
• UNISYS U 6000 Series
System V
Programmer's
Reference Manual

Volume 3
Copyright © 1988 Unisys Corporation.
Unisys is a trademark of Unisys Corporation.

Priced Item

March 1988

Printed in U S America
UP-13713.3

This document is intended for software releases based on AT&T Release 3 of UNIX
System V or a subsequent release of the System unless otherwise indicated.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any
product and related material disclosed herein are only furnished pursuant and subject to
the terms and conditions of a duly executed Program Product License or Agreement to
purchase or lease equipment. The only warranties made by Unisys, if any, with respect
to the products described in this document are set forth in such License or Agreement.
Unisys cannot accept any financial or other responsibility that may be the result of your
use of the information in this document or software material, including direct, indirect,
special or consequential damages.

You should be very careful to ensure that the use of this information and/or software
material complies with the laws, rules, and regulations of the jurisdictions with respect to
which it is used.

The information contained herein is subject to change without notice. Revisions may be
issued to advise of such changes and/or additions.

ACT, Micro-Term, and MIME are trademarks of Micro-Term.
Ann Arbor is a trademark of Ann Arbor Terminals.
Beehive and Superbee are registered trademarks of Beehive International.
Concept is a trademark of Human Designed Systems.
DEC, PDP, VAX, and VT100 are trademarks of Digital Equipment Corp.
Diablo is a registered trademark of Xerox Corp.
DOCUMENTER'S WORKBENCH is a trademark of AT&T. Teletype and WE are registered
trademarks of AT&T. UNIX is a registered trademark of AT&T in the USA and other
countries.
HP and Hewlett-Packard 45 are registered trademarks of Hewlett-Packard, Inc.
LSI ADM is a trademark of Lear Siegler.
TEKTRONIX, TEKTRONIX 4010, and TEKTRONIX 4014 are registered trademarks of
Tektronix, Inc.
Teleray and Teleray 1061 are trademarks of Research.
TeleVideo is a registered trademark of TeleVideo Systems.
Texas Instruments, T1735, T1725, and TI745 are registered trademarks of Texas
Instruments. Inc.
Versatec and Versatec D1200A are registered trademarks of Versatec Corp.

Portions of this material are copyrighted © by
AT&T Technologies

and are reprinted with their permission.

This documentation Is based in part on the fourth Berkeley Software Distribution, under license from the Regents of the
University of california. We acknowledge the following IndividualS and instttutions for their role in tts development:

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California
Berkeley, California 94720

6000/50

Customization Package

This customization package contains changes to your
Programmer's Reference Manual, Volume 3, which reflect the AT&T
System V Release 3.1 and the value-added features of the Unisys
System V Operating System. Please add these pages to your base
manual to produce a fully customized Programmer's Reference
Manual.

To fully customize your Programmer's Reference Manual,
Volume 1, replace the existing generic manual cover with the
new customized manual cover.

Customization .Package

Customization Directions

The table below indicates the name of the document and
directions for making your manual current. The document found
in your customization package may be used to replace an already
existing document of the same name, or it may be added as a
new document to the manual. You may also be directed to
remove an existing document from the current manual. For the
location of specific documents, please refer to the Table of
Contents.

2 Customization

Customization Package

New Customization Document Customization Directions

Table of Contents replace old with new

intro(4) replace old with new

a.out(4) replace old with new

add new

add new
.. "" ... ,1",,1""0. old with new

add new
add new

mm(5) add new

mptx(5) add new

mS(5) add new
mvt(5) add new

Customization 3

Table of Contents

(The following are contained in three volumes.)

1. Commands
intro(1) introduction to commands and applications programs
admin(1) .. create and administer sees files
adb(1) .. absolute debugger
ar(1) archive and library maintainer for portable archives
as(1) ... common assembler
astgen(1) generate/modify ASSIST menus and command forms
bs(1) a compiler/interpreter for modest sized programs
buildgrp(1) ... build software distributions
cb(1) ... e program beautifier
cc(1) .. e compiler
cdc(1) change the delta commentary of an sees delta
cflow(1) ... generate e flowgraph
comb(1) .. combine sees deltas
cpp(1) .. the e language preprocessor
cprs(1) .. compress a common object file
ctags(1) ... create a tags file
ctrace(1) .. e program debugger
cxref(1) generate e program cross-reference
delta(1) make a delta (change) to an sees file
dis(1) .. object code disassembler
dump(1) dump selected parts of an object file
efl(1) .. extended FORTRAN language
fsplit(1) ... split f77, ratfor, or efl files
gencc(1 M) create a front-end to the cc command
get{1} .. get a version of an sees file
i286emul{1} ... emulate 80286
includes(1) determine e language preprocessor include files
inline(1) ... substitute inline code in asm file
infocmp(1 M) compare or print out term info descriptions
install (1 M) .. install commands

UP-13713.3 Contents 1

Table of Contents

Id(1) ... link editor for common object files
lex(1) generate programs for simple lexical tasks
lint(1) ... a e program checker
list(1) produce e source listing from a common object file
lorder(1) find ordering relation for an object library
m4(1) .. macro processor
make(1) maintain, update, and regenerate groups of programs
mcs(1) manipulate the object file comment section
mkshlib(1) ... create a shared library
mkstr(1 B) create error message file from e source
nm(1) print name list of common object file
prof(1) ... display profile data
prs(1) .. print an sees file
ratfor(1) .. rational FORTRAN dialect
regcmp(1) .. regular expression compile
rmdel(1) .. remove a delta from an sees file
sact(1) print current sees file editing activity
sccsdiff(1) compare two versions of an sees file
sdb(1) ... symbolic ,debugger
size(1) print section sizes in bytes of common object files
sno(1) .. SNOBOL interpreter
strip(1) strip symbol & line no. info. from a common object file
sym(1) .. display symbols
tic(1 M) ... term info compiler
tsort(1) .. topological sort
unget(1) undo a previous get of an sees file
val(1) ... validate sees file
vc(1) , ... version control
what(1) ... identify sees files
xstr(1} extract and share strings in C program
yacc(1) .. yet another compiler-compiler

2. System Calls
intro(2) introduction to system calls and error numbers
access (2) ... determine accessibility of a file
acct(2) enable or disable process accounting
alarm(2) .. set a process alarm clock
brk(2) change data segment space allocation
chdir(2) ... change working directory
chmod (2) ... change mode of file
chown(2) change owner and group of a file

Contents 2 UP-13713.3

Table of Contents

chroot(2) ... change root directory
close(2) .. close a file descriptor
creat(2) create a new file or rewrite an existing one
dup(2) ... duplicate an open file descriptor
exec (2) .. execute a file
exit (2) .. terminate process
fcntl(2) ... file control
fork(2) ... create a new process
getdents(2) read directory entries and put in a file
getmsg (2) ... get next message off a stream
getpid(2) get process, process group, and parent process IDs
gettimeofday, settimeofday(2) get/set date and time
getuid(2) .. get real user, effective user, real grp., effective grp. IDs
ioctl(2) .. control device
kill(2) send a signal to a process or a group of processes
Iddrv(2) ... access loadable drivers
link(2) ... link to a file
Iseek(2) ... move read/write file pointer
mkdir(2) .. make a directory
mknod(2) make a directory, or a special or ordinary file
mount(2) .. mount a file system
msgctl (2) .. message control operations
msgget(2) .. get message queue
msgop(2) ... message operations
nice(2) .. change priority of a process
notify, unnotify, evwait, evnowait(2) manage notifications
open (2) .. open for reading or writing
pause(2) .. suspend process until signal
pipe(2) ... create an interprocess channel
plock (2) lock process, text, or data in memory
poll (2) .. STREAMS input/output multiplexing
profil (2) ... execution time profile
ptrace(2) ... process trace
putmsg(2) .. send a message on a stream
read(2) .. read from file
rmdir(2) ... remove a directory
semctl(2) ... semaphore control operations
semget(2) .. get set of semaphores
semop(2) ... semaphore operations
setpgrp(2) .. set process group 10
setuid(2) ... set user and group IDs

UP-13713.3 Contents 3

Table of Contents

shmctl(2) shared memory control operations
shmget(2) get shared memory segment identifier
shmop(2) ... shared memory operations
signal (2) specify what to do upon receipt of a signal
sigset(2) ... signal management
stat{2} ... oget file status
statfs(2) .. get file system information
stime(2) .. set time
sync (2) .. update super block
sysfs(2) .. get file system type information
sysi86 (2) ... machine specific functions
time(2) ... get time
times(2) get process and child process times
uadmin (2) .. administrative control
ulimit(2) .. get and set user limits
umask(2) ... set and get file creation mask
umount(2) .. unmount a file system
uname(2) get name of current UNIX system
unlink(2) .. remove directory entry
ustat(2) ... get file system statistics
utime(2) set file access and modification times
wait(2) wait for child process to stop or terminate
write(2) ... write on a file

3. Subroutines
intro(3) introduction to functions and libraries
dbm(38) .. data base subroutines
ndbm(38) .. data base subroutines
a641(3C) convert between long integer and base-64 ASCII string
abort(3C) ... generate an lOT fault
abs(3C) ... return integer absolute value
bsearch(3C) ... binary search a sorted table
clock (3C) .. report CPU time used
crypt(3C) .. generate hashing encryption
ctermid{3S) generate file name for terminal
ctime, localtime, gmtime, asctime, tzset(3C)
... convert date and time to string
ctype: isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,
ispucnt, isprint, isgraph, iscntrl, isascii(3C) classify characters
cuserid (3S) get character login name of the user
dial (3C) establish an out-going terminal line connection

Contents 4 UP-13713.3

Table

drand48(3C) ... generate uniformly distributed pseudo-random no.s
dup2(3C) .. duplicate an open file descriptor
ecvt(3C) convert floating-point number to string
end(3C) ... last locations in program
fclose(3S) ... close or flush a stream
ferror(3S) .. stream status inquiries
fopen(3S) .. open a stream
fpgetround(3C) IEEE floating point environment control
fread(3S) .. binary input/output
frexp(3C) manipulate parts of floating-point numbers
fseek(3S) reposition a file pointer in a stream
ftw(3C) .. walk a file tree
getc(3S) get character or word from a stream
getcwd(3C) get path-name of current working directory
getenv(3C) return value for envi ronment name
getgrent(3C) .. get group file entry
getlogin (3C) ... get login name
getopt(3C) get option letter from argument vector
getpass(3C) .. read a password
getpw(3C) ... get name from UID
getpwent(3C) ... get password file entry
gets (3S) .. get a string from a stream
getut(3C) ... access utmp file entry
hsearch (3C) .. manage hash search tables
isnan(3C) test for floating point NaN (Not-A-Number)
13tol(3C) convert between 3-byte integers and long integers
lockf(3C) .. record locking on files
Isearch(3C) .. linear search and update
malloc(3C) .. main memory allocator
memory(3C) ... memory operations
mktemp(3C) .. make a unique file name
monitor(3C) .. prepare execution profile
nlist(3C) ... get entries from name list
perror(3C) .. system error messages
popen(3S) .. initiate pipe to/from a process
printf(3S) ... print formatted output
putc(3S) put character or word on a stream
putenv(3C) change or add value to environment
putpwent(3C) .. write password file entry
puts (3S) ... put a string on a stream
qsort(3C) ... quicker sort

UP-13713.3. Contents 5

Table of Contents

rand (3C) simple random-number generator
scanf(38) ... convert formatted input
setbuf(38) ... assign buffering to a stream
setjmp(3C) .. non-local goto
sleep(3C) .. suspend execution for interval
ssignal(3C) ... software signals
stdio(38) standard buffered input/output package
stdjpc(3C) standard interprocess communication package
string (3C) .. string operations
strtod (3C) convert string to double-precision number
strtol (3C) .. convert string to integer
swab(3C) .. swap bytes
system (38) ... issue a shell command
tmpfile(38) .. create a temporary file
tmpnam(38) create a name for a temporary file
tsearch (3C) .. manage binary search trees
ttyname(3C) .. find name of a terminal
ttyslot{3C) find the slot in the utmp file of the current user
ungetc(38) push character back into input stream
vprintf(3S) ~ print formatted output of a varargs argument list
bessel (3M) ... Bessel functions
erf(3M) error function and complementary error function
exp(3M) exponential, logarithm, power, square root functions
floor(3M) floor, ceiling, remainder, absolute value functions
gamma(3M) .. log gamma function
hypot(3M) ... Euclidean distance function
matherr(3M) ... error-handling function
sinh (3M) .. hyperbolic functions
trig (3M) .. trigonometric functions
t_ accept(3N) .. accept a connect request
t_alloc(3N) ... allocate a library structure
t_bind(3N) bind an address to.a transport endpoint
t_ close(3N) ... close a transport endpoint
t_ connect{3N) .. establish a connection with another transport user
t_error(3N) ... produce error message
t_free(3N) .. free a library structure
t_getinfo(3N) get protocol-specific service information
t_getstate(3N) .. get the current state
tJisten{3N) ... listen for a connect request
tJook(3N) look at the current event on a transport endpoint
t_ open(3N) ... establish a transport endpoint

Contents 6 UP-13713.3

Table of Contents

t optmgmt(3N) manage options for a transport endpoint
t_rcv(3N) receive data or expedited data sent over a connection
t rcvconnect{3N) . receive the confirmation from a connect request
t_rcvdis(3N) retrieve information from disconnect
t_rcvrel(3N) ... acknowledge receipt of an orderly release indication
t_rcvudata(3N) ... receive a data unit
t_rcvuderr(3N) receive a unit data error indication
t_snd(3N) send data or expedited data over a connection
t_ snddis(3N) send user-initiated disconnect request
t_sndrel(3N) ... initiate an orderly release
t_ sndudata(3N) ... send a data unit
t_ sync(3N) .. synchronize transport library
t_ unbind (3N) ... disable a transport endpoint
assert (3X) .. verify program assertion
crypt(3X) password and file encryption functions
curses(3X) terminal screen handling and optimization package
directory(3X) ... directory operations
Idahread (3X) ... read archive header of a member of an archive file
Idclose(3X) ... close a common object file
Idfhread(3X) read the file header of a common object file
Idgetname(3X) retrieve sym. name for common obj. file sym. table
Idlread(3X) manipulate Hne no. entries of common obj. file function
Idlseek(3X) seek to line no. entries of sect of a common obj. file
Idohseek(3X) seek to optional file header of common obj file
Idopen(3X) open a common object file for reading
Idrseek(3X) seek to relocation entries of sect. of a common obj. file
Idshread(3X) read indexed/named sect. header of common obj. file
Idsseek(3X) seek to indexed/named sect. of common obj. file
Idtbindex(3X) ... compute index of sym. table entry of com. obj. file
Idtbread(3X) read indexed sym. table entry of common obj. file
Idtbseek(3X) seek to the symbol table of a common object file
Iibdev(3X) manipulate Volume Home Blocks (VHB)
logname(3X) .. return login name of user
malloc(3X) ... fast main memory allocator
ocurse(3X) ... optimized screen functions
otermcap(3X) terminal independent operations
plot(3X) .. graphics interface subroutines
regcmp(3X) compile and execute regular expression
sputl. sgetl(3X) .. .
............ access long integer data in a machine independent fashion
abort(3F) .. terminate Fortran program

UP-13713.3 Contents 7

Table of Contents

abs(3F) .. Fortran absolute value
acos(3F) Fortran arccosine intrinsic function
aimag(3F) Fortran imaginary part of complex argument
aint(3F) Fortran integer part intrinsic function
asin(3F) ... Fortran arcsine intrinsic function
atan(3F) Fortran arctangent intrinsic function
atan2(3F) Fortran arctangent intrinsic function
bool(3F) .. Fortran Bitwise Boolean functions
conjg(3F) Fortran complex conjugate intrinsic function
cos(3F) ... Fortran cosine intrinsic function
cosh (3F) Fortran hyperbolic cosine intrinsic function
dim (3F) positive difference intrinsic functions
dprod(3F) double precision product intrinsic function
exp(3F) Fortran exponential intrinsic function
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky,
fpsetsticky(3C) IEEE floating point environment control
ftype(3F) .. explicit Fortran type conversion
getarg(3F) return Fortran command-line argument
getenv(3F) return Fortran environment variable
iargc(3F) return the number of command line arguments
index(3F) return location of Fortran substring
len(3F) ... return length of Fortran string
log (3F) Fortran natural logarithm intrinsic function
log10(3F) Fortran common logarithm intrinsic function
max(3F) ... Fortran maximum-value functions
mclock(3F) .. return Fortran time accounting
mil (3F) .. Fortran Military Standard functions
min (3F) ... Fortran minimum-value functions
mod (3F) Fortran remaindering intrinsic functions
rand (3F) ... random number generator
round(3F) Fortran nearest integer functions
sign (3F) Fortran transfer-of-sign intrinsic function
signal(3F) specify Fortran action on receipt of a system signal
sin (3F) .. Fortran sine intrinsic function
sinh(3F) Fortran hyperbolic sine intrinsic function
sqrt(3F) Fortran square root intrinsic function
strcmp(3F) string comparison intrinsic functions
system (3F) issue a shell command from Fortran
tan (3F) ... Fortran tangent intrinsic function
tanh (3F) Fortran hyperbolic tangent intrinsic function

Contents 8 UP-13713.3

Table of Contents

4. File Formats
intro(4} .. introduction to file formats
a.out(4) common assembler and link editor output
acct{4} ... per-process accounting file format
ar(4) ... common archive file format
checklist(4) list of file systems processed by fsck and ncheck
core(4) ... format of core image file
cpio(4) .. format of cpio archive
cprofile(4} setting up a C shell environment at login time
dir(4) ... format of directories
dirent(4) file system independent directory entry
errfile(4) .. error-log file format
filehdr(4) file header for common object files
fs(4} ... format of system volume
fspec(4} .. format specification in text files
fstab(4} .. file-system-table
gettydefs(4} speed and terminal settings used by getty
gpS(4} graphical primitive string, format of graphical files
group(4) .. group file
inittab(4) .. script for the init process
inode(4} .. format of an i-node
isort{4} ... international sort
issue(4) ... issue identification file
Idfcn(4} common object file access routines
limits(4) file header for implementation-specific constants
linenum(4} line number entries in a common object file
master{4} ... master device information table
mnttab(4) .. mounted file system table
otermcap(4) .. terminal capability data base
passwd(4) ... password file
plot(4) .. graphics interface
profile(4) setting up an environment at login time
prsetup(4) ... international printer spooler
reloc(4} relocation information for a common object file
rfmaster{4} Remote File Sharing name server master file
sccsfile(4) ... format of SCCS file
scnhdr(4) section header for a common object file
s.cr _ dump(4) format of curses screen image file
syms(4} common object file symbol table format
system{4} .. system description file
term(4) ... format of compiled term file

UP-13713.3 Contents 9

Table of Contents

terminfo(4) .. terminal capability data base
timezone(4) .. set default system time zone
ttytype(4) list of terminal types by terminal number
tZ(4) ... time zone file
unistd (4) file header for symbolic constants
utmp(4) .. utmp and wtmp entry formats

5. Miscellaneous Facilities
intro(5) ... introduction to miscellany
ascii (5) ... map of ASCII character set
environ(5) ... user environment
eqnchar(5) special character definitions for eqn and neqn
fcntl (5) .. file control options
math (5) ... math functions and constants
man (5) macros for formatting entries in this manual
me(5) ... macros for formatting papers
mm(5) macro package for formatting documents
mptx(5) the macro package for formatting a permuted index
ms(5) .. text formatting macros
mvt(5) .. .
......... a troff macro package for typesetting view graphs and slides
prof (5) .. profile within a function
regexp(5) regular expression compile and match routines
sta:t(5) .. data returned by stat system call
term (5) ... conventional names for terminals
types (5) .. primitive system data types
values(5) ... machine .. dependent values
varargs(5) ... handle variable argument list

Contents 10 UP-13713.3

INTRO(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C struc
ture declarations for the file formats are given where applica
ble. Usually, the header files containing these structure
declarations can be found in the directories /usr/include or
/usr/include/sys. For inclusion in C language programs, how
ever, the syntax #include <filename.h> or #include
< sys/filename.h > should be used.

Entries suffixed by (48) describe the configuration files used
with the System V Berkeley networking package (BSD Pack
age). These files can be manipulated directly (using a text
editor) or with netman (1 BM).

UP-13713.3 Page 1

INTR()(4)

[This page left blank.]

Page 2 UP-13713.3

A'()UT(4)

NAME
a.out - common assembler and link editor output

SYNOPSIS
#include < a.out.h >

DESCRIPTION
The file name a.out is the default output file name from the
link editor /d(1). The link editor will make a.out executable if
there were no errors in linking. The output file of the assem
bler as(1), also follows the common object file format of the
a.out file although the default file name is different.

A common object file consists of a file header, a System V
system header (if the file is link editor output), a table of sec
tion headers, relocation information, (optional) line numbers, a
symbol table, and a string table. The order is given below.

File header.
System V system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last three parts of an object file (line numbers, symbol
table, and string table) may be missing if the program was
linked with the -$ option of /d(1) or if they were removed by
strip (1). Also note that the relocation information will be
absent after linking unless the -r option of /d(1) was used.
The string table exists only if the symbol table contains sym
bols with names longer than eight characters.

The sizes of each section (contained in the header, discussed
below) are in bytes.

UP-13713.3 Page 1

A.()UT(4)

When an a.out file is loaded into memory for execution, three
logical segments are set up: the text segment, the data seg
ment (initialized data followed by uninitialized, the latter actu
ally being initialized to all O's), and a stack. On the the text
segment starts at location OxOOOOOOOO.

The a.out file produced by /d(1) may have one of two magic
numbers in the first field of the System V system header. A
magic number of 0410 indicates that the executable must be
swapped through the private swapping store of the System V
system, while the magic number 0413 causes the system to
attempt to page the text directly from the a.out file.

For 0410 executable files, the text section is loaded at virtual
location OxOOOOOOOO. The data section is loaded immediately
following the end of the text section.

For 0413 executable files, the headers (file header, System V
system header, and section headers) are loaded at the begin
ning of the text segment and the text immediately follows the
headers in the user address space. The first text address will
equal the sum of the sizes of the headers, and will vary
depending on the number of sections in the a.out file. In an
a.out file with 3 sections (.text, .data, and .bss) the first text
address is at OxOOOOOOdO. The data section starts in the next
page table directory after the last one used by the text sec
tion, in the first page of that directory, with an offset into that
page equal to the page offset of the data section in the a.out
file. That is to say, given that etext is the address of the last
byte of the text section, and dataoffset is the offset of the
data section in the a.out file, the first byte of the data section
will be at ((etext + Ox3FFFFF) & OxFFCOOOOO) + (data offset &
OxFFF).

Regardless of the magic number, the stack begins at address
Oxbfffffff and grows to lower memory locations. The stack is

Page 2 UP-13713.3

A.OUT(4)

automatically extended as required. The data segment is
extended only as requested by the brk (2) system call.

For relocatable files the value of a word in the text or data
portions that is not a reference to an undefined external sym
bol is exactly the value that will appear in memory when the
file is executed. If a word in the text involves a reference to
an undefined external symbol, there will be a relocation entry
for the word, the storage class of the symbol-table entry for
the symbol will be marked as an .. external symbol", and the
value and section number of the symbol-table entry will be
undefined. When the file is processed by the link editor and
the external symbol becomes defined, the value of the symbol
will be added to the word in the file.

File Header
The format of the filehdr header is:

struct filehdr

unsigned short f_magic; /* magic number */
unsigned short f_nscns; /* number of sections */
long f_timclat; /* time and date stamp */
long f_symptr; /* file ptr to symtab */
long f_nsyms; /* # symtab entries */
unsigned short f_opthdr; /* sizeof(opt hdr) */
unsigned short f_flags; /* flags */

J;
System V Header
The format of the System V system header is:

typedef struct aouthdr
I

short magic;
short vstamp;
long tsize;
long dsize;

/* magic number */
/* version stamp */
/* text size in bytes, padded */
/* initialized data (.data) */

long bsize; /* uninitialized data (.bss) */
long entry; /* entry point */
long text_start; /* base of text used for this file */
long data_start; /* base of data used for this file */

AOUTHDR;

UP-13713.3 Page 3

A'()UT(4)

Section Header
The format of the section header is:

struct scnhdr

I;

char s_name[SYMtf.1LEN);/* section name */
long s-paddr; /* physical address */
long s_vaddr; /* virtual address */
long s_size; /* section size */
long s_scnptr; /* file ptr to raw data */
long s_re1ptr; /* file ptr to relocation */
long s_lnnoptr; /* file ptr to line numbers */
unsigned short s_nre10c; /* # reloc entries */
unsigned short s_n1nno;
long s_f1ags;

/* # line number entries */
/* flags */

Relocation
Object files have one relocation entry for each relocatable
reference in the text or data. If relocation information is
present, it will be in the following format:

struct re10c

long r_vaddr;
long r_symndx;
ushort r_type;

I;

/* (virtual) address of reference */
/* index into symbol table */
/* relocation type */

The startof the re 1 ocat i on i nformat i on isS _re/ptr from the sec
tion header. If there is no relocation information, s_relptr is O.

Symbol Table
The format of each symbol in the symbol table is:

#define SYMtf.1LEN 8
#define FILtf.1LEN 14
#define DIMNUM 4

struct syment
{

union /* all ways to get a symbol */
/* name */

char _n_name [SYMtf.1LEN); /* name of symbo 1 * /

Page 4 UP-13713.3

A'()UT(4)

struct

long
long

_n_zeroes;
_n_offset;

/* == OL if in string table */
/* location in string table */

_n_n;
char * _n_nptr [2] ;

_n;
long n_va1ue;
short n_scnum;

/* allows overlaying */

/* value of symbol */
/* section number */

unsigned short n_type;
char n_sc1ass;

/* type and derived type */
/* storage class */

char n_numaux; /* number of aux entries */
I;

#define n_name
#define n_zeroes _n._n_n._n_zeroes
#define n_offset _n._n_n._n_offset
#define n_nptr _n._n_nptr[1]

Some symbo 1 s requ i re more i nformat i on than a sing 1 e entry;
they are fo 11 owed by auxiliary entries that are the same size as
a symbol entry. The format follows.

union auxent
struct 1

UP-13713.3

long x_tagndx;
union

struct
unsigned short x_1nno;
unsigned short x_size;

I x_1nsz;
long x_fsize;

x_mise;
union I

struct
long x_lnnoptr;
long x_endndx;

x_fen;
struet 1

unsigned short x_dimen[DIMNUM];
! x_ary;

x_fenary;
unsigned short x_tvndx;

Page 5

A'()UT(4)

I;

J x_sym;

struct {
char x_fname[FILNMLEN];

J x_file;

struct I
long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

I x_scn;

struct 1
long
unsigned short x_tvlen;
unsigned short x_tvran[2];

J x_tv;

Indexes of symbol table entriesbegin at zero. The start of the
symbol table is f symptr (from the file header) bytes from the
beginning of the file. If the symbol table is stripped, f _ symptr
is O. The string table (if one exists) begins at f _ symptr +
(f _ nsyms * SYMESZ) bytes from the beginning of the file.

SEE ALSO
as(1), cc(1), Id(1), brk(2), filehdr(4), Idfcn(4) , linenum(4),
reloc(4), scnhdr(4),syms(4).

Page 6 UP-13713.3

CPROFILE(4)

NAME
cprofile - setting up a C shell environment at login time

DESCRIPTION
Cprofile is for use with csh (1). For every user of csh the sys
tem file /etc/cprofile is executed immediately upon login. If
the user's login directory contains a file named .cshrc, that file
will then be executed, followed by commands from the .login
file.

The following example is typical for a user's .cshrc file:

setenv PATH :$PATH:$HOME/bin
setenv MAIL /usr/mail/~name
setenv TERM pt
umask 022

The system file /etc/cprofile can be customized to set the
TERM environment variable via tset(1).

For further information about setting variables, see csh(1) and
sh (1).

FILES
1.login
I.cshrc
1.logout
letc/cprofile

SEE ALSO
ttytype(4) , environ(5), term(5).
csh(1), env(1), login(1), mail(1), sh(1), stty(1), tset(1} in the
User's Reference Manual.

UP-13713.3 Page 1

CPR()FILE(4)

[This page left blank.]

Page 2 UP-13713.3

ERRFILE(4)

NAME
errfile - error-log file format

SYNOPSIS
#include < sys/erec.h >

DESCRIPTION
When hardware errors are detected by the system, an error
record is generated and passed to the error-logging daemon
for recording in the error log for later analysis. The default
error log is /usr/adm/errfile.

The format of an error record depends on the type of error
that was encountered. Every record, however, has a header
with the following format:

struct errhdr
short e_type; /* record type */
short e_len; /* bytes in record (inc hdr) */
time_t e_time; /* time of day */

! ;
The permissible record types are as follows:

#define E_GOTS 010 /* start */
#define E_STOP 012 /* stop */
#define E_TCHG 013 /* time change */
#define E_CCHG 014 /* configuration change */
#define E_BLK 020 /* block device error */
#define E_STRAY 030 /* stray interrupt */
#define E_PRTY 031 /* memory parity */
#define E_CONS 040 /* console string */
#define E_CONR 041 /* console record */
#define E_CONO 042 /* console overflow */
#define E_SERIAL 043 /* serial device driver error */

Some records in the error file are of an administrative nature.
These include the startup record that is entered into the file
when logging is activated, the stop record that is written if the
daemon is terminated "gracefully," and the time-change
record that is used to account for changes in the system's
time-of-day. These records have the following formats:

struct est art {
struct utsname e_name; /* system names */
long e_syssize; /* system memory size */

UP-13713.3 Page 1

ERRFILE(4)

short
short

e_cpuj
e_bconf;

/* CPU type */
/* block device */
/* configuration */

char e-panic; /* if reboot from panic, */
/* what was it */

#define eend errhdr

struct etimchg 1
time_t e_ntimej

Ii

/* record header */

/* new time */

Stray interrupts cause a record with the following format to be
loggedj

struct estray {
physadr e_saddr;

e_sbacty;
/* stray loc or device addr */
/* active block devices */ short

J;
Memory subsystem error causes the following record to be
generated:

struct eparity 1

I;

int e_status /* parity status register */
int e_addr /* address of parity error */

/* (not supported on the */
/*) */

Note that there is no hardware support to provide the address
of a parity error on the.

Error records for block devices have the following format:

struct eblock {
struct iostat 1

long io_ops;
long io_misc;
ushort io_unlog;

e_stats;
paddr_t e_memadd;
daddr_t e_bnum;
int e_bytes;
int e_bacty;
short e_trkoff;

Page 2

/* number read/writes */
/* number "other" operations */
/* number un10gged errors */

/* buffer memory address */
/* logical block number */
/* number bytes to transfer */
/* other block I/O activity */
/* logical device start track */

UP-13713.3

ERRFILE(4)

ushort e_rtry; /* number retries */
short e_trks /* number of heads */
short e_secs /* number of physical sectors */

/* per track */
short e_ctlr /* controller type */
short e_major /* major device number */
short e_minor /* minor device number */
short e_bflags; /* read/write, error, and so on */

I;
The following values are used in the e _ bf/ags word:

#define E_WRITE 0 /* write operation */
#define E_READ 1 /* read operation */
#define E_NOIO 02 /* no I/O pending */
#define E_PHYS 04 /* physical I/O */
#define E_MAP 010 /* Unibus map in use */
#define E_ERROR 020 /* I/O failed */

The error types CONS and CONO are flagged by
errdemon (1 M) and errdead and written to the console log
/ete/log/ confile.

A serial driver error generates the following reports:

struct eserial

I;

ushort e_type /* type of error */
ushort e_dev /* which physical port */

The following types exist for e _type:

#define ECHLOS Ox1 /* character lost in input FIFO */
#define ERXORUN Ox2 /* receiver overrun */
#define ENOCLIST Ox4 /* no new clist available */
#define ENORBUF Ox8 /* no receive buffer available */

A configuration change (loading or unloading a loadable
driver) generates the following report:

struct econfchg I

!;

UP-13713.3

short e_devnum;
char e_cfl ag;
char e_dtype;

/* major device number */
/* 1 = attach, 0 = detach */
/* block or char device */

Page 3

ERRFILE(4)

SEE ALSO
errdemon(1 M).

Page 4 UP-13713.3

FILEHDR(4)

NAME
filehdr - file header for common object files

SYNOPSIS
#include < filehdr.h >

DESCRIPTION
Every common object file begins with a 20-byte header. The
following C struct declaration is used:

struct filehdr

unsigned short f_magic /* magic number */
unsigned short f_nscns /* number of sections */
long f_timdat ; /* time & date stamp */
long f_symptr j /* file ptr to symtab */
long f_nsyms ; /* # symtab entries */
unsigned short f_opthdr ; /* sizeof(opt hdr) */
unsigned short f_flags ; /* fl ags "!:/

J ;

F _ symptr is the byte offset into the file at which the symbol
table can be found. Its value can be used as the offset in
fseek (3S) to position an I/O stream to the symbol table. The
System V system optional header is 28-bytes. The valid magic
numbers are given below:

#define I 286SMAGIC 0512 /* Intel 286 computers, */
/* small model programs */

#define I 386MAGIC 0514 /* Intel 386 computers */
/* () */

#define I 286LMAGIC 0522 /* Intel 286 computers, */
/* large model programs */

The value inf_timdat is obtained from the time (2) system call.
Flag bits currently defined are:

#define F_RELFLG 0000001 /* relocation entries stripped */
#define F_EXEC 0000002 /* file is executable */
#define F_LNNO 0000004 /* line numbers stripped */
#define F_LSYMS 0000010 /* local symbols stripped */
#define F_MI NMAL 0000020 /* minimal object file -l:/
#define F_UPDATE 0000040 /* update file, ogen produced */
#define F_SWABD 0000100 /* file is "pre-swabbed" */
#define F_AR16WR 0000200 /* 16-bit DEC host */

UP-13713.3 Page 1

FILEHDR(4)

#define F_AR32WR 0000400 /* 386, 32-bit DEC host */
#define F_AR32W 0001000 /* non-DEC host */
#define F_PATCH 0002000 /* "patch" list in opt hdr */
#define F_80186 010000 /* contains 80186 instructions */
#define F_80286 020000 /* contains 80286 instructions */

SEE ALSO
time(2), fseek(3S), a.out(4}.

Page 2 UP-13713.3

GETTYDEFS (4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty (1 M)
to set up the speed and terminal settings for a line. It sup
plies information on what the login prompt should look like. It
also supplies the speed to try next if the user indicates the
current speed is not correct by typing a < break> character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-Iabel

Each entry is followed by a blank line. The various fields can
contain quoted characters of the form \b, \n, \c, and so forth,
as well as \nnn, where nnn is the octal value of the desired
character. The various fields are:

label

initial-flags

final-flags

UP-13713.3

This is the string against which getty tries to
match its second argument. It is often the
speed, such as 1200, at which the terminal is
supposed to run, but it need not be (see
below).

These flags are the initial ioctl (2) settings to
which the terminal is to be set if a terminal type
is not specified to getty. The flags that getty
understands are the same as the ones listed in
/usr/include/sys/termio.h [see termio (7)].
Normally only the speed flag is required in the
initial-flags. Getty automatically sets the termi
nal to raw input mode and takes care of most
of the other flags. The initial-flag settings
remain in effect until getty executes login (1).

These flags take the same values as the initial
flags and are set just before getty executes
login. The speed flag is again required. The
composite flag SANE takes care of most of the
other flags that need to be set so that the pro
cessor and terminal are communicating in a
rational fashion. The other two commonly
specified final-flags are TAB3, so that tabs are
sent to the terminal as spaces, and HUPCL, so
that the line is hung up on the final close.

Page 1

(;ETTYDEFS(4)

login-prompt This entire field is printed as the login-prompt.

next-label

Unlike the above fields where white space is
ignored (a space, tab, or new-line), they are
included in the login-prompt field.

If this entry does not specify the desired
speed, indicated by the user typing a
< break> character, then getty will search for
the entry with next-label as its label field and
set up the terminal for those settings. Usually,
a series of speeds are linked together in this
fashion, into a closed set; for instance, 2400
linked to 1200, which in turn is linked to 300,
which finally is linked to 2400.

If getty is called without a second argument, then the first
entry of letc/gettydefs is used, thus making the first entry of
letc/gettydefs the default entry. It is also used if getty can
not find the specified label. If letc/gettydefs itself is missing,
there is one entry built into the command which will bring up a
terminal at 9600 baud.

It is strongly recommended that after making or modifying
letc/gettydefs, it be run through getty with the check option
to be sure there are no errors.

FILES
letc/gettydefs

SEE ALSO
ioctl(2).
getty(1 M), termio(7) in the Administrator's Reference Manual.
login(1) in the User's Reference Manual.

Page 2 UP-13713.3

INITTAR(4)

NAME
inittab - script for the init process

DESCRIPTION
The inittab file supplies the script to init's role as a general
process dispatcher. The process that constitutes the majority
of init's process dispatching activities is the line process
/etc/getty that initiates individual terminal lines. Other
processes typically dispatched by init are daemons and the
shell.

The inittab file is composed of entries that are position depen
dent and have the following format:

id: rstate:action: process

Each entry is delimited by a newline; however, a backslash (\)
preceding a newline indicates a continuation of the entry. Up
to 512 characters per entry are permitted. Comments may be
inserted in the process field using the sh (1) convention for
comments. Comments for lines that spawn gettys are
displayed by the who(1) command. It is expected that they
will contain some information about the line such as the loca
tion. There are no limits (other than maximum entry size)
imposed on the number of entries within the inittab file. The
entry fields are:

id This is one or two characters used to uniquely iden
tify an entry.

rstate

UP-13713.3

This defines the run-level in which this entry is to be
processed. Run-levels effectively correspond to a
configuration of processes in the system. That is,
each process spawned by init is assigned a run-level
or run-levels in which it is allowed to exist. The run
levels are represented by a number ranging from 0
through 6. As an example, if the system is in run
levell, only those entries having a 1 in the rstate
field will be processed. When in it is requested to
change run-levels, all processes which do not have
an entry in the rstate field for the target run-level will
be sent the warning signal (SIGTERM) and allowed
a 20-second grace period before being forcibly ter
minated by a kill signal (SIGKILL). The rstate field
can define multiple run-levels for a process by

Page 1

INITTAB(4)

action

selecting more than one run-level in any combina
tion from 0-6. If no run-level is specified, then the
process is assumed to be valid at all run-levels 0-6.
There are three other values, a, band c, which can
appear in the rstate field, even though they are not
true run-levels. Entries which have these characters
in the rstate field are processed only when the telinit
[see init(1 M)] process requests them to be run
(regardless of the current run-level of the system).
They differ from run-levels in that init can never
enter run-level a, b or c. Also, a request for the exe
cution of any of these processes does not change
the current run-level. Furthermore, a process
started by an a, b or c command is not killed when
init changes levels. They are only killed if their line
in /etc/inittab is marked off in the action field, their
line is deleted entirely from /etc/inittab, or init goes
into the SINGLE USER state.

Key words in this field tell init how to· treat the pro
cess specified in the process field. The actions
recognized by init are as follows:

respawn If the process does not exist then start
the process, do not wait for its termina
tion (continue scanning the inittab file),
and when it dies restart the process. If
the process currently exists then do
nothing and continue scanning the init
tab file.

wait Upon init'sentering the run-level that
matches the entry's rstate, start the
process and wait for its termination. All
subsequent reads of the inittab file
while init is in the same run-level will
cause init to ignore this entry.

once Upon init's entering a run-level that
matches the entry's rstate, start the
process, do not wait for its termination.
When it dies, do not restart the process.
If upon entering a new run-level, where
the process is still running from a

2 UP-13713.3

INITTAB(4)

previous run-level change, the program
will not be restarted.

boot The entry is to be processed only at
init's boot-time read of the inittab file.
Init is to start the process, not wait for
its termination; and when it dies, not
restart the process. In order for this
instruction to be meaningful, the rstate
should be the default or it must match
init's run-level at boot time. This action
is useful for an initialization function fol
lowing a hardware reboot of the sys
tem.

bootwait The entry is to be processed only at
init's boot-time read of the inittab file.
Init is to start the process, wait for its
termination, and when it dies, not res
tart the process.

powerfail Execute the process associated with
this entry only when init receives a
power fail signal [SIGPWR see sig
na/(2)].

powerwait Execute the process associated with
this entry only when init receives a
power fail signal (SIGPWR) and wait
until it terminates before continuing any
processing of inittab.

off If the process associated with this entry
is currently running, send the warning
signal (SIGTERM) and wait 20 seconds
before forcibly terminating the process

UP-13713.3 Page 3

INITTA8(4)

via the kill signal (SIGKILL). If the pro
cess is nonexistent, ignore the entry.

ondemand This instruction is really a synonym for
the respawn action. It is functionally
identical to respawn but is given a dif
ferent keyword in order to divorce its
association with run-levels. This is used
only with the a, b or c values described
in the rstate field.

initdefault An entry with this action is only
scanned when init is initially invoked.
Init uses this entry, if it exists, to deter
mine which run-level to enter initially. It
does this by taking the highest run-level
specified in the rstate field and using
that as its initial state. If the rstate field
is empty, this is interpreted as 0123456
and so init will enter run-level 6. Addi
tionally, if init does not find an initde
fault entry in /etc/inittab, then it will
request an initial run-level from the user
at reboot time.

sysinit Entries of this type are executed before
init tries to access the console. It is
expected that this entry will be only
used to initialize devices on which init
might try to ask the run-level question.
These entries are executed and waited
for before continuing.

process This is a sh command to be executed. The entire
process field is prefixed with exec and passed to a
forked sh as sh -c 'exec command'. For this rea
son, any legal sh syntax can appear in the process
field. Comments can be inserted with the ; #com
ment syntax.

FILES
/ etc/inittab

SEE ALSO
exec(2). open (2) , signal(2).

Page 4 UP-13713.3

INITTAB(4)

getty(1 M), init(1 M) in the Administrator's Reference Manual.
sh(1), who(1) in the User's Reference Manual.

UP-13713.3 Page 5

INITTAB(4)

[This page left blank.]

371

LIMITS(4)

NAME
limits - file header for implementation-specific constants

SYNOPSIS
#include < limits.h >

DESCRIPTION
The header file < limits.h > is a list of magnitude limitations
imposed by a specific implementation of the operating sys
tem. All values are specified in decimal.

#define ARG_MAX
#define CHAR_BIT
#define CHAR_MAX
#define CHAR_MIN
#define CHILD_MAX
#define CLK_TCK
#define DBL_DIG
#define DBL_MAX

#define DBL_MIN

#define FCHR~AX

#define FLT_DIG
#d.efine FLT_MAX

5120 /* max length of arguments to exec */
8 /* # of bits in a "char" */
127 /* max integer value of a "char" */
-128 /* min integer value of a "char" */
25 /* max # of processes per user ID */
100 /* # of clock ticks per second */
16 /* digits of precision of a "double" */
1.79769313486231470e+308 /* max decimal value */

/* of a "double" */
4.94065645841246544e-324 /* min decimal value */

/* of a "double" */
1048576 /* max size of a file in bytes */

7 /* digits of precision of a "float" */
3.40282346638528860e+38 /* max decimal value */

/* of a "fl oat" */
1.40129846432481707e-45 /* min decimal value*/

/* of a "float" '1:/
#define HUGE_VAL 3.40282346638528860e+38 /* error value */

#define FLT_MIN

#define 1 NT_MAX
#define INT_MIN
#define LINK_MAX
#define LONG_MAX
#define LONG_MIN
#define NAME_MAX
#define OPEN_MAX

#define PASS_MAX
#define PATH_MAX
#define PID_MAX
#define PIPE_BUF

UP-13713.3

/* returned by */
/* Math 1 ib of:/

2147483647 /* max decimal value of an "int" */
- 2147483648 /* min decimal value of an "int" of:/
32767 /* max # of links to a single file */
2147483647 /* max decimal value of a "long" of:/
-2147483648 /* min decimal value of a "long" */
14 /* max # of characters in a file name */
20 /* max # of files a process can have */

8
256
30000
5120

/* open */
/* max # of characters in a password */
/* max # of characters in a path name */
/* max value for a process ID */
/* max # bytes atomic in write to a */

Page 1

LIMITS(4)

/* pipe */
#define PIPE_MAX 5120 /* max # bytes written to a pipe in a */

#define SHRT_MAX
#define SHRT_MIN
#define STD_BLK
#define SYS_NMLN
#define UID_MAX
#define US I_MAX

/* write */
32767 /* max decimal value of a "short" */
-32767 /* min decimal value of a "short" */
1024 /* # bytes in a physical 1/0 block */
9 /* # of chars in uname-returned strings */
30000 /* max value for a user or group 10 */
4294967296 /* max decimal value of an */

/* "unsigned" */
#define WORD_BIT 32 /* # of bits in a "word" or "int" */

Page 2 UP-13713.3

MASTER(4)

NAME
master - master device information table

DESCRIPTION
This file is used by the config (1 M) program to obtain device
information that enables it to generate the configuration files.
Do not modify it unless you fully understand its construction.
The file consists of 3 parts, each separated by a line with a
dollar sign ($) in column 1. Part 1 contains device information;
part 2 contains names of devices that have aliases; part 3 con
tains tunable parameter information. Any line with an asterisk
(*) in column 1 is treated as a comment.

Part 1 contains lines consisting of between 6 and 9 fields, with
the fields delimited by tabs and/or blanks:

Field 1: device name (32 characters maximum).

Field 2:

Field 3:

UP-13713.3

device mask. Each letter indicates that the handler
exists:

e has release handler for downloadable drivers.
t tty header exists.
n initialization handler.
0 open handler.
c close handler.

read handler.
w write handler.
i ioctl handler.
b bioctl handler.
s strategy handler
a start handler
p print handler
f info structure (stream driver only)
u input handler (line discipline only)
d output handler (line discipline only)
m modem interrupt handler (line discipline only)

device type indicator:

r
b
c
I
m

required device.
block device.
character device.
line diSCipline
stream module

Page 1

MASTER (4)

s software module

Field 4: handler prefix (4 characters maximum).

Field 5: major device number for block-type device.

Field 6: major device number for character-type device.
For line disciplines, this is the slot number in the
linesw table where the line discipline is installed.
For software modules it is a unique number used to
identify the module. This field is not used for
stream modules.

Fields 7-9: up to three additional decimal numbers may be
specified. These values are passed to the driver's
in it routine.

Part 2 contains lines with 2 fields each:

Field 1:

Field 2:

alias name of device (32 characters maximum).

reference name of device (32 characters maximum;
specified in part 1).

Part 3 contains lines with 3 fields each:

Field 1: parameter name (as it appears in description file;
32 characters maximum).

Field 2: parameter name (as it will appear in the config.h
file; 32 characters maximum).

Field 3: default parameter value (32 characters maximum).

EXAMPLE
Below is an abbreviated example of a master file:

gdfp oesrwp i bn be gd 14 14
mem rw er mm 0 18
sxtl ud sxt 0 1
timod f m tim 0 0
tramdisk ne s ramd 0 6 7
$
floppy gdfp

$
tablesize TABLESIZE 100
xl imit XYZ_LlMIT 127

This abbreviated master filEdeseribes the following:

Page 2 UP-13713.3

MASTER(4)

• A driver called gdfp, which has open, close, strategy,
read, write, print, ioctl, bioctl, and init routines. The driver
prefix is "gd," so the routines are called gdopen, gdclose,
gdstrategy, and so forth. It is both a block and a charac
ter device, with both the block and the char major
numbers equal to 14.

• A character device driver called mem, with read and write
routines (mmread/mmwrite). The open and close routines
default to a system-supplied null routine. Mem is speci
fied to be a required device, so it must appear in the
description file. The character major number is 18.

• A line discipline called sxtl with just an input and output
routine (sxtin/sxtout). It is installed in slot 1 in the linesw
table.

• A stream module called timod, with just an info structure
(timinfo).

• A software module called tramdisk, with just an init and
release routine (ramdinit/ramdrelease). The unique identi
fying number is 6. The init routine is called with an argu
ment of 7.

• An alias "floppy," which is defined to be identical to
"gdfp."

• Two tunable parameters, named tablesize and xlimit,
which will generate the defined constants T ABLESIZE and
XYZ_LIMIT in the config.h file. If their values are not
specified in the description file, they default to 100 and
128 respectively.

FILES
/etc/master

SEE ALSO
config(1 M) in the Administrator's Reference Manual.

UP-13713.3 Page 3

MASTER(4)

[This page left blank.]

Page 4 UP-13713.3

()TERMCAP(4)

NAME
otermcap - terminal capability data base

SYNOPSIS
I etcltermcap

DESCRIPTION
This entry describes terminal-independent programming con
ventions that originate at UC Berkeley. This support is pro
vided for compatibility with earlier software versions; these
conventions will no longer be supported in the future. UNIX
System V initially borrowed termcap but has since changed to
the term info (4) convention. System V continues to support
termcap so as to be compatible with the Berkeley version of
the UNIX System. But use terminfo in new programs.

Termcap programs work from information supplied through
the TERM and TERMCAP environment variables. The loca
tion of the description depends on the value of TERMCAP:

• If TERMCAP is not set or is empty, TERM is the name of
an description in /etc/termcap.

• If TERMCAP has a value that begins with a I, TERM is
the name of an description in the file named by
TERMCAP.

• If TERMCAP begins with any character except I,
TERMCAP contains the description.

A description begins with a list of its names, separated by
vertical bars. The rest of the description is a list of capabili
ties, separated by colons. If you use more than one line, pre
cede each newline except the last with :\. Here's a simple
example.

dS:vtSOldec vtso:\
:bs:cd=\EJ:ce=\EK:cl=\EH\EJ:co#80:1i#12:\
:nd=\EC:pt:up=\EA:

There are three kinds of capabilities:

UP-13713.3 Page 1

OTERMCAP(4)

• Boolean. These indicate the presence or absence of a
terminal feature by their presence or absence. Boolean
capabilities consist of two characters (the capability
name).

• Numeric. These indicate some numeric value for the ter
minal, such as screen size or delay required by a stan
dard character. Numeric capabilities consist of two char
acters (the capability name), followed by a #, followed by
a decimal number.

• String. These indicate a sequence that is performs some
operation on the terminal. String capabilities consist of
two characters (the capability name), optionally followed
by a delay, followed by a string.

2

The delay is the number of milliseconds the program must
wait after using the sequence; specify no more than one
decimal place. If the delay is proportional to the number
of lines affected, end it with a *.
The string is a sequence of characters. The following
subsequences are specially interpreted.

\E Escape Character
"x Control-x
\n Newline
\r Return
\t Tab
\b Backspace
\f Formfeed

\xxx Octal value .of xxx
\072 : . in string
\200 null (\000 doesn't work)

Octal numbers must be three digits long.

Some strings are interpreted further, such as em. See
"Cursor Addresses and Other Variables," below.

UP-13713.3

OTERMCAP(4)

You can follow any capability name with an @, to indicate that
the terminal lacks the capability. This is only useful in con
junction with the tc capability; see "Similar Terminals," below.

Here is a list of standard capabilities. (P) indicates a string
that might require padding; (P*) indicates a string that might
require proportional padding.

Name Type Pad? Description

ae
al
am
as
bc
bs
bt
bw.

CC

cd
ce
ch

cl
cm

co
cr
cs
cv
da
dB
db
dC

UP-13713.3

str (P)
str (P*)
bool
str (P)
str
bool
str (P)
bool

str

str (P*)
str (P)
str (P)

str (P*)
str (P)

num
str (P*)
str (P)
str (P)
bool
num
bool
num

Ends alternate character set.
Adds new blank line.
Terminal has automatic margins.
Starts alternate character set.
Backspace if not control-h.
Terminal can backspace with control-h.
Back tab.
Backspace wraps from column 0 to last
column.
Command character in prototype if ter
minal settable.
Clears to end of display.
Clears to end of line.
Moves cursor horizontally to specified
column.
Clears screen.
Moves cursor to specified row and
column.
Number of columns in a line.
Carriage return if not control-m.
Change scrolling region.
Moves cursor vertically to specified row.
Display can be retained above.
Delay after backspace, in milliseconds.
Display can be retained below.
Delay after carriage return, in mil
liseconds.

3

Name Type Pad? Description

dc str (P*) Delete character.
dF num Delay after form feed, in milliseconds.
dl str (P*) Deletes line.
dm str Enters delete mode.
dN num Delay after newline, in milliseconds.
do str Goes down one line.
dT num Delay after tab, in milliseconds.
ed str Ends delete mode.
ei str Ends insert mode; give an empty string

if you've defined ic.
eo str Can erase overstrikes with a blank.
ff str (P*) Hardcopy terminal page eject if not form

feed.
hc bool
hd str
ho str
hu str
hz str

ic str
if str

im bool

in bool

ip str
is str
kO-k9 str

kb str
kd str
ke str

Page 4

(P)

(P*)

Hardcopy terminal.
Half-line down (forward 1/2 linefeed).
Move cursor to upper left corner (home).
Half-line up (reverse 1/2 linefeed).
Hazeltine or other terminal that can't
print -'so
Insert character.
Name of file containing terminal initializa
tion.
Starts insert mode; give an empty string
if you've defined ie.
Insert mode distinguishes nulls on
display.
Pad after insertion.
Terminal initialization.
Sent by special (usually numeric) func
tion keys. If programmable, set with is,
if, VS, or ti.
Sent by backspace key.
Sent by terminal down arrow key.
Ends keypad transmit mode.

UP-13713.3

Name Type Pad? Description

kh str
kl str
kn num
ko str
kr str
ks str
ku str
10-19 str
Ii num
II str
ma str

mi bool
ml str
ms bool

mu
nc

nd
nl
ns
os
pc
pt

se
sf
sg
so
sr
ta
tc

UP-13713.3

str
bool

str
str (P*)
bool
bool
str
bool

str
str (P)
num
str
str (P)
str (P)
str

Sent by home key.
Sent by terminal left arrow key.
Number of special function keys.
Terminal capabilities that have keys.
Sent by terminal right arrow key.
Begin keypad transmit mode.
Sent by terminal up arrow key.
Labels on special function keys.
Number of lines on screen or page.
Last line, first column.
Command key map; used by ex version
2 (System V uses version 3).
Safe to move while in insert mode.
Memory lock on above cursor.
Safe to move while in standout and
underline mode.
Memory unlock (turn off memory lock).
No correctly working carriage return
(DM2500,H2000).
Non-destructive space (cursor right).
Begin a new line if not newline.
A video terminal that doesn't scroll.
Terminal overstrikes.
Pad character if not null.
Has hardware tabs; if they need to be
set put sequence in is or if.
Ends stand out mode.
Scrolls forwards.
Number of blank chars left by so or se.
Begins stand out mode.
Scroll reverse (backwards).
Tab if not control-i or with padding.
Name of terminal that has some of the
same capabilities; tc must be the last
capability.

Page 5

()TERMCAP(4)

Name Type Pad? Description

te
ti

uc

ue
ug

ul

str
str

str

str
num

bool

Ends programs that do cursor motion.
Initializes programs that do cursor
motion.
Underscores and moves past one char
acter.
Ends underscore mode.
Number of blank spaces that surround
underscore mode.
Terminal underlines automatically even
though it can't overstrike.

up str Upline (cursor up).
us
vb
ve
vs
xb
xn

xr

xs

xt

str
str
str
str
bool
bool

bool

bool

bool

Start underscore mode.
Visible bell (must not move cursor).
Ends open and visual modes.
Initializes open and visual modes.
Beehive (f1 = escape, f2 = ctrl C).
Terminal ignores newline after wrap
(Concept).
Return clears to end of line and goes to
beginning of next line (Delta Data).
Writing on standout mode text produces
standout mode text (HP 2641).
Destructive tabs, magic standout charac
ter (Teleray 1061).

Pointers on Preparing Descriptions
• You may want to copy the description of a similar termi

nal.

• Build up a description gradually, checking partial descrip
tions with ex.

• Be aware that an unusual terminal may expose bugs in ex
or limitations in the termcap convention.

Basic Capabilities
The following capabilities are common to most terminals. The
co capability gives the number of columns per line. The Ii
capability gives the number of lines on a video terminal. The
am capability indicates that writing off the right edge takes
the cursor to the beginning of the next screen. The cl capabil
ity tells how the terminal clears its screen. The bs indicates

Page 6 UP-13713.3

OTERMCAP(4)

that the terminal can backspace; but if the terminal doesn't
use control-H, specify be instead of bs. The os capability indi
cates that printing a character at an occupied position doesn't
destroy the existing character.

A couple of notes on moving off the edge. Programs that use
this convention never move the cursor off the top or the left
edge of the screen. On the other hand, they assume that
moving off the bottom edge scrolls the display up.

These capabilities suffice to describe hardcopy and very dumb
terminals. For example, the Teletype Model 33 has this
description.

t3 : 33: tty33:coH12:os

Th i sis LS I ADM3 (wi thout the cursor address i ng opt i on) •

cl : adm3l3l1si adm3:am:bs:cl=AZ:li#24:co#80

Cursor Addresses and Other Variables
If a string capability includes a variable value, use a % escape
to indicate the value. By default, programs take these values
to be zero origin (that is, the first possible value is 0) and that
the em capability specifies two values: row, then column. Use
the %r or %i capability if either assumption is incorrect.

These are the valid % escapes.

%d
%2
%3
%.
%+x
%>xy

%r
%i
%%
%n

%B

UP-13713.3

Print the values as a decimal number.
Print the values as a two-digit decimal number.
Print the values as a three-digit decimal number.
Print the value in binary (but see below).
Add ASCII value of x to value. then print in binary.
If the next value is greater than the ASCII value of x.
add the ASCII value of y before using the value's %
escape.
Row is the first value in this em.
Values are 1-origin.
Print a %.
In this capability, exclusive OR the values with 01400
before using the values' % escapes (DM2500).
Change the next value to binary coded decimal
((16*(x/10)) + (x%10) where x is the value) before
interpreting it.

Page 7

()TERMCAP(4)

%0 The next value is reverse-coded (x-2*(x%16) where x
is the value; Delta Data).

A program should avoid using a em sequence that includes a
tab, newline, control-D, or return, because the terminal inter
face may misinterpret these characters. If possible, use the
em sequence to move to the row or column after the destina
tion, then use local motion to get to the destination.

Here are some examples of em definitions. To position the
cursor of an HP2645 on row 3, column 12, you must send the
terminal U\E&a 12c03Y", followed by a 6 millisecond delay; the
HP2645 description includes :em=6\E&%r%2e%2Y:. To posi
tion the cursor of an ACT-IV. you send ita control-T, followed
by the row and column in binary; the ACT-IV description
includes :em = "T%.Ofo.:. The LSI ADM3a uses the set of print
able ASCII characters to represent row and column values; its
description includes :em\E = % + % + :.

local and General Cursor Motions
Most terminals have short strings that trigger commonly-used
cursor motions. A non-destructive space (nd) moves the cur
sor one position right. An upline sequence (up) moves the
cursor one position up. A home sequence (ho) moves the
cursor to the upper left hand corner. A lower-left (II) goes to
the other lefthand corner. The II capability may be a
sequence that moves the cursor home, then up; but otherwise
programs never do this.

Area Clears
Some terminals have short sequences that clear all or part of
a display. Clear (el) clears the screen and homes the cursor;
if clearing the screen does not restore the terminal's normal
modes, el should include the strings that do. Clear to end of
line (ee) clears from the current cursor position to the right.
Clear to end of display (cd) clears from the current cursor
position to the bottom of the display; programs always move
the cursor to the beginning of the line before using cd.

Insert/Delete line
Many terminals have strings that shift text starting at the
current cursor position. Programs always move the cursor to
the beginning of the line before using these strings. Add line
(al) shifts the current line and all below it down a position leav
ing the cursor on the newly-blanked line. Delete linc> (dl)

Page 8 UP-13713.3

OTERMCAP(4)

deletes the line the cursor is on without moving the cursor. If
a terminal description has an al capability, you do not really
need to specify sb.

If deleting a line might produce a non-blank line at the bottom
of the screen, specify db. If scrolling backwards might pro
duce a non-blank line at the top of the screen, specify da.

Insert/Delete Character
The termcap convention recognizes two kinds of terminal
insert/delete string.

• The first convention is by far more common. Using insert
or delete modes only affect characters on the current line.
Inserting a single character shifts all characters, including
all blanks, to the right; the character on the right edge of
the screen is lost. No special capability is required to
describe this kind of terminal.

• The second convention is less common and more compli
cated. The terminal distinguishes between blank spaces
created by output tabs (011) or spaces (040) from all
other blanks; other blanks are known as nulls. Inserting a
character eliminates the first null to the right of the cur
sor; deleting a character doubles the first null. If there
are no nulls on the current line inserting a character
inserts the line's rightmost character at the beginning of
the next line. Use the in capability to describe this kind of
terminal.

Notably among the second type are the Concept 100 and Per
kin Elmer Owl.

A simple experiment shows what type you have. Set the ter
minal to its "local" mode. Clear the screen, then type a short
sequence of text. Move the cursor to the right several spaces
without using the space or tab characters. Type a second
short sequence of text. Move the cursor back to the begin
ning of the first text. Start the terminal's insert mode and
begin tapping the space bar. If you have the first kind of ter
minal, both sequences of text will move at once, at whatever
character is at the right edge of the screen will be lost. If you
have the second kind of terminal, at first only the first
sequence of text will move; when the first sequence hits the
second sequence, it will push the second onto the next line.

UP-13713.3 9

()TERMCAP(4)

A terminal can have either an insert mode or the ability to
insert a single character. Specify insert mode with im and ei.
To specify that the terminal can insert a single character,
specify ie and specify empty strings for im and ei. If you
must delay or output more control text after inserting a single
character, specify ip.

If a terminal has both an insert mode and the ability to insert a
single character, it is usually best not to specify ie.

Some programs operate more quickly if they are allowed to
move the cursor around randomly while in insert mode. For
example, vi has to delete a character when you insert a char
acter before a tab. If your terminal permits this, specify move
on insert (mi). Beware of terminals that foul up in subtle ways
when you do this, notably Datamedia's.

Delete mode (dm) , end delete mode (ed) , and delete charac
ter (de) work like im, ei, and ie.

Page 10 UP-13713.3

OTERMCAP(4)

Highlighting, Underlining, and Visible Bells
Specify the terminal's most distinctive display mode with so
and se. Half intensity is usually not a good choice unless the
terminal is normally in reverse video.

The convention provides for underline mode and for single
character underlining. Specify underline mode with us and
ue. Specify a way to underline and move past a character
with uc; if your terminal can underline a single character but
doesn't automatically move on, add a nondestructive space to
the uc string.

Some terminals can't overstrike but still correctly underline
text without special help from the host computer. If yours is
one, specify ul.

If your terminal spaces before and after entering standout and
underline mode, specify ug.

Programs leave standout and underline mode before moving
the cursor or printing a newline.

If the terminal can flash the screen without moving the cursor,
specify vb (visual bell).

If the terminal needs to change working modes before enter
ing the open and visual modes of ex and vi, specify vs and
ve, respectively. These can be used to change, for example,
from a underline to a block cursor and back.

If the terminal needs to be in a special mode when running a
program that addresses the cursor, specify ti and teo This
may be important if a terminal has more than one page of
memory. If the terminal has memory-relative cursor address
ing but not screen relative cursor addressing, use ti to fix a
screen-sized window into the terminal.

If a terminal can overstrike, programs assume that printable
spaces don't destroy anything, unless you specify eo.

Keypad
Some terminals have keypads that transmit special codes. If
the keypad can be turned on and off, specify ks and ke; if
you don't, programs assume that the keypad is always on.
Specify the codes sent by cursor motion keys with kl, kr, ku,
kd, and kh. If there are function keys specify the codes they
send with f1, f2, f3, f4, f5, f6, f7, f8, and f9. If these keys

UP-13713.3 Page 11

()TERMCAP(4)

have labels other than the usual "fO" through "f9", specify the
labels 11, 12, 13, 14, IS, 16, 17, 18, and 19. If there are other keys
that transmit the same code that the terminal expects for a
function, such as clear screen, mention the affected capabili
ties in the ko capability. For example, U:ko = cl,II,sf,sb:" says
that the terminal has clear, home down, scroll down, and scroll
up keys that transmit the same thing as the cl, II, sf, and sb
capabilities.

Terminal Initialization
If a terminal must be initialized, on login for example, specify a
short string with is or a file containing initialization strings with
if. Other capabilities include is, an initialization string for the
terminal, and if, the name of a file containing long initialization
strings. If both are given, is is printed before if. If the termi
nal has tab stops, these strings should first clear all stops,
then set new stops at the 9 column and every 8 columns
thereafter.

Similar Terminals
If a new terminal strongly resembles an existing terminal, you
can write a description of the new terminal that only mentions
the old terminal and the capabilities that differ. The tc capa
bility describes the old terminal; it must be the last capability
in the description. If the old terminal has capabilities that the
new one lacks, specify an @ after the capability name.

The different entries you create with tc need not represent ter
minals that are actually different. They can represent different
uses for a single terminal, or user preferences as to which ter
minal features are desirable.

The following example defines a describes a variant of the
2621 that never turns on the keypad.

hn : 2621nl :ks@:ke@:tc=2621:

FILES
/etc/termcap standard data base

SEE ALSO
ex(1), tset(1), vi(1) in the User's Reference Manual.
curses(3X), otermcap(3X), terminfo(4).

BUGS
Ex allows only 256 characters for string capabilities, and the

Page 12 UP-13713.3

OTERMCAP(4)

routines in otermcap (3X) do not check for overflow of this
buffer.

The total length of a single description (excluding only
escaped newlines) may not exceed 1024 characters. If you
use te, the combined description may not exceed 1024 char
acters.

The VS, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are
not supported by any program.

The rna capability is obsolete and serves no function in our
database; Berkeley includes it for the benefit of systems that
cannot run version 3 of vi.

UP-13713.3 Page 13

()TERMCAP(4)

[This page left blank.]

Page 14 UP-13713.3

RFMASTER(4)

NAME
rfmaster - Remote File Sharing name server master file

DESCRIPTION
The rfmaster file is an ASCII file that identifies the hosts that
are responsible for providing primary and secondary domain
name service for Remote File Sharing domains. This file con
tains a series of records, each terminated by a newline; a
record may be extended over more than one line by escaping
the newline character with a backslash (\). The fields in each
record are separated by one or more tabs or spaces. Each
record has three fields:

name type data

The type field, which defines the meaning of the name and
data fields, has three possible values:

p The p type defines the primary domain name server. For
this type, name is the domain name and data is the full
host name of the machine that is the primary name
server. The full host name is specified as
domain.nodename. There can be only one primary name
server per domain.

s The s type defines a secondary name server for a
domain. Name and data are the same as for the p type.
The order of the s entries in the rfmaster file determines
the order in which secondary name servers take over
when the current domain name server fails.

a The a type defines a network address through which the
previously mentioned name servers can be reached.
Name is the full domain name for the machine and data is
the network address of the "listener" service on that
machine [see nlsadmin (1 M)]. The network address can
be in plain ASCII text or it can be preceded by a \x to be
interpreted as hexadecimal notation. If the network
address is preceded by a \$, it is interpreted as a com
mand to be executed to obtain the address [see
getservaddr(1 M)]. (To determine the network addresses
you need, see the documentation for the particular net
work you are using.)

There are at least two lines in the rfmaster file per domain
name server: one p and one Q line to define the primary

UP-13713.3 Page 1

RFMASTER(4)

name server and its network address. There should also be at
least one secondary name server in each domain.

This file is created and maintained on the primary domain
name server. When a machine other than the primary tries to
start Remote File Sharing, this file is read to determine the
address of the primary. If rfmaster is missing, the -p option
of rfstart must be used to identify the primary. After that, a
copy of the primary's rfmaster file is automatically placed on
the machine.

Domains not served by the primary can also be listed in the
rfmaster file. By adding primary, secondary, and address
information for other domains on a network, machines served
by the primary can share resources with machines in other
domains.

Page 2 UP-13713.3

RFMASTER(4)

A primary name server may be a primary for more than one
domain. However, the secondaries must then also be the
same for each domain served by the primary.

EXAMPLE
An example of an rfmaster file is shown below. (The network
address examples are TCP network addresses.)

CT
CT
CT.comp2
CT.comp1

p
s
a
a

CT.Convgt1
CT.Convgt2
\$ getservaddr Convgt1 nlsgen
\$ getservaddr Convgt2 nlsgen

Note: If a 1 ine in the rfmaster file begins with a # character,
the entire line is treated as a comment.

FILES
/usr /nserve/rfmaster

SEE ALSO
getservaddr(1 M), rfstart(1 M) in the Administrator's Reference
Manual.

UP-13713.3 Page 3

RFMASTER(4)

[This page left blank.]

Page 4 UP-13713.3

NAME
system - system description file

MACHINE DEPENDENCY
DESCRIPTION

SYSTEM (4)

The system description describes tunable variables and
hardware configuration to the System V system.

The file is formatted in sections. Each section begins with a
section header (a ! followed by a single word). Each section
varies in format, depending upon the format required by the
program that uses the data provided by that section.

Note with respect to the !TUN EABLES section, that changes
made to this section do not become effective until the
uconf(1 M) program is run.

In the example file below the !TUNEABLES section describes
a cluster terminal configuration where only two cluster lines
are being used and there are six ttys associated with each
line: Cluster line 0 has tty256-261, and Cluster line 1 has
tty262-267. (uconf must be run in order for this configuration
to be effective.)

The !VMESLOTS section of the same example file describes
the VME boards for the EEPROM. The slot field is the slot
position in the VME bus. The type field is the board type;
board types may be:

1 CMC Ethernet board

2 Interphase SMD disk controller board

4 Interphase 1/2-inch tape controller board

5 Multiprotocol Communications Controller board

The address field is the location of the board. The length field
is the address space size of the board. The optional initializa
tion function name is an initialization function that is called by
the PROM at boot time.

The !VMECODE section consists of a list of files that describe
the executable code to be loaded into the EEPROM. This sec
tion is required only if a bootable initialization function was
specified.

The !SCSIMAP section consists of several lines, each line
specifying a logical to physical mapping. for a SCSI device

UP-13713.3 Page 1

SYSTEM (4)

[seescsimap (1 M)].

Page 2 UP-13713.3

SYSTEM (4)

EXAMPLE
!FILENAMES
PROM_IFILE=/etc/lddrv/EEPROM.ifile
EEPROM_FILE=/dev/vme/eeprom
!TUNEABLES
cl_defl ines=2
cl_defdrops=6
!VMESLOTS
* The following section describes the VME boards

*
*slot type

*
address

*
o 2 C1000000
1 2 C1000200

512
512

*one CMC Ethernet controller)
2 1 CODEOOOO 131072

*
!VMECODE
/etc/lddrv/DISKVS32.o

length [Initialization
function name]

loadvs32

! SCS I MAP tape- dO bus=O target=O 1 un=O par i ty rese 1 ect
tape-dl bus=O target=1 lun=O parity reselect

FILES
fete/system

SEE ALSO
Iddrv(1 M), Jdeeprom(1 M), scsimap(1 M), uconf(1 M), vme(7).

UP-13713.3 Page 3

SYSTEM (4)

[This page left blank.]

Page 4 UP-13713.3

TTYTYPE(4)

NAME
ttytype - list of terminal types by terminal number

DESCRIPTION
Ttytype is a text file that contains, for each terminal config
ured, the terminal type as described in otermcap (4). It is used
by tset(1) when that program sets the TERM environment
variable.

A line in ttytype .consists of a terminal name (one of the abbre
viations from the first field of the termcap entry), followed by a
space, followed by the special file name of the terminal
without the initial /dev/.

EXAMPLES
adm3ttyoOO
vt100 tty001

FILES
/etc/ttytype

SEE ALSO
tset(1) in the User's Reference Manual.
otermcap(4) .

UP-13713.3 Page 1

TTYTYPE(4)

[This page left blank.]

Page 2 UP-13713.3

TZ(4)

NAME
TZ - time zone file

DESCRIPTION
The /etc/TZ file describes the time zone for the locality of the
System V system. The file contains a single entry of the form:

zSTn[zDT]

where zST is the standard three-letter abbreviation for the
standard time zone; n is the difference in hours from
Greenwich time; and zDT is the standard three-letter abbrevia
tion for daylight saving time, if observed in the area.

The earth is divided into twenty-four (0 to 23) longitudinal
standard time zones. Adjacent time zones are one hour (15
degrees) apart, beginning at Greenwich (0 degrees), with
some variations in local legal time.

For the meridians of North America the principal time zones
are:

AST4ADT

EST5EDT

CST6CDT

MST7MDT

PST8PDT

YST9YDT

HST10HDT

NST11NDT

FILES
/etc/TZ

UP-13713.3

Atlantic Standard Time/Daylight Saving Time
(60 degrees)

Eastern Standard Time/Daylight Saving Time
(75 degrees)

Central Standard Time/Daylight Saving Time
(90 degrees)

Mountain Standard Time/Daylight Saving Time
(105 degrees)

Pacific Standard Time/Daylight Saving Time
(120 degrees)

Yukon Standard Time/Daylight Saving Time
(135 degrees)

Hawaiian Standard Time/Daylight Saving Time
(150 degrees)

Nome Standard Time/Daylight Saving Time
(165 degrees)

Page 1

TZ(4)

SEE ALSO
ctime(3C) I profile (4) I timezone(4).
rc2(1 M) in the Administrator's Reference Manual.

Page 2 UP-13713.3

EQNCHAR(5)

NAME
eqnchar - special character definitions for eqn and neqn

SYNOPSIS
eqn lusr Ipub/eqnchar [files] : troff [options]

neqn lusr Ipub/eqnchar [files] : nroff [options]

DESCRIPTION
Eqnchar contains froff and nroff character definitions for con
structing characters that are not available on the Wang
Laboratories, Inc. CI A/T phototypesetter. These definitions
are primarily intended for use with eqn (1) and neqn; eqnchar
contains definitions for the following characters:

cipJus <!> I I II square 0

citimes 0 Jangle (circle 0
wig rangle) blot •
-wig ~ hbar 'If bullet •
>wig ~ ppd 1- prop ex:

<wig s <-> +-+ empty (2)

=wig 2! <=> <c::> member E

star
bigstar
=dot
orsign
andsign
=del
oppA
oppE

*

angstrom A
==< <

i nomem e

ang
rang
3dot
thi

~
L

L

quarter 1/4

3quarter 3/4

degree
==> >

cup
cap
incl
subset
supset
Isubset
Isupset
scrL

u

FILES
/usr/pub/eqnchar

UP-13713.3 Page 1

EQNCHAR(5)

SEE ALSO
The DOCUMENTOR'S WORKBENCH REFERENCE MANUALS.

Page 2 UP-13713.3

MAN(S)

NAME
man - macros for formatting entries in this manual

SYNOPSIS
nroff -man files

troff -man [-rs1] files

DESCRIPTION
These troff(1) macros are used to layout the format of the
entries of this manual. A skeleton entry may be found in the
file /usr/man/u_man/manO/skeleton. These macros are used
by the man(1) command. Note that this manual is not pro
vided in online form as part of the System V software.

The default page size is 8.5" 11", with a 6.5"10" text area; the
-rs1 option reduces these dimensions to 6"9" and
4.75"8.375", respectively; this option (which is not effective in
nroff) also reduces the default type size from 10-point to 9-
point, and the vertical line spacing from 12-point to 1 a-point.
The -rV2 option may be used to set certain parameters to
values appropriate for certain Versatec printers: it sets the
line length to 82 characters, the page length to 84 lines, and it
inhibits underlining; this option should not be confused with
the· Tvp option of the man (1) command, which is available at
some UNIX System sites.

Any text argument below may be one to six "words." Double
quotes (" ") may be used to include blanks in a "word." If text
is empty, the special treatment is applied to the next line that
contains text to be printed. For example, .1 may be used to
italicize a whole line, or .SM followed by .B to make small bold
text. By default, hyphenation is turned off for nroff, but
remains on for froff.

Type font and size are reset to default values before each
paragraph and after processing font- and size-setting macros,
for example, .1, .RB, .SM. Tab stops are neither used nor set
by any macro except .DT and .TH.

Default units for indents in are ens. When in is omitted, the
previous indent is used. This remembered indent is set to its
default value (7.2 ens in troff, 5 ens in nroff-this corresponds
to 0.5" in the default page size) by .TH, ,P, and .RS, and
restored by .RE.

UP-13713.3 Page 1

MAN(S)

.TH t sen Set the title and entry heading; t is the title, s is
the section number, c is extra commentary, for
example, "local," n is new manual name. Invokes
.DT (see below) .

. SH text Place subhead text, for example, SYNOPSIS,
here.

.SS text

. B text

.1 text

. SM text

.Rla b

.P

.HP in

.TP in

.IP t in

.RS in

.REk

.PMm

Page 2

Place sub-subhead text, for example, Options,
here.

Make text bold .

Make text italic .

Make text 1 point smaller than default point size.

Concatenate roman a with italic b, and alternate
these two fonts for up to six arguments. Similar
macros alternate between any two of roman, italic,
and bold:
.IR .RB .BR .IB .BI

Begin a paragraph with normal font, point size,
and indent. .PP is a synonym for .P.

Begin paragraph with hanging indent.

Begin indented paragraph with hanging tag. The
next line that contains text to be printed is taken
as the tag. If the tag does not fit, it is printed on
a separate line.

Same as .TP in with tag t; often used to get an
indented paragraph without a tag.

Increase relative indent (initially zero). Indent all
output an extra in units from the current left mar
gin.

Return to the kth relative indent level (initially,
k=1; k=O is equivalent to k=1); iLk is omitted,
return to the most recent lower indent level.

Produces proprietary markings; where m may be
P for PRIVATE, N for NOTICE, BP for BELL
LABORATORIES PROPRIETARY I or BR for
BELL LABORATORIES RESTRICTED.

UP-13713.3

MAN(S)

.OT Restore default tab settings (every 7.2 ens in troff,
5 ens in nroff) .

• PO v Set the interparagraph distance to v vertical
spaces. If v is omitted, set the interparagraph dis
tance to the default value (O.4v in troff, 1 v in nroff).

The following strings are defined:

*R ® in troff, (Reg.) in nroff.

*S

*(Tm

Change to default type size.

Trademark indicator.

The following number registers are given default values by
.TH:

IN

LL

Left margin indent relative to subheads (default is
7.2 ens in troff, 5 ens in nroff).

Line length including IN.

PO Current interparagraph distance.

CAVEATS
In addition to the macros, strings, and number registers men
tioned above, there are defined a number of internal macros,
strings, and number registers. Except for names predefined
by troff and number registers d, m, and y, all such internal
names are of the form XA, where X is one of),], and }, and A
stands for any alphanumeric character.

If a manual entry needs to be preprocessed by cW(1), eqn(1)
(or neqn), and/or tbl(1). it must begin with a special line
[described in man (1)], causing the man command to invoke
the appropriate preprocessor(s).

The programs that prepare the Table of Contents and the Per
muted Index for this Manual assume the NAME section of

UP-13713.3 Page 3

MAN(S)

each entry consists of a single line of input that has the follow
. ing format:

name[. name, name ...] \- explanatory text

The macro package increases the inter-word spaces (to elim
inate ambiguity) in the SYNOPSIS section of each entry.

The macro package itself uses only the roman font [so that
one can replace, for example. the bold font by the constant
width font-see cw(1)]. Of course, if the input text of an entry
contains requests for other fonts (for example •• 1, .RB, \fI), the
corresponding fonts must be mounted.

FILES
/usr /lib/tmac/tmac.an
/usr /Iib/macros/cmp. [nt]. [dt] .an
/usr /Iib /macros/ucmp. [nt] .an
/usr /man/ [ua]_ man/manO/skeleton

SEE ALSO
The DOCUMENTER'S WORKBENCH REFERENCE MANUALS.

BUGS
If the argument to .TH contains any blanks and is not
enclosed by double quotes (""), there will be bird-dropping-like
things on the output.

Page 4 UP-13713.3

ME(5)

NAME
me - macros for formatting papers

SYNOPSIS
nroff -me [options] file .. .

troff -me [options] file .. .

DESCRIPTION
This package of nroff and troff macro definitions provides a
formatting facility for technical papers in various formats.
When producing 2-column output on a terminal, filter the out
put through co/(1).

The macro requests are defined below. Many nroff and froff
requests are unsafe in conjunction with this package. The
requests may be used after the first .pp, however:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.Is n (line spacing) n = 1 single, n = 2 double space

.na no alignment of right margin

.cd n center next n lines

.ul n underline next n lines

.sz + n add n to point size

Output of the eqn, neqn, refer, and tbl (1) preprocessors for
equations and tables is acceptable as input.

REQUESTS
In the following list, "qinitialization" refers to the first .pp I .Ip,
.ip, .np, .sh, or .uh macro .
• (c Begin centered block
.(d Begin delayed text
.(f Begin footnote
.(1 Begin list
.(q Begin major quote
.(x x Begin indexed item in index x
.(z Begin floating keep
.)c End centered block
.)d End delayed text
.)f End footnote
.)1 End list
.)q End major quote
.)x End index item

UP-13713.3 Page 1

ME(5)

.)z

.+ + m H

.+c T

.1c

.2c

.EN

. EQxy

• GE
. GS
. PE
. PS
• TE
. TH
.TS

.acAN

.bx

.ba +n

.bc

.bi x

.bu

.bxx

.ef 'x'y'z'

.eh 'x'y'z'

2

End floating keep
Define paper section. M defines the part of
the paper, and can be C (chapter), A
(appendix), P (preliminary, for example,
abstract, table of contents, and so forth), B
(bibliography) RC (chapters renumbered
from page one each chapter), or RA
(appendix renumbered from page one).
Begin chapter (or appendix, and so forth, as
set by . + +). T is the chapter title.
One column format on a new page
Two column format.
Space after equation produced by eqn or
neqn.
Precede equation; break out and add space .
Equation number is y. The optional argu
ment x may be I to indent equation
(default), L to left-adjust the equation, or C
to center the equation.
End gremlin picture .
Begin gremlin picture .
End pic picture .
Begin pic picture .
End table .
End heading section of table .
Begin table; if x is H table has repeated
heading.
Set up for ACM style output. A is the
Author's name(s), N is the total number of
pages. Must be given before the first initiali
zation.
Print x in boldface; if no argument switch to
boldface.
Augments the base indent by n. This indent
is used to set the indent on regular text (like
paragraphs).
Begin new column
Print x in bold italics (nofill only)
Begin bulleted paragraph
Print x in a box (nofill only)
Set even footer to x y z
Set even header to x y z

UP-13713.3

.fo 'x'y'z'

. hx

.he 'x'y'z'

.hl

.ix

.ipxy

.lp

.10

.np

.of 'x'y'z'

.eh 'x'y'z'

.pd

. pp

. r

. re

.sc

.sh n X

.sk

. smx

. sz +n

.th

. tp

.ux

. uh

. xpx

ME(5)

Set footer to x y z
Suppress headers and footers on next page .
Set header to x y z
Draw a horizontal line
Italicize x; if x missing, italic text follows .
Start indented paragraph, with hanging tag
x. Indentation is yens (default 5).
Start left-blocked paragraph .
Read in a file of local macros of the form
Start numbered paragraph
Set odd footer to x y z
Set odd header to x y z
Print delayed text.
Begin paragraph. First line indented .
Roman text follows .
Reset tabs to default values .
Read in a file of special characters and
diacritical marks. Must be given before ini
tialization.
Section head follows, font automatically
bold. N is level of section, x is title of sec
tion.
Leave the next page blank. Only one page
is remembered ahead.
Set x in a smaller pointsize .
Augment the point size by n points .
Produce the paper in thesis format. Must
be given before initialization.
Begin title page .
Underline argument (even in troff). (Nofill
only).
Line .sh but unnumbered .
Print index x .

FILES
/usr/lib/tmac/tmac.e
/usr/lib/me/*

SEE ALSO
The DOCUMENTER'S WORKBENCH REFERENCE MANUALS.

UP-13713.3 Page 3

ME(5)

[This page left blank.]

Page 4 UP-13713.3

MM(5)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options] [files]

nroff -mm [options] [files]

nroff -em [options] [files]

mmt [options] [files]

troff -mm [options] [files]

troff -em [options] [files]

DESCRIPTION
This package provides a formatting capability for a very wide
variety of documents. It is the standard package used by the
BTL typing pools and documentation centers. The manner in
which a document is typed in and edited is essentially
independent of whether the document is to be eventually for
matted at a terminal or is to be phototypeset. See the refer
ences below for further details.

The -mm option causes nroff and troff(1) to use the non
compacted version of the macro package, while the -em
option results in the use of the compacted version, thus
speeding up the process of loading the macro package.

FILES
/usr /lib/tmac/tmac.m pointer to the non

compacted version of the
package

/usr/lib/macros/mm[nt] non-compacted version of
the package

/usr/lib/macros/cmp.[nt].[dt].m compacted version of the
package

/usr/lib/macros/ucmp.[nt].m initializers for the compacted
version of the package

SEE ALSO
The DOCUMENTER'S WORKBENCH REFERENCE MANUALS

UP-13713.3 Page 1

MM(S)

[This page left blank.]

2 UP-13713.3

MPTX(5)

NAME
mptx - the macro package for formatting a permuted index

SYNOPSIS
nroff -mptx [options] [files]

troff -mptx [options] [files]

DESCRIPTION
This package provides a definition for the .xx macro used for
formatting a permuted index as produced by ptx(1). This
package does not provide any other formatting capabilities
such as headers and footers. If these or other capabilities are
required, the mptx macro package may be used in conjuction
with the MM macro package. In this case, the -mptx option
must be invoked after the -mm call. For example:

nroff -em -mptx file

or

mm -mptx fi le

FILES
/usr/lib/tmac/tmac.ptx pointer to the non-compacted version

of the package

/usr/lib/macros/ptx non-compacted version of the pack
age

SEE ALSO
The DOCUMENTER'S WORKBENCH REFERENCE MANUALS.

UP-137l3.3 Page 1

MPTX(S)

[This page left blank.]

Page 2 UP-13713.3

MS(5)

NAME
ms - text formatting macros

SYNOPSIS
nroff -ms [options] file .. .

troff -ms [options] file .. .

DESCRIPTION
This package of nroff and froff macro definitions provides a
formatting facility for various styles of articles, theses, and
books. When producing 2-column output on a terminal or
lineprinter, or when reverse line motions are needed, filter the
output through col. All external -ms macros are defined
below. many nroff and froff requests are unsafe in conjunc
tion with this package. However, the first four requests below
may be used with impunity after initialization, and the last two
may be used even before initialization:

.bp begin new page

.br break output line

.sp n insert n spacing lines

.ce n center next n lines

.Is n line spacing: n = 1 single,
n = 2 double space

.na no alignment of right margin

Font and point size changes with \1 and \s are also allowed;
for example, U\fIword\fR" will italicize word. Output of the fbI,
eqn, and refer preprocessors for equations, tables, and refer
ences is acceptable as input.

REQUESTS
Macro
Name

.ABx

.AE

.AI

.AM

.AU

.Bx

.B1

.B2

.BT

UP-13713.3

Explanation

begin abstract; if x = no don't label abstract
end abstract
author's institution
better accent mark definitions
author's name
embolden x; if no x, switch to boldface
begin text to be enclosed in a box
end boxed text and print it
bottom title, printed at foot of page

Page 1

MS(5)

.BXx

.CM

.CT

.DAx

.DE

.DSxy

.IDy

.LD

.CD

.BD

.EFx

.EHx

.EN

.EQxy

.FE

.FP

.FSx

.HD

.Ix

.IPxy

.IXxy

.KE

.KF

.KS

.LG

.LP

.MCx

.NDx

.NHxy

.NL

.OFx

.OHx

.P1

.PP

. PT

.PXx

.QP

.R

.RE

print word x in a box
cut mark between pages
chapter title: page number moved to CF (TM only)
force date x at bottom of page; today if no x
end display (unfilled text) of any kind
begin display with keep; x = I,L,C,B; Y = indent
indented display with no keep; y = indent
left display with no keep
centered display with no keep
block display; center entire block
even page footer x (3 page as for ;tl)
even page header x (3 part as for . tl)
end displayed equation produced by eqn
break out equation; x = L,I,C;
y = equation number
end footnote to be placed at bottom of page
numbered footnote paragraph; may be redefined
start footnote; x is optional footnote label
optional page header below header margin
italicize x; if no x, switch to italics
indented paragraph, with hanging tag x; y = indent
index words x y and so on (up to 5 levels)
end keep of any kind
begin floating keep; text fills remainder of page
begin keep; unit kept together on a single page
larger; increase point size by 2
left (block) paragraph
multiple columns; x = column width
no date in page footer; x is date on cover
numbered header; x = level, x = 0 resets,
x = S sets to y
set point size back to normal
odd page footer x (3 part as for .tl)
odd page header x (3 part as for . tl)
print header on 1 st page
paragraph with first line indented
page title, printed at head of page .
print index (table of contents); x =
no suppresses title
quote paragraph (indented and shorter)
return to Roman font
retreat: end level of relative indentation

UP-13713.3

.RPx

.RS

.SH

.SM

.TA

.TCx

.TE

.TH

.TL

.TM

.TSx

.ULx

.UXx

.XAxy

.XE

.XP

. XSxy

.1C

.2C

.J

.[0

.[N

REGISTERS

MS(5)

released paper format; x = no stops title on
1st page
right shift; start level of relative indentation
section header, in boldface
smaller; decrease point size by 2
set tabs to 8n 16n . .. (nroff); 5n 10n ... (troff)
print table of contents at end; x = no suppresses
title
end of table processed by tbl
end multi-page header of table
title in boldface and two points larger
UC Berkeley thesis mode
begin table; if x = H table has mUlti-page header
underline x, even in troff
UNIX; trademark message first time; x appended
another index entry; x = page or no for none;
y = indent
end index entry (or series of .IX entries)
paragraph with first line exdented; others indented .
begin index entry; x = page or no for none;
y = indent
one column format, on a new page
begin two column format
begin of refer reference
end of unclassifiable type of reference
N = 1 :journal-article, 2:book, 3:book-article, 4:report

Formatting distances can be controlled in -ms by means of
built-in number registers. For example, this sets the line
length to 6.5 inches:

.nr LL 6.5i

Here is a table of number registers and their default values:

UP-13713.3 Page 3

MS(5)

Register Takes
Name Controls Effect Default

PS point size paragraph 10
VS vertical spacing paragraph 12
LL line length paragraph 6i
LT title length next page same as LL
FL footnote length next .FS 5.5i
PO paragraph distance paragraph 1v(if n), .3v (if t)
DO displa y distance paragraph 1 v(if n) •. 3v (if t)
PI paragraph indent paragraph 5n
01 quote indent next .OP 5n
FI footnote indent next .FS 2n
PO page offset next page o (if n), -1 i (if t)
HM header margin next page 1i
FM footer margin next page 1 i
FF footnote format next .FS o (1,2.

3 available)

When resetting these values, make sure to specify the
appropriate units. Setting the line length to 7, for example,
will result in output with one character per line. Setting FF to
1 suppresses footnote superscripting; setting it to 2 alwo
suppresses indentation of the first line; and setting it to 3 pro
duces an .IP-like footnote paragraph.

Here is a list of string registers available in -ms; they may be
used anywhere in the text:

Name
*0
*U
*
*(MO
*(OY
**
*'
*'
*"
*,
*:
*-

Page 4

String's Function
quote (" in nroff, II in troff)
unquote (" in nroff, " in troff)
dash (-- in nroff, - in troff)
month (month of the year)
day (current date)
automatically numbered footnote
acute accent (before letter)
grave accent (before letter)
circumflex (before letter)
cedilla (before letter)
umlaut (before letter)
tilde (before letter)

UP-13713.3

MS(S)

When using the extended accent mark definitions available
with .AM, these strings should come after, rather than before,
the letter to be accented.

FILES
/usr /lib /tmac/tmac.x
/usr /lib /ms/x. ???

SEE ALSO
The DOCUMENTER'S WORKBENCH REFERENCE MANUALS.

BUGS
Floating keeps and regular keeps are diverted to the same
space, so they cannot be mixed together with predictable
results.

UP-13713.3 Page 5

MS(5)

[This page left blank.]

6 UP-13713.3

MVT(S)

NAME
mvt - a troff macro package for typesetting view graphs and
slides

SYNOPSIS
mvt [-a] [options] [files]

troff [-a] [-rX1] -my [options] [files]

DESCRIPTION
This package makes it easy to typeset view graphs and pro
jection slides in a variety of sizes. A few macros (briefly
described below) accomplish most of the formatting tasks
needed in making transparencies. All of the facilities of
troff(1) , cw(1), eqn(1), and tb/(1) are available for more diffi
cult tasks.

The output can be previewed on most terminals, and, in par
ticular, on the Tektronix 4014, as well as on the Versatec
printer. For these two devices, specify the -rX1 option (this
option is automatically specified by the mvt
command-q.v.-when that command is invoked with the ·T4014
or -Tvp options). To preview output on other terminals,
specify the -a option.

The available macros are:

.VS[n] [i] [d]
Foil-start macro; foil size is to be 7"7"; n is the foil
number, i is the foil identification, d is the date; the foil
start macro resets all parameters (indent, point size, and
so forth) to initial default values, except for the values of i
and d arguments inherited from a previous foil-start
macro; it also invokes the .A macro (see below).

The naming convention for this and the following eight
macros is that the first character of the name (V or S) dis
tinguishes between view graphs and slides, respectively,
while the second character indicates whether the foil is
square (S), small wide (w), small high (h) I big wide (W), or
big high (H). Slides are "skinnier" than the corresponding
view graphs: the ratio of the longer dimension to the
shorter one is larger for slides than for view graphs. As a
result, slide foils can be used for view graphs, but not vice
versa; on the other hand, view graphs can accommodate
a bit more text.

UP-13713.3 Page 1

MVT(5)

.Vw[n] [i) [d)
Same as .VS, except that foil size is]" wide 5" high .

. Vh[n] [i) [d)
Same as .VS, except that foil size is 5''7'' .

• VW[n] [i) [d)
Same as .VS, except that foil size is 7"5.4" .

• VH[n] (i) (d)
Same as .VS, except that foil size is 7119",

.Sw[n] (i) (d)
Same as . VS,except that foil size is 7"5" .

• Sh[n] [i) [d)
Same as .VS, except that foil size is 5"7" .

• SW[n] [i) [d)
Same as .VS, except that foil size is 7"5.4" .

. SH[n] li] ld]
Same as .VS, except that foil size is 7"9" .

. Alx]
Place text that follows at the first indentation level (left
margin); the presence of x suppresses the V2 line spacing
from the preceding text.

.Blm ls]]
Place text that follows at the second indentation level; text
is preceded by a mark; m is the mark (default is a large
bullet); s is the increment or decrement to the point size
of the mark with respect to the prevailing point size
(default is 0); if s is 100, it causes the point size of the
mark to be the same as that of the default mark .

. C[m [s]]
Same as .B, but for the third indentation level; default
mark is a dash .

. O[m ls]]
Same as .B, but for the fourth indentation level; default
mark is a small bullet.

.Tstring
String is printed as an over-size, centered title.

Page 2 UP-13713.3

MVT(5)

.1[inJ [a [xJ J
Change the current text indent (does not affect titles); in
is the indent (in inches unless dimensioned, default is 0); if
in is signed, it is an increment or decrement; the presence
of a invokes the .A macro (see below) and passes x (if
any) to it.

.S[pJ [/J
Set the point size and line length; p is the point size
(default is "previous"); if p is 100, the point size reverts to
the initial default for the current foil-start macro; if p is
signed, it is an increment or decrement (default is 18 for
.VS, .VH, and .SH, and 14 for the other foil-start macros);
I is the line length (in inches unless dimensioned; default
is 4.2" for .Vh, 3.8" for .Sh, S" for .SH, and 611 for the
other foil-start macros) .

. 0Fn f [n f ... J
Define font positions; may not appear within a foil's input
text (that is to say, it may only appear after all the input
text for a foil, but before the next foil-start macro); n is
the position of font f; up to four "n f" pairs may be speci
fied; the first font named becomes the prevailing font; the
initial setting is (H is a synonym for G):

.DF 1 H 2 I 3 8 4 S

.0V[aJ [bJ [eJ [dJ
Alter the vertical spacing between indentation levels; a is
the spacing for .A, b is for .B, e is for .C, and d is for .0;
all non-null arguments must be dimensioned; null argu
ments leave the corresponding spacing unaffected; initial
setting is:

.DV .Sv .Sv .Sv Ov

.Ustr1 [str2J
Underline str1 and concatenate str2 (if any) to it.

The last four macros in the above list do not cause a break;
the .1 macro causes a break only if it is invoked with more
than one argument; all the other macros cause a break.

The macro package also recognizes the following upper-case
synonyms for the corresponding lower-case troff requests:

UP-13713.3 Page 3

MVT(5)

.AD .BR .CE .FI .HY .NA .NF .NH .NX .SO .SP .TA .TI

The Tm string produces the trademark symbol.

The input tilde C) character is translated into a blank on out
put.

See the user's manual cited below for further details.

FILES
/usr /Iib/tmac/tmac. v
/usr /Iib/macros/Vmca

SEE ALSO
The DOCUMENTER'S WORKBENCH REFERENCE MANUALS.

BUGS
The . VW and .SW foils are meant to be 9" wide by 7" high,
but because the typesetter paper is generally only 8" wide,
they are printed 7" wide by 5.4" high and have to be enlarged
by a factor of 9/7 before use as view graphs; this makes them
less thantotaUy useful.

4 UP-13713.2

