CAL Time-Sharing Systeém Users Guide

November 1969

Computer Center v
~ Unlversity of California
. Berkeley ’

TABLE OF CONTENTS

User-System Interaction .
Requésting a System Action .
System Actio
Allocation Blocks

C-list Actions

File Actions

Process and Subprocess Actions
Map Actions

Event Channel Actions
Operations

Appendix A Summary of Actions

Appendix B Options

Appendix C Error Classés and Numbers

b=

o

o o

12
20
40
46
50
58
66
68

User-System Interaction

The ECS portion of the CAL Time Sharing System provides a number of

actions which are available to the user so that he can interact with

the system. The actions apply to the objects created and maintained by

the ECS system: files, maps, allocation blocks, event channels, capability
lists (C-lists), operations, processes, subprocesses, and class codes. A
record ,is kept in a table in ECS, called the Master Object Table (MOT), of
all objects existing at any given time in the system. Each entry in MOT

gives the name of the object and its ECS location.

The user makes a call upon the system by setting up the appropriate para-
meter list for the action he wants to initiate, prior to passing control

to the system entry/exit routines by executing a CEJ instruction. (The
CEJ, Central Exchange Jump, causes the current contents of the 6400 central
processor's registers to be exchanged with a similar 16 word package in
Central memory.) The system entry/exit routines determine the nature of
the user's call, collect and check the parameters needed for the action,
transfer control to the proper system action routine, and finally, return
control to the user (by another CEJ, which restores the registers) after

the system action is completed.

Requesting a System Action

The CEJ instruction used to call the system supplies the information required
to initiate the action and return to the user. (See Figure 1.) 1In parti-
cular, it is expected that the CEJ was in the upper 30 bits of the instruc-
tion word; of these 30 bits, the lower 18 bits are used by the system to
locate the user's input parameter (IP) list. If this 18 bit field is nega-
tive, the complement of the low order 4 bits specify which register in the
user's exchange package contains the input parameter list pointer (e.g.,

-3 > B3; =10 » X2). Otherwise, the 18 bit field itself is taken to be the

IP list pointer. This pointer is checked for legality (i.e., it must be
positive and less than the user's field length) and an error is generated

if appropriate.

Each entry in the input parameter (IP) list is either a 60-bit data item
or an index into the user's capability 1ist (C-1iisi), designating a
capability. Each capability residing in a C-list authorizes access to a
particular object in addition to giving the object's type (file, process,
event channel, etc.) and the set of actions allowed on that particular

object (option bits).

The first
is always expected o be ai
This parameter, after being checked for legality (i.e., it must be
positive and within the range of the full C-list), is used to fetch the
capability for the operation which specifies the action to be performed,
and the nature of the parameters of the action. (If the capability is not

for an operation, an error is generated.)

Operations are ECS objects which direct the transfer of control from the
user to the system when the user calls upon the system. They identify the
action(s) to be taken by the system and direct the passing of parameters to
the system or between user subprocesses (see SUBPROCESSES). An operation
consists of one or more orders, each of which designates a particular sys-
tem action, and a set of parameter specifications which indicate the type
(capability or datum) of each parameter required for the action and the
required options for each capability parameter. Basically, the parameter
specifications in the operation are of two genere — parameters which are
permanently "fixed" within the operation and those that are to be provided
by the user. When an operation is first created, before any of its parameters
have been specified, all parameter specifications are typed 'none'. Before
the operation can be used, all of its parameters must be specified using the
actions provided for specifying operation parameters (see p. 50). If the

action is parameterless, the operation contains no parameter information.

The system entry/exit routine reads the first order of the operation and

uses the parameter specifications to construct an actual parameter list.

This list consists of parameters which are 'fixed" in the operation and of

user—supplied parameters drawn from the IP list. The IP list should con-

tain, in successive words, datum parameters (indicated below by "D:")
which are transferred directly to the actual parameter list, and C-list
indices (indicated below by "C:'") which designate capabilities in the
user's full C-list. Two words are copied to the actual parameter list
for each capability parameter (capabilities are two words long) and one

word is copied for each datum parameter. During the construction of the

.
b

n

errors will be generated if 1) a C-list index
bad (i.e., is negative or outside the full C-list); 2) if the type
and options (indicated below by '"OB.x") in the capability do not corres-
information in the operation
this checking is not performed if the parameter specification is "any

capability"); or 3) if a "none'" parameter specification is encountered,

in which case parameter processing terminates.

After the actual parameter (AP) list is completed the operation is checked

to see if the action is a subprocess call or jump. 1If so, a flag bit will
indicate the presence of a class code (the subprocess name) in the opera-
tion. In this case, the operation also contains a parameter type bit

mask indicating the type (capability or datum) of each parameter. The

system entry/exit routine places the class code from the operation, the number
of parameters, and the bit mask intc the user's process descriptor in the

actual parameter list area.

Finally, the ECS action number is extracted from the operation and is used
as an index to a jump to the proper entry point for the desired ECS action.

When the action is completed, control returns to the user.

Under some conditions, when the normal function of an LECS system action
cannot be carried out but the condition is not serious enough to warrant
the generation of an error, an F-return will result. If this occurs, the
count of F-returns initiated for the operation is increased, and the
operation is checked to see if it contains any more orders (which are spe-
cified as alternative actions). If so, the next order of the operation
is interpreted. This process is identical to the one just described,
except that the actual parameter list contains the parameters for all
orders up to and including the current one. If the F-return count reaches

the number of orders in the operation, control is returned to the user.

There are two different ways in which control is returned to the user

£~

depending upon whether an action completed normally (possibly after one’

or more F-returns) or the F-return count became equal to the number of
orders in the operation.
to be incremented by the number supplied by the user in the low order
bits of the CEJ instruction word originally used to call the system.

new P-counter must be positive and less than the user's field length;
wise an error is'generated.

ultimate F-return, the user's P-counter is left unchanged.

When the return to the user results from

Figure 1 System Calling Instruction

17

gl
S

/. / /| Pointer

IP list

'C'P—counter
offset

IP

AP

13

Fixed parameters will be inserted into the AP as
according to the parameter type bits.

The normal return causes the user's P-counter

18
The

other-

n
v
»

Figure 2 Example of Input Parameter (IP) list and Actual Parameter
(AP) list Interaction (assuming no fixed parameters¥*)

fspecifies operation to direct construction

{
IPO | Index for ;
ECapability —> {of AP l%st and transfer of control to proper
; t ECS action code.
é Datum T f
i T Datum |
i Index for a . ’ d }
, Capability T wora 3
! capability
' Datum Po— :
: i T Datum %
| Datum — o
! — Datum |
Y i
; ¥) !
; }
. Datum P !
g j TN Datum i
s

they are encountered

OF

Errors: The use of improper parameters in making an ECS system call is
considered to be an error on the partof the process which is making the

call. When an error is detected, it is first assigned an error class and
number. The class identifies the type of the error, while the number pin-
points the particular error within a type. Furthermore, associated with

each subprocess within a process is an error selection mask (ESM) indicating
the classes of errors the subprocess is prepared to handle. The "ancestors'
of the current subprocess (see p. 31) are checked (starting with the current
subprocess) to find a subprocess whose ESM indicates it is willing to handle
this class of errors. The subprocess which accepts the error is called and is
passed the error class and number. Execution in the error processing subproc-
cess is inmitiated at the normal entry point-l. A precauiion is Laken againsti
error loops; the subprocess which accepts the error is temporarily disquali-

fied from accepting any more occurrences of the errors in the same class.

Possible Errors during System entry/exit processing of
an ECS system action call

Error Error

Class ff . Error Description o
2 2 . The IP 1list pointer address is negative
2 3 ; The IP list pointer address is greater than the user's
. field length
2 4 | C-list index negative
2 5 C-list index too large (not within full C-list)
7 0 First parameter (IP0) does not point to a capability for
an operation
7 1 The operation does not exist
7 3 "NONE" parameter specification encountered
7 2 Type or options bad for a capability parameter
8 0 C-list does not exist
7 7 IP list extends passed user's field length
2 0 The pew P-counter is negative on return to user
2 1 The new P-counfer exceeds thé user's field length
10 0 No subprocess to take error class

oN .

System Actions

All system actions which can currently be requested by the user are des-
cribed below. All actions are calls upon the ECS system except for the
subprocess call and return actions. A summary of required parameters and

possible errors appears in the Appendices.

Allocation Blocks

An allocation block is an ECS object which regulates allocation of ECS

space and CPU usage. An allocation block is provided with a sum of money
and a portion of ECS space, which can only be obtained from another alloca-
tion block. (At system initialization a Master Allocation Block is created
and provided with an infinite amount of money and all of the space in ECS.)
Every object 1is associated with an allocation block; the objects associated
with each allocation block are linked to that allocation block in a two-

way circular list headed by the allocation block itself. The objects of

ECS, therefore, form a tree whose root is the Master Allocation Block.

Each allocation block is billed for CPU-time used by its descendant processes
and will be charged rent on the ECS space occupied by its descendant objects.
There are four actions which the user can invoke to manipulate allocation blocks.
He can 1) create an allocation block, 2) transfer funds from one allocation
block to another, 3) request the capability (with all option bits set) for

the n-th object in the list of an allocation block, and 4) destroy an allo-

cation block.

A, Create an Allocation Block

IP1 (C: Allocation Block (OB.CREAB)

IP2 D: C-list Index for returned capability
When creating an allocation block, the user must first specify the index of
the allocation block which is to provide the ECS space occupied by the new
allocation block. The second parameter provides a C-list index where the

system can return the capability for the newly crzated allocation block.

Possible errors while creating an Allocation Block

Class # Description
6 0 Allocation block does not exist
6 1 No ECS available in that block
6 2 No money available in that block
2 4 C-1list index is negative
2 5 C-list index exceeds full C-list
B. Transfer funds (and/or spage) from one Allocation Block to another
TPl C: Allocation block {(donor) (OB.GIVE)
1p2 ¢C: Allocation block (donee) (OB.GET)
IP3 D: Space to be transferred
1P4 D: Money to be transferred

Monev and/or ECS space may be transferred from one allocation block to
another using four parameters. The indices for the capabilities of the
donor and donee allocation blocks must be given as well as the amount of

money and/or space to be transferred.

Possible errors:

Class # Modifier Description
6 0 No such allocation block
6 1 Money specified for ECS not available
6 2 Money specified for CPU time not available
2 0 3 Money specified for ECS is negative
2 0 4 Money specified for CPU time is negative
C. Return capability for n-th object in Allocation Block*

IP1 C: Allocation block (0B.GOD)

IP2 D: Full C-list index for returned capability

IP3 D: Index of desired object (n)
This action returns to the user the capability for any desired object
which is a first generation descendant of an allocation block. The first
parameter is the index of the capability for the allocation block

to which the object is associated; the second

b

Use of this action is highly restricted.

parameter specifies a C-list index where the system will return the capa-

1.2 12 . PR, UL SIS S SURPNUS. RS, s 123+ £ 1.
U.L_L_LL)’, dild tlle tiirtd pdrl ue He 14150 UL Liic

rr

ter gives the position in
desired object. If this index is zero, a value of one is assumed and the
capability for the firstobject in the list is returned. If #n exceeds

the number of objects in the list for the specified allocation block, an

F-return is made. If the capability is returned, all options bits are set.

Possible errors

Class # Description
6 0 Allocation block does not exist
2 4 C-list index is negative
2 5 C-list index exceeds full C-list
2 0 Index for object is negative.

D. Destroy Allocation Block

IP1 C: Allocation Block to be destroyed (OB.DSTRY)

When an allocation block is destroyed, there must be no objects associated
with it. The ECS space and money owned by the allocation block as well as

its expenditures are reflected back to the allocation block which is its
father in the tree. If the allocation block to be destroyed still has objects

in its chain, it cannot be destroyed, and an F-return is made.

Possible errors:

Class # Description
6 0 Allocation block does not exist.

C-List Actions

User access to all objects within the ECS system is controlled by capabilities.

A capability identifies the object it refers to, specifies the type of the
object, and the set of allowed actions on that object (optioms). Capadilities
for objects accessible by a given subprocess are grouped together in capability-
lists (C-lists) which are themselves objects within the ECS system. Indivi-

dual capabilities are referred to by their index within a C-list. Since the

capability, residing in a C-list, authorizes access to an object;- the user
is never allowed to fabricate a capability. The system creates a capability
with all options allowed when an object is created. System actions are pro-
vided to permit the user also to create a C-list, as well as to examine a
capability, to copy capabilities between C-lists and within a C-list, and to
downgrade the option mask. Thus, the user can transfer the right to access
an object and can curtail that access, but he may never manufacture that
right or increase the set of allowable actions on the object. He must ask

the system to perform these actions for him.

A C-1ist is assigned to every subprocess within a process. For every process
there exists a sequence of subprocesses called the full path Corresponding to
the full path, the full C-list is defined as the concatenation of the C-lists
belonging to the subprocesses in the full path. When referring to capabilities
in the full c-list, the capability index is interpreted as if the C-lists in

the full C-list were joined to form one long C-list.

A. Create a C-list

IP1 (C: Capability for allocation block (OB.CRECL)

IP2 D: Index in full C-list to return new capability

IP3 D: Length of new C-list
A capability list (C-list) is a sequence of capabilities and "empty" positions.
Each C-list is filled with "empties" (zero words) upon creation. To create
a capability list, the user must supply the index of the Allocation block
which funds the space occupied by the C-list. In addition to the length
of the new C-list, the user must supply an index in the full C-list for the

capability for the new C-list.

Possible errors while creating a C-list:

Class i Modifier Description
6 0 Allocation block does not exist
6 1 No ECS5 available
6 2 No money available
2 4 2 C-list index is negative
2 5 2 C~-list index exceeds full C-list
2 0 3 Length of new C-list < 0
2 1 3 Length of new C-list exceeds core buffer area

10

B. Display a Capability from the Full C-list

D: Index in full C-list

When referring to capabilities within the full C-list, the capability index
used is interepreted as if the C-lists in the full C-list were joined to
form one long C-list. Thus, the index of the desired capability is all

that is required to display it. The two words of the capability are returned

59 0
N R}
| option mask type

{ e

<
=)
I

59 21 1

s

12

~J
!
b
3
3

Possible errors while displaying a capability:

Class # Modifier Description
2 4 1 Capability index negative
2 5 1 Capability index exceeds full C-list length

C. Display a Capability from an arbitrary C-list

IP1 C: Capability for C-list
1p2 D: Index in the C-list

To display a capability from a C-list which is not in the full C-list, the
user must specify both the index of the capability for the C-list and the
index within that C-list of the desired capability. The capability is

returned as in B- above.

Possible errors while displaying a capability from aribtrary C-list:

Class 'f, Modifier Description
2 4 1 Capability index negative
2 5 1 Capability index exceeds C-list size
8 0 C-list does not exist

D. Copy a Capability within full C-list and Decrease the Options
D: Index of desired capability
D: Index of destination C-list entry

D: Mask of options to preserve (in top 42 bits - bottom 18 ignored)

The user can copy a capability from one location in the full C-list to

another and in doing so may decrease the number of allowed options.

that wvhan an ok
Ciidt W i 057

when ct

£

ability is returned which has 2l

[
=

Recall

[

the

option bits (the high order 42 bits of the first word) set. The user must

indicate the C-list index of the capability he wishes

to copy, the C-list

index where the altered capability will be placed, and a bit-mask which

will be logically "ANDed" with the option bits of the

to produce the option mask for the new version of the

Possible errors while copying a C-list and decreasing

Class it Modifier Description
2 4 1 Index of desired capability
2 4 2 Index of destination C-list

Index of desired capability

NN
[S2 B]
N

Index of desintation C-list

original capability

capability.

the options:

is negative
Armtry oo
\.—I.ILL) A

is too large

entry too large

E. Copy capability from Full C-list to Arbitrary C-list (and vice-versa)

IP1 C: Destination (source) C-list (OP.CPYIN, (OB.CPYOT))

IP2 D: Index within destination (source) C-list of capability

IP3 D: Index in the full C-list of source (destination) capability
In order to simply transfer a capability between the full C-list and an
arbitrary C-list two parameters are required to indicate the location of
the capability in the arbitrary C-list, and a third to locate the capa-

bility in the full C-list.

Possible errors:

Class # Modifier Description
8 0 C-1list does not exist
2 4 2 IP2 is negative
2 4 3 IP3 is negative
2 5 2 IP2 is too large
2 5 3 IP3 is too large

F. Change Unique Name in Capability
IP1 D:C-list index of object (OB.CHNAM)

This action allows the user to change the unique name of an object. The

system generates a new capability for the object with all option bits set,

12

thereby invalidating all old capabilities for that object. The capabiiity

-)
for the

n abhiact s
LI v o

J\—\—
allows such a change (OB.CHNAM). If the object is a file for which there

are references in any map entries, all such maps will be recompiled.

Possible errors while changing unique name:

Class # Description
1

8 No such object

G. Destroy a C-list

IP1 C: Capability for C-1list (OB.DSTRY)

The user may destroy a C-list when he no longer needs it; only the index
of a capability for the C-list is required. If the C-list to be destroyed
is in the full path of the user's process, an F-return is initiated and

the C-list is not destroyed.

Possible errors while destroying a C-list:

Class # Description

8 0 C-list does not exist

P la Ao
File Actions

Files are organized in a tree structure (see Figure 3). The leaves of the
tree are called data blocks and contain the addressable words of the file.
The non-terminal nodes of the file tree are called pointer blocks and con-
tain links to either data blocks or other pointer blocks. ILmpty or non-
existent portions of a file are not allocated space in ECS until they are
needed. The user can create a file, add and/or delete parts (data blocks)
of a file; he can check for missing data blocks and read the shape (para-
meters of the tree structure) of a file; he can transfer data blocks of the
same size within a file or from one file to another, and finally, he can

read (write) information from (into) a file.

[
(%)

FILE TREE

LEVEL 2
i |
' t
LEVEL 1 /m
/N, !
t ll/ \.’)’ :
! 7 t
l ' l
1 ; f
LEVEL 0 / T 0xf’LEVEL 3 (Data Blocks)
 — v W1 Sl pointers &
| s , M// ! QO'Y ,! %
: i S int % Z8 '
‘ ! : AW poinmters o .
| : ! o | 5
: a2 | |
l L \— P L
FILE ROOT of i \‘\5\’ N \ _
DESCRIPTOR FILE TREE | (N J fg
H / i
: i l .\~
—_— i |
L X2
Y —_—

File Shape = (2,2,4)

Figure 3

14

A. Create a File
IP1 (: Capability for allocation block (OB.CRFIL)
IP2 D: C-1list index to return capability
IP3 D: Number of levels in the file
IP4 D: Pointer to a list of shape numbers

When a file is created, only the file descriptor is constructed (see Figure
4). The file descriptor contains a pointer to the root of the file tree
(initially zero since no data or pointer blocks exist). The user supplies
an index for the capability of the Allocation block which is to fund the
ECS space occupied by the file. Identification of the funding allocation
block is also kept in the file descriptor. The user must also supply a
C-list
created (all option bits in the capability for the new file are turned on).
The last two parameters indicate the number of levels (n) contained in the
structureof the file tree, and a pointer to a list of nt+l shape numbers (SO
through Sn)’ the first n of which indicate the number of branches from

each block at each level; the last (Sn) gives the uniform size of all data

blocks in the file. A 'zero level file'" (IP3 = 0) consists of a single data

block of length Sn (n=0). Each shape number (SO excepted) must be an

integral power of two. The last two parameters are used by the system

to complete the file descriptor.

Figure 4 File Descriptor

< POINTER > Pointer to Root of File Tree
<ALLOCATION BLOCEK> Allocation Block Identification
<LENGTH> File Length

/ﬁ
/

Description of file shape
(using Si's)

\N
T

SHAPE = (S,,,S ,S)

IERREERN

n
<LENGTH> ::= (maximum file address) + 1 = Il S

15

Possible errors while creating a file:

Class # Modifier Description
6

Allocation block does not exist
No ECS Available

No money available

0

1

2

4 C-list index is negative
5 C-1list index exceeds full C-list

2 Pointer to list of shape numbers is negative
0 Level number n < 0

1

Level number is too large

N [NCREN \CRE (SR (R S * A o))

B~ W B

1 Pointer to 1ist of shape numbers plus list

length exceeds user's FL
7 Negative shape number
8 Shape number exceeds 27

9 Shape number other than SO not a power of 2

w w w W

10 Total size of file is too large

B. Create a Block

IP1 C: Capability for file (OB.CREBL)

IP2 D: Address of block in the file
Once a file has been created, data blocks of the declared length (Sn) may
be added subsequently, one at a time, to hold data or code. (See Figure 5.)
A count of the map entries which reference the data block is maintained
with each data block. (This count is important when deleting a block - see
below). To create a block, the user supplies the index of the capability
for the file to which the block is being added, and the address in the file

where the block is to be placed.

When a data block is added to a file, it may also be necessary to creéte
some or all of the pointer blocks between that data block and the file
descriptor. Recall that pointer blocks are required to link the filé
descriptor to the data blocks in any file with more than one shape number

(i.e., not a zero level file).

Figure

i
(o))

5 Data Blocks

Shape = (S.,S,,...,5)
P (0’°1? »Un
21 18
i -~
: | H
; A . -,
/ — Ve Alilocation Prefix
f# MAP !
Qeicrences u\
Pointer points j
i 1
here > Ist Data Word
| ;
! A S Data Words
g \ n
4 ;‘
! a4
E .‘
i ;
i Slth Data Worc dj

Possible errors while creating a block:

Modifier

Description

Class

N N Ww OO O

= O |

2]

Allocation block does not exist
No ECS available

No money available

The
The
The

the
The

file does not exist

address of the new block is negative

address of the new block is greater than
file length

address of the new block indicates an already

existing block

C. Check for missing blocks

IP1

C: Capability for file

1p2 D: Address of block in file

Allows the user -to check for

the presence of a block: The parameters required

are the index of the capability for the file to which the block belongs,

and the address within the file where the block is supposed to be located.
The number of missing levels in the path from the root of the file tree
to that particular block is returned in X6. Thus, if the block is pre-
sent, X6 < 0; if the n level file is empty, X6 < n; and if only the data

block is missing (its pointer block is present), X6 < 1.

Possible errors while checking for missing blocks:

Class # Modifier Description
3 0 The file does not exist
2 2 2 The address of the block is negative
2 3 2 The address of the block is too large

D. Read the Shape of a File

IP1 C: Capability for file
IP2 D: Address of buffer for the shape numbers
IP3 D: Buffer size

The shape of a file is described by a sequence of positive integers (S0,S1,
...,5n), each of which is the number of branches in the file tree at each
node of level i (0 < i < n). Each Si (i > 0) must be an integral
power of two. The user can obtain these shape numbers by specifying the
index of the capability for the file whose shape he wants to read, and the
address and size of a buffer for the shape numbers. The number of levels
in the file is placed in the first word of the buffer and the shape num-
bers (S0,...,Sn) are placed in succeeding words until either the buffer

is full or all the shape numbers have been passed.

Positive errors while reading shape:

Class # Modifier Description
3 0 File whose shape is to be read does not exist
2 2 2 Buffer address is negative
2 0 2 Buffer size < 0
2 1 3 Buffer address + size exceeds user field length

Read

b
[¢.¢]

(write) a File

IPL
IP2
IP3
IP4

C: Capability for file (OB.RDFIL, (OB.WFILE)
D: Address in file

D:

D: Count of words to be transferred

Address in Central Memory

The action of reading (writing) a file transfers words between the address

space of the running (current) subprocess and the data blocks of a file.

In addition to the capability index for the file, the user specifies the

address in the file of (for) the desired information, the address in Cen-

tral Memory of the area to be read into (written from), and the number of

words that are to be read (written). If a transfer is requested which

involves a file address corresponding to a non-existent data block, the

transfer proceeds until the non-existent file address is encountered, where-

upon an F-return is initiated. The actions to read the shape of a file (D)

and to check for missing blocks (C) can be used to check how far the trans-

fer proceeded.

Possible errors while .reading (writing a file):

Class # Modifier Description
3 0 File does not exist
2 0 4 Word count negative
2 2 2 File address negative
2 2 3 CM address negative
2 1 3 CM address plus word count exceeds user's field
length
2 1 4 File address plus word count exceeds user's field
length
F. Move a File Block
IP1 C: Capability for source file (OB.RDFIL, OB.DELBL)
IP2 D: Address in source file of source block
IP3 C: Capability for destination file (OB.WFILE,OB.CKEBL)
IP4 D: Address in destination file of destination block

File blocks can be transferred between files whose data block sizes (Sn)

are equal.

In addition to the capability indices for the source and des-

p—t
\O

tination files, the system expects to receive from the user the address

ot the source block within the source file and the address in the destina-

tion file to which the block is being moved. If the block to be moved

is referenced by a map, moving it (which deletes it from the source file)

would cause problems when swapping, therefore an F-return is made.

Possible errors while moving a block:

Class

3

3
2
2

Modifier Description
3 Block to be moved does not exist
4 Files do not have equal data block sizes
2 2 or 4 File address negative
3 2 or 4 File address too large

File to file copy

IP1 C: Source file (OB.RDFIL)

IP2 D: Address in source file

IP3 (C: Destination file (OB.WFILE)

IP4 D: Address in destination file

IP5 D: Count of words to be transferred

This action

ECS £

ile.

copies a specified number of words from one ECS file to another

In addition to the capability indices for the source and des-

tination files, the system expects the user to specify the source and des-

tination addresses and the number of words to be copied.

Possible errors during a file-to-file copy:

Class

2
2
2
2

H.

#

2
3
0
1

Modifier Description

2 o0r 4 File address is negative
2 or 4 File address is too large
5 Word count is negative
5 File address plus word count is too large

Delete a Block from a File

IP1
IP2

C:

Capability for file (OB.DELBL)

D:Address of block to be deleted

A block can be deleted from a file as long as it is not referenced by an

entry in some subprocess map (reference count = Q). The user must supply

o
)

the capability index for the file and the address within the file of "the
block which is to be deleted. If the block is referenced by a map entry,

an F-return is made.

Possible errors while deleting a block:

Class # ~ Description
3 3 Block to be deleted does not exist

I. Delete a File

IP1 C: Capability for file (OB.DSTRY)

When a file is deleted, it must not contain any data blocks, i.e., it must
consist only of the file descriptor. Only the capability index of the

file is required as a parameter.

Possible errors while deleting a file:

Class # Description
3 0 File to be deleted does not exist

3 6 File to be deleted is not empty

Process and Subprocess Actions

Processes are the active elements of the ECS portion of the Time Sharing
System. Only within the context of a process may code be executed and
system actions initiated. A process consists of 1) a set of central regis-
ters (called the exchange jump package), 2) a set of subprocesses organized
in a tree structure, 3) a call stack recording the flow of control among the
subprocesses, and 4) a set of state flags describing the state of the pro-

cess.

There are system actions to create, examine, destroy and manipulate the
elements of a process. There are also actions which control the processing
environment of a process by transferring control from one subprocess to
another and by controlling the error processing and external interrupt

status of the process.

N
[

A. Create a Class Code (subprocess name) with new permament part

IP1 C: Capability for class code

A class code is a protected 60-bit datum which is used to identify a subprocess.
within a process and to identify classes of users to the directory syétem. The
60 bits are divided into two 30-bit parts; the upper 30 bits constitute the per-
manent part and the lower 30 bits, the temporary part. This action causes a new
class code to be constructed by the system with a permanent part that is differ-

art of all other class codes. The new class code is re-

mar A "
Fa

~ +1 -
ent from the permanen

t

turned in the full C-list at the location specified by the parameter of the action.

Possible errors while creating a class code:

Only those detected during System entry/exit.

B. Set temporary part of class code

IP1 C: Capability for class code (OB.TEMP)

IP2 »: C-list index for modified class code

IP3 D: New temporary part (30 bits)
The temporary part specified by the user is inserted into the class code
(lower 30 bits). This action may be used to create 'classes" of class
codes which have the same permanent part and different temporary parts.
The class code with the new temporary part is returned in the full C-list

at the specified location.

C. Create a Process

IP1 C: Capability for Allocation block (0B.CREPR)

Ir2 D: C-list index for returned process capability

IP3 D: Number of event channel chaining words

IP4 D: Number of stack entries

IP5 C: Capability for class code for initial subprocess (OR. SONSP)
IP6 D: Number of map entries in initial subprocess

IP7 D: Compiled map buffer size for initial subprocess

IP8 D: Subprocess field length

IP9 D: Subprocess entry point
IP10 C: Capability of C-list for subprocess (0B.LCCCL)
IP11 C: Capability of file for 1st map entry (Read/Write: OB.WFILE,

OB.RDFIL, OBPLMAP) for initial subprocess
IP12 D: Address within file
IP13 D: Address in CM

22

IP14 D: Count of words to be swapped o

IP15 D: Capability of file for 2nd map entry (Read Only: OB.RDFIL,
OB.PLMAP) for initial subprocess

IP16 D: Address within file '

IP17 D: Address in CM

IP18 D: Count of words to be swapped

There are 18 parameters required for the system action which creates a pro-
cess. The first four are used to construct the process descriptor while
the remaining 14 are necessary to specify the initial subprocess which is

created along with the process. As usual when creating any system object,

o
o
the first two parameters required are the C-list index of the Allocation

block which is to fund the area in LCS where the object is to be placed,

g

and the C-list index where ithe system

object.
The data necessary to maintain and run a process are gathered together in

the process descriptor, which is stored in two sections: the fixed length

process descriptor and the variable length process descriptor. These two

sections of the process descriptor are copied into CM when the process is
being run on the CPU. While the process resides in ECS (Figure 8), the
fixed length descriptor and variable descriptor are separated by the pro-
cess queuing word buffer, used when a process is hung on one or more event
channels. Parameter IP3, giving the size of the queuing word buffer, is

contained in the first word of the process descriptor.

The call stack, which records the flow of control among the subprocesses

belonging to the process, is contained in the variable length process des-
criptor. Each entry in the call stack contains the information necessary
to reinitiate processing where it was terminated due to a subprocess call.
The total number of stack entries the process can accommodate is supplied

by the user in IP4 when the process is created.

Among the parameters defining the initial subprocess, the first six (IP5-
IPL0) are used to fill in the subprocess descriptor and the last eight
parameters specify the contents of the two initial map entries (Read/Write
and Read Only) which control the swapping of the local address space. The
data necessary to describe a subprocess are gathered into the subprocess

descriptor. The user supplies 1) the class code (identifying name) of the

PROCESS DESCRIPTOR (IN ECS)

S —
s A

j READ ONLY

| DESCRIPTOR

-

4

READ/WRITE
DESCRIPTOR

|

PROCESS QUEUING
WORD BUFFER

i VARIABLE LENGTH
| DESCRIPTOR

<

Figure 8

B
I
|

FIXED LENGTH
DESCRIPTOR

v

23

24

subprocess, 2) the number of entries which will be in the logical map,

3) the size of a buffer area which wiil be allocated to hold the compiled
map, 4) the length of the subprocess local address space, 5) the entry
point of the subprocess where execution begins when it is called, and 6) a
C-list index designating the local C-list of the new subprocess. The
logical map contains an entry for each contiguous portion of information
which is to be copied between ECS files and the local address space in CM
of a subprocess at the beginning and/or end of the processing within that

subprocess. To expedite this procedure, the compiled map is generated

from the logical map, using the absolute ECS addresses of the sections of
ECS files referenced by the logical map entries. Since one map entry may
span several data blocks in a file, the size of the compiled form of the
map will increase accordingly. The length of the local address space
(IP8) of a subprocess is the upper limit on the information copied into
CM under the direction of the subprocesses map. The local C-list of a

subprocess controls the objects which the subprocess can access.

The eight remaining parameters specify the contents of the first two logical
map entries, which describe the initial body of the subprocess. The first
map entry (specified by parameters IP11-IPl4) defines a portion of an

ECS file which is copied into CM before proceésing under the control of
the subprocess is initiated, and when this proéessing stops, is copied

back into the ECS file from which it came, thereby (possibly) altering the
content of the ECS file. The second map entry, however, defines a section
of an ECS file which is read into CM only, and will never be copied back
into ECS, thus protecting the ECS file from being altered. The parameters
include the C-list index of the associated ECS File(s), the addresses in
the file(s) and in CM between which the information is to be transferred

(swapped) and the number of words to be swapped.

The new process, after being constructed, is scheduled to run and will

begin execution at the entry point of the initial process.

Possible errors while creating a process:

Class

6

6
6
2

[\

NN RN D RN RN D DD DD DD DN

i

0
1
2
4

w

OO W N W N EE O M~ O O O O = O

o« N O B~ W W

Modifier

9 or 15
9 or 15

12 or
12 or
13 or
13 or
14 or
14 or

16
16
17
17
18
18

Description

Allocation block does not exit
No ECS available

No money available

C-list index is negative

"_14
LUTALAS

(@]
[
ol

s :
inaex 1is €O

rt

Number of chaining words < 0
Number of chaining words too large
Number of stack entries <1

Number of map entries < 2

£
W

Compiled map buffer size is negative

Length of local address space is negative

Length of local address space is too large

Subprocess entry point < 2

Subprocess entry point exceeds field lergth

File address is negative

File address is too large

CM address is negative

CM address exceeds field length
Word count for map entry < O

Word count for map entry too large

Display Fixed Length Descriptor of a Process

IP1 C: Capability for the process
IP2 D: Address of buffer area
IP3 D: Size of buffer area

The fixed length process descriptor contains much of the information neces-

sary to maintain and run a process (see Figure 9).

sections: the read only descriptor and the read/write descriptor.

It is divided into two

The read

only descriptor shows the state flags of the process, the length of the

process, the length of the variable length descriptor and the clock times

consumed by the user, the system and in swapping, respectively.

The read/

write portion of the fixed length descriptor contains the process exchange

26

jump package as well as data and pointers used to maintain portions of the
variable length process descriptor: the full C-list table, call stack,

the subprocess descriptor table, logical map and error selection mask (ESM)

storage, and compiled map storage.

In order to display the fixed length process descriptor, the user supplies
the index for the capability for the process whose fixed length descriptor
is desired, an address within the user's FL where the information will be
displayed and the length of this area which to hold all the information,

should be 23 words long. The system will copy as much of the fixed length

process descriptor into this user area as there is room for. The informa-

tion has the format given below in Figure 9.

Possible errors:

Class # Description
2 2 Address is negative
2 3 Address exceeds user's FL
2 0 Length of area < 0
2 1 Address plus length exceeds user's FL

Figure 9 Display of Fixed Length Process Descriptor

12 18 18
State flags | Process Var DISC ’ 'T
; Length Length | t
User time Read only
descriptor
System time
% Swap time Y
%
i N
Exchange jump package
{ 16 words
/]
- ' MRER (OF Read/write
LhN C- LEN FULL NUMBER OF descriptor
LIST BUF C-TABLE ; SUBPROCESSES
I ——
LENGTH OF LENGTH OF NO. OF INTERRUPT
COMPILED MAPS | MAP ESM SUBPROCESSES ;
i
, NO. OF STACK §
| ENTRIES |
| _ \

27

Process State Flags

Eight flags describe the state of the process. These state flags are used
primarily to control the swapper, but are set and checked by other routines
(event channel, process interrupt, and destroy process). The eight flags

function as follows:

The E flag indicates that the process is actually a pseudo-process
and is used by the event channel routines to distinguish
between genuine and pseudo-processes.

, is set whenever the process is actually rununing

=3
jm
o
Fie
i}
(e}
(e}
L]
m
Fh
'——\
(Y]
[6)¢]
M
(@]

on the CPU. This flag is checked by the process interrupt
routine.

The '"pending action" flag, P, directs the swapper to interrogate the
"w', "I'", '"D" amd "V" flags. These four flags cause the
swapper to:

W - (the wakeup waiting flag) unchain the process flow from the
event channels;

check the "ancestors' of the current subprocess for an inter-—

=
|

rupt process;

destroy the process; and

V - modify the swapper return because of the arrival of an event

for the process.

The "running flag', R, indicates that the process is scheduled to run
or is running on the CPU. The running flag (R) and the wake-
up waiting flag (W) interact in the event channel routines
as well as in the process interrupt routines. They are used
to permit the process to "hang'" on several event channels and

still be able to accept an incoming event.

28

E. Display clock times

IP1 D: Address of buffer area in user's FL

The current times on the following five clocks: real clock, user clock,
system clock, swapping clock, and quantum clock, are displayed in con-
secutive words beginning at the address supplied by the user. The buf-
fer area should be at least five words long since this action causes 5

words to be passed.

Possible errors while displaying clock times:

Class # Modifier Description
2 2 1 Ruffer address is negative
2 3 1 Buffer address plus 5 exceeds user's FL
F. Creating a Subprocess
IP1 (C: New subprocess class code (OB.SONSP)
IP2 (¢: Class code of the '"father'" of the subprocess (OB.FATHR)
IP3 D: Number of map entries
IP4 D: Compiled map buffer size
IP5 D: Subprocess FL
IP6 D: Subprocess entry point
IP7 C: Subprocess local C-list index (OB.LOCCL)

The action of creating a subprocess involves constructing the 8 word sub-
process descriptor. The parameters are similar to those required to create
the initial subprocess except for IP2 and the absence of logical map entry
parameters. The subprocesses in a process are organized in a tree struc-
ture in which each subprocess "points' only to its predecessor ("father")
(see Figure 10). For each subprocess, the term "ancestors' refers to the
sequence of subprocesses which starts with the subprocess and terminates
with the root of the subprocess tree. Note that a subprocess is always

an "ancestor' of itself. The term "son" of a subprocess refers to any

of the subprocesses'for which that subprocess is the "father'.

Each newly created subprocess is linked into the subprocess tree at the
subprocess referenced by IP2. Note that since no map entries are made for
the subprocess at the time of its creation, they must be constructed via
the appropriaée system actions in order to provide executable code and a

data area for the subprocess, before the subprocess can be used. Note also

29

that since the first few cells of the subprocess address space are used

for storing the parameters of subprocess calls, they should be given a

read/write map entry.

Possible errors while creating a subprocess:

Class #
6 0
6 1
6 2
4 0
4 1
2 0
2 1
2 0
2 0
2 1
2 0
2 1
4 3
8 0
4 4

,
}SUB§H3WN

Modifier

S O it W W

Descrigtion

Allocation block does not exist
No ECS available
No

Duplicate subprocess name (same as some other
subprocess in the process)

"Father" doeg not exist

Number of map entries < O

Number of map entries exceeds field length
Compiled map buffer size is negative
Subprocess field lengta < 0

Subprocess field length is too large

Entry point < 2

Entry point > FL

No space for compiled map

C-list does not exist

Process becomes too big for CM size of machine

Figure 10 Subprocess Tree

;y///’ Root of subprocess tree

) SUBP O
, suBp 4 !
s T [T

SUBP 9 | - SUBP 10

—]

30

G. Display Subprocess descriptor

IP1 C: Capability for class code (subprocess name)
IP2 D: Address of buffer area

IP3 D: Size of buffer area
This action allows the user to display a subprocess descriptor in a designated
area within his own FL (see Figure 11). The system copies the subprocess
descriptor into the user's area starting at the address specified by the
second parameter and ending either with the last word of the displayed sub-
process descriptor (7 words) or the last word of the buffer area, whichever

comes first. The contents of the subprocess descriptor are described above

(p. 24).

Possible errors:

Class # Modifier QE§EIER£§£
4 5 Subprocess does not exist
2 2 Address is negative
2 3 Address exceeds user's FL
2 0 Length of buffer area < 0
2 1 Length of buffer area too large

Figure 11 Display of Subprocess Descriptor

.Interrupt Flag

¢ 18 18 18
) 13

FL Entry Point | Map Origin
L

Class code for father subprocess

Class code for subprocess

| C-list Compiled map Interrupt
; origin buffer size datum
1
logical |C-1ist Max stack
map entries|length pointer

C-list unique name C-list MOT

“1Max Error

Error Selection Mask
Class

32

W
’._l

H. Subprocess Call

A normal subprocess call is initiated by calling on the system in the
usual manner, using an operation whose action is ''subprocess call". A
normal subprocéss call may also be initiated as the result of F-return
action under the control of a multi-ordered operation (see p. 4 above).

A new pfocessing environment is established (described below) as a result
of the transfer of control to a different subprocess. At any given time,
there are two distinguished subprocesses within a subprocess. They are

the current subprocess and the end-of-path subprocess. (Note that the cur-

rent subprocess is always an "ancestor' of the end-of-path subprocess.)
The sequence of subprocesses from the end-of-path to the current subprocess
(inclusive) is called the full path. The end-of-path is defined dynamically

by the flow of control among the subprocesses. The current subprocess may

be considered to be the subprocess currently in control. The end-of-path
and current subprocesses are reassigned whenever a new subprocess is called.
The subprocess being called (the callee) becomes the new current subprocess.
If the callee is an ''ancestor' of the old end-of-path, the end-of-path re-
mains unchanged. If the callee is not an "ancestor" of the end-of-path,

the new end-of-path becomes the same as the callee (i.e., the full path

consists of a single subprocess — the callee). See Figure 12.

The full path determines the sphere of protection invoked by the current
subprocess by defining the full C-list, full map, and full address space.
The access afforded the current process to other objects within the sys-
tem is controlled by the full C-list. The full map determines the config-
uration of the address space available to the current subprocess and the
full address space is the size of the address space available to the current
subprocess. The configuration of the subprocess tree defines the static
relationship between the subprocesses (subprocesses closer to the root may
be given the privileges of their descendents) while the full path dynamically
controls the boundaries of access applied to the current subprocess., This
system of controlling the bounds of protection allows the construction of
processes which may exercise varying degrees of protection while maintaining

synchronization between the subprocesses involved.

32

Figure 12 Full Path Example using Tree in Figure 10

CALLING SEQUENCE CURRENT SUBP END-OF-PATH SUBP FULL PATH
SUBPO SUBPO SUBPO SUBPO

SUBPO calls SUBP9 SUBP9 SUBP9 SUBP9

SUBP9 calls SUBP6 SUBP6 SUBP6 SUBP6

SUBP6 calls SUBP4 '~ SUBP4 SUBP6 SUBP6,5, 4

SUBP4 calls SUBPO SUBPO SUBP6 SUBP6,5,4,0

SUBPO calls SUBP5 SUBP5 SUBP6 SUBP6, 5

SUBP5 calls SUBP3 SUBP3 SUBP3 SUBP3

A subprocess call also causes a new stack entry to be constructed and
placed on the call stack. Stack entries are used to re-establish the
correct processing environment during subprocess returns. Cells U and

1 of the full address space are zeroed (these cells are used by the hard-
ware Arith Error mechanisms and to simulate SCOPE system calls). In addi-
tion, if the calling subprocess is a member of the new full path, the ori-
gins (relative to the new environment) of the address space, C-list, and
map of the calling subprocess are computed and stored in cells 2,3, and 4
of the new address space. If the calling subprocess is not a member of
the new full path, then these cells are zeroed. The parameters of the

subprocess call are copied to the new address space starting in cell 5.

For a normal call the parameters of the call are first formatted in the
actual parameter area of the process descriptor by the system entry mechanism.
These parameters are drawn from the calling subprocess input parameter list
(IP list) under the direction of the operation being used for the subprocess
call (IPO). 1In addition to formatting the actual parameter list, the system
entry routine places the name (class code) of the called subprocess, the
number of parameters, and a bit string denoting the types (capability or
datum) of the parameters at the end of the actual parameter area. After
establishing the correct processing environment for the called subprocess,
the parameters are transferred to the local address space and local C-list
of the called subprocess. Datum parameters are simply copied to the next
parameter cell in the local address space. Capability parameters are

copied to successive positions in the local C-list and the index of

the parameter in the local C-list is stored in the next parameter cell

w
w

in the local address space. On the completion of the parameter passing,

execution is initiated at the entry point of the called subprocess.

Possible errors during subprocess call:

Class # Description

4 5 Named subprocess does not exist
4 6 No room on stack for subprocess
4 7 No room for parameters

4 8 Too many capability parameters
8 0 Local C-list does not exist

Subprocess Return

Like the subprocess call, the subprocess return must construct a new pro-
cessing environment before returning control to the user. The return rou-
tines reactivate a subprocess using information left in a stack entry. The
full path recorded in the stack entry is sufficient to reconstruct the pro-
cessing environment. The P-counter from the stack entry controls where

in the subprocess execution is re-initiated. The normal return causes the
P-counter to be modified by adding the low order 18 bits of the CEJ instruc-
tion which originally caused control to pass to another subprocess. (See

p. 1 above.)

Possible errors during subprocess return:

Class # Description
4 9 Stack empty
2 2 P-counter < 0
2 3 P-counter exceeds field length

Subprocess F-return

A subprocess (or the system) may initiate an F-return whenever F-return
processing is appropriate. F- return processing causes the operation which
called the subprocess (system) to be re-examined for additional actions
(see Requesting a System Action). The operation is located (after re-esta-

blishing the processing environment of the previous subprocess) by using

‘

34

the "last IP list pointer" stored in the stack entry for the previous sub-
process., the F-return count (also saved in the stack) is not equal to
the number of orders in the original operation, the F-return count is
incremented and the next order of the operation is processed. (Note that
the action of all orders other than the first is "subprocess call" or
"subprocess jump'".) Otherwise, control returns to the subprocess which
originally called the operation, but the P-counter of that subprocess is

not incremented as it is for the normal return.

Possible errors during a subprocess F-return:

Class # Description

4 10 Stack empty

7 0 TIPO is not a capability for an operation
7 1 Operation does not exist

2 1 IP list is too big

I. Subprocess Jump Return

IP1 C: Capability for class code for subprocess to return to (OB.SPRET)

IP2 D: Number of stack occurrences of IPl to skip (0=1, -l=down to last)
The subprocess jump return provides a method for getting calls off of the
process call stack. The user specifies the class code for the subprocess to
which the return is to be made. In addition, he indicates the number of
occurrences of that subprocess in the call stack which should be skipped
in looking for the call which is to become the new top of the stack. Zero
indicates the first (most recent) call whereas -1 indicates the last (earliest)
call. Upon finding the proper stack entry, the stack is reduced to make

that entry the top of stack and normal subprocess return action is initiated.

J. Return with Error

IP1 D: Error class

IP2 D: Error number
The subprocess which requests this action will be removed from the top of
the call stack and error processing for the error designated by the two

parameters will be initiated.

Possible error

Class # Description

10 0 No subprocess to handle error

K. Modify P-counter of subprocess

[OF]
(W)}

IP1 C: Capability for class code for subprocess (OB.PCNT)
IP2 D: Number of stack occurrences of IPl to skip

IP3 D: New P-counter .

The user can modify the P-counter in a subprocess which has already been

called by identifying the subprocess, the number of stack occurrences of

o B, 1.8 VRN & 1
Lile DUDPLULEDS LU SKI1pP \See n

above) and the new P-counter. The P-counter

is modified in the stack and the new P-counter will be used the next time

that entry becomes the top of the stack.

his own P-counter, an F-return is made.

Possible errors while modifying the P-counter:

Class # Description

2 2 P-counter is negative

2 3 P-counter exceeds user's FL

L. Display Stack

IP1 D: CM address of a buffer area
IP2 D: Size of buffer area (> 4)

If the caller attempts to modify

The user may examine the call stack of a process. He must supply the address

of a buffer area and its length so that the system can copy the stack into

the specified area. The number of entries in the stack is stored in the

first word of the buffer. As many entries as possible starting with the

current top of stack are then copied into succeeding 3 word sections of

the buffer. The stack entries are reformatted.

Word O Capability for class

Word 1 Capability for class

code for current subprocess

code for end-of-path subprocess

59 17 0
Word 2 T i T ‘;
R |F-return i IP LIST P-counter |
izi j Jcount i Address %
A At L
FOJZQ}\\ e
F-return flag > B —
Interrupt Interrupt
flag inhibit flag

36

Possible errors while displaying stack:

Class

2

2
2
2

M.

#

2
3
0
1

Display Stack Entry

Modifier

1

1
2
2

A particular

IP1 D:
IP2 D:

Description
CM address negafive

CM address exceeds user's FL
Size of buffer area < 4
CM address + size of buffer area exceeds

user's FL

CM address of buffer
Desired stack entry

entry in the call stack of a process can be examined if the

system is supplied with the CM address of a buffer area (each entry is 3

words long) and the index (relative to the top of the stack) of the desired

stack entry.

Format same as in L above.

Possible errors while displaying a stack entry:

Class

2

N

#

2
3
2

(V%)

Send Process Interrupt

" Modifier

1

3]

IP1 C: A process

IP2 C: Capability for class code for a subprocess (0OB.INTSP)
IP3 D: An 18 bit interrupt datum

Description

CM address is negative

CM address exceeds user's FL
Stack entry pointer negative
Stack entry pointer exceeds stack

CM address plus 3 exceeds user's FL

(OB.SDINT)

The prccess interrupt is one of the two ways in which a running process may

effect the execution of another process (the other is via an event channel).

The process interrupt enables one process to force the calling of a specified

subprocess (IP2) (called the interrupt subprocess) within another process

(IP1) (called the interrupted process); i.e., the first process forces the

interrupted process to call the interrupt subprocess. However, the inter-

37

"priority" in that the interrupt subprocess will not.be. .
£

n "ancestor" of the "current subprocess',
that is, of the subprocess which is actually executing in the interrupted
process at the time of the call (or thereafter). Therefore, how soon the
interrupt subprocess gets entered depends upon its position in the sub-
process tree and the flow of control in the interrupted process. An 18-
bit interrupt datum (IP3) is passed as the parameter of the call of the
interrupt subprocess. Once a subprocess becomes an interrupt subprocess,
and until that subprocess is called as an interrupt subprocess, all sub-

sequent interrupts to that subprocess are disabled (have no effect).

The disposition of the interrupt is returned to the user in X7.

X7 =0 Interrupt sent and interrupted process is running

X7 = Interrupt process currently "in core' of another CPU
(Best to try again)

X7 =2 Interrupt subprocess is already an interrupt subprocess

X7 =3 Interrupt sent but interrupted process is not running

Since each subprocess is technically its own ancestor, it is necessary when
an interrupt subprocess is called to automatically inhibit interrupts for
the current (= interrupt) subprocess. When interrupts are inhibited for

a subprocess, an interrupt to the subprocess will be remembered but cannot
cause the interrupt subprocess call as long as the interrupt inhibit is set

and the subprocess in question is the current subprocess.

At every normal subprocess call and return, a check is made for waiting
interrupt subprocesses (subprocesses for which a process interrupt has

been issued but which have not yet happened to be the ancestor of any cur-
rent subprocess). If any interrupt subprocesses are waiting, the ancestors
of the new current subprocess are checked to see if any of them is an inter-
rupt subprocess. If so, the interrupt subprocess is called. Execution in

the interrupt subprocess begins two words before its normal entry point.

38

Possible errors while sending a process interrupt:

Class # Modifier Description
5 3 Process does not exist
4 5 Subprocess does not exist in designated process
2 1 3 Interrupt datum exceeds 18 bits

0. Set/Clear Interrupt Inhibit of Current Subprocess

These parameterless action(s) allow the user to clear the interrupt inhibit
flag which is normally in effect for the current subprocess if it was called
as an interrupt subprocess. The interrupt inhibit flag can also be reset

once it has been cleared.

Possible errors:

None.

P. Reduce/Restore Path of Current Subprocess

No parameters.

The user may reduce the path of the current subprocess, i.e., the chain of
subprocesses from the root of the path to the current subprocess, so that
it consists of just one subprocess, the current subprocess itself. Once

the path has been reduced, it may be restored again using this action.

There are no possible errors.

Q. Set Local ESM (Error Selection Mask)

IP1 D: Pointer to new ESM

The error selection mask, which determines which classes of errors a sub-
process can handle, may be set in the current subprocess by specifying a
poiater to the new ESM. The ESM is a bit string (32 bits per word) in
which a 1 indicates acceptance of the corresponding error class; i.e.,

| 59 28 0

! | |

L

'\
Error class 0 Error class 31

(D
el

Possible errors while setting local ESM:

Class it Modifier Description

2 2 1 Pointer to ESM < O
2 3 1 Pointer to ESM > FL

R. Set ESM in any subprocess

IP1 D: Pointer to new ESM
IP2 C: Capability for class code (subprocess name) (OB.STESM)

By specifying the name (class code) of a subprocess in addition to a pointer

to a new ESM, the Error Selection Mask for any given subprocess may be reset.

Possible errors while setting ESM in any subprocess:

Class # Modifier Description
4 5 Subprocess does not exist
2 2 1 Pointer to ESM < 0
2 3 1 Pointer to ESM > FL

S. Destroy Process

IP1 C: Capability for process to be destroyed (0OB.DSTRY)

The system action of destroying a process requires only a parameter giving
the C-list index of the process which is to be deleted. The process will
be removed from any event channels on which it is waiting and its address

space in ECS released.

Possible error while destroying a process:

Class # Description

5 3 Process does not exist

T. Destroy a Subprocess

IP1 C: Capability for class code of subprocess to be destroyed (0OB.DSTRY)

A subprocess can be destroyed if it is currently a leaf of the subprocess
tree; otherwise an F-return will be made. If the subprocess is in the call

stack, an error is generated.

40

Possible errors while destroying a subprocess:

Class # Description

4 5 Subprocess does not exist

4 11 Attempt to delete subprocess in stack

4 11 Attempt to delete root of a subprocess tree

4 11 Subprocess is pointed to by another subprocess
U. Save (Restore) Registers

IP1 D: Pointer to 16 word buffer for registers

The exchange jump package fcr a process can be saved in (restored from)
the user's area if a pointer to a 16 word buffer is specified. When the
registers are restored, only the programmable registers (A,B and X) are

restored.

Possible errors while saving (restoring) registers:

Class i# Description

2 2 Pointer to buffer is negative

2 3 Pointer to buffer is too large (within 16 words of user's FL)
Map Actions

Associated with each subprocess is a map which directs the swapping of the
subprocess address space between Central Memory and ECS files. A map con-
sists of a fixed length sequence of map entries each of which is either

zero or contains a swapping directive. The user may zero or change a map
entry, and may display an entry from the full map or from the map associated
with any given subprocess. A swapping directive consists of 1) an ECS file,
2) a file address, 3) a central memory address, 4) a word count, and 5) a
read-only flag. Thus the map indicates what portions of which files are
copied to/from specified portions of the subprocess space at the beginning/

end of processing.

S
-

When swapping a subprocess, the entries in the logical map (see Figure 6)
are processed in the order of their appearance. To speed up the swapping
process, the entries of the logical map are "compiled" to absolute ECS
and CM addresses. Each file data block carries a count of all logical
map entries which reference it. This "reference count" is important
since the absolute ECS addresses associated with the "compiled" map (see
Figure 7) are sensitive to 1) garbage collections and 2) deletion of data
blocks. Before any of the swapping directives in a map are executed, the
"local garbage collection count" is compared to the "global garbage col-
lection count'. If they do not match, the map must be recompiled since

some file block may have been moved in ECS.

A. Zero a Map Entry

IP1 ¢(: Capability for class code (subprocess name) (0B.CHAMP)
IP2 D: Index in logical map of the subprocess

When zeroing a map entry, the user specifies the name of the subprocess
(class code) whose map entry is to be zeroed, and the index of the entry
in the subprocess logical map. If the map is part of full map and if it
is a read/write entry, then that area is swapped out before the entry is
zeroed. The result is that when the subprocess address space is swapped
between ECS and Central Memory, the portion of the address space formerly

referenced by the zeroed entry will not be swapped.

Possible errors while zeroing a map entry:

Class # Modifier Description
4 5 Subprocess does not exist
2 2 2 Negative map index
2 3 2 Map index exceeds map length
11 0 Attempt to change or zero DAE (Direct Access
Entry) :
B. Change (create) a map entry (read/write or read only)
IP1 C: Class code of subprocess whose entry is to be changed (OB.CHMAP)
P2 D: Index of entry in logical map of subprocess
IP3 C: Associated file (read only: OB.PLMAP, OB.RDFIL;
{ OB.PLMAP
read/write: ", OB.RDFIL
. OB.WFILE

IP4 D: Address in file

IP5 D: Address in CM
IP6 D: Word count of new entry

When a map entry is changed, care must be taken if the map involved is

part of the full map. In this case, the same procedure must be followed

as in zeroing a map entry. The new entry is then constructed and swapped
in. Note that overlapping map entries will behave oddly since the portions

swapped under one map entry may be partially or completely overwritten by

e 2L Ui

Possible errors while changing a map entry:

Class # Modifier Description
4 5 Subprocess does not exist
2 2 2 Negative map index
2 3 2 Map index exceeds map length
Missing block encountered
4 3 Buffer full
2 2 4 Negative file address
2 2 5 Negative word count
3 11 File address + word count exceeds file size
3 11 CM address + word count exceeds field length

C. Display a Map Entry from the Map of a Named Subprocess

IP1 C: Class code of subprocess whose entry is to be displayed
IP2 D: Index of entry in logical map of subprocess
IP3 D: Address of a 3 word buffer
This action will insert into the 3 word buffer area (IP3) the current
contents of the indicated map entry of the subprocess specified. Note
that the length of the map (maximum for IP2) can be obtained by using
the Display Subprocess Descriptor action. The three words of the designated

map (see Figure 6) are copied to the specified buffer.

Possible errors while displaying a map entry:

Class # Modifier Description
4 5 Subprocess does not exist
2 2 3 Negative address for buffer
2 2 Buffer address + 3 exceeds user's FL
2 2 2 Negative map index

2 1 2 Map index too large

43

Figure 6 Logical Map

E < file > or < empty >
<R/0 FLAG> { ¢ file address > 1st logical map entry
&?iROOMHLEﬂR*CM ADDRS <WD CNTS
<Direct : h
Access Entry L 2nd logical map entry
Flag> e e e N
|
/ 1%
‘ ,
T T e }> last logical map entry
-0 end of logical map
< empty > ::= 40 Denotes an "empty" map entry
. 39 ’ 18 ,
) - | [] ' o e
< file > ::= | UNIQUE NAME I~ MOT INDEX' file identification

< file address > ::= 0 » 259 -1

< R/O FLAG > ::= 1 = read only; 0 = read/write

< compile ptr > ::= index in compiled map buffer of first compiled map
entry for this swapping directive
< CM ADDR > ::= CM address within subprocess local address space

< WD CNT > ::= word count

Note: < CM ADDR > + < WD CNT > < length of subprocess local
address space

< DAE Flag > ::= 1 —- this is a direct ECS access entry (Legal only for first
entry)
0 —- regular map entry

44

Figure 7 Compiled Map

, [<SPACE> |<COUNT> PREFIX
| ; RE
JE<ECS ADDR<CM ADDR><WD CNT>

7 :
|<ECS_ADDR><CM_ADDR><WD CNT>

<RfO b'LA(;}>__//1;7W R
<DAE Flag> < 4/ b

/
&

<LAST ENTRY> !

S

> Compiled map words

h<ECS ADDR»<CM ADDR<WD CNT>| |

} +0 | END

0 ® must recompile

< COUNT > =

'>0 ® map is good if same as GARBCNT
< SPACE > ::= number of un-used words in the compiled map buffer
< WD CNT > = number of words to transfer

< CM ADDR > ::= CM address relative to CM process origin (Bl)

< ECS ADDR > ::= absolute ECS address to start transfer

(b = read/write

< R/0 flag > ::= read only flag
(1 ® read only
< DAE flag > ::= 1 -— DAE (legal only on lst entry in compiled map)
< last entry > ::= 1 —— last compiled map word corresponding to a particular

swapping directive

D. Display Entry in Full Map

IP1 D: Index of entry in full mép

IP2 D: Address of a 3 word buffer
The maps of the subprocesses in the full path are concatenated to form
the full map in much the same way as the full C-list is formed. An entry
in the full map can be displayed if the index of the entry in the full
map is given along with the address of a buffer where the entry should be
"displayed'. The format of the display entry is the same as for named

subprocess version of Display Map Entry.

Possible errors in display entry in full map:

Class # Modifier Description
2 3 1 Index of entry too large (exceeds length of
full map)
2 2 1 Index of entry negative
2 2 2 Pointer to buffer negative
2 3 2 Pointer to buffer + 3 greater than user's FL

Direct User Access to ECS

To afford the user an ECS RA and FL so that he may access an often used
segment of ECS directly, the system permits the current subprocess to have
a single direct access entry (DAE). This DAE must be the first entry in
the logical map; it may reference only one file block (due to obvious
physical limitations), and is set and cleared via two special actions
described below. A DAE map ertry has only two features which distinguish
it from other map entries: 1) the CM address portion is always zero, and

2) the DAE flag (in first entry only) is set.

E. Set Direct Access Map Entry

IP1 C: Capability for class code (OB.DAE)
IP2 C: File (OB.FDAE)

IP3 D: File address of beginning of block
IP4 D

: Word count (mod 1008)

This action sets the direct access ECS entry in the map of the subprocess
named by the first parameter. The file address must be the beginning of
a block and the word count must be a multiple of 64 words since storage

handling in ECS is in 64 word blocks.

Vi

46

Possible errors while setting a DAE:

Class # Modifier Description
2 2 File address negative
2 3 File is too large
11 1 Word count extends to more than 1 block
2 0 Word count negative
F. Clear the Direct Access Map Entry

IP1 C: Capability for class code (OB.CHMAP)

This action clears the direct access entry in the map of a named sub-
process. The only parameter required is a class code (IP1). The action

is equivalent to A. above except that it may only be used on DAE's.

Possible errors while clearing DAE:

Class # Modifier Description
4 5 Subprocess does not exist
11 2 Attempt to zero swapping directive

Event Channel Actions

Event channels are ECS objects which are used to synchronize the behavior of
running processes as well as to implement "block" and "wake-up'" mechanisms.
Events consist of two 60 bit words: the first identifies the sending process;
the second is a 60-bit datum. Each event channel should handle a particular
kind of event. The user can create an event channel, send an event, get an
event from an event channel, get an event from any one of a list of event
channels, and destroy an event channel. If the user attempts to get an event
from a channel which has no events, the user's process is either blocked (stops
running) until some other process sends an event to the event channel, or
F-return action is initiated.

A. Create an Event Channel

IP1 C: Capability for allocation block (OB.CREEC)
IP2 D: C-list index for new event channel capability
IP3 D: Number of events that queue can hold

When an event channel is created it consists of a three word header and an

event queue which is initially empty. The header word is used to maintain

>~

4o

~J

the queue of events and a queue of waiting processes, which develops if
the queue of events becomes empty and processes request events from that
channel. When creating an event channel, the user specifies the name

of the Allocation block which funds the ECS space occupied by the event
channel, a C-list index where the system can put the capability (with all
options allowed) for the event channel when it creates it, and the length

(number of possible events) of the event queue.

Possible errors while creating an event channel:

Class # Description

6 Allocation block does not exist
No ECS available

No money available

C-list index exceeds full C-list

0

1

2

4 C-list index is negative
5

0 Length of event queue < 0
1

O W NN oY O

Event queue too large

B. Send an Event (with/without duplicate event checking)

IP1 C: Capability for the event channel (OB.SNDEV)
IP2 D: Datum part of event

These actions allow the user to send an event to an event channel. He
specifies the index of the capability for the event channel and specifies
a 60-bit datum to be passed with the event. The system responds by indi-
cating the disposition of the event to the user in X6. The following res-

ponses are possible:

Condition Response
Event put in event queue
Event paésed to a process
"YOU LOSE" event put in event queue

Event queue full

v W N

Duplicate event found

The first response indicates that all went well, and there was no pro-

cess a waiting an event in the process queue. The second response indi-

48

cates that there was a process waiting in the queue and that it was
passed the event. The third response indicates that there was only

one free slot in the event queue (an event occupies two words); the
intended datum has been replaced by a "you lose" datum (-0) so that the
process which ultimately gets the datum will be aware that the event

queue was full and that information was lost.

The fourth response indicates that no action was taken because the queue
was full. The fifth response is returned only if the action called for
a search for duplicate events and a duplicate was found, in which case

no further action is taken.

Possible errors resulting from sending an event:

Class # Description

9 2 Event channel does not exist

C. Get an event or hang

IP1 (C: Capability for event channel (OB.GETEV)

A user requests an event from a channel using the C-list index of the
capability of the channel in question. If the event queue is empty, the
process must wait ("hang" or 'block'") until an event arrives before resuming
execution. If more than one process is awaiting an event, the first event
sent to that channel is passed to the first process while the other pro-
cess(es) continues to wait. The event is returned to the calling process

in X6 and X7. X6 contains the unique name of the process which sent the

event while X7 contains the event datum.

Possible error while getting an event:

Class # Description
9 2 Event channel does not exist
D. Get an Event or F-return

IP1 C: Capability for event channel (OB.GTEVF)

The user requests an event from a channel using the C-list index of the

event channel's capability. If the event queuc is empty, an F-return

will be initiated in order to permit the process to take alternative
X

action. The event is returned in X6 and X7 as in £. above.

Possible error while getting an event:

Class # Description

9 2 Event channel does not exist

E. Get an event from one of a list of event channels or hang (F-return

IP1 D: Pointer to list of C-list indices for event channels (OB.SNDEV...)
IP2 D: Number of event channels involved (OB.GETEV or OB.GTEVF...)

The procedure for getting an event from one of a list of event channels

is similar to that for getting a single event (see C. above). The channels
are interrogated one at a time and if their respective event queue is empty,
the user's process will be queued on the process queue of the event channel.
If an event subsequently arrives or is discovered on one of the event chan-
nels in the list, the process is removed from all the process queues on
which it has already been chained and it is passed the event. If no event
arrives or is discovered before the last event channel is interrogated,

the process must wait ("hang" or "block") until an event arrives on one

of the event channel (F-return).

When an event is finally passed in X6 and X7, the index in the user's list

of the event channel producing the event is masked into bits 0-18 of X6.

Possible errors while getting an event from a list of channels:

Class # Modifier Description
9 2 Event channel does not exist
2 0 Number of channels is negative
2 1 2 Number of channels exceeds the number of
chaining words in the process
2 2 Pointer to list of event channel indices is

negative

2 1 1 Pointer to list + number of channels exceeds FL

Vi

(W3]
o

F. Destroy an Event Channel

IP1 C:Capability for event channel (OB.DSTRY)

An event channel can be destroyed. The only parameter required is the
C-list index of the event channel which is to be destroyed. If there
are any processes waiting on the event channel's process queue, an F-

return is initiated leaving the event channel intact.

Possible errors while destroying an event channel:

Class # Description

9 2 Event channel does not exist

Operations

Operations are ECS objects which direct the transfer of control from the
user to the system when the user calls upon the system. They describe

the actions to be taken by the system and direct the passing of parameters
to the system or between user subprocesses. (See Subprocesses above.)

Each operation is composed of an initial order specifying a desired action,
some parameter checking information, and when the acticn is '"subprocess
call", a class code naming the subprocess to be called. The initial order
is followed optionally by a sequence of orders (containing similar informa-
tion) indicating alternative actions should all the preceding orders result
in F-returns. The user may invoke any of the ECS system actions described
in this document, or camn create his own operations of which the orders may
either specify subprocess call or jump actions or actions which are modi-

fications of ECS system actions.

The checking information in each order consists of 1) a parameter speci—
fication type for each parameter required in the actual parameter list

for the indicated action; 2) words containing the required option bits and
type for capability parameters to be supplied by the user; and 3) all fixed
parameters, whether capabilities or data. This checking information is
used by the system entry/exit routines when constructing the actual

parameter list.

wn
[

The parameter specification types are:

Type ’ Description
none when an operation is created, all parameter

specifications are initialized to 'none",
and must be fixed-up using the various actions
supplied before the operation may be used.

any capability a capability is expected from the user, but
no type or option checking is to be performed
on it.

user-supplied capability the user must supply a capability whose type
and option bits include those set 1in the
operation.

‘user-supplied datum the user must supply a 60-bit datum but no
checking is performed on it.

‘fixed capability both words of a capability are stored in the
operation and no corresponding information is
taken from the user's input parameter 1list.

fixed datum a 60-bit datum word is stored in the operation;
it is passed to the actual parameter list

unchanged.

There are two actions for creatiﬁg new operations; the first creates an
operation with one order to "call" or "jump-call" a designated subprocess
and the second creates an operation of order N by adding one order to
"call" or "jump-call" a subprocess to an already existing operation of

N-1 orders. All operations constructed by the user specify '"subprocess
call" actions or are modified versions of already existing actions. Actions
are also available for copying an operation and for changing the parameter

specifications in an operation.

A. Make a subprocess call or subprocess jump operation
IP1 C: Capability for Allocation block (OB.ALORD)
IP2 D: C-list index for new operation
IP3 p: Type (O=call; nonzero=jump)
IP4 ¢

Class code of subprocess to be called by the new operation
(0B.CALOP)
IP5 D: Number of parameters to be used by the subprocess call

52

To create a new operation to be used for subprocess call or jump call,
the user supplies the index of a capability for the Allocation block

which is to fund space in ECS for the new operation.

In addition the user gives 1) the C-list index where the system will’
place the capability for the new operation, 2) the type subprocess call

action (call or jump call) of the new operation, 3) the name (class code)

£ e giithnvracoca +a K
r i

ie subprocess to be called by the cperation, and 4) the number of

t

0
parameter specifications needed for the subprocess call.
all of the parameter specifications of the new cperation are initialized
to "none" and therefore the operation may not yet be invoked (unless it

is parameterless).

Possible errors while creating a new operation:

Class

6

Description
Allocation block does not exist

No ECS available

No money available

Number of parameter specifications is negative
Too many parameters

Negative C-list index

(e N - I =

6
6
2
7
2
7 Order too large

B. Add an Order to an Operation

IP1 C: Capability for Allocation block (OB.ALORD)

IP2 D: C-list index for new operation (order)

IP3 C: Capability for existing operation (OB.ADDOR)

IP4 D: Type of order (0O=call; nonzero=jump)

IP5 C: Class code of subprocess called by the new order (OB.CALOP)
IP6 D: Number of new parameters being added

This action creates a new operation of order N out of an operation of
order N-1. The first parameter is the C-list index for the Allocation
block which is.to fund space in ECS for the new operation; the second
parameter is the C-list index where the system will put the capability

fcr the new operatipn. In the third parameter the user specifies an
already existing operation of order N-1, which is copied with the new
order appended. The last three parameters describe the new order by indi-

cating whether it is a ''call" or "jump call" to a subprocess, the name

W
(0

(class code) of the subprocess to be called, and the number of additional
parameters. The parameters of the new order will be initialized to type

"none'" and must be fixed-up before the new order of the operation is used.

Possible errors while adding an order:

Class

6

Description
Allocation block does not exist

No ECS available

No money available

C-list index is negative

C-list index is too large

Operation has been deleted (doesn't exist)
Subprocess does not exist

Number of parameter specifications is negative

Number of parameter specifications is too large

N N N N SRR R e
[N e R . ST R N e R S

Order too large

C. Copy an operation of order n

IP1 C: Capability for Allocation block (OB.ALORD)
IP2 D: Full C-list index for new operation
IP3 C: Operation to copy (OB.ADDOR)

The user can copy an already existing operation of order n (n > 0) by
specifying the C-list index of the funding Allocation block, the full
C-list index for the desired operation, and the full C-list index of a
slot for the capability for the new copy of the operation. This action
is used prior to fixing parameter specifications of an operation to avoid

changing the original version of the operation.

Possible errors while copying an operation:

Class # Description
6 Allocation block does not exist

No ECS available

C-list index is negative

0
1
2 No money available
4
5 C-1list index exceeds full C-list
1

~NN RO O

Operation does not exist

wn
i~

D. Change a parameter specification type

In order to specify the parameter specification types in an order of an
operation created by either A or B above, a set of actions is provided.
Each takes as parameters a C-list index for an operation and a para-
meter specification index (considering the parameter specification for
the first parameter of the first order as having an index of 0). Some
require additional information depending on the type of parameter spe-

cification being changed.

1. Change parameter specification from ''none" to "user-supplied datum"

IP1 C: Capability for operation (OB.CHTYP)
IP2 D: Index of parameter specification to change

Possible errors:

Class # Description
7 1 Operation does not exist
2 2 Index is negative
2 3 Index is too large
7 4 Parameter specification type is not currently ''none"
2. Change parameter specification from 'none" to "any capability"

1 C: Capability for operation (OB.CHIYP)
IP2 D: Index of parameter specification to change

Possible errors. See 1 above.

3. Change parameter specification type from 'none'" to "user-supplied
capability"
IP1 C: Capability for operation (OB.CHTYP)
IP2 D: Index of parameter specification type
IP3 D: Capability type
IP4 D: Capability option bit mask

The type of a capability occupies the lower 18 bitsof the Option bit/
Type field of which exactly 9 of the 18 bits must be set.* Table 1

This arrangement allows the validity of the entire 60-bit field to
be checked in one instruction (using the implication function).

55

below gives the types for ECS objects currently available.

Table 1. Capability types

Object Type
Process 7778
C-list 13778
File 15778
Operation 16778
Class Code 1/3/8
Event Channel 17578
Allocation 17678
Block

The option bit mask stored in a capability occupies the upper 42-bits
of the Option bit/Type field and the meanings of the various option
bits is determined by the type of object the capability identifies.
See Appendix B for the name, description and relative position of all
option bits. The option bit mask is checked for all required option
bits. The positions of the bits are given reading from right to left;

n

thus bit position 0 is the low order bit of the field.
Pessible errors while changing parameter specification type from "none"

to "user-supplied capability":

Class # Modifier Description
6 0 No Allocation block
6 1 No ECS available
6 2 No money available
2 2 2 Index is negative
2 3 2 Index is too large
7 2 Capability type does not have exactly 9 bits set
7 1 Operation does not exist
7 2 Option bits bad
7 4 Parameter specifica:ion is not currently 'none"

56

Change a parameter specification type from "user—supplied datum' to
"fixed datum'

IP1 C: Capability for operation (OB.CHTYP)
IP2 D: Index of parameter specification type
IP3 D: 60-bit datum word

Possible errors while changing parameter specification from "user-
supplied datum" to "fixed datum':

Class # Modifier Description
6 0 No Allocation block
6 1 No ECS available
6 2 No money available
7 1 Operation does not exist
2 2 2 Index is negative
2 2 3 Index is too large
7 5 Parameter specification is not currently

"user-supplied datum"

Change a parameter specification type from 'user-supplied capability"
to "fixed capability'

IP1 C: Capability for operation (OB.CHTYP)

IP2 D: Index of parameter specification type in operation

IP3 C: A capability

The capability supplied must agree in type and option bits with what
is already in the operation.

Possible errors while changing a parameter specification type from
"user-supplied capability" to "fixed capability"

Class #

i Modifier Description
6

No Allocation block
No ECS available

0

1

2 No money available
2 2 Index is negative
2

6

6

7 1 Operation does not exist
2

2 3 Index is too large

7

9]

Parameter specification is not currently "user-
supplied capability"

57

Note in the last two cases (4 and 5) that "fixing" a parameter speci-
fication type requires two steps, changing the specification first to

"user-supplied" type and then to the corresponding '"fixed" type.

Actions 3, 4, and 5 involve reallocating the operation in ECS, since

each requires inserting one additional word to the order.

Change parameter specification option bits for type 'user-supplied
capability"

IP1 C: Capability for operation (OB.CHOPT)
IP2 D: Index of parameter specification
IP3 D: Option bit mask

After the parameter specification option bit mask has been specified when

a parameter specification type is changed from "none" to "user-supplied

capab

ility", this action may be used to alter the mask.

Possible errors while changing option mask:

Class

2

2
7
7

i# Modifier Description

2 2 Index is negative

3 2 Index is too large

1 Operation does not exist

5 Parameter specification type is not currently

"user-supplied capgbility"

Destroy an Operation

IP1 C: Capability for the operation to be destroyed (OB.DSTRY)

This action may be used to destroy an operation created by the user.
The only parameter required is the C-list index of the capability for

the operation to be destroyed.

Possible error when destroying an operation:

Class # Description
7 1 Operation does not exist

58

Annendix A
Appenct A

User supplied parameters (with option bits) for ECS system
and subprocess call actions

Allocation Blocks

A. Create an Allocation Block

IP1 C: Allocation Block (OB.CREAB)
IP1 D: C-list index for returned capability

B. Transfer funds (and/or space) from one Allocation Block to another

IP1 C: Allocation Block (domor) (OB.GIVE)
IP2 C: Allocation Block (donee) (OB.GET)
IP3 D: Space to be transferred
IP4 D: Money to be transferred

C. Return capability for n-th object in Allocation Block

IP1 ¢: Allocation Block (OB.GOD)
IP2 p: Full C-list index for returned capability
IP3 D: Index of desired object (n)

D. Destroy Allocation Block

IP1 C: Allocation Block to be destroyed (OB.DSTRY)

L A o~ - o
C-List Actions

A. Create a C-list

IP1 C: Capability for Allocation block (OB.CRECL)
IP2 D: Index in full C-list to return new capability
IP3 D: Length of new C-list

B. Display a capability from full C-list

IP1 D: Index in full C-list

C. Display a capability from an arbitrary C-list

IP1 C: Capability for C-list
IP2 D: Index in the C-list

111

59

D. Copy a capability within full C-list and decrease options
IP1 D: Index of desired capability
IP2 D: Index of destination C-list entry
IP3 D: Mask if options to preserve
E. Copy capability from full C-list to arbitrary C-list (vice-versa)
IP1 C: Tndex of destination (source) C-list (OB.CPYIN, OB.CPYOT)
D: Index within destination (source) C-list of capability
IP3 D: Index in full C-list of source (destination) capability
F. Change unique name in capability
IP1 D: C-list index of object (OB.CHNAM)
G. Destroy a C-list
IP1 C: Capability for C-list (OB.DSTRY)
File Actions
A. Create a File
IP1 C: Capability for an Allocation block (OB.CRFIL)
IP2 D: C-list index to return capability
IP3 D: Number of levels in file
IP4 D: Pointer to list of shape numbers
B. Create a Block
IP1 C: Capability for file (OB.CREBL)
IP2 D: Address of block in file
C. Check for missing blocks
IP1 C: Capability for file
IP2 D: Address of block in file
D. Read shape of a file
IP1 C: Capability for file
IP2 D: Address of buffer for shape numbers
IP3 p: Buffer size
E. Read (Write) a File

IP1 C: Capability for file (OB.RDFIL, OB.WFILE)
IP2 D: Address in file

IP3 D: Address in CM

IP4 D: Word count

v

F. Move a

60

block of a file

IP1
IP2
IP3
IP4

cuouon

File

ct
(]

Capability of a source file (OB.RDFIL, OB.DELBL)

: Address of source block
: Capability for destination file (OB.WFILE, OB.CREBL)
¢ Address of destination block

file copy

IP1
P2

L &

IP3
IP4
IP5

|*RvNeRwNe!

e se se

H. Delete

IP1 ¢C:
IP2 p:

I. Delete

Source file (OB.RDFIL)

: Address in source file

Destination file (OB.WFILE)
Address in destination file
Count of words to be transferred

a Block from a File

Capability for file (OB.DELBL)
Address of block to be deleted

a File

IP1 C:

Process and

Capability for file (OB.DSTRY)

Subprocess

A. Create a class code
IP1 (C: Capability for class code
B. Set temporary part of class code
IP1 C: Capability for class code (OB.TEMP)
IP2 D: C-list index for modified class code
IP3 D: New temporary part (30 bits)
C. Create a Process
IP1 C: Capability for Allocation block (OB.CREPR)
IP2 D: C-list index for returned process capability
IP3 D: Number of event channel chaining words
IP4 D: Number of stack entries
IP5 ¢: Class code for initial subprocess (OB.SONSP)
IP6 D: Number of map entries in initial subprocess
IP7 D: Compiled map buffer size for initial subprocess
IP8 D: Subprocess field length
IP9 Dp: Subprocess entry point
IP10 C: Capability of C-list for subprocess (OB.LOCCL)
IP11 C: Capability of file for lst map entry (Read/Write: OB.WFILE,
" OB.RDFIL, OB.PILMAP) for initial subprocess
IP12 D: Address within file
IP13 D: Address in CM
IP14 D: Count of words to be swapped
IP15 D: Capability of file for 2nd map entry (Read Only: OB.RDFIL,

OB.PLMAP) for initial subprocess

61

IP16 D; Address within file
IP17 D: Address in (M
IP18 D: Count of words to be swapped

Display Fixed Length Process Descriptor

IP1 C: Capability for the process
IP2 D: Address of buffer area

IP3 D: Size of buffer area
Display Clock Times

IP1l D: Address of buffer area

Create a Subprocess

IP1 C: Capability for new subprocess class code (OB.SONSP)

IP2 C: Capability for class code of the "father" of subprocess (OB.FATHR)
IP3 D: Number of map entries

IP4 D: Compiled map buffer size

IP5 D: Subprocess field length

IP6 D: Subprocess entry point

IP7 C: Capability for subprocess local C-list index (0B.LOCCL)

Display Subprocess Descriptor

IP1 (C: Class code (subprocess name)
IP2 p: Address of buffer area
IP3 p: Size of buffer area \

Subprocess call

See Operations

Subprocess return

See Operations

Subprocess F-return

See Operations

Subprocess Jump Return

IP1 C: Capability for class code of subprocess to return to (0OB.SPRET)
IP2 D: Number of stack occurrences of APl to skip

Return with Error

IP1 D: Error Class
IP2 D: Error Number

i

62

Modify P-counter of subprocess

IP1 C: Capability for class code of subprocess (OB.PCNT)
IP2 D: Number of stack occurrences of APl to skip
IP3 D: New P-counter

Display stack

IP1 D: CM address of a buffer area
IP2 D: Size of buffer area (> 4)

Display stack entry

IP1 D: CM address of buffer
IP2 D: Desired stack entry

Send process interrupt

IP1 C: Capability for a process (OB.SDINT)
IP2 (: Capability for a class code of a subprocess (OB.INTSP)
IP3 D: An 18 bit interrupt datum

Set/Clear Interrupt Inhibit of Current Subprocess

No parameters

Reduce/Restore Path of Current Subprocess

No parameters

Set local ESM (Error Selection Mask)

IP1 D: Pointer to new ESM

Set ESM in any subprocess

IP1 D: Pointer to new ESM
IP2 C: Capability for class code (0OB.STESM)

Destroy a process

IP1 C: Capability for process to be destroyed (OB.DSTRY)

Destroy a subprocess

IP1 C: Capability for the class code of subprocess to be destroyed (OB.DSTRY)

Save (restore) registers

IP1 D: Pointer to 16 word buffer for registers

VI

[a)}
w

Map Actions

A, Zero a map entry

IP1 (¢: Class code (subprocess name) (OR.CHMAP)
IP2 pD: Index in logical map of subprocess

B. Change (create) a map entry (read/write or read only)

C: Class code of subprocess (0OB.CHMAP)

IP2 D: Index of map entry in APl

IP3 C: Associated file (read only or read/write) (OB.PLMAP,OB.RDFIL,OB.WFILE)
D: Address in file

IP5 D: Address in CM

IP6 D: Word count of new entry

C. Display map entry from map of named subprocess

IPL C: Class code for subprocess
IP2 D: Index of entry in logical map of AP1
IP3 D: Address of 3 word buffer

D. Display entry in full map

IP1 D: Index of entry in full map
IP2 D: Address of 3 word buffer

E. Set Direct Access Map Entry

IP1 C: Class code (OB.DAE)

IP2 C: File (OB.FDAE)

IP3 D: File address of beginning of block
IP4 D: Word count (mod 1008)

F. Clear Direct Access Map Entry

IP1 ¢: Class code (OB.CHMAP)

Event Channel Actions

A. Create an event channel

IP1 C: Capability for allocation block (OB.CREEC)
IP2 D: C-list index for new event channel capability
IP3 D: Length of event queue

B. Send an event (with/without duplicate checking)

IP1 C: Capability for event channel (OB.SNDEV)
IP2 D: Datum part of event

64

C. Get an event or hang
IP1 C: Capability for event channel (OB.GETEV)
D. Get an event or F-return
IP1 C: Capability for event channel (OB.GTEVF) \
E. Get an event from one of a list of event channels or hang (F-return)
IP1 D: Pointer to list of event channel C-list indices (OB.SNDEV...)
(OB.GETEV or GTEVF...)
IP2 D: Number of channels in list
¥, Destroy an event channel

IP1 (¢: Capability for event channel (OB.DSTRY)
VII Operations

A. Make a subprocess call or subprocess jump operation

IP1 C: Capability for Allocation block (OB.ALORD)

IP2 D: C-list index to return new operation

IP3 D: Type (0O=call, nonzero=jump)

IP4 C: Class code for subprocess called by new operation (0B.CALOP)
IP5 D: Number of parameters used by the subprocess call

"B. Add an order to an operation
IP1 C: Capability for Allocation block (OB.ALORD)
IP2 D: C-liist index to return new operation
IP3 C: Capability for existing operation (OB.ADDOR)
IP4 D: Type of order (0O=call, nonzero=jump)
IP5 C: Class code of subprocess called by new order (OB.CALOP)
IP6 D: Number of new parameters being added

C. Copy an operation of order n (n > 0)
IP1 C: Capability for Allocation block (OB.ALORD)
IP2 D: Full C-list index for new operation
IP3 (C: Operation to copy (OB.ADDOR)

D1. Change a parameter specification type from "none" to "user-supplied datum"

IP1 C: Capability for operation (OB.CHTYP)
IP2 D: Index of parameter specification

D2. Change a parameter specification type from '"none" to "any capability"

IP1 C: Capability for operation (OB.CHIYP)
IP2 D: Index of parameter specification type to change

65

Change a parameter specification type from "none" to "user-supplied

capability"

IP1 C: Capability for operation (OB.CHTYP)
IP2 D: Index of parameter specification type
IP3 D: Capability type

IP4 D: Capability option bit mask

Change a parameter specification type from "user-supplied datum" to

1Pl C: Capability for operation (OB.CHTYP)
Ip2 D: Index of parameter specification type
Ir3 D: 60-bit datum word

Change a parameter specification type from "user-supplied capability”
to "fixed capability"

IP1 C: Capability for operation (OB.CHTYP)
IP2 D: Index of parameter specification type in operation
IP3 C: A capability

Change Parameter Specification Option Bits for 'user-supplied capability"

IP1 C: Capability of operation (OB.CHOPT)
IP2 D: Index of parameter specification
IP3 D: Option bit mask

Destroy an Operation

IP1 C:Capability for operation to be destroyed (OB.DSTRY)

66

+ Appendix B
Options
Relative
Object Mnemonic Description " Bit Position
Allocation 0B.DSTRY Destroy Allocation Block 0
Block OB.CHNAM Change Unique name 1
0B.CREAB Create Allocation Block 2
OB.CRECL Create a C-list 3
OB.CRFIL Create a file 4
OB.CREPR Create a process 5
OB.CRLESP Create a subprocess 6
OB.CREEC Create an event channel 7
OB.ALORD Create an operation 8
OB.GIVE Donor Allocation block 9
OB.GET Donee Allocation block 10
0B.GOD Return capability of n-th object 11
C-list OB.DSTRY Destroy C~list 0
OB.CHNAM Change unique name 1
0B.CPYIN Copy capability into C-list 2
OB.CPYOT Copy capability out of C-list 3
0B.LOCCL Local C-list for initial subprocess 4
File OB.DSTRY Destroy a file 0
0B .CHNAM Change unique name 1
OB.CREBL Create a block 2
OB.DELBL Delete a block 3
OB.RDFIL Read a file 4
OB.WFILE Write on the file 5
OB.PLMPP Place portion of file in map 6
OB.FDAE Direct ECS Access 7
Process OB.DSTRY Destroy a process 0
0B.CHNAM Change unique name 1
OB.SDINT Interrupted proéess
Subprocess OB.DSTRY Destroy subprocess 0
OB.TEMP Set temporary part of class code 1
OB.FATHR Father subprocess 2
OB.SPRET Subprocess may be jump returned to 3
OB.PCNT P-counter of subprocess may be modified 4
OB.INTSP Interrupt subprocess , ’ 5
0B.CALOP Subprocess called by operator 6
OB.SONSP Son subprocess 7
OB.CHMAP Create, zero, or change map entry 8
OB.DAE Direct ECS Access map entry 9
OB.STISM Set Error Selectlon Mask 10

Object

Event
Channel

Operation

Mnemonic

OB.DSTRY
OB.CHNAM

. OB.SNDEV

OB.GETEV
OB.GTEVF

0B.DSTRY
OB . CHNAM
OB.ADDOR
0B.CHTYP

OB.CHOPT

DescriEtion

Destroy event channel
Change unique name

Send an event '
Get an event (or hang)

Get an event (or F-return)

Destroy an operation

Change unique name

Order may be added to operation

Change parameter specification type
in an operation

Change option bits for 'user-
supplied capability"

Relative
Bit Position

ENVCI N ™

N O

68

Appendix C

Error Classes and Numbers

Class Numbers Description
0 SCOPE call error class

Jod

Arith error class

(%]

Parameter or pointer error class

0 Parameter too small
Parameter too large
Param number is masked into errnum
Pointer is negative
3 Pointer is too large
Pointer is masked into errnum
C-list index is negative
5 C-list index is too large
Index is masked into errnum

o

N

ol

3 File-processing error class

File does not exist

Block to be created exists

Block is in map

Block to be moved does not exist
Block sizes not equal for move
Block to be destroyed does not exist
File to be destroyed is nonempty
Negative shape number

Shape number is too large

Shape number is not power of two
File size is too great

OCWOWOONOUT WO

=

4 Error class for subprocess creation, call, and return

Duplicate Subp name

Named father does not exist
Block in swapping directive missing
Not enough room for map

Process becomes too big

Named subp does not exist

No room for subp in stack

No room for parameters

Too many capability params
Empty stack (on return)

Empty stack (on F-return)
Attempt to delete subp in stack

~Noweoo~NoOUBPwWwNOEHEO

Pt s

Class

10

11

Numbers

Description

=

N =

~NouU s~ O

= O

N = O

we-=o

Error class for process creation

Block missing in swapping directive
Not enough room for map
Process gone from MOT

Allocation block error class

No Allocation block
Not enough space
No more money

Error in interpreting operation

IPO not capability for operation
Operation not in MOT

Capability type or options bad
Param spec (any) encountered
Param spec (any) not encountered
Should be user supplied parameter
Order too big for scratch area
Too many parameters

Miscellaneous error class
Capability list not in MOT
Misc object hot in MOT

Event channel error class

Event queue too short
Event queue too long
Event channel not in MOT

No subp to take error class

Error class for maps

Attempt to change Or zero DAE
DAE attempts to bridge blocks
DAE action applied to swapping dir.
Bad word count or missing file

69

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69

