PRELIMINARY

TEMPO I

INTERFACE REFERENCE MANUAL

PROPRIETARY INFORMATION

This document contains proprietary information
of Tempo Computers, Inc. No part of this docu-
ment shall be reproduced, transferred to other
documents or disclosed to others without the prior
written consent of Tempo Computers, Inc.

TA-1000-469. 1

TABLE OF CONTENTS

SECTION
I. INTRODUCTION
1.1 General Description
1.2 Purpose of the Manual
1.3 Processor Organization
1I. INPUT/OUTPUT OPERATIONS
2.1 General
2.2 Input/Output Commands
2.3 1/0 Bus
2.4 Interrupt Description
1. I/0 BUS DESCRIPTION
3.1 Introduction
3.2 1/0 Timing
3.3 Electrical Interface
3.4 Recommended Controller 'nterface
1v. HIGH RATE INPUT/OUTPUT
V. DESIGN NOTES
APPENDICES
A I/0O Instructions and Sample I/O Sequences
B Cable and Connector Detail (to be added)
C Order Code Assignment for Peripherals (to be added)
D Distributor Schematics (to be added)
E High Drive I/O Bus (to be added)

Figures

Tables
2-1
3-1

Control Processor Organization
Input/Output Interface

Timing Sequence for all I/O Commands
Block Diagram of I/O Structure
Logic for External Interrupts
TEMPO I 1/0O Bus Configuration
I/O Timing

Class I Lines

Class II Lines

Class III Lines

Recommended Controller Interface

High Rate I/O Interrupt Sequence

Priority Assignments

I/0O Bus Lines and Mnemonics

ii,

1.

.1

INTRODUCTION

General Description

The TEMPO I is a very high speed, parallel, general-purpose digital
computer. It incorporates the latest in technological achievement
with organizational features that make it applicable to a wide range

of applications. It is equally well suited for the most demanding large
scale processing as it is for on-line control applications.

In general its characteristics are:

Memory cycle time of 900 nanoseconds

16-bit word length (parity optional)

Modular construction

Memory expandable to 65,536 words - all addressable
Flexible addressing modes

Register oriented - one Accumulator Register, seven
Accumulator/Index Registers (eight additional Accumulator/
Index Registers optional). Nine other internal registers.

Flexible I/O - Asynchronous (hand-shaking) operation.
Up to 700, 000 words per second and seven high rate channels
optional.

Software includes Real-Time Fortran IV as well as assembler
and program and diagnostic aids.

. Ruggedized mechanical design which is modularly expandable.

Module size 12-1/4 inches by 17 inches by 24 inches - contains
up to 8K of memory, power supply, control processor and
controllers.

Expansion module can contain up to 16K of memory.
In addition to the features listed above, the TEMPO I has many options
which allow the system to be tailored for a specific application in an

optimum manner.

Purpose of the Manual

This manual is intended to provide all the necessary information to
interface the TEMPO I computer to other system components. Included
herein are circuit and timing information as well as design and interface
constraints. Cabling and grounding information is also provided.

1.3

1.3,

1.3.

While a detailed knowledge of the internal working of the TEMPO I
system is not necessary in order to interface the equipment it is
recommended that the user familiarize himself with the total system
concept and machine organization. A brief description of the machine
structure is included here but a more detailed treatise may be found
in the System Reference Manual.

Processor Organization

Introduction

The systems organization of the TEMPO I Control Processor (CPU)
is shown in Figure 1-1. The CPU consists of a register group, a
control section, and arithmetic section and the console and I/0O
sections.

Register Descriptions

Programmable Registers

Accumulators: There are effectively eight accumulators and seven
index registers in the basic system (denoted as X-Registers, X

through X_[). Registers XO and X1 are used as A and B registers
for most operations.

Program Counter (P);: The Program Counter is a register which

contains the address of the next instruction word. The programmer
may control this register through the use of Branch instructions.
Hardware control normally causes automatic increment of this
register.

Status Register (S) (Optional): The S-Register contains the various
flags set as the result of the execution of instructions. These flags
are: Less Than; Greater Than; Equal; Overflow; Master Mode
(optional); Program Flags 1, 2, 4, and 8 (optional); and seven High
Rate I/O Enable Flags (optional). This register may be loaded
from and stored into memory. This is particularly useful for
servicing interrupts with subroutines which may alter the state of
the control flags.

Register Memory (X) (Optional): These are eight additional general-
purpose registers which may be used for accumulators, indexing
and high rate 1/0.

Interrupt Mask (N) (Optional): This is a 16-bit register used to
selectively enable/disable the external interrupts. The register
can be loaded from memory or stored into memory.

To/From

Memory

A
—3 [1
v L Interrupt ;Re N ¢ ;
"~ |Register Control poegrster
egister’
._._.l —_— ————n
Control Arithme { I H :
. . L —
X “tic Unit IRegister
LOptions | g oo
) T A T "
—_— ’ -9
LJ M E P i S | D X
{Register Register Register Ee:\gistexj Register Register
=y ‘ X T (®)
y l
rx
Registerg
——m
I/0O Drivers (8)
y
Console
I/O Bus
‘L _ _ 1 Options
Figure 1-1. Control Processor Organization

Non-Programmable Registers

Instruction Register (I): The [-Register accepts instruction words
from memory during the instruction fetch cycle of the machine and
holds them for interpretation by the control section during the execute
cycle.

M-Register (M): This register contains memory address and operand
data. It is used for information transfer to and from the memory.

In addition it is used to store intermediate results during the execution
of instructions.

L-Register (L): The L-Register holds the effective address as calculated
by the address modification sequence of the current instruction. The
L-Register is the register through which all memory addresses pass;

it drives the memory address bus.

D-Register: A buffer register used to fetch and store data in the
X -Registers.

H-Register: A buffer register required for high rate input/output.

E-Register: Used for double length operations in conjunction with
the D-Register.

Control Section: The Control Section is the origin of all timing and
data path functions for the CPU. '

Arithmetic Section: The Arithmetic Section contains all the elements
for arithmetic and logical operations on the data and for program
modification of instruction words and indexing.

Console Section: This section contains the necessary switches and
gating elements to transfer data from the console panel into the CPU.
All programmable registers and sense functions are accessible via
the console.

Input/Output Section: The transmission of control and data words
between the CPU and external devices is accomplished by the I/0O
section. Each peripheral device option includes a controller which
controls one or more devices and interfaces with the peripheral bus.
The general characteristics of the Input/Output interface are:

64 device addresses available
Asynchronous
Four standard interrupts

. Interrupts expandable to a maximum of 256
Single word or block transfer
Up to 700, 000 words per second

DTL compatible
-4-

II.

.1

INPUT/OUTPUT OPERATIONS

General

The input/output interface of the Control Processor is shown in
Figure 2.1. The communication is between the Control Processor
and the various devices. A standardized interface (the I/O bus) is
the key system concept. This bus provides a simple, regular
interface for attaching various I/O devices to the system. The
standardization is carried through the logic, circuit, and mechanical
designs.

Between the standard I/O bus and the various devices with their
associated electronics (device oriented electronics - DOE) are
device controllers. The purpose of these controllers is to adapt
the diverse requirements of the devices to the standard interface
(the I/O bus). Note that controllers may handle multiple devices.
Many of these controllers are standard products of Tempo Computers,
Inc.; those that are not can be easily designed as special products
due to the straightforward logic of the I/O bus.

The I/O concept is that of asynchronous priority interrupts. A
particular peripheral or set of peripherals (devices and associated
controllers) is started. No further attention is required of the
CPU, thereby allowing processing to proceed until the device has
come up to speed and either has data ready for input or is ready to
accept information. Upon reaching this ready state the controller
activates its associated interrupt without regard to either the state
of the CPU or other controllers. The priority interrupt logic of the
CPU will choose the appropriate time to interrupt the processing
(generally at the end of the current instruction in‘process) and will
choose the highest priority interrupt for service.

Actual transfer of data is done either between the A-Register (Word
Transfer Command) or the memory (High Rate I1/O feature) and the
peripheral upon acknowledgment of the interrupt.

Three basic classes of instructions are provided: 1) Execute Device
Function (examples: start reader, set read mode, stop write); 2)
Word Transfer (transfer one word into A-Register from peripheral,
transfer one word from A-Register to peripheral); 3) Status
Examination (read a word of status information from peripheral to
A-Register, interrogate interrupt status of common interrupt line).
Appendix A contains a complete description of I/O instructions as
well as typical I/O rates on the standard bus.

Control
Processor

Device Controller #1
Device .
. Address (6) 1. Address Decode gev’lce and
2. Control Decode ' eche
Control (11) Oriented
< 3. Data Gating Electronics
! - Data (16) 4. Control & Sequence (DOE)
| Logic [
b Interrupt (1 oxf |
h
| 2) I
|
|
Device |
(16) Data | Optional Devices
Bus Address |
) A) (6) L
| 71 DOE
Control (11) b —
(16) " L
Interrupé |
e
< _D4—1/0 Bus : DOE

—~ Vand oA ~N
n’ v ~s sl

I Other Controller/
Device/DOE

o Combinations
»/Controller Device

#N & DOE
! J
~
I1/0O Bus

Figure 2-1. Input/Output Interface

Input/Output Commands

General

In order to properly communicate I/O commands between the CPU
and peripheral controllers, both units require information about the
instruction to be performed. The format of all the I/O instructions
is as follows:

c k o d
v bbb b bt

1st Word L

2nd Word | M |
.0 4 8 - 12

The c-field is used only by the CPU to specify that the instruction
is an I/0 instruction; all I/O instructions have the c-field equal to 15.

The k-field is used by both the CPU and the controllers to determine
the sequence which each must execute for the various commands.
See explanation of each below. Nae that, in general, the k-field
describes a class of command which defines the CPU sequencing
required. The peripheral needs the information contained in the
k-field but it is not sufficient to describe the operation for the
controller. In addition, it needs the information in the o-field.

The o-field contains information which expands the meaning of the
k-field for the selected controller. The CPU does not use this
information. Each controller interprets the o-field in its own way.
In other words, a card reader controller would interpret an o-field
code differently than a magnetic tape controller would upon receiving
the same code. The A-Register data is also gated onto the I/O bus
data lines during the execution of EDF commands and is used to
expand the orders to the peripheral controllers (if the controller

is designed to use this information).

The d-field is used only by the controllers and provides the device
selection address.

The y-field is used only by the CPU as the branch address in the event
that an I/O command is rejected. A timer in the CPU control logic is
started when the I/O command is sent out. If a response is not received
from the controller (EKQO) before the timer has run out the command

is defined as being rejected. The y-field is used to execute a branch.
The program counter is stored in the memory location addressed by

y and the next instruction is fetched from y + 1.

There are three basic classes of I/O commands: Execute Function,
Word Transfer, and Status Examination. The next sections describe
these commands in detail.

Execute Functions

These are the Execute Device Function (EDF) commands which cause
a controller and associated device to start or stop or go into a new
mode. As with most I/O commands, failure to receive an EKO
signal at the CPU within the timer limit will result in a reject branch.

Figure 2.2 shows the timing sequence for these commands. The EDF
sequence proceeds as follows: a) the k, o, and d-fields and A-Register
(data output) information is gated into the appropriate I/O busses;

b) after an appropriate delay the strobe line is made true and the reject
timer is started; c) when the selected (d-field code) controller receives
the strobe it transfers the appropriate information into its state
register and sends the EKO pulse. When the CPU receives the EKO
pulse it drops the k, o, and d-field, data output information and the
strobe line. The turn off of these lines happens as soon as the EKO

is received but an overlap is shown to indicate the line and driver/
receiver delays. The EDF command is now complete.

Word Transfer

This class consists of Word Transfer In (WTI) and Word Transfer Out
(WTO) commands. The WTO command causes 16-bit data to be
transferred from the A-Register to the selected controller. The WTI
command transfers 16-bits of data from the controller to the A-Register.
Some controllers do not supply a full 16-bits (example: card reader
12-bits) but this is a function of the gating of the controller. The

WTI and WTO commands transfer in whatever is put on the bus and
always gates the full 16-bits of the A-Register onto the data lines.
The sequence of operations for the WTO is the same as that described
for the EDF command. For the WTI command the sequence is the
same with the following exceptions: a) the A-Register is not gated
onto the data bus along with the field information; b) the information
from the controller is gated onto the data lines just prior to the EKO
pulse and remains true throughout the duration of EKO.

During the High Rate 1/O sequence a simulated WTO and WTI is
executed. Viewed from the controller the sequences are identical

to those described for WTI/W TO; however, the instructions are not
inserted into the I-Register and the data is transferred to or from
memory rather than the A-Register. High Rate I/O operations do not
affect the CPU status and control states.

Data Input, Device
Status, or Interro-

gate Response

| N L b
, | | .
l L . L
' (I | | '
1 1 L | l !
Field Information | N\t |
Kk, o, d-fields | a ! ' |
and Data Output l || | : | :
| |1 by I
|)| b P
l [| P
Strobe t | I +—
1 | | o
| | [
| | | !
| | :
EKO v p !
| | |
| | |
{ |
| |
|
| |

e b e] —— e

*Applicable only to RDS, WTI and ICI commands.

Figure 2-2. Timing Sequence for all I/O Commands

Status Examination

This class of I/O commands include: Request Device Status (RDS),
and Interrogate Common Interrupts (ICI). All of these commands
are involved in examining the status of selected controllers. It
should be noted that the execution of any Status Examination command
does not reset the status flags in the controllers. Execution of an
EDF command does reset the status flags.

The RDS command causes a word (up to 16-bits) of status information
to be transferred from the selected controller (d-field) to the
A-Register. The timing sequence, shown in Figure 2.2, is the same

as that described for the WTI instruction. The reject of the command
will be detected and the branch will be executed to the y-field address
as previously described.

The Interrogate Common Interrupts (ICI) command causes a word of
information to be transferred from the data lines to the A-Register.
The ICI command applies to multiple controllers which are sharing

a common interrupt. Each controller on the common interrupt line
recognizes the interrogate by the code in the k-field. If the controller
requires service it will make true at EKO time the data line corres-
ponding to its assigned device code. The ICI command does not reset
the interrupt.

1/0 Bus

The I/O bus is a true functional bus in that only one of the controllers
may be communicating at a time. The bus may be classified into
four types of signals: address, control, data and interrupts. These
lines and their interface into the CPU are shown in Figure 2. 3.

Device Address Lines (Output)

Six lines transmit a binary code of 0 to 63 to the controllers for
selection of device and/or controller. These lines are used in
conjunction with the strobe line for all I/O commands. Only that
controller whose device code is true will respond; all others remain
quiescent.

Control Lines (Input and Output)

These lines provide control signals between the CPU and the peripheral
controllers. They are:

a) o-field: Three binary coded lines which describe the
order being sent to the selected peripheral
controller. These lines are interpreted by
the particular controller only if it has been
selected by the address lines having the unique
address associated with it on the bus at strobe
time. Note that the A-Register is also made

-10-

|

Register

X
Register
0

o

v s+ 2 i

A

’iRegiste

"Register—

SR —

i

D

[EUEES

——

r E

B

i e

i

i

|

Adder |

To/From Memory

| M

Register

[

equence
Control

Drivers

-&-

[

]

Drivers
ko &k field)

Driver

Driver

Driver

Driver

K Y (6)
Device
Address

Y (6)

Control

Y (1)
Strobe

v (1)

Per.
Clock

v (1)
System
Reset

v (1)
Progra
Load

A4

Class II (16)

i

Rcvr

Rcvr

Drivers/
Rcvr

*(16)

, (1
nterrupt Echo

N

Class III (17)

t(lb

Class I (16)

Class I - Bidirectional

Class II - Output
Class III - Input

N

I/0O Bus - 49 Lines

Figure 2-3.

Block Diagram of I/0O Structure

-11-

b) k-field:
(output)

c) Strobe:

(output)

d) Echo (EKO):

(input)

available on the data lines to expand the
order set during Execute Device Function
(EDF) commands.

Three binary coded lines which describe the
class of instruction to be performed by the
selected peripherals. These lines may be
interpreted by the peripheral controller only
during strobe time and only if the device
address contains the unique address associated
with the controller.

k-field code

000 EDF Execute Device Function

001 WTO Word Transfer Out

0lo WTI Word Transfer In

011 RDS Request Device Status

100 ICI Interrogate Common Interrupts
101 Reserve

110 Reserve

111 Reserve

Note that all controllers must fully decode these
lines.

This line is used by the controllers to examine
various output lines (to controllers) at a time
when their condition has settled to a valid state.
The output lines pertinent to strobe are: data
output, control and address lines.

This line is sent to the CPU from the peripheral
controllers in response to the strobe. This

signal notifies the CPU that the selected controller
has received a valid order (k-field and/or A-
Register) and is responding. The strobe is
terminated upon receipt of the EKO pulse. In
addition, the EKO is used to strobe input data
from the I/O bus into the CPU during Word
Transfer In commands.

e) Program Load: This line is effective only if the Program Load

(output)

option is installed. It signals the selected
peripheral, when initiated by the Program Load
action from the console, to execute a special
Read One Record (EDF) sequence. This sequence
causes a single physical record to be read. Each
time a word or character is ready, the associated
interrupt line is raised and a transfer takes place.

At the end of the physical record the device is
halted and the controller returns to the quiescent

state.

-12-

2.4

f) System Reset: This line causes all peripheral controllers
(output) to cease any current activity and return to an

idle state. All status flags (except those requir-
ing operator attention) are reset, all mechanical
devices come to a halt and the controllers become
ready to accept commands (unless operator
intervention is required). The System Reset
switch on the console initiates this reset pulse.

g) Peripheral Clock: This line carries a free running 4 MHz
(output) clock for use in the logic design of peripheral
controllers. It is not in synchronization with
the CPU clock, nor can it be guaranteed to be

in phase with itself in different controllers.

It is merely provided to avoid duplication of

clock oscillators in the various peripherals.

Data Lines (Input/Output)

Sixteen bidirectional lines which transmit information either from the
selected controller to the A-Register (I/O commands) or M -Register
(High Rate I/0O) or from the A or M-Registers to the selected controller.

For byte transfers the data input to the computer must appear on lines
8 through 15. All data output from the CPU will appear on lines 0
through 7. '

Interrupts (Input)

Sixteen lines which transmit interrupt signals from the controllers to
the CPU. Generally only one controller attaches to each interrupt line

but up to 16 may be '""ORed' to any interrupt line.

Interrupt Description

General

The interrupt design has the following general characteristics: a)
asynchronous, b) multiple priority level and c) maskable.

The interrupts are asynchronous in that they may be set by their
respective controllers or control logic without regard to the CPU

clock or control state or the state of any other controller. Generally
the controller has a flag which is made true when the controller
requires service, timed by the controller clock. The flag is reset when
the service has been provided by the CPU via an I/O command.

-13-

There are various 'levels' of priority which are generally established
by the classes: a) internal, b) system, c) high-rate, and d) external.

The priority logic of the system selects the appropriate interrupt for
servicing when two or more interrupts are pending. In addition, this
logic permits higher level interrupts to interrupt lower level interrupts
in process of being serviced.

All external interrupts are maskable. By various means they may be
selectively disabled under program control. This masking operation
does not reset the flag in the controller, it merely prevents the priority
logic from considering the disabled interrupt at priority selection time.
Interrupts which are disabled (masked) and are set true by the controller
will be ''remembered'" and serviced when the mask is removed.

Number

There are six optional internal interrupts. These are in order of

priority:
1. Power Fail Restart
2. Parity Error
3. Instruction Trap
4, Memory Protect Error
5. Privileged Instruction Error
6. System

The four standard interrupts are expandable in groups of four to a
maximum of 16. If the High-Rate I/O option is selected the first four
interrupts must be in the machine as the four standard interrupts are
numbers 12 through 15. The priority of the interrupt is related to its
number with 0 having the highest priority*., A maximum of seven high
rate channels may be obtained. The interrupt mask (N-Register) is
optional in groups of four.

Rates

The rate at which the external and internal interrupts may be processed
depends on the length of the subroutine required to process each
interrupt. Because the High-Rate interrupts are processed by a hard-
ware generated sequence they are not program dependent for rate.

Each High-Rate interrupt can be serviced at a maximum of 700K words/
second. The internal and system interrupts are primarily for error
processing routines and a typical rate is not pertinent.

*Each of these interrupts may be used as ""common'' interrupts. Up to 16 device
controllers may "OR' onto the same interrupt line and the Interrogate Common
Interrupts (ICI) command is used to bring their interrupt status into the CPU for
analysis. The device code field of all I/O instructions can be used to address up to
64 devices, while it is possible to attach 16 x 16 or 256 external interrupts to the
system. Where greater than 64 devices must be addressed, the A-Register may
also be used to provide additional selection information to controllers which select

multiple devices. _14-

Priority Assignments

The priority for servicing of interrupts is determined, as mentioned
previously, by the number or name of the interrupt line. Associated
with the interrupt number or name are two other addresses: interrupt
location (address) and device address. The interrupt location is wired
into the logic of the CPU while the device address and priority number
may be altered in the controller by means of a plugboard. This plug-
board provides reassignment of priority without rewiring. It is not
necessary that the interrupt number be the same as the device number
but for general consistency and use of standard I/O subroutines they
will correspond in the standard system. Deviations from the assignments
shown in Table 2.1 may be accommodated on special request.

The '"common'' interrupts which are those devices sharing a common
external interrupt can be considered as having a level of priority within
a level. Their priority is determined first by the relative position of
the shared interrupt and second by the priority established by the
subroutine which services the shared interrupt. For those controllers
which can share an interrupt a plugboard arrangement is provided in
the controller to select which data line (implies the priority to the
software) is to respond to the ICI I/O command. Device codes for
""common'' interrupts are assigned 1610 through 6310. '

The priority of the High-Rate interrupts is the same as the correspondingly
numbered external interrupts - 0 through 7. Priority within the High-Rate
group is consistent with the other external interrupt numbering scheme

in that the highest priority is 0 and the lowest is 7. The device addresses
for the High-Rate interrupts carry the same number as the High-Rate
interrupt. When the count associated with the High-Rate hardware
sequence overflows an external interrupt is set and the High-Rate

interrupt is reset. The external interrupt thus set carries the same
number as that of the High-Rate interrupt.

External Interrupts: Assume that the machine is not in a Halt state,
i.e. it is in either a Run or Wait state.

The operation of the external interrupts is as follows:

a) The controller interrupt logic asynchronously turns on a
flag in the controller to indicate that it requires service,
This service may be a requirement to transfer data (in or
out), to indicate an error condition, or merely to indicate
the occurrence of an event (button depressed, relay closure,
timer clock, etc.). In any event, the flag is set by a
relatively short pulse and is to remain set until a response
from the CPU is received.

-15.

Interrupt

Location Interrupt Device

(Memory) Name/Number Address

(Hex) - (Decimal) Remarks

000A PFR 0 Power Fail Restart (Internal)
000B PAER 1 Parity Error (Internal)

0oo0C INTR 2 Instruction Trap (Internal)
000D MEMP 3 Memory Protect Error

000E PRIE 4 Privileged Instruction Error
000F SYS 5 System Component (Internal)
0010 0%3% 0 External Interrupt

0011 1% 1 External Interrupt

0012 2% 2 External Interrupt

0013 3k 3 External Interrupt

0014 4k 4 External Interrupt

0015 5 %% 5 External Interrupt

0016 6 %k 6 External Interrupt

0017 7 7 External Interrupt

0018 8 8 External Interrupt

0019 9 9 External Interrupt

001A 10 10 External Interrupt

001B 11 11 External Interrupt

001C 12% 12 External Interrupt

001D 13% 13 External Interrupt

001E 14 14 TTY/CPU Channel (External)
001F 15% : 15 External Interrupt

Table 2.1 Priority Assignments (from highest to lowest: top to bottom)

*These are the four standard interrupts.

**These external interrupts used by High Rate 1/0O also.

-16-

b)

d)

f)

At an appropriate time, which is generally at the comple-
tion of an instruction execution and just prior to the next
instruction fetch, the CPU priority logic will examine the
state of all interrupt input lines.

All interrupt lines in the true state will be set into the
CPU interrupt flip-flops. See Figure 2.4 which is a
simplified logic diagram of the flip-flops and logic involved
per external interrupt level. The priority logic will select
the highest priority interrupt which is true and is not
masked out (disabled) by the corresponding N-Register bit.
If the High-Rate Interrupt Flag is set, the priority logic
will generate the selected X-Register pair address and

the High-Rate I/O sequencer will be started. If the High-
Rate I/O flag is not set the priority logic will generate the
memory address of the interrupt location for the selected
inter rupt and the interrupt control logic will be started.

Of course, if no interrupts are true or if all which are true
are masked out, no interrupt sequence will occur and the
instruction fetch cycle will take place.

If the High-Rate I/O flag is not set, the interrupt will be
fetched from memory. The contents of this memory cell
will be used to address a cell in memory into which the
program counter is stored. The address used to store the
program counter is incremented by one and is set into the
program counter. During this hardware sequence no
interrupt sample is allowed until after the new program
counter value has been set.

Prior to the next Instruction Fetch cycle, another examina-
tion of the interrupt lines will be made. If an interrupt of
higher priority than the highest '"current' (previously
selected) interrupt is found then step c is repeated.

If no higher interrupt is found the interrupt servicing sub-

routine proceeds. At the end of each instruction execution
the subroutine looks for an interrupt of higher priority than
the one currently selected.

At some point in the interrupt subroutine an I/O command is
sent to the controller, resetting the controller interrupt
flip-flop. This does not reset the CPU interrupt flip-flop,
however, and further processing of the interrupt may
proceed (with interrupts to higher levels possibly occuring).
Eventually the subroutine for the interrupt is concluded by
executing a Branch and Reset External Interrupt (BRE)

indirectly through the memory location where the old program
counter value was stored. Execution of this BRE instruction
resets the CPU interrupt flip-flop specified in the BRE which
is generally that of the current interrupt.

-17-

-8‘[_

Controller CPU
SRR
Interrupt!
Completion of - Control |
High Rate j :’ 1 M,‘
S . CPU
ervice
' Sample | Interrupt .
- © T T = } Priority M
Clock — i’riori y emory
Response E_———C Logic —=> Address
Rec'd. R F R F Other |)
’ § Command —
| I1/0 Com- Inter- ——
Cnntml]ex‘lq?_and . rupts — ; X-Register
Clock \ ——> Pair Address
Device
Address High Rate
S-Register 5 T j‘} = High !
Set/Reset] !
Command : Ratel/o E
P_‘ B3 ;Sequencer}
Mask
Begister (N)
N
Command R)

k] e

I Set/Reset S T! |
|

Figure 2-4. Simplified Logic for External Interrupt

III.

.1

Common Interrupts

The same hardware previously described for the external interrupts
is used for the common interrupts; the only difference being that the
controller interrupts are '""ORed'' onto the same interrupt line. Thus
any of the controllers can hold the interrupt line true regardless of
the state of the other controllers.

The sampling of interrupt I/O bus lines, selecting of highest priority

and subroutine entry is identical to that described for external interrupts
above. However, the subroutine must be written to include an examina-
tion of interrupt status and a selection of the highest priority device
requesting service through the common interrupt. The ICI instruction

is used to bring the interrupt status of all controllers sharing the common
interrupt into the A-Register. Generally a shift left and test for negative
sign loop will be used to find the higher priority device. Having stored
the shift count which produced the first ''one' in the A-Register the
subroutine can use this to address the highest priority controller.

As in the external interrupt description, the servicing of the addressed
controller will reset its interrupt flip-flop and the use of the BRE
command to terminate the subroutine will reset the CPU interrupt
flip-flop. Of course, if other common interrupts are pending, the
CPU interrupt flip-flop will be set again at the completion of the BRE
command and therefore will be considered by the priority selection
logic prior to executing another instruction fetch cycle.

I/0 BUS DESCRIPTION

Introduction

This section describes the I/O bus technique employed in the TEMPO I
system. The I/O bus provides communication between the peripheral
controllers and the CPU. It is restricted to servicing no more than

16 controllers all of which must be located such that the physical bus
does not exceed 5 feet in length. Note that up to eight controllers may be
packaged within 12-1/4 inches of rack space using Tempo standard
expansion chassis. If devices must be located further than 5 feet, then
the High-Drive I/O Bus option should be used.

A generalized block diagram of the I/O bus configuration is shown in
Figure 3.1. There are, in reality, two busses; an internal and an
external bus as shown in the figure. The internal bus in the CPU is
electrically identical to the internal bus in the expansion chassis and

all controller designs are made to interface with this bus. The external
bus is designed to provide higher noise rejection and drive capability
than the internal bus.

-19-

Control Processor

Controller

Controller

Internal I/0O Bus

Bidirectional

sy S

E ;i stributor sl_-

Class 1

v

Distributorg

Connector

Output

N
N\

Class II

istributors Input

Class III

External I/O Bus N

Expansion Chassis

Distributors

Class I

Distributor 3__9\
Class II 4

Distributors

Controller

Figure 3-1.

Controller

>t

Class III
ferm. Shoep—3)>—
[ferm. Shoe[—3)}—
lTerm. ShoeH >

TEMPO I 1/0O Bus Configuration

-20-

3.2

3.2.

1

The transition from the internal to the external bus is accomplished
by the use of distributors whose design is a function of the type or
class of line. The classes are:

Class I

These lines carry data both out of and into the CPU. A -
driver and receiver are both connected to the line at the

CPU and in the expansion chassis, The line is terminated in
the circuit within the CPU and by a termination shoe located
at the end of the line.

Class II

These lines are output lines which have a driver at the CPU
end and a receiver in each expansion chassis. The bus is
terminated by the termination shoe at the end of the line.

Class III

These lines are input lines which have a receiver at the
CPU and a driver at the expansion chassis. These lines are
terminated the same as the Class I lines.

In order to have a standard interface the distributors are included
in the CPU and in each expansion chassis, Thus, all controller
design is to the requirements of the internal bus. The internal bus
is the only one described in detail in this section. Each distributor
is capable of interfacing with up to eight loads in each direction,
thus eight expansion chassis with eight controllers each is the limit
of expansion as long as the physical restraints mentioned earlier
are observed.

If it is necessary to use controllers outside the expansion chassis
then the distributor circuit (or its equivalent) should be used as the

input circuit to the controller.

Table 3.1 gives the list of lines in the I/O bus and their associated
mnemonics by class,

1/O Timing
Introduction
In the descriptions to follow the worst case conditions and the

constraints which the controller must satisfy will be given. Figure
2.2 has shown the general timing for I/O functions.

-21-

*H

Class Mnemonic Description
I DBO00O- Input/Output Data Bit 00 - H*
(16) .
DBI15- Input/Output Data Bit 15 L
DAQO- Device Address Bit 00 H
DAO5- Device Address Bit 05 L
II KF0- K-Field Bit 0 H
KF1- K-Field Bit 1
KF2- K-Field Bit 2 L
(16) OFO0- O-Field Bit 0 H
OF1- O-Field Bit 1
OF2- O-Field Bit 2 L
STRB- Strobe
PCLK- Peripheral Clock
SRST- System Reset
PRLD- Program Load
II1 INTO0O- Interzupt 0
(17) .
INT15- Interrupt 15
EKO Echo

High Order Bit

Table 3.1 I/O Bus Lines and Mnemonics

of the Field

Low Order Bit of the Field

_22-

The basic timing is derived in the CPU and consists of a Synchronizing
Clock (an 8 megahertz square wave) and a Peripheral Clock (a 4 mega-
hertz square wave) derived from the Synchronizing Clock. Both phases
of the Peripheral Clock are derived. The negative of the Peripheral
Clock appears in the 1/O bus for use by the controller (if desired).

The Tx pulse (shown in Figure 3. 2a) initiates the I/O sequence.

All 1/0O transfers are started the same way, that is, data is placed
on the Control Lines at t and the Synchronizing Clock and Peripheral
Clock are used to 1ogicaﬁy generate the strobe which is a bistable
output.

The worst case timing sequence occurs when the Tx pulse coincides
with the Synchronizing Clock and the Peripheral Clock as shown in
Figure 3. 2a.

Word Transfer Out

The Word Transfer Out (WTO) sequence in the CPU is as follows:

1. Information appears on control bus.
2. Data is placed on data bus.
3. The strobe line is brought true.

The controller responds as follows:

1, Decodes the control lines to achieve device selection
and function interpretation.

2. If selected the strobe is used to transfer data into the
controller and generates an echo pulse (EKO). The
EKO pulse should not have a pulse width in excess of
250 ns. The Peripheral Clock may be used for aid in
generating the EKO.
The sequence ends in the CPU by:
1. The strobe line is brought false by the EKO pulse.

2. The data and control lines are brought false.

Note that in all I/O operations all lines are dropped with EKO.

-23-

'{*—125 ns —>i | |
jt2 mt3 nt4 nts ~tE
Tx
{
Control A
Sync. Clock _l (a)
Peripheral Clock J
Strobe
WTO
Input to Controller
Data K‘———{l_68ns
Strobe 168 ns | __ _ __E (®)
25
Control —18
WTI, RDS, ICT
Input to Controller
25
Control e
Strobe = 230 ns | {c)
: -—— - 1
Periph. Clock o [162‘ ns .’l i | 3
Controller Output _»4
Data *
I
EKO km
in,

*Data should be placed on-line as soon after rec_éipt of Strobe as possible since

ziy delay adds directly to

Figure 3«2.

the High Rate timing.

I/O Timing
-24-

Figure 3.2b shows the timing requirements for WTO. Note that the
Control signals arrive at the controller a minimum of 125 nanoseconds
prior to Strobe time, thus, all decoding (Device Address and Function)
must be accomplished within that period so that the controller can
select the Strobe for proper routing. This is the worst case timing
for the Control signals.

Under worst case conditions the Data and Strobe could arrive
simultaneously, therefore, it is necessary that the Strobe have a
longer timing path, within the controller, than the data path in order
to assure reliable gating. (See Figure 3.6 for a recommended
controller input section design.) Upon receipt of the Strobe the
controller must place an EKO pulse on the line to signal the CPU that
the device has accepted the data. The timing of the EKO is not
critical in this mode.

For maximum data transfer rates (as in High-Rate I/0O) care should
be taken in the timing paths so as not to delay the strobing of the
data into the controller.

Word Transfer In, Request Device Status, Interrogate Common Interrupts

For Word Transfer In (WTI), Request Device Status (RDS) and
Interrogate Common Interrupts (ICI), the following sequence takes
place:

The CPU

1. Places the necessary information on the control lines.
2. The Strobe line is brought true.

The Controller responds

1, Decodes the Control lines to provide device selection
and function interpretation.

2. If selected, places data on data lines when Strobe is
received.

3. Generates EKO.
The CPU then

1. Gates data into CPU upon receipt of EKO.
2. Drops Strobe line and Control lines.

The Controller

1. Drops data lines with trailing edge of EKO.

-25-

.3

Figure 3. 2c shows the timing for WTI, RDS and ICI. In this instance
it is necessary that the data be placed on the bus in the minimum
possible time after Strobe is received so that the EKO and data are in
the proper phase at the CPU. See Figure 3.6 for the suggested circuit
for the controller.

Note that the Data should be placed on the line as soon as possible after
receipt of Strobe since the delay adds directly to the turn-around time
for High-Rate I/O. The EKO must be delayed from Data for reliable
gating at the CPU.

It should be emphasized that the timing given here is for the achieving
of the shortest cycle times in the I/O system. If slower rates are
acceptable then it is only necessary to maintain the phasing shown in
Figure 2. 2.

If the CPU does not receive the EKO it will, as described in Section 2,
execute a branch at the end of two microseconds from the time the I/0O
sequence starts.

Electrical Interface

As described earlier, the I/O bus structure of the TEMPO I can be
considered two distinct busses, an external and an internal bus. The
internal bus is driven by distributors in each chassis and is the one
which the controller designer must interface with. The external bus
consists of twisted pair wires between chassis which are terminated
at the end by a termination shoe. The termination results in a 120
ohm impedance to +3 volts,

The configuration of the three classes of lines are shown in Figures 3. 3,
3.4, and 3.5. Note that all controller inputs and outputs are required
to be at DTL levels with the exception of the peripheral clock which is a
TTL circuit.

The design of the distributor is contained in Appendix D. All Tempo
controllers and expansion chassis and power supplies conform to the
following:

Power Supply 5 volts +5% with both line and load variations
referred to local controller ground

Ground DC ground level less than 0.1 volt difference
between chassis, All controllers must be
designed with floating ground and minimum
impedance between ground points to avoid
transient noise and ground loops. For
external controllers conforming to restraints
given earlier, #26 stranded or #30 solid
twisted pair should be used for interconnecting.

-26-

+5

[(A) 200 A
D DI oo omp
’ . 0 . r—‘ ~0
S | | 3 ket 2
PU Chas. Dist.
T | r. I y3) P 300 -~
[,>____1—'")(1 J_d\ j_
A 4, 77 AN . L
27 :
o ij /'""’ T N //
X ! (1
')_lﬁj \l I — Twisted Pair
h h.
cru .c&ft’}’o e?SI &%’r‘éﬁeé‘i CPU Chassis
Expansion Chassis #1
N . T N
[1)0_1 D:)1| 1))_1 Dist. Con.[, D—[_; (—
I Expan. Chas. Dist
o o C Ch
e [P
O 1_}—- a1 |

Controller #1

~

'Controller 7 IController 8

Expansion Chassis 2 and 3 (not shown)

Al Y

l
|
| —
I

Dist. Con.

Expansion Chassis #N

)
ﬁh

I
o=

Controller #1

1+DTL

2 # Discrete

3=TTL

(B)

G

Controller 7 ' Controller 8

|
|
| \
|

Terminating Shoe

Figure 3-3,

-27-

NS
77
""""" 1
|r +5 |
) 200 n |
| I
> !
| |
| |
I 300 A |
[|
S !
| —
e e - J

Class I Lines (Bidirectional) - 16 Lines

a'w

Dist. Con.

CPU

|

:

1
o

PU Chassi

CPU Chassi
ontroller 1|Controller :

I
al

~

1

W 4¢/

CPU Distributor

\‘ﬁ’ ~r

~

CPU Chassis

1

Expansion Chassis #1

Dist. Con.
e

Cf_ 1 L‘I

-

Controller 1

A
o@:_f

Controller 7

ol

Controller 8

A

1O 1

A\
77

Expan. Chas. Dist.

Expansion Chassis #

2 and #3 (Not Shown)

\(

Dist. Con.

Controller 1

1
1

|

1

) NS

Controller 7'Contr011er 1

|
|
i
|
|

»—*(Z—I'

Expan. Chas. Dist.

+5V

200 n|.

|
|
300 ~ |

|

NOTE: Peripheral clock line requires TTL device.
Figure 3-4. Class II Lines (Output from CPU) - 17 Lines

-28-

I

|

|

|

|

|
K |
d

|

e E— |

' | l CPU Distributor 5 2{){(,’
l Connector <4 !
] | L e
N e N rerac pet B =y
o : T ’_r%%% -] | 300 -
— AT 1
, -“-:r IR O I AT > L=
l Lm__/ I L ‘ -
CPU Chassis ‘CPU Chale Twisted Pair -
lController 1 |Controller,2 [
l [CPU Chassis
, | Expansion Chassis #1
I ' Dist. Con.
| l ——)
U i
J\—‘SJL l s ! 7\>‘ 3 -1 2
D}J‘ ' l [J\' .« |Expan. Chas. Dist.
: ‘ 7
]
. | I TP
; | |
| ; l
Expansion Chassis #2 and #3 (Not Shown)
J / -
// // y Terminating Shoe
s / , P [w7
1 / / |
| (/ 200 |
! DD | 4
1 it '
| ll Y : 300 ¢
1 'JL , ; _‘
[A =
| l
| l
I

5

Figure 3-5. Class III Lines (Input to CPU) - 17 Signals

-29-

3.4

Iv,

Controller Load One DTL load per line (1.5 MA max.)

Maximum Number of Two per line in CPU, eight per line in

Loads expansion chassis.

Since the signals are effectively reshaped by the distributor the
degradation of rise and fall times is not of importance. For the
customer designing his own controllers it is recommended that
the standard Tempo interface be used. In any event, all the
parameters above must be met to assure reliable performance.

Recommended Controller Interface

In order to achieve the timing as indicated previously, and particularly
if the High Rate I/O option is incorporated, the circuit of Figure 3. 6

is recommended for the front end of any controller designed by the
user. Tempo will provide detailed schematics if desired or will,
under special engineering request, provide assistance in adapting

the circuit to the user's physical requirements.

The circuit accomplishes the following:

1. Minimizes the time from receipt of strobe until the
data appears on the line for WTI, RDS and ICI
functions.

2. Provides the necessary delay between data and strobe
receipt to assure reliable gating of data into the
controller.

The distributors are only shown functionally.

If maximum throughput rate is not required then any circuit which
provides the timing required will suffice as long as the DTL interface
is maintained.

HIGH RATE INPUT/OUTPUT

A preprequisite for this option is the installation of at least the four
highest priority external interrupts (0 through 3). Interrupts 12
through 15 are standard. The maximum number of high rate channels
available is seven. To achieve this requires four additional interrupts
and the additional X-Registers (X_ - X 5), since they are used in pairs
and XO and Xl are reserved for normaf operations.

-30-

| (3)

(6) Device g:m;t::
Decode o C .
SD-2
L RDS, ICI wWTO
WTI1
[
. _,,‘L?’
' Distributor DTL [Drv] DTL Prv.
N\ v A
|‘ '1 oy O 16| ° ‘- -
‘ Data Out |
Data to
Data - Controller
e S ’
+ Data In
PR . PR,
: -
| 2. © (16) ___ _DF100-15
| I
N 2
.\\ - 74H40

o P Oel
Nl

|

|

|): PCLK+ F/F
|* |
IRy

A A
I
i

=
E
/%

Figure 3.6 - Recommended Controller Interface

-31-

This option provides high rate block transfers between memory and
the I/O bus for up to seven I/O controllers operating simultaneously.
The transfers occur on a memory cycle stealing basis in response
to interrupts and do not disturb the programmable registers (other
than the X-Registers being used as control words) or flags of the
'CPU. Maximum throughput is approximately 700, 000 16-bit words
or bytes per second.

This option consists of: a) seven high rate interrupt flags used in the
interrupt control; b) control logic to provide the required sequences;
c) overflow detect logic to detect end of block transfer; and d) a 16-bit
address register.

The X-Registers (X, - X 5) are used in pairs to provide the following
functions with formats as shown: :

XevenEﬂllllla]llllllll
8

0 4 12
X ¢ |
odd |d cd sl gl i
0 4 8 12
Field Function
a Address which I/O bus data will be transferred to

or from. Range: 0 to 65,535 ., The transfer is
made and then the register is incremented. If

m = 0 (byte mode) even addresses refer to the high
order 8-bits (0 through 7) of the memory words and
odd addresses refer to the low order bits (8 through
15) of the memory words.

d Direction of transfer. ''1'" = input from I/O bus to
memory; '"0'" = output from memory to I/O bus.
c "Count'' of words of bytes (depending on state of m).

Since the count is updated by incrementing the count
through the adder and the end of block transfer is
detected by looking for an overflow, the "count' is
set to the two's complement of the number of words
or bytes requirfi] to be transferred, i.e. initial
setting of c « 2"~ -n, where n is the number of words
to be transferred.

m Mode of transfer, byte or word, if m = 0 the transfer
takes place a byte per interrupt; if m = 1 a word per
interrupt. In the byte mode all data input to the computer
is on lines DB08 through DB15 while data output from
the computer is on lines DB0O through DBO7.

-32-

During the high rate interrupt sequence addresses are presented to
memory through the H-Register. The H-Register (see Figure 1.1)
is a 16-bit non-programmable register that receives address data

from the X-Registers by way of the D-Register. It connects to the
address bus thus providing an address to memory.

The main adder of the CPU is time-shared to provide for incrementing
and replacing of the D-Register in one clock period. Detection logic

is provided to indicate when an overflow has occurred. Note that this

is not the same overflow flag associated with CPU arithmetic operations-
high rate I/O operations do not affect any of the CPU flags.

High rate interrupt flags are provided in the interrupt logic. If one
of these is set, an interrupt occurring at the corresponding position
will cause the high rate interrupt sequence to be entered instead of
the normal sequence. These flags are set or reset by the Set High
Rate Interrupt Flags (SIF) and Reset High Rate Interrupt Flags (RIF)
instructions. In addition, detection of overflow of count (in X odd)
will cause the high rate flag to be reset (and the interrupt to be set).

Logic is provided to generate the controller address corre sponding
to the interrupt position, send the 1/0O strobe, and use the EKO to
strobe data from the I/O bus to the M-Register.

The High Rate I/O option operation can be divided into three sections:
Setup, Transfers, and Completion Servicing.

The Setup is accomplished as follows through the use of an appropriate
software routine:

A, The X-Registers are loaded with the starting address, count
of transfers, mode of transfer and direction of transfer
(two LDX).
B. The high rate interrupt flag is set (SIF).
C. The corresponding controller is started (EDF).
The transfers then proceed starting with the interrupt from the controller.

The flow chart shown in Figure 4.1 describes the hardware sequence that
occurs each time an interrupt occurs.

-33-

Start

Rate Flag To standard interrupt routine.

-—>D

——.
;)

D

Start Memory| (Start memory and send WTI conditional
Send WTI on indicators set from X .) (Set
D+1...—- -3 D| count overfl if Qd(%

verflow if appropriate.)

D ®Xod D——3>Xodd
M D Mtl————>

4D >Xeven1'-—'

emory——;MI

|Send WTO]
J

Reset Hi Rate

Flag, Set Int. | To Start

To Start

+1f this path is taken the 1/0O bus
information probably is invalid.

Figure 4-1. High Rate I/O Interrupt Sequence

-34-

In summary, the address stored in X is used to address memory,
the address is incremented (conditionea‘[ecr}n byte address if byte mode
is specified), the count (X) is incremented, the transfer between
the I/O bus and memory is made, a check for count overflow is made
and the proper exit is made. The Setup (steps A and B) varies from

3 to 5 memory cycles dependent upon whether X is loaded from the
registers or memory respectively.

Completion of transfer can occur either when the count has overflowed

or when the physical record being read at the controller has ended.

When the count overflows the high rate interrupt flag is reset and

the interrupt is set. The interrupt with no high rate flag condition causes
a normal interrupt. The user will have stored at this interrupt location
the address of an appropriate subroutine for processing the completion

. of block transfer.

If the physical record is shorter than the count stored in X , the high
rate interrupts will cease before the count has overﬂowed.Odfor devices
that can have variable length records it is suggested that a separate
interrupt (low priority) be used to signal that physical end of record
has been reached. All TEMPO I controllers of this nature will provide
this Program Interrupt. The programmer can easily resolve any
ambiguities by examination of the high rate interrupt flag or the count
in the Xodd registers.

-35_

APPENDICES

DESIGN NOTES

The following points of importance should be understood for all
controller design.

Each controller must decode device address and select the strobe.

Each controller must respond with an EKO pulse within two micro-
seconds.

For high rate the timing of the sequence given must be adhered to.
Priority assignments are plugboard changeable in the controller.

All controllers should have DTL interfaces.

Lines longer than 5 feet total are not allowed with the basic bus.

All byte transfers into the CPU must be on data line DB08 through
DB15. All byte transfers out of the CPU must appear on lines DB00
through DBO07. ‘
If a peripheral device operating through a high rate channel can have a
physical record shorter than the count set into the X-Registers, a
program interrupt should be provided in additiofi to the high priority

interrupt associated with the device. This second interrupt may be
shared among several high rate devices.

-36-

APPENDIX A
INPUT/OUTPUT INSTRUCTIONS AND SAMPLE 1/0 SEQUENCES

BRE Branch and Reset External Interrupt Timing

oo b Jtgtatatlzgzgzg2

7]
0 4 8 12

The interrupt latch specified by bits 12-15 of the instruction is
reset. Then the memory address y' is placed in the P-Register,
allowing complete memory addressing capability for the fetch of the
next instruction.

If the Read Only Memory option is implemented, this instruction

will operate as described only when an interrupt is being serviced.
At any other time the ROM mode flag will be reset after which the
memory address y' is placed in the P-Register, allowing complete
memory addressing capability for the fetch of the next instruction.

BRI _Branch and Reset Internal Interrupt Timing '

oo b Ittt gt lzyzgzgz

l .
0 4 8 12

The internal interrupt latch specified by bits 12-15 of the instruction
is reset. Then the memory address y' is placed in the P-Register,
allowing complete memory addressing capability for the fetch of

the next instruction.

L 12212121 2121712

L 111l

LAY
0 4 8 12

The action specified by bits 7-9 of the instruction is performed by the
device specified by bits 10-15, In addition to bits 7-9 of the instruction,
the A-Register is available to the controller for further instruction
coding, providing a total of 19-bits for specifying an action by an external

"device. If the EDF command is rejected, a similated BSP to memory
location y is affected. A detailed description of how the EDF command
applies to each device is given in Sections

-37-

oo 172z 21z 7 122

l)

0 4 8 12

One word (up to 16-bits of information) is transferred into the
A-Register from the device specified by bits 10-15 of the instruction.
Bits 7-9 represent the order code and are available for special coding
at the system level. The interrupt line in the controller specified by
bits 10-15 is reset. If the WTI command is rejected, a simulated BSP
operation occurs to memory location vy,

0 4 8 12

One word (up to 16-bits of information) is transferred from the
A-Register to the device specified by bits 10-15 of the instruction.
Bits 7-9 represent the order code and are available for special
coding at the system level. The interrupt line in the controller
specified by bits 10-15 is reset. If the WTO command is rejected,
a simulated BSP operation occurs to memory location y.

RDS Request Device Status

Lot b 1ziz17712127 2

M
0 4 8 12
The status of the device specified by bits 10-15 is transferred into
the A-Register. If the RDS command is rejected, a simulated BSP
operation occurs to memory location y. Bits 7-9 represent the order

code and are available for special ccding at the system level; if not
used, these bits should be zero.

-38.

1C1 Interrogate Common Interrupts

Lo by lzz1z12l7 2122

i
0 4 8 12

The service-required status of the devices (up to 16) that share the
common interrupt line (line 15) is transferred into the A-Register,
Device 16 corresponds to bit position zero, and each succeeding device
up to 31 corresponds to each succeeding bit position up to 15. A one
in any of the 16-bit positions indicates that the corre sponding device
requires service. The execution of the ICI instruction resets all
service-required indicators, so that status received must be saved
until all devices requiring service have been processed. The ICI
instruction is a two word instruction with no device code required
since it applies only to the common interrupt line. Bits 7-9
represent the order code and are available for special coding at the
system level; if not used, these bits should be zero. If the ICI
command is rejected, a simulated BSP operation occurs to memory
location vy,

~-39.

TYPICAL I/O INTERRUPT SUBROUTINE
WHICH ALLOWS PROCESSING
BETWEEN INTERRUPTS (USING X-REGISTER)

-ASSUMPTIONS

a) The CPU is processing when the interrupt occurs, i.e. its status
must be stored and reloaded. '

b) The output table address and table length have been given in the
I/O subroutine calling sequence and saved by the I/0O subroutine

d) The EDF has been given to start the output device.

e) The interrupt is processed as soon as it is set true (no latency time).

f) Three X-Registers (X2, X3 and X4) are dedicated to this interrupt.
SEQUENCE

initialization.

The interrupt mask is set to allow the interrupt.

LABEL COMMAND
BSP (simulated) INT

OPERAND

COMMENTS

INT CON 0
TRF A2 Save A-Register
LDA 0,X,3 Pick-Up Output Data
WTO DEV,REJECT Output
IRT 3,3 Increment Index
IRT 4,4 Increment Table Length
BIR E, DONE If output complete, branch.
CONT TRF 2, A Restore A-Register
BRE DEV,INT,I Return to Caller
DONE BSP TERM Call Terminate Routine
BAR GE, CONT If terminate, continue.
EDF DEV,REJECT Stop 1/0
BUR CONT
Assuming 0.9 ps memory 1 = 77K words/second.
0.9X 14.5

*Terminate branch only.

-40-

CYCLES
2

.
(S)]

W = e bt s e (O

—
»
"

* 03 ¥ ¢

TYPICAL I/O INTERRUPT SUBROUTINE
WHICH ALLOWS PROCESSING
BETWEEN INTERRUPTS (NOT USING X-REGISTER)

ASSUMPTIONS

a) The CPU is processing when the interrupt occurs; i. e
must be stored and reloaded.
b) The output table address and table length have been given in the

., its status

I/O subroutine calling sequence and saved by the 1/O subroutine

initialization.
c) The interrupt mask is set to allow the interrupt.
d) The EDF has been given to start the output device.
e) The interrupt is processed as soon as it is set true (no latency time).

SEQUENCE

LABEL COMMAND

OPERAND

BSP (simulated) INT

COMMENTS

INT CON 0
STA TEMPI Save A-Register
LDA TEMP2, 1 Pick-Up Output Data
WTO DEV, REJECT Output
INC TEMP2 Increment Output Table Address
INC TEMP3 Increment Table Length
BIR E, DONE If output complete, branch.
CONT LDA TEMP1 Restore A-Register
BRE DEV,INC,I Return to Caller
DONE BSP TERM Call Terminate Routine
BAR GE, CONT If terminate, continue.
EDF DEV,REJECT Stop 1/0
BUR CONT
Assuming 1 ps memory 1 = 57. 0K words/second.
0.9 X 19.5

NOTE: If it is not required to store/load CPU status, the rate is 1

71. 8K words/second.

*Terminate branch only,

-41-

0.9 X 15.5

CYCLES

2

WN = DNN o~ N

L d
O
(6,

¥ O # 3¢

	000
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36a
	36
	37
	38
	39
	40
	41

