
The
Connection Machine

. System

*Lisp Release Notes

Version 5.1
June 1989

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, June 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to
improve functioning or design. Although the information in this document has been
reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking
Machines Corporation does not assume any liability arising from the application or use of
any information or product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM-I, CM-2, CM, and DataVault are trademarks of Thinking Machines Corporation.
Paris, * Lisp , and CM Fortran are trademarks of Thinking Machines Corporation.
VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
Sun and Sun-4 are trademarks of Sun Microsystems, Inc.
Lucid and Lucid Common Lisp are trademarks of Lucid, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1989 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1214
(617) 876-1111

Contents

About These Release Notes. .. iii
Customer Support . v

1 About Version 5.1 1

2 Porting Code to Version 5.1 ... 1

2.1 Lucid Common Lisp Version 3.0 2

2.2 CM Data Storage Format Changed. 4

2.3 Floating-Point random!! Results 4

2.4 Obsolete Language Features... 5

3 *Lisp Language Version 5.1 ... 6

3.1 New *Lisp Language Features. 6
3.1.1 Overview of New Language Features... 6
3.1.2 Description of New Language Features 7

. amapll .. 8
array!! .. 9
deallocate-processors-for-vp-set 9
news-direction!! 10
*news-direction 11
off-grid-border-relative-direction-p 11
* processorwise . 12
*room .. 13
row-major-aref!! 14
row-major-sideways-aref!! 15
set-vp-set-geometry 16
sideways-array-p 16
* slicewise 17
*trace....................................... 17
un*defun 17
vector!! ... 18

ii Contents

vp-set-deallocated-p 19
vp-set-rank, vp-set-total-size, vp-set-vp-ratio 19
with-processors-allocated-for-vp-set 19

3.2 *Usp Language Enhancements 20
3.2.1 Overview of Language Enhancements 20
3.2.2 Description of Language Enhancements. .. 21

·cold-boot .. 21
Segment Set Accessors . 22
deallocate-vp-set . 23
rank!! ... 23
scan!! .. , " 25
sort!! ... 26
taken-as!! ... 28
ppp ... 28

4 *Lisp Compiler Version 5.1 ... 30

4.1 *Usp Compiler Enhancements 30
4.1.1 Increased Scope-Forms That Newly *Compile 30

4.1.1.1 Forms That *Compile without Restrictions. 31
4.1.1.2 Forms That *Compile with Restrictions. 34

4.1.2 Improved Performance , 36
4.1.3 New and Enhanced Compiler Options 37

4.2 *Usp Compiler Restrictions. .. 40
4.2.1 New 5.1 Forms That Don't *Compile 40
4.2.2 Cumulative List of Forms That Don't *Compile 41

5 *Lisp Simulator Version 5.1 .. 42

5.1 New Simulator Version ... 42

5.2 *Usp Simulator Enhancements .. 42
5.2.1 Version 5.1 Language Features Simulated 42

5.3 Simulator Restrictions .. 43
5.3.1 Restrictions Lifted in 5.1 43
5.3.2 Abort and Cold Boot Problem .. 43

6 Implementation Notes ... 43

7 Helpful Hint: *set Restriction ... 44

About These Release Notes

Objectives

The *Lisp Release Notes Version 5.1 are published to inform *Lisp programmers about all new
and changed *Lisp features introduced with the Connection Machine System Software version
5.1.

Intended Audience

The reader is assumed to have a working knowledge of Common Lisp, as described in Common
Lisp: The Language, and of *Lisp, as described in the *Lisp documentation for version 5.0. The
reader is also assumed to have a general understanding of the Connection Machine system. The
volume entitled Connection Machine Front-End Subsystems provides the necessary background
information about the Connection Machine system.

Revision Information

These release notes are new with *Lisp version 5.1. They do not replace *Lisp Release Notes
Version 5.0, nor do they replace any other manual in the *Lisp documentation for version 5.0.

Organization of These Release Notes

1 About Version 5.1
Identifies *Lisp and version 5.1.

2 Porting Code to Version 5.1,
Explains what to do to ensure that 5.0 *Lisp code runs under 5.1.

3 *Lisp Language Version 5.1
Describes language features that are new and enhanced in version 5.1.

4 *Lisp Compiler Version 5.1
Describes compiler features that are new and enhanced in version 5.1.

5 *Lisp.Simulator Version 5.1
Describes simulator features that are new and enhanced in version 5.1.

iii

iv About These Release Notes

Related Manuals

• *Lisp Release Notes Version 5.0
The version 5.0 release notes provide a succinct overview of the many new features
introduced in version 5.0 and of the changes made to *Lisp between the release of ver
sion 4.3 and the release of version 5.0. These are essential reading.

• Supplement to the *Lisp Reference Manual Version 5.0

This manual updates the *Lisp Reference Manual, adding descriptions of all features
new with the release of *Lisp version 5.0.

• *Lisp Compiler Guide Version 5.0

This manual describes the current implementation of the *Lisp compiler.

• Connection Machine Front-End Subsystems

The manuals in this volume should be read before the *Lisp Reference Manual. It ex
plains the configuration of the Connection Machine system, and how to access the
Connection Machine from a front-end computer.

• Connection Machine Parallel Instruction Set

The *Lisp Reference Manual explains how to call Paris from *Lisp. Users who wish to
do so should refer also to the Paris manual.

• Common Lisp: The Language, by Guy L. Steele Jr. Burlington, Mass.: Digital Press,
1984.

This book defines the de facto industry standard for the Common Lisp language.

Notation Conventions

The notation conventions used in these release notes are the same as those used in all current
*Lisp documentation.

Convention

boldface

italics

typewriter

% boldface
typewriter

Meaning

*Lisp language elements, such as keywords, operators, and
function names, when they appear embedded in text.

Parameter names and placeholders in function formats.

Code examples and code fragments.

In interactive examples, user input is shown in boldface and
system output is shown in typewr iter font.

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
respond to the report.

To contact Thinking Machines Customer Support:

u.s. Mail:

Internet
Electronic Mail:

Usenet
Electronic Mail:

Telephone:

For Symbolics users only:

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

customer-support@think.com

ames! think! customer-support

(617) 876-1111

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail
facility for automatic reporting of Connection Machine system errors. When such an error oc

curs, simply press Ctrl-M to create a report. In the mail window that appears, the To: field
should be addressed as follows:

To: bug-connection-machine@think.com

Please supplement the automatic report with any further pertinent information.

v

(

\

1 About Version 5.1

The *Lisp language is a parallel extension of Common Lisp for programming the Con
nection Machine system. Programs using *Lisp typically include both Common Lisp
and *Lisp constructs. *Lisp provides three separate utilities: the interpreter, which
extends the Common Lisp interpreter; the compiler, which extends the Common Lisp
compiler; and the simulator, which simulates a Connection Machine running *Lisp.

Version 5.1 is an incremental *Lisp release. It provides an expanded range of parallel
Lisp operations and corrects a number of implementation errors. *Lisp version 5.1
does not, however, differ significantly in either functionality or design from *Lisp ver
sion 5.0.

2 Porting Code to Version 5.1

*Lisp code written under version 5.0 runs under version 5.1 unchanged with the follow
ing exceptions:

n *Lisp version 5.1 requires Lucid Common Lisp on Sun-4 front ends. For sys
tems with Sun-4 front ends, some changes need to be made to Lisp code and to
the front-end development environment in order to move to Lucid version 3.0.

II Calls to random!! that take floating-point data produce different results under
the two versions. A workaround is documented below.

II Data stored on a DataVault under version 5.0 is not guaranteed to have the
same VP set geometry grid pattern when read into a CM under version 5.1.

II Code containing obsolete functions is not guaranteed to run.

1

2 • Lisp Release Notes

2.1 Lucid Common Lisp Version 3.0

On Sun-4 front ends only. CM System Software version 5.1 runs under Lucid Common
Lisp version 3.0. Lucid 3.0 is significantly different from Lucid 2.1. *Lisp programmers
are advised to obtain Lucid 3.0 documentation. The Lucid changes that most affect
*Lisp programs are noted below.

(1) Name changes

The naming convention for certain Lucid functions has changed. Functions
whose names began with SYS:: in Lucid version 2.1 begin with LCL:: in version
3.0. For example. (SYS::quit) is now (LCL::quit).

(2) Use of the change-memory-management function discouraged

The change-memory-management function is not recommended by Lucid
for version 3.0. If it is nonetheless used. the :growth-Iimit keyword valued
should be much less than previously recommended by Thinking Machines
Corporation. Failing to reduce the :growth-limit value before using change
memory-management causes problems with the garbage collection mecha
nism.

Here is an acceptable change-memory-management call used by some
Thinking Machines Corporation developers in their lisp-init.lisp files.

(change-memory-management
:expand 64
#+sun :growth-limit #+sun 768

(3) Foreign function interface changed

The Lucid foreign function interface has changed. Please consult the Lucid
Common Lisp version 3.0 documentation for details.

(4) Two Lucid compiler modes: production and development

Lucid Common Lisp version 3.0 supports two modes of compiling: production
and development. The production compiler is an optimizing compiler; it com
piles more slowly but produces more efficient code than the development com
piler. The development compiler is a non-optimizing compiler that compiles
very rapidly. The development compiler always uses full Lucid safety checking.

Version 5.1

NOTE

The Lucid 3.0 compiler is completely independent of the *Lisp
compiler with regard to options such as safety. The *Lisp com
piler has its own, independent, safety setting.

The *Lisp compiler translates *Lisp code into Common Lisp
code with calls to Paris. Then the Lucid Common Lisp com
piler translates the Lisp code generated by the *Lisp compiler
into native machine instructions.

See the * Lisp Compiler Guide for more information about the
*Lisp compiler. Refer to Lucid 3.0 documentation for more
information about the Lucid Common Lisp compiler and its
production and development modes.

3

To switch easily between the Lucid compiler production and development
modes, place the following two function definitions in your lisp-in it. lisp file:

(defun prod ()
(proclaim '(optimize (compilation-speed 0)

(safety 1) (speed 3»»

(defun def ()
(proclaim '(optimize (compilation-speed 3)

(safety 3) (speed 2»»

(These settings are taken from the Lucid 3.0 documentation.)

When developing code interactively, make the development compiler the de
fault by placing the expression (dev) in your lisp-init.lisp file, immediately af
ter the two function definitions. Using the development compiler can signifi
cantly speed up the compilation process.

To compile developed code for distribution, enable the production compiler
mode by typing (prod) at top level.

4 * Lisp Release Notes

(5) Lucid ephemeral garbage collector

In previous Lucid releases; garbage collection occurred frequently and took
significant amounts of time. Lucid Common Lisp version 3.0 includes an
ephemeral garbage collector. Consequently, full garbage collection is neither
as frequent nor as noticeable.

2.2 CM Data Storage Format Changed

Given an identically sized machine and identical VP set dimensions, a geometry cre
ated when a VP set is created is not necessarily identical under *Lisp versions 5.0 and
5.1. If data from VP setA is written to the DataVault under version 5.0 and subse
quently read into VP setA under version 5.1, the data is not guaranteed to be stored in
the Connection Machine in the same grid order.

2.3 Floating-Point random!! Results

random!! Iimit-pvar [Function]

In *Lisp version 5.1, random!! produces a different sequence of floating-point pseudo
random numbers than it did in version 5.0. Random integer sequences are identical
between version 5.0 and version 5.1.

To make random!! produce the exact same sequence of pseudo-random floating-point
numbers as it did in version 5.0, execute the following form at top level:

(setq slc::*f-random-function* 'slc::float-random)

Version 5.1

2.4 Obsolete Language Features

The following experimental *Lisp vector functions are now obsolete:

sf-v+!!
sf-v-!I
sf-v*!1
dsf-v+!!
dsf-v-!!
dsf-v*!!
sf-dot-product! !

5

These functions were originally documented in Chapter 10 of the Supplement to the
* Lisp Reference Manual version 5.0. They were introduced to provide optimized inter
preter performance for floating-point vector operations. The *Lisp compiler now com
piles the v+!!, v-I!, v*!!, and dot-product!! functions. Fast interpreted floating-point
vector operations are therefore now unnecessary.

6 * Lisp Release Notes

3 *Lisp Language Version 5.1

Several new *Lisp functions and a number of enhancements are included in *Lisp ver
sion 5.1.

3.1 New *Lisp Language Features

3.1.1 Overview of New Language Features

The following categories of *Lisp operations have new capabilities that distinguish
version 5.1 of the *Lisp language from version 5.0:

II Grid Communication. The new operations news-direction!!, *news-direction,
and off-grid-border-relative-direction-pl! allow communication along an ar
bitrary NEWS axis, without requiring any indication of how many dimensions
exist in the current VP set.

II VP sets. A number of new features for manipulating VP sets are included in
version 5.1. One, set-vp-set-geometry, changes the geometry of a VP set. An
other, with-processors-allocated-for-vp-set, temporarily allocates proces
sors for a VP set. Three new functions return state information about a VP set:
vp-set-rank, vp-set-total-size, and vp-set-vp-ratio. Finally, deallocate
processors-for-vp-set is added in 5.1, providing a way to undo the effects of
allocate-processors-for-vp-set, which was introduced in 5.0.

n Computation. The new amap!! function maps a given parallel operation over
any number of supplied array pvars.

II Macro Unbinding. The new un * defun function unbinds the macro and function
definitions for any number of provided symbols that have previously been de
fined with *defun.

,
II Aggregation. The new array!! and vector!! functions aggregate any number of

provided pvars into either an array pvar or a vector pvar.

II Array Referencing. The new functions row-major-aref!! and row-major-side
ways-arefl I make it possible to index an array pvar independent of dimen
sionality. They treat each component array as a vector that is laid out in row
major order.

Version 5.1 7

II IndirectAddressing. The functions *slicewise and *processorwise convert ar
ray pvars between a slicewise (sideways) addressing orientation and the nor
mal, processorwise orientation. Functionally, these replace * sideways-array,
introduced in 5.0.

Still supported, *sideways-array toggles array pvar addressing between the
sideways (slicewise) and processorwise modes. Newly documented with 5.1,
sideways-array-p tests for the current mode. In a future release, * sideways
array is likely to become obsolete.

II Debugging. The new *trace and *untrace functions make it possible to trace
macros defined with *detun. The experimental *room function prints infor
mation about available eM memory.

3.1.2 Description of New Language Features

The following *Lisp operations are new with version 5.1:

amap!!
array!!
deallocate-processors-tor-vp-set
news-direction! !
* news-direction
ott-grid-border-relative-direction-p
* processorwise
*room
row-major-aret! I

row-major-sideways-aref! !
set-vp-set-geometry
sideways-array-p
*slicewise
*trace
un*detun
vector!!

vp-set-deallocated-p
vp-set-rank

vp-set-total-size
vp-set-vp-ratio
with-processors-allocated-for-vp-set

A description of each follows.

8 • Lisp Release Notes

amap!!

amap!! operator array-pvar &rest array-pvars [Function]

Applies the specified function to each element of the supplied array pvars and returns
the result as an array pvar.

The operator parameter may be any parallel function capable of combining the num
ber of array pvars supplied.

The array-pvar parameter is required. Any number of &rest array-pvars parameters
may be supplied. All supplied array pvars must have the same dimensions.

The function amap!1 applies operator to each element of each array pvar. In this way,
sets composed of one element from each array pvar are combined. The result is an
array pvar, each element of which represents the result of one application of operator
over the corresponding elements of the supplied array pvars.

The function amap!! is similar to the Common Lisp function map. However, while
map works only on vectors, amapl! works on any type of array. Also, amap!! requires
no result type specification.

The function amapl! is similar to the *Lisp function *map, introduced in 5.0. The syn
tax is different for the two functions and amapl! returns a pvar result while *map is
executed for side effect.

The amapl! function removes the need for experimental sequence functions such as
v+l!. For example, v+1! is equivalent to calling amap!! with an operator of '+11, thus:

(v+!! a b) <==> (amap!! '+!! a b)

As another example, if y and x are vector pvars of length n, then

(*sety (amap!! 'log!! (amap!! 'cos!! x»)

is equivalent to

(dotimes (j n)
(*setf (aref!! y (!! j» (log!! (cos!! (aref!! x (!! j»»)

Version 5.1 9

arrayll

array!! dimensions &rest pvars [Function]

Creates an array pvar with the specified dimensions and containing the specified
pvars.

The function array!! takes any number of pvar expressions. The number of array ele
ments specified by dimensions must match the number of pvars supplied.

An array pvar is returned. Each element of this array pvar is an array that contains one
element of each supplied pvar, taken in row-major order.

For example,

(pre! (array!! '(22) (!! 0) (!! 1) (!! 2) (!! 3» 25)

=> #2A ((0 1) (2 3»

The standard rules of coercion are used to determine the element type of the new par
allel array. Thus, a mixture of integer and floating-point elements yields a floating
point result. A mixture of floating-point and complex elements yields a complex result.
An error is signaled if the data types present are not all compatible. (For instance, a
string-char element and a floating-point element are not compatible.)

deallocate-processors-for-vp-set

deallocate-processors-for-vp-set vp-set [Function]
&key : ok-if-not-instantiated

Deallocates all processors previously allocated for the specified VP set if those proces
sors were allocated by a call to allocate-processors-for-vp-set.

The vp-set parameter must be a VP set for which processors have been allocated by
either allocate-processors-for-vp-set or allocate-vp-set-processors. The specified
VP set itself is not deallocated and its *defvars are not destroyed. However, any pvar
belonging to vp-set and created using allocate!! is deallocated by a call to the deallo
cate-processors-for-vp-set function.

The :ok-if-not-instantiated keyword takes a boolean argument and defaults to nil. It
determines whether an error is signaled if the provided VP set is not instantiated at the

10 * Lisp Release Notes

time of the call. If the value is nil, then an error is signaled if vp-set is uninstantiated. If
:ok-if-not-instantiated is set to t, no error is signaled if vp-set is uninstantiated.

Usage Note: This function may also be used under the name deallocate-vp-set-proc
essors, which corresponds to the undocumented function name allocate-vp-set
processors.

news-direction! !

news-direction!! source-pvar dimension-scalar distance-scalar [Macro]

Performs a news! I operation on the specified pvar, along the specified dimension and
at the specified distance. Each active processor in the current VP set retrieves source
pvar data from the processor that is distance-scalar processors away along the dimen
sion-scalar axis. (See the reference entry for news!! on page 84 of the Supplement to the
*Lisp Reference Manual version 5.0.)

The result is returned as a pvar of the same type as source-pvar.

The source-pvar parameter must be in the current VP set. Data is copied from this
pvar into the result pvar.

The dimension-scalar parameter must be an integer in the range [O .. (N -1)], where N is
the number of dimensions defined for the current VP set.

The distance-scalar parameter must be an integer. The sign of this value determines
from which direction along the specified dimension data is retrieved. Grid addresses
wrap around where necessary.

This function permits news!! operations along a given dimension without requiring
specification of the total number of dimensions in the current VP set. Thus,

(news-direction!! my-pvar 1 2)
<=>
(news!! my-pvar 0 2 0)

assuming a three-dimensional machine configuration.

Version 5.1

*news-direction

* news-direction source-pvar destination-pvar
dimension-scalar distance-scalar

11

[*Deftm]

Performs a * news operation on the source pvar, along the specified dimension and at
the specified distance. Each active processor in the current VP set sends source-pvar
data to the processor that is distance-scalar processors away along the dimension-sca
lar axis, and stores it in destination-pvar. (See the * news reference entry on page 85 of
the Supplement to the *Lisp Reference Manual v,ersion 5.0.)

This operation is executed for side effect; the result is stored in the destination-pvar.

The source-pvar and destination-pvar parameters must both be in the current VP set.

The dimension-scalar parameter must be an integer in the range [O .. (N -1)], where N is
the number of dimensions defined for the current VP set.

The distance-scalar parameter must be an integer. The sign of this value determines in
which direction along the specified dimension data is sent. Grid addresses wrap
around where necessary.

This function permits *news operations along a given dimension without requiring
specification of the total number of dimensions in the current VP set. Thus,

(*news-direction my-pvar my-result 2 3)
<=>
(*news my-pvar my-result 0 0 3)

assuming a three-dimensional machine configuration.

off-grid-border-relative-direction-p

off-grid-border-relative-direction-p!! [Function]
dimension-scalar distance-scalar

Tests the relative grid addresses indicated by the specified dimension and distance for
validity. A boolean pvar is returned.

The dimension-scalar argument must be an integer that is in the range [O .. (N -1)],
where N is the number of dimensions defined for the current VP set.

12 * Lisp Release Notes

The distance-scalar argument must be an integer and may be negative. The sign of this
value determines in which direction along the specified dimension relative addresses
are calculated.

The return value of this function is a boolean pvar that contains t in each processor for
which an invalid relative address is specified and nil elsewhere.

If, for an active processor P in the current VP set, there exists another processor that is
distance-scalar processors away along the dimension-scalar axis, then the result re
turned in processor P is nil.

This function is similar to off-grid-border-p!! and off-grid-border-relative-pl I.
However, it permits relative address verification along a single dimension without re
quiring specification of the total number of dimensions in the current VP set. Thus,

(off-grid-border-relative-direction-p!! 1 5)
<=>
(off-grid-border-relative-p!! 0 5 0)

assuming a three-dimensional machine configuration.

*processorwise

* processorwise a"ay-pvar [*Defun]

. Converts a slicewise (liideways) array to the normal, processorwise orientation.

The a"ay-pvar parameter must be a sideways (slicewise) array, otherwise an error is
signaled.

There are restrictions on arrays that can be turned sideways. See the reference entry
for * sideways-array on page 33 of the Supplement to the * Lisp Reference Manual ver
sion 5.0.

Note that * processorwise is equivalent to * sideways-array when * sideways-array is
called on an array that is already sideways (slicewise).

Version 5.1

*room

** ** Experimental ** **
This function is experimental. * Lisp programmers are welcome to try it at
their own risk and with the understanding that, if insufficiently popular, it
may not be supported in future releases.

13

*room &key :how :print-statistics :stream [Function]

Collects and prints information about CM memory use.

The *room function returns four values. Each return value indicates the total amount
of CM memory in use for a particular purpose at the time of the call.

• The first return value reports the total number of bytes of CM memory allo
cated on the *Lisp stack.

• The second return value reports the total number of bytes of CM memory oc
cupied by temporary pvars allocated with allocate!!.

• The third return value reports the total number of bytes of eM memory occu
pied by pvars created using *defvar.

• The fourth return value reports the total number of bytes of CM memory in use
as overhead, including overhead fOT the *Lisp VP mechanism and overhead for
Paris.

The :how keyword argument specifies how memory information is collected and
printed. This must be either: by-vp-set (the default), : by-pvar, or : totals. If the value of
: how is : by-vp-set, then the four statistics are collected and printed for each existing
*Lisp VP set. If the value of: how is : by-pvar, then the statistics are given for each pvar
as well as for each VP set. If the value of: how is :totals, then only summary information
is printed.

The : print-statistics keyword defaults to t. If it is set to nil, the results are returned but
not printed and the : how keyword is ignored.

The :stream keyword defaults to t, indicating that output goes to the standard output
device. An alternate stream may be specified.

14 * Lisp Release Notes

row-major-aref! !

row-major-aret!! a"ay-pvar row-major-index-pvar [Function]

References the specified array pvar as if it were a vector pvar, with elements taken in
row-major order. The result is returned as a pvar.

The a"ay-pvar argument may be any array pvar. If this is a vector pvar (a one
dimensional array pvar), then this function is equivalent to aref!!.

The row-major-index-pvar must contain integers in the range [O ... N], where N is one
less than the total number of elements in a"ay-pvar. In each processor, this value
specifies the row-major index of a single element in the component array.

Consider the following code, for example:

(pref (row-major-aref!! (I I #2A((5 8) (3 0») (I I 2» 25)
=> 3

In each processor is stored the array 5 8
3 0

The element with row-major index 2 is referenced using row-major-arefl I. This results
in a pvar whose value is 3 everywhere. The pref function then references this value in
the 25th processor, yielding 3.

It is legal to compose *setf with row-major-arefl!. For example,

(*setf (row-major-arefl!
(II #2A«O 1) (2 3») (II 2» (II 25»

stores the value 25 in the third element of the component array in each processor.

Version 5.1 15

row-major-sideways-aref! !

row-major-sideways-arefll a"ay-pvar row-major-index-pvar [Function]

References the specified array pvar as if it were a vector pvar, with indices taken in
row-major order. The result is returned as a pvar.

The a"ay-pvar argument must be a slicewise (sideways) array pvar. See the reference
entry for * sideways-array on page 33 of the Supplement to the * Lisp Reference Manual
version 5.0.

The row-major-index-pvar must contain integers in the range [O.N], where N is one
less than the number of elements in a"ay-pvar. In each processor, this value specifies
the row-major index of a single element in the component array.

For example,

(*proclaim '(type (array-pvar single-float '(2 2» faa»
(*defvar faa (!! #2A«5 8) (30»»

(defun example ()
(*slicewise faa)
(pref (row-major-sideways-aref!! faa (!! 2» 0)
)

(example) ==> 3

In each processor, is stored the array 5 8
3 0

The element with row-major index 2 is referenced using row-major-sideways-arefl I.
This results in a pvar whose value is 3 everywhere. The pref function then references
this value in the 25th processor, yielding 3.

It is legal to compose *setf with row-major-sideways-arefl!. For example,

(*setf (row-major-sideways-aref!! faa (!! 2» (!! 25»

stores the value 25 in the third element of the component array in each processor.

16 * Lisp Release Notes

set-vp-set-geometry

set-vp-set-geometry vp-set geometry-id [Function]

Assigns the specified geometry to the specified VP set.

The parameter vp-set must be an instantiated VP set.

The parameter geometry-id must be a geometry object created with create-geometry.
The number ofvp's specified by the geometry must be the same as the total number of
VP's in vp-set.

This function changes the grid shape of CM data. To use this operation properly, it is
necessary to understand the mapping ofVP's to physical CM processors. See the Paris
Reference Manual version 5.0, Chapter 2.

Example code:

(setq geometry-l (create-geometry :dimensions '(256 256»)
(setq geometry-2 (create-geometry :dimensions '(65536»)

(setq vp-set-l (create-vp~set nil :geometry geometry-l»

(set-vp-set-geometry vp-set-l geometry-2)

See page 23 of these release notes for information on preventing a geometry from being
deallocated when deallocate-vp-set is called.

sideways-array-p

sideways-array-p a"ay-pvar [Function]

Tests the specified array pvar, returning t if it is sideways (slicewise) and nil otherwise.

For information on giving an array pvar a sideways orientation, see ·sideways-array
on page 33 of the Supplement to the * Lisp Reference Manual version 5.0, and see the
documentation for ·slicewise in these release notes, below.

Version 5.1 17

*slicewise

* slicewise array-pvar [*Defun]

Converts a normal, processorwise array to the slicewise (sideways) orientation.

The array-pvar parameter must be a normal, processorwise array. If array-pvar is al
ready slicewise (sideways), an error is signaled.

For restrictions on arrays that can be turned sideways (slicewise), see *sideways-array
on page 33 of the Supplement to the * Lisp Reference Manual version 5.0.

Note that *slicewise is equivalent to * sideways-array when *sideways-array is called
on an array with a normal, processorwise orientation.

*trace

*trace &rest *defun-function-names [Macro]

* untrace &rest *defun-function-names [Macro]

Enable and disable tracing for the named parallel functions, which must have been
defined using *defun.

These macros are similar to the Common Lisp trace and untrace functions, defined in
Common Lisp: The Language.

Invoked at top level, (*trace foo) causes a message to be printed whenever the function
foo is either called or exited; (*untrace foo) turns off this tracing mechanism.

un*defun

un*defun &rest *defun-names [Function]

Removes the macro binding from each specified * defun name and removes the func
tion binding from all symbols derived from the * defun names.

The &rest arguments must be names for functions that have previously been defined
with *defun. Any number of names may be provided.

18 * Lisp Release Notes

When we call (* defun foo •..) a macro named foo is created. Also, another function
with a name derived from foo is created. If we subsequently call (un*defun foo), the
macro binding is removed from foo and the function binding is removed from the sym
bol with the derived name.

vector!!

vector!! &rest pvars [Function]

Creates and returns a vector pvar containing the specified pvars.

The function vector!! takes any number of pvar expressions and returns a vector pvar
equal in length to the number of expressions supplied. Each element of the returned
vector pvar is a vector that contains one element of each supplied pvar.

For example,

(pref (vector!! (self-address!!) (self-address! I»~ 25)
=>#(2525).

The standard rules of coercion are used to determine the element type of the resulting
vector pvar. For instance, a mixture of integer and floating point elements yields a
floating-point result. A mixture of floating-point and complex elements yields a com
plex result. An error is signaled if the data types present are not all compatible. (For
instance, a string-char element and a floating-point element are not compatible.)

The vector!! function is similar to the typed-vector I I function. However an element
type argument is not required for vector!!.

Version 5.1 19

vp-set-deallocated-p

vp-set-deallocated-p vp-set [Function]

Determines whether the specified VP set has been deallocated by a call to deallocate
vp-set. (See Supplement to the *Lisp Reference Manual version 5.0, page 66.)

This function returns t if a VP set has been deallocated, and nil otherwise.

vp-set-rank
vp-set-total-size
vp-set-vp-ratio

vp-set-rank vp-set

vp-set-total-size vp-set

vp-set-vp-ratio vp-set

[Function]

[Function]

[Function]

These functions return the number of dimensions, the total number of processors, and
the VP ratio, respectively, for the specified VP set.

with-processors-allocated-for-vp-set

with-processors-allocated-for-vp-set vp-set
&key :dil'nensions :geometry

&body body

[Macro]

This macro expands into a form that executes allocate-processors-for-vp-set using
the specified dimensions and geometry as arguments. It then executes the body of the
macro. Finally, deallocate-processors-for-vp-set is called to complete the form.

20 * Lisp Release Notes

3.2 *Lisp Language Enhancements

3.2.1 Overview of Language Enhancements

The following categories of *Lisp features have enhanced capabilities that distinguish
version 5.1 of the *Lisp language from version 5.0:

II Deal/oeating VP Sets. A new optional argument to deallocate-vp-set supports
deallocating a VP set without deallocating the geometry currently associated
with it.

.. *Co/d-boot. A new keyword option to the *cold-boot operation makes it pos
sible to deallocate all *defvars and all VP sets while cold booting.

II Sean Operations. A number of improvements to the scanning features are in
cluded in 5.l.

The rank!! and sort!! operations can now use segment pvars and can now be
done in NEWS order.

The scanl! operation is now considerably faster when the scan function is *!!
and the pvar contains floating-point data. Also, scan!! has a new keyword ar
gument, : identity, which must be used if a non-standard scan operator is pro
vided.

Segment set accessors are now available in the *Lisp package. These extract
values from segment set structures, which are created with create-segment
set and which are used with the experimental segment-set-scan! I function.

n Type Casting. It is now possible to treat a portion of an object of one type as if it
were of a different type. The taken-asl! function has a new optional argument
that adds an offset to the source object.

II Speed. Several *Lisp operations now execute more quickly. Notably, *news

and dot-product!! are faster for all cases, and news!! is faster when fetching
data across a power-of-two grid distance.

Version 5.1

3.2.2 Description of language Enhancements

The following *Lisp operations are enhanced in *Lisp version 5.1:

*cold-boot
segment set accessors
deallocate-vp-set
rank!!
scan!!
sort!!
taken-as!!
ppp

A description of each change follows.

"'cold-boot

*cold-boot &key :safety
: initial-dimensions
: initial-geometry-definition
: undefine-all

The : undefine-all keyword argument is new. It defaults to nil.

21

[Macro]

If the : undefine-all keyword argument is set to t, then an invocation of *cold-boot
de allocates and destroys all pvars and all VP sets-with the exception of the default VP
set and the default geometry.

See page 78 of the Supplement to the * Lisp Reference Manual version 5.0 for a discus
sion of *cold-boot.

22 * Lisp Release Notes

Segment Set Accessors

The parallel and front-end segment set accessor functions were unintentionally omit
ted from the *Lisp package in version 5.0. They are included in the 5.1 *Lisp package.

segment-set-start-bits!! segment-set-pvar [Function]

segment-set-start-bits segment-set [Function]

segment-set-end-bits! I segment-set-pvar [Function]

segment-set-end-bits segment-set [Function]

segment-set-processor-not-in-any-segment!! segment-set-pvar [Function]

segment-set-processor-not-in-any-segment segment-set [Function]

segment-set-start-addressl! segment-set-pvar [Function]

segment-set-start-address segment-set [Function]

segment-set-end-addressl! segment-set-pvar [Function]

segment-set-end-address segment-set [Function]

Each segment set accessor function returns the value of a specific slot in the specified
segment set structure. Both parallel and front-end version are provided.

The parallel version of each accessor function takes a segment set pvar. A segment set
pvar is a structure pvar returned by a call to create-segment-set!!. The parallel acces
sor functions each return a pvar that contains the parallel values of a single slot in the
segment set structure pvar.

The front-end version of each accessor function takes a segment set, which is a front
end structure that corresponds to the segment set structure pvar.The front-end acces
sor functions each return the value of a single slot of a front-end segment set structure.

For information about the components of a segment set structure pvar, see Chapter 9,
"Scanning with Segment Sets," in the Supplement to the * Lisp Reference Manual ver
sion 5.0. See Chapter 4, "Structure Pvars," in the Supplement to the *Lisp Reference

Version 5.1 23

Manual version 5.0 for more information about the relationship between the parallel
and front-end structures created by *defstruct.

deallocate-vp-set

deallocate-vp-set vp-set &optional deallocate-geometry-p [Function]

The optional argument, deallocate-geometry-p is new. It takes a boolean value, which
determines whether the current geometry of the specified VP set is to be deallocated.
The default is t; the current geometry is deallocated by default.

Usage Note: Any let-vp-set form automatically calls deallocate-vp-set using the de
fault. Do not assign a geometry that should be preserved to a temporary VP set created
with let-vp-set.

rank!!

rank!! pvar predicate &key :dimension :segment-pvar [Function]

It is now possible to obtain a ranking along grid dimensions and within segments. The
keywords, :dimension and :segment-pvar, now serve the same purpose for rank!! as
they do for scan!!.

The :dimension keyword specifies whether the ranking is done separately for each
value of a single dimension and, if so, for which dimension. It defaults to nil, specifying
a send-order ranking. If a value is supplied, it must be an integer, 0 or greater and less
than *number-of-dimensions*. If a dimension is specified, then the ranking is done
independently for each row of that dimension.

The :segment-pvar argument specifies whether the ranking is performed separately
within segments. The default is nil; rank!! is by default unsegmented. If provided, the
:segment-pvar value must be a segment pvar. A segment pvar contains boolean val
ues, t in the first processor of each segment and nil in all other processors. (See the
* Lisp Reference Manual version 5.0, page 46, for a further discussion of segment
pvars.) If a segment pvar is specified, then the ranking is done independently within
each segment.

24 • Lisp Release Notes

If both a dimension and a segment pvar are specified, then the ranking is done inde
pendently within each row of the dimension and independently within segments within
each row.

Example:

Using a :segment-pvar argument, we might write:

(rank!! (random!! (!! 10»
'<=!! :segment-pvar

(evenp!! (self-address!!»)

If the first 12 random elements were

024 2 175 3 4 782

then the result would be

o 1 100 1 100 1 1 0

Suppose we had a (very small) eM configured with 16 processors in a 4 x 4 VP
geometry, and a pvar x, whose values were

1.2
2.3
0.2

-4.5

3.4
-9.3

1.2
3.8

0.6
2.1

-7.2
8.1

-2.3
-1.2

0.0
0.1

Using a :dimension argument, we might write:'

(rank!! X '<=!! :dimension 1)

and the result would be

2
3
1
o

2
o
1
3

1
2
o
3

o
1
2
3

Version 5.1 25

scan!!

** ** Experimental ** **
The scan!! : identity feature and the generalized scan concept are experimen
tal. * Lisp programmers are welcome to try them at their own risk and with the
understanding that, if insufficiently popular, it may not be supported in future
releases.

scan!! pvar function &key :include-self :direction
:segment-pvar :identity

[Function]

Previously, only specialized scans were supported in *Lisp. Now, the new: identity key
word argument allows generalized scans. This means that parallel scanning calcula
tions are no longer restricted to built-in *Lisp functions. Any associative binary func
tion may now be supplied as the value of function. It is an error if the function is not
associative.

The familiar, specialized scan uses one of the following predefined parallel functions:

+!! *!!
and!! or!1
logand!! logior!!

copy!!

min!!

logxor!!
maxi!

For specialized scans, it is an error to specify the :identity keyword.

If a user-defined function is specified, a general scan is performed and an :identity

keyword value mus~ be supplied.

If supplied, the value of :identity must be the parallel identity element for function.
That is, if function is applied to the identity pvar in combination with any legalpvar
value V, then the result is V.

For instance, a function that does 2x 2 parallel matrix multiplication could be given as
the value of function.

(scan!! my-parallel-matrix 'my-matmult2x2!!
:identity (!! (make-array '(2 2)

:initial-contents '«1 0) (0 1»»)

This specifies the identity matrix as the identity element for the matrix multiply scan.

26 .. Lisp Release Notes

Performance Notes: Providing a general function to scan!! results in significantly slower
performance than providing one of the standard, specialized functions.

Previously, if the value of the pvar argument was a floating-point pvar and function was
*!!, execution was slow. This is now remedied.

sort!!

sort!! pvar predicate [Function]
&key :dimension :segment-pvar :key

In all active processors, rearranges the specified pvar data. Data is sorted into ascend
ing order.

The pvar argument must be either an integer pvar or a floating-point pvar.

The predicate argument must be the symbol '<=!!.

The keywords, :dimension and :segment-pvar are new with version 5.1. They serve the
same purpose for sort!! as they do for scan!!. The keyword : key is also new.

The :dimension keyword specifies whether sorting is done separately for each value of
a single dimension and, if so, for which dimension. It defaults to nil, specifying a send
order sort. If a value is supplied, it must be an integer, 0 or greater and less than *num
ber-of-dimensions·. If a dimension is specified, then sorting is done independently
for each row of that dimension.

The :segment-pvar argument specifies whether sorting is performed separately within
segments. The default is nil; sort!! is by default unsegmented. If provided, the :seg
ment-pvar value must be a segment pvar. A segment pvar contains boolean values, tin
the first processor of each segment and nil in all other processors. (See the * Lisp Refer
ence Manual version 5.0, page 46, for a further discussion of segment pvars.) If a seg
ment pvar is specified, then sorting is done independently within each segment.

If both a dimension and a segment pvar are specified, then sorting is done independ
ently within each row of the dimension and independently within segments within each
row.

The : key argument provides the key on which the sort is done. If provided, it must be a
function that takes one pvar argument and returns a pvar. The : key function is called

Version 5.1 27

on the supplied pvar and then the sort comparisons are done on the value of the result
in each active processor.

For instance, a *defstruct (parallel structure) slot accessor function could be provided
as the : key argument and a pvar ofthe associated *defstruct type could be supplied as
the pvar argument. A sort!! of this description would rearrange data based on the value
of the accessed slot in each processor.

Examples:

Let * represent an unselected processor. Assume we have an 8 processor eM and a
pvar with the following values:

7 * 23* 106

The result of calling sort!! on this pvar is

o * 1 2 * 367

Notice that data in unselected processors remains unchanged.

Using a :segment-pvar argument, we might write:

(sort!! (random!! (!! 10»
'<=!! :segment-pvar (evenp!! (self-address! !»)

If the first 12 random elements were

024 2 175 3 4 7 8 2

then the result would be

o 2 2 4 173 5 472 8

Using a : key argument, we might write

(sort!! afoo '<=!! :dimension 0 :key 'foo-a!!)

If afoo is an instance of a parallel structure with slot faa-a!!, then this form sorts
afoo using its a slot as the key. The sort occurs independently along each row of
dimension 0 (the x dimension).

28 * Lisp Release Notes

taken-as!!

taken-as!! pvar pvar-type &optional offset [Function]

The new optional argument, offset, determines whether the pvar data to be taken as
the specified type should first be offset and, if so, by how much. The default is 0; no
offset is taken by default.
I .

Example:

Consider the pvar u16, which is 16 bits long.

(*proc-laim ' (type (pvar (unsigned-byte 16» u16»
(*defvar u16)

(need-only-8-bits
(taken-as!! u16 , (pvar (unsigned-byte 8» 4)
)

The function need-only-8 requires an 8-bit pvar. Using taken-as!! on u16 with an
offset argument of 4 causes the 4th through the 11th bit of u16 in each processor to
be manipulated by need-only-8 as an (unsigned-byte 8) pvar.

ppp

ppp pvar [Macro]

The *Lisp pretty-print macro, ppp, is enhanced. Structures are now formatted in a
much more readable manner and two new keywords are supported: : pretty and
:stream.

In 5.1, calling ppp on a structure, by default, yields output such as the following:

#S(PERSON :NAME 0 :AGE 0 :SEX NIL) #S(PERSON :NAME 0 :AGE 0
:SEX NIL) #S(PERSON :NAME 0 :AGE 0 : SEX NIL)

If the new keyword : pretty is given the value t, printed output such as the following
results:

Version 5.1 29

#S(PERSON : NAME 0
: AGE 0
:SEX NIL)

#S(PERSON : NAME 0
:AGE 0
:SEX NIL)

#S(PERSON : NAME 0
: AGE 0
: SEX NIL)

The new :stream keyword takes a stream and directs output there. The default is stan
dard output.

30 * Lisp Release Notes

4 *Lisp Compiler Version 5.1

The *Lisp compiler is an extension to the Common Lisp compiler as implemented in
each Connection Machine front-end development environment. The *Lisp compiler
translates *Lisp code into Common Lisp code with calls to Paris. Then the installed
Common Lisp compiler translates the Lisp code generated by the *Lisp compiler into
native machine instructions.

Version 5.1 of the *Lisp compiler handles an expanded set of *Lisp operations and
generates more efficient code for many of the operations it compiles.

NOTE: Here, as in other *Lisp documentation, the verb "to *compile" is used to mean
"to compile with the *Lisp compiler." In this way, compilation by the Common Lisp
compiler (x is compiled) is distinguished from compilation by the *Lisp compiler (x is
*compiled).

4.1 *Lisp Compiler Enhancements

Several improvements distinguish version 5.1 of the *Lisp compiler from version 5.0.

II Increased Scope. More *Lisp operations now * compile. The new ones are
documented below.

II Improved Performance. The *Lisp compiler produces more efficient code than
previously.

II New and Enhanced Compiler Options. Several new options are supported and
one existing option is improved.

4.1.1 Increased Scope - Forms That Newly *Compile

Not all but most *Lisp operations can be *compiled; those that cannot be *compiled
run interpreted. For a general discussion about what does get *compiled, see the * Lisp
Compiler Guide version 5.0.

Most operations new with version 5.1 can be *compiled.

Version 5.1 31

4.1.1.1 Forms That *Compile without Restrictions

In version 5.1, the *Lisp operations listed below *compile. In previous versions, these
were not handled by the *Lisp compiler.

(!! CL-aggregate)
allocate!!

amap!!
array-in-bounds-pl!

array-row-major-index! !

byte!!

*defvar

dot-product! !
news-border! !

pref

ppp!!

(*setf (pref parallel-structure»
sideways-aref! !

typed-vector! !

v+!!
v-I!

v*!!

In addition, the *Lisp compiler attends to the special forms *Iet, *Iet*, let, let*,

compiler-let, and progn when they appear inside *Lisp forms that *compile.

Descriptions follow as warranted.

Parallel Aggregates *Compile.

In version 5.1, the *Lisp compiler compiles aggregate parallel data. Simple parallel
data constructs of the form (!! x) have always *compiled-if properly declared. Now
parallel vectors, parallel arrays, and parallel structures also *compile.

For example, in addition to expressions such as

(*set (the (unsigned-byte-pvar 8) x) (!! 5»

each of the following expressions also *compiles:

32

(*set (the (vector-pvar single-float 3) x)
(!! #(1.0 2.0 3.0»)

• Lisp Release Notes

(*set (the (array-pvar (unsigned~byte 8) (2 2» x)
(!! #2A«0 1) (2 3»»

(*set (the foo-pvar afoo) (!! #S(FOO :A nil :B 0.0»)

Some Parallel Vector Functions *Compile.

The parallel vector addition, subtraction, and multiplication functions, v+!!, v-I!, and
v·!! all *compile. For example,

(*proclaim '(type (vector-pvar single-float 3) x y z»
(*defvar x)
(*defvar y)
(*defvar z)

(*set x (v+!! (v*!! x y) z»

now *compile. The equivalent form, using amapl!, also *compiles:

(*set x (amap!! '+!! (amap!! '*!! x y) z»

Parallel vector functions compile into very efficient code.

For instance,

(*set vI (v+!! v2 (v*!! v3 v4»)

where the v's are vector pvars, *compiles into extremely efficient code.

The dot-product!! function *compiles.

For instance, the following expression *compiles:

(*set (the single-float-pvar q) (dot-product!! x»

Notice that this can be rewritten using reduce!! and amap!! as

Version 5.1 33

(*set (the single-float-pvar q)
(reduce!! '+!! (amap!! '*!! x x»)

which also *compiles.

Some Special Forms *Compile.

The special forms listed below now *compile when they occur inside any *Lisp form
that *Lisp compiler compiles. (See The * Lisp Compiler Guide version 5.0, page 5, for a
list of *Lisp macros that compile.)

For example:

*Iet
let
compiler-let

Iet
let*

progn

(*set sf3 (*let «sppoo (sqrt!! sf2»)
(declare (type single-float-pvar sppoo»
(sqrt!! sppoo»)

As a further example, consider the the following expression containing nested
compiler-let forms:

(*set sfl (compiler-let «*safety* 0»
(I!! sfl (compiler-let «*safety* 3»

(+!! sf2 sf3»»)

The +!! is compiled with safety 3, the I!! with safety 0, and the * set with whatever it was
before this call.

With the ability to *compile these special forms comes the ability to use Paris-like
functions with negligible overhead, as in the code below.

(defmacro *lisp: : my-function (argument)
'(*let (destination)

(declare (type (pvar single-float) destination»
(cmi: : my-function (pvar-location destination)

(pvar-location ,argument) 23 8)
destination))

(*set dest (*lisp::my-function source»

34 ... Lisp Release Notes

Usage Note: Generally, only the initial value forms of a *Iet or *Iet* are *compiled.
However, if a *Iet or *Iet* occurs within another form that the *Lisp compiler com
piles, then the body of the *Iet or *Iet* is also *compiled.

4.1.1.2 Forms That *Compile with Restrictions

In version 5.1, the following *Lisp operations, which did not previously *compile now
*compile if the restrictions noted below are observed:

dpb!!
Idb-test!!
pref!!

Idb!!
mask-field! !

scan!!

A few *Lisp operations that *compile with restrictions were poorly documented in the
5.0 release notes. For the operations listed below, more accurate descriptions of appli
cable compiler restrictions are included here.

character! !
digit-char-p! !
make-char! !
*Iet
*unless

code-char! !
int-char!!

Iet
*when

dpb!!
Idb-test!!

Idb!!
mask-field! !

pref!!

The bytespec-pvar argument must textually be a call to byte!!.

The argument pvar-expression must be a simple expression, such as a vari
able.

A previously undocumented restriction on the pref!! macro has been lifted
in 5.1. The pref!! macro now *compiles when the: collision-mode keyword
value is :many-collisions. In the past this has, not been the case.

Version 5.1 35

scan!!

'Previously, the scan!! function *compiled. However, scan!! did not accept
*!! as its function argument. With version 5.1, *!! may be specified as the
function argument. In order to *compile a scan!! with afunction argument
of '*!!, the pvar argument must be a floating-point pvar.

character! !
digit-char-p! !
make-char! !

code-char! !
int-char!!

*Iet
Iet

*unless
*when

These *compile only if the result is used as the source pvar in a * set form.

Only the initial values are guaranteed to *compile. The *Lisp compiler at
tends to the body as to any other form; operations that otherwise *compile
do so inside the body of a *Iet or *Iet*. Operations that do not otherwise
*compile do not *compile from within one of these forms.

Only the predicate is guaranteed to *compile. The *Lisp compiler attends
to the body as to any other form; operations that otherwise *compile do so
inside the body of a *when or *unless. Operations that do not otherwise
*compile do not *compile from within one of these forms.

36 * Lisp Release Notes

4.1.2 Improved Performance

The following categories of *Usp operations now compile more efficiently:

n Combinations of parallel multiplication and addition

II Long distance NEWS communication

u Context selection forms

Descriptions follow.

For Connection Machines with floating-point hardware, combinations of *!! and +!! or
of v*!! and v+l! now produce very efficient compiled code.

An example of the affected expressions is:

(*set x (*!! (+!! x y) z»

where x, y, and z are floating-point pvars.

Long-distance newsll communication is faster.

If the newsl! distance is a power of two, news!! compiles into one of the new Paris
CM:get-from-power-two instructions, and is therefore faster.

In version 5.1, the context-selection forms, * all, *when, * let, and * defun, produce more
efficient expansions.

The compiler now discerns when one of these forms is returning a pvar and handles it
efficiently, even when several of these forms are nested.

Usage Note: If the last form of a * all or a *when is a * all or a *when, then the inner form
does not save and restore the context flag.

Version 5.1 37

4.1.3 New and Enhanced Compiler Options

Version 5.1 includes a few changes to the compiler options. The Use Always Instruc
tion compiler option is improved and a new option, Rewrite Arithmetic Expressions, is
supported for *Lisp environments on any front end.

Three options have been added to the *Lisp compiler menu on Symbolics front ends.

• Macroexpand Repeat

• Macroexpand Inline Forms

• Macroexpand Print Case

The defaults for these three options (t, t, and nil, respectively) correspond to the default
behavior of a Symbolics Lisp machine.

Use Always Instruction

This option is imported with version 5.1. The *Lisp compiler now generates Paris -al
ways instructions for code inside of a * all form when the variable * use-always-instruc
tions * is set to t.

Macroexpand Repeat

Values:
Default:
Variable:

Yes (t), No (nil)
Yes (t)
* macroexpand-repeat *

This option controls the way the command Macro Expand Expression works.

A value of t causes the command Macro Expand Expression to use the Common Lisp
macroexpand function, which macroexpands using macroexpand-1 repeatedly.

A value of nil causes the command Macro Expand Expression to use the Common Lisp
macroexpand'-1 function, which does not repeat.

38 * Lisp Release Notes

Macroexpand Inline Forms

Values:
Default:

Yes (t), No (nil)
Yes (t)

Variable: * macroexpand-inline-forms *

This option controls the way the command Macro Expand Expression All expands in
line function forms.

A value of t causes the command Macro Expand Expression All to expand inline forms
as if they were macros. This is the default behavior.

A value of nil prevents the command Macro Expand Expression All from expanding
inline forms as if they were macros.

Expanding inline function forms as if they were macros may make output of the *Lisp
compiler hard to read. For example, consider the following * set expression:

(*set u8 u4)

With *macroexpand-inline-forms* set to nil, an invocation of Macro Expand

Expression All displays the following code:

(progn ;; Move (coerce) source to destination - *set.
(cm:unsigned-new-size (pvar-location u8)

(pvar-location u4) 8 4)
nil)

With *macroexpand-inline-forms* set to t, an invocation of Macro Expand

Expression All displays the following code:

(progn ;; Move (coerce) source to destination - *set.
{cm:unsigned-new-size (aref u8 1) (aref u4 1) 8 4)

nil)

Notice that function calls like pvar-Iocation have been turned into calls to aref.

Version 5.1

Macroexpand Print Case

Values: No (nil),
Downcase (:downcase), Upcase (:upcase)
Capitalize (:capitalize)

Default: No (nil)
Variable: * macroexpand-print-case *

39

This option controls the print case used to display the expansions produced by the
Macroexpand Expression command.

A *macroexpand-print-case* value of nil causes the value of the variable *print

case * to be used. This is the default.

If the value of *macroexpand-print-case* is non-nil, it is used.

Rewrite Arithmetic Expressions

Values:
Default:

Yes (t), No (nil)
Yes (t)

Variable: * rewrite-arithmetic-expressions *

This option determines whether the compiler optimizes arithmetic operations as if
they were associative.

A value of of t allows the compiler to rewrite arithmetic operations as if they were asso
ciative. This is the default.

A value of nil prevents this arithmetic-rewriting optimization.

Usage Note: When computing with floating-point data, results vary depending on how
this option is set. For example, consider the expression

(*set x (+!! x y z»

The laws or arithmetic allow this to be computed as either of the following expressions:

(* set x (+!! x (+!! y z»)

(*set x (+!! (+!! xy) z»

40 * Lisp Release Notes

Given the limitations imposed by fixed-precision floating-point arithmetic, the two
ways of evaluating the original expression may not yield identical results if x, y, and z
are floating-point or complex pvars.

When this option is enabled (the default), the *Lisp compiler may produce more effi
cient code.

When this option is disabled, the *Lisp compiler evaluates expressions in the order in
which they appear textually (the second alternative above).

Regardless of the value of * rewrite-arithmetic-expressions *, the user may force a spe
cific order of evaluation by explicitly directing the computation, as in the following:

(*set x (+!! x y»
(*set x (+!! x z»

4.2 *Lisp Compiler Restrictions

4.2.1 New 5.1 Forms That Don't *Compile

The operations listed below, which were introduced with version 5.1, do not yet *com
pile.

deallocate-processors-for-vp-set
deallocate-vp-set-processors
news-direction! !
* news-direction
off-grid-border-relative-direction-pl!
* processorwise
* room
sideways-array-p
*slicewise
*trace
*untrace
un*defun
vp-set-deallocated-p
vp-set-rank
vp-set-total-size

Version 5.1 41

vp-set-vp-ratio

with-processors-allocated-for-vp-set

4.2.2 Cumulative List of Forms That Don't *Compile

For easy reference, here is a cumulative list of all the *Lisp forms that do not compile.
(This list supersedes section 5.2.1 of the *Lisp Release Notes version 5.0.)

address-nth! !

address-plus-nth! !

array-dimension! !
* array-dimensions

array-in-bounds-p! !

*array-rank

array-total-size! !
array-to-pvar-grid

byte-size!!

char-bit!!
deallocate-vp-set-processors

digit-char! !
grid!!

*map

news-direction! !
off-grid-border-p! !

address-plus! !

address-rank! !

array-dimensions! !
* array-element-type

array-rank! !

* array-total-size
array-to-pvar
byte!!

byte-position! !

deallocate-processors-for-vp-set .
deposit-field! !

equalp!!
grid-relative! !

* news

* news-direction
off-vp-grid-border-pll

off-grid-border-relative-direction-p! !

* processorwise

pvar-to-array-grid
ppp-address-object

*room

set-char-bit! !

*slicewise

* sideways-array

*trace

un*defun

vp-set-rank

pvar-to-array

* pset-grid-relative
pppdbg

rot!!

sideways-array-p

sort!!

structurep! !

*untrace

vp-set-deallocated-p

vp-set-total-size
vp-set-vp-ratio

with-processors-allocated-for-vp-set

parallel-structure-p! !

In addition, none of the experimental parallel sequence operations can be *compiled,
nor can any of the experimental segment set scan operations.

42 • Lisp Release Notes

5 *Lisp Simulator Version 5.1

The *Lisp simulator runs on top of Common Lisp and executes *Lisp code without
using a Connection Machine system.

The *tisp simulator is known to run on the following implementations of Common
Lisp:

Symbolics Common Lisp on a Symbolics Lisp machine
Many Common Lisp implementations on many machines running UNIX
Allegro Common Lisp on a Macintosh II

Thinking Machines Corporation customer support can provide tapes and installation
instructions.

The *Lisp simulator can be made to run on any full implementation of Common Lisp
with minimal porting effort.

5.1 New Simulator Version

Version F16 of the *Lisp simulator corresponds to *Lisp version 5.1.

Version F15 of the *Lisp simulator, which corresponds to *Lisp version 5.0, was
shipped with *Lisp version 5.1. Version F16 of the *Lisp simulator is now available for
general release. If you wish to have F16 installed, ask your applications engineer or a
Thinking Machines Corporation customer support representative to do so.

5.2 *Lisp Simulator Enhancements

5.2.1 Version 5.1 language Features Simulated

All the language features that are either new or enhanced in *Lisp version 5.1 are im
plemented in the *Lisp simulator.

Version 5.1 43

5.3 Simulator Restrictions

The *Lisp simulator supports only general pvars; it does not support any of the other
pvar data types (e.g., floating-::point pvars or complex pvars). The *Lisp simulator does,
however, support aggregate data structures, such as array pvars, vector pvars, and
structure pvars.

5.3.1 Restrictions Lifted in 5.1

With the exception of the restriction on pvar type, all the simulator restrictions re
ported in section 6.2 ofthe * Lisp Release Notes version 5.0 are lifted with the release of
version 5.1.

The patch to *pset, given in section 6.3 ofthe *Lisp Release Notes version 5.0, is incor
porated in versions F15 and F16 of the *Lisp simulator.

5.3.2 Abort and Cold Boot Problem

If the *Lisp simulator is aborted in the wrong place, an attempted *cold-boot opera
tion will not succeed; the simulator will go into the debugger and not complete. To
reset, execute the following forms:

(*sim-i: : reset-everything)
(*cold-boot)

This will generally clear up the problem, albeit at the expense of destroying all *defvar
and VP set definitions.

6 Implementation Notes

Information about version 5.1 implementation corrections and about new implemen
tation errors in version 5.1 will be published in successive issues of the system software
bulletin, In Parallel, beginning in August 1989.

44 .. Lisp Release Notes

7 Helpful Hint: *set Restriction

A previously undocumented restriction on *set has caused errors in some users' code.

It is an error to attempt to *set a function parameter if that parameter is a temporary
pvar. A temporary pvar is defined as nill!, til, or any other pvar not created with *Iet,
* let*, * defvar, or allocate! I. Temporary pvars are created by *Usp functions such as !!
and+!!.

Consider the function foo below.

(defun foo (x) (*set x (!! 5»)

The following expressions violate this rule and are therefore in error:

(foo (!! 3»

(foo (cos!! (+!! a b»)

However, the expression below is not in error because x is not a temporary pvar; x is
created with *Iet.

(foo (*let (x) (*set x (cos!! (+!! a b») x»

The result of violating the restriction against using * set to change the value of a tempo
rary variable is undefined. The *Lisp simulator catches the error and prints an error
message. Neither the *Lisp interpreter nor the *Lisp compiler catches this error.

