ILLIAC LIBRARY

IAC DOC. NO. PO-I1200-0000-A Doc. No. Assigned 15 Feb 1973 C.3

PRINCIPLES OF OPERATION

FOR

ILLIAC IV MEMORY LOGIC UNIT

(June 6, 1972)

Ъy

Theofanis Economidis

ABSTRACT

This document describes the Operation of the Memory Logic Unit (MLU) of the ILLIAC IV Processing Unit. In particular this document describes the MLU major components from the functional point of view; it provides a summary of the main characteristics of the ECL integrated circuits used in the MLU and describes the WRITE, READ and TRANSFER cycles with regard to data movements between the PE, PEM and the ILLIAC IV I/O Subsystem.

The latter part of this document contains a signal glossary and a description of the power distribution in the MLU.

TABLE OF CONTENTS

SECTION	1.0	INTROD	UCTION		1-1
SECTION	2.0	MLU CO	MPONENTS		2-1
		2.1 2.2 2.3 2.4 2.5	Memory Information Register Memory Timing Memory Control Input/Output Up Converter		2-1 2-10 2-22 2-34 2-40
SECTION	3.0	SUMMAR	Y of MLU LOGIC CHARACTERISTICS		3-1
		3.1 3.2	ECL Characteristics Logic Level Conversion	• •	3-1 3-6
SECTION	4.0	THEORY	OF OPERATION		4-1
		4.1 4.2 4.3	Write Memory Cycle Read Memory Cycle Transfer Cycle		4-5 4-17 4-27
SECTION	5.0	POWER	DISTRIBUTION		5-1
APPENDIX	A	SIGNAL	GLOSSARY		A-1
APPENDIX	В	WIRE L	IST		B-1
A PPENDTY	С	CONNEC	TOR CONFICIENTION		C-1

Page

LIST OF ILLUSTRATIONS

Page

Figure

1-1	MLU Data Paths	1-1
1-2	ILLIAC IV PU Subunits	1-4
2-1	MLU Function Organization	2-2
2-2	MIR Functional Block Diagram	2-3
2-3	Component Numbering Scheme for MT Cards	2-12
2-4	Memory Timing and Control Functional Interface Diagram	2-13
2-5	Memory Timing and Control Cards Interconnection	2-14
2-6	IO Card Functional Interface Diagram	2-36
2-7	Up Converter Functional Interface Diagram	2-42
3-1	Basic ECL Gate	3-1
3-2	Transfer Characteristics of Basic ECL Gate	3-2
3-3	Switching Time vs Loading	3-4
3-4	Switching Time Waveform	3-4
3-5	ECL Logic Functions with Dual Output	3-5
3-6	Down Converter Block Diagram	3-7
3-7	Up Converter Block Diagram	3-8
4-1	Memory Initiate Pulse Logic	4-7
4-2	Write Initiate Pulse Logic	4-9
4-3	Write Enable Pulse Logic	4-11
4-4	PE and IOSS Write Data Paths	4-14
4-5	Read Data Paths	4-19
4-6	CUB/IOSS Read Select Logic	4-22
4-7	CUB/IOSS Read Data Strobes	4-25
4-8	Transfer Data Path	4-28
5-1	PU Cabinet a) Power Supply Location b) PU Power Distribution	5-3
5-2	Power Distribution in the PU	5-4
5-3	Current Paths for +1.32V and -3.20V Supplies	5-5

LIST OF TABLES

	•	
Tal	<u>ole</u>	Page
2-3	Data Routing Through MIR Cards	2-4
2-3	2 MIR Data List	2-5
2-:	3 MIR Input/Output Signal List	2-6
2-4	4 Memory Timing Card Input/Output Signal List	2-15
2-	5 Memory Control Card Input/Output Signal List	2-23
2-0	5 IO Card Organization	2-37
2-3	7 IO Card Input/Output Signal List	2-37
2-8	B Up Converter Organization	2-40
2-9	9 UC Card Input/Output Signal List	2-41
3-3	Logic Level Conversion	3-6
4-	Positive/Negative Logic Mnemonics	4-4
4-2	2 Memory Data Select Signals Bit Combinations	4-12

PREFACE

This document is intended to serve as a source of detailed information regarding the principles of operation of the ILLIAC IV system memory logic unit. It is the first of a set of manuals that, together, will define the principles of operation of the major subunits of an ILLIAC IV system processing unit.

This manual will be most effective when used with the full set of memory logic unit logic diagrams. The Burroughs Corporation drawing numbers for these diagrams are:

> 1727-2188 1727-8755 (2 sheets) 1727-9084 1728-1486 1732-1076 1732-1019 1732-1092

For the reader's convenience, excerpts from these diagrams are included with the text. The excerpts are not controlled by an engineering change control procedure; in any discrepancy between the contents of the manual and the logic diagrams, the logic diagrams shall prevail.

SECTION 1.0

INTRODUCTION

The memory logic unit (MLU) is a subunit of the ILLIAC IV processing unit (PU). It serves as the main data switch for its PU, routing data between major subunits of the ILLIAC IV system during write memory cycles, read memory cycles and transfer cycles. Each PU in the system includes one MLU. Figure 1-1 illustrates the relationship of the MLU to other elements in the ILLIAC IV system in terms of their data paths through the MLU.

Figure 1-1. MLU Data Paths

As the emphasis in Figure 1-1 on data paths suggests, all MLU activity is based on the movement of data. These MLU activities constitute three types of data movement operations: write memory cycles, read memory cycles and transfer cycles.

- A. Write Memory Cycle Data is written into the processing element memory (PEM). The source of the data may be the processing element (PE), control unit (CU) or input/output subsystem (IOSS).
- B. Read Memory Cycle Data is fetched from the PEM. The destination of the data may be the PE, control unit buffer (CUB) or IOSS.
- C. Transfer Cycle Data is sent from the PE to the CUB.

In all cases, the data is routed through the MLU, which must multiplex the various data paths.

The data paths shown in Figure 1-1 are 64 bits wide. CU and IOSS write cycles and all read cycles always involve the movement of full 64-bit words. The PE, however, may choose to write or transfer either 32-bit or 64-bit words.

The PE writes or transfers the full 64-bit word by selecting both of a pair of control lines to the MLU. These control lines each enable a separate 32 bits of the appropriate data path (PE write or transfer). To write or transfer a 32-bit word, the PE selects only one of the control lines. The one it selects will depend on which half of the PE write or transfer data path it wishes to enable.

One 32-bit word is referred to as the inner word and the other as the outer word. This partitioning of the PE write and transfer data paths is done to satisfy PE requirements for an inner word/outer word data format. Details regarding the use of this format are contained in the PE theory of operations manual. Address information for read and write memory cycles is provided by the CU through the PE. No address information is needed for transfer cycles. Those control signals not generated by the MLU (e.g., cycle initiate signals) are also issued to the MLU from the CU through the PE.

Internal MLU logic employs $EC_{\mu}L$ circuits. However, because two of the devices with which the MLU communicates use $CT_{\mu}L$ circuits, the MLU includes signal level conversion circuits to provide logic level compatibility among the devices. The units that use $CT_{\mu}L$ circuits are the PEM and IOSS. The PE and CUB are both $EC_{\mu}L$ devices.

The level converters are located at those points in the MLU signal paths where the MLU interfaces with the PEM, IOSS and CUB.

-NOTE-

Although internal CUB logic uses EC_JL circuits, the MLU-to-CUB interface uses the same CT_JL driver circuits employed by the MLU-to-IOSS interface. For this reason, signals sent from the MLU to the CUB are converted from EC_JL levels to CT_JL levels at the MLU and reconverted from CT_JL levels to EC_JL levels in the CUB.

Because EC_µL levels are -0.4 V and +0.4 V and CT_µL levels are -0.5 V and +2.5 V, EC_µL-to-CT_µL converters are designated up converters. CT_µL-to-EC_µL converters are designated down converters.

Power for the MLU logic circuits has two sources. Two power supplies in a power supply shunt regulator provide +1.32 V and -3.20 V. A power supply that is external to the PU provides +4.8 V and ground.

The MLU is housed as an integral part of its PU. Each PU contains, in addition to the MLU, a PE, PEM and power supply shunt regulator. Figure 1-2 illustrates the physical relationship of an MLU to these other major

components of its PU.

Figure 1-2. ILLIAC IV PU Subunits

SECTION 2.0

MLU COMPONENTS

The logic comprising an MLU can be classified into five functional categories: memory information register, (MIR), memory timing (MT), memory control (MC), input/output (IO) and up converter (UC). Figure 2-1 provides a block diagram of these functional components.

The logic responsible for performing these functions is distributed among five distinct printed circuit card types. For the most part, the logic is distributed along functional lines; for this reason the five card types are referred to by the five function labels listed above. This functional separation is not complete, however. Down conversion logic is located on the MIR cards and on the IO cards. Up conversion responsibility is also shared by the UC cards and some logic on the IO cards.

The parenthetical number next to each function label in Figure 2-1 indicates the quantity of printed circuit cards there are of that type in a single MLU.

2.1 MEMORY INFORMATION REGISTER

The MIR logic is the main switching station for data passing through the MLU. Read/transfer select gates multiplex read and transfer data paths, selecting one set of data or the other and routing it to the IO cards. PE/IO select gates multiplex PE write or transfer data with IOSS write data and drive the selected data into the MIR latches. The MIR logic also includes a set of latches for temporary storage of write data from the PE, CU and IOSS and transfer data from the PE. This temporary storage is required to allow time for MLU control logic to prepare for a write or transfer operation.

A set of down converters is also included on the MIR cards to convert the CT_µL logic levels of the read data received from the PEM to the ECL logic levels required by MLU circuits. Details regarding the need for logic level conversions at various points in the data paths are provided in Section 3.0. The four functions performed by MIR logic are illustrated by the block diagram in Figure 2-2.

Figure 2-1. MLU Functional Organization

Figure 2-1 MLU Functional Organization

Figure 2-2. MIR Functional Block Diagram

There are eight MIR cards in an MLU, each of which accommodates eight data bits. These eight cards are not organized in a simple sequence (i.e., MIR1, MIR2, MIR3...MIR8) because of the inner word/outer word data format used for PE write and transfer data. Wiring of the data paths into and out of the MIR cards takes into account the byte organization of the inner and outer words. The inner word consists of bytes 2 through 5; the outer word, which is routed through the MIR as a continguous group, consists of bytes 1, 6, 7 and 8. Tables 2-1 and 2-2 match the eight data bytes with their respective MIR cards. Table 2-1 shows the order in which these cards are plugged into the MIR connector panel; Table 2-2 provides the signal names of the various data paths that pass through the MIR and identifies their respective sources and destinations.

	-							
WORD		INNER	WORD			UTER WO	DRD	
MIR CARD NO.	MIR 2	MIR 3	MIR 4	MIR 5	MIR 1	MIR 6	MIR 7	MIR 8
BITS ASSIGNED TO CARD	8-15	16-23	24-31	32 - 39	0-7	40-47	48 - 55	56-63
MLU CONNECTOR NO.	J04	J05	J06	J07	J08	J09	J10	J11

Table 2-1. Data Routing Through MIR Cards

Table 2-3 lists all signals entering and leaving the MIR cards and identifies their respective sources and destinations. This table is followed by a glossary of those signals.

MIR		SOURCE	SOURCE OF DATA BIT			DESTINATION OF DATA BIT		
CARD NUMBER	BIT NUMBER	PE/CU PLW-W()O	1/0 MIWIW()1	PEM MOWFW()1	U-C MOWFW()0	PE MOWPW()1	1/0 MOWIC()1	
	0	00	00	00	00	00	00	
1	thru	thru	thru	thru	thru	thru	thru	
	7	07	07	07	07	07	07	
	8	08	08	08	08	08	08	
2	thru	thru	thru	thru	thru	thru	thru	
	15	15	15	15	15	15	15	
	16	16	16	16	16	16	16	
3	thru	thru	thru	thru	thru	thru	thru	
	23	23	- 23	23	23	23	23	
	24	24	24	24	24	24	24	
4	thru	thru	thru	thru	thru	thru	thru	
	31	31	31	31	31	31	31	
	32	32	32	32	32	.32	32	
5	thru	thru	thru	thru	thru	thru	thru	
	39	39	39	- 39	39	39	39	
	40	40	40	40	40	40	40	
6	thru	thru	thru	thru	thru	thru	thru	
	47	47	47	47	47	47	47	
	48	48	48	48	48	48	48	
7	thru	thru	thru	thru	thru	thru	thru	
-	55	55	55	55	55	55	55	
	56	56	56	56	56	56	56	
8	thru	thru	thru	thru	thru	thru	thru	
	63	63	63	63	63	63	63	

Table 2-2. MIR Data List

Table 2-3. MIR Input/Output Signal List

I	NPUT SIGNALS	OUTPUT SIGNALS		
NAME	SOURCE	NAME	DESTINATION	
PLW-W000	PE/J19, 20, 21	MOWPWOO1	PE/J19,20,21	
PLW-W630 MIWIW000	PE I/O/J1, 2, 3, 4, 5, 6	MOWPW631 MOWICOO1	PE I/0/J1, 2, 3, 4, 5, 6	
MIWIW631	I/O	MOWIC631	↓ I/0	
MIWFWOO1	PEM/J22,24	MOWFWOO1	U.C/J16, 17, 18	
MIWFW631	PEM	MOWFW631	U.C	
MPTWSEL1	MC, MIR8,7,6,5,1,4,3			
MIOWSEL1	NC, MIR8,7,6,5,1,4.3			
MSMIRP1	MT2, MT1			
MOUTPEN1 MTRANEN1	MC, MIR8,7,6,5,1,4,3 MC, MIR8,7,6,5,1,4,3			
*MEOBITLl	MC, MIR6,7,8			
*MEIBITLl	MC, MIR3,4,5			
		ç		

* MEOBIT--L1 is used by MIR#1, 6, 7, 8.

* MEIBIT--L1 is used by MIR#2, 3, 4, 5.

It must be noted also that PLW-W(00-63)--0/1 is in positive logic, which compared to the MLU negative logic corresponds to PLW-W(00-63)--1/0.

MEOBIT-L1

MIOWSEL-1

MEIBIT-L1*

SOURCE DESTINATION

MT1 to MC

DEFINITION

- Latched E, bit
- Output of latch set by E₁ bit from PE
- Allows 32-bit inner word to be written into PEM or transferred to CUB
- Latched E bit
- Output of latch set by E bit from PE
- Allows 32-bit outer word to be written into PEM or transferred to CUB
- Input/Output Buffer (IOB) write select
- Output of MC decode logic when IOSS has been identified as source of write data
- Gates IOSS write data into MIR latches for temporary storage
- PEM read data
- CTL level data from the PEM, which is applied to down converters on the MIR cards
- PEM output becomes valid at approximately 225 ns of the current read cycle; does not change until approximately 155 ns of next memory cycle
- * All signal mnemonics are assigned 10 characters, including one or more dashes. However, in this glossary and elsewhere in the manual some of the dashes are omitted for simplification. The correct mnemonic for each signal mentioned in this manual may be found in the master signal glossary in Appendix A.

MIWFW00-1 through MIWFW63-1 MT1 to MC

MC to MIR(1-8)

PEM to MIR(1-8)

MIWIW00-1 through MIWIW63-1

MOUTPEN-1

SOURCE DESTINATION

MC to MIR(1-8)

UC(1-3) to PEM

IO(1-6) to MIR (1-8)

DEFINITION

- IOB input data
- IOSS write data after level conversion to ECL by circuits on IO cards
- Applied to PE/IO select gates on MIR cards
- Data is valid from approximately 40 ns to 70 ns of a write cycle

• Output enable

- Gates read data through read/transfer select gates on MIR cards
- Occurs at beginning of output enable period of MLU cycle
- PEM write data CTµL
- Write data that is sent to PEM from up converters
- Data is valid for approximately 250 ns of write cycle
- CUB-IOB read/PE-CUB transfer data
- Output of read/transfer select gates on MIR cards
- Becomes valid as transfer data during transfer enable period of MLU cycle; becomes valid as read data during output enable period of MLU cycle

MOWFW00-1 through MOWFW63-1

MOWIC00-1 through MOWIC63-1 MIR(1-8) to IO(1-6)

MOWPW00-1 through MOWPW63-1

MPTWSEL-1

SOURCE DESTINATION

MIR(1-8) to PE

MC to MIR(1-8)

DEFINITION

- PE output data
- ECL level read data sent from down converters on MIR cards
- Data is valid from approximately 235 ns of the read cycle to approximately 165 ns of the next memory cycle
- PE write/PE-CUB transfer select
- Output from MC decode logic when PE has been identified as source of write or transfer data
- Is ANDed with MECSIF-1 and MEIBIT-1 to gate outer word and ignor word of write or transfer data to inputs of MIR latches
- MIR strobes
- Used by MIR logic to clock write or transfer data into MIR latches
- Occurs at approximately 55 ns of the MLU cycle
- 8 ns pulse width
- Transfer enable
- Gates transfer data through read/transfer select gates on MIR cards
- Occurs at beginning of transfer enable period of MLU cycle

MSMIRP1-1 through MSMIRP8-1 MT(1-2) to MIR(1-8)

MTRANEN-1

MC to MIR(1-8)

PLW-W00-0 through PLW-W63-0

SOURCE DESTINATION

PE to MIR (1-8)

DEFINITION

- PE input data
- ECL level data bits sent from PE to PE/IO select gates on MIR cards
- Data may have originated at CU but, at this point in data flow, is indistinguishable from PE write data
- Data is valid from approximately 50 ns to 70 ns

• One clock period wide

2.2 MEMORY TIMING

This logic is responsible for generating the timing signals used to control the data flow through the MLU during read, write and transfer operations. The memory timing logic is distributed among three printed circuit cards, which are referred to as MT1, MT2 and MT3.

The principal logic elements on each MT card are two variable delay lines DL1 and DL2, each having a maximum delay value of 50-ns, and four 50-ns tapped delay lines. These taps are at 5-ns increments; not all of the taps are used.

The output of DL1 on MT1 is used to strobe a pair of control pulses (P----E--30 and P----1--30), which are issued by the PE, into a pair of latches located on MT1. These are the pulses that are used by the PE to control the 32-bit inner word and 32-bit outer word in a PE write or transfer operation. The output of DL1 on MT2 strobes a pair of read select pulses (MCURSEL--1 and MIORSEL--1) into a pair of latches located on MT2. The output of DL1 on MT3 is not used.

The output of DL2 on MT1 is used to adjust the timing of the MIR strobes. The MIR strobes are the pulses that clock write and transfer data into the MIR latches. The second variable delay lines (DL2) on MT2 and MT3 are not used. Among the three MT cards, there are a total of 12 tapped delay lines. These 12 delay lines are connected in series.

Figure 2-3 illustrates the relative positions of the components on the MT cards. This illustration is included because component numbering on the MT cards is not consistent with the numbering scheme used for other MLU card types.

Figures 2-4 and 2-5 provide a functional interface diagram and an interconnection diagram for the MT and MC cards. Table 2-4 lists the signals that enter and leave the MT cards and identifies their sources and destinations. The signals listed in that table are defined in the following glossary.

MNEMONIC MCURSEL-1 SOURCE DESTINATION MC to MT2

DEFINITION

- CUB read select
- Indicates that CU3 has been selected as destination of read data

MCURSEL-L1

MT2 to MC

- Latched CUB read select
- Output of a latch set by MCURSEL-1
- Maintains CUB read select until data is gated out to CUB during output enable period of read cycle
- Latch sets at approximately 130 ns of CUB read cycle

NOTE: Components at positions:

1) U1, U9, U17, U25 are Clock Terminations

2) U2, U6, U8, U10, U12, U16, U18, U22, U24, U27, are Pulldown resistors

3) U14 is Clock Buffer Reference Module

4) U4, U20 are Terminating Resistors

Figure 2-3. Component Numbering Scheme for MT Cards (Component Side)

Figure 2-4. Memory Timing and Control Functional Interface Diagram

Figure 2-5. Memory Timing and Control Cards Interconnection

Table 2-4. Memory Timing Card Input/Output Signal List

M.T.	INPUT SI	GNALS	OUTPUT SIGNALS		
#	NAME	SOURCE	NAME	DESTINATION	
	MIMCTNP1	MC/6C11	MEIBITL1	MC/B38	
	MZTPWCW0	MC/B20	MEOBITLL	MC/A39	
	MSMIRPL1	MT#1/C15	MWINITP1	мс/в24	
	P .E30	PE/J19-C45	MSMIRPL0	MT#2/D12	
	P130	PE/J19-A45	MSMIRPL1	· MT#1/D 12	
			MSMIRP11	MIR3/C45	
1			MSMIRP21	MIR5/C45	
			MSMIRP31	MIR6/C45	
·	· · · ·		MSMIRP41	MIR8/C45	
			MSCUIOP1	MT#2/A23	
			MTEFFSO	мс/в26	
			MIMCTRP1	MT#2/All	
	•		MTSFFS0	MC/B12	
			MWPROTP1	MC/A41	
	MIMCTRP1	MT#1/B24	MIORSEL-LL	MC/B18	
	MSCUIOP1	MT#1/A33	MCURSEL-L1	MC/Cll	
	MSMIRPL1	мт#1/С17	MTSFFRO	мс/вб	
	MCURSEL1	MC/2C45	MTEFFRO	MC/D14	
	MIORSEL1	MC/1C15 :	MSMIRP51	MIR2/C45	
			MSMIRP61	MIR4/C45	
2			MSMIRP71	MIR1/C45	
			MSMIRP81	MIR7/C45	
			MLCFFRO	MC/D26	
	-		MOEFFSO	MC/All	
			MIMCTSP1	MT#3/A11	
			MOSFFSO	MC/A9	
2	MIMCTSP1	MT#2/B24	MOSFFRO	MC/C5	
2			MOEFFRO	MC/B8	

LC SOURCE DESTINATION -L1 MT1 to MC

MEOBIT-L1

MT1 to MC

MIMCTNP-1

MC to MT1

MIMCTRP-1

MT1 to MT2

DEFINITION

- Latched E₁ bit
- Output of latch set by E1 bit from PE
- Allows 32-bit inner word to be written into PEM or transferred to CUB
- Latched E bit
- Output of latch set by E bit from PE
- Allows 32-bit outer word to be written into PEM or transferred to CUB
- Initiate selected memory/ transfer cycle
- Input to delay line; initiates sequence of timing pulses for read, write or transfer cycle
- Results from FIMC-1 AND FMSEL-1 or FZTPWCW-0
- One clock period wide
- MT1 delay line output
- Output of series of delay lines on MT1
- Used as input to MT2 delay line series
- 50 ns pulse width

MNEMONIC

MEIBIT-L1

.

MNEMONIC	SOURCE DESTINATION	DEFINITION
MIMCTSP-1	MT2 to MT3	• MT2 delay line output
н — ¹		• Output of series of delay lines on MT2
		• Used as input to series of delay lines on MT3
		€ 50 ns pulse width
MIORSEL-1	MC to MT2	• IOB read select
		• Output of MC decode logic when IOSS has been identi- fied as destination of read data
MIORSEL-L1	MT2 to MC	• Latch IOB read select
		• Output of latch set by IOB read select signal
		Preserves the IOB read select condition until the read data has been gated out to the IOSS
		Becomes valid at approxi- mately 130 ns of the read cycle
MLCFFR-0	MT2 to MC	• Control F-F reset
		 Resets memory write enable flip-flop and transfer flip- flop
		• Occurs at approximately 250 ns of MLU cycle
		• 50 ns pulse width

MNEMONTC	SOURCE DESTINATION	ΝΕΓΙΝΤΥΙΛΝ
IMENONIC	DESTIMATION	DEFINITION
MOEFFR-0	MT3 to MC	& Reset output enable F-F
		Resets output enable flip- flop at approximately 370 ns of MLU cycle
		ø 50 ns pulse width
MOEFFS-0	MT2 to MC	• Set output enable F-F
		• Sets output enable flip- flop at approximately 270 ns of MLU cycle
		Begins output enable period of MLU cycle
•		© 50 ns pulse width
MOSFFR-0	MT3 to MC	• Reset output strobe F-F
		Resets output/transfer strobe generator at app- roximately 350 ns of MLU cycle
		• 50 ns pulse width
MOSFFS-0	MT2 to MC	• Set output strobe F-F
		 Sets output/transfer strobe generator at app- roximately 290 ns of MLU cycle
•		• 50 ns pulse width
MSCUIOP-1	MT1 to MT2	• CU/IO read select latch
		 Strobes the CU and IO read select latches on MT₂
		• Occurs at approximately 130 ns of MLU cycle
		• 50 ns pulse width

MSMIRPL-1

MSMIRPL-0

SOURCE DESTINATION

MT1 to MT1

MT1 to MT2

DEFINITION

- MIR strobe pulse
- Used to generate four of the eight MIR strobe signals, MSMIRP(1-4)-1.
- Occurs at approximately 55 ns of MLU cycle
- 8 ns pulse width
- MIR strobe pulse
- Complement of MSMIRPL--1
- Used to generate four of the eight MIR strobe signals, MSMIRP(5-8)-1
- Occurs at approximately 55 ns of MLU cycle
- 8 ns pulse width

• MIR strobes

- Used by MIR logic to clock write or transfer data into MIR latches
- Occurs at approximately 55 ns of the MLU cycle
- 8 ns pulse width
- Reset transfer enable F-F
- Resets transfer enable flip-flop at approximately 265 ns of MLU cycle
- 50 ns pulse width

MSMIRP1-1

MT(1-2) to

through MSMIRP8-1 MIR(1-8)

MTEFFR-0

MT2 to MC

MTEFFS-0

SOURCE DESTINATION

MT1 to MC

DEFINITION

• Set transfer enable F-F

• Sets transfer enable flip-flop at approximately 165 ns of MLU cycle

• Begins transfer enable period of cycle

• 50 ns pulse width

●Reset transfer strobe F-F

Resets output/transfer strobe generator at approximately 245 ns of MLU cycle

• 50 ns pulse width

• Set transfer strobe F-F

 Sets output/transfer generator at approximately 185 ns of MLU cycle

•50 ns pulse width

•Write initiate

• Used with write control signal to generate initiate memory signal (MINITPL-0)

• Occurs at approximately 55 ns of MLU cycle

•50 ns pulse width

MTSFFR-0

MT2 to MC

MTSFFS-0

MT1 to MC

MWINITP-1

MT1 to MC

MWPROTP-1

SOURCE DESTINATION

MT1 to MC

DEFINITION

- Write protect
- Sets the memory protect error flip-flop if error has been detected or sets write enable flipflop if no error is detected
- Occurs at approximately 40 ns of read or write cycle; is suppressed by MZTPWCŴ-0 during transfer cycle to prevent setting of write enable flip-flop
- 50 ns pulse width
- Transfer cycle
- Output of transfer flipflop when flip-flop is set by FZTPWCW-0
- Indicates that MLU is performing transfer operation
- Conditions other MLU logic to allow transfer of data from PE to CUB
- Prevents MWPROTP-1 from setting write enable flipflop; this, in turn, prevents MLU from issuing write enable signals to PEM

MZTPWCW-0

MC to MT₁

MNEMONIC	SOURCE DESTINATION	DEFINITION
Р-Е-30	PE to MT1	• E bit signal
		Sent by PE to allow pass- age of the outer word of PE write or transfer data (bits 00 through 07 and 40 through 63) through the MLU
		Sets the E bit latch on MT1 to generate MEOBIT-L1
		• At least one clock period wide

PE to MT1

• El bit signal

- Sent by PE to allow passage of the inner word of PE write or transfer data (bits 08 through **39**) through the MLU
- Sets the El bit latch on MT1 to generate MEIBIT-L1
- At least one clock period wide

2.3 MEMORY CONTROL

P-1-30

The MC logic generates those signals needed by the other MLU logic to initiate, carry out and terminate read, write and transfer cycles. MC logic performs a memory protect function as well. The memory protect circuits examine the four least significant address bits and, during write operations, prevent access to a block of 128 PEM addresses if the PE indicates that they are to be protected.

Table 2-5 lists all signals entering and leaving the MC card and identifies their sources and destinations. These signals are defined in a glossary that follows the table. The functional relationship of the MC card to other elements of the MLU is shown in Figure 2-4. The signal interfaces shared by the MC card and MT cards is illustrated in Figure 2-5.

Table 2-5. Memory Control Card Input/Output Signals List

INPUI SIG	NAL	OUTPUT :	SIGNAL
NAME	SOURCE	NAME	DESTINATION
PYW-W050	PE	MWOUTEN0	UC#2/D26
PYW-W060	PE	MWINNENO	UC#2/C11
PYW-W070	PE	MPROER1	PE .
PYW-WC80	PE	MIMCTNP1	MT#1/A11
FMEMPRO1	PE	MINITPL0	uc#2/c39
MEOBITL1	MT#1/A5	MZTPWCWO	MT#1/A41
MEIBITL1	MT#1/C3	MTRANEN1	MIR#1 - 8/D14
MWPROTP1	MT#1/A35	MOUTPEN1	MIR#1-8/C17
FRMPROO	PE	MSTROBE1	IO#1, 4/04
MWINITP1	MT#1/C23	MCURTSL1	I0#1 - 3/72
FIMC1	PE	MCURTSL3	I0#4 - 6/72
FMSEL1	PE	MIOROSL1	IO#1 - 3/70
FZTPWCWO	PE	MIOROSL-3	10#4-6/70
MLCFFRO	MT#2/B36	MCURSEL1	MT#2/A3
MCABCLRO	MLU	MPTWSEL1	MIR#1-8/B42
MCURSEL-L1	MT#2/A5	MIORSEL1	мт#2/в2
MOEFFSO	MT#2/B48	MIOWSEL1	mir#1 - 8/D44
MOEFFRO	MT#3/A29	MEOBI Ll	MIR#8/B44
MOSFFSO	MT#2/B30	MEIBITLL	MIR#5/B44
MTSFFSO	MT#1/B30		
MOSFFRO	MT#3/A39		
MTSFFRO	MT#2/A39		
MTEFFSO	MT#1/B48	•	
MTEFFRO	MT#2/A29		
MIORSEL-L1	MT#2/C3		
FREAD1	PE		
FMDSEL11	PE		
FMDSEIO1	PE		

FIMC-1

SOURCE DESTINATION

CU via PE to MC

CU via PE to MC

DEFINITION

- Initiate memory cycle
- Used by PE to begin any read or write cycle
- All MLU timing during read or write is referenced to arrival of FIMC-1 at MC
- One clock period wide

✤ Memory data select

- Combination of logic levels identifies source of write data or destination of read data
- Used by MC to develop appropriate data gating signals
- Also used to override E-bit signals (P-E-30, P-1-30) during CU or IOSS write operations
- Become valid at same time as FIMC-1 and remain valid until next FIMC-1
- Memory protect
- Enables memory protect circuits on MC card if PE wishes to protect PEM address locations 0000 through 0127 (decimal) from a write cycle
- Becomes valid at same time as FIMC-1 and remains valid until next FIMC-1

FMDSELO-1 and FMDSELI-1

FMEMPRO-1

CU via PE to MC

FMSEL-1

SOURCE DESTINATION

CU via PE to MC

DEFINITION

- Memory select
- Used by CU to select specific memory out of all memories in array
- Becomes valid at same time as FIMC-1 and remains valid until next FIMC-1

Read/Write control

- Used by PE to specify read or write cycle to MLU
- Low logic level specifies read; high logic level specifies write
- Becomes valid at same time as FIMC-1 and remains valid until next FIMC-1
- Memory protect error reset
- Used by CU to reset memory protect error latch on MC card
- One clock period wide
- Initiate transfer
- Used by PE to begin transfer cycle
- All MLU timing during transfer is referenced to arrival of FZTPWCW-0
- One clock period wide

FREAD-1

CU via PE to MC

FRMPRO-0

CU via PE to MC

FZTPWCW-0

CU via PE to MC
MNEMONI C	SOURCE DESTINATION	DEFINITION
MCABCLR-0	PU pwr supply to MC	© Cabinet clear
		 Resets MC flip-flops when power is turned on
		 Signal goes low when power sequencing is complete
MCURSEL-1	MC to MT2	
		Indicates that CUB has been selected as destination of read data
MCURSEL-L1	MT2 to MC	<pre> Latched CUB read select </pre>
		• Output of a latch set by MCURSEL-1
		 Maintains CUB read select until data is gated out to CUB during output enable period of read cycle
		Latch sets at approx- imately 130 ns of CUB read cycle
MCURTSL-1 MCURTSL-3	MC to IO $(1-3)$ MC to IO $(4-6)$	• CUB output select
		 These signals gate read or transfer data to the CUB
		 Both are true during transfer enable period of transfer cycle or output enable period of read cycle

MNEMONIC DESTINATION MEIBIT-L1 MT1 to MC

MEOBIT-L1

MT1 to MC

SOURCE

MIMCTNP-1

MC to MT1

MINITPL-0

MC to UC2

DEFINITION

- Latched E, bit
- Output of latch set by E1 bit from PE
- Allows 32-bit inner word to be written into PEM or transferred to CUB
- Latched E bit
- Output of latch set by E bit from PE
- Allows 32-bit outer word to be written into PEM or transferred to CUB
- Initiate selected memory/ transfer cycle
- Input to delay line; initiates sequence of timing pulses for read, write or transfer cycle
- Results from FIMC-1 AND FMSEL-1 or FZTPWCW-0
- One clock period wide
- Initiate memory-ECL
- Will initiate read or write activity in PEM after level conversion by UC2 circuits
- One clock period wide during read cycles; 50 ns wide during write cycles

MNEMONI C	DESTINATION		DEFINITION
MIOROSL-1	MC to IO (1-3)		• IOB output select enable
MIOROSL-3	MC to IO (4-6)		• Gates read data through the IO logic to the IOSS
			• Occurs during the output enable period of read cycle if the IOSS has been identified as the destination
MIORSEL-1	MC to MT2		• IOB read select
		• •	• Output of MC decode logic when IOSS has been identi- fied as destination of read data
MIORSEL-L1	MT2 to MC		• Latch IOB read select
			• Output of latch set by IOB read select signal
			Preserves the IOB read select condition until the read data has been gated out to the IOSS
			 Becomes valid at approxi- mately 130 ns of the read cycle
MIOWSEL-1	MC to MIR(1-8)		<pre>Input/Output Buffer (IOB) write select</pre>
			Output of MC decode logic when IOSS has been identified as source of write data
			●Gates IOSS write data into MIR latches for temporary storage

MNEMONI C	SOURCE DESTINATION	DEFINITION
MLCFFR-0	MT2 to MC	• Control F-F reset
		Resets memory write enable flip-flop and transfer flip flop
		Occurs at approximately 250 ns of MLU cycle
		• 50 ns pulse width
MOEFFR-0	MT3 to MC	Reset output enable F-F
		 Resets output enable flip- flop at approximately 370 ns of MLU cycle
		• 50 ns pulse width
MOEFFS-0	MT2 to MC	• Set output enable F-F
		 Sets output enable flip- flop at approximately 270 ns of MLU cycle
		Begins output enable period of MLU cycle
		• 50 ns pulse width
MOSFFR-0	MT3 to MC	• Reset output strobe F-F
		 Resets output/transfer strobe generator at app- roximately 350 ns of MLU cycle
		• 50 ns pulse width
MOSFFS-0	MT2 to MC	• Set output strobe F-F
		 Sets output/transfer strobe generator at app- roximately 290 ns of MLU cycle
		• 50 ns pulse width

MNEMONIC

MOUTPEN-1

SOURCE DESTINATION

MC to MIR(1-8)

DEFINITION

- Output enable
- Gates read data through read/transfer select gates on MIR cards
- Occurs at beginning of output enable period of MLU cycle
- Memory protect error
- Output of memory protect error latch, which is set when write operation is attempted in protected area of PEM
- Signal is sent to CU via PE
- Does not prevent subsequent write operations
- Latch is reset by FRMPRO-0 from CU
- PE write/PE-CUB transfer select
- Output from MC decode logic when PE has been identified as source of write or transfer data
- Is ANDed with MEOBIT-1 and MEIBIT-1 to gate outer word and inner word cf write or transfer data to inputs of MIR latches

MPROER-1

MC to PE

MPTWSEL-1

MC to MIR(1-8)

MNEMONI C	SOURCE DESTINATION	DEFINITION
MSTROBE-1	MC to 101,4	♥ IOB/CUB data strobe
		• Output of strobe flip- flop
		• Sent to up converters on IO cards for conversion to CTuL levels
MTEFFR-0	MT2 to MC	• Reset transfer enable F-F
		 Resets transfer enable flip-flop at approximately 265 ns of MLU cycle
		• 50 ns pulse width
MTEFFS-0	MT1 to MC	• Set transfer enable F-F
		 Sets transfer enable flip-flop at approximately 165 ns of MLU cycle
		Begins transfer enable period of cycle
		• 50 ns pulse width
MTRANEN-1	MC to MIR(1-8)	♥ Transfer enable
		• Gates transfer data through read/transfer select gates on MIR cards
		 Occurs at beginning of transfer enable period of MLU cycle
MTSFFR-0	MT2 to MC	• Reset transfer strobe F-F
		 Resets output/transfer strobe generator at approximately 245 ns of MLU cycle
		• 50 ns pulse width

MNEMONIC	SOURCE DESTINATION	DEFINITION
MTSFFS-0	MT1 to MC	• Set transfer strobe F-F
		 Sets output/transfer generator at approximately 185 ns of MLU cycle
		● 50 ns pulse width
MWINITP-1	MT1 to MC	e Write initiate
		 Used with write control signal to generate initiate memory signal (MINITPL-0)
		• Occurs at approximately 55 ns of MLU cycle
		• 50 ns pulse width
MWINNEN-O	MC to UC ₂	⊕Write inner enable - ECL
		• Output of MC decode logic whenever inner word of PE write data is to be written into PEM
		• Sent to up converter logic for conversion to CTµL level
MWOUTEN-0	MC to UC ₂	• Write outer enable - ECL
		Output of MC decode logic whenever outer word of PE write data is to be written into PEM
		Sent to up converter logic for conversion to CTµL leve1

MWPROTP-1

SOURCE DESTINATION

MT1 to MC

DEFINITION

- Write protect
- Sets the memory protect error flip-flop if error has been detected or sets write enable flipflop if no error is detected
- Occurs at approximately 40 ns of read or write cycle; is suppressed by MZTPWCW-0 during transfer cycle to prevent setting of write enable flip-flop
- 50 ns pulse width
- Transfer cycle
- Output of transfer flipflop when flip-flcp is set by FZTPWCW-0
- Indicates that MLU is performing transfer operation
- Conditions other MLU logic to allow transfer of data from PE to CUB
- Prevents MWPROTP-1 from setting write enable flipflop; this, in turn, prevents MLU from issuing write enable signals to PEM

MC to MT

MNEMONI C

PYW-W05-0 through PYW-W15-0 SOURCE DESTINATION

PE to UC(1-3)

DEFINITION

- PE memory address register bits
- ECL level address bits sent from PE to up converters for conversion to CTµL levels
- CTpL levels to be used by PEM to access desired memory location for read or write operation
- Four high-order ECL level bits are also examined by memory protect logic as part of memory protect activity
- Memory protect bits of memory address
- Memory protect circuits on MC card examine these bits as part of memory protect activity

All MC logic is contained on a single printed circuit card.

2.4 INPUT/OUTPUT

This logic includes data drivers for sending read data to the IOSS or CUB or for sending transfer data to the CUB. It also includes receivers for accepting write data from the IOSS.

In addition, signal level conversion is provided by IO circuits for both incoming and outgoing signals. The CTµL logic levels of write data received from the IOSS is converted to the ECL levels required by the MLU. The ECL logic levels of read data and strobe signals being sent to the IOSS or CUB are converted to the corresponding CTµL levels. Transfer data and strobe signals being sent to the CUB are **a**lso converted from ECL to CTµL logic levels.

The IO logic is distributed among six cards, which are designated IO1 through IO6. Table 2-6 shows which data bits are routed to which IO cards.

PYW-W05-0 through PYW-W08-0 PE to MC

Figure 2-6 provides a functional interface diagram of the six IO cards. Table 2-7 lists all signals that enter and leave the IO cards. These signals are defined in the glossary below.

MNEMONIC	SOURCE DESTINATION	DEFINITION
MCURTSL-1 MCURTSL-3	MC to IO (1-3) MC to IO (4-6)	• CUB output select These signals gate read or transfer data to the CUB
		• Both are true during transfer enable period of transfer cycle or output enable period of read cycle
MIOROSL-1	MC to IO (1-3)	IOB output select enable
MIOROSL-3	MC to IO (4-6)	Gates read data through the IO logic to the IOSS
		• Occurs during the output enable period of read cycle if the IOSS has been identified as the destination
MIWIW00-1 through MIWIW63-1	10(1-6) to MIR (1-8)	 IOB input data IOSS write data after level conversion to ECL by circuits on IO cards
		Applied to PE/IO select gates on MIR cards
		Data is valid from approximately 40 ns to 70 ns of a write cycle
		•

TOSS	MZTMWIW0		MIOROSL1	MC/A23
TOSS	MOWIW(54-63)0	and the second	MCURTSL1	MC/B11
CUB	MOWCW(54-63)0	10#1	MSTROBE1	MC/A5
MTR	MIWIW(54-63)1		MOWIC(54-63)1	MIR
MIR	MZTMWCW2		MOWIW(54-63)1	TOSS
		1	_, _,	1000
· ·			- · · ·	•
2007	MOWIW(43-53)0		MIOROSL1	то#1
TOPP	MOWCW(43-53)0	TO#2	MCURTSL1	то#1
MTP	MIWIW(43-53)1	10#2	MOWIC(43-53)1	NTD
MILT.	•		MOWIW(43-53)1	TOGG
				TODD
•			•	تمريخ
TORG	MOWIW(32-42)0		MIOROSL1	T0#0
am	MOWCW(32-42)0	To#2	MCURTSL1	TO#2
COB	MIWIW(32-42)1	1 10#3	MOWIC(32-42)1	TO#2
MIR	· · · · · · · · · · · · · · · · · · ·		MOWIW(32-42)1	TORG
				. TO22
			- MTODOST 2	_
IOSS	MOMIM (55-21)0	-	Mainagi 3	MC/C23
CUB	MOWCW (22-31)0	To//).	MCURIBL3	MC/A15
MIR	MIWIW(22-31)1	10#4	MSTRUBE1	10#1/04
CUB	MZTMWCW0		MOWIC(22-31)1	MIR
•			MOWIW(22-31)1	IOSS
		1	1	· .
IOSS	▲ MOWIW(11-21)0		MIOROSL3	IO#4
CUB	▲ MOWCW(11-21)0	IO#5	MCURTSL3	IO#4
MIR	▲ MIWIW(11-21)1		MOWIC(11-21)1	MIR
4 4 4			MOWIW(11-21)1	IOSS
			•	
•		T	7	•* .
IOSS	▲MOWIW(0-10)0		MIOROSL3	10#5
CUB	MOWCW(0-10)	10#6	MCURTSL3	IO#5
MIR	<miwiw(0-10)1< td=""><td></td><td>MOWIC(0-10)1</td><td>MIR</td></miwiw(0-10)1<>		MOWIC(0-10)1	MIR
	•		MOWIW(0-10)1	IOSS

Figure 2-6 IO Card Functional Interface Diagram

IO CARD NUMBER	10#1	10#2	10#3	IO#4	IO#5	10#6
BITS PER CARD	54-63	43 - 53	32 - 42	22-31	11-21	0-10
MLU CONNECTOR	J1	J2	J3	J4	J5	J6

MIOROSL1 MCURTSL1	are used by IO#1, 2, 3
MIOROSL3 MCURTSL3	are used by $IO#4$, 5, 6
MSTROBE1	is used by IO#1, 4 only

Table 2-7. IO Card Input/Output Signal List

INPUT SIGNAL		OUTPUT SIGNAL	
NAME	SOURCE	NAME	DESTINA- TION
MIOROSL1	MC/A23	MOWIWOO0	IOSS
MIOROSL3	MC/C23	Ļ	
MCURTSL1	MC/B11	MOWIW630	IOSS
MCURTSL3	MC/A15	MOWCWOO0	CUB
MOWICOO1	MIR#1-8		
	↓	моиси630	CUB
MOWIC631	MIR#1-8	MIWIWOO1	MIR#1-8
MOWIWO01	IOSS	MIWIW631	MIR#1-8
		MZTMWIW0	IOSS
MOWIW631	IOSS	MZTMWCWO	CUB
MSTROBE1	MC/A5	MZTMWCW2	CUB

MNEMONIC

MOWCW00-0 through MOWCW63-0

MOWICOO-1 through MOWIC63-1 MIR(1-8) to

IO(1-6) to IOSS

10(1-6)

MOWIW00-0 through MOWIW63-0

SOURCE DESTINATION

IO(1-6) to CUB

DEFINITION

- CUB output data
- Read or transfer data sent to CUB from IO cards after conversion to CTuL levels by up converters on IO cards
- Data becomes valid during output enable period of read cycle or during transfer enable period of transfer cycle
- CUB-IOB read/PE-CUB transfer data
- Output of read/transfer select gates on MIR cards
- Becomes valid as transfer data during transfer enable period of MLU cycle; becomes valid as read data during output enable period of MLU cycle

♥ IOB output data

- CTL level read data sent to the IOSS
- Data is gated out from IO cards during output enable period of read cycle
- MOWIW-0 uses same bidirectional data lines as MOWIW-1 (IOSS write data)

MNEMONIC

MSTROBE-1

SOURCE DESTINATION

MC to IO1,4

IO4 to CUB

DEFINITION

- IOB/CUB data strobe
- Output of strobe flipflop
- Sent to up converters on IO cards for conversion to CTuL levels
- CUB output data strobe
- Pair of strobes that allow CUB to accept read or transfer data
- Gated out to CUB with read data during output enable period of MLU cycle or with transfer data during transfer enable period of MLU cycle
- IOB output data strobe
- Strobe that allows IOSS to accept read data
- Gated out to IOSS with read data during output enable period of MLU cycle

.

MZTMWCW-0

MZTMWCW-2

and

MZTMWIW-0

IO1 to IOSS

2.5 UP CONVERTER

All signals that leave the MLU for the PEM, CUB or IOSS (but not PE) are converted from ECL logic levels to CTuL levels. Since the ECL levels are relatively lower than the CTuL levels, the conversion is referred to as up conversion. There are three printed circuit cards in each MLU whose principal function is to perform up conversions. Table 2-8 matches those MLU output signals that are routed through the UC cards with their respective cards.

UC CARD NUMBER	UC1	UC2	UC3
ADDRESS BIT NUMBER	A5, A6 A9, AIO	A7, A8, A11 A12, A13	A14, A15
DATA BIT NUMBER	8 through 31	0 through 7 32 through 39	40 through 63
OTHER SIGNALS		Memory Initiate Write Outer Write Inner	

Table 2-8. Up C	Converter	Organization
-----------------	-----------	--------------

Some up conversion activity takes place on the IO Cards as well (refer to Section 2.4). Details regarding the need for signal level conversions in the MLU, both up and down, are provided in Section 3.0.

Figure 2-7 provides a functional interface diagram of the three UC cards. Table 2-9 lists all signals that enter and leave the UC cards. These signals are defined in the glossary that follows the table.

UC	INPUT	SIGNAL	OUTPUT SIGNAL		
#	NAME	SOURCE	NAME	DESTINATION	
	PYW-W050	PE/J19	MYW-W050	PEM	
	PYW-W060	PE/J19	MYW-W060	PEM	
	PYW-W090	PE/J19	MYW-W090	PEM	
1	PYW-W100	PE/J19	MYW-W100	PEM	
	MOWFW080	MIR2, 3,4/	MOWFW081	PEM	
	♥ MOWFW310	J4, 5, 6 MIR2, 3,4/	MOWFW311	J22, 23	
		J4, 5, 6			
	PYWW070	PE/J20	MYW-WC7O	PEM	
	PKW-W080	PE/J20	MYW-W080	PEM	
	PYW-W110	PE/J20	MYW-WllO	PEM	
	PIW-W120	PE/J20	MYW-W120	PEM	
	PYW-W130	PE/J20	MYW-W130	PEM	
	MOWFWOOO	MIR1/J8	MOWFWOO-1	PEM	
				J23	
2	MOWFW070	MIR1/J8	MOWFW071	PEM	
	MOWFW320	MIR5/J7	MOWFW321	PEM	
	¥	V		J22	
	MOWFW390	MIR5/J7	MOWFW391	PEM	
	MINITPL0	MC/A17	MINITPL1	PEM	
	MWOUTENO	MC/A29	MWOUTEN1	PEM	
	MWINNENO	MC/B32	MWINNEN1	PEM	
	PYW-W140	PE/J21	MYW-W140	PEM	
	PYW-W150	PE/21	MYW-W150 MOWFW401	PEM	
3		J9, 10,11		J23, 24	
	₩ 000000000000000000000000000000000000	MIR6, 7,8/	MO.1FW631	₽ EM	
		J9, 10,11			

Table 2-9. UC Card Input/Output Signal List

MNEMONIC

MINITPL-0

MINITPL-1

SOURCE DESTINATION

MC to UC2

UC2 to PEM

MOWFW00-0 through MOWFW63-0 MIR(1-8) to

UC(1-3)

DEFINITION

- Initiate memory-ECL
- Will initiate read or write activity in PEM after level conversion by UC2 circuits
- One clock period wide during read cycles; 50 ns wide during write cycles
- Initiate memory -CTµL
- CTuL level pulse used by PEM to initiate read or write cycle in PEM
- One clock period wide during read cycles; 50 ns wide during write cycles
- Width during read cycle (one clock period) is determined by frequency of CPU operation; example: for CPU frequency of 60.3 MHz, MINITPL-1 has approximately 62 ns duration
- Occurs at approximately 30 ns of a read cycle; occurs at approximately 70 ns of a write cycle
- PEM write data ECL Output of set (1) side of MIR latches
- Data is sent to up converters for conversion from ECL to CTµL levels
- Data becomes valid at approximately 70 ns of the write cycle

MNEMONI C

SOURCE DESTINATION

MINITPL-1

UC2 to PEM

• Initiate memory -CTµL

 CTµL level pulse used by PEM to initiate read or write cycle in PEM

• One clock period wide during read cycles; 50 ns wide during write cycles

- Width during read cycle (one clock period) is determined by frequency of CPU operation; example: for CPU frequency of 60.3 MHz, MINITPL-1 has approximately 62 ns duration
- Occurs at approximately 30 ns of a read cycle; occurs at approximately 70 ns of a write cycle
- PEM write data ECL Output of set (1) side of MIR latches
- Data is sent to up converters for conversion from ECL to CTµL levels
- Data becomes valid at approximately 70 ns of the write cycle
- Write inner enable ECL
- Output of MC decode logic whenever inner word of PE write data is to be written into PEM
- Sent to up converter logic for conversion to CTµL level

MOWFW00-0 through MOWFW63-0 MIR(1-8) to UC(1-3)

MWINNEN-0

MC to UC,

MNEMONIC	SOURCE DESTINATION	DEFINITION	•
MWINNEN-0	MC to UC2	Write inner enable - ECL	
		Sent to up converter logic for conversion to CTµL level	
MWINNEN-1	UC ₂ to PEM	• Write inner enable - CTuL	
		CTµL level that enables the PEM to write inner word of PEM data (bits 8 through 39)	
		 Signal is valid from approximately 60 ns to 210 ns of write cycle 	
MWOUTEN-0	MC to UC2	oWrite outer enably - ECL	
		Output of MC decode logic whenever outer word of PE write data is to be written into PEM	
		• Sent to up converter logic for conversion to CTµL level	
MWOUTEN-1	UC, to PEM	• Write outer enable - CTµL	
		CTuL level that enables the PEM to write inner word of PEM data (bits 0 through 7 and 40 through 63)	· .
		 Signal is valid from approximately 60 ns to 210 ns of write cycle 	
			•
	2-45		

MNEMONIC

PYW-W05-0 through PYW-W15-0

SOURCE DESTINATION

PE to UC(1-3)

DEFINITION

- PE memory address register bits
- @ ECL level address bits sent from PE to up converters for conversion to CTuL levels
- CTuL levels to be used by PEM to access desired memory location for read or write operation
- Four low-order ECL level bits are also examined by memory protect logic as part of memory protect activity

SECTION 3.0

SUMMARY OF MLU LOGIC CHARACTERISTICS

All MLU logic circuits belong to the emitter-coupled logic (ECL) family. The basic ECL gate configuation is shown in Figure 3-1. Although several other ECL circuits are in use in the MLU, this circuit helps illustrate some of the general ECL characteristics discussed below.

FIGURE 3-1. Basic ECL Gate

3.1 ECL CHARACTERISTICS

♦ LOGIC LEVELS*

Typical logic levels employed by the basic ECL gate are 400 mV and -400 mV, when V_{cc} =1.32V, V_{EE} =-3.2V and V_{REF} =OV. Minimum levels when operating at 25°C and loaded with 50 ohms to ground and 270 ohms (pulldown) to -3.2V are +350mV. These logic levels are ensured with inputs at +200mV, which provide 150mV of dc noise margin. Since the actual threshold is approximately 150mV and typical output levels are

*Information is taken from <u>The Integrated Circuits Catalog</u>, Texas Instruments Incorporated, Dallas, p. 4a-7. 400mV, typical noise margin in excess of 200 mV can be expected. Transfer characteristics for the basic gate are shown in Figure 3-2.

FIGURE 3-2. Transfer Characteristics of Basic ECL Gate

For gating functions which have emitter dots (wired OR), the relativehigh level is increased to 450mV; the relative-low level is also increased by 50mV to -350mV.

Because the MLU must communicate with certain ILLIAC IV system elements that employ CT_{AL} circuits, the MLU logic includes signal level converters. These converters use both ECL and CT_{AL} logic levels for their operation. CT_{AL} levels are 2.5V and -0.5V. Details regarding level conversion in the MLU are provided in Section 3.3, below.

LOGIC CONVENTION

In general, MLU logic elements are seen as performing negative logic functions. For this reason, the more negative signal values (-400 mV

for ECL and -500mV for $CT_{\mathcal{U}}L$) are considered the logical ONE levels and the more positive signal values (400mV for ECL and +2.5V for $CT_{\mathcal{U}}L$) are considered the logical ZERO levels.

Some exceptions to this rule are the signals that reset the RS flipflops in the MC logic and those signals sent to up converters before leaving the MLU. These signals are actually high-true. The signal mnemonics assigned to these exceptions take this into account. Suffixes to their mnemonics indicate that, while the circuits generating these signals are classified as negative logic gates because they are part of the MLU, the signals are active when high.

GATE SPEED*

Switching time performance at 25° C, with various capacitive loadings, is described in Figure 3-3. This capacitive loading is directly relatable to ac fan-out, assuming 4 to 5 pF per gate input. Delay time degradation with increasing fan-out approximates 75 ps per additional load. Switching-time waveform definitions and output terminations used for testing are shown in Figure 3-4. Typical propagation time through a single ECL gate is 4ns from leading edge to leading edge and 4ns from trailing edge to trailing edge. Corresponding values for propagation through single CTAL gate are 12ns and 12ns.

^{*}Information is taken from <u>The Integrated Circuits Catalog</u>, Texas Instruments Incorporated, Dallas, Texas, pp. 4a-10, 4a-11.

FIGURE 3-4. Switching-Time Waveforms

• NONSATURATION

ECL circuits operate in the nonsaturated mode. That is, the transistors in each gate are never fully cut off or in a saturated state. This is the chief reason for the high switching speed that is characteristic of these circuits. Because the transistors are always conducting, even when the inputs to the gate are false, the inputs do not have to pass a threshold before the logic decision is made. Since the output transistor does not have to be saturated for the output signal to be considered true, there is no switching delay caused by the need to overcome capacitance in the output transistor. For both of these reasons, the output of an ECL gate is able to follow the inputs almost immediately.

• COMPLEMENTARY OUTPUTS

Many integrated circuit packages included in the ECL family provide dual, complementary outputs. This results in the AND/NAND, OR/NOR and AND-OR/NOR functions illustrated in Figure 3-5. Propagation time through these circuits is the same for both outputs (both outputs become valid at the same time).

FIGURE 3-5. ECL Logic Functions with Dual Outputs

POWER SUPPLY REQUIREMENTS

The MLU logic circuits require the following voltages and currents for proper operation:

- A. $1.32V \pm 2\%$ B. $4.8V \pm 10\%$ 20 amp, maximum
- C. -3.20V ± 2%, 24 amp, maximum

D. 0.0V, ground current will vary between + 10 amp Details regarding the source of this power and the establishment of logic ground are provided in Section 5.0, POWER DISTRIBUTION.

3.3 LOGIC LEVEL CONVERSION

The PEM and IOSS both interface with the MLU through CTuL circuits. For this reason, the MLU is obliged to convert downward the $\text{CT}_{\mathcal{H}}\text{L}$ levels it receives from these units to corresponding ECL levels and convert upward the ECL levels of those signals in must send these units. The necessary down converters and up converters are included at appropriate points in the data paths through the MLU. Table 3-1 identifies the level conversions that occur when information is sent between various subunits of the system.

SIGNAL SOURCE	SIGNAL DESTINATION	TYPE OF CONVERSION	UP/DOWN	LOCATION OF CONVERSION ELEMENT	REMARKS
PEM	PE	CT L to ECL	Down	MIR Cards	
PEM	IOSS	CT L to CT L	Down, then up	MIR Cards, then I/O Cards	
PEM	CUB	CT L to ECL	Down, then up	MIR Cards, then I/O Cards	CUB finally con- verts to ECL
PE	PEM	ECL to CT L	Up	UC Cards	
PE	CUB	ECL to ECL	Up	1/0 Cards	CUB reconverts to ECL
IOSS	PEM	CT L to CT L	Down, then up	I/O Cards, then UC cards	

Table 3-1 LOGIC LEVEL CONVERSION

Read and transfer data destined for the CUB is converted to $CT_{\mathcal{H}}L$ levels at the IO cards even though the CUB uses ECL levels. This is required because the CUB read and transfer data is routed through the same set of IO logic that provides conversion to $CT_{\mathcal{H}}L$ levels for the IOSS read data. The CUB is therefore obliged to reconvert the $CT_{\mathcal{H}}L$ levels it receives from the IO cards to ECL levels.

Figure 3-6 illustrates the gate configuration for the down converter circuit.

+2.5V is applied on Pin 14, 12 and +.4 on Pin 16, 11 and the output Pin 2, 8 can be +.4V

or -.5V is applied on Pin 14, 12 and -.4V on Pin 16, 11 and the output Pin 2, 8 can be -.4V

For more information see MIR drawing 1727 9084.

FIGURE 3-6. Down Converter Block Diagram

+.4V is applied on Pin 13, 11 and/or Pin 14, 12 and the output Pin 2, 7 can be on -.5V

or -.4V is applied on Pin 13, 11 and/or Pin 14, 2 and the output Pin 2, 7 can be on +2.5V

FIGURE 3-7. Up Converter Block Diagram

SECTION 4.0 THEORY OF OPERATION

There are three types of ILLIAC IV operations that involve the MLU: write memory cycles, read memory cycles and transfer cycles. All three require the movement of data from some source external to the MLU, through the MLU, to some destination external to the MLU. The MLU multiplexes the various data paths and, for write and transfer cycles, temporarily stores the data being moved. The three MLU cycles are described in detail in the following subsections.

Before considering the detailed theory, however, it would be helpful to examine the rules followed for establishing signal mnemonics. These mnemonics are used extensively in the theory discussion and are not open to easy interpretation. The following examples illustrate the rules governing MLU mnemonics as they are discussed below. EXAMPLES:

12345678910 FMEMPRO 1	Source Function Logic 1	- CU via PE - Memory Protect - Relative Low
12345678910 PLW-W230	Source Function Logic l	- PE - Write Data - Bit 23 - Relative High
<u>12345678910</u> MCURSEL 1	Source Function Logic 1	 MLU CUB Read Select Relative Low
<u>12345678910</u> MIWFW141	Source Function Logic 1	- PEM - PEM Read Data - Bit 14 - Relative Low
$\frac{12345678910}{MOWIW631}$	Source Function Logic 1	- IOSS - IOSS Write Data - Bit 63 - Relative High
<u>12345678910</u> MEIBITL1	Source Function Logic 1	- MLU - Latched El Bit - Relative Low
<u>12345678910</u> MOWIW630	Source Function Logic 0	- MLU - IOSS Read Data - Bit 63 - Relative High

The mnemonic format allows for 10 characters. The first character position contains one of three letters: F, M or P. Letter P indicates that the source of the signal is the PE. The letter M is used for all signals originating in the MLU. It is also used for read data received from the PEM and write data received from the IOSS. Letter F is used to indicate that the signal originates at the Final Station of the CU (FINST) and that it is sent to the MLU through the PE.

The signal function is designated by the next series of letters, usually character positions 2 through 7. For data and address bits this series ends with a pair of numbers that identifies the bit position in the data or address word.

The mnemonic is completed by one or two characters in the last position (s). If the mnemonic is terminated by two characters, the letter L in character position 9 indicates that the signal is the output of a latch.

The last character identifies which signal level, relative-high or relativelow, is considered the active or true level. However, the interpretation of this character depends on whether the source of the signal follows the positive logic or negative logic convention.

The write data, address and E-bit inputs to the MLU use positive logic notation. All other signals discussed in this section follow negative logic convention; these include read data sent to the MLU from the PEM, initiate and control information provided by the PE, MLU output signals and all internal MLU signals.

If the last character of a positive logic mnemonic is a l, the signal is considered true when it is high; if the last character is 0, the signal is considered true when it is low. The opposite interpretation is made for negative logic mnemonics. If the last character is a l, the signal is low-true; if the negative logic mnemonic ends with a 0, the signal is high-true. Table 4-1 provides a summary comparison of positive and negative logic mnemonics.

Table 4	4-1.	Positive/	Negative	Logic	Mnemonics
		A REAL PROPERTY AND A REAL	Concerning and a Charge and an an an and a state of the state of the	CONTRACTOR OF TAXABLE PROPERTY.	State of the state

Input/Output Subsystem (IOSS)			Processing Element (PE)			Memory Logic Unit (MLU)		
Signal Name	Level	Logical	Signal Name	Leve1	Logical	Signal Name	Level	Logical
MOWIWXX1	High	1	PLW-WXX1	High	1	MOWFWXX1	High	0
MOWIWXX1	Low	0.	PLW-WXX1	Low	0	MOWFWXX1	Low	1
•			PLW-WXX0	High	0	MOWFWXX0	High	1
112450749-07455-07455-0745-07-0-000-07-0-000-07-0-000-07-0-0-000-07-0-0-000-07-0-0-000-07-0-0-000-07-0-0-000-0			PLW-WXX0	Low	1	MOWFWXX0	Low	0

There are a few signal pairs in which the signals are identical; the mnemories in each pair are also identical, except for the last character. Where one signal in the pair ends with a 1, the other signal ends with a 3 to distinguish it from the first. A mnemonic ending with 0 will be paired with a mnemonic ending with a 2. The 3 and the 2 have the same meaning as the 1 and 0, respectively.

3 . .

4.1 WRITE MEMORY CYCLE

During a write memory cycle, data is written into an addressed location in the PEM. The source of the data may be the CU, the PE or the IOSS.

As shown in Figure 1-1, the CU-to-PEM data path enters the MLU through the PE; consequently, CU-to-PEM data follows the same path through the MLU as PE-to-PEM data. For this reason, specific references to PE write activity apply equally to CU write activity, except where otherwise noted. These references include hardware and signal nomenclature.

A write cycle begins with the arrival at the MLU Memory Control (MC) logic of the memory select signal, FMSEL-1, and the initiate memory cycle signal, FIMC-1. Together, these signals provide the memory timing initiate pulse, MIMCTNP-1. This pulse is sent to the memory timing logic where it initiates the sequence of timing pulses used to control MLU activity during the memory cycle.

The read/write control signal, FREAD-1, will be false (relative-high) at this time; this signal level conditions various MC circuits for a write operation.

The 11 address bits, PYW-W05-0 through PYW-W15-0, are also received from the PE at this time. These bits are routed to the PEM via the UP Converter (UC) logic, where the ECL levels provided by the PE are converted to CT_µL levels for use in the PEM. The address bits are decoded by the PEM to select one 64-bit storage location out of 2048 storage locations in the PEM.

MEMORY PROTECT

Address bits PYW-W05-0 through PYW-W08-0 are also sent to memory protect logic on the MC card where they are examined for logical ONE's

MEMORY PROTECT continued

whenever the PE decides to protect a certain portion of the PEM storage locations from unauthorized write operations.

- 2 -

The PE may protect the 128 lowest order PEM addresses by issuing the memory protect signal FMEMPRO-1. This low-level signal enables memory protect logic on the MC card to detect addresses 0000 through 0127 (decimal). If FMEMPRO-1 is true (relative-low) and address bits PYW-W05-0 through PYW-W08-0 are all false (relative-high), the memory protect circuits inhibit the write enable circuits and set the memory protect error latch. This is a status report latch only and does not inhibit subsequent write operations. The CU resets the memory protect error latch with the error reset signal, FRMPRO-0.

• MEMORY INITIATE PULSE (MINITPL--0)

If no memory protect error is detected, a memory initiate pulse is sent from the MC to the PEM to activate the PEM memory cycle logic (see Figure $\frac{1}{4}$ -1).

Figure 4-1. Memory Initiate Pulse Logic
MEMORY INITIATE PULSE continued

This pulse results from the ANDing of four conditions:

1. The read/write control signal, FREAD-1 is false

- 2. The write enable flip-flop is set; this flip-flop is normally set but will be reset by a memory protect error condition
- 3. The transfer flip-flop is not set
- 4. A write initiate pulse, MWINITP-1, is received from MT1; this pulse is generated as a result of the MT1 delay line receiving the memory initiate timing pulse, MIMCTNP-1. It occurs approximately 75 ns after FIMC-1 arrives at the MC card. The generation of MWINITP-1 is shown in Figure 4.2.

-NOTE-

This timing pulse is used to delay the generation of the memory initiate pulse to give the memory protect logic time to complete its analysis of the low order address bits. This delay is not used for read operations.

The memory initiate pulse is first sent to the UC as MINITPL-O. There, its relative-high ECL level is converted (and inverted) to a relative-low CTuL level. This low level pulse is then sent to the PEM as MINITPL-1.

Figure 4-2. Write Initiate Pulse Logic

WRITE ENABLE

In addition to the memory initiate signal, the MC logic provides the PEM with one or both of a pair of write enable signals, MWOUTEN-0 and MWINNEN-0. One signal enables write logic in the PEM to store the outer 32 bits of data (bits 00 through 07 and 40 through 63) in the addressed storage location; the other signal enables the PEM to store the inner 32 bits of data (bits 08 through 39). If both signals are present all 64 bits will be written into the addressed storage location. During write operations, the selective generation of write enable signals depends on two considerations: the origin of the write operation and, if the PE is the origin, by a pair of bits issued by the CU through the PE. Generation of write enable signals is shown in Figure 4-3.

WRITE ENABLE continued

During write operations initiated by the PE, the PE sends the MLU a pair of data control bits, P-E-30 and P-1-30, to a pair of latches on the Memory Timing 1 (MT1) card. A low level on one of these lines will set the corresponding E-bit latches. The outputs of the two E-bit latches, MEOBIT-L1 and MEIBIT-L1, are sent to the MC logic where they influence the generation of the write enable signals. P-E-30 controls the generation of MWOUTEN-0 through the MEOBIT latch and P-1-30 controls the generation of MWINNEN-0 through the MEIBIT latch.

If the CU or IOSS initiates the write operation, both write enable signals are generated regardless of the states of the E-bit latches. The outputs of these latches can be overridden by a pair of memory data select signals, FMDSELO-1 and FMDSEL1-1, whose function is to identify the source of data during write memory cycles and the destination of data fetched from the PEM during read memory cycles.

When these signals identify the CU or the IOSS as the origin of a write operation, both write enable signals are forced to the true state (relative-high) regardless of the states of the E-bit latches. The binary codes for the memory data select signals are defined in Table 4-2 for read and write operations. These two signals originate in FINST and are fed into the MLU through the PE.

BIT COMBINATION WRITE MEMORY CYCLE (Source of Data)		READ (Desti	MEMORY nation	CYCLE of Data)		
FMDSELO-1 FMDSEL1-1	PE	IOSS	CU	PE	IOSS	CUB
O (H) O (H)			x			
0(H) 1(L)						Х
l (L) O (H)		X			Х	
l (L) l (L)	Х			X		

Table 4-2. Memory Data Select Signals Bit Combinations

WRITE DATA PATHS

Write data received from the PE enters the MLU at the PE/IO select gates, which are located on the Memory Information Register (MIR) cards. Figure 4-4 illustrates the PE and IOSS write data paths. Remember that CU write data uses the PE write data path through the MLU.

- 6 -

Write data from the IOSS enters the MLU at the six IO interface cards. These cards contain line receivers for accepting write data from the IOSS and down converters for adapting the CTuL signal levels of the incoming data to the ECL levels used by the MLU. The IO logic also includes line drivers and up converters for forwarding read data to the IOSS and a separate set of line drivers and up converters for sending read or transfer data to the CUB.

Figure 4-4. PE and EOSS Write Data Paths

WRITE DATA PATHS continued

The IO interface logic sends the IOSS write data on to the PE/IO select gates on the MIR cards as soon as it is received; no gating of IOSS write data takes place at the IO cards.

There are 64 sets of PE/IO select gates, eight sets on each of the eight MIR cards. In effect, the PE/IO select gates multiplex data received from two sources, the PE and the IOSS (via the IO cards). The output of each select gate is taken from its NOT side; consequently, the select gates also invert the selected data. Each select gate output is applied to the data input of an MIR latch located on the same MIR.

The eight PE/IO select gates on each MIR card multiplex one byte of data. Table 2-2 matches the eight data bytes with their respective MIR cards. This table also shows that wiring for the data path into and out of the MIR cards takes into account the inner word and outer word data formats used in the 32-bit mode; all bytes in the cutor word are routed as a contiguous group.

Data originating at the PE or CU arrives at the select gates from the PE as PLW-WOO-O through PLW-W63-O. Data originating at the IOSS arrives at the select gates from the IO cards as MIWIWOO-1 through MIWIW63-1. Data select signals developed on each MIR card determine which set of data will be gated through to the MIR latches.

WRITE DATA PATHS continued

IOSS data is selected by the input/output buffer (IOB) write select signal, MIOWSEL-1. This signal originates at the MC card and is true (relative-low) when:

- A. The memory data select signals, FMDSEL0-1 and FMDSEL1-1, identify the IOSS as the source of the write operation.
- B. The read/write control signal, FREAD-1, identifies the memory cycle as a write operation (relative-high).
- C. The transfer cycle flip-flop is reset, indicating that a transfer cycle is not in progress.

The MC logic sends MIOWSEL-1 to all eight MIR cards. A noninverting driver on each MIR card forwards MIOWSEL-1 to the PE/IO select gates. If MIOWSEL-1 is true (relative-low), MIWIW00-1 through MIWIW63-1 will be inverted and applied to the data inputs of the MIR latches.

Data received from the PE is gated through the select gates as two separate half words: the outer word (bits 00-07 and 40-63) and the inner word (bits 08-39). The data select signal that gates the outer word results from ANDing the PE write/PE-CUB transfer select signal, MPTWSEL-1, with the latched E-bit signal, MEOBIT-L1. This ANDing occurs on MIR cards 1, 6, 7 and 8. The inner word gating signal results from ANDing MPTWSEL-1 and MEIBIT-L1 on MIR cards 2 through 5. In this way, the states of the E-bit latches also control the gating of the inner and outer words to the MIR latches during PE write operations.

Shortly after the data (PE/CU or IOSS) is made available to the MIR latches, a pair of complementary strobes are generated on each MIR card to clock the data into the latches. Each strobe pair is derived from one of eight MIR strobe pulses, MSMIRP1-1 through MSMIRP8-1, which are provided by delay lines on either MT1 or MT2.

From this point in the data flow (from the MIR latches on), the IOSS and PE/CU data paths coincide. The true outputs of the MIR latches are sent to the UC logic as MOWFW00-0 through MOWFW63-0 for conversion to CT₂L levels and a second inversion.

WRITE DATA PATHS continued

The 64 data bits are distributed among the three UC cards in the following groups:

- UC1 bits 08 through 31
- UC2 bits 00 through 07 and 32 through 39
- UC3 bits 40 through 63

The data is sent from the UC logic directly to the PEM for storage in the addressed location.

4.2 READ MEMORY CYCLE

During a read memory cycle, data is fetched from an addressed location in the PEM. The destination of the read data can be the CUB, the PE or the IOSS.

A read cycle begins, like a write cycle, with the arrival at the MLU of the memory select signal, FMSEL-1, and the initiate memory cycle signal, FIMC-1. The MC logic ANLS these signals to generate the memory timing initiate signal, MIMCTNP-1, which is then sent to the MT1 card. This signal initiates the sequence of timing pulses that are used to control read cycle activity.

• MEMORY INITIATE PULSE

The signals, FMSEL-1 and FIMC-1, are also ANDed with the read/write control signal, FREAD-1, which must be true (relative-low) at this time. The result of this ANDing is the memory initiate pulse, MINITPL-0. This pulse is used to activate memory cycle logic in the PEM. First, it is sent as a relative-high ECL level to the UC logic. There, it is converted and inverted to a relative-low CTAL level and sent to the PEM as MINITPL-1.

The 11 address bits, PYW-W05-0 through PYW-W15-0, must also be valid at this time. The PEM receives these bits from the PE via the UC cards in the MLU. During read operation, signal level conversion (from ECL to CT_L) is the only action taken by the MLU on the address bits. The memory protect logic on the MC card is not enabled during read cycles.

* READ DATA PATHS

The first segment of the read data path through the MLU is the same for all read cycles regardless of the destination of the read data. First, the $CT_{c1}L$ -level data is sent from the PEM to the down converter logic on the MIR cards as bits MIWFW00-1 through MIWFW63-1. Read data paths through the MLU are shown in Figure 4-5.

There are eight down converters on each MIR card. Routing of read data into and out of the eight MIR cards conforms to the byte grouping used for routing of write data; that is, bytes 1, 6, 7 and 8 are routed through adjacent MIR cards (see Table 2-2). This routing is followed to maintain consistency between read and write paths only; inner and outer words are not selectively gated during read operations.

PEM-to-PE read data is sent direcly to the PE from the down converters. The ECL-level bits are labeled MOWPW00-1 through MOWPW63-1.

Figure 4-5. Read Data Paths

Read data being routed to the CUB or IOSS is sent from the down converters to read/transfer select gates, which are also on the MIR cards. PEM-to-CUB read data and PEM-to-IOSS read data use the same 64 lines between the down converters and the read/transfer select gates.

• READ/TRANSFER SELECT GATES

These select gates multiplex CUB/IOSS read data with PE-to-CUB transfer data. Both sets of inputs to the select gates (read data and transfer data) are gated through the select gates to the IO cards during a read cycle, but at different times. The transfer data inputs are enabled first during a transfer enable period. Following this, the read data inputs are enabled; this second period is called the output enable period.

Two flip-flops in the MC logic define the transfer enable and output enable periods. A pair of timing pulses from the MT logic set and reset the transfer enable flip-flop at 165 and 265 ns, respectively, of the read cycle. A second pair of timing pulses set and reset the output enable flip-flop at 270 and 370 ns, respectively, of the read cycle. These flip-flops

provide the pulses that enable the transfer data inputs and read data inputs to the select gates; they are, MTRANEN-1 and MOUTPEN-1. Each of these pulses remains true while its respective flip-flop is in the set state.

Although the transfer data inputs to the select gates are enabled for 100 ns of the read cycle, the invalid data present at those inputs is not made available to the CUB. During a read cycle, the CUB data drivers on the IO cards are held disabled throughout the transfer enable period; that is, the gating signals needed to activate the CUB data drivers are not generated until the output enable period. Details regarding operation of the logic during the transfer enable period of a transfer cycle are provided in Section 4.3, TRANSFER CYCLE.

• CUB/IOSS READ DATA SELECTION AND GATING

If the CUB is the destination for the read data, the MC logic generates the CUB read select signal, MCURSEL-1. If the IOSS is the destination, the IOSS read select signal, MIORSEL-1, is generated. In either case, the select signal is generated by select gates that decode the following conditions:

- A. FREAD-1 is true, indicating that a read operation has been specified.
- B. The transfer flip-flop is not set (MZTPWCW-0 is false), indicating that a transfer operation has not been specified.
- C. Either FMDSELO-1 is false and FMDSEL1-1 is true, indicating that the CUB is the destination for the data or FMDSELO-1 is true and FMDSEL1-1 is false, indicating that the IOSS is the destination (see Table $\frac{1}{4}$ -2).

Figure 4-6 illustrates the logic involved in generating the CUB/10SS read select signals.

Figure 4-6. CUB/IDSE Read Select Logic

When these conditions are satisfied, one of the two read select signals (CUB or IOSS) is generated. This causes one of two latches on the MT2 card to be set at approximately 130 ns of the read cycle. The output of the set latch, MCURSEL-L1 or MIORSEL-L1, is sent to the MC logic, where it is used to generate either a pair of CUB data gating signals, MCURTSL-1 and MCURTSL-3, or a pair of IOSS data gating signals, MIORSL-1 and MIORSL-3.

The output of the output enable flip-flop is ANDed separately with the outputs of the two read select latches, MCURSEL-L1 and MIORSEL-L1. When the output enable flip-flop is set at the beginning of the output enable period, one of the two pairs of data gating signals will be generated, depending on which read select latch has been set. These signals are sent to the six IO cards (MCURTSL-1 or MIORSL-1 to IO1, 2 and 3 and MCURTSL-3 or MIORSL-3 to IC4, 5, and 6) where they gate the read data out to the CUB or IOSS.

The read data is provided to the IO cards by the read/transfer select gates as MOWICOO-1 through MOWIC63-1. This data becomes valid at the start of the output enable period when the output enable flip-flop sets. The MI2 signal, MOEFFS-1, sets the output enable flip-flop, resulting in MOUTPEN-1. This signal is sent to the MIR cards, where it gates the read data through the read/transfer select gates to the IO cards. The output enable flip-flop is reset 100 ns later by the MT2 signal, MOEFFR-0.

Logic on the IO cards converts the ECL levels of the incoming data bits to the CTuL levels required by the IOSS. Since the CUB uses ECL levels, it must reconvert the CTuL levels it receives from the IO cards. The IO logic also inverts the data before sending it to the CUB or IOSS. Consequently, the CUB data leaving the IO cards is labeled MOWCW00-0 through MOWCW63-0 and the IOSS data leaving the IO cards is labeled MOWIW00-0 through MOWIW63-0.

• CUB/IOSS DATA STROBES

The MLU also provides the CUB with a pair of strobes that enable the CUB to accept the read data. One strobe, MZTMWCW-0, is associated with data bits 0 through 31; the other strobe, MZTMWCW-2, allows the CUB to accept data bits 32 through 63. For IOSS read operations, the MLU sends the IOSS a single data strobe, MZTMWIW-0, for all 64 bits. Figure 4-7 illustrates the MLU logic related to these strobes.

Figure 4-7. CUB/EDSS Read Data Strobes

Both CUB and IOSS strobes originate as the set output, MSTROBE-1, of a flip-flop on the MC card. This strobe flip-flop is set twice during a read cycle, once during the transfer enable period and once during the output enable period. The strobe flip-flop output is sent to IO cards 1 and 4 where it is gated out to the CUB or IOSS by the same signal that gates the read data through the IO logic.

Because gating of the CUB/IOSS read strobe is the same as gating of the CUB/IOSS read data, MSTROBE-1 is ignored during the transfer enable period of a read cycle. When the strobe flip-flop sets the second time (during the output enable period), MSTROBE-1 is gated out to the CUB from IO1 and IO4 as MZTMWCW-0 and MZTMWCW-2 or out to the IOSS as MZTMWIW-0. Remember that the IO logic inverts the incoming ECL level as well as converting it to the corresponding CTul level.

4.3 TRANSFER CYCLE

During a transfer cycle, data is moved from the PE to the CUB through the MLU. The PEM and IOSS play no part in a transfer operation.

The transfer cycle begins with the arrival at the MLU of the transfer signal, FZTPWCW-0. This signal is inverted by the MC logic to produce the memory timing initiate signal, MIMCTNP-1. This low-level signal is sent to the MTl card where it initiates the sequence of timing pulses that are used to control transfer cycle circuitry.

FZTPWCW-0 also sets the transfer flip-flop on the MC card. The output of this flip-flop, MZTPWCW-0, is used to condition various MLU circuits for a transfer operation.

Because the PEM does not take part in a transfer operation, the memory initiate pulse, MINITPL-O must be inhibited. The read/write control input, FREAD-1, is false (relative high); this disables one half of the read/write memory initiate select gate. The output of the transfer flip-flop, MZTPWCW-O, disables the other half of this select gate. With both halves of the read/write memory initiate select gate disabled, MINITPL-O is sent to the UC card in its false state (relative low) and, consequently, MINITPL-1 is sent from the UC card to the PEM in its false state (relative high). This prevents the PEM logic from initiating a memory cycle.

TRANSFER DATA PATH

The transfer data path is the same, from the PE to the MIR data latches, as the PE write data path. That is, the transfer data is routed to the data latches over the same lines that carry PE write data and is multiplexed with the IO write data by the PE/IO select gates on the MIR cards. Figure 4-8 illustrates the data path for a transfer cycle.

FIGURE 4-8. Transfer Data Path

As in a PE write operation, data is transferred from the PE to the CUB along two parallel, 32-bit data paths. The PE exercises separate control over data flow along these two paths through the use of two data control bits, P-E-30 and P-1-30. These are the same bits that control storage of the two halves of a PE write data word during a write memory cycle.

One data control bit, P-E-30, enables the transfer of bits OO through O7 and 40 through 63 (referred to as the outer word); the other bit enables the transfer of bits O8 through 39 (referred to as the inner word). The PE sends one or the other or both of these control bits to a pair of latches (called the E-bit latches) on the MTl card of the MLU. These control bits are strobed into the E-bit latches at the beginning of the transfer cycle. The output of each latch controls a different set of 32 bits of the transfer data.

The output of one latch, MEOBIT-L1, is sent to MIR cards 1, 6, 7 and 8 to develop the data select signal for the outer word. The output of the other latch, MEIBIT-L1, is sent to MIR cards 2,3, 4 and 5 to develop the data select signal for the inner word.

The E-bit latch outputs are ANDed on their respective MIR cards with the transfer select signal, MPTWSEL-1. If an E-bit latch is set, ANDing its output with MPTWSEL-1 will result in transfer data select signals for the four bytes of transfer data associated with that E-bit latch. If an E-bit latch is not set, the four transfer data select signals controlled by that latch will not be generated. Consequently, those four bytes of transfer data will not be gated through the select gates to the MIR latches.

The transfer select signal, MPTWSEL-1, is provided to each MIR card by logic on the MC card. For transfer operations, this signal goes true (relative-low) when the transfer flip-flop sets.

The selected transfer data bits are inverted by the select gates and applied to their respective MIR latches. Shortly after the transfer data is made available to the MIR latches, a pair of complementary strobes are generated on each MIR card to clock the data into the latches. Each strobe pair is derived from one of eight MIR strobe pulses, MSMIRP1-1 through MSMIRP8-1, which are provided by delay lines on either MT1 or MT2. These are the same pulses that clock the MIR latches during write cycles.

• READ/TRANSFER SELECT GATES

The transfer data is sent from the complementary outputs of the MIR latches to the CUB via read/transfer select gates on the MIR cards and the IO logic.

The select gates multiplex the transfer data with CUB/IOSS read data. As in a read memory cycle, both sets of inputs to the select gates (transfer data and read data) are gated through the select gates to the IO cards during a transfer cycle, but at different times.

The transfer data inputs are enabled first during the transfer enable period. The transfer period begins when a timing pulse from MTL, MTEFFS-O, sets the transfer enable flip-flop at 165 ns of the transfer cycle. The cutput of the transfer enable flip-flop is ANDed with the output of the transfer flip-flop to generate a pair of CUB data gating signals, MCURTSL-1 and MCURTSL-3. These gating signals are sent to the six IO cards (MCURTSL-1 to IO1, 2 and 3 and MCURTSL-3 to IO4, 5 and 6) where they gate the transfer data out to the CUB.

The transfer data is provided to the IO cards by the read/transfer select gates as MOWICOO-1 through MOWIC63-1. This data becomes valid at the start of the transfer enable period when the transfer enable flip-flop sets. The transfer enable flip-flop output is sent to the MIR cards as MTRANEN-1, where it gates the transfer data through the read/transfer select gates to the IO cards. The transfer data remains valid for 100 ns until the transfer enable flip-flop is reset by the MT2 output, MTEFFR-0.

Logic on the IO cards converts the ECL levels of the transfer data to CTµL levels. This conversion takes place because IOSS read data is also routed through the IO cards and the IOSS requires the conversion. Consequently, the CUB is obliged to reconvert the CTµL levels of the transfer data to the corresponding ECL levels. The IO logic also inverts the transfer data before sending it to the CUB as MOWCWOO-O through MOWCW63-O.

CUB DATA STROBE

As in a read memory cycle, the MLU provides the CUB with a pair of strobes that enable the CUB to accept the transfer data. Figure 4-7 illustrates the MLU logic related to these strobes.

Both strobes, MZTMWCW-O and MZTMWCW-2, originate as the set output, MSTROBE-1, of a flip-flop on the MC card. This strobe flip-flop is set during the transfer enable period by the MT1 transfer timing pulse, MTSFFS, at 185 ns of the transfer cycle. The output of the strobe flipflop is sent to IO cards 1 and 4 where it is gated out to the CUB by the same signal that gates the transfer data through the IO logic.

• WRITE ENABLE PREVENTION

During a transfer operation, it is necessary to prevent generation of the write enable signals, MWOUTEN-O and MWINNEN-O. These are the signals ordinarily sent o the PEM during a write operation that enable its logic to write the o ter and/or inner words. Generation of these signals is blocked during a transfer cycle in two ways.

- 1. The true output of the set transfer flip-flop, MZTPWCW-O, disables the two NAND gates that produce MWOUTEN-O and MWINNEN-O.
- 2. MZTPWCW-O also prevents the generation of the memory protect timing pulse, MWPROTP-O. This causes the write enable flip-flop to reset. The output of the reset write enable flip-flop also disables the MWOUTEN-O and MWINNEN-O NAND gates.

SECTION 5.0

POWER DISTRIBUTION

The MLU, as a subunit of the Processing Unit (PU), receives power from power supplies external to the PU in the following way.

In each PU cabinet (Figure 5-1), there are two power supplies that provide +4.8V and ground, two power supplies that provide -2.0V and ground, one power supply that provides+1.32V and -3.20V for the routing logic and eight power supplies (preregulators) that provide 4.52V. These power supplies provide power for the eight associated Processing Units.

The ground of all the power supplies in each PU cabinet is connected to the ground of the controller of the PU cabinet, which in turn connects to the ground of all the other controllers (eight), which, along with the ground of the B6700 control computer, are connected to Earth, thus establishing a ground (Earth) time.

From the PU cabinet, the above voltages (+4.8V, -2.0V, ground and 4.52V) are brought into the Processing Unit in two groups. The first group brings +4.8V, -2.0V and ground; it is used exclusively for the PEM and the Up and Down converters of MLU. The second group, which brings 4.52V to the PU, is used for the PE and MLU circuits.

On the top of the PE there is a section called Dual Power Supply Shunt Regulator (see Figure 5.2). This regulator contains two main busses used to transfer the grouped voltages into the individual subunits of the Processing Unit (PE, MLU and PEM). Both busses consist primarily of large laminated planes that are properly isolated from one another. One bus is used for +4.8V, -2.0V and ground; the other bus is used for +1.32V, -3.20V and ground.

The +4.8V power is tapped from the bus plane for use by the MLU level conversion circuits. A two-plane strip routes the +4.8V power to the

MLU and provides a path from the MLU to the ground plane of the large bus. This ground path is used to shield the Cabinet Clear signal and as the ground level for the I/O circuits in the MLU.

A wire between the control card in the Dual Power Supply Shunt Regulator and the MLU provides the path for the Cabinet Clear signal (MCABCLR--O); this is the signal that resets flip-flops in the MLU when power is first applied to the PU.

The +1.32V and -3.20V are derived in the power supply shunt regulator from the incoming +4.52V. The ground plane of the bus for +1.32V and -3.20V is connected at one end with the chassis (PU) and with the ground plane of the second bus at the other end. This assures a common ground for all the subunits of the PU.

The +1.32V, -3.20V and ground levels are provided to the MLU and PE circuits via the large, three-plane bus shown in Figure 5-2. These laminated planes are, of course, fully isolated from one another.

Figure 5-3 depicts the basic current paths involved in the distribution of the $\pm 1.32V$ and $\pm 3.20V$.

CURRENT AND VOLTAGE PROTECTION

Each power supply shunt regulator includes an overcurrent detector. This detector compares the current through a 50 amp, 50mV shunt resistor, with a fixed reference current. If the current through the shunt resistor exceeds the reference current significantly, the detector opens the circuit breaker in the preregulator.

Similarly, the over voltage/under voltage detector in the power supply shunt regulator senses an excessive or insufficient voltage level being applied to a load. If the detector determines that a voltage is outside some specified limit, it opens the appropriate circuit breaker.

Test points for the various MLU voltages are available on the MLU backplane.

	11.00 0.000 50000		
+4.8V 430AMP	+1.32, -3.2V 50AMP	-2.0V 220AMP	+4.8V 430AMP
A2	A3	A4	A5
то	ТО	TO	ТО
B2,C2,D2,E2	ROUTE LOGIC	B2,C2,D2,E2,F2,G2,H2, and J2	F2,G2,H2,J2
PRE/REG 4.52V	PRE/REG 4.52V	PRE/REG 4.52V	PRE/REG 4.52V
A6	A7	A8	A9
TO	ТО	TO	ТО
C2	E2	G2	J2
PRE/REG 4.52V	PRE/REG 4.52V	PRE/REG 4.52V	PRE/REG 4.52V
A10	A11	A12	A13
TO	TO	ТО	ТО
B2	D2	F2	H2

• PU B2 PU C2 PU G2 PU PU PU PU PU D2 E2 F2 н2 J2

FIGURE 5-1. PU Cabinet. a) Power Supply Location b) PU Power Distribution

b)

a)

Figure 5-2. Power Distribution in the PU

APPENDIX A

SIGNAL GLOSSARY

APPENDIX A

SIGNAL GLOSSARY

MNEMONIC	LOGIC CONVENTION	SOURCE DESTINATION	DEFINITION
FIMC1	Neg	CU via PE to MC 🛛 👁	Initiate memory cycle
		¢	Used by PE to begin any read or write cycle
		•	All MLU timing during read or write is ref- erenced to arrival of FIMC-1 at MC
		8	One clock period wide
FMDSELO1	Neg	CU via PE to MC 🔹	Memory data select
and FMDSEL1 1		C	Combination of logic levels identifies source of write data or destin- ation of read data
		Ē	Used by MC to develop appropriate data gating signals
			Also used to override E-bit signals (P-E-30, P-1-30) during CU or IOSS write operations
			Become valid at same time as FIMC-1 and remain valid until next FIMC-1
FMEMPRO1	Neg	CU via PE to MC 🔹	Memory protect
			Enables memory protect circuits on MC card if PE wishes to protect PEM address locations 0000 through 0127 (decimal) from a write cycle
			Becomes valid at same time as FIMC-1 and re- mains valid until next FIMC-1

MNEMONIC	LOGIC	SOURCE DESTINATION	DEFINITION
	8-24-5-5-5-49-5-5-99-5-5-19-19-5-99-5-99-5-		-
FMSEL1	Neg	CU via PE	 Memory select
		to MC	 Used by CU to select specific memory out of all memories in array
			 Becomes valid at same time as FIMC-1 and remains valid until next FIMC-1
FREAD1	Neg	CU via PE	 Read/Write control
		to MC	 Used by PE to specify read or write cycle to MLU
			 Low logic level specifies read; high logic level specifies write
			 Becomes valid at same time as FIMC-1 and re- mains valid until next FIMC-1
FRMPRO0	Neg	CU via PE to MC	 Memory protect error reset
			 Used by CU to reset memory protect error latch on MC card
			• One clock period wide
FZTPWCW0	Nez	ĈU via PE	• Initiate transfer
		to MC	 Used by PE to begin transfer cycle
	ad a second s		 All MLU timing during transfer is referenced to arrival of FZTPWCW-0
			• One clock period wide
MCABCLR0	Neg	PU pwr supply to MC	 Cabinet clear Resets MC flip-flops
			 Signal goes low when power sequencing is complete

MNEMONIC	LOGIC CONVENTION	SOURCE DESTINATION		DEFINITION
MCURSEL1	Neg	MC to MT2	•	CUB read select
			8	Indicates that CUB has been selected as destination of read data
MCURSEL-L1	Neg	MT2 to MC	Ð	Latched CUB read select
			e	Output of a latch set by MCURSEL -1
				Maintains CUB read select until data is gated out to CUB during output enable period of read cycle
				Latch sets at approx- imately 130 ns of CUB read cycle
MCURTSL1 MCURTSL3	Neg Neg	MC to IO '1 3) MC to IO (4 6)		CUB output select These signals gate read or transfer data to the CUB
			•	Both are true during transfer enable period of transfer cycle or output enable period of read cycle
MEIBITL1	Neg	MT1 to MC		Latched E ₁ bit
			•	Output of latch set by E ₁ bit from PE
				Allows 32-bit inner word to be written into PEM or transferred to CUB

	MNEMONIC	LOGIC CONVENTION	SOURCE DESTINATION		DEFINITION
N.	MEOBITL1	Neg	MT1 to MC	e	Latched E bit
				0	Output of latch set by E bit from PE
				Û	Allows 32-bit outer word to be written into PEM or transferred to CUB
	MIMCTNP1	Neg	MC to MT1	œ	Initiate selected memory/ transfer cycle
				8	Input to delay line; initiates sequence of timing pulses for read, write or transfer cycle
	· · · ·			٠	Results from FIMC-1 AND FMSEL-1 or FZTPWCW-0
					One clock period wide
	MIMCTRP1	Neg	MT1 to MT2	. 0	MT1 delay line output
				•	Output of series of delay lines on MTl
	•			۲	Used as input to MT2 delay line series
				•	50 ns pulse width
	MIMCTSP1	Neg	MT2 to MT3	•	MT2 delay line output
				· . · •	Output of series of delay lines on MT2
				•	Used as input to series of delay lines on MT3
				•	50ms pulse width
		•			
	MINITPL0	Neg	MC to UC2	9	Initiate memory-ECL
					Will initiate read or write activity in PEM after level conversion by UC2 circuits
				•	One clock period wide during read cycles; 50 ns wide during write cycles

A-4

	LOCIC	SOURCE			
MNEMONIC	CONVENTION	DESTINATION		DEFINITION	
MINITPL1	Neg	UC2 to PEM	8	Initiate memory - CTµL	
		•		CTµL level pulse used by PEM to initiate read or write cycle in PEM	
				One clock period wide during read cycles; 50 ns wide during write cycles	
			۶	Width during read cycle (one clock period) is determined by frequency of CPU operation; example: for CPU frequency of 60.3 MH, MINITPL-1 has approxi- z	
	•			mately 62 ns duration	
			•	Occurs at approximately 30 ns of a read cycle; occurs at approximately 70 ns of a write cycle	•
MTOPOST - 1	Nog	MC to $IO(1-1)$		IOR output coloct onchio	•
and	Neg	HC LO IO (1-3)	•	tob output select enable	•
MIOROSL3	Neg	MC to IO (4-6)	٩	Gates read data through the IO logic to the IOSS	
			۵	Occurs during the output enable period of read cycle if the IOSS has been identified as the destination	1
MIORSEL1	Neg	MC to MT2		TOB read select	
			•	Output of MC decode logic when IOSS has been identi- fied as destination of read data	
MIORSEL-L1	Neg	MT2 to MC		Latch IOB read select	
				Output of latch set by IOB read select signal	
				Preserves the IOB read select condition until the read data has been gated out to the IOSS	
				Becomes valid at approxi- mately 130 ns of the read cycle	
		Δ5			

MNEMONIC	LOGIC CONVENTION	SOURCE DESTINATION	DEFINITION
MIOWSEL1	Neg	MC to MIR(1-8)	• IOB write select
			 Output of MC decode logic when IOSS has been identified as source of write data
			 Gates IOSS write data into MIR latches for temporary storage
MIWFWOO1	Neg	PEM to MIR(1-8)	• PEM read data
MIWFW631			 CTL level data from the PEM, which is applied to down converters on the MIR cards
			 PEM output becomes valid at approximately 225 ns of the current read cycle; does not change until approximately 155 ns of next memory cycle
MIWIWOO1 through MIWIW631	Pos	IO(1-6) to MIR (1-8)	 IOB input data IOSS write data after level conversion to ECL by circuits on IO cards
			 Applied to PE/IO select gates on MIR cards
			 Data is valid from approximately 40 ns to 70 ns of a write cycle
MLCFFR0	Neg	MT2 to MC	• Control F-F reset
			 Resets memory write enable flip-flop and transfer flip- flop
			 Occurs at approximately 250 ns of MLU cycle
			• 50 ns pulse width

•
MNEMONIC	LOGIC CONVENTION	SOURCE DESTINATION		DEFINITION
MOEFFR0	Neg	MT3 to MC		Reset output enable F-F
				Resets output enable flip- flop at approximately 370 ns of MLU cycle
			ø	50 ns pulse width
MOEFFS0	Neg	MT2 to MC	6	Set output enable F-F
			•	Sets output enable flip- flop at approximately 270 ns of MLU cycle
			8	Begins output enable period of MLU cycle
			8	50 ns pulse width
MOSFFR0	Neg	MT3 to MC		Reset output strobe F-F
				Resets output/transfer strobe generator at app- roximately 350 ns of MLU cycle
			.	50 ns pulse width
MOSFFS0	Neg	MT2 to MC	•	Set output strobe F-F
			•	Sets output/transfer strobe generator at app- roximately 290 ns of MLU cycle
			•	50 ns pulse width
		• •		
MOUTPEN1	Neg	MC to MIR(1-8)	•	Output enable
			•	Gates read data through read/transfer select gates on MIR cards
				Occurs at beginning of output enable period of MLU cycle

A-7

MNEMONIC	LOGIC CONVENTION	SOURCE DESTINATION		DEFINITION
MOWCWOO0 through MOWCW630	Neg	IO(1-6) to CUB	6	CUB output data Read or transfer data sent to CUB from IO cards after conversion to CTµL levels by up converters on IO cards
				Data becomes valid during output enable period of read cycle or during trans- fer enable period of transfer cycle
MOWFWOO0 through MOWFW630	Neg	MIR(1-8) to UC(1-3)	Ð	PEM write data - ECL Output of set (1) side of MIR latches
			•	Data is sent to up con- verters for conversion from ECL to CTuL levels
			¢	Data becomes valid at approximately 70 ns of the write cycle
MOWFW001	Neg	UC(1-3) to PEM		PEM write data - CTuL
through MOWFW631			•	Write data that is sent to PEM from up converters
			e	Data is valid for approxi- mately 250 ns of write cycle
MOWICOO1 through	Neg	MIR(1-8) to IO(1-6)	•	CUB/IOB read/PE-CUB transfer data
MOW 1C631			•	Output of read/transfer select gates on MIR cards
				Becomes valid as transfer data during transfer en- able period of MLU cycle; becomes valid as read data during output enable per- iod of MLU cycle

MNEMONIC	LOGIC CONVENTION	SOURCE DESTINATION	DEFINITION
MOWIWOO0	Neg	10(1-6) to 10SS	• IOB output data
MOW IW630			 CTL level read data sent to the IOSS
•	•		 Data is gated out from IO cards during output enable period of read cycle
			 MOWIW-0 uses same bi- directional data lines as MOWIW-1 (IOSS write data)
MOW IWOO1	Pos	IOSS to IO(1-6)	 IOSS write data
MOWIW631	· ·		 CTµL level write data sent to IO cards from IOSS
			 MOWIW-1 uses same bi- directional data lines as MOWIW-0 (IOB output data)
	• •		
MOWPWOO1	Neg	MIR(1-8) to PE	• PE output data
through MOWPW631			 ECL level read data sent from down conver- ters on MIR cards
			• Data is valid from approximately 235 ns of the read cycle to approximately 165 ns of the next memory cycle
MPROER1	Neg	MC to PE	• Memory protect error
			• Output of memory protect error latch, which is set when write operation is attempted in protected area of PEM
			 Signal is sent to CU via PE
			 Does not prevent sub- sequent write operations
			• Latch is reset by FRMPRO-0 from CU

MNEMONIC	LOGIC CONVENTION	SOURCE DESTINATION	DEFINITION
MPTWSEL1	Neg	MC to MIR(1-8)	PE write/PE-CUB transfer select
			 Output from MC de- code logic when PE has been identified as source of write or trans- fer data
			 Is ANDed with MEOBIT-1 and MEIBIT-1 to gate outer word and inner word of write or transfer data to inputs of MIR latches
MSCUIOP1	Neg	MT1 to MT2	• CU/IO read select latch
			 Strobes the CU and IO read select latches on MT₂
			 Occurs at approximately 130 ns of MLU cycle
			• 50 ns pulse width
MSMIRPL1	Neg	MT1 to MT1	MIR strobe pulse
			 Used to generate the four MIR strobe signals, MSMIRP(1-4)-1.
			 Occurs at approximately 55 ns of MLU cycle
			• 8 ns pulse width
MSMIRPL0	Neg	MT2 to MT2	 MIR strobe pulse
			• Complement of MSMIRPL1
			 Used to generate four of the eight MIR strobe signals, MSMIRP(5-8)-1
			 Occurs at approximately 55 ns of MLU cycle
			• 8 ns pulse width

MNEMONI C	LOGIC CONVENTION	SOURCE DESTINATION	DEFINITION
MSMIRP11 through MSMIRP81	Neg	MT(1-2) to MIR(1-8)	 MIR strobes Used by MIR logic to clock write or transfer data into MIR latches
			 Occurs at approximately 55 ns of the MLU cycle 8 ns pulse width
MSTROBE1	Neg	MC to 101,4	 IOB/CUB data strobe Output of strobe flip-
			flop • Sent to up converters
			on IO cards for conversion to CTµL levels
MTEFFR0	Neg	MT2 to MC	 Reset transfer enable F-F Resets transfer enable
	ана алана алана алана алана		flip-flop at approximately 265 ns of MLU cycle
MTEFFS0	Neg	MT1 to MC	 50 ns pulse width Set transfer enable F-F
			 Sets transfer enable flip-flop at approximately 165 ns of MLU cycle
			 Begins transfer enable period of cycle
MTRANEN1	Neg	MC to MIR(1-8)	50 ns puise widthTransfer enable
			 Gates transfer data through read/transfer select gates on MIR cards
			 Occurs at beginning of transfer enable period of MLU cycle

MNEMONI C	LOGIC CONVENTION	SOURCE DESTINATION	DEFINITION
MTSFFR0	Neg	MT2 to MC	• Reset transfer strobe F-F
			 Resets output/transfer strobe generator at approximately 245 ns of MLU cycle
			• 50 ns pulse width
MTSFFS0	Neg	MT1 to MC	• Set transfer strobe F-F
			 Sets output/transfer generator at approximately 185 ns of MLU cycle
			• 50 ns pulse width
MWINITP1	Neg	MT1 to MC	Write initiate
			 Used with write control signal to generate initiate memory signal (MINTPL0)
			• Occurs at approximately 55 ns of MLU cycle
			• 50 ns pulse width
MWINNEN0	Neg	MC to UC2	• Write inner enable - ECL
			 Output of MC decode logic whenever inner word of PE write data is to be written into PEM
			 Sent to up converter logic for conversion to CTuL level
MWINNEN1	Neg	UC ₂ to PEM	Write inner enable - CTuL
			 CTuL level that enables the PEM to write inner word of PEM data (bits 8 through 39)
			 Signal is valid from approximately 60 ns to 210 ns of write cycle

MNEMONIC	LOGIC CONVENTION	SOURCE DESTINATION		DEFINITION
			-	
MWOUTEN0	Neg	MC to UC2		Write outer enable -ECL
				Output of MC decode logic whenever outer word of PE write data is to be written into PEM
			a	Sent to up converter logic for conversion to CTµL level
MWOUTEN1	Neg	UC ₂ to PEM	•	Write outer enable - CTµL
			•	CTUL level that enables the PEM to write inner word of PEM data (bits 0 through 7 and 40 through 63)
			•	Signal is valid from approximately 60 ns to 210 ns of write cycle
MWPROTP1	heg	MT1 to MC		Write protect
				Sets the memory protect error flip-flop if error has been detected or sets write enable flip- flop if no error is det- ected
			•	Occurs at approximately 40 ns of read or write cycle; is suppressed by MZTPWCW-0 during transfer cycle to prevent setting of write enable flip-flop
			•	50 ns pulse width
				•
MYW-W050	Neg	UC(1-3) to PEM	٥	PEM memory address bits
through MYW-W150			•	Eleven-bit address that is sent to PEM as CTµL levels
				Used by PEM to access the desired location for read or write operation
			•	Bits are valid from approxi- mately 20 ns of MLU cycle to approximately 20 ns of next cycle

A-13

MNEMONIC	LOGIC CONVENTION	SOURCE DESTINATION	DEFINITION
MZTMWCW0	Neg	104 to CUB	 CUB output data strobe
and MZTMWCW2			 Pair of strobes that allow CUB to accept read or transfer data
			 Gated out to CUB with read data during output enable period of MLU cycle or with transfer data during transfer enable period of MLU cycle
MZTMW IW0	Neg	IO1 to IOSS	 IOB output data strobe
			 Strobe that allows IOSS to accept read data
			 Gated out to IOSS with read data during output enable period of MLU cycle
MZTPWCW0	Neg	MC to MT_1	• Transfer cycle
			 Output of transfer flip- flop when flip-flop is set by FZTPWCW-0
			 Indicates that MLU is performing transfer operation
			 Conditions other MLU logic to allow transfer of data from PE to CUB
			 Prevents MWPROTP-1 from setting write enable flip- flop; this, in turn, pre- vents MLU from issuing write enable signals to PEM
			стана с на селото на По селото на

MNEMONIC	LOGIC CONVENTION	SOURCE DESTINATION	DEFINITION
PLW-W000 through	Pos	PE to MIR (1-8)	• PE input data
PLW-W630			 ECL level data bits sent form PE to PE/IO select gates on MIR
			cards
			at CU but, at this point in data flow, is indistin- guishable from PE write data
			 Data is valid from app- roximately 50 ns to 70 ns
			• One clock period wide
PYW-W050 through PYW-W150	Pos	PE to UC(1-3)	 PE memory address register bits
11₩~₩1)~~0			 ECL level address bits sent from PE to up converters for conversion to CTµL levels
			 CTµL levels to be used by PEM to access desired memory location for read or write operation
			 Four low-order ECL level bits are also examined by memory protect logic as part of memory protect ac- tivity
PYW-W050 through PYW-W080	Pos	PE to MC	 Memory protect bits of memory address
11W W000			 Memory protect circuits on MC card examine these bits as part of memory protect
			activity

MNEMONIC	LOGIC CONVENTION	SOURCE DESTINATION		DEFINITION
PE30	Pos	PE to MT1	¢	E bit signal
				Sent by PE to allow pass- age of the outer word of PE write or transfer data (bits 00 through 07 and 40 through 63) through the MLU
				Sets the E bit latch on MTl to generate MEOBIT-Ll
			•	At least one clock period wide
P130	Pos	PE to MT1	•	El bit signal

- Sent by PE to allow passage of the inner word of PE write or transfer data (bits 08 through 39) through the MLU
- Sets the El bit latch on MTl to generate MEIBIT-L1
- At least one clock period wide

APPENDIX B

WIRE LIST

Table 14A: WRITE/TRANSFER Data from PE to MIR Cards (OUTER WORD)

B-1

B-2

B-3

•

Table 16A: WRITE Data from MIR to Up Converter (UC) Cards (OUTER WORD)

Table 16B: WRITE Data From MIR to Up Converter (UC) Cards (INNER WORD)

B-6

B-7

Table 18A: READ Data from PEM to MIR Cards (OUTER WORD)

Table 18B: READ Data from PEM to MIR Cards (INNER WORD)

DESTINATION OF SIGNAL SOURCE OF SIGNAL SIGNAL Major Connector & Major Connector & NAME Component Pin Component Pin J20-D32 PE MOWPW00--1 MIR J08-A03 **-**B32 **4** -C11 Δ A A 01 -C33 -A27 02 -A33 -C15 03 -C35 04 -D18 : : -A35 -B24 05 . • ,-D36 V-A15 06 07 J08-D26 J20-B36 J21-A23 40 J09-A03 **A** -C11 A -C23 41 -B24 42 -A27 -C15 -D24 43 -C29 -D18 44 -B24 -B30 45 -D30 46 🐨 -A15 -A29 **J09-**D26 47 J10-A03 -D32 48 -B32 -C11 49 -C33 -A27 50 -C15 -A33 51 -C35 52 -D18 -B24 -A35 53 -D36 54 -A15 -B36 55 J10-D26 J11-A03 -D38 56 -B38 57 **A** -C11 -C39 58 -A27 -C15 -A39 59 -D18 -C41 60 -A41 -B24 61 -D42 62 - 😿 -- A15 Ø J21-B42 MOWPW63--1 MIR **J11-**D26 ΡE

Table 19A: READ Data from MIR Cards to PE (OUTER WORD)

	STONAT	SOURCE	OF SIGNAL	DESTINAT	ION OF SIGNAL
	NAME	Major	Connector &	Major	Connector &
· [Component	Pin	Component	Pin
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MIR	J04-A03 $-C11$ $-A27$ $-C15$ $-D18$ $-B24$ $-A15$ $J04-D26$ $J05-A03$ $-C11$ $-A27$ $-C15$ $-D18$ $-B24$ $-A15$ $J05-D26$ $J06-A03$ $-C11$ $-A27$ $-C15$ $-D18$ $-B24$ $-A15$ $J06-D26$ $J06-D26$ $J06-D26$ $J06-D26$ $J07-A03$ $-C11$ $-A27$ $-C15$ $-D18$ $-B24$ $-A15$ $J06-D26$ $J07-A03$ $-C11$ $-A27$ $-C15$ $-D18$ $-B24$ $-A15$	PE	J19-A23 → -C23 -B24 -D24 -C29 -B30 -D30 -A29 -D32 -B32 -C33 -A33 -C35 -A35 -D36 -B36 -D38 -B38 -C39 -A39 -C41 -A41 → -D42 J19-B42 J20-A23 ▲ -C23 -B24 -D24 -C29 -B30 -D30 -A39 -C41 -A41 -D24 -
	MOWPW391	MIR	J07-D26	PE	J20-A29

Table 19B: READ Data from MIR Cards to PE (INNER WORD)

و ا

Table 20A: READ/TRANSFER data from MIR to IO Cards (OUTER WORD)

Table 20B: READ/TRANSFER data from MIR to IO Cards

(INNER WORD)

·	. 12	18 - 15 A				en distriction
---	------	-----------	--	--	--	----------------

ſ	0 T 0 3 7 4 T	SOURCE	OF SIGNAL	DESTINAT	ION OF SIGNAL
	SIGNAL MARSE	Major	Connector &	Major	Connector &
	NAME.	Component	Pin	Component	Pin
	PYW-W050 06 07 08 09 10 11 12 13 14 PYW-W150 FIMC1 FZTFWCW0 FRMPR00 FMSEL1 FMDSEL01 FMDSEL11 FREAD1 FMEMPR01 PE30	PE	J19-C47 J19-A47 J20-C47 J20-A47 J19-D48 J19-B48 J20-D48 J20-B48 J20-B48 J20-A45 J21-D48 J21-B48 J20-C39 -A39 -C41 -A41 -D42 -B42 -B42 -B42 -B44 J20-B44 J19-C45		J16-B08 J17-B08 J17-A09 J16-A03 J16-A05 J17-A03 J17-A05 J17-C35 J18-A03 J18-A05 J15-C17 ▲ -C33 -B02 -B36 -D44 -C35 ▼-A35 J15-D48 J12-A03
	P130		JIS-A45	MT	J12-B02
	MPROER1 MYW-W050 06 07 08 09 10 11 12 13 14 MYW-W150 MWOUTEN1 MWINNEN1 MUNITPL1 MWOUTEN0 MWINNEN0 MUNITPL0	MC UC A UC MC MC MC	J15 A03 J16-J03 J16-D14 J17-C03 J17-D14 J16-C27 J16-B02 J17-C27 J17-B02 J17-B02 J17-D36 J17-B02 J17-B02 J17-B02 J17-B02 J17-B02 J17-B02 J17-B02 J17-B02 J17-B02 J17-B02 J17-A27 J18-B02 J17-A27 J18-B02 J17-A27 J15-A29 J15-A17	PE PEM PEM UC UC	J21-C45 J22-C39 J24-C33 J22-B38 J24-D42 J22-A47 J24-C29 J22-B24 J24-D06 J22-A11 J24-C15 J22-B20 J24-B30 J22-D38 J24-B36 J17-D26 -C11 J17-C39
•			•		
			an an an an an an Ar <u>a</u> n. An Arainn Arainn		
					 A state of the sta

Table 21A: Address and Control Signals List

٠.

Ĩ	STGNAL.	SOURCE	OF SIGNAL	DESTINAT	ION OF SIGNAL
	NAME	Major	Connector &	Major	Connector &
+		Component	<u>r m</u>	Component	<u>r ±11</u>
	MTRANEN1	MC	J15-B48	MIR ₈	J11-D14
		IR ₈	JII-D14	MIR ₇	J10-D14
		MIR	J10-D14	MIR6	J09-D14
		MIR ₆ .	J09-D14	MIR ₅	J08-D14
		MIR ₅	J08-D14	MIR	J07-D14
		MIR	J07-D14	MIR4	J06-D14
		MIR	J06-D14	MIR ₃	J05-D1 ⁾ 4
	MTRANEN1	MIR	J05-D14	MIR	J04-D14
	MOUTPEN1	MC	J15-B30	MIR	J11-C17
		MIR8	J11-C17	MIR	J10-C17
		MIR	J10-C17	MIR	J09-C17
		MIR	J09-C17	MIR	J08-C17
		MIR	J08-C17	MIR	J07-C17
		MIR	J07-C17	MIR	J06. C17
		MIR	J06-C17	MIR	JC2-C17
	MOUTPEN1	MIR	J05-C17	MIR	• JO4-C17
	MPTWSEL1	MC	J15-A21	MIR	J11-B42
·		MIR	J11-B42	MIR	J10-B42
		MIR	J10-B42	MIR	J09-B42
		MIR	J09 - B42	MIR	J08-B42
		MIR	J03-B42	MIR	J07-B42
		MIR	J07-B42	MIR	J06-B42
		MIR	J06- B42	MIR	J05-B42
	MPTWSEL-1	MIR	J05-B42	MIR	J04-B42
•	MIOWSEL1	MC	J15-C21	MIR	J11-D44
		MIR	J11-D44	MIR	J10-D44
		MIR ₇	J10-D44	MIR	J09-D44
		MIR	J09-D44	MIR	J08-D44
		MIR	J08-D44	MIR	J07-D44
		MIR	J07-D44	MIR	J06-D44
		MIR	J06-D44	MIR	J05-D44
	MIOWSEL1	MIR	J05-D44	MTR_	.TO4-D44
		3		2	
- J					l 11 de la companya d

Table 21B: Address and Control Signals List

STGNAT.	SOURCE	OF SIGNAL	DESTINAT	ION OF SIGNAL
NAME	Major Component	Connector & Pin	Major Component	Connector & Pin
MEOBITL1	MC	J15-D32	MIRo	J11-B44
	MIR	JII-B44	MIR	J10- B44
	MIR	JIO-B44	MIR	J09-B44
MEOBITL1	MIR	J09-B44	MIR	J08-B44
MEIBITL1	MC	J15-D36	MIR 5	J07-B44
	MIR ₅	J07-B44	MIR,	J06-B44
	MIR	J06- В44	MIR	J05- B44
METBITLL	MIR	J05-B44	MIR	J04-B44
MSMIRP8-71	MT	J13-B20	MIR,	J10-C47
7 7		1 -C05	MIR	J08- C47
6		-A21	MIR,	J06-C47
5	MT _O	J13-B14	MIR	J04-C47
4	MT ₁	J12-B06	MIR ₈	J11-C47
3		– D08	MIR	J09-C47
2		A15	MIR	J07-C47
MSIMRP1 -1	MT.	J12-A09	MIR	J05-C47
MIOROSL1	мс	J15-A23	IO	J01- 70
1	IO	J01-70	IO	J02- 70
MIOROSL1	IO	J02-70	IO	J03- 70
MIOROSL3	IMC	J15-C23	IO	J04-70
Ī	IO	JO4-70		J05-70
MIOROSL3		J05-70	IOG	J06- 70
MCURTSL1	. MC	J15-B14	IO	J01- 72
1	IO	J01-72	IO	J02-72
MCURTSL1	IO	J02-72	IO	J03- 72
MCURTSL3	MC	J15-A15	IO _{1.}	J04- 72
1	IO _{),}	J04-72	IO	J05- 72
MCURTSL3	IO	J05-72		J06- 72
MSMIRPL1	MT	J12-C15	MT ₁	J12- D12
MSMIRPLO		J12-C17	MT	J13- D12
			2	
			•	•

Table 21C: Address and Control Signals List

.

	STGNAL	SOURCE	OF SIGNAL	DESTINAT	ION OF SIGNAL
	NAME	Major	Connector &	Major	Connector &
		MT	T12, 405	MC	
		^{1/11} 1		A A	D26-?
	MEIBLILL		-005		-120
	MWPROTP1		-A35		-A41
	MWINITP1	MT 1	JT5-C53		-B24
	PYW-W05-0	UC	J16-B08		- B42
	06		J16-A09		-3B44
	07		J17-B08		-A45
	PYW-W080	UC	J17-A09		-039
	MCABCIRO	POWR	J25-E		-C29
:	MCURSEL-L1	MT ₂	J13- A05		-C11
-	MIORSEL-L1	MT	J13-C05		-B18
•••	MTEFFSO	MT	J12- B48		-в26
	MTSFFSO	13	J12-B30		-B12
	MLCFFRO	2	J13- B36		-D26
	MTSFFRO	2	-A39		- B06
-	MTEFFE 0	2	-A29	•	-D14
	MOEFFSO		- B48		-A11
	MOSFFSO	2	J13-B30		- A09
	MOSFFRO	₩3	J14-A39		C05
	MOEFFRO	MT ₃	J14-A29	MC	J15-B08
	MZTPWCWO	MC	J15-B20	MT ₁	J12-A ¹ 41
	MSTROBE1	MC	J15-A05		J01-04
1	MSTROBE1	IO	J01- 04	IO	J04-04
·	MCURSEL1	MC	J15- C45	MT ₂	J13-A03
•	MIORSEL1		-C15	MT	J13-B02
	MIMCINP1	MC	J15-C41	MT ₁	J12-A11
	MIMCTNP1	MT,	J12-	MT ₁	J12-
	MIMCTRP1	MT	J12- B24	MT	J13-A11
	MIMCTSP1	MT	J13- B24	MT	J14-A11
	MSCUIOP1	MT	J12-A33	TM	J13-A23
		→ →	•		
					•

Table 21D: Address and Control Signals List

	STONAT	SOURCE	OF SIGNAL	DESTINAT	ION OF SIGNAL
	NAME	Major	Connector &	Major	Connector &
Į		Component	Pin	Component	Pin
	-0.4v	MC	J15-A47	MC .	J15-C47
	-0.4v	MC	JI5-C47	MT	J14-A41
	-0.4v	MT	J14-A41	MT	J13-A41
	-0.4v	MT	J13-A41	MT	J12-B08
	-0.4v source	MT ₁	J12- B08	MT_1	J12-C41

.:

.

Table 21E: Address and Control Signals List

SIGNAL NAME	РЕМ	X	Р	EM
	Backplane	Connector &	Paddle	Pin
	Pin Number	Pin Number	Board	Number
MOWFWOO1 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47 45 46 47 48 49 50 51 52 53 54 55 56 57 58 55 56 57 59 60 61 62 MOWIW630	1302-08 1302-19 1402-20 1302-09 1302-18 1402-20 1302-18 1402-27 1402-21 1102-13 1102-13 1102-20 1202-14 1202-22 1102-12 1102-22 1202-11 1202-23 1102-38 1102-38 1202-38 1202-38 1202-38 1202-39 1102-39 1102-39 1102-39 1102-39 1102-39 1102-51 1102-52 1202-51 1102-52 1202-52 1102-52 1202-41 1202-53	J5A-C45 ▲ -D44 -C41 -C39 -D36 -C35 -C27 -D26 -D24 -C23 -C21 -D20 -C17 -C15 -D14 -D12 -C11 -C09 -D08 -D06 -C05 ▼ -C03 J5A-D02 J6A-B48 ▲ -A47 -A45 -B44 -B42 -A45 -B44 -B42 -A27 -B26 ▼ -A35 J6A-A33	P2 ▲	$\begin{array}{c} -109\\ -110\\ -112\\ -113\\ -115\\ -116\\ -121\\ -122\\ -123\\ -124\\ -125\\ -126\\ -128\\ -129\\ -126\\ -128\\ -129\\ -130\\ -131\\ -132\\ -131\\ -132\\ -131\\ -132\\ -133\\ -134\\ -135\\ -136\\ -137\\ -138\\ -139\\ -140\\ -141\\ -142\\ -143\\ -153\\ -154\\ -148\\ -149\end{array}$
			•	

 Table 22A:
 WRITE data from PEMX to PEM (OUTER WORD)

1

B-20

SIGNAL NAME	РЕМ	X	Р	ΕM
	Backplane Pin Number	Connector & Pin Number	Paddle Board	Pin Number
MOWFW081 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 MOWIW390	1302-13 1302-20 1402-14 1402-22 1302-12 1302-22 1402-11 1402-23 1302-38 1302-38 1302-39 1302-39 1302-39 1302-39 1302-39 1302-37 1402-51 1302-43 1302-50 1402-51 1302-43 1302-52 1402-41 1402-52 1302-42 1302-52 1402-41 1402-53 1102-08 1102-19 1202-08 1202-20 1102-18 1202-07 1202-21	J5A-A45 -B44 -A41 -A39 -B36 -A35 -A27 -B26 -B24 -A23 -A21 -B20 -A17 -A15 -B14 -B12 -A11 -A09 -B08 -B06 -A05 -A05 -A03 ♥ $-B02J^{1}_{+}A-D48-C47-C45-D44-D42-C27-D26♥$ $-C35J^{1}_{+}A-C33$		$-109 \\ -110 \\ -112 \\ -113 \\ -115 \\ -116 \\ -121 \\ -122 \\ -123 \\ -124 \\ -125 \\ -126 \\ 128 \\ -129 \\ -130 \\ -131 \\ -132 \\ -133 \\ -134 \\ -132 \\ -133 \\ -134 \\ -135 \\ -136 \\ .137 \\ -138 \\ -139 \\ -140 \\ -141 \\ -142 \\ -143 \\ .153 \\ .154 \\ -149 \\ -149 \\ -149 \\ -149 \\ -149 \\ -149 \\ -149 \\ -149 \\ -140 \\ -141 \\ -142 \\ -148 \\ -149 \\ -140 \\ -$

Table 22B: WRITE data from PEMX to PEM (INNER WORD)

•

	РЕМ	X	P	EM
SIGNAL	Backplane	Connector &	Paddle	Pin
NAME	Pin Number	Pin Number	Board	Number
MIWFWOO1 Ol O2 O3 O4 O5 O6 O7 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 MIWFW630	1302-05 1302-23 1402-04 1402-18 1302-35 1302-53 1402-34 1402-48 1102-07 1102-25 1202-13 1202-28 1102-37 1102-55 1202-43 1202-43 102-55 1202-43 102-58 1102-24 1202-17 1102-36 1102-54 1202-17 1102-36 1102-54 1202-47 1102-54 1202-47 1102-29 1202-247 1102-29 1202-247 1102-25 1102-29 1202-247 1102-29 1202-245 1102-59 1202-36 1202-54	J6A-A21 A -B20 -A23 -B24 -A15 -A17 -B12 -A11 -B06 -B08 -D30 -D32 -A05 -A03 -D32 -A05 -A03 -D44 -C45 -C41 -C39 -C35 -D36 -023 -C21 -C27 -D26 -D14 -D12 -C17 -D18 -C03 -C05 V -C09 J6A-D08	P2 ▲ P2	-157 -158 -156 -155 -161 -160 -163 -164 -167 -166 -183 -182 -168 -169 -174 -173 -176 -177 -180 -177 -180 -179 -188 -189 -185 -186 -194 -194 -195 -192 -191 -201 -200 -197 -198
	• • • • • •			
			an Taona ang ang ang ang ang ang ang ang ang a	
		•	•	

Table 23A: READ data from PEM to PEMX (OUTER WORD)

۰.

۰.

Γ	nallan calandal Mandala Mahana nalan karak darini darini dari kara karanan dari karanan dari kara kara kara ka	РЕМ	X	р	EM
	SIGNAL NAME	Backplane Pin Number	Connector & Pin Number	Paddle Board	Pin Number
	MIWFW081 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 MIWFW390	1302-07 1302-25 1402-13 1402-28 1302-37 1302-55 1402-43 1402-58 1302-06 1302-24 1402-17 1302-36 1302-54 1402-31 1402-47 1302-15 1302-29 1402-47 1302-15 1302-29 1402-24 1302-29 1402-24 1302-25 1302-59 1402-36 1402-54 102-53 102-23 102-35 102-31 102-35 102-35 102-34 102-34	J ⁴ A-C21 A -D20 -C23 -D24 -C15 -C17 -D12 -C11 -D06 -D08 -B30 -B32 -C05 -C03 -B42 -A45 -A23 -A21 -A27 -B26 -B14 -B12 -A17 -B18 -A03 -A05 -A09 J4A-B08	P1 ▲ ↓ ₽1	-157 -158 -156 -155 -161 -160 -163 -164 -167 -166 -183 -183 -182 -168 -169 -174 -174 -173 -176 -177 -180 -177 -180 -179 -188 -189 -185 -185 -186 -194 -195 -192 -191 -201 -200 -197 -198

.

•

Table 24A: CUB READ/TRANSFER data from MLU (IO) to PEMX (OUTER WORD)

SIGNAL NAME	PEI	A X	MLU	(10)
	Connector	Pin	Connector	Pin
20172701270127011911091017121070010112110910101010101010101010101010101	Number	Number	Number	Number
MOWCWO80 ▲ 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2€ 29 30 31 32 33 34 35 36 37 ▼ 38 MOWCW390 MZTMWCW0 MZTMWCW2	J4B J4B J5B J6B J6B J5B J6B	-A39 -B44 -B48 -C03 -D08 -D12 -C17 -C21 -D26 -D30 -C35 -C39 -D44 -D48 -A03 -B08 -B12 -A17 -A21 -B26 -B30 -A35 -A39 -B44 -C03 -D08 -D12 -C17 -C21 -D26 -D30 -C35 -C47 -B48 -D48	J06 J05 ↓ J05 J04 J04 J04 J01 J04 J01 J04 J01	-56 -62 -68 -08 -14 -20 -26 -32 -38 -14 -50 -56 -62 -68 -08 -14 -20 -26 -32 -38 -14 -50 -56 -62 -08 -14 -50 -56 -62 -32 -38 -14 -50 -56 -62 -62 -32 -38 -14 -50 -56 -62 -62 -62 -32 -38 -14 -50 -56 -62 -65 -65 -68 -68 -68

Table 24B: CUB READ/TRANSFER data from MLU (IO) to PEMX (INNER WORD)
Connector NumberPin NumberConnect NumberMOWIWOOOJ4B-BO2J06 01 -B06-A11 02 -A11-B20 03 -B24-B24 04 -B24-B24 06 -A29-A29 07 J4B-A33 106 J5B-D38 41 -D42-J03 43 J6B-B02 43 J6B-B02 46 -A11 46 -A11 46 -A11 48 -B24	or Pin <u>Number</u> -05 -11 -17 -23 -29 -35 -41 -47 -53 -59 -59 -59
Number Number Number MOWIWOOO J4B -BO2 J06 01 $-B06$ $-A11$ $-B06$ 02 $-A11$ $-B20$ 03 $-A15$ $-B24$ 04 $-B24$ $-B24$ 06 $-A29$ $-A29$ 07 J4B $-A29$ 07 J4B $-D38$ 41 $-D42$ $-D42$ 42 J5B $-C47$ 43 J6B $-B02$ 44 $-B06$ $-A11$ 45 $-A15$ $-A11$ 46 $-A15$ $-A11$ 46 $-A29$ $-A29$ 48 $-B24$ $-B24$	-05 -11 -17 -23 -29 -35 -41 -41 -47 -53 -59 -59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-05 -11 -17 -23 -29 -35 -41 -41 -47 -53 -59
49 50 51 52 53 52 53 54 55 55 56 56 57 58 59 60 60 61 € 62 MOWIW630 J6B -A29 -A33 -333 -342 V J02 J02 J01 -066 -C11 -C15 -D20 -D24 -C29 -D38 J01 -D42 J01 -D38 J01 -D42 J01 -D38 J01 -D42 J01 -D38 J01 -D42 J01 -D38 J01 -D42 J01 -D42 J01 -D20 -D24 -D38 J01 -D42 J01 -D42 J01 -D38 J01 -D42 J01 -D42 J01 -D38 -D42 J01 -D42 J01 -D38 -D42 J01 -D42 J01 -D38 -D42 J01 -D42 -D42 -D38 -D42 J01 -D42 -D42 -D42 -D42 -D42 -D38 -D42	-07 -05 -11 -17 -23 -29 -35 -11 -47 -53 -59 -65 -05 -11 -17 -23 -29 -35 -41 -47 -53 -59 -55 -95 -11 -17 -23 -29 -35 -41 -47 -53 -59 -55 -95 -11 -17 -23 -29 -35 -41 -47 -53 -59 -55 -95 -11 -17 -23 -29 -35 -41 -47 -53 -59 -53 -59 -59 -53 -59 -59 -59 -53 -59 -59 -59 -53 -59 -59 -53 -59 -59 -59 -53 -59 -59 -59 -59 -59 -59 -53 -59 -50
	 A second sec second second sec

Table 25A: IOSS READ/WRITE data from PEMX to MLU (IO) (OUTER WORD) .

		РЕМ	Χ.	РЕМ		
•	SIGNAL NAME	Backplane Pin Number	Connector & Pin Number	Paddle Board	Pin Number	
	MYW-W050 06 07 08 09 10 11 12 13 14 MYW-W150 MINITPL1 MWOUTEN1 MWINNEN1	1304-55 1304-49 1304-49 1304-43 1404-38 1404-44 1404-37 1304-54 1304-48 1404-43 1404-43 1404-48 1404-50 1304-36 1304-38 1304-42	J4A-C39 J6A-C33 J4A-B38 J6A-D42 J4A-A47 J6A-C29 J4A-B24 J6A-D06 J4A-A11 J6A-C15 J4A-B20 J6A-B36 J6A-B30 J4A-D38	PI P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1	-145 -181 -178 -175 -172 -184 -187 -199 -196 -193 -190 -147 -151 -146	

Table 26: Address and Control Signals from PEMX to PEM

.

MLU		PEM		PEMX	_
CONNECTOR NUMBER	MAJOR COMPONENT	PADD LE BOARD	MAJOR COMPONENT	CONNECTOR NUMBER	REMARKS
J31 (J1) J30 (J2) J29 (J3) J28 (J4) J27 (J5) J26 (J6)	I01 I02 I03 I04 I05 I06	P2	INNER WORD part of connector base OUTER WORD	J1 J2 J3 J4A J4B J5A	1) MLU Connectors J26 thru J31 will be found as connectors J6 thru J1 respectively in tables 24 & 25
J4 J5 J6 J7 J8 J9 J10	MIR2 MIR3 MIR ^{1,} MIR5 MIR1 MIR6 MIR7		part of connector base	J5B J6A J6B	2) In MLU there are connectors J19,J20, J21 to connect with PE connectors MLU1, MLU2, MLU3 respective ly when PU (system) is not on PEMX
J11 J12 J13 J14 J15	MIR ⁸ MT1 MT2 MT3 MC				3) In MLU there are connectors J22,J23, J24 to connect with PEM Paddle Boards P1&P2 when PU (system is not on PEMX
Л6 Л7 Л8	UC1 UC2 UC3				4) When testing PEM on PEMX, PEM Paddle Boards Pl&P2 are connected to PEMX connectors J4A, J5A, and J6A
					5) When PU(system) is on PEMX, MLU con- nectors J26 thru J31 are connected to PEMX connectors J48,J58, J68 and MLU connect- ors J19 thru J21 are
,					connected to PEMX connections J1, J2, and J3

Table 27: List of MLU Connectors and Corresponding Major Components

.

.

APPENDIX C

CONNECTOR CONFIGURATION

PIN SIDE VIEW

Figure 12: Pin Configuration of PE/MLU Connector

Remarks: 1.

Pins A45 & 47 are used for signal in all PE/MLU cards, but in MIR cards they are used for +4.8V.

2. Pins C5 & 23 are used for signal in all PE/MLU cards, but in UC cards they are used for +4.8V.

3. Pins D6, D24, and D42 are used for +1.32V in all PE/MLU cards but in UC cards they are used for +4.8V.

4. SIGN. stands for Signal.

5. Gab. stands for Ground.

		CARD	SIDE	VIE	W .
2	GROUND	7		•	+1.32
)	SIGNAL				+1.32
6	GFO UND		•		GROUN
8	GROUND			•••	SIGNA
10	GROUND				GROUI
12	SIGNAL		•	•	+4.81
14	GROUND		·	•	+4.'81
16	GROUND				GROUI
18	SIGNAL]		•	SIGNA
20	GRO UND			· ••	GROUI
22	GROUND				SIGNA
24	SIGNAL		•		GROUI
26	GROUND	_			SIGN
28	GRO UND				GROUI
30	GROUND				-3.2
32	SIGNAL				-3.2
34	GROUND			• •	GROU
36	SIGNAL		-		SIGN
3 8	GROUND	-			GROU
40	GROUND		•		SIGN.
42	GROUND				GROU
44	GROUND	_			SIGN.
46	SIGNAL	-			GROU
48	GROUND				GROU.
50	SIGNAL	4			SIGN
52	GROUND	_			GROU
54	GROUND	_	· ·		SIGN
56	GROUND	4			GROU
58	SIGNAL	_		•	GROU
60	GRO UND				GROU
62	SIGNAL		•		SIGN
64	GROUND				GROU
66	SIGNAL	<u>'</u>		_	SIGN
68	GROUND			. • * • •	GROU
70——	SIGNAL	,			GROU
72	SIGNAL	,			GROU

+1.32V		1
+1.32V		3
GROUND		5
SIGNAL		7
GROUND		9
+4.8V		11
+4.8V		13
GROUND		15
SIGNAL		17
GROUND		19
SIGNAL		21
GROUND		23
SIGNAL		25
GROUND		27
-3.2V		29
-3.2V		31
GROUND		33
SIGNAL		35
GROUND		37
SIGNAL		39
GROUND		41
SIGNAL		43
GROUND		45
GROUND		47
SIGNAL		49
GROUND		51
SIGNAL		53
GROUND		55
GROUND		57
GROUND		59
SIGNAL		61
GROUND		63
SIGNAL		65
GROUND		67
GROUND		69
GROUND		71

Figure 13: Pin Configuration of MLU (IO card) Connector

C-3

•

·