Toward a Methodology of
Protection Implementation

(In TENEX: Memo 1)

Chuck Wall
February 4, 1974

Technical Memo ™,74-4

1. Introduction

This memo is a very brief intreduction to a proposed methed of protection
implementation in programmed systems, In particular, this discussion will be
limited to an examination of the TENEX JOB, FORK and FILE objects at their
design level. 1In gemeral, this memo takes the point of view that protection
implementation in new or existing systems should be approached on a sound
methodelogical basis. The ad-hoc transferring of ﬁpfctecticn mechanisms"’
from one system to another on the theory that "what is good for the goose 3s
alse good for the gander'" is precisely what‘ should se avoided.

We do not argue that the methodology proposed :s in any way ‘the only
approach or the best approach, but only that Ad-Hoc rocedures be avoided.
There has been a considerable amount cf research intc security and protection
in programmed system. The meg:hodolagy proposed in this memo is based
primarily on the research into 'Models of Protection' by Jones [J73] and the
ﬁyﬂra system of Wolf, et. al [W73]. We believe that Jones' Model is general
enough to cover a wide range cf protection policies.

In this memo we will attempt some ‘tentative lefinitions of various en-
tities and provide some informal interpretations in the hope of provoking
farther discussien. We then introduce Jones' 'Mcdel" and attempt to evaluate
TENEX protection from the viewpoint of ‘that "Model™. Finally we describe the

proposed methodology at an introductory level. |

Z. Background Information

The Hydra system [W73] was designed to facilitate 'the creation of
highly secure systems”. Protection is a specific comsideration in the
Hydra design philosophy:

“Wrotection: Flexibility and protection are closely related, but
‘not inversely proportional. We believe that protection is not
merely a restrictive device imposed by 'the system' to insure

the integrity of user operations, but is a key tool in the proper
design of operating systems. It is essential for protection to
exist in a uniform manner throughout the system, and not to be
applied only to specific entities (e.g., files). The idea of
capabilities (in the sense of Demnis [DVH66] is most important

in the Hydra design; the kernal provides a protection facility
for all entities in the system, This protectian includes not only
the traditional read, write, execute capabilities, but arbitrary
protection conditions whose meaning is determined by higher-level
software. ™ ‘

The Hydra designers censider protection in the following framework:

Uprotection is, in our view, a mechanism. A system utilizing
that mechanism may be more or less secure depending upon policies
governing the use of the mechanism (for example, passwords and the
like are policy issues) and upon the reliability of the programs
which menipulate the protected entities. Thus the design goal of
the Hydra protection mechanism is to provide a set of concepts and
facilities on which a system with an arbitrarily high degree of
security may be built, but not to inherently provide that security.
A particular consequence of this philosophy has been to discard the
notion of 'ownership®. While ownership is a useful, perhaps even
important, comcept for certain ‘security' strategies, to include the
concept at the most primitive levels would be to exclude the construc-
tion of certain cther classes of truly secure systems.”

This is a reasonable viewpoint for impiementation, but in this memo it will
be useful to talk about protection pelicies and protection mechanisms when
we refer to protéction. By protection policies we mean both the global

policies that a systems' protection mechanisms enforce and the individual |
user policies the protection mechanism enable. The Hydra designers soundly

reject "hierarchical system structures' as a possible protection mechanism.

Page 3

“Our rejection of hierarchical system structures, and especially
ones which employ a single hierarchical relation for all aspects

of system intevaction, is also, in part, a consequence cf the distinction

between protection and security. A failure to distinguish these issues

coupled with a strict hierarchical structure leads inevitably to

a succession of increasingly privileged system components, and

ultimately to a "most privileged" one, which gain their privilege

exclusively by virtue of their position in the hierarchy. Such
structurss are inherently wrong, and are at the heart of scciety's
concern with computer security. Technologists like hierarcinical
structures; they are elegant, but experience fram the real world

shows they are not viable security structures. The problem, then,

which Hydra attempts to face squarely, is to maintain order in a

non-hierarchical enviromment.

This is a very strong viewpoint, but one which should be considered.

Lampson describes an operating system (CAL-~TSS[L6Sb]) that is 'built
arcurd a very powerful and general protection mechanism.' The central
protection mechanism in this system is called a "capability' and periorms
the following two fimctions:

1. it names an object in the system
2. it establishes a right to do certain things with the object

The system contains a comvenient method of grouping "c:apabilifgies" togetier
to form classes of 'capabilities" that provide "a rather {lexible meins for
authorizing various things to be done _without requiring the possessiun of a
iarge number of individual capabilities."

Fréeman [F74} discusses "Protection Mechanisms and Policies in the BCC
500 Operating System.' The protection ppliéies governing the mechanisms in
this system are based on an "ownership' éttribute. The BCC 500's protection
mechanisms should provide some significant insights intc the pro's ind con's
of the "ownership’ attribute. A more complete evaluation of these nechanisms
is forthcoming.

Jones [J73} defined a 'Model of Protection” that will be a vers useful

Page 4

tool in the examination and comparison of protection abilities of various
actual and proposed operating systems. This thesis forms the bases of

the methodology proposed in this memo.

Page 5

3. Protection Defined

We adopt Jones' views on protection that specify:

“A programmed system is a set of algorithms implemented in soft-
ware and hardware, mapping values input to that system to output
values. Protection is the enforcement of rules to maintain order
during the mapping activity. To be more precise the mapping activity
is described as a set of distinguishable processes each performing a
sequence of algoritims defined in the programmed system. The
processes share the use of data retaining objects. At any time each
process is aware of a set of objects and the specified ways each
object can be used. Order is maintained and interactions are made
limited and predictable by rules which regulate the acquisition and
use of access to cbiects. The enforcement of these rules is called
protection."

and establish the following:
Limits of the protection problem--a View from a La.rgér Context

"Protection is a part of a larger concern, called security,
that encampasses the regulation of activity both internal and
external to the programmed system. A secure camputer system depends

upon

1. controlled access to objects within the programmed system--
the topic addressed within this thesis

- 2. reliable hardware camponents

3. prevention of threats perpetrated outside the programmed
system, for example, monitoring or tapping commmication
lines, theft of data volumes, or illegal entry into the
programmed system through falsified identification.

To isolate protection from the other components of the security
problem, we assume that all physical resources used to implement a
computer system are completely reliable and free fram extarnal tampering.
We assume infallible verification of the identity of users requesting
service from the system. Since the protection component of security
address controlling access to entities within a closed universe
assumed to be free from any external influences, it can be studied

* separately."

Jones considers a 'protection system" as being composed "a policy and a set
of mechanisms buiit from hardware and software, the enforce and implement

Page 6

policy." It is useful to extend these ideas slightly to consider having

a set of pelicies (where each policy is independent of every other policy
in the sense that they do not conflict) and that the mechanisms may
possibly allow users to implement individualized protection policies that
provide for more or less protection than that which is provided by the
basic system policies. For example, if it is a system bolicy that user
directories are only accessible to the directory owner and the list of
users the owner specifies, the mechanisms should provide for the é.bility to
rake a particular directory public without attaching a list of all users

to some access directory,

Page 7

4, Definitions

It is convenient to be able to utter words that 'mean exactly what we
want them to mean, nothing more and nothing less'.t We will, of course, be
unabie to attain this goal, but will offer several definitions and informal
remerks in order to clarify our meaning. We hope also that by doing this

we can provoke discussions that will lead to better definitions. All of the

definitions to be present are motivated by Jones' thesis. We will attempt

to improve slightly on a few definitioms, but will accept Jones® definitions.

In those cases that we modify the definitions we will provide both versions.

Definition: (Jones') Object - refers to software-defined structured encoding

of information to which access is to be con-
trolied as well as to physical résources
tfcr example, a block of memory or a device)
{ours) include virtual rescurces (for example, a
system call and other operatiops that may be
implemented m firmware or software)

Remarks: An cbject is in gemeral anything that can potentially be accessed
and includes such things as files, subsystems, system calls, opera-
tions, processes, processors, core,...etc. '

Definition: (Jones') Enviromment - a table of rights each expressed as an
(obj ;act-na;ne, access-name) pair restricted
so that an access is named in a right only
'if it is applicable to the object named
in that right.

tAn approximate ''quote'’ of a original Lewis Carrol idea.
PP quo

Page 8

Remarks: An '“object-name" is the set of one or more global names that refer
to a specific object., It is assumed that each object is uniquely
jdentifiable. So there may be a many to one mapping from object-
names to an object, but not a one to many (two or more) mapping
from obj ect»ﬁame to object. Clearly devices like tape drives
can be referenced by either a mueumonic name or physical device
mmber. The access-name simply si:ecifies the access rights
that a particular enviromment has to a particular object.
Naturally an access-nzme cannot specify execute-access to a text
file which is not capable of being exccuted.

Definition: (Jones') Type - The set of all objects is partitioned into'

emiw}ale&zce clas;;s, eae'tch called a type
Most people who have been associated with the idea of time sharing have

at 1least an intuitive idea of what a process is abouvt. Nonetheless, it is

very difficult to precisely dzfine a process. Lampstn gives one viewpoint

which is useful [L5%a].
A process is a vehicle for the execution of progrmms, a logical proces-
sor which shares the physical processor with other programs. It con-
sists of a machine state, some resources it expencs in doing work, and
some additional structure to describe its memory and its access to objects.

Another useful viewpoint is that a process is the smallest object in the

system that can be independently scheduled for execution.

5. Introduction to Jones' 'Model of Protection"

 Jones' thesis defines a very general protection model and a method of
comparing protection policies in various operating systems. The model is
based on "three rules that are to be bound in order to describe any
individual system: '

- Enforcement Rule
- Right Transfer Rule
- Envirorment Binding Rule."

A camparison method called a “suitability measure'' is based on ' the need-
to-know principle; any any time a process has in its execution enviromment
only those rights required to perform the current task.”

We briefly introduce the model and discuss some of the important points

we will need later.

5.1 The Enforcement Rule

* The Enforcement Rule specifies that a process can exercise only those
rights vhich are m its current operating environment.

In this specification the word "current' indicates that a process exists
in different enviromments at different times and o;ﬁerating simply means that
the process is active, .Jones introduces the idea of ''enforcement of protection"
very nicely as follows: |

"A process sequentially exercises rights as specified by a program.
In general it is possible that the program directs an executing process
to violate protection, i.e., to exercise a right that is not in the
execution envirorment. Therefore either static compile time protection
checks or dynamic run time protection checks must be made to detect
attempted protection violations. If a check reveals that a protection
violation will occur, some action to avoid the violation must be taken.
For example, in the dynamic case, execution by the offending process
could be aborted. In the static case, the attempt to use a variable
that is not available could cause automatic declaration of a new variable
with the sme local name.

Page 1C

A process distinguishes an object that is to be referenced
by using a name for it. All names that can be uttered by the
process comprise its current name space. Because a process can
only reference those objects for which its enviromment contains a
right, we can assume that there exists one name space associated
with each execution environment. The name interpretation fimction
£, maps the name space associated with enviromment E to the set of

all objects.

fp: (names)---------eommoomoeoeooooo- >{objects}

Because name interpretation necessarily accompanies each
exercise of & right, correlating the performance o name inter-
pretation and protection checking will guarantee that all requisite
checks are made in support of the Enforcement Rule. We assume that
every object is uniquely identifiable, both in our discussion and in
actual systems. For the purposes of this thesis eath object is
identified by its unique global name, (To facilitaie readability of
the following prose, no strict distinction is made between the use of
the terms 'object® amd 'global name of an objectf. "he term 'chject!
is used for either of the two.) :

The name interpretation function can be as simple as the identity
function, if the name space of a process is the set of global names.
(More complex name interpretation functions will appea: in later
examples.) Ths name interpretation function itself can be used as a

form of protection. This can be achieved by letting th: range of f‘E.

be a proper subset of all objects. The result is that ¢.process in
E cannot access any object which is not in the range of ‘fB, for it

cannot name such an object.”

Jones limits the model to "the study of enviromments which are directly

represented, i.e., there exists an encoding ¢f environments inckpendent of

other types of variables in the system. The motivation for con ;id_erihg

only direct representation is so that access to enviromments can be controlled

as for any other type." Jones specifies the following three protiction
éhecki.ng mechanisms that provide protection enforcement at:

. Execution Site
- Object Site

» Access Site

~ Page 11

5.1.1 Execution Site Protection Enforcement

Jones states that execution site protection enforcement is the follow-
ing:

"A first extension of the name interpretation function incorporates
protection checking at the beginning of the interpretation path--the
site of execution, where local names are generated. For each environ-
ment there exists a capability list representation (Demnis § Van Horn
{DVH66]). Each right in an enviromment E is encoded as a capablll'ty
of the form (global object name X, access name A)."

The name interpretation functiom fE. is extended to include protection checking
and is called Fg. Jones then states that:

"Encoding protection data in an enviromment structure at the site of
execution has the fcllowing advantages:

1. It provides a name space (names are selectors into the capability
list} that includes names only for objects accessible from within
that environment.

2. It isclates within a single data structure all protection informa-
tion pertaining to execution in each emvirommeent. (This structure
need only be available when execution in the enviromment is in
progress.)

3. Protection checking can be performed without leaving the execution
site. By definition, F | prevents all violations of the Enforcement
Rule.”

We note the following disadvantages:

1. Once an enviromment obtains a capability to access an object it
must be guaranteed that the rights with respect to that object
for that environment do not change during the time the environ-
ment has the capability or that any change in a right is immediately
reflected in the capability that represents it locally.

2. It is not a viable method in instances where object-names are dynamic-
ally generated since there is no way to know in advance what the
name will be. For example, if the process requests the user
to supply the name of a file tn be accessed it is very doubtful
that the capability to access that file will already exist at the
execution site,

Page 12

There are however many instances when this type of protection checking
mechanism will afford efficient protected access. We do note however
that implementation of this particular type of protection mechanism in the
general sense of Hydra's [W73] 'Local Name Space" (INS) requires a considera-
ble amount of machinéry since an INS is uniquely associated with an invoca-
tion of a procedure. But it is indeed possible to consider particular cases
where this type of protection mechanism could be uéefuli}f implemented on
existing systems, | o

5.1.2 Object Site Protection Enforcemsnt

This form of protection simply means that protection checking is done
at the end of the name interpretatioh path. It is usually implemented as
some form of access list.

5.1.3 Access Site Protection Fnforcement

Here protection is associated with some point in the path from object-
name to access-name. An ‘aample, given by Jones, of this type of
protection is that of type checking as provided by Algol 68 compilers,

Jones also considers the idea of "interleaving of nime interpretation

and protection checking” and static verses dymamic checking.

5.2 Right Transfer Rule

""The Right Transfer Rule of the protection model specifies that every
protection system must define a policy to regulate the movement of rights
into and out of envircnments. In any particular system both the right trans-
fer policy and its implementation must be bound. (This contrasts with the
Enforcement Rule which is fixed for every protection system that the model

covers, althcugh implecmentations of it vary, for exarple with the representation

Page 13

of environments.)" Jones goes on to examine various right transfer policies
and to specify a set of primitive operations and later 'demonstrates that
these operations do form a set of building blecks suificient to construct

a variety of protecticn policies."

5.3 Enviromment Binding Rule

"The Enviromment Binding Rule of our model requires that each protection
system specify how a process can cross between eaviromments." In this rule
Jones considers the actions and circumstances inwvolved in environment cross-
ing and introduces a new primitive opération (/MPLIFY; "for cases in which
the right transfer primitives are insufficient to describe modification of
a parameter right as it enters the (target) ervirment." Jones notes in
the summary that 'because parameter passage operations are short, well-
defined and often executed, and therefore are candidates fu- implementation

in microcode or hardware."

5.4 Suitability Measure

Finally Jones discusses a method of comparing various protection
systems. Jones defines an accuracy measure and a suitability factor based on
a need-to-know principle. 'This principle can be stated as: A process
performing 2 task in some execution emviromment should have access to orly

the nbjects required in the performance of that task.”

Page 14

6. TENEX Objects |
This memo is limited in that it deals only with the TENEX Job, Fork and
File objects at a design level rather than the implementation level. This

is quite reasonable at this stage of the development of this series of memos
and more in-depth studies will be persued as the methodology is developed
and refined,

6.1 Job

In TENEX a Job is associated with the following:

1. The user who initiated the job

2. An account mumber

3. The user's file directory

4. A hierarchy of rumning and/br suspesded processes

5. A virtual memory | _
 Information about the job is contained in a Job Storage Block. This block
is composed of one or more pages and is referenced by the monitor and Exec.
It does not appear in any user process' virtual memory.

The user obtains a job £rom the job pool at login. The cnly information
maintained from the last time the user performed a login is that which has
been preserved in files. At logout all files are closed, all forks are

deleted and the job is returned to the job pool.

6:2 Forks
Each job is permitted*to have multiple simultaneously runnable processes
called forks. A typical fork structure is displayed in Fig, 6.2 below. |

Page 15

Parallel Inferior !
Pointer Pointer
Superior

Pointer fork hardle

Fork Table Format

Notes: b is a subsidiary fork of a ’
¢, d, e are subsidiary forks of b and are parallel :orks
f, g are subsidiary forks of e and are parallel forks

Figure 6.2 Fork Structure

The top level fork in all jobs is the exec. It is possibl: for a fork to
create inferior (subsidiary) forks but not parallel or susrior forks in the
structure. A fork is the smallest object in }'@iﬁ)ﬁ that i: individually
scheduled for execution. Comnmicatit-nul among forks is accomplished by:
| » sharing memory
+ termination, initiation, or suspension of a subs.diary fork
- pseudo (software simulated) interrupts
A fork may be assigned capabilities, but these in general are related
to either the job or the user capabilities. The capabilities a fork may
be passed are as folliows: ‘
Job Capabilities
process can activate terminal key PC for pseudo iﬁterrupt
process can =xamine monitor tables with GE[AB
process can mp the running monitor

process can exacute protected log functions

-Page 16

process can map privileged pages of files

Capabilities (amplified) which can be given to an inferior whether or
not the superior itself has them.

process can do map operations on super.ior
unprecessed PSI's cause freeze instead of temminztion
User Capabilities

user is a wheel

user has operator privileges

user can see system confidential informatiom

user can HALT TENEX
A fork, when created is assigned an area of storige called Process Storage
Block (PSB). The create fork monitor call will assign the PSP and add the
fork to the fork hierarchy in the JSB. |

6.3 Files

In general the TENEX file system proviles u repository lor information
in the conventional sense and also gives t)';e user access to devices not.
usually associated with files.

In this memo we are concerned with the protection mecharisms available
in TENEX. To this end we refer the reader to Appindix 1 which contains a

description of that protection that has been copied from the 'ENEX EXEC manual.

Page 17

7. Relating the Model to TENEX Objects

In terms of the model, all the protection mechanisms I -have seen occaur
at the access site. The passing of "capabilities" to forks can be analyzed
using the models rights transfer rule. Environment Binding appears to
occur primarily at the job level. Monitor calls are jmplemented as procedures
and appear toc be good candidates for the.ea:tension of protection along the
lines suggested by Jones, That is monitor procedures may implement environ-

ment binding at a low level.

Page 18

8. TENEX Compared with the Systems Jones Comparsd

Jones gives the following partial ordering of four systums:
0 < S{OS/MVT) < SQMILTICS) < S(CAL-TSS) < S{HYDRA) « 1

where "the notation S(Z) is used to distinguish the suitab;ility factor for
the system called Z." We note that this partisl ordering is bas<! in part
on the level in which environment ‘b‘mding occurs. To this end the: the
suitability scale of these systems with respect io this level is as tollows:
0 < S(USER) < S{PROCESS) < S(PROCESS-PROCEDURE) < S{PROCESS-PROCEDURL “ALL) < 1
Since TENEX is a job oriented system which affords more protection tha.a
USER system but not more than a complete process system we can locate T
as follows: |

0 < S{OS/MVT) < S{TENEX) < S{MULTICS) < S({CAL-TSS)} < S(HDRA) < 1

Page 15

9. The Proposed Methodology

~ The proposed methodology is simply to consider each (TENEX at this time)
system s being composed of the following three levels with respect to the

protection function:

* Policy

+ Logical Design

+ Implementation
Then to analyze the policy level for logical soundness and consistmq?)by
using Jones' ‘Model of Protectionm'. Next deiemine and be able to specify
the mapping from policy to logical design and from logical design to
implementation.

This approach naturally assumes a reasonably complete documentation effort
at each of the three levels. Since TENEX documentation presently available
is not organized from the viewpoint of protection, our present interest is
* in providing this doamentation, Once this effort is completed a detailed
analysis of TENEX at each of the three levels can proceed, logical flaws
or minor bugs can be noted and TENEX can be more accurately categorized with

respect to protection and more realistically compared with other systems.

Given a detailed analysis (of TENEX) alternative policies can be explored
and the mapping process logically followed to the implemmiation 1eve1,- giving
sdme idea of the effort involved in a particular policy change. This method
enables a structured, stagewise approach to the protection implementation

problem and affords the opportunity to determine in advance the effect of

various policy changes.

Page 20

APPENDIX 1

Description of TENEX File Protection taken from the EXEC Marual;

2. File Protection

In general, one can apply any TENEX file command to any disk
file, no matter who it belongs to as long as one can specify
the descriptors that make up its file designator,
Furthermore, even when one's knowledge of these descriptors
is incomplete, TENEX can help fill in the gaps through its
recognition and default value features. Thus, by its
nature, TENEX provides a wvery general file sharing
capability. This leads to an equally general need for some
way of protecting files from unauthorized access,
L)

To this end, TONEX provides a file protection mechanism,
exactly balancing its file sharing capability. File
protection is controlled by a six digit octal number
assigned to each file at the time of its creation. This
number breaks down inta three fields, identical in format,
each of which can be regardad as containing two octal digits
or six binary bits. The bits in any one of these fields
control the following aspects of file protection.

- FILE PROTECTICN FIELD
B Bl T BZ B3~ B4~ BS

Bit Protection Aspeci Controlled

B Read contents of file

Bl Write onto file

B2 Execute program stored in file
« B3 Append to file

B4 Access per page table

BS Not used

Page 21

Setting a bit 1 permits the indicated action: setting it i
denies the action., Read allows informaticn to be extracted
from a file, Write permits new information to be written
onto a file, replacing part or all of the original contents.
Execute allows a file that has been read int¢ core memory to
be executed as a program, Auny file can be made executable
in this sense; what happens when one tries to start
execution, of course, depends on what the file actually
contained. Append allows new information to be added to the
end of a file. "Fer page table" access means that read,
write, and execute access will be specified by the file
itself for each individual page. The remai.ing bit is
unused and can take on either value with no effect,

Taking these six bits as a two digit octal numbsr, some
common values are: 77, which permits full access; 52, which
protects a file from modification, but permits other
functions; and (§f) which denies everything. '

As mentioned above, a full, six digit file protection rimber
contains three of these protection fields, arrang:d as
follows:

FILE PROTECTION NUMBER
self group others

Working from left to right the three fields control access
to the file by successively larger groups of users. Self
protection governs one's own access to a file, Liniting
one's own access permits one to protect valuable information
from inadvertent destruction, or to protect a file from
modification by a possibly faulty program,

3. Directory protection

In addition to allowing detailed spccification of the acces=z
to file contents, TENEX also allows the contents of
directorics to be protected in a similar way. The format of
the directory protection word is composed of three 6-bit
fields, one field for each of "self", "group”, and "others®
similar to the filo protection word. The bits have meaning
as follows: '

Page

Bit Protection Aspect Controlled

B If off, completely prevents use of the
directory in any way '

Bl Files may be opened subject to file protection

B2 Owner-like functions may be pexformed
(including CONKECT} without passwoxd

B3 Files may be added to the directery

B4 ° Not used

B5 Rot used

The directory protection word may be changed by contacting
tha TEN&A Operations Managex.

4. . Groups

TENEX provides & mechanism whereby users can fornm greups for
the purpose of file sharing., This is useful, for example,

where several users are collaborating on a common

programming job ané wish to share the files they are

creating. The file group maechanism works as follows. Each

group is assigned a number. For each user, TENIX records a

scries of these numbers irndicating what groups he belongs

to. Likewise, for each file directory, TENEX records

numbers indicating which groups have access to tle files it

contains. Thus a given user can belong to a number of

groups. He can make each of his directories awailable to

one or more groups, which may or may not coincidle with the

groups he belongs to. The assignment of group o»umbers to

users and to file directories is ‘done by the TLNEX system
operators, ‘ '

The second field in a file protection number geverns the
powers granted whan the file is accessed through the group
mechanism, If a group member designates a file in a
directory available %o his group but belonging Lo anothex
user, it is this protecticn field that contrels tar kind of
access granted him,

The third protection field governs: the access ¢ranted to
users approaching the file from cutside the group rechanism,
i.e., all "other"” users. In a typical situation, :he <three
protection fields might specify successively more strirngent
protection, For example a user might grant full .ccess ¢to
himself, read, execute, and append access to grou)r members,
and append only access to others, yielding ;2'7540('1 as
protection descriptor.

If a user omivs a protection number when creatin¢ a disk
f£ile, TENEX will assign a default wvalue, presently 777754,
This grants fall access to the user and group memb:xrs, read,
execute and append access to others. The Detault Fale
Protecion word wmway be changed by contacting the TBENZX
Gperations Manager.

[B73]

[11VH66]

[F74]

[J73]

[1.69a]

[L53h]

[072]

BIBLIOGRAPHY

Bolt, Beranek and Newman, Inc., TENEX JSYS Mamual, Cambridge,
Mass., Sept. 1973.

Dennis, J. B. and Van Horn, E. C., "Programming Semintics for
Multiprogrammed Computations,'' CAM 9,3, March 1966, 341-346.

Freeman, Jack, Memorandum on the Protection Mechanisms and Policies
in the BCC 500 Operatmg System, T™.74-1, ALOHA SYSTEM (Task 1I),
University of Hawaii, Jan. 1974.

Jones, Anita Katherine, Protection in Programmed Systmns . Ph. D.
thesm, Carnegie-Melion University, Dept. of Computer Science,
1973. .

Lampson, B. W., CAL-TSS Internals Manual, Computer Certer, University
of California, BerkeleV, November 1969,

Lampson, B. W., Dynamic Protection Structures Proc. AZIPS 1569
FJCC, Vol. 35, AFIPS Press, Montvale, N. J., 27-38

Organick, E. I., The Multics Syvtems An Pxamination uf its
Structure, MIT Press, 197Z.

Price, W. R., Implications of a Virtual Memory Mechani:u for
Implementing "Protection in a Family of Operating Systens, Ph. D.
thesis, Carnegie-Mellon University, 1973.

Wolf, W. A., et. al., HYDRA: The Kernal of a Multiprocessor
Operating System, Carnegie-Mellon University, Computer Science
Department repert, June 1973,

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23

