
-----..,

The
Connection Machine
System

*Lisp Release Notes

Version 6.0
November 1990

Thinking Machines Corporation
Cambridge, Massachusetts

Fhstprinting,Nov~ber1990

The information in this document is subject to change without notice and should not be construed
as a commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the
right to make changes to any products described herein to improve functioning or design. Although
the information in this document has been reviewed and is believed to be reliable, Thinking
Machines Corporation does not assume responsibility or liability for any errors that may appear in
this document. Thinking Machines Corporation does not assume any liability arising from the
application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
In ParalIel® is a registered trad~ark of Thinking Machines Corporation.
CM-I, CM-2, CM, and DataVault are trademarks of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
VAX, ULTRlX, and V AXBI are trad~arks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are ~arks ofSymbolics, Inc.
Sun, Sun-4, and Sun Workstation are registered trad~arks of Sun Microsystems, Inc.
UNIX is a registered trad~ark of AT&T Bell Laboratories.
CommonLoops is a trad~ark of Xerox Corporation.

Copyright © 1990 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 Fhst Street
Cambridge, Massachusetts 02142-1264
(617) 876-1111

;/
1 .. \

Contents

About These Release Notes .. vii

Customer Support•.................................... Xl

1 About Version 6.0 .. 1

1.1 Components of "'Lisp, Version 6.0 1

1.2 "'Lisp Documentation . 2

1.3 Summary of Enhancements ... 3

1.4 "'Lisp Software Requirements 4

1.5 *Lisp On-line Code Examples 4

1.6 MiscellaneousNewFeatures .. 4

1.6.1 The cm:tlme Macro Now Nests 4

2 Porting Code to Version 6.0 .. 5

2.1 Obsolete Language Features. 5

3 *Lisp and Lucid Common Lisp 7

3.1 Lucid Common Lisp Version 2.5 on VAX Front Ends. 7

3.2 Lucid Common Lisp Version 3.0 on Sun-4 Front Ends 8

3.3 Lucid-related Implementation Errors and Restrictions 10

3.3.1 Known Errors Corrected. 11
3.3.2 Known Errors Still Open 11

I

,I

iii

iv *Lisp Release Notes

4 *Lisp Language Version 6.0 . 15

4.1 Automatic Promotion of Scalar Arguments.. 15

4.2 New Options for *Lisp Operators 17

4.2.1 New :segment-mode Keyword Argument for scan!! 17

4.2.2 New :combine-with~est Keyword Argument for *pset 19

4.2.3 New :queue Combiner Argument for *pset 20

4.2.4 Global Variable Control of Run-time Context ofpref Function 21

4.3 New Functions in *Lisp Package . 22

4.3.1 NewVectorPvarOperators 22

4.3.2 Internal deallocate-geometry Function Now External 22

4.3.3 New *Lisp Dictionary Pages 22

4.4 *Lisp Language Restrictions Update 29

4.4.1 Known Errors Corrected. 29

4.4.2 Known Errors and Restrictions. 31

5 *Lisp Interpreter Version 6.0 33

5.1 Interpreter Restrictions .. . 33

6 *Lisp Compiler Version 6.0 34

6.1 *Lisp Compiler Enhancements 34

6.2 *Lisp Compiler Limitations .. . 34

6.2.1 *Lisp Operations That Don't *Compile 34

6.2.2 Obsolete *Lisp Operations 35

6.2.3 *Lisp Compiler Restrictions ' 35

6.2.4 Special Forms That *Compile 37

6.3 Type Declarations and the *Lisp Code Walker 37

6.3.1 The Code Walker .. . 38

6.3.2 Proper Declaration of*defun Forms 40

6.4 Viewing *Compiled Code 41

6.5 Compiler Options Notes 43

6.5.1 Compiler Options Function 43

6.5.2 Additional Compiler Options 43

6.5.3 Restrictions on Compiler Options 46

6.6 *Lisp Compiler Implementation Errors Update 46

6.6.1 Known Errors Corrected 47

6.6.2 Known Errors Still Open 48

,
"-

~.

".

Version 6.0, November 1990 v

6.7 Miscellaneous Compilation Notes 49

6.7.1 Non-simple Pvar Expression Compilation in prefl! 49

6.7.2 Warnings on Non-compiled Code 49

6.7.3 *Lisp Compiler Warning Level and Safety Level Options 49

7 *Lisp Simulator Version 6.0 . 50

7.1 New *Lisp Simulator Version 50

7.2 *Lisp Simulator Now Freely Available 50

7.3 *Lisp Simulator Restrictions Update 51

7.3.1 Restriction on Pvar 'fYpes . 51

7.3.2 Known Errors Corrected.... 51

7.3.3 Known Errors and Restrictions. 52

7.4 Notes on Simulator Use .. 53

7.4.1 Porting Code. 53

7.4.2 Abort and Cold Boot Problem 53

7.4.3 Conditional Simulator Compilation and Execution 53

8 *Lisp Library Version 6.0 .. S5

8.1 Changes for Version 6.0 .. 55

8.2 Accessing the *Lisp Library. 55

8.3 *Lisp Library Contents . 56

8.4 *Lisp Library Restrictions Update .. 56

8.4.1 Known Errors Corrected. 56

9 *Graphics Version 6.0 . 57

10 Fast Graph.. 57

About These Release Notes

Objectives

The *Lisp Release Notes Version 6.0 are published to inform *Lisp programmers about all new and
changed *Lisp features introduced with the Connection Machine System Software Version 6.0.

Intended Audience

The reader is assumed to have a working knowledge of Common Lisp, as described in Common Lisp:
The Language, and of *Lisp, as described in the current *Lisp documentation. The reader is also
assumed to have a general understanding of the Connection Machine system.

Revision Information

These release notes are new with *Lisp Version 6.0, and replace all previous release notes.

Organization of These Release Notes

1 About Version 6.0
Describes the *Lisp system, the current *Lisp documentation set, and summarizes the
changes and enhancements made to *Lisp in Version 6.0.

2 Porting Code to Version 6.0
Explains how to port *Lisp code developed in versions prior to Version 6.0, and provides
a list of obsolete *Lisp language features.

3 *Lisp and Lucid Common Lisp
Describes the Lucid Common Lisp environments needed to run *Lisp on Sun-4andVAX
front ends, and lists known Lucid-related implementation errors.

4 *Lisp Language Version 6.0
Describes language features that are new and enhanced in Version 6.0, and lists known
*Lisp language implementation errors.

5 *Lisp Interpreter Version 6.0
Lists known *Lisp interpreter restrictions.

vii

viii *Lisp Release Notes

6 *Lisp Compiler Version 6.0
Describes compiler features that are new and enhanced in Version 6.0, and lists known
*Lisp compiler implementation errors and restrictions.

7 *Lisp Simulator Version 6.0
Describes simulator features that are new and enhanced in Version 6.0, and lists known
*Lisp simulator implementation errors and restrictions.

8 *Lisp Library Version 6.0
Describes updates to library of *Lisp source code in Version 6.0.

9 *Graphics Version 6.0
Describes *Lisp interface to the eM graphic programming environment.

10 Fast Graph
Describes Fast Graph grid communication optimization package.

Related Manuals

• *Lisp Dictionary

This manual provides a complete dictionary-format listing of the functions, macros, and
global variables available in the *Lisp language. It also includes helpful reference material in
the form of a glossary of*Lisp terms and a guide to using type declarations in *Lisp. Except as
noted in these release notes, the Dictionary is the most accurate and current description of the
*Lisp language.

• *Lisp Reference Manual
Supplement to the *Lisp Reference Manual

These manuals together provide a conceptual overview of the basic features of the *Lisp
language as of Version 5.0. For detailed descriptions of operations they have been superseded
by the *Lisp Dictionary.

• *Lisp Compiler Guide

This manual describes the *Lisp compiler.

Note: The *Lisp Reference Manual, Reference Supplement, and Compiler Guide
are bound together in a volume entitled Programming in *Lisp.

• Connection Machine Parallel Instruction Set

The *Lisp Reference Manual explains how to call Paris from *Lisp. Users who wish to make
use of Paris should also refer to the Paris manual.

/

/'

(

Version 6.0, November 1990 ix

• CM User s Guide

This document, new with Version 6.0, provides helpful information for users of the
Connection Machine system, and includes a chapter devoted to the use of *Lisp and
LisplParis on the Connection Machine.

• Common Lisp: The Language, Second Edition, by Guy L. Steele Jr. Burlington, Mass.:
Digital Press, 1990.

The first edition of this book (1984) was the original definition of the Common Lisp language,
which became the de facto industry standard for Lisp. ANSI technical committee X3J13 has
been working for several years to produce an ANSI standard for Common Lisp. The second
edition of Common Lisp: The Language contains the entire text of the first edition, augmented
by extensive commentary on the changes and extensions recommended by X3J13 as of
October 1989.

Notation Conventions

The notation conventions used in these release notes are the same as those used in all current *Lisp
documentation.

Convention

boldface

italics

typewriter

Meaning

*Lisp language elements, such as keywords, operators, and function
names, when they appear embedded in text.

Parameter names and placeholders in function formats.

Code examples and code fragments.

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and correct
the problem. A code example that failed to execute, a session transcript, the record of a backtrace, or
other such information can greatly reduce the time it takes Thinking Machines to respond to the report.

To contact Thinking Machines Customer Support:

u.s. Mail:

Internet
Electronic Mail:

Usenet
Electronic Mail:

Telephone:

For Symbolics users only:

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

customer-support@think.com

ames!think!customer-support

(617) 234-4000
(617) 876-1111

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facility
for automatic reporting of Connection Machine system errors. When such an error occurs, simply press
Ctrl-M to create a report. In the mail window that appears, the To: field should be addressed as fol
lows:

To: customer-support@think.com

Please supplement the automatic report with any further pertinent information.

xi

1 About Version 6.0

The *Lisp language is a parallel extension of Common Lisp for programming the Connection
Machine@ system. Programs using *Lisp typically include both Common Lisp and *Lisp
constructs.

Version 6.0 is a major *Lisp release, and includes a number oflanguage enhancements such
as new options for several functions and compilation of virtually all operators in the *Lisp
language. *Lisp Version 6.0 also provides faster execution of *Lisp code and corrects a
number of implementation errors.

An important new feature of the *Lisp language is the elimination of the need to use the II
(bang-bang) operator. With few exceptions, functions and macros that acceptpvar arguments
will now accept scalar arguments as well, and will promote these scalars to constant pvars
automatically.

1.1 Components of *Lisp, Version 6.0

Thinking Machines Corporation's implementation of *Lisp includes:

• The *Lisp interpreter, which executes *Lisp code interpretively on the Connection
Machine system.

• The *Lisp compiler, which translates *Lisp code into compiled Lisp/Paris code for
faster execution.

• The *Lisp simulator, which executes *Lisp code on a serial front-end computer
alone, simulating the operations of the Connection Machine system.

The *Lisp interpreter and compiler can be used from within a Common Lisp environment on
any Connection Machine (CM) front end. CM front ends currently supported include the
Symbolics 3600-series Lisp machine, Sun-4 Workstations running the UNIX operating
system, and Digital Equipment Corporation VAX machines running the ULTRIX operating
system. The *Lisp simulator can be run on any machine with a Common Lisp language
environment. CM hardware is not required to run the simulator.

1

2 *Lisp Release Notes

1.2 *Lisp Documentation

The currently available documentation for *Lisp is listed below.

The following documents provide important conceptual and reference information on the
*Lisp language:

• The *Lisp Reference Manual, Version 5.0, revised October 1988

• The Supplement to the *Lisp Reference Manual, Version 5.0, October 1988

• The *Lisp Compiler Guide, Version 5.0, October 1988

• The *Lisp Dictionary, Version 5.2, February 1990

The following documents are new as of Version 6.0:

• The CM Users Guide, Version 6.0, November 1990

• The *Lisp Release Notes; Version 6.0, November 1990

The *Lisp Reference Manual and Supplement to the *Lisp Reference Manual together
provide important conceptual information on the *Lisp language. However, all reference
material in these documents has been superseded by the information contained in the *Lisp
Dictionary. Other than as noted in these release notes, the material in the *Lisp Dictionary is
the most current and correct.

The *Lisp Compiler Guide provides important information for users of the *Lisp compiler.
Users of the compiler will also want to consult the type declaration chapter in the *Lisp
Dictionary, which provides a set of guidelines for properly declaring *Lisp code.

The *Lisp Dictionary is a complete reference source for *Lisp. It includes a list of all *Lisp
operators, descriptions of important global variables, and a complete dictionary entry for
each function and macro in the *Lisp package. The *Lisp Dictionary also includes a glossary
of important terms used in *Lisp and a chapter on *Lisp pvar types and type declaration.

The Connection Machine System User s Guide, new with Version 6.0, provides helpful
information for users of the Connection Machine system, and includes a chapter devoted to
the use of *Lisp and Lisp/Paris on the Connection Machine.

Finally, these release notes document all changes to *Lisp as of Version 6.0.

/

(

Version 6.0, November 1990 3

1.3 Summary of Enhancements

The following enhancements distinguish "'Lisp Version 6.0 from previous versions.

• Automatic Promotion of Scalar Arguments to Pvars. With few exceptions,
functions and macros that accept constant pvar arguments will now accept scalar
constants as well, and will automatically promote these arguments to constant pvars.
For example, the expression

(+11 x (II 2.0) (II constant»

may now be rewritten as

(+11 x 2.0 constant)

• New Options for *Lisp Operators. New keyword arguments have been added to
the "'Lisp operators scanll and *pset, a new combiner keyword has been added to
*pset, and a new global variable has been added to allow user control of the run-time
context selection performed by the pref operator.

• New Functions. The previously internal function deallocate-geometry is now
available from the "'Lisp package, and several new functions have been added.

• Code Walker Now on by Default. The code walker portion of the "'Lisp compiler is
now on by default. It may still be disabled, if necessary; see Section 6.3.1, below.

• More Complete Compilation of *Lisp Code. The "'Lisp compiler now compiles
virtually all the "'Lisp language, when proper type declarations are provided.

• Faster Execution of *Lisp Code. "'Lisp code will in many cases execute faster,
because of improved code generation and many improvements in performance at the
Paris level. For details of these improvements, see the chapter on Paris in the CMSS
Summary for Version 6.0.

• New Version of the *Lisp Simulator. A new version of the "'Lisp simulator, F 18, is
available. This version of the simulator is fully compatible with Version 6.0 of "'Lisp.

• *Lisp Simulator Now Freely Available. As of Version 6.0, the "'Lisp simulator is
freely available for copying and modification by users. For details on where and how
to obtain a copy of the simulator, see Section 7.2 of this document.

• Additions to *Lisp Library. The "'Lisp Library now includes a set of functions for
fast data transfer between a front-end disk and the eM.

4 *Lisp Release Notes

1.4 *Lisp Software Requirements

*Lisp Version 6.0 requires Lucid Common Lisp Version 2.5 to run on VAX front ends. This is
unchanged from the requirements of *Lisp Version 5.2. (See Section 3.1 for more
information about Lucid 2.5.)

*Lisp Version 6.0 requires Lucid Common Lisp Version 3.0 to run on Sun-4 front ends. This
is unchanged from the requirements of *Lisp Version 5.2. (See Section 3.2 for more
information about Lucid 3.0.)

*Lisp Version 6.0 is supported on Symbolics 3600-series front ends under both Genera 7.2
and Genera 8.0.

1.5 *Lisp On-line Code Examples

Examples of *Lisp code are available on-line in the following directories:

/cm/starlisp/interpreter/f6000/*example*.lisp
/cm/starlisp/graphics/f6001/examples.lisp

Ask your systems administrator or applications engineer to help you locate these files at your
site.

Code examples are also available to Connection Machine Network Server users in the CMNS
archives directory.

1.6 Miscellaneous New Features

1.6.1 The cm:time Macro Now Nests

As a side effect of the new Paris timing mechanism provided in Version 6.0. calls to the timing
macro cm:tlme may now be nested. Each call to cm:time allocates a separate timer that is
guaranteed to be independent of any timers the user may have otherwise allocated. Prior to
Version 6.0. calls to cm:time could not be nested.

For more information on the uses of cm:time. and for examples of nested calls to cm:tlme.

refer to the eM User s Guide.

Version 6.0, November 1990 5

2 Porting Code to Version 6.0

*Lisp Version 6.0 requires Connection Machine System Software Version 6.0.

*Lisp source code written in previous versions of *Lisp (5.0, 5.1, and 5.2) will run under
Version 6.0 unchanged. However, *Lisp programs compiled under previous versions must
be recompiled to run under Version 6.0. That is, *Lisp programs compiled under versions
V5.O, V5.1, and V5.2 must be recompiled to run in Version 6.0.

2.1 Obsolete Language Features

An obsolete language feature is one that is no longer supported and should not be used in
*Lisp code. Features documented as obsolete are not guaranteed to work in future versions of
the *Lisp language.

Operators reported obsolete prior to Version 6.0 are listed below, along with the operations
that should be used in their place.

Obsolete Qperator(s):

dsf-v+lI, dsf-v-II, dsf-v*1I

sf-v+lI, sf-v-II, sf-v*1I

sf-dot-productll

pref-grid

pref-grldll

pref-grid-relativell

*pset-grid

*pset-grid-relative

scan-gridll

(setf (pref ... »
(setf (pref!l .•. »
wlth-*Iisp-from-paris

with-paris-from-*Iisp

Replaced by:

v+lI, v-II, v*1I

v+lI, v-II, v*1I

dot-productll

pref with grid

prefll with gridll

newsll, prefll

*pset with gridll

*news, *pset

scanll with :dlmenslon keyword

(*setf (pref ••. »
(*setf (prefll ... » or *pset

No longer needed

No longer needed

6 *Lisp Release Notes

As of Version 6.0, the following operators are also obsolete:

Obsolete Qperator(s):

dsf-cross-productll

dsf-vector-normalll

dsf-vscale-to-unit-vectorll

sf-cross-productll

sf-v+-constantll

sf-v--constantll

sf-v*-constantll

sf-v/-constantll

sf-vabsll

sf-vabs-squaredll

sf-vector-normalll

sf-vscale-to-unit-vectorll

Replaced by:

cross-productll

vector-normalll

vscale-to-unit-vectorll

cross-productll

v+scalarll

v-scalarll

v*scalarll

v/scalarll

vabsll

vabs-squaredll

vector-normalll

vscale-to-unlt-vectorll

These functions were introduced to provide optimized interpreter performance for
floating-point vector operations. The *Lisp compiler now compiles the corresponding
general vector operators. It is recommended that the general vector functions be used rather
than the above interpreted operations.

(

Version 6.0, November 1990 7

3 *Lisp and Lucid Common Lisp

*Lisp requires different versions of Lucid Common Lisp on VAX and on Sun-4 front ends.
These version requirements apply equally to the *Lisp interpreter and compiler. *Lisp
programmers are strongly advised to obtain Lucid Common Lisp documentation appropriate
to their front-end environment.

*Lisp Version 6.0 on a VAX front end requires Lucid Common Lisp 2.5.
*Lisp Version 6.0 on a Sun-4 front end requires Lucid Common Lisp 3.0.

3.1 Lucid Common Lisp Version 2.5 on VAX. Front Ends

The release notes for Lucid Common Lisp Version 2.5 completely detail how Version 2.5
differs from Version 2.1. The Lucid changes between these versions that most affect *Lisp
programs are noted below.

(1) Use of the change-memory-management function discouraged

The change-memory-management function is not recommended by Lucid for
Version 2.5. Only users with programs that contain large amounts of code or code
that requires heavy garbage collection need to use this function. Ask your site
manager, or contact Thinking Machines Corporation customer support, for
assistance in determining the proper arguments to supply to this function.

(2) Foreign function interface changed

The Lucid foreign function interface differs between Version 2.1 and Version 2.5.
Consult the Lucid Common Lisp Version 2.5 documentation for details.

(3) Lucid ephemeral garbage collector

In prior Lucid releases, garbage collection occurred frequently and took significant
amounts of time. Lucid Common Lisp Version 2.5 includes an ephemeral garbage
collector. Consequently, full garbage collection is neither as frequent nor as
noticeable.

8 *Lisp Release Notes

3.2 Lucid Common Lisp Version 3.0 on Sun-4 Front Ends

Lucid Common Lisp Version 3.0 is significantly different from Lucid 2.1. The Lucid
changes that most affect *Lisp programs are noted below.

(1) Name changes

The naming convention for certain Lucid functions differs betWeen Version 2.1 and
Version 3.0. Functions whose names began with SYS:: in Lucid Version 2.1 begin
with LCL:: in Version 3.0. For example, (SYS::quit) is now (LCL::quit).

(2) Use of the change-memory-management function discouraged

The change-memory-management function should not be necessary for most *Lisp
applications. Only users with programs that contain large amounts of code or code
that requires heavy garbage collection need to use this function. If this function is
used, it is recommended that the following form be executed immediately after
starting up a *Lisp environment:

(lcl:change-memory-management :expand-reserved 50
: expand-p t)

For extremely large programs, the expansion value of 50 can be replaced by 75 or
100. If running *Lisp code causes excessive garbage collection thereafter, the
following form may help:

(lcl:change-memory-management :expand 50 :expand-p t)

Compilation of large amounts of code can also cause heavy garbage collection.
Compiling with the Lucid development compiler rather than the Lucid production
compiler reduces the amount of garbage collection and the compilation time, at the
expense of losing some front end performance.

The output of the Lisp expression (room t) includes information about the current
memory management settings.

(3) Two Lucid compiler modes: Production and development

Lucid Common Lisp Version 3.0 supports tWo modes of compiling: production and
development. The production compiler is an optimizing compiler; it compiles more
slowly but produces more efficient code than the development compiler. The
development compiler is a non-optimizing compiler that compiles very rapidly. The
development compiler always uses full Lucid safety checking.

(

Version 6.0, November 1990 9

To switch easily between the Lucid compiler production and development modes,
place the following function defInitions in your lisp-inlt.lisp fIle:

;; Put the Lucid 3.0 compiler in production mode.

(defun prod ()
(if (find-package '*lisp)

(s tar li sp-prod)
(proclaim ' (optimize (compilation-speed 0)

(safety 1) (speed 3»»)

(defun starlisp-prod ()
(eval (read-from-string

"(funcall *LISP-I::*OLD-PROCLAIM-FUNCTION*
'(optimize (compilation-speed 0)

(safety 1) (speed 3») ")))

;; Put the Lucid 3.0 compiler in development mode.

(defun dev ()
(if (find-package '*lisp)

(starlisp-dev)
(proclaim ' (optimize (compilation-speed 3)

(safety 3) (speed 2»»)

(defun starlisp-dev ()
(eval (read-from-string

"(funcall *LISP-I::*OLD-PROCLAIM-FUNCTION*
, (optimize (compilation-speed 3)

(safety 3) (speed 2»)"»)

The settings used in these functions are taken from the Lucid 3.0 documentation.

When developing code interactively, make the development compiler the default by
placing the expression (dev) in your lisp-init.lisp fIle, immediately after these
function defInitions. Using the development compiler can signifIcantly speed up the
compilation process.

To compile developed code for production runs, enable the production compiler
mode by typing (prod) at top level.

10 *Lisp Release Notes

NOTE

The Lucid 3.0 compiler is completely independent of the *Lisp
compiler with regard to options such as safety. The *Lisp compiler
has its own, independent, safety setting.

The *Lisp compiler translates *Lisp code into Common Lisp code
with calls to Paris. Then the Lucid Common Lisp compiler
translates the Lisp code generated by the *Lisp compiler into native
machine instructions.

See the *Lisp Compiler Guide for more information about the *Lisp
compiler. Refer to Lucid 3.0 documentation for more information
about the Lucid Common Lisp compiler and its production and
development modes.

(4) Foreign function interface changed

The Lucid foreign function interface differs between Version 2.1 and Version 3.0.
Consult the Lucid 3.0 Advanced User s Guide for details.

(5) Lucid ephemeral garbage collector

In previous Lucid releases, garbage collection occurred frequently and took
significant amounts of time. Lucid Common Lisp Version 3.0 includes an ephemeral
garbage collector. Consequently, full garbage collection is neither as frequent nor as
noticeable.

3.3 Lucid-related Implementation Errors and Restrictions

Most previously reported Lucid-related implementation errors have been corrected for the
release of*Lisp Version 6.0. The known outstanding bugs and restrictions are reported again
in these release notes. All past issues of Programming in *Lisp In Parallel and all previous
*Lisp Release Notes may therefore be discarded.

(

Version 6.0, November 1990 11

3.3.1 Known Errors Corrected

The following Lucid-related implementation error reported in In Parallel Vol. 3, No. I,
March 1990, is fixed in *Lisp Version 6.0:

lmplicit-return-pvar-p-hangs

3.3.2 Known Errors Still Open

All known Lucid-related implementation restrictions for Version 6.0 *Lisp are reported here.
If new bugs are discovered, they will be reported during the coming months in the In Parallel
software bulletin, VoL 4.

10 load-n-defstruct-wrong-waming

Environment

DFS, *Lisp Version 5.1 and 5.2; Sun-4 front end

Description

Performing load-n of a flle with a defstruct form generates a spurious warning
message.

Reproduce By

If the flle "/mydir/load-n-warning-bug" contains the code

(in-package '*lisp)
(defstruct pfoo-l

a
b)

then, in a Lucid Lisp environment on a Sun-4,

(dfs:load-n "/rnydir/load-n-warning-bug" :recornpile t)

produces the following messages when compiled:

12 *Lisp Release Notes

, , , Compiling /mydir/load-n-warning-bug.lisp
, , ,
, , ,
, , ,

Reading source file "/mydir/load-n-warning-bug.lisp"
Writing binary file "/mydir/load-n-warning-bug.sbin3"
Loading binary file /mydir/load-n-warning-bug.sbin3

WARNING: the definition of PFOO-l by DEFSTRUCT in the file
#P"/mydir/load-n...,warning-bug.lisp"
is being overridden by DEFSTRUCT in the file
"/mydir/load-n-warning-bug.lisp".

WARNING: PFOO-l is multiply defined in the file
/mydir/load-n-warning-bug.lisp

#P"/tmp_mnt/am/krnl/datascope/load-n-warning-bug.sbin3"

Workaround

Ignore the duplicate error message.

Status

Open.

10 lucid-floating-point-compiler-bug

Environment

Lucid Common Lisp, Version 3.0

Description

Uncorrected bug in Lucid production compiler causes lexical scoping problems in
code that includes floating-point variables.

Reproduce By

(proclaim' (optimize (compilation-speed 0»)

(

."--.

./
\

Version 6.0, November 1990

(defvar global 0.0)
(defvar anything 0.0)

(compile (defun bug ()
(let «x 0.0))

(declare (type single-float x))
(setq x (let ((local global)

(anything 0.0))
(print (progl (identity 9.0)

(print local)))))
(format t "-%VALUE OF X (should be 9.0)=-s-%-s"

x (if (equal x 9.0) 'OKAY 'BUG))
(values))))

(bug)
0.0
9.0
VALUE OF X (should be 9.0)=0.0
BUG

Workaround

Use the Lucid development compiler :

(proclaim '(optimize (compilation-speed 3)))

13

For example, after recompiling the definition of bug with the Lucid development
compiler, the following output is displayed:

(bug)
0.0
9.0
VALUE OF X (should be 9.0)=9.0
OKAY

Not declaring the affected variable (x in the above example) to be a floating-point
value is another workaround.

Status

Open.

14 *Lisp Release Notes
&"w't,'W$\i1;*l;_t.M%"~%%\wt'[$$.."%W.wrw~ ~w: .. llWi*i.IWlm*:t~lm:r4"w]1@'~*,%!ii'~lW'*lllWl~Wm:"$;l~@!§@l!t'i:~'WliWmi*ifu'1liWlWW%.K.:.'J~:X

ID lucid-byte-specifier-size-limit

Environment

Lucid Common Lisp, Versions 2.5 and 3.0

Description

Lucid Common Lisp imposes a limit on the size of byte-specifier data objects. If
either argument to the byte operation is greater than 4095, an error is signalled.

Reproduce By

> (byte 4095 0)
t. (BYTE 4095. 0.)

> (byte 4096 0)
»Error: The byte specified for BYTE, [size=4096,
position=O], is not within the range of byte-specifiers.
BYTE:

Required arg 0 (SIZE): 4096
Required arg 1 (POSITION): 0

:C 0: Supply new size and position arguments.
:A 1: Abort to Lisp Top Level

Workaround

Use the operations load-byte and deposit-byte, which permit independent
specification of byte size and position arguments.

Status

Open.

/
(

!
\

/

"-.

(

Version 6.0, November 1990 15

4 *Lisp Language Version 6.0

This section describes the following changes and additions made to the *Lisp language in
Version 6.0:

• Automatic promotion of scalar arguments by *Lisp functions

• New options for several *Lisp operators

• Several new functions added to the *Lisp package

4.1 Automatic Promotion of Scalar Arguments

Previously, in order to supply a constant pvar argument to a *Lisp operator, it was necessary
to use the II operator, as in the following function call:

(+!! pvar-x (!! 3) (!! constant»

As of Version 6.0 of*Lisp, virtually all the functions and macros in *Lisp that accept constant
pvars as arguments will now accept scalar constants as well, and will automatically convert
those scalars into constant pvars, as ifvia a call to II. SO, for example, the above function call
could be rewritten as:

(+!! pvar-x 3 constant)

This feature is available within function defInitions, as well. For example,

(defun foo (x)
(declare (type single-float-pvar x»
(+!! x (!! 2.0»)

may be rewritten as

(defun foo (x)
(declare (type single-float-pvar x»
(+!! x 2.0»

Both the *Lisp interpreter and the *Lisp compiler implement this new behavior. Version FI8
of the *Lisp simulator, distributed with Version 6.0 of*Lisp, also includes this feature.

16 *Lisp Release Notes

Scalar promotion is enabled by default. It may be disabled in the interpreter, in the compiler,
and also in the simulator, by modification of the appropriate global variable.

To disable conversion of scalar arguments:

• in the *Lisp interpreter, set the variable *lisp-I::*convert-scalar-args-p* to nil

• in the *Lisp compiler, set the variable slc::*promote-scalars* to nil

• in the *Lisp simulator, set the variable *lisp-I::*convert-scalar-args-p* to nil

A pair of utility functions is provided that enable/disable the scalar promotion feature:

• to enable scalar promotion, call the function (*lisp-i::enable-scalar-promotion)

• to disable scalar promotion, call the function (*lisp-i::disable-scalar-promotion)

A small number of *Lisp operators that accept pvars as arguments do not automatically
promote scalars to pvars. Most of these operators do not accept temporary constant pvars as
arguments, and therefore cannot accept scalar constants as arguments. A few operators, in
particular *apply, and *funcall, accept scalar constants as arguments and therefore cannot
unambiguously promote scalars to pvars.

The following operators do not automatically promote scalars to pvars.

II aliasll *apply
array-to-pvar array-to-pvar-grid create-segment-setll
*deallocate describe-pvar *funcall
*nreverse *processorwise pvar-exponent-Iength
pvar-Iength pvar-Iocation pvar-mantissa-Iength
pvar-name pvar-plist pvar-type
pvar-vp-set pvarp *sideways-array
sldeways-array-p *slicewise typepll

User-defined functions may also require the use of II to supply constant pvar arguments, in
particular functions that pass their arguments to a *Lisp operator that does not perform scalar
promotion.

Also, if an argument to a compiled user-defined function is declared to be a pvar, scalar
values cannot be provided for that argument. The II operator must be used in this case.

~

Version 6.0, November 1990

For example,

(defun foo (x y)
(declare (type (field-pvar 32) x y»
(+!!xy»

(foo 3 4)

17

will fail because the *Lisp compiler generates Paris code that assumes x and y are pvars and
(at other than zero safety) emits error-checking code to determine whether x and y are really
field pvars.

One other limitation is that the *18t form

(*let «x nil» ...)

will not perform scalar promotion on the nil initialization form, because supplying nil as an
initialization form indicates that the pvar x should not be initialized. The proper way to create
a local pvar with nil in every processor is:

(*let «x nil!!» ...)

4.2 New Options for *Lisp Operators

This section describes the new options for *Lisp operators provided in Version 6.0. These
include:

• New keyword arguments for the *Lisp operators scanll and *pset

• A new combiner keyword added to *pset

• A global variable to allow control of run-time context selection performed by pref

4.2.1 New :segment-mode Keyword Argument for scanll

A new keyword argument, :segment-mode, has been added to scanll. Its value can be either
:start, :segment, or nil. This argument controls whether the :segment-pvar argument is
evaluated in all processors or only within the currently selected set.

If :segment-pvar is provided, and :segment-mode is given the value :segment, then the
segment pvar for the scanll operation is interpreted in all processors without respect to the

18 *Lisp Release Notes

currently selected set. If :segment-mode is given the value :start, the segment pvar is
examined only in those processors that are currently active.

This feature allows one to divide the virtual processors into segments via a segment pvar, and
then perform scans on those segments without worrying about whether the processors
containing the segment bits in the segment pvar are actually in the currently selected set.

The :segment-mode keyword corresponds directly to the smode argument of the Paris
cm:scan-with-... operators. See the discussion of the smode argument on pp. 35-38 of the
Paris Reference Manual.

The :segment-mode argument defaults to :start if a :segment-pvar argument is provided.
This default behavior is consistent with the semantics of scan!! in previous releases.

If no :segment-pvar argument is provided, :segment-mode defaults to nil, and has no effect
on the scanll operation.

The difference between the :start and :segment values for the :segment-mode argument is
illustrated by the following function:

(defun difference-between-segment-and-start ()
(*let «source (self-address!!» dest segment)

(declare (type (signed-pvar *current-send-address-length*)
source dest»

(declare (type boolean-pvar segment»
(*set segment (evenp!! (self-address!!»)
(*set dest (!! -1»
(*when (not!! (=!! (!! 2) (mod!! (self-address!!) (!! 4»»

(*set dest
(scan!! source ,+!! :segment-pvar segment

:segment-mode :start»
(ppp dest :end 4)
(*all (*set dest (!! -1»)
(*set dest

(scan!! source '+!! :segment-pvar segment
:segment-mode :segment»

(ppp dest :end 4»»

A sample call to this function looks like:

(difference-between-segment-and-start)
o 1 -1 4
o 1 -1 3

(

Version 6.0, November 1990 19

In the first scan, because processor 2 (counting from 0) is not in the currently selected set, the
fact that there is a t in that processor in the segment pvar is ignored, and the scan segment
extends over processors 0, 1,2 and 3. (processor 2, being deselected, does not receive a
value). Processor 3 receives the sum of the values 0,1 and 3, i.e., 4.

In the second scan, with :segment-mode :segment, even though processor 2 is not enabled,
the fact that the segment pvar has a t value within it is recognized, and the first four processors
are broken into two scan segments, 0, 1 and 2,3. Processor 3 only receives the sum of the value
in processor 3 now (because processor 2 is disabled).

4.2.2 New :combine-with-dest Keyword Argument for *pset

A new keyword argument, :combine-with-dest, has been added to ·pset. If provided, it
specifies that the values already existing in the destination pvar are combined with the values
being sent from the source processors. Before Version 6.0, the only behavior possible was to
overwrite the values in the destination processors.

When :combin...wlth-dest is nil (the default), the source values and dest values are not
combined, with the result that source values simply overwrite destination values in each
processor. When :comblne-with-dest is t, the source and dest values are summed.

The following function demonstrates this feature:

(defun show-combine-with-dest ()
(*let (source dest)

(declare (type (field-pvar 32) source dest»
(*set source (self-address!!»
(*set dest (self-address!!»
(*pset :add source dest (self-address!!)

:combine-with-dest nil)
(ppp dest :end 4)
(*set dest (self-address!!»
(*pset :add source dest (self-address!!)

:combine-with-dest t)
(ppp dest :end 4»)

A sample call to this function looks like:

(show-combine-with-dest)
012 3
024 6

20 *Lisp Release Notes

4.2.3 New :queue Combiner Argument for *pset

A new combine-method argument, :queue, has been added to *pset. The :queue combiner
specifies that *Lisp should use the Paris cm:send-to-queue32-11 instruction, which queues
multiple values arriving at a single destination processor into an array. The first element of
the array stores the number of values that have arrived at that processor.

The simplest way to think of using the :queue combiner is as a queue-structure *defstruct,

such as the following:

(defparameter float-queue-length 6)

(*defstruct float-queue
(count 0 :type (unsigned-byte 32»
(vector (make-array 6 :element-type single-float)

:type (vector single-float 6»)

(*proclaim '(type float-queue-pvar queue»

(*defvar queue)

A simple function that initializes this queue structure and uses the :queue combiner is:

(defun queue-example ()
(*setf (float-queue-count!! queue) (!! 0»
(*setf (float-queue-vector!! queue)

(make-array!! 6 :initial-element (!! -1.0)
:element-type 'single-float-pvar»

(*when «!! (self-address!!) (!! 6»
(compiler-let ((*compilep* nil»

(*pset :queue (float!! (self-address!!» queue
(random!! (!! 6»»)

(ppp queue : end 6»

Note that the *Lisp compiler does not recognize the :queue argument in Version 6.0, and thus
the compiler must be disabled around the *pset form to prevent warning messages from being
generated.

Version 6.0, November 1990 21

The output from a call to this function might be:

(queue-example)

*S(FLOAT-QUEUE : COUNT 1 : VECTOR *(2.0 0.0 0.0 0.0 0.0 0.0))
*S(FLOAT-QUEUE : COUNT 2 : VECTOR *(0.0 5.0 0.0 0.0 0.0 0.0))
*S(FLOAT-QUEUE : COUNT 1 : VECTOR * (1. 0 0.0 0.0 0.0 0.0 0.0))
*S(FLOAT-QUEUE : COUNT 0 : VECTOR *(0.0 0.0 0.0 0.0 0.0 0.0))
*S(FLOAT-QUEUE : COUNT 0 : VECTOR *(0.0 0.0 0.0 0.0 0.0 0.0))
*S(FLOAT-QUEUE : COUNT 2 : VECTOR *(4.0 3.0 0.0 0.0 0.0 0.0))

Ifmore values are received in a destination processor than can be stored in the array, arbitrary
values in excess will be discarded. In this case the count value will reflect the total number of
values received, regardless of whether they were discarded or not.

The :queue combiner has the restriction that the destination-pvar argument must have a
length of at least 64 bits; 32 bits for the count, and 32 bits for at least one element. The length
must also be a multiple of32 bits. The source-pvar argument must be representable in 32 bits.

4.2.4 Global Variable Control of Run-time Context of pref Function

Prior to Version 5.0 of*Lisp, the pref operator evaluated its pvar-expression argument in all
active processors, both in the interpreter and when compiled. In Version 5.0 of *Lisp, the
interpreter was modified so that prefwould evaluate its pvar-expression argument only in the
single processor selected by the send-address argument. However, the compiler was not
modified, so compiled calls to pref would still evaluate pvar-expression in the active
processors.

In Version 6.0, the interpreted version ofprefhas been modified so that it again evaluates its
pvar-expression argument in all active processors, conforming to the correct semantics of
the compiled version. However, for those users whose code depends on the Version 5.0
semantics of pref, a global variable, *lIsp-i:*pref-subselects-processors*, has been added to
the interpreter that allows run-time selection of the context in which pref evaluates its
pvar-expression argument.

If *lisp-i:*pref-subselects-processors* is set to nil, the default, then pref evaluates its
pvar-expression argument in all active processors, regardless of the value of the
send-address argument.

If *lIsp-i:*pref-subselects-processors* is set to t, then pref evaluates its pvar-expression
argument with only the single processor specified by send-address selected.

22 *Lisp Release Notes

4.3 New Functions in *Lisp Package

This section describes functions that have been added to the *Lisp package in Version 6.0.

4.3.1 New Vector Pvar Operators

The following vector pvar operations have been added to both the interpreter/compiler and
the simulator:

v+scalarll v-scalarll v*scalarll v/scalarll

vector-normalll

These operations are general versions of the following vector pvar functions, which are
obsolete as of Version 6.0:

sf-v+-constant!1

sf-v/-constantII

dsf-v+-constantll

dsf-v/-constantII

sf-v--constantI I

sf-vector-normaIII

dsf-v--constantll

dsf-vector-normalll

sf-v*-constantII

dsf-v*-constantll

4.3.2 Internal deallocate-geometry Function Now External

The previously internal function deallocate-geometry is now accessible from the *Lisp
package.

4.3.3 New *Lisp Dictionary Pages

Dictionary entries for the above functions are included here.

These pages may be added to the *Lisp Dictionary as follows:

• The deallocate-geometry entry should by inserted between pages 336 and 337.

• The v{+-*I}scalarll entry should be inserted between pages 1026 and 1027.

• The vector-normalll entry should be inserted between pages 996 and 997.

* Lisp Dictionary deallocate-geometry

deallocate-geometry [Function]

Deallocates an existing geometry object.

Arguments---

deallocate;leometry geometry

geometry Geometry object. Geometry to be deallocated.

Returned Value ---------------------

nil Evaluated for side effect.

Side Effects ----------------------

The geometry specified by geometry is deallocated.

Description ---

This function is new as of *Lisp Version 6.0.

The geometry specified by geometry must be a geometry object, as created by the *Lisp
operator create;leometry. The specified geometry is deallocated.

Examples--

(setq my-geo (create-geometry :dimensions ' (32 16»)
(deallocate-geometry my-geo)

Notes--

It is an error to delete a geometry that is currently associated with an active VP set.

Version 6.0, November 1990 336a

,/

(

*Lisp Dictio.nary

v+scalarll, v-scalarll
v*scalarll, v/scalarll
Perform an elementwise arithmetic operation on a vector pvar.

v{+-*I}scalarll

[Function]

Arguments--

v+scalarll vector-pvar scalar-7'var

v-scalarll vector-pvar scalar-7'var

v*scalarll vector-pvar scalar-pvar

v/scalarll vector-pvar scalar-pvar

vector-pvar

scalar-pvar

Vector pvar. Pvar on which elementwise operation is performed.

Non-aggregate pvar. Value by which each element of vector-pvar
is modified.

Returned Value -----------------------

vector-pvar Temporaryvectorpvar. Copy of vector-7'var in which each element
has been modified by the value of scalar-pvar.

Side Effects ----------------------

The returned pvar is allocated on the stack.

Version 6.0, November 1990 1026a

v{+-*I}scalarll *Lisp Dictionary

Description -----------------------

These functions are new as of *Lisp Version 6.0.

In each processor, these functions perform an elementwise arithmetic operation on the
vector in vector-pvar, as follows:

• v+scalarll adds the value of scalar-pvar to each element of vector-pvar.

• v-scalarll subtracts the value of scalar-pvar from each element of vector-pvar.

• v*scalarll multiplies each element of vector-pvar by the value of scalar-pvar.

• v/scalarll divides each element of vector-pvar by the value of scalar-pvar.

Examples

(v+scalar! ! (! ! #(1 2 3)) (! ! 3» <=> (! ! #(4 5 6»
(v-scalar! ! (! ! #(4 5 6» (! ! 3» <=> (! ! #(1 2 3»
(v* scalar! ! (! ! #(1 2 3» (! ! 3» <=> (! ! #(3 6 9»
(v/scalar! ! (! ! #(3 6 9» (! ! 3» <=> (! ! # (1. 0 2.0 3.0»

Notes-------~------------------

These functions are generalized versions of the now obsolete single-float vector pvar
operations sf-v+-constant!l, sf-v-constantll, sf-v*-constantll, and sf-v/-constantll.

The term "scalar" is used rather than "constant" for accuracy, as the scalar-pvar
argument to anyone of these operations is not constrained to contain a constant value in
all processors.

References-------------------------

These functions are part of a group of related vector pvar operators, listed below:

1026b

cross-productll dot-productll

v+1I
v+scalarll

vabsll

vscalell

v-II

v-scalarll

vabs-squaredII

vscale-to-unit-vectorll

v*1I
v*scalarll

vector-normalll

*vset-components

v/scalarll

Version 6.0, November 1990

\

"

*Lisp Dictionary vector-normalll

vector-normal!! [Function]

Calculates in parallel the normalized cross-product of the supplied vector pvars.

Arguments------------------------------------

vector-normal/l vector-pvar-l vector-pvar-2

vector-pvar-l, vector-pvar-2
Vector pvars. Pvars for which normalized cross-product is
calculated.

Returned Value -----------------------

vector-normal-pvar
Temporary vector pvar. In each active processor, contains the
normalized cross-product of the corresponding values of
vector-pvarl and vector-pvar2.

Side Effects --------------------

The returned pvar is allocated on the stack.

Description -------------------------

This function is new as of *Lisp Version 6.0.

This function calculates in parallel the normalized cross-product of two single-float
vector pvars, and is equivalent to

(vscale-to-unit-vector!!
(cross-product!! vector-pvarl vector-pvar2»

Version 6.0, November 1990 996a

vector-normal I I *Lisp Dictionary

Examples---

(vector-normal! !
(!! * (1 0 0)) (!! * (0 1 0)) <=> (!! * (0 . 0 O. 0 1. 0))

(vector-normal! !
(!! * (0 1 0)) (!! * (1 0 0)) <=> (!! * (0 . 0 O. 0 -1. 0))

Notes---

Usage note:

The orientation of the normalized cross-product produced in each processor
depends on the order of the vector-pvar arguments. Specifically,

(*set vI (vector-normal!! vector-pvar1 vector-pvar2))
(*set v2 (vector-normal!! vector-pvar2 vector-pvar1))

vI <=> (v*scalar!! v2 (!! -1))

that is, v1 is the vector negative of v2.

References---

This function is one of a number of related vector pvar operators, listed below:
cross-product" dot-productll

v+!I v-II v*1I

v+scalarll v-scalarll v*scalarll v/scalarll

vabsll vabs-squaredll vector-normalll

vscalell vscale-to-unit-vectorll *vset-components

/

996b Version 6.0, November 1990

Version 6.0, November 1990 29

4.4 *Lisp Language Restrictions Update

Most previously reported *Lisp language implementation errors and restrictions have been
corrected for the release of*Lisp Version 6.0. The known outstanding bugs and restrictions
are reported again in these release notes. All past issues of Programming in *Lisp In Parallel
and all previous *Lisp Release Notes may therefore be discarded.

4.4.1 Known Errors Corrected

The following implementation errors reported in In Paral/eIVol. 3, No.1, March 1990, are
fixed in *Lisp Version 6.0:

allocate-vp-set-processors-bug

def-vp-set-with-eval-when

news-direction-bug

no-heap-or-stack-pvar-symbol-recycllng

ppp-address-obJect-grid-bug

ppp-css-bug

ppp-ordering-bug

sf-v-interpreted-bug

*defvar-error-on-locked-package-symbol

The following previously unreported implementation errors are fixed in *Lisp Version 6.0:

10 pref-send-address-too-Iarge-bug

Environment

*Lisp, Version 5.2

Description

When prefl! is called with a send-address-pvar argument that has been declared to
be of a size larger than the send-address length of the destination VP set, an error is
signalled if any values in the pvar are larger than the send-address length, even if
those values are deselected by the currently selected set.

30 *Lisp Release Notes

Reproduce By

(def-vp-set creatures '(16384)
:*defvars «active (evenp!! (send-address! !»

nil boolean-pvar»)

(*with-vp-set creatures
(*when active?

(*let «address (!! 3»)
(declare (type (unsigned-byte-pvar 15) address»
(pref!! (!! 1) address :vp-set creatures»»

»Error: In interpreted *PSET.
The cube address or source expression in *pset is too big.
There are 16384 selected processors, 16384 processors have
an error. A pvar of type (UNSIGNED-BYTE 15) named ADDRESS
caused the error.

Workaround

Declare the send-address-pvar argument to be of the same size as the send-address
length of the destination VP set, or initialize the address argument so that no value of
the pvar (selected or deselected) is illegal for the destination VP set. For example:

(*with-vp-set creatures
(*when active?

Status

(*let (address)
(declare (type (unsigned-byte-pvar 15) address»
(*all (*set address (!! 0»)
(*set address (!! 3»
(pref!! (!! 1) address :vp-set creatures»»

Patched in 5.2; fixed in 6.0.

Version 6.0, November 1990 31

10 *defstruct-erroneous-slot-name-warnlng-bug

Environment

*Lisp, Version 5.2

Description

When *defstruct encounters a slot named p, it signals a warning that this slot's
accessor function's name will conflict with the name of the automatically generated
structure predicate, even when the :conCHlame option has been set to a different
symbol than the structure's name.

Reproduce By

(*defstruct (foo (:conc-name bar-»
(p 0 :type fixnum»

, , ,
, , ,
; ; ;

Warning: I'll bet you really don't want a slot named
'P', because this will conflict with the name of the
predicate function, FOO-P.

Workaround

Use some other slot name than p.

Status

Patched in 5.2; fIxed in 6.0.

4.4.2 Known Errors and Restrictions

All known language restrictions for Version 6.0 *Lisp operation are reported here in
alphabetical order by bug report ID. If new bugs are discovered, they will be reported during
the coming months in the In Parallel software bulletin, Vol. 4.

32 *Lisp Release Notes

10 star-defstruct-redeflnition-bug

Environment

*Lisp, Version 5.2,6.0; any front end; any eM configuration.

Description

Redefming a parallel structure results in a *Lisp compiler error in one particular
case.

Suppose a parallel structure named pi ugh is defined (using *defstruct) with two slots,
a and b. Further suppose that plugh is then redefmed without the b slot. Now, if an
independent function that happens to be called plugh-bll is also defined, then an
attempt to *compile a call to plugh-bll causes the *Lisp compiler to generate internal
inconsistency errors.

Reproduce By

(*defstruct plugh (a nil :type boolean)
(b nil :type boolean»

(*defstruct plugh (a nil :type boolean»
(defun plugh-b!! (x) (1+!! x»
(defun bug (dest source)

(*set (the boolean-pvar dest)
(plugh-b!! (the (pvar plugh) source»»

(compile 'bug)
Warning (not associated with any definition) :

Internal inconsistency, assumption failed, while compiling
(the (pvar plugh) source). Trying to compile a structure
accessor, but I don't know what type it is [•..]

Workaround

Set the property list of the function name to nil:

(setf (symbol-plist 'plugh-b!!) nil)

Status

Open.

(

Version 6.0, November 1990 33

5 *Lisp Interpreter Version 6.0

The *Lisp interpreter runs on top of either Lucid Common Lisp or Symbolics Common Lisp
and executes *Lisp code on the Connection Machine in an interpretive manner.

5.1 Interpreter Restrictions

The following restrictions, which existed in previous versions, still apply in Version 6.0:

• The Common Lisp functions proclaim and setf are still redefmed by *Lisp. This has
caused problems in a *Lisp environment on a Symbolics Lisp machine with
compilation of Lisp flIes that are independent of *Lisp and that have been
subsequently loaded into an environment without *Lisp. In a future release,
proclaim and setf may no longer be redefmed by *Lisp and this problem will no
longer exist.

• Several functions that take integer arguments are restricted in that the arguments
may not exceed the length of cm:*maximum-integer-Iength*. These functions are
Isqrtll, floatll, *11, floor!!, truncatell, ceilingll, roundll, modI!, and reml!. This problem
occurs in both the interpreter and the compiler; it reflects Paris restrictions.

• For segmented scans, as for non-segmented scans, the floating-point numbers
scanned are normalized with respect to the maximum value in the entire pvar, across
all segments. They are not normalized with respect to the maximum value within a
segment only. As a result, the values for scans computed for certain
segments-those with values of a much smaller order of magnitude than the
maximum-may be lost entirely. Only segments containing values of the same
order of magnitude as the maximum value across all segments will have meaningful
results.

34 *Lisp Release Notes

6 *Lisp Compiler Version 6.0

The *Lisp compiler is compatible with and executes as part of the Common Lisp compiler.
VIrtually all *Lisp operations can be compiled when properly declared; those that cannot be
compiled run interpreted. For *Lisp operations that are compiled, the *Lisp compiler
generates compiled LisplParis code that runs more efficiently than interpreted *Lisp.

NOTE: Here, as in other *Lisp documentation, the verb ''to *compile" is used to mean "to
compile with the *Lisp compiler." In this way, compilation by the *Lisp compiler (x is
*compiled) is distinguished from compilation by the Common Lisp compiler (x is compiled).

This section lists enhancements, corrections, and restrictions to the compiler in Version 6.0.

6.1 *Lisp Compiler Enhancements

The following enhancements distinguish Version 6.0 of the compiler from previous versions:

• More Complete Compilation of *Lisp Code. The *Lisp compiler now compiles
virtually all the functions and macros of the *Lisp language when proper pvar type
declarations are provided.

• Faster Execution of *Lisp Code. *Lisp code should execute faster, because of
improved code generation and many improvements in performance at the Paris
level. For details of these improvements, see the chapter on Paris in the CMSS
Summary for Version 6.0.

6.2 *Lisp Compiler Limitations

This section describes the current limitations on the use of the *Lisp compiler to *compile
*Lisp code.

6.2.1 *Lisp Operations That Don't *Compile

The following *Lisp operations do not *compile as of Version 6.0. (This list supersedes all
such lists included in the *Lisp Release Notes for previous versions.)

(

Version 6.0, November 1990 35

The following *Lisp operations do not compile as yet:

address-nth II address-plus-nthll address-rankll

Parallel sequence operations do not *compile. These operations are listed below. The one
exception is the reducell operation, which does *compile in limited cases (see Section 6.2.3).

copy-seqll countll count-iflI
count-if-notll everyll *fill
findll find-lfil find-if-notll
length II notanyll noteveryll
*nreverse nsubstitutell nsubstitute-ifll
nsubstitute-if-notll position II position-ifll
position-if-notll somell subseqll
substitutell substltute-Ifll substitute-if-not!!

The following segment set scanning operations do not *compile:

create-segment-setll segment-set-scanll

6.2.2 Obsolete *Lisp Operations

The following functions were introduced to provide optimized interpreter performance for
floating-point vector operations. The *Lisp compiler now *compiles the corresponding
general vector operators. As of Version 6.0, the following operators are therefore obsolete:

dsf-cross-productll
dsf-vscale-to-unit-vectorll
sf-v+-constantll
sf-v*-constantll
sf-vabsll
sf-vector-normalll

6.2.3 *Lisp Compiler Restrictions

dsf-vector-normall !
sf-cross-productll
sf-v-constantll
sf-v/-constantll
sf-vabs-squaredll
sf-vscale-to-unit-vectorll

The current version of the *Lisp compiler will *compile virtually all *Lisp operations, when
proper type declarations are provided. Anything that is not *compiled is handled by the
interpreter. If the Warning Level compiler option is set to High, the *Lisp compiler prints a
warning whenever an operation is not *compiled.

36 *Lisp Release Notes

The following *Lisp operations *compile with specific restrictions.

ash II [Function]

This operation will not compile if the bit-length of the count-pvar argument is not explicitly
declared, because the amount of space allocated by the compiler for an ashll operation
depends on the bit-length of this argument.

If the count-pvar argument is declared to be of a data type whose length is unspecified, such
as f1xnum in (ash II (the (unsigned-byte 4) pvar) (! I (the fixnum x))), the compiler will signal an
error because there is not enough space to represent the result produced by the largest
possible value for this argument. (Specifically, if x is 2A 32 this operation would produce a
pvar roughly 2A32 bits in length!)

Declarations that explicitly specify the length of the count-pvar argument will compile. For
example, (ash!! (the (unsigned-byte 4) pvar) (the (field-pvar 4) x-pvar)) will compile because
the result can at most be 19 bits in length (4 bits from the source pvar, shifted by up to 15 bits
as specified by x-pvar).

code-charl I Int-char!! make-charll [Function]

These operations will only *compile when used as an argument to a *Lisp operation that
expects a character pvar, such as *set or character!!.

dlgit-char-pll [Function]

This operation only *compiles when used as an argument to a *Lisp operation that expects an
integer pvar as its argument, such as *set.

grid II grid-relativell

These operations will *compile only in restricted circumstances, specifically when they are
used as arguments to the *pset or prefll operators.

prefll [Macro]

If the pvar-expression argument is not a simple expression, such as a variable, this operation
will only *compile when the :vp-set argument is either unspecified or *current-vp-set*.

Version 6.0, November 1990 37

*pset [Macro]

The *pset operation will not *compile with the :default combine-method argument; use the
:no-colllsions option instead. Also, *pset does not yet *compile with the :queue
combine-method argument.

reducell [Function]

The reduce" operation will not *compile if given a user-defmed function as its Junction
argument, and also will not *compile if any of its keyword arguments are specified.

scan" [Function]

This operation will *compile only iftheJunction argument is one of the specialized scanning
operators such as +11, max", minll, etc. If the Junction argument is *11, then scan II will
*compile, but only if pvar is a floating-point pvar.

6.2.4 Special Forms That *Compile

The following special forms are recognized and handled by the *Lisp compiler:

compiler-let let let* progn

6.3 Type Declarations and the *Lisp Code Walker

The *Lisp compiler is enabled by default. The *Lisp compiler can translate virtually all *Lisp
statements into compiled LisplParis. Any *Lisp statement that cannot be translated is
interpreted by the *Lisp interpreter.

The *Lisp compiler includes a code walker that allows more complete compilation of*Lisp
code. The code walker is enabled by default, and is described in more detail below.

The key to effective use of the *Lisp compiler is complete and correct declaration of *Lisp
code. Users of the *Lisp compiler will want to consult Chapter 4, "*Lisp Type Declaration,"
in the *Lisp Dictionary, for guidelines and examples of proper declaration of *Lisp code.

An additional type declaration issue, omitted from the *Lisp Dictionary, is described in
Section 6.3.2.

38 *Lisp Release Notes

6.3.1 The Code Walker

The *Lisp compiler includes a code walker, which allows the compiler to compile *Lisp code
more thoroughly. The code walker is an extension of the *Lisp compiler that ''walks'' through
all the individual forms of a piece of *Lisp code. It records all declarations it encounters and
compiles each *Lisp form it fmds. The code walker can be enabled and disabled by the user. It
is enabled by default.

The code walker allows the *Lisp compiler to:

• Find declarations it would otherwise ignore.

• Generate *compiled code for *Lisp expressions that would not otherwise be
*compiled.

The *Lisp code walker is an extension of the CommonLoops code walker developed at
Xerox Palo Alto Research Center. CommonLoops, including its code walker, is generously
made available by Xerox Corporation to the Common Lisp community for the preparation of
derivative works.

6.3.1.1 Effect of Code Walker on Code Compilation.

The *Lisp compiler has these capabilities when the code walker is enabled:

• *Lisp declarations are recognized in all locations where Common Lisp allows
declaration forms. In particular, the *Lisp compiler can now recognize declarations
within defun, let, and let* forms without the need to use the *Iocally construct.

• All properly declared *Lisp forms are *compiled, not only those within the scope of
a *Lisp macro operator such as *set.

6.3.1.2 Enabling the Code Walker

The code walker can be enabled and disabled by the user. It is enabled by default. To enable
the code walker, do either of the following:

1. Type (compiler-options)

This will display a menu of compiler options. At the bottom of the menu is an item
that enables/disables the code walker.

('
'~

Version 6.0, November 1990 39

2. Set the variable *lisp:*use-cod&-Walker* to t. For example,

(setq *lisp:*use-code-walker* t)

enables the code walker for all "'Lisp code that is *compiled. Setting
*lIsp:*use-cod&-Walker'" to nil disables the code walker.

6.3.1.3 Using the Code Walker: An Example

With the code walker disabled, if one wanted to write a function that *compiled, one would
need to write it like this:

(defun sum-of-squares!! (x y)
(*locally iii *locally to declare arguments x and y

(declare (type single-float-pvar x y»

(*let (result) iii declaration of result within *let form
(declare (type single-float-pvar result»

(*set result (+!! (*!! x x) (*!! y y»)

result»)

With the code walker enabled, the "'Lisp compiler recognizes declarations in all the places
Common Lisp permits declarations, without the need for *Iocally. In particular, the *Lisp
compiler recognizes declarations within defun, let, and let* forms. A list of all special forms
within which Common Lisp permits declarations may be found in Common Lisp: The

Language, Second Edition, pp. 215-16.

Thus, with the code walker enabled one can write the sum-of-squares definition as

(defun sum-of-squares!! (x y)
(declare (type single-float-pvar x y»

(*let (result)
(declare (type single-float-pvar result»

(*set result (+!! (*!! x x) (*!! y y»)

resul t))

40 *Lisp Release Notes

In addition, the code walker enables the *Lisp compiler to *compile all properly declared
*Lisp forms, not just those within the scope of a *Lisp macro operator such as *set. Because
of this change, the sum-of-squares definition may be condensed even further, producing

(defun sum-of-squares!! (x y)
(declare (type single-float-pvar x y»
(+!! (*!! x x) (*!! y y») '" *let and local variable result

'" are no longer needed

which will also *compile into Paris code.

6.3.1.4 Automatic Declaration of Loop Indices

A minor feature of the code walker is that it automatically declares iteration variables as
integers, eliminating the need for separate declaration of these variables. For example, with
the code walker disabled,

(dotimes (j 100)
(*set x (*!! x (!! j»»

will not *compile unless (II (the fixnum j)) is used instead of (II J). With the code walker
enabled, special declarations are unnecessary and this code will *compile as is.

6.3.2 Proper Declaration of *defun Forms

When a function defmed by the *Lisp operator *defun is referenced prior to its definition in a
file of code that is intended to be compiled, a special declaration form is required for the
compiler to handle the reference correctly.

The *defun macro actually defmes two operators: a function that performs the operations
specified by the body of the *defun, and a macro that calls this function as well as performing
other tasks related to reclamation of space on the eM stack. The macro is given the name
specified by the *defun form, and the function is given a name derived from the name of the
macro. For example, if*defun is used to defme an operator called marbles, the macro will be
named marbles, but the function will be named *defun-rnarbles.

If a *defun is referenced prior to its defmition in a file, then the Lisp compiler will not treat the
reference as a macro call (as the user might intend), but will instead compile it as a call to an
ordinary function. The "external" operator defmed by *defun is a macro rather than a
function, and thus function calls compiled prior to the *defun form will signal an error when
executed.

/

Version 6.0, November 1990 41

To avoid this problem, place a *proclaim form in the file prior to all references to the operator
defmed by *defun. The *proclaim macro recognizes a special keyword, *defun, that can be
used to "forward reference" an operator that will eventually be defined by *defun.

For example:

(*proclaim ' (*defun xyzzy-foo»
(*proclaim

, (ftype (function (t t) (pvar single-float» xyzzy-foo»

(*proclaim ' (type single-float-pvar z»
(*defvar z)

(de fun bar ()
(*set z (xyzzy-foo (!! 3.0) (!! 4.0»»

(*defun xyzzy-foo (a b)
(declare (type single-float-pvar a b»
(+!! a b»

Note the use of *proclaim to declare the data type of the pvar returned by xyzzy-foo. The
*proclalm macro can be used to declare the data type of a *defun operator, but only if the
operator has previously been declared as a *defun with *proclalm, as shown in this example.

6.4 Viewing *Compiled Code

It is possible to have the *Lisp compiler display *compiled code produced during
compilation of a *Lisp expression. The value of the compiler global variable
slc::*show-expanded-code* determines whether this feature is active.

\.

When the value of slc::*show-expanded-code* is t, the *Lisp compiler will print out any
*compiled code produced whenever a *Lisp form is compiled.

When the value of slc::*show-expanded-code* is nil, the default, this feature is disabled.

For example, given the function definition

(defun hyp!! (x y)
(declare (type single-float-pvar x y»
(sqrt!! (+!! (*!! x x) (*!! y y»»

42 *Lisp Release Notes

when hypll is compiled, as in

(setq slc::*show-expanded-code* t
safety 0
use-code-walker t)

(compile 'hyp!!)

the following output is displayed:

expression:

(SQRT!! (+!! (*!! X X) (*!! Y Y»)

expanded to:

(LET* (SLC::STACK-FIELD (CM:ALLOCATE-STACK-FIELD 32»
(t:SQRT!!-INDEX-2 (+ SLC::STACK-FIELD 32»)

(DECLARE (TYPE SLC::CM-ADDRESS SLC::STACK-FIELD
t:SQRT!!-INDEX-2»

(DECLARE (IGNORE t:SQRT!!-INDEX-2»
(CM:F-MULTIPLY-3-1L
SLC::STACK-FIELD (PVAR-LOCATION Y) (PVAR-LOCATION Y) 23 8)

(CM:F-MULT-ADD-1L
SLC::STACK-FIELD (PVAR-LOCATION X) (PVAR-LOCATION X)
SLC::STACK-FIELD 23 8)

;; - sqrt!!.
(CM:F-SQRT-2-1L SLC::STACK-FIELD SLC::STACK-FIELD 23 8)
(SLC::ALLOCATE-TEMP-PVAR

:TYPE :FLOAT :LENGTH 32 :BASE SLC::STACK-FIELD
:MANTISSA-LENGTH 23 :EXPONENT-LENGTH 8»

(,

Version 6.0, November 1990 43

6.5 Compiler Options Notes

6.5.1 Compiler Options Function

The slc::report-options function may be used to view the current settings of*Lisp compiler
options.

(slc::report-options)

On Lucid Common Lisp or Sun Common Lisp this function takes an optional argument,
which if non-nil reports the Lucid (Sun) compiler options as well.

(slc::report-options t) ; To see Lucid (Sun) compiler options

6.5.2 Additional Compiler Options

Compiler options not described in the *Lisp Compiler Guide are described here. Note that
these options are only visible on the menu displayed by (compiler-optlons :class :all).

Note also that the following three options apply to Symbolics front end users only:
Macroexpand Repeat Macroexpand Inline Forms

Rewrite Arithmetic Expressions

Values:
Default:
Variable:

Yes (t), No (nil)
Yes (t)
rewrite-arithmetic-expressions

Macroexpand Print Case

This option determines whether the compiler optimizes arithmetic operations as if they
were associative.

A value of of t allows the compiler to rewrite arithmetic operations as if they were
associative. This is the default.

A value of nil prevents this arithmetic-rewriting optimization.

Usage Note: When computing with floating-point data, results may vary depending on
how this option is set. For example, consider the expression

(*set x (+!! x y z»

44 *Lisp Release Notes

The laws of arithmetic allow this to be computed as either of the following expressions:

(*set x (+!! x (+!! y z»)
(*set x (+!! (+!! x y) z»

Given the limitations imposed by fIxed-precision floating-point arithmetic, the two ways
of evaluating the original expression may not yield identical results ifx, y, and z are
floating-point or complex pvars.

When this option is enabled (the default), the *Lisp compiler may produce more efficient
code.

When this option is disabled, the *Lisp compiler evaluates expressions in the order in
which they appear textually (the second alternative above).

Regardless of the value of*rewrite-arithmeti~xpresslons*, the user may force a specific
order of evaluation by explicitly directing the computation, as in the following:

(*set x (+!! x y»
(*set x (+!! x z»

Macroexpand Repeat

Values:
Default:
Variable:

Yes (t), No (nil)
Yes (t)
macroexpand-repeat

This option controls the way the command Macro Expand Expression works.

A value of t causes Macro Expand Expression to use the Common Lisp macroexpand
function, which repeatedly calls macroexpand-1 to expand a macro expression.

A value of nil causes Macro Expand Expression to use the Common Lisp macroexpand-1
function, which does not repeat.

(

Version 6.0, November 1990

Macroexpand Inline Forms

Values:
Default:
Variable:

Yes (t), No (nil)
Yes (t)
macroexpand-inline-forms

45

This option controls the way the command Macro Expand Expression All expands inline
function forms.

A value oft causes the command Macro Expand Expression All to expand inline forms as
if they were macros. This is the default behavior.

A value of nil prevents the command Macro Expand Expression All from expanding inline
forms as if they were macros.

Expanding inline function forms as if they were macros may make output of the *Lisp
compiler hard to read. For example, consider the following *set expression:

(*set uS u4)

With *macroexpand-iniine-forms* set to nil, an invocation of Macro Expand Expression
All displays the following code:

(progn;; Move (coerce) source to destination - *set.
(cm:unsigned-new-size (pvar-location uS)

(pvar-location u4) S 4)
nil)

With *macroexpand-inllne-forms* set to t, an invocation of Macro Expand Expression All

displays the following code:

(progn ;; Move (coerce) source to destination - *set.
(cm:unsigned-new-size (aref uS 1) (aref u4 1) S 4)

nil)

Notice that function calls like pvar-:-Iocation have been turned into calls to aref.

46 *Lisp Release Notes

Macroexpand Print Case

Values: No (nil),
Downcase (:downcase), Upcase (:upcase)
Capitalize (:capitalize)

Default: No (nil)
Variable: *macroexpand-prlnt-case*

This option controls the print case used to display the expansions produced by the
Macroexpand Expression command.

A *macroexpand-print-case* value of nil causes the value of the variable *prlnt-case* to
be used. This is the default.

If the value of*macroexpand-prlnt-case* is non-nil, it is used.

6.5.3 Restrictions on Compiler Options

Some *Lisp compiler options have limited functionality. These options are described below.

Pull Out Common Address Expressions

This option is not fully implemented and therefore should not be used in most cases.

Compilation Speed

Except as a constraint on peephole and binding optimization, this option is currently not
considered by the compiler.

Space
Speed

These options are currently not used by the compiler.

6.6 *Lisp Compiler Implementation Errors Update

Most previously reported *Lisp compiler implementation errors have been corrected for
*Lisp Version 6.0. The known outstanding bugs and restrictions are reported again in these
release notes. All past issues of Programming in *Lisp In Parallel and all previous *Lisp
Release Notes may therefore be discarded.

(

"'-

Version 6.0, November 1990 47

6.6.1 Known Errors Corrected

The following compiler implementation errors reported in In Parallel Vol. 3, No.1, March
1990, are fIxed in *Lisp Version 6.0:

defconstant-dim-scan-compiler-bug

float-pvar-initial-value-bug

make-array-not-compiling-with-zero-element

pref-expr-interpreted-semantlcs-change

The following previously unreported compiler errors are fIxed in *Lisp Version 6.0:

10 star-case-compiler-warning

Environment

*Lisp compiler, Version 5.2

Description

The *case operator signals a warning about an internally generated symbol being
undeclared.

Reproduce By

Compile the following:

Status

(defun test ()
(*case (random!! (!! 100»

(0 (print (*sum (!! 1»»
(1 (print (*sum (!! 2»»»

Warning (not associated with any definition):
While compiling #:ONCE-ONLY-VAR3 in function TEST:
The expression (*SET #:RET-4 (NOT!! (NULL!! #»)
is not compiled because the *Lisp compiler cannot find a
type declaration for the symbol ONCE-ONLY-VAR3.

Fixed in Version 6.0; patch is available for previous versions.

48 *Lisp Release Notes

10 pref-inactive-processors-bug

Environment

*Lisp, Version 5.2

Description

When prefl! is *compiled with the :many~olllsions option, it generates a call to
slc::get-many~ollisions. This operation had a bug that caused it to operate
incorrectly when all processors are selected.

Reproduce By

Compile a prefll expression with the :many~olllsions option.

Workaround

Turn off *Lisp compiler around form or remove :many~ollisions option.

Status

Patched in 5.2; fIxed in 6.0.

6.6.2 Known Errors Still Open

All previously reported unintentional compiler restrictions have been fIXed in Version 6.0. If
new bugs are discovered, they will be reported during the coming months in the In Parallel
software bulletin, Vol. 4.

/
\"",

Version 6.0, November 1990 49

6.7 Miscellaneous Compilation Notes

Additional notes and hints on the use of the *Lisp compiler are included here. These are
reprinted from previous release notes.

6.7.1 Non-simple Pvar Expression Compilation in prefll

The *Lisp compiler can *compile a prefll form that specifies anon-simple pvar-expression
source argument, if the :vp-set keyword argument is either unspecified or given as
current-vp-set .

6.7.2 Warnings on Non-compiled Code

Unless the *Lisp compiler Warning Level is explicitly set to High, the *Lisp compiler will not
emit warning messages to the effect that it could not translate certain *Lisp statements into
Lisp/Paris. Thus, using the default Warning Level, it is not possible to know which portions of
code have been translated into Lisp/Paris and which have not.

6.7.3 *Lisp Compiler Warning Level and Safety Level Options

Do not confuse the compiler Warning Level with the Safety Level. The Warning Level

determines how completely the compiler reports compile-time problems. The Safety Level

determines the degree to which compiled code reports run-time errors.

IMPORTANT

The efficient execution of compiled code depends highly on the
compiler Safety Level. The user is strongly advised to become
familiar with the proper setting of different safety levels. Refer to
the *Lisp Compiler Guide for descriptions of these options.

50 *Lisp Release Notes

7 *Lisp Simulator Version 6.0

The *Lisp simulator runs on top of Common Lisp and allows users to execute *Lisp code
without using a Connection Machine system. The *Lisp simulator is known to run on the
following implementations of Common Lisp:

• Symbolics Lisp on a Symbolics Lisp machine

• Sun Common Lisp on a Sun-4 Workstation

• Lucid Common Lisp on a VAX running ULTRIX

The *Lisp simulator has also been known to run on the following systems:

• Sun Common Lisp on a Sun-3 Workstation

• Lucid Common Lisp on a VAX running VMS

• Lucid Common Lisp on an Apollo workstation

• Coral Common Lisp on a Macintosh

• Kyoto Common Lisp on various machines

The *Lisp simulator can be made to run on any full implementation of Common Lisp with
minimal porting effort.

7.1 New *Lisp Simulator Version

Version F 18 of the *Lisp simulator, released along with Version 6.0 of the *Lisp software, is
fully compatible with *Lisp Version 6.0.

7.2 *Lisp Simulator Now Freely Available

Thinking Machines Corporation is pleased to announce that the *Lisp simulator is now freely
available for use, copying, and modification. You are free to distribute and modify the *Lisp
simulator without restriction.

The *Lisp simulator is available via anonymous FTP in the /publlc directory of thlnk.com.
The file containing the simulator is a UNIX "shar" file called starsim-f18-sharflle (where f18

may be replaced in the future by a higher release number).

Version 6.0, November 1990 51

This sharfile provides the necessary sources and systems for the *Lisp simulator to run under
Symbolics, Lucid, Allegro, and Franz Common Lisp. Porting the *Lisp simulator to other
Common Lisp implementation is generally a simple matter.

NOTE: If you do port the *Lisp simulator to a version of Common Lisp other than those listed
above, we ask that you send a description of any required modifications to Thinking
Machines Corporation Customer Support, so that these changes can be incorporated into
future versions of the simulator.

People wishing to distribute the *Lisp simulator should distribute it from the sharfue
described above, and not from the sources provided on-site at Connection Machine customer
installations. The sharfile includes documentation, instructions, and auxiliary files that are
useful in installing the *Lisp simulator at non-Connection Machine sites.

Thinking Machines will continue to provide support for the *Lisp simulator for Connection
Machine system customers. Thinking Machines is under no obligation to provide support to
other users of the *Lisp simulator, either in porting or use of the simulator.

7.3 *Lisp Simulator Restrictions Update

Most previously reported *Lisp simulator implementation errors and restrictions have been
corrected for the release of *Lisp Version 6.0. The known outstanding bugs and restrictions
are reported again in these release notes. All past issues of Programming in *Lisp In Parallel
and all previous *Lisp Release Notes may therefore be discarded.

7.3.1 Restriction on Pvar Types

The *Lisp simulator supports only general pvars; it does not support any of the other pvar
data types (such as floating-point pvars or complex pvars). The *Lisp simulator does,
however, support aggregate data structures, such as array pvars, vector pvars, and structure
pvars.

7.3.2 Known Errors Corrected

The following simulator implementation errors reported in In Parallel Vol. 3, No.1, March
1990, are fixed in Version F18 of the *Lisp simulator:

create-vp-set-not-for-uninstantlated

parallel-vector-and-array-sim-omission

52

ppp-ordering-sim-bug

rank-sort-neg-fg-data-slm-bug

star-setf-of....f'ow-rnaJor-sldeways-aref-slm-bug

*Lisp Release Notes

7.3.3 Known Errors and Restrictions

All known unintentional simulator restrictions for Version F 18 of the simulator are reported
here~ in alphabetical order by bug report ID. Ifnew bugs are discovered~ they will be reported
during the coming months in the In Parallel software bulletin~ Vol. Iv.

10 lucid-exit-from-sim-bug

Environment

*Lisp simulator Version F 16~ F 17 ~ F 18; Lucid Common Lisp

Description

When running the *Lisp simulator under either Lucid Lisp or Sun Lisp~ attempting to
access a deallocated pvar causes the lisp process to quit.

Reproduce By

(*cold-boot)
(setq a (allocate!! (!! 0»)
#<Structure PVAR COBICE>

(*cold-boot)
(ppp a)

End of File read by debugger -- quitting Lisp

Workaround

Attempting to access a deallocated pvar is an error.

Status

Open.

(

Version 6. O. November 1990 53

7.4 Notes on Simulator Use

7.4.1 Porting Code

*Lisp code can be ported from the simulator to the interpreter/compiler (and vice versa) with
few modifications. However, all code must be recompiled when porting in either direction.

7.4.2 Abort and Cold Boot Problem

If the *Lisp simulator is aborted in the wrong place, an attempted *cold-boot operation will
not succeed; the simulator will go into the debugger and not complete. To reset, execute the
following forms. This will generally clear up the problem, albeit at the expense of destroying
all *defvar and VP set definitions.

(*sim-i::reset-everything)
(*cold-boot)

7.4.3 Conditional Simulator Compilation and Execution

It is sometimes desirable to write *Lisp code in one fashion to execute on a Connection
Machine system and in another fashion to execute in the *Lisp simulator. This is especially
helpful where code intended to execute on the Connection Machine hardware uses different
constructs and defmitions than code intended for the simulator.

To signal the Lisp reader to conditionally read a form depending on whether or not the *Lisp
simulator is loaded, use the Common Lisp #+ reader macro with the feature symbols
*LlSP-SIMULATOR and *LlSP-HARDWARE.

Thus,

#+*LlSP-SIMULATOR form

reads form only if the *Lisp simulator is loaded.

#+*LlSP-HARDWARE form

reads form only if *Lisp is loaded and a Connection Machine system is attached to the
executing front-end computer. For example, the expression

54

(progn
#+*LISP-HARDWARE

*Lisp Release Notes

(*cold-boot :initial-dirnensions '(256 256 4»
#+*LISP-SIMULATOR

(*cold-boot :initial-dirnensions '(8 8 2»)

will execute properly both on the Connection Machine hardware and in the *Lisp simulator.
The *LISP-HARDWARE symbol is used to select a large VP set when the Connection Machine
hardware is available. The *LlSP-SIMULATOR symbol is used to select a smaller VP set when
the *Lisp simulator is in use.

Note that it is possible to conditionalize individual components of a function call using these
feature symbols. This is useful in those cases where the expression to be conditionalized is
very long or complex, and it is therefore desirable for purposes of code support not to have
two separate, independently conditionalized copies of the expression.

For example, the *cold-boot example given above can be rewritten in the following form:

(*cold-boot :initial-dirnensions #+*LISP-HARDWARE '(256 256 4)
#+*LISP-SlMULATOR '(8 8 2»

There is also a version symbol available, *LlSP-SIMULATOR-F18, that may be used to
conditionalize code that should be executed only in the F 18 version of the *Lisp simulator.
This symbol may be used in a similar manner as those shown above.

For example, the scalar promotion feature is available in Version F 18 of the simulator, but not
in Version F 17. The following code will execute properly in either version of the simulator:

(*set dest (+!! #+*LISP-SlMULATOR-F183
#-*LISP-SIMULATOR-F18 (!! 3) x»

/
I

'"

c

Version 6.0, November 1990 55

8 *Lisp Library Version 6.0

The *Lisp Library is a set of *Lisp functions and macros made available in the form of an
on-line software library. Please note that all code included in the library is experimental.
Users are welcome to make use of the library code at their own risk, with the understanding
that some or all of these functions and macros may not be supported in future releases.

8.1 Changes for Version 6.0

As of Version 6.0, the following module has been added to the *Lisp library:

• PVAR-IO Read and write pvars to front-end disks .

This module contains a set offunctions that can be used to perform fast data transfer between
a front-end disk and the eM.

8.2 Accessing the *Lisp Library

The *Lisp library code is available in the directory

/cm/starlisp/library/f6000/*

On-line documentation for the library functions and macros is available in the file

/cm/starlisp/library/f6000/documentation.text

Ask your systems administrator or applications engineer to help you locate these files at your
site.

All functions in the library are defined to autoload on demand. When anyone function in a
given interface file is autoloaded, the rest of the functions in that interface file are also
autoloaded.

56 *Lisp Release Notes

8.3 *Lisp Library Contents

The following interface files are included in the *Lisp library in Version 6.0:

• AREF32-SHARED

• FAST-RNG

• ROW-AND-COLUMN-MAJOR

• LET-ALIAS

• COLLECTE~~CROS

• PVAR-IO

• FFT

• ~TR1X-MULTIPLY

Lookup table interface.

Fast random number generator.

Row/column major address interface.

Temporary storage reduction tool.

Useful macros.

Read and write pvars to front-end disks.

CMSSL Fast Fourier Transform interface.

CMSSL matrix multiplication interface.

8.4 *Lisp Library Restrictions Update

All previously reported *Lisp Library implementation errors and restrictions have been
corrected in the release of *Lisp Version 6.0.

8.4.1 Known Errors Corrected

The following simulator implementation errors reported in In Parallel Vol. 3, No.1, March
1990, are fixed in Version 6.0 of the *Lisp Library:

creat&-looku~able-sll-bug

(

Version 6.0, November 1990 57

9 *Graphics Version 6.0

*Graphics is a *Lisp interface to the CM graphics programming environment.
Documentation for *Graphics can be found in the *Graphics Reference Manual, which is
distributed as part of the volume entitled Programming in *Lisp in the Connection Machine
documentation set. Information about modifications and corrections made to * Graphics may
be found in the Version 6.0 release notes for this document.

Note: The *Graphics documentation has moved. In previous versions this document was
distributed as part of the volume entitled Connection Machine Graphics Programming. As of
Version 6.0 it is included with the *Lisp reference documentation. Please make a note of this
change.

10 Fast Graph

Fast Graph is a software package designed to allow optimized router communications for
fixed router patterns, and is accessible from *Lisp.

For a communications pattern that is fixed with respect to machine size, VP ratio, and data
paths, the Fast Graph package offers the possibility of significantly faster execution than can
be obtained through the *Lisp operators *pset and prefl!.

The Fast Graph package is available from TMC Customer Support or from your applications
engineer as unsupported software.

Sample *Lisp code that creates data patterns and executes compiled data patterns is provided
with the Fast Graph package.

/
i
\,

(

