
 1

 Classification: 000/0
 Date: 5/1/78
 Doct=1 Vers=2

 Lecture 1

 The first section covers pieces and the relationships
 between system components, the basic interface, and some common
 tables. This section will not cover the internal details of any
 one interface or any one piece; they will be covered later.
 Thus, for example, some of the SVCs in the task-to-supervisor
 interface will be mentioned, but not necessarily all of them.

 Looking at the system as a whole, the first question is
 "who’s in control?" Usually the answer is, "The supervisor."
 But the supervisor, doesn’t seem to have any entry point--it
 never begins and ends. "How does the supervisor get entered?"
 An I/O interrupt or a program interrupt occurs. Who causes the
 interrupts? A task that’s running. Who starts a task? It’s the
 supervisor. It’s the chicken-egg problem. Essentially, the
 whole system is interrupt-driven. Someone initiates things,
 usually the operator pressing the request key on the console
 typewriter.

 This section is an overview of what could be called the
 Steady State System. In other words, it is assumed that the
 system is there, loaded and running. How the system is built,
 how it is loaded from disk once it has been built, and things
 like that will be covered later.

 Figure 1 is the picture around which discussion in this
 section will revolve. Most of the items here are covered in
 detail in later sections. For now they will be treated as black
 boxes and only the connections discussed. The connecting lines
 are the interfaces, and the numbers on each line are solely to
 identify the interface for discussion.

 At the bottom of this picture is the hardware machine.
 Above this is a box called supervisor. Note that this picture is
 carefully stratified in a number of manners. At this point, note
 the boundary indicated at the left between supervisor state at
 the bottom and, above it, problem state. Problem state and
 supervisor state refer to the hardware definition of the
 supervisor state and problem state for the 360 and 370.

 This means that the supervisor, or anything else below that
 line, runs in supervisor state and nobody else does. That,
 essentially, is the definition of the supervisor, although one
 usually considers the supervisor to be a particular assembly
 listing. There are, however, other things below the line.
 There’s a series of what will be called supervisor subroutines
 which the supervisor causes a task to call. For example, there’s
 one called JBRP, which stands for Job Request Processor, called
 in the process of task initiation. The interface (2) between the
 supervisor and the supervisor subroutines is that the supervisor

 2

 causes the task to start there before going about its business by
 virtue of setting the task’s PSW to the entry point of the
 subroutine before dispatching the task. There’s another entity
 which lives below the line which is hard to classify exactly
 where it belongs in the system. This is the machine check
 recovery code which as its name suggests, gets control when a
 machine check occurs.

 The interface labelled "1" between the supervisor and
 hardware is well defined by the Principles of Operations manual
 and it means that the supervisor owns the PSWs for the old and
 new various interrupt states. It gets entered whenever an I/O
 interrupt or external interrupt occurs, etc.

 Above the supervisor in this diagram are the tasks in the
 system. In order to describe the interface and say a few things
 about the historical wording or terminology that occurs, a simple
 task will be discussed first.

 The task used will be the REWIND task, and the interface
 between it and the supervisor (labelled "3") is the one being
 discussed. [At this point a slight digression is necessary.
 Back at the time this all started (1966), we obtained from
 Lincoln Labs a small supervisor called LLMPS which managed jobs
 of this variety. The terminology they picked used "job program"
 to represent the code in the machine, and "job" to represent an
 activation of that, and there may be several activations of that
 if it’s a re-entrant job program. Since then, computer
 terminology has evolved so that normally "task" is used for
 "job". But for the purposes of this manual, jobs and tasks are
 used interchangeably, for terminology.]

 On this interface (3) there are three areas to cover. One
 is getting started, in other words, how does it start a task?
 Another is how it obtains services while it’s running, and third
 is how it terminates.

 This discussion is applicable to all tasks in the system,
 although the example is relatively simple. MTS has a job
 program. It’s started many times and it has the same interface,
 although the job program is larger than most. The main interrupt
 that starts everything is the request button on the operator’s
 console typewriter, pressed because the operator wants to start
 something. Every line entered by the operator is a request to
 start a task. There is no command language at the supervisor
 level--it only starts jobs.¹ The first thing that the operator
 types in is the name of the job he’s starting. As a slight
 digression, one might ask how do you stop a task, once it’s
 started? There’s a job called STOP. If the operator wants to
 stop a job he presses the REQUEST button and enters "stop" and a

 ¹ That’s actually not quite the truth. Lines beginning with $ _____
 are passed to HASP as commands, and lines beginning DIS,MOD,SE,
 or TRCTP are swallowed by the supervisor as actual supervisor
 commands. But everything else starts a job.

 3

 parameter designating what is to be stopped. This starts the
 STOP job whose purpose is to stop another job. Hopefully, it
 gracefully stops by itself to eliminate cascading problem?

 To get back to starting a job, the first thing the
 supervisor does is allocate a job table entry for this
 invocation. This is a fixed-length area where all variable
 information pertaining to a job (or else a pointer to same) is
 kept. For example, the job’s registers are stored here when it
 is not executing. At the front of the job table are stored task
 number and the 8-character task name (MTS, HASPLING,...). [A
 task number of zero means this job table entry is not in use.]

 Two items relating to the initiation of jobs must now be
 discussed. The Job Header is information attached to the front
 of the job program. The Job List Entry is essentially a "symbol-
 table" entry to the list of job programs in the system specifying
 the name of the job program and where its code is to be found.

 Each job program is prefixed by a job header. The job
 header specifies the location in the job program of the first
 instruction to be executed, the number of preallocated devices
 and buffers which the job requires, the device type required for
 each device, and the size of each required buffer. The format of
 the job header is:

 4

 ┌─────────────────────────────────┐
 | |
 |Location of First Job Instruction|
 | |
 └────────────────┌────────────────┐ | ─ |
 | | |
 | NJBDVU | NJBBFU |
 | | |
 └────────────────┘────────────────┐ | ─ |
 | |
 |Names of required Devices |
 | (4 Bytes) |
 | ... |
 | ... |
 | ... |
 | |
 └─────────────────────────────────┐ | |
 | |
 |Sizes of Required Buffers |
 | (4 bytes) |
 | ... |
 | ... |
 | ... |
 └─────────────────────────────────┘

 NJBDVU = Number of Devices Used

 NJBBFU = Number of Buffers Used

 An illustrative 360 coding sequence of a job using two devices
 and three buffers is shown below.

 JOB START 0
 DC A(BEGADR)
 DC H’2’
 DC H’3’
 DC CL4’PTR’
 DC CL4’7TP’
 DC F’128’
 DC F’2048’
 DC F’2048’
 .
 .
 .
 BEGADR DS 0H

 The number of required devices are specified in the field
 NJBDVU and the number of required buffers are specified in the
 field NJBBFU. The device types for each required device must be
 given in the full words following the word specifying the number
 of devices. The size of each required buffer must be given in
 the full words following the device types. Device types,
 specifying the device requirement, are four characters, left
 justified, with trailing blanks.

 The order in which the device names are specified determines

 5

 a logical device number (LDN) for each device, where the first
 device specified is logical device one. When a job program
 issues a supervisor call, the device to which the call is
 associated is indicated by the logical device number. In this
 way a job program can be written independently of the physical
 address of a device.

 This preallocation of devices and storage is used only by
 small jobs (such as REW). The MTS job-program obtains its
 devices and storage dynamically. The MTS job header specifies no
 preallocation. Thus, all items entered by the operator after
 "MTS" are considered parameters and are stashed away for MTS to
 look at when it’s given control.

 Entry to a Job Program _____ __ _ ___ _______

 When a job program is successfully initiated from the
 console typewriter, control is passed to the first instruction as
 specified in the Job Header. Three locations in the Job Table
 associated with the job are placed in General Registers 0, 1, and
 2: General Register 0 contains the address of the pseudo Sense
 Switches, General Register 1 contains a pointer to the list of
 buffer addresses, and General Register 2 contains a pointer to
 the list of input parameters. If an input parameter is
 alphanumeric, it is right justified with leading blanks. If an
 input parameter is a decimal integer, it is converted to a four
 byte signed binary number. The list of input parameters is
 terminated with a fence of FFFFFFFF. If there are no input
 parameters, the first word of the parameter list will be the
 fence.

 The Job List ___ ___ ____

 For each Job which is to be run under the supervisor, there
 must be an entry in the Job List. The job List consists of a
 collection of fixed-length (16 byte) Job List Entries. The Job
 List Entry indicates whether the job is re-entrant and whether it
 runs relocatable, and gives the location of the job. Each Job
 List Entry is assembled as a separate subprogram, and contains
 the entry name of the job program as an Extern in the Job List
 Entry subprogram. The format of a job list entry is:

 6

 ┌──────────────────────────────────────┐
 | 8 CHARACTER |
 | JOB NAME |
 └────────┌─────────┌───────────────────┐ | ─ ─ |
 |VERS NO | BITS | JOB NUMBER |
 └────────┘─────────┘───────────────────┐ | ─ ─ |
 | JOB PROGRAM ADDRESS |
 └──────────────────────────────────────┘

 BIT 0 INDICATES THE JOB IS RE-ENTRANT
 BIT 1 INDICATES THE JOB IS RELOCATABLE

 The job list entry for the REW job is:

 ARM5 START 0
 EXTRN JBREW ENTRY
 DC CL8’ REW’ JOB NAME
 DC C’1’ VERSION
 DC X’80’ REENTRANT
 DC H’0’ NUMBER
 DC A(JBREW) ENTRY ADDRESS
 END

 The byte labeled Version can be used to indicate that a
 modification has been made to the job program. In the REW coding
 above, Version 1 is indicated. The "Bits" byte specifies whether
 the job is re-entrant and/or relocatable. Job programs may be
 written as re-entrant, whereby a single copy of a job program can
 be active for more than one task. If a job is re-entrant, the
 left-most bit of the "Bits" byte is set to 1. If the job-
 program’s activation is to run in relocate mode, the second left-
 most bit is set to 1. MTS is an example of a job-program which
 is both reentrant and runs relocatable.

 Associated with every active job is a task number which is
 used to identify the particular activation of the job throughout
 the system. If a job is not re-entrant, it can be active for
 only a single task. To indicate that a non re-entrant job is
 active, the task number is inserted in a field of the job list
 entry.

 The Job List Entries are all collected together and
 sandwiched between a first-job (JOBLST), which defines the
 beginning of the "table", and a dummy last job (LSTJOB). The
 dummy last job has a blank name and version, and an all-ones job
 program address:

 LSTJOB START 0 LAST ENTRY IN JOB LIST
 DC CL9’ ’
 DC 7X’FF’
 END

 One thing should be mentioned about the parameter scan at
 this point. There are 14 words in the job table for parameters.
 The supervisor scans the input line from the operator; it doesn’t
 just put four characters into a word in the job table; it

 7

 actually scans for blanks as delimiters. If it finds (between
 the blanks) any characters that are non-numeric it assumes it’s a
 character string and it takes the last four characters and puts
 it in the word (right-justified with leading blanks). If it
 finds something that is all numeric, assumes it’s a decimal
 number and it converts it, and puts it into the next word of
 parameters. If there are long names (such as *INIT) to feed to
 the program that’s receiving these, such as MTS, they can’t be
 entered directly. If five characters are typed in a row, the
 last four characters, ("INIT") are stuffed into the parameter.
 The characters must be separated:
 *INI T,,,

 The supervisor will put the characters into two contiguous words
 in the parameters. Trailing commas are used since MTS treats
 these as FDname delimiters. Trailing commas on the "T" are
 needed because otherwise the supervisor, (bless his heart), would
 right-justify it with leading blanks. [Another anomaly, device
 names in the system are left-justified with trailing blanks.
 Device types are right-justified with leading blanks.] This
 splitting is rarely used because it’s such an annoyance that most
 of the pertinent file names are four characters, like *RST. [The
 string that HASP issues to start up an MTS batch job is rather
 astonishing.]

 When the job is started the base register is established,
 and it suddenly finds itself at the front of its code. Three
 registers are set up: GR0 points to switches in the job table,
 GR1 points to the series of words which keep track of the storage
 buffers requested, and GR2 points to the first word of the
 parameters. Requested devices are referred to as logical devices
 1, 2, and 3, for example. It’s strictly in order of which they
 were specified and hence, the order of the parameters.

 A job gets services -- that’s the line marked "3" -- from
 the supervisor, by issuing SVC instructions, which cause an
 interrupt in the supervisor. That’s the only way to get to the
 supervisor. The supervisor then processes the request and
 restarts the task. Anything that the task wants the supervisor
 to do is done by means of an SVC. There are about 100 SVCs now.
 The original Lincoln Lab supervisor has 20. A couple have since
 disappeared, and things have grown.

 A job terminates by using an SVC. There’s an SVC EXIT which
 says "I’m done." The supervisor calls a subroutine to clean up
 things, release things, and so forth. There’s another SVC to
 intercept job stoppages (which includes SVC EXIT). MTS uses this
 SVC for maintaining control of things. Therefore, issuing an SVC
 EXIT does not always mean the job is stopping. For example, if
 the subroutine SYSTEM is called, the the first thing it does is
 issue an SVC EXIT, because the code to save all the registers,
 change state, and everything else is rather complex. Thus, there
 is only one copy of the code, and the first thing that happens on
 entry to SYSTEM is an SVC EXIT. The next thing MTS knows is that
 it is entered through the intercepted-exit section of code, and
 it finally discovers that someone did an SVC EXIT with a

 8

 particular address. Therefore, it calls SYSTEM.

 HASP communicates in approximately the same way. HASP is
 initiated by the operator typing HASP and giving as parameters,
 possible drive names for disk packs, which theoretically should
 have disk packs mounted on those drives. When HASP starts off,
 it actually does a little more than the standard "3" interface
 and issues an SVC to tell the supervisor that HASP is running.
 This SVC gives the location of some special words in HASP since
 the supervisor sometimes has to make a special entry to HASP. If
 the operator types in a line beginning with a dollar sign, it’s
 considered a command to HASP and the supervisor just passes it on
 by chaining it to a chain of messages for HASP to process,
 setting the appropriate flag bytes and posting HASP. If HASP is
 well behaved, it will look at the messages. So there’s a slight
 additional interface here. That will be discussed more in the
 sections about HASP and HASPLING.

 It was decided at the time HASP was being installed, that we
 would create a little entity called a HASPLING. HASP is not re-
 entrant. It multiprograms within itself, but there’s only one
 HASP job running. It has lots of code that represent the "job
 programs" and it has something akin to a job table, which are
 called processor control elements. The HASPLING is a job program
 which is re-entrant, and one is activated for every device that
 HASP has doing things for it; i.e., one for each reader, printer,
 punch, remote SDA line, etc. There’s also one for each HASP disk
 and one to handle messages to the operator’s console (from HASP
 to the operator’s console). The interface between the HASPLING
 and the supervisor is the standard one (3), and consists mainly
 of an SVC to start an I/O operation and a SVC to wait until the
 I/O operation is complete. HASP is the one that starts the
 HASPLING, by issuing an SVC which starts a task. The
 communication between the two (interface "4") is that HASPLING
 gets passed as parameters in the job request, the name of the
 device to manage and the location in HASP of some control
 information, a lock byte, and some pointers. This lock byte and
 buffer pointers is how the HASPLING gets its information of when
 it’s supposed to write things out, or read things in. And that’s
 also how HASP tells the HASPLING to go away, if it’s through with
 it.

 When the HASPLING has nothing to so, it does a variant of
 the SVC WAYT type of wait, SVC SLEEP. Both types wait for some
 bits to change to 0, and a return from that SVC does not occur
 until all the bits specified are 0. But for the SVC WAYT, the
 job has to stay on the CPU queue, and every time the supervisor
 goes to dispatch anybody, it checks those bits to see if they
 have changed, which is expensive. So, the SLEEP and AWAKE
 mechanism was generated. The SVC SLEEP says "we’re doing a WAYT
 type of suspension, but take me off the CPU queue because someone
 will do an explicit type of interrupt to get me started again".
 When HASP wants to initiate something on a HASPLING it takes the
 task number and it does an SVC AWAKE which tells the supervisor
 to put that task back into the CPU queue. It also zeros the WAYT
 byte, of course, before it can go on.

 9

 The PDP (Paging Drum/disk Processor) interfaces with the
 supervisor (interface 10). It runs in absolute mode; it can’t
 page itself. It runs in problem state as an absolute task, so it
 behaves like any other task, except that for efficiency there are
 some special things done in the supervisor. It uses a lot of
 standard SVCs, but there are some added exclusively for
 interfacing with the paging drum processor. It has a number of
 SVC’s only it uses because it has to get information about where
 the queues are, which the supervisor is keeping. It’s not re-
 reentrant.

 There’s also the JOBS program (now called SSRTN) which is
 really an external scheduler to the system. HASP and MTS get
 information from it, but don’t pass information to it (interface
 6). There is a region in storage with bits and numbers which
 HASP looks at to decide to start a new batch job, and MTS looks
 at for limited service state determination. The Jobs program
 performs the external scheduling (i.e., when should a task be
 started), and the supervisor does the internal scheduling.

 The right hand side of Figure 1 shows the separation between
 absolute and relocatable. An interface between absolute and
 relocatable is necessary, and complex. This interface is
 supervisor assisted, in the sense that there’s a series of SVC’s
 to perform the moving across that boundary. This interface is
 less used now that HASP and the HASPLINGs are relocatable.

 Proceeding further in Figure 1, on top of MTS, we have the
 collection of the device support routines. These do all the I/O
 to and from the MTS tasks, particularly terminal support, tape
 support, etc. That’s the interface labeled "7". There’s also
 another set of interfaces, the Command language Subsystem
 interface (12). One of these interfaces is the user program. A
 CLS is just a program but each CLS can be run independently of
 the others. For example, there’s no distinction between the
 editor and a user program. The editor is written as a program,
 and it runs as a program but independently from the user
 execution program. A special case is one CLS, namely SDS, which
 has hooks into the user program CLS, since it has to monitor what
 is going on. There are a number of real CLS’s plus two more.
 Level 0 CLS is MTS itself, the command mode, 1 is the user
 program, and 2 on up are the actual CLSs. (Editor, SDS,...) For
 symmetry’s sake, it was made all the same.

 Another interface is with the file routines. MTS calls the
 file DSR which communicates with the file routines (interface 8).
 They are designed so they could be called by an absolute task,
 although that’s not done yet. MTS also calls some of the file
 routines directly (interface 9).

 The loader is also called from MTS (interface 11), although
 it’s also called when running the system from scratch and there
 isn’t anything around but the boot-strap loader to load the
 loader. Then the loader loads everyone else. The loader
 interface is such that anybody can call it since it is entirely

 10

 self-contained. The loader looks at what it’s given, decides if
 it’s a good record and shoves it into storage.

 For user programs, there are some SVC’s that the user
 program will issue by means of a macro. These are the time of
 day, etc. But generally this type of interface is not used very
 much. The majority of supervisor services are obtained through
 MTS. (The DSR’s however call the supervisor.)

 This represents the minimum overall view of the system.
 Eleven subcomponents and several other things are included.

 11

 | ┌────┐┌─────┐ |
 | ┌────────────┐HASP||OTHER| | |
 | | ┌─────┐ ┌┘────┘┘─────┘┐ | ─ ── ─
 | | | | | | RELOCATABLE
 | | |CLSs | | DSRs | |
 | | | | | | |
 | | └────┌┘ └─┌────┌────┌─┘┌─┐ ┌────┐ | ─ ─ ─ ─
 | ┌┘┐ ┌┘─┐ ┌┘┐ |FILE└──┐8└─┐FILE| | ─ ─ ─ | | | |
 | |5| |12| |7| └────┘ └─┘ | | |
 | └┌┘ └─┌┘ └┌┘ |RTNS| | ─ ─ ─
 | ┌────────┐ ┌──┘─┐ ┌┘───┘┐ ┌─┐| | | ─ ─ ─
 | | |┌─┐| | | └────────────┐9└┐ | | | | ||
 | |HASPLING└┐4└┐HASP└─┐ | MTS |┌──┐┌──────┐└─┘└────┘ | || || |
 PROBLEM | |└─┘| | | | └┐11└┐ | V || ||
 STATE └───┌────┘ └─┌──┘ | └┌──┌─┘└──┘|LOADER| ─────── ─ ─ ─ ─
 | | | ┌┘┐ ┌┘┐ | | | A ─ ─
 | | | |6| |6| | └──────┘ |
 | ┌──────┐ | | └┌┘ └┌┘ | ABSOLUTE ─ ─
 | ┌┘─────┐| | | | ┌───┘┐ | ┌───┐ | ─ ─
 | |OTHERS└┘ | | | | | | | | ┌────┐ | | | | |
 | ┌┘─────┐| | | └─┐JOBS| | |PDP| |SUPR| ┌───────┐ | ─ |
 | |REWIND└┘ | | | | | | | |SUBR| | | | |
 | └─────┌┘ | | └─┌──┘ | └─┌─┘ └─┌──┘ |MACHINE| | ─ ─ ─ ─
 V ┌┘┐ ┌┘┐ ┌┘┐ ┌┘┐ ┌┘┐ ┌┘─┐ ┌┘┐ | | | ─ ─ ─ ─ ─ ─ ─
 ─────── |3| |3| |3| |3| |3| |10| |2| | CHECK | |
 A └┌┘ └┌┘ └┌┘ └┌┘ └┌┘ └┌─┘ └┌┘ | | | ─ ─ ─ ─ ─ ─ ─
 | ┌┘────────┘──────────┘────────┘────┘───┘┐ | |HANDLER| | ─ ─ ─ ─ ─ ─
 | | | | | | |
 | | SUPERVISOR └─────┘ | | | |
 SUPERVISOR| | └───────┘ |
 STATE └─┌─────────────────────────────────────┘ | ─
 | ┌┘┐ | ─
 | |1| |
 | └┌┘ | ─
 | ┌────┘────────────────────── . . . | ─
 V | HARDWARE V

 FIGURE 1

 1

 Classification: 100/4
 Date: March 2, 1977
 Doct=11 Vers=1

 PRINTING JOBDUMPS AND SUPERDUMPS

 The program in the file MTA:PRINTDUMP is used to print the
 jobdump and superdump tapes produced by the supervisor.
 Superdumps are taken automatically by the supervisor when it
 detects a fatal error within itself; all of real memory is
 written on the tape and system operation terminates. Jobdumps
 are usually initiated by operator request (typing "JOBDUMP n" to
 force a dump of job number n); all of real memory and virtual
 memory are written on the tape and system operation resumes.

 System dump tapes are 9-track and labeled "DUMP". This
 program reads the tape on unit 1, reads commands from SCARDS, and
 prints the dump on SPRINT. SPRINT should generally be assigned
 to a printer (or *PRINT*) since large amounts of output are
 usually produced.

 Output is controlled by commands as follows. In the command
 descriptions, "x", "y", and "z" may be a hex address, any symbol
 defined in the system symbol table (if the dump includes virtual
 memory), or a sum of either of these. On the "C" or "F"
 commands, if "ST=segt" is given, all addresses are relocated
 using the segment table at real address "segt." ____

 C x y Dump real memory from hex address x to y or ____
 C x one word at x (form 2).

 V For jobdumps only, dump job table (and
 V x related tables) and virtual memory pages x
 V x y through y or x only for the job which was
 dumped. If neither x nor y is given the
 job’s VM is dumped from page 400 to page FFF.
 Either x or y may be either a page number or
 an address, but dumping always begins and
 ends on a page boundary.

 V MTS Dump job table and virtual memory, formatted
 assuming an MTS task.

 P Dump the supervisor I/O, CPU, and WAYT POOLS.

 S Dump the supervisor error information and
 PSAs of all active CPUs.

 S F Dump the supervisor error information, PSAs,
 TABLES, and all pages allocated to the
 supervisor.

 S C Check supervisor storage and dump all blocks
 that are not part of a page belonging to the

 2

 supervisor, or which are not accounted for.
 A block is accounted for if it is on a free
 space chain or if it is pointed to by some
 field in a job table or device table. Note
 that many legal blocks will appear to be
 unaccounted for.

 J Dump the job table (and related tables), but
 J n not virtual memory, for the job which was
 J ALL dumped, for job number n (form 2) or for all
 jobs (form 3).

 T Dump the supervisor trace table.

 F x y Follow a chain of storage blocks and dump
 F x y z each one. X is the location of the pointer
 to the first block (not the location of the ___
 first block), y is the length of each block,
 and z is the displacement from the front of a
 block to the pointer to the next block
 (assumed 0 if not given).

 MTS Return to MTS. $RESTART will return to
 PRINTDUMP.

 U params Same parameters and output as the UNITS
 operator command.

 L Print part of the LOADCLAS output giving a
 count of the number of tasks in each of the
 states that TASKSTAT recognizes.

 I cmd Dumps the in core file table in a form
 similar to TABLMOD. "cmd" must be a TRACE,
 VERIFY, DUMP, LSTAT, or FIND command in a
 form suitable for TABLMOD.

 Any input line beginning with a "$" is
 assumed to be an MTS command and is passed to
 MTS to be executed.

 All commands begin in the first column
 with parameters separated by one or more
 blanks.

 Attention interrupts are handled as
 follows: a message is printed on SERCOM
 acknowledging the interrupt. If PRINTDUMP is
 doing something that can’t be interrupted, it
 will print a message saying so and continue.
 A second interrupt will be processed by MTS.
 When PRINTDUMP can be interrupted it will
 prompt for an input line from GUSER. This
 input line can be RES to continue the command
 interrupted, or any PRINTDUMP command to
 terminate it.

 3

 Example (in batch):

 $MOUNT DUMP17 9TP *DUMP* VOL=DUMP
 $RUN MTA:PRINTDUMP 1=*DUMP*
 TRACE
 VM
 CORE 7F10 A768

 Classification Codes: 110/1, 161.C/1 1
 Date: 6/22/72 Doct=5 Vers=1
 Author: Jim Hamilton

 MTS-UMMPS Storage Allocation and Selected Applications _________ _______ __________ ___ ________ ____________

 I. General Requirements
 A. Must be completely general, i.e. must provide variable
 size blocks

 B. Since storage allocation structures exist for as long as
 the system is up, storage must never be permanently
 "lost" due to causes such as fragmentation. Hence most
 structures are maintained in increasing location order.

 C. Must obviously be application independent, hence such
 things as garbage collection, reclaimation, compaction,
 etc. are impossible. The only relocation possible is
 that provided by the DAT hardware, hence the mechanisms
 will often be page-oriented.

 II. Storage Allocation for Supervisor Subroutines

 A. Requirements and properties

 1. Speed - must be very fast, for commonly used block
 sizes (e.g. PCBs) because of heavy usage

 2. Must never run out of space, since the system will
 crash if this happens; paging, plus some care in
 coding, avoid this problem

 3. Supervisor code is "dependable", so little error
 checking need be done.

 4. Storage demands are, in a sense, fixed, since the
 supervisor itself is a closed system (requests from
 tasks are considered separately in the next
 section).

 B. Pools

 1. For very fastest allocation of fixed size (8 byte)
 entries for

 a. CPU Queue

 b. WAYT Queue

 c. I/O Queue

 2. Separate, pre-allocated areas with space for 225 of
 each type

 3. Free space is simple linked list, done with offsets

 4. Use of pool index allows "pointers" to fit in one
 byte

 2

 C. The Page Chain

 With the exception of the pools, all dynamically
 allocated storage is taken from, and occasionally
 returned to, a page chain which is just a simple linked
 list of available pages. The page chain is constructed
 at initialization. All other available storage
 structures are initially empty.

 The Supervisor never deals with blocks of real core
 larger than a page.

 D. GRAB-FREE Subroutines

 1. For every block size less than SVCASPEC (currently
 96 bytes) there is a special chain containing blocks
 of the corresponding size. Calls to FREE always
 return small blocks to these chains, which are kept
 in LIFO order. Calls to GRAB will take a block from
 the proper chain if it is non-empty; otherwise it is
 allocated as described in 2.

 2. There exist two chains of arbitrary size blocks,
 maintained in increasing location order to allow
 recombination. One is for blocks smaller than
 SVCABIG (currently 1024 bytes) and the other for
 larger ones.

 All blocks larger than SVCASPEC are returned to
 these chains, blocks of any size less than a page
 are allocated from them, using a first fit
 algorithm, and splitting blocks when necessary.

 3. If a block of the desired size or larger is not
 available, take a page from the page chain if there
 are any, and add it to the large or small chain
 according to size of the request, and try again.

 4. If the page chain is empty, begin moving blocks from
 the special chains for small blocks to the arbitrary
 size chains, and continue until a large enough block
 has been found, or until all are moved. The latter
 case is followed by a superdump.

 5. An example storage layout is shown in Figure 1.

 III. Storage Allocation at the Task Interface

 A. SVC GETBUF, GETSEGX, and FREEBUF

 1. Absolute tasks (GETBUF):

 a. Maximum of 4 buffers allowed

 b. Maximum size one page

 3

 c. Does some error checking, then calls GRAB or
 FREE

 d. The address and length of the allocation are
 recorded in a 32 byte table pointed to from the
 job table (4 buffers X 8 bytes = 32 bytes).
 This is done so that the storage can be
 recovered if the task goes west.

 2. Relocatable Tasks

 a. GETBUF implies segment 4, GETSEGX specifies any
 of 3 through 8

 b. All requests rounded up to a page boundary

 c. For each task there is a PCB (Page Control
 Block) chain maintained in increasing virtual
 address order, one PCB per allocated virtual
 page.

 d. Supervisor scans PCBs until it finds a large
 enough hole in the desired segment, then GRABs
 the required number of PCBs (24 bytes each),
 initializes them and inserts them in the chain,
 it never explicitly allocates real core. It
 implicitly references the first page, however,
 into which it stores the length of the
 allocation.

 e. For FREEBUF the PCB chain is scanned for the
 PCBs describing the freed region. The real core
 pages, if any, are put back on the page chain,
 and the PCBs are removed from the task chain,
 and the Page Out Queue if necessary, and put on
 the Release Page Queue, where we will leave them
 for this discussion. Actually the FREEBUF
 routine is horrendously complex (more so than
 any other routine described here) but most of
 its complexity is irrelevant to us.

 B. SVC GETSC, FREESC

 1. For absolute tasks only.

 2. These go directly to GRAB and FREE after checking to
 be sure there is at least one page on the page
 chain.

 C. SVC GETRP, FREERP

 1. Used only by the PDP to get or release pages of real
 core to be attached to PCBs.

 2. GETRP just takes a page from the page chain if there

 4

 are at least two pages there.

 3. Otherwise it scans the small and large chains of
 supervisor pages and moves any full page blocks it
 finds over to the page chain. If it found any, it
 tries again. Otherwise it gives up, and the PDP
 will try agian later.

 4. FREERP essentially just adds pages to the page
 chain, unless they have been reclaimed or released.

 IV. Storage Allocation in MTS (GETSPACE/FREESPAC)

 A. General Requirements and Properties

 1. Since this is the user interface, thorough error
 checking must be done.

 2. It must be possible to recover the storage which has
 been allocated, in case user programs or various
 levels of system programs go west, or even when they
 terminate normally.

 3. Storage management structures are maintained in
 system level storage, separate from the storage
 being managed; there are two reasons:

 a. It is undesirable to reference VM pages before
 they are needed.

 b. The user cannot be trusted to confine his
 references to storage which is allocated to him.

 4. The VM integral must be computed, to keep the
 accounting people happy.

 b. Buffer Control Blocks (BCBs)

 The storage allocation structure is composed of fixed
 size (16 byte) buffer control blocks. These too must be
 allocated and freed. This is done using a conventional
 LIFO free space list. One page of BCBs is allocated
 initially (via SVC GETSEGX) and more are allocated if
 necessary, a page at a time. All BCBs are in segment 4.

 C. Storage Management Structures

 1. One may wish to look at Figure 2 while reading the
 following:

 2. Primary buffers: Storage requests obtained from the
 supervisor via SVC GETSEGX are called primary
 buffers. Each primary buffer is described by two
 primary BCBs (PBCB1 and PBCB2) and one or more sub-

 5

 buffer BCBs (SBCBs). VMI accounting is done at the
 primary buffer level.

 3. Each primary buffer may be divided into one or more
 sub-buffers. Each sub-buffer is described by one
 SBCB. The SBCB also describes the free block
 following the allocated block.

 4. The PBCB1 blocks are linked in increasing location
 order, and each points to a PBCB2 block, which
 points to a list of SBCBs, which are also in
 increasing location order. There is a separate list
 of PBCB1 blocks for each segment.

 D. Detailed BCB Definitions

 1. PBCB1 (all entries are fullwords)
 a. length of longest free block in buffer
 b. location of first byte past end of buffer
 c. link to next PBCB1
 d. link to PBCB2 for this buffer

 2. PBCB2

 a. number of sub-buffers (2 bytes)
 b. length of buffer in pages (2 bytes)
 c. location of first byte in buffer (4 bytes)
 d. number of free bytes before first sub-buffer (4
 bytes)
 e. link to first SBCB
 3. SBCB

 a. storage index number (1 byte) (read volume 5 to
 learn about these)
 b. length of allocated block (3 bytes)
 c. location of first byte after block (4 bytes)
 d. length of free block following (4 bytes)
 e. link to next SBCB

 E. GETSPACE Algorithm

 1. Search PBCB1 list for desired segment, looking for
 first one which has a free block equal to or longer
 than desired. If not found, go to step 4.

 2. Search the SBCB list (including PBCB2) for the first
 free block equal to or longer than desired. There
 must be one, or we blew it. Insert a new SBCB after
 it to describe the new allocation and any remaining
 free block.

 3. If the free block found in 2 is equal in size to the
 largest free block recorded PBCB1, the SBCBs must be
 searched again to find the new largest free size.
 Then we are done - return.

 6

 4. Issue SVC GETSEGX; if this fails, go to step 5. Get
 and initialize a PBCB1, a PBCB2, and one SBCB,
 describing the requested allocation, plus any
 remaining space in the last page. Search the PBCB1s
 and insert the new one at the appropriate place.
 Compute the VMI and new total page count.

 5. Must be insufficient space left in this segment. If
 a specific segment was requested, or if we have
 already tried segment 8, tell somebody about this
 problem. Otherwise, increment the segment number by
 one and go to step 1.

 F. FREESPAC Algorithm

 1. Find the SBCB whose allocated block completely
 contains the one being returned. This is a two step
 process, going down first the PBCB1s, then the
 SBCBs. It is a nono if its not there.

 2. Compare the free block to the allocated block.
 There are 4 cases.

 a. same - this is the normal case. Update field
 d. of the previous SBCB with the sum of itself
 and fields b. and d. of this SBCB. Unlink and
 free this SBCB. Update the maximum free block
 in PBCB1 if necessary. Decrement the subbuffer
 count (in PBCB2); if this is zero, the entire
 buffer is free, so issue SVC FREEBUF, unlink and
 free the PBCBs, and do VMI accounting. Return.

 b. Starting addresses the same, Update this and
 previous SBCB according.

 c. Ending addresses the same. Update this SBCB
 accordingly.

 d. Neither address is the same. Get a new SBCB and
 insert it before the current SBCB. You should
 be able to figure out how to diddle the various
 fields.

 3. Update the maximum free length in PBCB1 if
 necessary, and return.

 7

 ┌──────────────┐
 |//////////////|
 Page ┌────┐ |//////////////|
 chain | |----+ |//////////////|
 3 pages └────┘ | |//////////////|
 | ─└──────────────┐─ | |
 +-------->| -----+
 | | |
 large ┌────┐ | | |
 blocks | |----+ | | |
 └────┘ | ─└──────────────┐─ | | |
 | |//////////////| |
 +-------->└──────────────┐ | | |
 | --------+
 | | | |
 └──────────────┐ | | | |
 |//////////////| | |
 ─└──────────────┐─ | | | |
 small ┌────┐ |//////////////| | |
 blocks | |------------->└────┐//┌────┐/| | | |
 └────┘ └|───┘//└────┘/| | | |
 |+>┌────┐///A//| | |
 |//└|───┘///|//| | |
 +-------------┼-->┌───|┐/| | |
 | |///V///└────┘/| | | |
 | |//┌────┐//////| | |
 | ─└──┘──|─┘──────┐─ | | | ─ ─ |
 ┌────┐ | | | |<-+ | |
 8| |----+ +--------+ | | | |
 └────┘ | | | | | |
 | | | | | |
 ┌────┐ | | | | | |
 16| 0| | | | | | |
 └────┘ | ─└──────────────┐─ | | | | |
 special | |//////////////| | | |
 chains | |//////////////| | | |
 (12 of them) | |//////////////| | | |
 | └──────────────┐<------+ | |
 | | 0 | | |
 ┌────┐ | ─└──────────────┐─ | | | |
 96| |---------+ | |//////////////| | |
 └────┘ | | |//////////////| | |
 | | | | | |
 Format of large and | | |//////////////| | |
 small free blocks is | | ─└──────────────┐─ | | | |
 length in first word, | | | ---+ |
 link in second word. | | | | |
 | | | |<---+

 | | | | 8
 | | | |
 | | | |
 | | | |
 | | | |
 +---------------+ |
 | | V |
 +>─└────┌──┌────┌─┐─ | ─ ─ ─ |
 └─┼──┘//└───┼┘ | |
 |/V/////////|//|
 └───────────|──┐ | |
 └─┼───────┌─V──┐ | ─ |
 |/+>┌─────┘────┐ ─ |
 Page chain and special ─└───┘──────────┐─ | ─ |
 chain blocks have link |//////////////|
 in first word only. |//////////////|
 |//////////////|
 |//////////////|
 ─└──────────────┐─ | |
 Shaded areas are allocated |//////////////| _________
 |//////////////|
 |//////////////|
 Unlinked pages are allocated |//////////////|
 to VM (probably) └──────────────┘

 Figure 1 - Supervisor Core Management

 9

 PBCB1 PBCB2
 ┌─────────┐ +->┌────┌────┐ ─ ┌────────────┐ ─
 | | | | 3 | 5 | +-->| | |
 | •------+ | └────┘────┐ | +-| | | | ─ |
 | •---+ | | | •-----+ | | | |
 | •--------+ | •-------+ ─ └────────────┐ | |
 └────┌────┘ | | └────┌────┘ | |////////////| ─ ─
 | | | | +-----┐ |////////////| | | |
 | | | V | | |////////////|
 | | | ┌─────────┐ | ─ └────────────┐ | |
 | | | | •---+ +-->| | |
 | | | | SBCB •-----+ +-┐ | | |
 | | | | •-------+ ─ └────────────┐ | |
 | | | └────┌────┘ +-----┐ |////////////| ─ |
 | | | | | ─ └────────────┐ | |
 | | | V | +-->| | |
 | | | ┌─────────┐ | | | | |
 | | | | •---+ | ┌─┐ | | |
 | | | | SBCB •-----+ | | | |
 | | | | •-------┐ ─ └────────────┐ | | |
 | | | | | | | |////////////|
 | | | └────┌────┘ | | |////////////| ─
 | | +---------|----------+ | |////////////|
 | | V +-----┐ |////////////| |
 | | ┌─────────┐ | | |////////////|
 | | | •---+ | |////////////|
 | | | SBCB •-----┌-->─ └────────────┘ ─
 | | | 0 | |
 | | | 0 | |
 | | └─────────┘ |
 | +---------------------+
 V
 ┌─────────┐ +->┌────┌────┐ ─ ┌────────────┐ ─
 | •------+ | | 1 | 3 | +-->| |////////////| |
 | PBCB1•---+ | | └────┘────┐ | | |////////////| | ─ |
 | •--------+ | PBCB2•-----+ | |////////////|
 | 0 | | | | 0 | | |////////////|
 └─────────┘ | | └────┌────┘ +-┐ |////////////| ─ |
 | | | | | |////////////| |
 | | V | | |////////////|
 | | ┌─────────┐ | | |////////////|
 | | | •-------+ | |////////////|
 | | | SBCB •-------->─ └────────────┐ | |
 | | | •-----+ | | |
 | | | 0 | └---┐ | | | |
 | | └─────────┘ | | | |
 | +------------------+ +>─ └────────────┘
 +-----------------------+

 Shaded areas are allocated _________

 Figure 2 - MTS Storage Allocation

 Classification Code: 120/0 1
 Date: ???? (old) Doct=4 Vers=1

 UMMPS PAGING ALGORITHM

 I. Before descending into the details of UMMPS and the PDP, it
 is probably instructive to say a few words about paging
 algorithms in general. They may differ in several important
 ways:

 1. Demand paging vs. Anticipatory paging: under demand
 paging, a system will move a page to main storage only
 when it is referenced. On the other hand, a system may
 attempt to anticipate the need for some pages, and page
 them in before they are referenced. Almost all current
 systems use demand paging.

 2. The algorithm may be task oriented, or system oriented.
 That is, the decision as to which pages to move to and
 from main storage may depend heavily on the status of the
 task which owns them; this would be a task oriented
 algorithm. With a system oriented algorithm all pages in
 the system are treated identically, independent of their
 owners.

 3. The replacement policy, for choosing pages to be removed
 from main storage, may vary considerably. This is
 probably the most important factor affecting the
 performance of paging systems. There are several
 possibilities discussed in the literature:

 a. FIFO - The oldest page in storage is chosen for
 removal. This is clearly not a very good choice, but
 early versions of UMMPS used it.

 b. Least Recently Used (LRU) - The page with the longest
 time since last reference is chosen for paging out.
 Note that this algorithm can only be approximated on
 the 360/67, and most other current processors.

 c. Working Set - The system keeps a record of recent
 references to pages by a task and attempts to keep a
 "working set" of pages belonging to a task in core.
 This is a task oriented policy, which attempts to
 estimate program behavior. It is said to be a nearly
 optimal realizable algorithm.

 d. A-Optimal - The page whose next reference is farthest
 in the future is chosen for removal. This is, in
 some sense, an optimal algorithm, but is unrealizable
 without knowledge of future page references. It is
 mainly a standard for comparison.

 UMMPS uses basically a system oriented demand paging
 algorithm with an LRU replacement policy. The supervisor is
 totally responsible for these aspects of paging and their
 implementation is found in the GETWP SVC, which will be
 described in some detail later. The Paging Drum Processor

 2

 (PDP) is responsible for the actual transfer of pages to and
 from the paging devices. In the remainder of these notes we
 describe 1) the UMMPS - PDP interface, 2) the PDP, 3) UMMPS
 (mainly GETWP), and 4) a day in the life of the average page.

 II. The UMMPS - PDP Interface

 A. Data Structures:

 The primary data item containing information relevant to
 paging is the Page Control Block (PCB). A PCB is 24 bytes
 long and contains the following items:

 1. Virtual address
 2. Real Address
 3. Pointer to owning TCB
 4. Task page chain pointer
 5. System Queue pointer
 6. Reference Bit
 7. Change Bit
 8. External Address

 plus several other items which don’t concern us here. PCBs
 are created by the GETBUF SVC, and are released by the PDP.

 There are four queues used by the system in managing paging.
 These are:

 Page-In Queue (PIQ) - Pages to be brought into core from
 secondary storage.

 Page-In Complete Queue (PICQ) - Pages which have just been
 brought into core.

 Page-Out Queue (POQ) - Pages which are in core, ordered
 approximately from least recently used to most recently used.

 Release Page Queue (RPQ) - Pages which have been released
 (via FREEBF SVC).

 B. Special SVCs

 There are five special SVCs which are used only by the PDP.
 These are:

 GETRP - Get real page - Used to get a real page of core to
 read into, for a page-in operation.

 FREERC - Free real core - Used to release the core allocated
 to a page after it has been paged out.

 GETWP - Get Write Pages - Removes a specified number of pages
 from the POQ, to be written out.

 GETQS - Transfer the contents of the PIQ and RPQ to the PDP.

 3

 PDPWAIT - Tells UMMPS the PDP has nothing more to do. It
 will be restarted by a completion interrupt from any of its
 devices, or when UMMPS decides there is more for it to do
 (i.e., PIQ non-empty, or pages need to be written.

 III. The Paging Drum Processor

 A. Overview - It is the responsibility of the PDP to manage
 the paging devices, which currently include two drums and
 one disk. Each drum holds 900 pages, and the disk holds
 6400 pages, for a total of 8200 pages. The worst case
 observed to date has been something over 4000 pages, and
 a typical heavy load is between 2000 and 2500 pages.

 The disk is used only when the drums are nearly full, and
 at this time the PDP chooses pages on an LRU basis and
 moves them from drum to disk. This is called page
 migration.

 The PDP consists of two asynchronous parts: the first
 builds channel programs and starts them via SVC STIO, and
 the second handles the completion interrupts and posts
 the completion of the paging operations.

 B. In order to understand the operation of the PDP, it is
 necessary to understand the workings of the paging drum.

 .───────────────────────────.
 . *
 . .──────────────────────────.
 . * *
 . *
 . * * * .──────────────────────────.
 . * . .###. .
 . * * . .###. <--+ .
 +----.------> .─────────────────────|────.
 | . * . +--> . . | .
 | .─────────|─────────────────.
 | | +-- 1 page
 9 slots |
 +-- 100 tracks, each with its
 own read/write head

 The picture shows the logical structure of the paging
 drum. Physically there are 200 tracks, with 4 1/2 pages
 per track, but the PDP treats it as shown, with the
 difference obscured by a trick in the channel programs.

 The PDP constructs channel programs for all nine slots at
 a time. It will then chain these together if possible.
 The PDP is so designed that the drums can be kept running

 4

 for an indefinite time with only one SIO, with reads in
 the appropriate slots, and with writes filling in the
 rest as necessary. Using this method, writes (i.e.,
 page-outs) are essentially free.

 C. PDP Data Structures - The PDP maintains a huge data block
 for each drum. Each such block contains, among other
 things:

 1. 9 Local Page-in queues, one for each slot.
 2. 3 channel program buffers

 3. Spaces for 27 PCB pointers for the PCBs associated
 with the 3 possible channel programs.

 4. A bit table describing available space on the drum;
 organized by slot.

 5. 9 migration lists, one for each slot of PCBs ordered
 from least to most recently used. ("used" in this
 context means paged-in or paged-out.)

 6. A local page-in complete queue

 There is also a data block for the disk. Since the
 disk is managed on a page at a time basis, with no
 attempt at optimization, this data block contains
 only one local page-in queue, one channel program,
 one current PCB pointer, and the bit table.

 There is a "global" local page-in complete queue, on
 which the local PICQs from each device are collected,
 and whose contents are occasionally transferred to
 the supervisor’s PICQ.

 D. The algorithm

 1. Get the PIQ and RPQ via the GETQS SVC.

 1.1 For each PCB on the RPQ, release its external
 address, free its real core page via SVC FREERC,
 if there is one, and free the PCB, via FREESC
 SVC (Free Supervisor Core).

 1.2 For each PCB on the PIQ, add it to the end of
 the local page-in queue for the appropriate slot
 on the appropriate drum, or to the LPIQ for the
 disk. This process is called slot sorting. If
 the PCB has no external address, put it on the
 local PICQ now, since it must be a new page.

 2. For each drum do the following:

 2.1 Allocate a new channel program buffer if
 possible. If not, go try the next drum.

 5

 2.2 For each slot: if the LPIQ for the slot is non-
 empty, remove the top PCB, get a real page via
 SVC GETRP if possible, and construct a CCW to
 read the page in. If no core is available, go
 to step 2.3 immediately.

 2.3 If there are slots available which don’t contain
 reads, check drum availability; if there are
 less than MIGTH pages left on all drums, and if
 no migration is currently in progress, take a
 page from the top of the migration list for one
 of the available slots, and construct a CCW to
 read it into a page of supervisor core.
 Remember that a migration read has been started.
 MIGTH, the migration threshold, is currently set
 to 50 pages per drum, or a total of 100 pages,
 with 2 drums. This will probably be reduced in
 the future.

 2.4 If there are slots available which have no
 reads, and which have unused tracks for writing,
 issue SVC GETWP, requesting as many pages as
 there are available slots.

 2.5 For each PCB returned by GETWP, see if it has
 been changed. If not, and it’s on the drum,
 just issue SVC FREERC. If it has been changed,
 or is on the disk, free its existing external
 copy, and construct a CCW to write it into one
 of the available slots.

 2.6 If there are still some available slots because
 of unchanged pages, issue another GETWP, and go
 to step 2.5.

 2.7 If any reads or writes were set up in 2.2
 through 2.6 above, package up the channel
 program and either issue SVC STIO if no channel
 program is currently running, or chain it to the
 end of the current channel program, with a TIC
 command.

 This completes the setting up of channel programs for
 the drums.

 3. For the disk, do the following:

 3.1 If the disk is already running, do nothing.

 3.2 If the local PIQ for the disk is non-empty,
 issue GETRP for a real page, and construct a CCW
 to read it in. Go to step 3.4.

 3.3 If a migration read was set up in 2.3, then
 allocate a disk page and construct a CCW to

 6

 write it out.

 3.4 If anything was done in 3.2 or 3.3, complete the
 channel program but modify it so only the seek
 is done, then issue SVC SIO. This way the
 channel is not busy during the seek.

 This completes the setting up of disk channel
 programs.

 4. Collect the local page-in complete queues from the
 several devices and add them to the "global" local
 PICQ. If there are any new pages on this queue,
 issue a GETRP for them. If GETRP fails, keep these
 pages on this local PICQ, but put all completed pages
 on the supervisor’s PICQ. The supervisor will
 eventually find them there and restart the waiting
 tasks. If any channel programs were started above,
 go to step 1. Otherwise PDPWAIT. This completes
 part one of the PDP.

 The remainder of the PDP consists of device-end and
 PCI (program controlled interrupt) interrupt
 routines. The PDP arranges to receive a task
 interrupt at the completion of any of its channel
 program buffers, i.e., once every logical drum
 revolution, from each drum. At such times it does
 the following steps:

 5. For each PCB in the channel program just completed,
 do the following:

 5.1 Add it to the bottom of the migration list for
 the appropriate slot, if this is a drum.

 5.2 If it is a read operation, add the PCB to the
 local PICQ for this device. Go to step 5.4.

 5.3 If it is a write operation, free the real core
 page, via FREERC.

 5.4 Free the channel program buffer.

 5.5 If this was a device end, mark the status of the
 device as stopped.

 5.6 Return and re-enable the interrupt.

 This completes the description of the PDP algorithm.
 Many details of the actual implementation have been
 omitted for simplicity, but most of the important
 ideas are there.

 7

 IV. The Supervisor

 In this section we discuss the algorithm for the five PDP
 SVCs, plus the subroutine TRANS, which is called to handle
 paging exceptions, among other things. All but TRANS and
 GETWP are, at least conceptually, simple, but all are
 mentioned briefly, for completeness.

 PDPWAIT - Save the TCB pointer for the PDP (this is the
 only way the supervisor knows which task is the PDP).
 Remove it from the CPU queue. Save the restart address
 (a parameter in GR0)

 GETQS - Lock the PAGQ lock, pass the PIQ and RPQ pointers
 to the PDP, set these pointers to zero, unlock, and
 return. This must be an SVC because only the supervisor
 can do the required locking.

 There are several variables which control the page
 replacement policy, as implemented in the GETRP, FREERC, and
 GETWP SVCs. These are:

 1. NFRPGS - Number of free pages available

 2. MINFRPGS - Minimum number of free pages which must be
 maintained, currently = 1

 3. NWRTPGS - Number of pages being written out

 4. WRTFRPGS - The threshold for deciding when to write
 pages, currently = 15

 GETRP - If the number of free pages is greater than or
 equal to MINFRPGS, remove a page from the free page chain
 and decrement NFRPGS. Otherwise indicate that no page is
 available.

 FREERC - Add the page to the free page chain and
 increment NFRPGS.

 GETWP - A little more complicated

 1. If NFRPGS + NWRTPGS > WRTFRPGS, return zero pages.

 2. For several reasons, the proper operation of GETWP
 requires that no CPU be relocatable. Therefore, if
 the other CPU is relocatable, a WRD instruction must
 be executed at this point, which causes an external
 interrupt to the other CPU. A flag is then set which
 will hold up the other CPU until GETWP finishes its
 work and resets the flag.

 3. Starting at the top of the POQ, do the following for
 each PCB encountered, until either getting enough
 pages to fill the request, or until reaching the end

 8

 of the POQ.

 3.1 Update the reference and change bits in the PCB
 with those in the storage keys for the real
 page.

 3.2 Set these bits in the storage keys to zero.

 3.3 If the page has not been referenced, add it to
 the list of those to be paged out. If it
 belongs to a non-privileged task, page it out
 anyway. If it has been referenced, reset the
 referenced bit and move it to the end of the
 POQ.

 3.4 If a page which has not been referenced belongs
 to a task which is running on the other CPU,
 don’t page it out; instead leave it on the POQ.

 3.5 Each page to be paged out is removed from its
 page table.

 4. Update NWRTPGS, and return.

 TRANS - A supervisor subroutine called by anything
 which needs to reference a virtual address, which
 means mainly paging exceptions, but includes other
 parts of the supervisor as well.

 The algorithm for TRANS is:

 1. Try an LRA instruction, if this works, return.

 2. Search the task PCB chain, or shared PCB chain
 if segment 2. If not found, simulate program
 interrupt 5.

 3. If the page is being paged in already, chain
 this request onto the previous and go schedule
 another task.

 4. If the page is being paged-out, mark it as
 reclaimed, update the page-table, and return.

 5. If the page has an external address, put the PCB
 on the PIQ, and schedule another task.

 6. If the page has no external address, it must be
 new; try to get a real page for it. If
 successful, return, with the page table updated.
 Otherwise put it on the PIQ, and the PDP will
 retry.

 9

 V. A Day in the Life of the Average Page

 The chart of the next page illustrates the various
 transitions which may be encountered by a page during its
 lifetime. Note: only those SVCs are shown which deal with
 the particular page we are watching.

 Task SUPERVISOR PDP Time
 | | | |
 | | | |
 | SVC | | |
 |--GETBUF-->----------+ Create PCB & | V
 | | | put on task |
 |------------<--------+ chain |
 | | |
 | page | fault |
 |---------->----------+ Get new real |
 | | | page. Put PCB |
 |------------<--------+ on POQ. |
 | | |
 | | |
 | | |
 | | need to write|
 | | ---pages---->|---------+ Process PIQ &
 | | | SVC | RPQ if any
 | | +------------|<-GETWP--+
 | | | remove |
 | | +-from POQ-->|---------+ construct
 | | | SVC | channel program
 | | +------------|<--STIO--+
 | | | |
 | | +----------->----------+
 | | | SVC | other work
 | | --------------<-PDPWAIT+
 | | |
 | | |
 | | device end |
 | | ---or PCI--->----------+
 | | | SVC |
 | | +-------------<-FREERC-+
 | | | |
 | | +----------->----------+
 | | | SVC | other work
 | | --------------<-PDPWAIT+
 | | |

 10

 | | |
 | page | fault |
 +---------->------------+ |
 | | something |
 | +--on PIQ---->----------+
 | | SVC |
 | +--------------<-GETQS--+
 | | |
 | +------------>----------+ slot sort to
 | | SVC | local PIQ
 | +--------------<-GETRP--+
 | | |
 | +------------>----------+ construct
 | | SVC | channel program
 | +--------------<--STIO--+
 | | |
 | +------------>----------+
 | | SVC | other work
 | ---------------<-PDPWAIT+
 | |
 | |
 | --DE or PCI-->----------+ Put on
 | | | PICQ
 +------------<-------restart | SVC |
 | | ---------------<-PDPWAIT+
 | | |
 | | |
 | | |
 | SVC | |
 |--FREEBF-->-----------+ put on RPQ, |
 |------------<---------+ free real |
 | | core |
 | | |
 | | something |
 | | ---on RPQ---->----------+
 | | | SVC | free the PCB &
 | | +--------------<-FREESC-+ external addr.
 | | | |
 | | +------------>----------+
 | | | SVC | other work
 | | ---------------<-PDPWAIT+
 | | |
 | | |
 | | |

 Classification code: 160/0 1
 Date: 6/16/77 Doct=3 Vers=1

 Introduction to MTS

 This section covers the MTS job program and its relationship
 to those components it is most intimately connected to -- DSRs,
 CLSs, the file routines, and the loader. It is assumed that the
 reader has read the system overview (lecture 1). See figure 1
 for a pictorial overview of the system.

 In general usage, the term MTS applies to the entire
 operating system, including the supervisor, the job programs, and
 even a few of the utility programs. For the purposes of this
 section, the term MTS will be restricted (usually) to only apply
 to the job program of that name. The many other pieces of
 software intimately connected with MTS will normally be
 identified by their proper names (DSRs, CLSs, file routines,
 etc.)

 MTS is a job program, and as such, gets initiated by the
 supervisor. Since it is reentrant, many MTS jobs can be active
 at the same time. The MTS job program provides the interface
 between the system and the user -- it executes his commands and
 monitors (and provides services for) his programs. There is a
 separate MTS job (activation of the MTS job program) for every
 user, both batch and terminal, in the system.

 The other pieces with which MTS is most intimately connected
 are illustrated in figure 1 -- UMMPS (the supervisor), the DSRs,
 the file system, the loader, the CLSs, and HASP. There is a
 separate interface between MTS and each of these components. MTS
 and all of the pieces which it communicates with, except for the
 supervisor, run in problem state. MTS and all of the pieces with
 which it communicates directly (without going through the
 supervisor) run in relocatable mode. The relocatable components
 all can be paged by the PDP.

 Addressing Structure of MTS Tasks __________ _________ __ ___ _____

 The addressing structure of MTS (the whole system) is one of
 the things which sets it apart from most contemporary time-
 sharing systems. Each relocatable task has its own virtual
 address space consisting of (currently) thirteen segments of 256
 pages each. Because each task has its own unique address space,
 enforced by the dynamic address translation hardware, information
 in the address space of one task does not necessarily appear in
 the address space of another task. Independence of address
 spaces is clearly desirable in the case of user programs and
 data. However, many of the system-provided programs, like MTS,
 must be executed by all MTS tasks and thus must appear in the
 address spaces of all of them. In order to avoid duplicate pages
 of these programs in every MTS task’s address space, some means
 of allowing different address spaces to intersect is required.
 This facility is provided on a segment basis using "address
 agreement." That is, a segment may appear in two or more address
 spaces, so long as its segment number is the same in all address
 spaces. This means that every location in a shared segment has

 2

 the same address in every address space in which that segment
 appears. This allows address constants which refer to locations
 in that segment to be embedded in the segment and still be valid
 for all tasks which share the segment.

 The lower segment numbers in the address space of each task
 are used for shared segments. Currently, segments 0-4 are common
 to all tasks’ address spaces. See figure 2. These shared
 segments are used to contain all of the resident system code
 (UMMPS, MTS, CLSs, file system, etc.), many shared programs
 (*APL, *FTN, PL1LIB, etc.), and several tables and data
 structures which may be accessed by all tasks.

 user 1 user 2 user n
 ┌─────────┐ ┌─────────┐ ┌─────────┐
 | | 12 | | 12 | | 12
 | private | | private | | private |
 | | | | | |
 | work | | work | | work |
 | | | | | |
 | segments| | segments| | segments|
 | | 6 | | 6 | | 6
 └─────────┐ └─────────┐ . . . └─────────┐ | | | | | |
 | | | | | |
 | system | | system | | system |
 | | | | | |
 | work | | work | | work |
 | | | | | |
 | segment | | segment | | segment |
 | | 5 | | 5 | | 5
 └─────────┘ └─────────┘ └─────────┘

 ┌──────────┐
 | | 4
 | |
 | shared |
 | |
 | segments |
 | |
 | | 0
 └──────────┘

 Use of the Virtual Address Space in MTS

 Figure 2

 3

 Of those components loaded into shared VM, some (primarily
 UMMPS) must be run in absolute mode. In order for the virtual
 addresses of locations in such components to reference the same
 locations as the real addresses of such locations, any absolute
 component must be loaded into segment 0 with the virtual
 addresses being the same as the real addresses. Thus, virtual
 segment 0 corresponds to the real memory of the machine. This is
 necessary primarily for tables which must be referenced from both
 absolute and relocatable tasks and for those programs, like the
 loader, which must be called from both absoulte and relocatable
 tasks.

 The remaining segments in a task’s address space are private
 to that task. Of these segments, one (currently segment 5) is
 reserved for system (i.e. MTS) work space specific to the task,
 and the rest are available for user programs and data. Again,
 see figure 2. The system segment is used for almost all work
 space and dsects required by system components.

 The Relationship between MTS and its Support Components ___ ____________ _______ ___ ___ ___ _______ __________

 MTS communicates with many pieces of the system, as
 illustrated by figure 1. However, some of the relationships are
 more intimate than others. The principal components MTS
 communicates with are the file routines, the loader, the DSRs,
 and the CLSs -- aside from the supervisor, of course. In fact,
 these four components may be thought of as logical extensions of
 MTS -- in contrast to the supervisor, which provides support for
 all of these things. The relationship between MTS and HASP is
 somewhat special and certainly less intimate (not to mention less
 elegant) than the others.

 The DSRs ___ ____

 The most important related component is the DSR -- device
 support routine. The function of a DSR is to provide the
 interface between MTS and a real device, e.g., the user’s
 terminal. Since there are many different types of devices with
 different characteristics this is a reasonable way to keep MTS
 itself independent of devices. There is a DSR for each different
 type of device with which MTS can communicate, including
 teletypes, 2741s, front end processors, audio response units,
 disks, and HASP.

 The interface between MTS and DSRs is basically a subroutine
 call with a specialized calling sequence. Each DSR contains a
 transfer vector with ten entries, each of which is the address of
 an entry point within the DSR which will perform a particular,
 standardized, function. MTS simply loads the adcon corresponding
 to the function it wants out of the transfer vector and branches
 to it. Not all of the DSRs provide all 10 of the functions,
 since some are not applicable to particular devices. For those
 unsupported functions, the DSR must supply either a zero adcon or
 a dummy routine.

 4

 The File Routines ___ ____ ________

 The file routines are the next most important MTS-related
 component. The interface between MTS and the file system is
 somewhat less distinct than the DSR interface. File I/O, in
 general, is done just like any other I/O in MTS -- that is, there
 is a DSR for the file routines with which MTS communicates just
 like any other DSR. This DSR, like a few other special DSRs, is
 actually a part of the MTS assembly. The file DSR calls several
 entry points in the file routines using non-standard calling
 sequences (i.e. the calling sequences vary from routine to
 routine). Operations peculiar to files such as renumbering,
 creating, etc., which have no normal DSR analog are performed by
 calling entry points in the file routines.

 The file routines basically perform all of the I/O which
 occurs on the disks along with the necessary control functions.
 It is the file routines which open and close file buffers and
 keep track of where all of the files in the system actually are.
 For instance, when MTS decides to open a file, it calls a file
 routine to do it (via the file DSR). The file routines then
 allocate the appropriate buffers and read some initial part of
 the file into them. When MTS decides to close the file, the file
 routines are again called via the file DSR to write out the
 buffers and deallocate them.

 The Loader ___ ______

 The loader (UMLOAD) is as independent of MTS as it can be,
 though perhaps not as much as it would like to be. The MTS-
 loader interface is provided by several loader entry points and a
 loader work area (dsect) provided as a parameter. Within this
 loader dsect are all of the parameters and control information
 the loader needs to perform the desired functions. Since the
 loader has to work in both the normal MTS environment and also in
 the system IPL environment, it is designed so that its caller can
 provide the environment. It does that primarily by passing
 subroutine addresses in the loader dsect for any environment-
 dependent function, like storage allocation, input, and output.
 For instance, when MTS calls the loader, it passes the address of
 an MTS subroutine named LOADIN which the loader can call to
 obtain a line of input. Another for instance, when PISTLE (the
 post-IPL loader) calls the loader to load pieces of shared memory
 into shared segments, it passes the address of its own storage
 allocation subroutine, which will return space in a shared
 segment, to UMLOAD.

 The loader interface is somewhat complicated, so there is a
 part of MTS itself which interfaces the loader to the rest of MTS
 and to user programs. This part is called LLXU (for Link, Load, _ _
 XCTL, and Unload). Whenever some part of MTS, like the $RUN _ _
 processor, needs to load a program, it calls the appropriate
 entry in LLXU to do it. LLXU then calls the loader.

 5

 CLSs ____

 The CLSs, Command Language Subsystems, are an important part _ _ _
 of MTS since they provide many of the command facilities the user
 sees. Generally, the CLS facility is provided as a means of
 subsetting the command language, so that when the user is
 intending to give file editing commands, for example, his command
 cannot be interpreted as a debugging command (even if it is an
 invalid editing command). From the user’s point of view, a CLS
 is invoked by typing the subsystem’s name as an MTS command,
 e.g., $EDIT <fdname>. The CLS is then invoked by MTS and
 proceeds to act as a command language interpreter until it
 decides to return to MTS. As far as the user is concerned, he is
 just using a different part of MTS.

 The CLS interface is an attempt to isolate the CLS itself
 from everything else which makes up its environment. That
 environment is provided by the CLS transfer vector. When a CLS
 is invoked, it is passed a pointer to the CLS transfer vector
 which contains a table of subroutines to be called to provide
 standard services. In actuality, there are table entries for
 almost all of the system subroutines offered by MTS. It is
 intended that all calls to subroutines not contained within the
 CLS itself go through the transfer vector. Thus, it is possible
 for a user program to make up a transfer vector and call a CLS,
 using private subroutines for the various functions. Since a CLS
 only communicates with the outside world via the transfer vector,
 there are (almost) never any external symbols within a CLS which
 any other routines depend on, other than the standard entry
 point(s). Because of this isolation, CLSs are very flexible.

 Another way in which a CLS is isolated by MTS is the way its
 storage is allocated. Each CLS has a unique storage index number
 associated with it. This storage index number is also associated
 with any storage which that CLS might acquire. A CLS gets
 storage by calling a special GETSPACE subroutine whose address is
 supplied by MTS in the CLS transfer vector. This special
 GETSPACE simply calls the real GETSPACE, telling it what storage
 index number to use. For CLSs invoked by MTS, that storage is
 allocated in the system work segment (segment 5). A CLS, when it
 returns to its caller, gives a return code which indicates
 whether or not the CLS terminated normally. If it did, all of
 its storage is released (presumably by its caller). If it did
 not, its caller is expected to preserve both its storage and its
 register contents for the next invocation. Use of a unique
 storage index number allows MTS to identify all of the storage
 belonging to a particular CLS in order to release it.

 Initial System Loading _______ ______ _______

 MTS itself resides in the shared segments 1-3 -- usually it
 is contained in segment 1. When the system is loaded initially
 (IPL), the supervisor and all of the job programs are loaded all
 at once, along with a few other things (like the loader!).
 Everything else which is to reside in shared storage is loaded by

 6

 a program officially called PISTLE (post IPL system loader) which _ _ _ _ _ _
 is run just like any other program. (Note: PISTLE is referred to
 by many as the "segment 2 loader", or S2L, for historical
 reasons.) As PISTLE loads a component into shared storage, it
 puts the entry points into a table (called LCSYMBOL) which also
 resides in shared storage. There is a control section in the IPL
 object module called ENDSEG2 which is physically last in the
 system object. It is simply a word which contains the address of
 the first available storage location after everything which has
 been loaded into shared storage (initially, 8 bytes past itself).
 This is how PISTLE determines the address at which to begin
 loading a component. Most of the DSRs are loaded by PISTLE after
 system IPL (but before the system is made available to users).

 Like DSRs, nearly all of the CLSs are loaded into shared
 segments by PISTLE -- that is, they are not a part of the system
 IPL object deck. Any external symbols from the CLS are placed
 into LCSYMBOL by PISTLE. A CLS can be replaced (as can a DSR),
 while the system is running, by simply running PISTLE to load the
 new version into shared memory. PISTLE will replace the old
 entries in LCSYMBOL with the new ones, and the new version will
 be used instead of the old one.

 As an aside, there are one or two CLSs which are not
 independent of their environment, e.g., PERMIT, and thus cannot
 be replaced on the fly. This is because there are weak external
 references in MTS to symbols defined in those CLSs which PISTLE
 resolves. Once done, the system loader table is purged of any
 record of that reference, so a new copy of the CLS cannot replace
 that reference. This violation of the intent of CLSs is
 definitely considered poor practice.

 Organization of MTS ____________ __ ___

 MTS itself is made up of several separate assemblies. These
 are what are being referred to when one speaks of MTS. Currently
 there are 13 separate MTS assemblies. The reason they are
 grouped together is their common dependence on the MTS dsect.
 For example, one might refer to the COST subroutine as part of
 MTS, but it does not depend on the MTS dsect, so it is not one of
 the MTS assemblies. No other assembly refers to the MTS dsect,
 by definition.

 Historically, MTS was made up of just one (small) assembly.
 As it grew, various pieces were ripped out or added on (e.g.,
 LLXU was ripped out, TIMT was added on). Eventually, it got so
 big and unwieldy that it had to be split up into smaller pieces.
 It was then split into the currently existing assemblies.
 However, there were several subroutines and tables which were
 common to a great many of these separated components. These were
 gathered together into a "system common" region which is
 addressable by two base registers (GR12 and GR11). These two
 registers normally contain the base addresses for this common
 region. In order for the separate assemblies to reference
 symbols within the common region without keeping a horrendous

 7

 dsect, and without requiring a large number of external symbols,
 the common region begins with a transfer vector. There is a
 dsect which corresponds to this transfer vector (generated by the
 MTSTV macro) which each assembly uses to define the common
 symbols. The common region itself is defined in the MTS
 assembly, which is the most central of the MTS assemblies. The
 MTS assembly contains the job program entry point and
 initialization, various built-in tables, the command loop, and
 sundry subroutines. The other assemblies are:

 CMDS - the command processors
 LLXU - the UMLOAD interface
 DSRI - the DSR interface
 DSRS - several special "built-in" DSRs (file routines, HASP,
 etc.)
 FSUB - file related subroutines
 (GETFD, HOPENIT, GIVEBACK, etc.)
 TIMT - the timer interrupt subroutines
 GSFS - (Getspace/Freespace) storage management subroutines
 RSF - some of the subroutines which interface to the file
 routines (Really Shared Files)
 USUB - miscellaneous user-callable subroutines
 GATE - the gatekeeper
 INFO - the GUINFO/CUINFO subroutine
 PLIM - the page limit/card limit testing subroutines

 There are several coding conventions used throughout the MTS
 assemblies which will be mentioned briefly here. The base
 register for the MTS dsect is always GR4 (except in the current
 GSFS, where it is GR9 because the SLT instruction, around which
 that version of GSFS is based, uses registers 0 through 5). The
 value of this register is obtained by the HWIMB macro (help, _
 where is my buffer). (Digression: a little thought will reveal _ _ _ _
 this to be a non-trivial problem. If MTS is entered from the
 outside, who knows where the MTS dsect is, since a pointer to it
 cannot be put in a shared segment? It turns out that the dsect
 pointer is put in a shared segment -- segment 0 -- and it is put __
 there by the supervisor, in the job table entry for that task.
 The job table entry is always pointed to by the location ’FFC’ in
 page 0. Note that for multi-processor operation, this pointer
 has to be in page 0 -- the PSA). Other coding conventions
 include the use of general registers 12 and 11 for common region
 addressability, 10 (and sometimes 5 and 3) for base registers,
 and GRs 6 - 9 (called SCA, SCB, SCC, and SCD) for scratch
 registers. GRs 0, 1, and 2 are also often used for scratch. GRS
 14 and 15 are usually used for subroutine linkage. Beyond these
 general rules, register usage is haphazard. Another significant
 (astonishing, if you prefer) characteristic of MTS is that
 internal subroutines seldom save and restore registers.

 The Protection Mechanism ___ __________ _________

 There is a feature in MTS which attempts to isolate system
 components from user program damage, usually called "protection",
 for lack of a better term. What it does is control the entrances

 8

 to and exits from a user’s program from/to MTS so that the
 supervisor always knows what mode the job is in. This is used to
 create a software-implemented equivalent of the hardware
 supervisor/problem state mechanism. When a job is in user mode
 (i.e. executing a user’s program), the direct invocation of most
 supervisor services (via SVCs) is invalid and the system work
 segment (segment 5) is disconnected from the task’s address
 space. This means that in user mode the system work segment
 cannot be changed (or even referenced) by an errant or malicious
 program.

 The mechanism to switch modes between user and system modes
 was added to MTS fairly late in its development. The principal
 mechanism is the gatekeeper (GATE) which provides a "gate"
 through which user programs must pass on their way to system code
 in system subroutines. The gate changes the state from user to
 system by means of an SVC and calls the desired subroutine. That
 subroutine, when done, then returns to the gatekeeper, which
 changes state back to user and returns to the original caller.
 This is a somewhat simplified description, since there are
 special cases like starting a program, stopping it, subroutines
 which do not return, and some which take sideways exits.

 Exit Routines ____ ________

 Handling communication between various concurrent,
 asynchronous processes is a difficult problem in any operating
 system, and MTS is no exception. The approach taken by MTS, as
 with many others, is to only allow a limited amount of
 asynchronous communication using a rigid protocol. The primary
 example of asynchronous communication is the attention interrupt.
 In this case, the user himself is the sending process and MTS is
 the receiving process. Other examples are a bit less obvious
 like program errors, timer interrupts, and special device
 commands. All of these situations can be thought of as one
 entity, or process, communicating with another (usually MTS).

 All such communication is handled, at some point, by the
 supervisor. Consequently, UMMPS has adopted a protocol for
 handling such communication to a task -- that is, the concept of
 an exit routine. In general, a task tells UMMPS, by way of an
 SVC, what the address is of a subroutine which is to be invoked
 at the time of each class of communication. For instance, the
 timer routines issue an SVC telling UMMPS the location of an exit
 routine to be taken in the event of a timer interrupt. If a task
 does not set up an exit routine for a class of messages, it
 cannot be notified of any such message. Since, from the
 supervisor’s point of view, most of these messages are directed
 from one part of a single task to another, if an unexpected
 message occurs, the task is usually unceremoniously stopped.

 A digression can be made here about interprocess
 communication. The way the term has been used above is not
 exactly the same as the way it is normally used. Usually one
 thinks of two tasks, in the supervisor sense, sending messages to

 9

 one another being intertask communication. In the previous
 discussion, a task, in effect, has been sending a message to
 itself -- although it is a different part of itself. One of the
 functions of MTS is to act as a monitor for user programs. If
 some exceptional event occurs, like a program interrupt, one can
 think of this as the program "sending a message", via the
 supervisor, to the monitor. That is the sense in which we have
 used interprocess communication. In fact, UMMPS has no general
 facility for real intertask commmunication, though several have
 been proposed and implemented at various MTS installations.
 Significantly, the proposed methods for tasks to receive messages
 are similar to the current use of exit routines to handle
 exceptional conditions.

 Back to how an exit routine works; when the invoking
 condition, or message, occurs, UMMPS saves the current status of
 a few registers and the PSW of the task in the area given by the
 set-up SVC (the exit area), and then begins the task again at the
 exit routine. This status is also saved in the local CPU queue _____ ___ _____
 which UMMPS keeps for each task. This is really a push-down
 stack, where the top entry indicates the status of the currently
 executing "part" (or sub-process) of the task.

 The exit routine, when it is invoked, has the entire status
 of the interrupted process at its disposal (in either its exit
 area or still in the registers) and it may do what it likes. If
 the exit routine chooses to restart the interrupted process, it
 can execute an SVC telling UMMPS to "pop" the CPU Q, thus going
 back to the interrupted process. If it chooses not to return, as
 in the case of a program interrupt, it executes an SVC telling
 UMMPS to "flush" the lower CPU Q entries, leaving the exit
 routine as the task’s sole representative on the CPU Q. Note
 that an exit routine, though it flushes the CPU Q, can still
 restart the interrupted process by simply loading the registers
 with the appropriate values and branching (usually via an SVC
 TRA, which will load the registers and do a register-less branch
 all at once).

 Exit routines are quite limited in the things they can do,
 especially if they intend to restart the interrupted process.
 This is because they share the same address space as the
 interrupted process. If the exit routine changes some piece of
 storage which the interrupted process does not expect to be
 changed, an error will usually occur upon restarting. A typical
 example is the attention interrupt exit. The exit routine must
 first check to see if an attention can be taken before doing much
 of anything. If the interrupted process was doing something
 critical, like changing something in the MTS dsect, the attention
 could not be taken without the risk of making that storage
 inconsistent. In such a case, the exit routine simply sets a bit
 meaning an attention occurred and then restarts the interrupted
 process using an SVC POPQ.

 Classification Code: 161.7/1 1
 Date: 5/1/77
 Doct=6 Vers=1

 How TIMT - The MTS Timer Routine - Works

 TIMT is composed of four user callable subroutines and four
 entry points used by other parts of MTS. Timer interrupts are
 set up by calls to SETIME and the interrupt exit is taken after
 the interrupt occurs in accordance with the exit block set up by
 a call to TIMNTRP. Timer interrupts may be set for task time or
 real time. A task time interrupt may be local to a single CLS,
 usually the CLS which called SETIME, or it may be global to all
 CLSs if set up from MTS via SPSETIME.

 The method used is basically as follows:

 A TXA is created and an interrupt is set up by a call to
 SETIME. The TXA is put on TIMLST. An interrupt exit is enabled
 by calling TIMNTRP which creates an EXB for that interrupt. When
 the interrupt occurs (expires), the TXA is removed from TIMLST
 and put on the pending list of the appropriate CLS unless the
 interrupt occured while executing within MTS. In this case the
 TXA is left on TIMLST but marked expired, TTBIT in SWS6 is set,
 and a 1/4 second task time interrupt is set up, presumably so
 that the interrupt will occur again outside of MTS. Once the TXA
 is made pending, a matching EXB is searched for in that CLS. If
 found, the exit is taken. If not found, the TXA is left pending.

 Whenever MTS changes the executing CLS, a check is made (via
 SWSTATE) for any pending TXAs which have enabled EXBs. If there
 are any, then the exit is taken. Before the CLS transfer is
 made, TIMLST is checked for task time interrupts in effect. Task
 time interrupts may be local to particular CLSs. Those which are
 local to the CLS being switched from are cancelled and those
 local to the CLS being switched to are reset. If a timer
 interrupt is cancelled, its TXA remains on TIMLST, because
 presumably that CLS will eventually be reinvoked and the
 interrupt reenabled.

 The data structure used is as follows:

 TXA - Timer Exit Area _ _ _

 This block contains
 1) the exit information for the SVC TIMER
 2) an ID
 3) address of the exit region (76 bytes)
 4) the CLS number of the exit routine
 5) the CLS number of which CLS the task time interrupt
 applies to (-1 indicates all CLSs)
 6) status bits (expired, cancelled, or pending)
 7) amount of time left

 TXAs corresponding to unexpired timer interrupts are
 put on a single chain anchored at TIMLST in the MTS dsect.
 All TXAs on this list represent timer interrupts which are
 in effect or are local to a dormant CLS and have not yet
 expired.

 2

 All TXAs which represent timer interrupts which have
 expired - i.e., the time is up - and which have not been
 taken are put on a "pending" list anchored by CLSPEQ in the
 CLS area. Thus, there is a pending list for each CLS.

 EXB - Exit Block __ _

 This block contains
 1) the address of the exit subroutine
 2) the address of the exit region (same as in TXA)
 3) a save area address
 4) status bits (enabled)

 An EXB is created and placed on a list anchored by
 CLSEXBH in the CLS area at a call to TIMNTRP. The EXB
 represents an enabled interrupt corresponding to the TXA
 with the same region address (and the same CLS).

 3

 MTS DSECT
 ┌─────────────────────┐
 | |
 | CLSAREA |
 | ┌──────────┐ | TXA TXA TXA
 | | CLSPEQ | ─────────>┌───┐ ──>┌───┐ ──>┌───┐
 | | CLSXBH | ────┐ | | | | | |
 | └──────────┘ | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | └───┘ └───┘ └───┘
 | | |
 | | |
 | | | EXB EXB
 | | └────>┌───┐ ──>┌───┐
 | | | | | |
 | | | | | |
 | | └───┘ └───┘
 | ┌──────────┐ |
 | | TIMLST | ────┐
 | └──────────┘ | |
 | | |
 |─────────────────────┘ |Ø TXA TXA TXA
 └───> ┌───┐──> ┌───┐──> ┌───┐
 | | | | | |
 | | | | | |
 | | | | | |
 | | | | | |
 | | | | | |
 └───┘ └───┘ └───┘

 Internal subroutines ________ ___________

 LOOKNSEE (also FINDIT) ________
 If TTBIT (in SWS6) is on, look through TIMLST for
 expired TXAs. For each one, cancel the 1/4 second
 interrupt, mark it pending, and put it on the PEQ of
 the appropriate CLS. (Note: FINDIT does not test
 TTBIT but does the above unconditionally.)
 Look through the PEQ of the current CLS. For each one,
 look for an EXB with matching exit region
 (TXAREG=EXBREG). If there is one and it is enabled,
 set up a pointer to the exit region, return 0(R14) to
 take the exit. If none was found, return 4(R14).

 CANIT _____
 If the interrupt associated with the TXA is not already
 cancelled, then use SVC TIMECNCL to cancel the
 interrupt, return the time remaining.

 SWREGS ______
 Put contents of the exit region (status of the
 interrupted CLS) into the CLS area of the old CLS. Put
 contents of the new CLS area PSW and GRS into the exit

 4

 region if the old and new CLSs are different, then call
 SWSYS.

 SWSYS _____
 Look through TIMLST for TXAs with task time interrupts
 set. If it belongs to the old CLS, cancel the
 interrupt. If it belongs to the new CLS, reset the
 interrupt. Put the new CLS number is CLSCURR.

 GOSUB _____
 Put the interrupt ID in the exit region. Get a save
 area (which was attached to EXB). Remove the TXA from
 the pending list and release it. Save the current CLS
 state in the save area. Mark the exit block disabled.
 Set up R1, R13, R14, and R15 to take the exit.

 SWSTATE (an external symbol for MTS) _______
 If the new and old CLSs are different, then call SWSYS.
 Call LOOKNSEE to check for an enabled interrupt. If
 there is one, call GOSUB to set up for the exit.
 Return with RC 4.

 TIMERDI (an entry point from DSRI) _______
 This is called if DSRI finds TTBIT set. Look for a
 pending interrupt (calls FINDIT). If found, set up
 DSRI’s registers in the save area and take the exit via
 TIMNTGO.

 EXRTN - the SVC interrupt exit _____
 Mark the TXA expired. If STATTN or NOATTN is set or
 the interrupt occurred while inside MTS, turn on TTBIT
 and reset the interrupt to occur 1/4 second later
 otherwise, mark the TXA pending. Call FINDIT to put
 the pending TXA on the right list and determine if the
 exit is enabled. If the exit is enabled, then take it
 via TIMNTGO.

 1

 Classification Codes: 161.E/0 and 1B2.2/0
 Date: 5/18/77
 Doct=9 Vers=1

 The Protection of Information in a General Purpose Time-Sharing
 Environment.

 Gary C. Pirkola and John W. Sanguinetti
 The University of Michigan Computing Center
 Ann Arbor, Michigan 48105

 Introduction ____________

 The methods used to control access to information in the
 Michigan Terminal System (MTS) are described. Units of
 information to which access is controlled include both segments
 in the virtual address spaces of the various processes in the
 system and files in the on-line file system. The entities whose
 access to information is controlled are programs, at both the
 system and user levels, invoked by means of the command
 language.

 In general, access to information is controlled in MTS in
 the following ways. First, the use of virtual storage in MTS is
 such that individual processes cannot refer to segments in the
 private virtual storage of any other process. Second, programs
 executing in a process in MTS will switch, under system control,
 between various domains (primarily between the user and system
 domains) and the access to segments in the process’s private
 virtual storage will change depending on the currently active
 domain. Third, modes of access to individual files in MTS may
 be restricted not only to specific users and groups of users,
 but also to specific (user-written) programs. As a result,
 owners of files may completely determine under program control
 how their files may be accessed. Finally, users in MTS may, at
 the command language level, switch between various subsystems,
 and the access to a particular file may change depending on the
 currently active subsystem.

 MTS ___

 The Michigan Terminal System (MTS) is a large, general-
 purpose, time-sharing operating system which has been in
 continual development since 1966 by the University of Michigan’s
 Computing Center staff, initially for use on the IBM 360/67. It
 is currently in use at the University of Michigan and five other
 universities in the United States, Canada, and England¹, running

 2

 on IBM 360/67, 370/168, and Amdahl 470V/6 computers. At the
 University of Michigan, MTS runs on a four megabyte Amdahl
 470V/6 and typically supports 160 simultaneous users (both
 terminal and batch) during a normal afternoon. MTS services the
 educational and research computing needs of the University. In
 recent years, all of the universities using MTS have contributed
 in varying degrees to its development. In particular, the
 storage protection mechanism described in this paper was first
 implemented at Wayne State University.

 MTS has been described in [1]. Only those aspects of the
 system’s structure which are relevant to the protection of
 information will be described here. MTS is a virtual storage
 system in which each user has a process which has its own unique
 virtual address space. In the remainder of this paper, we will
 generally not distinguish between a user and the process which
 acts for the user. The principal component of the user’s
 process is the main command interpreter. Each user process has
 a dedicated device -- usually a terminal -- for input of
 commands or data and output of command results and other
 messages. The command interpreter generally reads a command
 from the input device and performs the indicated operation.
 Some typical commands are SIGNON, SIGNOFF, RUN, EDIT, PERMIT,
 COPY, CREATE, and DESTROY. Each of the preceding commands,
 except for SIGNON and SIGNOFF, performs some operation on one or
 more files -- for example, the RUN command loads the object
 program found in the specified file and initiates execution.

 The main command interpreter may invoke one of several
 command language subsystems (CLSs) in response to a user
 command. Each subsystem interprets its own set of commands. In
 this way, the main command language is kept to a reasonable
 size. For example, the context editor is invoked by the EDIT
 command, interprets editor commands until a STOP command is
 given, and returns to the main command interpreter. Although
 most CLSs appear to be part of the system, each is a separate
 set of routines which is invoked by the main command
 interpreter. In fact, a program which a user runs by means of
 the RUN command (hereafter called a user program) is just
 another subsystem to be invoked, as far as the main command
 interpreter is concerned.

 One of the important properties of a subsystem is that it
 is independent of the other subsystems. A subsystem may be
 suspended, some other subsystem may be invoked, and then the
 original subsystem may be continued at a later time. Thus, a
 user could run a program, suspend it to edit an input file, and
 then continue running the program from the point of suspension.
 In fact, the main command interpreter can be considered a

 ────────────────────
 ¹ The University of Alberta, The University of British Columbia,
 The University of Newcastle-Upon-Tyne, Rensselaer Polytechnic
 Institute, and Wayne State University.

 3

 command language subsystem.

 The main command interpreter not only interprets commands,
 it also provides system services by means of subroutines which
 user programs and CLSs can call. For instance, to dynamically
 acquire virtual storage, a user program calls the system-
 supplied subroutine called GETSPACE. All system services are
 provided in the form of subroutines -- user programs do not, in
 general, execute supervisor call instructions. System-supplied
 subroutines such as GETSPACE use supervisor calls to request
 services of the supervisor, which is the only component of MTS
 which operates in the "supervisor state" provided by the
 hardware of the 360/370-style machines [2]. Each user process
 operates exclusively in problem state.

 Virtual Storage _______ _______

 Use of Virtual Storage in MTS ___ __ _______ _______ __ ___

 MTS uses virtual storage in the following way (see figure
 1). Each process in the system has its own virtual address
 space. This space currently consists of 13 segments of 256
 pages each (segments 0-12) amounting to about 13 million bytes
 for each user. The first five segments (0-4) are shared among
 all processes and have the same addresses in all processes.
 This is the "address agreement" approach to shared memory. All
 of the shared system components reside in these shared segments
 -- the main command interpreter, most CLSs, the supervisor, the
 file system routines, and others. The remaining address space
 of each process (segments 5-12) is private to that process -- it
 does not intersect with the address space of any other process.
 Information in the private segments in any process cannot be
 accessed in any way by another process since that information
 does not appear in the address space of any other process [3].
 This results from the use of the address translation mechanism
 and is the principal means of information protection between
 processes in MTS.

 The private segments of each process are further divided
 into a segment for system work space (segment 5) and several
 user program work space segments (6-12). The system work
 segment contains all of the control information at the process
 level necessary to provide services to the user and to account
 for them.² No user-callable programs are ever kept in the system
 work segment. Among the control structures kept in the system
 work segment are many of those used by the file system and the
 CLSs. The user program work segments contain user programs

 ────────────────────
 ² System-wide control data structures, of necessity, are kept in
 the shared segments, but nearly all control structures which are
 specific to a single process are kept by the process itself in
 its system work segment.

 4

 process 1 process 2 process n
 ┌─────────┐ ┌─────────┐ ┌─────────┐
 | |12 | |12 | |12
 | | | | | |
 | user | | user | | user |
 | | | | | |
 | program | | program | | program |
 | | | | | |
 | work | | work | | work |
 | | | | | |
 | segments| | segments| | segments|
 | |6 | |6 | |6
 └─────────┐ └─────────┐ ... └─────────┐ | | | | | |
 | | | | | |
 | system | | system | | system |
 | | | | | |
 | work | | work | | work |
 | | | | | |
 | segment | | segment | | segment |
 | |5 | |5 | |5
 └─────────┘ └─────────┘ └─────────┘

 ┌──────────┐
 | |4
 | |
 | shared |
 | |
 | segments |
 | |
 | |0
 └──────────┘

 Use of Virtual Storage in MTS

 Figure 1

 which are run and any work areas dynamically allocated by these
 user programs.

 Protection of Information in Virtual Storage __________ __ ___________ __ _______ _______

 As we have seen, the address space of each process can be
 divided into three parts -- shared segments, the system’s work
 segment, and the user program’s work segments. A security
 policy can be defined by putting different access restrictions

 5

 on each part. Because the IBM 360/370 architecture does not
 provide a hardware-implemented execute-only storage access type,
 every process must have read access to the shared segments in
 order to call system subroutines which reside there. Except for
 the relatively short time involved in executing a few system
 routines, a process should not have write access to the shared
 segments. System components must have both read and write
 access to the system’s work segment, but user programs must have
 no access to it.³ Both system components and user programs must
 have read and write access to the user program work segments.

 In this discussion, the objects to which access must be _______
 controlled are segments. The subjects which access the objects ________
 are routines within a process -- that is, system subroutines,
 the command interpreter, the CLSs, the file routines, and user
 programs. Note that system-provided utility programs, like
 compilers, the linkage editor, etc., are all considered user
 programs, since they are invoked by means of the RUN command.

 The desired access restrictions mentioned above define
 three separate "protection domains" within a process.⁴ (See
 Linden [4] for a discussion of protection domains.) (1) Routines
 which require read/write access to all segments including the
 shared segments execute in the "unlimited" domain. For example,
 system routines which maintain information in tables located in
 shared segments must operate partly in the unlimited domain.
 (2) Routines which require read/write access to the system work
 segment, but not the shared segments, execute in the "system"
 domain. For example, the command interpreter operates in the
 system domain. (3) User programs require only read/write access
 to user work segments and read access to the shared segments (so
 that system subroutines may be called). This access defines the
 "user" domain. The security policy is implemented by
 controlling the transitions between protection domains. Figure
 2 provides a summary of the access rights of domains to
 segments.

 Control of Access to Virtual Storage _______ __ ______ __ _______ _______

 ────────────────────
 ³ In MTS, there is no "sensitive" information kept in the system
 work segment which must be hidden from the user. Therefore,
 user programs could be allowed read-only access to the system’s
 work segment.
 ⁴ The three protection domains described here are those which
 are relevent to a user’s process. There are two other domains
 in MTS: absolute and supervisor. There are absolute processes
 which do not use virtual storage -- such as the paging drum
 processor. These processes execute in problem state with access
 to all of real storage. The supervisor itself executes in
 supervisor state with access to all virtual storage and all real
 storage.

 6

 shared system program
 segments work work
 segment segments
 ┌─────────┌─────────┌─────────┐ ─ ─
 | | | |
 unlimited| read/ | read/ | read/ |
 domain | write | write | write |
 | | | |
 └─────────┼─────────┼─────────┐ | |
 | | | |
 system | read | read/ | read/ |
 domain | | write | write |
 | | | |
 └─────────┼─────────┼─────────┐ | |
 | | | |
 user | read | none | read/ |
 domain | | | write |
 | | | |
 └─────────┘─────────┘─────────┘ ─ ─

 Access to Segments by Domains

 Figure 2

 To provide the necessary access control, two separate
 mechanisms are used. To control access to shared segments, the
 storage key protection feature of the IBM 360/370 architecture
 is used. Pages in memory are given "store protected" storage
 keys, and the access to those pages is determined by comparing
 the key in the processor with the storage keys -- read/write
 access is allowed if the processor key matches the storage key;
 read access is allowed, write access is denied if the keys do
 not match. If the processor key is zero, then all pages are
 read/write accessible.⁵ In MTS, pages in the shared segments are
 given storage keys of zero and pages in private segments are
 given storage keys of one. A user process always is given a
 processor key of one by the supervisor unless it is in unlimited
 domain. Thus, all subjects have read-only access to the shared
 segments.

 Note that the use of storage keys to protect segments is

 ────────────────────
 ⁵ See [2] for more details on how storage key protection works.

 7

 not especially appropriate, since keys are associated with pages
 on a 360/370, and not with segments. However, they can be used
 for this case of access control because the storage keys in the
 shared pages need never be changed once they are set initially,
 and because only very limited write access is allowed to the
 shared segments.

 The same mechanism will not work to control access to the
 system’s work segment. If the pages in the system work segment
 were given storage keys distinct from the keys given the pages
 in the user work segments, any subject which had read/write
 access to the system segment would not have write access to the
 user work segments (unless its processor key was zero, giving it
 write access to the shared segments as well).

 Instead, the hardware-provided address translation
 mechanism (using the segment table) is used to provide different
 access rights to the various private segments. While system
 routines are executing, the segment table contains an entry for
 each of the shared, system, and user segments. While user
 routines are executing, the segment table contains entries for
 the user segments (and, of course, the shared segments) but not
 the system segment. This is the second use of the address
 translation mechanism for storage protection. A user process
 cannot ever access another process’s private segments, and it
 can only access its own system work segment when it is in the
 system domain. The software must carefully control transitions
 between these two protection domains in order to insure that the
 segment table contains only the appropriate entries.

 System-Controlled Domain Switching _________________ ______ _________

 A transition between system domain and unlimited domain is
 allowed, and is accomplished by a supervisor call. This is
 necessary, of course, because the supervisor must verify that
 the domain switch is, in fact, being requested from the system
 domain, and must change the process’s processor key to zero if
 it is. Due to the fact that routines which execute in the
 system domain are "trusted", transition from system to unlimited
 domain is always allowed. It is presumed that the routine will
 switch its domain back to system domain as soon as it no longer
 needs write access to a shared segment.

 Since segment tables are kept in the supervisor,
 transitions between system and user domains must be accomplished
 by means of supervisor calls. Two supervisor calls are defined
 for this purpose -- one to switch in each direction. Since
 domain switches must be controlled, these supervisor calls
 (particularly "enter system domain") must be allowed to be
 issued only from well-known system routines. In fact, since
 there is no need for a user program to issue any supervisor
 calls, all supervisor calls except "enter system domain" can be
 disallowed when in the user domain. All of the locations from
 which the "enter system domain" supervisor call can be validly

 8

 issued are known to the supervisor and are called "gates." All
 such gates are in the shared segments so their addresses remain
 fixed. Consequently, the supervisor always knows in which
 domain a process is executing and can assure that the system
 domain is only entered at pre-determined locations.

 Implementation Considerations ______________ ______________

 In general, there is a gate for each non-trivial system
 subroutine.⁶ The gate provides the domain change, and the
 subroutine can then access the system work segment and issue
 supervisor calls. Each system subroutine is required to return
 to its gate which executes the "enter user domain" supervisor
 call before returning to its caller.

 There are several things which must be considered when
 allowing a subroutine in the system domain to be invoked by a
 user domain routine. The "attenuation of privilege" problem
 must be solved -- that is, the subroutine must not be able to be
 tricked into doing anything which its caller does not have
 suitable access to do. There are two cases where this can
 happen in MTS -- the caller could provide parameters to which he
 did not have access, or provide a save area whose address was in
 the system work segment. All system subroutines must check the
 addresses of the parameters and save areas they are passed to
 ensure that they are not in the system work segment. Note that
 this checking must be done after the domain switch but before
 the item being checked is used.

 A less frequent situation which must be allowed for is the
 case of an "outward call" -- a routine in the system domain
 calling a subroutine in the user domain. In this case, any
 parameters or save areas provided to the user domain subroutine
 must be in one of the user segments. This usually involves
 making copies of parameters. A gate must also be provided
 through which the called subroutine may return. At the time of
 return, any returned parameters must be checked and any
 registers which are presumed to be restored must also be
 checked.

 A routine executing in the system domain must not be
 allowed to lose control to a routine in the user domain due to
 an asynchronous or unexpected event, like a timer or attention
 interrupt. In MTS, this problem is handled by noting the
 occurrence of such an event if it occurs when the process is in
 the system domain, and exiting to the user domain trap routine
 (if there is one) at the time the domain switch from system to
 user domain is made. Those events which result in suspension of

 ────────────────────
 ⁶ System-provided subroutines which do not access the system
 work segment can execute in the user domain, and thus do not
 require gates.

 9

 a system domain routine, like program interrupts or other
 errors, cause the main command interpreter to be invoked. If
 the user attempts to restart the suspended program, the domain
 is automatically switched to the user domain. This is required
 because the user, by issuing some intermediate sequence of
 commands, could cause the environment of the suspended system
 routine to change. Thus, most suspensions which do occur in
 system domain routines are errors, for which restarting is not
 allowed.

 To summarize the storage protection in MTS, access to
 virtual storage is controlled on a segment basis, with three
 distinct protection domains: unlimited, system, and user.
 Between processes, non-intersecting virtual address spaces
 insure the isolation of private segments. Within a process, the
 differing access rights of the three domains protect the various
 segments. Transition may be made between the unlimited and
 system domains, and between the system and user domains.
 Because the unlimited and system domains are only available to
 system routines, which are presumed to be trustworthy,
 transitions between these two domains are not carefully
 controlled. On the other hand, transitions between system and
 user domains are very carefully controlled so that a routine in
 user domain has no direct access to the system work segment.

 Limitations ___________

 Comparing this protection mechanism to other protection
 models, one finds that it is rather limited. If we ignore the
 distinction between the unlimited and system domains, this is a
 simple privileged state mechanism (or, if one prefers, a two-
 level ring structure [5]). In fact, the term "gate" comes from
 MULTICS. The segment table entries can be thought of as
 "capabilities" for the associated segments.⁷ These capabilities
 are rather primitive, however, in that they allow only one type
 of access -- read/write.

 The limitations of the protection mechanism are found
 primarily in its scope. The protection domains, as described by
 Linden [4], are not small, in the sense that system domain
 routines typically have more access than they need to perform
 their task. For instance, some system routines do not require
 any access to user segments, yet they have read/write access.
 One reason for this limitation is the lack of different access
 rights to user and system segments. By having an entry in the
 segment table, a segment is read and write accessible. Many
 system routines do not require write access to the system
 segment, for example, but there is no convenient way to provide
 them with read-only access. The other reason small domains are

 ────────────────────
 ⁷ See [6] for a general description of capabilities and how they
 relate to the protection of information.

 10

 impractical in MTS is the number of available segments. Using
 24-bit addressing, there are only 16 segments available in the
 virtual address space. This makes it impractical to load many
 different routines into many different segments which are
 members of different protection domains.

 Some of these limitations could be removed by a simple
 change to the hardware. If the storage-protect key were put
 into the segment table entry rather than in each page, and if a
 hierarchy of access were defined for it (i.e. if a priority
 ordering were established) a 16-level ring structure could
 potentially be implemented. However, ring crossings would still
 be a high overhead operation, since they would require
 supervisor intervention.

 Files _____

 The File System in MTS ___ ____ ______ __ ___

 The file system is a collection of routines which are
 called either during interpretation of commands or while
 providing some service for a program, like reading or writing a
 file. Some of its primary responsibilities include (starting at
 the lowest level) initiating physical disk I/O and subsequent
 error recovery, allocating and deallocating disk storage space,
 and maintaining and interrogating the file system catalog.
 Moreover, it is a "buffer-oriented" system as opposed to a
 "virtual storage-oriented" system. That is to say, files in MTS
 are not mapped into segments of the process’s virtual storage. ___
 Instead, "page-sized" buffers (as well as control blocks) are
 allocated in the process’s system work segment for each active
 file within a process, and one of the main functions of the file
 system is to transfer blocks of file information, when
 necessary, between the page-sized physical records on the
 secondary storage device and the process’s buffers. Quite
 obviously, since these page-sized blocks of information do not
 correspond directly to logical records read and written by
 programs, the file system is also responsible for managing and
 transferring logical records between the page-sized buffers and
 the calling program’s input and output areas. Since each
 process has its own buffers and control blocks in its own
 private system work segment (and thus its own copy of a file
 during active use), the concurrent usage of files in MTS must be
 controlled by a set of routines (similar to a monitor as defined
 by Hoare [7]) which interrogates a system-wide table (in a
 shared segment) of currently active files to determine if
 concurrent usage of a particular file is allowable at any given
 point.⁸

 ────────────────────
 ⁸ See [8] for more details on the structure of the file system
 in MTS as well as details on how concurrent usage of files is
 accomplished in MTS.

 11

 Protection of Information in Files __________ __ ___________ __ _____

 For the protection of information in files, most state-of-
 the-art time-sharing systems use access control lists associated
 with each file, and MTS is similar in this respect. Briefly,
 when a file is initially created in MTS, the owner of the file
 has unlimited access to perform any of a number of operations on
 the file. These operations might include, for example, reading
 the file, writing (with a distinction made between expanding and
 changing), emptying (discarding the contents), renumbering,
 truncating (deallocating unused disk space), renaming,
 destroying (deallocating all disk space), and permitting (giving
 access to others). Initially everyone else has, by default, no
 access to the file. Subsequently, the owner of a file may give
 specific users of the system permission to perform any
 combination of the above-mentioned operations on the file.

 Each user of MTS is identified by a unique identification
 code, (hereafter referred to as a userid), and as is the case
 with most systems, a password mechanism is used to authenticate
 a particular user at SIGNON time. Once signed on, that user has
 access to all of his own files as well as to other users’ files
 to which his userid has been given explicit access. In
 addition, users at the University of Michigan are grouped into
 projects -- for example, all students in a particular class or
 all staff on a particular research project -- and the owners may
 permit their files to be accessed in a specified fashion by all
 users within a particular project (i.e., all users with a
 specific project number).

 Control of Access to Files _______ __ ______ __ _____

 Two things should be mentioned about the file-sharing
 facility. First, every user of the system has at least one set
 of access rights associated with any given file (in most cases
 it is, by default, no access to the file). Second, if a user
 has more than one set of access rights to the file because both
 his userid and his project have been given permission to access
 the file, then a priority scheme is used to determine the access
 rights. The set of access rights associated with the userid is
 used if given -- if not, then the set of access rights
 associated with the project is used if given. Otherwise, the
 access rights associated with everyone else is used (by default
 no access, but changeable by the owner). Thus, in the usual
 case, the owner of a file specifies that certain specific users
 have certain specific kinds of access to a file, while everyone
 else has no access to it. However, the owner may also specify
 that everyone has some specified access, except for certain
 users or groups of users who have some other access, e.g. none.

 Although the mechanisms described so far are seemingly
 quite general and flexible, they have at least one major
 shortcoming. Specifically, if a user has been given "read"
 access to a file, he might read that file in a number of

 12

 different ways, each obtaining quite different amounts of
 information. For example, if the file contains a program (i.e.,
 an object module) to be executed, the user might simply request
 that MTS read the file for the purpose of loading and executing
 the program. Alternatively, the user might request that a
 system utility be invoked which will read the file and tell him
 about the internal structure of the object module. Or he might
 read the file directly himself and make a copy for his own use.
 Each usage requires only that the user has been given read
 access to the file, but each obtains successively more
 information about the contents of the file. Likewise,
 permission to allow a user to write a file can have varying
 consequences depending on how the user chooses to exercise his
 "write" privileges. In the least destructive case he may only
 be appending information to a file or to each record in the
 file; in the most destructive case he may be completely changing
 or deleting every record in the file. It thus seems that a more
 discriminating access control mechanism is needed.

 Program-Controlled Access to Files __________________ ______ __ _____

 Saltzer and Schroeder [6] refer to the need for "protected
 subsystems", i.e., user-provided programs which control access
 to files. As they indicate, only a few of the most advanced
 system designs have tried to provide for user-specified
 protected subsystems and these have, in general, been with
 special hardware (or extensive software) designed to assist in
 the implementation. Honeywell’s MULTICS [5] uses the hardware
 ring structure to provide protected subsystems to control access
 to files, whereas more current (experimental) systems such as
 the CAP system of Cambridge University [9] and the HYDRA system
 of Carnegie-Mellon University [10] use hardware-or-software-
 implemented capabilities, respectively, to provide such
 protected subsystems.

 MTS addresses this need by providing a software-implemented
 access control list mechanism for allowing user-written
 protected subsystems. That is to say, by extending the
 permission mechanism to allow data files to be accessed in
 specified ways by programs as well as by users and projects, MTS __ ________
 allows a specific user-written program -- i.e., a file which
 contains an object module to be executed -- to be designated the
 only thing allowed particular types of access to specific files ____ _____
 (which might contain data, for example). Thus the designer of a
 program can, if he desires, completely control the read and
 write access to his data files. Specifically, this mechanism is
 provided by allowing the owner of a file (containing an object
 module to be executed) to associate a unique identification (an
 eight-character string called a "program key") with that file.
 Then data files, for example, may be specified as accessible in
 a particular way (read, write change, destroy, etc.) only by a
 particular program key -- i.e., only if the executing program
 which is accessing the data file was loaded from a file with the
 appropriate program key. Program keys are prefixed internally

 13

 by a userid, and thus they are unique among users. In addition,
 they are in general non-transferable. In this way users can be
 restricted from having any direct access to data files; only an
 executing program may then access the data files, presumably in
 the fashion prescribed by the designer of the program.

 Execute-Only Files ____________ _____

 Obviously, the users of the program (with program-key
 access to the data files) must also have been given some sort of
 access to the file containing the program in order to run it.
 This could simply be read access as described before, but a
 software implemented "execute-only" access is provided as a
 specific example of the general concept of program-key access to
 files. (As mentioned previously, the machines on which MTS runs
 have no hardware implemented execute-only storage access type;
 thus the motivation to implement something in the software.)
 Execute-only access is accomplished in MTS by associating a
 unique program key with each of the system programs invoked when
 a user enters a command, in particular the system program which
 loads and executes user programs. Thus, permission to read
 files containing programs to be executed (i.e., object modules)
 may be given only to the system load-and-execute program (i.e., ____
 the RUN command interpreter). In a similar manner, files may be
 designated as "edit-only." For example, only the system context ____
 editor program might be given permission to write a file
 containing the source for some program, thereby guaranteeing
 that the source file will not be accidentally damaged by a
 careless user or even by the owner.

 Priority Resolution of Multiple Access Rights ________ __________ __ ________ ______ ______

 Quite obviously, the addition of program keys to the list
 of those who may access a file complicates the priority
 resolution when the userid, project, and program-key combination
 have more than one set of access rights to a file. In MTS, the
 priority of program-key access to files is lower than userid or
 project access, but higher than the global access associated
 with everyone else. Thus, if both the userid and/or the project
 which initiated execution of the program, as well as the program
 key of the program accessing the file, have been given explicit
 access to the data file, the access rights associated with the
 userid (or then the project) will be used to determine the type
 of access allowed. Only if the userid and project which
 initiated execution of the program have no explicit access to
 the data file is the access associated with the program key
 used. Of course, if the program key of the currently executing
 program has also not been given explicit access to the data
 file, then the global access associated with everyone else is
 used. It should be noted that all files (in particular those
 which contain object modules) are given a default program key
 when they are created. Thereafter, the owner of the file may
 change the program key to any "legal" value he desires (i.e., in

 14

 general one prefixed with his userid).⁹

 Applications ____________

 One of the most obvious applications where it is desirable
 to have a particular program in complete control of access to
 data files is that of a data base management system. In such a
 situation in MTS, the users could be given execute-only access
 to the data base management program itself, and that program
 could be given read (and possibly write) access to the data base
 files. At this point it becomes clear (or at least it became
 clear during the implementation), that one would like to be even
 more explicit in specifying what users, projects, and programs
 may access a file. In particular, one would like to be able to
 specify that only particular users and/or projects have specific
 types of access to data files, but only if they access the files ___ ____
 by running specific programs. In fact, the facilities provided
 in MTS are general enough, for example, to permit only a
 specific project (e.g., a student class) to have read access to
 the data base files for inquiry purposes, but only via the data
 base management program; and at the same time to permit other
 specific users (e.g., the instructors) to have both read and ___
 write access to the data base files for updating purposes, but _____
 still only via the data base management program.¹⁰

 Implementation Considerations ______________ ______________

 Since in MTS the protection of information in files is
 completely implemented in the software, it might be useful to
 discuss some of the more interesting implementation
 considerations. In particular, MTS goes to considerable lengths
 to guarantee that a program with an explicitly assigned program
 key (or an execute-only program) is run in a manner consistent

 ────────────────────
 ⁹ As an indication of the amount of sharing of files which
 actually goes on in MTS at the University of Michigan, the
 following numbers may be of interest. One should keep in mind
 that the facility for sharing files among users and projects has
 been available for close to 4 years, whereas the facility for
 giving programs access to files has been available for only
 about one year. Currently in MTS there are over 86,000 private
 files on-line. Of these, over 40,000 are shared in some way;
 the others are accessible only to their owners. Over 22,000 are
 shared by everyone, and over 27,000 are shared by specific
 users, projects, or programs. Obviously, some of the 40,000 are
 shared both globally and specifically. Of the 27,000 files
 accessible specifically to users, projects and programs, over
 1,000 have been given program-key access.
 ¹⁰ See [11] for details on exactly how this is accomplished in
 MTS, and how the now even more complicated priority of multiple
 access rights is resolved.

 15

 with the desires of a security-conscious program designer. In
 general, this means that if MTS detects such a program being run
 as anything other than a single, self-contained "load module",
 MTS will insure that program key access to the data files is
 denied.¹¹

 Concerning other areas of implementation strategy, Saltzer
 and Schroeder [6] refer to the complications involved when one
 considers the "dynamics of use" of protection mechanisms. In
 particular, they refer to how one establishes and changes the
 specifications of who may access what files. In MTS, the owner
 of a file always has authority to change the access control
 list. That is to say, there is no way that the access to a file
 can be forever denied to everyone. In addition, anyone to whom
 the owner has given "permit" access may also alter the access
 control list of the file. Obviously, the owner must be careful
 in giving away the right to change the access control list.
 Since changing the access control lists dynamically may imply
 potential problems with access rights to currently active files
 no longer being valid, MTS determines the access that a userid,
 project, and program key combination has to a file the first
 time the file is referenced (opened), and retains that
 information in a control block in the system work segment. MTS
 also maintains global information (in a shared segment) to
 indicate how and by whom each active file in the system is
 currently being accessed. Thus, when someone attempts to change
 the access control list, MTS is able to determine whether the
 file is currently active (and as a consequence whether there are
 access rights outstanding in a control block in storage) and
 will not allow the access control list to be changed until all
 activity associated with the file has ceased.

 User-Controlled Domain Switching _______________ ______ _________

 Linden [4] mentions another area of interest when
 implementing protection mechanisms, that of providing a
 mechanism for changing from one protection domain to another
 with potentially different access rights to files as control
 passes from one protected subsystem to another. As mentioned
 previously, programs executing in a process will regularly
 switch (under system control) between three protection domains,
 and the access to the segments in the process’s virtual storage
 will change accordingly. Similarly, a user at the command
 language level may switch between a number of different command
 language subsystems during a typical terminal session, and the
 access to files may change accordingly. The most commonly used
 subsystem is the main command interpreter, but other subsystems
 include, for example, the editor subsystem, the program
 debugging subsystem, and the user program execution subsystem.

 ────────────────────
 ¹¹ See [11] for details on how this is accomplished.

 16

 It should be noted that before program-key access to files
 was implemented, the access which a userid and project had to a
 particular file was invariant during the time the file was
 active (open). This is no longer true when one considers the
 access which a userid, project, and program key combination has
 to a file. The access to the same file may potentially be
 different depending on which subsystem is currently accessing
 the file. For example, if the context editor has been given
 read and write-change access to a file, and also a particular
 program (via its associated program key) has been given write-
 expand access to the file, then when the user is editing the
 file he may read and change lines in the file (but not add
 lines). If he switches to the program execution subsystem to
 run the above-mentioned program, he may add lines to the file
 (but not read or change them). Needless to say, MTS must be
 aware when control switches from one subsystem to another and
 reevaluate the access rights, if necessary.

 Actually, as indicated in figure 3, the various protection
 domains in MTS intersect. For example, a program running in the
 execution subsystem may switch between the user and system
 domains and as a result the access to segments will change
 accordingly. However, if the program remains in the execution
 subsystem, the access to any currently active files will be
 invariant. On the other hand, a user switching between the main
 command subsystem and editor subsystem may have different access
 to a file currently in use, but if both subsystems remain in the
 system domain the access to segments will be invariant. Finally
 it should be noted that the execution subsystem is the only
 subsystem which runs in the user domain.

 One important facility which the program key mechanism is
 not able to provide and which could not be easily provided with
 software alone, is the ability to have multiple protection
 domains (with different program-key access to files) within an
 executing program -- for example, upon entry to a user callable
 subroutine. It seems clear that such a facility requires
 additional hardware and/or extensive software assistance,
 probably in the form of the above-mentioned capabilities to
 allow a feasible solution.

 Summary _______

 By controlling access to information in virtual storage,
 MTS provides an environment in which processes are protected
 from one another, and the operating system is protected from
 individual processes. The system control data structures used
 by MTS are either in the shared segments or in the system work
 segment of each process, and are thus protected from errant or
 malicious user programs. In particular, the data necessary for
 the control of access to files is out of the reach of user
 programs. In addition, by allowing users a flexible mechanism
 for controlling how their on-line files may be accessed and by
 what users, projects, and programs, MTS provides a general

 17

 user system unlimited
 domain domain domain
 ┌─────────┌─────────┌─────────┐ ─ ─
 main | | | |
 command | | * | * |
 subsystem | | | |
 └─────────┼─────────┼─────────┐ | |
 execution | | | |
 subsystem | * | * | * |
 | | | |
 └─────────┼─────────┼─────────┐ | |
 editor | | | |
 subsystem | | * | * |
 | | | |
 └─────────┼─────────┼─────────┐ | |
 . | | | |
 . | | * | * |
 . | | | |
 └─────────┘─────────┘─────────┘ ─ ─

 * => intersection is possible

 Intersection of protection domains in MTS.

 Figure 3

 facility for the sharing of information in files in a (program
 controlled) manner specified completely by the owner.

 While some of these mechanisms are not as general as others
 which have been proposed -- particularly capability-based
 mechanisms -- they do provide a flexible, secure environment
 while at the same time maintaining system integrity. More
 generality in the mechanism would require either modifications
 to the 360/370 architecture or a great deal more overhead in the
 software.

 18

 References __________

 [1] D. W. Boettner and M. T. Alexander. "The Michigan Terminal
 System." pp. 912-918, Proceedings of the IEEE, Special ___________ __ ___ ____
 Issue on Interactive Computer Systems, Vol. 63, No. 6,
 (June 1975).

 [2] IBM System/370 Principles of Operation. IBM Publication ___ __________ __________ __ _________
 GA22-7000-4.

 [3] B. Arden, B. Galler, T. C. O’Brien, and F. Westervelt.
 "Program and Addressing Structure in a Time-Sharing
 Environment." pp. 1-16. Journal of the ACM, Vol. 13, _______ __ ___ ___
 No. 1, (Jan. 1966).

 [4] T. A. Linden. "Operating System Structures to Support
 Security and Reliable Software." pp. 409-445. ACM ___
 Computing Surveys, Vol. 8, No. 4, (Dec. 1976). _________ _______

 [5] J. H. Saltzer. "Protection and the Control of Information
 Sharing in MULTICS." pp. 388-402, Communications of the ______________ __ ___
 ACM, Vol. 17, No. 7, (July 1974). ___

 [6] J. H. Saltzer and M. D. Schroeder. "The Protection of
 Information in Computer Systems." pp. 1278-1308,
 Proceedings of the IEEE, Vol. 63 No. 9, (Sept. 1975). ___________ __ ___ ____

 [7] C. A. R. Hoare. "Monitors: An Operating System Structuring
 Concept." pp. 549-557, Communications of the ACM, Vol. 17, ______________ __ ___ ___
 No. 10, (Oct. 1974).

 [8] G. C. Pirkola. "A File System for a General Purpose Time-
 Sharing Environment." pp. 918-924, Proceedings of the ___________ __ ___
 IEEE, Special Issue on Interactive Computer Systems, ____
 Vol. 63, No. 6, (June 1975).

 [9] R. M. Needham and R. D. H. Walker. "Protection and Process
 Management in the CAP Computer." pp. 155-160, Proceedings ___________
 of the IRIA International Workshop on Protection in __ ___ ____ _____________ ________ __ __________ __
 Operating Systems. Institut de Recherche d’Informatique et _________ _______
 d’Automatique, France, 1974.

 [10] E. Cohen and D. Jefferson. "Protection in the HYDRA
 Operating System." pp. 141-160, Proceedings of the Fifth ___________ __ ___ _____
 ACM Symposium on Operating Systems Principles, ACM ___ _________ __ _________ _______ __________ ___
 Operating System Review, Vol. 9, No. 5, (Nov. 1975). _________ ______ ______

 [11] MTS Manual, Vol. 1: The Michigan Terminal System, "Files ___ ________ ________ ______
 and Devices, Appendix I," pp. 153-160. The University of
 Michigan Computing Center, Ann Arbor, Michigan, April 1976.

Classification: 162.12(GUINFO)/6
Date: April 1, 1978
Doct=29 Vers=2

 GUINFO Items Designed Mostly for Systems Use ______ _____ ________ ______ ___ _______ ___

 (or whose use is so obscure that we don’t have
 the nerve to put the description into Vol. 3)

Index Name Type Description_____ ____ ____ ___________

 13* LFRBIT Bit 1 => $SET LFR=OFF (default is OFF). For those who
 don’t know and can’t guess LFR stands for library
 file release.

 14 ACCTNO Fullword The user’s account number.

 50 IDRNBR Fullword The user’s IDR (inter-departmental requisition)
 number.

 52 UNITCODE Fullword The user’s unit code.

 53* UNLODOFF Bit 1 => $SET UNLOAD=OFF (default is ON).

132 LOADT Fullword The address of the table used by LLXU to associate
 FDnames with link levels. This table lives in the
 system segment.

142 PDNTBL Fullword The address of the pseudo-device name table (somewhere
 in the system segment).

235 NOFILERE Bit 1 => $SET FILEREF=OFF (default is ON). This option
 may only be set by the ccid MTS.

243 UNPROT Bit 1 => user can set PROT=OFF (This bit is the logical OR
 of items 246 and 250)

244 PRIVPROG Bit 1 => a priv. program is loaded

245 PROTOFF Bit 1 => user has $SET PROT=OFF

246 ACCPRIV Bit 1 => THE Super-Priv bit (ACCDCT+1, bit 0), also
 known as the "rich" bit.

248 ACCCCPF Bit 1 => Can Create Public File bit (ACCDCT+1, bit 4)

250 ACCPUSE Bit 1 => is "protection-privileged" user (ACCDCT+2, bit 6)
 This means user may $SET PROT=OFF among other things.

256 SIGNEDON Bit 1 => The 100% signed on bit. Set just before
 $SIGNON command processing is completed, and
 before sigfile processing (if any) begins.

 164.13
 Jun 17, 1977
 Doct=2 Vers=1

 Other SET command options - ones for systems use mostly

 PROT=ON or OFF Sets the "protection mechanism" in MTS on or off.
 Tasks are run with PROT=ON by default. The userid
 attempting to set PROT to OFF must have either the
 super-priv bit in the accounting record (x’80’ in
 ACCDCT+1) or the PUSE bit in the accounting record
 set on.

 SDSMSG=ON or OFF Indicates whether SDS is to format and print the
 program interrupt, attention interrupt, timer
 interrupt message. This is independent of whether
 SDS is currently activated. Default is ON. The
 only reasons to switch to OFF are if SDS is ill,
 testing is being done in some situation in which
 SDS cannot be safely invoked, or if you like your
 PSW in raw hex.

 TABLMOD 1

 Classification: 170/3
 Date: Jul 11, 1977
 Doct=14 Vers=1

 PURPOSE: UMMPS job program to display and modify the in- ________
 core open file table. If signons or signoffs
 become impossible, one should do an "LSTAT FILE
 FILENAME" to see if someone has one of the
 accounting files or *STATISTICS locked.

 AVAILABILITY: Enter "TABLMOD" on the operators’ console, or _____________
 "$RUN FILE:TABLMODMP.O" from an MTS task.

 HOW TO USE: Commands are read until an end-of-file is entered. ___ __ ____
 The following commands are available:

 VERIFY
 verifies (entry and element) allocations are
 consistent by chasing through various chains in
 shared file table. Also prints # open files, #
 matrix computations, # deadlocks detected.

 TRACE
 prints the entire shared file table. Each entry
 consists of a filename, job number, open status
 ("OPEN" or "NOTO", possibly "INVLD"), lock
 status ("LOCKR", "LOCKM", or "LOCKD"), and wait
 status ("WAITO", "WAITR", "WAITM", or "WAITD").

 LSTAT
 prints the information associated with a single
 file ("LSTAT FILE FILENAME") or a single job
 ("LSTAT JOB nn") in the same format as the DUMP
 command.

 LOCATE
 prints the halfword offset into the in-core
 table for the entry associated with a
 particular file ("LOCATE FILE FILENAME").

 CLEAN
 takes the specified job ("CLEAN JOB nn") off
 all open or locked and waiting lists.

 CLEANF
 same as CLEAN except for one file only ("CLEAN
 JOB nn FILE FILENAME").

 DEQ
 takes the specified job ("DEQ JOB nn") off all
 waiting lists.

 DEQF
 same as "DEQ" except for one file only ("DEQF

 2

 JOB nn FILE FILENAME").

 1

 Classification: 1B0/0 and 321/0
 Date: April 21, 1977
 Doct=10 Vers=1

 An Informal Introduction to the Structure and Management of MTS
 Files
 April 21, 1977

 This document started out as some notes for a lecture to an
 intermediate-level CCS course on the structure of files in MTS.
 Now look what it’s come to, an unforgettable document whose only
 claim to fame is that it is one of the few machine-readable
 documents on MTS internals. Anyway, this thing is sort of a
 prose stroll through the file system, directed at revealing the
 structure and problems with line and sequential files.

 First of all, we’ve got to talk a little about what
 underlies files in general -- disks. And to keep the amount of
 hardware talk to a minimum, suffice it to say that the disks
 used by the MTS file system are formatted into pages, or
 records, or blocks, or whatever (I’ll try to consistently use
 the form "pages") of 4096 bytes each. Whenever a physical I/O
 operation is done, one of these 4096 byte pages is read from or
 written to the disk. The reason 4096 is used is mainly because
 in the virtual memory scheme MTS uses, I/O operations to a
 virtual address require that the virtual page containing the
 place data is transferred to/from reside in real memory for the
 operation. Since the quantum of virtual address space is 4096
 bytes, why not get the most for your money, seeing that the
 virtual memory page must be locked into real memory for the
 duration. To a much lesser extent, (read: I needed 2 reasons for
 the sake of esthetics, so no matter how far out here’s another)
 4096 is convenient because it is the limit of instruction
 addressability off of a base register given the 360/370/470
 machine architecture.

 Built on these 4096-byte pages are four superstructures
 serving different purposes in the file system: 1) Disk
 allocation information, i.e. which disk pages are currently in
 use and what are they in use for; 2) File cataloging
 information, i.e. where each userid’s files are and who has what
 access to them; 3) Sequential files; and 4) Line files.

 Of these four doorways, I’ll only guide you through the
 latter two because the former are not interesting for the
 purposes of this lecture. Also, I don’t know those areas all
 that well as of this date, and am not creative enough to
 masquerade as if I did. There’s just a lot to say about those
 areas, but not enough can be said by me, so step this way,
 please.

 Before we walk into the file rooms, a couple of control
 structures relating to files should be described. First off is

 2

 the File Control Block, or FCB. The FCB contains all sorts of
 good stuff relating to files which are "open", or have been
 prepared for operations on them. Of all the stuff the FCB
 contains, only two things are of interest here, the first being
 the FCB’s pointer to a thing called the Page Map Buffer, or PMB.
 The other interesting thing is a pointer to the Buffer Control
 Block chain (BCB chain).

 The page map buffer is a table describing the location of
 all the disk pages comprising a file. At its head is a count of
 how many entries follow. This count not only serves as self-
 describing information about the PMB, but also shifts the origin
 of the PMB vector so that relative entry number 1 in the PMB
 corresponds to the first page of the file. Hence, all
 designation of pages in a file is by an index into the PMB,
 starting with 1. This very nicely makes all addressing interior
 to files relative to the file itself, resulting in a uniformly
 dense set of addresses irregardless of how the file’s assigned
 disk pages may sprawl over the disk pack. It also provides
 excellent insulation from wild operations performed upon other
 user’s files by a berserk file system component because no file __
 page address may be lower than 1 or greater than the count at
 the head of the page map buffer. The only time this protection
 can break down is if the count at the head of the PMB is wrong
 (which I actually did once) and spurious entries past the actual
 end of the PMB vector are used as disk page addresses.

 As an aside, for the curious, the addresses in the PMB
 which designate physical disk pages are in the form of a two
 byte MTS public volume number followed by a two byte relative
 page number on the public volume. Note that even at this level,
 the addressing scheme is purely relative -- nothing has been
 said about physical disk device addresses or even cylinder-head-
 record addresses on the disk (indeed, nothing ever is in the
 file system).

 Getting back to the other interesting things in the FCB,
 there is the BCB chain header. It is usually the case with files
 that only a small number of the pages which constitute it need
 to be in memory, and therefore accessible and manipulable.
 Indeed, it is quite likely that files may become so large that
 it would be physically impossible to contain them all in memory
 -- even virtual memory. ((12-6+1)*256 = 1792 maximum virtual
 pages per task, currently. There are files on the system
 currently in excess of 2000 pages.) BCBs describe those file
 pages which are currently in memory. They are chained together,
 with the head of the chain in the FCB. BCBs look like:

 3

 - +------+--------------------+
 | 1 | p/f | buffer address |
 | 6 +------+--------------------+
 | b | disk page address |
 | y +-------------+-------------+
 | t | ///////// | buffer size |
 | e +-------------+-------------+
 | s | pointer to next BCB |
 - +---------------------------+ .

 The "p/f" field is a byte of buffer priority and flag bits. The
 priority portion of this byte is a remnant of an old scheme for
 the selection of buffers to be written out to disk when a new
 buffer was required and none were available. Now this serves as
 an identifier for the type of data in the associated file page
 (in the case of line files,) and serves no other purpose. The
 flag bits in the "p/f" field is a set of bits whose primary
 usage is to assure consistency of the copy of the file on disk
 while it is being mangled by the file routines. These bits can
 inhibit or force th writing of pages onto the disk at certain
 critical times. A bit is also devoted to flagging whether the
 page the BCB describes is in use or not, i.e. available to be
 read into. The "disk address" field contains the disk address
 (public volume number-relative page number) of the page in
 memory. This is useful to prevent the re-reading of disk pages
 that are already in memory. The BCBs are first searched for the
 address of the disk page whose contents were requested. If this
 search fails, an I/O operation is performed. The "buffer length"
 field contains the size of the disk page’s image in memory, and
 is currently always 4096. The pointer to the next BCB is
 obvious.

 Naturally, BCBs are manipulated in clever ways to minimize
 the number of physical I/O operations which are done, and to
 speed up the discovery of those I/O operations which do not need ___
 to be done. The way in which the former is effected was
 described above, by searching the BCBs for the requested page’s
 disk address. Suppose, however, the requested page is not
 anywhere in memory. In this case, the BCB chain is scanned for a
 buffer which is not in use. If one of these is found, then it is
 read into. If all the buffers are in use, however, the last BCB ____
 with the bit saying it should be written out immediately is ___________
 selected for replacement (all similarly flagged buffers are also
 written out, by the way,) or the last buffer on the chain is
 written out for replacement. Furthermore, the buffer found or
 read is moved to the front of the BCB chain to expedite its _____
 discovery the next time it is used. This replacement scheme also
 has the property that the least recently used buffer is replaced
 when no buffers are available.

 The number of file buffers described by BCBs can range
 between 3 and 100, currently. The exact number is user-settable
 via a subroutine call, and defaults to 5. The reason 3 is
 decreed as a lower bound is that some operations on line files
 demand that 3 critical pages of the file be all in memory at

 4

 once to guarantee file consistency.

 This is all prefacing the nitty-gritty about files, which
 begins now. First, the structure of sequential files is
 discussed, because they are considerably simpler than line
 files. When sequential files were conceived (they were not part
 of MTS’ original file structure), they were tailored for the
 Datacell, a device which was intended for the (cheap) storage of
 little-used files. This archiving purpose in mind, the only
 operations required for the saving and recall of files is a
 sequential read from the front of the file, and a sequential
 write to the end of the file. To add a bit to their abilities,
 they also mimic tapes. That is, if the file is read to a
 particular point, and then written at that point, all data
 present following the point the file was written is "erased", or
 at least equivalently inaccessable. Recall all this was catering
 to the access properties of the Datacell (an ill-starred device
 which has fallen from the firmament, thank heavens.)

 Unfortunately, this file structure has persisted to this
 day. Fortunately, it is not so tough internally to implement.
 The lines in a sequential file are chopped up into segments. ________
 Each line in a sequential file is represented by one or more
 segments. The reason lines have to be segmented is that the data
 constituting a line may be longer than the amount of space
 available in a disk page. Rather than decreeing that lines may
 not be longer than a disk page, the segmentation mechanism was
 designed so that the data could cross these page boundaries. A
 smattering of thought will also reveal that the crossing of file
 page boundaries by data is desirable even in the case of lines
 shorter than a file page to make effective use of all the space
 in a file page. Segments look like:

 +------+----------+-------------+------------------------ - -
 | | leading | line number |
 | flag | | if | d a t a
 | | count | SEQWL |
 +------+----------+-------------+------------------------ - -

 - - - -----+----------+------+
 | trailing | |
 | | flag |
 | count | |
 - - - -----+----------+------+ .

 The "flags" at the beginning and end of a segment are identical
 in value. They contain bits indicating: 1) Whether the segment
 is the first segment of a line; 2) Whether the segment is the
 last segment of a line; and 3) Whether the segment contains a
 line number field (that is, if the file is a sequential-with-
 line-numbers type file.) The "leading count" is a count
 carefully defined as the current segment length plus all
 previous segment lengths, and the "trailing count" has an
 equally careful definition of being the total line length minus

 5

 all previous segment lengths. These curious definitions will be
 talked about later on. Following the leading count, if the file
 contains line numbers, the line number associated with the line
 appears. The actual data of the line follows the line number,
 then the trailing count and flag.

 Because of the segmentation structure, every line in a
 sequential file is guaranteed to have at least six bytes of
 overhead associated with it. Due to this minimum overhead, it is
 impossible to utilize six bytes or less of available space at
 the end of a file page, because segments are never split across
 page boundaries. By definition, segments can not be smaller than
 seven bytes, so a certain type of flag byte is defined, called a
 filler byte, which fills up such <7 byte holes at the end of
 such pages. Due to the fact that segments are always front-
 justified in a file page, these filler bytes will only appear at
 the end of a file page.

 Further properties of sequential file segments can be
 derived, all of which are checked when these files are being
 read and written to determine the validity of the data in the
 file. It is the case that segments which are the first, but not
 simultaneously the last segment constituting a line are always
 guaranteed to extend to the end of a file buffer. Similarly, a ___
 segment which is the last segment, but not simultaneously the
 first of a multi-segment line is always guaranteed to begin at
 the front of a file buffer. Also, segments which are neither the _____
 first, nor the last segment of a line must fill an entire file
 buffer. Naturally, whenever the beginning of a segment is
 expected at a certain point in a file page, the validity of the
 flag bytes is checked.

 At first consideration, the definition of the count fields
 may seem odd. All that seems to be required is a count field
 with the length of the current segment in it. In fact, this is
 fine for the forwards reading of a sequential file. Suppose,
 however, you want to read the file backwards from a point you
 know is end of the last segment of a line. In this case, at
 least a trailing segment length is required so as to be able to
 reliably find the front of the segment. Not only does the front
 of the segment have to be found, but also the lengths of all the
 preceding segments have to be found so that the user’s buffer
 can be filled with data starting with the end of it and
 proceeding to the front. If this count were not kept somewhere,
 the file pages would have to be read backward to find the first
 segment of the line, then read forwards to determine the total
 line length, then the user’s buffer area filled with the data,
 requiring the file pages to be read backward again. This is
 clearly not a desirable situation.

 But are the definitions of the leading and trailing counts
 useful? You betcha. Due to the clever-clever definition of the
 count values, note that the following properties hold:

 For the first segment of a multi-segment line, _____
 -- the leading count contains the segment’s

 6

 length
 -- the trailing count contains the total line
 length;
 For the last segment of a mult-segment line, ____
 -- the leading count contains the total line
 length
 -- the trailing count contains the segment’s
 length.

 This is exactly the information needed to handle backwards
 reading of sequential files. Furthermore, since the count fields
 are present in intermediate segments of multi-segment lines,
 their values, though not having the magic properties of the
 leading & trailing segment values, do provide some error-
 checking features.

 As an optimization for the case when sequential files are
 being read sequentially either backwards or forwards, the
 routines that read file pages read extra pages forward or
 backward from the requested page if a reduction in the amount of
 time required to read those pages off the disk will result. (For
 you hardware types, this means that any contiguous pages
 residing on the same cylinder of the disk will be read, up to a
 maximum of 5. Pages on the same disk cylinder can be accessed
 without movement of the disk read/write heads, note.)

 To recapitulate, sequential files offer as basic operations
 the sequential reading and writing of data. To do this, they use
 a homogeneous structure (contrast the schitzophrenia of line
 files later on), the segment, which divides the line up into a
 number of chunks which will fit into a disk page. Note that
 nowhere in the file structure is a pointer to where the next
 data line is - it is assumed that it follows the previous data
 line. When a new page needs to be found, it is simply the next
 page in the file as defined by the page order in the page map
 buffer.

 Now to line files. Line files are meant to be a general-
 purpose, random-access file structure. Though you probably know
 this already, each line in a line file has associated with it a
 four-byte key, by which the contents of the line is retrieved
 from the file. MTS calls this key a line number, but it can be
 anything which will encode into a four-byte value. Using the
 line number, the contents of any line in the file can be read,
 written, replaced, or erased in any order. These operations do ___
 not affect any other line in the file, either. Naturally, the
 file can also be read or written sequentially, but at the level
 of the subroutines which do the reading and writing, all
 operations are indexed on the basis of the line number value.

 Because all information in the file is retreived on the
 basis of an associated line number, one may guess that somewhere
 in the file’s internal structure is a table of line numbers and
 their associated data. This is, in fact, the case. A table
 called the Line Directory is maintained, which contains all the ____ _________
 line numbers used so far in the file, and a pointer associated

 7

 with each line number indicating where the data for the line is
 located in the file. For ease of search, the line numbers are
 sorted in numerically ascending order (based on fullword integer
 representation).

 Since lines may be re-written or erased in any order, some
 record must also be kept of where there is free space in the
 file arising from the deletion and replacement of lines. This
 table, called the Hole Directory, is scanned and/or updated ____ _________
 whenever the contents of the file changes. It is organized,
 logically, as a table of hole sizes associated with the location
 of the hole in the file.

 The line directory and hole directory together constitute
 the directory pages of a line file. They are (almost) always
 segregated from the data portion of the file -- only pointers to
 the data are contained in them. Though the segregation of
 directory information from data conceptually seems safer than
 their intermixing, this is not the reason for it. Rather, it
 stems from the vastly differing methods of managing the
 available space in the different areas.

 Given this -- logical, note -- scheme, follow along in an
 example of how a line is written into a line file. First, the
 line directory must be searched for the key value associated
 with the line to determine the type of operation which is being
 performed: insertion, deletion, or replacement. If the line is
 not found in the directory (implying insertion), it is a good
 idea to remember where the line should go in the directory to
 eliminate a later search for its insertion point. So, upon the
 classification of each operation:

 insertion - by scanning the hole directory, find space in
 the file for the new line. Then move the data into the
 hole(s) found, and finally insert the line number into
 the line directory.
 replacement - determine the length of the old line. If it’s
 the same size as the new one, write the new data on
 top of the old data, & that’s all. Otherwise, find
 free space for the new line while giving back the
 space the old data occupied. Finally, move the new
 data in and update the line directory pointer to the
 location of the new data.
 deletion - give back the space occupied by the old contents
 & delete the line’s line number.

 The order of the above operations is important due to the
 infringement of reality on this conceptual structure. It is the
 case that files are not infinitely expandable, and while room is
 being found in the hole directory for a new line, it simply may
 not be available. In this case, everything has to be held up
 while more disk space is allocated to the file. If this is
 successful, only a minor annoyance has been perpetrated on the
 operation of things, and magically, new hole space appears at
 the end of the hole directory. If the allocation of more file
 space is not successful, however, one can not simply roll one’s

 8

 eyes toward heaven and shove the client out the back door. To
 maintain a reliable system, one has to be able to undo all the ____
 work that’s been done to locate the new line, and leave the file
 in an internally consistent state. This is why the line
 directory is generally the last thing to be updated, because
 reliable pieces of software do not leave pointers around which
 later cause unsuspecting subroutines to take a flying leap off
 the deep end. Also, any partially allocated hole space which was
 removed from the hole directory is re-inserted so as not to
 leave any unaccounted space in the file.

 Reality is even more cruel: all these beautiful line and
 hole directory tables and these data lines have to be mapped
 into 4096 byte pages. As with sequential files, the long data
 problem is handled by segmenting lines into fragments. The first
 segment of each data line in a line file is rather special, as
 it contains information locating all the other segments
 comprising the line. It looks like:

 +---+-----------+------------------------------------+---- -
 | | length of | length of | location | |
 | X | first | next | of next |
 | | | segment | segment | segment |
 +-+-+-----------+------------------------------------+---- -
 | < repeated once for each segment >
 | besides the first
 |
 +--> count-1 of number of segments

 - - ---+----- - - - - -----------------+
 | |
 | data for 1st segment |
 | |
 - - ---+----- - - - - -----------------+

 Notice the reason the count is expressed as count-1 is that when
 there is only 1 segment for a line, the count-1 field is zero,
 making it look like just a length. There may be up to 16
 segments containing the data portion of a line. It is fortunate
 that there is this restriction, because it gives an incentive to
 not fragment the data of the line into many holes. This is also
 not desirable because it both adds to the overhead associated
 with each data line, and also can increase the amount of I/O
 which needs to be done to read in the contents of the line if
 the data is spread across many disk pages. To suppress excessive
 fragmentation, it is decreed that no line may ever be split up
 into a piece smaller than 128 bytes, except the last segment of
 a line, or a line which is smaller than 128 bytes. In the latter
 case, the line will never be segmented at all.

 Even a bigger intrusion of reality is the fact that the
 line and hole directories have to be shoehorned into one page
 blocks. The format of a line-hole directory page is:

 9

 - +----------------------+-----------------------+
 | | length of header | length of LD entries |
 | h +----------------------+-----------------------+
 | e | length of HD entries | page # of this page |
 | a +----------------------+-----------------------+
 | d | ptr to next page | ptr to previous page |
 | e +----------------------+-----------------------+
 | r / /////etc////// /
 = +--+
 | | |
 | L | |
 | D | |
 | | |
 | e | |
 / n / /
 | t | |
 | r | |
 | i | |
 | e | |
 | s | |
 = +--+
 | | |
 | H | |
 | D | |
 | | |
 | e | |
 / n / /
 | t | |
 | r | |
 | i | |
 | e | |
 | s | |
 - +--+
 | |
 / /////unused///// /
 | |
 +--+

 10

 LD entries fill up directory pages from page 1 of the file
 (always guaranteed to be the first directory page) in
 numerically ascending line number order towards the rear of the
 directory pages. Hole directory entries start in the last
 directory page (a pointer to which is kept in the FCB) and
 proceed backwards towards the front of the file. Their order is
 not as simple to describe as that of the line directory entries,
 but aardvarks usually lose three toenails a year in gravelly
 areas. This fact aside, hole entries within a given data page
 always appear together, in ascending offset within the page.
 Groups of entries in the same page appear in order of when the
 data page was allocated to the file, meaning that the most
 recently allocated data page will appear last. ____

 There is at most one directory page which may contain both
 LD and HD entries where the two tables meet. Notice that it is
 not required that LD and HD pages be entirely full -- there may
 be unused space in each which may grow and shrink as entries are
 added or deleted. The reason for the bass-ackwards arrangement
 of hole directory entries is to keep activity in the directory
 pages concentrated at one spot, this joint between line and hole
 entries, during the common operation of writing sequentially
 onto the end of a line file. This reduces the amount of I/O
 required to ensure the disk copy of the file’s directory pages
 is up-to-date. The empty space at the end of each directory
 space also helps to reduce disk I/O because if the line
 directory was a continguous set of full pages, any activity in
 the early entries will require all the entries following it to
 be shuffled forwards or backwards, causing all the affected
 pages to be written out to the disk.

 Given this arrangement of things in the directory pages,
 there are some problems to be watched out for. First, there may
 not be room in a directory page for a new hole or line entry. If
 this is the case, the preceding page is searched for space, and
 if none there, the next page is looked at. If room is found in
 one, enough entries are moved either forwards or backwards from
 one directory page to the other to make space available for the
 new entry. Finally, if no space is available in either page, a
 new directory page is inserted after the full one and entries
 are moved into it to make room at the appropritate place for the
 new entry.

 The above sounds easy, except for the fact that there may
 be pointers into the directory pages you may have saved earlier,
 e.g. the pointer into the line directory where you want to
 insert a new line number entry. This pointer, and any other
 pointer like it, has to be known about and properly relocated to
 point to where the entries it indicated were moved to in
 situations like that described in the above paragraph. To do
 this, a stack is maintained which contains all such pointers
 into directory pages. Whenever a shuffling of entries may take
 place, all extant pointers must be pushed onto this stack so
 proper relocation can take place. When needed, they are popped
 off and magically have the proper values.

 11

 Another situation can cause shuffling of entries in
 directory pages. This is triggered usually after a line file has
 had many lines deleted from it, followed by many lines added to
 it elsewhere. Suppose, after lots of lines have been deleted
 from the beginning of the file, scads more are added at the end.
 Due to the new line directory entries being added to the end of
 the line directory, a local filling of line directory pages will
 ensue. Finding three consecutive directory pages full, a new
 line directory page is called in to make space for the new
 entries. This may be inefficient usage of the available space in
 the line directory pages, however, because the early pages,
 since they had many entries deleted from them, may be
 practically empty. Logically, what should happen is that this
 fact should be discovered, and rather than a new directory page
 being added, the available space should be re-distributed about
 the directory pages. This will then make enough room for the new
 entries wanted.

 This operation is called a shuffle, and is triggered _______
 whenever a new directory page is needed, but the available space
 per directory record (a tally kept in the FCB) is high. The
 operation is expensive because all directory pages are read, and
 then re-written with the re-distributed values. Because it is
 assumed that activity in a line file usually takes place in a
 locally concentrated area rather than randomly throughout the
 file, shuffling attempts to leave proportionately more space at
 the point of the insertion which triggered the suffle than
 elsewhere. This minimizes the number of shuffles during the
 common usage of files.

 The "binary search" of the line directory for a line
 number, too, is complicated by the page structure of files.
 First of all, the line directory is not a contiguous vector of
 entries, and binary searching is only possible within a page.
 Secondly, one does not want to start searching the line
 directory from the front and blindly read in pages just looking
 for a good place to start searching for the line number. Rather,
 the BCB chain is examined for line directory pages, and any
 pages already in memory are examined. By looking at their first
 and last entries, it is possible to come up with, at least, a
 lower and upper bound on the directory pages that need to be
 searched. At best, the required line directory page may already
 be in memory.

 If line files had to work given just the mechanisms
 described above, they would not operate as efficiently as the do
 now. This is because the file system optimizes some operations
 recognized as frequent events. The most important optimization
 is what is called a line number table. This is a high-level ____ ______ _____
 directory which speeds the search of the line directory for a
 line number. The line number table contains an entry for every
 line directory page giving the first line number which is in
 that directory page. The entries are sorted in order of line
 numbers, and form a linked list for ease of insertion and
 deletion of line directory pages. A linear search of this table
 is usually quicker than the scanning of the BCB chain combined

 12

 with the reading of directory pages. The line number table is
 stored in the file itself as a special line, pointed to in the
 header of the line file it is contained in & which it describes.

 The second most important line file optimization is that of
 a special format for small files. It is (or at least was) the
 case at UM that the average file size was 7 pages, and 40% of
 all files were one page. Note, however, that due to the
 segregation of directory and data pages in a line file, it is
 impossible in the above-described format to have a one page
 file. Due to a nifty trick, however, a one page format is __
 possible. Recall that in the header is a length field for the
 header itself. For a one page file, the header length is set to
 an astonishigly large value, and the data for the file follows
 the standard header information (which is only about 40 bytes.)
 Following the header/data is the line directory, and the hole
 directory, all in the same page. Graphically, the file looks
 like

 - +---------------------------------+
 | h l | header information |
 | e e |---------------------------------|
 | a n | |
 | d g | data |
 / e t / in /
 | r h | file |
 | | |
 - +---------------------------------+
 | LD |
 / entries /
 +---------------------------------+
 | HD |
 / entries /
 +---------------------------------+
 / ///unused/// /
 +---------------------------------+ ,

 which can be characterized as a normal file page with
 elephantitis of the page header. To be sure, the splitting of a
 1 page file into a multiple-page file is a traumatic experience,
 but it saves considerable space for a common case. The splitting
 reformats the file into one kowtowing to the data-directory
 segregation decree. After a file splits once, it never condenses
 into a 1 page file except by being emptied.

 The case of a sequential read from a line file is optimized
 by remembering the directory location of the the last line read
 in the FCB. Knowing this and the fact that the file is being
 read sequentially, the line directory search can be done away
 with entirely. (Though a program simultaneously sequentially
 reading and writing a file can change the line directory, the
 last line number read is saved along with its location in the
 line directory. If the expected and found line numbers do not
 match, the longer directory search ensues.) The final
 optimization concerning line files is to remember, in the FCB,

 13

 the high-water mark during a scan of the hole directory. By
 keeping a pointer into the hole directory, plus the size of the
 largest hole seen up to that point, large parts of the hole
 directory can be skipped over when a new hole is looked for. If
 this were not the case, the hole directory pages would have to
 be read forwards from the end for every operation which could
 change the contents of the file.

 It is certainly the case that line files could have been
 implemented in a different way. The current implementation has
 the property that for the great majority of operations on files,
 only a small number of physical I/O operations need to be
 performed. This property follows from the fact that data in the
 file never has to be moved to make room for new data lines. This
 attribute itself is a result of both the presence of the hole
 directory and the segregation of directory pages from data
 pages. The minimization of the number of I/O operations also
 stems from the structuring of directory pages in such a way that
 the insertion and deletion of directory entries is usually an
 operation of strictly local consequences.

 Though you may have the impression that line files are
 considerably more complicated than sequential files in their
 internal structure, the following statistic may confirm this. Of
 the software devoted to the management of line and sequential
 files, 3000 bytes of it manage sequential files whereas 12000
 handle line files, a 1:4 comparison.

 George Helffrich

 1

 Classification: 1B0/0
 Date: July 25, 1977
 Doct=24 Vers=1

 Procedure for Recovering From

 Arbitrary Lost Pages

 (or Tracks or Volumes)

 1. Reformat and zero all damaged pages (or appropriately ____
 redefined alternate pages) using existing VAMREC program or
 re-dasdi a new volume using existing DASDI program.

 2. Use existing VNTD program to check to see of extent header
 of catalog was lost. If so, rebuild extent header from
 DSCB if possible (non-existent program) or restore extent
 header from filesave tape (currently not saved).

 3. Run FIX EXTENT HEADER program (newly written) which reads
 all catalog pages in each extent to find damaged catalog in
 the extent header. If "pre-allocated" parts of the master
 index, system file catalog or scratch file catalog have
 been lost, this program should probably rebuild record and
 segment headers and relink the segments (currently it
 doesn’t).

 4. Run existing VNTD program to find out which catalog
 segments have bad pointers (to lost segments) or which
 catalog segments are no longer chained to some user catalog
 (because of a lost segment in the chain or a lost master
 index).

 5. Run the FIX CATALOG program (newly written) to chain
 catalog segments back together or rebuild a master index
 entry. This program uses the output from VNTD (generated
 by a request to verify the catalog) as input. It looks at
 the userid and link field in each affected segment to
 figure out how to chain the segments back together and
 which segment is the first in the chain. If it has to
 rebuild a master index entry, it calls a special entry to
 CRECAT, (RECRECAT) in the file system to do such. This
 program generates a list (list 0 as described in appendix)
 of userids whose catalog was damaged (all files for this
 set of userids will have their data restored and/or be
 recataloged from the filesave tapes if they don’t currently
 exist in the catalog).

 6. Run existing VNTD program verifying affected userids to
 find out what sharing descriptors are no longer chained to
 file descriptors and which file descriptors point to lost
 sharing descriptors.

 2

 7. Run FIX SHARING DESCRIPTOR program (newly written) which
 reads the output from VNTD and zero’s sharing descriptors
 with no file descriptors (these files will get their
 catalog information restored from filesave tapes if DSCB
 and data are OK, or get completely restored from filesave
 tapes if DSCB or data is bad (because the userid is in the
 "catalog damaged" list). This program will also zero the
 chain pointer in the last good sharing descriptor and add
 the name of the file to a list (2) of files to have sharing
 information restored from the filesave tapes.

 Note: This list of files which has lost only sharing information
 is distinguished from the list of files which has lost all
 catalog information (step 11) by the absence of an
 associated DSCB address. In this way the FAST RESTORE
 program knows to only restore the sharing information.

 8. The existing CHKVTOC program should be run to insure PAT
 pages are OK. If not, CHKVTOC will rebuild the PAT. (This
 will always work if bad pages are zeroed).

 9. Now run the CHKVTOC program to deallocate any DSCB’s that
 have lost a Type E or Type F somewhere in their chain.
 (Currently CHKVTOC doesn’t do this). The CATALOG/DSCB
 COMPARE program will figure out what files need to be
 restored. CHKVTOC will also update the PAT to reflect the
 data pages reclaimed due to lost DSCB’s.

 10. Finally, run the CHKVTOC program to read a list of affected
 pages and determine the list (1) of files to have data
 restored. (this ought to be a subroutine exit in CHKVTOC
 and currently doesn’t exist in that form.)

 11. Run the existing CATALOG/DSCB COMPARE program. From this
 one gets two lists.

 a. A list of files in the catalog which lost their DSCB.
 Put these names on list (1) to have data restored.

 b. A list of uncataloged files, i.e., the DSCB exists but
 not the catalog entry. Put these names on list (2) to
 be recataloged. Since there are generally a lot of
 extraneous uncataloged files in the system, the
 CATALOG/DSCB COMPARE program uses as input the list (0)
 of userids having "damaged catalog" to filter out most
 extraneous uncataloged files. However, one should
 still check for duplicate names within this list by
 hand.

 12. Run existing FAST RESTORE program (this program was written
 for the most recent disk hardware conversion and restores
 files page by page) to restore or recatalog affected files.
 It takes as input the appropriate filesave tapes (most
 recent short filesave first, back to last complete
 filesave). This program restores any file from its list of

 3

 files or any file belonging to its list of affected userids
 as long as it doesn’t already exist. It uses a special
 entry to CREATE, (RSTRCRE) which 1) does not initialize
 page 1 of the file and 2) which returns the page map
 buffer. The FAST RESTORE program takes list x on logical
 I/O unit x and does the thing indicated in the table
 described in the appendix (e.g., restores data, catalog
 information, or sharing information only or in any
 combination).

 13. Compare the list (4) of files recataloged from filesave
 tapes against the list (2) of uncataloged files to get a
 list of files to recatalog from scratch. (A program
 WHATSLEFT is available to do this for large lists). These,
 in general, will be files created after the last filesave
 and whose FD (and possibly SD’s) were lost, thus,
 usecounts, last reference and change dates etc., as well as
 sharing information have been lost.

 14. Run RECATALOG program (newly written) which takes
 appropriate list of files from step 13 (see description of
 list (4)) and recatalogs files from scratch. This program
 also fixes the file type of file appropriately.

 15. Compare (use WHATSLEFT if lists are large) list (1) of
 files to have data restored against list (3) of files whose
 data was actually restored to get a list of files lost
 (i.e., created after last filesave and DSCB or data lost).

 Note: Uncataloged files with good DSCB but bad data which were
 not restored will have gotten recataloged in step 14.

 16. Run CALLDR (newly written) to destroy files (with lost DSCB
 or data) using list generated in step 15. This list
 includes files erroneously recataloged in step 14.

 17. Run existing program to update users disk accounting.

 Additional Notes:

 1) We have a program (*FILES) which takes as input a coded
 list of files and userids that were affected and tells a
 particular user how he personally was affected by all this.

 2) Files lost without our knowledge are those created after
 the last filesave which lost both DSCB and catalog. (In
 general, we know the userid unless we lost the master index
 entry and all of the users catalog.)

 3) This procedure has the disadvantage of restoring any files
 which might have been destroyed since the last complete
 filesave. (Short filesave could save a complete list of
 existing files so that files destroyed since the long
 filesave but before the last short filesave can be
 detected, currently it doesn’t.)

 4

 4) Losing a whole volume causes no particular problems (other
 then the amount of information lost). If MTS001 is lost
 one would have to initialize an empty master index. If
 other extents of the catalog are lost the extent headers
 must be rechained.

 5) If the FAST RESTORE program crashed (or the system crashes)
 unrecoverably while restoring a file (by userid only), the __ ______ ____
 file will not be restored again since it already exists.
 This is not good but also not easy to fix.

 5

 APPENDIX

 Programs: ________

 Old- ___

 1. VNTD - catalog verification
 2. CHKVTOC - PAT/DSCB verification
 3. ACATSUB - CATALOG/DSCB verification

 New- ___

 4. FIXEH - fix entent header
 5. FIXCAT - fix catalog segments and master index
 6. FIXSD - fix sharing descriptor
 7. FASTRSTR - restore data and/or recatalog file from
 filesave tapes (fast)
 8. RECATALOG - recatalog files from scratch
 9. CALLDR - call DESTRYR to destroy files

 Lists: _____

 0. Userids with lost catalog segments
 Output from FIXCAT (prog. 5)
 Input to FASTRSTR (7), and ACATSUB (3)
 1. Files to have data restored
 Output from CHKVTOC (data lost, DSCB ok) and ACATSUB
 (DSCB lost, catalog exists)
 2. Files to have catalog information restored
 Output from ACATSUB (uncataloged files), FIXSD (sharing
 information lost)
 Input to FASTRSTR
 3. Files whose data was restored
 Output from FASTRSTR
 Files on list 1 but not on list 3 have lost data and must
 be destroyed - i.e., are lost.
 4. Files whose catalog information was restored.
 Output from FASTRSTR
 Files on list 2 but not on list 4, which lost FD (in
 addition to SD if any) are input to RECATALOG program and
 have lost catalog information. Files on list 2 but not
 on list 4 which lost SD only are left alone and have lost
 sharing information.

 6

 ┌────┌─────┌─────┌──────┌────┌───────┌──────────┌────────────────────┐ ─ ─ ─ ─ ─ ─ ─
 |LOST|LOST |LOST |LOST | * | ** | LIST(S) | FINAL |
 |FD |SD |DSCB |DATA | | | | STATUS |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | - | - | - | x | B |2 |1,3 | Data Restored |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | - | - | - | x | A |2 |1 | File Lost |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | - | - | x | - | B |3 |1,3 | Data Restored |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | - | - | x | - | A |3 |1 | File Lost |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | - | x | - | - | B |5,6 |0,2,4 | S. I. Restored |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | - | x | - | - | A |5,6 |0,2 | S. I. Lost, |
 | | | | | | | | File OK |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | - | x | - | x | B |2,5,6 |0,1,2,3,4 | S. I. & Data |
 | | | | | | | | Restored |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | - | x | - | x | A |2,5,6 |0,1,2 | File Lost |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | - | x | x | - | B |3,5,6 |0,1,2,3,4 | S. I. & Data |
 | | | | | | | | Restored |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | - | x | X | - | A |3,5,6 |0,1,2 | File Lost |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | x | x | - | - | B |3,5 |0,2,4 | C. I. Restored |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | x | x | - | - | A |3,5 |0,2 | Recataloged |
 | | | | | | | | (C. I. Lost) |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | x | x | - | x | B |2,3,5 |0,1,2,3,4 | Complete Restore |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | x | x | - | x | A |2,3,5 |0,1,2 | File Lost |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | x | x | x | - | B |5 |0,3,4 | Complete Restore |
 └────┼─────┼─────┼──────┼────┼───────┼──────────┼────────────────────┐ | |
 | x | x | x | - | A |5 |0 | File Lost |
 | | | | | | | | (name unknown) |
 └────┘─────┘─────┘──────┘────┘───────┘──────────┘────────────────────┘ ─ ─ ─ ─ ─ ─ ─

 * CREATION DATE BEFORE (B) OR AFTER (A) LAST FILESAVE
 **DISCOVERED BY PROGRAM(S)

 CHKVTOC 1

 Classification: 1B0/3
 Date: Jul 11, 1977
 Doct=16 Vers=1

 PURPOSE: To verify the correspondence between DSCB’s and _______
 the PAT, and to make minor corrections to the PAT
 where possible.

 AVAILABILITY: $RUN FILE:CHKVTOC ____________

 HOW TO USE: Accepts input on GUSER and in the PAR field, with
 the following formats:

 MTSxxx - Verification only, on volume MTSxxx.
 Inconsistencies are listed.

 MTSxxx FIX - Verification, plus PAT
 inconsistencies will be
 corrected.

 MTSxxx FIX LABEL - Same as FIX but also resets the
 bad VTOC indicator in the
 label which is set by GETDSK-
 RELDSK after an error writing
 DSCB pages.

 MTSXXX PTYPE P1,P2,...,PN - Verification, plus
 prints one line of
 information about each
 (decimal) page number in the
 list.

 MTSXXX FINDDSCBS - Verification, plus a pattern
 match on all unallocated
 pages to find DSCB pages. FIX
 is implied. This option
 allows a complete
 reconstruction of the PAT.

 CHONID 1

 Classification: 1B0/3
 Date: Jul 17, 1977
 Doct=18 Vers=1

 PURPOSE: To change to owner ID associated with a file. ________

 AVAILABILITY: $RUN FILE:CHONID(1000) _____________

 HOW TO USE: Input data consists of filenames (internal format, ___ __ ____
 starting in column 1) followed by an ID (also
 internal format). Pairs of filenames and IDs are
 read from GUSER until an end of file is
 encountered.

 For example,

 #$run file:chonid(1000)
 #EXECUTION BEGINS
 minapermit mts.
 end of file
 #EXECUTION TERMINATED

 The above run changes the owner ID associated with
 the file "MINA:PERMIT" to MTS.

 The ID MTS has unique access privileges. The ID
 MTS has "read" access to all files on the system,
 and also has access to all of a file’s sharing
 information (this enables the FM (filemove)
 program to copy access information - if it is run
 under the ID MTS).

 DASDI 1

 Classification: 1B0/3
 Date: July 17, 1977
 Doct=19 Vers=1

 PURPOSE: To label, re-label, or VAM2 format disk packs. ________

 AVAILABILITY: $RUN FILE:DASDI _____________

 HOW TO USE: Input data consists of the following operands ___ __ ____
 starting in column 1:

 Dxxx MTSxxx pvn|PAGING|PRIVATE
 [LO|IPL|CLEARPAT|CLEARPAT IPL]

 Where the third operand is specified as:

 pvn --> public volume number (if it is
 to be a public volume)
 PAGING --> if it is to be a paging volume
 PRIVATE --> if it is to be a private volume

 And where the 4th (optional) operand is specified
 as:

 LO --> if the volume is to only be
 labelled or re-labelled (as
 opposed to being formatted)
 IPL --> if it is desired to leave 150
 pages of IPL area starting at
 page seven on the pack (as
 well as formatting the pack).
 The IPLINIT program can place
 a core image of the IPLREADER
 program in these 150 pages.
 (IPLREADER is the program
 which decides which system to
 load and loads it into the
 bare machine.) The area is
 reserved by generating the
 necessary DSCBs to describe
 the 150 pages, writing them
 onto the disk, and marking
 the DSCB and IPL area pages
 properly in the PAT.
 CLEARPAT --> if it is desired to clear the
 entire PAT to zeros and
 rewrite it onto the pack.
 CLEARPAT IPL --> performs the functions of
 CLEARPAT and IPL.

 Exactly 1 blank must be left between operands.

 DASDI 2

 NOTES: If PAR=SLOW is specified on the $RUN command then ______
 a 50 millisecond wait occurs between the
 formatting writes. This gives other tasks access
 to the disk’s control unit and allows a pack to be
 DASDId on a running system.

 DASDI will also format tracks which are marked as
 alternate tracks in the home address. MTS does not
 use alternate tracks.

 EXAMPLE: $RUN FILE:DASDI ________
 EXECUTION BEGINS
 D354 MTS009 9
 D355 UNUSED PRIVATE
 D340 SPOOL1 PRIVATE LO
 end of file
 EXECUTION TERMINATED

 Program to Modify the System Disk Table 1

 Classification: 1B0/3
 Date: Jul 18, 1977
 Doct=21 Vers=1

 PURPOSE: To manipulate the table of disk volumes. Disks may ________
 be dynamically added and removed, as well as
 allowing the drive address to be forgotten.

 AVAILABILITY: Enter MTS *DSK on the operator’s console, or run _____________
 FILE:DSKMAN .

 HOW TO USE: Some of the commands are: ___ __ ____

 LIST to list all currently defined volumes in
 the table. Useful for determining which
 volumes are on which drives.

 REMOVE to software offline a volume. Doing this on
 a running system, will cause all jobs which
 reference the pack to receive "HARDWARE
 ERROR OR SOFTWARE INCONSISTENCY" errors.

 ADD to software online a volume. Again, not too
 useful on a running system. May be used to
 add a new volume to the tables.

 FORGET to forget a drive address. This causes the
 file routines to re-initialize the disk
 table entry for the specified volume on the
 next reference to it. This means that a
 pack can be moved to a different drive. On
 a running system, use *VLK to move packs.

 EXAMPLE: REMOVE MTS009 ________

 FM 1

 Classification: 1B0/3
 Date: Jul 17, 1977
 Doct=17 Vers=1

 PURPOSE: To move files from the current file system onto a ________
 file system on a test pack. The program calls the
 regular MTS READ subroutine to read files, and the
 file routine entry points to create, write, and
 permit files.

 AVAILABILITY: $RUN FILE:FM+alternate file routines _____________
 The alternate file routines must contain tables
 which describe the disk pack(s) which the
 alternate file system uses. FM checks that
 alternate file system routines are loaded by
 comparing the vcon "INITCAT" with X’300000’.

 HOW TO USE: A list of files to be moved is read from SCARDS. ___ __ ____
 The list consists pairs of names, one pair per
 line. The first name of the pair is the name of
 the file to be moved in the current system, and
 the second is the name which the file will have
 when moved to the test system. The names may have
 user ids prefixed to them, the user id on the
 target name indicating the owner id of the file
 created in the test system. If the second name
 designates a public file, a user id may also be
 prefixed, which designates that user id as the
 owner of the target file. The second name may also
 be specified as "userid:" in which case the user
 id becomes the owner of the file in the test
 system. If the second name is omitted it is
 implied to be identical to the first.

 If create fails because the file already exists in
 the test system, FM asks if it is ok to destroy
 the file by reading from GUSER. A response of OK
 lets it go ahead. A response of ALLOK tells FM not
 to prompt again, but just go ahead and destroy any
 files it feels like.

 All error messages are written on SERCOM.

 For example,

 #$run file:fm+file:filertns
 #EXECUTION BEGINS
 hasp.tst seg2:hasp
 OK TO DESTROY SEG2:HASP ?
 ok
 HASP.TST SEG2:HASP
 end of file

 FM 2

 #EXECUTION TERMINATED

 causes the file HASP.TST to be moved to the file
 SEG2:HASP on the test system.

 1

 Classification: 1B0/3
 Date: July 18, 1977
 Doct=20 Vers=1

 Description of File System Test Program ___________ __ ____ ______ ____ _______

 This program provides a simple-minded command language for
 generating calls to most of the standard file system routines.
 It may be run with the segment two file routines, or with a
 private copy. To run with the regular file system, use:

 $RUN FILE:FSTEST

 To run with private file routines, use:

 $RUN FILE:FSTEST(10,999)+file routines

 Line 1000 references SYSDEFS, should you need that. You may
 want to load fake DSACC routines also.

 Logical I/O units referenced:

 GUSER: Command input
 SERCOM: Timing and error comments
 SPRINT: DISPLAY, GETFINF, FCB, and BCBS output.

 2

 There are 27 commands available. They can be abbreviated
 by any unique initial substring. The shortest abbreviation is
 underlined in the following list. The parameters to the various
 commands may be:

 1. Hexadecimal string, e.g. AB01
 2. Unsigned decimal number
 3. Positive line numbers, internal form, e.g. 1000 is
 line 1.000
 4. Character string, e.g. ON
 5. Filename, internal form, e.g. <SF>0086T for -T
 6. Page number. In the DISPLAY, MODIFY, CLEAR, DUMP, and
 REWRITE commands, the page parameter may be any of the ____
 following:

 a. A decimal number.
 b. "X" followed by a hexadecimal number.
 c. "F" followed by a relative page number (as in a. or
 b.) in the current open file.
 d. "*", which denotes the same page specified in the
 last such command. The page is not re-read if * is ___
 specified.

 There is an internal file control block, with an initial
 maximum buffer count of five, which may be displayed with the
 FCB and BCBS commands. Additional BCBS up to the maximum are
 allocated by the OPEN, WRITE, and COPY commands in more or less
 the same way MTS does it. The maximum buffer count may be
 changed by the MAXBUFS command.

 All commands which call file system routines will also
 print the supervisor state and problem state CPU times (in that
 order), in milliseconds per call. Any non-zero return codes
 from file routines will be printed as "RC= n".

 Commands:

 OPEN filename _

 The specified file is opened so that commands which
 require an open file will work. If a file is already open
 it is closed first.

 CLOSE __

 The current open file is "closed" (i.e. CLOSER will
 be called).

 CREATE filename [size] [maxsize] [SEQ] __

 Size and maxsize are decimal numbers. The defaults ____ _______
 are a size of one page, and a maxsize of 255 pages. A line ____ _______
 file will be created unless SEQ is specified.

 DESTROY filename __

 3

 RENAME filename1 filename2 ___

 EMPTY _

 Empties the open file.

 TRUNCATE _

 Truncates the open file.

 RENUMBER [first [last [beginning [incr]]]] ____

 Renumbers the open file. Defaults are first=- _____
 infinity, last=+infinity, beginning=1000, incr=1000. ____ _________ ____

 READI [flag [line [count [truncation length] [scrwd]]]] _____

 Reads count lines from a line file, starting with _____
 line. Flag is the one-byte value passed to READI to _____ ____
 determine the nature of the read. The default is 8 (last
 op bkwd, this op fwd, not indexed, not skip, no
 truncation). The "this op" direction bit is copied to the
 "last op" bit for operations after the first. If indexed
 is specified, only one op is done, regardless of count. If ______
 skip is specified, the write to SPUNCH is also skipped.
 Defaults are line=-infinity, count=+infinity. Lines are ____ _____
 written on SPUNCH with the line number parameter as
 returned from the read, so that @I can be specified if
 desired. If the output truncation flag is set, the
 truncation length parameter should be specified, which __________ ______
 defines the maximum amount of bytes which will be
 transferred from the file buffer to the output area. The
 real length of the last line read is given if this flag bit
 is asserted. If scrwd is specified, it is a hex value _____
 which updates the scratch word parameter, which otherwise
 is left unchanged. The scratch word is implicitly zeroed
 by the OPEN and EMPTY commands.

 READS [flag [count [truncation length]]] _____

 Reads lines from a sequential file. Reads count _____
 lines, starting with the read pointer (as set by POINT.
 The read pointer is zeroed implicitly following an OPEN or
 EMPTY command.) If flag asserts that truncation of output ____
 is to be done, the truncation length parameter should be __________ ______
 specified. Default flag is zero (this op forwards, no ____
 skip, no truncaton.) The read pointer is updated according
 to the operation. Lines read from the file are copied to
 SPUNCH in a similar fashion to READI.

 WRITE line [count [length [incr]]] _

 Writes count lines, length bytes long, starting at _____ ______
 line, incrementing by incr. The write is done to the open _____ _____
 file, and WRITES or WRITEI is called, depending on file
 type. Length should not exceed 32767. The defaults are ______

 4

 count=1, length=10, incr=1000. The line written is length _____ ______ ____ ______
 initial characters from the repeated string "0123456789".

 COPY external-filename _

 Calls GETFD and READ in the regular system and writes
 the lines to the open file. Reading is done @-trim@-ic,
 and line numbers are preserved. The entire file is copied,
 unconditionally. This command is useful for copying files
 to a test pack.

 NOTE _

 Calls NOTE and prints out the current values of the
 read, write, and last pointers, and the last line number in
 the currently open file. A bad return code is issued if
 the file is not sequential. Note that the last line # is
 meaningful only for sequential-with-line-number files.

 POINT [read pointer [write pointer [last pointer _
 [last line #]]]]

 All arguments are hex values which modify the values
 of the given arguments in the currently open file. A zero
 value given for any of the arguments causes the
 corresponding pointer to be reset to the front of the file.
 A value of FFFFFFFF causes the corresponding pointer value
 to remain unchanged. An error return results if the open
 file is not sequential.

 GETFINF [count] _

 Calls GETFINF for the current open file, and displays
 the result (in hex of course). Count is the number of _____
 bytes to be returned and displayed. 20 or less is a short
 call. The default is 38.

 VOLUME n _

 Specifies a public volume number to be used in
 subsequent display and modify commands. If no VOLUME
 command is given, public volume 1 is used.

 INITCAT _

 Calls this file system entry. Useful only if running
 with a private copy of file routines, and in that case
 should be issued before any other file system calls.

 DISPLAY page offset [count] _

 Prints count fullwords in hex, at offset into the _____ ______
 specified page. Offset is in hex, and count is decimal, ______ _____
 and the default count is 1. _____

 MODIFY page offset data _

 5

 Modifies the specified page at the specified offset
 with the specified hex data, which may be arbitrarily long,
 and may contain embedded blanks or commas. Page and offset ____ ______
 are the same as in the DISPLAY command. If the DISPLAY or
 MODIFY commands specify a file page, neither the FCB nor
 the BCBS will be changed, but the MODIFY command also
 changes the in-core copy if there is one.

 REWRITE [page] ___

 Writes the current contents of the internal buffer
 into the specified page. The default for page is *. ____ ____

 CLEAR page offset count [value] ___

 Modifies the specified page at the specified offset ____ ______
 with count bytes containing the two-digit hex number value, _____ _____
 whose default is zero. Other parameters are as in DISPLAY,
 except that count is in bytes, not words, and is required.

 DUMP [ON fdname] [page [offset [count]]] __

 This command behaves like display, with the following
 exceptions: 1) the output format is that of STDDMP; 2) an
 fdname may be specified, and, if omitted, *PRINT* is used;
 3) other parameters may be omitted - the default values for
 page, offset, and count are *, 0, and 1024, respectively. ____ ______ _____

 FDUMP [ON fdname] [page [count]] __

 Dumps count pages starting at relative page no. page _____ ____
 in the current open file. The default fdname is *PRINT*, ______
 and the default for page is 1, and for count is 1 if page ____ ____
 is specified, and all used pages in the file otherwise.

 USERID id _

 Changes the userid used in the file system calls to
 id. The default userid is the one FSTEST is running under. ___

 PROJNO pno _

 Changes the project number used in file system calls
 to pno. The default project number is the one FSTEST is ____
 running under.

 PKEY progkey __

 Changes the program key used in file system calls to
 progkey. The default program key is *EXEC. ________

 FCB _

 Displays the internal file control block.

 6

 MAXBUFS count __

 Changes the maximum buffer count in the internal file
 control block to count and allocates or frees buffers if _____
 necessary. The default maximum buffer count is 5.

 BCBS _

 Displays the internal buffer control blocks.

 MTS __

 Just what you expect.

 End-of-file yields execution terminated.

 PM -- Pack Map 1

 Classification: 1B0/3
 Date: July 24, 1977
 Doct=22 Vers=1

 PURPOSE: To obtain a pack map consisting of: ________

 -volume label dump
 -PAT dump
 -relocation entries listing
 -file ordered map
 -page ordered map

 Approximately 150 pages of output are produced.

 AVAILABILITY: For use with the current system, _____________

 "$RUN FILE:PM"

 HOW TO USE: This program reads input from GUSER, prints error ___ __ ____
 messages on SERCOM, prints output on SPRINT, and
 accepts a PAR= field which must be either "HEX" or
 "DEC".

 Input currently consists of public volume names
 only. An end-of-file terminates execution. The
 PAR= field defaults to "HEX" and it determines
 whether output is in hex or decimal. Items which
 are always hex or decimal are marked (HEX) or
 (DEC) in the listing.

 The relocation entries are listed giving the old
 relative page number followed by the new
 (relocated) relative page number. The actual old
 disk address and the new disk address follow in
 parentheses. Disk addresses consist of
 cylinder/head/record.

 File Ordered Listing ____ _______ _______

 The file ordered listing is an alphabetical
 listing of all files on the pack. Each entry
 consists of a filename, followed by the relative
 DSCB type-E page location, followed by the
 relative DSCB type-E disk location in parentheses,
 followed by the data page range associated with
 the DSCB expressed in relative page numbers,
 followed by the data page range expressed as disk
 addresses in parentheses, followed by the first
 relative DSCB type-F page location if there are
 more than 38 data pages in the file, and so on.

 PM -- Pack Map 2

 For example,

 *ACCOUNTING1 6006009C(2/E/1) 11D-142(5/0/1-5/C/3)

 7006009C(2/E/1) 143-158(5/C/5-6/0/5)

 ...is interpreted to mean that the DSCB type-E for
 *ACCOUNTING1 is located at relative page number 9C
 on public volume number 6. In fact it is the
 seventh DSCB in that page -- there are 16 DSCB
 slots in every DSCB page. The actual disk address
 of page 9C is cylinder 2, head E, record 1. Note
 that the three pages on each track are actually
 record numbers 1, 3, and 5. The data page range
 for *ACCOUNTING1 defined by this DSCB type-E is
 relative page numbers 11D through 142 (or cylinder
 5, head 0, record 1 through cylinder 5, head C,
 record 3). The first (and only in this case) DSCB
 type-F for *ACCOUNTING1 is also located at
 relative page number 9C on public volume number 1,
 and so on.

 Page Ordered Listing ____ _______ _______

 Each entry for the page ordered listing takes one
 of two forms. For data pages, the entry consists
 of the data page range expressed in relative page
 numbers, followed by the data page range expressed
 as disk addresses in parentheses, followed by the
 filename. For DSCB pages, the entry consists of
 the page range expressed in relative page numbers,
 followed by the page range expressed as disk
 addresses in parentheses, followed by the string
 "DSCB".

 ERROR RECOVERY PROGRAM FOR VAM2 FORMATTED DISKS 1

 Classification: 1B0/3
 Date: Jul 11, 1977
 Doct=15 Vers=1

 VAMREC is a utility program which allows the user to attempt
 error recovery after disk errors. It is similar in function to
 DISKMOD except that it is easier to use (perhaps a bad thing?)
 and it expects the disk format to be VAM2. The program reads
 commands from GUSER, puts prompts and error messages on SERCOM,
 and uses SPRINT for some of its output. When the volume is given ______
 (rather than the device), the corresponding volume must be a ______ ____
 VAM 2 PUBLIC volume.

 The program uses the following prompts:
 1. VOLUME:
 2. VOLUME NOT FOUND, GIVE DEVICE NAME:
 3. ERROR ON LABEL READ, GIVE PAT PAGE NUMBER:
 4. ACTION:
 5. WRITE OPERATION. CONFIRM:
 6. CMD:

 For 1 a six character volume name is required (a four character
 device name results in the action of prompt 2). An end of file
 terminates execution.

 The reply to 2 is a four character device name. In this case the
 device type must be 7330, 3330,, 2314, 2311, or 2305. The label
 on the volume is read but, in this case, no verification of the
 label is done. An end of file results in prompt 1.

 A decimal (or hexadecimal number in quotes) page number is the
 expected response to 3. An end of file results in prompt 1.

 Prompt 4 is caused by the occurence of an error while reading
 the PAT. The legal responses are:
 STOP --- execution terminated _
 CHECK --- check the current PAT page for illegal characters __
 MTS --- return to MTS _
 IGNORE --- pretend there was no error and continue to read _
 PAT pages
 COMMAND --- don’t read any more PAT pages, give CMD: ___
 prompt.
 $mtscommand --- the MTS command is executed.
 An end of file results in prompt 1.

 Prompt 5 is given when a command needs to do a write operation
 for its completion. Positive responses are: OK, YES, and !.
 Check all your previous work before you give a positive
 response!!!

 Command mode is indicated by the prompt CMD:. The commands
 are:

 ERROR RECOVERY PROGRAM FOR VAM2 FORMATTED DISKS 2

 ERRORCHECK _
 ERRORCHECK PAT _ _
 ERRORCHECK TRACK _ _
 ERRORCHECK ALL _ _
 ERRORCHECK COMPARE _ _
 ERRORCHECK RANDOM _ _

 PAT results in a hexadecimal dump of all relocation
 entries. The entries are checked for consistency among
 themselves also (e.g., a bad page should not have
 itself as the relocating page, etc.).
 TRACK results in a seek to every track and a search
 for and read of the first full page on every track. In
 case of a unit check, the sense information plus the
 page number and seek address are printed on SERCOM.
 COMPARE results in a seek to and read of the page
 corresponding to the "bad" address of each relocation
 entry. A line is printed for each such page.
 ALL results in reading each and every page on the pack
 (as long as the pat byte for the corresponding page
 does not have bits 0 and 1 on simultaneously). This
 action is followed by the action one would get with
 the COMPARE variant of ERRORCHECK. RANDOM results in
 reading each and every page on the pack (as long as
 the PAT byte for the corresponding page does not have
 bits 0 and 1 on simultaneously). Pages are read
 randomly. When all pages have been read (they are read
 only once per pass), the message PASS FINISHED is
 printed and the next pass begins.

 READ x _
 READ PAGE x _ _
 READ RECORD c h r _ _
 READ RETRY c h _ ___
 READ BUFFEREDLOG _ _

 This command reads the record specified by the
 parameters. "x" is a page number (quotes for
 hexadecimal). When RECORD is specified "c" is the
 cylinder number, "h" is the head number, and "r" is
 the record number. This seek address must specify a
 legal page number. When RETRY is specified, record R1
 is "read" by a SPACE-COUNT command to force the
 control unit into command retry (correctable error in
 the key field). The record so read is the one written
 by the "FORMAT RETRY c h" command. The PAT bytes
 corresponding to all pages on such a track must be ___
 X’C1’. The BUFFEREDLOG operand allows the buffered log
 (2305, 3330, 7330) to be read and displayed (note that
 this resets the log).

 RELOCATE ___
 RELOCATE PAT ___ _

 If no parameter is specified, the current record (the
 record last processed by a READ command) is relocated.

 ERROR RECOVERY PROGRAM FOR VAM2 FORMATTED DISKS 3

 If it was flagged as bad (B’11XXXXXX’) in the PAT, no
 action results; if the pat byte for the page is
 B’11XXXXXX’, the pat byte is merely set to X’C0’ and
 the PAT is rewritten. Else the pat byte is flagged as
 bad (X’C0’), a free page is found in the PAT, it is
 flagged with the same PAT byte as the old page, a
 relocation entry is added to the PAT, the contents of
 the record buffer are written to the new page address,
 and the PAT is rewritten. If the parameter PAT is
 specified, the PAT is relocated. The old PAT pages are
 flagged as not available (i.e., X’C0’) and a new block
 of free space is located. The first PAT page address
 is set in the label. The label is rewritten and then
 the PAT pages are rewritten. No additional relocation
 entries are generated.

 WRITE _
 WRITE PAGE x _ ___
 WRITE PAT _ _

 If no parameter is given, this command causes the
 contents of the record buffer to be written back to
 the same address as the previous READ command.
 If the PAT parameter is given, the PAT pages are re-
 written from the PAT buffer.
 If the PAGE operand is given, the contents of the
 record buffer are written at the given page. Thus to
 move pages, one would do a "READ x" followed by a
 "WRITE PAGE y".

 LABEL _
 RELABEL ____

 The label is rewritten with the contents of the label
 buffer.

 INITIALIZE _

 This command changes all data and DSCB entries in the
 PAT to available entries. It zeroes the relocation
 entry count and flag. It then rewrites all the PAT
 pages. A data entry in the PAT is defined as a byte
 which does not have bits 0 and 1 on simultaneously ___
 (i.e., B’11XXXXXX’) nor does it have bits 1 thru 7 on
 simultaneously (i.e., B’X1111111’). This excludes any
 PAT-page bytes and any kind of error pages.

 MTS __
 A return to MTS. Note that a device/volume is freed if
 it was kept by a KEEP command before the call is made ____
 to MTS. If a return is made to VAMREC (via a $START or
 $RESTART command), an automatic KEEP command is
 invoked to reacquire the device.

 DISPLAY LABEL _ _
 DISPLAY SHORT x y _ _

 ERROR RECOVERY PROGRAM FOR VAM2 FORMATTED DISKS 4

 DISPLAY SHORT PAT x y _ _ _

 The SHORT operand is optional. If it omitted, then
 information displayed in hex will contain at most 32
 displayed bytes per line; if the SHORT parameter is
 used, then the lines will contain at most 16 bytes of
 displayed information.
 The LABEL parameter results in the volume label
 displayed in EBCDIC and in hexadecimal. "x" is the
 relative starting address (if PAT is specified, it is
 relative to the start of the of the first PAT page,
 else it is relative to the start of the current page).
 "y" is the number of bytes that is to be displayed and
 will default to 4 if omitted. The numbers are assumed
 to be decimal unless there are quotes around them. The
 display is in hexadecimal.

 MODIFY LABEL x c _ _
 MODIFY x c _
 MODIFY PAT x c _ _

 "x" is the displacement in the specified buffer
 (neither LABEL nor PAT specified indicates the current
 page). "x" is assumed to be decimal unless enclosed by
 quotes. "c" is the character string to be placed at
 "x". It must be enclosed by quote-marks (for a hex
 string) or double-quotes (for an EBCDIC string ---
 successive double-quotes within the EBCDIC string
 denote a single double-quote). The length of the
 string (if hex) must be even.

 PRINT SHORT _ _
 PRINT SHORT DSCB _ _ _
 PRINT SHORT PAT _ _ _

 The SHORT parameter is optional and is described under
 the DISPLAY command.
 With no parameters this command results in a
 hexadecimal and EBCDIC dump of the current page on
 SPRINT. The parameter DSCB results in a dump of all
 DSCB pages on the pack (many pages of output). The ____
 PAT parameter results in a dump of the PAT pages.

 STOP _
 The normal way to terminate execution.

 REMOVE ___
 The command which makes the volume unavailable to
 other users. It results in a call to VOLREL with a
 "remove" code. Then the PAT pages are reread.

 ADD _
 This command makes the volume available to users. It
 results in a call to VOLREL with an "add" code.

 FORGET ____

 ERROR RECOVERY PROGRAM FOR VAM2 FORMATTED DISKS 5

 This command instructs the system to forget where the
 given volume is located so that the next non-VAMREC __________
 refrerence to it will cause the volume’s label and PAT
 to be re-read. It is useful if any relocation entries
 have been generated by VAMREC to force the system to
 become cognizant of them.

 KEEP _
 This command causes the volume/device given in
 response to the VOLUME query to be acquired, its PAT
 to be read, and a bit is set so that it will not be ___
 freed as is normally done between commands, (but note
 the exception in the MTS command). Therefore, at the
 end of the execution of this command, VAMREC’s
 knowledge & control of the disk volume is complete and
 up-to-date.

 FREE _

 This command cancels the effect of a KEEP and will
 free the device/volume.

 ASSUME ON __
 ASSUME OFF __

 If ON is given, no checking is done to see if a page
 in a READ or WRITE command really corresponds to a
 valid page on the device to the PAT byte for the page
 or the track address). If OFF is given, the checking
 is done (as is initially the case).

 ZAP x c n _
 ZAP PAT x c n _ _

 The PAT parameter results in the PAT buffer being
 modified; else the current page is modified. The "x"
 is the displacement in the buffer, the "c" is the one ___
 byte fill character, and the "n" is the number of
 times the character is to be placed in the buffer.

 VERIFY _
 VERIFY PAT _ _
 VERIFY DSCB _ _

 The PAT parameter or no parameter causes all bytes in
 the PAT buffer to be checked for illegal characters
 (this check is also done whenever the PAT is
 rewritten.) If an illegal character is found, its
 location in the PAT is displayed along with a query as
 to whether to continue or not. OK, YES, or ! Will
 cause continuation of the verification, anything else
 will not. The DSCB parameter causes all DSCB pages to
 be read and all the checksums of the DSCB’s to be
 verified.

 ERROR RECOVERY PROGRAM FOR VAM2 FORMATTED DISKS 6

 FORMAT CYLINDER cc
 FORMAT GROUP x
 FORMAT TRACK cc hh
 DASDI CYLINDER cc
 DASDI GROUP x
 DASDI TRACK cc hh
 FORMAT RETRY cc hh

 The FORMAT RETRY option specifies a track on which a
 special record will be written that will be read by
 the READ RETRY command (2305, 7330, 3330 only). The
 PAT bytes for all pages on such a track must be X’C1’.
 The other six variants of the FORMAT/DASDI commands
 perform write-count-key-and-data operations on a given
 track, a group of tracks, or a full cylinder. The
 DASDI operation will rewrite the home addresses and
 record 0 as well as format the tracks(s). The
 definition of a group is device dependent --- however,
 a group is just a set of tracks and there is an
 integral number of groups per cylinder. For a 2314 a
 group consists of five tracks whereas on a 3330-type
 device, a group consists of one track. For the GROUP
 or CYLINDER option, all PAT bytes corresponding to
 pages within the GROUP or CYLINDER must be zero. No
 such checking is done for the TRACK option.

 ERROR RECOVERY PROGRAM FOR VAM2 FORMATTED DISKS 7

 Some examples of the commands.

 DISPLAY ’100’ 10
 DISPLAY 256 ’A’
 DISPLAY LABEL
 DISPLAY PAT ’1000’ ’30’
 MODIFY PAT ’2000’ ’7F7F7F7F’
 MODIFY LABEL 4 "TMTS02"
 ZAP PAT 50 ’41’ 100
 FORMAT GROUP 2
 READ BUFFEREDLOG
 KEEP
 FORMAT RETRY ’20’ 0
 READ RETRY ’20’ 0

 Note: HELP or "?" Gives a list of valid commands. A
 command starting with a "$" is passed on to MTS. All
 commands can be abbreviated to the minimum number of
 characters required to distinguish them. The order of
 recognition is as printed by the HELP command.

 Before any relocation is done, the KEEP command should be
 used. The FORGET--FREE command combination then results in
 MTS discovering the new state of the pack at the next non-
 VAMREC access of the pack.

 VAMREC does not use the resident unit check routines. If a
 data check can be corrected, the error correction pattern
 is applied. If a data check cannot be corrected, the
 operation is retried five times. All write operations are
 read checked. There really is no retry on anything but
 7330’s, 3330’s, or 2305’s.

 VNTD 1

 Classification: 1B0/3
 Date: Jul 11, 1977
 Doct=13 Vers=1

 PURPOSE: To verify, trace, and/or dump the file system ________
 catalog. This program will verify, trace, and/or
 dump the entire catalog, a particular user
 catalog, or a particular user file.

 AVAILABILITY: $RUN FILE:VNTD _____________

 HOW TO USE: The program accepts input on SCARDS if no PAR= ___ __ ____
 field is given. An end-of-file terminates the
 program. SPRINT and SERCOM are used for output.

 Parameters must be separated by blanks or commas
 and must be given in the following order:

 (1.) any, all, or none of the following:
 "V" - verify
 "T" - trace
 "D" - dump

 (2.) at most, one of the following:
 "C" - the entire catalog (the default)
 "U" - a particular user catalog
 "F" - a particular user file

 If "U" is given, then a legal MTS userid
 must be the next parameter. If "F" is given,
 then a legal internal filename must be the
 next parameter. If "...,U,*ALL" is entered
 then all user catalogs are processed. If
 "...,F,*ALL,ID" is entered then all files
 corresponding to the specified user ID are
 processed.

 EXAMPLES: $RUN FILE:VNTD PAR=T,C _________
 $RUN FILE:VNTD PAR=V,T,D,U,W045
 $RUN FILE:VNTD PAR=D,F,W045FYLE

 OUTPUT: VERIFY _______ ______

 Verifying the entire catalog will validate segment
 allocation as well as error checking record and
 segment headers. Presently the catalog can only be
 verified when segments are not being allocated or
 deallocated, ie: when no one else is using the
 system. Verifying the entire catalog will take
 approximately 5 minutes.

 Verifying a user catalog will error check record

 VNTD 2

 and segment headers as well as file descriptors.
 In addition, it will check that file descriptors
 point to sharing descriptors in the same catalog
 and that all sharing descriptors are accounted
 for.

 Verifying a file checks file descriptors & sharing
 information for reasonableness.

 TRACE _____

 Tracing the catalog will print out the file header
 locations and the number of pages in each file.

 Tracing a user catalog will print out the segment
 locations for each segment assigned to the user
 catalog.

 Tracing a file will print out file and sharing
 descriptor locations.

 DUMP ____

 Dumping the catalog will dump (via SDUMP) each
 file header.

 Dumping a user catalog will dump each segment
 assigned to the user catalog.

 Dumping a file will dump the file and sharing
 descriptors associated with the file in the
 catalog.

 Classification Code: 1C0/4 1
 Date: 5/12/77
 Doct=7 Vers=1

 TMTS - The MTS Testing Facility

 I. Introduction

 The TMTS facility is a means of testing out those parts of
 MTS which are a part of the MTS job program without disturbing
 the normal operation of the system (in theory). This is
 accomplished by providing a new job program, called TMTS (as
 opposed to MTS), which can be invoked with certain devices as the
 MSOURCE. The TMTS job program is loaded into shared VM just as
 the normal MTS job program is, and a TMTS task is started by
 UMMPS just like an MTS task is. So long as the TMTS task only
 executes code which belongs to itself, it will be completely
 independent of the regular production version of MTS. Likewise,
 so long as the regular MTS does not use any TMTS code it will be
 unaffected by the presence or absence of TMTS and any TMTS tasks.

 A big advantage to using TMTS is that there is (almost) no
 degradation in performance over the regular MTS, like there is
 with the virtual machine. The drawback, of course, is that only
 MTS and related pieces can be tested using TMTS, excluding such
 components as the supervisor, HASP, and the PDP.

 II. Loading TMTS

 The TMTS job program is loaded into the shared segments (0-
 4) which are common to all users’ address spaces. Therefore,
 TMTS can be addressed by any normal MTS tasks just like APL,
 PL1LIB, and any of the other things that reside in shared VM. A
 normal MTS task should never reference any part of TMTS. A
 normal MTS task will not have any adcons pointing into TMTS, so,
 in the normal course of events, an MTS task will not invoke any
 part of TMTS.

 Conversely, a TMTS task should never reference any part of
 the normal MTS. Again, TMTS will not have any adcons pointing
 into MTS, so it will not normally invoke part of MTS. Things are
 not so black and white as they might appear, however. There is a
 large gray area of non-MTS components which can potentially be
 used by TMTS as well as MTS without any interference. These
 pieces are primarily CLSs, but also include the file routines.

 The requirement for any component to be sharable between MTS
 and TMTS is that it be independent of any routine in either.
 Primarily, this means that when it is loaded (by PISTLE), it has
 no external references resolved from the resident version of MTS.
 Note that CLSs are intended to satisfy this requirement. It also
 means that any subroutines which the component does call (by
 means of a transfer vector entry), must be compatible, i.e.,
 require the same arguments and return the results in the same
 form. Depending on how different the TMTS job program is from
 the MTS job program, this may or may not be satisfied for a CLS.

 Note that the file system satisfies the first requirement
 above since any subroutines which are called from the file

 2

 routines are provided by the file routine transfer vector - there
 are no assembled-in adcons. The file routines are, however,
 themselves called as subroutines from both MTS and TMTS, and
 therefore the TMTS job program must supply parameters in exactly
 the same form as MTS does in order to use the resident file
 routines. Note that this means, among other things, that the
 format of the FCB must be the same in both MTS and TMTS. If any
 part of this interface has been changed - e.g., the format of the
 FCB is changed in TMTS - then a separate copy of the file
 routines must be loaded along with the TMTS job program. Thus,
 new file routines can also be tested using TMTS along with a new
 MTS.

 The actual mechanics of loading TMTS are as follows.

 1. Prepare a TMTS object deck (usually with RAMROD)
 2. $RUN LOADMTS PROT=OFF SPRINT=mapfile PAR=NOTEST
 a. respond "OK" if the loading address printed is
 alright, or give a new address in hex.
 b. supply the file name containing the TMTS object deck.
 If it loads successfully, you’re in business.
 LOADMTS is very similar to PISTLE with a few
 differences:
 1. It acquires the loading address from ENDSEG2 just
 like PISTLE, but it does not update ENDSEG2 when
 it is finished. Therefore, if it is run twice in
 succession, the second TMTS will be loaded on top
 of the first.
 2. It puts the entry address into the supervisor’s
 job table at the TMTS job entry. Thus, the
 supervisor knows where TMTS jobs get invoked.
 3. LOADMTS provides a two entry initial ESD list.
 One entry is "MCSYMBOL" which has the address of
 the regular system’s LCSYMBOL, and the other
 entry is "SYSDEFS" with the address of the
 regular system’s SYSDEFS. "MCSYMBOL" is used
 instead of "LCSYMBOL" to avoid conflicts with the
 LCSYMBOL entry in the TMTS object module being
 loaded.
 4. It does not put anything into the normal
 LCSYMBOL.

 To belabour the obvious, LOADMTS is run in a normal MTS
 task. The "MCSYMBOL" which it provides as an initial ESD list
 item is the normal MTS’s LCSYMBOL. Thus, if the TMTS object
 module being loaded references any symbol which is not defined by
 the object module itself and for which there is an entry in
 LCSYMBOL, that symbol will be resolved from the resident
 LCSYMBOL. If that symbol is in the resident MTS job program, the
 independence of TMTS and MTS will be violated. It will also not
 be noticed by LOADMTS, and hence, probably not by you until the
 TMTS task goes south in some perhaps spectacular fashion. This
 situation most frequently occurs when the TMTS object module is
 incomplete for some reason.

 3

 In order to avoid such difficulties, it is advisable to use
 RAMROD to prepare the TMTS object module. A system called
 TESTMTS is set up in RAMROD¹ which has those pieces of the system
 needed for a TMTS object module. In general, these components
 are only those which are connected with the MTS job program in
 some intimate way. The supervisor, for example, is not in this
 system. The file routines are also not in this system. Those
 things which are in the TESTMTS system are as follows:

 RIPCARDS - a set of "RIP" loader records followed by an
 LCS MCSYMBOL record. See below for more details.
 MTS assembly decks - Those control sections which make up the
 MTS assembly: MTS, CMDS, FSUB, USUB, DSRS, DSRI,
 GSFS, INFO, PLIM, LLXU, TIMT, RSF, RNBR.
 TGATE - the "gatekeeper" csect from the MTS assembly,
 with additions to LCSYMBOL. This interacts with
 the RIPCARDS deck. See below for more details.
 DYS - the DYSSUB csect from the MTS assembly which
 normally goes in *DYSSUB.
 COST² - the COST subroutine
 CHARGE² - the CHARGE subroutine (used by COST, among
 others)
 CFDUB² - the CFDUB subroutine
 STDDMP² - the STDDMP routine
 KWIC² - the keyword scanner
 MSG² - the message printer
 SYSDEFS² - the low core symbol table of system defined
 symbols.
 GETRATES² - subroutine to read in RATEVEC from *RATEFILE
 RATEVEC² - the rate vector built from *RATEFILE
 FNAMETRT² - the file name translate table
 LCS - an LCS MCSYMBOL record
 ENDSEG2² - the 8 byte csect which contains the next location
 beyond itself.

 The interaction between RIPCARDS and TGATE is what makes
 sharing CLSs, DSRs, and other things between MTS and TMTS tasks
 convenient. It is simply a means of copying entries from the
 standard MTS’ LCSYMBOL (MCSYMBOL when being loaded by LOADMTS) to
 TMTS’ LCSYMBOL. The LCSYMBOL for TMTS is defined by the TGATE,
 just like in the regular system (except the deck name there is
 GATE). However, in TGATE, the LCSYMBOL vector has several
 additional entries - one for each entry to be copied from the
 real system’s LCSYMBOL. These entries consist of the symbol name

 ────────────────────

 ¹This description is of the way things are at UM as of 5-1-77.
 the details of RAMROD usage may change from installation to
 installation.

 ²The same as the corresponding deck in the standard system

 4

 and a weak external reference for the symbol. The RIPCARDS deck
 has a RIP card for each of these sybmols. When the LCS MCSYMBOL
 card is encountered, all of those symbols are found in the real
 LCSYMBOL, and thus defined. When the weak external reference in
 the TMTS LCSYMBOL is encountered, the symbol definition is used
 to supply the address, thus copying the address of that symbol
 from the MTS LCSYMBOL to the TMTS LCSYMBOL. The extra symbols in
 TGATE are governed, during assembly, by the assembly parameter
 &TMTS. If this boolean set symbol is 1, the extra symbols are
 generated. It should be 1 when generating a TGATE and 0 when
 generating a GATE for the regular (non TMTS) system.

 The DYSSUB component is an example of a component which is
 normally loaded by PISTLE which cannot be used by both MTS and
 TMTS. It is dependent on the MTS dsect (which is why it is part
 of the MTS assembly), so the results it gave would be wrong if
 the MTS dsect for the TMTS job program differed from the resident
 MTS - which is usually the case. It is loaded, therefore, with
 the TMTS object module. Note that the same effect could be
 achieved by loading DYSSUB by using PISTLE from the TMTS task.

 The remaining decks (other than the MTS assembly decks) are
 all the same as their counterparts in the regular system object
 module (the "CURRENT" system in RAMROD). The reason they must be
 loaded with the TMTS object is that they contain references to
 symbols defined in the MTS assembly. Thus, if they were not
 included in TMTS, the ones in the resident system would be used,
 allowing control to pass to the resident MTS job program from a
 TMTS job program. When this happens, disaster is usually not far
 behind. These decks should be updated from the current system
 (using the RAMROD UPDATE command) before the TMTS object module
 is written.

 As was mentioned above, once a TMTS task has been invoked,
 PISTLE can be used to load components into shared VM and put the
 appropriate entries into the TMTS LCSYMBOL. It is largely a
 matter of personal taste whether a component (like TIME, STDTV,
 or DYSSUB) is more conveniently loaded with the TMTS job program
 or is loaded via PISTLE afterwards.

 III. Invoking TMTS

 Starting a TMTS task, once TMTS has been loaded, is
 straightforward. It is started just like a normal MTS task is -
 the operator types the job program name, (TMTS) followed by the
 MSOURCE device - e.g., TMTS OPER. This is a reasonable way to
 start a TMTS task if the desired MSOURCE device is dedicated,
 like a 3270. (TMTS DS03 would start a TMTS task on "display
 station 03"). However, for devices like terminal controllers
 (the memorex 1270 and the data concentrator), it is undesirable
 to simply start up a line as a TMTS task since some unsuspecting
 user might dial it up. Furthermore, there is no way to guarantee
 that you, the tester, will get that task when you dial up. Using
 the Memorex 1270, there is no way out of this. With the data
 concentrator, the second problem can be solved and the first can

 5

 be minimized as follows:

 1. Signon to one of the concentrators normally.
 2. Go to the concentrator console and turn the selector
 switch to the concentrator you signed on to.
 3. Issue the command PARAMETER TCB=LAnn ON=PASSWORD
 (PR TB=LAnn ON=PD) on the concentrator console. LAnn is
 the line adapter you are signed on to.
 4. On the operator’s console, pick an MTS task, Cyxx, which
 is currently idle and STOP it, where y is the
 concentrator designation (A, B, or C) and xx is the line
 number. If there are more than one idle tasks, pick one
 well up in the trunk hunting sequence to minimize the
 chance of some poor user getting it. If there is only
 one, perhaps you should wait till a less busy time.
 5. Issue TMTS Cyxx on the operator’s console.
 6. From your terminal, issue the command
 (CTL-A)GRAB Cyxx
 You now have a TMTS task.

 Using a 3270 device as MSOURCE for the TMTS task is much
 easier. In fact, it is not even necessary to use the operator’s
 console. All that is necessary is to signon to the 3270 under
 MTS and issue the command %GRAB TMTS. The 3270 DSR will issue
 the appropriate STARTJOB SVC to the supervisor to start up the
 TMTS task. You can flip back and forth, then, between the TMTS
 task and the MTS task. This can be done because, though the 3270
 DSR itself is not shared between the two tasks, the GRAB table
 (GRAB3270) is. There is a RIP card for this symbol and a weak
 external reference in TGATE for it, enabling the two tasks to
 share it.

 TMTS can also be invoked in batch. By putting the keyword
 SYSTEM=TMTS on the signon card, HASP will invoke a TMTS task for
 that job.

 IV. Testing the file routines in TMTS

 If a new set of file routines is to be tested with TMTS, it
 is simply loaded along with the TMTS object deck (an easy way to
 do this is to give "filertns+MTS" to LOADMTS). There is a system
 in RAMROD called FILERTNS which contains the appropriate file
 routines for use with TMTS. These modules are: OPEN, CAT, RWSE,
 FLINE, READ, REDL, GETFINF, MOVE, WRIT, TRAK, and GETD (these are
 the RAMROD module names). Note that VOLGET and TABLRTN are not
 included, as the resident versions of these modules must be used.
 There can only be one version of VOLGET because the relocation
 table for error pages is kept in the VOLGET csect and is only
 built once - thus if there were two versions, only one would have
 a correct relocation table. There must be one and only one
 TABLRTN module because it is the mechanism by which the file
 routines are protected from destructive concurrent access of disk
 files.

 In fact, new versions of both of VOLGET and TABLRTN can be

 6

 used if 1) a new copy of TABLES is included, and 2) a separate
 set of disk packs (with different volume serial numbers) is used
 by the TMTS task. If a separate copy of VOLGET is desired, only
 a new copy of TABLES is required - i.e. the normal system disk
 packs can be used.

 When using a TMTS with its own copy of TABLES, the catalog
 pointers must be initialized before any file reference can be
 made. Since the process of starting up a TMTS task causes at
 least one file reference (to load the DSR), this initialization
 must be done after TMTS has been loaded but before it is invoked.
 This initialization is done as follows:

 1. Load the TMTS job program, with the file routines. Make
 sure the file routines are loaded physically before the
 MTS csect.
 2. Find the address of INITCAT in the TMTS file routines
 from the map produced by LOADMTS.
 3. Find the address of FTV in the resident MTS.
 4. Create a call (preferably using SDS) as follows:

 L GR1,=V(FTV) from 3
 L GR15,=V(INITCAT) from 2
 LA GR13,SAVE where SAVE is about 1000
 bytes long
 BALR GR14,GR15

 (Note: an easy way to do this is:

 $DEB *TIME
 MOD GR1 ’addr of FTV’
 MOD GR15 ’addr of INITCAT’
 GOTO $GR15)

 5. If the return code is zero, it worked.

 V. Problems and Special Considerations

 The biggest problem with TMTS is that the separation of MTS
 and TMTS is not automatic, and thus tends to be error-prone.
 This can happen if the TMTS task calls almost any non-CLS
 component in shared VM. This is why, as a rule, only CLS entry
 points are copied from the resident LCSYMBOL to the TMTS
 LCSYMBOL.

 For example, if you want to run *IF in TMTS, the resident
 version cannot be used. Instead, you must run *IF+SEG2:IF.
 Consequently, programs run in TMTS often require more VM than
 normal, because they cannot use many resident components. The
 Fortran I/O library is another example.

 In order to at least eliminate the burden of concatenating
 the resident module to object files, a special library,
 TMTS:TMTSLIB, has been constructed which contains things like the

 7

 Fortran I/O library. This library is used by setting
 *LIBRARY=OFF and LIBSRCH=TMTS:TMTSLIB.

 A more severe problem, for which there is no ready solution,
 is that attention interrupts do not work the same way in TMTS as
 they do in MTS. This is because the routine in MTS which handles
 attentions (ZTPA) refuses to take an attention which comes from
 an address below the end of MTS. Since TMTS is loaded above all
 the CLSs, an attention will not be taken in a CLS until it
 attempts to do something where the attention-occurred flag is
 checked (like an I/O operation). For instance, when using the
 LOAD command in SYSTEMSTATUS, an attention to stop the command
 will not be taken until the next output line is written. While
 this behavior is annoying, it is seldom very serious. One of the
 places where it is serious is the case of the visual command in
 the editor. Since all the PF keys generate attention interrupts
 when in visual mode, if the resident version of the editor were
 used, visual mode would not respond to any PF keys. Therefore, a
 non-resident version of the editor must be used.

 The final problem with TMTS which must be mentioned is its
 ephemeral nature. One of MTS’s shortcomings is its lack of any
 effective way of controlling the use of shared memory. While it
 is possible to run PISTLE and load new or replacement components
 into shared VM without interference, PISTLE and LOADMTS do
 interfere. This is because PISTLE updates ENDSEG2 when it is
 finished while LOADMTS does not. Therefore, if LOADMTS is run
 twice in a row, the second TMTS will overlay the first. This is
 the desired behavior, since it is unlikely that more than one
 test MTS is useful at a time. The problem is that if a TMTS is
 loaded via LOADMTS, some subsequent use of PISTLE to load a new
 or replacement system component will overlay the TMTS. If you
 load TMTS and, at some later time, try to invoke it and get a
 "job header error" message on the operator’s console, this has
 most likely happened.

 1

 Classification: 1E1.2/2
 Date: Mar 28, 1978
 Doct=30 Vers=1

 Programming Instructions for Punch
 Unit Check Routines

 A program which uses this routine must place the address of
 the appropriate routine in the returns list for an SVC STIO (SVC
 2) as the unit check return. Also the calling program must load
 register 13 with the address of a scratch area before it executes
 an SVC WAIT (SVC 3) for an operation using one of these routines.
 This area must be 80 bytes long and it must be on a double word
 boundary. The scratch area may be used for any purpose except an
 I/O buffer by the calling program between WAIT’S. The first word
 of the scratch area must contain the address of a parameter area
 which has been set up in the format described below. This area
 must be unique for each device used and must be used for no other
 purpose. Before the first use of one of these routines the
 calling program must issue an SVC SNSADR to set up automatic
 sensing into the area provided in the parameter region and must
 store the device ID in the word provided for it.

 2

 Parameter Area for Punch Unit Check _________ ____ ___ _____ ____ _____

 Bytes Name Contents _____ ____ ________

 0-3 Branch to alternate return for punch check if
 requested in USEFLG.

 4 USEFLG Byte giving options desired by calling
 program. The bits have the following
 meaning:

 BIT 0 (X’80’): Return on non-recoverable
 error.

 Bit 5 (X’04’): Is a 1442 punch rather than a
 2540 punch.

 Bit 6 (X’02’): Return on punch check with no
 wait and no console message.

 BIT 7 (X’01’): Return on punch check after
 typing message and waiting
 for device end.

 5 INTFLG Must be set to zero before every SVC WAIT for
 this punch.

 6 SNSFLG Location specified in SVC SNSADR.

 7 SENSE Sense data stored by supervisor.

 8-11 ID Device id for this punch. This can be
 obtained with an SVC GETID.

 12-15 SAVCMD Address of a CCW which can be used to repunch
 the last card before the current one. This
 is ignored if either bit 6 or bit 7 of USEFLG
 is non-zero or if this is a 1442 punch. If
 this card image is not available this word
 should contain zero.

 1

 Classification: 1E2/2
 Date: Mar 28, 1978
 Doct=31 Vers=1

 Programming Instructions for Printer
 Unit Check Routines

 A program which uses this routine must place the address of
 the appropriate routine in the returns list for an SVC STIO (SVC
 2) as the unit check return. Also the calling program must load
 register 13 with the address of a scratch area before it executes
 an SVC WAIT (SVC 3) for an operation using one of these routines.
 This area must be 80 bytes long and it must be on a double word
 boundary. The scratch area may be used for any purpose except an
 I/O buffer by the calling program between WAIT’s. The first word
 of the scratch area must contain the address of a parameter area
 which has been set up in the format described below. This area
 must be unique for each device used and must be used for no other
 purpose. Before the first use of one of these routines the
 calling program must issue an SVC SNSADR to set up automatic
 sensing into the area provided in the parameter region and must
 store the device ID in the word provided for it.

 2

 Parameter Area for Print Unit Check _________ ____ ___ _____ ____ _____

 Bytes Name Contents _____ ____ ________

 0-3 RETBC Branch to alternate return point if any
 alternate returns are selected in USEFLG.

 4 USEFLG Indicates options desired by calling program.
 The bits have the following meaning:

 Bit 3: If 1 a UCS operation is being
 performed.

 Bit 4: Return to RETBC if channel 12 in the
 carriage tape is sensed. The
 condition code is set to 3 for this
 return.

 Bit 5: Return to RETBC if channel 9 is
 sensed in the carriage tape. The
 condition code is set to 1 for this
 return.

 Bit 6: Return to RETBC if a print check
 occurs. This return is made after a
 message is typed for the operator.
 The condition code is set to 0 for
 this return.

 Bit 7: If 1 an invalid character check is
 ignored. If 0 it is a fatal error.

 5 INTFLG Must be set to zero before each SVC WAIT for
 this printer.

 6 SNSFLG Location specified in an SVC SNSADR before
 first call to this routine.

 7 SENSE Sense data stored by supervisor.

 8-11 ID Device id for this printer which may be
 obtained with an SVC GETID.

 1

 Classification: 1E4/2
 Date: Mar 28, 1978
 Doct=32 Vers=1

 Programming Instructions for 2311,2314,2301 DASD
 Unit Check Routines

 A program which uses this routine must place the address of
 the appropriate routine in the returns list for an SVC STIO (SVC
 2) as the unit check return. Also the calling program must load
 register 13 with the address of a scratch area before it executes
 an SVC WAIT (SVC 3) for an operation using one of these routines.
 This area must be 100 bytes long and it must be on a double word
 boundary. The scratch area may be used for any purpose except an
 I/O buffer by the calling program between WAIT’S. The first word
 of the scratch area must contain the address of a parameter area
 which has been set up in the format described below. This area
 must be unique for each device used and must be used for no other
 purpose. Before the first use of one of these routines the
 calling program must issue an SVC SNSADR to set up automatic
 sensing into the area provided in the parameter region and must
 store the device ID in the word provided for it.

 2

 Parameter Area for Disk Unit Check(2311, 2301, 2314 only) _________ ____ ___ ____ ____ _____

 Bytes Name Contents _____ ____ ________

 0-3 RETBC Branch to alternate return if any are
 specified

 4-7 SEEKAD CCHH from last seek address for this disk.
 If the currnet command is a seek this field
 should contain the seek address for this
 seek. This field may be changed by the unit
 check routine.

 8 USEFLG Indicates options selected by calling
 program. The bits have the following
 meaning:

 Bit 1 & Bit 2:
 00=2311
 00=2301
 10=2314

 Bit 3: Return on fatal error (cond. code 3)

 Bit 4: One if the command list is only a
 seek. Zero if the command list
 contains no seek. These are the only
 allowed types of command list.

 Bit 5: Return on track overflow. The
 condition code will be 2.

 Bit 6: Return on end of cylinder. The
 condition code will be 1.

 Bit 7: Return on no record found. The
 condition code will be 0.

 9-10 INTFLG Byte 9 only must be set to zero before each
 SVC WAIT for this disk.

 11 SNSFLG Location specified in an SVC SNSADR before
 the first call to this routine.

 12-17 SENSE Sense data stored by supervisor.

 18-23 VOLSER Volume serial number of disk pack mounted on
 this drive. If this is not known byte 18
 should contain X’FF’.

 24-27 ID Device id for this disk.

 1

 Classification: 1F1/2
 Date: Aug 21, 1976
 Doct=12 Vers=1

 Memo to: Programming Staff

 From: George Helffrich

 Subject: New keyword scanner

 Date: Aug 21, 1976

 Changes are marked with revision bars. Familiarization with
 the keyword scanner’s (strange) conventions is assumed.

 Calling sequences:

 LH 0,lhtlen
 LA 1,lht
 LA 2,ext
 LA SCA,string
 CALL KWIC

 CALL KEYWRD,(lhtlen,lht,ext,string,rht)

 CALL KWSCAN,(lhtlen,lht,ext,string,rht,stringlen,
 options,rvec,dlist,slist)

 lhtlen - halfword length of the left-hand table
 lht - left hand table
 ext - execute table
 string - text to be scanned for keywords
 rht - right-hand table
 stringlen- halfword length of text to be scanned for
 keywords
 options- fullword of options bits
 rvec - 27 fullword return vector, or zero
 dlist - list of characters and contexts which are to be
 considered as delimiting keyword expressions.
 slist - list of character strings considered to be
 separators of keyword expression right-hand and
 left-hand sides.

 Parameter Descriptions:

 lhtlen - halfword length of left-hand table. Note that left
 hand tables do not need to be terminated with
 X’FF’ bytes (they never did) so if this length
 includes one, strange things may happen.

 lht - a series of entries describing left-hand side

 2

 texts. They are in the form:

 1 (or 2) bytes - right-hand table index,
 1 (or 2) bytes - execute table index,
 1 byte - number of characters in the left-hand
 side text,
 n bytes - left-hand side text.

 The right hand table index and execute index
 values are two bytes in length if bit 27 of the
 options word is one. The number of characters _______
 comprising the left-hand side text may be zero,
 implying a null left-hand side.

 ext - a table of instructions selectively executed
 depending on the left-hand and right-hand table
 entries which matched the keyword expression. The
 execute indices in the matching left-hand and
 right-hand table entries are added to the execute
 table address (ext) and the instruction presumed ___
 to be at that address is executed.
 If the object instruction is a BAL or BALR
 instruction branching to a series of
 instructions, a return to 0 bytes past the
 contents of the link register causes the keyword
 match to be accepted. If the return is to 2 bytes
 past it, the keyword match is rejected, and
 scanning of the keyword tables for another match
 is continued. If the return is to 16 bytes past
 it, the keyword scanner terminates processing
 immediately with a return code of 4.
 At the time an entry from the execute table is
 executed, all the registers are restored to their
 values at the time of the subroutine call, save
 GR3, which contains a value indicating which
 left-hand side matched the current keyword in the
 form of 4*(ordinal position of the matching left-
 hand table entry, starting from zero), GR15,
 which contains the address of the instruction
 being executed, GRS 1 & 2, which may contain
 information peculiar to the matching right-hand
 side type, possibly FRS 0 & 1 (see the right-hand
 side type Floating Point Number, below), and ________ _____ ______
 possibly GRS 4 and 5 (see parameter words dlist _____
 and slist, respectively.) The KWIC routine uses _____
 SCC, GR5, SCB & SCD, and FRS 0 & 1, respectively,
 for these purposes; the options demanding the
 usage of GRS 4 & 5 are not available to it.

 string - the string to be scanned for keywords. If the KWIC
 or KEYWRD entries are used, it must be terminated
 by a blank.

 rht - the right-hand table, which contains right-hand
 side descriptions and control entries affecting
 the scanning of the right- and left-hand tables.

 3

 The formats and effects of the control entries
 are as follows:

 1 byte X’FF’ - end of the right-hand table. If no
 keyword match has been made prior to
 its encounter, an error condition
 arises.
 1 byte X’FE’ - abort the scan of the right-hand
 table and search for an alternative
 match to the left-hand side of the
 keyword expression in the left-hand
 table. The scan of the left-hand table
 proceeds from the point at which the
 previous left-hand side match was made.
 1 byte X’FD’ - try to process the current keyword
 expression’s right-hand side as a
 parenthesized list of right-hand sides,
 each associated with the expression’s
 left-hand side (e.g., INFO=(SIZE,TYPE)
 would be processed as if
 INFO=SIZE,INFO=TYPE had been given.)
 The parenthesized right-hand side
 processing is performed only if: (a)
 the right-hand side text begins with a
 ’(’, (b) its length is longer than 2
 characters, and (c) the keyword
 expression has a left-hand side.
 1 byte X’FC’,
 1 byte # bytes following,
 n bytes separator indicies - filter out unwanted
 left-hand and right-hand side
 combinations on the basis of which
 string separates (or, from another
 point of view, connects) the
 expression’s right-hand and left-hand
 halves. Used in conjunction with the
 slist parameter word and bits 20-21 of _____
 the options parameter word, this entry _______
 is used to filter out nonsensical
 right-hand and left-hand table
 connections across a separator. The
 separator indicies are each one byte,
 indicating the separator’s ordinal
 position in the list given by the slist _____
 parameter, or implied by options bits _______
 20-21, with the value 0 indicating no
 separator (viz., degenerate right- or
 left-hand side.) If the separator in
 the keyword expression is not among
 those listed, the keyword expression is
 considered in error.

 4

 The formats of the right-hand side description
 entries follow the consistent format

 1 byte - type code
 1 byte - execute index
 1 byte - # bytes following
 n bytes - variable information, dependent upon
 type code.

 The defined type codes and the right-hand table
 entry variable information peculiar to each is
 detailed below. Accompanying each right-hand side
 type is the description of the information
 returned in the registers if the right-hand side
 text matches the given right-hand table entry.
 [For the KWIC entry, the registers used to return
 the information are in parentheses.]

 code 1 - Literal. the n bytes contain n ________
 characters of a string which must match
 the expression’s right-hand side. GR1
 (SCD) contains the IBM length of the
 string, and GR2 (SCB) contains its
 address in the keyword expression.
 code 2 - FDName. The n bytes may be omitted, in _______
 which case the text is taken as a
 FDName. If 1 byte, the character ’N’,
 is given in the table entry, the FDName
 cannot specify explicit concatenation.
 GR2 (SCD) contains a FDUB pointer for
 the file or device.
 code 3 - Characters. The right-hand side can be ___________
 an arbitrary string of characters,
 possibly limited in length by
 information given in the table entry.
 If 1 byte follows, it is taken as the
 maximum permissible length of the
 string. If 2 bytes follow, they are
 taken as the minimum and maximum
 permissible lengths of the string. If
 no bytes follow, the string may be of
 any length. The lengths all refer to
 the real length of the string, not the
 IBM length. Execute registers are set
 up as for literal (code 1) type. _______
 code 4 - MTS Line Number. The right-hand side can ___ ____ _______
 be an MTS line number (signed, 6
 integral digits, 3 fractional digits)
 followed by an optional scale factor
 character. The permissible scale
 factors, their scaling values, range
 limits, and other scaling operations
 can be described in the variable
 information following the table entry.
 These are specified in groups of 5
 bytes, the first byte of which is an

 5

 operation code, the remaining being an
 integer (no alignment required) operand
 value.

 operator ’>’ - the right-hand side
 value is compared to the operand
 value. The right-hand side value
 may not be smaller, or no right-
 hand side match is performed.
 operator ’<’ - the right-hand side
 value is compared to the operand
 value. The right-hand side value
 may not be greater, or no right-
 hand side match is performed.
 operator ’*’ - the right-hand side
 value is multiplied by the operand
 value.
 operator ’/’ - the right-hand side
 value is divided by the operand
 value.
 any other operator - the operator
 character is interpreted as an
 optional scale factor, which if
 found at the end of the
 expression’s right-hand side,
 causes the right-hand side value
 to be multiplied by the operand
 value.

 The right-hand side value is multiplied
 by 1000 to shift any fractional digits
 into the integral range before any of
 the above operations are applied. If a
 match is made, GR2 (SCD) contains the
 value after application of the
 pertinent operations above.
 code 5 - Hex Number. The right-hand side value is ___ _______
 considered an 8-digit (maximum) hex
 number. No further right-hand table
 information is needed. The number,
 padded to the left with zeros to 8
 digits, is left in GR2 (SCD). GR1 (SCB)
 points to the first character after the
 rightmost hex digit in the input
 string.
 code 6 - Initial Substring Literal. The n bytes _______ _________ ________
 contain literal text, which must be an
 initial substring of the right-hand
 side text for a match to be made. Any
 excess characters are not considered in
 the match. Execute registers are as for
 literal (code 1). _______
 code 7 - No Right-Hand Side. No extra bytes to __ __________ _____
 the right-hand table entry need be
 given. For a match to take place, a
 right-hand side may not be given in the

 6

 keyword expression -- the expression
 consists solely of the left-hand side
 text. No special information is
 returned in the registers.
 code 8 - Ignore Keyword. The keyword text is ______ ________
 ignored, and no execute code is
 performed.
 | code 9 - Characters in Given List. The variable __________ __ _____ _____
 | information is interpreted as a minimum
 | and maximum length bound on the right-
 | hand side text, followed by a set of
 | characters which must constitute the
 | text of the right-hand side (no
 | ordering presumed.) Registers are set
 | up as for literal (code 1) type. _______
 | code 10 - Characters Except in Given List. The n __________ ______ __ _____ _____
 | bytes are interpreted as a minimum and
 | maximum length bound on the right-hand
 | side text, followed by a set of
 | characters, any one of which appearing
 | in the right-hand side text will cause
 | a failure to match the right-hand side. _______
 | Registers are set up as for literal _______
 | (code 1).
 code 11 - Optionally Negated Characters. The __________ _______ ___________
 right-hand side may be an arbitrary
 character string possibly bounded in
 length and optionally preceded by one
 of the negating prefixes ’NO’, ’N’,
 ’¬’, or ’-’. One to three bytes must be
 given in the right-hand table; the
 first (required) byte is taken as the
 index into the execute table added to
 the index in the matching left-hand
 table entry if a negating prefix was
 found in the right-hand side text; if
 no such prefix was encountered, the
 standard right-hand table execute index
 is used. One or two bytes more may
 follow, interpreted as the optional two
 bytes in the characters (code 3) right- __________
 hand side type. The registers are set
 up as for characters, except that any __________
 negating prefix, if encountered, is not
 indicated. All counts refer to the
 length of the string not including the
 negating prefix, if present.
 code 12 - Optionally Negated Literal. The right- __________ _______ ________
 hand side text is taken as a literal
 string which may be preceded by one of
 the negating prefixes ’NO’, ’N’, ’¬’,
 or ’-’. The n bytes contain a 1 byte
 execute index in the case the negated
 form of the literal is detected, as
 defined in the type above, followed by
 the text of the literal string which

 7

 must match the expression’s right-hand
 side text. The registers are set up as
 for literal (code 1), except that any _______
 negating prefix, if encountered, is not
 indicated.
 code 13 - Optionally Negated Initial Substring __________ _______ _______ _________
 Literal. The n bytes of the right-hand ________
 table entry contain a 1 byte execute
 index used, as above, in the case of a
 negating prefix on the keyword
 expression right-hand side text is
 encountered, followed by the character
 of a literal string which must be an
 initial substring of the keyword right-
 hand side. The execute registers are
 set up as for initial substring literal _______ _________ _______
 (code 6).
 code 14 - Delimited Character String. The keyword _________ _________ _______
 expression’s right-hand side is taken
 as a character string, bounded by any ______
 of a set of string delimiting
 characters defined in the right-hand
 table entry. The n bytes contain at
 least 2 bytes interpreted as the
 minimum and maximum possible lengths of
 the string, followed by a series of
 single characters, one of which must
 initiate and terminate the text of the
 expression’s right-hand side. If no
 characters are given, the string’s
 first character is taken as the string
 delimiter. Doubled instances of the
 string delimiter are collapsed into a
 single character. The input string is
 not altered by this operation, but the
 resulting length of the string, if
 doubled delimiters are found, may not
 be greater than 128 characters. The
 execute registers are set up as per
 characters (code 3), but the initial __________
 and final string delimiters are not
 included in the information.
 code 15 - Integer Number. The expression’s right- _______ _______
 hand side text is interpreted as an
 integer number (signed, 9 digits max.)
 optionally followed by a scale factor.
 The format of the n bytes following the
 right-hand table entry is identical to
 that of the MTS line number type (code ___ ____ ______
 4), as are the contents of the
 registers at execute time. However, the
 number is not multiplied by 1000, and ___
 note no fractional digits are
 permitted.
 code 16 - Flagged Hex Number. The expression’s _______ ___ _______
 right-hand side text is interpreted as

 8

 a hex number (8 digits max.) enclosed
 in X’...’ . The contents of GR2 (SCD)
 contains the hex number, right-
 justified, at execute time.
 code 17 - Floating Point Number. The expression’s ________ _____ _______
 right-hand side value is taken as a
 FORTRAN-style long-real number,
 optionally followed by a scale factor
 as with types integer and MTS line _______ ___ ____
 number. The format of the information _______
 following the right-hand table entry is
 similar to that of the aforementioned
 types 4 and 15, differing only in that
 the operand values are long-real values
 (again, no alignment necessary) and
 occupy 8 bytes of storage. The
 resultant value is left in FR0-1 at
 execute code time.
 code 18 - PAR Field. The right-hand side of the ___ ______
 keyword expression is taken as the
 remainder of the input string
 interpreted as a character string.
 GR1(SCB) contains the IBM length of the
 character string and GR2(SCD) contains
 the address of the first character of
 the string at execute time.
 code 19 - Literal Table. The keyword right-hand _______ ______
 side must appear in a given table of
 fixed length literals. If the right-
 hand text is longer than a table entry,
 the initial substring of the right-hand
 side of length of a table entry is
 searched for in the table. The
 information contained in the right-hand
 table entry is a 4 byte unaligned table
 address. The format of the table is: 1
 byte - length of a table entry; 1 byte
 - number of entries in the table; n
 bytes of table entries, short ones
 being padded with blanks. At match
 time, GR1(SCB) contains a 1-origin
 index into the table of the matching
 entry, and GR2(SCD) contains its
 address in the table.

 stringlen- halfword length of the text to be processed for
 keyword expressions.

 options - a fullword of options bits, their locations and
 effects given below:
 bit 15 - the ext parameter indicates the address ___
 of a subroutine to call to perform the
 functions of the execute code. Rather
 than a single instruction being
 executed at the time a keyword
 expression is matched, this subroutine

 9

 is called with the following
 parameters:

 1 word - sum of left- and right-hand
 table execute indices,
 1 word - contents of GR1 as defined
 previously,
 1 word - either the contents of GR2 if
 it was not an address, or the
 address of an array containing the
 information indicated by GR2 if it
 was an address (viz., no extra
 level of indirection),
 1 word - contents of GR3 as defined
 previously,
 1 word - contents of GR4 as defined
 previously,
 1 word - contents of GR5 as defined
 previously.

 If a return code of 0 is given by this
 subroutine, the keyword match is
 accepted. RC of 4 causes match to be
 rejected and the scan for an alternate
 match to be continued. RC of 8 causes
 keyword processing to be aborted
 immediately.
 bits 16-17 - perform spelling correction on
 unmatched left-hand sides. If bits 16-
 17 are:

 00 - no correction attempted;
 01 - correct, and print warning
 message;
 11 - correct, print warning message,
 and request confirmation of the
 correction from the user, if in
 conversational mode. If in batch
 | mode, no correction is performed.
 bit 18 - use alternate return vector format. See
 the rvec parameter word for further ____
 details.
 bit 19 - keyword expression left-hand sides may
 be parenthesized. This option enables
 keyword expressions like
 (ENDFILE,SIGFILE)=OFF to be considered
 equivalent to ENDFILE=OFF,SIGFILE=OFF.
 bits 20-21 - define separator list. This two-bit
 switch is used to indicate that, rather
 than ’=’ connecting a keyword left-hand
 side with a right-hand side, either an
 explicitly specified set can be defined
 via the slist parameter, or a standard _____
 predefined set may be used. The
 predefined set is a relational
 separator set, the strings ’>=’, ’<=’,

 10

 ’¬=’, ’>’, ’<’, and ’=’ being the valid
 separators.
 See the slist parameter word for more _____
 details.
 If bits 20-21 are:
 00 - standard ’=’;
 01 - relational set;
 11 - user-defined set, passed as slist. ______
 bit 22 - explicit delimiter character list given.
 If this bit is zero, only blanks and
 commas not embedded in parentheses are
 taken as delimiter characters. However,
 if this bit is set, a user-defined set
 can be passed as the dlist parameter. _____
 See the dlist description for details. _____
 bit 23 - left-hand sides can be given as initial
 substrings of the left-hand side texts
 given in the left-hand table entries.
 If this option is selected, the order
 in which the left-hand sides are given
 in the left-hand table is important...
 bit 24 - return pointer to end of scanned keyword
 text in parameter list word string. _______
 bit 25 - reserved for future use, should be zero.
 bit 26 - convert all input to upper case before
 processing. The input text string is
 not molested if this option is
 selected, but a copy is made and the
 case translation and subsequent
 processing is performed on the copy.
 bit 27 - in left-hand table, the right-hand table
 and execute table indicies are 2 bytes
 in length. If right-hand tables become
 too large, this can solve the
 problem...
 bit 28 - return to caller upon encountering any
 bad keyword expressions.
 bit 29 - prompt the user for new keywords if a
 bad keyword expression is encountered.
 bit 30 - print any error comments concerning bad
 keyword expressions. If this option is
 not selected, the error comment is
 returned in the rvec return vector. See ____
 rvec for details. ____
 bit 31 - scan multiple keyword expressions. If
 this option is not selected, only a
 single expression is processed, even if
 either of the right-hand or left-hand
 sides were parenthesized.

 rvec - the location of a 27 fullword return vector, or an
 address of zero, indicating no return vector. The
 return vector contains information pertaining to
 errors encountered during the keyword scan, in
 one two possible formats (for the sake of
 compatibility.)

 11

 If bit 18 of the options word is zero, the return _______
 vector will only contain information in the event
 that an invalid keyword expression is
 encountered. In this case, the return vector
 information is:
 word 1 - address of first character of the
 invalid keyword expression,
 word 2 - fullword length of the error comment
 following,
 words 3-27 - text of the error comment.
 If bit 18 of the options parameter word is one, _______
 the return vector will contain information
 describing every case in which the subroutine may _____
 return in error. Whenever a return code of 4 is
 given, the vector will contain error information.
 The format of the return vector is:
 word 1 - fullword error code,
 words 2-27 - variable, dependent upon the error
 code number.
 The currently defined codes and their associated
 variable information is as follows:
 code 1 - ’CANCEL’ given in response to a prompt
 for error replacement input. No further
 information is returned.
 code 2 - invalid keyword expression. This error
 code is only issued when options bit 30 _______
 is zero. The variable information
 contains:
 1 word - address of bad expression.
 1 word - length of bad expression.
 1 word - length of following error
 text.
 23 words - error text.
 code 3 - keyword processing prematurely
 terminated by execute code. If the
 execute code has exercised the option
 of returning to 16 bytes past the
 contents of the link register of the
 branch-and-linkage instruction, this
 error code is given. No further
 information is returned.
 code 10 - invalid right-hand side type code in
 the right-hand table. If this error
 code is issued, the address of he
 invalid type code is left in the second
 word of the return vector.
 code 11 - invalid format for right-hand table
 entry. The second word of the return
 vector contains the address of the
 improperly formatted entry.
 code 12 - invalid separator list format. The
 second word of the return vector
 contains the address of the improperly
 formatted entry in the separator list.
 code 20 - non-MTS task keyword expression error.
 No further information is returned.

 12

 code 21 - non-MTS task requested FDUB. The second
 word of the return vector contains the
 address of the right-hand table entry
 requesting the FDUB.
 code 30 - unable to get psect from GPSECT
 routines. No further information is
 returned.
 code 31 - auxiliary subroutine unavailable. A
 non-MTS segment 2 routine was needed,
 but its Vcon was not defined. No
 further information returned.

 dlist - address of a list of single characters and
 associated contexts in which the characters are
 to be considered delimiters of keyword
 expressions in the input string. If options bit _______
 22 is zero, no list need be specified, and the
 delimiter characters are considered to be blanks
 in all contexts, and commas not nested within
 parentheses. If the bit is one, a list of
 characters and contexts are assumed to be
 present, and in the following format:
 1 byte - # of delimiter characters to be
 defined
 (1 byte - delimiter character,
 1 byte - context indicator: 0 for balanced
 parenthesis context, 1 for any context)
 -- repeated for every delimiter
 character to be defined.
 If this option is used, at the time the executed
 code is performed, GR4 is set up to point to the
 delimiter character in the keyword string.

 slist - address of a list of strings to be considered as
 separators of left-hand and right-hand sides in
 the keyword expression. If options bits 20 & 21 _______
 are ones, this list must be present, and in the
 following format:
 1 byte - # of separators in the list,
 (1 byte - length of separator string,
 n bytes - text of separator string) --
 repeated for each separator in the
 list.

 If options bits 20 & 21 are B’01’, then this list _______
 need not be given, but the subroutine acts as
 though a list specifying the separators
 ’>=’, ’<=’, ’¬=’, ’>’, ’<’, ’=’,
 in the presented order, had been passed via this
 parameter.
 If a non-standard separator list has been passed
 or implied, the right-hand table control entry
 type X’FC’ refers to the separator’s ordinal
 position in the (possibly implied) list, with the
 value zero indicating no separator text given
 (viz., either the right-hand or left-hand side is

 13

 degenerate.) Also, at execute code execution
 time, GR5 is set to contain the abovementioned
 value times 4 to signify which separator connects
 the keyword right-hand and left-hand sides.

 Return Codes:

 0 - all ok, keywords possibly processed. (If the options _______
 bits have specified that keyword expression
 errors are to be ignored, a keyword expression
 error could possibly have occurred, but a
 subsequent correct keyword expression could clear
 the error condition and result in RC=0.)
 4 - some type of error has occurred, or ’CANCEL’ was given
 in response to a prompt for error replacement
 input. If the options bits have specified that _______
 the rvec should return information, then if the ____
 alternate return vector format has been
 specified, the error condition is clearly defined
 in it. Otherwise, RC=4 is a catchall return code
 indication some sort of error.

 Classification code: 243/1 1
 Date: 6/21/77
 Doct=8 Vers=1

 The MTS to SDS Interface

 The MTS to SDS interface is a special case of the general
 MTS - CLS interface. A CLS is allowed to "monitor" the EXEC (or
 USER) CLS by use of its return codes to MTS and a byte of
 switches in the CLSPARM region. The CLSPARM region is passed as
 parameters to the CLS upon invocation, and the CLS can set
 various switches to control, somewhat, what kinds of events will
 cause a suspension of the EXEC CLS and a subsequent return to the
 monitoring CLS. When the "monitor" CLS returns to MTS with a
 return code of CLSRCST (12), MTS will invoke the EXEC CLS and
 will call it again when the EXEC CLS returns, or when one of the
 specified events occurs in the EXEC CLS.

 This "monitor" facility is available to any CLS, but is only
 used by SDS (which, of course, was its sole motivation). It is
 implemented within MTS by just a few subroutines which are called
 from all of the places that an EXEC CLS can return to in MTS, and
 from most of the places in MTS where significant events in the
 life of an EXEC CLS are processed.

 These subroutines are as follows:

 EXGO - Start the EXEC CLS.

 CLSSTRT - Starts the EXEC CLS and sets the "start
 byte." The start byte (CLSTRTB) is set by
 moving the switches at CLSLT+3 (the load
 type word) in the CLSAREA of the current CLS
 to the start byte, and turning on the "start
 switch" (CLSTRTSW). The EXEC CLS is started
 by simply branching to EXGO. When SDS
 returns with RC=12, this is called from
 CLSRTNLOC (in CMDS).

 CLSSTST - Tests an event to see if
 1) there is a monitoring CLS around,
 2) if there is, it wanted events of this
 type.
 These conditions are determined by testing
 the start byte against the code representing
 this event. The event type is passed as a
 parameter in GR0. Most events, like EXEC
 returns, require only that there be a
 calling CLS around to cause the test to be
 satisfied. If this event is wanted by the
 monitoring CLS, then the monitoring CLS is
 invoked by the following sequence:
 1) call RUNTOF to switch timer interrupts
 2) turn off the start switch
 3) set up the CLSAREA for the monitoring CLS
 with GRS for CLS entry and the code of
 this event as one of the parameters
 4) invoke the monitoring CLS by branching to
 GO

 2

 CLSSTST2 - Does the same as CLSSTST but does not
 distinguish between events. If there is a
 calling CLS around, it is invoked with the
 same sequence as CLSSTST.

 1

 Classification: 321.1/1
 Date: July 25, 1977
 Doct=25 Vers=1

 THE INTERNAL STRUCTURE OF LINE FILES IN MTS

 A line file has two basic components, the line-hole directory and the _________ _________
 data section. Logically, the line directory is an array of 8-byte entries, ____ ________
 one for each line in the file; each entry contains the line number, plus a
 pointer (relative page number and offset) into the data section, where
 further information about the line is stored. This array is ordered from
 smallest to largest line number, which makes both sequential operations and
 indexed operations relatively efficient. The format of a line directory
 entry is:

 LDELNUM BYTES 0-3: line number
 LDEPAG# BYTES 4-5: relative page number (1-32767)
 LDEDISP BYTES 6-7: displacement within the page (0-4095)

 The contents of the data section are unordered, and are allocated and
 freed dynamically, using a hole directory. The hole directory is an array ____ __________
 of four byte entries; there is one entry for each page of the data section,
 giving its relative page number, preceded by an entry for each contiguous
 block of available space on that page, giving its offset and length. Each
 such group of entries is ordered from highest to lowest offset, to
 facilitate recombination of available blocks. No particular order is
 imposed on the groups themselves, however. The relative page number entry
 appears last in each group because the hole directory is scanned in reverse
 order. The format of a hole directory page number entry is:

 HDEPAG# BYTES 0-1: relative page number (1-32767)
 HDEFLAG BYTES 2-3: zero, which flags this type of entry

 and the format of an available block entry is:

 HDEDISP BYTES 0-1: displacement to beginning of block (0-4095)
 HDELEN BYTES 2-3: length of available block. (1-4095)

 We next describe the manner in which these pieces are mapped onto the
 physical pages of the file. The line directory array is divided into blocks
 of 510 or fewer entries; each such block is stored on a separate page, and
 these pages are chained together on a two-way linked list, in increasing
 line number order. The first page in the chain is always page one of the
 file. The hole directory follows the line directory in the same chain; only
 one page may contain both hole directory and line directory entries at the
 point where they join.

 The data section normally occupies a set of pages distinct from the
 line-hole directory chain. If the file is small enough to be stored in one
 page, however, the data section occupies part of page one.

 2

 The following is the general format of a line or hole directory page:

 PHLDSO BYTES 0-1: offset to start of line-hole directory; this
 will be either X’0028’ or X’0BE0’ in page one,
 and X’0010’ in all other pages

 PHLDL BYTES 2-3: line directory length (bytes) (0-4080)

 PHHDL BYTES 4-5: hole directory length (bytes) (0-4080)

 PHSID BYTES 6-7: relative page number of this page (1-32767)

 PHFWDP BYTES 8-9: forward pointer (relative page number of next
 page in hole-line directory chain) (0-32767
 0=end of list)

 PHBWDP BYTES 10-11: backward pointer (0-32767 0=end of list)

 PHLNTP BYTES 12-13: line number table index (see later) 8-byte-slot
 number in line number table (0-8180)

 BYTES 14-39: global file information - page one only - in
 other pages the line or hole directory starts
 at byte 16, and bytes 14-15 are unused.

 BYTES 40-3039: data section for a one page file. In larger
 files the line directory starts at byte 40 of
 page one. There is room here for 3000 bytes of
 data.

 BYTES 3040-4095: line directory starts here in a one page file.
 Room here for 131 lines and two hole entries.

 We next describe the contents of the data section of the file. For
 lines shorter than 128 bytes, and many longer lines as well, the line
 occupies a contiguous block of storage in the data section of the file; the
 first two bytes of the block give the length of the line, and the remainder
 is the line itself. A line longer than 128 bytes may be broken into at most
 16 pieces, none of which (except possibly the last) may be shorter than 128
 bytes; clearly none will be larger than a page. If the line is broken up,
 the block pointed to by the line directory entry contains a table of
 pointers and lengths for the remaining blocks, followed by the first piece
 of the line. The structure of the line block table is as follows: ____ _____ _____

 3

 LINBKTB BYTES 0-1: BITS 0-3 - number of pieces minus 1 (0-15)
 BITS 4-15 - length of first piece - does not
 include length of table (1-4094)

 LINPAG# BYTES 2-3: relative page number (1-32767)
 LINDISP BYTES 4-5: offset (0-4095)
 LINPLEN BYTES 6-7: length of this piece (1-4096)

 BYTES 8... up to 14 6-byte entries in the format of bytes
 2-7, one for each piece, followed by the first
 piece of the line.

 There are no alignment restrictions on blocks in the data section. The data
 blocks for a line may have a total length up to 32767 bytes. The data
 blocks for the line number table (described later) may have a total length
 up to 65444 (4096*16-2-15*6), leaving room for 8180 8-byte slots.

 If a line or hole directory page becomes empty, normally because all
 the lines it points to have been deleted, it is removed from the line
 directory chain and added to the free page chain, which is a one-way linked
 list of available pages, chained through the normal forward pointer field.
 The pointer to the first such page, if any, is contained in the global file
 information in page one of the file. Pages on the free page chain can be
 used either as data pages or line directory pages. Once a page has been
 used as a data page, however, it will never be used as a line directory
 page. Pages beyond the number of pages in use (R1NPGS) are not chained.

 To improve the efficiency of indexed operations on line files, a line ____
 number table is added to the file. The line number table is an array ______ _____
 containing a one-way linked list of 8 byte entries, one for each line or
 hole directory page, with the following structure:

 LTELNUM BYTES 0-3: Line number of first line in page
 LTENEXT BYTES 4-5: Index of next entry in list (0-8180 0=end of
 list)
 LTEPAG# BYTES 6-7: Relative page number of corresponding page
 1-32767

 These entries are chained in exactly the same order as the corresponding
 line or hole directory pages. The pointers are entry indices, and page one
 always has index zero. If a line directory page contains neither lines nor
 holes (a condition which should only occur for page one), the line number
 table entry contains X’80000000’. If a page contains only holes, the entry
 contains X’7FFFFFFF’. Recall that each line directory page also contains
 the index of the corresponding line number table entry.

 The line number table is stored in the data section of the file, in
 exactly the same format as a normal data line. The pointer to this "line"
 is part of the global file information in page one. Corresponding to the
 free page chain for line directory pages, there is a free entry chain for
 the line number table, chained through bytes 4-5, as usual, and starting
 from the global file information.

 With the exception of the global file information, whose format is
 given below, this completes the description of the internal structure of
 line files.

 4

 Global file information:

 R1FTYPE BYTE 14: file type - always X’00’

 R1HDRL BYTE 15: header length - always
 X’28’=FL1’40’=AL1(LNEFHDRL)

 R1NPGS BYTES 16-17: number of pages in use (truncated size)
 (1-32767)

 R1NLDR BYTES 18-19: number of line-hole directory pages (1-8180)

 R1NAB BYTES 20-23: number of available bytes in line-hole directory

 R1MFS BYTES 24-25: maximum file size - file will not be expanded
 beyond this size (1-32767)

 R1MLL BYTES 26-27: maximum line length - length of the longest line
 written (0-32767)

 R1LLDR BYTES 28-29: last line-hole directory page number (1-32767)

 R1FPC BYTES 30-31: free page chain pointer (0-32767 0=none)

 R1LNTP BYTES 32-35: line number table pointer, 2-byte page number
 (1-32767) & 2-byte offset (0-4095)

 R1LNTFL BYTES 36-37: line number table free entry list
 (0-8180, 0=NONE)

 BYTES 38-39: unused.

 1

 Classification: 321.2/1
 Date: July 25, 1977
 Doct=26 Vers=1

 Internal Structure of Sequential Files
 in MTS

 The organization of sequential files (with or without line
 numbers) is quite simple when compared to line files. In
 general, the first "n" bytes of the first physical record is used
 as a header by the sequential file routines in which pertinent ______
 information about the sequential file is retained.¹

 Immediately following this header information are the lines
 of information stored in the sequence in which they were received
 by the sequential file routines. Since these lines may be up to
 32,767 bytes long, and since the physical records on the disk are ________ _______
 4096 bytes (1 page) long,it is quite possible that a line will
 have to be broken up and stored on more than one physical record.
 This is quite likely even if only "short" lines are written into
 a sequential file since the lines are packed end to end using up
 all of one physical record before going onto the next physical
 record. Thus, it turns out that even short lines may be broken
 up across physical record boundaries.

 For this reason, it is convenient to refer to a segment of a _______
 line as that part of the line which resides on a physical record.
 Furthermore, we can refer to the first, intermediate, and last
 segments of a line, remembering that in fact these descriptions
 may all denote one segment (identical to the line) or they may
 denote two or more distinct segments, depending on the size of
 the line and how the line "fell" with respect to physical record
 boundaries.

 The first 4 bytes in the sequential file header are the
 length of the header, following this is the 4 byte last pointer ____ _______
 associated with this sequential file. This pointer is composed
 of a 2 byte relative record number within the file and a 2 byte
 offset into the corresponding physical record. This pointer is
 used to determine where the next line of information should be
 written and where the logical end of the file is.²

 The next full word in the header following the last pointer
 contains the line number of the last line written, and is ____ ______ __ ___ ____ ____
 maintained only if this is a sequential file with line numbers.
 Its sole function is to insure that lines are written with
 increasing line numbers. The next halfword in the header is the
 size of the longest line in the file. This is updated (if ____ _______ ____

 ¹Currently n=16

 ²A more detailed description of how this pointer and others are
 manipulated by the file routines may be found in an appendix to
 Volume 1, "Details on Using Sequential Files in MTS".

 2

 necessary) after every write operation. The last two bytes in
 the header are the maximum expandable size of this sequential
 file.

 Each segment of a line in a sequential file has either 10 or
 6 bytes of overhead associated with it depending on whether it is
 in a sequential file with or without line numbers. The 6 bytes
 common to both organizations is split up as 3 bytes before and
 after each segment. The first of the three bytes at the
 beginning of each segment is a flag byte indicating whether this ____
 is the first, intermediate, and/or last segment of the line, and
 whether this segment (i.e., the line) has a line number
 associated with it. The next two bytes are a count of the
 current segment length plus the previous segment lengths for this
 line. If this is a sequential file with line numbers, the next 4
 bytes contain the line number associated with this segment. The ____ ______
 three bytes at the end of the segment are similar (but not
 identical) to those at the front, i.e., the first two bytes are a
 count of the total line length minus all previous segment
 lengths, and the last byte is the one byte flag. The lengths
 kept at the front and the back of the segments are somewhat
 obscure but make possible the backwards reading of sequential
 files. Due to the judicious definition of these lengths, it is
 the property that: 1. For the first segment of a line, a) the _____
 leading count contains the length of the first segment, and b)
 the trailing count contains the total line length; 2. For the
 last segment of a line, a) the leading count contains the total ____
 line length, and b) the trailing count contains the length of the
 last segment. This is precisely the information required for
 forwards and backwards reading of the file.

 As was mentioned earlier, lines are packed sequentially onto
 physical records end to end, and are broken up into segments if
 necessary so that whenever possible all space on the physical
 record is used. Sometimes, however, because of the overhead
 associated with each segment, up to 6 or 10 bytes at the end of
 each physical record may be unusable. If such is the case, the
 physical record is filled out with the necessary number of a
 unique dummy byte. This, along with the length at the end of _____ ____
 each segment, as previously mentioned, allows the backward
 reading capability of sequential files.

 As concerns size limitations on sequential files, lines are
 restricted to 32,767 bytes in length. And, the total number of
 physical pages in a sequential file can be no greater than
 32,767. Finally, as with line files, all records of the file
 must reside on the same volume.

 3

 HEADER -- (16 BYTES) ______
 ┌───┐
 | | | | | | |
 | 0-3 | 4-5 | 6-7 | 8-11 | 12-13 | 14-15 |
 | | | | | | |
 └───┘
 | | | | | |
 | | | | | |
 header | last | maximum |
 length | pointer- | line |
 | offset | length |
 last last
 pointer- line # maximum
 relative file size
 record

 SEGMENT _______

 | length n |
 ┌───┐
 | | | | | | |
 | 0 | 1-2 | 3-6 | 7-(7+n-1) | 7+n-8+n | 9+n |
 | | | | | | |
 └───┘
 | | | | | |
 | | | | | |
 flag | line segment | flag
 40-- | number of line | (same as
 first | (if seqwl) | front)
 seg- | |
 ment | |
 20-- | |
 last | |
 seg- | |
 ment | |
 08-- | |
 no | |
 line | |
 num- | |
 bers | |
 sum of |
 this total line
 segment length minus all
 plus all pre- previous segments
 vious segments

 1

 Classification: 322/1
 Date: July 25, 1977
 Doct=27 Vers=1

 INTERNAL STRUCTURE OF THE
 CATALOG IN MTS

 The CATALOG in MTS is composed of a number of FILES _______ _____
 (special, to be sure) named *MASTER.CATALOGn where n=0, 1, 2,
 ...255. These files may all be on the same disk VOLUME or they
 may be scattered across different disk volumes. For reasons of
 efficiency, they should be scattered across volumes (and even
 control units). Each *MASTER.CATALOGn is linked to the next
 *MASTER.CATALOGn+1. The above structure is generally determined
 at the time the catalog is initially built, and except for
 facilities provided to dynamically expand when necessary,¹ this
 structure does not change. Thus, it is important if one is
 building the catalog to know ahead of time on what volume(s) one
 wants the catalog to reside and to "direct" the building process
 in that direction.

 In general, each catalog file has the following structure.
 The first PAGE² of each file is the FILE HEADER. This header ____ ____ ______
 contains a 4 byte id, a 4 byte count of the number of pages in
 this file (maximum of 816), a 4 byte link to the next file,³ and
 a 4 byte data set control block (DSCB) type E address⁴ for this
 *MASTER.CATALOGn.

 The remainder of the file header is composed of a variable
 number of FREE SEGMENT DESCRIPTORS. The number of free segment ____ _______ ___________
 descriptors is equal to the number of pages in the file. The
 free segment descriptor indicates which segments (as defined
 below) in the corresponding page are available for use. A free
 segment descriptor is composed of a 4 byte page address followed
 by a 1 byte bit map describing the free segments.

 ¹The expansion is open-ended in the sense that the catalog will
 always create a new *MASTER.CATALOGn+1 (given available space, of
 course).

 ²The catalog uses 4096 byte page size physical records as does
 the regular file system.

 ³Catalog addresses take the form of a 2 byte public volume number
 and a 2 byte relative page number (starting at zero) within the
 volume.

 ⁴The DSCB type E is not used by the catalog routines.

 2

 The remaining pages in the file have the following
 structure. Each page has a 16 byte PAGE HEADER containing a 4 ____ ______
 byte id, the 4 byte address of the file header, a 4 byte relative
 page number within this file (starting at 1), and the 4 byte
 address of this page. The remainder of the record is broken up
 into 6 SEGMENTS, each 680 bytes long. ________

 Each segment has a 20 byte SEGMENT HEADER containing the _______ ______
 following: the 4 byte userid to whom the segment has been
 assigned, a 4 byte link to the next segment assigned to this
 userid,⁵ a 1 byte count of the maximum number of DESCRIPTORS (see ___________
 below) that can be contained in this segment, a 1 byte descriptor
 length, and 10 unused bytes.

 A segment can be assigned to the MASTER INDEX, SYSTEM FILE ______ _____ ______ ____
 CATALOG, SCRATCH FILE CATALOG, or a USER CATALOG. If a segment _______ _______ ____ _______ ____ _______
 is assigned to the master index, it may contain a maximum of 55
 MASTER INDEX DESCRIPTORS each 12 bytes long. If a segment is ______ _____ ___________
 assigned to the system file catalog, the scratch file catalog, or
 a user catalog, it may contain a maximum of 10 FILE DESCRIPTORS ____ ___________
 and/or SHARING DESCRIPTORS each 66 bytes long. _______ ___________

 The master index contains a descriptor for every userid that
 has permanent private files in the system. This master index
 descriptor contains a 1 byte flag, a 4 byte userid, a 4 byte
 address of the first segment of the user catalog for this userid,
 and 3 unused bytes. The master index is generally searched only
 once per userid per session at the first reference to a userids
 private files to obtain the address of the userids catalog.
 Thereafter, MTS remembers where the userids catalog is to speed
 up subsequent references.

 When a user creates his first private file, an entry is made
 in the master index and the user is assigned an available
 segment.⁶ Furthermore, as is the case every time a file is
 created, a file descriptor is placed in the users catalog.

 ⁵The segment number (0-5) within the page is indicated in the
 high order 4 bits of the address (as with DSCB addresses).
 Segments of a user catalog need not be on the same volume.

 ⁶Segment 5 of each page is not assigned to new users for their
 first segment. This segment is reserved as an overflow segment
 for existing catalogs.

 3

 The FILE DESCRIPTOR contains a 1 byte flag (to distinguish
 it from sharing descriptors), 1 byte of owner access, 1 byte of
 global access,⁷ 1 byte indicating the file organization and
 device type, the 16 byte filename, the 4 byte address of the DSCB
 type E for the file, a 4 byte owner ID, the 6 byte volume serial
 number, the 2 byte physical record size (currently 4096 bytes), a
 2 byte creation date, a 2 byte last reference date, a 4 byte
 usage count, a 2 byte last change date, and a 12 byte program
 key.

 In addition, if the file has been permitted (via $PERMIT) to
 specific userids, projects, or program keys, the file descriptor
 will have a 6 byte sharing descriptor linked to it.⁸

 The SHARING DESCRIPTOR is composed of a 1 byte flag, a
 variable number of variable length SHARING DESCRIPTOR ENTRIES _______ __________ _______
 and, if necessary, the 6 byte link⁸ to the next sharing
 descriptor. Each sharing descriptor entry is composed of the one
 byte IBM length of the userid, project number,or program key, a 1
 byte flag indicating first whether the entry is a userid, project
 number, program key, qualified userid-program key or a qualified
 project number-program key and second, what type of access is
 allowed this userid, project number,or program key,⁹ and the
 actual userid, project number, or program key.

 The algorithm for determining access is (generally) as
 follows. The sharing descriptors are scanned checking for a
 "match" against the userid, project number, and program key in
 question. Since it is possible to "match" the same userid (or
 project number or program key) against more than one sharing
 descriptor entry, (by permitting access to subsets of userids,
 e.g., all userids whose first n characters are ...) the access of
 the most specific match is the one allowed.

 Furthermore, userid access has higher priority than project
 number access and project number access has higher priority than
 (unqualified) program key access so that if a userid and a ___
 project number both "match", the userid access is used, ____
 regardless of the number of characters matched. (Access
 permitted to a program key "qualified" by a userid has higher
 priority than access permitted to just the userid, and access
 permitted to a program key "qualified" by a project number has
 higher priority than access permitted to just the project
 number). Finally, if no specific access applies, then the global

 ⁷Access allowed to others.

 ⁸This 6 byte link has the form, a 2 byte public volume number and
 segment number, a 2 byte relative page number, and a 2 byte
 offset into the segment. Thus descriptors need not be on the
 same volume.

 ⁹The types of access currently allowed are no access, read
 access, write expand, write change & empty, renumber & truncate,
 rename & destroy, permit, or any combination thereof.

 4

 access is used.

 5

 When a user overflows his first segment with more than 10
 file and/or sharing descriptors, a new segment is allocated and
 the first segment is linked to it. An attempt is made to
 allocate the next segment on the same page as the previous
 segment (i.e., segment 5). In any event, a new segment will be
 allocated even if it becomes necessary to dynamically expand the
 catalog in the process.

 As would be expected, whenever a user destroys a file, the
 corresponding file descriptor is removed from the user catalog
 (as well as any sharing descriptors attached to the file
 descriptor). Finally, when a special program is run (usually
 once a month) to remove expired userids from the system, the
 master index descriptor is removed from the master index, and all
 segments allocated to the expired user catalog are returned.

 It should be noted here that the system file catalog and the
 scratch file catalog are identical to the user catalogs except,
 of course, they never expire.

 One further note; the file header of *MASTER.CATALOG0
 contains in addition to the normal file header information and
 free segment descriptors, the name of the last *MASTER.CATALOGn
 created, and the addresses of the beginnings of the master index,
 the system file catalog, the scratch file catalog, and the first
 user catalog. These pointers are read in and remembered when the
 operating system is initialized for reasons of efficiency. (The
 name of the last *MASTER.CATALOGn is needed for expansion.) In
 addition, proper manual setting of these pointers at the time the
 catalog is being built can in most cases guarantee that
 sufficient contiguous space will be available to the master
 index, system, and scratch file catalogs for expanding. This
 will be the case since user catalogs are allocated "down from"
 the first user catalog only. Again this is an efficiency move
 and is not necessary (though quite desirable).

 Finally, there exist two resident subroutines which may be
 of use to system programmers interested in extracting information
 from the catalog about the file system. One returns file
 descriptor (and optionally sharing descriptor information) about
 any or all of the files in the users catalog. The other reads
 the catalog sequentially and returns information on a page by
 page basis. Since the calling sequences to these routines are
 rather nonstandard to say the least, the appropriate listings
 should be consulted.

 6

 Catalog Format _______ ______

 File Header (page 1 of each *MASTER.CATALOGn file -- also called ____ ______
 "extent header")
 ┌──┐
 | | | | | |
 | 0-3 | 4-7 | 8-11 | 12-15 | 16- |
 | | | | | |
 └──┘
 | | | | |
 | | | | |
 | number of | DSCB |
 | pages | type E |
 | this | address |
 | file | |
 ID (816 link to free seg-
 "*EH*" max) next ment de-
 file scriptors
 5 byte/
 Notes: page
 (1) Free segment descriptors 4 byte page
 indicate status of each page address
 in this *MASTER.CATALOGn file. 1 byte bit
 (2) DSCB type E address is not used map as
 currently by the catalog follows
 routines. 20--seg 5 in
 (3) All page addresses are in the use
 form 2 byte public volume #, 10--seg 4 in
 2 byte relative page #. use
 08--seg 3 in
 use
 04--seg 2 in
 use
 02--seg 1 in
 use
 01--seg 0 in
 use

 7

 Page Header (16 bytes) ____ ______
 ┌───┐
 | | | | |
 | 0-3 | 4-7 | 8-11 | 12-15 |
 | | | | |
 └───┘
 | | | |
 | | | |
 ID pointer relative page
 "*RH*" to file page # address
 header (starting this page
 at 1)

 The remainder of every page is divided into six segments, each
 680 (decimal; hex 2A8) bytes in length. The segments are
 numbered 0-5. The starting relative address of each segment
 within a page is:

 segment 0: X’010’
 segment 1: X’2B8’
 segment 2: X’560’
 segment 3: X’808’
 segment 4: X’AB0’
 segment 5: X’D58’

 Segment Header (20 bytes) _______ ______
 ┌──┐
 | | | | | |
 | 0-3 | 4-7 | 8 | 9 | 10-19 |
 | | | | | |
 └──┘
 | | | | |
 | | | | |
 userid | # of de- | unused
 to whom this | scriptors |
 segment link to length of
 assigned next descriptor
 segment

 The userid above may also be on of "*MIX" (master index), or
 "*SYS" (public file catalog), or "*TMP" (scratch file catalog).

 The high order bits of the public volume number (in the link to
 the next segment) contain the segment number (similar to DSCB
 addressing). For example, 20044DCF refers to the third segment
 on page 4DCF on MTS004.

 The next segment does not have to be on the same volume.

 8

 Master Index Descriptor (12 bytes) ______ _____ __________
 ┌───┐
 | | | | |
 | 0 | 1-4 | 5-8 | 9-11 |
 | | | | |
 └───┘
 | | | |
 | | | |
 flag | pointer to |
 08-mid | user |
 | catalog |
 userid unused

 File Descriptor (66 bytes) ____ __________
 ┌──┐
 | | | | | |
 | 0 | 1 | 2 | 3 | 4-19 |
 | | | | | |
 └──┘
 | | | | |
 | | | | |
 flag | global | filename
 80-fd | access |
 owner file org
 access and device
 20--permit type
 10--destroy/ |
 rename |
 08--renumber/ bits 7-5: device type
 truncate X’C0’--3330 (disk)
 04--write change/ X’80’--2321¹ (datacell)
 empty X’40’--2314 (disk)
 02--write-expand X’20’--2305¹ (drum)
 01--read X’00’--2311 (disk)
 bits 4-3: file organization
 X’18’--sequential
 X’10’--
 sequential with line numbers
 X’00’--line file
 bit 2: unused
 bit 1: on if privileged file
 bit 0: on if file has been changed
 (save it)

 ────────────────────
 ¹Currently not supported by the file system.

 9

 File Descriptor -- continued ____ __________
 ┌──┐
 | | | | | |
 | 20-23 | 24-27 | 28-33 | 34-35 | 36-37 |
 | | | | | |
 └──┘
 | | | | |
 | | | | |
 DSCB | volume | creation
 type E | serial | date
 address | number |
 for this ownerid (e.g. physical
 file MTS002) page size

 File Descriptor -- continued ____ __________

 ┌───┐
 | | | | | | |
 | 38-39 | 40-43 | 44-55 | 56-57 | 58-59 | 60-65 |
 | | | | | | |
 └───┘
 | | | | | |
 | | | | | |
 last | program | last |
 reference | key | changed |
 date use count unused date link to
 sharing
 descriptor

 Notes:
 (1) Link to sharing descriptor is 6 bytes:
 2 byte public volume number,
 2 byte relative page number,
 2 byte offset into segment

 (once again the segment number is in the high order bits of t
 public volume number).

 10

 Sharing Descriptor (66 bytes) _______ __________

 | (sharing descriptor entry) |
 ┌───┐
 | | | | | | |
 | 0 | 1 | 2 | 3- | | 60-65 |
 | | | | | | |
 └───┘
 | | | | | |
 | | | | | |
 flag | access | additional |
 40-sd | and | variable |
 | flag | length |
 | x’80’-userid | sharing |
 | x’40’-pkey | descriptor |
 | x’c0’-qpkey | entries |
 | x’00’-prjno | terminated |
 | | by X’FF’ |
 length of userid link to
 userid prjno or next
 prjno or pkey sharing
 pkey descriptor

 Notes:
 (1) See note number 1 above concerning format of link to next
 sharing descriptor.

 CCATL 1

 Classification: 322/3
 Date: July 24, 1977
 Doct=23 Vers=1

 The following describes how to create the file system catalog
 from scratch. It must be created on public volume #1. __ ____ __ _______ __ ______ ______ ___

 Run FILE:CCATL.O+FILE:FILERTNS, where CCATL is the catalog
 construct program and FILERTNS is the usual file routines with a
 set of tables containing the drives and volumes on which the new
 catalog is to reside.

 CCATL first prints out

 CATALOG BUILD PROGRAM, NOVEMBER 75.
 ENTER ALL NUMBERS IN DECIMAL.

 And then prompts you to

 ENTER SIZE OF MASTER INDEX IN PAGES

 to which you might reply

 24 (which is the size used last time at UM - Nov. 75).

 Then CCATL will prompt you to

 ENTER PUBLIC VOLUME # FOR FIRST EXTENT OF CATALOG .

 You reply

 1 (which is the only acceptable response since the first extent
 of the catalog is always on public volume 1).

 Then CCATL will prompt you:

 HOW DOES MTS001 SOUND (OK)?

 And you reply

 OK .

 Then CCATL prompt you to

 ENTER NUMBER OF PAGES TO ALLOCATE FOR THIS EXTENT:
 REMEMBER, 1 PAGE PER EXTENT USED BY EXTENT HEADER.

 The standard reply is

 25 (which means the master index will fit exactly in the first _______
 extent).

 CCATL 2

 Then CCATL asks you to

 ENTER SIZE OF SYSTEM FILE CATALOG IN PAGES

 to which a reasonable reply is

 10 (which was used at UM last time the catalog was created).

 Since the first extent of the catalog was completely pre-
 allocated to the master index (intentionally), another extent
 must be allocated for the catalog at this time. If one wanted
 the master index and possibly the system catalog, scratch file
 catalog and first part of the user catalog all on the first
 extent, the size in pages of the first extent should have been
 specified as greater than or equal to the combined sizes of the
 individual catalogs.

 In any event, CCATL now notifies you that the

 REQUESTED SIZE HAS OVERFLOWED THIS EXTENT
 ENTER "OK" TO ALLOCATE ANOTHER EXTENT
 "NO" MEANS REPROMPT FOR CURRENT CATALOG SIZE .

 If you enter "OK", then CCATL will ask that you

 ENTER PUBLIC VOLUME NUMBER FOR NEXT EXTENT OF CATALOG

 to which your reply might be

 2 .

 Then CCATL will ask you

 HOW DOES MTS002 SOUND (OK)?

 And you can say

 OK .

 Then as before, CCATL prompts:

 ENTER NUMBER OF PAGES TO ALLOCATE FOR THIS EXTENT.
 REMEMBER, 1 PAGE PER EXTENT USED BY EXTENT HEADER.

 You reply as before

 11 (because you want the system file catalog also to be on a
 single extent on a separate volume all by itself).

 In a similar fashion you will be asked to

 ENTER SIZE OF SCRATCH FILE CATALOG IN PAGES

 CCATL 3

 and

 ENTER SIZE OF (FIRST PART OF) USER CATALOGS IN PAGES

 As before if the requested size of the catalog overflows the
 current extent, a new extent will be allocated of the proper
 size and on the volume requested.

 When CCATL finishes, it prints out the location of the beginning
 of each of the catalogs (as a fullword hex disk address).

 1

 Classification: 323/1
 Date: July 25, 1977
 Doct=28 Vers=1

 THE INTERNAL STRUCTURE OF THE SYSTEM WIDE
 SHARED FILE TABLE IN MTS

 In a shared file environment, before any operation (reading,
 writing, emptying, etc.) can be performed on a file, guarantees
 must be made to ensure that concurrent usage of the file at any
 particular point in time will not endanger the integrity of the
 file.

 To accomplish this, files are "locked" at one of three
 inclusive levels (read, modification, or destroy) before any
 specific file operation is performed. In addition, checks are
 made before locking is allowed to ensure that certain rules of
 concurrent usage will not be violated.

 It should be noted that the problems of determining
 allowable concurrent usage of a file are separate and not related
 to the problem of determining allowable access to a file. It is
 assumed that by the time the system wide shared file table is
 interrogated, it has been determined that access appropriate to
 the locking request has been "permitted".

 In order to determine who may concurrently use a file and
 how at any given point in time, MTS maintains a table (in shared
 VM) indicating at any given point in time, all the files
 currently open and/or locked, how they are locked, and by what
 task (job); as well as what tasks are currently waiting to lock
 the file and how they are waiting.

 This table is necessary to determine (with the aid of the
 rules of concurrent usage) whether, at any given point in time, a
 particular type of opening and/or locking can be allowed.

 The rules of concurrent usage are as follows:

 1) Any number of tasks can have a file locked for reading
 at the same point in time as long as no other task has
 the file locked for modification or destroying.

 2) Only one task can have a file locked for modification
 (writing, emptying, truncating, etc.) at any given point
 in time, and then only if no other task has the file
 locked for reading or destroying.

 3) Only one task can have a file locked for destroying
 (renaming or permitting) at any given point in time, and
 then only if no other task has the file open, locked for
 reading, or locked for modification.

 If it is determined, via the rules of concurrent usage, that
 a file cannot be locked as requested, the task is (optionally)
 queued to wait on the file. (Internally this is accomplished via

 2

 an SVC sleep.) Before a task is queued to wait on a file,
 however, checks are made to determine whether queueing a task to
 wait on the file will result in a deadlock situation whereby two
 or more tasks will wait indefinitely on their respective queues.

 The simplest form of deadlock is the "single file"
 situation. For example, suppose both task A and task B have
 FILEX locked for reading, and then task A requests that FILEX be
 locked for modification. Since someone else (task B) also has
 the file locked, task A will be queued to wait on FILEX. Then
 suppose task B requests that FILEX be locked for modification.
 MTS realizes not only that someone else (task A) has the file
 locked, but also that queueing task B to wait on FILEX would
 result in both tasks A and B waiting indefinitely for the other
 to unlock the file. In this situation, MTS will not queue task B
 to wait, but will return an error indication instead.

 A "single file" deadlock is fairly easy to detect, more
 complicated forms of deadlocks can occur when multiple files are
 concerned. The method MTS uses to detect "multiple file"
 deadlocks is as follows:

 1) Define a relation B (Blocking) as follows:
 TASKA is in relation B to TASKB
 (TASKA B TASKB iff)

 TASK A has a file open and/or locked in such a way that
 TASK B is blocked from using that file.

 Blocking is defined as follows:
 A) A task with a file open blocks a task waiting to
 destroy the file.
 B) A task with a file locked to read blocks a task
 waiting to modify or destroy the file.
 C) A task with a file locked to modify blocks a task
 waiting to read, modify, or destroy the file.
 D) A task with a file locked to destroy blocks a task
 waiting to open, read, modify or destroy the file.

 2) Build the M by M Matrix representing relation B where M
 is the total number of tasks either (a) with files open
 and/or locked blocking another task or (b) being
 blocked.

 3) The transitive closure relation B+ of relation B is
 defined as follows:

 TASKA B+ TASKB iff

 There exists N tasks TASKi 1≤i≤N such that

 TASKA B TASK1 B...B TASKN B TASKB

 (i.e., there exists a "chain" relating TASKA to TASKB).

 3

 4) Using Warshalls algorithm, (see Gries--Compiler
 Construction for Digital Computers) compute the M by M
 Matrix which represents the transitive closure relation.

 5) Now see if there exists an i such that

 TASKi B+ TASKi

 If so, then a deadlock situation exists.

 A necessary condition for a "multiple file" deadlock is that
 the task being queued to wait on a file must have some other file
 open and/or locked and some other task must be waiting on that
 file. This check can easily be made to determine if it is really
 necessary to build the matrix.

 Once a task is queued to wait on a file, it "sleeps" until
 the task(s) which have the file locked, unlock the file. At that
 point, the unlocking task determines if any task(s) sleeping on
 the wait queue can be "awakened". The unlocking task makes its
 decision using the same rules of concurrent usage described
 above.

 The basic format of the system wide shared file table is as
 follows. The first 2 bytes at the beginning of the table are
 used by tasks to "wayt" when the table is full. 1 byte is used
 to "wayt" for space for a file entry, and 1 is used to "wayt" for
 space for an open or waiting element. The next 2 bytes are a
 pointer to the chain of open and/or locked file entries. Then
 follows 2 bytes which are a pointer to a chain of available file
 entries (each 24 bytes). After that 2 bytes which are a pointer
 to a chain of available open or waiting elements (each 6 bytes).
 The next two bytes are a count of the number of open and/or
 locked files. After this is a 2 byte count of the number of
 matrix computations performed and a 2 byte count of the number of
 deadlocks detected. These last 6 bytes are maintained for
 informational purposes only.

 Initially the table contains only available entries. As
 open or waiting elements are needed, a 24 byte available entry is
 broken up into 4-6 byte available elements. Eventually, when the
 open or waiting elements are returned, the 4-6 byte available
 elements will be "re-grouped" into a 24-byte available entry.

 The 24-byte open and/or locked file entry consists primarily
 of the 16-byte name and a 2-byte link to the next open and/or
 locked file in the chain. In addition, 1 byte is used to
 indicate whether the file is being modified or destroyed. 2
 bytes are used as a pointer to the chain of open and/or locked
 elements (tasks with the file open and/or locked), and 2 bytes
 are used as a pointer to the chain of waiting elements (tasks
 waiting to lock the file).

 4

 The 6-byte open/locked element consists primarily of a 2-
 byte task number indicating the task that has the file open
 and/or locked and a 1-byte flag indicating whether the task has
 the file open or not and if locked, how the task has the file
 locked. In addition, of course, a 2 byte pointer to the next
 open and/or locked element is necessary.

 The 6-byte waiting element is identical to the 6-byte open
 element except that the flag byte indicates how the task is
 waiting to lock the file. The flag byte also indicates whether
 the wait has been cancelled. Finally, the flag byte contains the
 bit on which the waiting task "sleeps" and correspondingly is
 "awakened".

 5

 System Wide Shared File Table Format ______ ____ ______ ____ _____ ______

 Table Header _____ ______
 ┌───┐
 | | | | | | |
 | 0 | 1 | 2-3 | 4-5 | 6-7 | 8-9 |
 | | | | | | |
 └───┘
 | | | | | |
 | | | | | |
 | flag: | pointer to | open/locked
 | ff--waiting | available | file count
 | on element | entry list |
 | | |
 flag: pointer to pointer to
 ff--waiting open/locked available
 on entry file entry element list
 list

 ┌────────────────────┐
 | | |
 | 10-11 | 12-13 |
 | | |
 └────────────────────┘
 | |
 | |
 | matrix
 | computations
 | performed
 |
 deadlocks
 detected

 6

 File Entry (24 BYTES) ____ _____
 ┌───┐
 | | | | | | |
 | 0-1 | 2-17 | 18 | 19 | 20-21 | 22-23 |
 | | | | | | |
 └───┘
 | | | | | |
 | | | | | |
 | filename unused | pointer to |
 | | open/locked |
 | | element |
 | | list |
 pointer to flag: pointer to
 next open/ 80--being des waiting
 locked file entry 40--being mod element
 (or available list
 entry if not
 in use)

 7

 OPEN/LOCKED ELEMENT (6 bytes) ___________ _______
 ┌───┐
 | | | | |
 | 0 | 1 | 2-3 | 4-5 |
 | | | | |
 └───┘
 | | | |
 | | | |
 | offset to | pointer to
 | beginning | next
 | of entry | open/locked
 | | element (or
 | | forward
 | | pointer to
 flag: | available
 80--lock des | element if
 40--lock mod | not in use)
 20--lock read |
 10--open |
 02--invalid task number
 01--in use (or backpointer
 to available
 element if not
 in use)

 WAITING ELEMENT (6 bytes) _______ _______
 ┌───┐
 | | | | |
 | 0 | 1 | 2-3 | 4-5 |
 | | | | |
 └───┘
 | | | |
 | | | |
 | offset to | pointer to
 | beginning | next waiting
 | of entry | element (or
 | | forward
 | | pointer to
 flag: | available
 80--wait des | element if
 40--wait mod | not in use)
 20--wait read |
 10--wait open |
 04--cancel wait task number
 02--sleep bit (or backpointer
 01--in use to available
 element if not
 in use)

