY(I)

 * 17. ARRAY(I)=ARRAY(J)

 * 18. ARRAY(J)=ITEMP

 * 19. 40 CONTINUE

 * 20. 50 CONTINUE

 * 25. RETURN

 * 26. END

 * dimension a(3) ...(7)

 * a(1)=1.0; a(2)=3.0; a(3)=2.0 ...(8)

 * call sort(a,3) ...(9)

 * a ...(10)

 1.000000 2.000000 3.000000

 * /mts $create sortsub.s ...(11)

 # $CREATE SORTSUB.S

 # FILE "SORTSUB.S" HAS BEEN CREATED.

 * /copy sort sortsub.s ...(12)

 * /link *ftn par=source=sortsub.s ...(13)

 NO ERRORS IN SORT

 * /load -load ...(14)

 * WARNING: SYMBOL "SORT" IS MULTIPLY DEFINED;

 * FIRST DEFINITION USED.

 * /destroy sort ...(15)

 * "SORT" DESTROYED

 * /load -load ...(16)

 * /display external ...(17)

 * EXTERNALLY LOADED CSECTS:

 * SORT ADDRESS=50D450 LENGTH=438

 * a(1)=3.0; a(2)=2.0; a(3)=1.0 ...(18)

 * call sort(a,3) ...(19)

 * a ...(20)

 1.000000 2.000000 3.000000

 * /stop ...(21)

 # EXECUTION TERMINATED

 Explanation of Example 2 ________________________

 (1) The programmer invokes the IF system, again with the MTS command

| "$RUN *IF66".

 Interactive FORTRAN: Appendix C 293

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 (2) The /COMPILE command is entered, causing the sorting program

 which was compiled in the previous example to be compiled from

 the MTS file named SORT.S. The line which reads "ROUTINE NAME:

 MAIN" is confirmation that a main routine was compiled.

 (3) The /DISPLAY ROUTINES command is used to have information

 printed concerning the routine which was just compiled.

 (4) The /EDIT command is used to enter edit mode. In the editor the

 programmer makes the necessary modifications to transform his

 main program to a subroutine.

 (5) This line was printed by the IF system during recompilation to

 inform the programmer that indeed the routine name has changed

 (from MAIN to SORT).

 (6) The /LIST command is issued, causing the converted routine to be

 listed.

 (7) Now the programmer is at the stage where he wants to test his

 subroutine to ensure that his editing was correct. The easiest

 way to do this is simply to invoke the subroutine from immediate

 execution mode. Here he declares a real array of dimension 3.

 (8) And here a multiple statement line is used to assign values to

 the array elements.

 (9) And here a CALL statement is used to invoke the subroutine.

 (10) Control has returned from the subroutine; an expression state-

 ment is used to have the array A printed. The subroutine

 executed correctly--as one can see, the array was sorted in

 ascending order.

 (11) The /MTS command is used to execute the MTS "$CREATE SORTSUB.S"

 command. The intention is to create a permanent file in which

 to save the subroutine that has just been debugged.

 (12) The /COPY command is used to save the subroutine SORT in the MTS

 file named SORTSUB.S.

 (13) At this point the programmer has decided to try compiling his

 sorting subroutine by using the *FTN compiler. He issues the

 /LINK command to invoke *FTN and have it compile the subroutine

 which is now in the file named SORTSUB.S.

 (14) Here the programmer loads the object module which was produced

 by *FTN. The load fails because there is already a routine

 named SORT defined in the IF system.

 (15) To get around this problem, the /DESTROY command is issued to

 destroy the routine which was compiled under IF at step (2).

 (16) Now the /LOAD command is entered in an attempt to load the

 object module again. The load was successful because no

 diagnostic messages were produced.

 (17) The /DISPLAY EXTERNAL command is used to produce a list of all

 externally loaded routines. In this case there is only one

 (SORT).

 (18) The programmer is about to test the loaded external routine by

 using exactly the same immediate statements he used previously

 to test the internally compiled version (steps 8-10). Here he

 assigns new values to the immediate execution array A.

 (19) Here the external routine is invoked with an immediate execution

 CALL statement.

 (20) Control has returned from the external subroutine, and an

 expression statement is used to have the array A printed. The

 294 Interactive FORTRAN: Appendix C

 MTS 6: FORTRAN in MTS

 October 1983

 external routine produced the same results as the internally

 compiled version.

 (21) The /STOP command is entered, causing the IF run to be

 terminated, and control is returned to MTS.

 Interactive FORTRAN: Appendix C 295

 MTS 6: FORTRAN in MTS

 October 1983

 296 Interactive FORTRAN: Appendix C

 MTS 6: FORTRAN in MTS

 October 1983

 OVERDRIVE _________

 INTRODUCTION ____________

 OVERDRIVE is a preprocessor which allows the use of structured

 programming techniques in FORTRAN 66 programs (i.e., *FTN and *IF).

 FORTRAN was one of the first higher-level programming languages and,

 unfortunately, is today still handicapped by some of its earlier,

 archaic control structures. Structured programming has provided means

 to circumvent flow-of-control problems. Structured programming is

 concerned with representations of the source program which make the

 execution of the program easy to follow for the reader. It is

 characterized often as GOTOless programming using block- or grouping-

 type statements for condition testing and loops, thereby enabling one to

 see with less difficulty what path the execution flow follows.

 The OVERDRIVE preprocessor extensions to FORTRAN use structured

 programming concepts to allow the clearer expression of a program’s flow

 of control than is currently possible. Several listing control func-

 tions are also provided to help make the source program listings more

 readable.

 OVERDRIVE may be conveniently used in conjunction with *FTN as

 described later.

 Compatibility with FORTRAN 77 _____________________________

 In March 1978 a new ANSI FORTRAN standard (referred to as FORTRAN 77)

 was approved to replace the 1966 FORTRAN standard (referred to as

 FORTRAN 66 or FORTRAN IV). OVERDRIVE allows the use of some of the

 FORTRAN 77 features and transforms the OVERDRIVE source into FORTRAN 66

 source code. Where FORTRAN 66 and FORTRAN 77 differ in ways which are

 relevant to OVERDRIVE, these differences will be discussed.

 The FORTRAN 77 features which can be specified in OVERDRIVE are the

 following:

 (1) Block IF

 (2) PARAMETER statement

 (3) FMT= format specification

 (4) Comment with *

 OVERDRIVE 297

 MTS 6: FORTRAN in MTS

 October 1983

 These will be fully explained in following sections.

 Additionally, OVERDRIVE contains many features not available in

 FORTRAN 77, primarily control structures and listing options. There are

 also many FORTRAN 77 features which were not feasible to add to

 OVERDRIVE.

 Criteria for OVERDRIVE Features _______________________________

 The choice of OVERDRIVE extensions to FORTRAN was based on the

 following criteria for each extension:

 (1) Useful to a large number of users

 (2) Simple

 (3) In the "style" of FORTRAN

 (4) Easy to detect errors in

 (5) Inexpensive to use

 (6) Upward compatible with FORTRAN 66

 (7) Compatible with FORTRAN 77

 Portability ___________

 The problem of transporting OVERDRIVE programs to other installations

 can be addressed in two ways.

 The output from a translation of an OVERDRIVE source program is

 FORTRAN 66-compatible and may be transported to other installations.

 OVERDRIVE may be directed to include source comments in its output so

 that the resulting program may be more easily read.

 OVERDRIVE is written in SPITBOL and the source is available to those

 who wish to take it to another installation.

 Definition of Terms ___________________

 The following terms are used in the statement descriptions:

 (1) ivar = unsubscripted integer variable ____

 (2) icon = integer constant ____

 (3) int = ivar | icon ___ ____ ____

 (4) iexp = an integer valued expression ____

 (5) lexp = a logical valued expression ____

 298 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 USAGE IN MTS ____________

 There are two ways in which OVERDRIVE may be used in MTS. It can be

 used either as an option of *FTN or run as a stand-alone program. With

 *FTN it is run with

 $RUN *FTN SCARDS=source SPRINT=listing ... PAR=OVER[=overopt] _______

 where the MTS logical I/O unit assignments are the same as for a

 standard FORTRAN compilation. The OVER option in the PAR field

 indicates that OVERDRIVE preprocessing should be performed. Options

 (overopt) to be passed to OVERDRIVE may be specified in one of two _______

 forms. If there is just one option, it may be simply specified after an

 ’=’ following the OVER keyword; e.g., PAR=NOLIST,OVER=NOLIST (which

 suppresses both the FORTRAN and OVERDRIVE listings). If more than one

 option is to be specified, they must be in a comma-separated, parenthe-

 sized list; e.g., PAR=OVER=(COM,NOINDENT),OPT=2. Except for the options

 passed to OVERDRIVE in this manner, the remainder of the PAR field is

 ignored by OVERDRIVE.

 As a stand-alone program, OVERDRIVE is run with $RUN *OVERDRIVE with

 the following MTS logical I/O unit assignments:

 SCARDS - OVERDRIVE source

 SPRINT - Listing output

 2 - Target module output in standard FORTRAN (to avoid con-

 flicts with *FTN use of SPUNCH)

 SERCOM - Error messages if running interactively

 PAR=SIZE=30 - Allocates SPITBOL work space

 SOURCE PROGRAM FORMAT _____________________

 Input records must be in the following format:

 Columns

 1 * or C indicating a comment

 1-5 Statement number

 6 Continuation flag

 7... Statement

 There is no limit on statement length.

 No sequence-ID field is accepted.

 Note that this corresponds to the *FTN option FORMAT=LONG. However, the

 FORMAT option in the PAR field passed to *FTN is ignored by OVERDRIVE. _______

 Any specification of the FORMAT option will not affect the way OVERDRIVE

 processes input records.

 OVERDRIVE 299

 MTS 6: FORTRAN in MTS

 October 1983

 Additionally, no comment line may separate the portions of a

 continued line.

 More than one module may be present in the OVERDRIVE input stream.

 OVERDRIVE ignores the source program indentation and only looks at

 the statements to determine the scope of statements. Although the

 source program indentation is ignored, it may be easier to work with if

 indented properly.

 SOURCE LISTING ______________

 OVERDRIVE produces a listing of the source program. This listing

 contains the FORTRAN Internal Statement Number (ISN), any generated

 label, and the MTS line number of each source line. The source lines

 are both indented and bracketed in the listing to show the scope of

 OVERDRIVE structures.

 Internal Statement Numbers __________________________

 OVERDRIVE prints the FORTRAN Internal Statement Number (ISN) along

 the left side of the listing. This Internal Statement Number will match

 either the FORTRAN G or FORTRAN H statement numbering scheme when

 running OVERDRIVE from *FTN. When running OVERDRIVE separately to

 produce output for FORTRAN H, it is necessary to specify the COMPILER=

 FTNH option (see the section "OPTION Statement").

 File Line Numbers _________________

 The MTS file line number is printed on the left-hand side of the

 source listing.

 Generated Labels ________________

 Generated labels are printed along the left-hand side of the source

 listing on the line which caused them to be defined. If there is more

 than one such label defined, the first will be printed and a ’+’ will be

 added to indicate that there were one or more unprinted generated

 labels. These labels are printed for those users who wish to use SDS

 with an OVERDRIVE program. One must be somewhat cautious in the use of

 these labels. If more than one target FORTRAN statement is generated by

 300 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 an OVERDRIVE statement, the generated label which is printed may not

 necessarily be on the first of these. A cursory familiarity with the

 type of code generated by OVERDRIVE will suffice to make use of these

 labels with SDS.

 Source Indentation __________________

 Quick recognition of the structure of the source program is essential

 to good programming. Each source line is indented to its proper

 structure level with a line of periods connecting the beginning and end

 of each structure. This scope bracket of periods may be changed by

 means of the INDENT keyword of the OPTION statement. Comments beginning

 with a ’C’ or ’*’ in column 1 are not indented when the automatic

 indentation option is in use, however, the other forms of comments may

 be used to give uninterrupted scope brackets and indentation.

 Continuation Lines __________________

 If the automatic indentation option is active (the default), the

 first line of the statement will be indented by the current indentation

 amount and each continuation line will be indented by the current

 indentation amount plus the amount that each was indented past the

 beginning of the first line of the statement.

 Listing of FORMATs __________________

 For several reasons formats should not contain quoted fields which

 cross input line boundaries. In a system such as MTS, which truncates

 trailing blanks, it is impossible to see in the listing how many blanks

 should be in the quoted field at the point of continuation. In

 OVERDRIVE the automatic indentation feature may in this case make it

 appear in the listing as though extra characters are inserted at that

 point in the format, although the target module will contain the

 original input number of characters.

 TARGET MODULE _____________

 When run from *FTN, OVERDRIVE always generates the target module in

 the temporary file -OVEROBJ after first emptying it. See the section

 "MTS Usage" for a description of the stand-alone version.

 OVERDRIVE 301

 MTS 6: FORTRAN in MTS

 October 1983

 The target module file line numbers are taken, as nearly as possible,

 from the source file line numbers. These numbers may differ slightly in

 the area of continued and inserted statements.

 Comments in the source program are carried over to the target program

 only if the COM option (see OPTION statement) has been selected.

 Indentation in the target code matches that of the source code.

 Created Labels ______________

 In translating OVERDRIVE statements into standard FORTRAN it is

 necessary to create statement labels. One of two methods may be

 selected for the creation of these labels.

 (1) The default method (OPTION LABEL=LINE) generates each statement _______

 label starting with a prefix digit (default ’9’) followed by a

 suffix which is based on the source file line number. For

 example, a label generated at line 10 would be 910. This suffix

 is either the integer portion of the source file line number or,

 if that has already been generated or is nonpositive, one higher

 than the last generated label. This allows ranges of fractional

 line numbers as well as concatenations of files. This scheme

 has the dual advantages of relating the labels to source file

 line numbers for mnemonic convenience and preventing recompila-

 tions with minor source changes from changing all generated

 labels. Therefore, it is usually easier to use this method when

 debugging with SDS or *IF.

 If the line number is greater than 89999, then OVERDRIVE will

 switch to the alternate method of label generation, counting

 down from 99999 for all remaining created labels.

 Note that these labels will use the file line number where they

 are first referenced, not necessarily where they are defined in

 the label field. For example, the IF statement would create a

 label based on the current source line number but the label

 would not be defined until the next corresponding ELSEIF, ELSE,

 or ENDIF statement.

 The label prefix may be changed (default ’9’) by means of the

 OPTION LPFX=x statement where "x" is a digit in the range 1 to

 9.

 (2) The alternate method generates labels from 99999 in decreasing _________

 sequence. The default initial value of 99999 may be changed

 with the OPTION LABEL=icon statement where the initial value to

 count down from is specified by icon. ____

 Using this alternate method of label generation, the label

 counter is not reset between compilations. This avoids con-

 flicting labels when debugging with SDS.

 302 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 Regardless of which method is used, it is inadvisable for the

 user to define labels beginning with a ’9’. Any source program

 definition of a label which is identical to one generated by __________

 OVERDRIVE will result in a FORTRAN error. Any source program

 usage, without definition, of a label generated by OVERDRIVE may _____

 not result in a error message from either OVERDRIVE or FORTRAN,

 but will very likely cause an error in execution.

 Created Integer Variables _________________________

 Integer variables are created by using the prefix ’I’ followed by a

 number which is initially 99999 and is counted down by one for each new

 variable. Because these variable names are created at the time they are

 needed and since OVERDRIVE makes only one pass over the source program,

 no declarations can be made at the beginning of the program. Therefore

 the implicit type of variables beginning with ’I’ must not be changed.

 Target Module Code __________________

 Prototypes of the code generated by OVERDRIVE are given in the

 descriptions of many of the OVERDRIVE statements. The precise code

 generated may be slightly different in form but will perform the

 equivalent action.

 CONTROL STRUCTURES __________________

 Four types of control structures are supplied in OVERDRIVE:

 (1) An IF structure for selecting groups of statements depending on

 one or more logical expressions.

 (2) A CASE structure which allows one of many sections of statements

 to be selected by number.

 (3) A LOOP structure which provides a means of repeating sections of

 code.

 (4) A PROCEDURE structure which allows use of a common section of

 code in several places.

 IF...ENDIF __________

 Augmenting the FORTRAN logical and arithmetic IF statements are the

 block IF structures. These IF structures are compatible with those of

 OVERDRIVE 303

 MTS 6: FORTRAN in MTS

 October 1983

 FORTRAN 77 with the exception that FORTRAN 77 does not allow GOTOs into

 the scope of an IF structure. OVERDRIVE has no such restriction.

 Indeed, in order to allow internal procedures, it is necessary to allow

 such GOTOs.

 The simple IF structure is used when the execution of a section of

 code depends on the value of a logical expression.

 IF (lexp) THEN ____

 statements to be executed if lexp is true. ____

 ENDIF

 This is translated into

 IF (.NOT.(lexp)) GO TO xxxxx ____

 statements to be executed if lexp is true. ____

 xxxxx CONTINUE

 Example:

 IF (I.LT.N) THEN

 A(I) = VAL

 I = I+1

 ENDIF

 IF...ELSE...ENDIF _________________

 The IF...ELSE...ENDIF structure is used when one of two sections of

 code are to be selected based on the value of one condition. The ELSE

 statement may not be labeled.

 IF (lexp) THEN ____

 statements to be executed if lexp is true ____

 ELSE

 statements to be executed if lexp is false ____

 ENDIF

 This is translated into:

 IF (.NOT.(lexp)) GO TO xxxxx ____

 statements to be executed if lexp is true ____

 GO TO yyyyy

 xxxxx CONTINUE

 statements to be executed if lexp is false ____

 yyyyy CONTINUE

 Example:

 IF (LEVEL.GT.1) THEN

 REFUTE = MAXVAL-REF(LEVEL)

 DOREF = .TRUE.

 ELSE

 304 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 REFUTE = -1

 DOREF = .FALSE.

 ENDIF

 IF...ELSEIF...ENDIF ___________________

 An IF...ELSEIF...ENDIF structure may be used when selecting among

 many parallel sections of code with many parallel conditions. This

 language construction can be equivalently coded with IF statements

 within the ELSE clauses of the preceding IF. However, such testing of

 parallel conditions is a common program flow structure that should be

 expressed in an easily seen manner as with the IF...ELSEIF...ENDIF

 construction.

 The conditions are tested sequentially until one is found to be true.

 The ELSEIF statement may not be labeled. An optional ELSE clause may

 be used to specify statements to be executed if none of the preceding

 conditions were true.

 IF (lexp1) THEN ____

 statements to be executed if lexp1 is true ____

 ELSEIF (lexp2) THEN ____

 statements to be executed if lexp1 is false ____

 and lexp2 is true ____

 ELSEIF (lexp3) THEN ____

 statements to be executed if lexp1 and lexp2 ____ ____

 are false and lexp3 is true ____

 ...

 as many ELSEIF statements as necessary

 ...

 [ELSE]

 statements to be executed if none of the

 preceding lexps was true ____

 ENDIF

 This translates into the following:

 IF (.NOT.(lexp1)) GO TO xxxxx ____

 statements to be executed if lexp1 is true ____

 GO TO aaaaa

 xxxxx IF (.NOT.(lexp2)) GO TO yyyyy ____

 statements to be executed if lexp1 is false ____

 and lexp2 is true ____

 GO TO aaaaa

 yyyyy IF (.NOT.(lexp)) GO TO zzzzz ____

 statements to be executed if lexp1 and lexp2 ____ ____

 are false and lexp3 is true ____

 GO TO aaaaa

 ...

 [qqqqq CONTINUE]

 statements to be executed if none of the

 OVERDRIVE 305

 MTS 6: FORTRAN in MTS

 October 1983

 preceding lexps is true ____

 aaaaa CONTINUE

 Example:

 IF (STMTYP.EQ.COMMNT) THEN

 CALL COPSTM

 ELSEIF (STMTYP.EQ.CONTINU) THEN

 CALL IGNORE

 ELSE

 CALL REGSTM

 ENDIF

 DOCASE...ENDCASE ________________

 The DOCASE statement permits the selection of one of a number of

 groups of statements depending upon the value of an integer expression

 given in the DOCASE statement. Control passes to the particular CASE

 statement specifying that control value and then, unless otherwise

 exited, continues execution following the ENDCASE statement. If the

 control value is not specified in any CASE statement, execution proceeds

 with the ELSECASE clause. If there is no ELSECASE, execution continues

 past the ENDCASE. Because no error will be reported if the control

 value is not covered by any case and because this situation is often an

 error, it is usually a good idea to provide an ELSECASE clause to give

 some meaningful error message.

 Unlike a series of ELSEIF constructions, the DOCASE statement does

 not test for each case sequentially, but instead uses a computed GOTO to

 go directly to the correct case.

 Do not use the DOCASE statement when the case values are sparsely

 spread over a large region. Because one label is put onto a computed

 GOTO for each possible control value, an impractically large statement

 would be generated in this situation.

 The DOCASE construction must always begin with a DOCASE statement.

 Next are one or more CASE statements, each preceding a group of

 statements to be executed if the control value is specified on that

 CASE. The ELSECASE statement is next, if present, and finally, the

 ENDCASE statement, terminating the DOCASE...ENDCASE structure.

 No label may occur on either the CASE or ELSECASE statements.

 DOCASE (iexp) ____

 CASE (icon,...) ____

 statements to be executed if iexp ____

 equals any of the icons ____

 CASE (icon,...) ____

 statements to be executed if iexp ____

 306 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 equals any of the icons ____

 ...

 as many cases as required

 ...

 [ELSECASE]

 If present, the statements following are executed if

 (a) iexp < min(icons) or ____ ____

 (b) iexp > max(icons) or ____ ____

 (c) iexp = unspecified icon. ____ ____

 If there is no ELSECASE statement, execution will proceed

 following the ENDCASE statement under these conditions.

 ENDCASE

 Execution of the DOCASE causes a branch to prolog code which is

 generated at the ELSECASE statement. If there is no ELSECASE statement,

 the prolog code is generated at the ENDCASE statement. After checking

 the range of the DOCASE control value, the appropriate case is branched

 to.

 Example:

 DOCASE (SYS)

 CASE (1)

 *** SYSTEM IS VMOS ***

 EVTIME = .140

 INPUT = 1

 OUTPUT = 2

 CASE (2,5)

 *** SYSTEM IS MTS ***

 EVTIME = .0085

 INPUT = 5

 OUTPUT = 6

 CALL DEFPRT(0)

 ELSECASE

 *** UNKNOWN SYSTEM ***

 EVTIME = 0.

 INPUT = 5

 OUTPUT = 6

 ENDCASE

 Generated code from above example

 GO TO 91

 92 EVTIME = .140

 INPUT = 1

 OUTPUT = 2

 GO TO 97

 98 EVTIME = .0085

 INPUT = 5

 OUTPUT = 6

 CALL DEFPRT(0)

 GO TO 97

 91 IF(SYS.GE.1.AND.SYS.LE.5)GOTO(92,98,913,913,98),SYS

 OVERDRIVE 307

 MTS 6: FORTRAN in MTS

 October 1983

 913 EVTIME = 0.

 INPUT = 5

 OUTPUT = 6

 97 CONTINUE

 Loop Structures _______________

 The only looping statement in FORTRAN 66, as well as FORTRAN 77, is

 the iterated DO, which unfortunately requires a statement label to mark

 its termination. OVERDRIVE offers a similar iteration statement in a

 labelless form (LOOP), as well as means of testing conditions at the

 beginning and/or end of the loop and exiting while setting a flag.

 All looping is performed using the LOOP...ENDLOOP structure. Clauses

 may be specified on the LOOP and ENDLOOP statements which control the

 continuation or termination of the execution of the loop.

 Extended ranges of DO loops (i.e., branches out-of and then back into

 an active DO loop) are prohibited in FORTRAN 77 and have limitations in

 FORTRAN 66. OVERDRIVE makes no attempt to enforce this restriction and,

 indeed, would not do so because it would then not be possible to make

 internal procedure calls. The target code generated for loops by

 OVERDRIVE puts no restriction on actions performed in internal proce-

 dures called from within an OVERDRIVE loop; that is, the extended range

 restriction of FORTRAN 66 does not apply.

 The legal clauses are:

 LOOP [for] [while] [until] [exit]

 ENDLOOP [REPEAT [while] [until]]

 Clauses specified on the LOOP statement are tested at the beginning

 of each iteration of the loop. Clauses on the ENDLOOP statement are

 tested at the end of each loop iteration. If more than one LOOP or

 ENDLOOP clause is given, the looping continues only if all clauses would ___

 continue execution.

 LOOP ____

 The unembellished LOOP statement makes no tests at the top of the

 loop. It is possible to specify conditions on the ENDLOOP to be tested

 at the bottom of the loop. Without termination conditions on either the

 LOOP or ENDLOOP statements, infinite looping must be avoided by a

 statement within the loop which branches out, such as: EXITLOOP, GOTO,

 RETURN, or STOP. Of these, EXITLOOP would be preferable from a

 structured programming point of view.

 Example:

 308 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 LOOP

 *** COUNT TO INFINITY ***

 I = I + 1

 ENDLOOP

 LOOP FOR(iteration) ___________________

 The LOOP...ENDLOOP structure with a for-clause is a labelless

 replacement for the FORTRAN DO statement. It removes several irritating

 restrictions of the FORTRAN 66 DO loop (e.g., expressions are allowed).

 It is in general conformance with execution of the FORTRAN 77 DO loop,

 which differs in several respects from the FORTRAN 66 DO loop.

 Specifically, the FORTRAN 77 loop termination test is made before the ______

 first iteration is made and the iteration variable is defined upon

 termination. Unlike FORTRAN 77, OVERDRIVE allows only integer iteration

 values.

 LOOP FOR (ivar=iexp1,iexp2[,iexp3]) ____ ____ ____ ____

 statements in the body of the loop

 ENDLOOP

 where iexp1 is the initial value, iexp2 is the maximum value, and iexp3 ____ ____ ____

 is the increment (default 1).

 The exact translation depends on the nature of iexp2 and iexp3. ____ ____

 Changes to either of these values during the execution of the loop is

 defined in FORTRAN 77 to have no effect on the number of times the loop __

 is executed. To conform with this, if either iexp2 or iexp3 references ____ ____

 a variable, copies of the initial values of these expressions are made

 and then used in their places in the following prototype.

 Regardless of their order in the source statement, the FOR and EXIT

 clauses are processed before any others as these are the only LOOP

 clauses which require initialization. It is because of this initializa-

 tion that the FOR and EXIT clauses are banned from the ENDLOOP.

 ivar = iexp1 ____ ____

 xxxxx IF (ivar.gt.iexp2) GO TO yyyyy ____ ____

 statements in the body of the loop

 ivar = ivar + iexp3 ____ ____ ____

 GOTO xxxxx

 yyyyy CONTINUE

 LOOP WHILE(lexp) ________________

 The LOOP WHILE (lexp) statement is for specifying a loop which is ____

 continued as long as the condition lexp is true at the beginning of each ____

 iteration.

 OVERDRIVE 309

 MTS 6: FORTRAN in MTS

 October 1983

 LOOP WHILE (lexp) ____

 statements to be executed within loop

 ENDLOOP

 is translated to:

 xxxxx IF(.NOT.(lexp)) GO TO yyyyy ____

 statements to be executed within loop

 GOTO xxxxx

 yyyyy CONTINUE

 LOOP UNTIL(lexp) ________________

 The LOOP UNTIL (lexp) statement is for specifying a loop which is ____

 terminated at the beginning of any iteration in which the condition lexp ____

 is true.

 LOOP UNTIL (lexp) ____

 statements to be executed within loop

 ENDLOOP

 is translated to:

 xxxxx IF (lexp) GO TO yyyyy ____

 statements to be executed within loop

 GOTO xxxxx

 yyyyy CONTINUE

 LOOP EXIT(signal,...) _____________________

 The EXIT clause on the LOOP statement serves two functions. First,

 it provides a means of identifying the loop. This identification can

 then be used by the EXITLOOP or NEXTLOOP statements to identify which of

 several imbedded loops the action applies to. Second, it provides a

 means of recording a special condition which caused the loop

 termination.

 A list of signals is specified in the LOOP EXIT clause statement. ______

 Each signal may be either a logical variable or a character string ______

 (e.g., ’MOOD INDIGO’).

 Either form of signal (logical variable or character string) may be ______

 used to identify a loop for the EXITLOOP or NEXTLOOP statements. A

 logical variable can additionally be used to record that a specific

 condition caused a loop to be exited.

 Each logical variable specified in the EXIT clause is set to false at

 the beginning of the loop. The execution of an EXITLOOP statement

 specifying one of these logical variables will cause the variable to be

 set to true and the loop to be exited. The NEXTLOOP statement does not

 alter the value of any of these logical variables.

 310 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 Logical exit variables are not tested as one of the conditions for ___

 proceeding with the next LOOP iteration. They are set false at the

 beginning of the loop and may be set true by the EXITLOOP statement, but

 never tested as part of the LOOP code.

 It is the responsibility of the user to declare exit variables to be

 of type LOGICAL.

 Example: Typical Table Searching

 LOOP FOR(I=1,N) EXIT(FOUND)

 *** SEARCH UNTIL A MATCH IS FOUND ***

 IF (T(I).EQ.ITEM) THEN

 EXITLOOP (FOUND)

 ENDIF

 ENDLOOP

 IF (.NOT.FOUND) THEN

 *** ADD TO END OF TABLE ***

 T(I) = ITEM

 N = N + 1

 ENDIF

 Example:

 LOOP FOR (I=1,N) EXIT (’QQSV’)

 LOOP FOR (J=1,M)

 ...

 IF (A(I,J).EQ.-1) THEN

 EXITLOOP (’QQSV’)

 ENDIF

 ...

 ENDLOOP

 ENDLOOP

 ENDLOOP [REPEAT [while] [until]] ________________________________

 An ENDLOOP statement must be supplied to match each LOOP statement.

 The ENDLOOP statement may be written without any termination conditions,

 in which case it will generate a branch back to the top of the loop.

 A termination condition may be specified with either a WHILE or UNTIL

 clause on the ENDLOOP. In this case, the word REPEAT must be inserted

 after the ENDLOOP keyword and before these clauses.

 ENDLOOP REPEAT WHILE(lexp) tests the condition lexp at the end of ____ ____

 each iteration and continues with the next iteration of the loop only if _________

 the condition lexp is true. ____

 ENDLOOP REPEAT UNTIL(lexp) tests the condition lexp at the end of ____

 each iteration and terminates execution of the loop only if the __________

 condition lexp is true. ____

 OVERDRIVE 311

 MTS 6: FORTRAN in MTS

 October 1983

 Both WHILE and UNTIL clauses may be specified on the ENDLOOP

 statement. The loop will be continued only if the WHILE lexp is true ____

 and the UNTIL lexp is false. ____

 The REPEAT keyword is required to prevent misinterpreting ENDLOOP

 WHILE(lexp) as meaning terminate the loop when lexp is true. ENDLOOP ____ ____

 REPEAT WHILE(lexp) does not suffer from such a problem in ____

 interpretation.

 EXITLOOP [(signal)] ___________________

 The EXITLOOP statement causes execution to continue with the state-

 ment immediately following the end of an enclosing LOOP. The signal, if ______

 present, must be specified in the EXIT clause of an enclosing LOOP.

 If no signal is specified on the EXITLOOP statement, the innermost ______

 enclosing LOOP will be exited.

 If the signal is a logical variable, that variable will be set to ______

 true and the enclosing loop which specified that variable in its EXIT

 clause will be exited.

 If the signal is a character string, execution will continue after ______

 the ENDLOOP of the enclosing loop which specifies the signal in its EXIT ______

 clause.

 Example:

 LOOP FOR(I=1,N) EXIT(X)

 LOOP FOR(J=1,M)

 ...

 EXITLOOP (X)

 ...

 ENDLOOP

 ENDLOOP

 If the EXITLOOP statement in this example is executed, the outermost

 loop will be exited with X set to true. If the EXITLOOP statement is

 never executed and the loops are terminated by exhausting the itera-

 tions, the value of X will be false.

 NEXTLOOP [(signal)] ___________________

 The NEXTLOOP statement causes execution to continue with the next

 iteration of the enclosing loop. All LOOP and ENDLOOP conditions will

 be tested before the next iteration is performed. The signal, if ______

 present, must be specified in the EXIT clause of an enclosing LOOP.

 If no signal is specified on the NEXTLOOP statement, the next ______

 iteration of the innermost enclosing LOOP will be started.

 312 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 The signal may be either a logical variable or a character string. ______

 The signal is used simply to identify the loop and, if a variable, will ______

 not be changed.

 Example:

 LOOP FOR(I=1,N) EXIT(’NEXTI’)

 LOOP FOR(J=1,M)

 ...

 NEXTLOOP (’NEXTI’)

 ...

 ENDLOOP

 ENDLOOP

 If the NEXTLOOP statement in this example is executed, the next

 iteration of the outermost loop will be started without waiting for the

 inner loop to be terminated by going through all values of J.

 Internal Procedures ___________________

 This facility provides for procedure definition and linkage within a

 FORTRAN main or subprogram.

 Definition of procedures may occur anywhere an executable statement

 may appear except within an OVERDRIVE structure. Placement of a

 procedure definition in the execution flow path is inadvisable because

 it will make reading the program difficult. However, since a branch

 will be generated around the procedure definition in this case,

 execution will not be disrupted by falling into a procedure body.

 Parameters are not allowed on an internal procedure. However, since

 all variables are global to a procedure, parameters may be passed by

 assigning them to variables. An internal procedure also produces no

 result as a function would. The results of a procedure must be passed

 back in variables.

 Invocation (calling) of a procedure may be made either explicitly

 with the INVOKE statement or implicitly by simply specifying the

 procedure name if that name contains underscore characters.

 Recursive procedure invocation is not allowed and, if attempted, may

 result in an infinite execution loop. There is no limit on procedure

 calling depth.

 Listing of each procedure is set off from the preceding and following

 text with a few blank lines and a dashed line. A procedure cross-

 reference is produced at the end of the listing.

 OVERDRIVE 313

 MTS 6: FORTRAN in MTS

 October 1983

 PROCEDURE...ENDPROCEDURE ________________________

 The body of an internal procedure definition is enclosed within a

 PROCEDURE...ENDPROCEDURE structure.

 PROCEDURE pname _____

 the body of the procedure

 ENDPROCEDURE

 The procedure name pname must begin with an alphabetic character and may ____

 be continued with alphabetics, digits, or underscores to a maximum

 length of 32 characters.

 PROC is a valid abbreviation for PROCEDURE, ENDPROC for ENDPROCEDURE,

 and EXITPROC for EXITPROCEDURE.

 Execution of the ENDPROCEDURE statement causes execution to return to

 the point of the procedure call. The EXITPROCEDURE statement may be

 used to exit a procedure before reaching the ENDPROCEDURE statement.

 The generated FORTRAN code is:

 xxxxx CONTINUE

 the body of the procedure

 GO TO zzzzz goes to the epilog at program end

 ...

 zzzzz GO TO Ixxxxx,(list of return labels) returns to caller

 Example:

 PROCEDURE SUM_ARRAY

 *** COMPUTE OF ALL ELEMENTS IN THE ARRAY A ***

 SUM = 0

 LOOP FOR (I=1,N)

 SUM = SUM + A(I)

 ENDLOOP

 ENDPROCEDURE

 Calling an Internal Procedure _____________________________

 There are two methods of calling an internal procedure. It is

 possible to write an explicit call using the INVOKE statement or to

 write an implicit call by simply writing the procedure name. The

 implicit form of the call is valid only if the procedure name contains

 one or more underscore characters.

 Form of an explicit call:

 INVOKE pname _____

 Form of an implicit call:

 314 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 pname _____

 Both explicit and implicit calls translate into:

 ASSIGN yyyyy TO Izzzzz

 GO TO xxxxx go to the procedure

 yyyyy CONTINUE return is to here

 Example:

 INVOKE SUM_ARRAY or

 SUM_ARRAY

 EXITPROCEDURE statement _______________________

 The EXITPROCEDURE statement provides a means of exiting an internal

 procedure without executing the ENDPROCEDURE statement. EXITPROC is a

 valid abbreviation for EXITPROCEDURE.

 Example:

 PROCEDURE A

 LOOP WHILE (X.NE.Y)

 ...

 IF (X.EQ.0) THEN

 EXITPROCEDURE

 ENDIF

 ENDLOOP

 ...

 ENDPROCEDURE

 FORMATS _______

 When labelless control statements for the common flow patterns are

 used, statement labels become important in signaling the presence of

 some unusual flow. Since FORMAT labels are often distracting when

 trying to follow program flow, OVERDRIVE has implemented the FMT=

 feature of FORTRAN 77. OVERDRIVE extends the facility for multiple

 occurrences of the same format in close proximity.

 An additional facility, similar to FMT=, for specifying formats

 imbedded in READ and WRITE statements is also provided.

 OVERDRIVE 315

 MTS 6: FORTRAN in MTS

 October 1983

 FMT= Format Specification _________________________

 In OVERDRIVE, as in FORTRAN 77, formats may be imbedded within READ

 and WRITE statements. This is done by placing, in the position that the

 format number would normally occupy, FMT= followed by the format as a

 quoted character constant. Quoted character constants are enclosed in

 single quotes and all such quotes occurring in the character constant

 must be represented by a pair of quotes. OVERDRIVE requires these

 formats to contain no counted Hollerith (H) fields.

 Example:

 WRITE (OUTPUT,22) I

 22 FORMAT (’ *** ’,I3,’ BLOCKS’)

 could be equivalently written as

 WRITE (OUTPUT,FMT=’’’ *** ’’,I3,’’ BLOCKS’’’) I

 Imbedded Formats ________________

 In OVERDRIVE formats may be imbedded in the READ and WRITE statements

 at the point where the FORMAT number would otherwise occur. The format

 must be enclosed in parentheses and may not contain any counted H

 fields.

 Example:

 WRITE (OUTPUT,22) I

 22 FORMAT (’ *** ’,I3,’ BLOCKS’)

 could be equivalently written as

 WRITE (OUTPUT,(’ *** ’,I3,’ BLOCKS’)) I

 Implied Formats _______________

 If a format is to be used more than once in a local section of code,

 it is possible to write the format only one time and have that format

 use implied in subsequent READ and WRITE statements. In this way, the

 confusing appearance of a label in the middle of executable statements

 is avoided. It also obviates the practice of putting all of the formats

 at the end or beginning of a program to get their labels out of the

 execution path. An implied format is defined in one of three ways:

 316 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 (1) As the format specified by FMT= in a READ or WRITE statement.

 (2) As an imbedded format in a READ or WRITE statement.

 (3) As a FORMAT statement appearing without any statement number.

 The definition of an implied format remains active until either

 redefined by another format, or until it expires after 10 statements.

 Restriction of implied format definitions to the locality of the last 10

 statements prevents both inadvertent errors and difficult-to-read

 programs.

 Once an implied format is defined, it will be used in any READ or

 WRITE statement in which a necessary format or format number has been

 omitted.

 Examples:

 WRITE (OUTPUT,22) I

 WRITE (PRINTR,22) I

 22 FORMAT (’ ***’,I3,’ BLOCKS ALLOCATED’)

 could be written in any of the following ways:

 WRITE (OUTPUT,FMT=’’’ ***’’,I3,’’ BLOCKS ALLOCATED’’)’ I

 WRITE (PRINTR,) I

 or

 WRITE (OUTPUT,(’ ***’,I3,’ BLOCKS ALLOCATED’)) I

 WRITE (PRINTR,) I

 or

 FORMAT (’ ***’,I3,’ BLOCKS ALLOCATED’)

 WRITE (OUTPUT,) I

 WRITE (PRINTR,) I

 PARAMETER STATEMENT ___________________

 The PARAMETER statement is used to give a constant a symbolic name.

 The form is:

 PARAMETER (p=c [,p=c]...) _ _ _ _

 where p is a symbolic name, one to six characters beginning with an _

 alphabetic and continuing with alphanumerics.

 c is a constant. _

 Each p is the symbolic name associated with a constant c. Each _ _

 subsequent occurrence of p in the source program text will be replaced _

 by the constant c. The listing will be produced showing the symbolic _

 name.

 OVERDRIVE 317

 MTS 6: FORTRAN in MTS

 October 1983

 Each c may be one of the following constants: integer, single- or _

 double-precision real, complex, logical, or character. Of these con-

 stants only character constants may contain imbedded blanks. Character

 constants are enclosed within single-quote characters and may not be

 written in the counted Hollerith form.

 As in FORTRAN 77, parameter substitution will not take place in

 formats.

 The OVERDRIVE PARAMETER statement is very similar to that in FORTRAN

 77. There are, however, several differences. OVERDRIVE restricts the

 right-hand side to be a constant (FORTRAN 77 allows a constant

 expression). FORTRAN 77 requires that the type of the parameter name be

 agreeable with the type of the constant expression, either by explicitly

 declaring the name or by implicit default. OVERDRIVE makes no type-

 compatibility check.

 It is the intention that, when a FORTRAN 77 compiler becomes

 available, OVERDRIVE will cease to process the PARAMETER statement and

 leave that job to the FORTRAN compiler. This means that the user should

 adhere to the FORTRAN 77 rules regarding type when using the PARAMETER

 statement.

 Warning: OVERDRIVE, unlike FORTRAN 77, does the parameter substitu-

 tion before parsing each statement. This means that parameter names

 must not be the same as any FORTRAN or OVERDRIVE keywords. Since blank

 elimination is not done by OVERDRIVE, blanks appearing in the middle of

 variable names or keywords may cause a false parameter match.

 The PARAMETER statement must not have a label.

 Example:

 PARAMETER (BSIZE=250)

 INTEGER B(BSIZE)

 would generate

 INTEGER B(250)

 COMMENT STATEMENTS __________________

 In addition to the regular FORTRAN comments two additional types of

 comment statements have been provided in OVERDRIVE. These additional

 comments have three advantages: (1) They do not obscure program flow by

 cluttering the label field, (2) they do not interrupt the scope brackets

 which are printed out when using the automatic indentation feature, and

 (3) they are indented to the current indentation level.

 318 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 The COM and NOCOM options (see the OPTION statement) are used to

 control the passage of source program comments into the FORTRAN target

 program. The default value is NOCOM which inhibits the passage of any

 comments into the target program. If COM is specified, comments will be

 passed on into the target program, replacing the first character with a

 ’C’ if necessary. Comment lines may never be continued.

 FORTRAN Comment Lines _____________________

 Any line beginning with either a ’C’ or an ’*’ (FORTRAN 77 allows an

 ’*’) in column 1 is considered to be a FORTRAN comment and is listed by

 OVERDRIVE without indentation or scope brackets.

 Blank lines are also considered to be comments in FORTRAN 77 and are _____ _____

 treated as such by OVERDRIVE. Unlike the other FORTRAN comments, blank

 lines do not interrupt the listing of scope brackets.

 OVERDRIVE Comment Lines _______________________

 Any statement that begins with an asterisk (’*’) in column 7 or

 beyond is treated as a comment by OVERDRIVE. The advantage of these

 comment lines over those which begin with a ’C’ or ’*’ in column 1 is

 that these comments are indented to the current structure nesting depth

 and they do not interrupt the scope brackets. Use of these comments

 will, in general, produce a more readable listing.

 Note that these comments must begin in column 7 or beyond. An ’*’ in

 columns 2 through 5 will be treated as an error.

 OVERDRIVE Appended Comments ___________________________

 A comment may be appended to the end of any FORTRAN or OVERDRIVE

 statement by separating it from the statement with the two characters

 ’;*’. Everything following the ’;*’ will be treated as a comment.

 LISTING CONTROL STATEMENTS __________________________

 The spirit of easily readable programs is well served with some means

 of formatting the program source listing. To that end, the following

 statements are interpreted by OVERDRIVE. None of these generates any

 executable code.

 OVERDRIVE 319

 MTS 6: FORTRAN in MTS

 October 1983

 None of the listing control statements may be labeled.

 EJECT [icon] ____________

 The EJECT statement without a parameter causes the listing to

 continue at the top of the next page, if not already at the top of a

 page. The current title and subtitle, if any, will be printed at the

 top. The occurrence of a new subprogram or BLOCK DATA also causes the

 EJECT action.

 When EJECT has an integer parameter, the EJECT action is only taken

 if there are fewer than icon lines remaining on the current page. This ____

 is useful where there is a section of code or comments which should not

 be broken across a page boundary but which need not start a new page.

 TITLE ’text of title’ _____________________

 The TITLE statement makes the text contained between the quotes into

 the current title and then causes the same action as the EJECT

 statement.

 The subtitle text is blanked by the occurrence of a TITLE statement.

 If no TITLE is issued, the name of the subprogram will be used as the

 default title text.

 SUBTITLE ’text of subtitle’ ___________________________

 The SUBTITLE statement makes the text contained between the quotes

 into the current subtitle and then causes the same action as the EJECT

 statement. The EJECT action is not taken if the listing is already

 positioned at the top of the page as would be the case if a TITLE

 statement appeared immediately previous to this.

 SPACE icon __________

 The SPACE statement causes icon number of blank lines (or an EJECT to ____

 the top of the next page if there are fewer than icon lines remaining on ____

 the current page) to be generated at this point in the source listing.

 320 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 An all-blank line is to be preferred to a SPACE 1 because, although

 both produce a blank line in the OVERDRIVE listing, a blank line makes

 the text in the source file more readable.

 Blank lines will not be printed at the top of a page.

 LIST [option] _____________

 The LIST statement may be used to turn the source listing switch on

 or off. When the listing switch is on, a source listing will be

 printed; when off, it will not be printed. This listing switch is

 initially on. The following options may be specified:

 ON the listing switch is turned on.

 OFF the listing switch is turned off.

 PUSHON the listing switch is saved on a stack and turned on.

 PUSHOFF the listing switch is saved on a stack and turned off.

 POP the listing switch is restored from the stack.

 If the option is omitted, ON is defaulted.

 INDENT...ENDINDENT __________________

 The INDENT...ENDINDENT structure causes the enclosed statements to be

 listed one indentation level deeper than they otherwise would be. This

 structure only affects the listing and does not produce any code in the

 target module.

 OPTION STATEMENT ________________

 The OPTION keyword is followed by a comma-separated list of the

 options to be selected.

 Examples:

 OPTION COM,NOXREF

 OPTION INDENT=’| ’

 OPTION {COM|NOCOM} __________________

 Default: NOCOM

 OVERDRIVE 321

 MTS 6: FORTRAN in MTS

 October 1983

 This option controls the passage of comments into the target module.

 If COM is specified, all comments in the source module are passed into

 the target module. If NOCOM is specified, no comments are passed to the

 target module.

 Internal procedure calls and definitions will also generate comments

 in the target module if the COM option is in effect.

 OPTION COMPILER={FTNG|FTNH} ___________________________

 Default: COMPILER=FTNG

 The COMPILER option allows the user to specify which compiler the

 listing and target module should be produced for. Currently, this only

 affects the Internal Statement Number (ISN) computation which differs

 between FORTRAN G and FORTRAN H. This option is passed to OVERDRIVE by

 *FTN so it is only necessary to specify this option when running

 *OVERDRIVE alone and when producing a listing for FORTRAN H.

 OPTION {INDENT=string|NOINDENT} _______________________________

 Default: INDENT=’. ’

 The INDENT option is followed by an ’=’ and a quoted string. This

 string is taken as the string to be replicated once for each indentation

 level. Automatic indentation may be turned off with the NOINDENT

 option.

 OPTION LABEL={LINE|icon} ________________________

 Default: LABEL=LINE

 The generation of labels is based either on the line numbers of the

 source file or on an arbitrary counting scheme. The default method uses

 the source file line numbers. The alternate method counts down from a

 number specified by the user with the LABEL=icon option. Probably the ____

 only reason for using the LABEL=icon option is to insure that generated ____

 labels are concentrated in one range and will therefore not conflict

 with user labels.

 A complete explanation of the label-generation algorithm can be found

 in the section entitled "Created Labels."

 322 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 Example:

 OPTION LABEL=99999

 OPTION {LIST|NOLIST} ____________________

 Default: LIST

 This option controls all further source program listing, either

 suppressing it with NOLIST or enabling it with LIST. It performs the

 same action as the LIST {ON|OFF} statement.

 OPTION LPFX=digit _________________

 Default: LPFX=9

 This option can be used to change the prefix digit that is put at the

 beginning of labels created from source file line numbers. This may be

 done to prevent conflicts with user labels. It also may be set to

 different values for different modules so there is no label conflict

 when using SDS.

 A complete explanation of the label generation algorithm can be found

 in the section entitled "Created Labels."

 OPTION {XREF|NOXREF} ____________________

 Default: XREF

 The XREF option produces a cross-reference of internal procedure

 definitions and invocations at the end of the source program listing.

 EFFICIENCY CONSIDERATIONS _________________________

 In the interest of speed, OVERDRIVE performs a one-pass translation.

 Because of the nature of the control structures being translated, some

 minor inefficiencies may be generated in the OVERDRIVE target module.

 These inefficiencies are so minor as to be of no consequence for all but

 the most unusual program. However, they are described below.

 OVERDRIVE 323

 MTS 6: FORTRAN in MTS

 October 1983

 Extra GOTOs ___________

 An extra GOTO is always executed in a CASE statement because the

 labels in the computed GOTO are not all known until the end of the case

 structure. Similarly, an extra GOTO must be generated for the ENDPROCE-

 DURE and EXITPROCEDURE statements because the return labels for the

 assigned GOTO which does the return are not known until the end of the

 program. The NEXTLOOP statement may also generate an extra GOTO if

 there is no condition specified on the ENDLOOP statement.

 Extra Integer Temporaries _________________________

 Each time a temporary variable for internal procedure return labels

 and LOOP and DOCASE temporaries for expressions is needed, it might, in

 some instances, be possible to reuse previously created variables. It

 is, however, not possible for OVERDRIVE to economically determine when

 such reuse would be safe and a new one is created for every new

 occasion. If a user should decide by inspecting the target module that

 there are too many redundant integer temporaries, he may recode the LOOP

 and DOCASE statements substituting his own temporary variables in place

 of the integer expressions.

 RESTRICTIONS ____________

 The following restrictions apply to OVERDRIVE source programs.

 Statement Numbers _________________

 User-defined labels should not conflict with labels created by

 OVERDRIVE. See the section on "Created Labels" for a discussion of ways

 to avoid conflicts.

 Integer Variables _________________

 The source program must not contain any references to integer

 variables of the form generated by OVERDRIVE. These begin with an ’I’

 and are followed by a five-digit number starting with 99999 and counting

 down.

 Because both the FORTRAN 66 and FORTRAN 77 standards allow declara-

 tions only at the beginning of the program, OVERDRIVE is unable to

 generate declarations for these created integer variables. Instead, it

 relies on the implicit INTEGER typing of variables beginning with ’I’.

 The user should not alter, with the IMPLICIT statement, the type of

 variables beginning with ’I’.

 324 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 Significant Blanks __________________

 Unlike FORTRAN, blanks are used by OVERDRIVE to separate OVERDRIVE

 keywords from other alphabetic text, e.g., LOOP WHILE(...) must have

 one or more blanks between the words LOOP and WHILE. An exception to

 this is made for the OVERDRIVE keywords beginning with END; e.g.,

 ENDLOOP. It is permitted to separate the END from the following portion

 of the keyword by a blank, e.g., ENDIF and END IF are equivalent.

 Blanks are not permitted in logical operators, parameter names, or

 procedure names. Blanks used in the middle of variable names will cause

 erroneous processing if any blank-separated part of the variable name is

 the same as a PARAMETER name.

 Comments Intermixed with Continuation Lines ___

 Comment lines may not be intermixed with continuation lines; i.e., no

 comment line of any form may immediately precede a continuation line.

 This restriction applies to all OVERDRIVE and FORTRAN statements. If

 one were to use such a construction, the translation would result in

 either an OVERDRIVE or a FORTRAN error message.

 Reserved Words ______________

 No OVERDRIVE keyword should be used as a variable in the source

 program. Such use could result in an erroneous translation.

 Labeled OVERDRIVE Statements ____________________________

 Statement labels may not occur on the following OVERDRIVE statements:

 Listing control statements

 EJECT

 SPACE

 TITLE

 SUBTITLE

 INDENT

 ENDINDENT

 LIST

 Statements with hidden branches

 CASE

 ELSE

 ELSECASE

 ELSEIF

 OVERDRIVE 325

 MTS 6: FORTRAN in MTS

 October 1983

 Declarative statements

 OPTION

 PARAMETER

 PROCEDURE

 A label would not be very meaningful on any of the listing control

 statements or declarative statements. A label is confusing on each of

 the other statements because a GOTO is the first part of the generated

 code.

 Counted Hollerith Values ________________________

 No OVERDRIVE statement may contain counted Hollerith (H) values which

 contain either a quote or a parenthesis.

 Error Handling ______________

 Error detection by the preprocessor is not performed on those

 portions of the source text which are presumed to be FORTRAN. This can

 result in FORTRAN errors on what were intended to be OVERDRIVE

 statements. This can happen because of a minor spelling or punctuation

 error in the OVERDRIVE statement which was simply passed on to FORTRAN

 with no processing by OVERDRIVE.

 Errors in an OVERDRIVE structure may result in further errors as a

 result of structure mismatch propagation.

 When used with *FTN, any serious error detected by OVERDRIVE inhibits

 further processing by FORTRAN, although OVERDRIVE will complete the

 listing and translation of the source. Minor errors, such as an error

 in the TITLE statement, will not inhibit further FORTRAN processing.

 Error messages are printed in the listing both at the point of

 detection and at the end. If OVERDRIVE is being run in interactive

 mode, errors will also be listed on SERCOM.

 326 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 APPENDIX A: EXAMPLE OVERDRIVE PROGRAM ______________________________________

 On the following pages is a portion of an indented OVERDRIVE listing.

 It does not include the line and ISN numbers nor the page header.

 OVERDRIVE 327

 MTS 6: FORTRAN in MTS

 October 1983

 IF (LEVEL.LT.VPLYMN) THEN

 . *** DO EXCHANGE SORT ***

 . CALL ORDER2(NEWLOW,UPPER,UPPER-NEWLOW)

 . IF (NEWLOW.NE.LOWER) CALL MERGE(LOWER,NEWLOW,UPPER)

 ELSE

 . IF (LEVEL.NE.VPLYMX) THEN

 . . CALL ORDER2(NEWLOW,UPPER,UPPER-NEWLOW)

 . . IF (VALUEF(NEWLOW).GE.0 .AND. VALUEF(UPPER).LE.0) THEN

 . . . *** MIXTURE OF TURBS AND QUIETS ***

 . . . LOOP FOR (I=NEWLOW,UPPER) EXIT(P)

 *** FIND FIRST TURBULENT ***

 IF (VALUEF(I).LE.0) THEN

 *** MOVE TURB KILLER TO TOP ***

 IF (KILLER.NE.0 .AND. I.NE.UPPER) THEN

 *** TURB KILLER TO TOP OF TURBS

 LOOP FOR (J=I+1,UPPER)

 IF (NODTYP(J).EQ.2) THEN

 CALL ROTATE(I,J,1)

 EXITLOOP (P)

 ENDIF

 ENDLOOP

 ENDIF

 *** PUT TURBS BELOW FIRST QUIET ***

 IF (I+1.LT.UPPER) THEN

 CALL ROTATE(NEWLOW+1,UPPER,UPPER-I+1)

 ENDIF

 EXITLOOP

 ENDIF

 . . . ENDLOOP

 . . ENDIF

 . . IF (NEWLOW.NE.LOWER)CALL MERGE(LOWER,NEWLOW,UPPER)

 . ELSE

 . . IF ((LEVEL.NE.1 .OR. .NOT.TSTING .OR. TSTRNK.EQ.0)

 *. . .AND. (.NOT.PREORD .OR. LEVEL.NE.2)) THEN

 . . . *** RETURN ONLY THE BEST ***

 . . . CALL ORDER2(LOWER,UPPER,1)

 . . ELSE

 . . . *** FOR RANK TESTING RETURN THE ENTIRE LIST ***

 . . . CALL ORDER2(LOWER,UPPER,UPPER-LOWER)

 . . . IF (PREORD .AND. LEVEL.EQ.2) THEN

 LOOP FOR (I=LOWER,UPPER)

 IF (NODTYP(I).EQ.0) NODTYP(I) = 1

 ENDLOOP

 . . . ENDIF

 . . ENDIF

 . . IF (NODTYP(LOWER).EQ.0) NODTYP(LOWER) = 1

 . ENDIF

 ENDIF

 328 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 Target Module Generated by OVERDRIVE:

 IF (LEVEL.GE.VPLYMN) GO TO 91

 CALL ORDER2(NEWLOW,UPPER,UPPER-NEWLOW)

 IF (NEWLOW.NE.LOWER) CALL MERGE(LOWER,NEWLOW,UPPER)

 GO TO 95

 91 IF (LEVEL.EQ.VPLYMX) GO TO 96

 CALL ORDER2(NEWLOW,UPPER,UPPER-NEWLOW)

 IF (VALUEF(NEWLOW).LT.0) GO TO 98

 IF (VALUEF(UPPER).GT.0) GO TO 98

 I99998=UPPER

 I = NEWLOW

 GO TO 912

 910 I=I+(1)

 912 IF (I.GT.I99998) GO TO 911

 IF (VALUEF(I).GT.0) GO TO 913

 IF (KILLER.EQ.0) GO TO 914

 IF (I.EQ.UPPER) GO TO 914

 I99997=UPPER

 J = I+1

 GO TO 918

 916 J=J+(1)

 918 IF (J.GT.I99997) GO TO 917

 IF (NODTYP(J).NE.2) GO TO 919

 CALL ROTATE(I,J,1)

 GO TO 917

 919 GOTO 916

 917 CONTINUE

 914 IF (I+1.GE.UPPER) GO TO 924

 CALL ROTATE(NEWLOW+1,UPPER,UPPER-I+1)

 924 GO TO 911

 913 GOTO 910

 911 CONTINUE

 98 IF (NEWLOW.NE.LOWER)CALL MERGE(LOWER,NEWLOW,UPPER)

 GO TO 932

 96 IF (.NOT.((LEVEL.NE.1 .OR. .NOT.TSTING .OR. TSTRNK.EQ.0) THEN

 *)) GO TO 933

 IF (.NOT.PREORD) GO TO 934

 IF (LEVEL.EQ.2) GO TO 933

 934 CALL ORDER2(LOWER,UPPER,1)

 GO TO 937

 933 CALL ORDER2(LOWER,UPPER,UPPER-LOWER)

 IF (.NOT.PREORD) GO TO 940

 IF (LEVEL.NE.2) GO TO 940

 I99996=UPPER

 I = LOWER

 GO TO 943

 941 I=I+(1)

 943 IF (I.GT.I99996) GO TO 942

 IF (NODTYP(I).EQ.0) NODTYP(I) = 1

 GOTO 941

 942 CONTINUE

 940 CONTINUE

 OVERDRIVE 329

 MTS 6: FORTRAN in MTS

 October 1983

 937 IF (NODTYP(LOWER).EQ.0) NODTYP(LOWER) = 1

 932 CONTINUE

 95 CONTINUE

 330 OVERDRIVE

 MTS 6: FORTRAN in MTS

 October 1983

 FORTRAN I/O LIBRARY ___________________

 This section incorporates a summary of the methods of FORTRAN

 input/output under MTS, but does not attempt to provide a detailed

 description of the FORTRAN I/O statements. A more comprehensive

 description of the FORTRAN I/O statements is available in the IBM

 publications, IBM System/360 and System/370 FORTRAN IV Language, form ___

 GC28-6515, and VS FORTRAN Application Programming: Language Reference, __

 form GC26-3986.

 The FORTRAN I/O routines described in this section are automatically

 invoked when the FORTRAN program executes one of the I/O statements

 (READ, WRITE, PAUSE, ENDFILE, etc.) and they control the transfer of

 data between internal storage and I/O devices. In addition, the

 routines print error diagnostics and control error recovery when an I/O

 error occurs and when a program interrupt occurs.

 The FORTRAN I/O routines are not the only way a FORTRAN program can

 perform an I/O operation. There are several subroutines available in

 MTS which will perform I/O and do not invoke the routines described

 here. This section describes only the FORTRAN I/O routines invoked by

 the FORTRAN I/O statements or the errors described above.

 It is not advisable to combine the various methods of I/O in one

 program. If the FORTRAN I/O statements and control commands available

 through the FORTRAN I/O subroutine FTNCMD are used on a certain unit,

 then only the FORTRAN I/O facilities should be used on that unit. One

 should not mix the MTS I/O facilities with FORTRAN I/O facilities as

 unpredictable results may occur.

 The FORTRAN I/O library has certain features which are not found in

 standard versions of FORTRAN IV. The library routines were written to

 reflect a terminal-oriented environment. Therefore, error messages are

 relatively self-explanatory and error recovery is possible. The "FATAL

 FORTRAN ERROR" that used to plague many users has been replaced with

 more precise diagnostics so that the possible cause of the error can be

 determined. In conversational mode, execution of the program may be

 resumed after an error.

 A FORTRAN program must interface with the operating system for all

 communication. The operating system imposes certain restrictions on the

 FORTRAN program, thus making it sometimes difficult to transport a

 program from one installation to another. Programs written elsewhere

 may need some modification before they will execute properly in MTS (if

 the other installation also uses MTS as its operating system, the

 conversion effort should be minimal). Programs written to run under

 MTS, but intended for distribution to non-MTS installations, should be

 FORTRAN I/O Library 331

 MTS 6: FORTRAN in MTS

 October 1983

 designed so that the extended facilities provided by MTS are not

 required for proper execution.

 Some of the features described are available at other installations.

 All of the facilities of the FORTRAN I/O library are available at other

 MTS installations, though possibly in a different form. However, many

 of these facilities are not available at non-MTS installations. In

 particular, the descriptions in this section of error handling, NAME-

 LIST, and logical unit defaults are applicable only to the current

 implementation of the FORTRAN I/O library at the University of Michigan.

 The information provided in this section does not apply to WATFIV

 (the Waterloo FORTRAN compiler). For information regarding input/output

 with WATFIV, see the section "WATFIV" in this volume.

 Use of some of the direct-access features is restricted to programs

 running under MTS.

 The FORTRAN input/output statements control, in a FORTRAN program,

 the transfer of data between internal storage and an input/output

 device, such as a reader, printer, magnetic tape unit, or disk storage.

 LOGICAL UNIT ASSIGNMENTS ________________________

 Specific file or device names are not usually referenced within

 programs. Instead, reference is made to logical I/O units, which are

 represented by numbers that denote a general input and/or output

 facility. This method of referencing was developed so that individual

 programs could be independent of specific files or devices.

 FORTRAN recognizes units 0-99 as legal FORTRAN unit numbers (Data Set _______ ____ _______ _ _

 Reference Numbers). These units are normally mapped into MTS logical _ _

 I/O units 0-99. However, it is important to note that FORTRAN I/O units

 and MTS logical I/O units are not necessarily equivalent; the relation- ___

 ship may be altered by the programmer (see below).

 MTS Unit Assignments ____________________

 The relationship between an MTS logical I/O unit and a file or device

 can be established in several ways.

 For example, at the MTS command level,

 $RUN -LOAD 1=DATA 18=*SINK*

 establishes the equivalence of the MTS logical I/O units 1 and 18 to the

 file DATA and to the current output device, respectively.

 332 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 In general, MTS logical I/O unit assignments are specified on the

 $RUN command as follows:

 $RUN object munit=FDname

 where

 munit is the MTS logical I/O unit (0-99, SCARDS, SPRINT, SPUNCH, _____

 SERCOM, or GUSER).

 FDname is the name of an MTS file or device. ______

 Logical I/O unit assignments can also be made during execution of the

 FORTRAN program by a subroutine call to FTNCMD.

 CALL FTNCMD(’ASSIGN 1=DATA;’)

 will assign or reassign MTS unit 1 to the file DATA. See the subsection

 "FORTRAN Command Language Monitor" for a complete description of the

 FTNCMD calling sequence.

 If logical I/O units are not explicitly assigned on the $RUN command,

 MTS will default the following MTS logical I/O units.

 SCARDS to *SOURCE*

 SPRINT to *SINK*

 GUSER to *MSOURCE*

 SERCOM to *MSINK*

 SPUNCH to *PUNCH* (if in batch mode and if the CARDS global

 parameter has been specified on the $SIGNON

 command).

 If not explicitly assigned by one of the above methods, the FORTRAN

 I/O library will default the following MTS logical I/O units:

 Unit 5 to *SOURCE*

 Unit 6 to *SINK*.

 The other units are not assigned by default; thus an error condition

 will be produced if they are referenced but not explicitly assigned.

 The FORTRAN I/O Command Language Monitor uses SERCOM for error-

 message printing and GUSER for user-prompting.

 FORTRAN Unit Assignments ________________________

 In order to perform any I/O operations in MTS, the FORTRAN units must

 be associated with MTS logical I/O units, namely, SCARDS, SPRINT,

 SPUNCH, GUSER, SERCOM, and 0-99, or to an MTS file/device. Normally,

 the FORTRAN units 0-99 are interfaced to the MTS units 0-99, 5 to SCARDS

 if the MTS unit 5 is not assigned on the $RUN command, 6 to SPRINT if

 not assigned.

 FORTRAN I/O Library 333

 MTS 6: FORTRAN in MTS

 October 1983

 The user may alter the relationship between FORTRAN unit numbers and

 MTS logical I/O unit numbers. For example, the user can do this by

 executing in the program, prior to using the logical I/O unit, the

 following:

 CALL FTNCMD(’EQUATE funit=munit;’)

 where

 funit is a FORTRAN logical I/O unit number from 0-99. _____

 munit is the MTS logical I/O unit on which the I/O operation is _____

 to occur.

 For example, assume that a FORTRAN program used FORTRAN unit 99 for

 error messages and FORTRAN unit 56 for input. The following two

 statements are inserted in the program to map FORTRAN units 99 and 56 to

 SERCOM and MTS logical I/O unit 3, respectively.

 CALL FTNCMD(’EQUATE 99=SERCOM;’)

 CALL FTNCMD(’EQUATE 56=3;’)

 A user can associate the FORTRAN I/O units 0-99 to an MTS file or

 device directly. In this case, I/O is performed to the file or device

 without using an MTS unit.

 CALL FTNCMD(’ASSIGN 20=FYLE;’)

 FORTRAN I/O ACCESS __________________

 The READ and WRITE statements are the two basic I/O statements in a

 FORTRAN program. The READ statement is used to transfer data from an

 external device such as a card reader, disk drive, or tape drive to

 internal storage. The WRITE statement is used to transfer information

 from internal storage to an external device such as a printer, disk

 drive, or tape drive.

 The READ and WRITE statements will specify either sequential or

 direct access I/O. Sequential I/O implies that the next record in

 sequence is accessed. Direct access or indexed I/O means that the

 location of the next line to be read or written is specified in the I/O

 statement. With indexed I/O, the next record accessed is not necessari-

 ly the next record in sequence. With VS FORTRAN, direct-access I/O is

 specified in I/O statements by the REC specifier.

 The two types of I/O access, sequential and direct, determine which

 record is read and where the results are written. The format of an I/O

 statement determines how the record is read or written. For example,

 the format on a formatted READ statement defines how many records are to

 be read, the part of the record that is to be ignored and specifies how

 the data are to be converted before being placed in internal storage.

 334 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 If no format is specified, there is a one-to-one relationship between

 the values in the record and internal storage. No conversion is

 performed. The various forms of FORTRAN I/O conversions are described

 in the following section.

 And now let us define the sequential and direct access methods.

 Sequential I/O ______________

 Sequential I/O is the accessing of records in a series. For

 sequential files, tapes, and unit record equipment, records are accessed

 as they appear in sequence.

 The full form of the READ/WRITE operation for sequential I/O is:

 FORTRAN G and H:

 READ (unit,format,END=m,ERR=n) list

 WRITE (unit,format,ERR=n) list

 VS FORTRAN:

 READ (UNIT=unit,FMT=format,END=m,ERR=n,IOSTAT=status) list

 WRITE (UNIT=unit,FMT=format,ERR=n,IOSTAT=status) list

 where

 unit is the FORTRAN I/O unit number. ____

 format is the format. ______

 m is the statement label to which the program transfers if an _

 end-of-file condition occurs.

 n is the statement label to which the program transfers in _

 event of an I/O error.

 status is the I/O status, or error or end-of-file condition. ______

 list is a list of FORTRAN variables (possibly null) to which ____

 values are assigned.

 For line files, the sequence of records accessed is determined by the

 range of the beginning and ending line numbers, and the increment,

 specified in the FDname on the $RUN command. If the line file is not

 rewound or positioned by any of the direct access methods (see the

 subsection "Direct Access I/O"), the first record accessed will corre-

 spond to the initial line number in the line number range specified in

 the FDname. If the initial line number was not specified, the default

 line number 1 is used. When the line number increment is omitted from

 the $RUN command FDname, a sequential READ will always access the next

 record in the file, regardless of its line number. However, if a line

 number increment is specified, a sequential READ can access only those

 records that have line numbers that are offset from the starting line

 number by multiples of the increment.

 FORTRAN I/O Library 335

 MTS 6: FORTRAN in MTS

 October 1983

 For example, suppose the file DATA has lines numbered 1, 1.5, 2, 2.1,

 4, 5, 6, and 7. The following table indicates the lines that would be

 accessed by sequential READ statements with various $RUN command FDname

 assignments.

 ┌───┐ ┌
 | $RUN FDname | Lines Accessed |

 |────────────────────────┼────────────────────────| ┌ ┘
 | DATA | All lines |

 | DATA(1,,1) | 1 2 4 5 6 7 |

 | DATA(1,,2) | 1 5 7 |

 | DATA(2,,2) | 2 4 6 |

 | DATA(1,5,.5) | 1 1.5 2 4 5 |

 └───┘ ┘

 A sequential WRITE to an MTS line file always uses the line number

 increment, or the default of 1 if the increment was not specified, when

 writing the next record to the file. Using the same example, if we

 write sequentially starting at line number 1, new lines 1, 2, 3, 4, 5,

 6, and 7 would be generated. This would leave old lines 1.5 and 2.1

 intact, and would add line 3 to the file.

 End-of-File Exit

 Using a sequential READ statement allows a user to intercept the end

 of data return. This option is not available with direct-access READ.

 Reading an end-of-file with no END= exit provided on the READ

 statement causes a return to MTS. The program may be restarted with a

 $RESTART command. Execution resumes in the FORTRAN Monitor command

 mode. The user who decides to continue execution must either enter

 "RETURN" or "RETURN SKIPIO".

 When an end-of-file condition is encountered, control is transferred

 to the statement specified on the END= exit, provided there was an exit

 specified. This allows the user to continue execution of the program

 even after the end of data has been detected.

 If the user issued the MTS command

 $SET ENDFILE=ON

 an $ENDFILE line detected in the data stream is treated as an

 end-of-file condition as described above.

 The Error Exit

 The ERR= exit is available for all error conditions, including

 conversion errors. When an error is detected during the READ or WRITE

 operation, control is transferred to the statement specified in the ERR=

 exit.

 336 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 If the ERR= exit is not specified, a program is usually terminated

 unless the SIOERR exit routine is active. The SIOERR exit routine

 should not, however, issue any FORTRAN I/O statement before returning.

 The following statements demonstrate how the ERR= exit can be used in

 a FORTRAN program.

 C

 C Read in the data cards.

 C Ignore those that have invalid data on them.

 C

 K=0

 1 K=K+1

 READ (5, 900, END=200, ERR=300) N, I, J

 .

 .

 .

 GO TO 1

 200 WRITE (6,905)

 STOP

 300 WRITE (6,910) K

 GO TO 1

 900 FORMAT (3I10)

 905 FORMAT (’ END OF DATA ENCOUNTERED.’)

 910 FORMAT (’ RECORD’, I5, ’ SKIPPED.’)

 END

 In the above example, the FORTRAN I/O routines print the error

 message if ERRMSG is ON before transferring control to the statement

 300. Since the default of ERRMSG is OFF, the user may enable the

 printing of error messages by inserting the following statement:

 CALL FTNCMD(’SET ERRMSG=ON;’)

 To disable all the ERR= exits, a user may include the following call

 in a FORTRAN program:

 CALL FTNCMD(’SET ERR=OFF;’)

 When error exits are disabled by the FTNCMD call as above or if error

 exits are not specified, normal error processing is invoked when an

 error occurs. In conversational mode, the error message is printed and,

 if possible, the user is prompted to answer. In batch mode, the error

 message and diagnostics are printed and the execution is terminated.

 Direct Access I/O _________________

 In direct access I/O or indexed I/O, the location, or index, of the

 next line to be read or written can be specified in the I/O statement.

 Direct access I/O can be performed only on line or sequential files.

 FORTRAN I/O Library 337

 MTS 6: FORTRAN in MTS

 October 1983

 Direct Access to Line Files:

 There are three indexed input/output statements: READ, WRITE, and

 FIND. The READ and WRITE statements transfer data into and out of main

 storage. A FIND statement does not transfer data, but causes indexing

 of the next READ/WRITE statement. The general forms of these statements

 are:

 READ (unit’index,format) list (FORTRAN G and H)

 WRITE (unit’index,format) list (FORTRAN G and H)

 FIND (unit’index) (FORTRAN G and H)

 READ (UNIT=unit,REC=index,FMT=format) list (VS FORTRAN)

 WRITE (UNIT=unit,REC=index,FMT=format) list (VS FORTRAN)

 The following points should be noted for indexed I/O operations:

 (1) The index specified is the MTS line number times 1000. For

 example, to reference line 4.7 in a file, the index is 4700.

 (2) On any indexed I/O operation, the index must be in the range

 -2,147,483,648 to 2,147,483,647. An index specified explicitly

 as a constant must be in the range 0 to 16,777,215 (i.e.,

 16⁶-1). Thus,

 FIND(4’16800000)

 will not work, whereas

 NREC=16800000

 FIND(4’NREC)

 will work.

 (3) If an index given in a READ statement represents a nonexistent

 line, an end-of-file condition is generated, even if the line

 was not the last in the file. Note that the END=n exit cannot

 be specified in an indexed READ, thus it is recommended that a

 FIND followed by a sequential READ be used if it is possible

 that the line specified by the index does not exist.

 (4) If an indexed READ or WRITE statement requires the reading or

 writing of more than one record, only the first record will be

 read or written indexed; any subsequent records will be obtained

 sequentially. For example, the following statements would read

 line number 10 and the next sequential line in the file that was

 attached to unit 5.

 READ(5’10000,56)A,I

 56 FORMAT(G15.8/I10)

 Note: The "next" line in the sequential sense will be governed

 by the increment specified in the $RUN command FDname.

 338 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 (5) If the next I/O statement after a FIND is an indexed READ or

 WRITE rather than a sequential READ or WRITE, the index

 specified in the READ/WRITE operation will override that speci-

 fied in the FIND.

 (6) The DEFINE FILE statement may be used to define a particular I/O

 unit attached to an MTS line file. If this is used, all of the

 direct access I/O statements will behave as defined in the IBM

 publication, IBM System/360 and System/370 FORTRAN IV Language, __

 form GC28-6515.

 Direct Access to Sequential Files:

 Direct access to sequential files has been implemented in two ways:

 (1) Using the IBM DEFINE FILE statement:

 If the DEFINE FILE statement has been used to define a

 particular I/O unit, any of the direct access I/O statements

 READ, WRITE, and FIND will behave as defined in the IBM

 publication, IBM System/360 and System/370 FORTRAN IV Language, __

 form GC28-6515.

 (2) Using MTS NOTE-pointers:

 Pseudorandom access can be performed on sequential files from a

 FORTRAN program via subroutine calls to NOTE and POINT. A

 description of these routines is available in MTS Volume 3.

 If the program is to be run exclusively at an MTS installation, it is

 recommended that direct access to line files be used. If the program is

 to be transported to non-MTS installations, it is recommended that the

 DEFINE FILE statement (for FORTRAN G and H) or the OPEN statement (for

 VS FORTRAN) for direct-access sequential files be used.

 FORTRAN I/O CONVERSIONS _______________________

 The FORTRAN READ and WRITE statements invoke one of four basic forms

 of I/O conversion. The forms are given below:

 (1) Formatted READ/WRITE _________ __________

 READ (unit,fmt) list

 WRITE (unit,fmt) list

 (2) Unformatted READ/WRITE ___________ __________

 READ (unit) list

 WRITE (unit) list

 FORTRAN I/O Library 339

 MTS 6: FORTRAN in MTS

 October 1983

 (3) NAMELIST READ/WRITE ________ __________

 READ (unit,naml)

 WRITE (unit,naml)

 (4) List-Directed READ/WRITE

 LOGICAL*1 fmt(1)/’*’/ (FORTRAN G and H)

 READ (unit,fmt) list

 WRITE (unit,fmt) list

 READ (unit,*) list (VS FORTRAN)

 WRITE (unit,*) list

 Formatted I/O means that the programmer has supplied, along with the

 I/O list of what to read or write, a format describing how the data are

 to be read or written. Using a formatted READ generally means that the

 data are converted according to the corresponding format specifications

 before being placed in internal storage. It is possible to use a

 formatted READ statement and essentially use a free-format method of

 input. The pseudofree-format input method and the list-directed I/O

 method are described in this section.

 With unformatted I/O, the data are transmitted without control of a

 format. There is no conversion from internal representation to external

 representation and vice versa. An unformatted WRITE operation will take

 the internal representation of a number and write that on the external

 device. There is no conversion to character form, so the value printed

 is unreadable. Because there is no conversion, unformatted I/O is

 faster than formatted I/O. An unformatted WRITE operation is typically

 used in an application where the output is to be used as input to

 another program without being examined by a programmer.

 Instead of an I/O list, NAMELIST I/O specifies a NAMELIST dictionary

 to define the variables which may be read by a NAMELIST READ statement

 and are written by a NAMELIST WRITE statement. NAMELIST I/O consists of

 keyword-type entry and output, where an "=" is used to separate the

 variable names from their values. Conversion is performed according to

 the type of the variable. For example, if the variable is declared to

 be INTEGER, then an integer value is expected on input and written on

 output.

 With list-direct I/O, the data values for both input and output are

 separated by a comma, one or more blanks, or the end of the record.

 This is a free-format style with no constraints to specific columns.

 The conversion is performed according to the type of the variable being

 read or written. For example, if the variable in the list is declared

 as REAL, then a real value is read or written. See the section

 "List-Directed I/O" for further details.

 The method used depends entirely on the effect desired. For input,

 one of the free-format methods described under formatted I/O is probably

 easiest, since it frees the user from column restrictions. For output,

 340 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 if output in tabular form is desired, a formatted WRITE statement must

 be used. If the output does not have to look pretty, perhaps

 list-directed output (described under the subsection "Formatted I/O") or

 NAMELIST output will suffice.

 Warning: The FORTRAN I/O Library, the FORTRAN G DATA statement, and _______

 the FORTRAN H DATA statement do not provide consistent conversions from

 the external decimal representation to the internal hexadecimal repre-

 sentation for floating-point numbers. The FORTRAN G compiler generates

 internal numbers which may be in error by several units in the last

 place when compared to results generated by the FORTRAN I/O Library.

 The FORTRAN H compiler provides a more accurate conversion, but the

 results are not guaranteed to be identical with those produced by the

 FORTRAN I/O Library. Therefore, in some types of computations, these

 discrepancies may have a significant impact. In general, it is not a

 good programming practice to make exact comparisons of floating-point

 numbers. Rather, the user should check for a value falling within a

 narrow range; e.g., IF(ABS(A-2.0).LT.EPSILN) where the value of EPSILN

 is chosen to be an acceptable tolerance.

 Formatted Conversion ____________________

 When data are transmitted under control of a format statement, a

 conversion is made so that the input is in a form which satisfies the

 needs of machine representation, or so that the output is more readable

 to the programmer. For input operations, the character representation

 of the data is converted to the appropriate internal machine representa-

 tion. For output, the machine representation is converted to character

 notation.

 Codes specified in the format determine how the data are to be

 converted on an I/O operation. For example, I or G format is used for

 integer conversions and F, E, D, or G formats are used for floating-

 point conversions. Q format is not supported.

 The length of the record and the form of the data fields within the

 record are specified by the I/O list and the format statements. A

 format may be either a compiled format or an object-time format. ________ ______ ___________ ______

 Formats that correspond to the FORTRAN FORMAT statement are called

 compiled formats. Their structure is unalterable during execution.

 Alternatively, the user may choose to read a format into an array as

 data during program execution, or in some other way dynamically

 construct a format in an array. Such formats are called object-time

 formats or variable formats because their structure is defined at object

 or execution and may be altered. For example,

 DIMENSION A(100)

 LOGICAL*1 FMT(80)

 C READ IN THE NUMBER OF VARIABLES TO BE PROCESSED.

 READ(5,100)INUM

 FORTRAN I/O Library 341

 MTS 6: FORTRAN in MTS

 October 1983

 100 FORMAT(I2)

 C READ IN THE FORMAT FOR THE DATA.

 READ(5,200)FMT

 200 FORMAT(80A1)

 C READ IN THE DATA USING THE ABOVE FORMAT.

 READ(5,FMT)(A(I),I=1,INUM)

 Free-format I/O means that the READ and WRITE operations are freed

 from format restrictions. Instead of being entered within rigid columns

 boundaries, the data are entered such that adjacent data fields are

 separated by a delimiter. There is still a conversion from external

 form to internal form and vice versa.

 Two forms of free-format I/O are described in this section. One is

 called semifree-format input because although a format is supplied with

 the READ statement, the column restrictions need not be adhered to. The

 second form is called list-directed I/O and applies to both input and

 output. Also available, although not part of FORTRAN I/O routines, is

 the FORTRAN-callable free-format input routine FREAD. See the section

 "FREAD: A Free-Format Input Subroutine" in this volume for details.

 Semifree Format Input:

 Free-format input simplifies data entry in that the user is freed

 from format-statement restrictions. Rather than having to enter

 data within rigid column boundaries, the user simply needs to make

 sure that adjacent data fields are separated by a delimiter. For

 information regarding this facility, the user is referred to the

 section "FREAD: A Free-Format Input Subroutine" in this volume.

 FORTRAN I/O does, however, have a semifree-format facility. On

 input, any field to be converted according to a format code (other

 than A format) is scanned for one of four special delimiters:

 comma, slash, quote, or semicolon. If none of these separators are

 found, the conversion is performed according to the format specifi-

 cations. If a separator is encountered in the field and the format

 specifies that there are to be "d" significant digits after the

 decimal point and the decimal point is not explicitly specified in

 the input field, the decimal point is assumed to be to the right of

 the last digit in the field.

 For example, if the format code being used is F10.3,

 456.3, sets the variable to 456.300

 4563, sets the variable to 4563.000

 3, sets the variable to 3.000

 If a comma is found, the field width is changed to terminate with

 the last character before the comma. A slash or a quote functions

 in the same manner as a comma. If a semicolon is found, processing

 proceeds as if a comma had been found. However, after the current

 342 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 field has been processed, the read operation is terminated.

 Accordingly, any remaining list items will remain unchanged.

 If the resulting field width is zero (which would be the case if

 there were two adjacent commas), the list item is left unchanged.

 This method of semifree-format input will work only if the ____

 delimiter occurs within the field width. Therefore, the column

 width must be large enough to encompass the delimiter.

 Example:

 C PROGRAM TO ILLUSTRATE THE USE OF

 C SEMI-FREE FORMATTED INPUT

 10 READ(5,100,END=300)A,N,M

 100 FORMAT(F20.8,I5,I3)

 WRITE(6,200)A,N,M

 200 FORMAT(F10.5,2I6)

 GOTO 10

 300 STOP

 END

 The results of this sample program follow. The odd-numbered lines

 represent input, and the even-numbered lines represent output.

 (1) 1.,5,6;

 (2) 1.00000 5 6

 (3) 1.5;

 (4) 1.50000 5 6

 (5) ,111113,

 (6) 1.50000 11111 3

 (7) ,,2

 (8) 1.50000 11111 200

 The first line of input, along with the resulting output, should be

 self-explanatory. The second set of input values illustrates

 premature termination of I/O processing, accomplished here by using

 a semicolon. In the third set of input values, the first operand

 is omitted and remains unchanged. The second operand fills the

 entire field and consequently, the field is not terminated by the

 final comma. Note, that if the line had been given as

 ,11111,3

 the third list item (variable M) would not have been changed, since

 the additional comma would not have been found until the I3 field

 was scanned. The final set of input values illustrates the

 usefulness of a final comma or semicolon. If either of these had

 been used, it would have been clear that the intended value of M

 was 2 rather than 200.

 FORTRAN I/O Library 343

 MTS 6: FORTRAN in MTS

 October 1983

 FORTRAN G and H users can avoid the problem posed by the fourth set

 of values in this example by using the subroutine FCVTHB. The

 calling sequence is:

 CALL FCVTHB(arg)

 where "arg" is the location of the fullword argument. When arg=0,

 all blanks on numeric input are assumed to be zeros. This is the

 normal FORTRAN mode. When arg does not equal zero, all blanks are

 usually ignored. However, a field consisting entirely of blanks

 has a value of zero. Calling FCVTHB at the beginning of the

 program with a nonzero argument will eliminate the problem illus-

 trated by the fourth set of values. The default processing is

 equivalent to a call to FCVTHB with arg=0. The processing of

 blanks during program execution can be changed at any time by

 calling FCVTHB. Alternatively, VS FORTRAN users should use the BZ

 and BN edit specifiers in the FORMAT statement. They also can use

 the BLANK specifier (BLANK=ZERO or BLANK=NULL) in the OPEN

 statement.

 List-Directed I/O

 If the first character of a variable format is an asterisk (*),

 list-directed I/O will be used. The following program segments

 invoke list-directed I/O:

 FORTRAN G and H:

 LOGICAL*1 FMT(1)/’*’/

 READ (5,FMT) A,B,I,K

 WRITE (6,FMT) A,B,I,K

 VS FORTRAN:

 READ (5,*) A,B,I,K

 WRITE (6,*) A,B,I,K

 The features of list-directed I/O are described in detail in the

 IBM publications, IBM System 360 and System 370 FORTRAN IV ___

 Language, form GC28-6515, and VS FORTRAN Application Programming: ________ ___________________________________

 Language Reference, form GC26-3986. Note that this feature is not __________________

 available using an ’*’ in place of the format specification in the

 READ and WRITE statement as described in the IBM publication (e.g.,

 READ(5,*) is illegal except for VS FORTRAN). A brief description

 of the list-directed I/O features follows for FORTRAN G and H:

 (1) List-directed I/O is sometimes referred to as stream input

 or output. As many records as are required to satisfy the

 I/O list will be read or written. The data values are

 separated by a comma, one or more blanks or the end of

 record. The obvious advantages are that the data values

 need not be punched in specific columns and each data

 344 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 record could be punched differently than its predecessor.

 The list-directed WRITE statement is very useful if the

 user is debugging his program and would like to print the

 variables at various stages of the calculations. It

 provides a quick method of inserting WRITE statements,

 without having to provide a FORMAT for each one.

 (2) Conversion is performed on input and output according to

 the type of the variable. If the variable is declared to

 be INTEGER, then only integer values will be accepted on

 input.

 (3) Consecutive commas on input cause the associated list

 variable to remain unchanged. For example, if the follow-

 ing line is read by the above program segment:

 123.,,456 78

 the variable A is set to 123., B retains the value it had

 before the READ statement, and I and K are set to 456 and

 78 respectively.

 (4) A slash (/) may be used to terminate the input. Items in

 the I/O list which are not satisfied remain unchanged.

 Thus, to change only the value of A in the above example,

 34.5/

 would set A to 34.5 and leave the remaining variables

 unchanged.

 (5) Replication counts are allowed on input. The line

 4*0

 would zero the four variables in the I/O list.

 (6) Literal constants may be read in but cannot be written

 using list-directed I/O. The characters are enclosed in

 primes (’) and must not be longer than the element size, or

 the string will be truncated. For example, for an INTEGER

 variable, four characters should be enclosed in primes,

 e.g., ’ABCD’.

 Options Available with Formatted I/O

 A formatted READ or WRITE statement that specifies conversion

 according to a format code is controlled by the setting of the following

 options. Note that the only option which will affect list-direct I/O is

 the suppression of undefined variable checking.

 FORTRAN I/O Library 345

 MTS 6: FORTRAN in MTS

 October 1983

 (1) WRAPAROUND

 If a formatted write produces a record that is longer than the

 device length, the IBM FORTRAN manual states that the record

 length will be truncated. Here, an alternative method to

 truncate has been developed and is called "wraparound." If a

 formatted write produces a record that is longer than the device

 length, the record is broken up and written on several lines.

 Wraparound is the default action. If truncation is preferred,

 wraparound can be disabled with the following call to FTNCMD:

 CALL FTNCMD(’SET WRAPAROUND=OFF;’)

 Wraparound acts as if a "/,1X," were inserted in the format

 immediately preceding the format specification to be used on the

 variable field that would have been truncated.

 For example, given the following statements in a FORTRAN

 program:

 INTEGER I(35)

 WRITE (7,1) NUM, I

 1 FORMAT (1X, I2, 35A4)

 If the unit 7 is attached to a line file, one line will be

 written because the device length of the file is 32767 charac-

 ters. If the unit 7 is attached to a printer, wraparound will

 take effect because the device length for a printer is 133

 (actually 132 print positions plus one carriage-control charac-

 ter), and the output length for the above WRITE statement is 143

 characters. The above WRITE statement will write two lines of

 information using the following format:

 (1X, I2, 32A4, /, 1X, 3A4)

 If, on the other hand, the unit 7 was attached to *PUNCH*, a

 device with an 80-character length, the above WRITE statement

 would punch two cards with the following format:

 (1X, I2, 19A4, /, 1X, 16A4)

 Note that when wraparound is used, and if the records produced

 are to be read, the modified format shown above must be used for

 the READ.

 A word of warning. Often strange results are obtained when

 T-formats are used on lines that are wrapped. If the user wants

 to use T-formats, he should make sure the length of the line

 being written is less than the device length. If not, the

 wraparound feature should be turned off.

 346 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 (2) Undefined Variable Checking

 If the value to be written is identically equal to a string of

 X’81’, an error condition is generated and the value will be

 represented in the output buffer with a string of "U"’s. If

 this does occur, it means the variable to be written was either

 undefined or assigned value -2122219135 (INTEGER) or approxi-

 mately -0.7E-76 (REAL). The undefined variable checking can be

 disabled with the following call to FTNCMD:

 CALL FTNCMD(’SET UVCHECK=OFF;’)

 (3) Mode Checking

 The type of a variable should agree with the type of the format

 code used to read or write the variable. For example, an

 INTEGER variable should have an I or G format specified, and a

 REAL variable should have one of F, G, E, or D format codes

 specified.

 If the types do not agree, a diagnostic is generated and the

 G-format is used by default. The type checking can be disabled

 with the following call to FTNCMD:

 CALL FTNCMD(’SET MODECHECK=OFF;’)

 The G format code cannot be used by default for character

 variables.

 (4) Zero-Length Records

 Zero-length records, caused by two or more consecutive slashes

 in the format, are changed to write one blank. This preserves

 printer-spacing if the output is written on a file. The

 following call to FTNCMD will disable this feature and write a

 true zero-length line.

 CALL FTNCMD(’SET NULLBLANK=OFF;’)

 Note that an indexed write operation of a zero-length line onto

 a file deletes the line from the file.

 WRITE (4’NREC, 43)

 43 FORMAT (I5)

 The above WRITE statement will write a blank line at line NREC

 if NULLBLANK is set ON or delete the line number NREC from the

 file if NULLBLANK is set OFF.

 (5) Suppressing Zeros on Output

 The following call to FTNCMD will suppress printing of true

 zeros.

 FORTRAN I/O Library 347

 MTS 6: FORTRAN in MTS

 October 1983

 CALL FTNCMD(’SET ZEROSUPPRESS=ON;’)

 The above causes zeros to be printed as blanks.

 (6) Blank Input Detection

 The following call will return any blank field encountered by a

 formatted READ statement as a -0.0.

 CALL FTNCMD(’SET MINUSZERO=ON;’)

 This feature works for REAL variables read with D, E, F, or G

 format. This feature is not available for INTEGER variables.

 Unformatted Conversion ______________________

 When data are transmitted without format control, there is a

 one-to-one correspondence between internal storage locations (bytes) and

 external record positions. One logical record is defined as the data

 corresponding to one I/O list in a FORTRAN READ/WRITE statement. Each

 logical record may consist of one or more physical records (or lines),

 depending on the length of the list, the number of bytes taken up by

 each list item, and the maximum size record allowed for the device.

 Each physical record (or line) has two control words (8 bytes) which

 describe the physical record. Thus, if data in a line file (maximum

 record length = 32767 characters) are transmitted with no format

 control, a maximum of 32767 bytes is available for data bytes.

 Individual data elements are never split over two lines. For example,

 each line in a line file can hold up to 8189 fullwords (32756 bytes) of

 INTEGER*4 or REAL*4 data, 16379 halfwords (32758 bytes) of INTEGER*2

 data, or 4094 doublewords (32752 bytes) of REAL*8 data.

 Thus, an unformatted READ or WRITE can read or write several file

 lines in one operation. A BACKSPACE operation will always have the

 effect of positioning the pointer to the beginning of the logical

 record. For example, if a logical record is written with three physical

 records, a BACKSPACE will cause positioning to the beginning of the

 first of the three physical records.

 The two control words that make up each physical record are

 automatically inserted by the FORTRAN I/O routines on a WRITE statement

 and are deleted on a READ statement. When performing an unformatted

 WRITE onto a magnetic tape, VS format (variable length, spanned) should

 be specified if the tape is labeled. U format (undefined length) should

 be specified if the user does not wish to disable tape blocking or if

 there is a mixture of formatted and unformatted records in a single

 file. Unformatted I/O cannot be used with ASCII-labeled tapes. When

 sending a tape to an OS/VS installation, each file may be either

 formatted or unformatted, but no file may contain both formatted and

 348 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 unformatted records. Since the actual records conform to VS format,

 which is unblocked, tapes containing VBS-formatted files (especially

 from OS/VS installations) must first be deblocked into VS-format files

 so that they can be read by the FORTRAN I/O routines. For further

 information on the use of magnetic tapes, see MTS Volume 19, Tapes and _________

 Floppy Disks. ____________

 Advantages:

 It is recommended that unformatted I/O be used when transferring

 data between programs, as it is faster than using format control.

 Unformatted I/O is about 6 times faster than I/O using a typical

 F-type numeric formatted conversion and is about 1.5 times faster

 than I/O using A format conversion.

 Unformatted I/O is best utilized where intermediate results, which

 are to be read in again for further processing, are produced. The

 printed results obtained by $LISTing records from a file or tape

 that contains unformatted data are usually unintelligible since

 such records contain the internal machine representation of the

 data. Unformatted files can be handled only by some other program

 (in FORTRAN or another programming language). If the unformatted

 data are to be read by a FORTRAN program, or a program in another

 language, the corresponding I/O list must be compatible with the

 I/O list in the write operation. If a logical record is generated

 from a list of n words during output to a file, then a subsequent

 input statement attempting to read this record must have a list of

 not more than "n" words.

 Unformatted Records:

 An unformatted WRITE will write one logical record which is made up _______

 of one or more physical records (or lines).

 Each physical record has 2 control words, each occupying 4 bytes.

 The control words are called the BCW (Block Control Word) and the

 SCW (Segment Control Word).

 BCW 2 byte length 2 bytes unused

 SCW 2 byte length 1 byte flag 1 byte unused

 where:

 BCW length specifies the number of bytes in the physical

 record, including the BCW and SCW.

 SCW length specifies the number of bytes in the physical

 record, excluding the BCW, i.e., SCW length = BCW

 length - 4 bytes.

 SCW flag is used to describe the order of physical records

 within a logical record. This byte will be set

 to:

 FORTRAN I/O Library 349

 MTS 6: FORTRAN in MTS

 October 1983

 x’00’ if the logical record is made up of only one

 physical record.

 x’01’ if this is the first physical record of

 many.

 x’02’ if this is the last physical record.

 x’03’ if this is an intermediate physical record,

 that is, it is neither the first nor the

 last.

 These two control words are used to allow the FORTRAN programmer to

 output data without knowing the maximum physical record length of

 the device. It can even exceed 32767.

 Direct Access I/O and Unformatted Records:

 Caution must be exercised when using direct access I/O on defined

 files and unformatted reading or writing on the same file. Each

 unformatted WRITE may produce more than one line. Unless the

 number of lines written for each WRITE statement is less than the

 line number increment used by the program in the output of

 successive logical records, there will be overwriting of lines

 already written and the file may become unreadable.

 NAMELIST Conversion ___________________

 NAMELIST provides a means for reading and writing data without

 including the I/O list and format specifications. The NAMELIST specifi-

 cation defines a name to refer to a particular list of variables. The

 conversion performed on output, and usually on input, is entirely

 dependent upon the type of the variable, e.g., integer conversion is

 performed for INTEGER variables and floating-point conversion is per-

 formed for REAL and COMPLEX variables.

 NAMELIST input has been implemented as defined in the IBM publica-

 tion, IBM System/360 and System/370 FORTRAN IV Language, form GC28-6515. ___

 An alternative method of NAMELIST input "free-format" was added and

 defined below.

 NAMELIST output was implemented as described in the above IBM manual.

 The routine will write as many records as are needed to satisfy the

 NAMELIST declaration statement.

 NAMELIST Input:

 There are two forms of NAMELIST input, IBM format and free-format.

 The user may require NAMELIST input to be in IBM format by an

 appropriate call to FTNCMD:

 350 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 CALL FTNCMD(’SET NAMEFMT=IBM;’)

 Alternatively, if the FREE format is used, the user may include the

 call:

 CALL FTNCMD(’SET NAMEFMT=FREE;’)

 If neither is specified, the format of input will be determined as

 follows:

 (1) IBM Format

 If the second character in the first record is an amper-

 sand, (&) immediately followed by the NAMELIST name, IBM

 format is used. The procedures for using IBM format are

 defined in the IBM publication, IBM System/360 and System/ __________________________

 370 FORTRAN IV Language, form GC28-6515. _______________________

 (2) Free-Format

 This format is used if an ampersand (&) is not present in

 column 2 of the first record. This form of input is much

 easier to use both in batch and conversational mode since

 the rules are not as rigid as the IBM specifications. The

 following points describe free-format for NAMELIST.

 (a) The ampersand (&), followed by the NAMELIST name,

 must not appear on the input record. The first

 item on the record should be a variable, as defined

 in the NAMELIST declaration statement, equated to

 some value.

 (b) The input stream generally consists of one record

 unless an MTS continuation character is present in

 the last column of the record. If a continuation

 character is present in the record, another record

 will be read. The MTS continuation character is a

 hyphen (-) unless otherwise specified. The con-

 tinuation character can be changed at the MTS level

 with the command $SET CONTCHAR.

 (c) Both blanks and commas are recognized as

 delimiters.

 (d) Blanks preceding a delimiter are ignored. This is

 a major difference between IBM format and free-

 format. The statement

 I=12 ,

 denotes 120 in IBM format, while in free-format it

 denotes 12.

 (e) The data stream is ended by &END or by the physical

 end of the record.

 (f) Null (zero-length) lines are ignored.

 FORTRAN I/O Library 351

 MTS 6: FORTRAN in MTS

 October 1983

 NAMELIST Output:

 NAMELIST output is defined in the IBM publication, IBM System/360 ______________

 and System/370 FORTRAN IV Language, form GC28-6515. __________________________________

 Options Available with NAMELIST:

 (1) Undefined Variable Checking

 Undefined variables will be set to "U"’s in the output buffer.

 This may be disabled with the following call to FTNCMD:

 CALL FTNCMD(’SET UVCHECK=OFF;’)

 (2) Suppression Of NAMELIST Name

 The NAMELIST name (the name that occurs in the NAMELIST

 declaration statement) is written as the first line and &END is

 written as the last line of NAMELIST output. This may be

 suppressed with the following:

 CALL FTNCMD(’SET NAMEOUT=OFF;’)

 NAMELIST Notes and Restrictions:

 (1) Hexadecimal Input

 The character Z is used to transmit hexadecimal data on input.

 If the first character after the equal sign is a Z, hexadecimal

 conversion is performed regardless of the type of variable.

 A=Z6B

 (2) Repetition Counts

 Repetition counts are valid on input.

 A=3*’*’

 sets A=***, where A is INTEGER*4

 ARRAY(3)=4*0.0

 sets elements 3 through 6 of ARRAY to zero.

 (3) Literal Input

 Literal information and Hollerith information are accepted on

 input. The remainder of the word and/or array is padded with

 blanks.

 352 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 ARRAY=5HHELLO or ARRAY=’HELLO’

 set the first 5 characters of ARRAY to HELLO; the remaining

 characters in the array are set to blanks.

 (4) Null Fields

 A null field (two commas with no intervening characters) is

 considered an error.

 A=, and A=1,,

 are both errors, whereas

 A=1 ,

 is not an error.

 (5) Complex Input

 Complex variables may have values in parentheses.

 COMPLEX A(2)

 A=(1.0,2.0),(1.0,2.0) or

 A=2*(1.0,2.0) or

 A=1.0,2.0,1.0,2.0

 A repetition character within parentheses is considered an

 error; i.e.,

 A=(2*1.0)

 is an error. This should be written as:

 A=2*1.0

 (6) Logical Input

 When assigning a value to a logical variable, the field must

 consist of optional blanks followed by a "T" or "F" followed by

 optional characters. ".TRUE." and ".FALSE." are also

 accepted.

 (7) Logical Output

 On logical output the field will contain the logical operator T

 if the variable was nonzero, and the logical operator F if it is

 zero.

 FORTRAN I/O Library 353

 MTS 6: FORTRAN in MTS

 October 1983

 OTHER FORTRAN I/O STATEMENTS ____________________________

 The REWIND Statement ____________________

 A REWIND statement can be used at any time to reposition a tape or to

 reset a file so that the next READ or WRITE statement acts at the

 beginning of the file or device. In a line file the beginning is the

 starting line number as defined when the unit was assigned, or the line

 number 1 by default. On a tape, the beginning is defined at the start

 of the first file of the tape. It should be noted that a REWIND

 statement causes rewinding to the beginning of the currently active

 element of a concatenation of FDnames. Only if the first element is

 being processed will REWIND cause a complete rewind.

 The BACKSPACE Statement _______________________

 The FORTRAN statement BACKSPACE n works on any input device (n is a _ _

 FORTRAN unit). The effect of executing one BACKSPACE statement,

 followed by a sequential READ, is to reread the current logical record. _______

 In general, for files and tapes, the effect of executing n+1 BACKSPACE

 statements, followed by a sequential READ, is to read the current minus

 nth logical record. _ _______

 (1) Executing a BACKSPACE statement on a file is the same as

 performing a sequentially backward READ with no data trans-

 mitted. For example, assume a file contains records at the

 following line numbers:

 1 1.5 2 2.5 3 3.5 4 4.5

 If line number 4.5 has just been read (the 8th record in the

 file) and the following statements are executed,

 DO 67 I=1,3

 67 BACKSPACE UNIT

 READ(UNIT,FMT)LIST

 the sequential READ will read line number 3.5 (the 6th record in

 the file).

 Note: BACKSPACE is not predictable if the file has been

 assigned with a negative line increment or with the @BKWD

 modifier.

 (2) When a BACKSPACE statement is issued for a tape, the CONTROL

 subroutine is used to issue a BSR command to skip backward past

 one logical record. For more information on backspacing tapes,

 see MTS Volume 19, Tapes and Floppy Disks. ______________________

 354 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 (3) When a BACKSPACE statement is issued on any other device (e.g.,

 a card reader), the last record in the buffer is reused.

 However, if the last record was unformatted, an error condition

 is generated. When a device such as a card reader is back-

 spaced, the last record is reread, thus providing a method for

 rereading records using different formats.

 Note: This applies only to the last record read, but BACKSPACE

 cannot be used to reread any previous records.

 The BACKSPACE statement should not be used for list-directed records.

 The ENDFILE Statement _____________________

 When an ENDFILE statement is executed on a magnetic tape, the CONTROL

 subroutine is used to issue a WTM command on the tape. For more

 information on tapes, tape marks, and the CONTROL subroutine, see MTS

 Volume 19, Tapes and Floppy Disks. ______________________

 An ENDFILE statement applied to any other type of device is ignored.

 The PAUSE Statement ___________________

 The forms of the PAUSE statement are

 PAUSE

 PAUSE n

 PAUSE ’message’

 where "n" is an integer from 0 to 99999. The PAUSE number or message is

 printed on *MSINK*, i.e., the terminal for conversational mode and the

 printer for batch mode. In batch mode the program resumes execution

 after the PAUSE statement. In conversational mode, control is returned

 to MTS. The program can then be restarted with a $RESTART command.

 The STOP Statement __________________

 The forms of the STOP statement are

 STOP

 STOP n

 STOP ’message’ (VS FORTRAN only)

 FORTRAN I/O Library 355

 MTS 6: FORTRAN in MTS

 October 1983

 where "n" is an integer from 0 to 99999. The STOP number or message is

 printed on *MSINK* and execution of the program is terminated. If "n"

 is zero or omitted, no message is printed.

 The OPEN Statement __________________

 An OPEN statement may be used in VS FORTRAN to connect a file to a

 FORTRAN I/O unit. See the IBM publication, VS FORTRAN Application ______________________

 Programming: Language Reference, form GC26-3986, for further details. ________________________________

 The CLOSE Statement ___________________

 The CLOSE statement may be used in VS FORTRAN to disconnect a file to

 a FORTRAN I/O unit. See the IBM publication, VS FORTRAN Application ________________________

 Programming: Language Reference, form GC26-3986, for further details. ________________________________

 The INQUIRE Statement _____________________

 An INQUIRE statement may be used in VS FORTRAN to obtain information

 about an external file or FORTRAN I/O unit. See the IBM publication, VS __

 FORTRAN Application Programming: Language Reference, form GC26-3986, ___

 for further details.

 FORTRAN-II Statements _____________________

 The FORTRAN-II statements accepted by FORTRAN-IV are:

 READ format,list

 PRINT format,list

 PUNCH format,list

 The unit defaults for these statements are as follows:

 READ to SCARDS

 PRINT to SPRINT

 PUNCH to SPUNCH

 VS FORTRAN implements the READ and PRINT statements which are

 contained in the FORTRAN 77 language standard. These are not considered

 to be "obsolete" FORTRAN-II statements. The PUNCH statement is not

 contained in the FORTRAN 77 and therefore is not implemented in VS

 FORTRAN.

 356 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 THE FORTRAN I/O COMMAND LANGUAGE MONITOR __

 The FORTRAN I/O Command Language Monitor serves as an interface

 between the user and the FORTRAN I/O routines. A predefined set of

 commands is available for use either under program control via the

 FTNCMD subroutine (see the section FTNCMD for the calling sequence), or

 conversationally after an error has occurred. The FORTRAN Monitor will

 intercept errors that occur during I/O operation and program interrupts.

 The FORTRAN I/O Command Language Monitor exists so that programs may

 dynamically alter the I/O environment in which the program is to run.

 For example, a user may assign, default and equate logical I/O units

 from within his program, and he may choose some of the I/O options

 available with the SET command. The second purpose is to interrogate

 the Monitor for information which may help to explain why an error

 occurred. For example, one may wish to see the format that was

 currently being used, or one may wish to see a traceback of routines

 called when the error occurred. The FORTRAN Monitor will display this

 information, then coordinate error recovery so that the program can

 continue execution. The output from the FORTRAN monitor is written on

 the logical I/O unit SERCOM and the prompting input is read from the

 logical I/O unit GUSER.

 FORTRAN I/O Commands ____________________

 In the following list, the underlined characters indicate the minimum

 acceptable abbreviation of the command.

 ASSIGN unit=FDname _

 BUFFER unit [LENGTH=integer] _ _

 CALL program-name _

 CLOSE unit __

 DEFAULT unit=FDname __

 DISPLAY keyword _

 EQUATE unit=unit __

 EXPLAIN [command name] _

 FTN _

 HELP _

 MODIFY keyword=value __

 MTS _

 QUERY _

 RELEASE unit ___

 RETURN [DEFAULT|SKIPIO] _

 SET keyword=value _

 STOP __

 TRACEBACK _

 Any line beginning with a dollar sign is executed as an MTS command.

 Note that for most of the commands more than one set of parameters can

 FORTRAN I/O Library 357

 MTS 6: FORTRAN in MTS

 October 1983

 be specified on the same command. The equal sign (=) is optional in

 these commands.

 The following list gives a detailed description of each command:

 (1) ASSIGN unit=FDname

 The ASSIGN command is used to assign or reassign any MTS logical

 I/O unit. This unit must be any one of 0,...,99, GUSER, SCARDS,

 SERCOM, SPRINT, or SPUNCH. For example, the command

 ASSIGN 12=-FILE

 assigns MTS I/O unit 12 to the file named -FILE.

 (2) BUFFER unit [LENGTH=integer]

 The BUFFER command defines a FORTRAN unit which is to be used

 exclusively for buffer-to-buffer I/O. For example,

 BUFFER 9

 defines FORTRAN unit 9 as a buffer-to-buffer I/O unit. Buffer-

 to-buffer I/O allows the user to write a formatted record, and

 then read it back (perhaps using a different format) without

 using a secondary storage device. "LENGTH=" specifies the

 length of the buffer, which cannot exceed 32767. LENGTH

 defaults to 256. "unit" must be one of 0-99. Buffer I/O is

 available only for a single record -- a user may read only one

 record, although that record may be read several times.

 (3) CALL program-name

 The call command is used to reinvoke any program in the

 backwards linkage chain, which is available using the TRACEBACK

 command. For example,

 CALL MAIN

 will rerun your program. Responsibility for providing serial

 reusability (such as repositioning I/O units to the beginning)

 is left to the programmer.

 (4) CLOSE unit

 The CLOSE command causes a unit at the FORTRAN level to be

 closed and its buffers released. The unit remains attached at

 the MTS level, but the next time it is used, the I/O library

 will reopen the unit and acquire new buffers. This command is

 primarily useful if the unit is attached to a magnetic tape

 which has several files with different blocking factors. The

 unit should be closed each time the tape is repositioned to a

 new file.

 358 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 "unit" may be any legal FORTRAN unit from 0 to 99.

 (5) DEFAULT unit=FDname

 The DEFAULT command is used to default any MTS logical I/O unit

 that is not already assigned. This command has no effect if the ___

 unit is already assigned. Note that MTS automatically defaults

 SCARDS, SPRINT, GUSER, SERCOM, and SPUNCH (SPUNCH defaults only

 in batch mode if the CARDS global parameter is specified on the

 $SIGNON command). Note also that the FORTRAN I/O routines

 default units 5 and 6 to *SOURCE* and *SINK*, respectively; no

 other defaults are automatic. "unit" must be one of 0-99,

 GUSER, SCARDS, SERCOM, SPRINT, or SPUNCH.

 (6) DISPLAY keyword

 In conversational mode, the DISPLAY command is used to elicit

 information from the FORTRAN monitor. In the list of keywords

 that follows, the underlined characters indicate the minimum

 acceptable abbreviation of the command. Longer abbreviations

 will be accepted.

 DEFAULT _

 FEEDBACK _

 FORMAT or FMT __ __

 FRi ___

 FRS ___

 GRi ___

 GRS ___

 LEVEL or LVL __ ___

 LINE _

 MAP __

 MESSAGE or MSG __ ___

 NAMELIST __

 NUMBER or NO _ __

 PSW ___

 TRACEBACK _

 UNITS _

 YARDSTICK _

 (a) DISPLAY DEFAULT

 This command is useful only after an error. The command

 will print the default corrective action associated with

 the error.

 (b) DISPLAY FEEDBACK

 This is useful only after an error. It will print

 diagnostic information concerning the error, such as the

 type of operation, the unit and file or device on which the

 error occurred, and the line or record number. The amount

 FORTRAN I/O Library 359

 MTS 6: FORTRAN in MTS

 October 1983

 of information printed is controlled by the SET FEEDBACK

 command.

 (c) DISPLAY FORMAT

 DISPLAY FMT

 This is useful only after formatted I/O errors. It prints

 the format, either compiled or variable, that was being

 used at the time of the error.

 (d) DISPLAY FRi

 This is used after a program interrupt to display the

 contents of the floating-point register specified by i. _

 (e) DISPLAY FRS

 This is used after a program interrupt to display the

 contents of all the floating-point registers.

 (f) DISPLAY GRi

 This is used after a program interrupt to display the

 contents of the general register specified by i. _

 (g) DISPLAY GRS

 This is used after a program interrupt to display the

 contents of all the general registers.

 (h) DISPLAY LEVEL

 DISPLAY LVL

 This is useful only after an error has occurred. It

 displays the error severity level.

 (i) DISPLAY LINE

 This is useful only after an I/O error in which a formatted

 line or a NAMELIST line was read. It will echo the input

 line read.

 (j) DISPLAY MAP

 This command produces a storage map showing the locations

 and the lengths of the user’s currently loaded routines.

 (k) DISPLAY MESSAGE

 DISPLAY MSG

 This is useful only after an error has occurred. It will

 repeat the error message.

 360 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 (l) DISPLAY NAMELIST

 This command causes the monitor to list the variable names

 in the namelist dictionary along with their types and

 dimensions. The NAMELIST keyword is valid only after a

 NAMELIST I/O error has occurred.

 (m) DISPLAY NUMBER

 DISPLAY NO

 This is useful only after an error. The error number will

 be printed.

 (n) DISPLAY PSW

 This is used after a program interrupt to display the PSW

 (Program Status Word).

 (o) DISPLAY TRACEBACK

 This will print the subprogram linkage traceback.

 (p) DISPLAY UNITS

 This command will print a table showing the default files

 or devices for FORTRAN I/O units, and the unit assignments

 of other relevant files and devices.

 (q) DISPLAY YARDSTICK

 This prints several lines as a ruler with numbers to

 facilitate counting columns and character positions.

 (7) EQUATE funit=munit

 This command sets a FORTRAN unit equal to a MTS logical I/O

 unit. For example,

 EQUATE 9=SERCOM

 will cause any I/O operation that specifies unit 9 to be done on

 MTS logical unit SERCOM. "funit" must be one of 0-99, and

 "munit" must be one of 0-99, GUSER, SCARDS, SERCOM, SPRINT, or

 SPUNCH.

 (8) EXPLAIN [command-name]

 This command may be used to obtain information about the FORTRAN

 monitor command language.

 FORTRAN I/O Library 361

 MTS 6: FORTRAN in MTS

 October 1983

 (a) EXPLAIN

 This will print a list of all the currently available

 FORTRAN monitor commands in their prototype form.

 (b) EXPLAIN command-name

 This will print a brief explanation of the FORTRAN monitor

 command whose name is given. For example,

 EXPLAIN DISPLAY

 explains the DISPLAY command. The command name abbrevia-

 tions outlined above may be used.

 (9) FTN

 Normally when FTNCMD is called, the FORTRAN monitor will execute

 the given command and then return control to the program.

 However, if the FTN command is issued, the FORTRAN monitor will

 remain in control until the RETURN command is given by the user.

 In other situations, the FTN command is meaningless.

 (10) HELP

 This command should be issued if a novice FORTRAN user is having

 difficulty. It tells him how to get back to MTS command mode,

 and also how to obtain information about other FORTRAN monitor

 commands.

 (11) MODIFY keyword=value

 MODIFY LEVEL={0|1|2|3|4}

 This command is useful only after an error has occurred. It is

 used to adjust the error severity level associated with the

 error. The error severity level can be determined by using the

 DISPLAY LEVEL command. Error severity levels have the following

 interpretations:

 Level 0: never print diagnostic, take default.

 Level 1: print only one diagnostic, take default.

 Level 2: print diagnostic, take default.

 Level 3: print diagnostic, query user about default.

 Level 4: print diagnostic, enter command mode.

 In batch mode, the execution of the user’s program is terminated

 whenever an error with the severity level greater than 2 is

 encountered.

 MODIFY LEVEL={0|1|2|3|4} [FOR] n [ERRORS]

 362 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 This form of the command may be used at any time to set the

 error severity level of a particular error or range of errors.

 n is the error number whose severity level is to be changed. _

 The error number is printed in batch debug output after an

 error, or is available with the DISPLAY NUMBER command after an

 I/O error has occurred in conversational mode. n may also be a _

 list of error numbers separated by commas or a range of errors

 of form low-high where the high must be greater than low. ___ ____ ____ ___

 MODIFY LEVEL=1 FOR 211

 MODIFY LEVEL=2 223,233

 MODIFY LEVEL=0 FOR 208-211 ERRORS

 (12) MTS

 The MTS command returns control to MTS command mode. The

 FORTRAN monitor may be reentered by issuing the $RESTART

 command.

 (13) QUERY keyword

 This command returns information to a program variable or array.

 The amount and type of information returned depend on the

 keyword. The information is returned in the last parameter

 supplied in the call to FTNCMD. For example,

 CALL FTNCMD(’QUERY WARN;’,0,L)

 returns information in the logical*4 variable L. Note: VS _

 FORTRAN programs should normally use the INQUIRE statement.

 (a) QUERY ERR [FOR {CATEGORY|ERROR} n]

 This returns .TRUE. or .FALSE. to a logical*4 variable

 according to whether ERR has been set ON or OFF with the

 SET command for all errors, for the whole of the specified

 category of errors, or for the single specified error. If

 no SET ERR command was issued, the default is returned.

 (b) QUERY {ATTENTION|ATTN}

 QUERY AUTODBL _

 QUERY ERRMSG ____

 QUERY MINUSZERO

 QUERY MODECHECK

 QUERY NAMEOUT

 QUERY {NULLBLANK|NULLBLNK}

 QUERY QUIT

 QUERY SEMIFREE

 QUERY UVCHECK

 QUERY WARN _

 QUERY WRAPAROUND

 QUERY ZEROSUPPRESS

 FORTRAN I/O Library 363

 MTS 6: FORTRAN in MTS

 October 1983

 This returns .TRUE. or .FALSE. to a logical*4 variable

 according to the current setting of the given keyword.

 Each of them has a default setting, or it could have been

 set ON (.TRUE.) or OFF (.FALSE.) with the SET command.

 See the SET command for details of these keywords.

 (c) QUERY FEEDBACK _

 Returns the value to INTEGER*4 variable as follows: 0 if

 FEEDBACK is NONE, 1 if POOR, 2 if NORMAL, 3 if GOOD.

 FEEDBACK is the amount of detail given on what was going on

 when an error occurred.

 (d) QUERY NAMEFMT

 Returns the characters "FREE" or "IBM " to a fullword

 variable, whichever is the current setting for the format

 used in NAMELIST I/O.

 (e) QUERY {PREFIX|PFX} _ _

 Returns to the first byte of a variable of any type, the

 current FORTRAN Monitor prefix character. This character

 can be changed with the SET command.

 (f) QUERY ORL [[FOR [UNIT]] n] _

 Returns to an INTEGER*4 variable the current output record

 length for FORTRAN Monitor output or for output to the

 specified unit. This length can be changed by the SET

 command.

 (g) QUERY {LEVEL|LVL} [[FOR] n] __

 Returns the severity level for the last error or for the

 specified error to an INTEGER*4 variable. The level can be

 set with the MODIFY command. If no error number is

 specified and there is no error yet, -1 is returned. The

 possible levels are from 0 (the least severe) to 4 (the

 most severe).

 (h) QUERY INDEXED n _

 QUERY SEQUENTIAL n _

 QUERY FORMATTED n __

 QUERY UNFORMATTED n _

 QUERY BUFFERED n _

 QUERY DEFINED n ____

 Returns .TRUE. or .FALSE. to a logical*4 variable accord-

 ing to whether or not the specified FORTRAN unit has such a

 property. INDEXED and SEQUENTIAL, and FORMATTED and UNFOR-

 MATTED are pairs of opposites, one of which will always be

 true and the other false unless the unit n is not in use _

 364 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 and hence has no properties at all. BUFFERED refers to the

 use of unit n as a buffer-to-buffer unit (see the BUFFER _

 command), and DEFINED to its use as a DEFINE-FILE unit.

 (i) QUERY DEFTYPE n ____

 If unit n is a define-file unit, this command returns a _

 single character "U", "E" or "L" to the first byte of a

 variable of any type to give the DEFINE-FILE type. If n is _

 not in use or is not a define-file unit, a blank is

 returned.

 (j) QUERY {RECORDCOUNT|RECCNT} n _ ____

 QUERY {LINENUMBER|LNR} n _ __

 QUERY LENGTH n ___

 QUERY {RETURNCODE|IORC|RC} n ___

 Returns the current count of records processed, MTS line

 number (1.000 is returned as 1000), last record length, or

 last return code (0 is normal) for the specified unit n to _

 an INTEGER*4 variable. If unit n is not in use, zero is _

 returned.

 (k) QUERY OPERATION [n] __

 Returns the number of the last I/O operation to be

 performed (or the last operation on unit n) to an INTEGER*4 _

 variable. Possible numbers are: 0=Initialize, 1=Formatted

 READ, 2=Formatted WRITE, 3=Unformatted READ, 4=Unformatted

 WRITE, 5=FIND, 6=BACKSPACE, 7=REWIND, 8=ENDFILE, 9=STOP,

 10=PAUSE, 11=CALL EXIT, 12=Error Monitor call, 13=NAMELIST

 READ, 14=NAMELIST WRITE, 15=DEFINE FILE, 16=DEBUG, 17=

 EMPTYF, 18=list-directed READ or 19=list-directed WRITE.

 This list is subject to change.

 (l) QUERY {DEVICETYPE|DEVTYP} n ___ ____

 Returns the device type of the unit n to an INTEGER*4 _

 variable. If the unit n is not in use, zero is returned. _

 The possible values are 1=line file, 2=sequential file,

 3=magnetic tape, 4=*DUMMY*, 5=no device allocated, 6=unit

 record (such as a card reader or miscellaneous). This list

 is subject to change.

 (m) QUERY {ERRORNO|IOERRNO|ERRNO} [n] ____ __ ____

 Returns the error number of the last I/O error to occur or

 the last error on the unit n to an INTEGER*4 variable. If _

 there is no error, zero is returned.

 FORTRAN I/O Library 365

 MTS 6: FORTRAN in MTS

 October 1983

 (n) QUERY {IOERRCAT|ERRCAT} [n] ______ ____

 Returns the category number of the last I/O error to occur

 or of the specified error to an INTEGER*4 variable. If no

 error number is specified and there has not yet been an

 error, 0 is returned. Possible category numbers are from 1

 to 9. For details, see Appendix A to this section.

 (o) QUERY ASSIGN n __

 QUERY DEFAULT n _

 Returns .TRUE. or .FALSE. to a logical variable according

 to whether or not the unit n has been set via an ASSIGN or _

 DEFAULT command, respectively. .FALSE. is returned if

 unit n is not in use. .TRUE. is returned in the DEFAULT _

 case if unit n was defaulted automatically by the FORTRAN _

 Monitor. For DEFAULT, "n" must be between 0 and 99.

 (p) QUERY FDNAME n __

 Returns a character string as the current FDname (postfixed

 with a blank) of the specified FORTRAN unit n to an array _

 of any type. Examples of FDnames are *SOURCE*, *T*,

 MYFILE. The array must be made large enough to hold the

 longest possible FDname; otherwise, the array could be

 overflowed with unpredictable results. 60 characters or 15

 fullwords give enough space for any FDname encountered. If

 unit n is not in use, a single blank will be returned. _

 (q) QUERY EQUATE n __

 Returns an eight-character string as the unit name (e.g.,

 "GUSER ") or number (e.g., "3 ") to which unit n is _

 currently equated by an EQUATE command. If the unit n is _

 not in use or was not equated, a single blank will be

 returned. Note that unit numbers are returned in character

 form, left-justified with trailing blanks, and not in

 numeric form.

 (14) RELEASE unit

 This command will close and release buffers of a unit at the MTS

 level. The unit remains attached at its current position. This

 command may be used to release buffer space that is not required

 for a certain period of time.

 "unit" may be any legal FORTRAN unit from 0 to 99.

 Note: buffer space is automatically acquired for each unit that

 is being used by the FORTRAN program. The RELEASE command

 releases this buffer space. It will also release the buffer

 space that is acquired with the BUFFER command.

 366 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 (15) RETURN [DEFAULT|SKIPIO]

 The RETURN command causes the FORTRAN monitor to return control

 to the user program. It has three forms:

 (a) RETURN

 The RETURN command is used to return to the user program

 after calls to FTNCMD, and to return to MTS after program

 interrupts. For I/O errors, RETURN is treated the same as

 RETURN DEFAULT.

 (b) RETURN DEFAULT

 This is useful after all types of errors, and causes the

 FORTRAN monitor to take the default corrective action

 associated with the error.

 (c) RETURN SKIPIO

 This is useful after an I/O error. It will cause the

 FORTRAN monitor to ignore the remainder of the I/O opera-

 tion and resume execution at the next statement in the

 program.

 (16) SET keyword=value

 The SET command is used to control the behavior of the FORTRAN

 monitor. The following keywords and values are defined for the

 SET command. Minimum abbreviations (when available) are

 underlined.

 {ATTENTION|ATTN}={ON|OFF}

 AUTODBL={ON|OFF} _

 {CARRIAGECONTROL|CC}={ON|OFF|MACHINE|DEFAULT} FOR UNIT n

 ERR={ON|OFF} [FOR {CATEGORY|ERROR} n] _

 ERRMSG={ON|OFF} ____

 FEEDBACK={NONE|POOR|NORMAL|GOOD} _ ___ _ _ _

 {LOWERCASE|LC}={ON|OFF} FOR UNIT n

 MCC={ON|OFF} FOR UNIT n

 MINUSZERO={ON|OFF}

 MODECHECK ={ON|OFF}

 NAMEFMT={IBM|FREE}

 NAMEOUT={ON|OFF}

 {NULLBLANK|NULLBLNK}={ON|OFF}

 ORL=n _

 {PREFIX|PFX}=character __ _

 QUIT={ON|OFF}

 {UPPERCASE|UC}={ON|OFF} FOR UNIT n

 UVCHECK={ON|OFF}

 WARN={ON|OFF}

 WRAPAROUND={ON|OFF}

 ZEROSUPPRESS ={ON|OFF}

 FORTRAN I/O Library 367

 MTS 6: FORTRAN in MTS

 October 1983

 (a) SET ATTENTION={ON|OFF}

 SET ATTN={ON|OFF}

 If ATTN is set to ON, an attention interrupt during

 execution of the monitor will be intercepted and control

 will be returned to the user in command mode. If ATTN is

 OFF, an attention interrupt in the monitor will be handled

 either by the user’s attention interrupt trap (if any), or

 by MTS. The default is ON.

 (b) SET AUTODBL={ON|OFF}

 If ON, this sets the "auto double" feature in FORTRAN-H

 Extended. The default is OFF. This has no effect in

 ordinary FORTRAN I/O.

 (c) SET CARRIAGECONTROL={ON|OFF|MACHINE|DEFAULT} FOR UNIT n

 SET CC={ON|OFF|MACHINE|DEFAULT} FOR UNIT n

 If CARRIAGECONTROL is set to ON, the MTS @CC FDname

 modifier is applied. If set to OFF, the @¬CC FDname

 modifier is applied. If set to MACHINE, the MTS @MCC

 FDname modifier is applied. If set to DEFAULT, no modifier

 is applied. The default is dependent on the setting of the

 MTS @CC and @MCC FDname modifiers for the unit.

 (d) SET ERR={ON|OFF}

 If ERR is set to ON, and an I/O error occurs, the FORTRAN

 monitor will take the ERR exit provided on the READ or

 WRITE statement. The default is ON.

 SET ERR={ON|OFF} FOR {CATEGORY|ERROR} n

 Here only just one category of errors or one individual

 error is affected.

 (e) SET ERRMSG={ON|OFF}

 If ERRMSG is set to ON, the FORTRAN monitor will print a

 diagnostic message before it takes the ERR exit on a

 FORTRAN READ statement. ERRMSG has no effect when ERR=OFF.

 The default is ON.

 (f) SET FEEDBACK={NONE|POOR|NORMAL|GOOD}

 This keyword controls the amount of diagnostic information

 produced by the FORTRAN monitor after an I/O error. In

 conversational mode, the default is POOR if the MTS command

 $SET TERSE=ON is in effect, and NORMAL if $SET TERSE=OFF is

 in effect (the default). In batch mode, the default is

 GOOD, independent of the TERSE setting.

 368 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 (g) SET LOWERCASE={ON|OFF} FOR UNIT n

 SET LC={ON|OFF} FOR UNIT n

 If LOWERCASE is set to ON, the READ and WRITE statements

 will not convert input/output to uppercase on FORTRAN unit

 "n". If set to OFF, this conversion is not performed. The

 default is dependent on the MTS @LC and @UC FDname

 modifiers for the unit.

 (h) SET MCC={ON|OFF} FOR UNIT n

 If MCC is set to ON, the first character of each line is

 treated as a machine carriage-control character for FORTRAN

 unit "n". If set to OFF, machine carriage-control is not

 assumed. The default is OFF.

 (i) SET MINUSZERO={ON|OFF}

 If MINUSZERO is set to ON, a blank field on a formatted

 READ of REAL numbers will return -0 rather than +0. This

 can be used to distinguish a field which is blank (missing

 data) from a field which contains a true zero. The default

 is OFF, i.e., blank fields are returned as +0.

 (j) SET MODECHECK={ON|OFF}

 If MODECHECK is set to ON, the variable type must agree

 with the format code. If MODECHECK is set to OFF, any

 format code can be specified, regardless of the type. The

 variable will be converted according to the format code.

 The default is ON.

 (k) SET NAMEFMT={IBM|FREE}

 If NAMEFMT is set to IBM, NAMELIST input must be in the

 standard IBM OS NAMELIST format. The first record should

 start with "&naml" in column 2, where &naml is the name of _____

 the namelist. The last record should end with "&END" in

 column 2. If NAMEFMT is set to FREE, free-format NAMELIST

 input will be recognized. The default is FREE.

 (l) SET NAMEOUT={ON|OFF}

 If NAMEOUT is set to ON, then &naml and &END are not ____

 printed on the first and last lines for NAMELIST output.

 The default is OFF.

 (m) SET NULLBLANK={ON|OFF}

 SET NULLBLNK={ON|OFF}

 If NULLBLANK is set to ON, a null line on output will

 result in a single blank. This is useful if the output is

 FORTRAN I/O Library 369

 MTS 6: FORTRAN in MTS

 October 1983

 being put in a file which will ultimately be copied to a

 printer. The default is OFF.

 (n) SET ORL=m

 This keyword controls the length of all output lines

 written by the FORTRAN monitor (excluding lines printed by

 the EXPLAIN command). "m" may range from 20 to 128. The

 default is the output record length of *MSINK*.

 SET ORL=m FOR [UNIT] n

 This command controls the length of all output lines

 written to FORTRAN unit "n". "m" may range from 20 to

 32767. The default is the maximum output record length

 supplied by the MTS system.

 (o) SET PREFIX=character

 SET PFX=character

 This keyword is used to change the prefix character used by

 the FORTRAN monitor. The default prefix character is the

 at sign (@). Only one character is allowed.

 (p) SET QUIT={ON|OFF}

 If QUIT is set to ON, then an I/O error in batch mode will

 result in the job being terminated (signed off). QUIT has

 no effect in conversational mode. The default is OFF.

 (q) SET SEMIFREE={ON|OFF}

 If SEMIFREE is set to ON, semifree input is allowed. If

 set to OFF, standard format conventions will be followed.

 The default is ON.

 (r) SET UPPERCASE={ON|OFF} FOR UNIT n

 SET UC={ON|OFF} FOR UNIT n

 If UPPERCASE is set to ON, the READ and WRITE statements

 convert input/output to uppercase on FORTRAN unit "n". If

 set to OFF, this conversion is not performed. The default

 is dependent on the settings of the MTS @LC and @UC FDname

 modifiers for the unit.

 (s) SET UVCHECK={ON|OFF}

 If UVCHECK is set to ON (the default), any attempt to print

 a numeric variable whose value is identical to a core

 constant (X’81818181’) will produce a warning. The output

 field will be filled with the character "U". If UVCHECK is

 set to OFF, this checking is not performed.

 370 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 (t) SET WARN={ON|OFF}

 If WARN is ON, warning messages are printed on *MSINK*. If

 WARN is OFF, warning messages are suppressed. This is

 useful if, for example, the user intentionally prints a

 number too large for the output field in order to fill the

 field with asterisks (*). The default is ON. Note: The

 definition of a warning message versus an error message is

 built into the I/O library and cannot be changed by the

 user.

 (u) SET WRAPAROUND={ON|OFF}

 If WRAPAROUND is set to ON, any output lines longer than

 the device output record length will be continued on the

 next line of the device. If set to OFF, any line longer

 than the device output record length will be truncated to

 that length. The default is ON.

 (v) SET ZEROSUPPRESS={ON|OFF}

 This keyword is used to suppress printing of true zeros on

 output. If ZEROSUPPRESS is set to ON, the field will be

 left blank if an integer or floating-point variable is

 equal to zero. If ZEROSUPPRESS is set to OFF, zeros will

 be printed in the field. The default is OFF.

 (17) STOP

 The STOP command terminates execution, like the FORTRAN STOP

 statement. The program may not be restarted.

 (18) TRACEBACK

 This command prints a subprogram linkage traceback.

 The FTNCMD Subroutine _____________________

 The FTNCMD subroutine may be called to execute a FORTRAN I/O command,

 or an MTS command, in a program and to return to the program after the

 command has been executed.

 FTNCMD is an entry point in the FORTRAN I/O command language monitor,

 and thus, is available automatically with the I/O library.

 The subroutine FTNCMD can be called from a FORTRAN program as

 follows:

 CALL FTNCMD(char[,len])

 FORTRAN I/O Library 371

 MTS 6: FORTRAN in MTS

 October 1983

 where:

 char is the character string containing a FORTRAN I/O command or

 an MTS command. If the character string is terminated by a

 semicolon, the length parameter len may be omitted. It is ___

 possible to build the command substituting variables in the

 character string.

 len is the length of the command character string expressed as

 either a fullword or a halfword integer (INTEGER*4 or

 INTEGER*2). This parameter may be omitted if the command

 character string is terminated with a semicolon (;).

 If the first character in the call to FTNCMD is a dollar sign ($),

 the subroutine returns control to MTS. The character string is then

 executed as an MTS command. After execution, MTS returns control to the

 program.

 If the first character in the command is not a dollar sign, the

 subroutine assumes it is a FORTRAN I/O command rather than an MTS

 command. The FORTRAN command language monitor executes the I/O command

 and returns to the program.

 Text replacement is possible by using a question mark (?) in the

 command string at the point where text is to be substituted and

 providing the replacement text as an additional parameter. In this

 case, replacement parameters begin at the third parameter position. The

 following commands are identical.

 (1) CALL FTNCMD(’ASSIGN 10=-S’,12)

 (2) CALL FTNCMD(’ASSIGN 10=-S;’)

 (3) J=10

 CALL FTNCMD(’ASSIGN ?=-S;’,0,J)

 Note that if a variable such as J in the last example, the length

 argument (the second argument in the FTNCMD call) must exist but can be

 set to zero if a semicolon is used to terminate the string.

 The substitution of the variable argument may involve conversion. If

 the argument is a character string, the characters terminated by the

 first blank are substituted directly. The terminating blank is not

 substituted. If the variable is an integer value, it is converted to a

 character string before substitution. The following are equivalent:

 (1) LOGICAL*1 NAME(3) /’-’,’S’,’ ’/

 CALL FTNCMD(’ASSIGN 10=?;’,0,NAME)

 (2) J=10

 CALL FTNCMD(’ASSIGN ?=-S;’,0,J)

 The following examples illustrate the use of FTNCMD.

 372 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 (1) The following command assigns MTS unit 4 to the temporary file

 -SCRATCH4 from within the program.

 CALL FTNCMD(’ASSIGN 4=-SCRATCH4’,18)

 or

 CALL FTNCMD(’ASSIGN 4=-SCRATCH4;’)

 (2) The following command specifies that FORTRAN unit 9 is to be

 used for core-to-core I/O with a buffer length of 300.

 CALL FTNCMD(’BUFFER 9 LENGTH=300;’)

 (3) The following command defaults MTS unit SPUNCH to *PUNCH*.

 CALL FTNCMD(’DEFAULT SPUNCH=*PUNCH*;’)

 Note: This is only effective if the unit SPUNCH has not already

 been assigned. Note also that SPUNCH would automatically

 default to *PUNCH* in batch mode if the CARDS global parameter

 was specified on the $SIGNON command.

 (4) The following command maps FORTRAN unit 99 to MTS unit SERCOM.

 CALL FTNCMD(’EQUATE 99=SERCOM;’)

 (5) The following command gives control to the FORTRAN I/O command

 language monitor.

 CALL FTNCMD(’FTN;’)

 Any of the FORTRAN I/O commands except the QUERY command may be

 issued by the user at this point. Return is made to the calling

 program when the RETURN command is issued.

 (6) Many statistical applications require that missing data be

 distinguished from data with a value of zero. If a blank record

 is read under I, F, D, E, or G format, the variables in the I/O

 list are set to zero. A blank field for a REAL or COMPLEX

 variable will be set to -0.0 if the following statement is

 executed before the read operation:

 CALL FTNCMD(’SET MINUSZERO=ON;’)

 (7) The following command enters debug mode to debug a program from

 a terminal.

 CALL FTNCMD(’$SDS;’)

 Return is made automatically when the CONTINUE debug command is

 given.

 FORTRAN I/O Library 373

 MTS 6: FORTRAN in MTS

 October 1983

 Error processing ________________

 The FORTRAN I/O Command Language Monitor controls error processing

 and monitors error recovery in conversational mode. All errors and

 warnings are produced on *MSINK*, the printer in batch mode or the

 terminal in conversational mode. The messages may not be reassigned to

 a different device, although they may be suppressed or the severity

 level altered such that the error message will occur only once and the

 default corrective action will be automatically taken. See the MODIFY

 command description in the section "FORTRAN I/O Commands."

 (1) Batch Mode _____ ____

 If an error occurs in batch mode a predefined set of diagnostics

 is given and execution is terminated. The following is an

 example of a batch error message that occurred when invalid data

 was entered on the READ request.

 ##

 ##

 ERROR Invalid integer field, illegal character. Condition

 occurred during a formatted read on FORTRAN Unit 5

 which is attached to *SOURCE*. The read was sequen-

 tial at record number 1. A return will be made to

 the system.

 This ruler indicates column numbers in the data line which

 follows; if a dollar sign appears below the line it indicates

 the probable location of the error:

 10 20 30 40 50 60

 |....|....|....|....|....|....|....|....|....|....|....|....

 1,2,4.5,5.6,3,

 $

 ##

 ##

 Batch FORTRAN debug output follows,

 Format-- (3I5,2F5.2,I5)

 Subprogram traceback,

 Error occurred in routine MAIN at hexadecimal displacement +12C

 Called from "SYSTEM"

 Unit usage table

 Unit 5 is assigned to *SOURCE*

 Unit 6 is assigned to *SINK*

 Guser is assigned to *MSOURCE*

 Scards is assigned to *MSOURCE*

 374 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 Sercom is assigned to *MSINK*

 Sprint is assigned to *MSINK*

 Error number=211

 Severity level=2

 FORTRAN error causes a return to the system.

 Execution terminated

 From the format printed in the above example, it is quite

 obvious that the data line should have an INTEGER value as the

 the third data value not a REAL value.

 (2) Conversational Mode ______________ ____

 In conversational mode if the error occurs on data entry (i.e.,

 invalid data as in the example above) the user is prompted to

 reenter the line from the start of the field in error. The line

 that is to be reentered is first echoed on the terminal. At

 this point, the error should be corrected and the line re-

 entered. If a null line is entered, remaining items in the I/O

 list will be set to zero or blank. If "CANCEL" is entered, the

 user is placed in command mode. The message:

 @@@ FORTRAN @@@

 is written when the FORTRAN I/O Command Language Monitor is

 invoked. The prefix character will be an "@" if the FORTRAN

 Monitor is in control.

 In command mode the user may use any of the FORTRAN I/O commands

 listed in the preceding section to display values and gain more

 information of the error, and to take some recovery action.

 If an error occurs which is not an error on data entry, the

 error message and default action are printed on the terminal.

 For example, the error was an actual I/O error. The user is

 then prompted whether or not he wants to take the default

 action. If he does not want the default, he can enter FORTRAN

 I/O Command Language Monitor mode and use the commands (such as

 "RETURN SKIPIO") listed in the preceding section to gain some

 more information or take some recovery action.

 The following examples in conversational mode illustrate some of

 the alternatives mentioned above. The user’s input is shown in

 lowercase, the prefix character "@" is used when the FORTRAN I/O

 Command Language Monitor has control.

 FORTRAN I/O Library 375

 MTS 6: FORTRAN in MTS

 October 1983

 Example 1: _________

 # $run -load

 # Execution begins

 1,2,4.5,5.6,3,

 ERROR Invalid integer field, illegal character. Condi-

 tion occurred during a formatted read on FORTRAN

 Unit 5 which is attached to *SOURCE*. If you

 re-enter the rest of the line, execution of the

 input statement will continue.

 1,2,4.5,5.6,3,

 $

 Re-enter line from beginning of field in error or "CANCEL".

 Rest of line now is:

 4.5,5.6,3,

 3,4.5,5.6,3,

 1 2 3 4.50 5.60 3

 # Execution terminated

 Example 2: _________

 This example is the same as above except that when prompted to

 reenter the line the user cannot correct the error because he

 does not remember the format that was currently being used. He,

 therefore, enters command mode to display the format. The

 conversation is shown from the reenter request.

 Re-enter line from beginning of field in error or "CANCEL".

 Rest of line now is:

 4.5,5.6,3,

 cancel

 @@@ FORTRAN MONITOR @@@

 @ dis format

 @ FORMAT--(3I5,2F5.2,I5)

 @ return

 Re-enter line from beginning of field in error or "CANCEL".

 Rest of line now is:

 4.5,5.6,3,

 3,4.5,5.6,3,

 1 2 3 4.50 5.60 3

 # Execution terminated

 376 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 APPENDIX A: FORTRAN I/O LIBRARY ERROR MESSAGES ___

 The FORTRAN I/O Library error messages are divided into nine

 categories:

 (1) Variable-format decoder errors

 (2) Inappropriate calls for I/O operation

 (3) Errors during I/O operations

 (4) Define file errors

 (5) Format errors

 (6) NAMELIST errors

 (7) List-directed I/O errors

 (8) Reserved

 (9) Miscellaneous errors

 Each message is preceded by two numbers: its error number and its

 severity level. The severity levels have the following interpretations:

 0: Never print diagnostic, take default.

 1: Print only one diagnostic, take default.

 2: Print diagnostic, take default.

 3: Print diagnostic, query user about the default.

 4: Print diagnostic, enter command mode.

 Variable-Format Decoder Errors ______________________________

 1-1 Variable formats must be enclosed in parentheses.

 The first character of the format is not a left parenthesis. This

 is a warning.

 Default: The error will be ignored.

 2-1 The maximum repeat count is 255.

 This is a warning.

 Default: Count=255.

 3-3 Invalid variable format, unexpected integer.

 An integer precedes a T-format code, quote, comma, slash, or right

 parenthesis.

 Default: The integer will be ignored.

 4-3 Invalid variable format, unexpected character or missing closing

 parenthesis.

 FORTRAN I/O Library 377

 MTS 6: FORTRAN in MTS

 October 1983

 There was an invalid character, illegal character in format field,

 or a misplaced character, number or period.

 Default: The format will be assumed terminated by the unexpected

 character.

 5-3 FORTRAN I/O failure detected by variable format decoding routine.

 This is a system error.

 6-1 Invalid variable format, missing repeat count.

 A number does not precede an X-format code. This is a warning.

 Default: Count=1.

 7-1 Invalid variable format, null quote string.

 This is a warning.

 Default: The null quote string will be ignored.

 9-3 Invalid variable format, unpaired right parentheses.

 Default: The format will be assumed terminated by the unexpected

 right parenthesis.

 10-1 Invalid variable format, missing specification.

 Two successive commas or a comma and a right parenthesis were

 encountered. This is a warning.

 Default: The error will be ignored.

 11-1 Invalid variable format; comma, colon or slash should separate

 format fields.

 A comma or a slash was expected. This is a warning.

 Default: A comma will be assumed, and the error will be ignored.

 16-3 Invalid variable format, field width > 255.

 Default: The format will be assumed terminated at the point of

 the error.

 17-1 Invalid variable format, missing column number.

 A nonnumeric character follows a T-format code. This is a

 warning.

 Default: Column=1.

 378 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 18-3 Invalid variable format, missing Hollerith count.

 A number does not precede a H-format code.

 Default: The format will be assumed terminated at the point of

 the error.

 19-1 Invalid variable format, column number > 32767.

 This is a warning.

 Default: Column=32767.

 20-1 Invalid variable format, the absolute value of the scale factor >

 127.

 This is a warning.

 Default: A scale factor of zero will be assumed.

 21-3 Invalid variable format, missing closing quote.

 None of 255 characters following the first quote is a quote.

 Default: The format will be assumed terminated by the first

 quote.

 22-3 Invalid variable format, Hollerith count > 255.

 Default: The format will be assumed terminated at the point of

 the error.

 Inappropriate Calls for I/O Operations ______________________________________

 131-3 Unit number n was specified; FORTRAN units must be 0,...,99 only.

 Default: The I/O statement will be ignored, and execution of the

 program will continue with the next statement.

 132-3 Unit was referenced but was not assigned or defaulted.

 Default: Presuming an assignment or reassignment of the unit, the

 I/O statement will be retried.

 137-3 Illegal I/O device referenced. Attempt to msg.

 "msg" may be one of the following:

 FORTRAN I/O Library 379

 MTS 6: FORTRAN in MTS

 October 1983

 write to an input device

 read from a file without "read" access

 write to a file without "write" access

 read from an output device

 Default: Presuming an assignment or reassignment of the unit, the

 statement will be retried.

 138-3 Unit cannot be rewound.

 Default: The REWIND request will be ignored.

 139-3 Unit cannot be backspaced.

 Default: The BACKSPACE request will be ignored.

 140-3 The assigned file or device is non-exsistent or access is not

 allowed.

 Default: Presuming an assignment or reassignment of the unit, the

 I/O statement will be retried.

 141-2 Unit cannot be endfiled.

 This is a warning.

 Default: The ENDFILE request will be ignored.

 143-3 Attempting to backspace an unformatted record on a unit record

 device.

 Default: The BACKSPACE request will be ignored.

 144-3 Attempting to do an indexed operation on a sequential file or

 device.

 Default: The operation will be done sequentially if the unit is

 not reassigned. Otherwise, the I/O statement will be retried.

 146-1 Endfiling a unit after a FIND.

 This is a warning.

 Default: Endfile is a null operation on files/devices (other than

 magnetic tapes).

 147-1 Backspacing a unit after a FIND or a REWIND.

 This is a warning.

 Default: The unit will be backspaced.

 380 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 148-3 Attempting to backspace before the beginning of a file.

 Default: The BACKSPACE request will be ignored.

 152-4 Unit number n is being referenced but was not defined.

 Default: Presuming an assignment or reassignment of the unit, the

 I/O statement will be retried.

 161-4 Attempt to read a formatted record with an unformatted READ

 statement.

 Default: Control will be returned to the system.

 162-4 The record read was probably a blocked record.

 Currently, unformatted I/O routines cannot read VBS-formatted

 records.

 Default: Control will be returned to the system.

 449-2 Unrecognizable value for XXX parameter in YYY statement.

 Default: Control will be returned to the system.

 450-2 Invalid value of XXX for unit number parameter in YYY statement.

 Default: Control will be returned to the system.

 451-2 File name in INQUIRE statement invalid or too long, or file nonex-

 istent, or fdub can’t be obtained for file.

 Default: Control will be returned to the system.

 452-2 Request to OPEN unit n for direct access illegal - device cannot

 handle it.

 Default: Control will be returned to the system.

 453-2 STATUS=SSS specified for unit n in OPEN statement, but msg.

 Default: Control will be returned to the system.

 454-2 Return code of nn from attempt to create NEW file for OPEN

 statement.

 Default: Control will be returned to the system.

 455-2 Return code of nn from attempt to DELETE file for CLOSE statement.

 Unable to destroy the file.

 FORTRAN I/O Library 381

 MTS 6: FORTRAN in MTS

 October 1983

 Default: Control will be returned to the system.

 513-2 Illegal dimension statement encountered during I/O. Either lower

 bound greater than upper bound or value out of range.

 Default: Control will be returned to the system.

 514-2 Asynchronous READ statement not supported in MTS.

 Default: Control will be returned to the system.

 515-2 Asynchronous WRITE statement not supported in MTS.

 Default: Control will be returned to the system.

 516-2 Asynchronous WAIT statement not supported in MTS.

 Default: Control will be returned to the system.

 517-2 Asynchronous REWIND, BACKSPACE, or ENDFILE not supported in MTS.

 Default: Control will be returned to the system.

 Errors During I/O Operations ____________________________

 65-3 Unformatted input record too short, list length exceeds record

 length.

 Default: The remainder of the READ will be skipped, and execution

 of the program will continue with the next statement.

 66-3 Attempting to start an unformatted read in the middle of a spanned

 record. You probably have scrambled data.

 Default: The READ statement will be ignored, and execution of the

 program will continue with the next statement.

 67-4 Illegal subscript occurred during I/O operation.

 Default: A return will be made to the system.

 129-3 Unformatted input record too short. The length indicated in the

 block control word exceeds the length of the record.

 Default: The READ statement will be ignored, and execution of the

 program will continue with the next statement.

 382 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 130-3 End-of-file read, but no END= exit provided.

 Default: Presuming an assignment or reassignment of the unit, the

 READ statement will be retried.

 133-3 No buffer space is available for unit n.

 This is a system error.

 134-3 FORTRAN I/O failure detected by unit control routine; could not

 free space allotted to unit n.

 This is a system error.

 142-3 FORTRAN I/O failure detected by unit control routine, error return

 from CONTROL.

 This is a system error.

 145-4 Error return from READ or WRITE: msg

 "msg" indicates the actual I/O error message.

 Default: The rest of the current I/O operation is ignored. If

 the unit is reassigned any further I/O is performed on the new

 unit.

 149-4 Error return from READ or WRITE: msg

 "msg" indicates the actual I/O error message.

 Default: The rest of the current I/O operation is ignored. If

 the unit is reassigned, any further I/O is performed on the new

 unit.

 150-3 FORTRAN I/O failure detected by unit control routine, NOTE error.

 This is a system error.

 151-3 FORTRAN I/O failure detected by unit control routine, POINT error.

 This is a system error.

 Default: The I/O statement will be ignored.

 168-4 A wait-to-lock was interrupted or locking would cause deadlock.

 The MTS routines NOTE and POINT indicated the message.

 Default: The I/O statement will be retried.

 FORTRAN I/O Library 383

 MTS 6: FORTRAN in MTS

 October 1983

 169-4 A Software/Hardware error occurred while attempting to open the

 file.

 Default: Control will be returned to the system.

 170-3 End-of-file during an internal READ.

 171-3 Attempt to write more records than allowed during internal WRITE.

 Increase the number of elements in the array.

 401-4 Return code of nn received from I/O device but no associated error

 message returned.

 Define File Errors __________________

 153-3 ***DEFINE FILE*** - output record greater than specified in the

 DEFINE FILE statement.

 Default: The record, truncated to the correct size, will be

 written.

 154-3 ***DEFINE FILE*** - associated variable is < 0 which is illegal

 Default: The rest of the I/O statement will be ignored.

 155-4 ***DEFINE FILE*** - unit must be assigned to a sequential file.

 Default: Presuming an assignment or reassignment of the unit, ex-

 ecution will continue.

 156-4 ***DEFINE FILE*** - input file not formatted the same as when it

 was created.

 Default: Assuming an emptying or reassignment of the unit, the

 statement will be repeated.

 157-3 ***DEFINE FILE*** - index variable > specified maximum.

 Default: The remainder of the I/O operation will be skipped, and

 execution will resume within the program at the next statement.

 158-4 ***DEFINE FILE*** - format type different than that specified.

 Default: The format will be ignored and execution will continue.

 384 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 159-3 DEFINE FILE - non-indexed I/O statements are not allowed on "DE-

 FINE FILE" data files.

 Default: The offending I/O statement will be ignored.

 160-2 DEFINE FILE - A second DEFINE FILE statement for the same unit has

 been encountered.

 This is a warning.

 Default: The redefinition will be ignored and execution continues

 with the next statement.

 163-4 Unit number n was specified in a DEFINE FILE statement; FORTRAN

 units must be 0,...,99 only.

 Default: A return will be made to the system.

 164-4 DEFINE FILE could not initialize the file - cause - no write

 access or no file space

 Default: Control will be returned to the system.

 165-4 Illegal I/O device referenced. Attempt to msg.

 This is same as the error message 137, except that I/O device is

 used in DEFINE FILE. "msg" is one of the following:

 write to an input device

 read from a file without "read" access

 write to a file without "write" access

 read from an output device

 Default: Control will be returned to the system.

 166-4 DEFINE FILE - concatenated files are not allowed when using DEFINE

 FILE.

 Default: Control will be returned to the system.

 167-4 DEFINE FILE - file contains bad data - e.g. variable length

 lines.

 Default: Control will be returned to the system.

 FORTRAN I/O Library 385

 MTS 6: FORTRAN in MTS

 October 1983

 Format Errors _____________

 193-1 A format width, literal string, or column specification exceeds

 the device length.

 This is a warning.

 Default: This field cannot be wrapped so it will be truncated.

 Wraparound is still in effect for the remainder of the output

 list.

 194-3 Invalid compiled format. Your program has most likely exceeded

 the dimensions of an array.

 Default: The remainder of the I/O operation will be skipped, and

 execution will resume within the program at the next statement.

 195-1 Attempting to write a formatted record too long for file or

 device.

 This is a warning.

 Default: The record will be truncated before being written.

 196-1 Attempting to read a formatted record longer than file or device

 record length.

 This is a warning.

 Default: The record will be padded with blanks.

 197-1 Variable (or array element) in output list is undefined.

 This is a warning.

 Default: A field of U’s will be written.

 198-3 Format code and variable type do not match. Format code is fmt,

 type is type.

 "type" may be one of INTEGER, REAL, LOGICAL, COMPLEX.

 Default: "G" format code will be used.

 199-3 Illegal parameter encountered in call to SIOC.

 FORMAT routines have passed an illegal parameter to SIOC routine.

 Default: The rest of the I/O operation will be ignored.

 386 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 200-1 Formatted record too long for file or device.

 This is a warning.

 Default: Wraparound will take effect.

 201-3 fmt format can only be used if the variable is m or n bytes long.

 If the MODECHECK is set to ON, the variable type must agree with

 the format code.

 Default: "G" format code will be used.

 202-3 fmt format can only be used if the variable is n bytes long.

 Default: The rest of the I/O operation will be ignored.

 206-1 Output field width too small.

 This is a warning.

 Default: A field of *’s will be written.

 208-2 Invalid {INTEGER|REAL} number, bad syntax.

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 211-2 Invalid type field, illegal character.

 "type" may be INTEGER, REAL, LOGICAL, HEXADECIMAL. If the mode is

 conversational, the line from the field in error may be reentered

 from the terminal.

 Default: A return will be made to the system.

 213-2 Magnitude of REAL number exceeds machine limits:

 (.539760534693402789D-78, .723700557733226211D+76)

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 214-2 INTEGER*4 number exceeds machine limits:

 (-2147483648, +2147483647)

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 FORTRAN I/O Library 387

 MTS 6: FORTRAN in MTS

 October 1983

 Default: A return will be made to the system.

 215-2 INTEGER*2 number exceeds machine limits: (-32768, +32767)

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 NAMELIST Errors _______________

 257-3 Variable subscripts are illegal in NAMELIST input.

 For example, "ABC(XYZ)" was specified instead of "ABC(15)".

 Default: The remainder of the read will be skipped, and execution

 of the program will continue with the next statement.

 258-2 Variable name appears subscripted but was not dimensioned.

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 259-2 Variable name could not be found in NAMELIST dictionary.

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 260-2 Illegal character encountered in NAMELIST input.

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 261-3 Expecting a data value, but end of record found.

 An unexpected end of data was encountered in NAMELIST read with

 free-format.

 Default: The remainder of the read will be skipped, and execution

 of the program will continue with the next statement.

 388 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 262-3 Expecting a closing quote, but end of record found.

 An end of record was encountered during the process of a literal

 string for both IBM and free-formats.

 Default: The remainder of the read will be skipped, and execution

 of the program will continue with the next statement.

 263-3 Expecting a closing parentheses, but end of record found.

 An end of record was encountered when NAMELIST routines were pro-

 cessing a variable name with subscripts.

 Default: The remainder of the read will be skipped, and execution

 of the program will continue with the next statement.

 264-2 Expecting imaginary part of COMPLEX number.

 An illegal character was encountered. If the mode is conversa-

 tional, the line from the field in error may be reentered from the

 terminal.

 Default: A return will be made to the system.

 265-2 Subscript exceeds corresponding array dimension.

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 266-2 Repetition factor exceeds array (or element) size.

 Default: Extra values will be ignored and the read continued.

 267-2 Name > 6 characters.

 A variable name in the NAMELIST is too long. If the mode is con-

 versational, the line from the field in error may be reentered

 from the terminal.

 Default: A return will be made to the system.

 268-2 Missing bracket ’)’ in COMPLEX input.

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 FORTRAN I/O Library 389

 MTS 6: FORTRAN in MTS

 October 1983

 269-2 Invalid type number, msg.

 "type" may be one of REAL, INTEGER, LOGICAL, HEXADECIMAL; and

 "msg" may be "illegal character" or "bad syntax". If the mode is

 conversational, the line from the field in error may be reentered

 from the terminal.

 Default: A return will be made to the system.

 273-2 Magnitude of REAL number exceeds machine limits:

 (.539760534693402789D-78, .723700557733226211D+76)

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 274-2 INTEGER*4 number exceeds machine limits:

 (-2147483648, 2147483647)

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 275-2 INTEGER*2 number exceeds machine limits: (-32768, 32767)

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 276-1 Variable (or array element) in output list is undefined.

 This is a warning.

 Default: A field of U’s will be written.

 277-3 Output field width too small.

 Default: A field of *’s will be written.

 278-3 Repetition factors (denoted by the ’*’) are illegal in this

 context.

 The repetition factors cannot be specified within bracketed com-

 plex pairs.

 Default: The remainder of the read will be skipped, and execution

 of the program will continue with the next statement.

 390 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 279-2 Too many subscripts specified. Only n are required.

 Default: A return will be made to the system.

 280-2 Too few subscripts specified. n are required.

 Default: A return will be made to the system.

 281-2 Zero or negative subscript specified - must be greater than 0.

 282-3 Incomplete or illegal NAMELIST variable name (format is

 name=value).

 Default: The remainder of the read will be skipped, and execution

 of the program will continue with the next statement.

 283-2 Subscript larger than maximum set in declaration statement.

 Default: A return will be made to the system.

 284-2 Subscript less than minimum set in declaration statement.

 Default: Control will be returned to the system.

 List-Directed I/O Errors ________________________

 321-1 Variable (or array element) in output list is undefined.

 This is a warning.

 Default: A field of U’s will be written.

 322-3 Illegal parameter encountered in call to SIOC.

 Default: The rest of the I/O operation will be ignored.

 323-2 Complex pair should be terminated by a ’)’.

 This is a warning.

 Default: The error will be ignored and execution resumed.

 324-1 Output field width too small.

 This is a warning.

 Default: A field of *’s will be written.

 FORTRAN I/O Library 391

 MTS 6: FORTRAN in MTS

 October 1983

 325-2 Invalid {INTEGER|REAL|COMPLEX} number, illegal character or bad

 syntax.

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 326-2 Magnitude of REAL number exceeds machine limits:

 (.539760534693402789D-78, .723700557733226211D+76)

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 327-2 INTEGER*4 number exceeds machine limits: (-2147483648,

 +2147483647)

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 328-2 INTEGER*2 number exceeds machine limits: (-32768, +32767)

 If the mode is conversational, the line from the field in error

 may be reentered from the terminal.

 Default: A return will be made to the system.

 329-2 Literal string is longer than the element size.

 This is a warning.

 Default: The literal will be truncated and execution resumed.

 330-1 Output record too short for a single variable of this type.

 Default: A field of *’s will be written.

 Miscellaneous Errors ____________________

 68-3 FORTRAN-H extended processing is not yet implemented.

 Default: System error causes return to system.

 69-4 Maximum number of nesting levels in implied DO loop processing

 exceeded (FORTRAN-H Extended).

 392 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 70-4 Implied DO loop increment is not positive (FORTRAN-H Extended).

 71-4 Implied DO loop ending value is smaller than initial value

 (FORTRAN-H Extended).

 385-3 SETSTA (Setstare) subroutine was called but is no longer avail-

 able. Now you can use the BACKSPACE statement to backspace any

 file or device. Unit record equipment may be backspaced 1 record.

 Default: The call to SETSTA will be ignored and execution will

 resume within the program at the next statement.

 386-3 SETBLK (Setblock) subroutine was called but is no longer avail-

 able. It is obsolete -- blocking is provided by the magnetic tape

 support routines.

 Default: The call to SETBLK will be ignored and execution will

 resume within the program at the next statement.

 387-3 FORTRAN I/O statistics collection failure, "FIO:STATFILE" is not

 available.

 This is a system error. (This message will not occur at UM).

 388-4 Source code error at ISN n in subroutine s. Consult the listing

 of your compilation.

 Default: Execution will be terminated.

 389-3 FORTRAN I/O failure - space management error. Likely cause is no

 space available. Grab=hhhh.

 This is a system error.

 390-3 Attempting to empty a DEFINE FILE unit.

 Default: The call to EMPTYF will be ignored.

 391-2 Attempt to empty a device or a non-existent file.

 This occurs in FORTRAN call to EMPTYF. This is a warning.

 Default: A return to the program will be made with RC=4 (RETURN

 1).

 392-2 Hardware error during EMPTY.

 This occurs in FORTRAN call to EMPTYF. This is a warning.

 Default: A return to the program will be made with RC=8 (RETURN

 2).

 FORTRAN I/O Library 393

 MTS 6: FORTRAN in MTS

 October 1983

 393-2 EMPTY access not allowed for file.

 This occurs in FORTRAN call to EMPTYF. This is a warning.

 Default: A return to the program will be made with RC=12 (RETURN

 3).

 394-2 Locking for modification (EMPTY), will result in a deadlock.

 This occurs in FORTRAN call to EMPTYF. This is a warning.

 Default: A return to the program will be made with RC=16 (RETURN

 4).

 395-2 Waiting for file during EMPTY was interrupted - file not emptied.

 This occurs in FORTRAN call to EMPTYF. This is a warning.

 Default: A return to the program will be made with RC=20 (RETURN

 5).

 397-3 Attempt to start or unload an improperly nested or nonexistent

 load module.

 Default: Because this error is fatal, control will be returned to

 the system.

 398-3 Illegal call to subroutine "SLITE".

 The argument must be from 0 through 4 for SLITE.

 Default: Because this error is fatal, control will be returned to

 the system.

 399-3 FORTRAN I/O Failure detected by DEBUG package routine, error re-

 turn from SIOC.

 This is a system error.

 400-2 UNLDF may be called only by index: CALL UNLDF(0,INDEX,0) where

 INDEX is the value returned by LOADF.

 This is a warning.

 Default: The call to UNLDF will be ignored.

 394 FORTRAN I/O Library

 MTS 6: FORTRAN in MTS

 October 1983

 THE ELEMENTARY FUNCTION LIBRARY _______________________________

 The elementary function library (EFL) contains the mathematical and

 implicitly called subroutines usually associated with the FORTRAN IV

 language. In the FORTRAN language the mathematical routines are called

 because of an explicit reference to the name of the function in an

 arithmetic expression. Mathematical routines for the computation of the

 square root, exponential, logarithmic, trigonometric, hyperbolic, gamma

 and error functions are provided. The implicitly called routines are

 invoked to perform complex multiplication and division, and to perform

 the various exponentiation operations occasioned by the FORTRAN **

 operator. Finally, this library also includes the ANSI FORTRAN intrin-

 sic minimum and maximum value functions, and the DREAL and DIMAG

 functions, which are inexplicably not a part of the IBM FORTRAN library.

 The programs contained in this elementary function library are system

 resident, and are defined in the low-core symbol dictionary named <EFL>.

 Special loader control cards at the end of the *LIBRARY file cause the

 symbol <EFL> to be defined; and, if there are still undefined symbols,

 then this symbol dictionary will be searched.

 List of Entry Points by General Function ____ __ _____ ______ __ _______ ________

 Absolute Value CABS, CDABS

 Square Root SQRT, DSQRT, CSQRT, CDSQRT

 Common and Natural Logarithm ALOG, ALOG10, DLOG, DLOG10, CLOG, CDLOG

 Exponential EXP, DEXP, CEXP, CDEXP

 Trigonometric Functions COS, SIN, TAN, COTAN, DCOS, DSIN, DTAN,

 DCOTAN, CCOS, CSIN, CDCOS, CDSIN

 Inverse Trigonometric Functions ARCOS, ARSIN, ATAN, ATAN2, DARCOS,

 DARSIN, DATAN, DATAN2

 Hyperbolic Functions COSH, SINH, TANH, DCOSH, DSINH, DTANH

 Gamma and Log-gamma Functions GAMMA, ALGAMA, DGAMMA, DLGAMA

 Error Function ERFC, ERF, DERFC, DERF

 Exponentiation FIXPI#, FRXPI#, FDXPI#, FCXPI#,FCDXI#,

 FRXPR#, FDXPD#

 Complex Operations CMPY#, CDVD#, CDMPY#, CDDVD#,

 DREAL¹, DIMAG¹
 Minimum/Maximum Value MIN0, AMIN0, MIN1, AMIN1, DMIN1

 MAX0, AMAX0, MAX1, AMAX1, DMAX1

 ──────────
 ¹Since the DREAL and DIMAG functions are not built into the current
 FORTRAN compilers, they must be explicitly declared as REAL*8

 functions.

 The Elementary Function Library 395

 MTS 6: FORTRAN in MTS

 October 1983

 Mathematical Functions ____________ _________

 REAL*4 REAL*8 COMPLEX*8 COMPLEX*16 ______ ______ _________ __________

 CABS¹ CDABS¹
 SQRT DSQRT CSQRT CDSQRT

 EXP DEXP CEXP CDEXP

 ALOG DLOG CLOG CDLOG

 ALOG10 DLOG10

 COS DCOS CCOS CDCOS

 SIN DSIN CSIN CDSIN

 TAN DTAN

 COTAN DCOTAN

 ARCOS DARCOS

 ARSIN DARSIN

 ATAN¹ DATAN¹
 ATAN2² DATAN2²
 COSH DCOSH

 SINH DSINH

 TANH¹ DTANH¹
 ERFC¹ DERFC¹
 ERF¹ DERF¹
 ALGAMA DLGAMA

 GAMMA DGAMMA

 FORTRAN Implicitly Called Functions _______ __________ ______ _________

 Complex operations: name(multiplicand-dividend,multiplier-divisor)

 COMPLEX*8 COMPLEX*16 _________ __________

 CMPY# CDMPY#

 CDVD# CDDVD#

 Exponentiation: name(base,exponent)

 Name Base Exponent ____ ____ ________

 FIXPI# INTEGER*4 INTEGER*4

 FRXPI# REAL*4 INTEGER*4

 FDXPI# REAL*8 INTEGER*4

 FCXPI# COMPLEX*8 INTEGER*4

 FCDXI# COMPLEX*16 INTEGER*4

 FRXPR# REAL*4 REAL*4

 FDXPD# REAL*8 REAL*8

 396 The Elementary Function Library

 MTS 6: FORTRAN in MTS

 October 1983

 ANSI FORTRAN Minimum/Maximum Value ____ _______ _______________ _____

 Name Arguments Mode Result Mode ____ _________ ____ ______ ____

 MIN0/MAX0 INTEGER*4 INTEGER*4

 MIN1/MAX1 REAL*4 INTEGER*4

 AMIN0/AMAX0 INTEGER*4 REAL*4

 AMIN1/AMAX1 REAL*4 REAL*4

 DMIN1/DMAX1 REAL*8 REAL*8

 ──────────
 ¹These routines do not recognize any error conditions and never transfer
 to the error monitor.

 ²These routines require two arguments.

 Calling Conventions ___________________

 The programs contained in the EFL conform to the OS(I) S-type calling

 convention with variable length parameter list as described in the

 section "Calling Conventions" in MTS Volume 3, System Subroutine __________________

 Descriptions, i.e., they expect the FORTRAN linkage convention. This ____________

 convention requires that the high-order bit of the last parameter

 address constant be nonzero. The EFL error monitor uses this last

 argument flag to determine how error situations should be processed;

 consequently, failure to properly set this flag may result in unexpected

 results if an error condition is detected. Further, unless specifically

 mentioned, all elements of the EFL require an 18-fullword (72-byte) save

 area.

 Since all members of the EFL are function-type subroutines, they

 cannot be meaningfully employed in the FORTRAN CALL statement because

 the FORTRAN program will ignore the function value returned by these

 programs. These function subprograms are called whenever the appropri-

 ate entry name appears in a FORTRAN arithmetic expression. The

 following FORTRAN arithmetic assignment statement refers to the mathe-

 matical functions COS and SQRT and the implicitly called exponentiation

 routine FRXPI#:

 SINX = SQRT(1.-COS(X)**2)

 Assembly language users may employ the CALL macro, but should specify

 the optional VL parameter in order to set the last argument flag byte,

 e.g.,

 CALL DCOSH,(X),VL

 The elementary functions return their values as follows:

 GR0 - INTEGER function

 FR0 - REAL function

 FR0,FR2 - COMPLEX function

 The Elementary Function Library 397

 MTS 6: FORTRAN in MTS

 October 1983

 Except as noted, the mathematical functions require a single argument

 of the same mode as the function. The routines in the EFL are subject

 to specification exceptions when fetching their argument(s) should the

 boundary alignment be incorrect. The modes INTEGER*4, REAL*4, and

 COMPLEX*8 require fullword alignment, while REAL*8 and COMPLEX*16

 require doubleword alignment. The term INTEGER*4 corresponds to a

 System/360 fullword integer in the usual twos-complement notation. The

 term REAL*4 (REAL*8) corresponds to a System/360 short (long) operand

 floating-point number. The term COMPLEX*8 (COMPLEX*16) refers to two

 short (long) operand floating-point numbers occupying consecutive stor-

 age locations, the number in the higher storage location being the

 imaginary part of the complex number. The address constant passed to

 the EFL routine should correspond to the lower storage address, i.e.,

 the REAL part of the complex number.

 Error Processing ________________

 Error conditions detected by EFL routines are processed in the module

 ERRMON#. Depending on the optional arguments passed to the elementary

 function, the error monitor will either resume execution or provide an

 appropriate error comment and call the subroutine ERROR#.

 The vast majority of the EFL programs check the argument to ensure

 that a valid function value can be computed. For example, the inverse

 sine and cosine functions are only defined on the interval [-1,1] so

 that some procedure must be available for handling arguments outside

 this interval. There are currently three ways in which error conditions

 detected by an EFL program can be processed:

 (1) by using one or more of the optional arguments described below,

 (2) by calling the user error monitor, or

 (3) by printing an error message on SERCOM and then calling the

 subroutine ERROR#.

 Whenever an elementary function detects an error situation, it

 generates a default function value and passes control to the EFL error

 monitor. Although this error monitor is in fact a separate program, it

 is logically a part of each elementary function and is transparent with

 respect to the normal linkage conventions.

 The EFL error monitor initially attempts to process the optional

 arguments. If no such arguments were given, or if their processing does

 not result in the resumption of execution, then the error monitor will

 formulate an appropriate message. This message is passed, as the sole

 argument, to the user error monitor or is printed on SERCOM.

 With all optional arguments attached, the calling sequence becomes ________ _________

 ...name(argument(s),count,max-count,f-value)...

 Since the elementary function names are built into the FORTRAN compiler,

 it will diagnose as errors any occurrence of these names in which the

 398 The Elementary Function Library

 MTS 6: FORTRAN in MTS

 October 1983

 number and modes of the arguments do not correspond to its table of

 definitions. The optional arguments discussed here may be appended to

 the usual argument list, without objection from the FORTRAN compiler, if

 the elementary function name is declared in an EXTERNAL statement and

 its proper mode is explicitly declared. The optional arguments are

 defined as follows:

 count - a fullword integer which is simply incremented by 1. If

 count is the only optional argument supplied, then execution

 is resumed with the default function value and return code

 4.

 max-count - a fullword integer upper bound for the first optional

 argument, count. If the updated value of count is greater

 than max-count, then the processing of the optional argu-

 ments is suspended. If max-count is the last optional

 argument supplied and the updated value of count is less

 than or equal to max-count, execution is resumed with the

 default function value and return code 4. Otherwise, the

 final optional argument is processed.

 f-value - the mode of this argument must correspond to the mode of the

 function. Execution is resumed with a function value of

 f-value and return code 4. Note that this optional argument

 is processed only if the updated value of count is less than

 or equal to max-count.

 In the above descriptions, the phrase "resume execution" means that it

 will appear that the elementary function has returned with the indicated

 function value and return code.

 If one of the optional arguments cannot be appropriately accessed, if

 count > max-count, or if no optional arguments are supplied, then the

 error monitor will formulate an error message. For the mathematical

 functions, this error message will take the form

 name(x.x) IS UNDEFINED AND HAS BEEN ASSIGNED THE VALUE y.y.

 THE DOMAIN OF DEFINITION OF THIS FUNCTION IS dod-message.

 where "x.x" and "y.y" are decimal representations of the argument and

 function value, respectively. The "dod-message" is dependent on the

 elementary function involved, but generally expresses the set of

 argument values for which the function is defined in the form

 (x: a < x < k)

 For example, the GAMMA function "dod-message" is "IS

 (X: .1381786E-75 < X < 57.57441)".

 Messages generated for exponentiation errors take the form:

 The Elementary Function Library 399

 MTS 6: FORTRAN in MTS

 October 1983

 EXPONENTIATION ERROR: b.b ** e.e IS UNDEFINED AND HAS BEEN

 ASSIGNED THE VALUE y.y. MODE OF THE BASE IS mb, MODE OF THE

 EXPONENT IS me.

 where "b.b", "e.e", and "y.y" are decimal representations of the base,

 exponent, and result, respectively. The modes "md" and "me" will be one

 of the following: INTEGER*4, REAL*4, REAL*8, COMPLEX*8, or COMPLEX*16.

 Generally, exponentiation routines only recognize an error when the base

 is 0.0 and the exponent is nonpositive; however, the current routines

 also complain when a real result cannot be properly represented, e.g.,

 10.**80. In either case, the error monitor dynamically allocates

 virtual memory space sufficient to generate and assemble this message.

 The message is generated in the form of a halfword integer length

 immediately followed by the text of the message.

 An elementary function library user error monitor is established by ____ _____ _______

 using the CUINFO subroutine. The name and index of the corresponding

 CUINFO item is ’EFLUEM ’ and 183, respectively, while the data is the

 address of the user error monitor. Thus, to establish a subroutine

 named UEM as the user error monitor, one could include the following

 FORTRAN statements in his program:

 EXTERNAL UEM

 CALL CUINFO(183,UEM)

 A user error monitor may be eliminated by calling CUINFO with a second

 argument of zero. The single argument to the user error monitor should

 be declared as an INTEGER*2 vector, e.g.,

 SUBROUTINE UEM(MSG)

 INTEGER*2 MSG(2)

 CALL SERCOM(MSG(2),MSG(1),0)

 RETURN

 END

 This rather simple example prints the message on logical I/O unit

 SERCOM, and then resumes execution with the default function value.

 Since the messages are generally longer than a terminal output line,

 some of the message will be lost. Unless the user error monitor returns

 to the EFL error monitor, the virtual memory space allocated by this

 latter program will not be released.

 Finally, if the optional argument processing did not result in the

 resumption of execution and no user error monitor is established, then

 the EFL error monitor will provide, on SERCOM, an error message and a

 trace of the programs in the current linkage chain, i.e., the sequence

 of programs which have been called, but which have not yet returned to

 their calling programs. For example, if a main program named MAIN calls

 a subroutine named SUB, which attempts to compute DLOG(-5.D0), then the

 linkage chain is SUB, MAIN, and MTS. After providing this information,

 the error monitor will call the resident system subroutine ERROR#. If a

 subsequent $RESTART command is issued, execution will resume with the

 default function value.

 400 The Elementary Function Library

 MTS 6: FORTRAN in MTS

 October 1983

 Example 1: _______ _

 C PROGRAM TO COMPUTE THE SQUARE ROOTS OF THE

 C ABSOLUTE VALUES OF THE NUMBERS READ FROM THE

 C INPUT STREAM AND KEEP A COUNT OF THE TOTAL

 C NUMBER OF NEGATIVE NUMBERS READ.

 EXTERNAL SQRT

 INTEGER I/0/

 10 READ 100,X

 Y = SQRT(X,I)

 PRINT 200,X,Y,I

 GO TO 10

 100 FORMAT (E20.8)

 200 FORMAT (2E17.9,I5)

 END

 Example 2: _______ _

 If the fourth statement in example 1 is replaced by

 Y = SQRT(X,I,10)

 then execution will be suspended when the 11th negative argument is

 passed to SQRT.

 Example 3: _______ _

 C PROGRAM TO TEST THE IDENTITY

 C COS(X)**2 + SIN(X)**2 = 1

 C FOR VALUES OF X READ FROM THE INPUT STREAM. THE

 C DSIN AND DCOS ROUTINES ARE UNDEFINED FOR X > PI*2**50,

 C BUT THE DEFAULT VALUES CHOSEN GUARANTEE THE IDENTITY.

 EXTERNAL DCOS,DSIN

 REAL*8 DCOS,DSIN,X,ONE

 10 IER = 0

 READ 100,X

 ONE = DCOS(X,IER,IER,0.D0)**2+DSIN(X,IER,IER,1.D0)**2

 PRINT 100,IER,ONE

 GO TO 10

 100 FORMAT (E20.8)

 200 FORMAT (I3,E17.9)

 END

 Example 4: _______ _

 The use of the following parameter list would guarantee that the

 elementary function would always denote error situations by a return

 code of 4.

 DC A(argument),XL1’FF’,AL3(ERRCNT)

 ERRCNT DC F’0’

 The Elementary Function Library 401

 MTS 6: FORTRAN in MTS

 October 1983

 In addition, the word ERRCNT would be automatically updated to maintain

 a count of the total number of errors.

 Mathematical Functions ______________________

 The following descriptions of the mathematical functions are limited

 to error conditions which may arise in these programs. These routines

 are consistent with the FORTRAN IV library functions currently distribu-

 ted with the System/360 Operating System and have been documented by IBM

 in their publication, IBM System/360 Operating System FORTRAN IV Library __

 - Mathematical and Service Subprograms, form GC28-6818. ______________________________________

 Square Root

 Because SQRT and DSQRT are specifically defined as real-valued

 functions, they are not defined for negative real arguments. The

 default function value computed when the argument is negative is

 the square root of the absolute value of the argument.

 Common and Natural Logarithm

 The real-valued logarithm functions ALOG, ALOG10, DLOG, and DLOG10

 are not defined for negative arguments since the logarithm of a

 negative number is complex, i.e., if x<0 then ln(x) = ln(|x|)-

 i•Pi. The default function value is the logarithm of the absolute

 value of the argument.

 All of the logarithmic functions are undefined for an argument of

 zero, which is a pole of the logarithm function. Appropriately,

 the default function value is negative machine infinity, i.e.,

 roughly -.7237005•10⁷⁶.

 Exponential

 The real-valued functions EXP and DEXP can be properly defined only

 in the interval [-180.2182,174.67308] because of the range restric-

 tions imposed by the floating-point representation. The largest

 positive number representable in System/360 floating-point form is

 16⁶³•(1-16⁻¹⁴), and the natural logarithm of this number is
 approximately 174.67308. Similarly, -180.2182 is the logarithm of

 the smallest positive number, 16⁻⁶⁵. The actual domains are as
 follows:

 EXP (hex) -B4.37DF AE.AC4F

 DEXP (hex) -B4.37DEFFFFFFFF AE.AC4EFFFFFFFF

 EXP (dec) -180.218246 174.673080

 DEXP (dec) -180.218246459960934 174.673080444335934

 If the argument exceeds the upper limit, the default function value

 is machine infinity. If the argument is less than the lower limit,

 the default function value is zero; however, this situation is

 402 The Elementary Function Library

 MTS 6: FORTRAN in MTS

 October 1983

 regarded as an error if and only if underflow exceptions are

 enabled by the program mask.

 It should be noted that the domain of the exponential functions is

 slightly smaller than the range of the corresponding natural

 logarithm functions. Hence, the expressions EXP(ALOG(X)) and

 DEXP(DLOG(X)) are not computable for values of X extremely close to

 the ends of the machine range.

 The complex-valued functions CEXP and CDEXP have an analogous

 domain restriction on the real part of the complex argument and an

 additional restriction on the imaginary part. Whether the complex

 argument satisfies the domain restrictions or not, the value of the

 CEXP(x+i•y) will be

 EXP(x)•[COS(y)+i•SIN(y)]

 and that of CDEXP(x+i•y) will be

 DEXP(x)•[DCOS(y)+i•DSIN(y)]

 Trigonometric Functions

 The domain restrictions of the real-valued trigonometric functions

 COS, SIN, TAN, COTAN, DCOS, DSIN, DTAN, and DCOTAN are imposed to

 maintain accuracy. These functions are computed by reducing the

 argument to the interval [-Pi/4,Pi/4] by using the periodicity of

 these functions. For very large arguments this reduction yields so

 few significant digits in the reduced argument that meaningful

 computation of the function value is impossible. The single-

 precision functions require

 |x| < 2¹⁸•Pi = C90FD.9 = 823549.563

 while the limit for the double-precision functions is

 |x| < 2⁵⁰•Pi = C90FD9FFFFFFF.F = 3537118706008063.94

 The default function value is uniformly zero.

 In addition, the tangent and cotangent functions will object if the

 argument is too close to one of their singularities to maintain

 accuracy or if the function value would exceed the machine range.

 In these situations, the default function value is machine infinity

 with the sign of the argument.

 The complex sine and cosine functions CCOS, CDCOS, CSIN, and CDSIN

 can be defined as

 sin(x+i•y) = sin(x)•cosh(y)+i•cos(x)•sinh(y)

 cos(x+i•y) = cos(x)•cosh(y)+i•sin(x)•sinh(y)

 The Elementary Function Library 403

 MTS 6: FORTRAN in MTS

 October 1983

 These formulas illustrate why a trigonometric-type domain restric-

 tion is applied to x, and an exponential-type domain restriction to

 y. The default function value is derived from the default values

 supplied by the appropriate sine, cosine, and exponential routines,

 where cosh(y) and sinh(y) become machine infinity divided by 2 when

 |y| is too large.

 Inverse Trigonometric Functions

 The domain of the inverse sine and cosine functions ARCOS, ARSIN,

 DARCOS, and DARSIN is the range of the sine and cosine functions,

 i.e., [-1,1]. Outside this interval, the default function value is

 zero.

 The inverse tangent routines ATAN2 and DATAN2 are undefined only

 for the argument pair (0.,0.), for which the default function value

 is zero. In effect, given the argument pair (y,x), these routines

 compute the principal value of the argument of the complex number

 x+i•y.

 Hyperbolic Functions

 The value of the hyperbolic sine and cosine of x exceed the range

 of the machine when |x| approaches the logarithm of machine

 infinity. Specifically, the domain of the COSH and SINH routines

 is described by

 |x| ≤ AF.5DC0 = 175.366211

 and that of DCOSH and DSINH by

 |x| ≤ AF.5DC0FFFFFFFF = 175.366226196289059

 The default function value is machine infinity with the appropriate

 sign.

 Gamma and Log-Gamma Functions

 Like the exponential function, these functions exceed machine range

 outside their domains of definition and have a default function

 value of machine infinity. The specific hexadecimal intervals of

 definition are

 GAMMA [.100001•16⁻⁶²,39.930D]
 DGAMMA [.100001•16⁻⁶²,39.930CFFFFFFFF]
 ALGAMA [0,.184D30•16⁶²]
 DLGAMA [0,.184D2FFFFFFFFF•16⁶²]

 while in decimal these intervals become

 GAMMA [.138178829•10⁻⁷⁵,57.5744171]
 DGAMMA [.13817882865895404•10⁻⁷⁵,57.5744171142578089]

 404 The Elementary Function Library

 MTS 6: FORTRAN in MTS

 October 1983

 ALGAMA [0,.429370581•10⁷⁴]
 DLGAMA [0,.429370581008241143•10⁷⁴]

 Implicitly Called Functions ___________________________

 Complex Arithmetic Operations

 CMPY# (COMPLEX*8-multiplicand,COMPLEX*8-multiplier)

 CDVD# (COMPLEX*8-dividend,COMPLEX*8-divisor)

 CDMPY# (COMPLEX*16-multiplicand,COMPLEX*16-multiplier)

 CDDVD# (COMPLEX*16-dividend,COMPLEX*16-divisor)

 Algorithm:

 The multiplication algorithm takes the form

 (x+iy)•(u+iv) = (x•u-y•v)+i(v•x+u•y)

 The division algorithm is likewise direct and takes the form

 (x•u+y•v)+i(u•y-v•x) ____________________

 u•u+v•v

 with appropriate scaling of the divisor u+iv to avoid

 floating-point overflow or underflow of the denominator.

 Error Conditions:

 Both underflow and overflow exceptions may occur during the

 formation of the final result. Zero-divide exceptions may

 also occur, but only if u=v=0.

 Exponentiation

 FIXPI# (INTEGER*4-base,INTEGER*4-exponent)

 FRXPI# (REAL*4-base,INTEGER*4-exponent)

 FDXPI# (REAL*8-base,INTEGER*4-exponent)

 FCXPI# (COMPLEX*8-base,INTEGER*4-exponent)

 FCDXI# (COMPLEX*16-base,INTEGER*4-exponent)

 Algorithm:

 Though each of these routines differ in some way, they all

 obtain the result by the successive squaring algorithm. This

 algorithm exploits the binary representation of the integer

 exponent to compute R=B**I in the following steps:

 (1) Initialize R=1., S=B and k=0.

 (2) If the k-th bit of |I| is 1, replace the current value

 of R by R•S.

 (3) If one or more of the unexamined bits of |I| is 1,

 The Elementary Function Library 405

 MTS 6: FORTRAN in MTS

 October 1983

 replace S by S•S, increment k by 1, and return to step

 (2); otherwise, R=B**|I|.

 The FIXPI# routine recognizes a number of special cases, none

 of which actually require any computation.

 Base: ≠0 1 -1 -1 ≠0
 Exponent: 0 any even odd <0

 Result: 1 1 1 -1 0

 During the course of the algorithm, the result is not

 range-checked. Consequently, the result is valid only if it

 is in machine range, i.e., less than 2³¹ = 2,147,483,648.

 The FRXPI# and FDXPI# routines form B**|I|, and then divide

 this result into 1.0 if I is negative. Both routines

 recognize a nonzero base and zero exponent as a special case

 having value 1. These routines range-check the result as it

 is being formed, and will invoke error processing if B**|I| or

 B**I are not machine representable. In FRXPI#, B**|I| is

 formed in double precision.

 In the FCXPI# and FCDXI# routines, a negative exponent causes

 the base to be inverted before the successive squaring

 algorithm is applied. Both routines recognize a nonzero base

 and zero exponent as a special case having value 1. These

 routines do not range-check the result and are subject to

 underflow and overflow exceptions. Note that if underflow

 exceptions are masked off (by default, they are not masked

 off), the complex base is extremely small, and the exponent

 negative, a zero-divide exception may occur when the base is

 initially inverted. These routines use the end of the save

 area for scratch storage.

 Error Conditions:

 All of these routines recognize a zero base and nonpositive

 exponent as an error. In addition, the FRXPI# and FDXPI#

 routines will invoke error processing if either B**|I| or the

 final result is outside machine range. In all cases, the

 default function value is zero.

 FRXPR# (REAL*4-base,REAL*4-exponent)

 FDXPD# (REAL*8-base,REAL*8-exponent)

 Algorithm:

 The result is obtained by using the appropriate logarithm and

 exponential routines, i.e.,

 e **(exponent•ln(base))

 406 The Elementary Function Library

 MTS 6: FORTRAN in MTS

 October 1983

 These routines recognize as a special case the combination of

 a zero base and positive exponent. If exponent•ln(base) < 0,

 the final result is not in machine range, and underflows are

 masked off, these routines may return a result of zero.

 Error Conditions:

 The combination of a zero base and nonpositive exponent causes

 error processing to be invoked with a default value of 0.

 Denote the base by B and the exponent by E. If B<0 , but

 |B|**E is in machine range, the default function value is

 |B|**E. If E•ln(|B|) is within machine range, but the result

 is not, the default function value will be zero if E•ln(|B|)

 <0, and machine infinity if E•ln(|B|)>0. If E•ln(|B|) is not

 in machine range, the default function value is zero.

 DREAL and DIMAG Functions

 DREAL (COMPLEX*16-variable)

 DIMAG (COMPLEX*16-variable)

 Algorithm:

 Although these routines are described in the IBM FORTRAN

 language manual, the currently available FORTRAN compilers do

 not recognize these names as anything special. Consequently,

 it is necessary to explicitly declare them as REAL*8 func-

 tions. Otherwise, they will be assigned the default mode of

 REAL*4.

 These routines are extremely trivial, consisting of the bare

 minimum of three instructions. Only general register 1 and

 floating-point register 0 are altered by these routines, and a

 save area is not required.

 Error Conditions:

 These routines are subject to specification exceptions since

 they assume the argument is doubleword-aligned.

 ANSI Minimum/Maximum Value Functions

 MIN0/MAX0 (INTEGER*4-variable,...)

 AMIN0/AMAX0 (INTEGER*4-variable,...)

 MIN1/MAX1 (REAL*4-variable,...)

 AMIN1/AMAX1 (REAL*4-variable,...)

 DMIN1/DMAX1 (REAL*8-variable,...)

 Algorithm:

 These routines are identical in structure, accepting a varia-

 ble number of arbitrary arguments of the appropriate mode and

 recognizing no error situations. The resultant modes of these

 The Elementary Function Library 407

 MTS 6: FORTRAN in MTS

 October 1983

 entry points are determined by the first character of the

 function names as follows: M=INTEGER*4, A=REAL*4, and D=REAL*

 8. The number of arguments processed is determined by the

 last argument flag. This flag is set automatically by

 FORTRAN; however, assembler users must make sure this flag is

 properly set; otherwise, an addressing or protection exception

 may occur.

 408 The Elementary Function Library

 MTS 6: FORTRAN in MTS

 October 1983

 FREAD/FWRITE: FREE-FORMAT I/O SUBROUTINES __

 INTRODUCTION ____________

 Free-format input/output simplifies data transmission in the sense

 that the user is freed from FORMAT statement restrictions.

 For free-format input, rather than having to enter data within

 certain column boundaries, the user need only ensure that adjacent data

 fields are separated by a delimiter. Normally, this means adjacent data

 fields must be separated by one or more blanks and/or a comma.

 Free-format output simplifies printing of output that does not

 require complex formatting, such as interactive query messages. The

 user is freed from FORMAT statement restrictions, and can see at a

 glance what is being printed.

 USING FREAD TO INPUT DATA _________________________

 FREAD is a free-format input routine designed to read

 - integer numbers

 - real numbers

 - logical values

 - MTS line numbers

 - character strings

 - hexadecimal strings

 - octal strings

 - binary strings

 from any I/O unit or user-supplied buffer. FREAD offers the advantages

 of being faster and more responsive than the standard FORTRAN READ

 statement; for example, an incorrect data value needs only to be

 reentered.

 FREAD is restricted for use with files and devices with input record

 lengths ≤ 255 bytes.

 Two types of calling sequences are defined for FREAD: general (or

 data) calling sequences and special (or control) calling sequences.

 FREAD/FWRITE: Free-Format I/O Subroutines 409

 MTS 6: FORTRAN in MTS

 October 1983

 General Calling Sequence ________________________

 The general FREAD calling sequence is:

 CALL FREAD(unit,format,list,&n1,&n2,&n3)

 where:

 unit is one of, ____

 ’GUSER’ to read from the MTS I/O unit GUSER.

 ’SCARDS’ to read from the MTS I/O unit SCARDS.

 0-99 to read from one of the MTS I/O units 0 through 99.

 Note that no default unit assignments are made.

 ’PAR’ to read from the PAR field of the $RUN command.

 ’*’ to continue reading from the same line or buffer as

 on the previous call to FREAD.

 FDUB-ptr as returned by an MTS subroutine such as GETFD (if

 the NOFDUB option is specified).

 format is a string of character information or an array containing ______

 such information (much like a FORMAT string) indicating how

 many and what types of variables are to be read. As in the

 FORMAT string, individual type-codes within the type string

 must be separated by commas, and several such type codes may

 be enclosed in parentheses to form a type-group. There is no

 limit to the level to which groups may be nested. Repeat

 counts may prefix both groups and individual type-codes.

 Type strings must be terminated either by a colon or an

 ellipsis ’...’. A type string terminated by an ellipsis

 causes the immediately preceding group or type-code to be

 treated as if it had an infinite repeat count.

 The following type-codes are recognized:

 INTEGER,INTEGER*4,I,I*4 for INTEGER*4 numbers

 INTEGER*2,I*2 for INTEGER*2 numbers

 REAL,REAL*4,R,R*4 for REAL*4 numbers

 REAL*8,R*8 for REAL*8 numbers

 LOGICAL,LOGICAL*4,L,L*4 for LOGICAL*4 numbers

 LOGICAL*1,L*1 for LOGICAL*1 numbers

 LINENUMBER,# for MTS line numbers

 STRING,S,M for character strings

 HEX,H,Z for hexadecimal strings

 OCTAL,O for octal strings

 BINARY,B for binary strings

 If the type code is not present (i.e., if the type string is

 set to a colon), FREAD will read a line and return to the

 calling program without transferring any data.

 410 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 list is the list of variables or arrays into which the numbers ____

 and/or strings are to be read.

 &n1 (optional) is the FORTRAN statement number to transfer to if ___

 FREAD executes a RETURN 1 to the calling program.

 &n2 (optional) is the FORTRAN statement number to transfer to if ___

 FREAD executes a RETURN 2 to the calling program.

 &n3 (optional) is the FORTRAN statement number to transfer to if ___

 FREAD executes a RETURN 3 to the calling program.

 See the section "Error Recovery" below for further details on statements

 labels to transfer to if FREAD executes a RETURN 1, 2, or 3 statement to

 the calling program.

 The following examples illustrate calls to the FREAD subroutine.

 CALL FREAD(0,’I,I,R:’,I,J,X)

 reads two integers and a real number from logical I/O unit 0.

 CALL FREAD(’SCARDS’,’R:’,X)

 reads a single real number from logical I/O unit SCARDS.

 CMDLEN=20

 CALL FREAD(’*’,’S:’,CMD,CMDLEN)

 reads a character string of up to 20 characters from the next field in

 the current record.

 Reading Numeric Data ____________________

 This section defines how to read INTEGER and REAL data. FREAD can

 read into one or more single variables or one or more singly dimensioned

 arrays. Special actions are required to use FREAD to input data into

 multiply dimensioned arrays. Normally, there is a one-to-one corre-

 spondence between the type-codes specified in the "format" and the

 parameters specified in the "list".

 The type-codes for INTEGER data depends on the length of the integer

 variable: use I, I*4, INTEGER, or INTEGER*4 for INTEGER*4 variables; or

 I*2, INTEGER*2 for INTEGER*2 variables. For example, the following

 (equivalent) calls will read two values from unit 5 into the variables I

 and J:

 CALL FREAD(5,’INTEGER,INTEGER*2:’,I,J)

 CALL FREAD(5,’I,I*2:’,I,J)

 FREAD/FWRITE: Free-Format I/O Subroutines 411

 MTS 6: FORTRAN in MTS

 October 1983

 CALL FREAD(5,’I:’,I)

 CALL FREAD(’*’,’I*2:’,J)

 The type-code to indicate a REAL (i.e., floating-point) conversion

 also depends on the length of the variable: use R, R*4, REAL, or REAL*4

 for REAL*4 variables; use R*8 or REAL*8 for double-precision variables.

 For example, the following (identical) calls will read two floating-

 point numbers into variables X and Y:

 CALL FREAD(5,’REAL,REAL*8:’,X,Y)

 CALL FREAD(5,’R,R*8:’,X,Y)

 It is not possible for FREAD to read an entire multiple-dimensioned

 array in a single call. It is, however, possible to read an entire

 vector (i.e., a one-dimensioned array) with one call by using the VECTOR

 type-code and specifying the number of elements to be read.

 To indicate that a vector is to be read, the word ’VECTOR’ (or ’V’)

 is appended to the type string:

 CALL FREAD(0,’INTEGER VECTOR:’,I,10)

 As well, an INTEGER variable which gives the number of elements to be

 read must be supplied in the parameter list. Thus, for each vector to

 be read there must be two parameters supplied in the call to FREAD.

 The following examples illustrate the differences between calls to

 FREAD and standard FORTRAN:

 via FFIO: CALL FREAD(5,’2I:’,I,J)

 CALL FREAD(’*’,’R,R*8:’,X(I,J),Y(I,J))

 via FORTRAN: READ(5,1) I,J,X(I,J),Y(I,J)

 1 FORMAT(2I3,F12.3,D16.7)

 via FFIO: CALL FREAD(5,’2(I,R):’,I1,R1,I2,R2)

 via FORTRAN: READ(5,1) I1,R1,I2,R2

 1 FORMAT(2(I5,F10.2))

 via FFIO: CALL FREAD(5,’INTEGER VECTOR:’,I,N)

 via FORTRAN: READ(5,1) (I(J),J=1,N)

 1 FORMAT(10I3)

 via FFIO: CALL FREAD(5,’REAL*8 VECTOR:’,X,N)

 via FORTRAN: READ(5,1) (X(J),J=1,N)

 1 FORMAT(10F9.3)

 Reading Character Data ______________________

 Character input corresponds to FORTRAN’s A-format.

 412 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 There are two format codes for CHARACTER input: S (or STRING) and M.

 The S type-code causes the next field to be moved unchanged into the

 variable specified. By default, the next field begins with the first

 nonblank character and is terminated by a blank. This can be changed by

 using the DELIMITER option.

 The M type-code causes the entire next record to be moved unchanged

 into the variable specified. Since M specifies that the entire record

 is to be read, the length is ALWAYS returned, regardless of the setting

 of the LENGTH option. Thus, a variable must always be used for the

 length argument and must be first set to the maximum length of the

 variable. Note that this implies the argument must be a variable. ____

 Since strings have variable lengths, it is necessary to specify the

 length of the string expected. Thus, variable list parameters for S or

 M type-codes must appear in pairs: the first being the location to

 which the string is to be moved, and the second being the length of the

 variable (in bytes).

 The actual length of a string read using "S" can be obtained by

 setting the LENGTH option to ON. In this case, the length argument must

 be a variable (not a literal). ________

 Strings are placed left-justified in the variable. If it is longer

 than the length, the string is truncated on the right, whereas if it is

 shorter, it is padded on the right with blanks.

 The VECTOR type is not available with S or M type-codes.

 The following examples illustrate the reading of character input.

 CALL FREAD(5,’STRING:’,WORD,4)

 LOGICAL*1 TITLE(132)

 INTEGER TITLEN/132/

 CALL FREAD(’SCARDS’,’M:’,TITLE,TITLEN)

 Reading Other Types Of Data ___________________________

 Integer, real, and character data are the most common data types, but

 FREAD allows several other types as well. These include LOGICAL,

 HEXADECIMAL, OCTAL, BINARY, and MTS line numbers. Complete descriptions

 of these data types are given in the section "Data Descriptions" below.

 The type-code for LOGICAL input is L, L*4, LOGICAL, or LOGICAL*4 for

 logical variables of length 4; for LOGICAL*1 variables use L*1 or

 LOGICAL*1. Any string is an acceptable logical value. If T or TRUE is

 found, then TRUE is returned; otherwise, the value is FALSE. There must

 be one parameter in the variable list for each logical type-code

 specified.

 FREAD/FWRITE: Free-Format I/O Subroutines 413

 MTS 6: FORTRAN in MTS

 October 1983

 The type-code for HEXADECIMAL input is HEX, H, or Z. Hexadecimal

 input is treated in a similar fashion to STRING input, i.e., each H

 type-code requires two parameters in the variable list: one identifying

 the location to put the hex string, and one indicating the length of the

 string.

 The type-code for reading MTS line numbers is LINENUMBER or #. Only

 one parameter in the variable list is required for each type LINENUMBER

 in the format.

 The type-code for OCTAL input is OCTAL or O. Octal input is treated

 in a similar fashion to STRING input, i.e., each O type-code requires

 two parameters in the variable list: one identifying the location to

 put the octal string, and one indicating the length of the string.

 The type-code for BINARY input is BINARY or B. Binary input is

 treated in a similar fashion to STRING input, i.e., each B type-code

 requires two parameters in the variable list: one identifying the

 location to put the binary string, and one indicating the length of the

 string.

 Reading from a User-Supplied Buffer ___________________________________

 The user can provide an input buffer rather than have FREAD read a

 line. Thus, the user is able to do "memory-to-memory" reading using the

 special entry point FREADB. User-provided input buffers must adhere to

 the following rigid format: a halfword buffer length, followed by a

 halfword buffer index, followed by the buffer proper. The buffer length

 is the length of the buffer proper in bytes (not including the length

 and index). The buffer length must be declared INTEGER*2, and it must

 fall within the range 0 ≤ length ≤ 255. The buffer index is the

 relative location within the buffer proper at which processing is to

 begin. The buffer index also must be declared INTEGER*2, and it must

 fall within the range 1 ≤ index ≤ length. The buffer index is ignored

 when the buffer length is 0.

 The following example shows how two real numbers 3.0 and 4.0 can be

 read from a user-supplied buffer,

 INTEGER*2 BUFFER(6)

 DATA BUFFER(3)/’3.’/, BUFFER(4)/’0’/

 DATA BUFFER(5)/’4.’/, BUFFER(6)/’0’/

 BUFFER(1)=7

 BUFFER(2)=1

 CALL FREADB(BUFFER,’2R:’,X,Y)

 Note that if the buffer index, BUFFER(2), had been assigned the value 5

 prior to calling FREAD, then only one number would have been read (4.0).

 414 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 If the BUFFER option is used, FREAD will return its current input

 buffer together with its length and index in an identical format to that

 shown above.

 For user-supplied buffers, the buffer index is normally not modified

 by FREADB. However, when the UPDATE option is set to ON, FREADB will

 update the buffer index to correspond to the next field in the input

 buffer before returning to the calling program. When the buffer index

 exceeds the buffer length, there are no more data fields left in the

 buffer. It is the responsibility of the calling program to check this

 condition.

 Error Recovery ______________

 By default, FREAD returns to the calling program when it has

 successfully read the required variables, or returns via the RETURN 1

 statement if there were not enough values for the variables specified.

 This default action of FREAD regarding exits can be modified by the

 ENDLINE, ENDFILE, and/or ERROR options.

 End-of-File Exits

 When an end-of-file condition is encountered, other than that

 encountered in response to an error recovery prompt, FREAD returns

 to MTS command mode so that, for example, I/O units may be

 reassigned. A subsequent $RESTART command will cause the reading

 of another data line from the same unit.

 Optionally, according to the setting of the ENDFILE option, the

 program that called FREAD may regain control in the event of an

 end-of-file.

 End-of-Line Exits

 An end-of-line condition occurs when FREAD is requested to read

 more data fields than there are fields left on a line. When an

 end-of-line condition is encountered, FREAD will RETURN 1 to the

 calling program after filling unsatisfied variables with zeros or

 blanks (unsatisfied character string buffers are filled with

 blanks, all other types are filled with zeros). The actual number

 of fields found is returned by FREAD as a real number and as an

 integer function value. The number of fields found is also

 available through the NUMBER option. The filling of unsatisfied

 variables with zeros or blanks can be suppressed by setting the

 NOFILL option to ON.

 FREAD/FWRITE: Free-Format I/O Subroutines 415

 MTS 6: FORTRAN in MTS

 October 1983

 Optionally, according to the setting of the ENDLINE option, FREAD

 will RETURN 0 through 3 to the calling program, or return to MTS

 command mode, or read additional lines until all variables have

 been satisfied. The reading of additional lines until all varia-

 bles have been satisfied is known as "stream input." A strong

 delimiter appearing as the last nonblank character on a line or an

 end-of-file is the only method of terminating stream input before

 all variables have been satisfied.

 Error Exits

 The type of error recovery that occurs depends upon whether a job

 is being done in conversational mode or in batch mode. When an

 incorrect data field is encountered in conversational mode, an

 error message is printed on SERCOM (usually the terminal) and the

 user is prompted for replacement data from GUSER (usually the

 terminal).

 Suppose, for example, an integer number was being read and the user

 inadvertently entered "2.0" instead of "2". Then the following

 sequence of lines would be printed by FREAD on SERCOM,

 ?INVALID INTEGER NUMBER: "2.0"

 ?ILLEGAL CHARACTER $

 ?ENTER REPLACEMENT NUMBER,

 OR RE-ENTER REST OF LINE FROM POINT OF ERROR,

 OR "MTS"

 ?

 Usually it is desirable to enter a "replacement field" when an

 incorrect number has been entered, whereas usually it is desirable

 to "reenter rest of line from point of error" when an incorrect

 delimiter has been entered.

 If two or more fields are entered or if one field followed by a

 nonblank delimiter is entered, then FREAD assumes that "rest of

 line from point of error" was entered. In all other cases FREAD

 assumes a "replacement field" was entered.

 If "MTS" or an end-of-file is entered, then FREAD returns to MTS

 command mode. A subsequent $RESTART command will cause another

 prompt for replacement data.

 If a null line is entered or if a delimiter is entered as the only

 character on an otherwise blank line, then FREAD assumes a null

 replacement field has been entered. In all other cases FREAD

 assumes that a null replacement field has not been entered.

 Note that if "rest of line from point of error" is entered, it has

 the immediate effect of actually editing the input buffer. Thus,

 the input buffer may become shorter or longer. Similarly, if a

 "replacement field" is entered, then the input buffer is also

 416 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 edited--but only if the "replacement field" is correct. If the

 "replacement field" is not correct, FREAD ignores it and prints

 another prompt for replacement data. In all cases a check is made

 to see if the edited input buffer would be longer than 255 bytes;

 if it would be, then the editing is suppressed and the prompt is

 repeated.

 When incorrect data are encountered in batch mode, error messages

 are also printed on SERCOM, but the prompt for replacement data is

 not issued; instead, the user is signed off. ______________________

 The action taken by FREAD when a conversion error occurs can be

 modified by a call to FREADC that sets the ERROR option. Many

 different recovery strategies are available.

 The verbosity of error messages may be controlled by a special call

 that sets the VERBOSITY option. From 0 through 3 error message

 lines per error may be printed; the most verbose forms include the

 I/O unit and the file or device on which the error occurred.

 Use of the INFORMATION option, the REREAD option, the BUFFER

 option, the LASTDELIMITER option, and the TYPE option allow a

 program calling FREAD to do its own error processing.

 USING FWRITE TO OUTPUT DATA ___________________________

 FWRITE has several advantages over standard FORTRAN I/O. These

 include the following:

 (1) Interspersing text and numeric data without leaving large gaps

 in the text.

 (2) Allowing the user to create a message in pieces, giving greater

 flexibility in composing the message.

 (3) Printing several lines of straight text. FWRITE puts just

 enough on each print line to be useful without needing to count

 characters.

 (4) Since no format statements are required, it becomes easier to

 print lines of data.

 General Calling Sequence ________________________

 The general FWRITE calling sequence is:

 CALL FWRITE(unit,format,list)

 where:

 FREAD/FWRITE: Free-Format I/O Subroutines 417

 MTS 6: FORTRAN in MTS

 October 1983

 unit is one of, ____

 ’SERCOM’ to write to the MTS I/O unit SERCOM.

 ’SPRINT’ to write to the MTS I/O unit SPRINT.

 ’SPUNCH’ to write to the MTS I/O unit SPUNCH.

 0-99 to write to one of the MTS I/O units 0 through 99.

 format defines the output conversions to be performed. The format ______

 consists of characters, which are printed without conversion,

 and type-codes enclosed by ’<’ and ’>’, which identify the

 type of conversion to be performed. If more than one

 type-code is specified, a comma is used to separate the two.

 On output, numbers are separated by one blank. The format is

 terminated by one of two characters:

 ’;’ implies the output line is incomplete; a further call to

 FWRITE will be made to add to the line.

 ’:’ implies the output line is now complete and should be

 written.

 Note: Since the programmer does not have control over the

 placing of literal strings it is recommended that the

 terminating ":" or ";" always be followed by a blank. This

 removes the possibility of having FWRITE find, for example

 "::" which would cause it to continue searching for a

 terminator.

 list defines the location(s) of the data to be converted for ____

 output.

 Writing Numeric Data ____________________

 Numeric data consists of INTEGER and REAL numbers. FORTRAN FORMAT

 equivalents are Iw, Ew.d, Fw.d, Gw.d, Dw.d.

 The format identifier for INTEGER data depends on the length of the

 integer value. For INTEGER*4 values, use I, INTEGER, I*4, or INTEGER*4;

 for INTEGER*2 values, use I*2 or INTEGER*2. For example:

 CALL FWRITE(unit,’ Value of J = <I>.: ’,J)

 Assuming J=10, this produces:

 Value of J = 10.

 The format identifier for REAL data also depends on the length of the

 real variable: for REAL*4 values, use R, REAL, R*4, or REAL*4; for

 REAL*8 values, use R*8 or REAL*8. For example:

 418 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 CALL FWRITE(unit,’ Value of X = <REAL>.: ’,X)

 Assuming X=10.99, this produces:

 Value of X = 10.99.

 Writing Character Data ______________________

 Character output is achieved in FORTRAN using A-format.

 The format identifier for CHARACTER data S (STRING) or M. A second

 parameter is required to define the length of the string to be written,

 if the length is not specified. In actual fact, M only exists to be

 compatible with FREAD.

 Trimming of blanks from both ends of the string is done by making the

 length negative (the absolute value of length is then used to determine

 the true length of the string).

 The following example could be used for those problems that require

 the name of the data file to be read in.

 LOGICAL*1 NAM(17)

 INTEGER LEN/17/

 CALL FWRITE(6,’ Input from file "<STRING>": ’,NAM,-LEN)

 Since the maximum length of a file name is 17 characters, NAM must be

 set large enough to contain such a name. However, the output line looks

 better without leading and trailing blanks, so -LEN is specified. The

 length can also be specified in the format, e.g.,

 CALL FWRITE(6,’<S*10>: ’,NAME)

 will write the first ten characters of the variable NAME.

 Writing Other Types of Data ___________________________

 To write data in HEXADECIMAL use the H, HEXADECIMAL, or Z-format

 identifier. As for character strings, two parameters are required in

 the variable list: one to indicate the location of the data, and one to

 indicate the length of the string. The second parameter can be omitted

 if the length is specified in the format code. For example, the

 following calls print the contents of X in hexadecimal:

 CALL FWRITE(’SPRINT’,’ X=<Z>: ’,X,4)

 CALL FWRITE(6,’ X=<R> is <Z*4> in hexadecimal: ’,X,X)

 FREAD/FWRITE: Free-Format I/O Subroutines 419

 MTS 6: FORTRAN in MTS

 October 1983

 To write MTS line numbers, use the LINENUMBER or # format identifier.

 The following prints the variable LNR as "123.":

 LNR = 123000

 CALL FWRITE(6,’ <#>: ’,LNR)

 Special Controls ________________

 While FWRITE does not provide all the capability of FORTRAN FORMATs,

 there are times when simple formatting is useful. Currently, FWRITE

 supports tabbing and several spacing controls.

 Tabbing

 To make placement of variables on an output line easier a tab

 command is provided. The format specifier is T and the column

 specification can be a constant or a variable. For example, the

 following two calls are identical:

 CALL FWRITE(6,’<T10> <I>: ’,INTGER)

 CALL FWRITE(6,’<T> <I>: ’,10,INTGER)

 If a tab value is given which would position the next output

 character before the current position, a new output line is

 started.

 Fixed Formats

 FWRITE defaults the number of digits to print depending on the

 variable type. For INTEGER, the field width is as wide as

 necessary to print the value. For REAL*4, the number of digits to

 the right of the decimal point is set to 7; for REAL*8, is set to

 14.

 The field width can be changed by specifying a particular format to

 use. This is done by following the format identifier with a format

 enclosed in parentheses: e.g. R*4(F10.2) or I(I5). The formats

 available are I, F, E, D, or G. FORTRAN format rules are followed

 except that P (scale) formats are not allowed.

 Spacing

 There are two methods of forcing spacing on the output page.

 First, the slash "/" operator, inserted anywhere in the text,

 causes the current output line to be printed and a new line

 started. For example,

 420 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 CALL FWRITE(6,’On first line/on second line: ’)

 To actually print the slash "/" character, two consecutive two

 consecutive "/"s must be specified in the phrase. Second, total

 control over carriage control is provided by the FWRITC entry point

 and the CC option. If the CC option has been set to ON, then all

 output is written with carriage control (the default is that all

 output is written with CC=DEFAULT which is the current setting of

 the MTS @CC FDname modifier which defaults on). In this case, the

 user must ensure that each output line has a valid carriage control

 character. For example,

 CALL FWRITC(6,’CC=ON;’)

 CALL FWRITE(6,’1This line appears at top of page: ’)

 Writing To A User-Supplied Buffer _________________________________

 It is possible by calling the FWRITB entry point, to perform

 memory-to-memory output. FWRITB is called in exactly the same way as

 FWRITE, except the unit parameter is replaced by two parameters which

 specify the memory buffer to "write" the record to, and the length of

 the buffer. FWRITB behaves the same way as FWRITE except that it

 returns the output record rather than printing it. For example,

 LOGICAL*1 CMD(80)

 LEN=80

 CALL FWRITB(CMD,LEN,’$RES <I>=<S>: ’,10,’FILE’,4)

 On return from the FWRITB call, CMD would contain ’$RES 10=FILE’ and

 LEN would contain 12. The remaining 68 bytes of CMD would be set to

 blanks. The subroutine CMDNOE could then be called with the variables

 CMD and LEN. FWRITB always returns the length of the record "written", ______

 and for this reason the length parameter must always be a variable and

 not a constant. If an attempt is made to generate a message greater

 than LEN, a RETURN 1 will be made; in this case, the contents of the

 buffer are unpredictable.

 The length parameter may be either an INTEGER*4 or INTEGER*2

 variable.

 INPUT AND OUTPUT OPTIONS ________________________

 Options may be specified as input (via FREADC) or as output (via

 FWRITC). For example, calling FREADC with the LINENUMBER option

 specifies an indexed read operation for FREAD, and similarly calling

 FWRITC with the LINENUMBER option specifies an indexed write operation

 for FWRITE.

 FREAD/FWRITE: Free-Format I/O Subroutines 421

 MTS 6: FORTRAN in MTS

 October 1983

 The following modifier options may be specified both for input and

 output:

 CC, UC, LC, TRIM, IC, MCC

 Note that these options are actually used to set the corresponding MTS

 I/O FDname modifiers for calls to FREAD and FWRITE. The description of

 these options corresponds to the descriptions of the similarly named I/O

 FDname modifiers which are described in Appendix A to the section "Files

 and Devices" in MTS Volume 1, The Michigan Terminal System. ____________________________

 The format for the modifier options is

 CALL FREADC([unit,]’option={ON|OFF|DEFAULT};’)

 or

 CALL FWRITC([unit,]’option={ON|OFF|DEFAULT};’)

 For example, UC=ON converts to uppercase while UC=OFF or UC=DEFAULT does

 not convert to uppercase unless the user applies the @UC FDname modifier

 on the $RUN command, e.g.,

 $run program 5=file@UC

 For example,

 CALL FREADC(8,’UC=ON;’)

 will convert all input read from unit 8 to uppercase. Input read from

 other units and all output will not be converted.

 Special Input Options for FREADC ________________________________

 Several special input options may be specified for the FREAD

 subroutine. To set an input option, either of the following two forms

 may be used:

 CALL FREADC(’option=value;’)

 CALL FREADC(’option;’,value) or CALL FREADC(’option=?;’,value)

 where "option" specifies the option to be used (with at least the first

 three characters given) and "value" specifies the value of the option.

 The first argument must end with ";". "value" may be any of the

 following:

 (1) DEFAULT, e.g., ERROR=DEFAULT

 (2) ON (TRUE) or OFF (FALSE), e.g., NULL=OFF

 (3) a numerical value, e.g., VERBOSITY=3

 422 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 (4) a string constant, e.g., JUSTIFY=RIGHT

 (5) a string constant enclosed in primes, e.g., PREFIX=’-’

 The second form should be used when the value is not DEFAULT, a logical

 value, or numerical value, or a string constant. For example, the

 MTSLNR option must have the second parameter to store the last line

 read. According to which option is being used, the second parameter may

 be

 (1) the logical value .TRUE. (fullword 1) or .FALSE. (fullword 0),

 e.g.,

 CALL FREADC(’LONG=?;’,.TRUE.)

 .TRUE. and .FALSE. correspond to ON and OFF, respectively.

 (2) a numerical constant or value to be stored, e.g.,

 CALL FREADC(’MTSLNR;’,LNBR)

 (3) a string value, e.g.,

 CALL FREADC(’ENDLINE;’,’STREAM’)

 (4) all others (see the descriptions of each option below)

 The second argument may not be required in some cases, e.g.,

 CALL FREADC(’SAVE;’)

 If the second argument or value is not specified, DEFAULT is assumed.

 The FREADC subroutine may be used to set input options for a specific

 logical I/O unit by calling it using either of the following two forms:

 CALL FREADC(unit,’option=value;’)

 CALL FREADC(unit,’option;’,value)

 where "unit" may be any of the following:

 0-99 to read from the MTS I/O units 0 through 99.

 ’GUSER’ to read from the MTS I/O unit GUSER.

 ’SCARDS’ to read from the MTS I/O unit SCARDS.

 ’*’ to read from the previous MTS I/O unit.

 Current options that can be used in this form are

 LINENUMBER, MTSLNR, BUFFER

 CC, UC, LC, IC, TRIM, MCC

 In the future, more options will be added to this list.

 FREAD/FWRITE: Free-Format I/O Subroutines 423

 MTS 6: FORTRAN in MTS

 October 1983

 An option that is set for a specific unit will always be used for

 that unit regardless of the general setting of the option, that is, the

 default setting or a setting made by calling FREADC with specifying the

 "unit" parameter.

 The special options that are available for FREADC are as follows:

 BUFFER LENGTH PREFIX

 CONTINUATION LINENUMBER REREAD

 DELIMITERS LONG RESET

 ECHO MTSLNR RESTORE

 ENDFILE NAMES SAVE

 ENDLINE NOFDUB SHORT

 ERROR NOFILL STREAM

 EVEN NULL TYPE

 INFORMATION NUMBER UPDATE

 JUSTIFY ORMTS VERBOSITY

 LASTDELIMITER QUOTE

 Special Output Options for FWRITE _________________________________

 Three special output options may be used with FWRITE. To set an

 output option, either of the following statements may be used:

 CALL FWRITC(’option=value;’)

 CALL FWRITC(’option=?;’,value)

 where "option" specifies the option to be used and "value" specifies the

 value of the option. The first argument must end with ";". Legal

 values for logical options are ON (or TRUE), and OFF (or FALSE).

 Otherwise, values are as specified in the description of the option.

 To reset any of the output options, use the keyword ’DEFAULT’. For

 example,

 CALL FWRITC(’ORL=DEFAULT;’)

 will set the global output record length to 76.

 Output options can be set for a specific unit only by specifying

 either of the following statements:

 CALL FWRITC(unit,’option=value;’)

 CALL FWRITC(unit,’option=?;’,value)

 424 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 Control Printer Spacing (CC)

 The CC option is used to control printer spacing. By default, all

 output lines are written with carriage control. Line spacing is

 controlled via the slash "/" operator in the message.

 To make use of the allowable printer spacing controls, specify

 CC=ON. If this option is used, a legal carriage control character

 must be specified as the first character of every output line. _____

 Printer carriage control is described in Appendix H to the section

 "Files and Devices" in MTS Volume 1, The Michigan Terminal System. ____________________________

 For example:

 CALL FWRITC(6,’CC=ON;’)

 Indexed Output (LINENUMBER)

 The LINENUMBER (or LINE) option is used to do indexed output. To

 write a record to a specified line number, specify either

 CALL FWRITC([unit,]’LINE=lnr;’)

 CALL FWRITC([unit,]’LINE=?;’,lnr)

 The value specified by "lnr" is the internal form of the line

 number, i.e., the line number times 1000. Using this option causes

 the next record written via FWRITE to be written indexed using the

 value in "lnr". Subsequent records will be written sequentially.

 Restriction: FWRITE should be called immediately after FWRITC

 before any calls to FREAD are made since reading a record will

 change the MTS line number.

 Maximum Output Record Length (ORL)

 The ORL option is used to set the maximum output record length of

 records written. Phrases that are longer than the ORL are broken

 at the nearest blank and continued on the following record. The

 default length for terminals is 76 characters. To change this

 value, specify either

 CALL FWRITC([unit,]’ORL=n;’)

 CALL FWRITC([unit,]’ORL=?;’,n)

 where "n" is a value from 20 to 255, and defines the maximum number

 of characters in a line of output.

 FREAD/FWRITE: Free-Format I/O Subroutines 425

 MTS 6: FORTRAN in MTS

 October 1983

 BUFFER ______

 Prototype: CALL FREADC([unit,]’BUFFER;’,name) ____

 where "name" is the name of an array, usually 260 bytes

 in length.

 Action: To have FREAD return the current input buffer (see the

 section "Reading from a User-Supplied Buffer").

 Notes: The array should be dimensioned at least as long as

 LRECL+4 bytes, where LRECL is the longest input record _____

 length. Keep in mind that LRECL can be increased by

 error recovery editing; this is why the array should

 usually be 260 bytes in length. The buffer index is

 returned as 0 when the length is 0.

 The unit may be specified to return the input buffer for

 that unit. If the unit is not specified, the last unit

 from the FREAD call will be used.

 Example: INTEGER*2 IBUFF(130)

 CALL FREADC(5,’BUFFER;’,IBUFF)

 then IBUFF(1) = buffer length in bytes

 IBUFF(2) = buffer index

 IBUFF(3),IBUFF(4),...

 = buffer proper

 returns the buffer from the last call of FREAD with

 logical unit 5.

 CC __

 Prototypes: CALL FWRITC([unit,]’CC={ON|OFF};’) __

 CALL FWRITC([unit,]’CC=?’,{.TRUE.|.FALSE.}) __

 Action: The CC option controls carriage-control. If ON, the

 first character of every output line is interpreted as a

 carriage-control character. The list of legal carriage-

 control characters is given in Appendix H to the section

 "Files and Devices" in MTS Volume 1, The Michigan _____________

 Terminal System. If the unit is specified, the option _______________

 will be applied to that unit only; otherwise, it will be

 applied to all FWRITC calls.

 Default: The default for the CC option depends on the setting of

 the MTS @CC FDname modifier (which defaults ON).

 Example: CALL FWRITC(6,’CC=ON;’)

 426 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 CONTINUATION ____________

 Prototypes: CALL FREADC(’CONTINUATION=’’string’’;’) ____

 CALL FREADC(’CONTINUATION;’,’string’) ____

 where "string" is a string of weak continuation charac-

 ters followed by a string of strong continuation charac-

 ters, the strings themselves being enclosed and separated

 by any delimiter.

 Action: To define a new set of continuation characters for FREAD

 to use. A weak continuation character appearing as the

 last nonblank character on an input line will cause a new

 line to be read only if more variables require data. A

 strong continuation character appearing as the last

 nonblank character on an input line always causes a new

 line to be read.

 Default: No continuation characters are defined.

 Example: CALL FREADC(’CONT=’’/-//’’;’)

 defines the minus sign (-) to be a weak continuation

 character.

 DELIMITERS __________

 Prototypes: CALL FREADC(’DELIMITERS=’’string’’;’) ____

 CALL FREADC(’DELIMITERS;’,’string’) ____

 where "string" is a string of weak delimiter characters

 followed by a string of strong delimiter characters, the

 strings themselves being enclosed and separated by a

 nondelimiter.

 Action: To define a new set of delimiters for FREAD to use. The

 only difference between weak and strong delimiters is

 that a strong delimiter appearing as the last nonblank

 character on a line will terminate stream input, whereas

 a weak delimiter will not.

 Default: Originally, two weak delimiters are defined (blank and

 comma), and no strong delimiters are defined.

 Notes: Blank may not be defined as a strong delimiter. Observe

 that ’1. 2’ is interpreted as two numbers when blank is a

 delimiter, and as one number (’1.02’) when it is not.

 FREAD/FWRITE: Free-Format I/O Subroutines 427

 MTS 6: FORTRAN in MTS

 October 1983

 Examples: CALL FREADC(’DELIMITERS=’’/, /;/’’;’)

 defines comma and blank as weak delimiters, and the

 semicolon as a strong delimiter. The slash is both

 enclosing and separating the delimiter strings.

 CALL FREADC(’DELI=DEFAULT;’)

 resets the delimiters (that is, blank and comma are

 weak delimiters, not strong delimiters).

 ECHO ____

 Prototypes: CALL FREADC(’ECHO={ON|OFF};’) ____

 CALL FREADC(’ECHO=?;’,{.TRUE.|.FALSE.}) ____

 CALL FWRITC(’ECHO={ON|OFF};’) ____

 CALL FWRITC(’ECHO=?;’,{.TRUE.|.FALSE.}) ____

 Action: If FREADC is called with this option ON, all lines read

 by FREAD from files and nonterminal devices are echoed on

 SERCOM.

 If FWRITC is called with this option ON, all lines

 written by FWRITE are echoed on SERCOM.

 Default: OFF

 Example: CALL FREADC(’ECHO=ON;’)

 ENDFILE _______

 Prototypes: CALL FREADC(’ENDFILE={0...3|MTS};’) ____

 CALL FREADC(’ENDFILE=?;’,{0...3|’MTS’}) ____

 Action: To define what happens when an end-of-file condition is

 encountered on a read. If 0, 1, 2, or 3, then FREAD will

 fill unsatisfied variables with zeros or blanks (charac-

 ter strings are filled with blanks, all other types are

 filled with zeros) and RETURN 1 through 3 to the calling

 program. If MTS, then FREAD will drop into MTS command

 mode so that, for example, I/O units may be reassigned.

 Default: Drop into MTS command mode; a $RESTART command will cause

 the reading of another data line from the same unit.

 Note: The filling of unsatisfied variables with zeros or blanks

 may be suppressed using the NOFILL option.

 428 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 Example: CALL FREADC(’ENDFILE=2;’)

 causes a RETURN 2 exit to be taken to the program

 that called FREAD whenever an end-of-file is

 encountered.

 ENDLINE _______

 Prototypes: CALL FREADC(’ENDLINE={0...3|STREAM};’) ____ ____

 CALL FREADC(’ENDLINE;’,{0...3|’STREAM’}) ____ ____

 Action: To define what happens when an end-of-line condition is

 encountered (that is, the user requests more data fields

 to be read than there are fields left on a line). If 0,

 1, 2, or 3, then FREAD will fill unsatisfied variables

 with zeros or blanks and RETURN 0 through 3 to the

 calling program. If STREAM, then stream input is

 enabled.

 Default: Unsatisfied variables are filled with zeros or blanks

 (character strings are filled with blanks, all other

 types are filled with zeros), and a RETURN 1 exit is

 taken to the program that called FREAD.

 Notes: When stream input is terminated by a strong delimiter,

 FREAD will RETURN 0 to the calling program. The filling

 of unsatisfied variables with zeros or blanks may be

 suppressed using the NOFILL option.

 "Stream input" can also be controlled by using the STREAM

 option.

 Example: CALL FREADC(’ENDLINE=STREAM;’)

 enables stream input. As many lines as are neces-

 sary will be read until all variables are satisfied,

 or until a strong delimiter is encountered as the

 last nonblank character of a line, or until an

 end-of-file condition is encountered.

 ERROR _____

 Prototypes: CALL FREADC(’ERROR={0...3|MTS|RECOVER|SIGNOFF|LINE| ____ ____ ____

 FIELD};’) ____

 CALL FREADC(’ERROR;’,{0...3|’MTS’|’RECOVER’|’SIGNOFF’| ____ ____ ____

 ’LINE’|’FIELD’}) ____

 Action: To define what happens when a conversion error occurs.

 If 0,...,3 then when a conversion error occurs, FREAD

 FREAD/FWRITE: Free-Format I/O Subroutines 429

 MTS 6: FORTRAN in MTS

 October 1983

 will RETURN 0 through 3 to the calling program. If MTS,

 then when a conversion error occurs, FREAD will return to

 MTS command mode (a $RESTART will result in a prompt for

 replacement data in conversational mode). If RECOVER,

 then FREAD will attempt conversational error recovery

 when a conversion error occurs. This means that the user

 will be prompted for either a replacement field, or for

 the rest of the line from the point of error. If

 SIGNOFF, then FREAD will sign the user off if a conver-

 sion error occurs. LINE is much like RECOVER except that

 the user is only prompted for the rest of the line from

 the point of the error when a conversion error occurs.

 FIELD is also much like RECOVER except that the user is

 only prompted for a replacement field when a conversion

 error occurs.

 Default: RECOVER is the default in conversational mode, and

 SIGNOFF is the default in batch mode.

 Note: The setting of the ERROR option is independent of the

 verbosity of error messages which is controlled by the

 VERBOSITY option.

 Example: CALL FREADC(’ERROR=2;’)

 causes a RETURN 2 exit to be taken to the calling

 program when a conversion error occurs.

 EVEN ____

 Prototypes: CALL FREADC(’EVEN={ON|OFF};’) ____

 CALL FREADC(’EVEN;’,{.TRUE.|.FALSE.}) ____

 Action: If ON, then hexadecimal strings with an odd number of

 digits are recognized as errors.

 Default: Hexadecimal strings may have an even or odd number of

 digits.

 Example: CALL FREADC(’EVEN=ON;’)

 IC __

 Prototypes: CALL FREADC([unit,]’IC={ON|OFF};’) __

 CALL FREADC([unit,]’IC=?’,{.TRUE.|.FALSE.}) __

 Action: The IC option controls implicit concatenation. If ON,

 implicit concatenation is enabled which means that "$CON-

 TINUE WITH" lines are recognized for implicit concatena-

 tion. If OFF, implicit concatenation is disabled.

 430 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 Default: The default for the IC option depends on the settings of

 the option $SET IC command (which defaults ON) and the

 MTS @IC FDname modifier (which defaults ON).

 Example: CALL FREADC(’SCARDS’,’IC=OFF;’)

 INFORMATION ___________

 Prototype: CALL FREADC(’INFORMATION;’,array) ____

 where "array" is a four-element INTEGER*2 array.

 Action: To return information about a conversion error.

 Note: This option is one which facilitates user program conver-

 sion error processing. See also the LASTDELIMITER op-

 tion, the TYPE option, and the BUFFER option.

 Example: INTEGER*2 CODES(4)

 CALL FREADC(’INFO;’,CODES)

 then CODES(1) = error code (see below)

 CODES(2) = starting column of field in error

 CODES(3) = field width

 CODES(4) = column of character in error

 (if apropos, otherwise 0)

 The error code will be one of:

 0 - no error occurred

 1 - real, syntax

 2 - real, illegal character

 3 - real, machine limits

 11 - integer, syntax

 12 - integer, illegal character

 13 - integer, machine limits

 21 - character string, too short

 22 - character string, too long

 23 - character string, missing closing quote

 24 - character string, not enclosed in quotes

 31 - hex string, too short

 32 - hex string, too long

 33 - hex string, illegal hex digit

 34 - hex string, odd number of digits

 41 - binary string, too short

 42 - binary string, too long

 43 - binary string, illegal binary digit

 51 - octal string, too short

 52 - octal string, too long

 53 - octal string, illegal octal digit

 61 - line number, too many digits before decimal

 FREAD/FWRITE: Free-Format I/O Subroutines 431

 MTS 6: FORTRAN in MTS

 October 1983

 62 - line number, too many digits after decimal

 63 - line number, syntax

 64 - line number, illegal character

 JUSTIFY _______

 Prototypes: CALL FREADC(’JUSTIFY={RIGHT|LEFT};’) ____ ____

 CALL FREADC(’JUSTIFY;’,{’RIGHT’|’LEFT’}) ____ ____

 Action: Subsequent string conversions will be either right- or

 left-justified.

 Default: Character strings are left-justified, and truncated or

 padded with blanks on the right. Hexadecimal, octal, and

 binary strings are right-justified, and truncated or

 padded with zeros on the left.

 Example: CALL FREADC(’JUSTIFY=LEFT;’)

 causes subsequent string conversions to be

 left-justified.

 LASTDELIMITER _____________

 Prototype: CALL FREADC(’LASTDELIMITER;’,var) ____

 where "var" is a LOGICAL*1 variable.

 Action: To return the delimiter that followed the last input data

 field. One character is returned.

 Note: Initially, and at the start of each input line, it is set

 to hexadecimal zero (X’00’). X’FF’ means an end-of-line

 delimited the last field.

 Example: CALL FREADC(’LAST;’,ICHAR)

 LC __

 Prototypes: CALL FREADC([unit,]’LC={ON|OFF};’) __

 CALL FREADC([unit,]’LC=?’,{.TRUE.|.FALSE.}) __

 CALL FWRITC([unit,]’LC={ON|OFF};’) __

 CALL FWRITC([unit,]’LC=?’,{.TRUE.|.FALSE.}) __

 Action: The LC option controls uppercase conversion. If ON,

 input or output lines are not converted to all uppercase

 432 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 (the lines remain unchanged). If OFF, input or output

 lines are converted to all uppercase.

 Default: The default is ON unless overridden by the setting of the

 MTS @LC/UC FDname modifier (which defaults to LC).

 Example: CALL FREADC(5,’LC=OFF;’)

 converts all input lines read from unit 5 to

 uppercase.

 LENGTH ______

 Prototypes: CALL FREADC(’LENGTH={ON|OFF};’) ____

 CALL FREADC(’LENGTH;’,{.TRUE.|.FALSE.}) ____

 Action: If ON, then the actual length of a string found is

 returned in the parameter describing the length of the

 string buffer.

 Default: The length of strings found is not returned.

 Notes: The length returned is not necessarily the length in

 bytes, but rather the actual number of characters or

 digits found. The length returned is the length prior to

 any padding or truncation. It is important that if

 LENGTH is set to ON, then the parameter describing the

 user-buffer length must be a variable and not a constant.

 Example: CALL FREADC(’LENGTH=ON;’)

 LEN=4

 CALL FREAD(5,’HEX:’,ADDR,LEN)

 returns the actual number of hexadecimal digits

 found in LEN.

 LINENUMBER __________

 Prototypes: CALL FREADC([unit,]’LINENUMBER=lnr;’) ____

 CALL FREADC([unit,]’LINENUMBER=?;’,lnr) ____

 CALL FWRITC([unit,]’LINENUMBER=lnr;’) ____

 CALL FWRITC([unit,]’LINENUMBER=?;’,lnr) ____

 where "lnr" is a fullword integer MTS line number in

 internal form (this is equivalent to the external form *

 1000; e.g., line number 1 is expressed as 1000).

 FREAD/FWRITE: Free-Format I/O Subroutines 433

 MTS 6: FORTRAN in MTS

 October 1983

 Action: The next line read by FREAD will be indexed at the given

 line number. Subsequent reads will be sequential.

 Default: All reads are done sequentially.

 Note: This action is independent of error recovery reads which

 always occur on GUSER.

 Examples: CALL FREADC(5,’LINE=2000;’)

 CALL FREAD(5,’I:’,NUMBER)

 requests FREAD to read an integer from line 2.000 on

 I/O unit 5.

 CALL FREADC(’LINE=DEFAULT;’)

 causes subsequent lines to be read sequentially.

 LONG ____

 Prototypes: CALL FREADC(’LONG={ON|OFF};’) ____

 CALL FREADC(’LONG;’,{.TRUE.|.FALSE.}) ____

 Action: If ON, then strings that are too long are recognized as

 errors.

 Default: Strings that are too long are truncated.

 Example: CALL FREADC(’LONG=ON;’)

 MCC ___

 Prototypes: CALL FWRITC([unit,]’MCC={ON|OFF};’) ___

 CALL FWRITC([unit,]’MCC=?’,{.TRUE.|.FALSE.}) ___

 Action: The MCC option controls machine carriage-control. If ON,

 the first character of every output line is interpreted

 as a machine carriage-control character. The list of

 legal machine carriage-control characters is given in

 Appendix H to the section "Files and Devices" in MTS

 Volume 1, The Michigan Terminal System. If the unit is ____________________________

 specified, the option will be applied to that unit only;

 otherwise, it will be applied to all FWRITC calls.

 The use of machine carriage-control characters is device-

 dependent and not recommended.

 Default: The default for the MCC option depends on the setting of

 the MTS @MCC FDname modifier (which defaults OFF).

 434 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 MTSLNR ______

 Prototype: CALL FREADC([unit,]’MTSLNR;’,var) ____

 where "var" is an INTEGER*4 variable.

 Action: To return the MTS line number of the last line read by

 FREAD (this is the internal form of the MTS line number

 which is equivalent to the external form * 1000, e.g.,

 line number 1 is returned as 1000).

 Example: CALL FREADC(’MTSLNR;’,LNR)

 NAMES _____

 Prototypes: CALL FREADC(’NAMES=’’names’’;’) ____

 CALL FREADC(’NAMES;’,’names’) ____

 where "names" is a list of ten names, each enclosed and

 separated by a delimiter (see the example below).

 Action: When a conversion error is encountered and the verbosity

 level is at least one, the first action FREAD takes is to

 print a diagnostic of the form:

 ?INVALID x: "y"

 where the actual data field in error is substituted for

 "y", and the name of the data type is substituted for

 "x". By default, the name of the data type is one of the

 following:

 1 - character string

 2 - hexadecimal string

 3 - binary string

 4 - octal string

 5 - integer number

 6 - real number

 7 - logical number

 8 - MTS line number

 By using the NAMES option the user is able to define

 eight names which will be substituted for "x", in place

 of the eight default names given above. Such is the

 function of the first eight names which the user must

 provide.

 When a conversion error is encountered and FREAD is

 allowed to prompt for replacement data (which is the

 default strategy), then the prompt printed by FREAD is of

 the form:

 FREAD/FWRITE: Free-Format I/O Subroutines 435

 MTS 6: FORTRAN in MTS

 October 1983

 ?ENTER REPLACEMENT z, OR RE-ENTER ...

 where "z" is either STRING or NUMBER, depending on

 whether the data in error was of string or numeric type.

 By using the NAMES option the user is able to define two

 names of his own which will be substituted for "z", in

 place of those just listed. Such is the function of the

 last two names that the user must provide.

 Notes: Each name must be no longer than sixteen characters. A

 null name (that is, a name of length zero) is interpreted

 to mean that the corresponding name is not to be

 redefined. Trailing blanks are always trimmed from names

 before they are printed.

 Example: CALL FREADC(’NAMES=’’///// /////RATE/’’;’)

 CALL FREADC(’ORMTS=OFF;’)

 CALL FREADC(’ERROR=FIELD;’)

 CALL FREADC(’VERBOSITY=1;’)

 then an invalid integer (123:) would produce the

 following response from FREAD:

 ?INVALID: "123:"

 ?ENTER REPLACEMENT RATE

 ?

 NOFDUB ______

 Prototypes: CALL FREADC(’NOFDUB={ON|OFF};’) ____

 CALL FREADC(’NOFDUB;’,{.TRUE.|.FALSE.}) ____

 Action: To specify that the "I/O unit" on a subsequent call to

 FREAD or FWRITE is not a FDUB.

 Normally, FREAD and FWRITE call the system subroutine

 CHKFDUB to differentiate between FDUBs and user-supplied

 buffers. By setting the NOFDUB switch to ON, the user

 can specify that the unit is actually a buffer and avoid

 the overhead of calling CHKFDUB. However, it is prefer-

 able to call either FREADB or FWRITB.

 Default: OFF

 Example: CALL FREADC(’NOFDUB=ON;’)

 436 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 NOFILL ______

 Prototypes: CALL FREADC(’NOFILL={ON|OFF};’) ____

 CALL FREADC(’NOFILL;’,{.TRUE.|.FALSE.}) ____

 Action: If OFF, then unsatisfied variables are filled with zeros

 or blanks when an end-of-file condition or an end-of-line

 condition occurs which will result in a return to the

 user program.

 Default: OFF

 Example: CALL FREADC(’NOFILL=ON;’)

 NULL ____

 Prototypes: CALL FREADC(’NULL={ON|OFF};’) ____

 CALL FREADC(’NULL;’,{.TRUE.|.FALSE.}) ____

 Action: If ON, then variables corresponding to null fields are

 filled with zeros or blanks.

 Default: Variables corresponding to null fields are left

 unchanged.

 Note: A null field is defined as either a delimiter appearing

 as the first nonblank character on a line, or as two

 nonblank delimiters with no nonblank characters between

 them.

 Example: CALL FREADC(’NULL=ON;’)

 NUMBER ______

 Prototype: CALL FREADC(’NUMBER;’,var) ____

 where "var" is an INTEGER*4 variable.

 Action: To return the number of fields found on the last read

 call to FREAD. This count includes only those fields

 successfully processed.

 Note: The number of fields is also returned by FREAD as a real

 and an integer FUNCTION value.

 Example: NUMFLD=FREAD(5,’R...’,R1,R2,R3,R4)

 or

 FREAD/FWRITE: Free-Format I/O Subroutines 437

 MTS 6: FORTRAN in MTS

 October 1983

 CALL FREAD(5,’R...’,R1,R2,R3,R4)

 CALL FREADC(’NUMBER;’,NUMFLD)

 NUMFLD will be equal to the number of fields found.

 ORL ___

 Prototypes: CALL FWRITC([unit,]’ORL=n;’) ___

 CALL FWRITC([unit,]’ORL=?’,n) ___

 Action: The ORL option sets the maximum output record length of

 lines written. Phrases longer than the ORL specification

 will be broken at the nearest blank and continued on the

 following line.

 Default: The length is set to 76.

 Example: CALL FWRITC(6,’ORL=132;’)

 sets the maximum output record length for unit 6 to

 132.

 ORMTS _____

 Prototypes: CALL FREADC(’ORMTS={ON|OFF};’) ____

 CALL FREADC(’ORMTS;’,{.TRUE.|.FALSE.}) ____

 Action: If OFF, then the string ’OR "MTS"’ will not be appended

 to prompt for replacement data, and FREAD will not

 interpret the string "MTS" as meaning return to MTS

 command mode.

 Default: ON

 Example: CALL FREADC(’ORMTS=OFF;’)

 PREFIX ______

 Prototypes: CALL FREADC(’PREFIX=’’char’’;’) ____

 CALL FREADC(’PREFIX;’,’char’) ____

 where "char" is any single character.

 Action: To define a new FREAD prefix character. Every data line

 read and every error message line written by FREAD is

 prefixed with this character.

 438 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 Default: ’?’

 Example: CALL FREADC(’PREFIX=’’-’’;’)

 sets the FREAD prefix character to "-".

 QUOTE _____

 Prototypes: CALL FREADC(’QUOTE={ON|OFF};’) ____

 CALL FREADC(’QUOTE;’,{.TRUE.|.FALSE.}) ____

 Action: If ON, then character strings must be enclosed within

 quotes (e.g., ’string’). If OFF, then quotes around

 character strings are not recognized as having any

 special significance (that is, they are considered as

 part of the string rather than delimiting the string).

 Default: Character strings may or may not be enclosed in quotes.

 Note: Quotes around character strings are a necessity when a

 delimiter is embedded within the string.

 Example: CALL FREADC(’QUOTE=OFF;’)

 disables the recognition of quotes as character

 string delimiters.

 REREAD ______

 Prototypes: CALL FREADC(’REREAD={ON|OFF};’) ____

 CALL FREADC(’REREAD;’,{.TRUE.|.FALSE.}) ____

 Action: To enable or disable the REREAD option. If ON, then

 input buffer pointers will be set up to reread the field

 if a conversion error has occurred. FREAD will return to

 the user program after the conversion error in accordance

 with the ERROR option. On the next call to FREAD, the

 field in error will be read again.

 Default: OFF, normally the input buffer pointers remain positioned

 to read the next input data field.

 Example: CALL FREADC(’REREAD=ON;’)

 FREAD/FWRITE: Free-Format I/O Subroutines 439

 MTS 6: FORTRAN in MTS

 October 1983

 RESET _____

 Prototype: CALL FREADC(’RESET;’) ____

 Action: Resets all FREAD options to what they were initially. ___

 Stacked options are not lost.

 Example: CALL FREADC(’RESET;’)

 RESTORE _______

 Prototype: CALL FREADC(’RESTORE;’[,var]) ____

 where "var" is an INTEGER*4 variable (optional).

 Action: To restore all FREAD options to what they were on the

 previous SAVE. If the second argument is provided, the

 stack level at which the options were restored is

 returned in it. This is useful only for checking that

 options are restored from the same stack level at which

 they were saved.

 Notes: The number of restores must never exceed the number of

 saves.

 Example: C** SAVE OPTIONS BEFORE CALL

 CALL FREADC(’SAVE;’,LVL)

 CALL SUBPGM

 C** RESTORE OPTIONS AFTER CALL

 CALL FREADC(’REST;’,LVL1)

 C** CHECK STACK LEVEL

 IF(LVL .NE. LVL1) GOTO 999

 SAVE ____

 Prototype: CALL FREADC(’SAVE;’[,var]) ____

 where "var" is an INTEGER*4 variable (optional).

 Action: To save the current status of all FREAD options, includ-

 ing the delimiters. They are stacked automatically in an

 area internal to FREAD. A subsequent RESTORE will

 restore the options to exactly as they were at the time

 of the last SAVE. If the second argument is provided,

 the stack level at which the options were saved is

 returned in it. This is useful only for checking that

 options are restored from the same stack level at which

 they were saved.

 440 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 Notes: Stacking options allows FREAD to be used independently

 from within different subprograms.

 If a call to FREADC with "SAVE;" is made, the stack level

 will not be returned.

 Examples: CALL FREADC(’SAVE;’)

 CALL FREADC(’SAVE;’,LEVEL)

 SHORT _____

 Prototypes: CALL FREADC(’SHORT={ON|OFF};’) ____

 CALL FREADC(’SHORT;’,{.TRUE.|.FALSE.}) ____

 Action: If ON, then strings that are too short are recognized as

 errors.

 Default: Strings that are too short are padded with zeros or

 blanks.

 Example: CALL FREADC(’SHORT=ON;’)

 CALL FREADC(’LONG=ON;’)

 Forces all strings that do not fit exactly into the

 user-supplied input buffer to be treated as conver-

 sion errors.

 STREAM ______

 Prototypes: CALL FREADC(’STREAM={ON|OFF};’) ____

 CALL FREADC(’STREAM;’,{.TRUE.|.FALSE.}) ____

 Action: To enable (ON) or disable (OFF) stream input.

 Default: OFF, stream input is disabled.

 Note: Stream input can also be controlled by using the ENDLINE

 option.

 Example: CALL FREADC(’STREAM=ON;’)

 FREAD/FWRITE: Free-Format I/O Subroutines 441

 MTS 6: FORTRAN in MTS

 October 1983

 TRIM ____

 Prototypes: CALL FREADC([unit,]’TRIM={ON|OFF};’) ____

 CALL FREADC([unit,]’TRIM=?’,{.TRUE.|.FALSE.}) ____

 CALL FWRITC([unit,]’TRIM={ON|OFF};’) ____

 CALL FWRITC([unit,]’TRIM=?’,{.TRUE.|.FALSE.}) ____

 Action: The TRIM option controls the trimming of trailing blanks

 from input or output records. If ON, all trailing blanks

 except one are removed from the line. If OFF, the line ___________

 is not changed.

 Default: The default is OFF unless the MTS @TRIM FDname modifier

 is explicitly specified for the logical I/O unit in which

 case the default is ON.

 Example: CALL FREADC(4,’TRIM=OFF;’)

 sets the TRIM option to OFF for unit 4.

 TYPE ____

 Prototype: CALL FREADC(’TYPE;’,var) ____

 where "var" is an INTEGER*4 variable.

 Action: To return the type code corresponding to the last data

 field processed. It will be one of the following:

 0 - initially

 1 - character string

 2 - hexadecimal string

 3 - binary string

 4 - octal string

 5 - integer number

 6 - real number

 7 - logical number

 8 - MTS line number

 Example: CALL FREADC(’TYPE;’,ITYPE)

 442 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 UC __

 Prototypes: CALL FREADC([unit,]’UC={ON|OFF};’) __

 CALL FREADC([unit,]’UC=?’,{.TRUE.|.FALSE.}) __

 CALL FWRITC([unit,]’UC={ON|OFF};’) __

 CALL FWRITC([unit,]’UC=?’,{.TRUE.|.FALSE.}) __

 Action: The UC option controls uppercase conversion. If ON,

 input or output lines are converted to all uppercase. If

 OFF, input or output lines are not converted (the lines

 remain unchanged).

 Default: The default is OFF unless overridden by the setting of

 the MTS @LC/UC FDname modifier (which defaults to LC).

 Example: CALL FREADC(5,’UC=ON;’)

 converts all input lines read from unit 5 to

 uppercase.

 UPDATE ______

 Prototypes: CALL FREADC(’UPDATE={ON|OFF};’) ____

 CALL FREADC(’UPDATE;’,{.TRUE.|.FALSE.}) ____

 Action: If ON, FREAD will automatically update the buffer index

 to correspond to the next data field when reading from a

 user-provided buffer. _____________

 Default: OFF, FREAD does not change the buffer index.

 Note: When the updated buffer index exceeds the buffer length,

 there are no more data fields left in the buffer. The

 user program should check for this condition (see the

 section "Reading from a User-Supplied Buffer").

 Example: CALL FREADC(’UPDATE=ON;’)

 VERBOSITY _________

 Prototypes: CALL FREADC(’VERBOSITY={0...3};’) ____

 CALL FREADC(’VERBOSITY;’,{0...3}) ____

 Action: Controls the verbosity of error messages generated by

 FREAD in response to conversion errors. 0 is the least

 verbose (prints nothing) and 3 is the most verbose.

 FREAD/FWRITE: Free-Format I/O Subroutines 443

 MTS 6: FORTRAN in MTS

 October 1983

 Default: The default verbosity is 2 for conversational mode, and 3

 for batch mode.

 Note: Control over the text of error messages is provided by

 the ORMTS option and the NAMES option.

 Example: The following is a typical verbose error message,

 (a) ?INVALID INTEGER NUMBER: "-2-"

 (b) ?SYNTAX $

 (c) ?UNIT=5, FDNAME=-FILE AT LINE 13.07

 Verbosity Level Lines Printed _______________ _____________

 0 none

 1 (a)

 2 (a) and (b)

 3 (a),(b), and (c)

 444 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 ADVANCED USES OF FREAD AND FWRITE _________________________________

 Reading Arrays ______________

 To read data into an "n x m" array it is essential that the user

 understand how FORTRAN stores data in these arrays. Consider the array

 X(3,3). X(1,1) is the first element, X(2,1) is the second element and

 so on. In other words, FORTRAN stores its arrays such that the first

 subscript varies the quickest. In fact, the array could be thought of

 as 3 vectors starting at X(1,1), X(1,2), and X(1,3). Thus, if the data

 is in that order, FREAD can be used to read it:

 CALL FREAD(unit,’R V:’,X(1,1),3)

 CALL FREAD(’*’,’R V:’,X(1,2),3)

 CALL FREAD(’*’,’R V:’,X(1,3),3)

 The following FORTRAN read is equivalent:

 READ(5,100) (X(I,J),I=1,3),J=1,3)

 100 FORMAT(9F10.2)

 Indexed Input and Output ________________________

 There is always that one time when a record must be read from a

 particular line or write one to a particular line. This means INDEXED

 I/O must be performed. To do this with FREAD and FWRITE requires use of

 their buffering capabilities. To read one or more variables from line

 3.000, the LINENUMBER option must be used as follows:

 CALL FREADC(’LINENUMBER=3000;’)

 CALL FREAD(5,’I V:’,INDEX,N)

 Note that the form of the line number in the option call is in internal

 form (i.e., line number * 1000). Any further read is done sequentially,

 i.e., the LINENUMBER option is a one-shot option.

 The following commands illustrate how to write a line or record to a

 specified location in a file:

 CALL FWRITC(’LINE=3000;’)

 CALL FWRITE(8,’This is written indexed at line 3.000: ’)

 Note that the line number is specified in its internal form (i.e., line

 number * 1000).

 FREAD/FWRITE: Free-Format I/O Subroutines 445

 MTS 6: FORTRAN in MTS

 October 1983

 Using FREAD Without Transferring Data _____________________________________

 It is possible to direct FREAD to read a line (or a user-supplied

 buffer), and return to the calling program without transferring any

 data. This is done as follows:

 CALL FREAD(5,’:’,DUMMY)

 The above call would cause a line to be read from logical I/O unit 5.

 The second argument is the type string, which in this case does not

 contain any type codes, hence FREAD will return immediately. The third

 argument, DUMMY, must be supplied for reasons internal to FREAD.

 The advantage attained by having FREAD read a line without processing

 the data on the line is that it simplifies some of the cases where FREAD

 is commonly used. For example, consider the following program that

 reads and adds integer numbers from SCARDS until an end-of-file is

 encountered, and then prints the sum of the numbers. Any number of

 integers may be on a given line, and invalid integers are not included

 in the sum.

 CALL FREADC(’ENDFILE=2;’)

 CALL FREADC(’ERROR=3;’)

 ISUM=0

 1 CALL FREAD(’SCARDS’,’:’,DUMMY,&1,&3,&1)

 2 CALL FREAD(’*’,’I:’,I,&1,&3,&2)

 ISUM=ISUM+I

 GO TO 2

 3 WRITE (6,4) ISUM

 4 FORMAT(’ISUM=’,I10)

 STOP

 END

 The following program is much like the program of the above example,

 except that it sums integer and real numbers. A given number is first ___

 examined to see if it is a valid integer number. Failing that, it is

 examined to see if it is a valid real number, and failing that, if

 neither integer nor real, it will not be included in either of the sums.

 Note, in particular, the use of the REREAD option.

 CALL FREADC(’ERROR=3;’)

 CALL FREADC(’ENDFILE=2;’)

 ISUM=0

 RSUM=0.0

 1 CALL FREAD(’SCARDS’,’:’,DUMMY,&1,&4,&1)

 2 CALL FREADC(’REREAD=ON;’)

 CALL FREAD(’*’,’I:’,I,&1,&4,&6)

 ISUM=ISUM+I

 GO TO 2

 4 WRITE(6,5) ISUM,RSUM

 5 FORMAT(’ ISUM= ’,I12/’ RSUM= ’,G15.7)

 STOP 2

 446 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 6 CALL FREADC(’REREAD=OFF;’)

 CALL FREAD(’*’,’R:’,R,&1,&4,&3)

 RSUM=RSUM+R

 GO TO 2

 END

 Input Subroutines _________________

 There are times when the user may want to use one input routine for

 several applications. However, options which are required in the

 subroutine may conflict with those in the calling program. The SAVE and

 RESTORE options are used to solve this problem:

 C Main program

 ...

 CALL INPUT(....)

 ...

 END

 SUBROUTINE INPUT(....)

 CALL FREADC(’SAVE;’)

 C Set options for the subroutine

 CALL FREAD(....)

 C Perform the necessary calls to read data

 ...

 C Before returning, restore caller’s options

 CALL FREADC(’RESTORE;’)

 RETURN

 END

 Creating Text Lines For Other Routines ______________________________________

 Sometimes it is necessary to use a subroutine that requires a

 parameter that is part text and part numbers. If the user does not want

 the number part to be variable, it is not easy to do in FORTRAN.

 However, using FWRITB it is very simple. First, use FWRITB to create

 the required string with the correct text and values. Then use the

 resulting buffer and length to call the subroutine. A common example is

 using the CNTRL subroutine to set some file or tape parameter:

 INTEGER*2 CNTRLL/32/

 INTEGER BLKSIZ/4000/,BLKLEN/2/

 LOGICAL*1 BLKTYP(2)/’F’,’B’/,CNTRLP(32)

 LRECL = 80

 CALL FWRITB(CNTRLP,CNTRLL,’FMT=<S>(; ’,BLKTYP,BLKLEN)

 CALL FWRITB(CNTRLP,CNTRLL,’<I>,<I>): ’,BLKSIZ,LRECL)

 C CNTRLP will now contain ’FMT=FB(4000,80)’.

 CALL CNTRL (CNTRLP, CNTRLL, TAPE)

 FREAD/FWRITE: Free-Format I/O Subroutines 447

 MTS 6: FORTRAN in MTS

 October 1983

 FREAD/FWRITE EXAMPLES _____________________

 The following example shows how one might use FREAD and FWRITE to

 read and write titles.

 LOGICAL*1 TITLE(132)

 INTEGER TAB, PAGNO, TITLEN

 PAGNO = 0

 C Set up output options for unit 6.

 CALL FWRITC(6,’ORL=132;’)

 CALL FWRITC(6,’CC=ON;’)

 C Read in title from unit 5. Set max length of title.

 TITLEN = 132

 CALL FREAD(5,’M:’,TITLE,TITLEN)

 C TITLEN now has true length of title. TITLE has data.

 ...

 C Now update page number for new page and write title.

 C Also center the title on the page.

 PAGNO = PAGNO + 1

 TAB = (132 - TITLEN) / 2

 CALL FWRITE(6,’1<T><STRING,T125>Page <I>: ’,

 1 TAB,TITLE,TITLEN,PAGNO)

 ...

 This method of reading and writing characters uses far less CPU time

 than FORTRAN’s nA1 format.

 The following example uses various options to recover from a known

 error in the data file. In this case, it was known that some ’E’s were

 incorrectly punched as ’F’s.

 C

 C An example of sneaky error recovery. Illegal character

 C errors are assumed to be ’E’s punched as ’F’s.

 C

 INTEGER*2 IBUFF(130),CODES(4)

 LOGICAL*1 BUFF(256)

 INTEGER FLDCNT,ERRCNT

 REAL X(10)

 C

 EQUIVALENCE (BUFF(1),IBUFF(3))

 C

 C Initialize variables and FREAD

 C

 ERRCNT = 0

 CALL FREADC(’ENDFILE=2;’)

 CALL FREADC(’ERROR=3;’)

 C Set error message printing off because we know they

 C exist but we don’t want the output cluttered up.

 CALL FREADC(’VERBOSITY=0;’)

 10 CALL FREAD(5,’REAL VECTOR: ’,X,10,&11,&20,&30)

 11 CONTINUE

 448 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 C

 C Process data.

 C

 GO TO 10

 C

 C End-of-file indicates end of program. Print error count

 C and stop.

 C

 20 CALL FWRITE(6,’ <I> NUMBERS IN ERROR: ’,ERRCNT)

 STOP

 C

 C Error detected. Get input buffer, number of fields read,

 C information about the error. If error not the type

 C expected, ignore it.

 C

 30 CALL FREADC(’BUFFER;’,IBUFF)

 CALL FREADC(’NUMBER;’,FLDCNT)

 CALL FREADC(’INFORMATION;’,CODES)

 IF (CODES(1) .NE. 2) GO TO 40

 ERRCNT = ERRCNT + 1

 C

 C Reconstruct the record by replacing the ’F’ with an ’E’.

 C Must reset length, field pointer, and read via BUFFER

 C

 35 IBUFF(2) = CODES(2)

 K = CODES(4)

 CALL MOVEC(1,’E’,BUFF(K))

 C Recalculate the number of fields left to read.

 N = 10 - FLDCNT + 1

 CALL FREADB(IBUFF,’REAL VECTOR:’,X(FLDCNT),N,&11,&20,&30)

 GO TO 11

 C

 C Unexpected error...print record and ignore it.

 C

 40 CALL FWRITE(6,’ Unexpected illegal input record /; ’)

 I = IBUFF(1)

 CALL FWRITE(6,’ <STRING>; ’,IBUFF(3),I)

 GO TO 10

 END

 FREAD/FWRITE: Free-Format I/O Subroutines 449

 MTS 6: FORTRAN in MTS

 October 1983

 DATA DESCRIPTIONS _________________

 Integer Numbers _______________

 An integer number consists of a signed or unsigned decimal digit

 string without a decimal point. Multiple signs are accepted and

 evaluated using the usual algebraic rules, e.g., --=+. The number must

 fall within the range of -2147483648 to 2147483647. Range checking

 appropriate to INTEGER*2 conversion is not performed, so that INTEGER*2 ___

 conversion is equivalent to INTEGER*4 conversion followed by an assign-

 ment statement.

 Real Numbers ____________

 A real number consists of a signed or unsigned decimal digit string

 optionally containing a decimal point, and optionally followed by an

 exponent field. Multiple signs are always evaluated, whether in the

 fraction or the exponent. An exponent field consists of an exponent

 starter (E or D) optionally followed by an integer number. Real numbers

 must fall in the range of .539760534693402789D-78 to

 .723700557733226211D+76.

 The following are examples of invalid real numbers:

 1- sign character preceded by digit

 .-2 sign character following decimal point without an intervening

 exponent starter (E or D)

 3E- exponent sign character the last character in field

 4.. decimal point after decimal point

 5E. decimal point after exponent starter

 6DD exponent starter after exponent starter

 -E7 exponent starter immediately follows sign character

 Logical Numbers _______________

 Any characters, except the current delimiters, are valid in a logical

 number. The field is scanned and the first T or F encountered

 determines whether the number is .TRUE. or .FALSE.; if neither is

 found, .FALSE. is assumed. Internally, .FALSE. is integer 0 and

 .TRUE. is integer 1.

 450 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 MTS Line Numbers ________________

 An MTS line number is a string of the form "snnnnn.nnn" where "s" is

 the sign (+ or -) and "n" is a decimal digit. Leading ’+’ signs and

 zeros, trailing decimal points and trailing zeros after the decimal may

 be omitted. Internally, the MTS line number is converted to an

 INTEGER*4 value multiplied by 1000; e.g., line number 1 is converted to

 1000.

 Character Strings _________________

 A character string is a sequence of any characters. One character

 occupies one byte of storage. By default:

 (1) Character strings may or may not be enclosed in single quotes

 (’). Normally, a character string does not need to be enclosed

 in quotes unless one or more of the characters within the string

 is defined as a delimiter. If a string is enclosed in quotes,

 then a quote within the string must be represented by two

 successive quotes.

 (2) Character strings are left-justified to the byte.

 (3) Character strings that are shorter than requested are padded on

 the right with blanks.

 (4) Character strings that are longer than requested are truncated

 on the right.

 Optionally:

 (1) By setting the QUOTE option appropriately, character strings

 that are not enclosed in quotes are treated as errors. Another

 setting of the QUOTE option causes quotes enclosing character

 strings not to be recognized as having any special significance.

 That is, the quotes are regarded as part of the string text

 proper.

 (2) By setting the JUSTIFY option to RIGHT, character strings will

 be right-justified. Right-justification implies that padding

 and truncation occur on the left.

 (3) By setting the SHORT option to ON, character strings that are

 too short will be treated as errors.

 (4) By setting the LONG option to ON, character strings that are too

 long will be treated as errors.

 Hexadecimal Strings ___________________

 A hexadecimal string is a sequence from the set of characters 0

 through 9 and A through F. Two hexadecimal digits occupy one byte of

 storage when converted to internal form. By default,

 FREAD/FWRITE: Free-Format I/O Subroutines 451

 MTS 6: FORTRAN in MTS

 October 1983

 (1) Hexadecimal strings are right-justified.

 (2) Hexadecimal strings that are shorter than requested are padded

 on the left with extra 0’s.

 (3) Hexadecimal strings that are longer than requested are truncated

 on the left.

 (4) Hexadecimal strings may have an odd or an even number of digits.

 Optionally:

 (1) By setting the JUSTIFY option to LEFT, hexadecimal strings will

 be left-justified. Left-justification implies that padding and

 truncation occur on the right.

 (2) By setting the SHORT option to ON, hexadecimal strings that are

 too short will be treated as errors.

 (3) By setting the LONG option to ON, hexadecimal strings that are

 too long will be treated as errors.

 (4) By setting the EVEN option to ON, hexadecimal strings that have

 an odd number of digits will be treated as errors.

 Octal Strings _____________

 An octal string is a sequence from the set of characters 0 through 7.

 One octal digit occupies three bits of storage when converted to

 internal form. By default:

 (1) Octal strings are right-justified to the bit.

 (2) Octal strings that are shorter than requested are padded on the

 left with extra 0’s.

 (3) Octal strings that are longer than requested are truncated on

 the left.

 Optionally:

 (1) By setting the JUSTIFY option to LEFT, octal strings will be

 left-justified. Left-justification implies that padding and

 truncation occur on the right.

 (2) By setting the SHORT option to ON, octal strings that are too

 short will be treated as errors. An octal string is considered

 to be too short when it is more than two bits shorter than the

 user-supplied string buffer.

 (3) By setting the LONG option to ON, octal strings that are too

 long will be treated as errors.

 Binary Strings ______________

 A binary string is a sequence of 0’s and 1’s. A string of eight

 binary digits occupies one byte of storage when converted to internal

 form. By default:

 452 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 (1) Binary strings are right-justified to the bit.

 (2) Binary strings that are shorter than requested are padded on the

 left with extra 0’s.

 (3) Binary strings that are longer than requested are truncated on

 the left.

 Optionally:

 (1) By setting the JUSTIFY option to LEFT, binary strings will be

 left-justified. Left-justification implies that padding and

 truncation occur on the right.

 (2) By setting the SHORT option to ON, binary strings that are too

 short will be treated as errors.

 (3) By setting the LONG option to ON, binary strings that are too

 long will be treated as errors.

 FREAD/FWRITE: Free-Format I/O Subroutines 453

 MTS 6: FORTRAN in MTS

 October 1983

 454 FREAD/FWRITE: Free-Format I/O Subroutines

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 CALLING SUBROUTINES FROM FORTRAN ________________________________

 FORTRAN programs may easily call S-type system subroutines. R-type

 (register called) subroutines may also be called with a little more

 difficulty by using the RCALL and ADROF system subroutines.

 Each system subroutine called from a FORTRAN program must be called

 either as a standard subroutine or as a function. If the subroutine

 uses only the parameter list to accept and return values, it is called

 as a subroutine using the CALL statement

 CALL subr(p1,p2,...,pn)

 If the subroutine returns a value in general register 0 or floating-

 point register 0, it is called as a function:

 value = subr(p1,p2,...,pn)

 where "value" is the value returned. It must be declared to be the

 appropriate data type (e.g., INTEGER for general register 0 or REAL*4 or

 REAL*8 for floating-point register 0).

 The equivalences of data types for FORTRAN are given below:

 Data Type FORTRAN Declaration ____ ____ _______ ___________

 Fullword integer INTEGER*4 (or INTEGER)

 Halfword integer INTEGER*2

 One-Byte integer LOGICAL*1

 8-Byte integer INTEGER array of two elements

 Fullword real REAL*4 (or REAL)

 Doubleword real REAL*8

 Fullword logical LOGICAL*4 (or LOGICAL)

 (0 is FALSE, 1 is TRUE)

 One-byte logical LOGICAL*1

 (0 is FALSE, 1 is TRUE)

 Character string¹ LOGICAL*1 or REAL*4 array
 CHARACTER*n (FORTRAN 77 only)

 ("n" is the length of the string)

 Calling Subroutines from FORTRAN 454.1

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 Array Array of appropriate data type

 Region COMMON region of appropriate data types

 Variable type EQUIVALENCEd data types

 ¹Only FORTRAN 77 supports a true character data type. FORTRAN 66 (e.g,
 *FTN-compiled programs) must use either the LOGICAL*1 or REAL*4 data

 type.

 The following programs illustrate FORTRAN calls to system

 subroutines.

 CALL MTS

 RETURN

 END

 The above example calls the MTS subroutine which requires no parameters.

 CHARACTER*255 STRING

 INTEGER*2 LENGTH

 STRING = ’$Display Timespelledout’

 LENGTH = 23

 CALL CMD(STRING,LENGTH)

 RETURN

 END

 The above example coded in FORTRAN 77 calls the CMD subroutine to

 execute a $DISPLAY command. The subroutine requires two parameters, the

 first being a character string giving the command string and the second

 being a halfword integer command length (CMD also allows a fullword

 integer to be used). If this example were used in a FORTRAN 66 program,

 it could be coded as follows:

 REAL*4 STRING(6)

 INTEGER*2 LENGTH/23/

 DATA STRING/’$Dis’,’play’,’ Tim’,’espe’,’lled’,’out ’/

 CALL CMD(STRING,LENGTH)

 RETURN

 END

 The second example illustrates the advantage of using FORTRAN 77 when

 calling subroutines that require character data types. Normally, it is

 difficult in FORTRAN 66 to process REAL*4 or LOGICAL*1 arrays containing

 character data without resorting to the use of special character

 manipulation routines.

 CHARACTER*4 USERID

 INTEGER ITEMNO/2/

 CALL GUINFO(ITEMNO,USERID)

 WRITE (6,100) USERID

 RETURN

 454.2 Calling Subroutines from FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 100 FORMAT(’ User ID = ’,A4)

 END

 The above example calls the GUINFO subroutine to obtain the current user

 ID. The subroutine also requires two parameters, the first of which is

 a fullword integer and the second a character string. In FORTRAN 66,

 USERID would be declared as REAL*4.

 CHARACTER*18 FNAME

 INTEGER CHKFIL,ACCESS

 FNAME = ’WABC:DATA ’

 ACCESS = CHKFIL(FNAME)

 WRITE (6,100) ACCESS

 RETURN

 100 FORMAT(’ Access = ’,I2)

 END

 The above example calls the CHKFIL subroutine to determine the program’s

 access to the file WABC:DATA. Since the access is returned in general

 register 0, the subroutine must be called as INTEGER function.

 IMPLICIT INTEGER(A-Z)

 COMMON /CINFO/ CIAL,CIRL,CIONID,CIVOL,CIUC,CILRD,CICD

 COMMON /CINFO/ CIFO,CIDT,CIFLG,CILCD,CIPKEY,CILCCT

 COMMON /CINFO/ CILNCD,CINCT,CICDT,CILRDT

 CHARACTER*4 CIONID

 CHARACTER*8 CIVOL,UNIT

 CHARACTER*80 ERRMSG

 DIMENSION CILCCT(2),CILNCT(2),CICDT(2),CILRDT(2)

 DIMENSION RTN(6)

 CHARACTER*20 RTNCHR

 EQUIVALENCE (RTN(1),RTNCHR)

 DATA FLAG/Z00000002/

 UNIT = ’SCARDS ’

 RTN(6) = 0

 CIAL = 25

 CALL GFINFO(UNIT,RTNCHR,FLAG,CIAL,0,0,ERCODE,ERRMSG,*20,30)

 WRITE (6,100) RTNCHR,CIONID

 RETURN

 20 WRITE (6,101) ERCODE,ERRMSG

 RETURN

 30 WRITE (6,102)

 RETURN

 100 FORMAT(A20,’ Owner = ’,A4)

 101 FORMAT(I2,2X,A80)

 102 FORMAT(’ Error return from GFINFO subroutine’)

 END

 The above FORTRAN 77 example calls the GFINFO subroutine to obtain

 catalog information about the file attached to the logical I/O unit

 SCARDS. The common block CINFO is passed to the subroutine; upon

 return, the subroutine will insert the catalog information into this

 region. By using a common block, a packed region of varying data types

 Calling Subroutines from FORTRAN 454.3

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 can be defined. The EQUIVALENCE statement is used to equate the integer

 array RTN with the character string RTNCHR so that RTN may be passed as

 an integer and returned as a character string.

 Return codes from system subroutines are processed by appending

 statement numbers to the end of the parameter list on the subroutine

 call. For FORTRAN 66, this takes the form

 CALL subr(p1,p2,...,pn,&sn1,&sn2,...)

 and for FORTRAN 77, this takes the form

 CALL subr(p1,p2,...,pn,*sn1,*sn2,...)

 Each "sn" specifies a statement number to branch to if the corresponding

 return code is returned by the system subroutine. For example, the last

 two parameters in the GFINFO example above, *20 and *30, indicate

 branches to be made if a nonzero return code occurs, e.g., a branch is

 made to statement 20 if the return code is 4, and a branch is made to

 statement 30 if the return code is 8. These are equivalent to the

 FORTRAN statements RETURN 1 and RETURN 2 (in general, a return code of

 4*n is equivalent to RETURN n in FORTRAN). In FORTRAN 66, these

 branches would be coded as &20 and &30. Note that if a return code

 occurs that is higher than what is accommodated for in the parameter

 list, then the next statement after the subroutine call is executed (the

 same as if the return code were zero). For example, if a return code of

 8 occurred and GFINFO were called with the statement

 CALL GFINFO(UNIT,RTNCHR,FLAG,CIAL,0,0,ERCODE,ERRMSG,*20)

 then no special branch would be made (*20 does not mean branch to

 statement 20 for return codes of 4 and higher).

 In FORTRAN, there are no special problems connected with calling

 subroutines that have a variable number of parameters. In the example

 below, the COMMND subroutine is called once with three parameters and

 again with five parameters.

 IMPLICIT INTEGER(A-Z)

 CHARACTER*255 CMDTXT

 INTEGER SWS/0/

 CMDTXT = ’$DISPLAY TIMESPELLEDOUT’

 LENGTH = 23

 CALL COMMND(CMDTXT,LENGTH,SWS,*20,*20,*20)

 CMDTXT = ’$DISPLAY TIMEMISSPELLEDOUT’

 LENGTH = 26

 CALL COMMND(CMDTXT,LENGTH,SWS,SUMMRY,ERCODE,*20,*20,*20)

 IF (SUMMRY.GT.0) THEN

 WRITE (6,100) ERCODE

 RETURN

 END IF

 RETURN

 20 WRITE (6,101)

 454.4 Calling Subroutines from FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 RETURN

 100 FORMAT(’ Command Error Code = ’,I3)

 101 FORMAT(’ Error return from COMMND subroutine’)

 END

 VS FORTRAN (Version 2, Release 2.0 or later) allows external names up to

 7 characters. Thus, the above example could be called using the COMMAND

 entry point instead of the COMMND entry point.

 R-Type Subroutines __________________

 R-type subroutines can be called from FORTRAN by using the RCALL and

 ADROF subroutines. The RCALL subroutine sets up a call to an R-type

 subroutine by inserting the parameters into the proper registers for the

 call to the system subroutine. The ADROF subroutine is used to obtain

 the address of a variable as required both for the RCALL subroutine and

 for other system subroutines such as GETFD.

 The call to the RCALL subroutine is made in the following manner:

 CALL RCALL(subr,r1,p1,...,r2,p2,...)

 where "r1" is the number of registers to be set up on the call to "subr"

 and "p1,..." are the values to be inserted into the registers beginning

 with general register 0; "r2" is the number of registers to contain

 return values from "subr" and "p2,..." are the variables that will

 contain the returned values starting with general register 0.

 The call to the ADROF subroutine (a function call) is made in the

 following manner:

 value = ADROF(par)

 The value returned by ADROF is the address of the value specified by

 "par", e.g.,

 NAMPTR = ADROF(’DATA ’)

 returns in NAMPTR the address of the character string ’DATA ’. ADROF

 may also be used to return the address of a vector or a region of

 storage such as a parameter list (this is illustrated in the second

 example below).

 IMPLICIT INTEGER(A-Z)

 EXTERNAL GETFD

 DATA FIRST/1000/,LAST/1000000000/,BEG/1000/,INC/1000/

 CALL RCALL(GETFD,2,0,ADROF(’DATA1 ’),1,FDUB)

 CALL RENUMB(FDUB,FIRST,LAST,BEG,INC,*20,*40,*30,*40,*40,*40)

 WRITE (6,100)

 RETURN

 Calling Subroutines from FORTRAN 454.5

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 20 WRITE (6,101)

 RETURN

 30 WRITE (6,102)

 RETURN

 40 WRITE (6,103)

 RETURN

 100 FORMAT(’ File successfully renumbered’)

 101 FORMAT(’ File does not exist’)

 102 FORMAT(’ Renumber access not allowed’)

 103 FORMAT(’ Error return from RENUMB subroutine’)

 END

 In the above example, the GETFD subroutine is called to obtain a

 FDUB-pointer for the file DATA1; the FDUB-pointer is then passed on to

 the RENUMB subroutine to renumber the file. The GETFD subroutine

 requires that general register 1 contain the address of the name of the

 subroutine as returned by the ADROF subroutine. The register count is

 2, since RCALL initializes registers beginning with general register 0

 (in this case, register 0 is called with a dummy argument of zero).

 Upon return, GETFD returns the FDUB-pointer in register 0. Hence, the

 register count is 1 and the FDUB-pointer is inserted in the variable

 FDUB.

 IMPLICIT INTEGER(A-Z)

 EXTERNAL CHKACC

 CHARACTER*18 FNAME

 CHARACTER*26 TRIPLE

 DATA MASK/Z00000006/

 DIMENSION PAR(2)

 FNAME = ’DATA1 ’

 TRIPLE = ’WABCWXYZ*EXEC ’

 PAR(1) = ADROF(FNAME)

 PAR(2) = ADROF(TRIPLE)

 1 CALL RCALL(CHKACC,2,0,ADROF(PAR),1,ACCESS,*20,*30,*30)

 2 IF (AND(ACCESS,MASK).NE.MASK) THEN

 WRITE (6,100)

 RETURN

 END IF

 WRITE (6,101)

 RETURN

 20 WRITE (6,102)

 RETURN

 30 WRITE (6,103)

 RETURN

 100 FORMAT(’ Write access not allowed’)

 101 FORMAT(’ Write access allowed’)

 102 FORMAT(’ File does not exist’)

 103 FORMAT(’ Error return from CHKACC subroutine’)

 END

 The above example illustrates the use of the RCALL subroutine to obtain

 a return code from a subroutine that would normally be called as a

 function. When called as a function, i.e.,

 454.6 Calling Subroutines from FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 ACCESS = CHKACC(FNAME,TRIPLE)

 the CHKACC subroutine returns the access in register 0 and inserts in

 the variable ACCESS. When called as a CALLed subroutine, i.e.,

 CALL CHKACC(FNAME,TRIPLE,*20,*30,*30)

 the access in not available, but return codes are available to determine

 the success of the call. RCALL can be used to get the best of both

 worlds. However, since CHKACC is not an R-type subroutine but a

 standard S-type subroutine, general register 1 must contain the address

 of the parameter list PAR. This can be accomplished by using ADROF(PAR)

 to obtain this; in this case, the parameter list PAR is declared as an

 array of two elements. Note also the use of ADROF to generate the two

 values in the parameter list, the first being the address of FNAME and

 the second being the address of TRIPLE.

 Special Cases _____________

 Several system subroutines cannot be called directly by FORTRAN

 programs, either because they return storage acquired by the subroutine

 itself (e.g., GDINFO), or because they require nonstandard calls for

 exit routines (e.g., ATTNTRP or TIMNTRP). However, most of these

 subroutines have FORTRAN-callable alternatives that perform similar

 functions. Some of the more common alternative entries (or subroutines)

 are given in the table below.

 System Subroutine Alternative Entry ______ __________ ___________ _____

 ATTNTRP ATNTRP

 GDINFO GDINF

 LINK LINKF

 LOAD LOADF

 REWIND# REWIND

 TIMNTRP TICALL

 UNLOAD UNLDF

 XCTL XCTLF

 The example below illustrates the use of the GDINF alternative entry to

 the GDINFO subroutine.

 IMPLICIT INTEGER(A-Z)

 CHARACTER*4 DEVTYP

 CHARACTER*8 UNIT

 INTEGER*2 INLEN,OUTLEN

 LOGICAL*1 USE,DEVICE,SWS1,SWS2

 COMMON /INFO/ FDUB,DEVTYP,INLEN,OUTLEN,USE,DEVICE,SWS1,SWS2

 COMMON /INFO/ MODS,BEGLNR,PRVLNR,ENDLNR,INCLNR,NAMPTR,MSGPTR

 UNIT = ’SCARDS ’

 CALL GDINF(UNIT,FDUB,*20,*20)

 Calling Subroutines from FORTRAN 454.7

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 WRITE (6,100) DEVTYP

 RETURN

 20 WRITE (6,101)

 RETURN

 100 FORMAT(’ Type = ’,A4)

 101 FORMAT(’ Error return from GDINF subroutine’)

 END

 454.8 Calling Subroutines from FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 DYNAMIC LOADING IN FORTRAN __________________________

 The dynamic loader provides the capability for an executing program

 to load, execute, and unload another program. This is accomplished by

 the system subroutines LOAD, LINK, XCTL, and UNLOAD which are described

 in MTS Volume 3, System Subroutine Descriptions, and the section ________________________________

 "Virtual Memory Management" in MTS Volume 5, System Services. _______________

 Due to the special nature of a FORTRAN program and its I/O

 environment, these subroutines cannot be directly used. However, the

 system does provide equivalent subroutines that FORTRAN programs may use

 to accomplish the same functions. These subroutines are provided in the

 form of special entry points to the above-mentioned subroutines. These

 special entry points are LOADF, LINKF, XCTLF, and UNLDF and they form an

 interface between a FORTRAN program and their counterpart subroutines

 LOAD, LINK, XCTL, and UNLOAD. In addition, the subroutine STARTF is

 provided as a means of invoking a dynamically loaded program. These

 subroutines interact with the FORTRAN program and its I/O environment so

 that a dynamically loaded FORTRAN program will execute and return

 properly.

 In general, the interaction between a dynamically loaded FORTRAN

 program and its calling program is determined by the setting of the

 "merge" bit in the fullword of switches provided by the subroutine that

 is loading the program. If the merge bit is 1, both programs will use

 the same I/O environment. This makes the dynamically loaded program

 execute the same as if it were called in the form of a normal FORTRAN

 subroutine which was loaded at the same time as the calling program

 (except that a STOP statement is treated as a RETURN statement). If the

 "merge" bit is 0, the dynamically loaded program will use an independent

 version of the FORTRAN I/O environment.

 These dynamic loading subroutines should be used whenever one

 FORTRAN-compiled program dynamically loads another FORTRAN-compiled

 program. They may be used also by programs written in other programming

 languages, but they are intended primarily for use by FORTRAN programs.

 Dynamic Loading in FORTRAN 455

 MTS 6: FORTRAN in MTS

 October 1983

 LINKF _____

 Purpose: To effect the dynamic loading and execution of a program.

 Location: Resident System

 Calling Sequence:

 CALL LINKF(input,info,parlist,errexit,output,lsw,gtsp,

 frsp,pnt)

 Parameters:

 input is the location of an input specifier to be used _____

 during loading to read loader records. An input

 specifier may be one of the following:

 (1) an FDname terminated by a blank.

 (2) a FDUB-pointer (as returned by GETFD).

 (3) an 8-character logical I/O unit name, left-

 justified with trailing blanks. In this

 case, bit 8 in "info" must be 1.

 (4) a fullword integer logical I/O unit number

 (0-99).

 (5) the address of an input subroutine to be

 called during loading via a READ subroutine

 calling sequence to read loader records

 (i.e., the input subroutine is called with a

 parameter list identical to the system sub-

 routine READ). In this case, bit 9 in "info"

 must be 1.

 info is the location of an optional information vector. ____

 No information is passed if "info" is 0 or if

 "info" is the location of a fullword integer 0.

 The format of the information vector is as

 follows:

 (1) a halfword of LINKF control bits defined as

 follows:

 bit 0: 1, if "errexit" is specified.

 bit 1: 1, if "output" is specified.

 bit 2: 1, if "lsw" is specified.

 bit 3: 1, if "gtsp" is specified.

 bit 4: 1, if "frsp" is specified.

 bit 5: 1, if "pnt" is specified.

 bit 6: 1, if to suppress search of LIBSRCH/

 *LIBRARY libraries.

 bit 7: 0, unused (must be zero).

 bit 8: 1, if "input" is the location of a

 456 Dynamic Loading in FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 logical I/O unit name.

 bit 9: 1, if "input" is the location of an

 input subroutine address.

 bit 10: 1, if "output" is the location of a

 logical I/O unit name.

 bit 11: 1, if "output" is the location of an

 output subroutine address.

 bit 12: 1, if the program to be loaded is to

 be merged with the program previ-

 ously loaded.

 bit 13: 1, to suppress prompting at a

 terminal.

 bit 14: 1, to force allocation of a new

 loader symbol table.

 bit 15: 0

 (2) a halfword count of the number of entries in

 the following initial ESD list.

 (3) a variable-length initial ESD list, each

 entry of which consists of a fullword-aligned

 8-character symbol followed by a fullword

 value.

 parlist is the location of a parameter list to be passed _______

 in GR1 to the program being linked to.

 errexit (optional) is the location of an error-exit sub- _______

 routine address to be called if an error occurs

 while attempting to link to the specified program.

 If bit 0 of "info" is 0 (the default), the

 "errexit" parameter is ignored and an error return

 is made to MTS command mode. The exit routine

 will be called via a standard S-type calling

 sequence with two parameters defined as follows:

 P1: the location of a fullword integer error code

 defined as follows:

 0: attempt to load a null program.

 4: fatal loading error (bad object

 program).

 8: undefined symbols referenced by the

 loaded program.

 12: no available storage index numbers.

 16: maximum number of link levels exceeded.

 P2: the location of a fullword containing the

 loader status word.

 If the exit routine returns, LINKF will return to

 MTS without releasing program storage (i.e., as if

 the error exit had not been taken).

 Dynamic Loading in FORTRAN 457

 MTS 6: FORTRAN in MTS

 October 1983

 output (optional) is the location of an output specifier ______

 to be used during loading to produce loader output

 (error messages, map, etc.). If bit 1 of "info"

 is 0 (the default), the "output" parameter is

 ignored and all loader output is written on the

 MAP=FDname specified on the initial $RUN command.

 An output specifier may be one of the following:

 (1) an FDname terminated by a blank.

 (2) a FDUB-pointer (as returned by GETFD).

 (3) an 8-character logical I/O unit name, left-

 justified with trailing blanks. In this

 case, bit 10 of "info" must be 1.

 (4) a fullword integer logical I/O unit number

 (0-99).

 (5) the address of an output subroutine to be

 called during loading via an SPRINT sub-

 routine calling sequence to write loader

 output (i.e., the output subroutine is called

 with a parameter list identical to the system

 subroutine SPRINT). In this case, bit 11 of

 "info" must be 1.

 lsw (optional) is the location of a fullword of loader ___

 control bits. If bit 2 of "info" is 0 (the

 default), the "lsw" parameter is ignored and the

 global MTS settings are used. The loader control

 bits are defined as follows:

 bits 0-23: 0

 bit 24: 1, to suppress the pseudoregister map.

 bit 25: 1, to suppress the predefined symbol map.

 bit 26: 1, to print undefined symbols.

 bit 27: 1, to print references to undefined

 symbols.

 bit 28: 1, to print references to all external

 symbols.

 bit 29: 1, to print dotted lines around the load-

 er map.

 bit 30: 1, to print a map.

 bit 31: 1, to print nonfatal error messages.

 gtsp (optional) is the location of a storage allocation ____

 subroutine to be called during loading via a

 GETSPACE calling sequence to allocate program

 storage. If bit 3 of "info" is zero (the de-

 fault), GETSPACE is used.

 frsp (optional) is the location of a storage dealloca- ____

 tion subroutine to be called during loading via a

 FREESPAC calling sequence to release loader work

 space. If bit 4 of "info" is 0 (the default),

 FREESPAC is used.

 458 Dynamic Loading in FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 pnt (optional) is the location of a direct access ___

 subroutine to be called during loading via a POINT

 calling sequence while processing libraries in

 sequential files. If bit 5 of "info" is 0 (the

 default), POINT is used.

 Values Returned:

 None.

 Description: LINKF provides a method for dynamically loading and

 executing a program. LINKF provides this facility as

 follows:

 (1) The loader is called to dynamically load the

 specified program using "input", "info", "output",

 "lsw", "gtsp", "frsp", and "pnt" if specified.

 (2) The dynamically loaded program is called with the

 address of "parlist" in GR1.

 (3) If the dynamically loaded program, returns to

 LINKF, it is unloaded.

 (4) LINKF returns to the calling program preserving

 the return registers of the dynamically executed

 program.

 Note that LINKF accepts a variable-length parameter list

 of three to eight arguments. For most applications, only

 the first three are required.

 LINKF is required to provide the dynamically loaded

 program with a FORTRAN I/O environment consistent with the

 "merge" bit specified in "info". If the merge bit is 1,

 the dynamically loaded program will have the same I/O

 environment as the calling program. If the merge bit is

 0, the dynamically loaded program will have a separate,

 reinitialized I/O environment. Both FORTRAN main programs

 and subroutines can be dynamically loaded using LINKF.

 However, the effect of executing a STOP statement from a

 dynamically loaded subroutine will depend on the setting

 of the merge bit. If the merge bit is 1, a return is made

 to the calling program; if the merge bit is 0, a return is

 made to MTS.

 Because the rate structure for use of MTS includes a

 charge for allocated virtual memory integrated over CPU

 time, the cost of running a large software package in MTS

 can often be reduced by dynamically loading and executing

 seldom-used subroutines via a call to LINKF. Such savings

 in the storage integral must be weighed against the

 additional CPU time required to open a second file,

 reinvoke the loader, and rescan the required libraries.

 Dynamic Loading in FORTRAN 459

 MTS 6: FORTRAN in MTS

 October 1983

 The user also should see the sections "The Dynamic Loader"

 and "Virtual Memory Management" in MTS Volume 5, System ______

 Services. In particular, these sections describe the use ________

 of initial ESD lists, merging with previously loaded

 programs, and the relationship between LINKF, LOADF, and

 XCTLF storage management.

 Example: INTEGER*2 PAR(4)

 INTEGER*4 ADROF

 DATA PAR/6,’*T’,’P1’,’* ’/

 CALL LINKF(’*LABELSNIFF ’,0,ADROF(PAR))

 END

 The above FORTRAN program is equivalent to issuing the MTS

 command "$RUN *LABELSNIFF PAR=*TP1*".

 460 Dynamic Loading in FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 XCTLF _____

 Purpose: To effect the dynamic loading and execution of a program.

 Location: Resident System

 Calling Sequence:

 CALL XCTLF(input,info,parlist,errexit,output,lsw,gtsp,

 frsp,pnt)

 Parameters:

 input is the location of an input specifier to be used _____

 during loading to read loader records. An input

 specifier may be one of the following:

 (1) an FDname terminated by a blank.

 (2) a FDUB-pointer (as returned by GETFD).

 (3) an 8-character logical I/O unit name, left-

 justified with trailing blanks. In this

 case, bit 8 in "info" must be 1.

 (4) a fullword integer logical I/O unit number

 (0-99).

 (5) the address of an input subroutine to be

 called during loading via a READ subroutine

 calling sequence to read loader records

 (i.e., the input subroutine is called with a

 parameter list identical to the system sub-

 routine READ). In this case, bit 9 in "info"

 must be 1.

 info is the location of an optional information vector. ____

 No information is passed if "info" is 0 or if

 "info" is the location of a fullword integer 0.

 The format of the information vector is as

 follows:

 (1) a halfword of XCTLF control bits defined as

 follows:

 bit 0: 1, if "errexit" parameter is

 specified.

 bit 1: 1, if "output" is specified.

 bit 2: 1, if "lsw" is specified.

 bit 3: 1, if "gtsp" is specified.

 bit 4: 1, if "frsp" is specified.

 bit 5: 1, if "pnt" is specified.

 bit 6: 1, if to suppress search of LIBSRCH/

 *LIBRARY libraries.

 bit 7: 1, to request XCTLF to restore the

 Dynamic Loading in FORTRAN 461

 MTS 6: FORTRAN in MTS

 October 1983

 registers of the previous link

 level before transferring control

 to the specified program.

 0, if the caller has restored them.

 bit 8: 1, if "input" is the location of a

 logical I/O unit name.

 bit 9: 1, if "input" is the location of an

 input subroutine address.

 bit 10: 1, if "output" is the location of a

 logical I/O unit name.

 bit 11: 1, if "output" is the location of an

 output subroutine address.

 bit 12: 1, if the program to be loaded is to

 be merged with the program previ-

 ously loaded.

 bit 13: 1, to suppress prompting at a

 terminal.

 bit 14: 1, to force allocation of a new

 loader symbol table.

 bit 15: 0

 (2) a halfword count of the number of entries in

 the following initial ESD list.

 (3) a variable-length initial ESD list, each

 entry of which consists of a fullword-aligned

 8-character symbol followed by a fullword

 value.

 parlist is the location of a parameter list to be passed _______

 in GR1 to the program being transferred to.

 errexit (optional) is the location of an error-exit sub- _______

 routine address to be called if an error occurs

 while attempting to transfer to the specified

 program. If bit 0 of "info" is 0 (the default),

 the "errexit" parameter is ignored and an error

 return is made to MTS command mode. The exit

 routine will be called via a standard S-type

 calling sequence with two parameters defined as

 follows:

 P1: the location of a fullword integer error code

 defined as follows:

 0: attempt to load a null program.

 4: fatal loading error (bad object

 program).

 8: undefined symbols referenced by the

 loaded program.

 P2: the location of a fullword containing the

 loader status word.

 462 Dynamic Loading in FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 If the exit routine returns, XCTLF will return to

 MTS without releasing program storage (i.e., as if

 the error exit had not been taken).

 output (optional) is the location of an output specifier ______

 to be used during loading to produce loader output

 (error messages, map, etc.). If bit 1 of "info"

 is 0 (the default), the "output" parameter is

 ignored and all loader output is written on the

 MAP=FDname specified on the initial $RUN command.

 An output specifier may be one of the following:

 (1) an FDname terminated by a blank.

 (2) a FDUB-pointer (as returned by GETFD).

 (3) an 8-character logical I/O unit name, left-

 justified with trailing blanks. In this

 case, bit 10 of "info" must be 1.

 (4) a fullword integer logical I/O unit number

 (0-99).

 (5) the address of an output subroutine to be

 called during loading via an SPRINT sub-

 routine calling sequence to write loader

 output (i.e., the output subroutine is called

 with a parameter list identical to the system

 subroutine SPRINT). In this case, bit 11 of

 "info" must be 1.

 lsw (optional) is the location of a fullword of loader ___

 control bits. If bit 2 of "info" is 0 (the

 default), the "lsw" parameter is ignored and the

 global MTS settings are used. The loader control

 bits are defined as follows:

 bits 0-23: 0

 bit 24: 1, to suppress the pseudoregister map.

 bit 25: 1, to suppress the predefined symbol map.

 bit 26: 1, to print undefined symbols.

 bit 27: 1, to print references to undefined

 symbols.

 bit 28: 1, to print references to all external

 symbols.

 bit 29: 1, to print dotted lines around the load-

 er map.

 bit 30: 1, to print a map.

 bit 31: 1, to print nonfatal error messages.

 gtsp (optional) is the location of a storage allocation ____

 subroutine to be called during loading via a

 GETSPACE calling sequence to allocate program

 storage. If bit 3 of "info" is zero (the de-

 fault), GETSPACE is used.

 Dynamic Loading in FORTRAN 463

 MTS 6: FORTRAN in MTS

 October 1983

 frsp (optional) is the location of a storage dealloca- ____

 tion subroutine to be called during loading via a

 FREESPAC calling sequence to release loader work

 space. If bit 4 of "info" is 0 (the default),

 FREESPAC is used.

 pnt (optional) is the location of a direct access ___

 subroutine to be called during loading via a POINT

 calling sequence while processing libraries in

 sequential files. If bit 5 of "info" is 0 (the

 default), POINT is used.

 Values Returned:

 None.

 Description: XCTLF provides a method for dynamically loading and

 executing programs in an overlay fashion. XCTLF provides

 this facility as follows:

 (1) XCTLF makes a copy of all its parameter values and

 releases all storage associated with the current

 link level.

 (2) The loader is called to dynamically load the

 specified program using "input", "info", "output",

 "lsw", "gtsp", "frsp", and "pnt" if specified.

 (3) The dynamically loaded program is called with the

 address of "parlist" in GR1.

 (4) If the dynamically loaded program returns to

 XCTLF, it is unloaded.

 (5) XCTLF returns to the program which initiated the

 current link level, preserving the return regis-

 ters of the dynamically executed program.

 Note that XCTLF accepts a variable-length parameter list

 of three to eight arguments. For most applications, only

 the first three are required. These parameters passed to

 XCTLF may be part of the current link level to be

 released, since XCTLF makes copies of them. However, the

 parameter list and parameters passed to the program XCTLed

 to, as well as the optional subroutines specified by

 "input", "output" "errexit", "gtsp", "frsp", and "pnt" may

 not be part of the current link level since it is released ___

 before the program transferred to, is loaded and executed.

 Note that by default it is the user’s responsibility to

 restore the registers of the previous link level before

 calling XCTLF. Since in general this is possible only at

 the assembly language level, calls to XCTL should have bit

 7 in "info" set to 1, regardless of its setting in the

 "info" parameter.

 464 Dynamic Loading in FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 XCTLF is required to provide the dynamically loaded

 program with a FORTRAN I/O environment consistent with the

 "merge" bit specified in "info". If the merge bit is 1,

 the dynamically loaded program will have the same I/O

 environment as the calling program. If the merge bit is

 0, the dynamically loaded program will have a separate,

 reinitialized I/O environment. Both FORTRAN main programs

 and subroutines can be dynamically loaded using XCTLF.

 However, the effect of executing a STOP statement from a

 dynamically loaded subroutine will depend on the setting

 of the merge bit. If the merge bit is 1, a return is made

 to the program which linked to the calling program; if the

 merge bit is 0, a return is made to MTS.

 Because the rate structure for use of MTS includes a

 charge for allocated virtual memory integrated over CPU

 time, the cost of running a large software package in MTS

 can often be reduced by dynamically loading and executing

 sequential phases in an overlay fashion via calls to

 XCTLF. Such savings in the storage integral must be

 weighed against the additional CPU time required to open a

 second file, reinvoke the loader, and rescan the required

 libraries.

 The user also should see the sections "The Dynamic Loader"

 and "Virtual Memory Management" in MTS Volume 5, System ______

 Services. In particular, they describe the use of initial ________

 ESD lists, merging with previously loaded programs, and

 the relationship between LINKF, LOADF, and XCTLF storage

 management.

 Dynamic Loading in FORTRAN 465

 MTS 6: FORTRAN in MTS

 October 1983

 LOADF _____

 Purpose: To effect the dynamic loading of a program.

 Location: Resident System

 Calling Sequence:

 indx = LOADF(input,info,switch,rtnlist,output,lsw,gtsp,

 frsp,pnt)

 Parameters:

 input is the location of an input specifier to be used _____

 during loading to read loader records. An input

 specifier may be one of the following:

 (1) an FDname terminated by a blank.

 (2) a FDUB-pointer (as returned by GETFD).

 (3) an 8-character logical I/O unit name, left-

 justified with trailing blanks. In this

 case, bit 8 in "info" must be 1.

 (4) a fullword integer logical I/O unit number

 (0-99).

 (5) the address of an input subroutine to be

 called during loading via a READ subroutine

 calling sequence to read loader records

 (i.e., the input subroutine is called with a

 parameter list identical to the system sub-

 routine READ). In this case, bit 9 in "info"

 must be 1.

 info is the location of an optional information vector. ____

 No information is passed if "info" is 0 or if

 "info" is the location of a fullword integer 0.

 The format of the information vector is as

 follows:

 (1) a halfword of LOADF control bits defined as

 follows:

 bit 0: 1, if "rtnlist" is to be ignored.

 bit 1: 1, if "output" is specified.

 bit 2: 1, if "lsw" is specified.

 bit 3: 1, if "gtsp" is specified.

 bit 4: 1, if "frsp" is specified.

 bit 5: 1, if "pnt" is specified.

 bit 6: 1, if to suppress search of LIBSRCH/

 *LIBRARY libraries.

 bit 7: 0, unused (must be zero).

 bit 8: 1, if "input" is the location of a

 466 Dynamic Loading in FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 logical I/O unit name.

 bit 9: 1, if "input" is the location of an

 input subroutine address.

 bit 10: 1, if "output" is the location of a

 logical I/O unit name.

 bit 11: 1, if "output" is the location of an

 output subroutine address.

 bit 12: 1, if the program to be loaded is to

 be merged with the program previ-

 ously loaded.

 bit 13: 1, to suppress prompting at a

 terminal.

 bit 14: 1, to force allocation of a new

 loader symbol table.

 bit 15: 0

 (2) a halfword count of the number of entries in

 the following initial ESD list.

 (3) a variable-length initial ESD list, each

 entry of which consists of a fullword-aligned

 8-character symbol followed by a fullword

 value.

 switch is the location of a fullword of LOADF control ______

 bits defined as follows:

 bits 0-7: the storage index number to be used if

 bit 29 or 30 is 1; else, optionally,

 the number of the segment into which

 the program is to be loaded.

 bit 8: 1, if "rtnlist" is to be ignored.

 bit 9: 1, if "output" is specified.

 bit 10: 1, if "lsw" is specified.

 bit 11: 1, if "gtsp" is specified.

 bit 12: 1, if "frsp" is specified.

 bit 13: 1, if "pnt" is specified.

 bits 14-19: 0

 bit 20: 1, if "input" is the location of a logi-

 cal I/O unit name.

 bit 21: 1, if "input" is the location of an input

 subroutine address.

 bit 22: 1, if "output" is the location of a

 logical I/O unit name.

 bit 23: 1, if "output" is the location of an

 output subroutine address.

 bit 24: 0

 bit 25: 1, if the program to be loaded is to be

 merged with those previously loaded.

 bit 26: 1, to return if a loading error occurs.

 0, to call MTS if a loading error occurs.

 bit 27: 1, to suppress prompting at a terminal.

 bit 28: 1, to force allocation of a new loader

 symbol table.

 Dynamic Loading in FORTRAN 467

 MTS 6: FORTRAN in MTS

 October 1983

 bit 29: 1, to load using the storage index number

 specified in bits 0-7.

 bit 30: 1, load into system storage (bits 0-7

 contain the storage index number to be

 used). This bit is only valid for

 systems programs.

 bit 31: 0, load at the highest link level;

 1, load at the current link level.

 rtnlist is either 0 or the address of an area into which _______

 the loader will place an ESD list of all the

 symbols in the loader symbol table.

 output (optional) is the location of an output specifier ______

 to be used during loading to produce loader output

 (error messages, map, etc.). If bit 1 of "info"

 is 0 (the default), the "output" parameter is

 ignored and all loader output is written on the

 MAP=FDname specified on the initial $RUN command.

 An output specifier may be one of the following:

 (1) an FDname terminated by a blank.

 (2) a FDUB-pointer (as returned by GETFD).

 (3) an 8-character logical I/O unit name, left-

 justified with trailing blanks. In this

 case, bit 10 of "info" must be 1.

 (4) a fullword integer logical I/O unit number

 (0-99).

 (5) the address of an output subroutine to be

 called during loading via an SPRINT sub-

 routine calling sequence to write loader

 output (i.e., the output subroutine is called

 with a parameter list identical to the system

 subroutine SPRINT). In this case, bit 11 of

 "info" must be 1.

 lsw (optional) is the location of a fullword of loader ___

 control bits. If bit 2 of "info" is 0 (the

 default), the "lsw" parameter is ignored and the

 global MTS settings are used. The loader control

 bits are defined as follows:

 bits 0-23: 0

 bit 24: 1, to suppress the pseudoregister map.

 bit 25: 1, to suppress the predefined symbol map.

 bit 26: 1, to print undefined symbols.

 bit 27: 1, to print references to undefined

 symbols.

 bit 28: 1, to print references to all external

 symbols.

 bit 29: 1, to print dotted lines around the load-

 er map.

 468 Dynamic Loading in FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 bit 30: 1, to print a map.

 bit 31: 1, to print nonfatal error messages.

 gtsp (optional) is the location of a storage allocation ____

 subroutine to be called during loading via a

 GETSPACE calling sequence to allocate program

 storage. If bit 3 of "info" is zero (the de-

 fault), GETSPACE is used.

 frsp (optional) is the location of a storage dealloca- ____

 tion subroutine to be called during loading via a

 FREESPAC calling sequence to release loader work

 space. If bit 4 of "info" is 0 (the default),

 FREESPAC is used.

 pnt (optional) is the location of a direct access ___

 subroutine to be called during loading via a POINT

 calling sequence while processing libraries in

 sequential files. If bit 5 of "info" is 0 (the

 default), POINT is used.

 Values Returned:

 If loading was successful, a positive INTEGER*4

 storage index number is returned as the value of

 LOADF. This number is used to uniquely identify the

 dynamically loaded program on subsequent calls to

 STARTF and UNLDF.

 If a loading error occurred, a negative INTEGER*4

 error code is returned as the value of LOADF, and is

 defined as follows:

 -1: attempt to load a null program.

 -2: fatal loading error (bad object program).

 -3: undefined symbols referenced by the loaded

 program.

 -4: no available storage index numbers.

 Description: LOADF provides a method for dynamically loading a program.

 LOADF provides this facility as follows:

 (1) The loader is called to dynamically load the

 specified program using "input", "info", "output",

 "lsw", "gtsp", "frsp", and "pnt" if specified.

 (2) LOADF returns to the calling program with the

 return values described above.

 Note that LOADF accepts a variable-length parameter list

 of 4 to 8 arguments. For most applications, only the

 first 4 are required. Both "info" and "switches" contain

 LOADF control bits, some of which are duplicates. In

 Dynamic Loading in FORTRAN 469

 MTS 6: FORTRAN in MTS

 October 1983

 these cases, LOADF produces a single control bit by

 "OR"ing the two together.

 LOADF is required to provide the dynamically loaded

 program with a FORTRAN I/O environment consistent with the

 "merge" bit specified in "info". If the "merge" bit is 1,

 the dynamically loaded program will have the same I/O

 environment as the calling program. If the "merge" bit is

 0, the dynamically loaded program will have a separate,

 reinitialized I/O environment. Both FORTRAN main programs

 and subroutines can be dynamically loaded using LOADF.

 However, the effect of executing a STOP statement from a

 dynamically loaded subroutine will depend on the setting

 of the "merge" bit. If the "merge" bit is 1, a return is

 made to the calling program; if the "merge" bit is 0, a

 return is made to MTS. LOADF returns an INTEGER*4 storage

 index number used to uniquely identify the dynamically

 loaded program on subsequent calls to STARTF and UNLDF.

 Because the rate structure for use of MTS includes a

 charge for allocated virtual memory integrated over CPU

 time, the cost of running a large software package in MTS

 can often be reduced by dynamically loading and executing

 seldom-used subroutines via a call to LOADF. Such savings

 in the storage integral must be weighed against the

 additional CPU time required to open a second file,

 reinvoke the loader, and rescan the required libraries.

 The user also should see the sections "The Dynamic Loader"

 and "Virtual Memory Management" in MTS Volume 5, System ______

 Services. In particular, they describe the use of initial ________

 ESD lists, merging with previously loaded programs, and

 the relationship between LOADF, LINKF, and XCTLF storage

 management.

 Example: LOGICAL*1 PAR(8)

 DATA PAR/’H’,’I’,’ ’,’T’,’H’,’E’,’R’,’E’/

 INTEGER SWITCH/Z00800040/

 INTEGER*2 LPAR(5)/8/

 EQUIVALENCE (LPAR(2),PAR)

 ID = LOADF(’FORTOBJ ’,0,SWITCH,0)

 CALL STARTF(ID,LPAR)

 CALL UNLDF(0,ID,0)

 The above FORTRAN program dynamically loads the program in

 the file FORTOBJ at the highest link level with the

 "merge" bit set to 1. Subsequently, the loaded program is

 executed via a call to STARTF and unloaded via a call to

 UNLDF.

 470 Dynamic Loading in FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 STARTF ______

 Purpose: To execute a program dynamically loaded by the subroutine

 LOADF.

 Location: Resident System

 Calling Sequence:

 CALL STARTF(id,par1,par2,...)

 Parameters:

 id is the location of the fullword integer storage __

 index number of the program that was dynamically

 loaded by LOADF (the value returned by LOADF), or

 is the location of an 8-character entry point

 name, left-justified with trailing blanks.

 par1,par2,... (optional) are the parameters to be passed _____________

 to the program being executed. There may be any

 number of parameters passed, including none.

 Values Returned:

 None.

 Description: STARTF is used to execute a program loaded by the

 subroutine LOADF. STARTF should be used whenever the

 calling program and the program being called are FORTRAN

 programs or programs which use the FORTRAN I/O library.

 This is necessary in order to provide the proper I/O

 environment for both the called program and the calling

 program on return. In providing this, the I/O library

 environment is established in accordance with the "merge"

 bit. If the merge bit is 1, then both the calling and

 called programs use the same I/O library environment; if

 the merge bit is 0, then the calling and called programs

 each use a separate copy of the I/O library environment,

 thus performing relatively independent I/O operations.

 If "id" is a storage index number, the dynamically loaded

 program at that storage index number is invoked at the

 entry point determined by the loader. If "id" is a

 symbol, and if the MTS global SYMTAB option is ON, the

 dynamically loaded program is invoked at the location

 associated with that symbol in the loader symbol table.

 Dynamic Loading in FORTRAN 471

 MTS 6: FORTRAN in MTS

 October 1983

 Example: INTEGER*4 PAR1/’ARG1’/,PAR2/’ARG2’/

 INTEGER*4 INFO/Z80000000/,SWITCH/Z00000040/

 ID = LOADF(’FORTOBJ ’,INFO,SWITCH,0)

 CALL STARTF(ID,PAR1,PAR2)

 CALL UNLDF(’FORTOBJ ’,0,0)

 This example loads the program in the file FORTOBJ and

 executes it. The merge bit is set to 1 so that both

 programs use the same I/O environment.

 472 Dynamic Loading in FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 UNLDF _____

 Purpose: To unload a program that was dynamically loaded by the

 subroutine LOADF.

 Location: Resident System

 Calling Sequence:

 CALL UNLDF(name,id,switch,&rc4)

 Parameters:

 name is either the location of the "name" (specified by ____

 "switch") or zero.

 id is either the location of a fullword storage index __

 number or zero. This parameter is referenced only

 if "name" is zero.

 switch is the location of a fullword switch whose value ______

 may be one of the following:

 0 "name" is the FDname from which program is to

 be loaded.

 1 "name" is an external symbol, 8 characters in

 length, left-justified with trailing blanks

 (the MTS global SYMTAB option must be ON).

 2 "name" is a fullword virtual address (the MTS

 global SYMTAB option must be ON).

 &rc4 is the statement label to transfer to if a nonzero ____

 return code is given.

 Return Codes:

 0 Successful return.

 4 The subroutine could not find the name in the LOAD

 table, or "switch" is nonzero and SYMTAB is OFF,

 or the external symbol or virtual memory address

 could not be found in the loader tables.

 Description: The UNLDF subroutine may be used to unload programs

 dynamically loaded by the LOADF subroutine. Each time the

 LOADF subroutine is called, a new storage index number is

 assigned for use with storage acquired in order to load

 the program specified for that LOADF call. In order to

 unload the program, either the storage index number or the

 name of the FDname loaded from may be given. In addition,

 if the MTS global SYMTAB option is ON, the name of an

 external symbol or a virtual address in the program loaded

 may be specified. In any case, the entire program loaded

 on that call to LOADF is unloaded.

 Dynamic Loading in FORTRAN 473

 MTS 6: FORTRAN in MTS

 October 1983

 474 Dynamic Loading in FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 ARRAY MANAGEMENT SUBROUTINES ____________________________

 This subroutine package permits FORTRAN users to create, extend, and

 erase 1- and 2-dimensional arrays at execution time. The package

 resides in *LIBRARY.

 Any program or subroutine which references an array created by AMS

 must include an appropriate subset of the following statements:

 LOGICAL*1 $L1(1)

 LOGICAL*4 $L4(1)

 INTEGER*2 $I2(1)

 INTEGER*4 $I4(1)

 REAL*4 $R4(1)

 REAL*8 $R8(1)

 COMPLEX*8 $C8(1)

 EQUIVALENCE ($L1(1),$L4(1),$I2(1),$I4(1),$R4(1),$R8(1),$C8(1))

 COMMON /$/ $I4

 The above statements establish a set of names called base names, all of ____ _____

 which reference the same address in memory.

 An ordinary FORTRAN array element is addressed in the form:

 array name(index)

 An AMS array element is addressed in the form:

 base name(array name + index)

 where the base name should match the FORTRAN type of the array. For

 example, an INTEGER*4 FORTRAN array named ALPHA might be referenced as

 ALPHA(I). An AMS array of the same name and type should be referenced

 as $I4(ALPHA+I). If the array type is REAL*8, it should be referenced

 as $R8(ALPHA+I) and so on for the other array types.

 Other base names may be used instead, but the above names are

 recommended as they serve to remind the user of the type of array being

 referenced. Starting the base names with a dollar sign ($) serves to

 make references to these arrays conspicuous in the program listing.

 Base names need not be defined for any array types not used by the

 program, except that an INTEGER*4 base must be named and passed in

 COMMON /$/ even if the user creates no INTEGER*4 arrays.

 If the above declarations are properly made, then an AMS array may be

 passed to a subroutine merely by passing its array name, either as an

 argument or in COMMON.

 Array Management Subroutines 475

 MTS 6: FORTRAN in MTS

 October 1983

 The user-callable subroutines in AMS are:

 Name | Purpose

 -------|--------------------------------

 ARINIT | to initialize AMS

 ARRAY | to create a 1-dimensional array

 ARRAY2 | to create a 2-dimensional array

 EXTEND | to extend a 1-dimensional array

 XTEND2 | to extend a 2-dimensional array

 ERASE | to erase a single array

 ERASAL | to erase all arrays

 All arguments passed to and returned by these routines must be

 INTEGER*4 values.

 AMS calls in turn the MTS subroutines GETSPACE, FREESPAC, IMVC, and

 ADROF.

 Note to users who are doing dynamic program loading via LINKF, LOADF,

 and XCTLF: the storage obtained by AMS will be associated with the

 highest-level program and will not be released until execution is

 terminated. To release unwanted arrays, call ERASE or ERASAL.

 Warning: The subroutines will not work properly if called from

 *WATFIV or *IF.

 476 Array Management Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 ARINIT ______

 Purpose: Before any arrays are created, the user must make one and

 only one call to subroutine ARINIT. This routine initial-

 izes AMS, mainly by creating an array called the master

 table, which is used by AMS to keep track of the user’s

 arrays. The user does not have direct access to the

 master table.

 Calling Sequence:

 CALL ARINIT(noar,minc,&s1,&s2,&s3)

 Parameters:

 noar an integer in the range 1 to 37449, which ____

 specifies the number of arrays the user

 expects to create during the job. This is an

 estimate and not an upper limit.

 minc a positive integer specifying the number of ____

 arrays that the master table should be

 extended to accommodate in case it overflows.

 It will be automatically extended by this

 amount an indefinite number of times, as

 needed.

 Return Codes:

 Normal Initialization successful.

 &s1 No space available to create master table.

 &s2 Invalid argument passed (i.e., noar not in ____

 range or minc not positive). ____

 &s3 ARINIT already has been called successfully.

 Example: CALL ARINIT(100,50,&98,&99)

 The master table is created with enough room to

 handle 100 arrays. Should more arrays be requested,

 the master table will be automatically extended to

 accommodate another 50 arrays. If any time during

 the run the master table should overflow again, it

 will be extended to accommodate yet another 50

 arrays. Control will pass to statement 98 in the

 user’s program if memory space is not available to

 create the master table. Control will pass to

 statement 99 if an invalid argument is passed.

 Array Management Subroutines 477

 MTS 6: FORTRAN in MTS

 October 1983

 ARRAY, ARRAY2 _____________

 Purpose: To create a 1-dimensional array, ARRAY should be called.

 To create a 2-dimensional array, ARRAY2 should be called.

 Calling Sequences:

 CALL ARRAY(n,t,d1,&s1,&s2,&s3,&s4)

 CALL ARRAY2(n,t,d1,d2,&s1,&s2,&s3,&s4)

 Parameters:

 t length in bytes of an array element (1, 2, 4 _

 or 8).

 d1 a positive integer specifying the number of _

 elements in the 1st dimension of the array.

 d2 a positive integer specifying the number of __

 elements in the 2nd dimension of the array.

 Note: The number of bytes in the array will be

 t*d1*d2, and this product must be in the range 1 to _ __ __

 1048576.

 Values Returned:

 n name of array to be created. The integer _

 value returned will be such that when n is _

 used in the array reference "base name(n+i)", _

 the "i"th element of the array will be

 referenced (base name = $L1, $L4, $I2, $I4,

 $R4, $R8 or $C8.)

 When creating a 1-dimensional array, argument

 n may take the form of an undimensioned _

 FORTRAN variable such as N, a FORTRAN array

 element such as N(J), or an AMS array element

 such as $I4(N+J). In any case, n must be of _

 type INTEGER*4.

 When creating a 2-dimensional array, argument

 n may not take the form of an undimensioned _

 variable. It must be the first element of

 either a FORTRAN or an AMS INTEGER*4 array

 dimensioned at least d2 in length. This is __

 the user’s responsibility.

 Return Codes:

 Normal Array created successfully.

 &s1 Requested array size out of range.

 478 Array Management Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 &s2 No space available for requested array. No

 new arrays may be created unless some exist-

 ing arrays are erased.

 &s3 Request for extension of master table is

 greater than 1048576 bytes.

 &s4 t is not equal to 1, 2, 4 or 8, or ARINIT was _

 never called.

 Examples: The following examples illustrate the creation of

 1-dimensional arrays:

 (1) CALL ARRAY(N,1,100,&1,&2,&3,&4)

 To reference "i"th element: $L1(N+I)

 (2) INTEGER*4 N(20)

 ...

 CALL ARRAY(N(J),8,250)

 To reference "i"th element: $R8(N(J)+I)

 (3) CALL ARRAY(N,4,20)

 ...

 CALL ARRAY($I4(N+J),2,1500)

 To reference "i"th element: $I2($I4(N+J)+I)

 Note that by the method of the second and third examples,

 a series of independent arrays may be created, all

 referenced by the same name, but by different values of J.

 This is like having a 2-dimensional array where each

 column may be of a different type and length and may be

 created, extended, or erased independently. This is

 useful if the exact number of arrays required by a program

 is unknown until determined by execution-time data or

 calculation.

 The following examples illustrate the creation of

 2-dimensional arrays:

 (4) INTEGER*4 N(20)

 ...

 CALL ARRAY2(N(1),4,200,20)

 To reference element "i,j": $R4(N(J)+I)

 (5) CALL ARRAY(N,4,20)

 ...

 CALL ARRAY2($I4(N+1),8,3000,20)

 To reference element "i,j": $R8($I4(N+J)+I)

 Array Management Subroutines 479

 MTS 6: FORTRAN in MTS

 October 1983

 EXTEND, XTEND2 ______________

 Purpose: To extend a 1-dimensional array, EXTEND should be called.

 To extend a 2-dimensional array, XTEND2 should be called.

 This routine allocates new space dimensioned according to

 the request, moves the contents of the old space to the

 new space, calculates new name values for the new space,

 and frees the old space.

 Calling Sequences:

 CALL EXTEND(n,inc1,&s1,&s2,&s3)

 CALL XTEND2(n,inc1,inc2,&s1,&s2,&s3)

 Parameters:

 n name of array to be extended. _

 inc1 a positive integer or zero specifying the ____

 number of array elements to be added to 1st

 dimension of array.

 inc2 a positive integer or zero specifying the ____

 number of array elements to be added to 2nd

 dimension of array.

 Note: inc1 and inc2 may not both be zero. ____ ____

 Values Returned:

 n new name value for new space obtained. _

 Return Codes:

 Normal Array extended successfully.

 &s1 Size of extended array is greater than

 1048576 bytes.

 &s2 No space available for extension of array.

 &s3 Invalid argument (i.e., array name not recog-

 nized, negative inc1 or inc2, or inc1 and ____ ____ ____

 inc2 both zero), or ARINIT was never called. ____

 Examples: CALL EXTEND(ALPHA,500,&9,&10,&11)

 CALL EXTEND(BETA,M)

 CALL XTEND2($I4(A+1),M,0)

 CALL XTEND2($I4(A+1),M,N)

 Note: When extending a two-dimensional array in the

 second dimension, the argument n (the array name) must be _

 the first element of an array dimensioned at least d2 in __

 length. If the array containing n is not as long as the _

 new expected value of d2, the array containing n must be __ _

 480 Array Management Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 extended before the two-dimensional array to which it

 refers is extended. For example,

 CALL ARRAY(N,4,20)

 ...

 CALL ARRAY2($I4(N+1),8,3000,20)

 ...

 CALL EXTEND(N,30)

 CALL XTEND2($I4(N+1),0,30)

 Array Management Subroutines 481

 MTS 6: FORTRAN in MTS

 October 1983

 ERASE _____

 Purpose: This routine may be called to erase an array.

 Calling Sequence:

 CALL ERASE(n,&s1)

 Parameters:

 n name of array to be erased. _

 Values Returned:

 n A value of -1 is returned to enable both the _

 user and AMS to check if an array has been

 erased.

 Return Codes:

 Normal Array erased successfully.

 &s1 Array name not recognized, or ARINIT was

 never called.

 Examples: CALL ERASE(X)

 CALL ERASE(ABC,&99)

 CALL ERASE($I4(XYZ+1),&100)

 ERASAL ______

 Purpose: This routine may be called to erase all arrays. New

 arrays may subsequently be created without recalling

 ARINIT. (In fact, ARINIT should never be called more than

 once in the same run.)

 Calling Sequence:

 CALL ERASAL

 482 Array Management Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 CHARACTER MANIPULATION ROUTINES _______________________________

 This subroutine package provides a character manipulation capability

 for FORTRAN programs. The package resides in *LIBRARY.

 The character manipulation routines have the following entry points:

 BTD, COMC, DTB, EQUC, FINDC, FINDST, IGC, LCOMC, MOVEC, SETC, TRNC,

 TRNST.

 The subroutines described in this section make use of the character

 orientation of the IBM System 360/370 and the fact that each character

 can be referenced in a LOGICAL*1 array in a FORTRAN program. Subrou-

 tines are available for searching for characters or character strings,

 ignoring characters, translating characters or character strings, moving

 characters, and comparing character strings. All of these subroutines

 are written in 360-assembler language. It is possible to write FORTRAN

 equivalents of each, but at the expense of both CPU time and virtual

 memory space.

 Four of the routines, FINDC, FINDST, IGC, and TRNST, return a

 position in a LOGICAL*1 array as an argument. In order that this

 position be relative to the start of the array, these routines have a

 slightly more cumbersome calling sequence than the other routines. This

 approach was dictated by the fact that routines which return positions

 relative to the start of a search (which may not be the start of an

 array) result in many programming errors due to misunderstandings about

 the positions returned.

 Three of the routines, FINDC, IGC, and TRNC, search for characters.

 In order for the search to be carried out, an initialization step, which

 may take more CPU time than the search itself, is made. Since the

 initialization is the same for any given set of characters or character

 string, these routines allow the user to indicate whether the same

 characters are to be used again. If the expression indicating the

 number of characters is set to zero, the same characters given on the

 last nonzero call will be used. This saves repeating the initialization

 step. Users should try to take advantage of this in their programs.

 While the subroutines were designed with the use of LOGICAL*1

 variables in mind, knowledgeable users can, in fact, use them to

 manipulate characters stored in any type of FORTRAN variable.

 These routines typically require a fraction of a millisecond of CPU

 time. This depends a great deal on the number of characters involved,

 but timings greater than one-half millisecond are rare. The virtual

 memory required averages about 250 bytes per routine.

 Character Manipulation Routines 483

 MTS 6: FORTRAN in MTS

 October 1983

 The following terms are used in the subroutine descriptions that

 follow:

 array variable

 The name of a dimensioned variable or element of a dimensioned

 variable.

 INTEGER expression

 Any valid INTEGER constant (e.g., 10), variable name (e.g.,

 I), or arithmetic expression (e.g., I+3, 4*K+12).

 LOGICAL*1 character array

 A dimensioned LOGICAL*1 variable containing character

 information.

 484 Character Manipulation Routines

 MTS 6: FORTRAN in MTS

 October 1983

 BTD ___

 Purpose: To convert FORTRAN INTEGER numbers into numeric character

 strings.

 Calling Sequence:

 FORTRAN: CALL BTD(integer,to,cnumb,dnumb,fill,&err)

 Parameters:

 integer is an INTEGER expression giving the number to _______

 be converted.

 to is a LOGICAL*1 array variable indicating the __

 position at which the first character is to

 be stored.

 cnumb is an INTEGER expression giving the number of _____

 characters in the string. cnumb should be ≤ _____

 12 and ≥ 0. If cnumb=0, then the number of _____

 characters will be the number of significant

 digits in integer plus one for the sign if _______

 integer is negative. If cnumb>12, the char- _______ _____

 acters will be right-justified in the 12

 positions starting with to and a RETURN 1 __

 will be taken.

 dnumb is an INTEGER variable which will be set to _____

 the number of significant digits in integer _______

 (plus one if the sign is negative).

 fill is a LOGICAL*1 character variable, or a ____

 Hollerith literal, giving a character to be

 used to replace leading zeros in the string.

 err (optional) is the number of a FORTRAN state- ___

 ment to transfer to if cnumb>12. _____

 Comments: After a call to BTD, dnumb>cnumb implies a loss of _____ _____

 significant digits in the conversion.

 If integer equals zero, then the entire field of cnumb _______ _____

 characters, starting with the character specified by to, __

 will consist of fill characters. ____

 Example: The example below converts the integer I into a

 7-character string with leading zeros replaced by percent

 signs (%).

 LOGICAL*1 CHAR(10)

 CALL BTD(I,CHAR(1),7,ND,’%’)

 If I=-84, the 7 characters stored in CHAR(1) to CHAR(7)

 will be %%%%-84. ND will be set to 3.

 Character Manipulation Routines 485

 MTS 6: FORTRAN in MTS

 October 1983

 COMC ____

 Purpose: To determine whether one character string is less than,

 equal to, or greater than, another string.

 Calling Sequence:

 FORTRAN: CALL COMC(numb,string1,string2,differ,&err1,

 &err2,&err3)

 Parameters:

 numb is an INTEGER expression giving the number of ____

 characters in each string.

 string1,string2 are the character strings to be _______________

 compared for equality and may be specified

 either by an array variable or by a Hollerith

 literal. Equality is interpreted in the

 sense of position within the 360 collating

 sequence.

 differ is an INTEGER variable which is set to the ______

 position of the first character in string1 _______

 which differs from the corresponding charac-

 ter in string2. If string1 and string2 are _______ _______ _______

 identical, differ is set to zero. ______

 err1 (optional) is the number of a FORTRAN state- ____

 ment to transfer to if string1<string2, i.e., _______ _______

 if string1 precedes string2 in the collating _______ _______

 sequence.

 err2 (optional) is the number of a FORTRAN state- ____

 ment to transfer to if string1>string2, i.e., _______ _______

 if string1 follows string2 in the collating _______ _______

 sequence.

 err3 (optional) is the number of a FORTRAN state- ____

 ment to transfer to if numb≤0. ____

 Comments: The first character that differs dictates whether string1 _______

 is less than or greater than string2. If this character _______

 in string1 appears in the collating sequence before the _______

 corresponding character in string2, then string1<string2; _______ _______ _______

 otherwise, string1>string2. A normal RETURN is made if _______ _______

 string1 is identical to string2. If numb≤0, no comparison _______ _______ ____

 is made.

 Example: The example below compares the 9 characters starting at

 A(15) with the character string PAR FIELD and branches to

 statement number 12 on inequality.

 LOGICAL*1 A(50)

 CALL COMC(9,’PAR FIELD’,A(15),IDIF,&12,&12)

 486 Character Manipulation Routines

 MTS 6: FORTRAN in MTS

 October 1983

 DTB ___

 Purpose: To convert a string of numeric characters into a FORTRAN

 INTEGER number.

 Calling Sequence:

 FORTRAN: CALL DTB(from,integer,cnumb,dnumb,fill,&err)

 Parameters:

 from is a LOGICAL*1 array variable, or a Hollerith ____

 literal, giving the numeric characters to be

 converted.

 integer is an INTEGER variable which will be set to _______

 the integer resulting from the conversion.

 cnumb is an INTEGER variable which, on entry to _____

 DTB, should contain the maximum number of

 characters to be scanned in the conversion.

 On exit from DTB, cnumb is set to the actual _____

 number of characters scanned.

 dnumb is an INTEGER variable which will be set to _____

 the number of significant digits in integer. _______

 The sign is not included in this number.

 fill is a LOGICAL*1 character variable, or a ____

 Hollerith literal, specifying a character to

 be ignored if it precedes the numeric digits

 in the string.

 err (optional) is the number of a FORTRAN state- ___

 ment to transfer to if invalid characters or

 multiple signs are encountered, if the con-

 verted number is too large to hold in a

 FORTRAN fullword INTEGER, or if, on entry,

 cnumb≤0. _____

 Comments: A single sign (+ or -) may be imbedded in the leading fill

 characters and will determine the sign of integer. If _______

 there is no sign, ’+’ is assumed.

 DTB can be used to reverse any action of the BTD

 subroutine.

 If the field from is all fill characters, then integer and ____ _______

 dnumb are set to zero. If the field from is all zeros, _____ ____

 then integer is set to zero and dnumb is set to cnumb, the _______ _____ _____

 actual number of zeros in the field.

 If the error return to statement err is taken because of ___

 invalid characters or adjacent multiple signs, then

 integer=dnumb=0 and cnumb is set to the number of charac- _______ _____ _____

 ters scanned before the error was encountered.

 Character Manipulation Routines 487

 MTS 6: FORTRAN in MTS

 October 1983

 There will be no error return taken once a digit is

 encountered. After the first digit, any nondigit (even

 another sign or a fill character) terminates the number.

 If the error return to statement err is taken because the ___

 converted number was too large to hold in the fullword

 integer, then integer=0, dnumb is set to the number of _______ _______ _____

 digits encountered, and cnumb is set to the total number _____

 of characters in the field (fill characters plus sign

 character plus numeric characters).

 If the error return to statement err is taken because ___

 cnumb≤0, then integer=dnumb=0 and cnumb remains unchanged. _____ _______ _____ _____

 Example: The example below converts the character string

 -139.....

 stored starting in element 30 of array NUMB, into an

 integer number:

 LOGICAL*1 NUMB(75)

 NC=14

 CALL DTB(NUMB(30),I,NC,ND,’.’,&10)

 On exit, I=-139, NC=9, and ND=3.

 488 Character Manipulation Routines

 MTS 6: FORTRAN in MTS

 October 1983

 EQUC ____

 Purpose: To compare two characters for equality.

 Calling Sequence:

 FORTRAN: LOGICAL EQUC

 IF (EQUC(char1,char2)) statement

 Parameters:

 char1,char2 are LOGICAL*1 variables or array ele- ___________

 ments, or single-character Hollerith

 literals, to be compared for equality.

 statement is a FORTRAN statement to transfer to if _________

 char1 and char2 are equal. _____ _____

 Comment: If char1 is identical to char2, then EQUC(char1,char2) has _____ _____

 the value .TRUE.; otherwise, it has the value .FALSE.

 Example: The example below transfers to statement number 10 if the

 7th element of ARRAY is the letter G.

 LOGICAL EQUC

 LOGICAL*1 ARRAY(25)

 IF (EQUC(’G’,ARRAY(7))) GO TO 10

 Character Manipulation Routines 489

 MTS 6: FORTRAN in MTS

 October 1983

 FINDC _____

 Purpose: To search for any one of a set of characters.

 Calling Sequence:

 FORTRAN: CALL FINDC(array,len,char,numb,start,finish,

 cfound,&err1,&err2)

 Parameters:

 array is the LOGICAL*1 character array to be _____

 searched.

 len is an INTEGER expression giving the position ___

 in array of the last character to be _____

 searched.

 char is either an array variable indicating the ____

 characters for which to search or a Hollerith

 literal specifying the characters.

 numb is an INTEGER expression giving the number of ____

 characters in char. If numb=0, then the same ____ ____

 characters as given in a preceding call with

 numb>0 will be used. ____

 start is an INTEGER expression indicating the posi- _____

 tion in array at which the search is to _____

 start.

 finish is an INTEGER variable which will contain the ______

 position in array at which a character in _____

 char is found. If none of the characters is ____

 found, finish is set to zero. ______

 cfound is an INTEGER variable which will be set to ______

 the position in char of the character which ____

 is found. If none of the characters is

 found, cfound is set to zero. ______

 err1 (optional) is the number of a FORTRAN state- ____

 ment to transfer to if none of the characters

 is found in the search.

 err2 (optional) is the number of a FORTRAN state- ____

 ment to transfer to if start≤0, start>len, or _____ _____ ___

 numb<0. ____

 Comment: If numb=0 on the first call to FINDC, no characters will ____

 be found. Control will be transferred to the statement

 numbered err2. ____

 Example: The example below searches the array LARRAY for the first

 occurrence of the numeric characters 0,1,2,3,...,9.

 LOGICAL*1 LARRAY(125)

 CALL FINDC(LARRAY,125,’0123456789’,10,1,IF,ICF,&10)

 490 Character Manipulation Routines

 MTS 6: FORTRAN in MTS

 October 1983

 If LARRAY contains the character ’7’ in position 39, i.e.,

 in LARRAY(39), with no numeric characters preceding it,

 then, upon exit from FINDC, IF will be 39 and ICF will be

 8, indicating that the 8th character in the string

 ’0123456789’ was found in LARRAY(39). If there are no

 numeric characters in LARRAY, then control will transfer

 to statement 10 with IF=ICF=0.

 If, on subsequent calls to FINDC, the same characters

 0,1,2,3,...,9 are to be searched for, then the fourth

 parameter numb should be set to zero so that initializa- ____

 tion need not be repeated.

 Character Manipulation Routines 491

 MTS 6: FORTRAN in MTS

 October 1983

 FINDST ______

 Purpose: To search an array for a specified character string.

 Calling Sequence:

 FORTRAN: CALL FINDST(array,len,string,numb,start,finish,

 &err1,&err2)

 Parameters:

 array is the LOGICAL*1 character array to be _____

 searched.

 len is an INTEGER expression giving the position ___

 in array of the last character in the search. _____

 string is an array variable, or a Hollerith literal, ______

 indicating the character string for which to

 search.

 numb is an INTEGER expression giving the number of ____

 characters in string. ______

 start is an INTEGER expression indicating the posi- _____

 tion in array at which the search is to _____

 start.

 finish is an INTEGER variable which will be set to ______

 the position of the character in array at _____

 which string starts. If string is not found, ______ ______

 finish is set to zero. ______

 err1 (optional) is the number of a FORTRAN state- ____

 ment to transfer to if string is not found. ______

 err2 (optional) is the number of a FORTRAN state- ____

 ment to transfer to if start≤0, start>len, or _____ _____ ___

 numb≤0. ____

 Comment: The complete string must be within the limits start and ______ _____

 len of array. ___ _____

 Example: The example below searches the array AR for the string

 MODE with the search starting at the 10th character and

 continuing to the 40th character.

 LOGICAL*1 AR(50)

 CALL FINDST(AR,40,’MODE’,4,10,IFINIS,&12)

 492 Character Manipulation Routines

 MTS 6: FORTRAN in MTS

 October 1983

 IGC ___

 Purpose: To ignore all of a set of characters, i.e., to find the

 first character which is not one of a specified set of

 characters.

 Calling Sequence:

 FORTRAN: CALL IGC(array,len,char,numb,start,finish,

 &err1,&err2)

 Parameters:

 array is the LOGICAL*1 character array to be _____

 searched.

 len is an INTEGER expression giving the position ___

 in array of the last character in the search. _____

 char is either an array variable containing, or a ____

 Hollerith literal specifying, the characters

 to be ignored.

 numb is an INTEGER expression giving the number of ____

 characters in char. If numb=0, the charac- ____ ____

 ters given in a preceding call with numb>0 ____

 will be used in the search.

 start is an INTEGER expression giving the position _____

 in array of the character at which the search _____

 is to start.

 finish is an INTEGER variable which will be set to ______

 the character position in array at which the _____

 first character different from those in char ____

 is found. If all characters are ignored,

 finish is set to zero. ______

 err1 (optional) is the number of a FORTRAN state- ____

 ment to transfer to if all characters are

 ignored.

 err2 (optional) is the number of a FORTRAN state- ____

 ment to transfer to if start≤0, start>len, or _____ _____ ___

 numb<0. ____

 Comment: If numb=0 on the first call to IGC, no characters are ____

 ignored; finish is set equal to start. ______ _____

 Example: The example below searches for the first nonblank charac-

 ter in the array LARRAY.

 LOGICAL*1 LARRAY(212)

 CALL IGC(LARRAY,212,’ ’,1,1,IF,&10)

 If the first nonblank character is in character position

 132 of the array, IF will be set to 132. If all

 Character Manipulation Routines 493

 MTS 6: FORTRAN in MTS

 October 1983

 characters are blank, then IF will be set to zero and

 control will transfer to statement number 10.

 494 Character Manipulation Routines

 MTS 6: FORTRAN in MTS

 October 1983

 LCOMC _____

 Purpose: To determine whether one character string is less than,

 equal to, or greater than another string.

 Calling Sequence:

 FORTRAN: i=LCOMC(numb,string1,string2)

 Parameters:

 numb is an INTEGER expression giving the number of ____

 characters in each string.

 string1,string2 are the character strings to be _______________

 compared for equality. They may be specified

 either by an array variable or by a Hollerith

 literal. Equality is interpreted in the

 sense of position within the 360 collating

 sequence.

 Values Returned:

 LCOMC is a FUNCTION subprogram and will return an

 integer i having a value of: _

 +1 if string1>string2, i.e., if string1 follows _______ _______ _______

 string2 in the collating sequence. _______

 0 if string1=string2, i.e., if the character _______ _______

 strings are identical.

 -1 if string1<string2, i.e., if string1 precedes _______ _______ _______

 string2 in the collating sequence. _______

 Comment: If numb≤0, no comparison is made and i is set to zero. ____ _

 Example: The example below compares 2 character strings of 20

 characters starting at A(1) and B(19) and branches to

 statement 12 on equality.

 LOGICAL*1 A(50),B(60)

 IF(LCOMC(20,A(1),B(19)).EQ.0) GO TO 12

 Character Manipulation Routines 495

 MTS 6: FORTRAN in MTS

 October 1983

 MOVEC _____

 Purpose: To move character strings from one place to another.

 Calling Sequence:

 FORTRAN: CALL MOVEC(numb,from,to,&err)

 Parameters:

 numb is an INTEGER expression giving the number of ____

 characters to be moved. numb must be greater ____

 than zero.

 from is either an array variable containing the ____

 character string to be moved or a Hollerith

 literal specifying the string.

 to is an array variable indicating the start of __

 the place to which the from characters are to ____

 be moved.

 err (optional) is the number of a FORTRAN state- ___

 ment to transfer to if numb≤0 or numb>32767. ____ ____

 Comments: The from and to array variables can indicate portions of ____ __

 the same array. In fact, they can be overlapping por-

 tions. However, in the latter case, the user must ensure

 that characters to be moved are not replaced before being

 moved. The characters are moved one at a time from the

 first to the numbth position. ____

 If numb≤0 or numb>32767, no transfer of characters will ____ ____

 occur.

 Example: The example below moves 7 characters, starting with the

 10th character of array AR1, to AR2, starting with the

 80th character.

 LOGICAL*1 AR1(100),AR2(132)

 CALL MOVEC(7,AR1(10),AR2(80))

 The example below moves the character string ERROR MES-

 SAGES into the array MSG.

 LOGICAL*1 MSG(80)

 CALL MOVEC(14,’ERROR MESSAGES’,MSG)

 The example below moves the 4 characters DATA into a

 simple INTEGER variable I.

 DATA X/’DATA’/

 CALL MOVEC(4,X,I)

 496 Character Manipulation Routines

 MTS 6: FORTRAN in MTS

 October 1983

 SETC ____

 Purpose: To set adjacent characters equal to a specified character.

 Calling Sequence:

 FORTRAN: CALL SETC(numb,array,char,&err)

 Parameters:

 numb is an INTEGER expression giving the number of ____

 characters to be set.

 array is an array variable giving the starting _____

 position of the characters to be set.

 char is either a variable containing the character ____

 to which the numb characters are to be set or ____

 a Hollerith literal specifying the character.

 err (optional) is the number of a FORTRAN state- ___

 ment to transfer to if numb≤0. ____

 Comment: If numb≤0, no characters are changed. ____

 Example: The example below sets all of the characters in the array

 A to blanks.

 LOGICAL*1 A(50)

 CALL SETC(50,A,’ ’)

 Character Manipulation Routines 497

 MTS 6: FORTRAN in MTS

 October 1983

 TRNC ____

 Purpose: To translate specified characters in an array into other

 characters.

 Calling Sequence:

 FORTRAN: CALL TRNC(numb,array,oldchar,newchar,cnumb,&err)

 Parameters:

 numb is an INTEGER expression giving the number of ____

 characters for translation.

 array is an array variable giving the starting _____

 position of the characters for translation.

 oldchar is either an array variable containing a list _______

 of the characters to be translated, or a

 Hollerith literal specifying the characters.

 newchar is either an array variable containing a list _______

 of the characters into which oldchar is to be _______

 translated, or a Hollerith literal specifying

 the characters. Any occurrence of the first

 character in oldchar will be translated into _______

 the first character of newchar, the second _______

 character of oldchar into the second of _______

 newchar, etc. _______

 cnumb is an INTEGER expression giving the number of _____

 characters in oldchar and newchar. If cnumb= _______ _______ _____

 0, then oldchar and newchar as given in a _______ _______

 preceding call with cnumb>0 will be used. _____

 err (optional) is the number of a FORTRAN state- ___

 ment to transfer to if numb≤0 or cnumb<0. ____ _____

 Comments: The routine does not check for duplication of characters

 in oldchar. The final appearance of a duplicated charac- _______

 ter will dictate its translation.

 It is the user’s responsibility to ensure that there are

 the same number of characters in oldchar and newchar. If _______ _______

 there are not, unpredictable translations may occur.

 If numb≤0 or cnumb<0 (or ≤0 on the first call), no ____ _____

 translation will occur. All characters not mentioned in

 oldchar are left alone. _______

 Example: The example below translates all As to 1s, Bs to 2s, and

 Cs to 3s in the array CHAR.

 LOGICAL*1 CHAR(65)

 CALL TRNC(65,CHAR,’ABC’,’123’,3)

 498 Character Manipulation Routines

 MTS 6: FORTRAN in MTS

 October 1983

 TRNST _____

 Purpose: To search for a given character string and translate it

 into another string.

 Calling Sequence:

 FORTRAN: CALL TRNST(array,len,oldst,newst,numb,start,

 finish,&err1,&err2)

 Parameters:

 array is the LOGICAL*1 character array to be _____

 searched.

 len is an INTEGER expression giving the character ___

 position in array at which searching is to _____

 terminate.

 oldst is either an array variable containing the _____

 character string to be translated or a Hol-

 lerith literal specifying the character

 string.

 newst is either an array variable containing the _____

 new character string or a Hollerith literal

 specifying the string.

 numb is an INTEGER expression giving the number of ____

 characters in the strings.

 start is an INTEGER expression giving the position _____

 in array at which searching is to start. _____

 finish is an INTEGER variable which will be set to ______

 the starting position of the translated

 string. finish will be set to zero if the ______

 string is not found.

 err1 (optional) is the number of a FORTRAN state- ____

 ment to transfer to if oldst is not found in _____

 the search.

 err2 (optional) is the number of a FORTRAN state- ____

 ment to transfer to if start≤0, start>len, or _____ _____ ___

 numb≤0. ____

 Comments: oldst and newst must be the same lengths. Only the first _____ _____

 occurrence of oldst is translated. oldst must be com- _____ _____

 pletely within the limits start and len of array for _____ ___ _____

 translation to occur.

 Example: The example below translates the string RECIEVE in the

 array A to RECEIVE.

 LOGICAL*1 A(200)

 CALL TRNST(A,200,’RECIEVE’,’RECEIVE’,7,1,IF,&30)

 Character Manipulation Routines 499

 MTS 6: FORTRAN in MTS

 October 1983

 If the string is found starting in character 29 of A, then

 IF will be set to 29. If the string is not found, then

 IF=0 and control is transferred to statement number 30.

 500 Character Manipulation Routines

 MTS 6: FORTRAN in MTS

 October 1983

 LOGICAL OPERATORS _________________

 The logical operators package makes the following 360 machine

 instructions directly available to the FORTRAN user: MVC, CLC, NC, OC,

 XC, TR, TRT, ED, and EDMK. The package resides in *LIBRARY.

 The package has the following entry points: IMVC, ICLC, INC, IOC,

 IXC, ITR, ITRT, IED, and IEDMK.

 Calling Sequences:

 I = IMVC(len,base1,displ1,base2,displ2)

 I = ICLC(len,base1,displ1,base2,displ2)

 I = INC(len,base1,displ1,base2,displ2)

 I = IOC(len,base1,displ1,base2,displ2)

 I = IXC(len,base1,displ1,base2,displ2)

 I = ITR(len,base1,displ1,base2,displ2)

 I = ITRT(len,base1,displ1,base2,displ2,dr,fb)

 I = IED(len,base1,displ1,base2,displ2)

 I = IEDMK(len,base1,displ1,base2,displ2,dr)

 Parameters:

 len is the integer length in bytes. No restriction is placed ___

 on the size of len. An error message will be generated if ___

 len < 0; or, for the entries IED or IEDMK, if len > 256. ___ ___

 base1 is the base location of the first operand. _____

 displ1 is the integer displacement in bytes for the first operand. ______

 No restriction is placed on the size of displ1. ______

 base2 is the base location of the second operand. _____

 displ2 is the integer displacement in bytes for the second ______

 operand. No restriction is placed on the size of displ2. ______

 dr is an integer return parameter for ITRT and IEDMK only. __

 For ITRT, dr will contain the displacement in bytes from __

 the beginning of the argument list, (base1+displ1), to the _____ ______

 argument corresponding to the first nonzero function byte

 (if any). For IEDMK, dr will contain the displacement in __

 bytes from the beginning of the source, (base2+displ2), to _____ ______

 the result character, whenever the latter is a zoned source

 digit and the significance indicator was off before the

 examination. In both cases, dr will be set to zero if the __

 resulting condition code is zero.

 fb is an optional integer return parameter for ITRT. When a __

 nonzero function byte is found, it will be returned in fb __

 as an integer in the range (0,255); otherwise, fb will be __

 zero.

 Logical Operators 501

 MTS 6: FORTRAN in MTS

 October 1983

 For the complete description of the machine instructions, see the IBM

 publication, IBM System/370 Principles of Operation, form GA22-7000. ___

 These subroutines are coded as integer-valued functions with the

 resulting condition code (0, 1, or 2) as the value.

 In the abbreviated descriptions below, the first operand consists of

 len bytes beginning at location base1+displ1, and the second operand ___ _____ ______

 consists of len bytes beginning at location base2+displ2. These two ___ _____ ______

 operands may overlap in any manner. For all five of these entry points,

 processing is carried out left to right one byte at a time. Note that

 the result of performing an operation on the first bytes of the two

 operands is stored before the second bytes are fetched so that overlap

 can have a significant effect on the result.

 IMVC - Move the second operand into the first operand location.

 INC - Replace the first operand by the logical product (AND) of

 the operands.

 IOC - Replace the first operand by the logical sum (OR) of the

 operands.

 IXC - Replace the first operand by the modulo-two sum (exclusive

 OR) of the two operands.

 ICLC - Compare the two operands. The operation is terminated as

 soon as two unequal bytes are found.

 The result of an IMVC is always zero. The result of an INC, IOC, or

 IXC is zero if the result operand is zero, and one, otherwise. The

 result of an ICLC is 0, 1, or 2, depending on whether the first operand

 is equal to, less than, or greater than the second operand.

 For the ITR and ITRT entries, the first operand consists of len bytes ___

 beginning at location base1+displ1, and the second operand consists of a _____ ______

 256-byte function table beginning at location base2+displ2. These _____ ______

 operands may overlap, but probably not too fruitfully. The ITR entry

 translates each byte of the first operand by replacing it with the

 corresponding byte from the function table. The result of an ITR

 operation is always zero. The ITRT entry does not change either

 operand. Processing the first operand bytes left to right, the

 corresponding function byte is interrogated. If the function byte is

 zero, the processing of the first operand continues. If the function

 byte is nonzero, the operation is terminated. When terminated, proces-

 sing is terminated with the byte at location base1+displ1+dr and the _____ ______ __

 corresponding nonzero function byte is available in fb. The result of __

 the ITRT will be 1 if this byte is not the last byte of the first

 operand, and 2 if it is the last byte. If no nonzero function byte is

 encountered, the result of an ITRT will be zero, and dr and fb will be __ __

 indeterminate.

 The complexity of the IED and IEDMK instructions precludes any short

 descriptions here.

 The following examples illustrate the use of the logical operators.

 502 Logical Operators

 MTS 6: FORTRAN in MTS

 October 1983

 INTEGER A,B

 B = 31

 LEN = 4

 IR = INC(LEN,A,0,B,0)

 The logical AND product of A and B will replace A. In this case, B = 31

 so A will be replaced by (A mod 32). IR will be set to 0 or 1 depending

 on whether the result in A is zero or nonzero.

 INTEGER A(4),B(4),D1,D2

 READ 2, (A(I),I=1,4), (B(I),I=1,4)

 2 FORMAT(4A4)

 D1 = 8

 D2 = 0

 IR = ICLC(8,A,D1,B,D2)

 This program logically compares the string in A(3), A(4), to the string

 in B(1), B(2). IR will be set to 0, 1, or 2 depending on whether the

 first string is equal to, less than, or greater than the second string.

 Logical Operators 503

 MTS 6: FORTRAN in MTS

 October 1983

 504 Logical Operators

 MTS 6: FORTRAN in MTS

 October 1983

 BITWISE LOGICAL FUNCTIONS _________________________

 These simple functions do the bitwise logical operations which are

 difficult to state in FORTRAN arithmetic formulas. If their names are

 prefixed with an "L", they are integer; otherwise, they are declared

 real. The only exception to this rule is that SHFTR and SHFTL must be

 declared integer. This package resides in *LIBRARY.

 The functions available are: AND, LAND, OR, LOR, XOR, LXOR, COMPL,

 LCOMPL, SHFTR, and SHFTL.

 Calling Sequences:

 AND C = AND(A,B)

 LAND IC = LAND(IA,IB)

 The result has bits on only if the corresponding bits of

 the arguments are both on.

 OR C = OR(A,B)

 LOR IC = LOR(IA,IB)

 The result has bits on only if either or both arguments

 have the corresponding bits on.

 XOR C = XOR(A,B)

 LXOR IC = LXOR(IA,IB)

 The result has bits on only if the corresponding bits of

 the two arguments are not the same.

 COMPL B = COMPL(A)

 LCOMPL IB = LCOMPL(IA)

 The result has all the bits of the argument reversed.

 SHFTR IC = SHFTR(IA,IB)

 SHFTL IC = SHFTL(IA,IB)

 The first argument is shifted right or left by the number

 of bits specified by the last 6 bits of the second integer

 argument (i.e., modulo 64). As logical shift functions,

 they are not equivalent to a division or to a multiplica-

 tion by a power of two.

 Bitwise Logical Functions 505

 MTS 6: FORTRAN in MTS

 October 1983

 Unless otherwise stated, the arguments of the functions may be either

 real or integer provided that they are fullwords (four bytes long).

 The functions LAND, LOR, LXOR, LCOMPL, SHFTR and SHFTL may be

 generated as in-line code by the FORTRAN-H compiler by specifying the XL _______

 option. See the section "*FTN Interface" in this volume for details.

 The following examples illustrate the use of the bitwise logical

 functions.

 WORD = XOR(WORD,WORD)

 This example zeros all the bits of the fullword WORD.

 DATA MASK/Z00FF0000/

 SCDBYT = AND(WORD,MASK)

 This example examines the second byte of the fullword WORD by deleting

 the other bytes and storing the result into the fullword SCDBYT.

 IWORD = SHFTR(IWORD,24)

 This example moves the first byte of the fullword IWORD into the fourth

 byte position and leaves the other bytes zero.

 READ (5,4) (CHAR(I),I=1,4)

 4 FORMAT(4A1)

 DATA MASK/ZFF000000/

 WORD = 0.

 DO 6 I=1,4

 6 WORD = OR(WORD,SHFTR(AND(CHAR(I),MASK),(I-1)*8))

 This example packs four characters into one word.

 506 Bitwise Logical Functions

 MTS 6: FORTRAN in MTS

 October 1983

 BMS (BIT MANIPULATION SUBROUTINES) __________________________________

 BMS is a subroutine package that enables the user to manipulate bit

 strings. It was written with the FORTRAN user in mind, so most examples

 are in FORTRAN. However, these subroutines may be called from any

 program that uses the standard OS type I (S-type) calling conventions

 that FORTRAN uses; a few examples are included to illustrate this.

 A bit string is a region of contiguous bits in the user’s storage. ___ ______

 It need not begin or end on any of the recognized storage boundaries.

 To define a bit string to a BMS subroutine, the user passes three

 parameters: baseadd, bitdisp, and bitlen. _______ _______ ______

 baseadd is a valid address in the user’s storage. _______

 bitdisp is a fullword integer containing a displacement in bits _______

 from baseadd (may be 0 or a positive integer). _______

 bitlen is a fullword integer containing the length of the string ______

 in bits (may be 0 or a positive integer).

 baseadd and bitdisp together determine the beginning of the string in a _______ _______

 manner analogous to a base address and a displacement in a 360/370

 machine instruction, the difference being that bitdisp is a displacement _______

 in bits rather than bytes. For example,

 baseadd = ALPHA, a fullword variable _______

 bitdisp = 16 _______

 bitlen = 8 ______

 The bit string defined is the third byte of ALPHA.

 ALPHA

 ┌───────────────────────────────────┐ ┌ ┌ ┌
 | byte 1 | byte 2 | byte 3 | byte 4 |

 └───────────────────────────────────┘ ┘ ┘ ┘
 0 7 8 15 16 23 24 31

 The subroutines are of two types: subroutines and integer-valued

 functions. The subroutines all have a normal return and an error

 return. Since they all work the same way, the return codes are

 summarized here:

 Return Codes:

 0 Operation successful.

 4 Negative parameter passed or wrong number of parameters

 passed.

 BMS (Bit Manipulation Subroutines) 507

 MTS 6: FORTRAN in MTS

 October 1983

 FORTRAN users can take advantage of the return code by coding an

 ampersand followed by a statement number after the last parameter of a

 subroutine; if the return code is 4, the subroutine will return to the

 specified statement, rather than to the point from which the subroutine

 was called.

 The subroutines available in the BMS package are:

 Subroutine Function __________ ________

 BCLEAR Clear a bit string to zeros

 BSET Set a bit string to ones

 BFLIP Complement a bit string (NOT)

 BCOPY Copy a bit string to another location in storage

 BSWAP Switch 2 bit strings in storage

 BAND Calculate the logical product (AND) of 2 bit strings

 BOR Calculate the logical sum (OR) of 2 bit strings

 BXOR Calculate the modulo-two sum (XOR) of 2 bit strings

 BFETCH Return a bit string as an integer value

 BCOMP Compare 2 bit strings (<, =, >)

 BOOLE Perform on 2 bit strings the boolean operation

 defined by a truth table passed as an argument

 BINSRT Insert a substring in a bit string

 BDLETE Delete a substring from a bit string

 BSCAN Find the location in a bit string of a substring

 BCOUNT Count the occurrences of a substring in a bit

 string

 508 BMS (Bit Manipulation Subroutines)

 MTS 6: FORTRAN in MTS

 October 1983

 BCLEAR ______

 Purpose: To clear a bit string to zeros.

 Location: *LIBRARY

 Calling Sequence:

 CALL BCLEAR(baseadd,bitdisp,bitlen[,&err])

 Examples: CALL BCLEAR(A(I),0,16)

 The halfword beginning at A(I) is cleared.

 CALL BCLEAR(B(J),9,99)

 99 bits beginning with the 10th bit (i.e., bit 9) of

 B(J) are cleared.

 INTEGER*4 X

 CALL BCLEAR(X,32-N,N,&99)

 When 0 ≤ N ≤ 32, the N low-order bits of the

 fullword X are cleared; otherwise, control passes to

 statement 99.

 Var Disp, Length:Integer;

 Var Alpha : Array[1..100] of Integer;

 Procedure Bclear(Var Baseadd,Bitdisp,Bitlen : Integer);

 Fortran;

 ...

 Disp := 0;

 Length := 3200;

 ...

 Bclear(Alpha,Disp,Length);

 In above Pascal example, the array Alpha is cleared

 to zeros.

 Var Disp, Length K : Integer;

 Procedure Bclear(Var Baseadd,Bitdisp,Bitlen : Integer);

 Fortran;

 ...

 Disp := 12;

 Length := 1;

 ...

 Bclear(K,Disp,Length);

 In above Pascal example, bit 12 of K is cleared.

 BMS (Bit Manipulation Subroutines) 509

 MTS 6: FORTRAN in MTS

 October 1983

 DCL I FIXED BINARY(31),

 BCLEAR EXTERNAL ENTRY(FIXED BINARY(31),

 FIXED BINARY(31),

 FIXED BINARY(31));

 ...

 CALL BCLEAR(I,8,1)

 In above PL/I Optimizer example, bit 8 of I is

 cleared.

 510 BMS (Bit Manipulation Subroutines)

 MTS 6: FORTRAN in MTS

 October 1983

 BSET ____

 Purpose: To set a bit string to ones.

 Location: *LIBRARY

 Calling Sequence:

 CALL BSET(baseadd,bitdisp,bitlen[,&err])

 Description: This subroutine works like BCLEAR.

 BFLIP _____

 Purpose: To complement a bit string (all 1s in the string become

 0s; all 0s become 1s).

 Location: *LIBRARY

 Calling Sequence:

 CALL BFLIP(baseadd,bitdisp,bitlen[,&err])

 Description: This subroutine works like BCLEAR.

 BMS (Bit Manipulation Subroutines) 511

 MTS 6: FORTRAN in MTS

 October 1983

 BCOPY _____

 Purpose: To copy a bit string to another place in storage.

 Location: *LIBRARY

 Calling Sequence:

 CALL BCOPY(baseadd,bitdisp,bitlen,baseadd2,bitdisp2

 [,&err])

 Description: The parameters specify two bit strings of equal length.

 The contents of the first string are copied to the

 storage occupied by the second string, destroying the

 previous contents of the second string. The contents of

 the first string are unchanged.

 Examples: INTEGER*4 RATE,CODES(100)

 CALL BCOPY(RATE,29,3,CODES(I),14)

 This copies a 3 bit code from the low-order posi-

 tions of the fullword integer RATE into bits 14-16

 of the ith entry of a packed table of codes. _

 CALL BCOPY(CODES(I),14,3,RATE,29)

 This performs the reverse operation, putting the

 code back in RATE. Note that BCOPY does not clear

 the high-order positions of RATE. To unpack the bit

 string (i.e., to transform it to an integer), set

 RATE to zero before calling BCOPY.

 512 BMS (Bit Manipulation Subroutines)

 MTS 6: FORTRAN in MTS

 October 1983

 BSWAP _____

 Purpose: To switch two bit strings in storage.

 Location: *LIBRARY

 Calling Sequence:

 CALL BSWAP(baseadd,bitdisp,bitlen,baseadd2,bitdisp2

 [,&err])

 Description: The parameters specify two bit strings of equal length.

 These two strings are switched in storage.

 Examples: INTEGER*2 A(500)

 CALL BSWAP(A(I),0,8,A(J),8)

 The high-order byte of A(I) is swapped with the

 low-order byte of A(J).

 BMS (Bit Manipulation Subroutines) 513

 MTS 6: FORTRAN in MTS

 October 1983

 BAND ____

 Purpose: To calculate the logical product (AND) of two bit

 strings.

 Location: *LIBRARY

 Calling Sequence:

 CALL BAND(baseadd,bitdisp,bitlen,baseadd2,bitdisp2

 [,baseadd3,bitdisp3,&err])

 Description: The parameters specify three bit strings of equal length.

 The contents of the first and second strings are ANDed

 and the result is stored in the third string. If the

 third string is omitted, the result is stored in the

 second string.

 Examples: INTEGER P(10),Q(10),R(10)

 CALL BAND(P(I),0,4,Q(J),28,R(K),3)

 The 4 high-order bits of P(I) are ANDed with the 4

 low-order bits of Q(J) and the result is stored in

 bits 3-6 of R(K).

 CALL BAND(A,0,8,B,0)

 The first byte of A is ANDed with the first byte of

 B and the result is stored in the first byte of B.

 INTEGER*2 MASK/Z03FF/

 CALL BAND(MASK,0,16,K,0)

 The 6 high-order bits of K are cleared. The same

 result can be obtained by CALL BCLEAR (K,0,6).

 Var Disp1, Disp2, Disp3, Length, I, J, K : Integer;

 Procedure Band(Var Baseadd,Bitdisp,Bitlen,Baseadd2,

 Bitdisp2,Baseadd3,Bitdisp3); Fortran;

 ...

 Disp1 := 0; Disp2 := 0; Disp3 := 3; Length := 32;

 ...

 Band(I,Disp1,Length,J,Disp2,K,Disp3);

 In above Pascal example, all 32 bits of I and J are

 ANDed; the result is stored in K.

 514 BMS (Bit Manipulation Subroutines)

 MTS 6: FORTRAN in MTS

 October 1983

 BOR ___

 Purpose: To calculate the logical sum (OR) of two bit strings.

 Location: *LIBRARY

 Calling Sequence:

 CALL BOR(baseadd,bitdisp,bitlen,baseadd2,bitdisp2

 [,baseadd3,bitdisp3,&err])

 Description: This subroutine works like BAND.

 BXOR ____

 Purpose: To calculate the modulo-two sum (XOR) of two bit strings.

 Location: *LIBRARY

 Calling Sequence:

 CALL BXOR(baseadd,bitdisp,bitlen,baseadd2,bitdisp2

 [,baseadd3,bitdisp3,&err])

 Description: This subroutine works like BAND.

 BMS (Bit Manipulation Subroutines) 515

 MTS 6: FORTRAN in MTS

 October 1983

 BFETCH ______

 Purpose: To return a bit string as an integer value.

 Location: *LIBRARY

 Calling Sequence:

 ivar = BFETCH(baseadd,bitdisp,bitlen)

 Description: If the bit string specified is between 1 and 31 bits

 long, it is returned as a positive integer or zero. If

 bitdisp is negative or if bitlen is not in range, a value

 of -1 is returned.

 Examples: INTEGER BFETCH

 RATE = BFETCH(CODES(I),14,3)

 This does the same unpacking job as the second

 example of BCOPY, except that it also clears the

 high-order bits of RATE. It is faster than BCOPY.

 INTEGER BFETCH

 IF (BFETCH(X,Y,Z).EQ.KEY) GO TO 99

 A bit string is compared to another integer.

 Var Source, Disp, Length, I : Integer;

 Function Bfetch(Var Baseadd,Bitdisp,Bitlen) : Integer;

 Fortran;

 ...

 Disp := 20;

 Length := 5;

 ...

 I := Bfetch(Source,Disp,Length);

 In above Pascal example, the five bits of SOURCE

 beginning with bit 20 are returned to I.

 516 BMS (Bit Manipulation Subroutines)

 MTS 6: FORTRAN in MTS

 October 1983

 BCOMP _____

 Purpose: To compare two bit strings.

 Location: *LIBRARY

 Calling Sequence:

 ivar = BCOMP(baseadd,bitdisp,bitlen,baseadd2,bitdisp2

 [,bitlen2])

 Description: The first string (specified by baseadd, bitdisp, and _______ _______

 bitlen) is compared with the second string (specified by ______

 baseadd2, bitdisp2, and bitlen2). If bitlen2 is omitted, ________ ________ _______ _______

 it is taken to be equal to bitlen. The strings are ______

 compared bit for bit and from left to right, until a

 difference occurs, or until one or both of the strings is

 exhausted. If a difference occurs, the string with zero

 in the position of difference is considered to be the

 lesser of the two strings (e.g., 0110 < 10). If the

 strings are equal until one of the strings is exhausted,

 then the shorter string is considered to be the lesser of

 the two (e.g., 01 < 0110). Two strings are considered

 equal only if they have both the same contents and the

 same length (e.g., 0110 = 0110).

 Function value returned:

 BCOMP = -1, if string1 < string2

 BCOMP = 0, if string1 = string2

 BCOMP = 1, if string1 > string2

 BCOMP = 2, if negative parameter is passed or wrong

 number of parameters is passed.

 Example: INTEGER BCOMP

 IF (BCOMP(INPUT,INPTR,24,’YES’,0).EQ.0) GO TO 12

 If the 24-bit (i.e., 3-character) string in INPUT is

 equal to the character string "YES", then go to

 statement 12.

 BMS (Bit Manipulation Subroutines) 517

 MTS 6: FORTRAN in MTS

 October 1983

 BOOLE _____

 Purpose: To perform on two bit strings the boolean function

 specified by a truth table.

 Location: *LIBRARY

 Calling Sequence:

 CALL BOOLE(baseadd,bitdisp,bitlen,baseadd2,bitdisp2,

 tbase,tdisp[,baseadd3,bitdisp3][,&err])

 Description: The parameters specify three bit strings of equal length,

 and a truth table four bits long. The contents of the

 first and second strings are operated upon as described

 in the truth table and the result is stored in the third

 string. If the third string is omitted, the result is

 stored in the second string.

 The truth table consists of four bits; the first bit

 contains the result if a bit in the first string and the

 corresponding bit in the second string are both ones; the

 second bit indicates the result if the bit in the first

 string is one and the bit in the second string is zero;

 the third bit indicates the result if the first bit is

 zero and the second is one; and the third contains the

 result if both bits are zero.

 Example: I = 3

 J = 5

 K = 3

 CALL BOOLE(I,28,4,J,28,K,28,L,28)

 In this sequence, two bit strings, 0101 and 1001,

 are operated upon by the truth table 0101. The

 result 0110 is placed in the last four bits of

 integer K.

 A truth table containing 1000 is equivalent to AND.

 A truth table containing 1110 is equivalent to

 inclusive OR.

 A truth table containing 0110 is equivalent to

 exclusive OR.

 518 BMS (Bit Manipulation Subroutines)

 MTS 6: FORTRAN in MTS

 October 1983

 BINSRT ______

 Purpose: To insert a substring into a bit string.

 Location: *LIBRARY

 Calling Sequence:

 CALL BINSRT(baseadd,bitdisp,bitlen,baseadd2,bitdisp2,

 bitlen2,where[&err])

 Description: The second string is copied into the first, starting at

 bit number where. The bits running from where to _____ _____

 bitlen-1 in the first string are shifted rightward ______

 bitlen2 places to accommodate the insertion of the second _______

 string.

 No storage management is done; it is the caller’s

 responsibility to ensure that expansion of the first

 string is permissible.

 Example: I = 124

 J = 0

 CALL BINSRT(I,25,5,J,30,2,3)

 This sequence inserts the string 00 into the string

 11111, starting at position 3; the result is

 1100111, which is stored starting with bit 25 of I.

 BMS (Bit Manipulation Subroutines) 519

 MTS 6: FORTRAN in MTS

 October 1983

 BDLETE ______

 Purpose: To delete a substring from a bit string.

 Location: *LIBRARY

 Calling Sequence:

 CALL BDLETE(baseadd,bitdisp,bitlen,bitdisp2,bitlen2

 [,&err])

 Description: The triplets baseadd, bitdisp, bitlen, and baseadd, _______ _______ ______ _______

 bitdisp2, bitlen2 describe two bit strings, the second of ________ _______

 which must be contained in the first (i.e., bitdisp2 must ________

 be greater than or equal to bitdisp, and bitdisp2+bitlen2 _______ ________ _______

 must be less than or equal to bitdisp+bitlen). The _______ ______

 second string is deleted from the first; in effect, the

 bits running from baseadd+bitdisp2+bitlen2 to baseadd+ _______ ________ _______ _______

 bitdisp+bitlen are copied to baseadd+bitdisp2. The _______ ______ _______ ________

 length of the string is effectively decreased from bitlen ______

 to bitlen-bitlen2; the contents of the (now) unused bit ______ _______

 positions after the end of the new string are undefined.

 No storage management is done.

 Example: I = 14

 CALL BDLETE(I,25,7,28,3)

 This sequence deletes three bits, starting at loca-

 tion 3 (28-25=3) from the bit string 00011100; the

 result 0000 is stored starting with bit 25 of I.

 520 BMS (Bit Manipulation Subroutines)

 MTS 6: FORTRAN in MTS

 October 1983

 BSCAN _____

 Purpose: To find the location of a substring in a bit string.

 Location: *LIBRARY

 Calling Sequence:

 INTEGER BSCAN

 i = BSCAN(baseadd,bitdisp,bitlen,baseadd2,bitdisp2,

 bitlen2)

 Description: The parameters specify two bit strings, the second of

 which should be shorter than the first. The value

 returned is the offset from baseadd of the point (within _______

 the first string) at which the second string is to be

 found. If the second string is not found within the

 first, -2 is returned. If any errors are detected in the

 parameters, the return value is -1.

 Example: Suppose a bit string 00101010 starting at bit 24 of J,

 and bit string 101 starting at bit 29 of K, where J and K

 are both integers; then

 INTEGER BSCAN

 I = BSCAN(J,24,7,K,29,3)

 returns the value 26 to I.

 BMS (Bit Manipulation Subroutines) 521

 MTS 6: FORTRAN in MTS

 October 1983

 BCOUNT ______

 Purpose: To count the number of occurrences of a substring in a

 bit string.

 Location: *LIBRARY

 Calling Sequence:

 INTEGER BCOUNT

 i = BCOUNT(baseadd,bitdisp,bitlen,baseadd2,bitdisp2,

 bitlen2)

 Description: The parameters specify two bit strings, the second

 shorter than the first. The returned value indicates the

 number of copies of the second string to be found in the

 first. If any error is found in the parameters, -1 is

 returned.

 Example: Suppose a bit string 10101010 starting at bit 24 of J and

 bit string 01 starting at bit 30 of K, where J and K are

 both integers. Then

 INTEGER BCOUNT

 I = BCOUNT(J,24,8,K,30,2)

 returns the value 3 to I.

 522 BMS (Bit Manipulation Subroutines)

 MTS 6: FORTRAN in MTS

 October 1983

 ANSI STANDARD BIT MANIPULATION SUBROUTINES __

 This set of subroutines contains procedures for bit manipulation with

 integers and date/time functions as described in ANSI/ISA-S61.1, Indus- ______

 trial Computer System FORTRAN Procedures for Executive Functions, __

 Process Input/Output, and Bit Manipulation, as well as additional bit __

 manipulation functions as described in Military Standard 1753, FORTRAN, ________

 DOD Supplement to American National Standard X3.9-1978. Other subrou- __

 tines described in ANSI/ISA-S61.1, the executive interface and the

 process input/output function interfaces, do not apply to the MTS

 environment and thus are not implemented.

 These subroutines are intended to allow FORTRAN programs written for

 other systems that provide subroutines implementing the same standards

 to be run in MTS with little or no modification, and to facilitate the

 development in MTS of FORTRAN programs intended for use on such systems.

 The following subroutines are available:

 Subroutine Function __________ ________

 IOR Inclusive OR of the bits in two integers.

 IAND Logical AND of two integers.

 IEOR Exclusive OR of two integers.

 NOT Logical complement of an integer.

 ISHFT Shift bits right or left (noncircular).

 BTEST Test a specific bit.

 IBSET Set a bit to one.

 IBCLR Clear a bit to zero.

 ISHFTC Circular shift of some or all of the bits in an

 integer.

 IBITS Extract a bit substring.

 MVBITS Move bits from one integer to another.

 DATE Return current date.

 ANSITM Return current time.

 The ANSITM subroutine is named TIME in the standard. However, since

 there is a different MTS subroutine named TIME, a different name had to

 be chosen for the ANSI subroutine. The object-file editor can be used

 to change calls to TIME to calls to ANSITM (see the ANSITM description

 for an example).

 Although these subroutines were intended for FORTRAN programs in the

 standard, they may be called from any programming language that uses the

 standard IBM OS S-type linkage conventions.

 ANSI Standard Bit Manipulation Subroutines 523

 MTS 6: FORTRAN in MTS

 October 1983

 IOR ___

 Purpose: To perform an inclusive OR on the bits comprising two

 fullword integers.

 Location: *LIBRARY

 Calling Sequence:

 i = IOR(j,k)

 Parameters:

 j,k is a fullword (INTEGER*4) integers. ___

 i is a fullword integer to receive the inclusive _

 OR of j and k. _ _

 Description: Each bit in i is set to one, if the corresponding bit in _

 j or k or in both is equal to one. If the corresponding _ _

 bits in both j and k are equal to zero, then the bit in i _ _ _

 is set to zero.

 Example: J = 5

 K = 3

 C

 C In binary,

 C J = 00000000 00000000 00000000 00000101

 C K = 00000000 00000000 00000000 00000011

 C

 I = IOR(J,K)

 C

 C The value returned to I is 7; in binary,

 C I = 00000000 00000000 00000000 00000111.

 C

 524 ANSI Standard Bit Manipulation Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 IAND ____

 Purpose: To perform a logical AND on the bits comprising two

 fullword integers.

 Location: *LIBRARY

 Calling Sequence:

 i = IAND(j,k)

 Parameters:

 j,k is a fullword (INTEGER*4) integers. ___

 i is a fullword integer containing the logical _

 AND of j and k. _ _

 Description: Each bit in i is set to one, if the corresponding bits in _

 both j and k are equal to one. _ _

 Example: J = 3

 K = 5

 C

 C In binary,

 C J = 00000000 00000000 00000000 00000011

 C K = 00000000 00000000 00000000 00000101

 C

 I = IAND(J,K)

 C

 C The value returned to I is 1; in binary,

 C I = 00000000 00000000 00000000 00000001.

 C

 ANSI Standard Bit Manipulation Subroutines 525

 MTS 6: FORTRAN in MTS

 October 1983

 IEOR ____

 Purpose: To form the exclusive OR of two fullword integers.

 Location: *LIBRARY

 Calling Sequence:

 i = IEOR(j,k)

 Parameters:

 j,k is a fullword (INTEGER*4) integers. ___

 i is a fullword integer containing the exclusive _

 OR of j and k. _

 Description: Each bit in i is set to one, if the corresponding bit in _

 either j or k (but not both) is equal to one. _ _

 Example: J = 3

 K = 5

 C

 C In binary,

 C J = 00000000 00000000 00000000 00000011

 C K = 00000000 00000000 00000000 00000101

 C

 I = IEOR(J,K)

 C

 C The value returned to I is 6; in binary,

 C I = 00000000 00000000 00000000 00000110.

 C

 526 ANSI Standard Bit Manipulation Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 NOT ___

 Purpose: To return the logical complement of a fullword integer.

 Location: *LIBRARY

 Calling Sequence:

 i = NOT(j)

 Parameters:

 j is a fullword (INTEGER*4) integer. _

 i is a fullword integer containing the complement _

 of j. _

 Description: Each bit in i is set to one, if the corresponding bit in _

 j is equal to zero. _

 Example: J = -1

 C

 C In binary,

 C J = 11111111 11111111 11111111 11111111

 C

 I = NOT(J)

 C

 C The value returned to I is 0; in binary,

 C I = 00000000 00000000 00000000 00000000.

 C

 ANSI Standard Bit Manipulation Subroutines 527

 MTS 6: FORTRAN in MTS

 October 1983

 ISHFT _____

 Purpose: To shift the bits comprising an integer to the right or

 left.

 Location: *LIBRARY

 Calling Sequence:

 i = ISHFT(j,k)

 Parameters:

 j,k is a fullword (INTEGER*4) integers. ___

 j is a fullword integer to be shifted. _

 k is a fullword integer containing the number of _

 positions that j is to be shifted. _

 i is a fullword integer containing the value of j _ _

 shifted k positions. _

 Description: Each bit in j is shifted to the left by k positions if k _ _ _

 is positive, and to the right by k positions if k if _ _

 negative.

 If k is greater than 32 or less than -32, an error _

 message is produced and execution is terminated.

 Example: J = 3

 C

 C In binary,

 C J = 00000000 00000000 00000000 00000011

 C

 I = ISHFT(J,2)

 C

 C The value returned to I is 12; in binary,

 C I = 00000000 00000000 00000000 00001100.

 C

 J = 3

 C

 C In binary,

 C J = 00000000 00000000 00000000 00000011

 C

 I = ISHFT(J,-1)

 C

 C The value returned to I is 1; in binary,

 C I = 00000000 00000000 00000000 00000001.

 C

 528 ANSI Standard Bit Manipulation Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 BTEST _____

 Purpose: To test whether a specific bit in a fullword integer is

 set to one.

 Location: *LIBRARY

 Calling Sequence:

 LOGICAL a,BTEST

 a = BTEST(j,k)

 Parameters:

 j is the fullword (INTEGER*4) integer to be _

 tested.

 k is an integer specifying the number of the bit _

 in j to be tested. _

 a is a logical variable which is set to TRUE if _

 bit k in j is equal to one, and FALSE, _ _

 otherwise.

 Description: TRUE is returned if bit k in integer j is equal to one; _ _

 if it is not, FALSE is returned. Bits are numbered from

 right to left, from 0 to 31. If k is less than zero or _

 greater than 31, an error message is printed and execu-

 tion is terminated.

 In languages other than FORTRAN, the returned value is an

 integer, with 1 for TRUE and 0 for FALSE. (FORTRAN

 programs may also declare BTEST as an integer function,

 although the standards specify the function type to be

 logical.)

 Example: J = 10

 C

 C In binary,

 C J = 00000000 00000000 00000000 00001010

 C

 LOGICAL A,B,BTEST

 A = BTEST(J,3)

 B = BTEST(J,2)

 C

 C The value returned to A is TRUE; the value

 C returned to B is FALSE.

 C

 ANSI Standard Bit Manipulation Subroutines 529

 MTS 6: FORTRAN in MTS

 October 1983

 IBSET _____

 Purpose: To set a specific bit of a fullword integer to one.

 Location: *LIBRARY

 Calling Sequence:

 i = IBSET(j,k)

 Parameters:

 j is a fullword (INTEGER*4) integer. _

 k is a fullword integer specifying the number of _

 the bit in j to be set. _

 i is a fullword integer containing j with the _ _

 k’th bit set to one. _

 Description: Bit number k of integer j is set to one. Bits are _ _

 numbered from right to left, from 0 to 31.

 If k is less than zero or greater than 31, an error _

 message is printed and execution is terminated.

 Example: J = 8

 C

 C In binary,

 C J = 00000000 00000000 00000000 00001000

 C

 I = IBSET(J,2)

 C

 C The value returned to I is 12; in binary,

 C I = 00000000 00000000 00000000 00001100.

 C

 530 ANSI Standard Bit Manipulation Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 IBCLR _____

 Purpose: To clear (set to zero) a particular bit in a fullword

 integer.

 Location: *LIBRARY

 Calling Sequence:

 i = IBCLR(j,k)

 Parameters:

 j is a fullword (INTEGER*4) integer. _

 k is a fullword integer specifying the number of _

 the bit in j to be cleared. _

 i is a fullword integer containing the value of j _ _

 with bit number k cleared. _

 Description: Bit number k in integer j is set to zero. Bits are _ _

 numbered from right to left, from 0 to 31.

 If k is less than zero or greater than 31, an error _

 message is printed and execution is terminated.

 Example: J = 12

 C

 C In binary,

 C J = 00000000 00000000 00000000 00001100

 C

 I = IBCLR(J,3)

 C

 C The value returned to I is 4; in binary,

 C I = 00000000 00000000 00000000 00000100.

 C

 ANSI Standard Bit Manipulation Subroutines 531

 MTS 6: FORTRAN in MTS

 October 1983

 ISHFTC ______

 Purpose: To shift all or part of a fullword integer left or right

 in a circular fashion.

 Location: *LIBRARY

 Calling Sequence:

 i = ISHFTC(j,k,l)

 Parameters:

 j is a fullword (INTEGER*4) integer whose bits _

 are to be shifted.

 k is a fullword integer indicating the number of _

 positions to be shifted.

 l is a fullword integer indicating the number of _

 bits to be shifted.

 i is a fullword integer containing the value of j _ _

 with the rightmost l bits shifted circularly k _ _

 positions.

 Description: The rightmost l bits in j are shifted left (if k>0) or _ _

 right (if k<0) by k positions. _

 The shift is circular--a bit shifted out of the left side

 (leftward shift) or the right side (rightward shift) is

 moved directly to the opposite side of the string of bits

 being shifted.

 If the number of bits to be shifted l is less than one or _

 greater than 32, or if the number of positions to be

 shifted is greater than the number of bits (i.e., k > l), _ _

 an error message is printed on SERCOM and execution is

 terminated.

 Example: J = 6

 C

 C In binary,

 C J = 00000000 00000000 00000000 00000110

 C

 I = ISHFTC(J,2,4)

 C

 C The value returned to I is 9; in binary,

 C I = 00000000 00000000 00000000 00001001.

 C

 532 ANSI Standard Bit Manipulation Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 IBITS _____

 Purpose: To extract a string of bits from a fullword integer.

 Location: *LIBRARY

 Calling Sequence:

 i = IBITS(j,k,l)

 Parameters:

 j is a fullword (INTEGER*4) integer from which _

 bits are to be extracted.

 k is a fullword integer indicating the first bit _

 of j to be extracted. The bits are numbered _

 right to left from 0 to 31.

 l is a fullword integer indicating the number of _

 bits to be extracted.

 i is a fullword integer containing the right- _

 justified bit string extracted from j. _

 Description: Bits k through k+l-1 in j are right-justified and _ _ _ _

 returned in i. _

 If k is greater than 31, l is less than or equal to zero, _ _

 or k+l is greater than 32, an error message is printed _ _

 and execution is terminated.

 Example: J = 10

 C

 C In binary,

 C J = 00000000 00000000 00000000 00001010

 C

 I = IBITS(J,1,3)

 C

 C The value returned to I is 5; in binary,

 C I = 00000000 00000000 00000000 000000101

 C

 ANSI Standard Bit Manipulation Subroutines 533

 MTS 6: FORTRAN in MTS

 October 1983

 MVBITS ______

 Purpose: To move a string of bits from one binary integer to

 another.

 Location: *LIBRARY

 Calling Sequence:

 CALL MVBITS(m,i,len,n,j)

 Parameters:

 m is the fullword (INTEGER*4) integer from which _

 the string is to be taken.

 i is a fullword integer containing the number of _

 the first bit of m in the string. Bits are _

 numbered right to left from 0 to 31.

 len is a fullword containing the length of the ___

 string.

 n is a fullword integer into which the bit string _

 is inserted.

 j is a fullword integer containing the number of _

 the first bit of the area in n into which the _

 string is to be moved.

 Description: Bits i through i+len-1 of m are moved to positions j _ _ ___ _ _

 through j+len-1 of n. The bits of n not in the range j _ ___ _ _

 through j+len-1 remain unchanged. _ ___

 If the string length len is less than one or greater than ___

 32, or if either bit offset (i or j) is less than zero or _ _

 greater than 31, or if either bit offset plus the length

 (i+len or j+len) is greater than 32, an error message is _ ___ _ ___

 printed on SERCOM and execution is terminated.

 Example: M = 53

 N = 74

 C

 C In binary,

 C M = 00000000 00000000 00000000 00110101

 C N = 00000000 00000000 00000000 01001010

 C

 CALL MVBITS(M,1,4,N,4)

 C

 C

 C The value returned to N is 170; in binary,

 C N = 00000000 00000000 00000000 10101010.

 C

 534 ANSI Standard Bit Manipulation Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 DATE ____

 Purpose: To return the current date.

 Location: *LIBRARY

 Calling Sequence:

 INTEGER i(3)

 CALL DATE(i)

 Parameter:

 i is the start of a three-element integer array _

 in which the current date is returned.

 Description: Returns the current date in integer array i, with the _

 year (since AD 0) in the first element, the month (1-12)

 in the second element, and the day (1-31) in the third.

 Example: If the subroutine were called on May 1, 1983, on return,

 i(1) would contain 1983, i(2) would contain 5, and i(3)

 would contain 1.

 ANSI Standard Bit Manipulation Subroutines 535

 MTS 6: FORTRAN in MTS

 October 1983

 ANSITM ______

 Purpose: to return the current time.

 Location: *LIBRARY

 Calling Sequence:

 INTEGER i(3)

 CALL ANSITM(i)

 Parameter:

 i is a three-element integer array in which the _

 current time is returned.

 Description: The current time is returned in the first three elements

 of the specified array, with the hour (0-23) in the first

 element, the current minute (0-59) in the second element,

 and the current second (0-59) in the third.

 Example: If the call were made at 10:42:30 PM, i(1) would contain

 22, i(2) would contain 42, and i(3) would contain 30.

 Note: In the ANSI standard, the name of this subroutine is

 TIME; the name has been changed here because there is a

 different function under MTS named TIME.

 Programmers using the ANSITM subroutines have two alter-

 natives: first, they can change their source programs to

 call ANSITM rather than TIME; or they can use the object

 file editor (*OBJUTIL) to change calls to TIME into calls

 to ANSITM. For example,

 $RUN *OBJUTIL 0=objectfile

 RENAME TIME ANSITM

 STOP

 where "objectfile" is the file containing the compiled

 program. This sequence will change the subroutine name

 from TIME to ANSITM for every CALL TIME statement in the

 program.

 536 ANSI Standard Bit Manipulation Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 ANSI STANDARD FILE CONTROL SUBROUTINES ______________________________________

 This set of subroutines contains procedures for file control as

 described in ANSI/ISA-S61.2, Industrial Computer System FORTRAN Proce- ___

 dures for File Access and the Control of File Contention. __

 These subroutines are intended to allow FORTRAN programs written for

 other systems, which provide subroutines implementing the same stan-

 dards, to be run under MTS with little or no modification, and to

 facilitate the development under MTS of FORTRAN programs intended for

 use on such systems.

 The following subroutines are available:

 Subroutine Function __________ ________

 CFILW Create a file

 DFILW Destroy a file

 OPENW Open a file

 CLOSEW Close a file

 MODAPW Modify access privileges for an open file

 RDRW Read a record from a file

 WRTRW Write a record to a file

 Note: These subroutines only provide for direct access to files.

 The following list describes all extensions to and incompatibilities

 with the standard.

 (1) The standards make no specific mention of the handling of calls

 with invalid parameters. In this implementation, the return

 code for each subroutine is set to indicate the type of error

 detected.

 (2) File names are not covered by the standards, but left dependant

 on the processor. These subroutines expect file names to be

 standard MTS file names, terminated by a blank space. (This can

 be effected in full accord with the standard by using integer

 arrays initialized to contain the file names.)

 (3) The standards permit concurrently executing programs to write to

 the same file and allow one program to read a file while a

 concurrent program is writing to it; under MTS such access is

 not possible. Therefore, a program requesting write access to a

 file will receive it only if no other program is accessing the

 file in any way.

 (4) The standards specify that an open file is attached to a

 particular unit, and use the unit number to identify the file.

 These subroutines make use of the unit numbers as specified, but

 do not actually associate the units with the MTS logical I/O

 ANSI Standard File Control Subroutines 537

 MTS 6: FORTRAN in MTS

 October 1983

 units. Thus, it would be possible to have a file open under the

 ANSI file subroutines, attached to unit 5, and to have a

 different file open and attached to MTS unit 5. Note also that

 MTS logical I/O units run from 0 to 99, while the ANSI

 subroutines allow the unit number to be any integer.

 (5) A file that is open may be destroyed. This might cause an error

 return if I/O is subsequently attempted to the file.

 538 ANSI Standard File Control Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 CFILW _____

 Purpose: To create a file.

 Location: *LIBRARY

 Calling Sequence:

 CALL CFILW(j,n1,n2,m)

 Parameters:

 j is an integer array containing the name of the _

 file followed by one blank space. The file

 name must conform to standard MTS conventions.

 n1 is an integer specifying the number of bytes __

 per record in the file.

 n2 is an integer specifying the number of records __

 in the file.

 m is an integer variable to receive a return _

 code.

 Return codes:

 1 File successfully created.

 2 Bytes per record value zero or less.

 3 Number of records less than zero.

 104 File already exists.

 128 Space allocated to this CCID exceeded.

 (Errors 108,112,116,120,124 should not occur).

 Errors 104-128 are return codes from the CREATE

 subroutine, plus 100 (see MTS Volume 3, System ______

 Subroutine Descriptions, for details). _______________________

 Description: A file with the specified file name is created, if

 possible. The record size and file size are used to

 compute the approximate number of disk pages required to

 hold the file, and the file is created at that size.

 Because the formula used is only an approximation of the

 file space required, the file might still require expan-

 sion when records are written to it (see Appendix C to

 the section "Files and Devices" in MTS Volume 1, The ___

 Michigan Terminal System, for a description of the __________________________

 formula used). It should also be noted that the values

 specified in the CFILW call are used only in computing ____

 the initial size of the file; they do not determine

 actual record size or the maximum size of the file.

 (This leniency is not part of the standard, but a feature

 of the MTS file system; under some systems, all charac-

 ANSI Standard File Control Subroutines 539

 MTS 6: FORTRAN in MTS

 October 1983

 teristics for a file must be specified when it is

 created.)

 Example: INTEGER FILNAM(3)/’FILE’,’1 ’/

 CALL CFILW(FILNAM,1,1,m)

 The above sequence creates a file named FILE1.

 540 ANSI Standard File Control Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 DFILW _____

 Purpose: To destroy a file.

 Location: *LIBRARY

 Calling Sequence:

 CALL DFILW(i,m)

 Parameters:

 i is an integer array containing the name of a _

 file followed by a blank space. Standard MTS

 conventions for file names should be followed.

 m is an integer variable to receive the return _

 code.

 Return Codes:

 1 File successfully destroyed.

 4-28:

 Return codes from the DESTROY subroutine (see

 MTS Volume 3, System Subroutine Descriptions, ______________________________

 for details).

 Example: INTEGER FILNAM(3)/’FILE’,’22 ’/

 Description: The specified file is destroyed.

 CALL DFILW(FILNAM,M)

 The above sequence destroys the file named FILE22.

 ANSI Standard File Control Subroutines 541

 MTS 6: FORTRAN in MTS

 October 1983

 OPENW _____

 Purpose: To open a file for input/output.

 Location: *LIBRARY

 Calling Sequences:

 CALL OPENW(i,j,k,m)

 Parameters:

 i is an integer array containing an MTS file name _

 followed by a blank space. Standard MTS con-

 ventions for file names should be followed, and

 the file name should not include line ranges or

 I/O modifiers.

 j is the unit number to be associated with the _

 file. This integer number identifies the file

 for all subsequent processing.

 k is the type of access to the file required (see _

 below).

 m is an integer variable to receive the return _

 code.

 Return Codes:

 1 File successfully opened.

 2 Invalid access requested.

 3 Access (under MTS) insufficient to open file

 SHARED or EXCLUSIVE ALL.

 4 Unit already in use.

 104 File does not exist

 108 Hardware error or software inconsistency.

 112 Access not allowed.

 208 File is busy.

 212 File not operational.

 304 File does not exist.

 308 Hardware error or software inconsistency.

 312 Access appropriate to lock not allowed.

 316 Locking would cause deadlock.

 320 File locked by another task.

 Errors 104 to 112 are return codes from the CHKFILE

 subroutine, plus 100. Errors 208 and 212 are return

 codes from the GETFD subroutine, plus 200. Errors

 304 to 320 are return codes from the LOCK sub-

 routine, plus 300 (see MTS Volume 3, System Sub- ____________

 routine Descriptions, for details). ____________________

 542 ANSI Standard File Control Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 Description: The specified file is opened with the desired access, if

 possible. The following are valid access modes:

 1 READ ONLY: The calling program can read the

 file; other concurrent programs

 may read or write.

 2 SHARED: The calling program can read and

 write; other concurrent programs

 may read or write.

 3 PROTECTED READ: The calling program can only

 read; other concurrent programs

 may only read.

 4 EXCLUSIVE ALL: The calling program can read and

 write; other concurrent programs

 may not access the file.

 MTS does not permit two tasks to write to the same file

 concurrently, or allow one task to read a file while

 another task is writing to that file. Therefore, a

 request for READ ONLY access will be treated as a request

 for PROTECTED READ access, and a request for SHARED

 access will be treated as a request for EXCLUSIVE ALL

 access.

 Example: INTEGER FILNAM(3)/’FILE’,’333 ’/

 INTEGER UNIT/22/,ACCESS/3/,M

 CALL OPENW(FILNAM,UNIT,ACCESS,M)

 The above sequence opens the file named FILE333 for

 PROTECTED READ access on unit number 22.

 ANSI Standard File Control Subroutines 543

 MTS 6: FORTRAN in MTS

 October 1983

 MODAPW ______

 Purpose: To modify the calling program’s access privileges to an

 open file.

 Location: *LIBRARY

 Calling Sequence:

 CALL MODAPW(i,j,m)

 Parameters:

 i is the unit number of the file to be processed. _

 j is the new access privilege requested for the _

 file.

 m is an integer variable to receive the return _

 code.

 Return Codes:

 1 Access successfully changed.

 2 Invalid access mode specified.

 3 Unit not associated with a file.

 104 File does not exist (should not occur).

 108 Hardware error or software inconsistency.

 112 Access appropriate to locking request not

 allowed.

 116 Locking as requested would result in a

 deadlock.

 120 File locked by another task.

 Errors 104 through 120 are return codes from the

 LOCK subroutine, plus 100 (see MTS Volume 3, System ______

 Subroutine Descriptions, for details). _______________________

 Description: The program’s access to the specified file is changed to

 the specified access, if possible.

 Example: INTEGER UNIT/23/,ACCESS/4/

 CALL MODAPW(UNIT,ACCESS,M)

 The above sequence would result in the access to the

 file attached as unit 23 being changed to EXCLUSIVE

 ALL (if possible).

 544 ANSI Standard File Control Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 CLOSEW ______

 Purpose: To close a file.

 Location: *LIBRARY

 Calling Sequence:

 CALL CLOSEW(i,m)

 Parameters:

 i is the unit number attached to the file to be _

 closed.

 m is an integer variable to receive the return _

 code.

 Return Codes:

 1 File closed.

 2 Unit number not attached to a file.

 Description: The specified file is released. It may not be accessed

 by other I/O subroutines unless it is reopened by a call

 to OPENW.

 Example: INTEGER UNIT/26/,M

 CALL CLOSEW(UNIT,M)

 The above sequence closes the file attached to unit

 number 26.

 ANSI Standard File Control Subroutines 545

 MTS 6: FORTRAN in MTS

 October 1983

 RDRW ____

 Purpose: To read a record from a file.

 Location: *LIBRARY

 Calling Sequence:

 CALL RDRW(i,j,k,l,m)

 Parameters:

 i is the number of the unit attached to the file. _

 j is the number of the record to be read. This _

 number must be a positive integer.

 k is the start of the area into which the record _

 is to be read.

 l is the number of bytes to be read. If the _

 actual record is longer than this, it is

 truncated. If the record is shorter, it is

 padded with blanks (X’00’).

 m is an integer variable to receive the return _

 code.

 Return Codes:

 1 Record read successfully

 2 Invalid record number specified.

 3 Invalid length specified.

 4 Unit not attached to a file.

 104 Requested record not in file.

 Errors 104 and greater are return codes from the

 READ subroutine plus 100. A return code from READ

 greater than 4 will cause an error to be printed and

 execution to be terminated (see MTS Volume 3, System ______

 Subroutine Descriptions, for details). _______________________

 Description: The specified line is read from the file into the

 designated area. If necessary, the record may be padded

 with nulls (X’00’ bytes) or truncated.

 Example: INTEGER UNIT/33/,RECNUM/6/,INBUF(4)

 INTEGER LENGTH/12/,M

 CALL RDRW(UNIT,RECNUM,INBUF,LENGTH,M)

 The above sequence will read twelve bytes (3 full-

 words) into INBUF(1),INBUF(2), and INBUF(3) from

 record 6 of the file attached to unit 33.

 546 ANSI Standard File Control Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 WRTRW _____

 Purpose: To write a record to a file.

 Location: *LIBRARY

 Calling Sequence:

 CALL WRTRW(i,j,k,l,m)

 Parameters:

 i is the number of the unit attached to the file. _

 j is the number of the record to be written to. _

 This must be a positive integer.

 k is the start of the area from which the record _

 is to be written.

 l is the number of bytes to be written. _

 m is an integer variable to receive the return _

 code.

 Return Codes:

 1 Record successfully written.

 2 Invalid record number.

 3 Invalid length.

 4 No file attached to specified unit.

 5 Access to file is READ ONLY or PROTECTED READ.

 Description: The specified record in the specified file is written

 from the indicated location.

 Example: INTEGER UNIT/40/,RECNUM/12/

 INTEGER OUTBUF(6)/1,2,3,4,5,6/,LEN/24/,M

 CALL WRTRW(UNIT,RECNUM,OUTBUF,LEN,M)

 The above sequence will write 24 bytes (6 fullwords

 to record number 12 of the file attached to unit

 number 40 from the integer variable OUTBUF.

 ANSI Standard File Control Subroutines 547

 MTS 6: FORTRAN in MTS

 October 1983

 548 ANSI Standard File Control Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 MISCELLANEOUS FORTRAN SUBROUTINES _________________________________

 The following subroutine descriptions are taken from MTS Volume 3,

 System Subroutine Descriptions. These are subroutines which may be of ______________________________

 use to FORTRAN users.

 Miscellaneous FORTRAN Subroutines 549

 MTS 6: FORTRAN in MTS

 October 1983

 ADROF _____

 Purpose: To return the address of a FORTRAN variable.

 Location: *LIBRARY

 Alt. Entry: IADROF

 Calling Sequences:

 FORTRAN: x = ADROF(var)

 Parameters:

 var is the location of the variable name whose ___

 address is to be returned. If the variable name

 is a character string which is intended to be

 used as an FDname, it should be terminated with

 a trailing blank.

 Values Returned:

 x will contain the address of the variable. _

 Note: In FORTRAN, ADROF should be declared as an

 INTEGER*4 function. ADROF is intended for use

 with RCALL to compute addresses as necessary in

 calling R-type subroutines (see the RCALL sub-

 routine description in this volume).

 Example: FORTRAN: INTEGER*4 RESULT,ADROF

 .

 .

 RESULT = ADROF(’FDname ’)

 This example returns the address of the character string

 "FDname" in the variable RESULT.

 550 Miscellaneous FORTRAN Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 ATNTRP ______

 Purpose: To allow a FORTRAN program to be notified of the occur-

 rence of an attention interrupt.

 Location: *LIBRARY

 Calling Sequence:

 FORTRAN: CALL ATNTRP(flag)

 Parameter:

 flag is a LOGICAL*4 variable which will be set to ____

 .TRUE. when an attention interrupt occurs.

 Return Codes:

 None.

 Description: A call to the ATNTRP subroutine will set the value of flag ____

 to .FALSE. and will enable the attention interrupt trap.

 When an attention interrupt occurs, flag will be set to ____

 .TRUE., the trap will be disabled, and execution of the

 interrupted program will be resumed at the point of the

 interrupt. It is the responsibility of the FORTRAN

 program to detect a change in the value of flag and to act ____

 accordingly.

 One call to ATNTRP allows only one attention interrupt to

 be intercepted. To intercept another attention interrupt,

 ATNTRP must be called again.

 Example: FORTRAN: LOGICAL*4 FLAG

 CALL ATNTRP(FLAG)

 .

 .

 10 IF(FLAG) GO TO 20

 .

 .

 GO TO 10

 20 CONTINUE

 .

 .

 This example calls ATNTRP to enable the intercept of one

 attention interrupt. Periodically, the program checks the

 value of FLAG to determine if an interrupt has occurred;

 if an interrupt has occurred, a branch is made to

 statement label 20.

 Miscellaneous FORTRAN Subroutines 551

 MTS 6: FORTRAN in MTS

 October 1983

 CHKPAR ______

 Subroutine Description

 Purpose: To check the number and data types of parameters passed to

 a subroutine.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: CALL CHKPAR(icode,’string ’,&rc4)

 Parameters:

 icode is a switch indicating the action to be taken _____

 if an error is found by CHKPAR. The legal

 switch values are:

 0 A traceback of the subroutine calls is

 produced and then execution is suspended.

 Execution may be resumed by the $RESTART

 command.

 1 A traceback of the subroutine calls is

 produced and then execution is resumed.

 2 Execution is continued with an error mes-

 sage but without a traceback.

 3 Execution is continued without an error

 message or a traceback.

 In all cases, a return code 4 (RETURN 1) is

 produced if an error is detected.

 string is a string of characters of the form I ______

 (integer), R (real), and X (other) which

 corresponds in data type to the dummy varia-

 bles in the calling sequence of the sub-

 routine being checked. CHKPAR checks only

 REAL*4 and REAL*8 variables, and INTEGER*4

 variables of magnitude less than 1048575.

 All other variables must be indicated by an X

 and are ignored. The string must be enclosed

 in primes and terminated by a blank.

 The letter O may be included in the string to

 indicate that the remaining parameters are

 optional. The letter S may be included to

 stop the checking of parameters before the

 end of the parameter list is encountered.

 The S option is useful if the caller is not

 552 Miscellaneous FORTRAN Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 required to set the variable length bit (the

 high-order bit in the last parameter

 address).

 CHKPAR will not differentiate between REAL*4

 and REAL*8 variables.

 rc4 (optional) is the number of a FORTRAN state- ___

 ment to transfer to if the number of parame-

 ters or their data types are not correct. If

 omitted, control will return to the statement

 following the call to CHKPAR.

 Note: Standard OS Type-I(S) calling conventions must be

 used in all subroutine calls. See the section

 "Calling Conventions" in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 Description: CHKPAR tests the data types of the arguments in the

 subroutine from which CHKPAR was called against the data

 types specified in the string parameter. A value of zero ______

 is legal regardless of data type. If the value is

 nonzero, the absolute value of the variable is taken and

 the high-order byte is tested for zero. If this byte is

 nonzero, the corresponding data type must be R. If this

 byte is zero, the next 4 bits (20-23) must be zero for

 integer variables and nonzero for real variables.

 CHKPAR must be called from the subroutine whose parameter

 list is being checked.

 Examples: FORTRAN: X=10.

 Y=20.

 CALL SUBR(X,Y,Z)

 STOP

 END

 SUBROUTINE SUBR(I,Y,Z)

 CALL CHKPAR(1,’IRX ’,&10)

 Z=FLOAT(I)+Y

 RETURN

 10 WRITE(6,100)

 100 FORMAT(’0ERROR IN CALL TO SUBR’)

 STOP

 END

 In the above example, X is incorrect in the call to SUBR.

 The following type of message is subsequently printed:

 Error in argument number n in call to subroutine SUBR.

 Type should be (integer/real) is (real/integer).

 Integer value is "xxxx", real "xxxx", hex "xxxx",

 character "xxxx".

 Miscellaneous FORTRAN Subroutines 553

 MTS 6: FORTRAN in MTS

 October 1983

 CHKPAR then produces a traceback and transfers control to

 statement number 10. The third parameter Z in the above

 example is not checked by CHKPAR because it is returned by

 the subroutine SUBR and therefore is not initialized when

 CHKPAR is called.

 FORTRAN: I=10.

 Y=20.

 CALL SUBR(I,Y)

 STOP

 END

 SUBROUTINE SUBR(I,Y,Z)

 CALL CHKPAR(0,’IRX ’,&10)

 Z=FLOAT(I)+Y

 RETURN

 10 WRITE(6,100)

 100 FORMAT(’0ERROR IN CALL TO SUBR’)

 STOP

 END

 In the above example, the following message is printed:

 Number of arguments wrong in call to SUBR.

 CHKPAR then produces a traceback and suspends execution.

 The user may resume execution via the $RESTART command.

 554 Miscellaneous FORTRAN Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 DUMP, PDUMP ___________

 Purpose: To print the values of specified memory regions in a

 FORTRAN program.

 Location: *LIBRARY

 Calling Sequence:

 FORTRAN: CALL DUMP(a1,b1,f1,...,an,bn,fn)

 CALL PDUMP(a1,b1,f1,...,an,bn,fn)

 Parameters:

 ai is a variable in the FORTRAN program specifying __

 one end of the "i"th region to be printed.

 bi is a variable in the FORTRAN program specifying __

 the other end of the "i"th region to be printed.

 fi indicates the format in which each data item __

 between ai and bi is to be printed. fi is a __ __ __

 fullword integer and may be one of the following

 values:

 0 - hexadecimal

 1 - LOGICAL*1

 2 - LOGICAL*4

 3 - INTEGER*2

 4 - INTEGER*4

 5 - REAL*4

 6 - REAL*8

 7 - COMPLEX*8

 8 - COMPLEX*16

 9 - literal

 Description: The DUMP and PDUMP subroutines print the values of the

 data items in the memory regions delimited by the ai and __

 bi parameters. As many triples of parameters, ai, bi, and __ __ __

 fi, may be given as desired. There is no order implied by __

 the ai and bi parameters--either may mark the beginning or __ __

 end of a region to be dumped. All output is printed on

 the logical I/O unit SERCOM.

 The relative locations of the variables in a FORTRAN

 program may be obtained from the map produced by the MAP

 option to the FORTRAN compiler.

 The only difference between DUMP and PDUMP is that DUMP

 terminates execution of the calling program by calling the

 system subroutine SYSTEM while PDUMP returns to the

 calling program.

 Miscellaneous FORTRAN Subroutines 555

 MTS 6: FORTRAN in MTS

 October 1983

 Example: FORTRAN: CALL DUMP(A(1),A(100),5,A(1),A(100),0)

 The above example prints the values of the first 100

 elements of the array A in both REAL*4 and hexadecimal

 format.

 556 Miscellaneous FORTRAN Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 GDINF _____

 Purpose: To allow a FORTRAN program to obtain information returned

 from the subroutine GDINFO.

 Location: *LIBRARY

 Calling Sequence:

 FORTRAN: CALL GDINF(unit,region,&rc4)

 Parameters:

 unit is the location of either ____

 (a) a FDUB-pointer (as returned by GETFD),

 (b) an 8-character logical I/O unit name

 left-justified with trailing blanks

 (e.g., SCARDS, SPRINT, 0 through 99,

 etc.), or

 (c) an integer logical I/O unit number

 (0-99).

 region is a 44-byte array (11 fullwords) in which ______

 the information is returned.

 rc4 (optional) is the statement label to trans- ___

 fer to if a nonzero return code occurs.

 Return Codes:

 0 Successful return.

 4 Error. See the GDINFO subroutine description for

 the possible error conditions.

 8 Hardware or software inconsistency.

 Description: This subroutine calls the GDINFO subroutine and places

 the returned information in region which is provided by ______

 the FORTRAN calling program. See the description of the

 GDINFO subroutine in MTS Volume 3, System Subroutine _________________

 Descriptions, for a description of this information. ____________

 Note that only the first eleven words of GDINFO informa-

 tion is returned.

 Example: FORTRAN: INTEGER*4 REG(11)

 ...

 CALL GDINF(’SPUNCH ’,REG,&99)

 ...

 99 WRITE(6,199)

 199 FORMAT(’ SPUNCH IS NOT ASSIGNED’)

 This example calls GDINF to obtain information about the

 file or device attached to SPUNCH.

 Miscellaneous FORTRAN Subroutines 557

 MTS 6: FORTRAN in MTS

 October 1983

 NPAR ____

 Subroutine Description

 Purpose: To count the number of parameters passed to a subroutine.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: i = NPAR(n)

 Parameters:

 n is the number of subroutine or function calls to _

 be counted. That is, a value of 1 will return

 the number of parameters passed to the sub-

 routine in which NPAR is called. A value of 2

 would return the number of parameters passed to

 the subroutine that called the subroutine that

 called NPAR. For most uses, n will be 1. An _

 error message is generated if n exceeds the _

 nesting level of the subroutine calling NPAR.

 Multiple return statement numbers are not coun-

 ted as parameters by NPAR.

 i is number of parameters passed. _

 Notes: Standard OS Type-I(S) calling conventions must be

 used in all subroutine calls. See the section

 "Calling Conventions" in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 If the subroutine calling NPAR has more parameters

 in its parameter list than are provided by its

 caller, then the excess parameters must be en-

 closed in slashes. Otherwise, a program interrupt

 may occur during the entry prolog code to the

 subroutine.

 Example: FORTRAN: CALL SUBR(X)

 STOP

 END

 SUBROUTINE SUBR(/X/,/Y/,/Z/)

 I = NPAR(1)

 IF (I .GE. 4) GO TO 10

 IF (I .EQ. 3) GO TO 300

 IF (I .EQ. 2) GO TO 200

 558 Miscellaneous FORTRAN Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 IF (I .EQ. 1) GO TO 100

 10 WRITE(6,11)

 11 FORMAT(’ERROR’)

 ...

 100 ...

 200 ...

 300 ...

 ...

 RETURN

 END

 In the above example, NPAR counts the number of parameters

 passed to SUBR and sets up a branch accordingly. In this

 case, one parameter was passed.

 Miscellaneous FORTRAN Subroutines 559

 MTS 6: FORTRAN in MTS

 October 1983

 RCALL _____

 Purpose: To call R-type subroutines (such as GETFD) from FORTRAN.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: CALL RCALL(a,m,ir(1),...,ir(m),n,rr(1),...,

 rr(n),&rc4,...)

 Parameters:

 a is the address of the R-type subroutine which is _

 to be called. This should be declared EXTERNAL.

 m is the fullword integer number of general regis- _

 ters starting with GR0 to be set up prior to

 calling the R-type subroutine. m may range _

 between 0 and 13, inclusive.

 ir(1),...,ir(m) are the values to be placed in GR0 _______________

 through GR(m-1), respectively. These parameters _

 must be fullword-aligned and four bytes in

 length.

 n is the fullword integer number of general regis- _

 ters starting with GR0 to be stored after

 calling the R-type subroutine. n may range _

 between 0 and 13, inclusive.

 rr(1),...,rr(n) are the n variables into which the _______________ _

 contents of GR0 through GR(n-1) will be stored _

 after calling the R-type subroutine. These

 parameters must be fullword-aligned and four

 bytes in length.

 rc4,... is the statement label to transfer to upon _______

 receiving a nonzero return code from the sub-

 routine called via RCALL.

 Return Codes:

 The return code from RCALL is identical to the return

 code returned by the R-type subroutine. The contents

 of the general registers have been returned after the

 R-type subroutine call as specified by the

 parameters.

 Description: The general registers starting with 0 are set up as

 specified by the parameter list. The second parameter

 specifies the number of registers to be set up, and the

 parameters following specify the values to be placed into

 the registers. The R-type subroutine is called, and when

 it returns, the general registers starting with 0 are

 560 Miscellaneous FORTRAN Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 stored as specified by the parameter list. The return

 code is as returned by the R-type subroutine.

 Many R-type subroutines require that addresses be placed

 in registers before calling them. These addresses can be

 computed by using the subroutine ADROF. See the ADROF

 subroutine description in this volume.

 If the subroutine also requires an S-type parameter list,

 the address of the parameter list must be placed in GR1.

 This may be done by using the ADROF subroutine, where the

 argument to ADROF is a scalar variable for a single-

 element parameter list or an array for a multiple-element

 parameter list.

 Example: FORTRAN: EXTERNAL GETFD

 INTEGER*4 ADROF,FDUB

 CALL RCALL(GETFD,2,0,ADROF(’name ’),1,FDUB,&9)

 This example calls GETFD with GR0 containing a zero and

 GR1 containing the address of the character string "name".

 GETFD returns the FDUB-pointer in GR0, and this is stored

 in the variable FDUB. A return code of four from GETFD

 will cause control to be transferred to statement 9 of the

 FORTRAN program.

 FORTRAN: EXTERNAL CHKFIL

 INTEGER*4 ADROF,X

 DATA MASK/Z00000001/

 PAR = ADROF(’2AGA:DATAFILE ’)

 CALL RCALL(CHKFIL,2,0,ADROF(PAR),1,X,&100)

 X = LAND(X,MASK)

 IF(X.EQ.1) GO TO 10

 This example illustrates a call to the subroutine CHKFIL,

 which uses both an S-type calling sequence parameter list

 and a R-type return of a value. In this case, the first

 parameter to CHKFIL is the location of the name of a file.

 Miscellaneous FORTRAN Subroutines 561

 MTS 6: FORTRAN in MTS

 October 1983

 REWIND ______

 Subroutine Description

 Purpose: To rewind a logical I/O unit in FORTRAN.

 Location: *LIBRARY

 Calling Sequences:

 FORTRAN: CALL REWIND(unit)

 Parameters:

 unit is the location of a fullword integer corre- ____

 sponding to the logical I/O unit number to be

 rewound. These are 0 through 99.

 Description: If the logical I/O unit number specified by unit is ____

 attached to a magnetic tape, it is rewound. If it is

 attached to a line file, it is reset so that the next

 sequential reference to it will read or write the line

 specified by the beginning line number given when the file

 was attached. If it is attached to a sequential file or a

 floppy disk, it is reset so that the next reference to it

 will read or write from the beginning of the file. In all

 other cases, an error comment is produced on the logical

 I/O unit SERCOM, and the subroutine ERROR is called.

 The REWIND subroutine generates a call to the REWIND#

 subroutine.

 Example: FORTRAN: CALL REWIND(1)

 The file or device attached to logical I/O unit 1 is

 rewound.

 562 Miscellaneous FORTRAN Subroutines

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 SIOERR ______

 Purpose: To allow FORTRAN users to regain control when I/O trans-

 mission errors that would otherwise be fatal (such as tape

 I/O errors or exceeding the size of a file) occur during

 execution.

 This subroutine is obsolete. The @ERRRTN I/O modifier,

 the FORTRAN ERR exit feature, or the error recovery

 features of the FTNCMD subroutine should be used instead.

 Location: *LIBRARY

 Calling Sequence:

 FORTRAN: EXTERNAL subr

 CALL SIOERR(subr)

 Parameters:

 subr is the subroutine to transfer to when an I/O ____

 error occurs, or zero, in which case the error

 exit is disabled.

 Description: A call on the subroutine SIOERR sets up an I/O transmis-

 sion error exit for one error only. When an error occurs

 and the exit is taken, the intercept is cleared so that

 another call to SIOERR is necessary to intercept the next

 I/O transmission error.

| If the logical I/O unit specified by unit is part of an ____

| explicit concatenation, only the currently active member

| is rewound.

 If the subroutine subr returns, a return is made to the ____

 user’s program from the I/O routine with the return code

 indicating the type of error that occurred. The return

 code depends upon the type of device in use when the error

 occurred. See the section "I/O Subroutine Return Codes"

 in MTS Volume 1, The Michigan Terminal System. ____________________________

 Note: SETIOERR is for assembly language (see the de-

 scription of the subroutine SETIOERR in MTS Volume

 3) and SIOERR is for FORTRAN users. There is a

 difference in the level of indirection between the

 two subroutines; therefore, SIOERR should not be

 used by assembly language users.

 Many I/O error conditions are detected by the

 FORTRAN I/O library before they actually occur,

 Miscellaneous FORTRAN Subroutines 563

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 thus allowing the FORTRAN monitor to take correc-

 tive action. In these cases, an error exit

 enabled by a call to SIOERR will not be taken

 since the FORTRAN monitor will take control before

 the erroneous operation is attempted. For further

 details, see the section "FORTRAN I/O Library" in

 this volume.

 Example: FORTRAN: EXTERNAL SWITCH

 COMMON ISW

 .

 .

 ISW=0

 CALL SIOERR(SWITCH)

 WRITE (8,105) FILEOUT

 IF(ISW.EQ.1) GO TO 10

 CALL SIOERR(0)

 .

 .

 SUBROUTINE SWITCH

 COMMON ISW

 ISW=1

 RETURN

 END

 In this example, SIOERR is called to enable an exit if an

 I/O error occurs during the processing of the WRITE

 statement. If an error does occur, the subroutine SWITCH

 will be called which sets the variable ISW to 1 and

 returns. The calling program tests the value of ISW and

 branches to statement 10 if appropriate. SIOERR is called

 again to disable the exit.

 564 Miscellaneous FORTRAN Subroutines

 MTS 6: FORTRAN in MTS

 October 1983

 *PROFORT: THE FORTRAN EXECUTION PROFILER ___

 The Profiler is a tool for analyzing the performance of FORTRAN

 programs. The Profiler first runs a FORTRAN program, and then produces

 a profile of the program comprised of a source-code listing and a flow

 graph showing how many times each source statement was executed during

 the run and how many times each path of the program was traversed.

 Every FORTRAN program can be represented as a flow graph whose nodes

 are the program’s executable statements and whose edges are the paths

 between statements.

 A simple FORTRAN program is presented below. The numbers in the

 first column at the left are the MTS line numbers of the source file.

 The numbers in the second column are the familiar ISNs (Internal

 Statement Numbers), like those provided on source listings by the

 FORTRAN G Compiler.

 Figure 1 shows the flow graph of this program with ISNs representing

 the actual statements. Note that logical IFs are shown as two

 statements, the first being the evaluation of the logical expression,

 the second being the statement to execute if the logical expression is

 true. This separation makes sense because each half of a logical IF has

 its own predecessor and successor paths and its own execution history.

 The convention adopted is to assign the ISNs N and N’ to the two halves

 of a logical IF.

 Figure 2 shows the source listing of the program integrated with the

 flow graph of Figure 1. This is the way the Profiler displays program

 flow graphs. An asterisk before an ISN indicates that this path is the

 result of normal sequencing from one statement to the next. A pound

 sign indicates that this is a DO-loop return path (from the last to the

 first executable statement in a DO range).

 Figure 3 shows an execution profile of the same program. This is the

 source listing with flow graph of Figure 2 supplemented by execution

 frequencies. The column labeled COUNT shows the number of times each

 statement was executed during the run. The column labeled PRED:COUNT

 shows the number of times each predecessor path was traversed and the

 column labeled SUCC:COUNT shows the same for successor paths.

 In this particular execution SUBROUTINE OCCUR was called twice. On

 the first call LEN was 10 and 2 occurrences of VALUE were found. On the

 second call LEN was 20 and 3 occurrences of VALUE were found. The

 profile corroborates these facts.

 *PROFORT: The FORTRAN Execution Profiler 565

 MTS 6: FORTRAN in MTS

 October 1983

 801 C This routine searches an integer ’array’ of

 802 C length ’len’ for occurrences of ’value’ and

 803 C returns the no. of such occurrences in ’num’.

 804 C

 805 1 SUBROUTINE OCCUR (ARRAY,LEN,VALUE,NUM)

 806 2 INTEGER ARRAY(LEN),VALUE

 807 3 NUM=0

 808 4 IF (LEN.LE.0) RETURN

 809 5 DO 100 I=1,LEN

 810 6 IF (VALUE.EQ.ARRAY(I)) NUM=NUM+1

 811 7 100 CONTINUE

 812 8 RETURN

 813 9 END

 ┌───────┐ ┌───┐
 | ENTRY |──→| 3 |
 └───────┘ └───┘
 |

 ↓
 ┌───┐ ┌───┐ ┌──────┐
 | 4 |──→| 4’|──→| EXIT |
 └───┘ └───┘ └──────┘
 |

 ↓
 ┌───┐
 | 5 |

 └───┘
 |

 ↓
 ┌───┐ ┌───┐
 ┌─→| 6 |──→| 6’|
 | └───┘ └───┘
 | | |

 | ↓ |
 | ┌───┐ |
 └──| 7 |←────┘
 └───┘
 |

 ↓
 ┌───┐ ┌──────┐
 | 8 |──→| EXIT |
 └───┘ └──────┘

 Figure 1: Flow Graph

 566 *PROFORT: The FORTRAN Execution Profiler

 MTS 6: FORTRAN in MTS

 October 1983

 Figure 2: Profiler Flow Graph

 Figure 3: Execution Profile

 *PROFORT: The FORTRAN Execution Profiler 567

 MTS 6: FORTRAN in MTS

 October 1983

 The Value of a Profiler _______________________

 One strategy for testing programs is to feed the program a sufficient

 variety of test data (not necessarily in the same test run) to cause

 every possible path to be traversed at least once. This does not

 guarantee an error-free program, but at least it leaves no code entirely

 untested. A profiler is a useful tool for applying this strategy. One

 looks for zero counts and creates additional test data to eliminate

 them.

 A profiler is also useful for exposing errors, by virtue of its power

 to reveal erroneous loop counts, excursions into inappropriate portions

 of code, and other unexpected behavior.

 The information provided by a profiler forms a good basis for

 analyzing algorithms and their implementations in code. The most

 frequently executed portions of a program are often those where the most

 time is spent. Consequently, high execution frequencies are a good

 indicator of program bottlenecks.

 Donald Knuth, together with some colleagues and students, studied the

 behavior of FORTRAN programs, using several different methods of

 analysis. He concludes ("An Empirical Study of FORTRAN Programs",

 Software--Practice and Experience): "The program profiles (i.e., ____________________________________

 collections of frequency counts) which we used in our analyses turned

 out to be so helpful that we believe profiles should be made available

 routinely to all programmers by all of the principal software systems."

 Also, "...our group came to the almost unanimous conclusion that all

 software systems should provide frequency counts to all programmers,

 unless specifically told not to do so."

 Richard Sites goes so far as to say ("Programming Tools: Statement

 Counts and Procedure Timings", ACM Sigplan Notices): "Statement count- ___________________

 ing is the single most useful tool that a programming system can provide

 to the user."

 The Value of a Flow Graph _________________________

 A flow graph does not contain as much information as a profile, but

 it can be generated at a fraction of the cost and does not require a

 running program. It is useful for analyzing program flow, especially

 during the early stages of coding, before profiling can be attempted.

 For example, consider any executable FORTRAN statement with a statement

 number (e.g., 45 CONTINUE). Which statements in the source module may

 pass control to this statement? There may be any number of such

 predecessor statements and they may be sprinkled throughout the source

 module. To find them in an ordinary source-code listing requires an

 inspection of the entire source module, and even then some may be

 missed. A flow graph gives this information at a glance.

 A flow graph is also useful for preparing test data for a profile.

 Showing, as it does, all the possible paths of a module, a flow graph

 568 *PROFORT: The FORTRAN Execution Profiler

 MTS 6: FORTRAN in MTS

 October 1983

 can suggest test data values and ranges for causing particular paths to

 be traversed.

 Running the Profiler ____________________

 The Profiler takes as input a set of FORTRAN source modules. (What

 IBM FORTRAN documentation calls "program units" are called "modules" in

 this description; these may be main programs, block-data programs,

 subroutines, or functions.) The Profiler parses these modules to

 extract information relevant to program flow and generates a flow graph.

 The Profiler then creates a modified version of the source code, known

 as the target code which is then compiled and executed. The modifica-

 tions in the target code enable the user program to gather statistics on

 its own execution. From the data collected and from the flow graph, the

 Profiler generates a profile.

 The dialect of FORTRAN accepted by the Profiler is FORTRAN IV,

 described in the IBM publication, IBM System/360 and System/370 FORTRAN _____________________________________

 IV Language, form GC28-6515. This is also the language accepted by the ___________

 FORTRAN G and H compilers available in MTS.

 The Profiler is invoked by the MTS command:

 $RUN *PROFORT

 The user controls the Profiler by issuing commands in the Profiler

 Command Language, described below. One way to issue commands is to

 build a file of commands and specify that file in the PAR field of the

 $RUN command.

 $RUN *PROFORT PAR=filename

 If the PAR field is omitted, the Profiler reads its commands from

 SOURCE (i.e., defaulting to the user’s terminal or the batch input

 stream). If the PAR field is included, the Profiler executes the

 commands in the file specified and then reads any further commands from

 SOURCE.

 The Profiler is composed of three processors, the Command Processor, _______ _________

 the Pre-Execution Processor, and the Execution Processor. _____________ _________ _________ _________

 The Command Processor interprets the user’s commands and causes the

 various processors and subprocessors described below to do their jobs in

 a selective manner in accordance with the user’s wishes. It also issues

 error messages for invalid commands.

 Any source module that is to be profiled must at some time pass

 through the Pre-Execution Processor. The job of this processor is to

 transform a source module into an object module capable of collecting

 path frequencies during its own execution.

 *PROFORT: The FORTRAN Execution Profiler 569

 MTS 6: FORTRAN in MTS

 October 1983

 The Pre-Execution Processor processes each source module in the

 user’s source stream. It completely processes each module according to

 the user’s commands before processing the next module.

 The Pre-Execution Processor is composed of five subprocessors:

 The Parser reads a source module from the user’s source stream and ______

 gathers what flow information it can by examining the source code

 sequentially one statement at a time. It issues error messages for

 invalid FORTRAN statements.

 The Flow Analyzer gathers flow information which requires knowledge ____ ________

 of the entire module. It issues warning and error messages

 regarding program flow in the module.

 The Flow Graph Generator writes a flow graph (see Figure 2). ____ _____ _________

 The Code Generator generates a new FORTRAN source module, called a ____ _________

 target module, which when compiled and executed will perform

 exactly as the original source module would if it were compiled and

 executed, except that the target module will also gather informa-

 tion showing how many times certain critical paths in the module

 have been traversed. The Code Generator also writes for each

 target module a set of tables which are required by the Execution

 Processor.

 The Compiler calls the FORTRAN G Compiler to compile the target ________

 module produced by the Code Generator.

 The job of the Execution Processor is to execute the user’s program

 and to generate profiles from the path frequencies collected.

 For each module to be profiled the user must specify the location of

 an object module produced from a target module and the location of its

 associated tables. Not every module in a user program need be profiled.

 For modules that are not to be profiled, the user need only specify the

 location of object code.

 The Execution Processor is composed of three subprocessors:

 The Execution Monitor loads and runs the user program. When the _________ _______

 user program terminates execution, the user program is unloaded and

 control passes back to the Execution Monitor.

 To minimize execution time, the user program collects frequencies

 for only certain critical paths of the program. The Frequency _________

 Analyzer, using flow information from the tables and the path ________

 frequencies collected by the user program, calculates the frequen-

 cies for all other program paths, as well as statement frequencies.

 The Profile Generator writes a profile (see Figure 3). _______ _________

 570 *PROFORT: The FORTRAN Execution Profiler

 MTS 6: FORTRAN in MTS

 October 1983

 The Command Language ____________________

 At the beginning of a Profiler run, the Profiler is in command mode,

 which can be recognized by the prefix character "¬". Each command must

 appear on a separate line. In the following description of the command

 language the shortest permissible abbreviations are underlined.

 Pre-Execution Processor Commands ________________________________

 PREPARE ____

 The PREPARE command alerts the Profiler that the Pre-Execution

 Processor is to be invoked. It should be followed by commands that

 specify what the Pre-Execution Processor is to do. These should be

 followed by the GO command, which causes the Pre-Execution Proces-

 sor to perform the jobs requested.

 From the time that the PREPARE command is issued until the

 Pre-Execution Processor is finished, the Profiler is in PREP mode,

 which can be recognized by the prefix characters "PREP¬". The

 following commands may be issued in PREP mode.

 {FLOWGRAPH|NOFLOWGRAPH}={ALL|list} _ ___

 The FLOWGRAPH command causes a flow graph to be written for each

 module specified. The term "ALL" means all modules in the source

 stream. The term "list" means a list of module names separated by

 commas. The NOFLOWGRAPH command suppresses the writing of flow

 graphs for each module specified. The default setting is

 NOFLOWGRAPH=ALL.

 Note: The effect of issuing more than one command of this type is

 cumulative. For example, if a flow graph is wanted of all but

 modules A and B from a source stream containing 40 modules, F=

 followed by a list of 38 modules could be specified, or more

 easily, F=ALL followed by NOF=A,B could be specified.

 {CODEGEN|NOCODEGEN}={ALL|list} ___ _____

 The CODEGEN command causes the Code Generator to produce a target

 module and its associated tables for each module specified. The

 NOCODEGEN command suppresses the production of target modules and

 tables for each module specified. The default setting is

 CODEGEN=ALL.

 Note: The effect of issuing more than one command of this type is

 cumulative.

 {COMPILE|NOCOMPILE}={ALL|list} ____ ______

 The COMPILE command causes each module specified to be compiled by

 the FORTRAN G Compiler. If code has been generated for a module,

 it is the target module that is compiled. If not, it is the user’s

 *PROFORT: The FORTRAN Execution Profiler 571

 MTS 6: FORTRAN in MTS

 October 1983

 original source module that is compiled. The NOCOMPILE command

 suppresses compilation of each module specified. The default

 setting is COMPILE=ALL.

 Note: The effect of issuing more than one command of this type is

 cumulative.

 SOURCE=FDname _

 The SOURCE command assigns a file or device for the user’s FORTRAN

 source code. This is a required command, that is, the Pre-

 Execution Processor will not run if SOURCE is not assigned. The

 term "FDname" means "file or device name" and refers to any valid

 MTS file name, device name, or pseudo-device name. However, the

 user is warned that the Profiler does not check for invalid

 assignments such as assigning nonexistent files or assigning inputs

 to strictly output pseudo-devices (e.g., SOURCE=*PRINT*).

 Note: Source code must be in IBM format, however, columns 73

 through 80 will be ignored by the Profiler. Source code in other

 formats (i.e., LINE, LONG, EDIT) may be converted to IBM format

 with the program *FTN. For a description of FORTRAN source

 formats, see the section "*FTN Interface" in this volume.

 Note: BLOCK DATA modules may appear in the source stream, but as

 they are not executable, no flow graphs, target code, tables, or

 profiles will be generated for BLOCK DATA modules, even if

 requested. The only reason to include BLOCK DATA modules in the

 source stream is to compile them along with the rest of the source

 code.

 FLOWOUT=FDname _____

 The FLOWOUT command assigns a file or device for the flow graph

 output. If flow graphs have been requested and FLOWOUT is not

 specified, the default file is -FLOWGRAF. If -FLOWGRAF does not

 exist, it will be created. If it already exists, it will be

 emptied before output is written.

 BOXES={ON|OFF} _

 When BOXES=ON, flow graphs are written with each executable

 statement and its flow information set off by boxes in order to

 make reading easier (see Figure 2). When BOXES=OFF, flow graphs

 are written without the boxes. The default setting is BOXES=ON.

 INDICATORS={ON|OFF} _

 The ISNs (Internal Statement Numbers) in the PRED and SUCC columns

 of flow graphs (see Figure 2) are sometimes preceded by special

 symbols called indicators. An asterisk indicates that the path in

 question is the result of normal sequencing from one statement to

 the next. A pound sign indicates that the path in question is a

 572 *PROFORT: The FORTRAN Execution Profiler

 MTS 6: FORTRAN in MTS

 October 1983

 DO-loop return path. When INDICATORS=ON, these indicators appear

 in flow graphs. When INDICATORS=OFF, they are omitted. The

 default setting is INDICATORS=ON.

 TARGET=FDname ___

 The TARGET command requests that any target modules generated be

 written on the file or device specified.

 Generally, once a target module is compiled it is not interesting

 to look at or to save. Therefore, whenever a source module is

 selected for both code generation and compilation, the target

 module is generated in virtual memory and passed directly to the

 Compiler. Unless TARGET is specified, it is not saved.

 However, if code generation is requested and compilation is not

 (e.g., CODEGEN=ALPHA, NOCOMPILE=ALPHA), the target module is saved

 on the assumption that it will be wanted for later compilation. In

 this case, the default file is -TARGET. If -TARGET does not exist,

 it will be created. If it already exists, it will be emptied

 before output is written.

 TABLES=FDname _

 The TABLES command assigns a file or device for the tables built by

 the Code Generator. If TABLES is not assigned, the default file is

 -TABLES. If -TABLES does not exist, it will be created. If it

 already exists, it will be emptied before output is written.

 OBJECT=FDname _

 The OBJECT command assigns a file or device for the object code

 generated by the Compiler. If OBJECT is not assigned, the default

 file is -OBJECT. If -OBJECT does not exist, it will be created.

 If it already exists, it will be emptied before output is written.

 GO __

 If the Profiler is in PREP mode, the GO command invokes the

 Pre-Execution Processor. When the Pre-Execution Processor is

 finished, the Profiler reenters command mode and all I/O assign-

 ments and options are reset to their default values, if any.

 Execution Processor Commands ____________________________

 EXECUTE ____

 The EXECUTE command alerts the Profiler that the Execution Proces-

 sor is to be invoked. It should be followed by commands that

 specify what the Execution Processor is to do. These should be

 followed by the GO command, which causes the Execution Processor to

 perform the jobs requested.

 *PROFORT: The FORTRAN Execution Profiler 573

 MTS 6: FORTRAN in MTS

 October 1983

 From the time that the EXECUTE command is issued until the

 Execution Processor is finished, the Profiler is in EXEC mode,

 which can be recognized by the prefix characters "EXEC¬". The

 following commands may be issued in EXEC mode.

 OBJECT=FDname _

 The OBJECT command specifies the location of the object program to

 be run by the Execution Processor. The default is the most recent

 previous setting, whether set in PREP or EXEC mode, explicitly or

 by default.

 TABLES=FDname _

 The TABLES command specifies the location of the tables associated

 with the object program to be run. The default is the most recent

 previous setting, whether set in PREP or EXEC mode, explicitly or

 by default.

 PROFILE=FDname _

 The PROFILE command assigns a file or device for the profiles

 written by the Profiler. If PROFILE is not assigned, the default

 file is -PROFILE. If -PROFILE does not exist, it will be created.

 If it already exists, it will be emptied before output is written.

 BOXES={ON|OFF} _

 When BOXES=ON, profiles are written with each executable statement

 and its flow and frequency information set off by boxes in order to

 make reading easier (see Figure 3). When BOXES=OFF, profiles are

 written without the boxes. The default setting is BOXES=ON.

 INDICATORS={ON|OFF} _

 The ISNs (Internal Statement Numbers) in the PRED and SUCC columns

 of profiles (see Figure 3) are sometimes preceded by special

 symbols called indicators. An asterisk indicates that the path in

 question is the result of normal sequencing from one statement to

 the next. A pound sign indicates that the path in question is a

 DO-loop return path. When INDICATORS=ON, these indicators appear

 in profiles. When INDICATORS=OFF, they are omitted. The default

 setting is INDICATORS=ON.

 lio=FDname

 "lio" refers to any of the MTS logical I/O units (i.e., SCARDS,

 SPRINT, SPUNCH, GUSER, SERCOM, or 0 through 19). This command

 allows the user to specify I/O assignments for the execution of the

 user program, in the same manner as on a $RUN command.

 The usual MTS defaults apply, that is:

 574 *PROFORT: The FORTRAN Execution Profiler

 MTS 6: FORTRAN in MTS

 October 1983

 SCARDS=*SOURCE*

 SPRINT=*SINK*

 SPUNCH=*PUNCH*, if in batch mode and if the CARDS global

 parameter has been specified on the $SIGNON command.

 GUSER=*MSOURCE*

 SERCOM=*MSINK*

 Also, the usual FORTRAN I/O Library defaults apply, that is:

 5=*SOURCE*

 6=*SINK*

 PAR=parstring ___

 The PAR command allows the user to specify a PAR field for the user

 program, in the same manner as on a $RUN command. There is no

 default setting.

 The recommended method of accessing this PAR field from the user

 program is to call the PAR subroutine. Calling GUINFO for the PAR

 field does not work; it will access the PAR field from the $RUN

 *PROFORT command. For descriptions of PAR and GUINFO, see MTS

 Volume 3, System Subroutine Descriptions. ______________________________

 Another way to access the user PAR field requires that the main

 routine of the user program be a subroutine with a single argument

 designed to hold a character string. The PAR field will be found

 in that string with the length of the PAR field as an integer in

 the first two bytes and the PAR string itself beginning in the

 third byte. In the following example, if a PAR field is present,

 it is written on SERCOM.

 SUBROUTINE MAIN (PARFLD)

 LOGICAL*1 PARFLD(257),PBYTE(2)

 INTEGER*2 PARLEN/0/

 EQUIVALENCE (PARLEN,PBYTE(1))

 PBYTE(2)=PARFLD(2)

 IF (PARLEN.NE.0) CALL SERCOM (PARFLD(3),PARLEN,0)

 GO __

 If the Profiler is in EXEC mode, the GO command invokes the

 Execution Processor. When the Execution Processor is finished, the

 Profiler reenters command mode and all I/O assignments and options

 are reset to their default values, if any.

 Commands That Can Be Issued in Any Mode _______________________________________

 COMMANDS=FDname _

 The COMMANDS command assigns an alternate input path for commands

 to the Profiler. If COMMANDS is assigned, the Profiler reads its

 commands from the file/device specified until an end of file is

 *PROFORT: The FORTRAN Execution Profiler 575

 MTS 6: FORTRAN in MTS

 October 1983

 sensed, or until a command error is detected, at which time the

 setting of COMMANDS reverts to *SOURCE*. If COMMANDS is not

 assigned, the Profiler reads its commands from *SOURCE*.

 MESSAGES=FDname _

 The MESSAGES command assigns an additional output path for the

 messages printed by the Profiler. Messages are always printed on

 SINK. If MESSAGES is assigned, then Profiler messages are also

 written on the file/device specified.

 $mts-command _

 Any command beginning with a dollar sign will be passed on to MTS

 for immediate execution, followed by return to the command stream.

 MTS ___

 The MTS command returns control to MTS command mode. The user may

 issue MTS commands and return to the Profiler by issuing the MTS

 command $RESTART.

 CLEAR __

 If the Profiler is in PREP or EXEC mode, the CLEAR command returns

 the Profiler to command mode and resets all I/O assignments and

 options to their default values, if any. This command may be used

 to restart the Profiler from the beginning. If the Profiler is

 already in command mode, the command is ignored.

 STOP __

 The STOP command unloads the Profiler and returns control to MTS

 command mode. It should be used to terminate the Profiler.

 Error Messages ______________

 The Profiler reports four classes of errors.

 Command errors

 If the user enters an erroneous command, it is reported and the

 setting of COMMANDS reverts to *SOURCE*. The user may then enter a

 new command.

 Source errors

 These are errors detected by the Parser in the user’s FORTRAN

 source code. The Parser does not check for all possible source

 errors. It leaves this job to the Compiler. Since the Profiler is

 only concerned with the flow information inherent in a source

 module, it parses only enough of each statement to extract such

 576 *PROFORT: The FORTRAN Execution Profiler

 MTS 6: FORTRAN in MTS

 October 1983

 information. For example, it parses assignment statements only to

 the point where it can identify them as assignment statements. Any

 errors to the right of the equals sign remain undetected until

 compilation.

 The Profiler should not be used to flush out syntax errors. In

 fact, it is best to use the Profiler with programs that not only

 compile, but run to completion.

 When the Parser finds a source error, it stops parsing the faulty

 statement, but continues parsing the rest of the source module in

 order to report any other errors it might encounter. After that,

 nothing further is done with that module, no matter what the user

 has requested. There is no point going any further with a module

 that will not make it past the Compiler. The Profiler will,

 however, continue to process the remaining modules in the source

 stream.

 Flow errors

 These are errors detected by the Flow Analyzer. Since the Profiler

 must construct the complete flow graph of a source module, it has

 very good knowledge of flow errors, and the messages in this

 category tend to be better than those reported by the Compiler.

 When a flow error is found, the Flow Analyzer continues its

 analysis of the module in order to report all flow errors it can

 find. After that, the only user request concerning that module

 that will be honored is a request for a flow graph. The Profiler

 will, however, continue to process the remaining modules in the

 source stream.

 A number of flow warnings are also issued for situations that are

 legal, but suspicious. For example, a warning is issued if a

 statement number is defined, but there are no references to it.

 Flow warnings do not inhibit further processing of the module.

 Compiler errors

 When the Profiler reports that there are Compiler errors, the user

 can $COPY -COMPERR to see what they are.

 If any source, flow, or compiler errors are reported for any of the

 modules in the source stream and this is followed by an EXECUTE command,

 then the user is warned and prompted for an ’OK’ to continue with

 execution.

 *PROFORT: The FORTRAN Execution Profiler 577

 MTS 6: FORTRAN in MTS

 October 1983

 References __________

 B.W. Kernighan and P.J. Plauger, in Software Tools, 316-318, Addison- ______________

 Wesley, 1976.

 D.E. Knuth, "An Empirical Study of FORTRAN Programs," Software -- ____________

 Practice and Experience, 1:105-133, 1971. _______________________

 G. Lyon and R.B. Stillman, "Simple Transforms for Instrumenting FORTRAN

 Decks," Software -- Practice and Experience, 5:347-358, 1975. ___________________________________

 G.J. Myers, The Art of Software Testing, John Wiley & Sons, 1979. ___________________________

 R.L. Sites, "Programming Tools: Statement Counts and Procedure Tim-

 ings," ACM Sigplan Notices, 13:12:98-101, Dec., 1978. ___________________

 G. Waldbaum, "Tuning Computer Users’ Programs," IBM Computer Science ____________________

 Research Report, Dec., 1978. _______________

 Example Runs ____________

 In the example below, the Pre-Execution Processor processes all the

 source modules in the file PROGRAM.S, writing the tables for each module

 on the file -TABLES and object code on the file -OBJECT. No flow graphs

 are written. The target modules are passed to the Compiler in virtual

 memory and are not written.

 PREPARE

 SOURCE=PROGRAM.S

 GO

 The example below is the same as the previous example, except that

 tables are written on file A, object code is written on file B, and a

 flow graph for each module is written on file -FLOWGRAF.

 PREP

 S=PROGRAM.S

 T=A

 O=B

 F=ALL

 GO

 The example below is also like the first example, except that the

 Execution Processor is also invoked. The object code in -OBJECT is run,

 using the tables in -TABLES, and a profile for each module is written on

 file PROFILE without indicators or boxes.

 PREP

 S=PROGRAM.S

 GO

 EXECUTE

 P=PROFILE

 INDIC = OFF

 BOXES = OFF

 GO

 578 *PROFORT: The FORTRAN Execution Profiler

 MTS 6: FORTRAN in MTS

 October 1983

 Suppose a user wants to run a large program, taking profiles on the

 printer of just two of its subroutines. Object code for the entire

 program is in file PROG.O. Source code for the two modules to be

 profiled is in file PROG.S(101,149) and PROG.S(279,315). The program

 requires that I/O unit 1 be assigned for input.

 PREP

 SOURCE=PROG.S(101,149)+(279,315)

 OBJECT=OBJ

 TABLES=TABLES

 GO

 EXEC

 OBJECT=OBJ+PROG.O

 PROFILE=*PRINT*

 1=INFILE

 GO

 Note the command OBJECT=OBJ+PROG.O. Both OBJ and PROG.O contain

 object modules for the two subroutines to be profiled. The ones in OBJ,

 derived from the target modules, are the ones the user wants loaded.

 So, OBJ appears first in this command, because if the loader encounters

 more than one module with the same name, it loads only the first such

 module. However, the user should be certain, when setting up commands

 like this, that the entry point is correctly determined. (For the rules

 on entry point determination, see "The Dynamic Loader, Appendix A" in

 MTS Volume 5, System Services.) _______________

 Suppose the user wants to generate more profiles for the program of

 the previous example using two additional sets of input data. The

 following command sequence may be used.

 EXEC

 OBJ=OBJ+PROG.O

 TAB=TABLES

 P=*PRINT*

 1=INFILE2

 GO

 EXEC

 P=*PRINT*

 1=INFILE3

 GO

 Note that it is not necessary to assign OBJECT or TABLES for the

 second execution, as they default to the previous usage.

 A user has a source program in the file PROG.S and wants to compile

 and run the whole program, but wants to profile only subroutine SORT as

 it works in the context of the whole program. The following command

 sequence may be used.

 *PROFORT: The FORTRAN Execution Profiler. 579

 MTS 6: FORTRAN in MTS

 October 1983

 PREP

 S=PROG.S

 NOCODEGEN=ALL

 CODEGEN=SORT

 O=PROG.O

 T=PROG.TAB

 GO

 EXEC

 P=*PRINT*

 GO

 Note that for subroutine SORT, the target module is compiled, while

 for the rest of the source stream, the original source modules are

 compiled.

 580 *PROFORT: The FORTRAN Execution Profiler.

 MTS 6: FORTRAN in MTS

 October 1983

 MISCELLANEOUS FORTRAN PROGRAMS ______________________________

 The following public file descriptions are taken from MTS Volume 2,

 Public File Descriptions. These are programs which may be of use to ________________________

 FORTRAN users.

 Miscellaneous FORTRAN Programs 581

 MTS 6: FORTRAN in MTS

 October 1983

 582 Miscellaneous FORTRAN Programs

 MTS 6: FORTRAN in MTS

 October 1983

 *DAVE _____

 Contents: The data-flow analyzer for FORTRAN programs.

 Use: The analyzer is invoked by the $RUN command.

 Program Key: *EXEC

 Logical I/O Units Referenced:

 SCARDS - the FORTRAN program to be analyzed.

 SPRINT - output from the analyzer.

 SERCOM - error messages and program comments.

 GUSER - responses to prompting messages.

 Description: *DAVE is a software tool for gathering information about

 global data flow in FORTRAN programs, and for identifying

 the anomalous use of data in these programs. *DAVE is a

 static analysis tool, meaning that *DAVE gathers informa-

 tion about the subject program without executing it.

 *DAVE does not require modification of the subject

 program, nor does it require intervention by the user

 during execution. Only an initial setting of parameters

 that control the output is required.

 For the complete details of using the *DAVE analyzer

 program and the *DAVE.GENLIB subroutine library, see

 Computing Center Memos 394 and 402.

 *DAVE 583

 MTS 6: FORTRAN in MTS

 October 1983

 584 *DAVE

 MTS 6: FORTRAN in MTS

 October 1983

 *FTNTIDY ________

 Contents: The FORTRAN "tidying" program.

 Purpose: To tidy FORTRAN source programs into an easily readable

 format and/or to produce cross-reference listings.

 Use: The program is invoked by the $RUN command.

 Program Key: *FTNTIDY

 Logical I/O Units Referenced:

 SCARDS - one or more FORTRAN source programs to be tidied

 and/or cross-referenced.

 SPRINT - the listing of the program(s) and the

 cross-references.

 SPUNCH - the tidied FORTRAN source program(s).

 SERCOM - severe error comments.

 Parameters: The following parameters may be specified in the PAR

 field of the $RUN command. The parameters must be

 separated by commas or blanks. In case of conflicting

 parameters, the rightmost parameter takes precedence.

 Some of the parameters, as indicated below, may be

 negated by prefixing them with "NO", "N", "-", or "¬".

 Alternatively, these same parameters may be written as

 parm=ON or parm=OFF, where "parm" is the parameter name.

 Thus, SOURCE is the same as SOURCE=ON, and NOSOURCE the

 same as SOURCE=OFF. The minimum acceptable abbreviation

 for each parameter is underlined. No embedded blanks are

 allowed within a parameter.

 [NO]SOURCE SOURCE produces the listing of the origi- _

 nal FORTRAN source program on SPRINT. The

 default is SOURCE if no tidying is to be

 done; otherwise, it is NOSOURCE.

 ISN/MTSLNR Normally, the cross-reference listings _ _

 produced by FTNTIDY refer to internal

 statement numbers (ISNs). If MTSLNR is

 specified, the listings will use MTS line

 numbers. If tidying is being done, the

 MTS line numbers will refer to the file or

 device assigned to SPUNCH; otherwise the

 line numbers will refer to the file or

 device assigned to SCARDS. Note that if

 implicit or explicit concatenation is

 used, MTS line numbers may not be unique.

 *FTNTIDY 585

 MTS 6: FORTRAN in MTS

 October 1983

 [NO]XREF XREF causes all cross-reference dic- _

 tionaries to be printed on SPRINT. NOXREF

 suppresses the cross-references. The de-

 fault is normally XREF. If tidying is to

 be done and SPRINT defaults to a terminal,

 NOXREF is assumed.

 [NO]LBLXREF LBLXREF suppresses printing of all cross- __

 reference dictionaries except the state-

 ment label dictionary. The default is

 NOLBLXREF.

 FORMAT={IBM|EDITED|LINE|LONG} _ _ _ _ __

 FORMAT specifies which of the three source

 statement formats should be expected. The

 available formats are IBM, EDITED, LINE,

 and LONG. These may be abbreviated to I,

 E, L, and LO, respectively. The default

 is EDITED. For the description of these

 formats, see Source Statement Formats in

 the section "*FTN Interface" in this

 volume.

 [NO]BCD BCD specifies that the source is in Binary _

 Coded Decimal (026 Keypunch). The default

 is NOBCD (i.e., EBCDIC).

 LINECNT=n LINECNT specifies the number of lines per ___

 page to be printed. The range is 2 to

 32767; the default is 60.

 ERRMAX=n ERRMAX specifies the maximum number of _

 errors FTNTIDY may tolerate while it is

 processing a subprogram. If there are

 more than "n" errors, FTNTIDY will termi-

 nate the processing. The default is 25.

 [NO]DECK DECK causes tidied FORTRAN source state- _

 ments to be produced and written on

 SPUNCH. The default is DECK if SPUNCH is

 assigned on the $RUN command; otherwise it

 is NODECK.

 The parameters that follow control FTN

 TIDY’s tidying if DECK has been specified

 explicitly or by default. If tidying is

 not being done, these parameters are

 ignored.

 [NO]LIST LIST causes a listing of the tidied source _

 program to be produced on SPRINT. The

 default is normally LIST. If SPRINT

 defaults to a terminal, NOLIST is assumed.

 586 *FTNTIDY

 MTS 6: FORTRAN in MTS

 October 1983

 [NO]RELABEL RELABEL causes all statement numbers to be _

 renumbered so that they increase in

 ascending order. NORELABEL retains the

 original statement numbers. The default

 is RELABEL.

 START=n The number "n" will be used as the first __

 statement number in the relabeling pro-

 cess. The START default is 10. START has

 no effect if NORELABEL has been specified.

 INCR=n The number "n" is used as increment be- ___

 tween two successive statement numbers if

 RELABEL is in effect. The default is

 INCR=10. INCR has no effect if NORELABEL

 has been specified.

 [NO]FMTMOVE FMTMOVE causes FTNTIDY to collect all __

 FORMAT statements and place them at the

 end of the program. The default is

 NOFMTMOVE.

 [NO]SPACE SPACE causes FTNTIDY to remove all irrele- __

 vant blanks and insert single blanks in

 the tidied FORTRAN source to improve read

 ability. The default is SPACE. This

 parameter may also be specified as

 SPACE={ON|OFF}.

 The NOSPACE parameter overrides the spac-

 ing option for single statement or a list

 of statements; it is specified as

 NOSPACE=stmt

 NOSPACE=(stmt1,stmt2,...)

 where "stmt" is a FORTRAN statement type

 (e.g., FORMAT, DOUBLEPRECISION). For ex-

 ample, NOSPACE=FORMAT will suppress the

 spacing option for FORMAT statements.

 [NO]INDENT INDENT causes statements within DO loops __

 to be indented according to the nesting

 level. Continuation of statements begin-

 ning with FORTRAN keywords are also in-

 dented. INDENT may also be expressed as

 INDENT=n, where "n" specifies the number

 of additional columns statements are to be

 indented for each level of nesting depth.

 "n" must lie in the range (0,10), inclu-

 sively. The default is INDENT=2.

 *FTNTIDY 587

 MTS 6: FORTRAN in MTS

 October 1983

 [NO]DOCOMMENT DOCOMMENT causes FTNTIDY to insert blank __

 comments before and after DO loops. The

 default is NODOCOMMENT.

 RTMARG=n A right margin of "n" may be specified to __

 limit the length of tidied statements.

 "n" should lie in the range 50 to 72,

 inclusive; the default is 72. FTNTIDY

 always makes exceptions for Hollerith and

 quoted strings, for which the right margin

 is 72.

 [NO]SEQ SEQ causes FTNTIDY to place sequence num- __

 bers in columns 73-80 of the tidied source

 program. The default is NOSEQ.

 LBLJUST={LEFT|RIGHT} __ _ _

 Labels in columns 1-5 of the tidied source

 program will be either left- or right-

 justified. The default is RIGHT.

 [NO]HOLQUOTE HOLQUOTE converts Hollerith fields ___

 (strings preceded by "nH", where "n" is

 the number of characters in the string)

 into strings enclosed in apostrophes.

 NOHOLQUOTE leaves literal constants in

 their original form. The default is HOL-

 QUOTE. This parameter may also be speci-

 fied as HOLQUOTE={ON|OFF}.

 CONTCHAR=’c’ The single character "c" (enclosed within _

 primes) specifies the continuation charac-

 ter that is to be inserted in column 6 of

 continuation lines. If "c" is blank or

 zero, the sequence 1, 2, 3, ..., 9, *, 1,

 2, ... will be inserted in column 6. For

 example, CONTCHAR= ’*’ specifies that col-

 umn 6 of continuation lines is set to "*".

 The default is blank.

 Description: FTNTIDY may be used to tidy FORTRAN source programs

 and/or to produce a cross-reference of the variables,

 statement numbers, functions and subroutines, and the

 FORTRAN logical I/O units used. By default, if the MTS

 logical I/O unit SPUNCH is not assigned on the $RUN

 command, FTNTIDY produces a listing of the source fol-

 lowed by the cross-reference listings.

 If SPUNCH is assigned, then FTNTIDY will tidy the FORTRAN

 source. If SPRINT does not default to a terminal, the

 tidied source is listed on SPRINT followed by the

 cross-reference listings. The following are the default

 tidying operations performed by FTNTIDY:

 588 *FTNTIDY

 MTS 6: FORTRAN in MTS

 October 1983

 (1) All statement numbers are renumbered in ascending

 order: 10, 20, 30, etc.

 (2) All blanks except those appearing in Hollerith

 fields and quoted strings are removed. Single

 blanks are then inserted to improve readability.

 (3) Statements within DO loops are indented according

 to their nesting level.

 (4) Continuation statements beginning with FORTRAN

 keywords are indented.

 Optionally, the user may override these defaults by

 specifying parameters, such as NORELABEL, to retain the

 original statement numbers. The user may also specify

 other tidying features, such as moving all FORMAT state-

 ments to the end of a program (FMTMOVE), or inserting

 blank comments before and after DO loops (DOCOMMENT).

 If XREF is in effect, FTNTIDY produces four cross-

 reference dictionaries on SPRINT. These are:

 (1) subprograms, which consist of all subroutines,

 functions, and entries

 (2) variables

 (3) statement numbers

 (4) logical I/O units (excluding variables)

 For the first two dictionaries, names are arranged in

 alphabetical order; for the last two, labels and units

 are printed in ascending sequence.

 A brief explanation for TYPE, ATTR (attributes), and

 REFERENCES appears at end of each cross-reference list-

 ing. TYPEs as shown in the first three dictionaries are:

 L*1 LOGICAL of length 1

 L*4 LOGICAL of length 4

 I*2 INTEGER of length 2

 I*4 INTEGER of length 4

 R*4 REAL of length 4

 R*8 REAL of length 8

 R*16 REAL of length 16

 C*8 COMPLEX of length 8

 C*16 COMPLEX of length 16

 C*32 COMPLEX of length 32

 CHARS CHARACTER

 GEN. GENERIC function

 N.L. NAMELIST variable

 FMT FORMAT statement number

 TYPEs enclosed within parentheses indicate that these

 variables were implicitly declared.

 *FTNTIDY 589

 MTS 6: FORTRAN in MTS

 October 1983

 Attributes in the subprogram and variable dictionaries

 are:

 SUBR Subroutine

 FCN Function

 ENTRY Entry

 S.F. Statement function

 EXT. External

 ARRAY Variable array

 There is a special subprogram name <EXIT>, used to refer

 to either RETURN or STOP statements.

 If variables appear in COMMON statements, the associated

 common block names are always shown. "//" is used for a

 blank common block.

 If RELABEL was in effect, the statement label dictionary

 also shows the original statement numbers under the

 heading "ORIG". ISN (or MTS line number) defining the

 statement numbers are printed under the heading "DEFN".

 If a statement number is undefined, "*****" is printed

 instead.

 For all four dictionaries, references to MTS line numbers

 are printed with a decimal point, while references to

 internal statement numbers (ISNs) are printed without a

 decimal point. In addition, FTNTIDY may insert a special

 character to the right of each reference as follows:

 * A variable or a function is changed either

 through an assignment, READ, ASSIGN statement,

 or use as a DO index.

 ? A variable may be changed because it is used as

 a simple argument to a subroutine or function.

 D A subprogram is defined by the SUBROUTINE,

 FUNCTION, ENTRY, or EXTERNAL statement. A

 statement function is defined by the statement

 function definition. A variable is declared in

 a type or DIMENSION statement. For units, "D"

 stands for DEFINE FILE statements.

 E A variable appears in an EQUIVALENCE statement.

 C A variable appears in a COMMON statement.

 R A unit appears in a READ statement.

 W A unit appears in a WRITE, PRINT, or PUNCH

 statement.

 590 *FTNTIDY

 MTS 6: FORTRAN in MTS

 October 1983

 M A unit appears in other I/O statements defining

 a motion (e.g., REWIND, BACKSPACE, ENDFILE,

 FIND, or WAIT).

 Examples: In the following example, a cross-reference listing is

 generated for the FORTRAN program in the file TEST.

 $RUN *FTNTIDY SCARDS=TEST

 MTS INTERNAL **** F T N T I D Y ****

 LINE NO. STMT NO. INPUT LISTING

 100. 1 FUNCTION DRSINH(DX)

 101. 2 IMPLICIT REAL*8 (D)

 102. 3 COMMON DLOG2,MSG(4)

 103. 4 1000 DCON = 1.0D0

 104. 5 GO TO 132

 105. C

 106. 6 ENTRY DRCOSH(DX)

 107. 7 993 DCON = -1.0D0

 108. 8 IF(DX.GE.1.0D0) GOTO 132

 109. C FAILURE - RETURN

 110. 9 DRSINH = 0.0D0

 111. 10 WRITE (6,887) MSG

 112. 11 887 FORMAT (’0’, 4A4)

 113. 12 RETURN

 114. C

 115. 13 132 DY = DABS(DX)

 116. 14 IF (DY.GT.1.0D8) GO TO 1070

 117. 15 IF (DY.LT.1.0D-4) GOTO 2196

 118. C NORMAL CASE

 119. 16 DW = DLOG(DY+DSQRT(DY**2+DCON))

 120. 17 GO TO 111

 120.2 C SMALL DY

 120.4 18 2196 DW = DY - DY**3/6.0D0

 120.6 19 GOTO 111

 121. C LARGE DY

 122. 20 1070 DW = DLOG(DY) + DLOG2

 123. 21 111 DRSINH = DSIGN(DW,DX)

 124. 22 RETURN

 125. 23 END

 *** SUBPROGRAM DICTIONARY ***

 NAME TYPE ATTR REFERENCES

 DABS R*8 FCN 13

 DLOG R*8 FCN 16 20

 DRCOSH (R*8) ENTRY 6D

 DRSINH (R*8) FCN 1D 9* 21*

 DSIGN R*8 FCN 21

 DSQRT R*8 FCN 16

 <EXIT> SUBR 12 22

 *FTNTIDY 591

 MTS 6: FORTRAN in MTS

 October 1983

 *** VARIABLE DICTIONARY ***

 NAME TYPE ATTR COMMON REFERENCES

 DCON (R*8) 4* 7* 16

 DLOG2 (R*8) // 3C 20

 DW (R*8) 16* 18* 20* 21?

 DX (R*8) 1 6 8 13?

 21?

 DY (R*8) 13* 14 15 16

 18 20?

 MSG (I*4) ARRAY // 3C 10

 *** STATEMENT LABEL DICTIONARY ***

 LABEL DEFN TYPE REFERENCES

 111 21 17 19

 132 13 5 8

 887 11 FMT 10

 993 7

 1000 4

 1070 20 14

 2196 18 15

 *** LOGICAL I/O UNIT DICTIONARY ***

 UNIT REFERENCES

 6 10W

 592 *FTNTIDY

 MTS 6: FORTRAN in MTS

 October 1983

 *FTNTOPL1 _________

 Contents: The FORTRAN-IV-to-PL/I language conversion program (ver-

 sion 1, modification level 0).

 Use: The program is invoked by the $RUN command.

 Program Key: *FTNTOPL1

 Logical I/O Units Referenced:

 SCARDS - Source for the FORTRAN program to be converted.

 SPRINT - FORTRAN and PL/I source listings and diagnostic

 messages.

 SPUNCH - 80-character deck output of the resultant PL/I

 program.

 Description: The program attempts to convert source programs written

 in FORTRAN IV to their PL/I equivalents. It detects and

 flags FORTRAN IV statements that have no PL/I equivalent

 or that cannot be meaningfully or unambiguously trans-

 lated into PL/I statements. Conflicts between the use of

 FORTRAN and PL/I library subroutines are also noted.

 It should be noted that all references to logical unit 6

 are replaced in the PL/I program by #06, which is

 automatically declared with the PRINT attribute. In

 general, references to logical unit "n" are replaced by

 PL/I file names of the form, #0n.

 A complete description of this conversion program is

 given in the IBM publication, FORTRAN IV to PL/I Language ___________________________

 Conversion Program, form GC33-2002. __________________

 Parameters: If parameters are specified, they must appear in the

 first line read from SCARDS. Column one of this line

 must contain a percent sign "%"; there may be no blanks

 between the percent sign and the last character in the

 parameter field; parameters must be separated by commas.

 The parameters to the program are presented below.

 Abbreviations are underlined.

 BCD / EBCDIC Default: EBCDIC _ __

 Specifies the character code of the FORTRAN source

 program and, consequently, that of the resultant

 PL/I program.

 *FTNTOPL1 593

 MTS 6: FORTRAN in MTS

 October 1983

 BLKZR or BZ / NOBLKZR or NBZ Default: NOBLKZR _____ __ _______ ___

 Specifies whether the external form of numeric input

 data must be processed during execution of the PL/I

 program by the library subroutine, LBLNK.

 CHAR48 or C48 / CHAR60 or C60 Default: CHAR60 ______ ___ ______ ___

 Specifies the PL/I character set to be used in the

 converted program.

 DECK / NODECK or ND Default: NODECK _ ______ __

 Specifies whether the PL/I program is to be punched

 on SPUNCH.

 EXTREF / NOEXTREF or NE Default: NOEXTREF _ ________ __

 Specifies whether name changes in the FORTRAN source

 program are to be listed on SPRINT.

 SOURCE / NOSOURCE or NS Default: SOURCE _ ________ __

 Specifies whether the FORTRAN source program is to

 be listed on SPRINT.

 Example: $RUN *FTNTOPL1 SPUNCH=PLS

 %DECK

 [Program 1]

 [Program 2]

 .

 .

 .

 $ENDFILE

 In the above example, the FORTRAN programs in the

 input stream are converted and written to the file

 PLS. The %DECK parameter specifies that the result-

 ing PL/I programs are punched on SPUNCH.

 594 *FTNTOPL1

 MTS 6: FORTRAN in MTS

 October 1983

 *PFORT ______

 Contents: The PFORT Verifier.

 Purpose: To check FORTRAN programs for adherence to PFORT, a

 portable subset of the 1966 version of American National

 Standard FORTRAN.

 Use: The program is invoked by the $RUN command.

 Program Key: *PFORT

 Logical I/O Units Referenced:

 SCARDS - Input to the Verifier. This should take the

 form of one or more FORTRAN source program units

 to be verified. If global analysis is request-

 ed, the sequence of source program units should

 comprise a single executable FORTRAN program.

 An input line containing a period in column 1

 will cause the Verifier to stop processing

 input. However, the preferred method of speci-

 fying the end of the input is to use one of the

 usual end-of-file mechanisms supported by MTS.

 SPRINT - Output from the Verifier. This may be program

 listings, messages indicating PFORT violations,

 symbols tables, cross references, or global

 analysis.

 Parameters: The following parameters or their negations may be

 specified in the PAR field of the $RUN command. Parame-

 ters must be separated by blanks or commas. The minimum

 acceptable abbreviation for each parameter is underlined.

 The parameters are treated from left to right, so in case

 of conflicting parameters, the rightmost one will be put

 into effect. Any parameter may be negated by prefixing

 it with NO, N, -, or ¬. All of the parameters below are

 active by default.

 LIST Print a source listing for each program unit. _

 SYMBOLS Print a symbol table for each program unit. _

 XREF Print cross references with each symbol table. _

 This option will be honored only if SYMBOLS is

 active.

 GLOBAL Perform and print a global analysis of the _

 input source program. The Verifier itself may

 deactivate this option if it encounters serious

 *PFORT 595

 MTS 6: FORTRAN in MTS

 October 1983

 errors during the processing of the input.

 Once deactivated, whether by the user or by the

 Verifier, the GLOBAL option cannot be

 reactivated.

 Parameters may also be specified by including a source

 line with a C in column 1 and an asterisk in column 2,

 followed by parameters anywhere in columns 3 to 72. This

 permits the user to turn the output options on or off

 locally.

 Example: C* LIST

 SUBROUTINE A

 ...

 END

 C* NOLIST

 SUBROUTINE B

 ...

 END

 C* LIST

 SUBROUTINE C

 ...

 In this example, selected program units are LISTed. Such

 local parameters embedded in the source may be safely

 passed on to any of the FORTRAN compilers, which will

 treat them as ordinary FORTRAN comments.

 Description: The PFORT Verifier produces a statement by statement

 listing of each program unit, followed by a symbol table

 which lists attributes and cross references for all the

 symbols in that program unit.

 If a violation of the PFORT standard is discovered, an

 error message, preceded by three asterisks, is printed

 directly below the statement at which the error occurred.

 If the NOLIST option is in effect, the error message is

 accompanied by the program unit name and internal state-

 ment number of the statement in error.

 The global structure of the program is presented in an

 alphabetized list of all its program units, showing for

 each program unit its arguments, its common blocks, the

 program units it calls, and the program units which call

 it. A table of global common block definitions is

 produced.

 For the complete description of the PFORT Verifier, see

 Computing Center Memo 406, "*PFORT."

 596 *PFORT

 MTS 6: FORTRAN in MTS

 October 1983

 *RATFOR _______

 Contents: A FORTRAN preprocessor program.

 Use: To allow control structures for FORTRAN programs.

 Program Key: *RATFOR

 Logical I/O Units Referenced:

 SCARDS - structured FORTRAN input.

 SPRINT - structured program listing.

 SPUNCH - processed standard FORTRAN source output.

 Description: RATFOR (Rational FORTRAN) is a FORTRAN language prepro-

 cessor developed by Kernighan and Plauger and described

 in the publication

 Software Tools, by Brian W. Kernighan and P. J. ______________

 Plauger, Addison-Wesley, 1976

 RATFOR was developed for the purpose of overlaying more

 modern and commonly accepted control structures and

 features on FORTRAN, making it a more palatable and

 versatile tool to utilize in the solution of programming

 tasks that for one reason or another require the use of

 FORTRAN. The language description as well as the prepro-

 cessor itself are described in the book and the prepro-

 cessor as implemented on MTS is very straight forward to

 use.

 The structured FORTRAN program is read by the translator

 from logical I/O unit SCARDS and the standard FORTRAN

 source code is produced on logical I/O unit SPUNCH. A

 listing is produced on logical I/O unit SPRINT in batch

 mode and also in terminal mode if SPRINT is explicitly

 assigned to a file or device. The resulting standard

 FORTRAN output is ready for processing by a standard

 FORTRAN compiler.

 Example: $RUN *RATFOR SCARDS=RATPROG SPUNCH=FORTPROG

 In the above example, the structured FORTRAN program

 in the file RATPROG is processed into a standard

 FORTRAN program and written into the file FORTPROG.

 *RATFOR 597

 MTS 6: FORTRAN in MTS

 October 1983

 598 *RATFOR

 MTS 6: FORTRAN in MTS

 October 1983

 EXCEPTIONAL CONDITIONS ______________________

 Under some conditions when using *FTN, *FORTRANG, *FTNGTEST, *FOR-

 TRANH or *FORTRANVS, one of the following 15 program-interrupt error

 messages may be produced before the FORTRAN I/O monitor gains control.

 These messages include the name of the module where the error was first

 detected. Some of the errors (notably significance, integer overflow,

 floating-point underflow) are normally "masked-off", that is, if the

 error condition occurs, it is ignored and execution continues.

 Since the error messages do not always provide enough information to

 correct the error, it may be advisable to use SDS or switch to *IF or

 *WATFIV to track down the cause of the problem.

 The error messages are as follows:

 Integer overflow in routine nnnn at hexadecimal displacement +xxx. ____ ___

 If this exception is masked on, an error will error for i+j,

 i-j, -j, IABS(j), and arithmetic shift operations that produce a

 result in the range -2³¹ to 2³¹-1, Generally, i*j will not
 produce an error; however sometimes i*j is reduced to an

 arithmetic shift, which will cause an error. Normally, this

 exception is masked off.

 Integer division by zero in routine nnnn at hexadecimal displacement ____

 +xxx. ___

 An operation of i/j or MOD(i,j) was performed where "j" was

 zero, or an overflow occurred during a conversion from decimal

 data to binary data (CVB instruction). Normally, this exception

 is masked on.

 Floating-point overflow in routine nnnn at hexadecimal displacement ____

 +xxx. ___

 A floating point operation resulted in a number that was too

 big. Normally, this exception is masked on.

 Floating-point divide by zero in routine nnnn at hexadecimal dis- ____

 placement +xxx. ___

 A division involving REAL numbers was performed where the

 divisor is zero.

 Exceptional Conditions 599

 MTS 6: FORTRAN in MTS

 October 1983

 Significance exception in routine nnnn at hexadecimal displacement ____

 +xxx. ___

 In an operation of addition or subtraction involving REAL

 numbers, under some conditions significant digits will be lost.

 If the mask bit is set on (which it normally is not), then this

 error condition will occur.

 Floating-point underflow exception in routine nnnn at hexadecimal ____

 displacement +xxx. ___

 In processing a REAL operation, the exponent was formed which

 was too small. Normally zero is returned as a result, but if

 the mask for this interrupt is set on, the error message is

 produced.

 Addressing exception in routine nnnn at hexadecimal displacement ____

 +xxx. ___

 Protection exception in routine nnnn at hexadecimal displacement ____

 +xxx. ___

 These are caused by improper use of an address, most commonly a

 bad subscript in an array reference. It also can be caused by

 improper parameter passing between subprograms.

 Operation exception - probably caused by exceeding the dimensions of

 an array in routine nnnn at hexadecimal displacment +xxx. ____ ___

 Privileged operation exception - probably caused by exceeding the

 dimensions of an array in routine nnnn at hexadecimal displace- ____

 ment +xxx. ___

 Execute exception - probably caused by exceeding the dimensions of an

 array in routine nnnn at hexadecimal displacement +xxx. ____ ___

 Data exception in routine nnnn at hexadecimal displacement +xxx. ____ ___

 Decimal overflow in routine nnnn at hexadecimal displacement +xxx. ____ ___

 Decimal divide by zero in routine nnnn at hexadecimal displacement ____

 +xxx. ___

 These errors normally will not occur in programs written

 entirely in FORTRAN. However, they may occur in two cases:

 (a) part of the program was overwritten with illegal data, or

 (b) an erroneous branch occurred within an assigned GOTO

 statement.

 Either condition usually will result in an immediate error,

 often an operation, addressing, protection, or specification

 exception.

 600 Exceptional Conditions

 MTS 6: FORTRAN in MTS

 October 1983

 Specification exception - probably caused by subroutine with wrong

 type or by bad alignment in common in routine nnnn at hexadeci- ____

 mal displacement +xxx. ___

 This error can be caused by problems with COMMON or parameter

 passing between subprograms, by an erroneous branch within an

 assigned GOTO statement, or by overwriting instructions with

 data.

 Exceptional Conditions 601

 MTS 6: FORTRAN in MTS

 October 1983

 602 Exceptional Conditions

 MTS 6: FORTRAN in MTS

 October 1983

 INTRODUCTION TO DEBUG MODE FOR FORTRAN ______________________________________

 The Symbolic Debugging System (SDS) is a conversational facility for

 testing and debugging programs. This facility was originally provided

 for assembly language programs, but it has now been extended to include

 FORTRAN programs. Using SDS, the user may initiate the execution of a

 program and monitor its performance by displaying or modifying variables

 at strategic points in the program. This section provides a brief

 introduction to the debug mode command language for FORTRAN users. A

 small sample FORTRAN program is given to illustrate the use of SDS. The

 complete description of SDS is given in MTS Volume 13, The Symbolic ____________

 Debugging System. ________________

 Figure 1 is a sample program to compute the mean and standard

 deviation of an array of real numbers. The program consists of three

 sections: the main program MAIN which reads in the data values and

 prints the final results, the subroutine CALC which computes the desired

 quantities, and a blank-named COMMON section which contains the data

 array. In FORTRAN, the main program always has the name MAIN unless it

 is explicitly specified otherwise during the compilation.

 This program is compiled by the FORTRAN-G compiler in *FTN using the

 MTS command

 $RUN *FTN SCARDS=MEANPROG SPUNCH=MEAN PAR=TEST

 The source for the program is read from the file MEANPROG and the

 compiled object module is written into the file MEAN. The TEST

 parameter must be specified when use of SDS is expected in order to have

 the FORTRAN compiler produce SYM (symbol table) records in the object

 module. These symbol table records are used by SDS and are necessary to

 enable the user to debug his program symbolically.

 The most common method of invoking SDS for debugging this sample

 program is with the MTS command

 $DEBUG MEAN

 The DEBUG command is the same as the MTS RUN command in the manner in

 which logical I/O units and the parameter field are specified. Here it

 is assumed that the program uses logical I/O unit 5 for reading the

 input data and logical I/O unit 6 for printing the output results. For

 the present purpose of debugging this program interactively, all input

 test data will be entered from the terminal (*SOURCE*) and all output

 results will printed on the terminal (*SINK*). If the user wishes to

 assign these units to files, he may specify them on the DEBUG command,

 e.g.,

 Introduction to Debug Mode for FORTRAN 603

 MTS 6: FORTRAN in MTS

 October 1983

 $DEBUG MEAN 5=INPUTFILE 6=OUTPUTFILE

 SDS signals its readiness to accept a command by printing the prefix

 character "+" in column one. This prefix character precedes all SDS

 messages and diagnostics.

 When the program has been successfully loaded, the message

 +READY

 +

 is printed, at which point SDS is ready to accept its first debug

 command.

 0001 DIMENSION DATA(50)

 0002 COMMON DATA,N

 0003 REAL MEAN

 0004 1 WRITE(6,100)

 0005 100 FORMAT(’ ENTER NUMBER OF DATA POINTS’)

 0006 READ(5,101) N

 0007 101 FORMAT(I3)

 0008 WRITE(6,102)

 0009 102 FORMAT(’ ENTER DATA POINTS’)

 0010 READ(5,103) (DATA(I),I=1,N)

 0011 103 FORMAT(6F5.2)

 0012 CALL CALC(MEAN,STD)

 0013 WRITE(6,104) MEAN,STD

 0014 104 FORMAT(’ MEAN=’,F8.4,’ STD=’,F8.4)

 0015 GOTO 1

 0016 END

 0001 SUBROUTINE CALC(MEAN,STD)

 0002 DIMENSION DATA(50)

 0003 COMMON DATA,N

 0004 REAL MEAN,MEAN2

 0005 X = 0.0

 0006 Y = 0.0

 0007 DO 10 I=1,N

 0008 X = X+DATA(I)

 0009 10 Y = Y+DATA(I)*2

 0010 MEAN = X/N

 0011 MEAN2 = Y/N-MEAN**2

 0012 STD = SQRT(MEAN2)

 0013 RETURN

 0014 END

 Figure 1. Sample Program

 Figure 2 gives the sample output from a sequence of commands used to

 debug the program. Input from the user is given in lowercase and output

 from SDS and the program is given in uppercase.

 604 Introduction to Debug Mode for FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 #debug mean

 +READY

 +run

 ENTER NUMBER OF DATA POINTS

 2

 ENTER DATA POINTS

 4.0 4.0

 SQRT ARGUMENT NEGATIVE

 +CALL TO "MTS"

 +READY

 +set csect=calc

 +break is#5 is#12

 +DONE.

 +run

 ENTER NUMBER OF DATA POINTS

 2

 ENTER DATA POINTS

 4.0 4.0

 +AT BREAKPOINT IS#5 IN SECTION MAIN

 +READY

 +display n

 +N IS NOT DEFINED IN THIS MODULE.

 +set csect=*

 +DONE.

 +display n data(1) data(2)

 +N ’F’ +2 (4 BYTES)

 +DATA(1) EL4’4.’

 +DATA(2) EL4’4.’

 +continue

 +AT BREAKPOINT IS#12 IN SECTION CALC

 +READY

 +display mean mean2

 +MEAN DEFINITION USED FROM SECTION MAIN

 +MEAN EL4’0.25’

 +MEAN2 EL4’-8.’

 +set csect=calc

 +DONE.

 +display mean

 +MEAN EL4’4.’

 +modify mean2 ’0.0’

 +MEAN2 EL4’-8.’

 +NEW VALUE: EL4’0.’

 +continue

 MEAN= 4.0000 STD= 0.0

 ENTER NUMBER OF DATA POINTS

 $endfile

 +USER PROGRAM RETURN

 +READY

 +stop

 #

 Introduction to Debug Mode for FORTRAN 605

 MTS 6: FORTRAN in MTS

 October 1983

 Figure 2. Sample Output

 Since most users are incurable optimists when it comes to running a

 program for the first time, the RUN debug command is given to determine

 what the program will do on the first try. The comments "ENTER NUMBER

 OF DATA POINTS" and "ENTER DATA POINTS" are produced by the program, and

 therefore these two lines in the sample output do not start with the "+"

 prefix character. The program requires as a response an integer N of

 format I3 giving the number of data points to be used in the program.

 The input points are read into the array DATA which is of format 6F5.2.

 A very simple set of test data is chosen for the first run. The size

 of the data set is 2 and consists of the points 4.0 and 4.0. This data

 set, using a simple mental calculation, will yield the results of 4.0

 for the mean and 0.0 for the standard deviation. In choosing a test

 data set, it is wise to choose data which will give an obvious and

 simple answer so that any errors in the program will be readily

 apparent.

 After the program is run, the comment "SQRT ARGUMENT NEGATIVE"

 appears, indicating that an erroneous call to the SQRT library sub-

 routine was made in the CALC subroutine. The FORTRAN library has

 intercepted the call to SQRT and produced the message indicating that

 the value of the variable MEAN2 was negative. SDS intercepted the

 FORTRAN library’s return to MTS and returned control to debug mode.

 Whenever any type of abnormal condition occurs during the execution of

 the program, such as a program interrupt or attention interrupt, SDS

 will step in and return control to debug command mode. This will also

 happen in the event of a call by the user’s program to the system

 library subroutines SYSTEM, MTS, or ERROR.

 At this point, if the user has a serially reusable program, he may

 rerun his program and monitor its performance more closely. For a

 program to be serially reusable, it must be capable of being rerun

 several times without being reloaded. All locations which contain

 constant values which are changed by the program must be initialized by

 the program during execution. For example, a program containing the ______ _________

 statements

 DATA I/3/

 K = I

 .

 .

 .

 I = 6

 would not be reusable, since I would not be reinitialized to a value of

 3; but a program containing

 I = 3

 K = I

 .

 .

 606 Introduction to Debug Mode for FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 .

 I = 6

 would be reusable, since I is set to 3 each time the program is used.

 In general, serially reusable programs are easier to debug with SDS than

 are nonserially reusable programs, since they can be rerun several times

 without being reloaded. If the program were not serially reusable, then

 the user would have to reload the program again using the DEBUG command.

 As an aid to monitoring the execution of the program, SDS provides

 the capability of setting breakpoints. When a breakpoint is encountered

 during execution of the program, execution is stopped, and control is

 returned to debug mode. The instruction at which the breakpoint is set

 has not yet been executed when execution is stopped. ___ ___ ____ ________

 The BREAK command may be used to set breakpoints by specifying the

 statement numbers at which execution is to be stopped. To refer to

 statement numbers in FORTRAN programs, a prefix must be used to

 distinguish the type of statement number being given. A "#" must prefix

 the statement number if it is an external (user-defined) statement

 number; e.g.,

 BREAK #10

 sets a breakpoint at the user-defined statement number 10. An "IS#"

 must prefix the statement number if it is an internal (source-listing)

 statement number; e.g.,

 BREAK IS#10

 sets a breakpoint at the source-listing statement 10. Only those

 statement numbers which define executable FORTRAN statements may be __________

 used. An executable statement is defined as a statement which is from

 one of the following categories:

 (1) Assignment statements

 (2) Control statements

 (3) I/O statements

 All others, such as those defining DIMENSION, REAL, INTEGER, DATA,

 COMMON, SUBROUTINE, FUNCTION, ENTRY, and FORMAT statements will be

 undefined. Both internal and external statement numbers must be

 specified without leading zeros. _______ _______ _____

 Since a program may consist of a main program and several subroutines

 and common sections, there must be a method for determining to which

 section statement numbers and other symbols refer. This may be done in

 two ways.

 The SET CSECT command may be used to globally restrict all statement

 numbers and symbols to a specified section. In the sample output, the

 command sequence

 Introduction to Debug Mode for FORTRAN 607

 MTS 6: FORTRAN in MTS

 October 1983

 SET CSECT=CALC

 BREAK IS#5 IS#12

 is used to set breakpoints at statements 5 and 12 of the subroutine

 CALC. If SET CSECT=CALC had not been given, then the first occurrence

 of IS#5 and IS#12 would be used. In this case, IS#12 would be in the

 section MAIN and IS#5 would be in the subroutine CALC since IS#5 is a

 FORMAT statement in MAIN. The command

 SET CSECT=*

 may be used to restore the searching of all sections. If the SET CSECT

 command has not been given, SDS searches all sections for statement

 numbers or variable names and use the first definition encountered.

 The @C keyword modifier may be used to locally restrict a symbol to a

 specified section. The @C modifier applies only to the symbol to which

 it is appended and overrides any global restrictions set by the SET

 CSECT command. In the sample run, the command

 BREAK IS#5 IS#12@C=CALC

 also could have been used to set the breakpoints. The modifier @C=CALC

 restricts IS#12 to the subroutine CALC. @C=CALC is not needed for IS#5

 since the only valid definition of IS#5 is in CALC.

 The setting of breakpoints at the internal statements 5 and 12 of

 CALC was chosen so as to allow a closer inspection of the program near

 the area where the error was indicated. At statement 5, the input data

 may be examined before any actual calculations are made. At statement

 12, the argument to the SQRT call may be examined.

 After the breakpoints are set, the program is rerun. When the

 breakpoint at IS#5 is reached, execution is stopped and the message

 AT BREAKPOINT IS#5 IN SECTION MAIN

 is printed. At this point, the user may enter another debug command.

 The DISPLAY command may be used to display variable locations in the

 program. Scalar variables are displayed by giving the variable name;

 e.g.,

 DISPLAY MEAN

 will display the contents of the variable MEAN converted according to

 its type and length. In this case, MEAN is a fullword real variable and

 its value is printed as

 608 Introduction to Debug Mode for FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 MEAN EL4’0.25’

 The code EL4 indicates that the variable is real and four bytes in

 length. The codes for FORTRAN variables are:

 E Real (exponential or floating-point, 4-byte)

 D Real (floating-point, 8-byte)

 F Integer (fixed-point, 4-byte)

 H Integer (fixed-point, 2-byte)

 L Logical

 M Complex

 X Hexadecimal

 I Instruction

 Array variables are displayed by giving the array name and its

 subscripts in the same manner as in the FORTRAN program; e.g.,

 DISPLAY DATA(1)

 will display the contents of the first element in the array DATA.

 To display a variable which is in a blank-named common section, the

 @C modifier (or SET CSECT command) may be used with the name BLANK to

 specify the section. In the sample program, the array DATA is in the

 blank-named common section, hence

 DISPLAY DATA(1)@C=BLANK

 could have been used. Simply using

 DISPLAY DATA(1)

 would not have worked if the SET CSECT=* command had not been given

 first. Instead, an error message would be printed indicating that the

 symbol was undefined.

 If all sections are open for searching, and if a symbol is used in

 more than one section (or subroutine), then SDS will display the first

 occurrence of that symbol and issue a warning message. In the example,

 DISPLAY MEAN MEAN2

 produced this message for MEAN since MEAN is defined in both the

 sections MAIN and CALC.

 After the breakpoint at IS#5 has been reached, the next step is to

 display some of the input data values for the program to determine

 whether or not everything seems to be in reasonable order. The values

 of 2 for N and 4.0 for DATA(1) and DATA(2) indicate that the input data

 was correctly entered.

 Introduction to Debug Mode for FORTRAN 609

 MTS 6: FORTRAN in MTS

 October 1983

 A CONTINUE command may then be given to resume execution of the

 program. After the breakpoint at IS#12 is reached, the user can again

 check the progress of the program. Displaying MEAN and MEAN2, it is

 discovered that the values are 4.0 and -8.0, respectively. A quick

 arithmetic check using the appropriate formulas

 MEAN = (DATA(1)+DATA(2))/N

 and

 MEAN2 = (DATA(1)²+DATA(2)²)/N-MEAN²

 yields the values 4.0 and 0.0, respectively. Hence, the value -8.0 is

 in error.

 Looking back over the sample program, the user can see that this

 error was introduced in statement 9 of CALC. That statement should read

 10 Y = Y+DATA(I)**2

 Since it is not possible to recompile the program in SDS, the best

 that can be done at this point is to modify MEAN2 to contain the correct

 value. The MODIFY command may be used to do this. The first parameter

 for this command gives the name of the variable to be modified. The

 second parameter gives the value to be used in the modification; the

 value must be enclosed in primes, e.g.,

 MODIFY MEAN2 ’0.0’

 The value for MEAN2 is now modified to 0.0, and execution of the

 program may be resumed to determine if the remainder of the program

 seems to be correct. This time, the correct values for the test data

 are printed by the program.

 Instead of entering a second set of test data, the user will probably

 want to recompile the program to correct the error in CALC. To

 terminate the program, the user enters a $ENDFILE (or equivalent). SDS

 intercepts the termination of the program and returns control to debug

 mode. The STOP command may be then used to return control to MTS.

 The user may use the RESTORE and CLEAN commands to remove breakpoints

 from the program that were set by the BREAK command. The RESTORE

 command will remove a specified breakpoint; e.g.,

 RESTORE IS#12

 will remove the breakpoint set at statement 12 in CALC. The CLEAN

 command will remove all breakpoints that are set in the program.

 Multidimensioned arrays are specified in the same manner as linear

 arrays. For example, the third element in the array specified by the

 FORTRAN source statement

 610 Introduction to Debug Mode for FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 DIMENSION ALPHA(10,10)

 may be displayed by

 DISPLAY ALPHA(3,1)

 A sequence of elements of an array may be displayed using the block

 notation format. For example, to display the first ten elements of

 ALPHA, the user may specify

 DISPLAY ALPHA(1,1)...(10,1)

 The user should note that in FORTRAN programs, arrays are stored in

 ascending locations with the first subscript increasing the most rapidly

 and the last subscript the least rapidly.

 Arrays may also be displayed using symbolic subscripts. If, in the

 FORTRAN program, the variables I and J have the values 2 and 3,

 respectively, then

 DISPLAY ALPHA(I,J)

 will display the element ALPHA(2,3).

 Arguments to FORTRAN subroutines and functions may be one of two

 types:

 (1) reference by value, or

 (2) reference by location.

 When an argument is passed as a reference by value argument, the

 actual value of the variable is passed by the calling program to the

 subprogram. Therefore, there is a copy of that variable in both the

 calling program and the subprogram. Scalar (undimensioned) arguments

 are normally passed in this manner. The subprogram uses its own copy of

 the argument for any calculations done. Upon return of the subprogram

 to the calling program, the argument is passed back to the calling

 program and the calling program’s copy is updated. Therefore, when

 displaying an argument of this type, it is important to keep in mind

 where the variable is located and when it is displayed.

 When an argument is passed as a reference by location argument, only

 the address of the argument is passed by the calling program to the

 subprogram. Therefore, only one copy of the argument exists and it is

 located in the calling program (or a common section). Array arguments

 are always passed in this manner. The subprogram uses the copy of the

 argument in the calling program for its calculations. When displaying

 an argument of this type, either the variable name from the calling

 program or the variable name from the subprogram argument list may be

 used. Both refer to the same variable. When using the name from the

 subprogram argument list, the address passed to the subprogram is used

 to locate the variable in the calling program. Therefore, the subpro-

 Introduction to Debug Mode for FORTRAN 611

 MTS 6: FORTRAN in MTS

 October 1983

 gram must have been called at least once for this address to be valid.

 If the address is invalid, an error comment is produced in form

 xxxxxxx SPECIFIES AN ILLEGAL ADDRESS.

 Most debug commands may be given in an abbreviated format. The

 minimum abbreviations that may be used are underlined.

 BREAK RESTORE _ _

 CLEAN RUN __ __

 CONTINUE SET CSECT _ __

 DISPLAY STOP _ ___

 MODIFY _

 An automatic error-dumping facility similar to that provided by the

 MTS SET ERRORDUMP command is provided for batch users. In the event of

 an error condition occurring during the execution of the program, a

 symbolic dump will be given of the program. This dump will include all

 variable locations in the program. This facility may be activated for

 the sample program by the command sequence

 $SET DEBUG=ON

 $SDS SET ERRORDUMP=ON

 $RUN MEAN

 2

 4.0 4.0

 $ENDFILE

 Note that the MTS RUN command has been given instead of the DEBUG

 command. The error-dump facility may be deactivated by the command

 $SET DEBUG=OFF

 The symbolic dump will give the variable storage for the sample

 program in a format similar to the following:

 612 Introduction to Debug Mode for FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983

 DUMP OF SECTION VA=5004F0

 RA SYMBOL TYPE VALUE HEX VALUE

 000000 DATA(1) ’E’ 4.0000000 41400000

 000004 DATA(2) ’E’ 4.0000000 41400000

 000008 DATA(3) ’E’ 0.0E+00 81818181

 0000C4 DATA(50) ’E’ 0.0E+00 81818181

 0000C8 N ’F’ +2 00000002

 DUMP OF SECTION MAIN VA=5002A8

 RA SYMBOL TYPE VALUE HEX VALUE

 0000B0 I ’F’ +2 00000002

 0000B4 MEAN ’E’ 0.0E+00 81818181

 0000B8 STD ’E’ 0.0E+00 81818181

 DUMP OF SECTION CALC VA=5005C0

 RA SYMBOL TYPE VALUE HEX VALUE

 0000A0 X ’E’ 8.0000000 41800000

 0000A4 Y ’E’ 16.000000 42100000

 0000A8 I ’F’ +2 00000002

 0000AC MEAN ’E’ 4.0000000 41400000

 0000B0 MEAN2 ’E’ -8.0000000 C1800000

 0000B4 STD ’E’ 0.0E+00 81818181

 Introduction to Debug Mode for FORTRAN 613

 MTS 6: FORTRAN in MTS

 October 1983

 FORTRAN-H and VS FORTRAN programs may also be debugged using SDS. To

 generate a FORTRAN-H object module with SYM records, the FORTRAN-H

 compiler should be invoked with the TEST option using a command of the

 form:

 $RUN *FTN SCARDS=source SPUNCH=object PAR=OPT=H,TEST,options

 To generate a VS FORTRAN object module with SYM records, the VS FORTRAN

 compiler should be invoked with the SYM option using a command of the

 form:

 $RUN *FORTRANVS SCARDS=source SPUNCH=object PAR=SYM,options

 Because of the optimizing features of the FORTRAN-H and VS FORTRAN

 compilers, the symbol table information provided may be of limited use.

 This is due to several possible transformations which may be performed

 on the object module by the compiler during optimization. For example,

 the compiler often moves operations from within a statement to the

 beginning of the block of statements in which that statement resides if

 it does not affect the logical operation of the program. This makes it

 quite difficult to follow the exact execution flow of the program using

 SDS. For instance, a breakpoint may be set at a statement label, and

 when the breakpoint is reached, the statement may have already been

 executed because its text has been moved to the beginning of the block.

 Furthermore, it is not uncommon for the compiler to move the entire text

 of a statement, leaving only the label. When this happens to two

 adjacent labeled statements, both labels reference the same location and

 SDS does not treat them as distinct (since, in fact, they are not).

 Another difficulty posed by optimization is the fact that variable

 values are often kept in registers for large ranges of instructions

 without updating the memory location. This often happens within

 DO-loops. Since SDS knows only which memory location corresponds to

 which symbol (and not which register), displaying a variable from SDS

 may not yield the current value of the variable.

 The problems of optimization are eliminated if the program is

 compiled at optimization level 0. Unfortunately, many of the advantages

 of using FORTRAN-H or VS FORTRAN are also eliminated at optimization

 level 0.

 The FORTRAN-H compiler only produces symbol table information for

 external (user-defined) statement labels; no information is produced for

 internal (source-listing) statement labels. As with FORTRAN-G, the

 label is preceded by "#", e.g., statement label 100 is the symbol #100.

 614 Introduction to Debug Mode for FORTRAN

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 INDEX _____

 *DAVE, 581 ATTN I/O option, 368

 *FORTRANG, 43, 55 ATTRIBUTE IF command, 233, 244

 *FORTRANH, 69, 80 AUTODBL I/O option, 368

 *FTNGTEST, 43 AUTODBL option,

 *FTNTIDY, 585 FORTRAN VS, 121

 *FTNTOPL1, 593

 *IF66, 193 BACKSPACE statement, 354

 *IF77, 193 BAND subroutine, 514

 *PFORT, 595 BCD option,

 *PROFORT, 565-580 FORTRAN-G, 45

 *RATFOR, 597 FORTRAN-H, 70

 *WATGENLIB, 173 FTN, 21

 *WATLIB, 167 BCLEAR subroutine, 509

 BCOMP subroutine, 517

 -OVEROBJ, 301 BCOPY subroutine, 512

 BCOUNT subroutine, 522

 A modifier, IF, 218 BDLETE subroutine, 520

 ADROF subroutine, 550 BDRW subroutine, 546

 ALGAMA subroutine, 396 BFETCH subroutine, 516

 ALOG subroutine, 396 BFLIP subroutine, 511

 ALOG10 subroutine, 396 BINSRT subroutine, 519

 AMAX0 subroutine, 397 Bit manipulation subroutines, 507

 AMAX1 subroutine, 397 Bit manipulation subroutines

 AMIN0 subroutine, 397 (ANSI), 523

 AMIN1 subroutine, 397 Bitwise logical functions, 505

 AND subroutine, 505 BLKSIZE modifier, FTN, 41

 ANSITM, 536 BOOLE subroutine, 518

 ARCOS subroutine, 396 BOR subroutine, 515

 ARINIT subroutine, 477 BREAK IF command, 207, 245

 Array management subroutines, 475 BREAK IF SET option, 276

 ARRAY subroutine, 478 Breakpoints, 207, 245

 ARRAY2 subroutine, 478 BSCAN subroutine, 521

 ARSIN subroutine, 396 BSET subroutine, 511

 ASSIGN I/O command, 358 BSWAP subroutine, 513

 AT IF command, 208, 224, 234, 242 BTD subroutine, 485

 AT IF SET option, 276 BTEST subroutine, 529

 AT statement, 66 BUFFER FREAD option, 426

 ATAN subroutine, 396 BUFFER I/O command, 358

 ATAN2 subroutine, 396 BXOR subroutine, 515

 ATNTRP subroutine, 551

 Atpoints, 208, 224, 234, 242 C modifier, IF, 218

 ATTENTION I/O option, 368 CABS subroutine, 396

 Attention interrupts, 551 CALIGN option,

 IF, 218 FORTRAN-H, 74

 Index 615

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 FTN, 26 TIME, 134

 CALL I/O command, 358 WARN, 135

 CARRIAGECONTROL I/O option, 368 COMPILE WATFIV control command,

 CC FWRITE option, 426 129, 134

 CC I/O option, 368 COMPILER OVERDRIVE option, 322

 CCOS subroutine, 396 COMPL subroutine, 505

 CDABS subroutine, 396 COMPOSE IF command, 194, 219, 223,

 CDCOS subroutine, 396 249

 CDDVD# subroutine, 396 COND option,

 CDEXP subroutine, 396 FORTRAN-G, 45

 CDLOG subroutine, 396 FTN, 21

 CDMPY# subroutine, 396 CONTCHAR IF SET option, 277

 CDSIN subroutine, 396 CONTINUATION FREAD option, 427

 CDSQRT subroutine, 396 Continuation lines, OVERDRIVE, 301

 CDVD# subroutine, 396 CONTINUE IF command, 227, 231, 251

 CEXP subroutine, 396 COPY IF command, 197, 222, 252

 CFILW subroutine, 539 COS subroutine, 396

 Character manipulation subrou- COSH subroutine, 396

 tines, 483 COTAN subroutine, 396

 CHARACTER variables, WATFIV, 150 Created integer variables, OVER-

 CHARLEN option, DRIVE, 303

 FORTRAN VS, 121 Created labels, OVERDRIVE, 302

 CHECK COMPILE option, 134 Cross-reference listing, 26, 74,

 CHECK WATFIV control command, 130 126.1

 CHKPAR subroutine, 552 OVERDRIVE, 323

 CI option, CSHIFT option,

 FORTRAN VS, 121 FORTRAN-H, 74

 CLEAR IF command, 246 FTN, 26

 CLOG subroutine, 396 CSIN subroutine, 396

 CLOSE I/O command, 358 CSQRT subroutine, 396

 CLOSE statement, 356

 CLOSEW subroutine, 545 DARCOS subroutine, 396

 CMDCHAR IF SET option, 276 DARSIN subroutine, 396

 CMPY# subroutine, 396 DATA WATFIV control command, 129

 CMTCHAR IF SET option, 277 Data-flow analyzer, 581

 COM OVERDRIVE option, 321 DATAN subroutine, 396

 COMC subroutine, 486 DATAN2 subroutine, 396

 COMMENT option, DATE subroutine, 535

 FORTRAN-H, 71 DC option,

 FTN, 21 FORTRAN VS, 121

 Comments, 26, 74, 318, 325 DCOS subroutine, 396

 COMPILE IF command, 195, 220, 223, DCOSH subroutine, 396

 247 DCOTAN subroutine, 396

 COMPILE option, WATFIV, DEBUG package, FORTRAN-G, 64

 CHECK, 134 DEBUG statement, 65

 EXT, 135 Debugging,

 KP, 134 IF, 207

 LIBLIST, 135 WATFIV, 160

 LINES, 134 DECK FTN option, 40

 LIST, 134 DECK option,

 PAGES, 134 FORTRAN VS, 121

 RUN=FREE, 134 FORTRAN-G, 45

 SOURCE, 134 FORTRAN-H, 71

 616 Index

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 FTN, 21 EDIT FTN option, 21, 40

 DEFAULT I/O command, 359 EDIT IF command, 200, 255

 DEFCHK IF SET option, 277 Editor, 200, 223

 DELIMITERS FREAD option, 427 EJECT option,

 DERF subroutine, 396 FORTRAN-H, 71

 DERFC subroutine, 396 FTN, 22

 DESTROY IF command, 198, 253 EJECT statement, 320

 DEXP subroutine, 396 EJECT WATFIV control command, 130

 DFILW subroutine, 541 Elementary function library,

 DGAMMA subroutine, 396 395-408

 DIRECTIVE option, ELSE statement, 304

 FORTRAN VS, 121 ELSECASE statement, 306

 DISPLAY I/O command, 359 ELSEIF statement, 305

 DEFAULT, 359 EMP modifier, FTN, 41

 FEEDBACK, 359 END exit, 335, 336

 FORMAT, 360 End-of-file exit, 336

 FRS, 360 ENDCASE statement, 306

 GRS, 360 ENDFILE FREAD option, 428

 LEVEL, 360 ENDFILE statement, 355

 LINE, 360 ENDIF statement, 303, 305

 MAP, 360 ENDINDENT statement, 321

 MESSAGE, 360 ENDLINE FREAD option, 429

 NAMELIST, 361 ENDLOOP statement, 308, 311

 PSW, 361 ENDPROCEDURE statement, 314

 TRACEBACK, 361 EQUATE I/O command, 361

 UNITS, 361 EQUC subroutine, 489

 YARDSTICK, 361 ERASAL subroutine, 482

 DISPLAY IF command, 198, 208, 209, ERASE IF command, 218, 256

 212, 233, 254 ERASE subroutine, 482

 DISPLAY statement, 67 ERF subroutine, 396

 DLGAMA subroutine, 396 ERFC subroutine, 396

 DLOG subroutine, 396 ERR exit, 335, 337

 DLOG10 subroutine, 396 ERR I/O option, 368

 DMAX1 subroutine, 397 ERR option,

 DMIN1 subroutine, 397 FORTRAN-H, 71

 DOCASE statement, 306 FTN, 22

 DSIN subroutine, 396 ERRMSG I/O option, 368

 DSINH subroutine, 396 Error exit, 337

 DSQRT subroutine, 396 ERROR FREAD option, 429

 DTAN subroutine, 396 Error messages,

 DTANH subroutine, 396 FORTRAN-G, 57-64

 DTB subroutine, 487 FORTRAN-H, 90-117

 DUMP subroutine, 555 I/O, 377-394

 DUMPLIST statement, 160 WATFIV, 137

 DVCHK subroutine, 188 Errors, 563

 FORTRAN-G, 45, 48

 EBCDIC option, FORTRAN-H, 73

 FORTRAN-G, 45 FTN, 21, 25

 FORTRAN-H, 70 I/O, 374

 ECHO FREAD option, 428 IF, 196, 213

 ECHO FWRITE option, 428 OVERDRIVE, 326

 ECHO IF SET option, 198, 277 EVEN FREAD option, 430

 EDIT format, 31 EXECUTE IF command, 257

 Index 617

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 EXECUTE WATFIV control command, FIPS, 122

 129 FIXED, 122

 Execution profiler, 565-580 FLAG, 122

 EXITLOOP statement, 312 FREE, 122

 EXITPROCEDURE statement, 315 GOSTMT, 123

 EXP subroutine, 396 ICA, 123

 EXPLAIN FTN option, 22 IL, 124

 EXPLAIN I/O command, 361 LANGLVL, 124

 EXPLAIN IF command, 258 LINECOUNT, 124

 EXT COMPILE option, 135 LIST, 124

 EXT WATFIV control command, 130 MAP, 125

 EXTEND subroutine, 480 NAME, 125

 Extended language features, OBJECT, 125

 FORTRAN-H, 26, 74 OPTIMIZE, 125

 WATFIV, 144 RENT, 126

 External routines, IF, 211, 234, SDUMP, 126

 266, 283 SOURCE, 126

 SRCFLG, 126

 FCDXI# subroutine, 396 SXM, 126

 FCVTHB subroutine, 343 SYM, 126.1

 FCXPI# subroutine, 396 TERMINAL, 126.1

 FDXPD# subroutine, 396 TEST, 126.1

 FDXPI# subroutine, 396 TF, 126.1

 FEEDBACK I/O option, 368 TRMFLG, 126.1

 File control subroutines (ANSI), VECTOR, 126.1

 537 XREF, 126.1

 FIND statement, 338 FORTRAN 66, 298

 FINDC subroutine, 490 FORTRAN 77, 298

 FINDST subroutine, 492 FORTRAN-G compiler, 17, 43-68

 FIPS option, FORTRAN-G error messages, 57-64

 FORTRAN VS, 122 FORTRAN-G errors, 45, 48

 FIVPAK subroutine, 184 FORTRAN-G options,

 FIXED IF SET option, 224 BCD, 45

 FIXED option, COND, 45

 FORTRAN VS, 122 DECK, 45

 FIXPI# subroutine, 396 EBCDIC, 45

 FLAG option, ID, 45

 FORTRAN VS, 122 LIB, 46

 FLOW IF SET option, 232, 277 LINE, 48

 FMT format, 316 LIST, 46

 FORMAT FTN option, 27, 29 LOAD, 46

 Formats, OVERDRIVE, 315 MAP, 47

 Formatted I/O, 341 NAME, 49

 FORTRAN I/O Library, 331-394 QUIT, 47

 FORTRAN verifier, 595 SCAN, 48

 FORTRAN VS compiler, 119, 119-126 SIZE, 49

 FORTRAN VS options, SM, 48

 AUTODBL, 121 SML, 48

 CHARLEN, 121 SOURCE, 48

 CI, 121 FORTRAN-H compiler, 17, 69-117

 DC, 121 FORTRAN-H error messages, 90-117

 DECK, 121 FORTRAN-H errors, 73

 DIRECTIVE, 121 FORTRAN-H options,

 618 Index

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 BCD, 70 STREAM, 441

 CALIGN, 74 TRIM, 442

 COMMENT, 71 TYPE, 442

 CSHIFT, 74 UC, 443

 DECK, 71 UPDATE, 443

 EBCDIC, 70 VERBOSITY, 443

 EJECT, 71 FREAD subroutine, 409-453

 ERR, 71 FREADB subroutine, 413

 ID, 71 FREADC subroutine, 422

 LINECNT, 75 FREE option,

 LIST, 71 FORTRAN VS, 122

 LOAD, 72 Free-format entry, IF, 201

 MAP, 73 Free-format I/O,

 NAME, 75 WATFIV, 148

 OPT, 75, 80-90 Free-format input, 409

 PRINT, 73 IF, 215, 286

 SCAN, 73 Free-format output, 417

 SOURCE, 73 IF, 206, 286

 STRUC, 73 FRWITE subroutine, 417

 TEST, 74 FRXPI# subroutine, 396

 XL, 74 FRXPR# subroutine, 396

 XREF, 74 FTN errors, 21, 25

 FREAD options, FTN I/O command, 362

 BUFFER, 426 FTN Input/Output, 28

 CONTINUATION, 427 FTN interface program, 17-42, 299

 DELIMITERS, 427 FTN options,

 ECHO, 428 BCD, 21

 ENDFILE, 428 CALIGN, 26

 ENDLINE, 429 COMMENT, 21

 ERROR, 429 COND, 21

 EVEN, 430 CSHIFT, 26

 IC, 430 DECK, 21, 40

 INFORMATION, 431 EDIT, 21, 40

 JUSTIFY, 432 EJECT, 22

 LASTDELIMITER, 432 ERR, 22

 LC, 432 EXPLAIN, 22

 LENGTH, 433 FORMAT, 27, 29

 LINENUMBER, 433 ID, 22

 LONG, 434 LIB, 22

 MTSLNR, 435 LINE, 27

 NAMES, 435 LIST, 23

 NOFDUB, 436 LOAD, 23, 40

 NOFILL, 437 MAP, 24

 NULL, 437 MTS, 24

 NUMBER, 437 NAME, 27

 ORMTS, 438 OPT, 27

 PREFIX, 438 OVER, 24, 27, 299

 QUOTE, 439 PRINT, 40

 REREAD, 439 QUIT, 24

 RESET, 440 SCAN, 25

 RESTORE, 440 SIZE, 28

 SAVE, 440 SM, 25

 SHORT, 441 SML, 25

 Index 619

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 SOURCE, 25, 41 AT, 208, 224, 234, 242

 STRUC, 25 ATTRIBUTE, 233, 244

 TEST, 26 BREAK, 207, 245

 XL, 26 CLEAR, 246

 XREF, 26 COMPILE, 195, 220, 223, 247

 FTNCMD subroutine, 333-334, COMPOSE, 194, 219, 223, 249

 371-373 CONTINUE, 227, 231, 251

 FTNG subroutine, 50 COPY, 197, 222, 252

 FTNH subroutine, 75 DESTROY, 198, 253

 FWRITB subroutine, 421 DISPLAY, 198, 208, 209, 212,

 FWRITC subroutine, 422 233, 254

 FWRITE options, EDIT, 200, 255

 CC, 426 ERASE, 218, 256

 ECHO, 428 EXECUTE, 257

 LC, 432 EXPLAIN, 258

 LINENUMBER, 433 GET, 210, 228, 231, 259

 MCC, 434 HELP, 260

 ORL, 438 IMMEX, 229, 231, 261

 TRIM, 442 INPUT, 262

 LIBRARY, 211, 263

 GAMMA subroutine, 396 LINK, 264

 GDINF subroutine, 557 LIST, 197, 265

 Generated labels, OVERDRIVE, 300, LOAD, 211, 266

 322 MTS, 267

 GET IF command, 210, 228, 231, 259 OUTPUT, 268

 GOSTMT option, REFERENCE, 233, 269

 FORTRAN VS, 123 RELEASE, 210, 228, 231, 270

 REMOVE, 208, 209, 271

 HELP I/O command, 362 REPEAT, 272

 HELP IF command, 260 RESTART, 205, 231, 273

 RUN, 203, 225, 274

 I/O error messages, 377-394 SET, 276

 I/O errors, 374 STEP, 209, 280

 I/O Library, STOP, 194, 281

 FORTRAN VS, 126.3 TRACE, 282

 IAND subroutine, 525 UNLOAD, 212, 235, 283

 IBCLR subroutine, 531 WORKFILE, 284

 IBITS subroutine, 533 IF command, IF, 201

 IBM format, 29 IF errors, 196, 213

 IBSET subroutine, 530 IF SET option,

 IC FREAD option, 430 AT, 276

 ICA option, BREAK, 276

 FORTRAN VS, 123 CMDCHAR, 276

 ICLC subroutine, 501 CMTCHAR, 277

 ID option, CONTCHAR, 277

 FORTRAN-G, 45 DEFCHK, 277

 FORTRAN-H, 71 ECHO, 198, 277

 FTN, 22 FIXED, 224

 IED subroutine, 501 FLOW, 232, 277

 IEDMK subroutine, 501 LC, 277

 IEOR subroutine, 526 LENCHK, 198, 278

 IF, 191-296 LENGTH, 277

 IF command, MAP, 278

 620 Index

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 MSGFILE, 278 LCOMC subroutine, 495

 MSGLVL, 213, 278 LCOMPL subroutine, 505

 PAR, 278 LENCHK IF SET option, 198, 278

 UC, 278 LENGTH FREAD option, 433

 WARN, 199, 278 LENGTH IF SET option, 277

 IF statement, 303, 305 LIB option,

 IFUNC subroutine, 184 FORTRAN-G, 46

 IGC subroutine, 493 FTN, 22

 IL option, LIBLIST COMPILE option, 135

 FORTRAN VS, 124 LIBRARY IF command, 211, 263

 Immediate execution, IF, 193, 202, Library routines, IF, 211

 214 LINE format, 30

 IMMEX IF command, 229, 231, 261 LINE option,

 IMVC subroutine, 501 FORTRAN-G, 48

 INC subroutine, 501 FTN, 27

 INCLUDE statement, LINECNT FORTRAN-H option, 75

 FORTRAN VS, 126.3 LINECOUNT option,

 INDENT OVERDRIVE option, 322 FORTRAN VS, 124

 INDENT statement, 321 LINENUMBER FREAD option, 433

 INFORMATION FREAD option, 431 LINENUMBER FWRITE option, 433

 INPUT IF command, 262 LINES COMPILE option, 134

 Input/Output, LINK IF command, 264

 FTN, 28 LINKF subroutine, 456

 INQUIRE statement, 356 LIST COMPILE option, 134

 Interactive FORTRAN, 191-296 LIST IF command, 197, 265

 Internal procedures, OVERDRIVE, LIST option,

 313, 314 FORTRAN VS, 124

 Internal statement number, 22, 45, FORTRAN-G, 46

 71, 300 FORTRAN-H, 71

 INVOKE statement, 314 FTN, 23

 IOC subroutine, 501 LIST OVERDRIVE option, 323

 IOR subroutine, 524 LIST statement, 321

 ISHFT subroutine, 528 List-directed I/O, 344

 ISHFTC subroutine, 532 LOAD FTN option, 40

 ISNOFF WATFIV control command, 130 LOAD IF command, 211, 266

 ISNON WATFIV control command, 130 LOAD option,

 ITR subroutine, 501 FORTRAN-G, 46

 ITRT subroutine, 501 FORTRAN-H, 72

 IXC subroutine, 501 FTN, 23

 LOADF subroutine, 466

 JUSTIFY FREAD option, 432 Logical operators, 501

 LONG format, 30

 KP COMPILE option, 134 LONG FREAD option, 434

 LOOP EXIT statement, 310

 LABEL OVERDRIVE option, 322 LOOP FOR statement, 309

 LAND subroutine, 505 LOOP statement, 308, 308

 LANGLVL option, Loop structures, OVERDRIVE, 308

 FORTRAN VS, 124 LOOP UNTIL statement, 310

 LASTDELIMITER FREAD option, 432 LOOP WHILE statement, 309

 LC FREAD option, 432 LOR subroutine, 505

 LC FWRITE option, 432 LOWERCASE I/O option, 369

 LC I/O option, 369 LPFX OVERDRIVE option, 323

 LC IF SET option, 277 LRECL modifier, FTN, 41

 Index 621

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 LXOR subroutine, 505 FORTRAN VS, 125

 ON ERROR GOTO statement, 160

 MAP IF SET option, 278 OPEN statement, 356

 MAP option, OPENW subroutine, 542

 FORTRAN VS, 125 OPT option,

 FORTRAN-G, 47 FORTRAN-H, 75

 FORTRAN-H, 73 FTN, 27

 FTN, 24 OPT= option,

 MAX0 subroutine, 397 FORTRAN-H, 80-90

 MAX1 subroutine, 397 Optimization, FORTRAN-H, 27, 75,

 MCC FWRITE option, 434 80-90

 MCC I/O option, 369 OPTIMIZE option,

 MINUSZERO I/O option, 348, 369 FORTRAN VS, 125

 MIN0 subroutine, 397 OPTION statement, 321

 MIN1 subroutine, 397 OR subroutine, 505

 MODAPW subroutine, 544 ORL FWRITE option, 438

 MODECHECK I/O option, 347, 369 ORL I/O option, 370

 MODIFY I/O command, 362 ORMTS FREAD option, 438

 MOVEC subroutine, 496 OUTPUT IF command, 268

 MSGFILE IF SET option, 278 OVER FTN option, 24, 27, 299

 MSGLVL IF SET option, 213, 278 OVERDRIVE errors, 326

 MTS FTN option, 24 OVERDRIVE preprocessor, 24, 27,

 MTS I/O command, 363 297-332

 MTS IF command, 267 OVERFL subroutine, 188

 MTS WATFIV control command, 130

 MTSLNR FREAD option, 435 PAGES COMPILE option, 134

 Multiple assignment statements, PAR IF SET option, 278

 144, 286 PARAMETER statement, 317

 MVBITS subroutine, 534 PAUSE statement, 355

 PDUMP subroutine, 555

 NAME option, PFX I/O option, 370

 FORTRAN VS, 125 PREFIX FREAD option, 438

 FORTRAN-G, 49 PREFIX I/O option, 370

 FORTRAN-H, 75 PRINT FORTRAN-H option, 73

 FTN, 27 PRINT FTN option, 40

 NAMEFMT I/O option, 350, 369 PRINTOFF WATFIV control command,

 NAMELIST I/O, 350 130

 NAMEOUT I/O option, 352, 369 PRINTON WATFIV control command,

 NAMES FREAD option, 435 130

 NEXTLOOP statement, 312 PROCEDURE statement, 314

 NOFDUB FREAD option, 436 PROCESS statement,

 NOFILL FREAD option, 437 FORTRAN VS, 126.2

 NOT subroutine, 527

 NPAR subroutine, 558 QUERY I/O command, 363

 NULL FREAD option, 437 QUIT I/O option, 370

 NULLBLANK I/O option, 347, 369 QUIT option,

 NUMBER FREAD option, 437 FORTRAN-G, 47

 FTN, 24

 Object module, QUOTE FREAD option, 439

 generation, 21, 23, 40, 45, 46,

 71, 72, 121 RCALL subroutine, 560

 name, 27, 49, 75 READ statement, 334-335, 338,

 OBJECT option, 339-340

 622 Index

 MTS 6: FORTRAN in MTS

 October 1983 Page Revised February 1988

 RECFM modifier, FTN, 41 SEMIFREE, 370

 REFERENCE IF command, 233, 269 UC, 370

 RELEASE I/O command, 366 UPPERCASE, 370

 RELEASE IF command, 210, 228, 231, UVCHECK, 370

 270 WARN, 371

 REMOVE IF command, 208, 209, 271 WRAPAROUND, 371

 RENT option, ZEROSUPPRESS, 371

 FORTRAN VS, 126 SET IF command, 276

 REPEAT IF command, 272 SETC subroutine, 497

 REREAD FREAD option, 439 SHFTL subroutine, 505

 RESET FREAD option, 440 SHFTR subroutine, 505

 RESTART IF command, 205, 231, 273 SHORT FREAD option, 441

 RESTORE FREAD option, 440 SIN subroutine, 396

 RETURN I/O command, 367 SINH subroutine, 396

 REW modifier, FTN, 41 SIOERR subroutine, 563

 REWIND statement, 354 SIZE option,

 REWIND subroutine, 562 FORTRAN-G, 49

 RFUNC subroutine, 184 FTN, 28

 RUN IF command, 203, 225, 274 SIZE WATFIV parameter, 129

 RUN=FREE COMPILE option, 134 SM option,

 FORTRAN-G, 48

 SAVE FREAD option, 440 FTN, 25

 SCAN option, SML option,

 FORTRAN-G, 48 FORTRAN-G, 48

 FORTRAN-H, 73 FTN, 25

 FTN, 25 SOURCE COMPILE option, 134

 SDS, 26, 43, 69, 74, 126.1, SOURCE FTN option, 41

 603-614 Source listing, 25, 48, 73, 126

 SDUMP option, OVERDRIVE, 300, 321, 323

 FORTRAN VS, 126 SOURCE option,

 Semi-free input, 342 FORTRAN VS, 126

 SEMIFREE I/O option, 370 FORTRAN-G, 48

 SET I/O command, 367 FORTRAN-H, 73

 ATTENTION, 368 FTN, 25

 ATTN, 368 SPACE statement, 320

 AUTODBL, 368 SPACE WATFIV control command, 130

 CARRIAGECONTROL, 368 SQRT subroutine, 396

 CC, 368 SRCFLG option,

 ERR, 368 FORTRAN VS, 126

 ERRMSG, 368 STAR routine, 178

 FEEDBACK, 368 STARTF subroutine, 471

 LC, 369 STEP IF command, 209, 280

 LOWERCASE, 369 STOP I/O command, 371

 MCC, 369 STOP IF command, 194, 281

 MINUSZERO, 369 STOP statement, 355

 MODECHECK, 369 STOP WATFIV control command, 130

 NAMEFMT, 369 Storage map, 24, 47, 73, 125

 NAMEOUT, 369 STREAM FREAD option, 441

 NULLBLANK, 369 STRUC option,

 ORL, 370 FORTRAN-H, 73

 PFX, 370 FTN, 25

 PREFIX, 370 Subroutine,

 QUIT, 370 FORTRAN-G, 50

 Index 623

 MTS 6: FORTRAN in MTS

 Page Revised February 1988 October 1983

 FORTRAN-H, 75 FORTRAN VS, 126.1

 SUBTITLE statement, 320 VERBOSITY FREAD option, 443

 Suspended execution, IF, 203, 227

 SXM option, WARN COMPILE option, 135

 FORTRAN VS, 126 WARN I/O option, 371

 SYM option, WARN IF SET option, 199, 278

 FORTRAN VS, 126.1 WARN WATFIV control command, 130

 Symbolic Debugging System, 26, 43, WATFIV compiler, 127-188

 69, 74, 126.1, 603-614 WATFIV control command,

 CHECK, 130

 TAN subroutine, 396 COMPILE, 129, 134

 TANH subroutine, 396 DATA, 129

 Target module, 301 EJECT, 130

 TERMINAL option, EXECUTE, 129

 FORTRAN VS, 126.1 EXT, 130

 TEST option, ISNOFF, 130

 FORTRAN VS, 126.1 ISNON, 130

 FORTRAN-H, 74 MTS, 130

 FTN, 26 PRINTOFF, 130

 TF option, PRINTON, 130

 FORTRAN VS, 126.1 SPACE, 130

 TIME COMPILE option, 134 STOP, 130

 TITLE statement, 320 WARN, 130

 TRACE IF command, 282 WATFIV error messages, 137

 TRACE OFF statement, 67 WATFOR, 163

 TRACE ON statement, 66 WATFOR compiler, 127

 TRACEBACK I/O command, 371 WATSUB subroutine, 183

 TRAPS subroutine, 186 WORKFILE IF command, 284

 TRIM FREAD option, 442 WRAPAROUND I/O option, 346, 371

 TRIM FWRITE option, 442 WRITE statement, 334-335, 338,

 TRMFLG option, 339-340

 FORTRAN VS, 126.1 WRTRW subroutine, 547

 TRNC subroutine, 498

 TRNST subroutine, 499 X modifier, IF, 218

 TYPE FREAD option, 442 XCTLF subroutine, 461

 XL option,

 UC FREAD option, 443 FORTRAN-H, 74

 UC I/O option, 370 FTN, 26

 UC IF SET option, 278 XOR subroutine, 505

 Unformatted I/O, 348 XREF option,

 UNLDF subroutine, 473 FORTRAN VS, 126.1

 UNLOAD IF command, 212, 235, 283 FORTRAN-H, 74

 UNPACK subroutine, 184 FTN, 26

 UPDATE FREAD option, 443 XREF OVERDRIVE option, 323

 UPPERCASE I/O option, 370 XTEND2, 480

 UVCHECK I/O option, 347, 352, 370

 Z modifier, IF, 218

 VECTOR option, ZEROSUPPRESS I/O option, 347, 371

 624 Index

 Reader’s Comment Form

 FORTRAN in MTS

 Volume 6

 October 1983

 (February 1988 Reprint)

 Errors noted in publication:

 Suggestions for improvement:

 625

 Your comments will be much appreciated. Send the completed form to the

 Computing Center by Campus Mail or U.S. Mail, or drop it in the

 Suggestion Box at the Computing Center, NUBS, or UNYN.

 Date ────────────────────

 Name ───

 Address ──

 ──

 ──

 Publications

 Computing Center

 University of Michigan

 Ann Arbor, Michigan 48109

 626

 Update Request Form

 FORTRAN in MTS

 Volume 6

 October 1983

 (February 1988 Reprint)

 Updates to this manual will be issued periodically as errors are noted

 or as changes are made to MTS. If you would like to have these updates

 mailed to you, please submit this form.

 Updates are also available in the files at some of the Computing

 Center’s larger public stations such as NUBS and UNYN; there you may

 obtain any updates to this volume that may have been issued before the

 Computing Center receives your form. Please indicate below if you want

 to have the Computing Center mail you any previously issued updates.

 Name ───

 Address ──

 ──

 ──

 Previous updates needed (if applicable):──────────

 Send the completed form to the Computing Center by Campus Mail or

 U.S. Mail, or drop it in the Suggestion Box at the Computing Center,

 NUBS, or UNYN. Local users should give a Campus Mail address.

 Publications

 Computing Center

 The University of Michigan

 Ann Arbor, Michigan 48109

 Users associated with other MTS installations (except the University of _______________________

 British Columbia) should return this form to their respective installa-

 tions. Addresses are given on the reverse side.

 627

 Addresses of other MTS installations:

 Publications Clerk

 352 General Services Bldg.

 Computing Services

 The University of Alberta

 Edmonton, Alberta

 Canada T6G 2H1

 Information Officer, NUMAC

 Computing Laboratory

 The University of Newcastle upon Tyne

 Newcastle upon Tyne

 England NE1 7RU

 Rensselaer Polytechnic Institute

 Documentation Librarian

 310 Voorhees Computing Center

 Troy, New York 12181

 Simon Fraser University

 Computing Centre

 User Services Information Group

 Burnaby, British Columbia

 Canada V5A 1S6

 Wayne State University

 Computing Services Center

 Academic Services Documentation Librarian

 5925 Woodward Ave.

 Detroit, Michigan 48202

 628

