
TEK SYSTEM
MANUAL

UTek
TOOLS

VOLUME1

Part No. 070-5318-00
Product Group 65

First Printing NOV 1984

~10 EXCEUENCE

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California. We
acknowledge the following individuals and institutions for their role in its development:

W. N. Joy M. K. McKusick
0. Babaouglu E.Cooper
R. S. Fabry David Musher
K. Sklower S. J. Leffler
Eric P. Allman

University of California at Berkeley
Department of Electrical Engineering and Computer Science

The MH Mail System is based on software developed by the Rand Corporation.

Portions of this document are based on the RCS Revision Control System, © 1982
Walter F. Tichy.

This documentation is for the use of our customers, and not for general sale.

Copyright© 1984, Tektronix, Inc. All rights reserved.

Tektronix products are covered by U.S. and foreign patents, issued and pending.

This document may not be copied in whole or in part, or otherwise reproduced except as
specifically permitted under U.S. copyright law, without the prior written consent of
Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97077.

Specifications subject to change.

TEKTRONIX, TEK, and UTek are trademarks of Tektronix, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

TEK 4014 is a registered trademark of Tektronix, Inc.

NROFFfTROFF is a registered trademark of AT&T Technologies.

TRENDATA is a registered trademark of Trendata Corporation.

TELETYPE is a registered trademark of AT&T Teletype Corporation.

DEC is a registered trademark of Digital Equipment Corporation.

Revision
INFORMATION

PRODUCT: 6000 Family UTek Operating System: 64WP02, 64WP05, 64WP06
This manual supports the following versions of this product: V2.0

REV DATE DESCRIPTION

··"

NOV 1984 Original Issue

Contents

Section 1 A Introduction Page
Facilities Provided by UTek ... 1 A-1
About This Manual .. 1 A-3
Notation Conventions ... 1 A-4

Related Documents .. 1 A-5
UTek Manuals .. 1 A-5
Programming Language Books 1 A-5
Workstation User Manuals ... 1 A-5
Graphics Package Manuals .. 1A-5

Section 2A The MH Mail System
Introduction ... 2A-1
Overview ... 2A-1
Setting Up Your Mail System .. 2A-1
Sending Mail .. 2A-2
Reading Your Mail ... 2A-3
Sending a Reply ... 2A-4
Sending Mail to Users on a Remote Workstation 2A-5
Forwarding Mail Messages .. 2A-6
Changing Mail Editors .. 2A-6
Creating Mail Folders ... 2A-7

Renumbering Your Mail Messages 2A-9
For Further Information ... 2A-9
Message Naming .. 2A-1 O

Section 28 An Introduction to the Shell
Introduction ... 2B-1
Simple Commands ... 2B-2

Background Commands ... 2B-2
Input/Output Redirection ... 2B-3
Pipelines and Filters ... 2B-4
Filename Matching .. 28-5
Quoting in the Shell ... 2B-7
Prompting by the Shell. .. 2B-8

Shell Procedures .. 28-8
Control Flow - for .. 2B-9
Control Flow - case .. 28-11
Here Documents .. 2B-1~
Shell Variables ... 28-1~
Control Flow-while .. 2B-1f
Control Flow- if ... 28-1~
Test Command ... 20-2·

Algebraic Comparisons ... 20-2·
String Operators ... 28-2:
File Status .. 2B-2:

UTekTOOLS

Contents

Section 28 An Introduction to the Shell (cont) Page
The Which Command ... 28-24
Command Grouping ... 28-24
Debugging Shell Procedures 28-25

Keyword Parameters ... 28-25
Parameter Transmission ... 28-26
Parameter Substitution .. 28-27
Command Substitution .. 28-28
Evaluation and Quoting .. 28-29
Error Handling .. 28-31
Fault Handling .. 28-33
Shell Functions ... 28-36

Executing Functions ... 28-36
Passing Functions to Subshells 28-37
Exiting from Functions .. 28-39

Command Execution .. 28-39
Invoking the Shell ... 28-41

Section 2C Introduction to the C-Shell
Introduction ... 2C-1
Simple Commands ... 2C-1

Input/Output Redirection ... 2C-2
Pipelines and Filters ... 2C-3
Filename Matching .. 2C-4
Quoting .. 2C-6
Starting and Terminating the C-Shell. 2C-7
A Sample .cshrc File .. 2C-7
A Sample .login File ... 2C-1 O
Logging Off .. 2C-12
Invoking the C-Shell ... 2C-12

Shell Procedures .. 2C-13
Control Flow - for .. 2C-14
Control Flow - if ... 2C-16
Control Flow - while and switch 2C-17
Other C-Shell Commands .. 2C-19
Supplying Input to the Shell .. 2C-19
Command Substitution .. 2C-19
Reading from the Terminal ... 2C-20

Catching Interrupts ... 2C-20
The History List ... 2C-20
Alias Substitution ... 2C-24
Job Control .. 2C-25

Job Control Using Remote Login 2C-28
C-Shell Variables and Variable Substitution 2C-29

Predefined Shell Variables ... 2C-31
Expressions .. 2C-33
New C-Shell Features ... 2C-34

ii

Contents

Section 2C Introduction to the C-Shell (cont) Page

File Name Completion .. 2C-34
File and Directory List .. 2C-35
Command Name Recognition 2C-35
Automatic Logout .. 2C-36
Terminal Checking ... 2C-36
Saving Your History List ... 2C-36

Section 20 The UTek System Implementation
Introduction ... 20-1
Kernel Facilities ... 20-2

Processes and Protection .. 20-2
Host and Process Identifiers 20-2
Process Creation and Termination 20-3
User and Group Identification 20-4
Process Groups ... 20-5

Memory Management ... 20-5
Signals .. 20-6

Overview ... 20-6
Signal Types .. 20-6
Signal Handlers ... 20-7
Sending Signals ... 20-9
Protecting Code from Signals 20-9
Signal Stacks ... 20-1 O

Timers .. 20-11
Real Time ... 20-11
Interval Time .. 20-12

Resource Controls .. 20-13
Process Priorities .. 20-13

Descriptors .. 20-13
System Facilities ... 20-14

Directory Contexts and Files .. 20-14
Read and Write .. 20-14
Input/Output Control ... 20-15
Non-blocking and Asynchronous Operations . ~ 20-16

File System .. 20-17
Overview ... 20-17
Naming ... 20-17

UTekTOOLS iii

Contents

Section 2D The UTek System Implementation (cont) Page

Creation and Removal ... 2D-18
Directory Creation and Removal 2D-18
File Creation .. 2D-18
Creating References to Devices 2D-19
Removing Files and Devices 2D-19
Reading and Modifying File Attributes 2D-20
Links and Renaming ... 2D-22
Extension and Truncation 20-23
Checking Accessibility .. 2D-24
Locking ... 2D-24

Interprocess Communications 2D-25
Communication Domains 2D-25
Socket Types and Protocols 2D-25
Socket Creation and Naming 2D-26
Accepting Connections ... 2D-26
Making Connections ... 2D-27
Sending and Receiving Data 2D-27
Scatter/Gather and Exchanging Access Rights 2D-28
Read and Write with Sockets 2D-29
Shutting Down Halves of a Full Duplex Connection 2D-29
Socket and Protocol Options 2D-29

UNIX Communications Domain 2D-30
Types of Sockets .. 2D-30
Access Rights Transmission 2D-30

Internet Communications Domain 2D-30
Socket Types and Protocols 2D-30
Socket Naming .. 2D-30
Raw Access ... 2D-30

Section 2E The UTek Fast File System
Introduction ... 2E-1
The UTek File System Organization 2E-1

Organization of Data Blocks .. 2E-2
File System Parameters ... 2E-5
Layout of I nodes and Data Blocks 2E-6

Other File System Enhancements 2E-7
Long File Names .. 2E-7
File Locking .. 2E-7
Symbolic Links ... 2E-8
Renaming Files ... 2E-9

iv

Contents

Section 2F The Distributed File System
DFS Protection ... 2F-2

Section 2G MDQS - The Mu/ti-Device Queueing System
Creating a Queue Entry ... 2G-1
Mapping a Queue to a Device ... 2G-2

Delayed Queues .. 2G-6
The MDQS Directory Structure .. 2G-7
The Qconf File ... 2G-8

The Qconf File - Parameters 2G-1 O
The Qconf File - Device Descriptions 2G-11
The Qconf File - Queue Descriptions 2G-12
The Qconf File - Queue to Device Mappings 2G-12
Changing the Status of a Queue or Device 2G-14

Section 3A Introduction to Editing Documentation
Available Editing Tools .. 3A-1
How to Use This Documentation 3A-1

Section 38 Advanced Uses of Ed
~~~~~~~~~~~~~~~~~~~ 

Introduction ......................................................... 3B-1 
Extending Commands Using Special Characters ......................... 3B-1 

Print and List Commands .......................................... 3B-1 
Substitute Command .............................................. 3B-2 
Undo Command .................................................. 3B-3 
Metacharacters ................................................... 38-3 

Period ........................................................ 38-3 
Backslash .................................................... 3B-4 
Dollar Sign .................................................... 38-5 
Circumflex .................................................... 38-6 
Asterisk ...................................................... 38-6 
Brackets ...................................................... 38-8 
Ampersand ................................................... 3B-9 

Operating on Lines ................................................ 3B-10 
Substituting Newline Characters ................................. 3B-10 
Joining Lines .................................................. 38-11 
Rearranging Lines ............................................. 38-11 

Line Addressing ..................................................... 38-11 
Address Arithmetic ................................................... 38-12 

Repeated Searches ............................................... 38-13 
Default Line Numbers ............................................. 38-13 
Semicolon ....................................................... 38-14 . 

Interrupting the Editor ................................................ 38-15 
Global Commands ................................................... 38-16 

Basic Global Commands ........................................... 38-16 
MultilineCommands .............................................. 3B-17 

Cut and Paste ....................................................... 3B-17 

UTekTOOLS v 



Contents 

Section 38 Advanced Uses of Ed (cont) Page 

UTek Commands ................................................. 3B-18 
Changing Filenames ........................................... 3B-18 
Copying Files .................................................. 3B-18 
Combining Files ............................................... 3B-19 
Removing Files ................................................ 3B-19 

Ed Commands ................................................... 3B-19 
Reading and Writing Files ....................................... 3B-19 
Inserting One File Into Another .................................. 3B-20 
Writing Part of a File ............................................ 3B-20 
Moving Groups of Lines ......................................... 3B-21 
Copying Lines ................................................. 3B-21 
Marks ........................................................ 3B-21 

Temporary Shell Invocation ......................................... 3B-22 

Section 3C Advanced Uses of Ex and Vi 
Introduction ......................................................... 3C-1 
Invoking Vi .......................................................... 3C-1 
Text Insertion ........................................................ 3C-3 

Inserting Control Characters ....................................... 3C-3 
Cursor Movement .................................................... 3C-4 

Characters ....................................................... 3C-4 
Sentences, Paragraphs and Sections ................................ 3C-5 

Sentences .................................................... 3C-5 
Paragraphs ................................................... 3C-5 
Sections ...................................................... 3C-6 

The Screen ......................................................... 3C-7 
Cut and Paste ....................................................... 3C-8 

Using Marks to Address Lines and Move Text ......................... 3C-1 O 
Numbered Buffers ................................................ 3C-11 
Named Buffers ................................................... 3C-12 

Macros and Abbreviations ............................................ 3C-12 
Macros .......................................................... 3C-12 
Abbreviations .................................................... 3C-14 
Setting Options ................................................... 3C-14 

Recovering From Errors .............................................. 3C-22 
Temporarily Escaping the Editor ....................................... 3C-23 

Section 4A Nroff nroff Tutorial 
Overview ........................................................... 4A-1 
Tutorial Topics ....................................................... 4A-2 

Point Sizes and Line Spacing ....................................... 4A-2 
Fonts and Special Characters ...................................... 4A-3 
Indents and Line Lengths .......................................... 4A-4 
Tabs ............................................................. 4A-6 
Local Motions .................................................... 4A-7 

vi 



Contents 

Section 4A Nroftnroff Tutorial (cont) Page 

Vertical Motions ............................................... 4A-7 
Horizontal Motions ............................................. 4A-8 
Overstrikes ................................................... 4A-9 
Drawing Lines ................................................. 4A-9 

Strings .......................................................... 4A-9 
Introduction to Macros .............................................. 4A-10 
Titles, Pages, and Page Numbering ................................. 4A-12 
Titles ............................................................ 4A-12 
Pages ........................................................... 4A-12 
Page Numbers ................................................... 4A-14 
Number Registers and Arithmetic ................................... 4A-15 
Number Registers ................................................ 4A-15 
Arithmetic ......................... · ............................... 4A-16 
Macros with Arguments ............................................ 4A-17 
Argument Rearrangement ......................................... 4A-18 
Numbered Section Headings ....................................... 4A-18 
Conditionals ..................................................... 4A-19 
Environments .................................................... 4A-20 
Diversions ....................................................... 4A-21 

Tutorial Examples .................................................... 4A-22 
Page Margins .................................................... 4A-23 
Paragraphs and Headings ......................................... 4A-25 
Multiple Column Output. ........................................... 4A-26 
Footnote Processing .............................................. 4A-27 
Last Page ........................................................ 4A-29 

Section 48 Nroff/Troff Reference Guide 
Introduction ......................................................... 48-1 
Usage .............................................................. 48-2 

Nroff and Troff Options ............................................. 48-2 
Options for Nroff Only ............................................. 48-3 
Options for Troff Only .............................................. 48-4 
Preprocessors and Postprocessors ................................. 48-5 

Nroffffroff Usage Guide ............................................... 48-5 
General Information ............................................... 48-5 
Font and Character Size Control .................................... 48-8 

Fonts ......................................................... 48-8 
Character Set ................................................. 48-1 O 
Character Size ................................................ 48-15 

Page Control ..................................................... 48-15 
Text Filling, Adjusting, and Centering ................................ 48-16 
Vertical Spacing .................................................. 48-17 
Line Length and Indenting ......................................... 48-18 
Macros, Strings, Diversions, and Traps .............................. 48-18 
Number Registers ................................................ 48-21 
Tabs, Leaders, and Fields .......................................... 48-22 

UTekTOOLS vii 



Contents 

Section 48 Nroffnroff Reference Guide (cont) Page 

Input/Output Conventions and Character Translations ................. 48-24 
Input Character Translations ..................................... 48-24 
Ligatures ..................................................... 48-24 
Backspacing, Underlining, and Overstriking ....................... 48-24 
Control Characters ............................................. 48-25 
Output Translation ............................................. 48-25 
Transparent Throughput ........................................ 48-25 
Comments and Concealed Newline Characters .................... 48-25 

Local HorizontalNertical Motion and Width Function ................... 48-26 
Special Font Functions ............................................ 48-27 

Overstrike .................................................... 48-27 
Zero-Width Characters ......................................... 48-28 
Large Brackets ................................................ 48-28 
Line Drawing .................................................. 48-28 

Hyphenation ..................................................... 48-29 
Three-part Titles .................................................. 48-30 
Output Line Numbering ............................................ 48-30 
Conditional Acceptance of Input .................................... 48-32 
Environment Switching ............................................ 48-33 
Insertions from Standard Input ...................................... 48-33 
Input/Output File Switching ........................................ 48-34 
Output and Error Messages ........................................ 48-34 

Nroff Compacted Macros ............................................. 48-34 
Nroff/Troff Escape Sequences ......................................... 48-37 
Predefined General Number Registers .................................. 48-39 
Predefined Read-Only Number Registers ............................... 48-39 
Font Control Requests ................................................ 48-41 
Character Size Control Requests ...................................... 48-42 
Page Control Requests ............................................... 48-43 
Text Filling, Adjusting, and Centering Requests .......................... 48-45 
Vertical Spacing Requests ............................................ 48-47 
Line Length and Indenting Requests ................................... 48-49 
Macro, String, Diversion, and Trap Requests ............................. 48-50 
Number Registers Requests .......................................... 48-52 
Tab, Leader, and Field Requests ....................................... 48-53 
Input/Output and Translation Requests ................................. 48-54 
Hyphenation Requests ............................................... 48-56 
Three-Part Title Requests ............................................. 48-57 
Output Line Numbering Requests ...................................... 48-58 
Conditional Acceptance Requests ..................................... 48-58 
Environment Switching Request ....................................... 48-60 
Insertions from Standard input Requests ................................ 48-60 
Input/Output File Switching Requests ................................... 48-61 
Miscellaneous Requests .............................................. 48-62 
Output and Error Messages Request ................................... 48-63 

viii 



Contents 

Section 4C The MS Text-Formatting Macros 
Invoking Ms ......................................................... 4C-1 
Basic Text Formatting ................................................ 4C-1 
Overall Format ...................................................... 4C-2 
Indentation .......................................................... 4C-2 
Character Fonts and Underlining ....................................... 4C-2 

Special Characters ................................................ 4C-3 
Superscripts and Subscripts ........................................ 4C-3 
Character Size ................................................... 4C-4 

Command Descriptions ............................................... 4C-4 
The -T Option ........................................................ 4C-14 
Special Charcter Set ................................................. 4C-16 
String and Number Registers .......................................... 4C-18 
Example 1 -A Simple Document. ..................................... 4C-19 
Example 2-A Technical Report ....................................... 4C-21 
Example 3 - An IOC ................................................. 4C-23 
Example 4 - An IOC Announcing a Meeting ............................ 4C-24 
Example 1 - A Business Letter ........................................ 4C-25 

Section 4D The MM Text-formatting Macros 
Introduction ......................................................... 4D-1 

Conventions ..................................................... 4D-1 
Document Structure ............................................... 4D-1 
Input Text Structure ............................................... 4D-2 
Definitions ....................................................... 4D-2 

Usage .............................................................. 4D-3 
The mm Command ................................................ 4D-4 
the -cm or -mm Option ............................................. 4D-5 
Typical Command Lines ........................................... 4D-5 
Parameters Set From Command Line ................................ 4D-7 
Ommission of-cm or-mm Options ................................... 4D-10 

Formatting Concepts ................................................. 4D-10 
Basic Terms ...................................................... 4D-1 O 
Arguments and Double Quotes ..................................... 4D-11 
Unpaddable Spaces ............................................... 4D-11 
Hyphenation ..................................................... 4D-12 
Tabs ............................................................. 4D-13 
BEL Character ................................................... 4D-13 
Bullets ........................................................... 4D-13 
Dashes, Minus Signs, and Hyphens ................................. 4D-13 
Trademark String ................................................. 4D-14 
Use of Formatter Requests ......................................... 4D-15 

Paragraphs and Headings ............................................ 4D-15 
Paragraphs ...................................................... 4D-15 

Paragraph Indentation .......................................... 4D-16 
Numbered Paragraphs ......................................... 4D-16 
Spacing Between Paragraphs ................................... 4D-17 

UTekTOOLS ix 



Contents 

Section 4D The MM Text-formatting Macros (cont) Page 
~~~~-=---~~~~~----'=------

Numbered Headings .. 4D-17
Normal Appearance .. 4D-17
Altering Appearance ... 4D-18

Unnumbered Headings .. 4D-21
Headings and Table of Contents 4D-22
First-Level Headings and Page Numbering Style 4D-22
User Exit Macros ... 4D-23
Hints for Large Documents ... 4D-25

Lists ... 4D-25
List Macros .. 4D-25

List-Initialization Macros .. 4D-26
Automatically Numbered or Alphabetized List 4D-26
Bullet List .. 4D-27
Dash list ... 4D-27
Marked List .. 4D-27
Reference List .. 4D-27
Variable-Item List ... 4D-28

List-Item Macro .. 4D-29
List-End Macro ... 4D-30

Example of Nested Lists .. 4D-30
List-Begin Macro and Customized Lists 4D-32
User-Defined List Structures 4D-34

Memorandum and Released-Paper Documents 4D-36
Sequence of Beginning Macros 4D-37
Title ... 4D-37
Authors .. 4D-38
TM Numbers ... 4D-39
Abstract ... 4D-39
Other Keywords .. 4D-40
Memorandum Types .. 4D-40
Date Changes .. 4D-42
Alternate First-Page Format .. 4D-42
Example ... 4D-42
End of Memorandum Macros 4D-47

Displays .. 4D-50
Static Displays ... 4D-51
Floating Displays ... 4D-52
Tables ... 4D-54
Figure, Table, Equation, and Exhibit Titles 4D-55
List of Figures, Tables, Equations, and Exhibits 4D-56

Footnotes ... 4D-56
Automatic Numbering of Footnotes 4D-57
Delimiting Footnote Text ... 4D-57
Format Style of Footnote Text 4D-58
Spacing Between Footnote Entries 4D-59

x

Contents

Section 4D The MM Text-formatting Macros (cont) Page

Page Headers and Footers .. 4D-61
Default Headers and Footers 4D-61
Header and Footer Macros ... 4D-62
Default Header and Footer With Section-Page Numbering 4D-63
Strings and Registers in Header and Footer Macros 4D-63
Header and Footer Example .. 4D-64
Generalized Top-of-Page Processing 4D-64
Generalized Bottom-of-Page Processing 4D-64
Top and Bottom (Vertical) Margins 4D-66
Proprietary Marking ... 4D-66
Private Documents .. 4D-67

Table of Contents and Cover Sheet 4D-67
References ... 4D-70
Miscellaneous Features .. 4D-72

Bold, Italic, and Roman Fonts 4D-72
Justification of Right Margin .. 4D-73
SCCS Release Identification 4D-73
Two-Column Output ... 4D-74
Footnotes and Displays for Two-Column Output 4D-74
Column Headings for Two-Column Output 4D-75
Vertical Spacing .. 4D-75
Skipping Pages ... 4D-76
Forcing an Odd Page .. 4D-76
Setting Point Size and Vertical Spacing 4D-76
Reducing Point Size of a String 4D-77
Producing Accents .. 4D-79
Inserting Text Interactively ... 4D-79

Errors and Debugging .. 4D-80
Extending and Modifying MM Macros 4D-81

Naming Conventions .. 4D-81
Names Used by Formatters .. 4D-81

Names Used by MM .. 4D-81
Names Used by neqn and tbl 4D-82
Names Defined by User ... 4D-82

Sample Extensions ... 4D-82
Appendix Headings .. 4D-82

Summary ... 4D-83
MM Macro Name Summary ... 4D-84
MM String Name Summary .. 4D-89
MM Number Register Summary 4D-90
MM and Formatter Error Messages 4D-93

MM Error Messages ... 4D-93
Formatter Error Messages ... 4D-96

UTekTOOLS xi

Contents

Section 4E The ME Reference Guide
Introduction ... 4E-1
Paragraphing ... 4E-2
Section Headings .. 4E-2
Headers and Footers ... 4E-4
Displays .. 4E-5
Annotations ... 4E-6
Columned Output .. 4E-7
Fonts and Sizes ... 4E-7
Roff Support .. 4E-8
Preprocessor Support .. 4E-8
Miscellaneous ... 4E-9
Standard Papers ... 4E-9
Predefined Strings ... 4E-11
Special Characters and Marks ... 4E-12

Section 4F The ME Text-formatting Macros
Introduction ... 4F-1
Basics of Text Processing ... 4F-2
Basic Requests .. 4F-3

Paragraphs .. 4F-3
Headers and Footers .. 4F-4
Double Spacing .. 4F-4
Page Layout ... 4F-4
Underlining .. 4F-6

Displays .. 4F-6
Major Quotes ... 4F-7
Lists .. 4F-7
Keeps ... 4F-7
Fancier Displays .. 4F-8

Annotations ... 4F-1 O
Footnotes .. 4F-1 O
Delayed Text ... 4F-11
Indexes .. 4F-11

Fancier Features .. 4F-12
More Paragraphs ... 4F-13
Section Headings ... 4F-15
Parts of the Basic Paper ... 4F-17
Tables ... 4F-20
Two-Column Output ... 4F-20
Defining Macros .. 4F-20
Annotations Inside Keeps .. 4F-21

Troff and the Phototypesetter .. 4F-22
Fonts .. 4F-22
Point Sizes ... 4F-24
Quotes .. 4F-24

xii

Contents

Section 4G Tbl - A Table Formatting Program
Introduction ... 4G-1
Usage .. 4G-1
Input Commands .. 4G-2

Global Options ... 4G-3
Format Section ... 4G-5
Data to be Printed ... 4G-11

Additional Command Lines .. 4G-13

Figures
2A-1
2E-1
2G-1
2G-2
2G-3
3C-1
3C-2
4B-1
4B-2
4D-1
4D-2
4D-3
4D-4
4F-1
4F-2
4G-1
4G-2
4G-3
4G-4
4G-5
4G-6

UTekTOOLS

Refiling Mail to Folders ... 2A-8
Layout of Blocks and Fragments in 4096/1024 File System 2E-3
Multiple Queues and Devices 2G-2
Daemon Scans for Empty Devices 2G-3
Daemon Moves from First to Second Device 2G-5
Moving Text Using yank and put 3C-9
Moving Text Using mark and move 3C-1 O
Example Font Styles ... :. 4B-9
Example of Output Line Numbering 4B-31
Example of Input for a Simple Letter 4D-44
Example of Nroff Output for a Simple Letter 40-45
Example of Troff Output for a Simple Letter 40-46
Example of Input for Various Footnote Styles 40-60
Example of a Floating Keep 4F-8
Outline of a Sample Paper 4F-19
Table Using box Option .. 4G-4
Table Using allbox Option 4G-5
Table Using Horizontal Lines in Place of Key Letters 4G-8
Table Using vertical bar Key Letter Feature 4G-9
Table Using Text Blocks .. 4G-12
Table Using Additional Command Lines 4G-14

xiii

Contents

Examples
2C-1 Sample .cshrc File ... 2C-8
2C-2 Sample .login File .. 2C-1 O
4G-1 Numerically Aligned Table ... 4G-6
4G-2 A Table Using Simple Three-Column Format 4G-7

Tables
2A-1 Summary of MH Mail Commands 2A-11
28-1 Quoting and Evaluation of Shell Metacharacters 28-30
28-2 Shell Grammar .. 28-42
48-1 Nroff/Troff Scale Indicators .. 48-6
48-2 Troff ASCII Character Mapping 48-1 O
48-3 Standard Convention for Non-ASCII Characters 48-11
48-4 Non-ASCII Characters in Special Font 48-12
48-5 Non-ASCII Characters in Special Font 48-13
48-6 Non-ASCII Characters in Special Font 48-14
48-7 Nroff/Troff Number Register Interpolation 48-22
48-8 Nroff/Troff Tab Types .. 48-23
48-9 Vertical Local Motions .. 48-26
48-10 Horizontal Local Motions .. 48-26
48-11 Nroff/Troff Built-In Condition Names 48-32
40-1 Effects of the N Register on Page Numbering Style 40-8
40-2 HF String Codes, Effects, and Default Values 40-20
40-3 Format Style of Footnote Text 40-58

xiv

1A
Introduction

UTek is the operating system that runs on your Tektronix 6000 Series Workstation.
The operating system provides a software environment that supports your
engineering applications. It also provides tools that let you develop programs for the
workstation and accomplish everyday tasks such as sending electronic mail, editing
and formatting text, and organizing information. UTek is a multi-user operating
system, that can run several processes at once.

UTek is a UNIX-based operating system. It is based on 4.2bsd UNIX, with some
features of UNIX System V. In addition, Tektronix has added many features to the
operating system, including:

• virtual memory

• Multi-Device Queueing System

• Distributed File System

• Local Area Network support

• MH Mail System

UTek is intended for use by a wide variety of users, from the professional software
developer to someone who does text processing. The operating system provides
programming support for C, Pascal, and Fortran, including many language
preprocessors.

The Tektronix family of workstations includes the 6130 workstations and the 6200
Series workstations. Any workstation in this family can communicate and share
resources with any other member of the family. The UTek operating system runs on
both the 6100 and the 6200 Series workstations.

Facilities Provided by UTek
The following attempts to highlight some of the major facilities provided by UTek.
These major facilities include:

• electronic mail

• the shell command interpreter

• text editors

• text formatting

• programming

• programming support

UTekTOOLS 1A-1

Introduction

electronic mail
The MH mail handling system lets you send messages to and receive messages
from other users in your network. It also provides a way of filing messages for easy
retrieval.

the shell
The shell interprets commands that you enter into your terminal and is itself a
programming language. It provides variables that let you customize the way other
commands on the system work. It lets you string several commands together, and
redirect the input and output of commands.

text editors
Three text editors are available in UTek - ed, ex, and vi. Ed and ex are line
oriented editors, while vi is a visual editor that lets you move around the screen very
easily.

text formatters
UTek provides several text formatters, depending on the kinds of documents you
want to produce. All the UTek text formatters are macros based on the basic
formatters nroff and troff. Nroff produces lineprinter or letter-quality printer output,
while troff produces typeset output.

programming
UTek supports three programming languages: C, Pascal, and Fortran. In addition to
these programming languages, UTek provides a number of programming
preprocessors.

programming support
UTek provides tools to help you organize programming projects, including the RCS
Revision Control System to keep track of changes to source code, and the make
utility, which defines what portions of large programming projects are
interdependent.

Depending on the model number of your workstation, and the software packages
that you purchase, you may not have all the features included in the UTek Operating
System.

1A-2

Introduction

About This Manual
Before you read this manual, it is recommended that you complete the Online
Learning Sessions of the Learning Guide.

Another source of information included in your documentation set is the book
Introducing the UNIX System, by McGilton and Morgan. Before reading this manual
become familiar with chapters 1-4, 11, and 13 of Introducing the UNIX System.

This manual tells you how to use the major tools provided by UTek. It is intended to
serve as both an initial learning guide and a reference manual. For complete
information on every command available in the UTek Operating System, see the
UTek Command Reference.

This manual is organized in seven parts: Introduction, Common Tools, Editing
Tools, Text Formatting Tools, Programming Tools, Programming Support Tools, and
Utilities. Within each major part of the book are sections that describe each tool.
Following is a list of all the tools described in these major parts:

Introduction
This portion explains the features of the UTek system, and how to use the manual.

Common Tools
Topics discussed include: The MH Mail System, the Bourne Shell, the C-Shell,
UTek System Implementation, UTek Fast File System, UTek Distributed File system,
and the Multi-Device Queueing System.

Editing Tools
Topics discussed include: Advanced Uses of ed and Advanced Uses of ex and vi.

Text Formatting Tools
Topics discussed include: An Nroff/Troff Tutorial, Nroff/Troff Reference Guide,
The ms Text Formatting Macros, The mm Text Formatting Macros, The me Text
Formatting Macros, The me Reference Manual, and The Table Formatting Program
-tbl.

Programming Tools
Topics discussed here include: lint, yacc, curses, the f77 Fortran compiler, ratfor,
Using Pascal on UTek, lex, m4, and efl. This part also includes a discussion of the
debuggers adb and sdb.

Programming Support Tools
Topics discussed here include: RCS, a Revision Control System, Using make,
Using RCS and make together, and the awk programming language.

Utilities
Topics discussed here include: An Interactive Desk Calculator, de, and An Arbitrary
Precision Calculator Language, be.

UTekTOOLS 1A-3

Introduction

Notation Conventions
The notation conventions listed below are used throughout this manual.

<RETURN>

<CTRL-X>

file

cd

grep(I)

1A-4

Special keys are shown as all capital letters, surrounded by angle
brackets.

Control characters are shown using the same notation as for special
keys. Control characters are created by holding down the key
labeled CONTROL (or CTRL on some keyboards) while typing the
indicated key (in this example, x).

Filenames, directory names, pathnames, and text for which you
substitute your own information when entering a command are in
italics.

Command names and text you enter exactly as it appears are in
boldface.

A command followed by a parenthesized number, command(n), is a
reference to more information on that command in the UTek
Command Reference - Section n.

Introduction

Related Documents
The following books and manuals are available from Tektronix, Inc. to help you use
your workstation. Some of these documents came packaged with your workstation.

UTek Manuals
• Introducing the UNIX System

McGilton and Morgan
(McGraw-Hill Book Company)

• UTek Command Reference Manual

• UTek Tools

Programming Language Books
• The C Programming Language

Kernighan and Ritchie
(Prentice-Hall)

• Pascal User Manual and Report
Jensen and Wirth

• Tektronix ANSI BASIC Keyword Dictionary

• Tektronix ANSI BASIC Learning Guide

Workstation User Manuals
• Learning Guide

• System Administration

Graphics Package Manuals
• GKSC

• GKS Fortran

Workstation Service Manuals
• Service

• Diagnostics

UTekTOOLS 1A-5

2A
The MH Mail System

Introduction
The UTek MH (mail handling) utility lets you send mail to, and receive mail from,
other users on the system, including users on remote workstations connected by a
Local Area Network. This section provides a brief introduction to MH and tells you
where to find detailed information on each MH command.

Overview
A mail message has two major pieces: the header and the body.

• The header is composed of several components (see mh- mail(IMH) for a
complete list of components). The default components are To, Cc, and
Subject.

• The body consists of the text of the message. The body of the message is fre
formatted, but must not include graphic or binary data.

The body follows the header and is separated from it by an empty line. When you
compose a message, the form that appears on your terminal may show a line of
dashes after the header. This line is replaced by an empty line when the message i
sent.

Setting Up Your Mail System
To use the MH system, you need a Mail directory and an .mh_profile file in your
login directory. To set these up, enter the following sequence of commands:

Type comp (as with any command, followed by a <RETURN>). The system
responds with the following question:

Do you want the recommended MH path "usr/login-name/Mail"?

Type yes (or y). The system responds with another question:

"Mail" doesn't exist; Create it?

Again, type yes (or y).

UTekTOOLS 2A-1

The MH Mail System

To complete setting up the files in the Mail directory, compose the following mail
message to yourself as a test.

To:login-name <RETURN>
Cc: <RETURN>
Subject: Test <RETURN>

This is a test. <RETURN>
<£SC>
zz

The words To, Cc, and Subject are prompts. In place of login-name, type your login
name.

The system next asks:

What now?

Type send (ors). Before a new prompt appears, the message You have mail
displays. If your system is running slowly, it may take a while longer to receive this
test message. After the prompt, type inc or mail to incorporate your mail into your
inbox. The system responds with the following question:

Create folder "usr/login-name/Mail/inbox"?

Type y to create an inbox to receive your mail. After you see a prompt, type show.
The mail message you composed should now appear on your terminal screen.

In general, any time MH needs a response, you can abbreviate the value to just
enough characters to make it distinct from all the other possibilities. For example,
send can be abbreviated s. Also, any time MH asks for a response, you can press
<RETURN> to see a list of possible responses.

Sending Mail
The comp (compose) command allows you to create, edit, and send a message.
Comp prompts for the header components:

To: Enter the login-name of the person(s) you're writing to
Cc: Enter the login-name of the person(s) to send a copy to
Subject: Enter the subject of the message

You must enter something for the To, but you can leave the Cc or Subject
component blank by pressing <RETURN>. The text of a component may take more
than one line, but each continuation line must start with a blank or tab.

2A-2

The MH Mail System

Comp types a row of dashes after the header. After the dashes, enter the body of
your mail message. The only editing allowed is backspacing.

To end the message, press <.ESC> or <CTRL-D>. The system displays another row
of dashes, followed by the question what now?.

Press <RETURN> to get a list of the options available and their functions.

• If you respond with send, the message is saved in $HOME!Maill,draft, sent,
and comp exits.

• If you quit without sending the message, the message is saved in
$HOME/Mail/draft You can retrieve this draft message by entering comp
-use.

• If you respond with edit<editor>, you can edit the message you just entered,
with the named editor.

• If you respond with list, the message is displayed on the terminal.

Reading Your Mail
When another user has sent you a letter, the message you have mail will appear on
your terminal screen. Type inc (for incorporate).

The inc command takes all mail that has been sent to you since the last time you
executed the command, numbers each message, and puts the messages into your
inbox directory.

Inc also displays a scan listing for the new messages, for example:

$inc
7+
8
9

7/13 Cas
10/9 Norm
11/26 To:norm

The following explains a scan listing:

revival of measurement
NBS people and publications
question«Are there any function

• The first column in the scan listing is the message number. The plus sign (7 +)
indicates the current message.

• The second column is the date the message was sent.

• The third column indicates who sent the message. If you sent yourself a mail
message (by including your login-name in the To or Cc fields), then the To:
component is displayed in the scan listing. For example, To:norm indicates
that the message went to norm, but that you also sent a copy to yourself.

• The last column is the subject of the message. If the subject is short, the first
part of the body of the message is included after the «characters.

UTek TOOLS 2A-3

The MH Mall System

Once the mail has been incorporated, you can use the show command to copy,
print, or display a message. For example:

show
show 7
show >filename
show : lpr
show next
show prev
show last
show all
show first-last

Displays the current message.
Displays message 7.
Copies the current message to file filename.
Prints the current message on the line printer.
Displays the message that follows the current one.
Displays the message previous to the current cne.
Displays the last (highest numbered) message.
Displays all messages.
Same as show all.

You can do a scan at any time to see all of the messages in a folder.

Sending a Reply
The repl (reply) command sets up the header of a reply message. The information
used to formulate the reply header is obtained from the original message's header.
The message being answered is the current message if you do not specify a
message number, or n if you do specify a number.

After the header is completed, you can finish the body of the message as in comp.
For example:

$rep/
To:johnd
Cc:sues
Subject:Re:Staff Meeting
ln-reply-to:Your message of 28 Sept 1983 at 1420-PDT (Wednesday)

Thanks for the reminder. I'll be there.

2A-4

The MH Mall System

Sending Mail to Users on a
Remote Workstation
If you have your workstations connected in a Local Area Network, you can send mail
to users on remote workstations. If the user to whom you want to send mail does
not have an account on your current workstation, you need to know the name of
their remote workstation. Then you enter that name, separated from their login
name by the@ symbol, on the To: line of the message. For example, to send a
message to the login-name john, on the workstation called tiger, enter:

To: john@tiger

If the user to whom you want to send mail has an account on your workstation, and
they have a .forward file that directs mail to their home workstation, you can enter
just their login-name on the To: line. For example:

To: john

When you enter this, the .forward file knows to send john's mail to the machine
called tiger. The .forward file simply states john's login-name and home machine.
It resides in his home directory, on all the machines where he has accounts, so that
all his mail is directed to his home machine tiger:

john@tiger

If you have accounts on remote workstations, put a .forward file stating
your login-name and home machine on all the machines where you have
accounts.

UTekTOOLS 2A-5

The MH Mall System

STATUS
FOLDER

INC

+5

+INBOX
FOLDER

+3

MAIN
FOLDER

Figure 2A-1. Refiling Mail to Folders.

Refile creates and files messages into a folder. The syntax is:

$refile mesg +folder

SECOND
FOLDER

+1

5318-01

Mesg is any message name and defaults to the current message if none is specified.
If you try to refile a message into a folder that does not exist, the system asks:

Create folder '' /usr/login-name/Mail/folder''?

Type yes(or y) and the folder will be set up.

2A-8

The MH Mail System

The command folder +folder lists the current folder, the number of messages in it,
the range of the messages, and the current message within the folder. For
example:

$folder + status

This command will give the following information:

status has 6 messages (1-20); cur= 20;

This line tells the folder name, the number of messages in the folder, the low to high
range of message numbers, and which message is current.

Renumbering Your Mail Messages
When you remove messages, the message number of the other messages does not
change. The folder -pack command renumbers the messages in a specified folder.
For example, your inbox folder may contain messages 1, 2, 4, 8, 56, 99, 136, 146,
147, and 304. If you enter:

folder -pack +inbox

The messages are are renumbered as 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

For Further Information
This section has given the basic information you need to use the MH mail System.
Several more commands are available, and each command has several options. For
each command, you can use the -help option to list out the options that are
available. For example, comp -help lists options to the comp command. When MH
Mail asks you a question, hitting <RETURN> lists possible responses.

Table 2A-1 lists commands available to use in MH Mail. For more information about
each command, refer to the UTek Command Dictionary.

UTekTOOLS 2A-9

The MH Mail Syi

Messa
A message is au1
that contains Mh
message by num

When referring tc
example:

show 5 las
show 6-9 ·
scan first-!
scan all
show 7 nei
show

Each message is

2A-10

The MH Mail System

The command folder +folder lists the current folder, the number of messages in it,
the range of the messages, and the current message within the folder. For
example:

$folder + status

This command will give the following information:

status has 6 messages (1-20); cur= 20;

This line tells the folder name, the number of messages in the folder, the low to high
range of message numbers, and which message is current.

Renumbering Your Mail Messages
When you remove messages, the message number of the other messages does not
change. The folder -pack command renumbers the messages in a specified folder.
For example, your inbox folder may contain messages 1, 2, 4, 8, 56, 99, 136, 146,
147, and 304. If you enter:

folder -pack +inbox

The messages are are renumbered as 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

For Further Information
This section has given the basic information you need to use the MH mail System.
Several more commands are available, and each command has several options. For
each command, you can use the -help option to list out the options that are
available. For example, comp -help lists options to the comp command. When MH
Mail asks you a question, hitting <RETURN> lists possible responses.

Table 2A-1 lists commands available to use in MH Mail. For more information about
each command, refer to the UTek Command Dictionary.

UTekTOOLS 2A-9

The MH Mail System

Message Naming
A message is automatically numbered when it enters your inbox folder (a directory
that contains Mh mail messages is called a folder). You can refer to a specific
message by number, or by the words first, last, prev, next, or cur.

number
first
last
prev
next
cur

The number of a message.
The first message in inbox.
The last message in inbox.
The previous message.
The next message.
The current message.

When referring to a message, you can use any combination of these names. For
example:

show 5 last
show 6-9 14
scan first-5
scan all
show 7 next cur
show

Shows message 5 and the last message.
Shows messages 6-9 and 14.
Scans the first through fifth messages.
Scans all messages (first through last).
Shows messages 7 and 8, and the current message.
Shows the current message.

Each message is stored as a single file, and can be treated like any other file.

2A-10

UTekTOOLS

The MH Mall System

Table 2A-1
SUMMARY OF MH MAIL COMMANDS

Command/File

comp(1MH)

folder(1 MH)

inc(1MH)

mhl(1MH)

mhpath(1 MH)

.mh - mail(SMH)

next(1MH)

pick(1MH)

prev(1MH)

rmf(1MH)

rmm(1MH)

scan(1MH)

send(1MH)

show(1MH)

Description

Composes a message

Sets or lists current folder or
message

Incorporates new mail

Produces formatted listings of
messages

Prints pathnames of messages and
folders

File with user parameters

Shows the next message

Selects messages by content

Shows the previous message

Removes folder

Removes messages

Summarizes a message header

Sends a message

Shows mess_a=ge_s ______ _

2A-11

28
An Introduction to the
Shell

Introduction
The shell is a command programming language that provides an interface to the
UTek operating system. Its features include control-flow primitives, parameter
passing, variables, and string substitution. Programming constructs such as while,
if then else, case, and for are available. Two-way communication is possible
between the shell and commands. String-valued parameters, typically filenames or
options, can be passed to a command. Commands set a return value that you can
use to determine control-flow. Standard output from a command can also be used
as shell input.

The shell can modify the environment in which commands run. It redirects input
and output to files, and invokes processes that communicate through pipes. The
shell finds commands by searching directories in the file system in a sequence that
is defined by the user. The shell can read commands from the terminal or from a
file that stores command procedures.

This section describes the Bourne shell available on the UTek Operating System.
The C-Shell, which allows constructs similar to the C programming language, is also
available. See Section 2C for details on the C-Shell.

The Simple Commands part of this section covers most of the everyday requirements
of casual users. The Shell Procedures part of this section describes those features of
the shell intended for use within shell programs. These include the control-flow
primitives and string-valued variables provided by the shell. The last part, Keyword
Parameters, describes the more advanced features of the shell.

UTek TOOLS 28-·

An Introduction to the Shell

Simple Commands
Simple commands consist of one or more words separated by spaces. The first
word is the name of the command to be executed; any remaining words are passed
as arguments to the command. For example:

who

This command prints the names of users logged into the system. The command:

ls-I

This command prints a list of files in the current directory. The -I option tells Is to
print status information, size, and the creation date of each file.

Background Commands
To execute a command, the shell normally creates a new process and waits for it to
finish. But you can run a command without waiting for it to finish. For example:

cc pgm.c&

This command calls the C compiler to compile the file pgm.c. The trailing
ampersand (&) instructs the shell not to wait for the command to finish. The prompt
returns and you can continue working on other things. To help keep track of a
background process, the shell reports its process number when you place the
command in the background. You can obtain a list of currently active processes by
using the ps command.

28-2

An Introduction to the Shell

Input/Output Redirection
Most commands produce output (called standard output) to the terminal. You can
redirect this output to a file using the notation >. For example:

Is -1 >filename

The notation >filename is interpreted by the shell, instead of being passed as an
argument to Is. If the filename does not exist, the shell creates the file; otherwise,
the original contents of the file are replaced with the output from Is.

You can append output to the end of a file using the notation >>. For example:

Is -1 »filename

In this case, the output of the Is command is appended to the end of the file. If the
file does not exist, it is created.

The standard input of a command can be taken from a file instead of the terminal
using the< notation. For example:

wc<fi/ename

The wc command reads the standard input (in this case redirected from file) and
prints the number of characters, words, and lines found. If only the number of lines
is required, then you can use the -1 option:

wc -I <filename

UTekTOOLS 28-3

An Introduction to the Shell

Pipelines and Filters
The standard output of one command can be connected to the standard input of
another by using a pipe operator, indicated by a vertical bar character (D between
the commands. For example:

ls-I l WC

Two or more commands connected in this way constitute a pipeline. Its overall
effect is the same as the following command, except that no intermediate file is
used.

Is -1 > filename;wc <filename

When they are connected with a pipes, the two processes run in parallel. Pipes are
unidirectional, and the two processes are synchronized by halting wc when there is
nothing to read and halting Is when the pipe is full.

A filter is a command that reads standard input, transforms it in some way, and
prints the result as output. One such filter, grep, selects from its input lines that
contain a specified string. For example:

Is : grep old

This command prints lines from the output of Is that contain the string old. Another
useful filter is sort. For example:

who : sort

This command prints an alphabetically sorted list of all the users who are logged
onto the system.

A pipeline may consist of more than two commands. For example:

Is l grep old : wc -1

This command prints only the number of filenames in the current directory that
contain the string old.

2B-4

An Introduction to the Shell

Filename Matching
Many commands accept arguments that are filenames. For example:

Is -1 main.c

This command prints only information relating to the file main.c. The Is -1 command
by itself prints the same information about all files in the current directory.

The shell provides a mechanism for generating a list of filenames that match a
pattern. For example:

Is -1 * .c

This command generates as arguments to Is all filenames that end in .c in the
current directory. The asterisk pattern matches any string, including the null string.
In general, patterns are specified as follows:

Matches any string of characters including the null string.

? Matches any single character.

[... J Matches any one of the characters enclosed. A pair of characters
separated by a hyphen matches any character between the pair.

For example:

[a-z]*

This command matches all names in the current directory beginning with one of the
letters a through z.

UTekTOOLS 28-5

An Introduction to the Shell

The input:

/usr/fred/test/?

matches all names in the directory lusrlfredltest that consist of a single character.
If no filename is found that matches the pattern, then the string refers to a file
named?.

This mechanism is useful both to save typing and to select names according to
some pattern. You can also use it to find files. For example:

echo /usr/fred/* /core

This command finds and prints the names of all core files in subdirectories of
lusrlfred. This last process can take a long time, because it requires a scan of all
subdirectories of /usrlfred.

There is one exception to the general rules given for patterns. A period (.) at the
start of a filename must be explicitly matched. For example, this input echoes all
file names in the current directory not beginning with a period:

echo*

This input echoes all filenames that begin with a period:

echo.*

This command avoids inadvertent matching of the names "." and " .. ",which stand
for the current directory and the parent directory.

28-6

An Introduction to the Shell

Quoting in the Shell
Characters that have a special meaning to the shell are called metacharacters.
Here are some examples:

Any metacharacter preceded by a backslash (\) is quoted; it loses its special
meaning. In the output, the backslash disappears. For example, this command
echoes a single dollar sign:

echo?

And this command echos a single backslash.

echo\\

To allow long strings to be continued over more than one line, the sequence
\<RETURN> is ignored.

The backslash is convenient for quoting single characters. When you want to quote
more than one character, using many backslashes is clumsy and difficult. You can
quote a string of characters by enclosing the string between single quotes. For
example:

echo xx'****'xx

This command echoes the output:

xx****xx

The string placed within quote marks cannot contain a single quote, but it can
contain the newline character. This quoting mechanism is the most simple and is
recommended for casual use. A third quoting mechanism, using double quotes, is
also available. It prevents interpretation of some, but not all, metacharacters.
Details of quoting are described in the topic Evaluation and Quoting.

UTekTOOLS 2B-7

An Introduction to the Shell

Prompting by the Shell
When you use the shell from a terminal, it issues a prompt indicating that it is ready
for a command from the terminal. By default, this prompt is$. You can change the
prompt by entering:

PS1 =newprompt

This sets the prompt to the string newprompt until you log off the system. For
information on resetting the default prompt permanently, see the section Using UTek
on the Workstation in your System Guide.

When the shell needs further input for some commands, it issues a secondary
prompt. By default, this secondary prompt is>. To change this secondary prompt
enter:

PS2=newprompt.

Shell Procedures
You can use the shell to read and execute commands contained in a file. For
example, this calls the shell to read commands from the file filename.

sh filename {argumentsl

Such a file is called a shell program, a command procedure or a shell procedure.
Arguments may be supplied with the command. In the file arguments are
referenced using the positional parameters $1, $2, and so on. For example, if the file
wg contains:

who : grep $1

then the call:

sh wg fred

is equivalent to the command:

who : grep fred

28-8

An Introduction to the Shell

In addition to containing the command procedures, the file wg must also contain one
line that invokes the shell to run the command procedures. So at the beginning of
the file wg (or any other file containing a shell procedure) enter:

#!/bin/sh

When a UTek system file has the execute (x) attribute, you can execute a file
directly, without invoking a special shell on the command line. To make a file
executable, you can use the chmod command. For example, to make the file wg
executable enter:

chmod +x wg

This command is equivalent to entering:

sh wg fred

This lets you use shell procedures and programs interchangeably. In either case,
the shell creates a new process to execute the command.

As well as providing names for the positional parameters, the number of positional
parameters when you invoke the shell is available as$#. The name of the file being
executed is available as $0.

A special shell parameter $ * is used to substitute for all positional parameters
except $0. A typical use of this is to provide some default arguments.

Control Flow - for
A frequent use of shell procedures is to loop through the arguments ($1, $2, ...)
executing commands once for each argument. An example of such a procedure is
tel, which searches the file lusrllibltelnos. The file telnos contains lines of the form:

fred mh0123
bert mh0789

The text of tel is:

UTekTOOLS

for i
do

grep $i /usr/lib/telnos
done

28-9

An Introduction to the Shell

The following command prints those lines in /usrllibltelnos that contain the string
fred:

tel fred

The following command prints those lines containing fred, followed by those lines
containing bert.

tel fred bert

The for loop notation is recognized by the shell. It has the general form:

for name in wordl and word2
do

command-list
done

A command-list is a sequence of one or more simple commands, separated or
terminated by a newline character or a semicolon. Furthermore, reserved words like
do and done are only recognized following a newline or semicolon. A name is a
shell variable that is set to the words word! word2 in turn, each time the command
/isl following do is executed. If you eliminate in wordl word2, then the loop is
executed once for each positional parameter, that is, in $ * is assumed.

You can replace do with a left brace({), and done with a right brace(}). Another
example of the use of the for loop is the create command, whose text is:

for i do >$i; done

Notice that a semicolon (or a newline) is required before done. So the command:

create alpha beta

ensures that two empty files, alpha and beta, exist and are empty. You can use the
notation >file by itself to create a new file or clear the contents of an existing file.

28-10

An Introduction to the Shell

Control Flow - case
A multiple-choice branch is provided by the case notation. For example, an append
command:

case$# in
1)cat >>$1;;
2)cat >>$2;;
3)echo 'usage append [from to';;
esac

When called with one argument, $# is the string I, and the standard input is
appended onto the end of file using the cat command. When called with two
arguments, the contents of the first argument (file) are appended onto the second
argument (file). If the number of arguments to append is other than 1 or 2, a
message indicating proper usage displays.

The general form of the case command is:

case word in
pattern) command-list;;

esac

The shell attempts to match word with each pattern in the order in which patterns
appear. If a match is found, the associateq command-list is executed and
execution of the case is complete. Since * is the pattern that matches any string, it
can be used for the default case.

NOTE
No check is made to ensure that only one pattern matches

the case argument.

The first match found defines the set of commands to be executed. In the example
below, the commands following the second asterisk are never executed since the
first asterisk executes everything it receives.

case$# in
*) ... ;;
*) ... ;;

esac

UTekTOOLS 28-11

An Introduction to the Shell

Another example of the use of the case construction is to distinguish between
different forms of an argument. The following example is a fragment of a cc
command.

for i
do

esac

case $i in
-[ocs])
-*)
*.c)
*)

... ;;
echo unknown flag $i ;;
/lib/cO $i •.• ;;
echo 'unexpected argument $i ,,

To allow the same commands to be associated with more than one pattern, the case
command provides for alternative patterns separated by the character :. For
example:

case $i in
-x : -y) ...
esac

is equivalent to:

case $i in
-[xy])

esac

The usual quoting conventions apply, so that this entry matches the character?:

28-12

case $i in
\?)

An Introduction to the Shell

Here Documents
The shell procedure tel described earlier uses the file lusrllibltelnos to supply the
data for grep. An alternative is to include this data within the shell procedure as a
here document. For example:

for i

do

done

grep $i<<!

fred mh0123
bert mh0789

In this example, the shell takes the linl3s between « ! and ! as the standard input for
grep.

Parameters are substituted in the document before it is made available to grep as
illustrated by the following procedure, called edg.

ed $3 <<%
g/$1/s//$2/g
w

%

This call:

edg string 1 string2 filename

is then equivalent to the command:

UTekTOOLS

ed filename <<%
g/string1/s//string2/g
w

%

28-13

An Introduction to the Shell

This command changes all occurrences of string} in filename to string2. You can
prevent substitution using a backslash (\) to quote the special character dollar sign.
For example:

ed $3<<+
1,\$s/$1/$2/g
w
+

This version of edg is equivalent to the first except that ed prints a question mark if
there are no occurrences of the string $1.

Substitution within a here document may be prevented entirely by quoting the
terminating string. For example

grep $i<< #

The here document is not parameter substituted before presentation to grep. If
parameter substitution is not required in a here document, this latter form, using the
pound sign (#) instead of <<l and «, is more efficient.

The notation «- tells the shell to strip leading tabs.

Shell Variables
The shell provides string-valued variables. Variable names begin with a letter and
consist of letters, digits, and underscores. You can assign a value to a variable like
this:

user=fred box=mOOO acct=mhOOOO

This assigns values to the variables user, box, and acct. You can set a variable to
the null string by entering:

null=

You can substitute the value of a variable by preceding its name with a dollar sign.
For example:

echo $user

This command echoes /red.

28-14

An Introduction to the Shell

You can use variables interactively to abbreviate frequently-used strings. For
example,

b=/usr/fred/bin
mv marv $b

This command moves the file marv from the current directory to the directory
/usr/fred/bin.

A more general notation is available for parameter (or variable) substitution. For
example:

echo ${user}

This command is equivalent to:

echo $user

It is used when the parameter name is followed by a letter or digit. For example:

tmp=/tmp/ps
ps a>${tmp}a

This directs the output of ps to the file /tmp/psa, whereas:

ps a >$tmpa

causes the variable tmpa to be substituted. This substitutes the value of the variable
tmpa.

UTekTOOLS 28-15

An Introduction to the Shell

The shell initially sets the following values. All of them, except the exit status ($?)
are set initially.

$? The exit status (return code) of the last command executed as a
decimal string. Most commands return a zero exit status if they
complete successfully; otherwise, a nonzero exit status is returned.
Testing the value of returned codes is dealt with later under the if
and while commands.

$# The number of positional parameters in decimal. Used, for
example, in the append command to check the number of
parameters.

$$ The process number of this shell in decimal. Since process
numbers are unique among all existing processes, this string is
frequently used to generate unique temporary file names. For
example:

ps a >ltmp/ps$$

rm /tmp/ps$$

$! The process number of the last process run in the background (in
decimal).

$- The current shell options, such as -x and -v.

Some variables have a special meaning to the shell and should be avoided for
general use.

$MAIL

28-16

When used interactively, the shell looks at the file specified by this
variable before it issues a prompt. If the specified file has been modified
since you last looked at it, the shell prints the message You have mail
before prompting for the next command. This variable is typically set in
the .profile of the user's home directory. For example:

MAIL=/usr/mail/fred

An Introduction to the Shell

$HOME The default argument for the cd command. The current directory is used
to resolve filename references that do not begin with a forward slash (/)
and is changed using the cd command. For example:

$PATH

$ENV

$PS1

$PS2

$IFS

UTekTOOLS

cd /usr/fred/bin

This makes the current directory lusrlfredlbin. The command cd without
an argument is equivalent to:

cd $HOME

This variable is also set in the user's .profile.

A list of directories containing commands. Each time the shell executes a
command, it searches a list of directories for an executable file. If $PA TH is
not set, the current directory, !bin and lusrlbin are searched by default.
Otherwise, $PATH consists of directory names separated by a colon. For
example:

PATH=:/usr/fred/bin:/bin:/usr/bin

This specifies that the current directory, lusrlfredlbin, /bin, and !usr!bin
are to be searched in that order. In this way, individual users can have
their own private commands that are accessible independently of the
current directory. If the command name contains a forward slash (/), this
directory search is not used; a single attempt is made to execute the
command.

An interactive shell can read the value of ENV. ENV is set to the name
of a file, and commands are read from that file and executed at login.
This variable has no default value, so you must set it in the .profile file.
Usually, this variable is used to define shell functions.

The primary shell prompt string, by default a dollar sign ($).

The shell prompt when further input is needed, by default the greater
than symbol (>).

The set of characters used by blank interpretation. (For more on blank
interpretation see the topic Keyword Parameters.)

28-17

An Introduction to the Shell

Control Flow - while
The actions of the for loop and the case branch are determined by data available to
the shell. A while or until loop and an if then else branch are also provided, whose
actions are determined by the exit status returned by commands. A while loop has
the general form:

while command-list 1
do

command-list 2
done

The value tested by the while command is the exit status of the last simple
command following while. Each time round the loop command-fist I is executed. If
a zero exit status is returned, the command-list 2 is executed; otherwise, the loop
terminates. For example:

while test $1
do

shift
done

This shell command is equivalent to:

for i
do

done

The shift command is a shell command that renames the positional parameters $1,
$2, ... as $2, $3, ... and loses $1.

The shift command also accepts a numeric argument, so that you can shift more
than one position. See UTek Command Reference, shift(lsh) for details. Another
kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop, the termination condition is reversed.
For example:

until test -f file
do

sleep JOO
done

commands

28-18

An Introduction to the Shell

This shell program loops until file exists. Each time around the loop, it waits for five
minutes (300 seconds) before trying again.

Control Flow - if
A general conditional branch is also available:

if command-list
then

command-list
else

command-list
fi

This loop tests the value returned by the last simple command following if.

The if command may be used in conjunction with the test command to test for the
existence of a file. For example:

if test -f file
then

process file
else

do something else
fi

A multiple-test if command can be written using an extension of the if notation.
The elif command is a combination of else and if. For example:

if ...
then

elif

fi

The touch command changes the last-modified time for a list of files. The
command may be used in conjunction with make to force recompilation of a list of
files.

UTekTOOLS 28-19

An Introduction to the Shell

The following is an example of the touch command:

flag=
for i
do

case $i in
-c) flag=N
*) if test -f $i

then
ln $i junk$$

rm junk$$
elif test $flag
then

echo file \'$i\ does not exist
else

>$i
fi ; ;

esac
done

The -c option is used in this command to force subsequent files to be created if
they do not already exist. Otherwise, if the file does not exist, an error message is
printed. The shell variable flag is set to some nonnull string if the -c option is
encountered. The In and rm commands make a link to the file and then remove it.

The sequence:

if command}
then

command2
fi

This sequence can be written as:

command} && command2

Conversely, this sequence executes command2 only if commandl fails:

command} : : command2

In each case, the value returned is that of the last simple command executed.

28-20

An Introduction to the Shell

Test Command
The test command is extremely useful when you write shell programs. It
implements a number of programming functions, such as algebraic comparison of
numbers, string operators, and file status.

The test command is used with the if and while commands to test conditions. If the
condition is true, test exits with a status of 0. If the condition is false, the exit status
is something other than 0.

Algebraic Comparisons
A number of options to the test command compare quantities. One commonly used
option is -It, that checks to see if one quantity is less than another. The shell
program in the following example tests to see if there is at least one argument given
on the command line of the shell program. Recall that $# is the number of
arguments given to the shell program:

#!/bin/sh
if test $# -lt 1
then

echo "No arguments given."
exit 1

fi

exit 0

The command test$# -It 1 exits with a nonzero status if the value of$# (number of
arguments) is less than one, and the message No arguments given displays on the
terminal.

Following are the options that are available for algebraic comparison:

-eq equal

-ne not equal

-gt greater than

-It less than

-le less than or equal to

UTek TOOLS 28-21

An Introduction to the Shell

String Operators
You can also use test to evaluate strings. The simplest use of the test command
checks to see if an argument to test is a nonempty string. For example:

test foo

The test command evaluates to true because Joo is a non-empty string. The -n option to
the test command also checks for a non-empty string. So the following example is the
same as the command test foo:

test -n foo

The -z option, followed by a string, evaluates to true if the string is zero length.

You can also compare two strings to see if they are the same or not. The two
operators are equal (=) and not equal (! =). Here are three examples:

test too = bar
test too ! = bar
test bar = bar

evaluates to false
evaluates to true
evaluates to true

You can also evaluate the length of a string using the -I option. The expression -I
string is replaced by the length of the given string. This example shows a shell
program that reads data from the terminal until a string longer than 12 characters is
entered:

#!/bin/sh
line=""
while test -1 "$line" -lt 12
do

echo "Input a string of at least 12 characters."
read line

done

You can combine algebraic and string comparisons. Three logical operators help
accomplish this:

not

-o or

-a and

28-22

An Introduction to the Shell

Following is an example of using logical operators to combine algebraic and string
comparisons:

#!/bin/sh
if test \("0$1" -eq 0 \) -a \("0$1" -eq != "00" \)
then

fi

echo "max : First argument ($1) is not a number."
exit 1

This example makes sure that the first argument of the shell program is a number.
The expression \("0$1" -eq 0 \) checks to see if the value of the first argument is
0. The expression \("0$1" -eq != "00" \)checks to see if the value of the first
argument is actually 0. The reason for this second check is that if the first argument
is not a number, it is converted to 0. The -a operator says that if the first argument
is equal to zero, but not actually the string zero itself, then the first argument is not a
number.

File Status
You can also use the test command to see if a file exists, and whether it is readable
or writeable. For example, the following command tests to see if a file exists:

test -f filename

This command returns zero exit status if file exists, and non-zero exit status
otherwise.

Some of the more frequently used test options that give you information about file
status are listed below.

test -f file

test -r file

test -w file

test -d file

true if file exists.

true if file is readable.

true if file is writable.

true if file is a directory.

Three other integer functions are available that give you information about files:

-Mfile

-C file

-A file

UTekTOOLS

Replaced by last modification time for the named file. If the file
does not exist, the time is set to 0.

Replaced by the last time the status of the file changed. See the
UTek Command Reference, stat(2) for information on file status.

Replaced by the last time the file was accessed.

28-23

An Introduction to the Shell

The which Command
In addition to verification using the test command, you frequently need to know what
version of a command a shell program executes. Within a shell program you can
use the which command in this form:

which command] command2

Each command is described in terms of how it would be executed. Messages
display to tell you if a command is built into the shell, if it's a function, or the
pathname it executes.

Command Grouping
You can group commands in two ways:

{command-list}
(command-list)

The first form is simply executed. The second form executes command-list as a
separate process. For example:

(cd x;rm junk)

This command executes rm junk in the directory x without changing the current
directory of the invoking shell.

28-24

An Introduction to the Shell

Debugging Shell Procedures
The shell provides two tracing mechanisms to help when debugging shell
procedures. The first is invoked within the procedure as:

set -v

This command causes lines of the procedure to be printed as they are read. It is
useful to help isolate syntax errors. It may be invoked without modifying the
procedure by entering:

sh -v proc ...

In this command proc is the name of the shell procedure. This option may be used
in conjunction with the -n option, which prevents execution of subsequent
commands. (Note that entering set -n at a terminal leaves the terminal useless
until you type an end-of-file.)

This command produces an execution trace:

set -x

Following parameter substitution, each command is printed as it is executed.

You can turn off both the -x and the -n options by entering:

set-

The current setting of the shell options is available in a procedure as $-.

Keyword Parameters
Shell variables may be given values by assignment or when a shell procedure is
invoked. An argument to a shell procedure of the form name= value, that precedes
the command name, causes value to be assigned to name before execution of the
procedure begins. The value of name in the invoking shell is not affected. For
example:

user=fred command

This executes command with user set to fred. The -k option causes arguments of
the form name= value to be interpreted in this way anywhere in the argument list.

UTekTOOLS 28-25

An Introduction to the Shell

Such names are sometimes called keyword parameters. If any arguments remain,
they are available as positional parameters $1, $2, etc.

The set command may also be used to set positional parameters from within a
procedure. For example:

set-*

This command sets $1 to the first file name in the current directory, $2 to the next,
and so on. A leading hyphen(-) turns the option on, and an addition sign turns the
option off. Note that the first argument, -, ensures correct treatment when the first
filename begins with a -. The -a option to set marks variables that are exported
to the environment.

Parameter Transmission
When you invoke a shell procedure, both positional and keyword parameters may be
supplied with the call. Keyword parameters are also made available implicitly to a
shell procedure by specifying in advance that such parameters are to be exported,
using the export command. For example:

export user box

This command marks the variables user and box for export. When a shell procedure
is invoked, copies are made of all exportable variables so that you can use them. If
you modify exported variables within the procedure it does not affect the values in
the invoking shell. Generally, a shell procedure cannot modify the state of its caller
without an explicit request on the part of the caller.

Names whose value is intended to remain constant may be declared readonly. The
form of this command is the same as that of the export command:

readonly name

Subsequent attempts to set readonly variables are illegal.

28-26

An Introduction to the Shell

Parameter Substitution
If a shell parameter is not set, then the null string is substituted for it. For example:

echo $d

This command echos nothing. You can give a default string that will echo the value
of the variable d if it is set, and something else otherwise. For example:

echo ${d-$1}

This command echoes the value of d if it is set, and the value (if any) of $1 if it is not
set.

You can assign a variable a default value. For example:

echo ${d=.}

This command sets d to the string . (a period) if it was not previously set. (The
notation ${variable= value} is not available for positional parameters.)

If there is no default, the command:

echo ${d?message}

echoes the value of the variable d if it has one; otherwise, message is printed by the
shell and execution of the shell procedure ends. If message is absent, a standard
message is printed. A shell procedure that requires some parameters to be set
might start as follows:

:${user?}${acct?}${bin?}

The colon (:) is a command built into the shell that does nothing once its arguments
have been evaluated. If any of the variables are not set, execution of the shell
procedure ends.

UTekTOOLS 28-27

An Introduction to the Shell

Command Substitution
The standard output from a command can be substituted in a similar way to
parameters. The command pwd prints on its standard output the name of the
current directory. For example, if the current directory is lusrlfred/bin, the following
command is equivalent to d = lusrlfredlbin.

d= · pwd·

The entire string between single quotes is taken as the command to be executed,
and is replaced with the output from the command. The command is written using
the usual quoting conventions, except that a single quote must be escaped using a
backslash(\).

Command substitution occurs in all contexts where parameter substitution occurs
(including here documents), and the treatment of the resulting text is the same in
both cases. This mechanism allows string processing commands to be used within
shell procedures. An example of such a command is basename, which removes a
specified suffix from a string. For example:

basename main.c .c

This command prints the string main. Its use is illustrated by the following fragment
from the cc command:

case $A in

*.c) B='basename $A.c

esac

This sets B to the part of $A with the suffix .c removed.

28-28

An Introduction to the Shell

Evaluation and Quoting
The shell is a macro processor that provides parameter substitution, command
substitution, and filename generation for the arguments to commands. This section
discusses the order in which these evaluations occur and the effects of various
quoting mechanisms.

Initially commands are parsed according to the grammar given in Table 28-2 at the
end of this section .. Only one evaluation occurs. So if you set variable x to the
string $y, the command echo $x echoes the string $y. Before the shell executes a
command, it makes the following substitutions in this order:

• parameter substitution, for example $user

• command substitution, for example · pwd ·

• blank interpretation

• filename generation

The first two items in the list were discussed earlier. After parameter and command
substitution take place, the resulting characters are broken into nonblank words.
For this purpose, blanks are the characters defined in the string $IFS in your .profile
or .login file. By default, this string consists of blank, tab, and newline. The null
string is not regarded as a word unless it is quoted.

In filename generation each word is scanned for the special characters *, ?, and [J.
An alphabetical list of filenames is generated to replace the word. Each such
filename then becomes a separate argument.

The evaluations described earlier also occur in the list of words associated with a for
loop. However, substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier (using backslash and single
quotes) a third quoting mechanism using double quotes is provided. Within double
quotes, parameter and command substitution occurs; but filename generation and
the interpretation of blanks does not.

UTekTOOLS 2B-29

An Introduction to the Shell

The following characters have a special meaning with double quotes. You can
quote them using a backslash.

$ parameter substitution

command substitution

ends the quoted string

\ quotes the special characters $ ' " \

For example, this command passes the positional parameters as a single argument:

echo 11$* 11

It is equivalent to:

echo 11$1, $2, ... "

The notation$@ is the same as$*, except when it is quoted. For example:

echo 11 $@ 11

This passes the positional parameters, unevaluated, to echo. It is equivalent to:

echo 11 $1 11 11 $2 11
•••

The following table gives the shell metacharacters that are evaluated for each
quoting mechanism.

28-30

Table 2B-1
QUOTING AND EVALUATION OF SHELL METACHARACTERS

t = terminator
y = interpreted

metacharacter

n = not interpreted

\ $

y
y

An Introduction to the Shell

In cases where more than one evaluation of a string is required, the built-in
command eval may be used. For example, if the variable X has the value $y, and if
y has the value pqr, then this command echoes the string pqr.

eval echo $X

In general, the eval command evaluates its arguments and treats the result as input
to the shell. The input is read, and the resulting commands are executed. For
example:

wg='eval who : grep'
$wg fred

This is equivalent to:

who : grep fred

In this example, eval is required since there is no interpretation of metacharacters,
such as :, following substitution.

Error Handling
The treatment of errors detected by the shell depends on the type of error and on
whether the shell is being used interactively. An interactive shell is one whose input
and output are connected to a terminal. A shell invoked with the -i option is also
interactive.

Execution of a command may fail for any of the following reasons:

• Input/output redirection may fail, for example, if a file does not exist or cannot
be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a bus error or memory
fault signal.

• The command terminates normally but returns a nonzero exit status.

In all of these cases, the shell goes on to execute the next command. An interactive
shell will return to read another command from the terminal. Except for the last
case, an error message will be printed by the shell. All remaining errors cause the
shell to exit from a command procedure. Such errors include the following:

• Syntax errors

• A signal, such as an interrupt. The shell waits for the current command to
finish execution, and then either exits or returns to the terminal.

• Failure of any of the built-in commands such as ed.

UTekTOOLS 28-31

An Introduction to the Shell

The shell option -e causes the shell to terminate if any error is detected. The
following is a list of the UTek operating system signals.

1 hangup
2 interrupt
3* quit
4 * illegal instruction
5 * trace trap
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10 * bus error
11 * segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kill)

The UTek operating system signals marked with an asterisk(*) produce a core
dump if not caught. However, the shell itself ignores quit which is the only external
signal that can cause a dump. The signals in this list used by shell programs are 1,
2, 3, 14, and 15.

28-32

An Introduction to the Shell

Fault Handling
Shell procedures normally terminate when an interrupt is received from the terminal.
The trap command is used if some cleaning up is required, such as removing
temporary files. For example:

trap 'rm /tmp/ps$$; exit' 2

This sets a trap for signal 2 (terminal interrupt). If this signal is received, it executes
the following commands:

rm /tmp/ps$$; exit

Signal 11 (segmentation fault) cannot be trapped.

The exit is another built-in command that terminates execution of a shell procedure.
The exit is required; otherwise, after the trap has been taken, the shell resumes
executing the procedure at the place where it was interrupted.

UTek operating system signals can be handled in one of three ways.

• They can be ignored, so the signal is never sent to the process

• They can be caught, so the process must decide what action to take when the
signal is received

• They can be left to cause termination of the process without taking any further
action.

If a signal is being ignored on entry to the shell procedure, trap commands are
ignored.

UTekTOOLS 28-33

An Introduction to the Shell

The use of trap is shown in this modified version of the touch command:

flag=
trap 'rm -f junk$$;; exit 1 2 3 15
for i
do

case $i in
-c) flag =N
*) if test -f $i

then
ln $i junk$$;rm junk$$

elif test $flag
then

echo file \'$i\ does not exist
else

>$i
fi;;

esac
done

The cleanup action is to remove the file junk$$. The trap command appears before
the creation of the temporary file; otherwise, it would be possible for the process to
die without removing the file.

Since there is no signal O in the UTek operating system, 0 is used by the shell to
indicate the commands to be executed on exit from the shell procedure.

A procedure can ignore signals by specifying the null string as the argument to trap.
For example:

trap '' 1 2 3 15

28-34

An Introduction to the Shell

This command is a fragment from the nohup command. Nohup ignores the
operating system HANGUP, INTERRUPT, QUIT, and SOFTWARE TERMINATION
signals. These signals are ignored by both the procedure and the invoked
commands.

You can reset traps by entering:

trap 2,3

This resets the traps for signals 2 and 3 to their default values. You can obtain a list
of the current values of traps by entering:

trap

The scan procedure is an example of the use of trap where there is no exit in the
trap command. The scan takes each directory in the current directory, prompts with
its name, and then executes commands typed at the terminal until an end-of-file or
an interrupt is received. Interrupts are ignored while executing the requested
commands but cause termination when scan is waiting for input. The scan
procedure follows:

d='pwd
for i in *
do

if test -d $d/$i
then

fi
done

cd $d/$i
while echo "$i:" && ftrap exit 2 && read x
do

trap : 2
eval $x

done

The built-in command readx reads one line from the standard input and places the
result in variable x. It returns a nonzero exit status if either an end-of-file is read or
an interrupt is received.

UTekTOOLS 28-35

An Introduction to the Shell

Shell Functions
Shell functions provide a convenient way of abbreviating commands for entry on a
command line or within shell programs. A shell function is similar to a C-Shell alias,
except that a function has the easier syntax of a shell program.

Executing Functions
Normally, when the shell executes a command it looks for the command in three
places. First, it looks to see if the command is built into the shell itself, such as cd
and test. Second, the shell reads user-defined functions. After looking for the
command in these two places, the shell looks for executable files defined in the
PATH variable. Because functions are read after built-in commands, you can never
give a function the same name as a built-in command.

The general form to define a function is:

junction-name () command-list

For command-list, substitute one or more valid UTek commands. In this command,
function-name is an abbreviated name you choose for the commands in command
list. However, function-name cannot be the same as the name of a built-in shell
command. If you are not sure whether a command is a built-in command, use the
which command to find out.

Following are two function definitions:

cl () clear
todo () {date; cat $HOME/.todo;}

28-36

An Introduction to the Shell

The first example shortens the clear command to the function-name cl. Now each
time the shell reads cl, it clears the screen. When you enter the command todo,
the second example displays the date, followed by a file that presumably contains a
list of things you need to do today.

Another way to write these two functions involves entering each portion of the
definition on separate lines. The$ is the primary shell prompt (defined by $PS1)
and the > is the secondary shell prompt (defined by $PS2). This example shows the
same two functions defined previously:

$ cl ()
>clear
$

$ todo ()

> {
> date
>cat $HOME/.todo
> }
$

To find out what functions are set within the current shell, enter list. The list
command without arguments lists all shell variables and functions.

You could execute functions at a shell prompt, or in a shell program. But you must
redefine the functions within each shell. The next topic, Passing Functions to
Subshells. discusses how to pass the capabilities of a function to another shell.

Passing Functions to Subshells
Although functions are listed with shell variables, they cannot be passed into your
environment using the export command. So when you invoke a new shell, no
functions are defined.

To define new functions for an interactive shell, you can set the shell variable $ENV
to the name of a file that contains the definitions for shell functions. Then each time
you invoke a new shell, this file is read for commands. Because $ENV is not
defined by default when you log in, you must explicitly set it and export it in your
.profile file. For example:

ENV=SHOME
export ENV

UTekTOOLS 28-37

An Introduction to the Shell

Non-interactive shells, such as those executed by shell programs, do not read the
variable $ENV. To execute your shell functions within a shell program you must use
the commands:

if ["$ENV"

then
$ENV

fi

Function Arguments
When you execute a shell function, $@ contains the arguments given to the
function. As with a shell program, arguments are placed in $1, $2, and so on. So
you can convert many shell programs to internal functions without changing them.

But when a shell program uses functions, the function redefines the value of $@
with different arguments. All arguments in the shell program that you need later
must be saved prior to executing a function.

Following is an example of a shell function with arguments. The function, called
chdir, changes to the directory you give as the first argument. Without an
argument, chdir changes to $HOME:

28-38

chdir()
{

if [11$1"]
then

cd "$1"
else

cd
fi

An Introduction to the Shell

Exiting from Functions
In older versions of the Bourne Shell, the exit command only exited from shell
scripts. Now, the exit command unconditionally causes exit from the current shell.

Because you don't want to delete the current shell to exit from a function (recall that
the function does not invoke a separate shell), a special command to exit is
provided. The command to exit from a shell function has the following form:

return n

In this command n is set to the return value of the last command. When the shell
executes the return command, it sets the shell variable$? (exit code of last
command executed) to the value of n.

Command Execution
To run a command (other than a built-in shell command), the shell first creates a
new process using the system call fork. The execution environment for the
command includes input, output and the states of signals. The environment is
established in the child process before the command is executed. The built-in
command exec is used in rare cases when no fork is required and simply replaces
the shell with a new command. For example, a simple version of the nohup
command looks like this:

trap '' 1 2 3 15
exec$*

The trap turns off the signals specified so that they are ignored by subsequently
created commands, and exec replaces the shell by the command specified.

UTekTOOLS 28-39

An Introduction to the Shell

Most forms of input/output redirection have already been described. In the following
list word is only subject to parameter and command substitution. No filename
generation or blank interpretation takes place. Input/output specifications are
evaluated left to right as they appear in the command. Following are some
input/output specifications:

>word

>>word

<word

<<word

>&digit

<&digit

<

>

The standard output (file descriptor 1) is sent to the file word, which
is created if it does not already exist.

The standard output is sent to file word. If the file exists, then
output is appended; otherwise, the file is created.

The standard input (file descriptor 0) is taken from the file word.

The standard input is taken from the lines of shell input that follow,
up to but not including a line consisting only of word. If word is
quoted, parameter and command substitution occur and backslash
is used to quote the characters $, ', and the first character of word.
In the latter case, \<RETURN> is ignored.

The file descriptor digit is duplicated using the system call dup, and
the result is used as the standard output.

The standard input is duplicated from the file descriptor digit.

The standard input is closed.

The standard output is closed.

Any of the above may be preceded by a digit. In that case the file descriptor
created is that specified by the digit, instead of the default 0 or 1. For example:

... 2>filename

This runs a command with message output (file descriptor 2) directed to file.
Another example:

... 2>&1

This runs a command with its standard output and message output merged. (Strictly
speaking, file descriptor 2 is created by duplicating file descriptor 1, but the effect is
usually to merge the two streams.)

28-40

An Introduction to the Shell

The environment for a command run in the background is modified in two ways.
First, the default standard input for such a command is the empty file ldevlnull.
This prevents two processes (the shell and the command) that run in parallel from
trying to read the same input.

The other modification to the environment of a background command is to turn off
the QUIT and INTERRUPT signals so that they are ignored by the command. This
modification allows these signals to be used at the terminal without causing
background commands to terminate. For this reason, the UTek operating system
convention for a signal is that if it is set to 1 (ignored), then it is never changed even
for a short time. Note that the shell command trap has no effect for an ignored
signal.

Invoking the Shell
The following options are interpreted by the shell when it is invoked. If the first
character of argument zero is a minus, commands are read from the file .profile.
These are the most commonly-used options. For a complete list see UTek
Command Reference, sh(l).

-est ring

-s

-i

UTekTOOLS

If the -c option is present, then commands are read from string.

If the -s option is present, or if no arguments remain, commands
are read from the standard input. Shell output is written to file
descriptor 2.

If the -i option is present, or if the shell input and output are
attached to a terminal (as determined by getty), the shell is
interactive. In this case, TERMINATE is ignored so that kill O does
not kill an interactive shell. INTERRUPT is caught and ignored so
that wait is interruptable. In all cases, QUIT is ignored by the shell.

28-41

An Introduction to the Shell

item word
input-output
name=value

Table 28-2
SHELL GRAMMAR

simple-command item

command

pipeline:

and/or:

command-list

input-output;

file

case-part:

pattern:

28-42

simple-command item

simple-command

(command-list)
{command-list}

for name do command-list done

while command-list do command-list
done

until command-list do command-list
done

case word in case-part ... esac

if command-list then command-list
else-part fl

command
pipeline l command

pipeline
and/or & & pipeline
and/or : l pipeline

and/or
command-list;

command-list&
command-list; and/or
command-list & and/ or

>word
<word

>>word
<<word

word
& digit
&-

pattern) command-list ;;

word
pattern l word

else-part:

empty:

word:

name

digit

UTekTOOLS

elif command-list then command-list
else-part
else command-list

empty

sequence of non-blank characters

sequence of letters, digits, or
underscores starting with a letter

0123456789

An Introduction to the Shell

28-43

An Introduction to the Shell

(a)syntactic:

pipe symbol

&& andf symbol

: l orfsymbol

TABLE 28-3
METACHARACTERS AND RESERVED WORDS

command separator

case delimiter

& background commands

() command grouping'

< input redirection

« input from a here document

> output creation

» output append

(b)patterns:

match any character(s) including none

? match any single character

[...] match any of the enclosed characters

(c) substitution:

${. .. } substitute shell variable

substitute command output

(d) quoting:

\ quote the next character

quote the enclosed characters except for the '

quote the enclosed characters except for the $, '. \, and ".

(e) reserved words:

if then else elif fi
case in esac
for while until do done
{ } [1 test
echo
type
which
pwd

28-44

2C
Introduction to the C
Shell

Introduction
The C-Shell is a command interpreter for the UTek operating system that allows you
to write shell programs using constructs similar to the C programming language.
The other shell available on the UTek system, the Bourne shell, is described in
section 2B. The C-Shell provides several features not available in the Bourne shell:
job control to track the progress of a job easily and manipulate its priority, the ability
to abbreviate, or alias, commands for easy access, and a history list of past
commands that lets you quickly execute all or part of a previous command.

Most features of the Bourne shell are also included in the C-Shell. Its features
include control-fiow primitives, parameter passing, variables, and string substitution.
Programming constructs such as while, if then else, case, and for are available.
Two-way communication is possible between the shell and commands. String
valued parameters, typically filenames or options, can be passed to a command.
Commands set a return value that you can use to determine control-flow. Standard
output from a command can also be used as shell input.

The shell can modify the environment in which commands run. It redirects input
and output to files, and invokes processes that communicate through pipes. The
shell finds commands by searching directories in the file system in a sequence that
is defined by the user. The shell can read commands from the terminal or from a
file that stores command procedures.

Simple Commands
Simple commands consist of one or more words separated by spaces. The first
word is the name of the command to be executed; any remaining words are passed
as arguments to the command. For example:

who

This command prints the names of users logged into the system. The command:

ls-I

This command prints a list of files in the current directory. The -1 option tells Is to
print status information, size, and the creation date of each file.

UTekTOOLS 2C-1

Introduction to the C-Shell

Input/Output Redirection
Most commands produce output (called standard output) to the terminal. You can
redirect this output to a file using the notation >. For example:

Is -1 '>:filename

The notation '>:filename is interpreted by the shell, instead of being passed as an
argument to Is. If the filename does not exist, the shell creates the file; otherwise,
the original contents of the file are replaced with the output from Is.

You can append output to the end of a file using the notation». For example:

Is -1 >'>:filename

In this case, the output of the Is command is appended to the end of the file. If the
file does not exist, it is created.

The standard input of a command can be taken from a file instead of the terminal
using the< notation. For example:

wc <filename

The wc command reads the standard input (in this case redirected from the file
filename) and prints the number of characters, words, and lines found. If only the
number of lines is required, then you can use the -I option:

wc -1 <filename

The C-Shell can also redirect the standard error independent of the standard output.
You can redirect error output to a file using the following form:

>&filename

or you can append the error output to a file using the form:

>>&filename

You can also pipe output from other commands to the standard error using:

2C-2

Introduction to the C-Shell

If you have the C-Shell noclobber variable set, redirection of input and output cannot
write to a file that exists, except for special files like terminals or /dev/null. But if
noclobber is set, you can suppress this check for an existing file by using an
exclamation mark after the redirection symbol. For example:

>! >>! >&! >>&!

Pipelines and Filters
The standard output of one command can be connected to the standard input of
another by using a pipe operator, indicated by I between the commands. Two or
more commands connected in this way constitute a pipeline. For example:

ls-I I WC

Its overall effect is the same as the following command, except that no intermediate
file is used.

Is -I > file;wc <file

When they are connected with a pipes, the two processes run in parallel. Pipes are
unidirectional, and the two processes are synchronized by halting wc when there is
nothing to read and halting Is when the pipe is full.

A Jilter is a command that reads its standard input, transforms it in some way, and
prints the result as output. One such filter, grep, selects from its input lines that
contain a specified string. For example:

Is : grep old

This command prints lines from the output of Is that contain the string old. Another
useful filter is sort. For example:

who : sort

This command prints an alphabetically sorted list of all the users who are logged
onto the system. A pipeline may consist of more than two commands. For example:

Is : grep old : wc -I

This command prints only the number of filenames in the current directory that
contain the string old.

UTekTOOLS 2C-3

Introduction to the C-Shell

Filename Matching
Many commands accept arguments that are filenames. For example:

ls-I main.c

This command prints only information relating to the file main.c. The Is -1 command
by itself prints the same information about all files in the current directory.

The shell provides a mechanism for generating a list of filenames that match a
pattern. For example:

Is -1 * .c

This command generates as arguments to Is all filenames that end in .c in the
current directory. The asterisk(*) pattern matches any string, including the null
string. In general, patterns are specified as follows:

Matches the home directory of a specified user, or if no user is specified
it expands to the home directory of the current user.

Matches any string of characters including the null string.

? Matches any single character.

[... J Matches any one of the characters enclosed. A pair of characters
separated by a hyphen matches any single character between the pair.

{ ... } Matches each one of the characters enclosed with a preceding and/or
trailing string.

2C-4

Introduction to the C-Shell

For example:

[a-z]*

This command matches all names in the current directory beginning with one of the
letters a through z.

The input:

/usr/f red/test/?

matches all names in the directory lusrlfredltest that consist of a single character.
If no filename is found that matches the question mark, the shell looks for a file
named?.

This mechanism is useful both to save typing and to select names according to
some pattern. You can also use it to find files. For example:

echo /usr/fred/* /core

This command finds and prints the names of all core files in subdirectories of
lusrlfred. This last process can take a long time, because it requires a scan of all
subdirectories of /usrlfred.

There is one exception to the general rules given for patterns. A period at the start
of a filename must be explicitly matched.

This input echoes all filenames that begin with a period:

echo.*
This command avoids inadvertent matching of the names"." and" .. ", which stand
for the current directory and the parent directory. The notation a{b,c,d}e is a
shorthand for abe ace ade. This is particularly useful for matching several files
whose pathnames have the same beginning or trailing components. For example:

/source/{o!dls,!s} .c

This notation expands to the filenames lsource/old/s.c and /source/ls.c.

UTekTOOLS 2C-5

Introduction to the C-Shell

Quoting
Characters that have a special meaning to the shell are called metacharacters. Here
are some examples:

<>*? :&
Any metacharacter preceded by a backslash (\} is quoted, and loses its special
meaning. In this discussion, the word quote is unrelated to quotation marks. It
means "remove the special meaning."

When you use a backslash to quote a character, the backslash does not appear in
the output. For example, this command echoes a single dollar sign:

echo\$

And this command echos a single backslash.

echo\\

To allow long strings to be continued over more than one line, the sequence
\<RETURN> is ignored.

The backslash is convenient for quoting single characters. When you want to quote
more than one character, using a backslash is clumsy and difficult. You can quote
a string of characters by enclosing the string between single quotes. For example:

echo xx'*** *'xx

This command echoes the output:

xx****xx

The quoted string cannot contain a single quote, but it can contain the newline
character. This quoting mechanism is the most simple and is recommended for
casual use. A third quoting mechanism, using double quotation marks, is also
available. It prevents interpretation of some, but not all, metacharacters.

2C-6

Introduction to the C-Shell

Starting and Terminating the C-Shell
When you log in to the system, you are in your home directory. The system starts
the shell automatically. As you log in, the shell reads commands from a file in your
home directory called .cshrc. Each time you invoke a new C-Shell, the commands
in this file are read. Read further in this topic for more information on what
commands to put in the .cshrc file.

Each time you log in, but not each time you invoke a new shell, a file in your home
directory called .login is read for commands. After reading the commands from
.cshrc, the login shell reads commands from .login. Read further in this topic for
more information on what commands to put in the .login file.

If you want to change from the Bourne shell to the C-Shell, change your entry in the
system password file so that UTek invokes csh when you log in. To do this you
need to use the chsh (change shell) command. To make the C-Shell your login
shell, type:

chsh login-name /bin/csh

A Sample .cshrc File
The .cshrc file contains C-Shell-specific commands that you want to execute every
time you create a new C-Shell.

This file sets up environment variables, the pathname searched by the C-Shell to
execute commands, and any C-Shell variables that you want to set. It also
abbreviates (aliases) frequently-used commands.

Each time that you invoke a new C-Shell, .cshrc executes. Because the .cshrc file
sets so many parameters, it can take a long time to execute. If it takes too long to
invoke a new C-Shell, remove some of the aliases that you use infrequently.

UTekTOOLS 2C-7

Introduction to the C-Shell

Example 2C-1 shows a sample .cshrc file.

1 set path=(. -/.bin /bin /usr/bin
2 if ($?prompt) then
3 set history=29
4 set mail=(60 /usr/spool/mail/$USER)
5 setenv EDIT vi
6 setenv MORE 'page -u -f
7 setenv SEDIT vi
8 endif
9 alias more 'more -u -f *

10 alias hi history
11 alias who 'who * : sort : more'

Example 2C-1. A Sample .cshrc File.

The path Variable (line 1)
The C-Shell uses the path variable instead of the PATH environment variable used
by the Bourne shell. Line 1 of Example 2C-1 shows how to use the set command to
assign a value to the path variable.

The first directory in path is the current working directory, represented by the period
(.). The second directory is named .bin and is a subdirectory of your home directory.
In C-Shell, a tilde C) represents your home directory. The last two directories in
path, /bin and lusrlbin, contain the UTek commands.

When you create a C-Shell (by logging in, executing a C-Shell file, or starting up a
subshell), path is given a default value of:

. /bin /usr/bin

2C-8

Introduction to the C-Shell

The if Statement (lines 2, 8)
Line 2 of Example 2C-1 is the C-Shell if statement. If the expression in the
parentheses is true, all the commands down to the endif (line 8) are executed.

The expression $?prompt is true if the prompt variable (the string that the C-Shell
uses for its prompt) is set. This is one way of testing for an interactive C-Shell.

The history Variable (line 3)
The C-Shell can store commands you type in a history list, so you can reenter them
later. To make the C-Shell create a history list, you must set the history variable to
tell the C-Shell how many previously-executed commands to save in this list.

Line 3 of Example 2C-1 tells the C-Shell to remember the last 29 commands
entered.

To reenter a command from the history list type an exclamation mark(!) followed by
the number in the history list of the command you want to execute.

The mail Variable (line 4)
C-Shell uses the mail variable to store the name of the file that receives your mail.
Line 4 tells the C-Shell to check the directory /usrlspool/mail/$USER (your system
mailbox) every 60 seconds for new mail.

Setting Environment Variables (lines 5-7)
To assign a value to an environment variable use the setenv command. Lines 5-7
set the EDIT, MORE, and SEDIT environment variables. These variables have the
same function under the C-Shell as under the Bourne Shell.

UTekTOOLS 2C-9

Introduction to the C-Shell

Creating Aliases (lines 9-11)
The alias command lets you abbreviate commands

Line 9 of Example 2C-1 changes the more command so that each time you enter
more, more -u -f is executed.

The exclamation mark followed by the asterisk (! *) is replaced by any other
command line arguments you enter to more. (The exclamation mark must be
preceded by a backslash (\) to quote its special meaning to the C-Shell.)

Line 10 lets you enter the history command by typing hi. Line 11 passes the output
of who through sort and more.

A Sample .login File
The .login file contains commands to execute when you first log into UTek. Example
2C-2 shows a sample .login file.

2C-10

1 set noglob
2 eval tset -s -Q -m :?display -m dialup:?vtlOO -m network:?display
3 stty crt susp --z- dsusp --y' rprnt ,_R, flush '-o' werase '-y' \
4 lnext V intr stop s start q
5 switch($TERM)
6 case aaa:
7
8
9

set history=35
${HOME}/.bin/setup.aaa
breaksw

10 case vtlOO:
11

12
set history=30
${HOME}/.bin/setup.aaa

13 breaksw
14 default:
15 set history=23
16 endsw
17 set prompt= hostname \!

Example 2C-2. A Sample .login File.

Introduction to the C-Shell

The noglob Variable (line 1)
Line 1 of Example 2C-2 sets the Boolean C-Shell variable noglob. If noglob is set,
the C-Shell doesn't try to expand special characters into filenames when you enter
them as arguments to a command.

Setting Up your Terminal (lines 2-4)
Use the eval and tset commands to set up your terminal. The tset command
generates commands that set up your terminal, and eval executes them. See the
UTek Command Reference, tset(l) for details on setting up your terminal.

Lines 3 and 4 call stty to set options on your terminal. The first argument, crt, tells
UTek to set options for a CRT (video display terminal). The rest of the arguments
define the functions of certain control characters. See the UTek Command
Reference, stty(l) and tty(4) for details.

The switch Command (lines 5-16)
The C-Shell switch statement is similar to the Bourne Shell case command. Line 5
of Example 2C-2 shows the switch command. The string in parentheses, in this
case the value of the $TERM environment variable, is successively matched against
the strings in the case statements (lines 6 and 10). If a match is found, the
commands between the case command and the breaksw command (lines 9 and 13)
are executed. If no match is found, the commands between the default label (line
14) and its breaksw command are executed.

In this example, the length of the history list is altered, depending on the type of
terminal used (lines 7, 11, 15). This ensures that the entire history list fits on your
terminal screen.

Line 8 of Example 2C-2 calls a program that sets up an Ann Arbor Ambassador
(abbreviated aaa) terminal, if you are on that type of terminal. Line 12 sets up a
Digital Equipment Corporation VT100 (abbreviated vtJOO), if you are on that type of
terminal. Note these calls are to hypothetical programs in your .bin directory; you
would need to create these programs.

UTekTOOLS 2C-11

Introduction to the C-Shell

The prompt Variable (line 17)
The prompt variable contains the string that the C-Shell uses for its prompt. The
default value of prompt is a percent sign (%).

Line 17 sets the prompt to the output of the hostname command, followed by the
number of this command in the history list, which is substituted for the exclamation
mark(!). The exclamation mark must be preceded by a backslash (\)to quote its
special meaning to the C-Shell. See the topic History List tor more information on
history event numbers.

Logging Off
Each time you log off the system, the C-Shell reads the .logout file for commands to
be executed as you log out. These commands may include cleaning up temporary
files, clearing your screen, or other administrative details.

Invoking the C-Shell
The first line of a C-Shell program contains the following:

#!/bin/csh

This invokes a C-Shell to run the program.

On this same line you can also give several options to the shell. Following are the
most frequently used options. For a complete list see UTek Command Reference,
csh(J).

-e The shell exits if any command terminates abnormally or returns a non
zero exit status.

-s Command input is taken from the standard input.

-v Sets the verbose variable so that command input is echoed after history
substitution.

2C-12

Introduction to the C-Shell

-x Sets the echo variable so that commands are echoed immediately before
execution.

-V Sets the verbose variable, even before the .cshrc file is executed.

-X Sets the echo variable, even before the .cshrc is executed.

After the shell processes these options, and if the -c, -i, -s or -t were not
given, the first argument is taken as the name of a file from which commands are
executed.

Shell Procedures
You can use the shell to read and execute commands contained in a file. For
example, this command calls the shell to read commands from the file filename.

csh filename [arguments]

Such a file is called a shell program, a command procedure, or a shell procedure.
Arguments may be supplied with the command. In the file, arguments are
referenced using the positional parameters $1, $2, and so on. For example, if the file
wg contains:

who : grep $1

then the call:

csh wg fred

is equivalent to the command:

who : grep fred

When a UTek system file has the execute (x) attribute, you can execute a file
directly, without invoking a special shell on the command line. To make a file
executable, you can use the chmod command. For example, to make the file wg
executable enter:

chmod +x wg

UTekTOOLS 2C-13

Introduction to the C-Shell

This command is equivalent to entering:

csh wg fred

This feature lets you use shell procedures and programs interchangeably. In either
case, the shell creates a new process to execute the command.

As well as providing names for the positional parameters, the number of positional
parameters when you invoke the shell is available as $#. The name of the file being
executed is available as $0.

A special shell parameter $ * is used to substitute for all positional parameters
except $0. A typical use of this is to provide some default arguments.

Control Flow- for
A frequent use of shell procedures is to loop through the arguments ($1, $2, ...)
executing commands once for each argument. An example of such a procedure is
tel, which searches the file lusrllib/telnos. The file telnos contains lines of the form:

fred mh0123
bert mh0789

The text of tel is:

2C-14

for i
do

grep $i /usr/lib/telnos
done

Introduction to the C-Shell

The following command prints those lines in lusrllibltelnos that contain the string
/red:

tel fred

The following command prints those lines containing /red, followed by those lines
containing bert.

tel f red be rt

The for loop notation is recognized by the shell. It has the general form:

for name in wordl word2
do

command-list
done

A command-list is a sequence of one or more simple commands, separated or
terminated by a newline character or a semicolon. Furthermore, reserved words like
do and done are only recognized following a newline or semicolon. A name is a
shell variable that is set to the words wordl word2 word3, etc., each time the
command-list following do is executed. If you eliminate in wordl word2, then the
loop is executed once for each positional parameter; that is, in$* is assumed.

Another example of the use of the for loop is the create command, whose text is:

for i do >$i; done

Notice that a semicolon (or a newline) is required before done. So the command:

create alpha beta

ensures that two empty files, alpha and beta, are created, or emptied if they already
exist. When you redirect the output of a file, the create command is not necessary.
You can use the notation '>filename on its own to create or clear the contents of a
file.

UTekTOOLS 2C-15

Introduction to the C-Shell

Control Flow - if
A general conditional branch is also available:

if (expressions) then
command-list

end if

This loop tests the value returned by the last simple command following if.

You can also follow this form of the if command with else-if pairs:

if (expression) then
command-list

else if (expression) then
command-list

else
command-list

end if

There exists a second form of the if command that is much more restricted, but
simpler to use:

if (expression) command

In this case, if the expression is true, the command is executed. The command must
be a single command, not a pipeline, command list, or parenthesized command list.

2C-16

NOTE
The command redirects input or output even if expression

is false.

Introduction to the C-Shell

Following is an example program that illustrates the use of both kinds of if
statements. This program copies C programs in the specified list to the directory
- /backup if they differ from those already in - !backup.

set noglob
foreach i ($argv)

end

if ($i - *.c) continue

if (-r -/backup/$i:t) then
echo $i:t not in backup •.. not cp\'ed
continue

end if

cmp -s $i /backup/$i:t

if ($status !=O) then
echo new backup of $i
cp $i -/backup/$i:t

end if

This program uses the foreach command, which executes the commands between
foreach and end for the successive values of i. After each foreach loop, i has the
value of the last iteration of the loop.

The variable noglob is set in this program to prevent filename expansion of the
members of argv. This is a good idea since the arguments to this shell script
contain metacharacters that can be used for filename expansion.

Control Flow - while and switch
The C-Shell provides two control structures, while and switch, similar to those of
the C programming language.

The while command has the following form:

while (expression)
commands

end

The while command is a loop that repeats once per line. If expression is true, each
of the commands of the loop is executed. Then the expression is tested again, and if
it is still true commands are executed. When the expression becomes false, the loop
ends.

UTekTOOLS 2C-17

Introduction to the C·Shell

The switch command lets you structure multiple branches into a shell program
without using the if ... else form. It evaluates a word and tests whether the value
matches one of a number of cases. It has the general form:

switch (word)
case stringl:

commands
breaksw

switch (word)
case string2:

commands
breaksw

default:
commands
breaksw

endsw

The switch command evaluates the word in parentheses, and compares its value to
all the cases. If a case matches the value of word, execution starts at that case.
The command breaksw prevents the command from moving to the next case.
Without it, commands associated with every case following the first match would be
executed. The default case is executed if none of the other cases is satisfied. If no
cases match, and the default case is not present, no commands are executed.
Each of the cases that you specify must be different, but the case and default
commands can occur in any order.

Although there are frequently better ways to structure a shell program, the C-Shell
provides a goto command. It has the general form:

loop I
commands
goto loop2

After loopl and commands execute, control of the program execution moves to
loop2.

2C-18

Introduction to the C-Shell

Other C-Shell Commands
The C-Shell has many other commands built into the shell. Many of the most
important commands are described in this section, but for a complete list see the
UTek Command Reference, csh(J).

Supplying Input to the Shell
Unlike other UNIX shells, commands run within a C-Shell program receive their
input from the shell that is running the script. Notation that redirects input and
output and uses pipelines can be used to give input to the shell, but to avoid putting
command input into a file, you need the special 'EOF' notation.

Consider the following example. This shell program uses the ed text editor to delete
leading blanks from the lines in each file:

foreach i ($argv)
ed - $i « 'EOF
1,$s/A[]*//
w

q
'EOF
end

The notation « 'EOF' begins the input for theed command, and the notation 'EOF'
on a line by itself terminates that input. The EOF terminator is placed in quotes so
that the shell does not perform variable substitution on intervening lines.

Note that the Bourne shell notation «-'EOF' is not available in the C-Shell.

Command Substitution
Another way you can supply input to the shell is called command substitution. This
lets you take the output of a UTek command, and read it as shell input. To do this
you enclose the appropriate UTek command in left single quotes. For example:

'pwd'

When the shell reads this, it substitutes the pathname of the current working
directory for the string 'pwd'.

The Bourne shell lets you do nested command substitution, but the C-Shell does
not. For example, in the Bourne shell you can set a variable Joo like this:

f oo = " · grep f oo "- · cat list"- ""

This example of nested substitution does not work in the C-Shell.

You also cannot perform command substitution on commands that are aliases.

UTekTOOLS 2C-19

Introduction to the C-Shell

Reading from the Terminal
The C-Shell provides a special symbol that signals the shell to receive input from
the terminal. The symbol is $< For example:

%foo=$<
hello
%echo $f oo
hello

In this example, you entered the first hello to set the value of the variable Joo, then
displayed that value on the screen by echoing the value of Joo.

Catching Interrupts
When you have a shell program that creates temporary files, and the shell receives
an interrupt signal, you frequently want to remove the temporary files that were
created.

To catch the interruption of a shell script, enter the following line at the beginning:

onintr label

In this command, label is a label somewhere in your program that contains
commands to delete the necessary files, ending with the exit command. Then when
your shell program receives an interrupt, execution goes to the label you defined at
the beginning to remove temporary files.

The History List
The shell saves a numbered list of the previous commands you executed. You can
then use this numbered list to quickly execute the same command again, or you can
repeat arguments or a previous command. The number of commands you choose
to save is set in the history variable. You can set the history variable in the .cshrc
file, as discussed earlier in this section. To find out what is stored in your history
list, simply type history.

History substitutions begin with an exclamation mark(!). For example, to execute
the command numbered 11 on the history list enter:

!11

2C-20

Introduction to the C-Shell

The terminal displays the contents of the command before it is executed, so that you
can interrupt the command if it is not the one you want.

The following example shows a history list obtained using the history command. It
shows various ways of referring to a command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff*write.c

In this history list, each number is associated with a command. The current event
number is 13, because that is the next number on the list. Suppose that you want to
execute command 11 again; there are several ways of using the history mechanism
to reexecute the command. You can enter:

!11

Or you can address the command relative to the current event number of 13:

!-2

You can also identify a history event by matching a prefix of the word, or by
matching a string contained in the word. For example, both these commands would
match event 11 :

!ca
!?oldwr?

The reference !! also refers to the previous command. So in the case of the above
history list, !! executes event 12.

You can also select particular words from an event in the history list. To do this,
enter:

event-number: word-designator

The first word of a command line is numbered 0, the second is numbered 1, and so
on. For example:

UTekTOOLS 2C-21

Introduction to the C-Shell

Is -a filename
In this example, Is is the first word (numbered 0), -a is the second word (numbered
1), and filename is the third word (numbered 2). Optional word designators include:

O first word (command)

n argument n

first argument (n = 1)

$ last argument

% word immediately preceding ?s? search

x-y range of words

-y words 0-y

first to last argument; nothing if only 1 word in event

x* word x to last argument

x- word x to next-to-last argument

You can also give a history reference without referring to the event number. In this
case, it is assumed that the reference is to a previous command. For example, the
following command uses the last argument of the previous command:

!$

If the word designator begins with A, $, *, -, or %, you can omit the colon that
separates the event specification from the word designator.

After the word designator, you can also enter another colon and a modifier.
Following are the available modifiers:

h Remove a trailing pathname component, leaving the head.

e

s/xly

Remove a trailing filename suffix .xxx, leaving the root name.

Remove all the pathname components except a trailing filename suffix.

Substitute x for y.

Remove all leading pathname components, leaving the tail.

& Repeat the previous substitution.

g Repeat the previous substitution globally.

p Print the new command, but do not execute it.

q Quote the substituted words, preventing further substitutions.

x Like q, but break into words at blanks, tabs, and newlines.

2C-22

Introduction to the C-Shell

The s substitution modifier accepts another delimiter in place of a forward slash.
Precede the new delimiter with a backslash. An ampersand character(&) in the
right hand side of the substitution is replaced by the text from the left. If you do not
enter anything for the left side of the substitution, the C-Shell uses a string from a
previous substitution, or from the last forward or backward editor scan.

A special abbreviation, - , is available to substitute something for the first argument
of the previous command. The character - is the equivalent to !:s-. For example,
suppose that you misspell the first argument of a command as "lb" instead of "lib."
You can correct it by entering:

This command executes the previous one, except that the first argument is changed
from lb to lib. So if you misspell the first argument of a command you can easily
correct it.

Following is an example of word designator and modifier use. Let's say that the
history list event number 12 is the command cc -0 /usr/prog/program.c. The
following command changes history event number 12, by choosing all it's arguments
(word O - last argument), but then modifying the last argument so that only it's
trailing pathname component (program.c) is executed:

!12:0-$:t

Effectively, this command does the same thing as history event 12, but the cc
command doesn't have to look beyond the current directory for program.c.

UTekTOOLS 2C-23

Introduction to the C-Shell

Alias Substitution
Following any history substitutions, the shell does alias substitutions. An alias is a
way of simplifying the commands you need to type. An alias can be a shorter
notation for a command, a command and its arguments, or several commands put
together. For example, you can alias the clear command to c by entering:

alias clear c

Another example is to have Is always show the size of files using the -s option.
Enter:

alias Is Is -s

Now when you enter Is, the command Is-sis executed.

To use an alias during a particular login session, you can enter the alias command
at your C-Shell prompt. But to alias a command permanently, you need to enter it
into your .cshrc file. To put an alias in your .cshrc file, simply enter it as shown
above. To alias more than one command, put each alias command on a different
line. For an example of aliasing in a .cshrc file, see the earlier topic A Sample . Cshrc
File.

Frequently, to alias more complicated commands, you need to use quoting
mechanisms. Consider the following example:

alias cd 'cd \! * ;Is'

In this example, the entire alias definition is quoted in single quotes. This prevents
most substitutions within this string and the recognition of the semicolon as a
metacharacter. In this case the semicolon is meant to separate two different UTek
commands. So that the ! is not interpreted as a history specification when you type
the command in, it is quoted with a backslash(\).

2C-24

NOTE
Because the shell reads the .cshrc file each time you invoke

a new shell, a large number of alias commands can make
each invocation very slow. Limit your alias commands to a
number that you can easily remember, and if invocation of a
new shell seems unreasonably slow experiment with reducing
the number of aliases in your .cshrc file.

Introduction to the C-Shell

Job Control
Each time that you enter a command, a job is created. For example, when you
enter more than one command on a line, separated by semicolons or in a pipeline
sequence, the shell creates a single job that consists of these commands put
together.

Normally when you enter a command, you wait for the prompt to return indicating
the command is done. But many commands, such as text formatting, require more
processing time. In this case you can run a command in the background. The shell
does not wait for a job in the background to complete execution, but immediately
returns the prompt so that you can continue with other work. To place a job in the
background, type an ampersand(&) at the end of the commands. You can place
one or more jobs in the background, but they always run at lower priority than jobs
that are not in the background. The more jobs you put in the background, the more
slowly they run. If there is no space available on the system for more processes,
the message No more processes displays.

Although many jobs can run i.n the background, only one job can be in the
foreground. A job in the foreground is one where you enter the commands and wait
for the prompt to return. The shell reads and executes foreground jobs one at a
time until each one is finished, but these jobs run at a higher priority than
background jobs.

When you put a job in the background, the shell assigns it a job number. After you
enter the commands, followed by an ampersand, the job number and the process id
display. For example:

nroff -mm file1 > file1 .out
[1] 503

This means that the above nroff job has job number 1, and a process id of 503.
When a background job is done, a message displays. Using the previous example:

[1J - Done nroff -mm file1>file1 .out

If a background job terminates normally, a message saying "Done" displays.
Otherwise, it says something like Killed. This job termination message displays only
when you return to the shell prompt. If you want to be notified immediately when a
background job terminates, set the notify variable in your .cshrc file.

UTekTOOLS 2C-25

Introduction to the C-Shell

In addition to being in the foreground or background, a job can be suspended by
typing <CTRL-Z>. You can suspend a job, then manipulate it between the
background and the foreground. You can start a job in the foreground, type
<CTRL-Z> to suspend it, then use the bg command to put it in the background. For
example:

%nroff -mm file1
<CTRL-Z>
Stopped
O/obg
[1] nroff -mm file1

The shell displays the message that says Stopped, and returns the prompt. Then
you enter bg to put the command in the background, just as you would use an
ampersand to put a job in the background. It is very convenient to suspend
foreground jobs when you need to execute other commands in the middle of a job.

To suspend a job that is running in the background, use the stop command.
(<CTRL-Z>does not suspend background jobs). For example:

%sort file1&
[1] 2435
%stop %1
[1 J Stopped (signal) sort file1
%

In this example the sort command is placed in the background, then suspended
using the stop command. The stop command takes references to job numbers as
its arguments, and the percent sign (%) refers to job numbers. So the stop
command is stopping job number 1, and displays a message informing you that the
job is stopped. Once the job is stopped, you can use the fg command to bring it
into the foreground. For example:

O/ofg
sort file1

The fg command brings the job into the foreground, displays its commands, and
waits for the prompt to return.

There are many ways of referring to job numbers. The percent sign introduces a job
number, for example %1 is job number 1. Entering only a job number brings it into

the foreground, so the command %1 is equivalent to fg %1. Similarly, %1 & puts
job number 1 in the background. So long as they are unique, you can also refer to
jobs by prefixes of their first string, or by identifying a string in the middle of the job.
For example, o/oex puts in the foreground a previous job beginning with ex. To
bring a job containing string into the foreground, enter %?string.

2C-26

lntl'Oductlon to the C-Shell

The shell keeps track of what job is current and what is a previous job. In output
pertaining to jobs, the current job is marked with an addition sign (+), and the
previous job is marked with a subtraction sign (-). So the abbreviation % + refers
to the current job, and the abbreviation %- refers to the previous job. The notation
%% is also a reference to the current job.

To check on the status of all the jobs you are running, enter jobs. This displays the
job number, what jobs are current and previous, and the commands they contain.
For example:

%jobs
[1] - Running
[2] Running
[3] + Stopped

cat temp>foo
Is -s l sort -n > myfile
comp

With the -1 option the jobs command also prints the process id numbers of each
job.

To stop a job that is suspended or running in the background, use the kill
command. For example:

kill %2

This command terminates job number 2. The kill command accepts multiple
arguments, so you can kill several jobs at once. If you find out the process numbers
associated with particular jobs, you can use the command kill process-number to
terminate the job.

The notify command (not the notify variable) informs you immediately when a job
terminates, instead of waiting for the next shell prompt. Enter:

notify %2

This command tells you immediately when job number 2 terminates, instead of
waiting for a shell prompt. Without arguments, the notify command refers to the
current job.

When a job running in the background tries to read input from the terminal, it is
automatically stopped. When the job stops, you can bring it into the foreground
using the fg command and enter commands from the terminal.

When you try to leave the shell while jobs are stopped, the message You have
stopped jobs displays. You can use the jobs commands to see what they are. If you
try to exit the shell again, no warning displays and the suspended jobs are killed.

UTekTOOLS 2C-27

Introduction to the C-Shell

Job Control Using Remote Login
The local area network provided with your 6000 Series workstation lets you access
remote host machines, using the rlogin command. If you type rlogin hostname, and
your system administrator has set up the network correctly, you can access a
remote host computer. For more information on setting up a local network see your
System Administration manual.

When you remotely log in to another host, you can begin running a job on the
remote host, and then pause the remote rlogin job and return to your home
machine. The actual job that you began on the remote machine continues to run;
only the rlogin job is paused.

The following example illustrates the process of remotely logging in to another
machine, starting an nroff job there, and returning to the original machine. The
home (original) machine is called boris, and the remote machine is called natasha.
To make it easier to identify which machine you are on, we have changed the
default C-Shell prompt to machine-name>. So the prompt boris> means that you are
on the machine named boris. Notice the command that stops the rlogin job,
-<CTRL-Z> <RETURN>:

boris~login natasha
(system messages display)
natasha:>nroff -mm filel <RETURN>
(no prompt displays)
-<CTRL-Z> <RETURN>
boris>

Now that you have returned to the home machine, boris, you can use the jobs
command to see what jobs are running. The nroff command is still running on
natasha, and the rlogin job called is actually the job that is paused:

boris>jobs
[1] + rlogin Stopped

You can pause a job on a host machine using -<CTRL-Z> <RETURN>, return to the
home machine to do work there, then return to the paused job. Several commands
return you to the job paused on the remote machine:

fg %job-number
o/orlogin
%job-number

Using this ability to remotely log in to another machine and process jobs there, while
still accomplishing work on your home machine, lets you run more jobs at one time
and distribute your use of computer resources in a more balanced way.

2C-28

Introduction to the C-Shell

C-Shell Variables and Variable
Substitution
The C-Shell maintains a list of variables that you can use in shell programming, and
that the shell refers to whenever it is invoked. Some variabl.es are set by the shell
permanently, and you can change the value of other variables the shell always
recognizes. In addition, you can define your own variables for use in shell
programs. To set the value of a shell variable, use the set command. The general
form of the set command is:

set name== value

The C-Shell has a variable called path, and you can set the value of path yourself.
The variable defines a default set or directories where the C-Shell looks to find
executable commands. For example:

path=(. /usr/bin /bin /usr/local)

This command sets the path variable so that the C-Shell searches the directories
/usrlbin, /bin, and /usr!local for commands to execute. To display the values of all
the variables you have set in the current C-Shell, enter set without any arguments.

Shell variables are always strings of characters, but some are defined differently.
Some variables have specific values that you define, or that the shell defines, while
others are toggled, or switched from one state to another. If a variable is toggled,
the shell does not care what its value is, only whether it is set or not. An example of
a toggled variable is the noc/obber variable that does not allow you to overwrite a file
that already exists. You can use the set command to set this variable:

set noclobber

If the variable is already set and you want to unset it enter:

unset noclobber

Other operations treat variables numerically. The @ command preceding a variable
lets you do numeric calculations. Although variable values consist of zero or more
strings, variables with numeric values assign a value of zero to the null string and
ignore any strings beyond the first.

Variable substitution in the shell program occurs after the history and alias
substitutions, and after the input line is broken up by the shell. The C-Shell also
recognizes redirections of input and output before it does variable substitution, so
any variable involved in the redirection of input and output is expanded before other
variables.

UTekTOOLS 2C-29

Introduction to the C-Shell

A dollar sign ($) preceding the variable name tells the C-Shell to substitute the value
of the variable for its name. You can prevent variable substitution by preceding the
dollar sign with a backslash (\), except within double quotes (") where variable
substitution always occurs, and within right single quotes (') where variable
substitution never occurs.

Following variable substitution, the resulting value is subject to command and
filename substitution. See the previous topic Command Substitution.

Following is a list of the various ways you can introduce variables into the shell
input:

$name
${name}

$name[selector]
${name[selector J}

$#name
${#name}

$0

$number
${number}

$*

The value of the variable name in words, each
separated by a blank. Braces insulate name from
characters that follow it and would otherwise be part
of name. If name is not a shell variable, but set in the
environment, its value in the environment is returned.

Select only some words from the value of name.
Selector is a single number or a range of numbers
separated by a hyphen (-) that represents the variable
word(s) you want to select. The first word of a
variable value is numbered 1, so if you omit the first
number of a range it defaults to 1. If the last member
of a range is omitted, it defaults to the number of
words in the variable. To select all words, use an
asterisk (*) as selector.

The number of words in the variable. It is useful to
later substitute this number in a selector.

The name of the file where the shell reads command
input.

Selects a certain number of the arguments given to
the shell. It is equivalent to $argv[number], where
argv contains all the arguments given to the shell.

Selects all arguments given to the shell. It is
equivalent to $argv[*J.

Some of the same modifiers that you use to select particular words from a history
event can be used to select words from a variable substitution. You can enter the
following modifiers following the introduction of a variable:

2C-30

Introduction to the C-Shell

:h head of a pathname

:t tramng component of a pathname

:r root of a filename

:q quote the substituted words

:x quote words, but break them at blanks, tabs, newlines

You can also combine the :h, :t, and :r modifiers with the global modifier g(make all
the substitutions on a line), as :gh, :gt, and :gr. If you use braces in the command
you must place the modifiers before the closing brace.

You cannot apply modifiers to the following variable substitutions:

$?name
${?name} If name is set, substitutes the string J. Otherwise, substitutes the

string 0.

$?0 If the current input filename is known, substitutes the string 1.
Otherwise, substitutes O.

$$ The decimal process number of the parent shell.

$< A line from the standard input. Use to read keyboard input in a
shell program.

Predefined Shell Variables
The following variables have a special, predefined meaning to the shell. Avoid
redefining variables of the same name in shell procedures that you write. Of these
variables, argv, cwd, home, path, prompt, shell, and status are always set by the
shell; you can change the settings for others.

Some things that are defined as environment variables in the regular shell (see
Section 2B) become C-Shell variables. The C-Shell copies the environment
variable USER into the variable user, TERM into term, PATH into path, and HOME
into home. For information on setting these variables in your .cshrc file, see the
earlier topic A Sample .Cshrc File.

To incorporate Bourne shell environment variables into the C-Shell, use the setenv
command. This command has the form setenv name value, where name is the
Bourne shell environment variable, and value gives the variable a new value. For
example, you can set the Bourne shell environment variable EDIT to vi by entering
setenv EDIT vi.

argv

UTekTOOLS

Arguments to the shell. Positional parameters are substituted
according to this variable

2C-31

Introduction to the C-Shell

cdpath

complete

cwd

echo

hardpaths

histchars

history

home

ignoreeof

list

listpathnum

mail

noclobber

noglob

nonomatch

notify

2C-32

A list of alternate directories searched to find subdirectories in chdir
commands.

Lets you enter only enough characters to make a filename or a
command unique. Then you press <ESC>, and the C-Shell
automatically fills in the rest of the filename or command name.
You then press <RETURN> to enter the command.

The full pathname of the current directory.

Set when you enter the -x option on the command line. Echoes
each command and its arguments before executing it.

Instead of creating a path using relative pathnames, this variable
substitutes the absolute pathname.

Changes the characters used in history substitution. It is a string
value, and the first character of its string replaces the default
character !. The second character of its string replaces the
character - in quick substitutions.

Controls the size of a history list with a numeric value.

The home directory of the user that invoked the shell, initialized
from the environment variable.

The shell ignores an end-of-file from terminal input. This prevents
the shell from accidentally being killed by <CTRL-0>.

Lets you enter partial filenames or directory names as command
arguments, then press <.CTRL-0> to list all the files and directories
that match the characters you have entered thus far.

Used in conjunction with the list variable. When you press < CTRL-D >
to list paths for commands, this also includes the path element number, that
is, the first, second, etc. element in your path variable.

Defines the files where the shell checks for mail. If the first word is
numeric, it specifies, in seconds, how frequently the shell checks to
see if you have mail.

Checks to see that redirected output does not write over an existing
file, and that files to which you append output using »exist.

Inhibits filename expansion.

When this variable is set, no error occurs if a filename expansion
does not match existing files. Instead, the primitive pattern is
returned.

Notifies you immediately that a job is complete, instead of waiting
for a prompt to display a message.

path

prompt

save hist

shell

status

time

verbose

Introduction to the C-Shell

Specifies the directories where the shell looks for executable
commands.

The string that displays before reading a command from the
terminal. By default, this string is %. If a ! is in the string, it is
replaced by the current history event number.

Controls the number of entries in the history list that are saved in
your .history file from one login to the next. It has a numeric value.

The file where the shell resides. In shells that use a forking process
this interprets files that have execute bits set, but are not
executable by the system.

The status returned by the last command. If it terminated
abnormally, 0200 is added to the status. Built-in commands that
fail return exit status 1; all other built-in commands set the status to
0.

Controls the automatic timing of commands.

This variable is set by the -v command line option. After each
history substitution, the words of each command display.

Expressions
To write useful shell scripts, you need to evaluate expressions in the shell based on
the values of variables. The C-Shell provides all the arithmetic operations of the C
programming language, with the same precedence. For example, the operators
= = and = ! compare strings, while && and : : implement the Boolean and/or
operations. The special operators = - and ,- are similar to = = and ! = , except that
the string on the right side can have pattern-matching characters like * and ? .

The C-Shell also provides operators that let you see whether a file exists, if it is
readable and writable, and so on. These operators take the form:

-c filename

In this operation c can be one of the following:

read permission

w write permission

x execute permission

e existence

o ownership

UTekTOOLS 2C-33

Introduction to the C-Shell

z zero-length

regular file

d directory

You can also use braces to test whether a command terminates normally. This form
returns 1 if the command executes normally, or zero if the command terminates
abnormally. For example:

{command}

These integer values are the opposite of exit status, which is zero for a normal
execution and nonzero otherwise.

New C-Shell Features
The UTek C-Shell contains all the features of the Berkeley 4.2 BSD C-Shell, as well
as the extensions described in the following paragraphs.

File Name Completion
When you type a command, you can use abbreviations for file names. First, set the
complete variable by typing:

set complete

When you enter a filename as an argument to a command, type as many characters
as you need to make the filename unique. Then press the <ESC> key. The C-Shell
automatically fills in the rest of the filename, and you can press <RETURN> to enter
the command.

Following is an example of filename completion.

% ls
DSC.OLD bin
DSC.NEW chaosnet
bench class
% ls ch<ESC>
% ls chaosnet

cmd lib memos
cmtest mail netnews
dev mbox news

(The cursor remains at the end of this line)

Press <RETURN> to enter the command.

2C-34

Introduction to the C-Shell

File and Directory List
When you enter a command, you may want to know what filenames match what you
have typed so far. First, set the list variable by typing:

set list

Then, when you enter a filename or directory name as an argument to a command,
press <CTRL-D> to list all matching files and directories. Below is an example of
the file and directory list.

% ls
DSC.OLD bin cmd lib memos
DSC.NEW chaosnet cm test mail netnews
bench class dev mbox news
% ls c<CTRL-D>
chaosnet
% ls c

class cmd cmtest
(The cursor remains at the end of this line)

After you press <CTRL-D>, the filenames that match c display. The shell prompt
and the fragment of a command that you entered earlier display on the next line,
and the cursor remains there. This gives you the opportunity to complete the unique
filename before pressing <RETURN> to enter the command.

Command Name Recognition
You can use the completion and list features when entering command names, as
well as filenames and directory names. Below are examples of command
completion:

% pass<ESC>
% passwd

and command listing:

% pas<CTRL-D>
paste

(The cursor remains at the end of this line)

passwd
% pas (The cursor remains at the end of this line)

UTekTOOLS 2C-35

Introduction to the C-Shell

Automatic Logout
With this feature, the C-Shell logs you out if your terminal is idle for a specified
period of time. You can set the autologout variable; for example:

set autologout=60

This variable waits 60 minutes before logging you off. You can turn this feature off
by typing:

unset autologout

When you log in, this feature is always unset.

Terminal Checking
If your terminal is left in raw, cbreak, or noecho mode (in other words, it is unusable)
by a command, the C-Shell automatically restores it to a usable state.

Saving Your History List
The C-Shell can store your history list between login sessions. The list is stored in a
file named .history when you log out and is restored the next time you log in. To set
this feature, specify the number of commands you want the C-Shell to restore. For
example:

set savehist=30

causes the C-Shell to store the last 30 commands you entered.

2C-36

The UTek System
Implementation

Introduction

2D

The facilities available to a UTek user process are divided into two parts: kernel
facilities directly implemented by code running in the UTek operating system, and
system facilities implemented by the system or in cooperation with a server process.
The first part of this section deals with kernel facilities, while the second part deals
with system facilities.

The kernel facilities define the UTek virtual machine, in which each process runs.
Like real machines, this virtual machine has memory management, an interrupt
facility, timers, and counters.

The second part of this section deals with system facilities. The UTek virtual
machine allows access to files and other objects through a set of descriptors. Each
descriptor resembles a device controller, and supports a set of operations. Like
devices on real machines, parts of the descriptor capability are built into the
operating system, while other parts are implemented as server processes on other
machines.

Throughout this section reference is made to the privileged user or superuser. This
person logs in as root, and can move throughout the system with special access to
all its facilities. Avoid logging in as the superuser because mistakes you make can
have drastic effects on the system.

UTek TOOLS 20-1

The UTek System Implementation

Kernel Facilities

Processes and Protection

Host and Process Identifiers
Each workstation has a 32-bit host id associated with it, and a host name of up to
255 characters. These are set by a privileged user, and returned by the system
calls:

sethostid(hostid)
int hostid;

hostid = gethostid();
result int hostid;

sethostname(name, namelen)
char *name; int namelen;

gethostname(name, namelen)
result char *name; result int namelen;

Each host runs a set of processes. Each process is largely independent of other
processes, with its own protection, address space, timers, and an independent set of
references to system- or user-implemented objects.

Each process in a host is named by an integer called the process id. This number is
in the range 1-30000 and is returned by the getpid routine:

pid = getpidO;
result long pid;

On each workstation this identifier is unique. So if you have several workstations in
a local area network, hostid/process id pairs are unique.

20-2

The UTek System Implementation

Process Creation and Termination
A new process is created by making a duplicate of itself:

pid = fork();
result int pid;

The fork call returns twice, once in the original parent process, where pid is the
process identifier of the child, and once in the child process where pid is 0. Every
process in the system runs in this kinds of hierarchy.

A process terminates using an exit call:

exit(status)
int status;

This call returns 8 bits of information on exit status to its parent.

Because the fork system call returns only the process id, the wait system call is
necessary to keep the parent process awaiting the return of a child process. When
a child process exits or terminates abnormally, the parent process receives
information about any event that caused termination of the process. This
information is returned as status in the wait system call:

#include <Sys/wait.h>

pid = wait(status);
result int pid; result union wait *status;

A second system call, wait3 provides an alternative interface for programs that must
not block when collecting the status of child processes:

pid = wait3(status, options, usage);
result int pid; result union waitstatus *status;
int options; result struct rusage *rusage;

A process can overlay itself with the memory image of another process, passing the
newly-created process a set of parameters, using the call:

execve(path, argv, envp)
char *path, * argv [] , * envp [J ;

The specified path must be a file, either a binary executable file or a file of data for
an interpreter.

UTek TOOLS 20-3

The UTek System Implementation

User and Group Identification
Two user identifications are associated with each process in the system: a real user
id and an effective user id. Each process also has a real accounting group id and an
effective accounting group id, as well as a set of access group id's. Each process can
be in several different access groups. The maximum concurrent number of access
groups is defined by the constant NGROUPS in the file <Sys/param.h>, whose value
is guaranteed to be at least 8.

The real and effective user ids associated with a process are returned by the
following system calls. The first returns the real user id, and the second returns the
effective user id:

uid = getuid();
result int uid;

euid = geteuid();
result int euid;

The real and effective accounting group ids are returned by the following calls. The
first returns the real id, and the second the effective id:

gid = getgid();
result int gid;

egid = getegid();
result int egid;

The access group id is returned by the getgroups call:

#include <Sys/param.h>

getgroups(ngroups, gidset)
result int *ngroupd, *gidset;

The system assigns the user ID and the group ID at login time, using the calls
setreuid, setregid, and setgroups:

setreuid(ruid, euid);
int ruid, euid;

setregid(rgid, egid);
int rgid, egid;

setgroups(ngroups,gidset);
int ngroups; * gidset;

20-4

The UTek System Implementation

The setreuid call sets both the real and effective user ID, while the setregid call
sets both the read and effective group ID. Unless the caller is the superuser, the
effective user ID and the effective group ID can only be changed to the current real
user ID or real group ID. The setgroups call is restricted to the superuser.

Process Groups
Each process in the system is normally associated with a process group. The group
of processes in a process group is referred to as a job, and can be manipulated by
the shell and other high-level system software. The process group of a process is
returned by the getpgrp call:

pgrp = getpgrp(pid);
result int pgrp; int pid;

When a process is part of a process group, software interrupts that affect the single
process also affect all the processes in a group. For example, a terminal has a
process group, and to read from the terminal a process must be part of that process
group. This terminal process group lets the terminal divide its resources among
several different jobs.

The setpgrp call changes the process group of a process:

setpgrp(pid, pgrp);
int pid, pgrp;

When a process is created, it is assigned the same process group as its parent
process. It is also assigned a process id distinct from all processes and process
groups. A normal (unprivileged) process can set its process group equal to its
process id. A privileged process can set the process group of any process to any
value.

Memory Management
This information to be supplied later.

UTek TOOLS 2D-5

The UTek System Implementation

Signals

Overview
The system defines a set of signals that can be delivered to a process. When a
signal is delivered to a process, the current process context is saved, a new context
is created, and any further occurrence of the same signal is blocked. A process can
specify the handler, which determines what happens when the process receives a
signal. See the later topic, Signal Handlers. A process can also specify that a signal
is to be blocked or ignored, or a default action to take when the signal occurs.

Some signals cause a process to exit if they are not caught. This may be
accompanied by the creation of a core image file that contains the current memory
image of the process. You can use this image to debug the process.

When a signal is delivered to a process, you can manipulate the way it will be
executed by its handler. You can specify a special signal stack, instead of the
normal one, so that you can manipulate the signal without disturbing the normal
stack.

All signals have the same priority. If multiple signals are pending for the same
process, the order in which they are delivered to the process depends on how they
are implemented. The signal routines execute the appropriate action when the
process receives a signal. When a signal routine executes, the signal that caused
them to be invoked is blocked, but other signals can occur. If you want to protect a
piece of code from other signals, it can be protected against specific signals.

Signal Types
The system defines five signal types, in the file <Signal.h>.

• hardware conditions

• software conditions

• input/output notification

• process control

• resource control

Hardware signals are derived from exceptional conditions that can occur during
execution. Such signals include SIGFPE representing floating point and other
arithmetic exceptions, SIGILL for illegal instruction execution, SIGSEGV for
addresses outside the currently-assigned area of memory, and SIGBUS for
accesses that violate memory protection constraints.

Software signals reflect interrupts initiated by the user: SIGINT for a normal
interrupt, SIGQUIT for the quit signal (normally generates a core image), SIGHUP
and SIGTERM that terminate processes gracefully due to a hang up or by user or
program request, and SIGKILL, a termination signal that a process cannot catch or
ignore. Other software signals indicate the expiration of interval timers (SIGALAM,
SIGVTALRM, SIGPROF).

20-6

The UTek System Implementation

The SIGIO signal informs a process when input or output is possible, or when a
non-blocking operation completes. A non-blocking operation does not tell the
process when a descriptor can be accessed. A process can also request a SIGURG
signal when an urgent condition arises.

Several signals can stop a process when sent to the process itself or a member of
its process group. SITSTOP is a powerful stop signal that cannot be caught. Other
stop signals, SIGTSTP, SIGTTIN, and SIGTTOU are used when a user request,
input request, or output request respectively is the reason the process is being
stopped.

A SIGCONT signal is sent to a process when it is continued from a stopped state.
When a child process changes state, either by stopping or terminating, processes
can receive notification from a SIGCH LO signal.

If you exceed resource limits, signals like SIGXCPU for the CPU time limit and
SIGXFSZ for file size warn you that the limit has been reached.

Signal Handlers
The signal handler routine determines what happens when a signal is delivered.
The signal handler can choose to ignore a signal, give the signal a default action
(usually process termination), or run an interrupt routine that affects the process.
The sigvec system call assigns handler addresses that specify an interrupt routine,
a default action, or that a signal is ignored:

#include <Signal.h>

sigvec(sig, vec, ovec)
int sig;
struct sigvec *vec, *ovec;

struct sigvec {
int
int
int

};

UTek TOOLS

(*sv_handler)Q;
sv_mask;
sv_onstack;

20-7

The UTek System Implementation

If vec is nonzero, it specifies a handler routine svJzandler and mask svJnask to be
used when delivering the signal. The constants SIG_IGN and SIG_DEF as values
for svJzandler cause a signal condition to be ignored or default. If sv_onstack is 1,
the system delivers the signal to the process on a signal stack, instead of the normal
run-time stack. If ovec is non-zero, the previous handling information for the signal
is returned to the user.

When a signal condition arises for a process, the signal is added to a set of signals
pending for that process. If the signal is not blocked by the process, it is delivered.
When a signal is delivered, the current state of the process is saved, a new signal
mask is calculated (as described in the next paragraph), and the signal handler is
invoked. The call to the handler is arranged so that if the signal handling routine
returns normally, the process resumes execution in the context before the delivery of
the signal. To resume in a different context, the process must arrange to restore the
previous context itself.

When a signal is delivered to a process a new signal mask is installed for the
duration of the signal handler, or until you change it using the sigblock(2) or
sigsetmask(2) system calls. This new signal mask is formed by taking the current
signal mask, adding the signal to be delivered, and or'ing in the signal mask
associated with the handler that is invoked.

The handler can be declared as follows:

handler(sig, code, scp);
int sig, code;
struct sigcontext *scp;

The parameter sig is the signal number, while scp is a pointer to the structure
sigcontext. The sigcontext structure is defined in <Signal.h>.

20-8

The UTek System Implementation

Sending Signals
A process can send a signal to another process or group of processes with the calls:

kill(pid, sig)
int pid, sig;

kill pg(pgrp, sig)
int pgrp, sig;

The process sending the signal and receiving the signal must have the same
effective user id, unless the process sending the signal is privileged.

Protecting Code from Signals
To protect a section of code against one or more signals, you can use a sigblock
call to add a set of signals to the existing mask:

omask = sigblock(mask);
result int omask; int mask;

You can then restore the old mask with the sigsetmask call:

omask = sigsetmask(mask);
result int omask; int mask;

You can then use the sigblock call to read the current mask by specifying an empty
mask parameter.

You can check conditions with some signals blocked, then pause to wait for a signal
and restore the mask, using the sigpause call.

sigpause(sig);
int sigmask;

UTek TOOLS 20-9

The UTek System Implementation

Signal Stacks
Programs that maintain complex or fixed-size stacks can use the sigstack call to
provide a special signal stack:

sigstack(ss, oss)
struct sigstack *ss; result struct sigstack *oss;

struct sigstack {
caddr_t ss_sp;
int ss_onstack;

};

The stack is based at ss_sp for signal delivery, and the value ss_onstack indicates
whether the process is currently on the signal stack.

When the system wants to deliver a signal to a process, ikt checks whether the
process is on a signal stack. If not, the process is switched to the signal stack for
delivery, and when the signal returns, the previous stack is restored.

If a process wants to take a non-local exit from the signal routine, or run code from
the signal stack that uses a different stack, use the sigstack call to reset the signal
stack.

20-10

The UTek System Implementation

Timers

Real Time
The system uses the calls gettimeofday and settimeofday to set and return the
current Greenwich time and time zone:

#include <Sys/time.h>

settimeofday(tp, tzp);
struct timeval *tp;
structg timezone *tzp;

gettimeofday(tp,tzp);
result struct timeval *tp;
result struct timezone *tzp;

The timeval and timezone structures are defined in <Sys/time.h.>:

struct timeval {
long
long

};

tv_sec; seconds since Jan.1, 1970
tv_used; microseconds since Jan. 1, 1970

struct timezone {
int
int

t:z_minuteswest;
t:z_dsttime;

minutes west of Greenwich
type of dst correction to apply

};

UTek TOOLS 20-11

The UTek System Implementation

Interval Time
Each process is provided with three interval timers, defined in <Sys/time.h>:

ITIMER_REAL 0
ITIMER_VIRTUAL 1
ITIMER_PROF 2

The ITIMEFLREAL timer decrements in real time. It can be used by a library routine
to maintain a wakeup service queue. A SIGALRM signal is delivered when this
timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when
the process is executing. When it expires, a SIGVTALRM signal is delivered.

THE ITIMER_PROF timer decrements both in process virtual time and system virtual
time. It is designed to profile the execution of a process. A SIGPROF signal is
delivered when it expires.

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval iLinterval;
struct timeval iLvalue;

};

A timer is set or read by the setitimer and getitimer calls:

getitimer(which, value);
int which; result struct itimerval *value;

setitimer(which, value, ovalue);
int which; struct itimerval *value; result struct itimerval *ovalue;

The ovalue parameter specifies an optional structure to receive the previous contents
of the interval timer. You can disable a timer by specifying a value of 0.

The time intervals measured by the system can only be as accurate as the
resolution of the system clock. To find out the resolution of the clock load a very
small value into a timer and read the timer back to see what value results.

To get profiled statistics on how much time is used by a particular process, use the
profil system call:

profil(buf, bufsize, offset, scale);
result char *buf; int bufsize, offset scale;

20-12

The UTek System Implementation

Resource Controls

Process Priorities
The system gives CPU scheduling priority to processes that have not used CPU time
recently. This favors interactive processes and processes that execute only for short
periods. You can determine the priority assigned to a process, process group, or
the processes of a particular user using the getpriority system call:

prio = getpriority(which, who)
result int prio; int which, who;

PRIO_PROCESS O
PRIO_PGRP 1
PRIO_USER 2

To alter priority of a process, process group, or a particular user's processes use the
setpriority call. Only the superuser can lower priorities.

setpriority(which, who, prio);
int which, who, prio;

The value prio is in the range -20 to 20. The default priority is 0, and lower values
cause more favorable execution. The getpriority call returns the highest priority
(lowest numerical value) of any of the specified processes.

Descriptors
This information to be supplied later.

UTek TOOLS 20-13

The UTek System Implementation

System Facilities
This topic deals with the system facilities that are not considered part of the kernel.
The system abstractions described here include:

• directory contexts

• files

• communications domains

• sockets

Directory Contexts and Files
Certain operations are common to all system abstractions. These include the read,
write, and ioctl calls. Also included in these operations are mechanisms where
normally synchronous operations can happen in a non-blocking or asynchronous
fashion. In non-blocking operations, a process can have no more than one
input/output request outstanding.

Read and Write
The read and write system calls can be applied to communications channels, files,
terminals, and devices:

cc = read(fd, buf, nbytes);
result int cc; int fd; char * buf; int nbytes;

cc = write(fd, buf, nbytes);
result int cc; int fd; char *buf; int nbytes;

The read call transfers as much data as possible from the object f d to the buffer at
address buf of size nbytes. The number of bytes transferred is returned in cc. This
value is -1 if a return occurred before any data was transferred, due to an error or
the use of non-blocking operations. The read returns Oat an end-of-file.

20-14

The UTek System Implementation

The write call transfers data from the buffer to object fd. Depending on the type of
fd, the write call accepts some portion of the number of bytes returned; you can
resubmit the other bytes in a later request.

With the readv and writev calls, you can scatter data on input, or gather it for
output, using an array of input/output vector descriptors.

cc = readv(fd, iov, iovcnt);
result int cc; fd; struct iovec *iov; int iovcnt;

cc = writev(fd, iov, iovcnt);
result int cc; fd; struct iovec *iov; int iovcnt;

The type for the descriptors is defined in <Sys/uio.h> as:

struct iovec {
caddU
int

} ;

iov_msg;
iov_len;

base of a component
length of a component

Iovec specifies the base address and length of the memory area where data should
be placed. Readv scatters the input data into iovcnt buffers specified by the
members of the iovec array. This call is not supported for raw devices or for files on
remote hosts. lovlen is the count of elements in the iov array. The writev call
performs the same action as write, except that it gathers the data for output from
iovcnt buffers specified by the members of the iovec array.

Input/Output Control
The ioctl call performs control operations on an object (socket or file descriptor):

ioctl(fd, request, buffer);
int fd, request; caddU buffer;

The specified request is performed on the object jd. The request parameter specifies
whether the argument buffer is read, written, read and written, or unnecessary. It
also specifies the size of the buffer and the request. Different descriptor types and
subtypes can use different ioctl requests. For example, you could use different ioctl
requests for operations on terminals that control the flushing of input and output
queues versus operations on disks that control formatting. The names of basic
control operations are defined in <Sys/ioctl.h>.

UTek TOOLS 2D-15

The UTek System Implementation

Non-blocking and Asynchronous Operations
You can use the fcntl call to perform non-blocking operations on a descriptor:

#include <fcntl.h>

result = fnctl(fd, cmd, arg);
int result;
int fd, cmd, arg;

The fcntl call controls operations on open descriptors, where fd is an open
descriptor. You can set a descriptor in non-blocking mode using the value
F _SETFL for cmd. The value of arg depends on the value of cmd. See the UTek
Command Reference, fnct/(2) for details. When you set a descriptor to non-blocking
mode the operation on that descriptor either completes immediately or returns an
EWOULDBLOCK error if there is no data to be read. The process can use the
select call on the descriptor to determine when a read is possible.

When a descriptor can accept less output than is requested, either it accepts some
of the data provided, or returns an error indicating that the operation would block.
The system can perform more output as soon as a select call indicates that the
object is writeable.

You can perform operations other than data input and output on a descriptor in
non-blocking fashion. If they cannot return immediately, these operations return an
error. You can then use the select call to find out when the descriptor is readable
or writeable.

20-16

The UTek System Implementation

File System

Overview
The file system abstraction provides access to a hierarchical file system structure.
The file system contains directories, as well as files and references to other objects,
such as devices and inter-process communication sockets.

Each file is organized as a linear array of bytes. No record boundaries or system
related information is included in a file. You can read or write files in a random
access fashion. You can read the data in a directory as though it were an ordinary
file, but only the system can write into directories. The file system stores only a
small amount of ownership, protection, and usage information with a file.

Naming
The file system calls take pathname arguments. These consist of zero or more
component filenames separated by slashes (/), where filename is up to 255
characters, excluding null and /.

Each process has three naming contexts: one for the root directory of the file
system, one for the current directory, and one for the network. The system uses
these in the filename translation process. If a pathname begins with a slash, it is
called an absolute or full pathname, and is interpreted relative to the root directory.
If the pathname does not begin with a slash, it is a relative pathname and is
interpreted relative to the current directory.

The system limits the total length of a pathname to 1024 characters.

The filename .. in each directory refers to the parent directory of that directory. The
parent directory of a file system is always the root directory.

The chdir and chroot calls change the current working directory and the root
directory contest of a process. Only the superuser can change the root directory
context of a process:

chdir(path);
char *path;

chroot(path);
char *path;

UTek TOOLS 20-17

The UTek System Implementation

Creation and Removal
The file system lets you create and remove directories, files, and special devices
from the file system.

Directory Creation and Removal
The mkdir call creates a directory:

mkdir(path, mode);
char *path; int mode;

The rmdir system call removes a directory: To delete a directory it must be empty.

rmdir(path);
char *path;

File Creation
Files are created using the open system call:

#include <Sys/file.h>

fd = open(path, flags, mode)
int fd; char *path; int flags, mode;

rhis opens the file named path as specified by the flags argument. It returns a
jescriptor for that file in fd. If you specify O_CREAT as a flag (create a new file),
he file is created with access mode mode, with values for mode as described in
JTek Command Reference chmod(2). The path parameter is a null-terminated
>athname, while flags is constructed by or'ing the following values defined in
:sys/file.h>:

)-18

Q_READONLY
Q_WRONLY
O_RDWR
O_NDELAY
O__APPEND
O_CREAT
O_TRUNC
O_EXCL

Open for reading only.
Open for writing only.
Open for reading and writing.
Do not block on open.
Append on each write.
Create file if it does not exist.
Truncate size to 0.
Error if O_CREAT is set and file exists.

The UTek System Implementation

When the open completes the value fd is returned, and the file pointer used to mark
the current position within the file is set to the beginning of the file. Before a file
can be opened, the user must have access to the file.

You should specify one only of Q_READONL Y, Q_WRONL Y, or O_RDWR. If the
open specifies to create the file with O_EXCL and the file already exists, the open
fails without affecting the existing file.

Creating References to Devices
The file system allows entries that reference peripheral devices. Peripherals are
distinguished as block or character devices, according to their ability to support
block-oriented operations. Devices are identified by their major and minor device
numbers. The major device number determines the kind of peripheral it is, while the
minor device number indicates one of possibly many peripherals of that kind.

Structured devices perform all operations internally in block quantities, while
unstructured devices have a number of special ioctl operations and can perform
input and output in large units.

Removing Files and Devices
You can remove a reference to a file or special device using the unlink call:

unlink(path);
char *path;

The caller must have write access to the directory where the file is located.

~
Do not unlink a device. This can cause severe problems

and possible loss of data.

UTek TOOLS 20-19

The UTek System Implementation

Reading and Modifying File Attributes
You can obtain detailed information about the attributes of a file using the stat and
fstat calls:

#include <Sys/types.h>
#include <Sys/stat.h>

stat(path, buf);
char *path; result struct stat * buf;

fstat(fd, buf);
int fd; result struct stat *buf;

The stat call is on a pathname, while fstat is on an open file descriptor. The
structure stat includes the file type, protection, ownership, access times, size, and a
count of hard links.

If the file is a symbolic link, you can use the lstat call to find the status of the link
itself (rather than the file referenced by the link).

lstat(path, buf);
char *path; result struct stat *buf;

When a new file is created, it is assigned the user ID of the process that created it
and the group ID of the directory where it was created. You can change the
ownership of a file using the chown and fchown calls:

chown(path, owner, group);
char *path; int owner, group;

fchown(fd, owner, group);
int fd, owner, group;

The first call changes the ownership of the file referenced by path, while the second
changes the ownership of the file referenced by the descriptor fd.

In addition to ownership, each file has three levels of access protection associated
with it. These levels include access for the owner, the group, and global (all users
and groups). Each level of access has separate indicates for read permission, write
permission, and execute permission. You can set the protection associate with a file
with the chmod and fchmod calls:

chmod(path, mode);
char *path; int mode;

2D-20

The UTek System lmplementatioll

fchmod(fd, mode);
int fd, mode;

As with chown, chmod references a file by its pathname and fchmod references it
by its descriptor. The value mode represents the new protection for the file. The file
mode is a three-digit octal number. Each digit encodes read access as 4, write
access as 2, and execute access as 1, or' ed together. The 0700 bits describe
owner access, 070 group access, and 07 access rights for other processes.
You can set the access and modify times for a file using the utimes call:

utimes(path, tvp)
char *path; struct timeval *tvp[2];

This is particularly useful when moving files between media, so that you can
preserve relationships between the times the file was modified.

UTek TOOLS 20-2

The UTek System Implementation

Links and Renaming
Links provide multiple names for the same file. The link exists separately from the
file it references.

Two types of links exist, hard links and symbolic links. A hard link is a reference
counting mechanism that lets a file have multiple names within the same file system.
Symbolic links cause string substitution during the pathname interpretation process.
For more information on symbolic and hard links see Section 2E, The UTek Fast File
System.

Hard links ensure that the target file is always accessible, even after its original
directory entry is removed. No such guarantee exists for a symbolic link, but it can
span file system boundaries. The following calls create a hard link, or a symbolic
link, respectively:

link(path1, path2);
char *path1, *path2;

symlink (path1 ,path2);
char *path1, *path2;

These calls create a new link, named path2 to pathl.

The unlink call removes either type of link. Only the superuser can unlink a
directory:

unlink(path)
char *path;

If a file is a symbolic link, the value of the link can be read with the readlink call:

cc = readlink(path, buf, bufsize);
result int cc; result char *path, *buf; int bufsize;

This call places the contents of the symbolic link path in buffer buf with buffer size
bufsize.

You can rename the links using the rename call:

rename(from, to);
char *from, *to;

This causes the link from to be renamed to to. Both from and to must be in the
same file system and of the same type (file or directory). If to exists, it is first
removed.

20-22

The UTek System Implementation

Extension and Truncation
Files are created with zero length and extended by writing or appending to them.
While a file is open the system maintains a pointer into the file, indicating the
current location in the file associated with the descriptor. You can move this pointer
about in random-access fashion. To set the current offset into a file, use the lseek
system call:

#include <Sys/file.h>
#include <Sys/types.h>

pos = lseek(fd, offset, whence);
result int pos; int fd; off_t offset; int whence;

The lseek calls sets the file pointer of the file referenced by f d and returns the value
in pos. The value of whence is one of the following:

LSET
L_INCR
LXTND

O set absolute file offset
1 set file offset relative to current position
2 set offset relative to end-of-file

Files can have "holes" in them. Holes are empty areas in the linear extent of the
file where data has never been written that take up no disk space. You can create
them by seeking to a location past the current end-of-file and writing there. The
system treats the holes as zero-valued bytes.

You can truncate a file with the calls truncate and ftruncate:

truncate(path, length);
char *path; int length;

ftruncate(fd, length);
int fd; int length;

The truncate call references a file by its pathname, while ftruncate references it by
its descriptor. Both calls reduce the size of the files to length bytes.

UTek TOOLS 20-23

The UTek System Implementation

Checking Accessibility
A process running with different real and effective user IDs can check the
accessibility of the file to the real user using the access call:

access(path, mode);
char *path, int mode;

The value of mode is constructed by or'ing the following bits defined in <Sys/file.h>:

F_OK 0
X__OK 1
W_OK 2
R_OK 4

file exists
file is executable
file is writeable
file is readable

The presence or absence of advisory locks does not affect the result of access.

Locking
The file system lets processes synchronize their access to shared files. An advisory
lock is applied to a file only when a program requests it, so it is effective only when
all the programs accessing a file use the same locking scheme. A process can set
an advisory read or write lock on a file, to presever its exclusive access to the file.
See Section 2E, the Vtek Fast File System for more information on file locking.

Locking is performed after an open call, using flock:

flock(fd, operation);
int fd, operation;

The operation parameter is formed from bits defined in <Sys/file.h>:

LOCK._SH
LOCK._EX
LOCK._NB
LOCK._UN

1
2
4
8

shared lock
exclusive lock
don't block when locking
unlock

You can use successive lock calls to increase or decrease the level of locking. If an
object is currently locked by another process when the flock call is made, the caller
is blocked until the current owner releases the lock. You can avoid this by including
LOCK._NB in the operation parameter. Advisory locks held by a process are
automatically deleted when the process terminates.

20-24

The UTek System Implementation

Interprocess Communications

Communication Domains
The system provides access to an extendible set of communication domains. A
communication domain is identified by a constant defined in <Sys/socket.h>. The
most important domains supported by the system are the UNIX domain for
communication within the system, and the INET domain for internetwork
communication.

Socket Types and Protocols
Within a domain, communication takes place between communication endpoints
known as sockets. Each socket has the potential to exchange information with other
sockets within the domain.

Each socket has an associated abstract type that describes the semantics of
communication using that socket. Properties such as reliability, ordering, and
prevention of duplicate messages are determined by the type. The basic set of
socket types is defined in <Sys/socket.h>:

SOCK__DGRAM
SOCK__STREAM
SOCK__RAW
SOCK__RDM
SOCK_SEQPACKET

datagram
virtual circuit
raw socket
reliably delivered message
sequenced packets

The SOCK__DGRAM type models the semantics of in network communication;
messages can be lost or duplicated, or arrive out of order. The SOCK_RDM type
models the semantics of reliable ; messages arrive unduplicated and in order, and
the sender is notified if messages are lost. The send and receive operations
generate reliable or unreliable The SOCK__STREAM type models connection-based
virtual circuits; two-way byte streams with no record boundaries. The
SOCK__SEQPACKET type models a connection-based, full-duplex, reliable,
sequenced packet exchange; the sender is notified if messages are lost, and
messages are never duplicated or sent out of order. You can use the last two
abstractions for out-of-band transmission to send out-of-band data.

The SOCK__RAW type is used for unprocessed access to internal network layers and
interfaces. It has no set semantics.

Each socket must have a concrete protocol associated with it. The protocol is used
within the domain to provide the semantics required by the socket type. For
example, within the INTERNET domain, the SOCK__DGRAM type can be
implemented by the UDP user datagram protocol, and the SOCK__STREAM type can
be implemented by the TCP transmission control protocol.

UTek TOOLS 20-25

The UTek System Implementation

Socket Creation and Naming
Sockets can be connected or unconnected. An unconnected socket descriptor is
obtained by the socket call:

#include <Sys/types.h>
#include <Sys/socket.h>

s = socket(af, type, protocol);
result int s; int af, type, protocol;

An unconnected socket descriptor can yield a connected socket descriptor by
actively connecting to another socket, or by associating itself with a name in the
communications domain and accepting a connection from another socket.

To accept connections, a socket must first have a binding to a name within the
communications domain. This is done with the bind system call:

bind(s, name, namelen);
ints; struct sockaddr *name; int namelen;

You can retrieve a socket's bound name with getsockname:

getsockname(s, name, namelen);
int s; struct sockaddr *name; result int *namelen;

You can retrieve the peer's name with the getpeername call:

getpeername(s, name, namelen);
int s; result struct sockaddr *name; result int *namelen:

Accepting Connections
Once a binding is made, it is possible to listen for connections:

listen (s, backlog);
int s, backlog;

The backlog specifies the maximum count of connections that can be simultaneously
queued awaiting acceptance.

The accept call returns a descriptor for a new, connected socket from the queue of
pending connections on s.

20-26

The UTek System Implementation

Making Connections
The connect call makes an active connection to a named socket:

connect(s, name, namelen);
int s; struct sockaddr *name; int namelen;

You can also create connected pairs of sockets without using the domain's space to
rendezvous. Do this using the socketpair call:

socketpair(d, type, protocol, sv);
int d, type, protocol; result int sv[2J;

Here the returned sv descriptors correspond to those obtained with accept and
connect.

The pipe call creates a pair of SOCK_STREAM sockets in the UNIX domain, with
fd[OJ only writeable and fd[1J only readable:

pipe(fd);
result int fd [2];

Sending and Receiving Data
You can use sendto to send messages from a socket if it is not connected:

cc = sendto(s, msg, len, flags, to, tolen);
result int cc; int s; char *msg; int len, flags;
struct sockaddr *to; int

You can use send if the socket is connected:

cc = send(s, msg, len, flags);
result int cc; int s; char *msg; int len, flags;

The corresponding receive primitives are recvfrom and recv:

cc = recvfrom(s, buf, len, flags, from, fromlen)
result int cc; ints; result char *buf; int len, flags;
struct sockaddr *from; result int *fromlen;

cc = recv(s, buf, len, flags);
result int cc; int s; char *buf; int len, flags;

In the unconnected case, the parameters to and to/en specify the destination or
source of the message, while the from parameter stores the source of the message,
and *from/en initially gives the size of the from buffer and is updated to reflect the
true length of the from address.

UTek TOOLS 20-27

The UTek System Implementation

All calls cause the message to be received in or sent from the message buffer of
length /en bytes, starting at address buf. The flags specify peeking at a message
without reading it or sending or receiving high priority out-of-band messages:

MSG_OOB Ox1 process out-of-band data
peek at incoming message MSG_PEEK Ox2

Scatter/Gather and Exchanging Access
Rights
It is possible to scatter and gather data, and to exchange access rights with
messages. When either of these operations is involved, the number of parameters
to the call is large. So the system defines a message header structure that contains
the parameters to the calls:

struct msghdr {
caddr_t
int
struct
int
caddr_t
int

};

msg_name;
msg_namelen;
iovec *msg_iov;
msg_iovlen
msg_accrights
msg_accrightslen

optional address
size of address
scatter/gather array
elements in rnsg_iov
access rights sent/received
size of msg_accrights

Here msg_name and msg_namelen specify the source or destination address if the
socket is unconnected; msg_name can be given as a null pointer if no names are
desired or required. The msg_iov and msg_iovlen describe the scatter/gather
locations. Access rights to be sent along with the message are specified in
msg_accrights, which has length msg_accrightslen. In the UNIX domain, these are an
array of integer descriptors, taken from the sending process and duplicated in the
received.

This structure is used in the operations sendmsg and recvmsg:

cc = sendmsg(s, msg, flags};
result int cc; int s; result struct msghdr msg [J; int flags;

cc = recvmsg(s, msg, flags);
result int cc; int s; result struct msghdr msg [J; int flags;

20-28

The UTek System lmplementat/011

Read and Write with Sockets
You can use the normal read and write calls with connected sockets, and translate
them into send or receive calls. A process can operate on a virtual circuit socket, a
terminal, or a file with blocking input/output operations, without distinguishing the
descriptor type.

Shutting down Halves of a Full Duplex
Connection
A process that has a full-duplex socket such as a virtual circuit, and no longer
wishes to read from or write to this socket can give the call:

shutdown(s, how);
int s, how;

The parameter how is 0 to not read further, 1 to not write further, and 2 to
completely shut the connection down.

Socket and Protocol Options
Sockets, and their underlying communication protocols, can support options. These
options can be used to manipulate implementation-specific or non-standard
facilities. The getsockopt and setsockopt calls are used to control options:

getsockopt(s, level, optname, optval, optlen)
int s, level, optname; result char *optval; result int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname; char * optval; int optlen;

The option optname is interpreted at the indicated protocol level for a sockets. If a
value is specified with optval and opt/en, it is interpreted by the software operating a1
the specified level. The level SOLSOCKET is reserved to indicate options
maintained by the socket facilities. Other level values indicate a particular protocol
to act on the option request; these values are normally interpreted as a protocol
number.

UTek TOOLS 20-2~

The UTek System Implementation

UNIX Communications Domain

Types of Sockets
In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facilities,
while SOCK_DGRAM provides reliable message-style communications.

Access Rights Transmission
In the UNIX domain, you can use sendmsg to pass file descriptors within the
system. This means that user processes can be used to build system facilities.

Internet Communications Domain

Socket Types and Protocols
SOCK_STREAM is supported by the INTERNET TCP protocol; SOCK_DGRAM is
supported by the UDP protocol. The SOCK_SEQPACKET has no direct INTERNET
family analogue.

Socket Naming
Sockets in the INTERNET domain have names composed of the 32-bit internet
address, and a 16-bit port number. You can use options to provides source routing
for the address, security options, or additional address for subnets of INTERNET
where 32-bit addresses are insufficient.

Raw Access
The INTERNET domain allows the superuser access to the raw facilities of the
various network interfaces and the various internal layers of the protocol
implementation. This allows administrative and debugging functions to occur.
These interfaces·are modeled as SOCK_RAW sockets.

20-30

2E
The UTek Fast File
System

Introduction
This section discusses the UTek Fast File System that is derived from the Fast File
System developed for 4.2bsd UNIX. To introduce the Fast File System this
introduction compares major features of the original UNIX file system to the UTek
Fast File System.

Originally, UNIX file systems transferred data in blocks of 512 bytes. But this rate of
data transfer is too slow to offer the kind of performance that you need from an
engineering workstation.

In the original UNIX system the super block defined the parameters of the file
system. These parameters include:

• number of data blocks in the file system

• count of the maximum number of files

• a pointer to the list of free blocks

Every file has a descriptor associated with it called an inode. The inode describes
ownership of the file, when it was last modified, and the location of data blocks that
comprise the file. The inode information is stored separately from the data blocks.
So to access a file the disk must perform a long seek between the inode and the file
itself. Because the original file system transfers only 512 bytes at a time, the data
blocks for the same file are frequently far apart. So inefficient layout of data blocks,
the small block size, and the many seeks performed by the disk limit the speed of
the original UNIX file system.

The UTek File System
Organization
Like the original UNIX file system, the Berkeley file system, and thus the UTek file
system, has a superblock that describes the file system. When you create the file
system, duplicate copies of the superblock are created.

UTekTOOLS 2E-1

The UTek Fast File System

The minimum size of the file system blocks is 4096 bytes, although the size of a
block can be any power of two greater than or equal to 4096 bytes. The superblock
maintains the block size of the file system, so you can have file systems of different
block sizes accessible on the same system. You must decide on the block size
when you create the file system; you must rebuild the file system to change the
block size.

As a three-dimensional object, the disk is divided in several different ways. The
tracks of a disk are like the tracks of a record album, except that they have a third
dimension introduced by the multiple surfaces of the disk. A cylinder of a file system
consists of tracks of the same number on all the surfaces of the disk. So that if you
look down from the top of the disk you see concentric cylinders. The UTek file
system partitions the disk into cylinder groups. The cylinder group is comprised of
one or more consecutive cylinders on a disk. Each cylinder group has associated
accounting information including a redundant copy of the superblock, space for
inodes, a bit-map describing available blocks in the cylinder group, and a summary
of data block usage within the cylinder group. When the file system is created, one
inode is allocated for each 2048 bytes of disk space.

If you placed the accounting information at the beginning of each cylinder group, it
would always be on the top surface of the disk. So if a single hardware failure
destroyed that portion of the disk, all copies of the superblock would be destroyed.
To avoid this the cylinder group accounting information begins at a floating offset
from the beginning of the cylinder group. The offset for each cylinder group is about
one track further than the beginning of the group. So copies of the superblock
spiral down into the disk, and you can lose any single track, cylinder, or surface
without losing all the copies of the superblock.

Organization of Data Blocks
In the UTek file system, data is arranged so that larger blocks can be transferred in
a single disk transfer. A block in the new file system is at least 4096 bytes, and by
increasing the block size the disk can transfer more information in each transaction.
If you have files larger than 4096 bytes, several blocks of 4096 bytes can are
allocated from the same cylinder so that even larger data transfers are possible.

2E-2

The UTek Fast File System

One potential problem with uniformly large blocks is that they waste disk space. To
avoid this the UTek file system divides a single block into one or more fragments, so
that you can store files smaller than 4096 bytes without wasting space. The fragment
size of a file system is specified when you create the file system; each block can be
broken into two, four, or eight addressable fragments. The smallest fragment size is
512 bytes, the disk sector size of your workstation. To keep track of space on the
level of fragments, a block map is associated with each cylinder group. The availabili
ty of an entire block is determined by the availability for all its fragments. Figure 2E-1
shows a block map for a system with 4096 byte blocks and 1024 byte fragments:
1024 byte fragments:

Bits in map I XXXX
Fragment numbers 0-3
Block numbers O

xxoo
4-7

ooxx
8-11

2

0000
12-15

3

Figure 2E-1. Layout of Blocks and Fragments in 4096/1024 File System.

Each bit in the map records the status of a fragment; X is a fragment in use and 0
is an available fragment. In this example fragments 0-5, 10, and 11 are in use,
while fragments 6-9 and 12-15 are free. You cannot use fragments of adjoining
blocks as a block, even if they are large enough. In this example, fragments 6-9
cannot be put together into a block; only fragments 12-15 are available for allocation
as a block.

So when the file system allocates space for a file, it uses a combination of blocks
and fragments. The principle that governs the aliocation is io use the smaiiest
possible numbers of blocks and fragments that accommodate the file. For example,
to allocate an 11000 byte file on a 4096/1024 file system, two blocks and a 3072
byte fragment are used. If no 3072 byte fragments are available, a block is split into
a 3072 byte fragment that is allocated to the file, and an unused 1024 byte fragment.

The write system call is the cornerstone of allocating space for a file. Each time
data is written to a file, the system checks to see if the size of the file has increased.
If the file needs to hold more new data one of three conditions apply:

1. The file is completely new, so no space has been allocated for it. A
combination of full blocks and/or fragments that can accommodate the amount
of new data is allocated.

UTekTOOLS 2E-3

The UTek Fast File System

2. There is enough space left in an already allocated block to hold the new data,
and it is written into the available space in the block.

3. Only a fragment, instead of a block, has already been allocated for the file. If
the new data and the data already in the fragment exceed 4096 bytes, a new
block is allocated. The data in the fragment is copied to the beginning of the
block, and the rest of the block is filled with the new data. Any remaining data
is allocated to full blocks and/or fragments as described earlier.

One potential problem with laying data out in fragments is potentially recopying a
one-fragment file up to three times as it grows. This frequent reallocation can be
avoided if the user program writes a full block at a time. Because file systems with
different block sizes can exist on the same system, the file system interface
determines the optimal size for a read or write. For files, the optimal size for a read
is the block size of the file system where it exists. For other objects, such
as pipes and sockets, the optimal size is the underlying buffer size. The Standard
Input/Output Library, the package used by most user programs, and certain system
utilities such as archivers and loaders, determines the optimal size for reads and
writes.

This scheme of laying data out in blocks and fragments does not require any more
space in the file system than the original 512 byte blocks of the UNIX file system.
The new file system uses less space for the data itself because it requires less
indexing information for large files. This savings is offset by the space required to
keep track of available blocks. The net result is use of the same amount of disk
space when the new file system fragment size is 512 bytes.

The effectiveness of laying data out in blocks and fragments depends on having at
least 10% free blocks on the disk. If the number of free blocks falls below this level
only the system administrator can continue to allocate blocks. You can also change
the minimum amount of free space, even when the file system is mounted and
active. But if you set the number of reserved blocks to O, the throughput of the file
system is cut in half because the file system cannot put all the blocks for one file in
:me location. Files created during periods when the disk has little free space have a
slow access speed, but you can restore a normal access speed by recreating the
riles when enough space is available.

!E-4

The UTek Fast File System

File System Parameters
The UTek Fast File System uses the physical characteristics of your workstation to
optimize the performance of the file system. These parameters include:

• processor speed

• disk characteristics

• hardware support for disk transfers

The file system tries to allocate new blocks on the same cylinder as other blocks in
the same file. To speed access time the file system allocates consecutive blocks
based on the rotational speed of the disk. So writing two "consecutive" blocks can
mean skipping physically consecutive blocks so that the next block is coming into
position under the disk head at the right time. The allocation routines in the file
system calculate the number of blocks to skip so that the next block is ready for
reading or writing.

Another factor that affects allocation is how fast the processor channel can transfer
information and how much information can be read or written at one time. The
amount of time it takes to skip to the next rotationally optimal block includes the
time it takes for a disk transfer operation.

Once the file system determines how to find a rotationally optimal block, it must be
free. The cylinder group summary information includes the availability of blocks at
eight different rotational positions.

UTekTOOLS 2E-5

The UTek Fast Fiie System

Layout of lnodes and Data Blocks
File system allocation routines are divided into two distinct groups. Global routines
decide the placement of new directories and files. They also calculate rotationally
optimal block layouts and decide when to move information to a new cylinder group
because there are not enough blocks left in the current cylinder group to lay out the
data blocks efficiently.

Local routines are called by the global routines. So once a global routine has
decided where information should be placed, the local routine allocates the
requested block if it is free. If the requested block is not free, local routines
calculate the block rotationally closest to the one requested and allocate it.

lnodes are used to describe both files and directories. Because files in the same
directory are frequently accessed together, the global routines try to place all the
files in a directory in the same cylinder group. But directories are placed in a
cylinder group that has a greater than average number of free inodes and the fewest
number of directories in it already. This leaves space for all the new file that will be
created under a directory so that files can be clustered together. Within a cylinder
group the inodes themselves are allocated randomly, on a next free basis. This
means that you can access all the inodes for a cylinder group with fewer disk
transfers.

The global routines also try to place all the data blocks for a file in the same cylinder
group, if possible rotationally optimal on the same cylinder. The only problem with
this layout of data blocks is that large files quickly use up available space in the
cylinder group and spill over into other areas. Large files also means that
enlargements for other files in the same cylinder group spill over to another cylinder
group. To correct this problem a file that exceeds 32 kilobytes is redirected to a
newly chosen cylinder group that has a higher than average number of free blocks.

The global routines determine what block is preferable, and then call local routines
to allocate the requested block. If the block is not free the local routine uses this
strategy for allocation:

1. Use the available block rotationally closest to the requested block on the same
cylinder.

2. Use a block within the same cylinder group.

3. Quadratically rehash among the cylinder groups looking for a free block.

4. If a rehash fails, apply an exhaustive search.

The last two steps of this process typically occur on a file system that has less than
10% free space, so rehashing is used to make them run quickly.

Other File System
Enhancements

The UTek Fast File System

Other than speed, the following functional enhancements were added to the UTek
file system.

Long File Names
Filenames can be of nearly arbitrary length, up to 255 characters. The only user
programs affected by this change are those that access directories. To maintain
portability among UNIX systems a set of directory access routines has been
introduced to provide a uniform interface to directories.

Directories are allocated in units of 512 bytes. Each allocation unit contains
variable-length directory entries, with each entry contained within an allocation unit.
The first three fields of a directory entry contain an inode number, the length of the
entry, and the length of the name contained in the entry. If the inode number is set
to 0, that entry is unallocated. Following this information is the null-terminated
name, padded to a 4-byte boundary.

Free space in a directory is held by directory entries whose record length exceeds
the space required by the directory itself. All the bytes in an allocation unit are
claimed by directory entries. Normally this results in a large last entry. When you
delete an entry from a directory, the freed space increases the length of the previous
entry.

File Locking
The original UNIX file system had no provision for locking files.. Processes that
needed to synchronize the updates of a file had to create a separate "lock" file to
synchronize their updates. The UTek file system provides both hard locks and
advisory locks. Hard locks are enforced whenever a program tries to access a file;
an advisory lock is applied to a file only when a program requests it. So advisory
locks are effective only when all programs accessing a file use the same locking
scheme. Typically, advisory locks are used to lock files being run by the system
administrator because programs with system administrator privilege can override any
protection scheme.

UTekTOOLS 2E-7

The UTek Fast File System

Advisory locks can be shared or exclusive. Only one process can have an exclusive
lock on a file, while you can have several shared locks on a file. If you request a
lock when another process has an exclusive lock on a file, or if you request an
exclusive lock when another process has any lock, the attempt to open the file
blocks until the file is free. You can override this block by specifying that the
locking request return with an error if it cannot obtain the lock. Because shared and
exclusive locks are only advisory, another process can override the lock by opening
the same file without a lock.

You can apply or remove locks on open files, so you can manipulate the locks
without needing to close and reopen the file. This is useful, for example, when a pro
cess wants to open a file with a shared lock to read some information that deter
mines whether an update is required. It can then get an exclusive lock to read,
modify, and write to the file.

A process can deadlock itself by requesting locks on two separate file descriptors for
the same object. The file system only prevents a second lock of the same type on a
file descriptor.

For more specific information on how to implement file locking see UTek Command
Reference, flock (I) and f/ock(2).

Symbolic Links
The original UNIX file system allows hard links, or multiple directory entries in the
same file system to reference a single file. Files do not live in directories, but exist
separately and are referenced by links. This does not allow references to a single
file across physical file systems or between machines.

The UTek file system uses a symbolic link, or a file that contains a pathname. When
the system interprets a pathname that has a symbolic link as one of its components,
the contents of the symbolic link are prepended to the rest of the pathname. If the
symbolic link contains an absolute pathname it is used; otherwise, the symbolic link
is relative to its position in the file hierarchy.

Normally programs do not want to be aware that there is a symbolic link in a
pathname they are using. However, some system utilities can detect and
manipulate symbolic links. See UTek Command Reference, ln(l) and symlink(2).

?E-8

The UTek Fast File Systen

Renaming Files
The original UNIX file system required three calls to the system to rename a file.
The UTek file system implements the rename system call that performs the rename
in one operation and guarantee the existence of the original name.

In addition, rename lets you move directories around in the directory tree hierarchy.
It also checks to see that the directory tree structure is not corrupted by the creation
of loops or inaccessible directories. This kind of corruption occurs if a parent
directory is moved into one of its descendants.

UTekTOOLS 2E-9

The Distributed File
System

21

The distributed file system lets you use any of the UTek commands with files that
are on other machines on the network. To access a file on a remote machine you
enter a UTek command as you normally would, but you specify a file on another
machine with the following syntax:

I/machine/pathname

where machine is the name of the workstation the file is on and pathname is the full
pathname of the file.

The following example copies the file lusrljoeldatafile from the workstation named
engrl to a file named temp in your current working directory on the current
workstation:

cp //engr1 /usr/joe/datafile temp

The following example places a user in the directory /usrljoe on the workstation
engrl.

cd //engr1 /usr/joe

The following example uses the vi editor to edit a file named lusr/joeldatafile that is
on the workstation engr 1.

vi //engr1 /usr/joe/datafile

When you execute a command that resides on another workstation, the command is
copied to your workstation and executed on your workstation. For example, if you
typed:

//engr1 /bin/who

the who command is copied from engrl to your workstation and is executed on your
workstation.

UTekTOOLS 2F-1

The Distributed File System

DFS Protection
The system administrators of each workstation on the network decide who can
access their workstations with the distributed file system. In order to access another
workstation on the network with the distributed file system, you must have:

• Distributed file system access to the other workstation. This access is
permitted by entries in the /etclhosts.dfs.access file on the other workstation.

• Access to the file you are trying to read or write. This access is permitted by
the settings of the protection bits of the file. This type of access control is
identical to the access control used for files on your workstation.

When you enter a command that accesses a file on a remote machine, the remote
machine checks to see if your workstation is listed in the letclhosts.dfs.access file. If
your machine is listed in this file then you and all other users on your workstation
can access the remote machine, if you have accounts on the remote machine.

For more on the letc!hosts.dfs.access file, see your System Administration manual
and hosts.dfs.access(5) in the UTek Command Reference manual.

2F-2

2C
MDQS- The
Multidevice Queueing
System

The UTek Multi-Device Queueing System (MDQS) provides a flexible means of
sending printing or batch requests to devices that you define. MDQS arranges the
order of tasks and sends them to a variety of logical devices. The most common
use for MDQS is to send printing jobs to a printer. The batch queue orders files
that contain UTek commands, and sends them to the shell for processing.

The queue in MOOS is a separate entity from the device; the queue sets up the
priority of tasks, then the tasks are mapped to a particular device. So you can ha\
both multiple queues and multiple devices, with more than one queue mapped to ~
device, or more than one device mapped to a queue. Unlike a traditional printer
spooler, MDQS accommodates different job priorities for multiple devices, and lets
you change job priority very easily.

Most of your contact with MDQS configuration is through the sysadmin program,
also called the system administration interface. This program displays a series of
menus that let you configure the MOOS system and do other system administratior
tasks. See your System Administration manual to find out how to use the sysadmi1
program to configure MOOS. This section presents the concepts of the MDQS
system as a whole, and gives you more details about how MOOS works. Use the
sysadmin command to do the routine configurations of MOOS, and refer to this
section if you have a configuration that cannot be accomplished using sysadmin, c
to find out more about the internal workings of MDQS.

Creating a Queue Entry
To create a queue entry, you submit a request to the queue. You can submit a
request to the printer queue using the lpr command. Or you can submit batch
requests to run many commands at once using the batch command. See the UTe.
Command Reference for dntails on these commands.

UTekTOOLS 2G-

MDQS - The Multi-Device Queueing System

Mapping a Queue to a Device
The procedure that takes a job in the queue and sends that job to a particular
device is the key to the flexibility of MOOS. Figure 2G-1 shows a mapping of
multiple queues and devices. The first queue sends jobs to the first device, the
second queue sends jobs to either device, and the third queue sends jobs to the
second device.

QUEUE

DEVICE

QUEUE

DEVICE

QUEUE

Figure 2G-1. Multiple Queues and Devices.

5318-02

To get a job into a queue, MOOS builds a request. The request contains all the
information necessary to process a job - what files to print, or what commands to
run as a batch process, and what queue is appropriate for the job. After MDOS
builds the request, it sends the request to the appropriate queue. From the queue
the request is mapped to a particular device, and as we said earlier more than one
queue can be mapped to a device. The server process is the actual program that
executes a request. So the information that maps a queue to a device includes the
name of the queue, the name of the device, and the name of a server process for
each mapping of a queue to a device.

2G-2

MDQS - The Multi-Device Queueing System

When all the information for a mapping of queue to device (queue-name, device
name, and server process) is in place, the MOOS scheduler daemon determines what
server processes to execute first. A daemon is a process that runs all the time and
automatically takes care of system procedures like networking, printing, and mail
operations. Figure 2G-2 shows how the scheduler daemon examines the devices
until it finds an empty device. An empty device does not have a request attached to
it.

QUEUE

DEVICE

QUEUE

DEVICE

QUEUE

DEVICE

QUEUE

5318-03

Figure 2G-2. Daemon Scans for Empty Devices.

When the daemon finds an empty device, it takes the first request in the queue
mapped to that device, and tells the server process to execute that request. If there
is more than one queue mapped to a device, by default the first queue is emptied
before requests in the second queue can be processed. However, you can change
the order in which queues are emptied. See the section The Qconf File to change
emptying the first queue by default.

UTekTOOLS 2G-3

MDQS - The Multi-Device Queueing System

After the daemon finds the first eligible request, it moves on to the second empty
device, finds the queue mapped to that device, and pulls a request from the second
queue to attach it to a device. When the queue is attached to the device, the
appropriate server process executes the request. Figure 2G-3 shows how the
daemon moves from one device to another. The order of the devices is set up in
the qconf file.

2G-4

MDQS - The Multi-Device Queueing System

8---~IC~--
QUEUE

DEVICE

QUEUE

DEVICE

DEVICE (BUSY)

QUEUE

DEVICE ------
QUEUE

DEVICE
5318-04

Figure 2G-3. Daemon Moves from First to Second Device.

UTekTOOLS 2G-5

MDQS - The Multi-Device Queueing System

The scheduler daemon is a program called mdqsd that resides in the directory /etc.
Normally the daemon is started by the init program when you boot the system, or by
the system administrator interface. But you can also start the daemon by executing
mdqsd if you are logged in as root.

When no printing requests exist, the daemon stops checking for empty devices and
remains idle. But a parameter that you set in the qconf file, called scanwait,
activates the daemon at regular intervals to check whether delayed requests should
be transferred to their appropriate queues. See the later discussion The Qconf File
for information on setting the scanwait parameter and the following discussion on
Delayed Queues.

Delayed Queues
You can use the -a option of lpr or batch to send a request to a delayed queue. A
delayed queue simply waits a certain amount of time before it puts the request in
the regular queue. You specify a time, after which the request can be moved from
the delayed queue to the regular queue. For example:

lpr -a 1 O:OOpm request

This command sends request to the delayed queue, where it stays until after 10:00
pm. The request is moved to the regular lineprinter queue the first time after 10:00
pm that it is examined by the scheduler daemon. The scheduler daemon examines
delayed queues every x seconds, where x is determined by the scanwait parameter
in the qconf file. See the discussion The Qconf File for more information on the
scanwait parameter. See your UTek Command Reference, getdate(5), for information
on date formats accepted by the --a option.

2G-6

MDQS - The Multi-Device Queueing System

The MDQS Directory Structure
The directory structure of MOOS is designed to provide maximum security, while
reducing linear searches of directories by the daemon. A request to the MOOS
system (for example the lpr command) starts out as a nonprivileged process, but as
it moves deeper into the hierarchy of the MOOS directories, it takes on the status of
a privileged process. First a request moves into a temporary directory. Then, to
protect the process, it moves into the lock directory, which can only be accessed by
a privileged process.

Following is a diagram of the directory hierarchy:

/usr/spool/q/
qt mp/
lock/

home/
cntrl/
data/
new/
mod/
adm/
hold/

Many of the MOOS processes run in the cntrl directory, for example the qmod and
qdev programs. These programs are the processes that modify or delete a request,
and modify or display the status of a local device. The cntrl directory also contains
one control file for every printing request.

The data directory is closely related to the cntrl directory. It provides the raw data
(the file you entered) to the cntrl directory, so that a control file can be produced for
each request.

The new directory is normally empty, but when it contains something it notifies the
daemon that a new request is ready to be processed. The daemon then enters the
request in an internal queue and unlinks the file from the new directory. This file
containing the request is actually a link to the same file in the cntrl directory, but by
putting the link to the request in the new directory, it is easier for the daemon to
recognize what requests are new.

UTekTOOLS 2G-7

MDQS - The Multi-Device Queueing System

The mod directory works in a fashion similar to the new directory, except that it
indicates whether the user has modified or deleted a request using the qmod
program. Instead of maintaining a link to the cntrl directory, files in the mod
directory contain all the old and new request information so that the daemon can
easily find the original request in its internal queues.

The adm directory contains queue status files and the lock files for the daemon, as
well as the device status files for the server process. The qdev program uses the
device status files to modify the status of a local device. For example, you could
use the qdev program to change printing forms from wide to narrow for a printing
device. The daemon also uses the adm directory to communicate information about
the device that is currently active, or about a device failure, back to the qdev
program.

The daemon uses the hold directory to save the copies of request files that cause
severe errors in the daemon or the server processes.

The Qconf File
The qconf file sets up the queues, sets up devices, and maps queues to devices. It
also sets many changeable parameters, such as forms and priority.

The daemon checks the run-time configuration file, letclqconf, for any
modifications. When you have modified the qconf file, restart the daemon using the
daemon command. For more information on this command see your UTek
Command Reference, daemon(8). You can also change the qconf file using the
sysadmin program. As portions of the qconf file are discussed, this section also
gives you the name of the corresponding menu in the sysadmin program.

Example 2G-1 shows the qconf file for a computer called hammer. Other
computers on the same local area network are called shark, tekecs, orca, and
mako.

2G-8

MDQS - The Multi-Device Queueing System

MOOS configuration file (for hammer)

Parameters

console
openwait 10
scanwait 60
maxfailures
sys mgr

/usr/spool/q/qtmp/mdqs.log

10
steveh@hammer

print-queue Ip
print-forms narrow
print-prior 64
print-hdr /usr/lib/mdqs/lphdr

batch-queue
batch-forms
batch-prior

batch
Shell
64

Device Descriptions

<dname> <device> <Status>
lpO /dev/lpO
lp1 /dev/lp1
batchO /dev/null anyform
net /dev/null anyform,skipmsg

Queue Descriptions

<qname>
Ip
Lp
sharklp
tekecslp
orcalp
makolp
batch

UTekTOOLS

Example 2G-1. Example Qconf File.

2G-9

MDQS - The Multi-Device Queueing System

Queue->Device Mappings

<qname>
batch
Ip
Ip
Lp
sharklp
tekecslp net
orcalp
makolp

<dname> <Server>
batchO /usr/lib/mdqs/shserver
lpO /usr/lib/mdqs/plpserver
lp1 /usr/lib/mdqs/plpserver
net /usr/lib/mdqs/netsend shark Lp
net /usr/lib/mdqs/netsend shark Ip
/usr/lib/mdqs/netsend tekecs Ip
net /usr/lib/mdqs/netsend orca Ip
net /usr/lib/mdqs/netsend mako Ip

Example 2G-1 (cont.). Example Qconf File.

As you can see, the qconf file has four major parts, each separated by a line of
hyphens. This section discusses each part of the example file, so refer back to this
example as you read the description of it. This example should make it clear exactly
how the principles of MOOS discussed earlier are implemented.

The Qconf File - Parameters
The first portion of the qconf file has parameters that you can change, such as how
long the daemon waits between checking for delayed queues, the filename of the
console file, and the queue names and priorities for printing and batch jobs.

As you can see, the Parameters portion of this file is divided into three subportions.
Each of these portions corresponds to a sysadmin menu, and are discussed
separately.

The first part of Parameters defines all of the changeable parameters defined in the
sysadmin Control Parameter menu. These parameters include:

console

openwait

scan wait

maxfailures

2G-10

Redirect the standard error output to this file.

If a daemon cannot open a device, it waits this many seconds
before trying to open it again.

Sets the amount of time a daemon is idle after a check of all the
devices. On a system with no new or finished requests, this
affects how frequently the daemon checks the delayed requests
queue.

Defines the maximum number of times a server process can fail
before the device it services is marked as "failed." If this
happens you can restart the device using qdev.

MDQS - The Multi-Device Queueing System

sys mgr The name of the MDQS system manager, which defaults to
'' mdqs.'' The daemon mails messages about orphaned notices to
this address. It must be a valid login name.

The second portion of Parameters controls the default behavior of a printing job. It
corresponds to the sysadmin Print Parameter menu. It has four components: the
queue, the forms, the priority, and the print header:

print-queue

print-forms

print-prior

print-hdr

The name of the default print-queue. This name must be
specified later in the Queue Descriptions portion of the file, or
in the sysadmin MDQS Configuration Maintenance menu.

Defines a name for the printing forms. For example, the
default for the Ip queue is "narrow." This is used primarily to
distinguish between two parts of a queue, for example a part
that goes to a narrow printing device or a part that goes to a
wide printing device.

Sets the priority for printing jobs. The values range from 1 to
10, with 5 the default value. The value 1 is the highest
priority, and 1 0 the lowest.

The file that contains the line printer header. Normally, this is
a null file.

The third part of Parameters sets the sets the value for parameters in the batch
queue. This is equivalent to the Batch Parameter menu in the sysadmin program.
It has three components: the queue, the forms, and the priority.

batch-queue

batch-forms

batch-prior

The name of the default batch-queue. This name must be
specified later in the Queue Descriptions portion of the file, or
in the sysadmin MDQS Configuration Maintenance menu.

Defines a name for the batch-forms. As with the print-form
parameter, you can enter any value. This example uses Shell.

Sets the priority for batch jobs. The values range from 1 to
10, with 5 being the default value. The value 1 is the highest
priority, and 10 the lowest.

The Qconf File - Device Descriptions
The second part of the qcunf file contains device descriptions. You can change this
portion of the qconf file using the MDQS Configuration Maintenance menu in
sysadmin. The field <rlname> contains the name of the logical device, and the field
<rlevice> contains the name of the real device. The logical device name provides an
easier way of referring to a real device. On UTek, the real device is a file, but the
logical device name that corresponds to that file can follow any naming convention
that you choose.

UTekTOOLS 2G-11

MDQS - The Multi-Device Queueing System

The only case where a one-to-one correspondence of real to logical device name
does not exist is for pseudodevices that service a network or run the batch
command. As you can see from the example qconf file, the real device that
corresponds to the batch and network logical devices is the special file ldevlnull,
which discards data written to it.

The third field in Device Descriptions is <Status>. This field contains options that
control the behavior of a device. Following are the status options:

anyform Indicates that this device can accept requests regardless of what
forms were specified for the request. This is used for the network
or batch devices.

roundrobin Causes the daemon to use a round-robin algorithm to choose
requests for a particular device. When two queues are mapped to
the same device, this option causes the daemon to process a
request from the first queue, followed by a request from the second
queue. This is different from the default value that empties the first
queue before accepting requests from the second queue.

skipmsg Disables the sending of a message when a device completes a
request. This is useful for the network device, because you want to
see the completion message from the remote system device,
instead of that from the network pseudo device.

The Qconf File - Queue Descriptions
The third portion of the qconf file, called Queue Descriptions, describes the logical
queues where you can submit requests. You can change this portion of the qconf
file using the MOOS Configuration Maintenance menu in sysadmin. The names
that you designate for queues are not important, so long as you use a consistent
scheme. In this file two queues, Ip and Lp are on the home computer called
hammer, while the other queues are for the batch requests and for other computers
on the network. The queue descriptions are used by the MOOS submit programs
(batch and lpr).

The Qconf File - Queue to Device Mappings
This last portion of the qconf file expands on the device names and queue names
that you specified earlier in the file. This portion of the qconf file matches a queue
name with a device name, and defines a server process that actually accomplishes
the request. The queue name and the device name must be defined earlier in the
file. As you can see in the example file, each queue that you defined in the Queue
Descriptions portion of the file is mapped to a device name that you specified in
Device Descriptions. The first field contains the queue name, while the second
contains the device name. In this example, multiple queues are mapped to one
device.

2G-12~

MDQS - The Multi-Device Queueing System

Currently there are five server processes available to execute requests to MDQS.
All of these files are in the directory lusrlliblmdqs. When you enter them into the
<Server> field, you must enter their full pathnames. These include:

rawserver Passes input to the device without filtering. This is useful for
sending input to sophisticated printers that themselves define
multiple printing modes.

plpserver Sends input to a Printronix lineprinter.

lpserver Sends input to a printing device. Before it sends the input to the
device, it expands special characters into a two-character format.
For example, tabs become spaces and a backspace followed by an
newline is split over two lines.

shserver Sets up input from the batch command to the null device, which
always executes the shell.

netsend This server process sends a request across the network to another
computer. You must enter two arguments following
/usrlliblmdqslnetsend. The first argument is the name of the
computer to which you are sending the request, and the second
argument is the name of the queue on that computer where the
request is placed. The name of the remote queue is defined in the
qconf file on the remote computer.

As you can see from the example file, the batch queue is processed by the server
process shserver. The next entries are for the queue named Ip. This queue is
mapped to two different devices that correspond to a line printer with narrow forms
and one with wide forms. The server for the Ip queues is the server process
plpserver, so the output is sent to Printronix line printers.

The next queue, Lp, is sent across the network pseudodevice, to a queue on the
shark computer called Lp. The next queue, sharklp, is sent to a queue on shark
called Ip.

The remainder of the entries in the qconf file send requests to queues called Ip on
various machines. To find out what device and server process complete these
requests on the remote machine you need to examine the qconf file of the remote
machine.

UTekTOOLS 2G-13

MDQS - The Multi-Device Queueing System

Changing the Status of a Queue or Device
You can run several MOOS commands that give you information not available
through the sysadmin program. One of the most useful is the qstat command.
This command displays the status of the MOOS queues. It tells you what devices
are active, what active requests are in the queues, and what delayed requests are in
the queues. For more information on qstat see UTek Command Reference, qstat(J).

The qmod command lets you modify or delete an MOOS request. You can delete a
request entirely, change the priority of requests, change the request to a new queue,
or put a request on hold. You identify a request by specifying its job number, that is
the job number you obtain using the C-shell jobs command. For more information
on qmod, see UTek Command Reference, qmod(l).

The qdev command displays and modifies the status of a local device. It lets you
disable a device and restart the current request or completely remove a request
from a device. You can also use qdev to change the current form for a device, for
example, to move from a line printer with narrow paper to one with wide paper. For
more information on qdev see UTek Command Reference, qdev(8).

2G-14

3A
Introduction to Editing
Documentation

Available Editing Tools
This part of the UN*X Tools manual discusses the editing tools that are available on
your workstation.

There are three editors available on your workstation:

• ed

• ex

• vi

The first editor ed is a line-oriented, instead of a visually-oriented, editor. This
means that you usually look at one line at a time, unless you explicitly choose to
have more lines displayed. You will find ed most useful for performing text editing
within shell programs, where you cannot use a visual editor.

The second editor, ex, is a line-oriented editor, with many expanded features by
comparison with ed.

The third editor, vi, is a visually-oriented editor. This means that you can move
easily around the screen. The vi editor lets you move forward or backward, using
units like words, sentences, and sections as points of reference. For most text entry
we recommend that you use vi; it is slightly more difficult to learn than ed and ex,
but much more versatile.

How to Use This
Documentation
If you are not familiar with the basic commands of these editors, first read the
section on editors in the book Using the UNIX System. Using the UNIX System gives
you a grasp of the most often used commands.

When you ant to learn mo;e advanced uses of these editors, refer io sections 3B,
Advanced Uses of Ed, and section 3C, Advanced Uses of Ex and Vi. So if you
already know a particular editor, use this section to improve the your efficiency with
it and as a reference manual.

UTEK TOOLS 3A-1

UTekTOOLS

38
Advanced Uses of Ed

Introduction
This section is meant to helped users use the text editor more effectively. You
should have a knowledge of the material on ed in Introducing the UNIX System.

This section concentrates on the features of ed that save you time and accomplish
more with one command. These features include:

• extending commands using special characters

• line addressing

• global commands

• cut and paste

Extending Commands Using
Special Characters
Using special characters within ed makes it a much more flexible editor. Special
commands discussed in this section let you concisely describe and address portions
of the text you are editing.

Print and List Commands
Ed treats text files on a line-by-line basis. Two commands print the lines being
edited, the p command and the I command.

The first is the print command (p). The following command prints all the lines in the
file:

1,$p

The command:

s/abc/def/p

changes abc to def on the current line and prints the new version.

38-1

Advanced Uses of Ed

The list command (I) displays more information than the p command. In particular, I
displays characters that are normally invisible, such as tabs and backspaces. For
example, if a line contains tabs or backspaces, I prints each tab as >and each
backspace as< This makes it easier to correct typing mistakes adjacent to tabs or
backspaces.

The I command also folds long lines. Any line that exceeds 72 characters continues
on the next line. Each line except the last ends with a backslash (\) to indicate that
the line was continued. A dollar sign is appended to the actual end of the line.

Substitute Command
The substitute command (s) changes an individual line. It accepts many ways of
defining the strings that make up its arguments. This lets you easily make
substitutions in the existing text.

A trailing global command after a substitute command is illustrated in the next
example:

s/this/that/g

If there is more than one occurrence of this on the current line, the trailing g
changes all of them. The trailing g command can be followed by p or I to print or
list the contents of the line. For example:

s/this/that/gp
s/this/that/gl

Instead of performing the substitution on only the current line, the s command can
specify a group vf lines where the substitution is performed. For example:

1,$s/mispell/misspell/

This changes the first occurrence of mispell to misspell on every line of the file. The
following command changes every occurrence on every line:

1,$s/mispell/misspell/g

If you add a p or I to substitute commands that affect multiple lines, only the last line
that was changed prints.

You can use any character to delimit the strings of ans command. There is nothing
special about slashes. Consider this line that contains a lot of slashes already:

//exec//sys.fort.go//etc ...

You could use a colon as the delimiter to avoid confusing the delimiter with the
strings that you enter. To delete all the slashes, enter:

s:/::g

38-2

Advanced Uses of Ed

Undo Command
Occasionally, you accidentally execute an incorrect ed command. The undo
command (u) negates the last command you entered.

Metacharacters
In ed, certain characters have special meanings on the left side of a substitute
command or in a search for a particular line. These are called metacharacters and
include:

• period

• backslash

• dollar sign

• circumflex

• asterisk

• brackets

• ampersand

Although each metacharacter is discussed separately in the following text, you can
combine them. An example of combined metacharacters is given in the Circumflex
section.

Period
The period(.) on the left side of a substitute command or in a search stands for any
single character. Thus the search:

/x.y/

finds any line where "x" and "y" are separated by a single character. This
command finds lines like:

x+y
x-y
xy
x.y

UTekTOOLS 38-3

Advanced Uses of Ed

Since the period matches any single character, you can match the invisible
characters printed by I. For instance, if the I command prints the line:

... th\07is ...

and you want to get rid of the \07 (bell character), enter:

s/th.is/this/

This command removes the bell characters, because the period matches the
character between the h and the i, no matter what it is.

Since the period matches any single character, the command:

sl./,I

converts the first character on the line into a comma.

The period has several meanings in ed, depending on its context. This line shows
all three:

.s/.1.1

• The first period is the line number of the line being edited.

• The second period is a metacharacter that matches any single character on
that line.

• The third period is the only one that is a literal period. On the right side of a
substitution. the period has no special meaning.

Backslash
Since a period matches any single character, you cannot use it to indicate a literal
period. To ensure that the period is read literally, you precede it with a backslash
(\). A backslash turns off any special meaning of the following character. Ed
considers the characters\. as a single literal period.

Use the backslash when you search for lines that contain a special character. If you
are searching for a line that contains:

.PP

38-4

Advanced Uses of Ed

the command:

/.PP/

does not work. This search finds a line like:

THE APPLICATION OF ..

The above command doesn't work because the period matches the letter "A." To
find only the lines with .PP, enter:

/\.PP/

The backslash turns off special meanings for characters other than the period. For
example, to find a line that contains a backslash enter:

/\\/

A backslash can also turn off the special meaning of the user's erase character and
the line kill character. When you add text with the append (a), insert (i), or change
(c) commands, the backslash turns off special meaning only for the erase and kill
characters.

Dollar Sign
On the left side of a substitute command or in a search command, the dollar sign($)
represents the end of the current line. Use the dollar sign on the left side of a
search command to provide context. Consider the following phrase:

Now is the

You can add the word time to the end of this phrase by entering:

s/$1 time/

The second comma in the following line can be replaced with a period, without
altering the first comma.

Now is the time, for all good men,

To replace the second comma with a period enter:

sl,$1./

UTekTOOLS 38-5

Advanced Uses of Ed

The$ provides context to indicate which comma to replace. Without it, the s
command replaces the first comma.

Like other metacharacters, the$ has multiple meanings depending on context. In
the line:

$s/$/$

• The first $ refers to the last line of the file.

• The second $ refers to the end of the line.

• The third $ is a literal dollar sign to be added to the line.

Circumflex
The circumflex character C), also called caret, represents the beginning of the line.
For example, to search for a line that begins with the, enter:

rt he/

The circumflex narrows the context, because ed selects only lines that begin with
the.

You can use the circumflex to insert something at the beginning of a line. For
example:

sr/<SPACE>

inserts a space at the beginning of the line. In this example, the symbol <SPACE>
represents a blank space you enter using the space bar.

You can combine metacharacters. For example, to search for a line that begins with
only the characters

.PP

Enter:

r\.PP$/

Asterisk
You can use the asterisk (*) to match all spaces between two parts of a line with a
single space. Consider, for example:

text x y text

where text stands for text, and there are any number of spaces between x and y.
The asterisk in ed matches all the spaces between x and y.

38-6

Advanced Uses of Ed

A regular expression followed by an asterisk stands for an infinite number of
consecutive occurrences of that regular expression. So you can match spaces, as
the example above illustrates, or you can match an infinite number of occurrences of
a regular expression.

To refer to all the spaces at once, use the command:

s/x<SPACE>*y/x y

The construction <SPACE>* means as many spaces as possible. So x<SPACE>*y
means an x, followed by as many spaces as possible, then a y.

Since a period matches any single character, . * matches as many single characters
as possible. Unless you are careful when you use the asterisk in conjunction with
the period, the command can eat up more of the line than expected. Consider the
line:

test x text x ... y text y text

If you enter:

s/x. *y/x<SPACE>y

In this command the asterisk replaces everything from the first x to the last y. But
you can turn off the special meaning of period with backslash. To change the above
example enter:

s/x\. *y/x<SPACE>y/

Now the example works since . * represents multiple periods instead of any single
character.

Be aware of some additional pitfalls associated with asterisk. Multiple characters
means zero or more. Zero as a possible number of characters in a substitute
command can produce strange results. For example, if the line contained:

text xy text x y text

and you enter the command:

six *y/x y/

the first xy matches this pattern, because it consists of an x, zero spaces, then a y.
The substitution acts on the first xy of the example text and does not touch the later
one, that actually contains intervening spaces.

UTekTOOLS 38-7

Advanced Uses of Ed

To match spaces use a pattern like:

Ix *y/

Because this pattern has two spaces between the x and the *, it matches an x, a
space, as many more spaces as possible, and then a y. In other words, it defines
one or more spaces between x and y.

Zero is also a legitimate number of occurrences of an expression followed by an
asterisk. The command:

s/x*/y/g

applied to the line:

abcdef

produces:

yaybycydyeyfy

Zero is a legal number of matches. Although there is no x at the beginning of the
line, or between any two characters, the asterisk matches a "zero" occurrence of x.

Brackets
Frequently you can match any one of a group of characters. Just as in the shell, ed
uses the [bracket] metacharacters to define a character class. The brackets mean
that any single character inside the brackets can match the expression.

For example, in a substitute command, this pattern:

[0123456789]

matches any single digit. The pattern [0123456789] * matches zero or more digits.
So the command:

1,ssr[o1234ss1a9]* 11

deletes all digits from the beginning of all lines.

38-8

Advanced Uses of Ed

You can put any characters into a character class; within the brackets there are no
special characters. Even the backslash does not have a special meaning. This
command searches for special characters within the brackets:

/[.\[]/

In this example, the left bracket ([) is not special.

To get a right bracket (J) into a character class, make it the first character inside the
brackets. For example, enter:

/[].\$D/

You can specify a range of digits within brackets as rn-9]. Similarly, [a-zJ stands
for the lowercase letters and [A-ZJ stands for the uppercase letters.

You can also specify a character class that means none of the following characters.
To do this, begin the class with a circumflex. For example:

ro-91

matches any character except a digit.

Enter the following to find the first line that does not begin with a tab or space:

IT <SPACExTAB>I/

Ampersand
The ampersand command(&) matches strings that you have already entered. For
example, if the original line contains:

Now is the time.

And it should contain:

Now is the best time.

Enter the command:

s/the/& best/

On the right side of the substitute command, the ampersand stands for whatever
was just matched, so in this case it matches the "the" on the left side. This saves
time if the text you are matching is long or if you are repeating a metacharacter that
matches a lot of text. Using the ampersand also decreases the possibility of making
a typing error in the replacement text.

UTekTOOLS 38-9

Advanced Uses of Ed

The ampersand can occur more than once on the right side of a substitution. Using
the example above, enter:

s/the/& best and & worst/

This command changes the original line to:

Now is the best and the worst time.

To get a literal ampersand, use the backslash to turn off its special meaning. For
example:

s/ampersand/\&/

changes the word ampersand into the symbol.

Operating on Lines

Substituting Newline Characters
Ed lets you split a single line into two or more lines. You can substitute a newline
character into the middle of the line, so that if a line is long you can divide it.
Consider the line:

text xy text

You can break this line between the x and they by inserting a backslash as the
newline character. Enter:

s/xy/x\<RETURN>
y/

Although it is typed on two lines, this is actually a single command. It tells ed to
split the line between x and y. Because a backslash turns off special meanings, the
<RETURN> character is no longer special.

You can make a single line into several lines by inserting several backslashes.

When you create a new line, dot points to the last line you created. The name dot
refers to the current line. So if you split one line into several lines, dot points to the
last line.

38-10

Advanced Uses of Ed

Joining Lines
You can join lines together with the j command. Consider:

Now is
the time

If dot is set to the first line, the j command joins the two lines together. The j
command does not automatically insert a space between the newly-joined lines so a
space is shown at the beginning of the second line.

By itself, a j command joins the current line to the line that follows it. But you can
specify a group of lines to be joined by entering their starting and ending line
numbers. For example:

1,$j

joins all the lines of the file into one long line.

Rearranging Lines
The ampersand (&) stands for whatever was matched by the left side of a substitute
command. To reserve a part of the string on the left side you enclose it between \(
and\). The enclosed portion is remembered and available for use on the right side
of the command. On the right side, \ 1 refers to whatever matched the first enclosed
pair, \2 refers to whatever matched the second enclosed pair, and so on.

As an example, consider this list:

Smith, A.B.
Jones, C.

Suppose that you want to place the initials in front of the last names. Enter:

1,ssr\(L]*\), *\(. *\)/\2\11

The first string enclosed by \(and \) matches the last name, which is any string up
to the comma. The second string enclosed by \(and \) matches whatever follows
the comma and any spaces. On the right side these two strings are referenced by
\ 1 and \2.

Line Addressing
Line addresses in ed specify the lines on which ed commands operate. For
example:

1,$s/x/y/

UTekTOOLS 38-11

Advanced Uses of Ed

This command changes all lines in the file. The construction:

/string/

finds a line that contains string. Similarly,

?string?

searches backwards for string.

Unlike the substitute command, a search requires the slash and question mark as
delimiters.

Address Arithmetic
When you have learned to address one line, you can use + and - to combine line
numbers. So the command:

$-1p

prints the next-to-last line of the current file. The command:

$-5,$p

prints the last six lines of the current file. As another example:

.-3,+3p

prints from three lines before the current line to three lines after the current line.

You can save typing by entering - and + as line numbers by themselves. For
example:

moves up one line in the file. You can also string several minus signs together to
move up several lines.

You can use + and - in combination with searches that use/ ... I, ? ... ?, and$.
The entry:

/string/- -

finds the line containing string and moves dot two lines before it.

38-12

Advanced Uses of Ed

Repeated Searches
Suppose that you enter:

/string/

But string turns out not to be the occurrence of string you want. You can repeat the
search again, without retyping it. The entry:

II

represents the string that was previously searched for.

This repetition of the search command also applies to the backward search. The
entry:

??

searches for the same string, but in the reverse direction. It searches in the
opposite direction of the last forward search or the last backward search.

You can also use the II command on the left side of a substitute command to
represent the most recent pattern. For example, you can search forward or
backward for a string, find it, then use II to represent that string in a substitute
command. To substitute the word good for the last thing you searched for, enter:

s//good/p

Default Line Numbers
Two ways to make editing faster are to know what lines are affected by a command
without an address, and to know where dot will be when a command finishes.

Using ed without specifying line numbers saves a lot of typing. No address is
required with the following commands:

• s to make a substitution on a line

• p to print the line

• I to list the line

• d to delete the line

• a to append text after the line

• c to change the line

• i to insert text before the line.

UTekTOOLS 38-13

Advanced Uses of Ed

Following are some indications of where to find dot after executing a command.

If there is no occurrence of string, dot stays where it was before the search began.
This is also true if dot is on the only occurrence of string when you issue the
command.

The delete command (d) leaves dot at the line following the last deleted line.
However, if you delete the last line, dot points to the new last line.

Line-changing commands a, c, and i affect the current line if you do not specify a
line number. Dot points to the last line you entered.

The read command (r) reads a file into the text being edited, either at the end of the
file if no address is given, or after the specified line if an address is given. In either
case, dot points to the last line that was read in. The Or command reads in a file at
the beginning of the text, and the Oa or 1 i commands let you add text at the
beginning of the file.

The write command (w) writes out the edited file from the buffer to the original file
on disk. Preceding the command by two line numbers causes a range of lines to be
written. Thew command does not change dot. This is true even if you enter a
command that involves a context search. Since the w command is easy to use,
regularly save the text you are editing in case the system crashes.

After the substitute (s) command, dot remains at the last line you changed. If there
were no changes, then dot is unchanged.

Semicolon
Searches with I ... I and ? ... ? start at the current line and move forward or
backward, until they find the pattern or return to the current line. Sometimes this is
not what you want. Suppose, for example, that the buffer contains lines like:

ab

be

With dot at line 1, enter the command:

/a/,/b/p

38-14

Advanced Uses of Ed

This command searches for a and b from the same point, so they both find the line
that contains ab. Normally the comma separator ensures that a and bare on
different lines, as it does for line numbers. But in a search command, ed does not
reset dot after each address is processed. Each search starts from the same place.

In ed, you can use the semicolon (;)just like the comma, except that the semicolon
forces dot to be set at that point when line numbers are evaluated. The semicolon
moves dot. Following the example above, enter:

/a/;/b/p

This prints the range of lines that contain ab to be because after the command finds
a, dot is set to that line. Then ed searches for b from that address.

You can also use the semicolon separator to search for the second occurrence of a
string. For example:

/string/;//

This command finds the first occurrence of string and sets dot there. Then it finds
the second occurrence and prints only that line.

To search for the first occurrence of a string in a file, with dot positioned at an
arbitrary location, enter:

1 ;/string/

Note, however, that this search fails if string occurs on line 1. You can enter:

O;lstringl

to start the search at line 1 .

Interrupting the Editor
If you interrupt ed by pressing <BREAK> or <INTERRUPT> while it is executing a
command, the file is put back together again. The file is restored as much as
possible to what it was before the command began. Naturally, some changes are
irrevocable. If the file is being read from or written to, substitutions are being made,
or lines are being deleted, these operations are stopped in a stable, but
unpredictable state. Dot may or may not be changed.

If you interrupted while the p command is executing, dot does not remain on the
last printed line. Dot returns to where it was when the p command started.

UTekTOOLS 38-15

Advanced Uses of Ed

Global Commands

Basic Global Commands
The global commands g and v work on all lines of a file. The g command acts on
those lines that contain a specified string. For example, the command:

g/THIS/p

prints all lines that contain the string THIS. The same rules and limitations apply to
the strings of the global command that apply to the strings of the substitute
command.

The v command is identical tog, except that it operates on those lines that do not
contain an occurrence of the string. So the command:

prints all the lines that do not begin with a period.

Almost any command can follow g or v. For example:

This command deletes all lines that begin with a period. The command:

9r$td

deletes all blank lines.

The substitute command often follows the global command, since you frequently
want to change all occurrences of a string. For example, to change This to THIS
everywhere in a file, enter:

g/This/s/ /THIS/g

Global commands make two passes over the file. On the first pass all lines that
match the pattern are marked. On the second pass, each marked line is examined
separately. Dot is set to that line, and the command is executed. The command
that follows a g or v can address a location in the file. For example:

gr\.PP/+

38-16

Advanced Uses of Ed

This command prints the line that follows each .PP command. The command:

g/topic/?- .SH?1

searches for each line that contains the string topic, scans backwards until it finds a
line that begins with .SH, and prints the line that follows.

You can also precede the g and v commands by line numbers. In this case, g and
v search only the lines you specify.

Multiline Commands
You can do more than one command in conjunction with a global command. As an
example, suppose the task is to change x toy and change a to b on all lines that
contain string. Enter:

g/string/s/x/y /\
s/a/b/

The backslash at the end of the first line says that the commands continue on the
next line.

When you use the g command in conjunction with more than one other substitute
command, you cannot use II to signify the previous pattern. Because g works
sequentially through a file, the previous pattern executed could be either of the
substitutions that you requested.

You can use the a, c and i commands with a global command. As with other
multiline constructions, add a backslash at the end of each line except the last. For
example, to add a .nf and .sp command before each .EQ line, enter:

gr\/.EQ/i\
.nf\
.sp

It is good practice to check that the global command did only what you wanted. If
the global command makes changes that you do not want, you can undo them using
the u command.

Cut and Paste
Often cut-and-paste operations are necessary to bring various pieces of text
together into a meaningful document. You can use the file-manipulation utilities of
both UTek anded to manipulate text.

UTekTOOLS 38-17

Advanced Uses of Ed

The UTek operating system lets you:

• change the name of a file

• make a copy of a file elsewhere

• combine files

• remove a file

The ed text editor lets you:

• insert one file into another

• split a file into pieces

• move lines within a file

• copy lines

Moving large blocks of text around can be confusing. But defining the task you
want to accomplish and checking each command before you enter it make cut
and-paste operations as easy as using other commands.

UTek Commands
UTek file-manipulation commands make it easy to get access to portions of text
scattered throughout different files. They also make it easier to manipulate very
large blocks of text.

Changing Filenames
If there is a file that needs to be renamed, use the move command (mv). It moves
the file from one name to another. For example:

mv filel file2

NOTE
If there is already a file with the new name, its contents are

overwritten with information from the file you moved.

Copying Files
Sometimes you need a copy of a file because the original version serves another
purpose, or because an extra copy gives you a backup. To make an extra copy of a
file, use the cp command. For example:

cp file I file2

38-18

Advanced Uses of Ed

This command creates two identical copies of filel. If file2 previously contained
information, it is overwritten.

In summary, mv renames a file; cp makes a duplicate copy. Both commands
overwrite any existing version of that filename with the newly-created version.

Combining Files
You can collect two or more files into one larger file using the cat command.

To combine two files into one larger file, cat the two files together and redirect the
output to a new file. Enter:

cat filel file2> newfile

Sometimes you need to append a file to the end of another file. For example, enter:

cat fi/el » file2

This command puts filel at the end of file2.

Removing Files
If you no longer need a file as part of your editing or writing project, remove it using
the rm command:

rm file

Ed Commands
Ed manipulates pieces of files, individual lines, or groups of lines.

Reading and Writing Files
It is important to know the ed commands for reading and writing files.

Within ed, thee command edits a new file without leaving the text editor. For
example:

efile

This command discards whatever is being worked on and starts over on a new file.

UTekTOOLS 38-19

Advanced Uses of Ed

When you enter ed with the command:

edfile

ed remembers the name of the file, and any subsequent e, r, or w commands that
do not contain a filename refer to this remembered file.

You can find the current filename simply by typing f. You can also change the
name of a remembered file with f file. For example:

ed precious
f junk

This command obtains a copy of the file precious and guarantees that subsequent w
command without the filename writes to junk, instead of to the original file.

Inserting One File Into Another
To insert one file into another, use the r command. For example, to insert the file
table just after a reference to Table 1, enter:

/Table1/
Table 1 shows that
.r table

The important line is the last one. The .r command reads a file in after dot. An r
command without any address adds lines to the end of the file.

Writing Part of a File
You can also write part of the document that you are editing to another file. For
example, you could remove a table to format or test it separately. To remove a table
and write it to a file called table, enter:

r\.TS/
.TS
.,r\.TE/w table

You can use all of the various ways that ed addresses lines to select what lines are
written to another file.

36-20

Advanced Uses of Ed

Moving Groups of Lines
There are several ways to move groups of lines from one location in a file to
another. You can write the group of lines to a temporary file, read it in where it is
needed, and delete the original location. An easier way is to use the move (m)
command. Like many other ed commands, them command accepts up to two line
numbers in front of the command to specify the lines on which it operates. You can
also follow m with a line number that tells where to move the lines. The command:

linel,line2m line3

moves all the lines from linel through line2 after line3.

You can also specify lines on which m operates by searching for patterns.

When you use them command, it is important to verify each step. If you incorrectly
specify a line or move the wrong lines, the mistake can be difficult to undo. Before
doing complicated m commands use the w command to write the file. This lets you
recover a previous version of the file, if necessary.

Copying Lines
The ed program provides a transfer command (t) that copies one or more existing
lines. The t command is identical to them command, except that instead of moving
lines it duplicates them at the address you specify. For example:

1,t

This command duplicates all the lines of a file and places them at the end of a file.

Marks
Theed program can mark a line with a particular name. Later you can reference
the line by its name, regardless of its line number. This feature is useful for moving
lines and for keeping track of them as they move. To mark a line, use the k mark
command. When you give the mark a name, it is a single lowercase letter. So the
command:

kx

marks the current line with the name x. You can then reference the mark line with
the address:

'x

UTekTOOLS 38-21

Advanced Uses of Ed

Marks are most useful for moving blocks of text. For example, mark the first line of
the block you want to move with ka. Then mark the last line of the block you want
to move with kb. Then move dot to the line just above where you want the block to
go. Enter:

'a,'bm

NOTE
A particular mark name can be associated with only one

line at a time.

Temporary Shell Invocation
Sometimes you want to temporarily invoke the UTek shell from ed and execute a
UTek command, without leaving the editor. The escape command (!)provides a
way to do this. Enter:

! UTek command

The current editing is suspended, and the command executes. When the command
finishes, ed prints another ! and you can resume editing.

By using ! in ed, you can execute any UTek command, including another invocation
of ed. If you escape to another invocation of ed, you can repeat the! command.

38-22

3C
Advanced Uses of Ex
and Vi

Introduction
Ex is a line-oriented editor, much like ed, but with extended commands and
features. Vi is the visually-oriented UTek editor, and this section focuses primarily
on vi, since it is a more versatile editor. Vi is versatile because you can execute
any ed or ex command while you are running vi. So a fundamental knowledge of
ex anded is helpful to use vi effectively. For more information on ed and ex, see
Introducing the UNIX System.

Any of the commands in this section that begin with a colon are commands you can
use in ex, as well as in vi. If you execute these commands from ex, the colon is
actually the prompt, so do not enter the colon. If you execute these commands from
vi, you must enter the colon.

Vi runs in what is called visual or open mode, while ex runs in a line-oriented mode.
From ex you can invoke the visual mode of vi by entering vi. To exit the visual
mode and revert to the line-oriented mode of ex, enter :Q.

Invoking Vi
To invoke the vi command, use the general form:

vi filename

This command invokes the vi editor to let you edit the file you specified. The cursor
begins at the first line of the file.

There are variations on this command that let you invoke vi in special ways. These
variations put you in a certain place in the file, set the window, or edit the file
without making changes to it. You can also edit a file by specifying one of the
tagnames it contains.

To begin editing the file on the last line, instead of the first line, enter:

vi +filename

Similarly, to start editing a file at a particular line number enter: There is no space
between the addition sign and the line number.

vi +linenumber

UTekTOOLS 3C-1

Advanced Uses of Ex and Vi

Another way to start editing at a specified point in the file is to search for a particular
string of characters and begin editing there. To begin editing at a particular string
enter:

vi +/string filename

As you invoke vi you can also set the number of lines in the window. Enter:

vi -wn filename

In this command, n is the number of lines you want in the window. If you set the
window for more lines than your terminal can display at once, the terminal cannot
show all the lines in the window. But the larger window size is recognized by the
commands that scroll a window or a half-window at a time.

You can also set the number of lines in the window using the special window option.
See the Special Options section.

The system prompts you for the key used when the file was originally encrypted.
Enter the key, then you can use vi to edit the file.

Instead of using the cat or more commands to examine a file, you can use vi. With
vi you can search for particular parts of the file. To examine a file without writing
changes to it, enter:

view filename

or enter:

vi -R filename

Either of these invocations of vi allows you only to read the file. Although vi lets you
change text when invoked with the view command or the -r option, you cannot write
those changes to the file. So if you accidentally make changes to the file, vi only
makes them in the temporary buffer.

When you are editing program source code, you can edit a file that contains a
particular function, just by knowing the name of the function. Function names are
stored in special tagname files. Tagnames are the names of functions and definition
types for C, Pascal or Fortran source code. You can create a file of tagnames using
ctags. (See UTek Command Reference ctags(l)). To edit a file that contains a
particular function enter:

vi -t tagname

3C-2

Advanced Uses of Ex and VI

Text Insertion
Nearly all the commands you need to know for text insertion are covered in
Introducing the UNIX System. This section reemphasizes some commands
discussed there and introduces some new ones.

Changing back and forth between command mode and insert mode requires extra
time. Vi provides two commands that begin in command mode, let you make quick
changes to a line, and return you to command mode.

The S command begins in command mode and substitutes for the current line, no
matter where the cursor is on the line. This command first erases the line, then
goes into insert mode and lets you insert the text to replace that line. The S
command begins inserting text at the existing indentation of the line.

Another feature that makes text insertion faster is the vi option called wrapmargin.
This option automatically inserts <RETURN> at the end of a line on your screen, so
that you don't have to insert one. Like all other options, it can be set in several
places. (See the Options section.) For example, to set it within vi itself, from
command mode enter:

:se wm=10

This command begins wrapping text onto the next line when the text you are
entering is within 10 characters of the right margin. Because you do not have to
enter <RETURN> at the end of every line, setting the wrapmargin option saves a
great deal of editing time.

Vi also provides alternate ways of entering tab characters while in insert mode. To
tab forward, enter:

<CTRL-T>

To tab backward, enter:

<CTRL-D>

These two ways of tabbing may be more convenient for you, depending on whether
or not your terminal has a tab character and where it is located on the keyboard.

Inserting Control Characters
A special command in vi lets you insert a control character in the text. While in
insert mode, enter:

<CTRL-V> control-character

For example, to insert a <CTRL-M> (carriage return), enter:

<CTRL-V> .£TRL-M>

UTekTOOLS 3C-3

Advanced Uses of Ex and Vi

Cursor Movement
This section describes some additional ways of moving the cursor around the screen
that make vi more efficient to use. The first portion describes commands that move
the cursor over characters, and the second portion describes commands that move
the cursor over sentences, paragraphs, and sections.

Characters
Again, most commands for moving over characters and words, and searching for
particular strings, are discussed in Introducing the UNIX System.

When editing text you usually search for a particular character or string, or move
around relative to words. But you can also use each character on the screen as a
column number, and move to a particular column. To move to the first column of a
line, from command mode enter:

0 (zero)

To move to a particular column other than the first, enter that column number and
the pipe character (i). For example, to move to column 40 enter:

40:

Treating characters on the screen as columns can be very useful if you are creating
a table, or some other visual display. Addressing a column number can move the
cursor to a white space that you cannot address with word or search commands.

To move to the beginning or ending character on the line, you can use the , and$
commands. To move to the first character that is not a space, from command mode
enter the caret character:

To move to the last character that is not a space, from command mode enter a
dollar sign:

$

3C-4

Advanced Uses of Ex and Vi

Sentences, Paragraphs, and Sections
Effective editing of text involves moving around quickly, in units that you can easily
identify. When you are entering English text, its units of meaning are sentences,
paragraphs and sections. This discussion reviews how to move over each of those
units of text.

Sentences
Two commands move to a sentence, (and). The) command moves forward to the
next sentence, and the (command moves backward to the previous sentence. An
easy way to distinguish these commands is to remember the direction in which the
parentheses point.

The) and (commands always move the cursor to the beginning of the sentence. In
the case of the) command, the cursor moves to the beginning of the next sentence.
The following example shows how the cursor moves when you enter). The cursor
begins at "the" and ends at "This" (as shown by italics). The position of the cursor
is shown in italics.

This is the first sentence. This is the second sentence.

To move to the previous sentence using the (command, you need to be at the
beginning of the current sentence. If the cursor is not at the beginning of the
sentence, and you enter(, the cursor moves to the beginning of the current
sentence. The following example shows how the cursor moves when you enter (.
The cursor begins at "That" and ends at "This" (as shown by italics).

This is the first sentence. That is the second sentence.

Paragraphs
The commands to move forward and backward to a paragraph are } and {. Like the
parentheses, } moves to the next paragraph and { moves to the previous paragraph.
Both these commands work by recognizing the commonly-used text formatter codes
for paragraphs. When you enter the command, the cursor moves to the line that
contains the formatting code to begin the paragraph, instead of moving to the first
line of the paragraph itself.

UTekTOOLS 3C-5

Advanced Uses of Ex and VI

Vi recognizes the following paragraph codes:

.IP

.LP

.PP

.QP

.P

.LI

.pp

.Ip

.ip

.bp

In addition to these paragraph codes, the {and } commands also recognize blank
lines as paragraph delimiters.

You can make vi recognize other text formatting codes for paragraphs by setting the
special paragraphs option. See the section Setting Options for information on setting
the paragraphs option.

The following example shows the cursor movement when you enter } . The cursor
begins at .PP and ends at .LP (as shown in italics) .

. PP
The paragraph begins with this sentence. This is the second sentence.
And this is the third sentence. They comprise a paragraph .
. LP

Sections
Vi has two commands that move to sections, [and]. The] command moves
forward to the next section, and [moves backward to the previous section. Vi
recognizes sections by recognizing these commonly-used text formatter codes for
sections:

.NH

.SH

.H

.HU

.nh

.sh

If none of these section codes are present in the file, the [and 1 commands move
the cursor to the beginning or the end of the file.

3C-6

Advanced Uses of Ex and Vi

The section commands can recognize other section codes. You can add these
codes using the sections option. See the Setting Options section for information on
setting the "sections" option.

The following example shows the cursor movement when you enter]. The cursor
begins at .SH and ends at .NH (as shown in italics) .

. SH
This is a section. It has several paragraphs .
. PP
This is the second paragraph
.NH

The following example shows the cursor movement when you enter[. The cursor
begins at .NH and ends at .SH (as shown in italics) .

. SH
This is a paragraph. It is part of a section .
. PP
This is another paragraph. It precedes a section command .
. NH

The Screen
Quickly moving the cursor around in the file and changing the characteristics of the
screen can make your editing task much easier.

To erase the screen and redraw it, enter:

<CTRL-L>

Two of the most commonly used screen commands are <CTRL-D> and <CTRL-U>.
The first command scrolls down half a screen, and the second scrolls up half a
screen. The default value for scrolling is 15 lines. If you want to move the screen in
smaller increments, you can reset the number of lines that scroll when you enter
these commands. For example, to set scrolling to six lines, enter:

6<CTRL-D>

This command sets the scrolling for both <CTRL-D> and <CTRL-U> to to six lines,
during the current editing session.

UTekTOOLS 3C-7

Advanced Uses of Ex and Vi

You can also set scrolling to scroll more than the current default. For example, to
set scrolling to 25 lines, enter:

25<CTRL-U>

This command sets the scrolling for both <CTRL-D> and <CTRL-U> to 25 lines.

Sometimes you need to see only one more line at the top or the bottom of the
screen to make a particular change. To scroll down one line enter:

<CTRL-E>

To scroll up one line enter:

<CTRL-Y>

To move to other parts of the file, you can enter a colon, then an ed or ex line
address. But you can also move to particular lines within vi. To move to the end of
the file enter:

G

To move to line 223, enter:

223G

Cut and Paste
Moving blocks of text around can be confusing. But defining the task you want to
accomplish and checking each command before you enter it make cut-and-paste
operations as easy as using other commands.

A common cut-and-paste operation is to copy a portion of a file, put that copy
somewhere else, and modify it. To do this, use the yank command, y for words, and
yy or Y for entire lines. The yank command does not delete text. It merely copies
the text into a buffer. For example, to yank five lines, beginning at the current line,
enter:

Syy

After you yank the copy of these five lines, you can put them back into the text
using the p or P command. The p command puts the lines back after the current
position of the cursor, and the P command puts the lines back before the current
position of the cursor.

3C-8

Advanced Uses of Ex and VI

In addition to using the yank and put commands to copy existing text to another
location in the file, you can use them to move a block of text from one place to
another.

To move a block of text, use the yank command to copy the text into a temporary
buffer, use the put command to insert it in its new location, and delete the text at its
original location. The following example illustrates the movement of a block of text
using the yank, put, and delete commands. As you work through the example, refer
to Figure 3C-1 for a visual representation.

10yy
YANK

p
PUT

Figure 3C-1. Moving Text Using yank and put.

•

10dd
DELETE

5318-05

Suppose that you have a ten-line block of text that you want to move farther down
in the file. Position the cursor at the first line of the block and enter:,

10yy

This copies the next ten lines into a temporary buffer. Move the cursor to the line
above the planned insertion and enter:

p

The P command inserts the ten lines you copied from the original location to the
location just below the cursor. To delete the original block of text, move the cursor
to the first line of that block and enter:

10dd

UTekTOOLS 3C-9

Advanced Uses of Ex and Vi

Using Marks to Address Lines and Move Text
When you are editing text, you usually think of it as a composite of logical units and
sub-units. Instead of addressing these units by line number, or according to text
patterns at the beginning and end of the unit, you can use the mark command (m) to
delimit the logical units of the text. To mark a line, put the cursor there and enter:

mz

In this command z is any lowercase letter. If you mark two lines with the same
letter, the first line is no longer marked.

After you have marked the line, you can use the ex command 'z to refer to that
mark. For example, to move to the line you have marked with the letter a enter:

:'a

You can use these marks in conjunction with the move (m) command in ex to move
blocks of text. Let's work through an example of using the mark commands to move
blocks of text. Refer to Figure 3C-2 for a visual representation of the example.

ma -mb
me

me-

ma, mb, me : ·a, "bm ·c

5318-06

Figure 3C-2. Moving Text Using mark and move.

Suppose that you have a paragraph you want to move further down in the text. Go
to the first line of the paragraph and enter:

ma

3C-10

Advanced Uses of Ex and VI

Then move the cursor to the last line of the paragraph and enter:

mb

Finally, move the cursor to the line above the planned insertion and enter:

me

To move the paragraph just below the third mark (c) enter:

:'a,'bm'c

This command says from mark a to mark b, move to mark c. This method is more
efficient than using the yank, put, and delete commands because the block of text is
moved directly instead of being copied and then deleted.

Numbered Buffers
Whenever you delete text, it is put into numbered buffers, 1-9. The last text that you
deleted is in buffer 1, the next-to-last text in buffer 2, and so on. So if you want to
move text to another place, you can delete it and retrieve it from the numbered
buffer To retrieve the deleted text, move the cursor to the line above where you want
to put it and enter:

"np

The quotation mark (") says that a buffer follows, and n is the number of the buffer.
Normally, if you delete text and immediately move it elsewhere, this number is 1.
The p command replaces the deleted text after the current line. You can also use
the P command to put the text before the current line.

If you have already retrieved text from the first buffer, to recover text from the next
buffer enter a period (.):

So if the original command recovered text from buffer 1, this command recovers text
from buffer 2.

UTekTOOLS 3C-11

Advanced Uses of Ex and VI

Named Buffers
One disadvantage of the numbered buffers is that they are cleared when you leave
the editor to move from one file to another. Instead of using numbered buffers, you
can use named buffers to save text. There are 26 named buffers available, and they
are referenced by the lowercase letters a-z. For example, you can yank five lines
into buffer a using the command:

11a5yy

You can then move the cursor to the line above where you want to put that text and
enter:

"ap

You can retrieve text from the buffer using the p or P commands. To move text
from the file where you are working into another, you could yank the text into a
named buffer, enter :e otherfi/e, retrieve text from that buffer, and place it in the
second file.

You can yank or delete pieces of text from several locations in the file and
consolidate them into one buffer. You can place text into a named buffer, and then
append more yanked or deleted text at the end of that buffer. To build up a buffer
use the uppercase letter that corresponds to the buffer name. For example, to
delete the current line of text and add it to buffer c enter:

11cdd

The current line of text is appended to the end of the existing text in buffer a, and
you can continue to build up the buffer.

Macros and Abbreviations
Using macros and abbreviations reduces the number of keystrokes that you enter,
so it saves a great deal of time. Using macros, you can program one keystroke to
replace a sequence of vi commands. For example, you could program the
command to exit vi (ZZ) to be equivalent to one keystroke.

You can also abbreviate frequently-used words. You define the abbreviation for the
word, then enter that abbreviation as you insert text. Vi immediately replaces the
abbreviation with the full word. Macros and abbreviations are discussed next.

Macros
To define macros, use the :map command. This command takes the general form:

:map input-key commands

3C-12

Advanced Uses of Ex and VI

The following example makes the current word plural when you type#. To define
the macro, from command mode enter:

:map# eas <ESC>

Now each time you enter# from command mode, the current word becomes plural
(the cursor goes to the end and appends ans) and you are returned to command
mode. The :map command applies during the current editing session. If you want
to set a macro permanently, enter it into your .exrc file or set it in your environment.
See the section Setting Options for details.

It is important not to define a key for use with a macro if that key has another
important function. Defining a key for use with a macro replaces its original
meaning. Keys that vi does not use include: g, v, q, K, V, and Z. Many control
characters and special characters are also undefined.

A more complicated example of macro definition involves replacing font commands
with a single keystroke. The troff command to italicize a word is \flword\fR. To
map this sequence to the letter y enter:

:map y i\fl <ESC> Ea\fR <ESC>

To use this macro, from command mode enter y at the beginning of the word you
wanted to italicize.

A more versatile way of italicizing words involves inserting the command as you are
inserting the text, instead of going back later to italicize words. A variation of the
:map command lets you invoke macros in insert mode. This variation is the :map!
command. For example, you can define two different macro characters to italicize a
word while you are in insert mode. The first macro substitutes \f2 when you press
<CTRL-0>, and the second macro substitutes \f1 when you press <CTRL-K>. This
example uses the <CTRL-0> and <CTRL-K> keys. Enter:

:map! <CTRL-V> <CTRL-0> \f2
:map! <CTRL-V> <CTRL-K> \f1

Recall that <CTRL-V> lets you inserts another control character when you are in
insert mode. While you are in text insert mode, type <CTRL-0>, and vi
automatically inserts the string \f2. Then enter the word you want to italicize,
followed by <CTRL-K>. <CTRL-K> inserts the string \f1. Throughout the whole
process you remain in insert mode, so you can continue inserting text without hitting
the escape key.

When you define a macro, it is only valid in the current editing session. To have the
macro available whenever you log in you must define it in your .exrc file or in your
EXINIT environment variable. See the section Setting Options for details.

UTekTOOLS 3C-13

Advanced Uses of Ex and Vi

Abbreviations
You use macros from command mode, and they are designed to replace
consecutive vi commands. Abbreviations are used in insert mode to replace words
that you type often. Then when you are entering text, you can type the abbreviation
for a word, and it expands into the complete word. You define abbreviations using
the :ab command. Suppose, for example, that you frequently type the word Pascal.
To define the letters pa as an abbreviation for Pascal, enter:

:ab pa Pascal

Each time you enter pa preceded by a space or a text insert command, or followed
by a space, <ESC>, or <RETURN>, it expands to Pascal. Recognition of the spaces
or other special characters ensures that pa is abbreviated only when it is typed by
itself, and not when it is part of a word.

Setting Options
As you have seen in previous sections, vi provides special options that affect the
editing environment. All of the options have default settings provided by vi, but you
can reset any of these options to meet your needs. A detailed list of all the options
follows. Some of the features controlled by options include: the window, automatic
wrapping of the right margin, automatic indentation of text for writing programs, and
turning off the special meaning of nearly all metacharacters.

There are several ways to change vi options from their default settings.

• the EXINIT variable in the .login file

• the EXINIT variable in the .cshrc file

• the EXINIT variable in the .profile file

• the .exrc file

• within vi itself

If you do not change many of the options from their default values, it is easiest to set
them using the EXINIT variable. If you use C-Shell, set the options in the .login or
.cshrc file. If you use the regular shell, set the options in the .profile file.

For example, the wm = n option sets the wrapmargin to n characters. When the
cursor arrives within n characters of the right margin, it automatically inserts
<RETURN>. If you use C-shell, to set the wrapmargin option to 5, enter:

setenv EXINIT 11se wm=5"

If you use the Bourne shell, to set the wrapmargin option to 5, enter:

EXINIT ="Se wm=5"

3C-14

Advanced Uses of Ex and Vi

If the entries for vi options in the .login, .cshrc, or .profile become too long, you can
create a .exrc file in your home directory. The .exrc file is almost identical to a .login
or .profile, except that the entries are not enclosed in quotes. For example:

set wm=S

Now each time you invoke ex or vi, the options in the .exrc file are read.

NOTE
If you create a .exrc file, be sure to delete the

EX/NIT line from your .login, .profile, or .cshrc file.

To set macros and abbreviations permanently, you can define them in the .login,
.profile, .cshrc, or .exrc file. If you define them in a .exrc file, put them on a separate
line from the vi options. For example:

set wm=S
ab tek Tektronix, Inc.
map K ZZ

If you define macros and abbreviations in a .login, .profile, or .cshrc file, all the
information is on one quoted line. Use the vertical bar (l) to separate the macros
and abbreviations from the normal options. For example:

setenv EXINIT "se wm=S : ab tek Tektronix, Inc. : map K ZZ 11

The third way to set vi options is to set them temporarily, within vi itself. To do this
use the :se command. This command has the general form:

:se option

In this command, the option is an abbreviation for the option name. For example,
earlier we used wm = 5 to stand for wrapmargin = 5. Although you see the full name
for each option, they can be entered as abbreviations into the .login, .cshrc, .profile,
or .exrc files, or when temporarily set using :se.

Following is a description of all the vi options that are available. The abbreviation
for the option name and the default value for that option are also included.

UTekTOOLS 3C-15

Advanced Uses of Ex and Vi

auto indent

autoprint

autowrite

beautify

directory

errorbells

hardtabs

3C-16

Use the autoindent option to enter programs that require
indentation. If you are appending text to the end of the file,
autoindent automatically uses the same indent as the previous line.
When you are inserting text using the append, open, insert, or
change commands, it is inserted using the same indentation as the
line that is the point of reference. The change command adopts the
same indent as the original version of the line. To turn off the
autoindent for the current line enter -<CTRL-0>. The autoindent
resumes at the next line.

Default: no autoindent
Abbreviations: ai, noai

When you change a line using an ex command (for example the
substitution command) the line that you changed prints.

Default: autoprint
Abbreviations: ap, noap

The autowrite option makes vi write permanent changes to a file
whenever you leave the editor. If you interrupt vi using :stop,
changes are written before vi stops.

Default: noautowrite
Abbreviations: aw, noaw

When you set the beautify option, no control characters are allowed
in the text that you insert, except tab <CTRL-1>, newline <CTRL-L>,
and form feed <CTRL-M>.

Default: nobeautify
Abbreviations: bf, nobf

The directory option sets the temporary buffer file where you edit a
copy of the permanent file.

Default: directory= /tmp
Abbreviation: dir

If you are on a dumb terminal, the errorbells option precedes ex
error messages with a bell. If you have an intelligent terminal, ex
always places error messages in reverse video on the terminal.

Default: noerrorbells
Abbreviations: eb, noeb

The hardtabs option gives the boundaries on which terminal
hardware tabs are set. This option is set in your terminal variable,
so the default is O.

Default: hardtabs = O
Abbreviation: ht

ignorecase

keypad

lisp

list

magic

mesg

UTekTOOLS

Advanced Uses of Ex and VI

The ignorecase option maps all uppercase characters in the text to
lowercase characters for regular expression matching. All
uppercase characters in regular expressions are mapped to
lowercase characters, except when you specify a character class.

Default: noignorecase
Abbreviations: ic, noic

The keypad option reads the TERMCAP entry for your terminal type,
to determine how to program keys available on your particular
keyboard. These programmed keys are invoked when you invoke
vi. How the keys are programmed depends on the kind of terminal
you have. This option causes the ks sequence in the TERMCAP
entry to be invoked as you invoke vi, and the ke sequence in the
TERMCAP entry to be invoked as you quit vi. If you set this option
to nokeypad, these sequences are not read and the keys are not
programmed.

Default: keypad
Abbreviations: ke, noke

The lisp option must be used in conjunction with the autoindent
option. Lisp changes the meaning of the autoindent, and of the(,),
[,), {, and } commands. Instead of matching sentences,
paragraphs, and sections, the commands identify units of lisp code.
The lisp option always remembers the last indent of the previous
line. To set up a file for editing with lisp, you can invoke it using vi
-1. This automatically sets the autoindent and lisp options.

Default: nolisp
Abbreviations: lisp, nolisp

The list option displays lines showing tabs as <CTRL-1> and ends of
lines with $.

Default: nolist
Abbreviations: list, nolist

The magic option gives all the metacharacters used in regular
expression matching their special meaning. If the magic option is
not set, only $ and - retain their special meaning. If you do not set
the magic option, you can restore special meaning to
metacharacters by preceding them with a backslash.

Default: magic
Abbreviations: magic, nomagic

The message option lets other users write to your terminal. If this
option is set to nomesg, write permission to your terminal is turned
off.

Default: mesg
Abbreviations: mesg, nomesg

3C-17

Advanced Uses of Ex and Vi

modeline

number

open

optimize

paragraphs

prompt

readonly

3C-18

The modeline option lets you insert UTek commands into a file.
These commands are executed the next time you invoke that file
with vi. The syntax of the modeline entry is: vi:command:. For
example, you could insert the line vi:$: into the file to begin editing
at the last line of the file. Not setting the modeline option means
that vi can read a file you want to edit into the buffer more quickly,
because it does not have to check each line for a modeline
command.

Default: nomodeline
Abbreviations: mo, nomo

The number option displays line numbers on your terminal. Visible
line numbers make it easier to execute line-oriented ed commands.
The numbers are only points of reference; they are not actually part
of the file.

Default: nonumber
Abbreviations: nu, nonu

When the open option is set, the ex commands vi and open are
allowed. If the option is not set, you cannot execute these
commands.

Default: open
Abbreviations: open, noopen

The optimize option is designed for terminals that run at a slow
baud rate, to make the output display on the screen more quickly.
The terminal does not insert automatic carriage returns when
printing more than one line of output.

Default: nooptimize
Abbreviations: opt, noopt

The paragraphs option specifies what text-formatting commands
are recognized by the {and } commands. To display the text
formatting commands this option recognizes, enter :se para.

Default: paragraphs= IPLPPPQPP Llpplpipbp
Abbreviation: para

When you set the prompt option, the command mode of ex uses the
: (colon) prompt. When the prompt option is not set, ex resembles
ed by not displaying a prompt.

Default: prompt
Abbreviations: prompt, noprompt

This option allows you only to read the file. Vi does not let you
make permanent changes to the file. This is exactly like the view
command. If you set this option to noreadonly while using view on
a file, you can make permanent changes to the file.

redraw

report

scroll

sections

shell

shiftwidth

UTekTOOLS

Advanced Uses of Ex and Vi

Default: noreadonly
Abbreviations: readonly, noreadonly

The redraw option redraws your entire screen instead of writing over
characters. On a dumb terminal, this simulates the output of an
intelligent terminal. Generally, this option is only used at high baud
rates. Although the default value for this option is "noredraw'',
often it is set automatically. The redraw option is automatically set
if you have a terminal that has a AL TERMCAP entry for add line,
and a DL TERMCAP entry for delete line.

Default: noredraw
Abbreviations: redraw, noredraw

The report option sets the number of lines that must be involved in
a command before a report of what the command did can display on
your screen. For example, if you delete 10 lines, and report= 5,
report displays a message on your screen, saying that 1 O lines have
been deleted. Enter report=n, where n is the number of lines
affected before the activity is reported to you. Enter :se report to
see the current value of the report option.

Default: report= 5
Abbreviation: report

The scroll option sets the number of lines that scroll when you enter
the <CTRL-D> command in ex. The z command in ex scrolls
double the amount of the <CTRL-D> command, so setting the
number of lines that scroll also affects the z command.

Default: scroll= one-half the va!ue cf the 'Nindc~N option
Abbreviation: scroll

The sections option defines the text-formatting commands for
paragraphs that vi recognizes when using the [and] commands to
move the cursor to the next or previous paragraph.

Default: sections= NH SHH HUnhsh
Abbreviation: sections

The shell option gives the pathname of the shell that is invoked
when you use the ! command to escape the editor temporarily. The
default value of this shell is taken from the SHELL environment
variable. To display the current shell option, enter :se shell.

Abbreviation: sh

The shiftwidth option sets the number of characters you tab forward
or backward with the <CTRL-T> and <CTRL-D> tab commands.
This does not affect the number of characters you tab forward with
the <TAB> key.

3C-19

Advanced Uses of Ex and Vi

showmatch

slowopen

tabstop

taglength

tags

term

3C-20

Default: shiftwidth = 8
Abbreviation: sw, nosw

When you set the showmatch option, vi tries to find matching
braces or square brackets. This feature is particularly useful for
checking syntax when you are writing programs. This feature is
separate from the syntax matching of the lisp option.

Default: noshowmatch
Abbreviations: sm, nosm

The slowopen option is designed for use on slow, dumb terminals.
It limits the amount of output that can display on your terminal, so it
speeds up the editing process.

Default: noslowopen
Abbreviations: slow, nos low

The tabstop option gives boundaries for the display of tabs on your
terminal. To see the current value of the tabstop option enter :se
ts.

Default: tabstop = 8
Abbreviation: ts

When you identify a tagname (see ctags(l) in your UTek Command
Reference) you choose a number of characters to uniquely identify it.
The taglength option specifies that number. If you choose just
enough characters to identify a tagname, when you invoke vi to edit
the file containing tagname, it does not take long to find the
tagname. The default value of O means that all characters are
significant.

Default: taglength = O
Abbreviation: ti

The tags option specifies the pathname of files used as tag files for
the tag command.

Default: tags= /usr/lib/tags
Abbreviation: tags

The term option sets the terminal type. Normally this comes from
your environment, but you can reset the terminal type for a
particular editing session. You must be in ex to set this temporary
option. You can enter :se term to find you the current setting of the
term option.

Default: terminal type from your environment
Abbreviation: term

terse

timeout

ttytype

warn

window

UTekTOOLS

Advanced Uses of Ex and VI

The terse option gives shorter, more cryptic messages. This is
useful if you are very familiar with ex and vi.

Default: noterse
Abbreviations: terse, noterse

When you use the :map command to set macros, the macro you
enter to call up the vi commands should be short. The timeout
option ensures that they are short by giving you only one second to
enter the macro. If you do not enter the macro within a second, it is
not entered.

Default: timeout
Abbreviations: timeout, notimeout

The ttytype option is identical to the term option. Normally it is set
from your environment, but you can reset it for a particular editing
session. You must be in ex to set this temporary option. You can
enter the command :se ttytype to find out your current ttytype.

Default: terminal type from your environment
Abbreviations: ttytype

The warn option tells you if you try to leave the editor without writing
changes to the permanent file.

Default: warn
Abbreviations: warn, nowarn

The window option can be set in several different ways. Normally, it
comes from the TERMCAP entry for your terminal type. This entry
knows how many lines constitute a full screen on your terminal type.
You can also set the window option within a particular editing
session by using the :se window command. For example, to have
a window of 30 lines enter: :se window=30. If your terminal runs at
1200 baud or less, by default it does not display the full number of
lines. If the terminal runs at 1200 baud, the default window size is
16 lines. If the terminal runs at 300 baud, the default window size is
8 lines. But you can change these default window settings
according to baud rate. To do this you enter the wbaudrate
command in the EXINIT variable. For example, to change the
default setting for a terminal that is running at 1200 baud, on the
EXINIT line of the .login, .cshrc, or .profile file enter:

w1200=29

Now when your terminal is running at 1200 baud, it displays a
window of 29 lines on the screen.

Default: set by your baud rate or your TERMCAP entry.
Abbreviation: window

3C-21

Advanced Uses of Ex and Vi

wrapmargin

writeany

The wrapmargin option automatically inserts <RETURN> at the end
of each line when you are in text insert mode, so that you do not
have to press <RETURN> at each line. You give this option a
number value that defines a new margin for wraparound of text. For
example wrapmargin = 5 inserts <RETURN> when the text is within
5 characters of the right margin. This option does not break words
in the middle; instead, the entire word is moved to the next line.

Default: wrapmargin = 0
Abbreviations: wm, nowm

The writeany option lets you write your changes to any file where
you have write permission, even if the permissions were changed
during editing.

Default: nowriteany
Abbreviations: wa, nowa

Recovering From Errors
Many errors you make when using vi can be reversed. To make fewer errors, you
can use some of the vi options described above, such as autowrite, readonly, report,
and showmatch. But if you do make errors, there are several ways to recover from
them. When you realize that you've done something wrong, stop and think about
exactly what you did. This makes it much easier to recover from your errors.

If you made an error in the last command you entered, you can return the text to its
previous state by entering u. Or if you want to undo changes on the current line
only, enter U.

If vi is somehow interrupted while you are editing a file, you can recover some of the
text using the -r option. The mail system sends you a message, saying that you
have a copy of the interrupted document in a temporary buffer. To recover the
temporary buffer, enter:

vi -r filename

If more than one instance of the file was saved, the 'editor gives you the newest
instance each time you enter vi -r. So to recover an older copy, you can first
recover the newer copies.

Entering simply vi -r, without arguments, lists all the recoverable files.

3C-22

Advanced Uses of Ex and Vi

Temporarily Escaping the
Editor
You can leave the editor temporarily to execute a UTek command, then return to
your original position in the editor. To execute a UTek command enter:

!command

The shell executes the UTek command. When the command finishes, the editor
prompts you to hit <RETURN> to continue. Look at the output of the command,
then hit <RETURN> again; the screen is redrawn and you return to the editor.

To execute more than one UTek command, you can enter :sh after you see the
output from the initial ! command. This invokes a new shell. When the new shell
finishes executing the second command, type <CTRL-D> to return to the editor.

If you run C shell, you can stop the editor temporarily by entering:

:stop

This temporarily stops the editor and gives you the C shell prompt. To return to the
editor, you can enter fg. If you have the autowrite option set, you can temporarily
stop the editor without writing changes by entering:

:stop!

If you run C-Shell you can also temporarily stop the editor by entering:

:<CTRL-Z>

UTekTOOLS 3C-23

4A
Nroff /Troff Tutorial

Overview
In many ways the troff formatter resembles an assembly language, remarkably
powerful and flexible. But some operations must be coded very specifically.

For producing general documents, macro packages define formatting rules and
operations for specific styles of documents based on the troff formatter. In
particular, the Memorandum Macros (MM) package provides most of the facilities
needed for a wide range of document preparation. There are also packages for
viewgraphs and other special applications. These packages are easier to use than
the troff formatter language. They should be considered first. More information on
the macro packages can be found in sections 4C, 40, 4E, and 4F.

In the few cases where existing packages do not accomplish the job, small changes
can be made to the packages that already exist. The part of the troff formatter
described here is only a small part of the whole package; the more useful parts are
introduced. Emphasis is on doing simple things and making incremental changes to
what already exists.

To use the troff formatter, the text must include information that describes how the
document is to be printed. Most commands to the troff formatter are placed on a
line separate from the text itself, one command per line beginning with a period.
For example:

some text
.ps 14
some more text

This input changes the point size of the letters being printed to 14 point (one point is
1/72 of an inch).

Occasionally, something special is needed in the middle of a line, such as an
exponent. The backslash(\) is used to introduce troff commands and special
characters within a line of text.

UTek TOOLS 4A-1

Nroff/Troff Tutorial

Tutorial Topics

Point Sizes and Line Spacing
The .ps request sets the point size. Since one point is 1/72 inch, 6-point characters
are 1/12 inch high, and 36-point characters ar 1/2 inch high. Available point sizes
with the troff formatter depend on the typesetter.

Point size is rounded to the closest valid value if the number following the .ps
request is not a legal value. If no number follows the .ps request, point size reverts
to the previous value. The troff processor begins with point size 10.

Point size can also be changed in the middle of a line or a word with a \s escape
sequence. The \s sequence should be followed by a legal point size. The \sO
sequence causes the size to revert to its previous value. The \s1011 sequence is
understood correctly as "point size 10, followed by point size 11 ".

Relative size changes are also legal and useful. The expression:

\s-2UNCLE\s+2

temporarily decreases the size by two points, then restores it. Relative size changes
have the advantage that the size difference is independent of the starting size of the
document. the amount of the relative change must be a single digit.

Another parameter that determines what the type looks like is spacing between
lines. It is set independently of the point size. Vertical spacing is measured from
the bottom of one line to the bottom of the next. The command to control vertical
spacing is .vs. For running text, set the vertical spacing about 20 percent larger
than the character size. For example, a typical combination is:

.ps 9

.vs 11p

Vertical spacing is partly a matter of taste (how text looks when squeezed into a
given space) and partly a matter of traditional printing style. By default, the troff
formatter uses a point size of 10 and a vertical spacing of 12. When .vs is used
without arguments, vertical spacing reverts to the previous value.

The .sp request is used to get extra vertical space. Used alone, it gives one extra
blank line (at whatever value .vs is set). If you wish to change this, .sp may be
followed by a value. For instance:

INPUT MEANING

• sp 1.5i This gives a space of 1.5 inches .
(troff usually understands decimal fractions.)

• sp 2i This gives two inches of vertical space .

• sp 2p This gives two points of vertical space .

.sp 2 or .sp 2v This gives two vertical spaces
(two of whatever .vs is set).

4A-2

Nroff/Troff Tutorial

These same scale factors can be used after the .vs. Scale factors can be used after
most commands that deal with physical dimensions.

All size numbers are converted internally to machine units, which, for the Wang
C/A/T phototypesetter is 1/432 inch (1/6 point). For most purposes, this is enough
resolution to provide good accuracy of representation. Vertical resolution is 1 /144
inch (1/2 point). With the troff formatter, the resolution is typesetter dependent.
The AUTOLOGIC, Inc. APS-5 typesetter has a resolution of 723 units per inch.

Fonts and Special Characters
The Wang C/A/T phototypesetter allows four different fonts at one time. Normally,
three fonts (Times Roman, Times Italic, and Times Bold) and one collection of
special characters are permanently mounted.

With the troff formatter, available fonts and names are dependent upon the
typesetter. Refer to subsections three and four of this book for a more complete
description of fonts and point sizes.

To change the font, the .ft request is used:

. ft B switch to bold font .

. ft I switch to italic font.

. ft R switch to Roman font.

. ft P return to previous font.

. ft return to previous font.

The underline request (.ul) causes the next input line to print in italics. It can be
followed by a number to indicate that more than one line is to be italicized.

Fonts can be changed within a line or word with the \f in-line sequences. For
instance:

bold! ace text

is produced by

\fBbold\flface\fR text

The \f P sequence can be used to reestablish the "standard" font in between font
changes. For example:

\fBbold\f P\flface\f P\fR text\f P

Since only the immediately previous font is remembered, the original font must be
restored after each change or it will be lost. The same is true of .ps and .vs when
used without an argument.

UTekTOOLS 4A-3

Nroff /Troff Tutorial

4A-4

There are other fonts available besides the standard set. The . fp request tells the
troff formatter which fonts are actually mounted on the typesetter. For example, the
following input says that the Helvetica font is mounted on position 3:

.fp 3 H

Appropriate .fp requests should appear at the beginning of a document if standard
fonts are not used.

You can make a document relatively independent of the actual fonts used to print it
by using font numbers instead of names. For example, both of the following mean
"whatever font is mounted at position 3":

\f3

and

.ft3

Normal settings are Roman font on 1, italic on 2, and bold on 3.

You can also get synthetic bold fonts by overstriking letters with a slight offset using
the .bd request.

Special characters have four-character input names beginning with \(and may be
inserted anywhere in the text. In particular, Greek letters are all of the form\(* R,
where R is an uppercase or lowercase Roman font letter reminiscent of the Greek.

Some characters are automatically translated into others; for instance, grave and
acute accents become open and close single quotation marks. Similarly, a typed
minus sign becomes a hyphen. The \- input will print an explicit minus sign. A \e
entry causes a backslash to be printed.

Indents and Line Lengths
The troff processor starts with a line length of 6.5 inches, which is too wide for 8-
1 /2 inch by 11-inch paper. The .II request resets the line length. For example:

.II 6i

As with the .sp request, the actual length can be specified in several ways. The
maximum line length provided by the C/A/T phototypesetter is 7.54 inches. Again,
this may be different when using troff with another phototypesetter. To use the full
width, the default physical left margin (page offset) must be reset. This is done with
the .po request. The margin is normally a bit less than one inch from the left edge
of the paper. The .po O request sets the oftest as far to the left as possible.

Nroff/Troff Tutorial

The indent request (.in) causes the left margin to be indented by some specified
amount from the page offset. If the .in request is used to move the left margin to
the right and the .II request is used to move the right margin to the left, offset blocks
of the text are obtained. The following example shows the input and the block of
text that it creates:

.in 0.5i

.11-0.Si
text to be set into a block
.II +0.5i
.in-0.Si

TEXT CREATED:

A clergyman at Cambridge preached a sermon which one of his
auditors commended. "Yes," said a gentleman to whom it was
mentioned, "it was a good sermon, but he stole it." This was told
to the preacher. He resented it, and called the gentleman to
retract what he had said. "I am not," replied the aggressor,
"very apt to retract my words, but in this instance I will. I
said, you had stolen the sermon; I find I was wrong; for on
returning home and referring to the book whence I thought it was
taken, I found it there."

The use of + and - changes the previous setting by the specified amount rather
than just overriding it. This distinction is quite important:

• The input .II +1i makes lines one inch longer.

• The input .II 1 i makes lines one inch long.

With the .in, .II, and .po requests, the previous value is used if no argument is
specified.

The .ti request is used to indent a single line temporarily. The default unit for .ti, as
for most horizontally-oriented requests (.II, .in, .po), is ems. An em is roughly the
width of the letter min the current point size. Precisely, an em in size pis p points.
The ems unit is used to make text that keeps its preportions regardless of point size.
The ems can be specified as scaled factors directly, as in .ti 2.Sm.

Lines can be indented negatively if the indent is already positive:

.ti-.3i

This input causes the next line to be moved back 3/10 of an inch.

A decorative initial capital that is three lines high is created by making the following
changes:

• The whole paragraph is indented.

• The initial character is moved back with the .ti request.

• The initial character is made bigger (such as \s36N\s0) and moved down from
its normal position.

UTekTOOLS 4A-5

Nroff/Troff Tutorial

Tabs
Tabs (the ASCII horizontal tab character) can be used to produce output in columns
or to set the horizontal position of output. Typically, tabs are used only in unfilled
text. Tab stops are set by default every half inch from the current indent but can be
changed by the .ta request. For example, tab stops are set every inch with the
following entry:

.ta 1i 2i 3i 4i Si 6i

Tab stops are left justified (as on a typewriter). Lining up columns of right-justified
numbers can therefore be a problem; if there are many numbers or if a table layout
is needed, the table formatting program (tbl) is available.

A handful of numeric columns can be produced by preceding every number with
enough blanks to make it line up when typed. For instance:

.nf

.ta 1i 2i Ji
\0\0l(f)s\0\0~0\03
\04CXJ)s\050(J)\060
70~0~00
.fi

The® symbol represents a tab. Each leading blank is a \0 escape sequence. This
character does not print but has the same width as a digit. When printed, the above
input produces:

1
40
700

2
50
800

3
60
900

It is also possible to fill tabbed-over space with some character other than blanks by
setting the tab replacement character with the .tc request (the \(ru string is the rule
(_) character):

.ta 2i 3i

.tc \(ru \ \"
Name(f)Age(f)

This produces:

Name~~~~~~~-AQe·~~~~-

To reset the tab replacement character to a blank, the .tc request (with no
argument) is used. Lines can also be drawn with the \I escape sequence as
described in the next subsection.

The troff processor provides a general mechanism called "fields" for setting up
complicated columns. This is used by the tbl program.

4A-6

Nroff /Troff Tutorial

Local Motions
The troff processor provides a number of escape sequences for placing characters
of any size at any place. They can be used to draw special characters or to tune
the output for a particular appearance. Most of these sequences are straightforward
but messy to read and difficult to type correctly.

Vertical Motions
If the eqn program is not used, subscripts and superscripts are most easily done
with the half-line local motions \u and \d sequences. To go back up the page half
a point size, insert \u at the desired place; to go down half a point size, insert a \d.
The \u and \d should always be used in pairs. Since \U and \d refer to the current
point size, they should either be both inside or both outside the size changes.
Otherwise, an unbalanced vertical motion will result.

Sometimes the space given by \u and \d is not the right amount. The \V sequence
can be used to request an arbitrary amount of vertical motion. The in-line sequence
\v'n' causes motion up or down the page by the amount specified in n. For
example, to move the character n down, the following input would be used:

NOTE
Throughout the rest of this section, you will see text to be

input displayed in two columns. Each line in the second
column will begin with a comment indicator\". The
commands you enter in column one will run without your
comments from column two. However, these comments,
when in the text, make the program easier to understand .

.in +0.6i

.ll-0.3i
\'' indent paragraph
\" shorten lines

.ti -0.3i \"move n back
\V'2'\s36n\S0\V'-2'ott met Shott, Nott
shot at Shott ...

A minus sign causes upward motion, while a plus sign or no sign causes downward
motion. Thus \V'-2' causes an upward vertical motion of two line spaces.

There are other ways to specify the amount of motion:

\V'0.1i'
\V'3p'
\V'-0.Sm'

The preceding inputs are all legal. The scale specifier i, p, or m goes inside the
quotes. Any character can be used in place of the quotes. (This is true of all other
troff formatter commands and sequences described in this section.)

UTekTOOLS 4A-7

Nroff !Troff Tutorial

Since the troff formatter does not take within-the-line vertical motions into account when
figuring where it is on the page, output lines can have unexpected positions if the left
and right ends are not at the same vertical position. Thus "v, like "u and "d, should
always be balanced with any upward vertical motion in a line compensated with the
same amount in the downward direction.

Horizontal Motions
Arbitrary horizontal motions are also available. \h is analogous to \V, except that
the default scale factor is ems instead of line spaces. As an example, the following
input causes a backward motion of 1 /1 O of an inch:

\h'-0.1i'

We can see how this may be applied when working with mathematical text. When
printing the mathematical symbol > >, the default spacing is too wide; eqn replaces
this with the following:

\h'-0.3m'>

This produces ».

Frequently, \h is used with the width function (\w) to generate motions equal to the
width of some character string. The construction that follows is a number equal to
the width of thing in machine units (1/432 inch):

\w'thing'

All troff formatter computations are ultimately done in these units. To move
horizontally, the width of an x is used:

\h' \w'x'u'

Since the default scale factor for all horizontal dimensions ism (ems), u (machine
units) must be used. If not, the motion produced will be too large. Nested quotes
are acceptable to the troff formatter as long as none are omitted. An example of
this kind of construction would be to print the string .sp by overstriking with a slight
offset. The following example prints .sp, moves left by the width of .sp, moves right
one unit, and prints .sp again:

.sp \h'-w' .sp'u'\h'1 '.sp

There are several special purpose troff formatter sequences for local motion:

• The \0 is an unpaddable (never widened or split across a line by line
justification and filling) white space the same width as a digit.

• The \<Space> is an unpaddable character the width of a space.

• The\: is 1/6 em wide.

• The,- is 1/12 em wide.

4A-8

Nroff /Troff Tutorial

• The \& has zero width and is useful in entering a text line that would otherwise
begin with a period (.).

• The \o sequence causes up to nine characters to be overstruck, and centered
on the the widest of the characters. This is for accents such as:

syst \O"\ \(ga"me t\0 11 e\(aa"l\o"e\(aa 11phonique

This produces the following:

systeme telephonique

The accents "- (ga and "- (aa are just one character to the troff formatter.

Overstrikes
Overstrikes can be made with another special convention, \z, the zero-motion
sequence. Normal horizontal motion is suppressed with the \zx (after printing the
single character x), so another character can be laid on top of it. Although sizes can
be changed within \O, characters are centered on the widest, and there can be no
horizontal or vertical motions. The \Z may be the only way to get what is needed.

A more ornate overstrike is given by the bracketing function \b, which piles up
characters vertically, centered on the current baseline. Thus, big brackets are
obtained by constructing them with piled-up smaller pieces.

Drawing Lines
A convenient facility for drawing horizontal and vertical lines of arbitrary length with
arbitrary characters is provided by the troff formatter. A one-inch long line is
printed with a \l'li' sequence. The length can be followed by the character to use if
the the underline character (_) is not appropriate. The \l'O.Si.' sequence draws a
1/2 inch line of dots. Escape sequence \l is analogous, except that is draws a
vertical instead of a horizontal line.

The troff formatter provides an even better facility for drawing lines using the \0
escape sequence. This function can also be used to draw arcs, circles, and
ellipses.

Strings
If your document contains a large number of occurrences of an acute accent over a
letter e, typing \o'e\" for each e would be a nuisance. Fortunately, the troff
formatter provides a way to store an arbitrary collection of text in a string, and
thereafter use the string name as a shorthand for its contents. Strings are one of
several troff formatter mechanisms whose judicious use permits typing a document
with less effort and organizing it so that extensive format changes can be made with
few editing changes.

UTekTOOLS 4A-9

Nroff/Troff Tutorial

A reference to a string is replaced by whatever text the string was defined as.
Strings are defined with the .ds request. The following line defines the string e to
have the value \o"e\"':

.ds e \o"e\'"

String names may be either one or two-characters long. They are referred to by
\ * x for one-character names or by \ * (xy for two-character names (where x or xy
are string names). Thus, to get

te'le'phone

given the definition of the string e as above,

t\ *el* ephone

is input.

If a string must begin with blanks, it is defined in the following way:

.ds xx" text

The double quote signals the beginning of the definition. There is no trailing quote;
the end of the line terminates the string.

A string may be several lines long. If the troff formatter encounters a backslash (\)
at the end of any line, it is thrown away and the next line is added to the current
one. A long string can be made by ending each line except the last with a
backslash:

.ds xx this\
is a very\
long string

Strings may be defined in terms of other strings or even in terms of themselves.

Introduction to Macros
In its simplest form, a macro is a shorthand notation similar to a string. For
instance, if every paragraph is to start in exactly the same way, with a space and a
temporary indent of two ems, the following requests would perform the operation:

.sp

.ti +2m

To save typing these requests every time used, they could be collapsed into one
shorthand line, such as a troff command .PP. The .PP is called a macro. The way
to tell the troff formatter what .PP means is to define it with the .de request:

4A-10

.de PP

.sp

.ti +2m

\"paragraph macro

Nroff nroff Tutorial

The first line names the macro (.PP in this example). It is in uppercase so it will not
conflict with any name that the troff formatter might already know about. The last
line (..) marks the end of the definition. In between is the text which is inserted
whenever the troff formatter encounters the .PP macro call. A macro can contain
any mixture of text and formatting requests.

The definition of a macro has to precede its first use; undefined macros are ignored.
Names are restricted to one or two characters.

Using macros for commonly occurring sequences for requests is important since it
saves typing and makes later changes easier. If you decide that in producing a
document the paragraph indent is too small, the vertical space is too large, and
Roman font should be forced, only the definition of .PP needs to be changed to
read:

.de PP \"paragraph macro

.sp 2p

.ti +3m

.ft R

The change takes affect everywhere .PP is used and is easier than changing
commands throughout the whole document.

A troff formatter escape sequence that causes the rest of the line to be ignored, is
\". It is used to add comments to the macro definition (a wise idea once definitions
get complicated).

Another example of macros is this pair that start and end a block of offset, unfilled
text: .

. de OS \" start indented block

.sp

.nf

.in +0.5i

.de OE

.sp

.fi

.in -0.Si

\"end indented block

The .OS and .OE macros could be used before and after text to provide the
following effect:

Copy to
John Doe

Richard Roberts
Janice Smith

UTekTOOLS 4A-11

Nroff/Troff Tutorial

In this example, the indentation used is .in +O.Si instead of .in O.Si. This permits
the nesting of the .OS and .OE macros to get blocks within blocks.

Should the amount of indentation be changed at a later date, it is necessary to
change only the definitions of .OS and .OE, not individual requests throughout the
whole document.

Titles, Pages, and Page Numbering
Titles, pages, and page numbering is not done automatically. This section includes
many examples for you to copy.

Titles
To get a title at the top of each page, the following specifications must be provided
in the troff formatter:

• What to do at and around the title line

• When to print the title

• What the actual title is

Pages
The .NP macro (new page) is defined to process titles at the end of one page and
the beginning of the next:

.de NP
'bp
'sp O.Si
.ti 'left top'center top'right top'
'sp 0.3i

These requests are explained as follows:

• The 'bp (begin page) request causes a skip to the top-of page.

• The 'sp O.Si request spaces down 1/2 inch.

• The .ti request prints the title.

• The 'sp 0.3i request provides another 0.3 inch space.

The reason that the 'bp and 'sp requests are used instead of the .bp and .sp
requests is that the .sp and .bp cause a break to take place. This means that all
the input text collected but not yet printed is flushed out as soon as possible, and
the next input line starts a new line of output. Had .bp been used in the .NP macro,
a break in the middle of the current output line would occur when a new page is

4A-12

Nroff/Troff Tutorial

started. The effect would be to print the left-over part of that line at the top of the
page, followed by the next input line on a new output line. A single quote instead of
a period before a request tells the troff formatter that no break is to take place. The
output line currently being filled should not be forced out before the space or new
page.

This is the list of requests that cause a break:

.bp begin page

.br break

.ce center

.fi fill mode

.nf no-fill mode

.sp space

.in indent

.ti temporary indent

Other requests cause no break, regardless of whether the period (.) or the single
quotation mark(') is used. If a break is really needed, a .br request at the
appropriate place provides it.

To ask for .NP at the bottom of each page, a statement like "when the text is within
an inch of the bottom of the page, start the processing for a new page" is used.
This is done with the .wh request. For example:

.wh -1i NP

No period character is used before NP since it is simply the name of a macro and
not a macro call. The minus sign means "measure up from the bottom of the
page"; so -1i means one inch from the bottom. The .wh request appears outside
the definition of the .NP macro. For example:

.de NP
- - - body of macro

.wh -1i NP

As text is actually being output, the troff formatter keeps track of its vertical position
on the page; and after a line is printed within one inch from the bottom, the .NP
macro is invoked.

The .NP macro causes a skip to the top of the next page (that is what the 'bp was
for) and prints the title with appropriate margins.

Beware of crossing a page boundary in an unexpected font or size when changing
fonts or point sizes.

UTekTOOLS 4A-13

Nroff !Troff Tutorial

• Titles come out in the size and font most recently specified instead of what was
intended.

• The length of a title is independent of the current line length, so titles come out
at the default length of 6.5 inches unless changed. Changing title length is
done with the .It request.

There are several ways to fix the problems of point sizes and fonts in titles. The .NP
macro can be changed to set the proper size and font for the title, and then restore
the previous values, like this:

.de
bp

Sp 0.5i
.fi R \"set title font to Roman
.ps 10 \"set size to 10 point
.lt 6i \"set length to 6 inches
.tl 'left top' center top'right top'
.ps
.ft p

sp O.Ji

\"revert to previous size
\"and to previous font

This version of .NP does not work if the fields in the .ti request contain size or font
changes. This can be corrected, as explained under Environments later in this section.

To get a footer at the bottom of a page, the .NP macro must be modified. One option is to
have the .NP macro do some processing before the 'bp request. Another option is to
split the .NP macro into a footer macro (invoked at the bottom margin) and a header
macro (invoked at the top of the page).

Page Numbers
Page numbers are computed automatically as each page is produced (starting at 1),
but no numbers are printed unless explicitly requested. To get page numbers
printed, the o/o character should be included in the .ti request at the position where
the number is to appear. For example:

. ti ' ' - o/o - ' '

This centers the page number inside hyphens. The page number can be set at any
time with either a .bp n request (which immediately starts a new page numbered n)
or with .pn n (which sets the page number for the next page but does not cause a
skip to the new page). The .bp + n sets the page number to n more than its current
value. The .bp request, without an argument, means .bp + 1.

4A-14

Nroff /Troff Tutorial

Number Registers and Arithmetic
The troff processor does arithmetic. You can define and use variables with numeric
values, called number registers. Number registers, like strings and macros, can be
useful in setting up a document so it is easy to change later. They also serve for
any sort of arithmetic computation.

Number Registers
Like strings, number registers have one- or two-character names. They are set by
the .nr request and are referenced anywhere by \nx or \nxy where x and xy are
register names.

The troff formatter maintains several predefined number registers, including:

• % for the current page number,

• nl for the current vertical position on the page,

• dy, mo, and yr for the current day, month, and year, and

• .s and .f for the current size and font (the font is the number of a font position)

Any of these can be used in computations like any other register, but some, like .s
and .f, cannot be changed with .nr.

An example of the use of number registers is in setting the point size for text, the
vertical spacing, and the line and title lengths. To set the point size and vertical
spacing, you may input:

.nr ps 9

.nr VS 11

The paragraph macro, .PP, is roughly defined as follows:

.de PP

.ps \\n(PS

.vs \\n(VSp

.ft R

.Sp 0.5v

.ti +Jm

\"reset size
\"spacing
\"font
\"half a line

This macro sets the font to Roman (regular) and the point size and line spacing to
whatever values are stored in the number registers PS and VS.

Two backslashes(\\) in the definition are required to ensure that a backslash is left
in the definition when the macro is used. If only one backslash is used, point size
and vertical spacing are frozen at the time the macro is defined, not when it is used.
Protection with an extra layer of backslashes is needed only for \n, \ *, \$, and \
itself. Things like \s, \f, \h, \v, etc. do not need an extra backslash since they are
immediately converted by the troff formatter to an internal code upon detection.

UTekTOOLS 4A-15

Nrottnroff Tutorial

Arithmetic
Arithmetic expressions can appear anywhere that a number is expected. As an
example:

.nr PS\ \n(PS-2

decrements (reduces) register PS by two. Expressions can use the arithmetic
operators +, -, *, \, % (mod), the relational operators >, >=, <, <=, =, ! = (not
equal), and parentheses.

With Arithmetic:

• Number registers hold only integers. In the troff formatter, arithmetic uses
truncating integer division, just like FORTRAN.

• In the absence of parentheses, evaluation is done left-to-right without any
operator precedence, including relational operators. Thus:

7*-4+3/13

becomes -1.

Number registers can occur anywhere in an expression and so can scale indicators
like p, i, m, etc. (but not spaces). Although integer division causes truncation, each
number and its scale indicator is converted to machine units (each unit is 1/432
inch) before any arithmetic is done, so 1 i/2u evaluates to 0.5i correctly.

The scale indicator u often has to appear when least expected, in particular when
arithmetic is being done in a context that implies horizontal or vertical dimensions.
For example, .II 7/2i is not 3 112 inches. Instead, it is 7 ems/2 inches. When
translated into machine units, it becomes 0, because the default units for horizontal
parameters (like .II) are ems. Another incorrect try is .II 7i/2. The 2 is 2 ems, so
7i/2 is small, although not O. The correct way to specify 3 1/2 inches is .II 7i/2u. A
safe rule is to attach a scale indicator to every number, even constants.

For arithmetic done within a .nr request, there is no implication of horizontal or
vertical dimension, so the default is units, and 7i/2 and 7i/2u mean the same thing.
Thus:

.nr II 7i/2

.II\ \n(llu

accomplishes what is desired as long as the u on the .II request is included.

4A-16

Nroff/Troff Tutorial

Macros with Arguments
Two things are needed to be able to define macros that can change from one use to
the next according to parameters supplied as arguments:

1. When the macro is defined, indicate that some parts will be provided as
arguments when the macro is called.

2. When the macro is called, you must provide the actual arguments to be
plugged into the definition.

An example would be to define a macro (.SM) that prints its argument two points
smaller than the surrounding text.

.de SM
\S-2\\$1\s+2

The macro call appears as:

.SM SMALL

The argument (SMALL in this example) then appears two points smaller than the
rest of the print.

Within a macro definition, the symbol \ \$n refers to the nth argument with which the
macro was called. Thus \ \$1 is the string to be placed in a smaller point size when
.SM is called.

A slightly more complicated version is the following definition of .SM, which permits
optional second and third arguments that are printed in the normal size:

.de SM
\\$3\s-2\\$1\s+2\\$2

Arguments not provided when the macro is called are treated as empty. The macro
call

.SM ABLE),

would appear as ABLE), in output (note the smaller type).

The macro call .

. SM BAKER).

produces (BAKER). with BAKER in smaller type:

(BAKER).

It is convenient to reverse the order of arguments because trailing punctuation is
much more common than leading. The number of arguments that a macro was
called with is available in the .$number register.

UTekTOOLS 4A-17

Nroff/Troff Tutorial

Argument Rearrangement
The macro .BO is used to make "bold Roman" for troff formatter command names
in text. It combines horizontal motions, width computations, and argument
rearrangement:

.de BO
\&\ \$3\f1\ \$1\h'-\w'\ \$1 'u+2u'\ \$1\fP\ \$2

The \hand \W escape sequences need no extra backslash. The\& is there in case
the argument begins with a period. Two backslashes (\ \) are needed with the\ \$n
commands.

Numbered Section Headings
A .SH macro can be defined to produce automatically numbered section headings
with the title in smaller sized, boldfaced print. The use is

.SH "Section title ... "

If the argument to a macro contains blanks, it must be surrounded by double quotes.

The definition of the .SH macro is

.nr SH 0

.de SH

.sp O.Ji

.ft B

.nr SH \\n(SH+l

.ps \\n(PS-1
\\n(SH. \\$1
.ps \\n(PS
.sp O.Ji
.ft R

\"initialize section number

\"increment number
\"decrease PS number
\"title
\"restore PS

The section number is kept in number register SH, which is incremented (increased)
each time just before use.

NOTE
A number register may have the same name as a macro
without conflict but a string may not.

Note that \ \n(SH and \ \n(PS were used instead of a \n(SH and \n(PS. Had \n(SH
been used, it would have yielded the value of the register at the time the macro was
defined, not at the time it was used. Similarly, by using \ \n(PS, the point size at the
time the macro was called is obtained.

4A-18

Nroff/Troff Tutorial

An example that does not involve numbers is the .NP macro (defined earlier) which
had the request:

.ti 'left top'center top'right top'

The fields could be made into parameters by using:

.ti ' *(LT' *(CT' *(RT'

The title comes from three strings called LT, CT, and RT. (If these are empty, the
title is a blank line). For example, CT could be set with:

.ds CT - o/o -

to give just the page number between hyphens. You can supply private definitions
for any of the strings.

Conditionals
Suppose you want the .SH macro to leave two extra inches of space just before
Section 1, but nowhere else. The best way to do that is to test inside the .SH macro
whether the section number is 1, and add some space if it is. The .if command
provides the conditional test that can be added just before the heading line is
output:

.if \ \n(SH=1 .sp 2i \"first section only

The condition after the .if request can be any arithmetic or logical expression. If the
condition is logically true or arithmetically greater than zero, the rest of the line is
treated as if it were text (a request in this case). If the condition is false, zero, or
negative, the rest of the line is skipped.

It is possible to do more than one request if a condition is true. For example, if
several operations are to be done prior to Section 1, the .S1 macro is defined and
invoked when Section 1 is almost complete (as determined by an .if) .

. de S1
- - -processing for section 1

.de SH

.if \ \n(SH=1 .S1

An alternate way is to use the extended form of the .if request. For example:

.if \\n(SH=1 \{- - -processing
for section 1 - - -\}

UTekTOOLS 4A-19

Nroff !Troff Tutorial

The braces, \ { and \} must occur in the positions shown or unexpected extra lines
are output. The troff processor also provides an if-else construction.

A condition can be negated by preceding it with an exclamation point(!). The same
effect as above is obtained (but less clearly) by using:

.if !\ \n(SH>1 .S1

There are a handful of other conditions that can be tested with .if. For example:

.if e .tl left top'center top'right top

.if o .tl left top'center top'right top

\"even page title

\"odd page title

gives facing pages different titles, depending on whether the page number is even
or odd, when used inside an appropriate new page macro.

Two other conditions are t and n, which tell whether the formatter is troff or nroff:

.if t troff stuff .. .

. if n nroff stuff .. .

String comparisons may be made in a .if request:

.if 'stringl'string2' stuff

This executes the program stuff if stringl is the same as string2. The character
separating the strings can be anything reasonable that is not contained in either
string. The strings themselves can reference strings with \ *, arguments with \$,
and so forth.

Environments
There is a potential problem when going across a page boundary: parameters like
the size and the font for a page title may be different from those in effect in the text
when the page boundary occurs. A general way to deal with this and similar
situations is provided by the troff formatter.

There are three environments. Each has independently selectable versions of many
parameters associated with processing, including size, font, line and title lengths,
fill/no-fill mode, tab stops, and partially collected lines. Thus the titling problem may
be solved by processing the main text in one environment and titles in another with
its own suitable parameters.

The .ev n request shifts to environment n (n must be 0, 1, or 2). The .ev request
with no argument returns to the previous environment. Environment names are
maintained in a stack, so calls for different environments may be nested.

4A-20

Nroff /Troff Tutorial

If the main text is processed in environment 0 where the troff formatter begins by
default, the new page macro .NP can then be modified to process titles in
environment 1. For example:

.de NP

.ed 1

.lt 6i

.ft R

.ps

\"shift to new environment
\"set parameters here

- - -any other processing
.ev \"return to previous environment

It is also possible to initialize the parameters for an environment outside the .NP
macro, but the version shown keeps all the processing in one place and is easier to
understand and change.

Diversions
There are numerous occasions in page layout when it is necessary to store some
text for a period of time without actually printing it. Footnotes are the most obvious
example. Text of the footnote usually appears in the input before the place on the
page is reached where it is to be printed. The place where the footnote is printed
normally depends upon the size of the footnote. Therefore, there must be a way to
determine the size of the footnote without printing it.

A mechanism called a diversion is provided by the troff formatter for doing this
processing. Any part of the output may be diverted into a macro (diversion) instead
of being printed; at some convenient time, the macro may be put back into the input.

The .di xy request begins a diversion. All subsequent output is collected into the
macro xy until the .di request with no arguments is encountered. This terminates
the diversion. Processed text is available at any time thereafter by giving the .xy
request. The vertical size of the last finished diversion is contained in the built-in
number register dn. For instance, to implement a keep operation so that text
between the macros .KS and .KE is split across a page boundary (as for a figure or
table), the following occurs:

• When a .KS is encountered, the output is diverted to determine its size.

• When a .KE is encountered and if the diverted text fits on the current page, it
is printed there. If the diverted text does not fit on the current page, it is
printed at the top of the next page.

UTekTOOLS 4A-21

Nroff/Troff Tutorial

The definitions of the .KS and .KE macros are as follows:

.de KS

.br

.ev 1

.fi

.di xx

.de KE

.br

.di

.if \\n(dn>e\\n(.t.bp
nf
.xx
.ev

\"start keep
\"start fresh line
\"collect in new environment
\"make it filled text
\"collect in XX

\"end keep
\"get last partial line
\"end diversion
\"bp if does not fit
\"bring it back in no-fill
\"text
\"return to normal environment

The number register nl indicates the current position on the output page. Since
output was being diverted, it remains at its value where the diversion started. The
dn register contains the amount of text in the diversion. The distance to the next
trap is in the built-in register .t. It is assumed that the next trap is at the bottom
margin of the page. If the diversion is large enough to go past the trap, the .if is
satisfied; a .bp request then is issued. In either case, the diverted output is brought
back with .XX. It is essential to bring it back in no-fill mode so the troff formatter
does no further processing on it.

This is only one possible keep operation. The most general keep macro would be
more complex.

Tutorial Examples
Such common formatting needs as page margins and footnotes are deliberately not
built into the nroff and troff formatters. You will probably have to prepare at least a
small set of macro definitions to describe most documents. The macro and string
definition, number register, diversion, environment switching, page-position trap,
and conditional input mechanisms provide the basis for user-defined
implementations.

Examples in the following text are intended to be useful but not necessarily to cover
all situations. Numerical parameters are used to make the examples easier to read
and to show typical values. In many cases, number registers would be used to hold
numerical information and to concentrate conditional parameter initialization data
that depend on whether the troff or nroff formatter is being used.

4A-22

Nroff !Troff Tutorial

Page Margins
Header and footer macros are defined to describe the top and bottom page margins
areas, respectively. A trap is planted at page position O for the header and at -n (-n
from the page bottom) for the footer. A simple header and footer macro definition
follows:

.de hd
sp 1i

.de fo
bp

.wh 0 hd

.wh -li fo

\"define header

\"end definition
\"define footer

\"end definition

This example provides blank one-inch top and bottom margins. The header occurs
on the first page only if the definition and trap exist prior to the point at which the
page breaks. In fill mode, the output line that activates the footer trap was typically
ejected because some part or whole word did not fit on it. If anything in the footer
and header causes a break, that word or part word is ejected. In this and other
examples, requests like bp and sp that normally cause breaks are invoked using the
no-break control character ('). When the header/footer design contains material to
be handled independently, the environment may be switched to avoid confusion
with running text.

A more complex example follows:

UTekTOOLS

.de hd

.if t .tl\(rn' \(rn'

.if \\n%>1\{\
'sp:0.5i-1
.tl , , - %-' ,

.ps

.ft

.vs \}

.ns

.de fo

.ps 10

.ft R

.vs 12p

.if \\n%=1 \{\
'sp:\\n(.pu-0.5i-1
. tl , , - % - , '\}
bp

.wh 0 hd

.wh -11 fo

\"header
\"troff cut mark

\"tl base at 0.5 inch
\"centered page number
\"restore size
\"restore font
\"restore vs
\"space to 1. 0 inch
\"turn on no-space mode

\"footer
\"set footer/header size
\"set font
\"set base-line spacing

\"tl base 0.5 inch up
\"first page number

4A-23

Nroff/Troff Tutorial

This example sets the size, font, and base-line spacing parameters for the footer
material. Parameters are restored to their original values when the header is
completed. The material in this case is a page number at the bottom of the first
page and at the top of the remaining pages. If the troff formatter is used, a cut
mark is drawn in the form of root-en's at each margin and marks page breaks. The
sp's refer to absolute positions to avoid dependence on the base-line spacing.
Another reason for the sp in the footer is that the footer is invoked by printing a line;
this line's vertical spacing can move past the trap position by as much as the base
line spacing. The no-space mode is turned on at the end of hd so that occurrences
of sp at the top of the running text have no effect.

The above method of restoring size, font, etc. presupposes that such requests (that
set previous value) are not used in the running text. A better scheme is to save and
to restore both the current and previous values, as shown for the size value in the
following:

.de fo

.nr sl \ \n(.s

.ps

.nr s2 \ \n(.s

.de hd

.ps \\n(s2

.ps \\n(sl

\"current size

\"previous size
\"rest of footer

\"header stuff
\"restore previous size
\"restore current size

Page numbers may be printed in the bottom margin by a separate macro triggered
during the footer's page ejection:

4A-24

.de bn

.tl -%-

.wh -0.5i-1v bn

\"bottom number
\"centered page number

\"tl base 0.5 inch up

Nroff/Troff Tutorial

Paragraphs and Headings
You should develop a paragraph macro that does the desired preparagraph spacing,
forces the correct font, size, base-line spacing and indent, checks that enough
space remains for more than one line, requests a temporary indent, or does
whatever else is necessary. For example:

.de pg

.br

.ft R

.ps 10

.vs 12p

.in 0

.sp 0.4

.ne 1+\\n(.Vu

.ti 0.2i

\"paragraph
\"break
\"force font
\"size
\"spacing
\"and indent
\"prespace
\"want more than one line
\"temporary indent

The first break in pg forces out any previous partial lines and must occur before the
.vs request. The forcing of font, size, base-line spacing, and indent is to correct
any prior errors and to permit things like section heading macros to set parameters
only once. The prespacing parameter is suitable for the troff formatter; a larger
space, at least as big as the output device vertical resolution, would be more
suitable in the nroff formatter. The choice of remaining space to test for the .ne is
the smallest amount greater than one line (the . V is the available vertical resolution).

A macro to number section headings automatically might look like this:

.de SC

. sp 0.4

.ne 2.4+\\n(.Vu

.fi
\\n+S.

.nr S 0 1

\"section
\"force font, etc .
\"prespace
\"want 2.4+ lines

\"initial S

The usage is sc, followed by the section heading text, followed by pg. The .ne test
value includes one line of heading, 0.4 line in the following pg, and one line of the
paragraph text. A word consisting of the next section number and a period is
produced to begin the heading line. The format of the number may be set by the .af
request.

Another common form is the labeled, indented paragraph where the label protrudes
left into the indent space. For example:

UTekTOOLS

.de lp

.pg

.in 0.5i

.ta 0.2i 0.5i

.ti 0
\t\\$1\t\c

\
11 labeled paragraph

\"paragraph indent
\"label, paragraph

\"flow into paragraph

4A-25

Nroff/Troff Tutorial

The intended usage is:

.Ip label

The label begins at 0.2 inch and cannot exceed a length of 0.3 inch without
intruding into the paragraph. The label could be adjusted to the right against 0.4
inch by setting the tabs instead with the following entry:

.ta 0.4iR O.Si

The last line of the Ip macro ends with \c so that it becomes part of the first line of
the text that follows.

Multiple Column Output
The production of multiple column pages requires the footer macro to decide
whether it was invoked by other than the last column, so that it begins a new column
rather than produces the bottom margin. The header can initialize a column register
that the footer increments and tests. The following example is arranged for two
columns but is easily modified for more:

.de hd

.nr cl 0 1

.mk

.de

.ie\\n+(cl<2\{\

.po +J.4i

.rt

.ns \}

.el \{\

.ps \\nMu

'bp \}

.11

.nr M \\n(.o

\"header

\"initial column count
\"mark top of text

\"footer

\"next column; J.1+0.J
\"back to mark
\"no-space mode

\"restore left margin

\"column width
\"save left margin

Typically, a portion of the top of the first page contains full width text; the request for
the narrower line length, as well as another .mk request, is made where the two
column output is to begin.

4A-26

Nroff/Troff Tutorial

Footnote Processing
You embed the footnotes in the input text at the point of reference, demarcated by
an initial .fn and a terminal .ef .

. fn
Footnote text and control lines
.ef

The following macro definitions cause footnotes to be processed in a separate
environment and diverted for later printing in the space immediately prior to the
bottom margin. There is provision for the case where the last collected footnote
does not completely fit in the available space:

UTekTOOLS

.de hd

.nr x 0 1

.nr y 0-\\nb

.ch fo -\\nbu
:~f \\n(dn .fz

.de fo

.nr dn 0

.if \\nx \{\

.ev 1

.nf

.FN

.rm FN
• if , \ \n (. z 'fy' • di
.nr x 0

.ev \}

bp

.de fx

.if \\nx .di fy

.de fn

.da FN

.ev 1

.if \\n+x=l .fs

.fi

.de ef

.br

.nr z \\n(.v

\"header

\"initial footnote count
\"current footer place
\"reset footer trap
\"leftover footnote

\"footer
\"zero last diversion size

\"expand footnotes in environment 1

\"retain vertical size
\"footnotes
\"delete it
\"end overflow diversion
\"disable fx
\"pop environment

\"process footnote overflow
\"divert overflow

\"start footnote
\"divert (append) footnote
\"in environment 1

\"if first, include separator
\"fill mode

\"end footnote
\"finish output
\"save spacing

4A-27

Nroff !Troff Tutorial

.ev \"pop environment

.di \"end diversion

.nr y -\\n(dn \"new footer position

.if \\nx=l .nr y -(\\n(.v-\\nz)\ \"uncertainty correction

.ch fo \\nyn \"y is negative

.if (\\n(nl+lv)>(\\n(.p+\\ny)\

.ch fo \\n(nlu+lv \"it did not fit

.de fs
\l'li

.br

.de fz

.fn

.nf

.fy

.ef

.nr b 1.0i

.wh 0 hd

.wh 12i fo

.wh -\\nbu fx

.ch fo -\\nbu

\"separator
\"one inch line

\"get leftover footnote

\"retain vertical size
\"where fx put it

\"bottom margin size
\"header trap
\"footer trap, temp position
\"fx at footer position
\"conceal fx with fo

• The header macro (hd) initializes a footnote count (register x) and sets both the
current footer trap position (register y) and the footer trap itself to a nominal
position specified in register b.

• If the register dn indicates a leftover footnote, the fz macro is invoked to
reprocess it.

• The footnote start macro (fn) begins a diversion in environment 1 and
increments the footnote count register x. If the count is one, the footnote
separator macro (fs) is interpolated. The separator is kept in a separate macro
to permit user redefinition.

• The footnote end macro (ef) restores the previous environment and ends the
diversion after saving spacing size in register z.

• Register y is decremented by the size of the footnote that is available in
register dn.

• On the first footnote, register y is further decremented by the difference in
vertical base-line spacings of the two environments. This prevents late
triggering of the footer trap from causing the last line of the combined
footnotes to overflow.

4A-28

Nroff !Troff Tutorial

• The footer trap is set to the lower of y or the current page position (nl) plus one
line to allow for printing the reference line.

• If indicated by x, the footer fo rereads the footnotes from FN in no-fill mode in
environment 1 and deletes FN. If the footnotes were too large to fit, the macro
fx is trap-invoked to redivert the overflow into fy, and the register dn later
indicates to the header whether or not fy is empty.

• Both fo and fx macros are planted in the nominal footer trap position in an
order that causes fx to be concealed unless the fo trap is moved.

• The footer terminates the overflow diversion (if necessary) and zeros x to
disable fx. This is because the uncertainty correction, together with a not
too-late triggering of the footer, can result in footnote macros finishing before
reaching the fx trap.

Last Page
After the last input file has ended, nroff and troff formatters invoke the end macro,
if any, and eject the remainder of the page.

.de en
\c

bp

.em en

\"end-macro

During the eject, any traps encountered are processed normally. At the end of this
last page, processing terminates unless a partial line, word, or partial word remains.
If it is desired that another page be started, the end-macro deposits a null partial
word and creates another last page.

UTekTOOLS 4A-29

48
Nroff /Troff Reference
Guide

Introduction
The UTek nroff and troff text processors accept lines of text mixed with lines of
format control information. They format the text into a printable, paginated
document having a user-designed style. These formatters offer unusual freedom in
document styling including:

• Arbitrary style headers and footers

• Arbitrary style footnotes

• Automatic sequence numbering for paragraphs and sections

• Multiple column output

• Dynamic font and point-size control

• Arbitrary horizontal and vertical local motions at any point

• Overstriking, bracket construction, and line drawing functions

The nroff text formatter formats text for typewriter-like terminals. This formatter can
prepare output directly for a variety of terminal types and uses the full resolution of
each terminal.

The troff (device independent) formatter formats text to be printed on a
phototypesetter, but postprocessors must insert the codes that drive a particular
phototypesetter. Troff drives virtually any phototypesetter since its output is an
ASCII code describing the position, font, size, and so on, of characters to be typeset
on a page. This output must be converted by another program, called a
postprocessor, into codes that a particular phototypesetter understands. Parameters
such as fonts, character sizes, and special characters depend on the
phototypesetter being driven.

Full user control over fonts, sizes, and character positions, as well as the usual
features of a formatter (right-margin justification, automatic hyphenation, page titling
and numbering, and so on) are provided by the troff processor. It also provides
macros, arithmetic variables and operations, and conditional testing for complicated
formatting tasks.

Since the nroff and troff formatters are reasonably compatible, you can usually
prepare input acceptable to either. Conditional input is provided that enables you to
embed input expressly destined for either program.

UTek TOOLS 48-1

Nroff/Troff Reference Guide

Usage
The general form of invoking the nroff or troff formatter is:

nroff options filenames

or

troff options filenames

where options is any of a number of option arguments and filenames is the filenames
of the documents to be formatted. An argument consisting of a single minus sign
(-) is taken to be a filename corresponding to the standard input. Input is taken
from the standard input if no filenames are given. Options can appear in any order
so long as they appear before the files.

Nroff and Troff Options
OPTIONS

-olist

-nn

-Sn

-mname

48-2

EFFECT

Prints only pages whose page numbers appear in list, which
consists of comma-separated numbers and number ranges.

• A number range has the form n-m and means pages n
through m

• -n means from the beginning to page n

• n- means from page n to the end

Number the first generated page n.

Stop every n pages. The nroff formatter halts after every n pages
(default n = 1) to allow paper loading or changing and resumes
upon receipt of a newline. When using troff, you should use the
-s option on the postprocessor, if one exists.

Add the macro fife /usr/lib/tmac/tmac.name to the beginning of
the input files. Multiple -m macro package requests on a
command line are accepted and are processed in sequence.

-cname

-rar n

-i

-q

-z

-kn a me

Nroff/Troff Reference Guide

Add the compacted macro files
/usr/lib/macros/cmp.[nt). [dt) .name and
/usr/lib/macros/ucmp.[ntl.name to the beginning of the input
files. Multiple -c macro package requests on the command line
are accepted. The compacted version of macro package name is
used if it exists. If not, the nroff formatter tries the equivalent -
mname option instead. This option should be used instead of -m
because it makes the nroff formatter execute significantly faster.

Note: This option only applies to the nroff formatter.
Compacted macros are not supported with the troff
formatter.

Set register a (one character) ton.

Read standard input after the input files are exhausted.

Invoke the simultaneous input/output mode of the .rd request.

Suppress formatted output. Only message output occurs (from
.tm requests and diagnostics).

Produce a compacted macro package from this invocation of the
nroff formatter. This option has no effect if no .co request is
used in the nroff formatter input. Otherwise, the compacted
output is produced in files d.name and t.name.

Note: This option applies to nroff only. Compacted
macros are not supported with the troff formatter.

Options for Nroff Only
OPTIONS

-Tname

EFFECTS

Specify the name of the output terminal type. Currently, defined
names are:

Name Type

37 (default) TELETYPE Model 37

tn300 GE TermiNet 300 (or any terminal without half-line
capabilities)

300 DASI 300

300s DASI 300s

450 DASI 450

X9700 Xerox 9700 laser printer

X EBCDIC TX train printer

UTek TOOLS 48-3

Nroffflroff Reference Guide

-e

-h

-un

2631 Hewlett-Packard 2631 printer in regular mode

2631-c Hewlett-Packard 2631 printer in compressed mode

2631-e Hewlett-Packard 2631 printer in expanded mode

382 DCT-382 terminal

4000a TRENDATA 4000a terminal

832 Anderson Jacobson 832 terminal

Ip (generic) printers that can underline and tab

Produce equally spaced words in adjusted lines using full terminal
resolution.

Use output tabs during horizontal spacing to speed output and to
reduce output byte count. Device tab settings are assumed to be
every eight nominal character widths. The default settings of logical
input tabs are also every eight nominal character widths.

Set the emboldening factor (number of character overstrikes) in the
nroff formatter for the third font position (bold) to be n (zero if n is
missing).

Options for Troff Only
OPTIONS

-a

-Tname

-Fdir

EFFECT

Send a printable approximation of the results in the ASCII character
set to the standard output. This approximates a display of the
document.

Specifies the intended output device (phototypesetter). The default
output device is defined locally.

Font information is accessed from the directory dirldevlname where
name is the default output device. The default font information
directory is /usrlliblfontldevlname.

Each option is invoked as a separate argument. For example:

nroff -04,8-10 - T300s -mabc file I file2

This requests formatting of pages 4, 8, 9, and 1 O of a document contained in the
files named file/ and file2, specifies the output terminal as a DASI 300s, and invokes
the macro package abc.

48-4

Nroff/Troff Reference Guide

Preprocessors and Postprocessors
Various preprocessors and postprocessors are available for use with the nroff and
troff formatters:

• The equation preprocessor is neqn (for nroff).

• The table-construction preprocessor is tbl.

• A reverse-line postprocessor for multiple-column nroff formatter output on
terminals without reverse-line ability is col. The TELETYPE Model 37 escape
sequences that the nroff formatter produces by default are expected by col.

• The TELETYPE Model 37-simulator postprocessor for printing nroff formatter
output on a Tektronix 4014 is 4014.

• The phototypesetter-simulator postprocessor for the troff formatter that
produces an approximation of phototypesetter output on a Tektronix 4014 is tc.
For example, in:

tbl filenames : eqn l troff [options] l tc

the first : indicates the piping of tbl output to eqn input; the second l indicates
the piping of eqn output to the troff formatter input; and the third l indicates
the piping of the troff formatter output to the tc postprocessor.

Nroff/Troff Usage Guide

General Information

Form of Input
Under nroff and troff, control lines begin with a control character, normally a period
(.) or an acute accent ('), followed by a one- or two-character name that specifies a
basic request or the substitution of a user-defined macro in place of the control line.
The acute accent control character suppresses the break function (the forced output
of a partially filled line) caused by certain requests. Control characters can be
separated from request/macro names by white space (spaces and/or tabs) for
increased readability. Names must be followed by either a space or a newline
character. Control lines with unrecognized request/macro names are ignored.

UTek TOOLS 48-5

Nroff/Troff Reference Guide

Formatter and Device Resolution
The troff text processor uses the resolution of the phototypesetter for which its
output is being prepared (723 units/inch for the AUTOLOGIC APS-5 typesetter).

The nroff text processor internally uses 240 units/inch, corresponding to the least
common multiple of the horizontal and vertical resolutions of various typewriter-like
output devices. It rounds numerical input to the actual resolution of the output
device indicated by the -T option (default is TELETYPE Model 37).

Numerical Parameter Input
Both nroff and troff formatters accept numerical input with the appended scale
indicators shown in the following table, where s is the current type size in points, v is
the current vertical line spacing in basic units, and c is a nominal character width in
basic units.

Table 48-1
NROFF/TROFF SCALE INDICATORS

SCALE TROFF NROFF
INDICATOR MEANING Basic Units Basic Units

Inch 432 240
c Centimeter 432x50/127 240x50/127
p Pica= 1/6 inch 72 240/6
m em=s points Bxs
n en=em/2 3xs c, same as em
p Point= 1 /72 inch 6 240/72

Basic unit
v Vertical line space

none Default

In the nroff processor, both em and en are taken to be equal to c, which is output
device dependent; common values are 1/10 and 1112 inch. Actual character widths
in the nroff formatter need not be all the same. Constructed characters (such as ->)
are often extra wide. Default scaling is:

• m (em) for horizontally oriented requests (.II, .in, .ti, .ta, .It, .po, .me) and
functions (\h, \I)

48-6

Nroff/Troff Reference Guide

• v for vertically oriented requests {.pl, .wh, .ch, .dt, .sp, .sv, .ne, .rt) and
functions (\ v, \x, \l)

• p for .vs request

• u for .nr, .if, and .ie requests

All other requests ignore scale indicators. When a number register containing an
already scaled number is estimated to provide numerical input, the basic unit scale
indicator (u) may need to be appended to prevent an additional inappropriate default
scaling. The number n can be specified in decimal-fraction form; but the parameter
finally stored is rounded to an integer number of basic units.

The absolute position indicator (:) can be added before a number n to generate the
distance to the vertical or horizontal place n.

• For vertically-oriented requests and functions, :n becomes the distance in basic
units from the current vertical place on the page or in a diversion to the vertical
place n.

• For all other requests and functions, :n becomes the distance from the current
horizontal place on the input line to the horizontal place n.

For example:

.sp :3.2c

spaces in the required direction to 3.2 centimeters from the top of the page.

Numerical Expressions
Wherever numerical input is expected, an expression involving parentheses can be
used. The arithmetic operators are:

+, -, I, *, % (mod)

The logical operators are:

<, >, <=, >=, = (or ==) &(and), : (or)

Except where controlled by parentheses, evaluation of expressions is left to right;
there is no operator precedence. In the case of certain requests, an initial +or - is
stripped and interpreted as an increment or decrement indicator. In the presence of
default scaling, the desired scale indicator must be attached to every number in an
expression for which the desired and default scaling differ. For example, if the
number register x contains 2 and the current point size is 10, then:

.11 (4.25i+\nxP+J)/2u

sets the line length to 112 the sum of 4.25 inches + 2 picas + 3 ems (30 points
since the point size is 10.)

UTek TOOLS 48-7

Nroff/Troff Reference Guide

Notation
Numerical parameters are indicated in this section in two ways. A ± n means that
the argument can take the forms n, + n, or -n and that the corresponding effect is to
set the affected parameter ton, to increment it by n, or to decrement it by n,
respectively. Plain n means that an initial algebraic sign is not an increment
indicator but merely the sign of n. Generally, unreasonable numerical input is either
ignored or truncated to a reasonable value. For example, more requests expect to
set parameters to nonnegative values; exceptions are .sp, .wh, .ch, .nr, and .if.
The .ps, .ft, .po, .vs, .Is, .II, .in, and .It requests restore the previous parameter
value in the absence of an argument.

Single character arguments are indicated by single lowercase letters, and one- or
two-character arguments are indicated by a pair of lowercase letters. Character
string arguments are indicated by multicharacter mnemonics.

Font and Character Size Control

Fonts
Helvetica Regular, Helvetica Italic, and Helvetica Bold are among the many standard
fonts available. Special fonts such as Mathematical fonts may also be available.
The default fonts available with the troff formatter depend on the intended
phototypesetter. These font styles are shown in the following figure.

48-8

Nroff/Troff Reference Guide

Helvetica Regular

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"* +-.,/:; = ?[]
• D--_V41f23fai0t'¢®©

Helvetica Italic

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"* + -.,/:; = ?[]:
• D - - _ 1.4 Y2 314 ° t ' ¢ ®.©

Helvetic Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()" *+-.,/:;=?[]
• D--_1AV2 3A 0 t 1 ¢®©

Special Mathematical Font

,,,,-_§-I<>{}#@+ - =

a{3-yo1:f110iKAµ.v

~o7rp<JTv</>xl/;w
ABr..1EZY01KAMN
ZOilRETU<l>Xwn
-J-::s;;:?:=-::::::*+--+it
x-:-±Un•::J~2ooa§

VJE'.f: IOILIJ
~ 1-1 LJ 11

Figure 48-1. Example Font Styles.

The current font can be changed by use of the .ft request or by embedding at any
desired point either \fx, \f(xx, or \f n, where x and xx are the name of a font and n is
a numerical font position. With the troff formatter, the named font is loaded on font
position 0 if the font exists and is not currently mounted by default or by a .fp
request; but the font must still be in position O when the line is printed.

It is not necessary to change to the Special Font; characters on that font are
automatically handled.

UTek TOOLS
48-9

Nroff/Troff Reference Guide

The troff text processor can be informed that any particular font is to be mounted by
use of the .fp request. The list of know fonts is installation-dependent.

Font control is understood by the nroff formatter, which normally underlines italic
characters. Subsection Font Control Requests contains a summary and explanation
of font control requests.

In the subsequent discussion of font-related requests, f represents either a one- or
two-character font name or the numerical font positions 1 through 4. The current
font is available as numerical position in the read-only number register .f.

Character Set
The troff character set consists of the so-called Commercial II character set plus a
Special Mathematical font character set, each having 102 characters. All ASCII
characters are included with some of the Special Mathematical font. The ASCII
characters are input as themselves (with three exceptions); the three ASCII
character exceptions are mapped as shown in Table 48-2. Non-ASCII characters
are input in the form \(xx, where xx is a two-character name given in Tables 48-3
and 48-4.

Table 48-2
TROFF ASCII CHARACTER MAPPING

ASCII INPUT PRINTED BY TROFF

CHARACTER and NAME CHARACTER and NAME

' acute accent ' close quote
' grave accent ' open quote

minus sign - hyphen

The characters ', ', and - can be input by\', \', and \-, respectively, or by their
special code name equivalents. The ASCII characters @ # " ' ' < > \ { } - - and _
exist on the Special Mathematical font and are printed as a one em space if that font
is not mounted.

48-10

Nroff/Troff Reference Guide

The nroff text preprocessor understands the entire troff character set but can only
print:

• ASCII characters

• Additional characters as available on the output device

• Characters that can be constructed by overstriking or other combinations

• Characters that can reasonably be mapped into other printable characters

Exact behavior is determined by a device driver table prepared for each device. The
characters ', ', and _ print as themselves.

Table 48-3
STANDARD CONVENTION FOR NON-ASCII CHARACTERS

CHARACTER INPUT CHARACTER
NAME NAME

open quote
close quote

\(em 3,4 em dash
hyphen

\(hy hyphen
\(mi current font minus

• \(bu bullet
D \(sq square

\(ru rule
V4 \(14 one-fourth
112 \(12 one-half
3,4 \(34 three-fourths

\(fi ligature
\(fl ligature

ff \(ff ligature

ffi \(Fi ligature

ffl \(Fl ligature
\(de degree

t \(dg dagger
\(fm foot mark
\(Ct cent sign

® \(rg registered
© \(co copyright

UTek TOOLS 48-11

Nroff/Troff Reference Guide

Table 48-4
NON-ASCII CHARACTERS IN SPECIAL FONT

CHARACTER INPUT CHARACTER
NAME NAME

+ \(pl plus sign
\(mi minus sign
\(eq equal sign
\(.. asterisk (multiply)

§ \(SC section
\(aa acute accent
\(ga grave accent
\(UI underline
\(SI slash

°' \(*a alpha
13 \(*b beta

'Y \(*g gamma
0 \(*d delta

\(*e epsilon

r \(•z zeta

Y/ \(•y eta
(} \(.h theta

\(.i iota
\(•k kappa

A \(·1 lambda
µ \(•m mu

\(*n nu
\(*c xi
\(*o omicron
\(*p pi

p \(*r rho
\(*s sigma
\(*t tau
\(*u upsilon

<P \(*f phi
x \(*x chi

"'
\(*q psi
\(*w omega

48-12

Nroff/Troff Reference Guide

Table 48-5
NON-ASCII CHARACTERS IN SPECIAL FONT

CHARACTER INPUT CHARACTER
NAME NAME

A A Alpha
B B Beta
r \(*G Gamma
fl. \(*D Delta
E E Epsilon
z z Zeta
y y Eta
e \(*H Theta

I Iota
K K Kappa
A \(*L Lambda
M M Mu
N N Nu

- \(*C Xi
0 0 Omicron
n \(*P Pi
R R Rho
I: \(*S Sigma
T T Tau
u u Upsilon
q, \(*F Phi
x x Chi
qr \(*Q Psi
fl \(*W Omega
~ \(Sr square root

\(rn root extender
2': \(>= greater than or equal to
:5 \(<= less than or equal to

\(= = identically equal

\Ce approximately equal
\(ap approximates

* \(!= not equal
\(-> right arrow
\(<- left arrow

UTek TOOLS 48-13

Nroffflroff Reference Guide

Table 48-6
NON-ASCII CHARACTERS IN SPECIAL FONT

CHARACTER INPUT CHARACTER
NAME NAME

\(ua up arrow
\(da down arrow

x \(mu multiply
\(di divide

± \(+- plus-minus
u \(cu cup (union)
n \(ca cap (intersection)

• \(Sb subset of
:::> \(Sp superset of
~ \(ib equal subset
2 \(ip equal superset

\(if infinity
\(pd partial derivative

v \(gr gradient

I \(is integral sign

0 \(es empty set
\(mp member of

:J: \(dd double dagger
.... \(rh right hand
~ \(lh left hand
I \(or or

0 \(ci circle
(\(It left top (big brace)

L \(lb left bottom (big brace)

I \(rt right top (big brace)
j \(rb right bottom (big brace)

~ \(lk left center (big brace)

~ \(rk right center (big brace)

I \(bv bold vertical

L \(If left floor (big bracket)

J \(rf right floor (big bracket)

I \(le left ceiling (big bracket)

l \(re right ceiling (big bracket)

48-14

Nroff/Troff Reference Guide

Character Size
Character sizes with the troff formatter depend on the phototypesetter installation.
The .ps request is used to change or restore the point size. Alternatively, the point
size can be changed between any two characters by embedding a \Sn at the desired
point to set the size ton, or a \Sn (1 ::5n::59) to increment/decrement the size by n;
\SO restores the previous size.

With nroff, requested point size values that are between the two valid sizes yield the
closer of the two. The current size is available in the .s number register. The nroff
formatter ignores type size control. Subsection Character Size Control Requests
contains a summary and explanation of character size requests.

Page Control
Top and bottom margins are not automatically provided. They can be defined by
two macros that set traps at vertical positions 0 (top) and -n (n from the bottom). A
pseudopage transition onto the first page occurs either when the first break occurs
or when the first nondiverted text processing occurs. Arrangements for a trap to
occur at the top of the first page must be completed before this transition. A
summary and explanation of page control requests is given later in this section.
References to the current diversion mean that the mechanism being described
works during both ordinary and diverted output (the former is considered as the top
diversion level).

Usable page width differs among phototypesetters. The left margin begins about
1127 inch from the edge of the eight-inch wide, continuous roll page. Physical
limitations on the nroff text processor output are output-device dependent.

UTek TOOLS 48-15

Nroff/Troff Reference Guide

Text Filling, Adjusting, and Centering

Filling and Adjusting
Normally, words are collected from input text lines and assembled into. an output
text line until some word does not fit. An attempt can be made to hyphenate the
word in an effort to assemble a part of it into the output line. The spaces between
the words on the output line are increased to spread out the line to the current line
length minus any current indent. A word is any string of characters delimited by the
space character or the beginning/end of the input line. Any adjacent pair of words
that must be kept together (neither split across output lines nor spread apart in the
adjustment process) can be tied together by separating them with the unpaddable
space backslash-space character (\). The adjusted word spacings are uniform in
the troff formatter, and the minimum interword spacing can be controlled with the
.ss request. In the nroff formatter, they are normally nonuniform because of
quantization to character-size spaces; however, the command line option -e causes
uniform spacing with full output device resolution. Filling, adjustment, and
hyphenation can all be prevented or controlled. The text length on the last line
output is available in the .n number register, and text base-line position on the page
is in the nl number register. The text base-line high-water mark (lowest place) on the
current page is in the .h register.

An input text line ending with ., ?, :, or! is taken to be the end of a sentence, and
an additional space character is automatically provided during filling. Multiple
interword space characters found in the input are retained, except for trailing
spaces; initial spaces also cause a break.

When filling is in effect, a \P escape sequence can be embedded in or attached to a
word to cause a break at the end of the word and have the resulting output line
spread out to fill the current line length.

A text input line that happens to begin with a control character can be differentiated
from a control line by prefacing it with the nonprinting, zero-width filler character \&.
Another way is to specify output translation of some convenient character into the
control character using the .tr request.

For example, if you specify the following on the input line, you can create a blank
space wherever the tilde character n appears in text thereafter:

. tr-<space>

If you want a tilde to appear literally in the text, enter the following on the input line
to reinstate the character:

.tr--

48-16

Nroff/Troff Reference Guide

Interrupted Text
Copying of an input line in no-fill mode can be interrupted by terminating the partial
line with a \C escape sequence. The next encountered input text line is considered
to be a continuation of the same line of input text. Similarly, a word within filled text
can be interrupted by terminating the word (and line) with \c; the next encountered
text is taken as a continuation of the interrupted word. If the intervening control
lines cause a break, any partial line is forced out along with any partial word. A
summary and explanation of filling, adjusting, and centering requests is found later
in this section.

Vertical Spacing

Base-line Spacing
Vertical spacing size (v) between base lines of successive output lines can be set
using the .vs request. Spacing size must be large enough to accommodate
character sizes on affected output lines. For the common type sizes (9 through 12
points), usual typesetting practice is to set v to two points greater than the point
size; troff default is 10-point type on a 12-point spacing. The current v is available
in the .v register. Multiple-v line separation (such as double spacing) can be
obtained with a .Is request.

Extra Line Space
If a word contains a vertically tall construct requiring the output line containing it to
have extra vertical space before and/or after it, the extra line space function ex'n' can
be embedded in or attached to that word. In this and other functions having a pair
of delimiters around their parameter, the delimiter choice is arbitrary except that it
cannot look like the continuation of a number expression for n.

• If n is negative, the output line containing the word is preceded by n extra
vertical spaces.

• If n is positive, the output line containing the word is followed by n extra vertical
spaces.

• If successive requests for extra space apply to the same line, the maximum value
is used.

UTek TOOLS 48-17

Nroff/Troff Reference Guide

Blocks of Vertical Space
A block of vertical space is ordinarily requested using .sp, which honors the no
space mode and does not space past a trap. A block of vertical space can be
reserved using the .sv request.

A summary and explanation of vertical spacing requests is found later in this
section.

Line Length and Indenting
The maximum line length for fill mode can be set with the .II request. The indent
can be set with a .in request; an indent applicable to only the next output line can
be set with the .ti request. The line length includes indent space but not page-offset
space. The line length minus the indent is the basis for centering with the .ce
request. If a partially collected line exists, the effect of .II, .in or .ti is delayed until
after that line is output. In fill mode, the length of text on an output line is less than
or equal to the line length minus the indent. The current line length and indent are
available in registers .I and .i, respectively. The length of three-part titles produced
by .ti is independently set by .It. A summary and explanation of line length and
indenting requests is found later in this section.

Macro, Strings, Diversions, and Traps

Macros and Strings
A macro is a named set of arbitrary lines that can be invoked by name or with a trap.
A string is a named string of characters, not including a newline character, that can
be added by name at any point. Request, macro, and string names share the same
name list. Macro and string names can be one- or two-characters long and can
use previously-defined request, macro, or string names. Any of these entities can
be renamed with .rn or removed with .rm.

• Macros are created by .de and .di and added to by .am and .da (.di and .da
cause normal output to be stored in a macro).

• Strings are created by .ds and added to by .as.

A macros is invoked in the same way as a request; a control line beginning .xx
interpolates the contents of macro xx. The remainder of the line can contain up to
nine arguments. The strings x and xx are interpolated at any desired point with \ *x
and *(xx, respectively. String references and macro invocations can be nested.

48-18

Nroff/Troff Reference Guide

Copy Mode Input Interpretation
During the definition and extension of strings and macros (not by diversion), the
input is read in copy mode. The input is copied without interpretation except that:

• Contents of number registers indicated by \n are interpolated

• Strings indicated by \ * are interpolated

• Arguments indicated by\$ are interpolated

• Concealed newline characters indicated by \<newline> are eliminated

• Comments indicated by \" are eliminated

• \t and \a are interpreted as ASCII horizontal tab and start of heading (SOH),
respectively

• \ \ is interpreted as a single backslash \

• \. is interpreted as a single dot (.)

These interpretations can be suppressed by adding a backslash character \ before.
For example, since \ \ maps into a\, \ \n copies as \n and is interpreted as a
number register indicator when the macro or string is reread.

Arguments
When a macro is invoked by name, the remainder of the line can contain up to nine
arguments. The argument separator is the space character, and arguments can be
surrounded by quotation marks (" ") to permit embedded space characters. Pairs
of quotation marks can be embedded in quoted arguments to represent a single
quotation mark ("). If the desired arguments do not fit on a line, a concealed
newline character can be used to continue on the next line.

When a macro is invoked, the input level is pushed down and any arguments
available at the previous level become unavailable until the macro is completely read
and the previous level is restored. A macro's own arguments can be interpolated at
any point within the macro with \$n, which interpolates the nth argument (1 ::5 n ::5 9).
If an invoked argument does not exist, a null string results. For example, the macro
xx can be defined by:

de xx \" begin definition
Today is \\$1 the \\ $2.

\" end definition

and called by:

.xx Monday 14th

to produce the text:

Today is Monday the 14th.

UTek TOOLS 48-19

Nroff/Troff Reference Guide

The\$ was concealed in the definition with a double backslash. The number of
currently available arguments is in the .$ register.

• No arguments are available at the top (nonmacro) level in this implementation.

• No arguments are available from within a string because string referencing is
implemented as an input-level pushdown.

• No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for
reference. The mechanism does not allow an argument to contain a direct reference
to a long string (interpolated at copy time), and you should conceal string references
(with an extra backslash\) to delay interpolation until argument reference time.

Diversions
Processed output can be diverted into a macro for purposes such as footnote
processing or determining the horizontal and vertical size of some text for
conditional changing of pages or columns. A single diversion trap can be set at a
specified vertical position. The number registers .dn and .di, respectively, contain
the vertical and horizontal size of the most recent diversion. Processed text that is
diverted into a macro retains the vertical size of each of its lines when reread in no
fill mode regardless of the current v. Constant-spaced (.cs) or emboldened (.bd)
text that is diverted can be reread correctly only if these modes are again or still in
effect at reread time. One way to do this is to embed in the diversion the
appropriate .cs or .bd request with the transparent mechanism described in
subsection Transparent Throughput.

Diversions can be nested. Certain parameters and registers are associated with the
current diversion level (the top nondiversion level can be thought of as diversion
level 0). These parameters and registers are:

• Diversion trap and associated macro

• No-space mode

• Internally saved marked place (see .mk and .rt)

• Current vertical place (.d register)

• Current high-water text base line (.h register)

• Current diversion name (.z register)

48-20

Nroff/Troff Reference Guide

Traps
Three types of trap mechanisms are available:

• Page trap

• Diversion trap

• Input-line-count trap

These macro-invocation traps can be planted using .wh requests at any page
position including the top. This trap position can be changed using the .ch request.
Trap positions at or below the bottom of the page have no effect until moved to
within the page or rendered effective by an increase in page length. Two traps can
be planted at the same position only by first planting them at different positions and
then moving one of the traps; the first planted trap conceals the second until the first
one is moved. If the first planted trap is moved back, it again conceals the second
trap. The macro associated with a page trap is automatically invoked when a line of
text is output whose vertical size reaches or sweeps past the trap position.
Reaching the bottom of a page springs the top-of-page trap, if any, provided there
is a next page. The distance to the next trap position is available in the .t register; if
there are no traps between the current position and the bottom of the page, the
distance returned is the distance to the page bottom.

Macro-invocation traps, effective in the current diversion, can be planted using .dt
requests. The .t register works in a diversion. If there is no subsequent trap, a
large distance is returned

A summary and explanation of macros, strings, diversion, and position traps
requests is found later in this section.

Number Registers
A variety of predefined number registers are available to you. In addition, you can
define named registers. Register names are one- or two-characters long and must
not conflict with request, macro, or string names. Except for certain predefined
read-only number registers, a number register can be read, written, automatically
incremented or decremented, and interpolated into the input in a variety of formats.
One common use of user-defined registers is to automatically number sections,
paragraphs, lines, and so forth. A number register can be used any time numerical
input is expected or desired and can be used in numerical expressions.

Number registers are created and modified using the .nr request, which specifies
name, numerical value, and automatic increment size. Registers are also modified if
accessed with an automatic incrementing sequence. When the registers x and xx
both contain n and have the automatic increment size m, the Table 48-7 shows the
values interpolated for the indicated access sequences.

UTek TOOLS 48-21

Nroff/Troff Reference Guide

Table 48-7
NROFF/TROFF NUMBER REGISTER INTERPOLATION

SEQUENCE EFFECT ON VALUE
REGISTER INTERPOLATED

\nx none n
\n(xx none n
\nx x incremented by m n+m
\n-x x decremented by m n-m
\n+(xx xx incremented by m n + m
\n-(xx xx incremented by m n-m

According to the format specified by the .af request, a number register is converted
(when interpolated) to:

• Decimal (default)

• Decimal with leading zeros

• Lowercase Roman

• Uppercase Roman

• Lowercase sequential alphabetic

• Uppercase sequential alphabetic

A summary and explanation of number register requests is found later in this
section.

Tabs, Leaders, and Fields

Tabs and Leaders
The ASCII horizontal tab character and the ASCII SOH character (the leader) can
both be used to generate either horizontal motion or a string of repeated characters.
The length of the generated entity is governed by internal tab stops specified with a
.ta request. The default difference is that tabs generate motion and leaders
generate a string of periods; .tc and .le offer the choice of repeated character or
motion. There are three types of internal tab stops: left-justified, right-justified, and
centered. In Table 48-8:

• next-string consists of the input characters following the tab (or leader) up to the
next tab (or leader) or end of line

48-22

Nroff/Troff Reference Guide

• d is the distance from the current position on the input line (where a tab or leader
was found) to the next tab stop

• w is the width of next-string

TAB
TYPE

Left
Right
Centered

Table 48-8
NROFF/TROFF TAB TYPES

LENGTH OF MOTION OR LOCATION OF
REPEATED CHARACTERS next-string

d Following d
d-w Right-justified within d

d-w/2 Centered on right end of d

The length of generated motion can be negative but that of a repeated character
string cannot be. Repeated character strings contain an integer number of
characters, and any residual distance is appended as motion. Tabs (or leaders)
found after the last tab stop are ignored, but they may be used as next-string
terminators.

Tabs and leaders are not interpreted in copy mode. The \t and \a always generate
a noninterpreted tab and leader, respectively, and are equivalent to actual tabs and

. leaders in copy mode.

Fields
A field is contained between a pair of field delimiter characters. It consists of
substrings separated by padding indicator characters. The field length is the
distance on the input line from the position where the field begins to the next tab
stop. The difference between the total length of all the substrings and the field
length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding can be negative. For example,
if the field delimiter is # and the padding indicator is a caret - , then:

1r xxx -right#

specifies a right-justified string with the string xxx centered in the remaining space.

A summary and explanation of tab, leader, and field requests is found later in this
section.

UTek TOOLS 48-23

Nroff/Troff Reference Gulde

Input/Output Conventions and Character
Translations

Input Character Translations
The newline character delimits input lines. In addition, STX, ETX, ENQ, ACK, and
BEL are accepted and can be used as delimiters or translated into a graphic with a
.tr request. All others are ignored.

The backslash or "escape" character (\), introduces sequences that cause the
following character to mean another character or to indicate some function. The
backslash:

• should not be confused with the ASCII control character ESC of the same name

• can be input with the sequence \ \

• can be changed with .ec, and all that has been said about the default \ becomes
true for the new escape character.

A \e sequence can be used to print the current backslash character. If necessary or
convenient, the escape mechanism can be turned off with .eo and restored with .ec.

Ligatures
Five ligatures are available in the troff character set: , , , , and . They can be input
(even in the nroff formatter) by \(fi, \(fl, \(ff, \(Fi and \(Fl, respectively. The
ligature mode is normally on in the troff formatter and automatically invokes
ligatures during input.

Backspacing, Underlining, and Overstriking
Unless in copy mode, the ASCII backspace character is replaced by a backward
horizontal motion having the width of the space character. Underlining is a form of
line drawing and is a generalized overstriking function.

The nroff text processor underlines characters automatically in the underline font,
specifiable with the .uf request. The underline font is normally on font position 2. In
addition to the .ft request and the \fF escape sequence, the underline font can be
selected by the .ul and .cu requests. Underlining is restricted to an output-device
dependent subset of reasonable characters.

48-24

Nroff/Troff Reference Gulde

Control Characters
Both the break control character(.) and the no-break control character(') can be
changed, if desired. Such a change must be compatible with the design of any
macros used in the span of the change and particularly of any trap-invoked macros.

Output Translation
One character can be made a substitute for another character using the .tr request.
All text processing (such as character comparisons) takes place with the input
(substitute) character that appears to have the width of the final character. Graphic
translation occurs at the moment of output (including diversion). Included later in
this section is a summary and explanation of the output translation request.

Transparent Throughput
An input line beginning with a \! is read in copy mode and transparently output
(without with initial \!); the text processor is otherwise unaware of the line's
presence. This mechanism can be used to pass control information to a
postprocessor or to embed control lines in a macro created by a diversion.

Comments and Concealed Newline
Characters
A long input line that must stay on one line (for example, a string definition or no
filled text) can be split into many physical lines by ending all but the last one with
the backslash\. The sequence \<newline> is ignored except in a comment.
Comments can be embedded at the end of any line by prefacing them with \ 11 • The
newline character at the end of a comment cannot be concealed. A line beginning
with \" appears as a blank line and behaves like .sp 1; a comment can be on a line
by itself if you put a .\" at the beginning of the line.

UTek TOOLS 48-25

Nroff/Troff Reference Guide

Local Horizontal/Vertical Motion and Width
Function

Local Motion
The function \V'n' and \h'n' can be used for local vertical and horizontal motion,
respectively. The distance n may be negative; the positive directions are rightward
and downward. A local motion is one contained within a line. To avoid unexpected
vertical dislocati.ons, the net vertical local motion (within a work in filled text and
otherwise within a line) must balance to zero. Certain escape sequences providing
local motion are summarized and explained in the Tables 48-9 and 48-10.

48-26

Table 48-9
VERTICAL LOCAL MOTIONS

EFFECT IN EFFECT IN
FUNCTION TROFF NROFF

\v'n' Move distance n

\U 1/2 em up 1/2 line up
\d 1/2 em down 1 /2 line down

\r 1 em up 1 line up

Table 48-10
HORIZONTAL LOCAL MOTIONS

EFFECT IN EFFECT IN
FUNCTION TROFF NROFF

\h'n' Move distance n (same as troff)
\<Space> Unpaddable space-sized space (same as troff)
\0 Digit-size space (same as troff)

\: 1/6 em space ignored

\ 1/12 em space ignored

Nroff/Trott Reference Guide

Width Function
The width function \w'string' generates the numerical width of string (in basic units).
Size and font changes can be embedded in string and do not affect the current
environment. For example:

.ti-\ w'L 'u

could be used to indent leftward, temporarily, a distance equal to the size of the 1.
string.

The width function also sets three number registers. The registers st and sb are set
to the highest and lowest extent of string relative to the baseline respectively; then,
for example, the total height of the string is \n(stu-\n(sbu. In the troff formatter, the
number register ct is set to a value between 0 and 3:

• 0 means that all characters in string are short lowercase characters without
descenders (like e).

• 1 means that at least one character has a descender (like y).

• 2 means that at least one character is tall (like H).

• 3 means that both tall characters and characters with descenders are present.

Mark Horizontal Place
The escape sequence \kx causes current horizontal position in the input line to be
stored in register x. As an example, the construction:

\kxword\h, l\nxu+2u'word

boldfaces word by backing up to almost its beginning and overprinting it, resulting in
word.

Special Font Functions

Overstrike
Automatically centered overstriking of up to nine characters is provided by the
overstrike function \o'string'. Characters in string are overprinted with centers
aligned; the total width is that of the widest character. The string should not contain
local vertical motion. For example, \o'\(ci\(pl' produces(±).

UTek TOOLS 48-27

Nroff/Troff Reference Guide

Zero-Width Characters
The function \zc outputs c without spacing over it and can be used to produce left
aligned overstruck combinations. As an example, \(br\z\(rn\(ul\(br produces the
smallest possible constructed box D .

Large Brackets
The Special Mathematical font contains a number of bracket construction pieces that
can be combined into various bracket styles. The function \b'string' can be used to
pile up vertically the characters in string (the first character on top and the last at the
bottom); the characters are vertically separated by one em and the total pile is
centered one-half em above the current base line (one-half line in the nroff
formatter).

Line Drawing
The \l'nc' function draws a string of repeated e's toward the right for a distance n (I
is lowercase L).

• If c looks like a continuation of an expression for n, it may be insulated from n
with a backslash ampersand (\&).

• If c is not specified, the base-line rule (_) is used (underline character in nroff).

• If n is negative, a backward horizontal motion of size n is made before drawing
the string.

Any space resulting from nl(size of c) having a remainder is put at the beginning (left
end) of the string. In the case of characters that are designed to be connected,
such as base-line rule _, underrule \(ul, and root en \(ru, the remainder space is
covered by overlapping. If n is less than the width of c, a single c is centered on a
distance n. As an example, a macro to underscore a string can be written:

such that

.de us
\\$1\l' lO\ul'

.us "underlined words"

yields words that are underlined.

48-28

Nrottnroff Reference Guide

The function \l'nc' draws a vertical line consisting of the optional character c
stacked vertically one em apart (one line in nroff), with the first two characters
overlapped, if necessary, to form a continuous line. The default character is box
rule \(br; the other suitable character is bold vertical \(bv. The line is begun without
any initial motion relative to the current base line. A positive n specifies a line
drawn downward, and a negative n specifies a line drawn upward. After the line is
drawn, no compensating motions are made; the instantaneous base line is at the
end of the line.

The horizontal and vertical line drawing functions can be used in combination to
produce large boxes. The zero-width box-rule and the one-half em wide underrule
were designed to form corners when using one em vertical spacings. For example,
the macro:

.de eb

.sp -1 \" compensate for next automatic base-line spacing

.nf \" avoid possibly overflowing word buffer
\h' -.5n'\L' l\\nau-1 '\l\\n(.lu+ln\(ul'\L'-1
\\nau+l'\1' IOu-.5n\(ul'
.fi

draws a box around some text whose beginning vertical place was saved in number
register x (for example, using .mk x).

Hyphenation
The automatic hyphenation can be switched off and on. When switched on with .hy,
several variants can be set. A hyphenation indicator character can be embedded in
a word to specify desired hyphenation points or can be prepended to suppress
hyphenation. In addition, you may specify a small exception word list. The default
condition of hyphenation is off.

Only words that consist of a central alphabetic string surrounded by nonalphabetic
strings (usually null) are considered candidates for automatic hyphenation. Words
that were input containing hyphens (\(mi), em-dashes (\(em), or hyphenation
indicator characters (such as the hyphens in mother-in-law) are always subject to
splitting after those characters whether or not automatic hyphenation is on or off. A
summary and explanation of hyphenation requests is found later in this section.

UTek TOOLS 48-29

Nroff/Troff Reference Guide

Three-part Titles
The titling function .ti provides for automatic placement of three fields at the left,
center, and right of a line with a title length specifiable with .It. The .ti can be used
anywhere and is independent of the normal text-collecting process. A common use
is in header and footer macros. A summary and explanation of three-part title
requests is found later in this section.

Output Line Numbering
Automatic sequence numbering of output lines can be requested with .nm. When in
effect, a three-digit, Arabic number plus a digit space is added before output text
lines. Text lines are offset by four digit spaces and otherwise retain their line length.
A reduction in line length may be desired to keep the right margin aligned with an
earlier margin. Blank lines, other vertical spaces, and lines generated by .ti are not
numbered. Numbering can be temporarily suspended with .nn or with a .nm
followed by a later .mn +0. In addition, a line number indent I and the number-text
separations can be specified in digit spaces. Further, if can be specified that only
those line numbers that are multiples of some number m are to be printed (the
others appear as blank number fields). A summary and explanation of output line .
numbering requests is found later in this section.

The following figure is an example of output line numbering. Paragraph portions are
numbered with m = 3.

48-30

Nroffflroft Reference Guide

Automatic sequence numbering of output lines can be
requested with .nm. Trlhen in effect, a three-digit,

J Arabic number plus a digit-space is added before output
text lines. Text lines are offset by four digit-spaces
and otherwise retain their line length. A reduction in

6 line length may be desired to keep the right margin aligned
with an earlier margin. Blank lines, other vertical spaces,
and lines generated by .ti are not numbered. Numbering

9 can be temporarily suspended with .nn or with a .nm
followed by a later .nm +O. In addition, a line number
indent I and the number-text separation s can be

12 specified in digit-spaces. Further, it can be specified that
only those line numbers that are multiples of some number rn
are to be printed (the others appear as blank number fields).

15 As an example of output line numbering, paragraph portions
of this figure are numbered with rn=J: .nm 1 3 was
placed at the beginning; .nm was placed at the end of the

18 first paragraph; and .nm +O was placed in front of this
paragraph; and .nm placed at the end. Another example is
.nm +5 5 x 3, which turns on numbering with the line number

21 of the next line to be five greater than the last numbered line,
with tn=5, spacing s untouched, and the indent I
set to J.

Figure 48-2. Example of Output Line Numbering.

For this figure,

• .nm 1 3 was placed at the beginning

• .nm +O was placed in front of the second and third paragraphs

• .nm was placed at the end

Another example is:

.nm +5 5 x 3

which turns on numbering with the line number of the next line to be five greater
than the last numbered line, with rn:::; 5, spacings untouched, and the indent I set to
3.

UTek TOOLS 48-31

Nroff/Troff Reference Guide

Conditional Acceptance of Input
A summary and explanation of conditional acceptance requests where:

• c is a one-character, built-in condition name

• ! signifies not

• n is a numerical expression

• stringl and string2 are strings delimited by any nonblank, nonnumeric character
not in the strings

• anything represents what is conditionally accepted

Built-in condition names are shown in the Table 48-11:

Table 48-11
NROFF/TROFF BUil T -IN CONDITION NAMES

CONDITION TRUE IF
NAME

o Current page number is odd
e Current page number is even

Formatter is troff
n Formatter is nroff

If condition c is true, if number n is greater than zero, or if strings compare
identically (including motions and character size and font), anything is accepted as
input. If an exclamation point (!) precedes the condition, number, or string
comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over.
The anything can be either a single input line (text, macro, or whatever) or a number
of input lines. In the multiline case, the first line must begin with a \ { (left delimiter),
and the last line must end with a\} (right delimiter). If the left delimiter is the last
thing on that line, the following newline should be concealed with a backslash \, or a
blank line may be output.

The request .ie (if-else) is identical to .if except that the acceptance state is
remembered. A subsequent and matching .el (else) request then uses the reverse
sense of that state. The paired .ie and .el may be nested. For example:

48-32

.if e .tl 'Even page % ' , ,

outputs a title if the page number is even, and

• ie\n%>1 \ {\
'sp 0.51
.tl 'Page % ,
'sp :i.21\}
.el .sp:2.5i

treats Page 1 differently from other pages.

Environment Switching

Nroff/Troff Reference Guide

A number of parameters that control text processing are gathered together into an
environment that can be switched by you. Environment parameters are those
associated with some requests. In addition, partially collected lines and words are in
the environment. Everything else is global; examples are page-oriented
parameters, diversion-oriented parameters, number registers, and macro and string
definitions. All environments are initialized with default parameter values. A
summary and explanation of the environment switching request is found later in this
section.

Insertions from Standard Input
The input can be switched temporarily to the system standard input with .rd and
switched back when two newline characters in a row are found (the extra blank line
is not used). This mechanism is intended for insertions in form-letter-like
documentation. On the UTek system, the standard input can be the user keyboard,
a pipe, or a filename.

If insertions are to be taken from the terminal keyboard while output is being printed
on the terminal, the command line option -q turns off the echoing of keyboard input
and prompt only with BEL. The regular input and insertion input cannot
simultaneously come from the standard input. As an example, multiple copies of a
form letter can be prepared by entering insertions for all copies in one file to be
used as the standard input and causing the file containing the letter to reinvoke itself
by using the .nx request. The process would be ended by a .ex request in the
insertion file. A summary and explanation of insertions from the standard input
requests is found later in this section.

UTek TOOLS 48-33

Nroff/Troff Reference Guide

Input/Output File Switching
Because of its simplicity, a description of input/output file switching is not included
here. A summary and explanation of its requests is found later in this section.

Output and Error Messages
Output from .tm, .pm, and prompts from .rd, as well as various error messages are
written onto the UTek standard output and error (message) output. By default, both
are written onto your terminal, but they can be independently redirected.

Various error conditions can occur during the operation of the nroff and troff
formatters. Certain less serious errors having only local impact do not cause
processing to terminate. Two examples are:

• word overflow- caused by a word that is too large to fit into the word buffer (in
fill.mode).

• line overflow- caused by an output line that grew too large to fit in the line
buffer.

In both cases, a message is printed, and the offending excess is discarded. The
affected word or line is marked at the point of truncation with an * (in nroff). The
philosophy is to continue processing, if possible, on the grounds that output useful
for debugging may be produced. If a serious error occurs, processing ends and an
appropriate message is printed. Examples are the inability to create, read, or write
files, and the exceeding of certain internal limits that make future output unlikely to
be useful. A summary and explanation of output and error message requests is
found later in this section.

Nroff Compacted Macros
The time required to read a macro package by the nroff formatter can be lessened
by using a compacted macro (a preprocessed version of a macro package). The
compacted version is equivalent to the noncompacted version, except that a
compacted macro package cannot be read by the .so request. A compacted version
of a macro package, called name, is used by the -cname command line option, while
the uncompacted version is used by the -mname option. Because -cname defaults
to -mname if the name macro package has not been compacted, you should always
use -c rather than -m.

4B-34

Nroff/Troff Reference Gulde

Building a Compacted Macro Package
Only macro, string, diversion definitions, number register definitions and values,
environment settings, and trap settings can be compacted. End macro (em) request
and any commands that may interact during package interpretation with command
line settings (such as references in the MM package to the number register P, which
can be set from the command line) are not compactable.

There are two steps to make a compacted macro from a macro package:

1. Separate compactable from noncompactable parts.

2. Place noncompactable material at the end of the macro package with a .co
request. The .co request indicates to the nroff formatter when to compact its
current internal state.

Compactib/e Material

.co
Noncompactible Material

Produce Compacted Files
When compactable and noncompactable segments have been established, the nroff
formatter may be run with the -k option to build the compacted files. For example,
if the output file to be produced is called mac, the following may be used to build the
compacted files:

nroff -kmac mac

This command causes the nroff formatter to create two files in the current directory,
d.mac and t.mac.

NOTE
When nroff is complied with the INCORE option (which is

the default) only one file, d.mac, is created. In this case,
only d.mac should be installed, ignoring the missing t.mac.

The macro file must contain a .co request. Only lines before the .co request are
compacted. Both -k and .co are necessary. If no .co is found in the file, the -k is
ignored. Likewise, if no -k appears on the command line, the .co is ignored.

UTek TOOLS 48-35

Nroff/Troff Reference Guide

Each macro package must be compacted separately by the nroff formatter.
Compacted macro packages depend on the particular version of the nroff formatter
that produced them. Any compacted macro packages must be recompacted when a
new version of an nroff formatter is installed. If a macro package was produced by
a different version than the one attempting to read it, the -c is abandoned and the
equivalent -m option is attempted instead.

Install Compacted Files
The two compacted files, d.mac and t.mac, must be installed into the system macro
library, lusrlliblmacros, with the proper names. If the files were produced by an
nroff formatter, cmp.n must be added before their names. For example, if the
macro package is called mac, the two nroff formatter compacted files may be
installed by:

cp d.man /usr/lib/macros/cmp.n.d.mac

and

cp t.mac /usr/lib/macros/cmp.n.t.mac

Install Noncompactable Segment
The noncompactable segment from the original macro package must be installed on
the system as:

/usr/lib/macros/ucmp. [nt]. mac

where n of [nt] means the nroff formatter version, and the t means the troff
formatter version. The noncompactable segment must be produced manually by
using the editor. Using the mac package as an example, the following could be
used to install the nroff formatter noncompactable segment:

$ ed mac
/-\.co$/+,$w /usr/lib/macros/ucmp.n.mac

48-36

Nroff/Troff Reference Guide

Nroff/Troff Escape Sequences
Various special functions can be introduced anywhere in the input by means of an
escape character (the backslash\). For example, the function \nr causes the
interpolation of the contents of the number register r in place of the function.
Number register r is either x for a single letter register name or (xx for a two
character register name. The later discussion, Nroff/Troff Escape Sequences,
itemizes escape sequences for characters, indicators, and functions.

INPUT TRANSLATES TO:

\ \ \ (to prevent or delay the interpretation of\)

\' Acute accent; equivalent to \(aa

\' Grave accent; equivalent to \(ga

\- Minus sign in the current font

\. Period (dot)

\<space> Unpaddable space-sized space character

\0 Unpaddable digit-width space

\ : 1 /6 em marrow space character (zero width in the nroff formatter)

\ 1 /12 em half-narrow space character (zero width in the nroff formatter)

\& Nonprinting zero-width character

\! Transparent line indicator

\" Beginning of comment

\$n Interpolate argument (1 ::; n ::; 9)

\ % Default optional hyphenation character

\(xx Character named xx

\ *x, *(xx Interpolate string x or xx

\ { Begin conditional input

\} End condition input

\<newline> Concealed (ignored) newline character

\a Noninterpreted leader character

\b' abc . .. ' Bracket building function

\c Continuation of interrupted text

\d Forward (down) 112 em vertical motion (1/2 line in the nroff formatter)

UTek TOOLS 4B-37

Nrottnroff Reference Guide

\D'I dh dv' Draw a line from the current position by dh, dv.

\D'c d' Draw a circle of diameter d with left side at the current position

\D'e d1 d2' Draw an ellipse of diameters di and d2 with left side at current position

\D'a dh1 dv1 dh2 dv2' Draw a counterclockwise arc from current position to
dhl +dh2, dvl +dv2, with center at dhl, dvl from current
position

\D' dh1 dv1 dh2 dv2 ... ' Draw a B-spline from current position by dhl, dvl, then
by dh2, dv2, then ...

\e Printable version of current escape character

\fx, \f(xx, \fn Change to font named x or xx or position n

\gx, \g(xx Return the .af-type format of the register x or xx (returns nothing if x
or xx has not yet been referenced)

\h'n' Local horizontal motion; move right n (negative left)

\H'n' Character heights are set ton points without changing widths. A height
of the form ± n is an increment to the current point size; a height of O
restores the height to the current point size.

\kx Mark horizontal input place in register x

\l'nc' Horizontal line drawing function (optionally with c)

\L' nc' Vertical line drawing function (optionally with c)

\nx, \n(xx Interpolate number register x or xx

\o' abc . .. ' Overstrike characters a, b, c . ..

\P Break and spread output line

v Reverse 1 em vertical motion (reverse line in the nroff formatter)

\Sn, \S ± n Point-size change function

\S' n' Output is slanted n degrees. The value of n may be negative. A value
of O turns slant mode off.

\t Noninterpreted horizontal tab

\u Reverse (up) 112 em vertical motion (1/2 line in the nroff formatter)

\V'n' Local vertical motion; move down n (negative up)

\w'string' Interpolate width of string

\x'n' Extra line-space function (negative before, positive after)

\zc Print c with zero width (without spacing)

\x any character not listed above

46-38

Nroff/Troff Reference Gulde

Predefined General Number
Registers

O/o Current page number

ct Character type (set by width function)

di Width (maximum) of last completed diversion

dn Height (vertical size) of last completed diversion

dw Current day of the week (1 through 7)

dy Current day of the month (1 through 31)

In Output line number

mo Current month (1 through 12)

nl Vertical position of last-printed text base line

sb Depth of string below base line (generated by width function)

st Height of string above base line (generated by width function)

yr Last two digits of current year

c. Provides general register access to the input line number in the current input
file. Contains the same value as the read-only .c register

Predefined Read-Only Number
Registers
.$ Number of arguments available at the current macro level

$$ Process-id of the troff process (troff only)

.A Set to 1 in the troff formatter if -a option used; always 1 in the nroff
formatter

.F Value is a string that is the name of the current input file

.H Available horizontal resolution in basic units

.L The current line spacing parameter (the value of the most recent .Is request)

UTek TOOLS 48-39

Nroff/Troff Reference Gulde

.P The value 1 if the current page is being printed, and is 0 otherwise, that is, if
the current page did not appear in the -o option list

.T Set to 1 in the nroff formatter if -T option used; always O in the troff
formatter

.V Available vertical resolution in basic units

.a Post-line extra line space most recently used by x'n'

.b Boldfacing factor of the current font

.c Number of lines read from current input file

.d Current vertical place in current diversion; equal to nl if no diversion

.f Current font as physical quadrant (1 through 4)

.h Text base-line high-water mark on current page or diversion

.i Current indent

.j Indicates the current adjustment mode and type. Can be saved and later
given to the .ad request to restore a previous mode .

. k The horizontal size of the text portion (without indent) of the current partially
collected output line, if any, in the current environment

.I Current line length

.n Length of text portion on previous output line

.o Current page offset

.p Current page length

.r Number of number registers that remain available for use

.s Current point size

. t Distance to the next trap

.u Equal to 1 in fill mode and O in no-fill mode

.v Current vertical line spacing

.w Width of previous character

.x Reserved version-dependent register

.y Reserved version-dependent register

.z Name of current diversion

48-40

Nroff/Troff Reference Guide

Font Control Requests
The following headings apply throughout this subsection.

REQUEST
FORM

.bd Fn

INITIAL
VALUE

off

IF NO
ARGUMENT

n/a

Embolden font F by n-1 units. Characters in font Fare boldfaced by printing each
one twice, separated by n-1 basic units. A reasonable value for n is 3 when the
character size is in the vicinity of 10 points. If n is missing, the embolden mode is
turned off. The mode must still (or again) be in effect when the characters are
physically printed. Theres is no effect in the nroff formatter.

.bd SF n off n/a

Embolden special font when current font is F. The characters in the special font are
emboldened whenever the current font is F. The mode must still (or again) be in
effect when the characters are physically printed. There is no effect in the nroff
formatter.

.fpn F R,l,B,S ignored

Font position. A font named F is mounted on position n. It is a fatal error if F is not
known.

.ft F Roman previous

Change to font F (F is x, xx, digit, or P). Font P means the previous font. For font
changes within a line of text, sequences \fx, \f(xx, or \fn can be used. Relevant
parameters are a part of the current environment.

UTek TOOLS 48-41

Nroffnroff Reference Gulde

Character Size Control
Requests
The following headings apply throughout this subsection.

REQUEST
FORM

.cs F nm

INITIAL
VALUE

off

IFNO
ARGUMENT

n/a

Set constant character space (width) mode on for font F (if mounted). The width of
every character is assumed to be n/36 ems. If m is absent, the em is that of the
character point size; if mis given, the em ism-points. All affected characters are
centered in this space including those with an actual width larger than this space.
Special font characters occurring while the current font is Fare also so treated. If n
is absent, the mode is turned off. The mode must still (or again) be in effect when
the characters are printed. There is no effect in the nroff formatter.

.ps ±n 10 point previous

Set size to ± n. Any valid positive size value may be requested; if invalid, the next
larger valid size is used (maximum of 36). Valid point sizes depend upon the
typesetter used. A paired sequence + n, -n works because the previous requested
value is remembered. For point size changes within a line of text, sequences \Sn or
\s ± n can be used. Relevant parameters are a part of the current environment.
There is no effect in the nroff formatter.

.SS n 12/36 em ignored

Set space-character size to n/36 ems. This size is the minimum word spacing in
adjusted text. Relevant parameters are a part of the current environment. There is
not effect in the nroff formatter.

48-42

Nroff/Troff Reference Guide

Page Control Requests
Note: Values separated by a semicolon(;) are for the nroff and troff
formatters, respectively.

The following heading apply throughout this subsection.

REQUEST
FORM

.bp ±n

INITIAL
VALUE

n=1

IF NO
ARGUMENT

n/a

Begin page. The current page is ejected and a new page is begun. If ± n is given,
the new page number is ± n. The scale indicator is ignored if not specified in the
request. The request causes a break. The use of the apostrophe (') as the control
character (instead of a dot (.)) suppresses the break function. The request with no n
is inhibited by the .ns request.

.mkR none internal

Mark current, vertical place in an internal register (associated with the current
diversion level) or in register R, if given. The request is used in conjunction with
"return to marked vertical place in current diversion" request (.rt). Mode or relevant
parameters are associated with current diversion level.

.ne n none n=lv

Need n vertical spaces. the scale indicator is ignored if not specified in the request.

• If the distance to the next trap position dis less than n, a forward vertical
space of size d occurs, which springs the trap.

• If there are no remaining traps on the page, dis the distance to the bottom of
the page.

• If dis less than vertical spacing v, another line could still be output and spring
the trap.

In a diversion, dis the distance to the diversion trap (if any) or is very large. Mode
or relevant parameters are associated with current diversion level.

.pl ±n 11 in 11 in

Page length set to ± n. The internal limitation is about 75 inches in the troff
formatter and 136 inches in the nroff formatter. Current page length is available in
the .p register. The scale indicator is ignored if not specified in the request.

UTek TOOLS 4B-43

Nroffflroff Reference Gulde

.pn ±n n=1 ignored

Page number. the next page {when it occurs) has the page number ± n. The
request must occur before the initial pseudopage transition to affect the page
number of the first page. The current page number is in the% register.

~ ± n O; 26/27in previous

Page offset. The current left margin is set to ± n. The scale indicator is ignored if
not specified in the request. The troff formatter initial value provides at?out 1 inch of
paper margin including the physical typesetter margin of 1/27 inch. The current
page offset is available in the .o register.

.rt ±n none internal

Return {upward only) to marked vertical place in current diversion. If ± n {with
respect to place) is given, the vertical place is ± n from the top of the page or
diversion. If n is absent, the vertical place is marked by a previous .mk. The .sp
request can be used in all cases instead of .rt by spacing to the absolute place
stored in an explicit register {for example, using the sequence .mk r sp :ru).
Mode or relevant parameters are associated with current diversion level. The scale
indicator is ignored if not specified in the request.

48-44

Nroff/Troff Reference Guide

Text Filling, Adjusting, and
Centering Requests

Note: Values separated by a semicolon (;)are for the nroff and troff
formatters respectively.

The following headings apply throughout this subsection.

REQUEST
FORM

.ad n

INITIAL
VALUE

adjust

IF NO
ARGUMENT

adjust

Adjust. Output lines are adjusted with mode n. If the type indicator n is present, the
adjustment type is as follows:

n

r
c
born
absent

ADJUSTMENT TYPE
left margin only
right margin only
center
both margins
unchanged

The adjustment type indicator n may also be a number obtained from the .j register.
If fill mode is not on, adjustment is deferred. Relevant parameters are a part of the
current environment.

.br none n/a

Break. Filling of the line currently being collected is stopped and the line is output
without adjustment. Text lines beginning with space characters and empty text lines
(blank lines) also cause a break.

.ce n off n=1

Center. The next n input text lines are centered within the current line-length. If
n = 0, any residual count is cleared. A break occurs after each of the n input lines.
If the input line is too long, it is left adjusted. The request normally causes a break.
Relevant parameters are a part of the current environment.

.fi fill

Fill mode. The request causes a break. Subsequent output lines are filled to
provide an even right margin. Relevant parameters are a part of the current
environment.

UTek TOOLS

n/a

48-45

Nroffflroff Reference Guide

.na adjust n/a

No adjust. Output line adjusting is not done. Since adjustment is turned off, the
right margin is ragged. Adjustment type for the .ad request is not changed. Output
line filling still occurs if the fill mode is on. Relevant parameters are a part of the
current environment.

.nf fill n/a

No-fill mode. Subsequent output lines are neither filled nor adjusted. The request
normally causes a break. Input text lines are copied directly to output lines without
regard for the current line length. Relevant parameters are a part of the current
environment.

48-46

Nroff/Troff Reference Guide

Vertical Spacing Requests
Note: Values separated by a semicolon (;) are for the nroff and troff
formatters respectively.

The following headings apply throughout this subsection.

REQUEST
FORM

INITIAL
VALUE

IF NO
ARGUMENT

Line spacing set to ± n. Output n-1 blank lines (Vs) after each output text line. If
the text or a previously appended blank line reached a trap position, appended
blank lines are omitted. Relevant parameters are a part of the current environment.

.ns space n/a

Set no-space mode on. The no-space mode inhibits .sp and .bp requests without a
next page number. It is turned off when a line of output occurs or with the .rs
request. Mode or relevant parameters are associated with current diversion level.

.OS none n/a

Output saved vertical space. The request is used to output a block of vertical space
requested by an earlier .sv request. The no-space mode .ns has no effect.

.rs none

Restore spacing. The no-space mode .ns is turned off. Mode or relevant
parameters are associated with current diversion level.

.sp n none

n/a

n= 1v

Space vertically. The request provides spaces in either direction. If n is negative,
the motion is backward (upward) and is limited to the distance to the top of the
page. Forward (downward) motion is truncated to the distance to the nearest trap.
If the no-space mode .ns is on, no spacing occurs. The scale indicator is ignored if
not specified in the request. The request causes a break.

UTek TOOLS 48-47

Nroff/Troff Reference Guide

.sv n none n =Iv

Save a contiguous vertical block of size n. If the distance to the next trap is greater
than n, n vertical spaces are output. If the distance to the next trap is less than n,
no vertical space is immediately output; but n is remembered for later output (.os).
Subsequent .sv requests overwrite any still remembered n. The no-space mode .ns
has no effect. The scale indicator is ignored if not specified in the request.

.vs n 1/6in;12pts previous

Set vertical base-line spacing size v. Transient extra vertical spaces are available
with \x' n'. The scale indicator is ignored if not specified in the request. Relevant
parameters are a part of the current environment.

Blank text line none n/a

This condition causes a break and output of a blank line Uust as does .sp 1).

48-48

Nroff/Troff Reference Guide

Line Length and Indenting
Requests
The following headings apply throughout this subsection.

REQUEST
FORM

.in ±n

INITIAL
VALUE

n=O

IF NO
ARGUMENT

previous

Indent. The indent is set to ± n and added before to each output line. The scale
indicator is ignored if not specified in the request. Relevant parameters are a part of
the current environment. The request causes a break .

. II ±n 6.5in previous

Line length. The line length is set to ± n. The scale indicator is ignored if not
specified in the request. Relevant parameters are a part of the current environment.

.ti ±n none ignored

Temporary indent. The next output text line is indented a distance ± n with respect
to the current indent. The resulting total indent can not be negative. The current
indent is not changed. The scale indicator is ignored if not specified in the request.
Relevant parameters are a part of the current environment. The request causes a
break.

UTek TOOLS 48-49

Nroff/Troff Reference Guide

Macro, String, Diversion, and
Trap Requests
The following headings apply throughout this subsection.

REQUEST
FORM

INITIAL
VALUE

IF NO
ARGUMENT

.am .xx yy none .yy= ..

Append to macro .xx (append version of .de).

.as .xx string none ignored

Append string to string .xx (append version of .ds) .

. ch .xx n none

Change trap location. Change the trap position for macro xx to be n. In the
absence of n, the trap, if any, is removed. The scale indicator is ignored if not
specified in the request.

.daxx none

Divert and append to macro xx (append version of the .di request). Mode or
relevant parameters are associated with current diversion level .

. dexxyy none

n/a

end

.yy= ..

Define or redefine macro xx. The contents of the macro begin of the next input line.
Input lines are copied in copy mode until the definition is terminated by a line
beginning with .yy. The macro yy is then called. In the absence of yy, the definition
is terminated by a line beginning with dotdot (..). A macro can contain .de requests
provided the terminating macros differ or the contained definition terminator is
concealed; .. can be concealed as\\ .. which copies as\ .. and be reread as ..
(dotdot).

.di .xx none end

Divert output to macro .xx. Normal text processing occurs during diversion except
that page offsetting is not done. The diversion ends when the request .di or .da is
encountered without an argument; extraneous requests of this type should not
appear when nested diversions are being used. Mode or relevant parameters are
associated with current diversion level.

48-50

Nroff/Troff Reference Gulde

.ds xx string none ignored

Define a string xx containing string. Any initial quotation mark (") in string is stripped
to permit initial blanks.

.dt n xx none off

Install a diversion trap at position n in the current diversion to invoke macro xx.
Another .dt redefines the diversion trap. If no arguments are given, the diversion
trap is removed. Mode or relevant parameters are associated with current diversion
level. The scale indicator is ignored if not specified in the request.

.em xx none none

End macro. Macro xx is invoked when all input has ended. The effect is the same
as if the contents of xx had been at the end of the last file processed.

.it n xx none off

Input-line-count trap. An input-line-count trap is set to invoke the macro xx after n
lines of text input have been read (control or request lines do not count). Text can
be in-line, or interpolated by in-line or trap-invoked macros. Relevant parameters
are a part of the current environment.

.rm xx none ignored

Remove. A request, macro, or string is removed. The name xx is removed form the
name list and any related storage space is freed. Subsequent references have no
effect.

.rn xx yy none ignored

Rename. Rename request, macro, or string from xx to yy. If yy exists, it is first
removed .

. wh n xx none n/a

When. A location trap is set to invoke macro xx at page position n; a negative n is
interpreted with respect to the page bottom. Any macro previously planted at n is
replaced by xx. A zero n refers to the top of a page. In the absence of xx, the first
found trap at n is removed. The scale indicator is ignored if not specified in the
request.

UTek TOOLS 48-51

Nroff/Troff Reference Gulde

Number Registers Requests
The following headings apply throughout this subsection.

REQUEST
FORM

INITIAL
VALUE

IFNO
ARGUMENT

.af r c Arabic nla

Assign format. Format c is assigned to register r. Available formats are:

c NUMBERING SEQUENCE

1 0, 1 ,2,3,4,5 ...
001 000,001,002,003,004,005, ...

O,i,ii,iii,iv,v, .. .
0,1,ll,lll,IV,V, .. .

a O,a,b, ... z,aa,ab, ... zz,aaa, ...
A O,A,B, ... ,Z,AA,AB, ... ,ZZ,AAA, ...

An Arabic format having n digits specifies a field width of n digits. Read-only
registers and width function are always Arabic.

.nr r +nm none

Number register. The number register r is assigned the value ± n with respect to
the previous value, if any. The automatic incrementing value is set tom. The
number register value n is ignored if not specified in the request.

.rr r none

Remove register. The number register r is removed. If many registers are being
created dynamically, it may be necessary to remove registers that are no longer
used in order to recapture internal storage space for newer registers.

48-52

nla

nla

Nroff/Troff Reference Gulde

Tab, Leader, and Field
Requests

Note: Values separated by a semicolon (;) are for the nroff and troff
formatters respectively.

The following headings apply throughout this subsection.

REQUEST
FOR

.fc ab

INITIAL
VALUE

off

IF NO
ARGUEMENT

off

Field delimiter is set to a. The padding indicator is set to the space character or to
b, if given. In the absence of arguments, the field mechanism is turned off.

.le c none n/a

Leader repetition character becomes c or is removed, specifying motion. Relevant
parameters are a part of the current environment.

.ta nt ... 8n;0.5in

Set tab stops and types. The adjustment within the tab is as follows:

R
c
absent

ADJUSTMENT TYPE

right
centering
left

n/a

Tab stops for the troff formatter are preset every 0.5 inch; tab stops for the nroff
formatter are preset every 8 nominal character widths. Stop values are separated by
spaces, and a value preceded by a plus(+) is treated as an increment to the
previous stop value. Relevant parameters are a part of the current environment.
The scale indicator is ignored if not specified in the request.

.tc c none

Tab repetition character becomes e or is removed specifying motion. Relevant
parameters are a part of the current environment.

UTek TOOLS

n/a

48-53

Nroffnroff Reference Guide

Input/Output and Translation
Requests

Note: Values separated by a semicolon (;)are for the nroff and troff
formatters respectively.

The following headings apply throughout this subsection.

3REQUEST
FORM

INITIAL
VALUE

IF NO
ARGUMENT

.cc c .(dot) n/a

Set control character to c or reset to dot(.). Relevant parameters are a part of the
current environment.

.cu n off n=1

Continuous underline in the nroff formatter. A variant of .ul that causes every
character to be underlined. Identical to .ul in the troff formatter. Relevant
parameters are a part of the current environment .

. c2 c

Set no-break control character to c or reset to apostrophe ('). Relevant parameters
are a part of the current environment.

.ec c \

Set escape character to\ or to c, if given.

\

.eo on n/a

Turn escape character mechanism off.

.lg n off;on on

Ligature mode is turned on if n is absent or nonzero and turned off if n = 0. If n = 2,
only the two-character ligatures are automatically invoked. Ligature mode is
inhibited for request, macros, string, register, filenames, and copy mode. There is
no effect in the nroff formatter.

48-54

Nroffnrott Reference Gulde

.tr abed ... none n/a

Translate a to b, c into d, and so forth. If an odd number of characters is given, the
last one is mapped into the space character. To be consistent, a particular
translation must stay in effect from input to output time. Initially there are no
translation values .

. uf f Italic Italic

Underline font set to f (to be switched to by .ul). In the nroff formatter f can not be
on position 1 (initially Times Roman) .

. ul n off n=1

Underline in the nroff formatter (italicize in troff) the next n input text lines. Switch
to underline fort saving the current font for later restoration; other font changes
within the span of a .ul take effect, but the restoration undoes the last change.
Output generated by . ti is affected by the font change but does not decrement n. If
n is greater than 1, there is the risk that a trap-interpolated macro may provide text
lines within the span, which environment switching can prevent. Relevant
parameters are a part of the current environment.

UTek TOOLS 48-55

Nroffnroff Reference Gulde

REQUEST
FORM

.he c

INITIAL
VALUE

\O/o

IF NO
ARGUMENT

\O/o

Hyphenation character. Hyphenation indicator character is set to c or to the default
\ O/o. The indicator does not appear in the output. Relevant parameters are a part of
the current environment.

.hw wordl ... none ignored

Exception words. Hyphenation points in words are specified with embedded minus
signs. Versions of a word with terminal s are implied; that is, dig-it implies dig-its.
This list is examined initially and after each suffix stripping. Space available is
small- about 128 characters.

.hy n off, n = O on, n = 1

Hyphenate. Automatic hyphenation is turned on for n;::: 1 or off for n = 0. If n = 2,
last lines (ones that cause a trap) are not hyphenated. For n = 4 the last two
characters of a word are not divided. For n = 8 the first two characters of a word are
not divided. These values are additive; that is, n = 14 invokes all three restrictions.
Relevant parameters are a part of the current environment.

.nh no hyphen n/a

No hyphenation. Automatic hyphenation is turned off. Relevant parameters are a
part of the current environment.

48-56

Nroff/Troff Reference Gulde

Three-Part Title Requests
The following headings apply throughout this subsection.

REQUEST
FORM

.It ±n

INITIAL
VALUE

6.5in

IF NO
ARGUMENT

previous

Length of title set to ± n. Line length and title length are independent. Indents do
not apply to titles; page offsets do. Relevant parameters are a part of the current
environment. The scale indicator is ignored if not specified in the request.

.pc c % off

Page number character set to c or removed. The page number register remains% .

. ti 'l'c'r' none n/a

Three-part title. The strings I, c, and rare respectively left-adjusted, centered, and
right-adjusted in the current title length. Any of the strings may be empty, and
overlapping is permitted. If the page number character (initially %) is found within
any of the fields, it is replaced by the current page number having the format
assigned to register%. Any character can be used as the string delimiter.

UTek TOOLS 48-57

Nroffflroff Reference Guide

Output Line Numbering
Requests
The following headings apply throughout this subsection.

REQUEST
FORM

.nm +nm s i

INITIAL
VALUE

none

IFNO
ARGUMENT

off

Line number mode. If ± n is given, line numbering is turned on, and the next output
line is numbered \(+ -n. Default values are m = 1, s = 1, and i = 0. Parameters
corresponding to missing arguments are unaffected; a nonnumeric argument is
considered missing. In the absence of all arguments, numbering is turned off, and
the next line number is preserved for possible further use in number register In.
Relevant parameters are a part of the current environment.

.nn n none n=1

Next n lines are not numbered. Relevant parameters are a part of the current
environment.

Conditional Acceptance
Requests
The following headings apply throughout this subsection.

REQUEST
FORM

.el anything

INITIAL
VALUE

none

The "else" portion of an if-else statement.

.ie c anything none

IF NO
ARGUMENT

n/a

n/a

The "if" position of an if-else statement. The c can be any of the forms acceptable
with the .if request.

48-58

Nroff/Troff Reference Guide

If condition c is true, accept anything as input; for multiline case, use \{anything\}.
The scale indicator is ignored if not specified in the request.

.if !c anything none n/a

If condition c is false, accept anything .

• if n aqything none nla

If expression n>O, accept anything. The scale indicator is ignored if not specified in
the request.

.if !n anything none nla

If expression n :::; 0, accept anything. The scale indicator is ignored if not specified
in the request.

.if 'sl s2' anything none n/a

If string sl is identical to string s2, accept anything.

.if ! 'sl s2' anything none n/a

If string sl is not identical to string s2, accept anything.

.if c anything none n/a

UTek TOOLS 48-59

Nroff/Troff Rei

En vi re
Requt
The following h

REQUEST
FORM

.ev n

Environment SlJ

restoring a pre'
reference.

Insert
Requt
The following h

REQUEST
FORM

.ex

Exit from the n
input had ende

. rd prompt

Read insertion
found. If stand
the user termin
after prompt.

48-60

Nroff/Troff Reference Guide

Miscellaneous Requests
The following headings apply throughout this subsection.

REQUEST
FORM

.co

INITIAL
VALUE

none

Specify the point in the macro file at which compaction ends. W
called on the command line, all lines in the file name before the .
compacted.

.fl none

Flush output buffer. Used in interactive debugging to force outp1
causes a break .

.ig yy none

Ignore input lines until call of yy. This request behaves like the .
that the input is discarded. The input is read in copy mode, and
incremented registers are affected.

.me en none

Sets margin character c and separation n. Specifies that a marg
appear a distance n to the right of the right margin after each no
(except those produced by .ti). If the output line is too long (as c
mode), the character is appended to the line. If n is not given, tt
used; the initial n is 0.2 inches in the nroff formatter and 1 em ir
parameters are a part of the current environment. The scale ind
not specified in the request .

.pm t none

Print macros. The names and sizes of all defined macros and st
the user terminal. If t is given, only the total of the sizes is printE
in blocks of 128 characters .

• sy cmd args none

The UTek command cmd is executed. Its output is not captured.
input for cmd is closed.

48-62

Nroff/Troff Reference Guide

.tm string none newline

Print string on terminal (UTek operating system standard message output). After
skipping initial blanks, string (rest of the line) is read in copy mode and written on
the user terminal.

Output and Error Messages
Request
REQUEST

FORM

.ab text

INITIAL
VALUE

none

IF NO
ARGUMENT

n/a

Prints text on the message output and terminates without further processing. If text
is missing, User Abort is printed. This request does not cause a break. The output
buffer is flushed.

UTek TOOLS 48-63

Nroff/Troff Reference Gulde

If condition c is true, accept anything as input; for multiline case, use \{anything\}.
The scale indicator is ignored if not specified in the request.

.if !c anything none n/a

If condition c is false, accept anything .

. if n af!,ything none n/a

If expression n>O, accept anything. The scale indicator is ignored if not specified in
the request.

.if !n anything none n/a

If expression n :::5 0, accept anything. The scale indicator is ignored if not specified
in the request.

.if 'sl s2' anything none n/a

If string sl is identical to string s2, accept anything.

.if ! 'sJ s2' anything none n/a

If string sl is not identical to string s2, accept anything.

.if c anything none n/a

UTek TOOLS 48-59

Nroff/Troff Reference Guide

Environment Switching
Request
The following headings apply throughout this subsection.

REQUEST
FORM

INITIAL
VALUE

IF NO
ARGUMENT

.ev n previous

Environment switched to 0, 1, or 2. Switching is done in pushdown fashion so that
restoring a previous environment must be done with .ev rather than specific
reference.

Insertions from Standard Input
Requests
The following headings apply throughout this subsection.

REQUEST
FORM

INITIAL
VALUE

IF NO
ARGUMENT

.ex none n/a

Exit from the nroff/troff formatter. Text processing is terminated exactly as if all
input had ended.

.rd prompt prompt=BEL

Read insertion from the standard input until two newline characters in a row are
found. If standard input is the user keyboard, a prompt (or a BEL) is written onto
the user terminal. The request behaves like a macro; arguments can be placed
after prompt.

48-60

n/a

Nroff/Troff Reference Gulde

Input/Output File Switching
Requests
The following headings apply throughout this subsection.

REQUEST
FORM

INITIAL
VALUE

IFNO
ARGUMENTP

.cf filename none n/a

Copy file. This request copies the contents of filename into the troff output file at
this point, uninterpreted. Problems occur unless the motions in the file restore
current horizontal and vertical position.

.nx filename end-of-file

Next file is filename. The current file is considered ended, and the input is
immediately switched to filename .

. pi program none

Pipe output to program. This request must occur before any printing occurs. No
arguments are transmitted to program.

.so filename none

n/a

n/a

n/a

Switch source file (pushdown). The top input level (file reading) is switched to
filename. Contents are interpolated at the point the request is encountered. When
the new file ends, input is again taken from the original file. The .so request may be
nested.

UTek TOOLS 48-61

Nroff/Troff Reference Guide

Miscellaneous Requests
The following headings apply throughout this subsection.

REQUEST
FORM

INITIAL
VALUE

IFNO
ARGUMENT

.co none n/a

Specify the point in the macro file at which compaction ends. When -kname is
called on the command line, all lines in the file name before the .co request are
compacted .

. fl none

Flush output buffer. Used in interactive debugging to force output. The request
causes a break .

n/a

.ig yy none .yy= ..

Ignore input lines until call of yy. This request behaves like the .de request except
that the input is discarded. The input is read in copy mode, and any automatically
incremented registers are affected.

.me en none off

Sets margin character c and separation n. Specifies that a margin character c
appear a distance n to the right of the right margin after each nonempty text line
(except those produced by .ti). If the output line is too long (as can happen in no-fill
mode), the character is appended to the line. If n is not given, the previous n is
used; the initial n is 0.2 inches in the nroff formatter and 1 em in troff. Relevant
parameters are a part of the current environment. The scale indicator is ignored if
not specified in the request.

~·P_m_t ______________ n_o_n_e _____________ all

Print macros. The names and sizes of all defined macros and strings are printed on
the user terminal. If t is given, only the total of the sizes is printed. Sizes are given
in blocks of 128 characters.

.sy cmd args none

The UTek command cmd is executed. Its output is not captured. The standard
input for cmd is closed.

48-62

n/a

Nroff/Troff Reference Guide

.tm string none newline

Print string on terminal (UTek operating system standard message output). After
skipping initial blanks, string (rest of the line) is read in copy mode and written on
the user terminal.

Output and Error Messages
Request
REQUEST

FORM

.ab text

INITIAL
VALUE

none

IF NO
ARGUMENT

n/a

Prints text on the message output and terminates without further processing. If text
is missing, User Abort is printed. This request does not cause a break. The output
buffer is flushed.

UTek TOOLS 48-63

The MS Text
Formatting Macros

Invoking Ms

4C

The ms text formatter is a macro package for the nroff and troff text processing
programs. Invoke it as follows:

nroff -ms options files

The options argument includes preprocessors, as well as the frequently used - T
option. It specifies the type of device where you direct the output. For example,
-Tlpr sends the output to the Printronix line printer. The topic The -T Option lists
available terminal types. If you do not enter the -T option, a standard ASCII
terminal is assumed.

Basic Text Formatting
To use ms, prepare a file that contains the text to be formatted and the ms
commands that control its appearance. Commands start with a period at the
beginning of the line and consist of one or two uppercase letters, possibly followed
by arguments. You can inbed certain commands directly in the text - in this case
they start with a backslash (\)character. To print a literal backslash in a document
use the \e command. For example, A\eB prints as A\B.

Line breaks are made only on word boundaries or at standard hyphenation points
within words. So if you include spaces in the text that shouldn't be padded or
broken across a line, enter an unpaddable space as a backslash, followed by a
space. For example, New\ York displays on one line with no extra spaces.
Hyphenation is normally done automatically. Do not hyphenate a word you enter
unless it is a compound word. If you prefer unhyphenated text, the .HY command
turns off hyphenation. Similarly, .AD specifies whether text is adjusted to the right
margin, or printed with a ragged right margin. Commands are also available for
beginning a new line before the margin is reached (.BR), inserting blank lines (.SP),
requesting double-spacing (.LS), moving to a new page (.BP) or column (.BC),
conditionally moving to a new page if not enough space remains on the current page
(.NE), and changing the page number (.PN).

UTekTOOLS 4C-1

The MS Text-Formatting Macros

Overall Format
Manuscript files can start with a simple paragraph (.PP or .LP), a section heading
(.SH or .NH), or a title line (.TL). They can also start with a command that describes
the general format of the document. The .RP macro signifies a released paper with
title page . . TR or .TM signifies an internal technical report or memo. The command
.IOC signifies a memo (Inter-office Communication), and .LT signifies a letter. You
can find examples of these formats at the end of this section.

Indentation
Several mechanisms generate indented text in ms. An individual paragraph can be
indented using the .IP command, with an optional label at the left of the paragraph.
The margin is reset at the next paragraph command unless the command .RS is
given. .RS fixes the current level of indentation until a corresponding .RE is
encountered. The command .IS combines .IP and .RS. Use it to start an indented
section that contains multiple paragraphs; all text up to the next .IE is indented.
You can nest .ISi.iE pairs to have several levels of indentation.

The commands .QP, .QS, and .QE are similar to .IP, .IS, and .IE, but indentation is
made from both the left and right margins, for example in long quotes. If you use
numbered headings, you can indent entire sections by placing the command .HS I
at the beginning of the document. Each section is indented an amount proportional
to the level of the section heading. Finally, segments of unformatted text can be
indented using the .OS I or .ID commands.

Character Fonts and
Underlining
The commands .B, .I, and .R switch between boldface, italic (underline on
lineprinters), and regular text. Another way to change fonts is the in-line command
\for \f, followed by the font name. For example, you can place word in bold type
two ways:

.B word

or
\fBword\FR

Note that the in-line command lets you switch fonts between individual characters
without intervening spaces.

4C-2

The MS Text-Formatting Macros

The available fonts include:

R Regular (Roman) font
B Boldface font
I Italic font
U Underline letters and numbers
Bl Boldface italics
BU Underlined boldface

Combination fonts with two-character font names (Bl, BU, and BC) are requested by
including a left parenthesis before the name, for example, \F(BI. Note that italics
are available only for troff output.

The font is always reset to normal at the beginning of each paragraph. To have
multiple paragraphs printed in some font other than Roman, change the string NF
(Normal Font) from R to the font you want.

Special Characters
In addition to the normal ASCII characters that you can type directly from the
keyboard, there are a number of special characters in ms that you enter using the
form \(xx, where xx is the name of the character. For example, the bullet character
is produced using the sequence \(bu, and the Greek letter 7r is producing using
\(*p. The later topic The Special Character Set illustrates all the available special
characters and their sequences.

Combinations of overstruck characters that are not available as predefined special
characters can be constructed using the overstrike command \o' chars'. This prints
the characters in string chars one on top of the other. For example, \o'\(ci\(mu'
prints as w.

Superscripts and Subscripts
Superscripts and subscripts can be entered using the sequences *{superscript*}
and *{subscript*}. For example, X\ * {2\ *} prints as:

x2
These sequences insert white space before or after the line so that the superscript
or subscript does not touch the line above or below the current line.

Because the superscript and subscript command require reverse movement of the
paper, place the command .COL at the beginning of the file. This processes
reverse linefeeds correctly when the output is directed to devices without a reverse
linefeed capability.

UTekTOOLS 4C-3

The MS Text-Formatting Macros

Character Size
The character size is given in points, with point sizes of 6-12, 14, 16, 18, 20, 22,
and 24. The default is 10 points. You can use the commands .SZ, .LG, and .SM to
temporarily change the point size .. SZ takes as an argument an absolute point size,
or a relative point size, for example .SZ -3 .. LG is equivalent to .SZ +2, and .SM is
equivalent to .SZ -2. As with font switches, an in-line command exists to change
character sizes. The command \s ± n increases or decreases the point size by the
specified amount. The command \sO restores the previous point size.

As with fonts, the character size is automatically reset at the start of each
paragraph. To have multiple paragraphs printed in a size other than 10 points, set
the register PS to the desired size. Also reset register VS to specify the vertical
spacing between the baselines of successive lines. Note how this differs from the
command .LS 2, which causes a full blank line to be inserted between each line.
The appropriate vertical spacing is set automatically by .SZ, .SM, and .LG, but is
not changed by \s, so use \s for spacing changes within lines.

Command Descriptions
Following is a list of the commands available in ms, organized alphabetically.
Optional arguments are enclosed in brackets. When you must choose one
argument they are enclosed in braces .

. 1C

. 2C

. AB [no]

. AD {0,1}

. AE

4C-4

Change back to one column after printing in two columns (see
.2C) .

Change to two-column output. Use .BC to move to the top of
the next column. Use .IC to change back to one-column
output. Causes reverse linefeeds to be inserted, so place a
.COL at the beginning of the file for correct processing of
reverse linefeeds .

Begin an abstract. Follows the .TL, .A_U, and .Al commands, if
any. Text between the .AB and .AE commands is collected
and printed as an indented block, with the word ABSTRACT
centered before the text. Type .AB no to omit the word
ABSTRACT .

Set text even with the right margin. This is set by default. Use
.AD 0 to make a ragged right margin. The commands .AD or
.AD 1 turn adjustment back on .

End abstract (see .AB).

.Al

. AU

. B [text]

.BC

.BO [O]

. BE

. BP

. BR

. BS [C]

UTekTOOLS

The MS Text-Formatting Macros

Author's institution. The following lines give the group affiliation
of the author(s) specified in the .AU command(s). Enter as
many lines as necessary. Define an automatic increment
number with name c. It is recommended that you use a single
upper-case letter to avoid name conflicts. Entering \ * c causes
1 to be inserted the first time it is used, 2 the second time, and
so on. This defines an automatic footnote number that can be
used in combination with the superscript mechanism as follows:

text* { \ * F\ *}
.FS \nF.
This is the footnote .
. FE
text

You can reset the auto increment number to O by reissuing the
.AN command. If type is included in the .AN command it
specifies numbering other than the standard 1,2,3, etc. A type
of A specifies the sequence A,B,C, etc. A type of a specifies
a,b,c, etc. A type I specifies 1,11,111,IV, etc. A type i specifies
i,ii,iii,iv, etc. Note that .PN is really a predefined auto increment
number that is incremented each time a new page is started.
To print page numbers in small Roman numerals you could
enter .AN PN i .

The following line specifies the author of this document. For
multiple authors, type several .AU commands .

Print text in boldface. If no argument, switch to boldface.

Begin a new column when in two-column input. Used like the
.BP command for one-column input.

Start a centered block display. Lines up to the next .DE are
collected and the entire block is centered. Identical to .OS B,
except the display can extend onto the next page. It is
preceded by a blank line unless you enter the optional
argument 0 .

End a section to be enclosed in a box (see .BS) .

Begin a new page. It is ignored if you are already at the top of
a page .

Break the current line and start a new line .

Start a section of text to be enclosed in a box. The end of the
boxed text is indicated using .BE. If the optional argument C is
entered, the box is centered on the page. This causes reverse
linefeeds to be inserted. Enter the .COL command at the
beginning of the file for correct processing.

4C-5

The MS Text-Formatting Macros

.BU [O]

. BX word

. CD [O]

. CN

<. s l L1J
.COL

. DA

. DE [O]

. de name

4C-6

Start an indented paragraph marked with a bullet character.
The paragraph is preceded with a blank line unless you enter
the argument O .

Enclose word in a box .

Start a centered display. Each line is centered relative to the
current left and right margins. Identical to .OS C, except the
display can extend onto the next page. Entering the argument
0 precedes the display with a blank line .

Place the standard Tektronix Labs confidentiality note at this
point in the document. This is done automatically at the bottom
of the cover sheet for a technical report (.TR) or memo (.TM).
You can redefine the macro to put a different note on the cover
sheet. You can change this text in the file
/usrllibltmacltmac.sconfid.

~~J....#p~l-t.
When the document contains commands that cause reverse
movement of the paper (super and subscripts, .BX, .BS, .2C)
place this command at the beginning of the file .

Places the current date at the bottom of each page. This is
done using the CF string register. If you want the date to
appear only on draft copies of the document, use the .DR
command .

End a display (see .OS, .ID, .LO, .BO). Insert a blank line
following the display unless the optional argument 0 is present.

Define a command, where its name is one or two characters .
Avoid using the names of existing nroff or ms commands.
Since nroff commands are all lowercase and ms commands
are all uppercase, a combination of upper and lowercase letters
is always safe. Use nroff and ms commands that define the
name on the following lines. The definition ends with two
periods on the last line. Then each time ms encounters name
all text and commands between .de and .. are inserted. Any
references to in-line commands that start with a backslash
should contain two backslashes in a command definition. As a
simple example, the following sequence defines a numbered
paragraph command that automatically numbers lists:

.de Np

.IP(\\ *N)

.DR

The MS Text-Formatting Macros

Then you can enter the following:

.ANN

.Np
First item
.Np
Second item

This produces the output:

(1) First item

(2) Second item

For more information on defining complex commands that
accept arguments and include conditional sequences, see
section 4B, Nroff/Troff Reference Guide.

Insert the word DRAFT and the current date at the bottom of
each page, immediately following the page footer. Normally
placed at the beginning of a draft document .

. DS {l,L,C,B} [indent] [O] Start a display. Lines up to the next .DE are read and
printed unchanged, except for their horizontal
placement relative to the current left and right
margins- L left justifies, C centers each line, B
centers the entire block, and I indents 8 spaces. I is
the default. If an I is present, you can change the
indentation from 8 spaces by including a number
indent. A blank line is inserted preceding the display
unless the argument O is present. If the display does
not fit on the current page, ms inserts a .BP to move
the display to the top of the following page. Displays
that can extend over page boundaries can be
requested using .ID, .LD, .CD, and .BO.

.ds name string

UTekTOOLS

Define a string register. This is typically used to redefine one of
the strings discussed in the later topic String and Number
Registers. You can also use this to define your own strings.
After you define the string, reference it using\ *x where xis a
one-character string, or\ *xy where xy is a two-character
string. As with .de, references to in-line commands preceded
by a backslash require two backslashes. For example, a
chapter (with Roman numerals) and page numbers within the
chapter can be printed at the bottom of the page. Set up the
string registers as follows:

.AN CI

.ds CH

.ds CF \ \nC-\ \n(PN

4C-7

The MS Text-Formatting Macros

.EH

.FE

. FS [/abelJ

. HL [c)

. HS {O,I}

• HY {O, 1}

. I [text]

• ID Un] [OJ

.IE [OJ

4C-8

Each chapter would then start with the following sequence:

.PN 1

.BP

.SH CE
CHAPTER
.PP

End a heading. This is necessary only when a heading appears
on the same line as the following text.

End a footnote (see.FS) .

Begin a footnote. Text between .FS and .FE is saved and
placed at the bottom of the page. The argument label is the
footnote label placed at the left of the footnote, for example * .

Draw a horizontal line across the page from the current left
margin to the current right margin. By default, the line is drawn
using hyphens. If you enter c, that character is used to draw
the line .

Specify heading style. Place this command at the beginning of
the text. The default heading style is numbers, 1., 1.1, 1 .1.1,
and so on. The 0 argument specifies outline form, I., A., 1., a.,
i. The I argument specifies that numbered sections are
automatically indented an amount proportional to the heading
level. The default amount for each indentation is 4 spaces (the
value of number register NI) .

Set hyphenation. It is set by default. The command .HY 0
turns off automatic hyphenation, while .HY or .HY 1 turns it
back on .

Print text in italics .

Start an indented display. Each line up to the next .DE is
printed as you enter it, and indented 8 spaces or in spaces that
you specify. This is identical to .OS I except that the display
can extend onto the next page. It is preceded by a blank line
unless O is present.

End an indented section. Identical to .RE followed by .LP, with
the left margin restored to its value before the last .IS. It is
followed by a blank line unless O is present.

.IOC [H]

UTekTOOLS

The MS Text-Formatting Macros

Start a Tektronix Inter-office Communication (IOC). If the
argument H is present, a fake letterhead is printed. The current
date (which you can change using .ND) is printed along with
information obtained from the following commands:

. TO The person to whom the IOC is being
sent. You can use up to five .TO
commands. To create a distribution list,
type .TO by itself, and follow it with the
recipients, one per line. This places the
word "Distribution" in the "To" field, and
a distribution list (in two columns if
necessary) is placed at the bottom of the
page. Note that distribution lists kept in
separate files can be included using the
.RD command. You can change this use
of the word "Distribution" to another word
using the Di register .

. FR The person sending the IOC. You can
use up to 5 .FR commands for multiple
senders .

. CC People to whom you are sending copies
of the memo. Enter up to five names, or
enter only .CC followed by names that are
placed at the end of the IOC .

. SU The subject of the memo. This also
appears in the page header if it has more
than one page .

. DA The date of a meeting .

. Tl The time of a meeting .

. PL The place of a meeting.

These commands are followed by an .LP, .PP,
.SH, or .NH to start the text of the IOC. See
the examples at the end of this section for
sample memos.

4C-9

The MS Text-Formatting Macros

.IP Uab fin [/in {hang}]] [OJ Start an indented paragraph. The text is inden.ted in
spaces, the label lab is indented tin spaces, and the
first line of text is indented hang spaces from the rest
of the text. The argument hang can be negative to
cause a hanging indent. For example:

.IS [in] EOJ

!Original Left Margin
I
1-·-lin---lab 1---hang---First line of paragraph
I !second line of paragraph ...
I I
1---------in---------!New Left Margin

The default label is "" (the null string). The default
indents are 5 (the value of number register Pl), O, and
0 unless the immediately preceding paragraph is also
started with .IP. In that case, the values specified
there are used. If lab contains any blanks, enter them
as unpaddable spaces, for example long label. The
paragraph is preceded by a blank line unless a final O
is present.

Start an indented section. All the text up to the next .IE is
indented in spaces. The default value for in is 5, and this value
is in number register Pl. Preceded by a blank line unless O is
present.

.JU 'left' center' right' Justify a single line. The text left is at the left margin,
center is centered, and right is at the right margin. Any
of the fields can be empty. For example, to right justify
some text type:

. KE

.KF

.KS

4C-10

.JU "'Right justify this'

If any of the fields have several spaces together, enclose the
entire string in double quotes, outside the first and last single
quotes.

End a keep (See .KS and .KF) .

Start a floating keep. All text up to the next .KE is collected
and printed on the current page. If it doesn't fit on one page, it
is moved to the top of the next page. The .HL command is
useful for setting floating keeps off from the rest of the text.

Start a regular keep. All text up to the next .KE is collected
and printed, preceded by a page eject if it does not fit on the
current page. The .OS command does an automatic .KS, so it
is rarely used.

.LS [O]

. LS n

.LT [in]

. ND date

.NE n

The MS Text-Formatting Macros

Start a left-justified display. Each line up to the next .DE is
printed as you type it. This is identical to .OS L, except that the
display can extend onto the next page. I is preceded by a
blank line unless the argument O is present. Start a left
blocked paragraph. Precede with a blank line unless the
argument O is present.

Set the line spacing. The default line spacing is single space .
Enter .LS 2 to switch to double-spacing, and .LS 1 to switch
back to single-spacing.

Start a letter. This skips over the letterhead, prints the current
date, and accepts an address and salutation. Star the text of
the letter with .PP or .LP. The argument in is the number of
spaces to indent the date from the left margin. If you don't
enter anything for this argument, the date is adjusted to the
right margin.

Set a date different than the current date .

Begin a new page if less than n lines remain on the current
page. You can specify n in inches (ni) or in centimeters (nc).
This command is done automatically for displays and keeps .

. NH UevelJ [font] [CEJ Print a numbered heading at level level. The default value
of level is 1, and that produces a top-level heading. The
heading is preceded by a blank line. If you enter the CE
argument, the heading is centered. If font is present, the
heading is printed in that font. Otherwise, the heading is
printed in boldface (string register HF). You can also set
the register HS to print headings in different point sizes.
The text following the heading is automatically indented an
appropriate amount if you use the .HS I command. The
heading should follow the .NH command and precede a
paragraph start command .

. NL

.nr

. P1

. PN n

. PP [O]

. QE [O]

UTekTOOLS

Return the type size to normal.

Set a number register of name to value. Typically, this is used
to redefine the existing number registers .

Place this command at the beginning of the file to print the
header at the top of page one on all pages .

Set the page number of the next page ton .

Start a normal paragraph, indenting the first line five spaces
from the left margin. Precede with a blank line unless the
argument 0 is present .

End a quoted section (see.OS). Insert a blank line unless the
argument 0 is present.

4C-11

The MS Text-Formatting Macros

.QP [O]

.as loJ

.R
.RD [file]

. RE

. RP

.RS

Start a quoted paragraph that that is indented 5 spaces from
both the left and right margins (the value of number register
QI). Precede with a blank line unless the argument 0 is
present.

Start a quoted section, with both margins moved in five spaces
(the value of number register QI). The margins remain in effect
until the next .QE. Precede with a blank line unless the
argument O is present.

Return to regular (Roman) font.

Read input from file just as if it were included in the text. If file
is missing, read from the standard input until a blank line is
encountered .

End a relative indented section (see .RS) .

Start a released paper with a title page. The same format as
.TR, but without a cover sheet.

Start a relative indented section. This follows an indented
paragraph to make succeeding paragraph commands relative to
the current left margin. This margin is in effect until the next
.RE .

. SH [/eve/] [font] [CEJ Print a non-numbered heading using font, preceded by a
blank line. The default for:it is boldface (string register HF).
If the argument CE is present, the heading is centered.
The argument level is ignored, except that it indicates the
indentation level in the table of contents for a following . TC
command .

. SP [nJ

4C-12

Insert n blank lines (or ni for inches and nc for centimeters). If
you do not enter n, the value of register PD is used for the
distance to space, which is 1 line by default. This command at
the beginning of a page is ignored. To ensure that blank lines
appear in the text, put the .SP inside a display.

.TA tl t2 ..

. TC text

UTekTOOLS

The MS Text-Formatting Macros

Set tabs. Use inside a display to set the tab stops for column
alignment. You can enter them as character positions (8n
16n ...), inches (0.5i 1 i ...), or centimeters (1 c 2c ...). In
addition to normal tab stops, that cause the text following the
tab to be left-justified at the stop, you can also specify right
justifying or centering tab stops by following the tab stop with R
or C. Note the following example, where CD is the tab
character:

.OS B

.TA 2iC 4iR
\Flltem(f)Manufacturer(j)Cost\FR
.SP
Baubles(f)Penneys:'.1)$5.98
Bangles(f)Sears:'.1)$234. 98
Beads(f)Montgomery Wards:'.1)$49. 95
.DE

This produces the following output:

Item
Baubles
Bangles
Beads

Manufacturer
Penneys
Sears

Montgomery Wards

Cost
$5.98

$234.98
$49.95

Note that tab stops are set, but not returned to their original
values by some ms commands (like .IP), so you need to reset
the tab stops for displays .

Place text in the table of contents and also include it in the text.
If text has more than one space in a row, enclose it in double
quotes. Use this after a section heading to place the heading
title in the table of contents. For example:

.NH 1

.TC This is the section heading .

. PP

The table of contents is preceded by the word CONTENTS,
centered in italics. To change this heading, redefine the .PC
command.

4C-13

The MS Text-Formatting Macros

.TL The title of the document follows. It is printed in the center of
the first page, in boldface.

. TM [number] Start a technical memo. The argument number is the optional
memo number printed on the cover sheet.

.TR [number] Start a technical report. The argument number is the optional
report number printed on the cover sheet.

.UL word [x]

. XN text

.XX text

Underline word. Make any spaces in word unpaddable, for
example long\ word. If the argument xis present, it is
appended immediately after word, without intervening spaces.

Add text to the index without a page number .

Add text to the index with the current page number. The index
is automatically sorted and printed at the end of the document.
It is preceded by the word INDEX, centered in italics. To
change the INDEX heading, you can redefine the .PX
command.

The -T Option
The following options are available on the nroff/troff command line to specify the
output terminal.

-Taaa The Ann Arbor Ambassador.

- Tascii This is the default terminal. It specifies a standard ascii terminal with
spacing at 10 chars/inch and 6 lines/inch. The only non-standard
feature is the use of ESC 7 for reverse linefeeds.

-Tip The generic ascii lineprinter.

-Tlp-t A Printronix printer in 3 lines per inch mode.

-Tlp-t-8 A Printronix printer in 4 lines per inch mode.

- Tlp-8 A Printronix printer in 8 lines per inch mode.

-Tq-lg The Qume Sprint-5 printer in 12 pitch and 6 lines per inch mode.

-Tq-lg-8 The Qume Sprint-5 printer in 12 pitch and 8 lines per inch mode.

-Tq-lg-1 O The Qume Sprint-5 printer in 10 pitch and 1 O lines per inch mode.

-Tq-8

-Tq-10

-Ttn300

-Tup

4C-14

The Qume Sprint-5 printer in 12 pitch and 8 lines per inch mode.

The Qume Sprint-5 printer in 10 pitch and 8 lines per inch mode.

The GE TermiNet 300, or any terminal without half-line capability.

The standard lineprinter driver in 1 O pitch and 6 lines per inch mode.

-Tvt100

-TX

-T37

-T300

-T300s

-T300-12

The MS Text-Formatting Macros

The DEC vt-100 and compatible terminals.

The generic ENCDIC printer.

The TELETYPETm Model 37 terminal.

The DASI 300 terminal.

The DASI 300s terminal.

The DASI 300 terminal in 12 pitch mode.

-T300s-12 The DASI 300s terminal in 12 pitch mode.

-T382 The DTC-382.

-T450 The DASI 450.

-T450-12 The DASI 450 terminal in 12 pitch mode.

-T450-12-8The DASI 450 terminal in 12 pitch and 8 lines per inch mode.

- T832 The Anderson Jacobson 832.

-T2631 The Hewlett Packard 2631 lineprinter.

-T2631-c The Hewlett Packard 2631 lineprinter in compressed mode.

-T2631-e The Hewlett Packard 2631 lineprinter in expanded mode.

-T4025 The Tektronix 4025 terminal.

UTek TOOLS 4C-15

The MS Text-Formatting Macros

Special Character Set
Following are all the special characters available in ms. The printed character is
first, then the input name, followed by an explanatory name.

Q \(•a alpha 0 WO Omicron

f3 \(•b beta n WP Pi
y \(•g gamma p WR Rho
a \(•ct delta I \("S Sigma
E \(•e epsilon T WT Tau

' \ (•z zeta y \(*U Upsilon
'1) \(•y eta <I> \(*F Phi
9 \(*h theta x \(*X Chi
L \(*i iota \jl \(*Q Psi
K \(•k kappa n \(*W Omega
A \(•1 lambda \ \e back slash
µ. \(•m mu close quote

" \(*n nu open quote

~ \(•c xi \(aa acute accent (or\')
0 \(•o omicron \(ga grave accent (or \ ')
1T \(•p pi \(hy hyphen (or-)
p \(•r rho - \(mi math minus (or\-)
<T \(*s sigma - \(-- short dash
S' \(ts terminal sigma \(.. math star
T \(*t tau x \(mu multiply
v \(•u upsilon \(di divide
cf> \(*f phi • \(bu bullet
x \(•x chi D \(sq square
I/I \(•q psi 0 \(ci circle
w \(•w omega \(de degree
A \(*A Alpha - \(ru rule
B \(*B Beta 14 \(14 1/4
r \(*G Gamma 'h \(12 112
d \(*D Delta JA \(34 3/4
E \(*E Epsilon t \(dg dagger
z \(•z Zeta * \(dd double dagger
H \(*Y Eta \(fm foot mark
8 \(*H Theta § \(sc section
I \(*I Iota ¢ \(ct cent sign
K \(*K Kappa ® \(rg registered
A \(•L Lambda © \(co copyright
M \(*M Mu I \(sl alternate slash
N \(*N Nu -!. \(sr square root

- \(•c Xi \(rn root en extender

5318·16

4C-16

The MS Text-Formatting Macros

~ \(>= >= \"':U um lat
(\(<= <= * ~ e caret

\(== identically equal \•-a tilde
~ \('= not equal 1•Ce Czech v

\(-= approx = \•,c cedilla
\(ap approximate'>
\(-> right arrow
\(<- left arrow
\(ua up arrow Available Point Sizes:
\(da down arrow

± \(+- plus-minus Pomt Size 7

u \(rn cup (union) Poin1 Size 8

n \ (ca cap (intersection) Point Size 9

c \(sb subset of Point Size 10

:::i \(sp superset of Point Size 11
~ \(ib improper subset Point Size 12
:2 \(ip improper superset Point Size 14

\(if infinity Point Size 16 a \(pd partial derivative
\l \(gr gradient Point Size 18

\{no not

Point Size 20 J \(i, integral sign
\(pt proportional to

Point Size 22 0 \(es empty set
E \(mo member of

Point Size 24 I \(br box vertical rule ... \{rh right hand ,. \(lh left hand
@ \(bs bell symbol

\(or or
\(It left top of big curly bracket
\(lb left bottom
\(rt right top
\(rb right bottem
\ (lk left center
\(rk right center
\(bv bold vertical
\(If left floor (left bottom of

big square bracket)
\(rf right floor (right bottom)
\(le left ceiling {left top)
\(re right ceiling (right top)
\•- long dash

* \ .. big star
\o(" open doublequote
\• (" close doublequote

= \•C= approx. equal
= \•(= dot equal
'(\•Oo logical or

" \o(la logical and

·o· \.(tf therefore
A \.(ag Angstrom

\o'e acute accent mark
\•'e grave accent mark 5318-17

UTekTOOLS 4C-17

The MS Text-Formatting Macros

String and Number Registers
Following are the initial definitions of some of the string and number registers. You
can change them using the .ds and .nr commands. Enter numbers within a ''scale
indicator": n for character positions, c for centimeters, v for vertical lines, or i for
inches.

4C-18

.ds LH

.ds CH -\ \n(PN

.ds RH

.ds LF

.ds CF

.ds RF

.ds NF R

. ds HF B

.ds DI Distribution

.nr HS 0

.nr LL 6i

.nr LT 6i

.nr FL 6i-3n

.nr HM 1i

.nr FM 1i

.nr Pl Sn

.nr QI Sn

.nr NI 4n

.nr PS 10

.nr VS 12

.nr CS 24

Left portion of page header (initially null)
Center portion of page header
Right portion of page header
Left portion of page header
Center portion of page footer (*(DY if .DA)
Right portion of page footer
Normal text font
Heading font (.SH, .NH) .
Default for missing .TO argument in IOC
Heading size in points (0 means no change)
Line length (6.5 inches for IOC)
Header/footer length (6.5 inches for IOC)
Footnote line length
Top margin (header in middle of margin)
Bottom margin (footer in middle of margin)
Paragraph indent (.PP, .IP, .IS)
Quoted section indent (.QP, .QS)
Auto indent for numbered sections (.HS I)
Character point size (range 6-24)
Vertical spacing (normally PS + 2)
Constant spacing character width (.CS)

The MS Text-Formatting Macros

Example 1
Document

.LP

A Simple

Note that every document must start with a conmand*-LP
i s t h e s i mp I e s t s u c h c onma n d .
Let's try a simple I ist:
. IP 1.

Thi!> is the fir~t item in the list.
It wi I I have a ·label" of 1 .
. IP 2.
Th i s 1 s the second i t em i n the I i s t .
Now let's start a "relative indent" section so that the
f o I I ow i n g sub I i s t w i I I appear i n den t e d fr om i t em 2 .
. RS
. IP a)

Th i s i s sub I i s t i t em a .
. IP b)

This is sublist item b .
. RE
. IP 3.
Th i s i s the th i rd i t em in the top - I eve I I i s t .
. LP

We're now back at the original left margin with a new
left-justified paragraph.

Now let's do a "bullet I ist":
.BU
First bullet.
This can go on for awhile before we get to
.BU

The second (and last) bullet .
. LP

We can offset quotations:
.QP
This famous quotation includes both \Flitalics\FR and
\FBboldface\FR text.
It is set off from both the right and left margins .
. LP

We can a I so o f f s e t u n f o rma t t e d t ex t v i a the use o f
displays:
.OS C
These I ines are centered
exactly as they are typed.

DE

UTekTOOLS

5318-09

4C-19

The MS Text-Formatting Macros

4C-20

Note that every document must start with a command-LP 1s the simplest such
command. Let's t.ry a simple list:

I. This ts the first item in the list It will have a "label" of !.

2. This is the second item in the list. Now let's start. a ··relative indent" sect.rnn
so that the following sublist will appear indented from item~

a) This is sublist item a.

b} This is sublist item b.

3. This is the third item in the lop-level list.

We're now back at the original left margin with a new left-justified paragraph.
Now let's do a '"bullet list":

• First bullet. Thts can go on for awhile before we get lo .

• The second {and last} bullet.

We can offset quotations:

This famous quotation includes both italics and bold.face text. It is set
off from both the right and left margins.

We can also offset unformated text via the use of displays·

These lines are centered
exactly as they are typed.

5318-10

The MS Text-Formatting Macros

Example 2
Report

.TR

.TL

A Technical

An Investigation into the Nature of Research
.AU
A. R. Researcher
.AI
Research Research Group
Applied Research Group
Tektronix Labs
.AB
This report contains a detailed analysis of a recently
completed five-year research program into the nature of
research carried out by the ARG Research Research Group.
It is a prelude to a newly-formed research project•
.FS •
See "A Long-Term Plan to Research Research Research" by
A. R. Researcher, et al .
. FE
to investigate the potential impact of research research
on ARG research programs .
. AE
.SH
Background
.PP
Research Research is a growing and dynamic discipline .

The .TR will produce a cover sheet with a technical report confidentiality statement placed
automatically at the bottom of the page. Note that the .TR could be replaced with .RP to cause
the technical report cover sheet and title page to be replaced with a released paper title page, or
could be removed altogether if no cover page is desired.

5318-11

UTekTOOLS 4C-21

The MS Text-Formatting Macros

4C-22

TEK PRIVATE

An ID.'ft'9Uption into lhr Nature of
Re-arch

ll111n1portronla1n,.adet1uled&naly•1,.ufarrc,.rot1yc<HT>pl,.lt'<1
ri.-·7earreaeerchprotramonlolhenatur1"ofrf'seard••l'lrru·<lnul
by t.he AJtc.; Krse&r("h fte1.,arch Group lt ·~ 11 µreLJdt' \" "' "'"•ly

~::::~h~::::~·=h p:1~J:~~·.~: .. ~~:."h'~~~~; 111l:·: po1,.r11.~1 rnp~< 1 of

An lnYest.11•llon mlo lb~ Natur{" or
Re.earch

ihis1nlorn1at1on 1sc-ont'ldenlu1l 11nd nofurlher d1u·10,.ur1"lh1"r"of tf!.n hf' mru.le to
other thanTell;lronu: penonne1 without •rilten 11uthoroi11t•on rrnrn lhf' D1r1"C"lor
ofTeklAb1,Tell:trom:1..lnc.Beaverlon.Oreaon

Back.ct"ouad

An ln~•llon tnto lhe Nature of
Rewarcb

l-teseari·hRe11et1.1ThCroup

Appl1t'<1 R .. sf'&nhr:ro"p

T"ktronJ a !.11b"

5318-12

The MS Text-Formatting Macros

Example 3 - An IOC

UTekTOOLS

. IOC H

.TO A. R. Researcher

.FR T. L. Manager

.CC B. U. Coordinator

.CC R. R. Prograrrrner

.SU Your Recent Research Research Report

.PP
I found your recent report on the nature of research
fascinating.
Please keep me informed on the progress of the
follow-up project.
By the way, have you seen my report entitled "Research
into the Nature of Investigations"?
I believe you'll find it interesting reading.

TEKTRONIX

TL..M.anqer

Copy B t Coordinator
R. R Proarammer

SubJed Your Recent Research Research fteport

INTER-OFFICE
COMMUNICATION

Date February 3, 1981

J found your recent report on the nature of research fascm11t1na Please keep me
informed on the pro1ren or the follow-up project By the way. have you seen my
report entitled ·Research into the Nature of lnvesl1.&at1omf"? I believe you'll find tl
1ntere:1lu1a readu1&

5318-13

4C-23

The MS Text-Formatting Macros

Example 4 An IOC
Announcing a Meeting

4C-24

IOC
TO

T. L. Manager 50-123
R R. Progranmer 50-321
A R. Engineer 50-213
B. U. Contact 92-987
B. U. Coordinator 12-345
.FR A. R. Researcher, 50-543, xl234
SU Meeting on the State of Research Research

.DA Tuesday, Apr i I I, 1980

.Tl 10:00 - 12:00 am

.PL Bldg. 50, Conf. Room 458
LP

There wi I I be a meeting to discuss our Research Research
activities at the above stated time and place
In preparation for the meeting, please read the ARG
Technical Report "An Investigation into the Nature of
Research Research" and the proposal summary "A Long-Term
Plan to Research Research Research".

~ .. ,.,. wtl! hi' >1 ttn11; ,_,, 1\'IC'1:i:i nur ~'"'I0!'>1rrh Re'"""<'.'h ;rttvtt\t"'I at t.ri"
;:ol'>nv" 'ltatl"fl t\P¥ -1 p\i><:f'. T" Pl"eparat\O<' f'>r tti. -ttn11;, Plt"a-'<:- '"""'1 t~

:: ::h~~r:;,,.~l'~a~~ ~~"7;;;:i:~C:1~t~ 1.;;~,.~,.t:;'" ~"..:a~:~:a::~~rd1"

"lana11;l!f"
"'"oo:i:r-...r
'nR:l~r

5318-14

The MS Text-Formatting Macros

Example 5 A Business Letter

. LT 40
Dr External Expert
Research Ins t 1 tu t e of Amer i ca
Research Park
Potosi. M1ssour1 63123
. SP

De a r Dr Exp e r t :
.LP
I would appreciate any information you may have on
research research activities at your institute.

We are starting a project here at Tektronix to research
the imp! ications of research research on our research,
and are interested in any similar investigations in other
research centers.
Thank you for your assistance

SP 5
.OS I 40
Sincerely,
.SP 4
A. R. Researcher, Manager
Research Research Group
Applied Research Group
Tektronix Laboratories
.DE
AR:unix

UTekTOOLS

~.!P.!·

-... ~Jtf''""'· ~1~r•
11.-wa.-~" :.,~i.t 1 • Jtf' ~r .-,,. : e•
qf'M~r-"" "'•rll

1>..,t.-,:. ~ssnur: • 1 ·"

~ -~"~·, . ..,.,.,.
..... Q'0-41\'fl"'.)f.

• ...,,, '~rf'!":at,. .. v "'"'>l"'llllt\..,... .,,,, 'IWY '\aYf',,,.., ,.,.,..,r-t- .. ,.~.,.-t
'"''.•~'t"~ :iit ,,..,., :-.st•.•.1tl!'. ~ ar .. ,tart!'IA a pr'l)@Ct ~,.,.at~.,,._

... ..,,,.~. ·-· .. ,.,.,,.,.. .. uw i~::~•t!or.s ,-.,f .. l!'Sf!'ar-e11 .. .,,.,, .. ,..,.. ,.. "'

: :::~=~ . ~.:.: .. 7" .~.::~~,.:::~ .. 'Y\ .,Vo: y u:\rr1,1t::e,. \nv•st \ ~·t l r:ons

5318-15

4C-25

4D
The MM Text
formatting Macros

Introduction
This section is a guide and reference manual for users of Memorandum Macros
(MM). These macros provide a general purpose package of text formatting macros
for use with the UTek operating system text formatters nroff and troff.

Conventions
Each part of this chapter explains a single facility of MM and progresses from
general case to special case facilities. It is recommended that users read a part in
detail only to the point where there is enough information to obtain the desired
format, then skim the rest. This should save users time, because some details may
be of use to only a few.

In the synopses of macro calls, square brackets ([J) surrounding an argument
indicate that it is optional. Ellipses (...) show that the preceding argument may
appear more than once.

In those cases in which the behavior of the two formatters nroff and troff is
obviously different, the nroff formatter output is described first with the troff
formatter output following in parentheses.

For example:

The title is underlined (italic).

means that the title is underlined by the nroff formatter
and italicized by the troff formatter.

Document Structure
Input for a document to be formatted with the MM text formatting macro package
has four major segments. Any of these may be omitted; if present, the segments
must occur in the following order:

• Parameter setting segment sets the general style and appearance of a
document. The user can control page width, margin justification, numbering
styles for heading and lists, page headers and footers, and many other
properties of the document. The user can also add macros or redefine existing
ones. This segment can be omitted entirely if the user is satisfied with the
default values; it produces no actual output, but performs only the formatter
setup for the rest of the document.

UTekTOOLS 40-1

The MM Text-formatting Macros

• Beginning segment includes those items that occur only once at the beginning
of a document. This may include such items as title, author's name, and date.

• Body segment is the actual text of the document. It may be as small as a
single paragraph or as large as hundreds of pages. It may have a hierarchy of
headings up to seven levels deep. Headings are automatically numbered (if
desired) and can be saved to generate the table of contents. Five additional
levels of subordination are provided by a set of list macros for automatic
numbering, alphabetic sequencing, and "marking" of list items. The body may
also contain various types of displays, tables, figures, references, and
footnotes.

• Ending segment contains those items that occur only once at the end of a
document. Included are signature(s), in addition to notations, such as "Copy
to" lists. Certain macros may be invoked here to print information that is
wholly or partially derived from the rest of the document, such as the table of
contents or the cover sheet.

Existence and size of these four segments varies widely among different document
types. Although a specific item (such as author names, titles, dates, etc.) of a
segment may differ depending on the document, there is a uniform way of typing it
into an input text file.

Input Text Structure
In order to make it easy to edit or revise input file text at a later time:

• Input lines should be kept short.

• Lines should be broken at the end of clauses.

• Each new sentence should begin on a new line.

Definitions
Formatter refers to either the nroff or troff text-formatting program.

Requests are built-in commands recognized by the formatter. Although a user
seldom needs to use these requests directly, this section contains references to
some of the requests. For example, the request

.sp

inserts a blank line in the output at the place the request occurs in the input text file.

Macros are named collections of requests. Each macro is an abbreviation for a
collection of requests that would otherwise require repetition. The MM package
supplies many macros, and the user can define additional ones. Macros and
requests share the same set of names and are used in the same way.

40-2

The MM Text-formatting Macros

A complete listing of memorandum macros is given in the MM Macro Name
Summary at the end of this section.

Strings provide character variables, each of which names a string of characters.
Strings are often used in page headers, page footers, and lists. A string can be
given a value via the .ds (define string) request, and its value can be obtained by
referencing its name, preceded by "\ *" (for one-character names) or ''\ * (" (for
two-character names). For instance, the string OT in MM normally contains the
current date; thus, the input line

Today is October 23, 1984.

may result in the following output:

Today is July 25, 1983.

The current date can be replaced with the following command:

.ds OT 01/01/79

This is done by invoking a macro designed specifically for that purpose. A listing of
MM string names is given in the MM String Name Summary at the end of this
section.

Number registers fill the role of integer variables. These registers are used for
options and for arithmetic and automatic numbering. The registers share the pool of
names ussed by requests and macros. A register can be given a value using a .nr
request and be referenced by preceding its name by "\n" (for one-character
names) or ''\n(" (for two-character names). For example, the following sets the
value of the register d to one more than that of the register dd:

.nr d 1+0

A complete listing of MM number registers is given in the MM Number Register
Summary at the end of this section.

Also later in this section are naming conventions for requests, macros, strings, and
number register. Following them are lists of all macros, strings, number registers,
and error messages defined in MM.

Usage
This part describes how to access MM, illustrates UTek operating system command
lines appropriate for various output devices, and describes command line options for
the MM text formatting macro package.

UTekTOOLS 40-3

The MM Text-formatting Macros

The mm Command
The mm command can be used to prepare documents using the nroff formatter and
the MM macro package; this command invokes nroff with the -cm option. The mm
command has options to specify preprocessing by tbl and/or by neqn and for
postprocessing by various output filters.

NOTE
Options can occur in any order but must appear before the

filenames.

Any arguments or options that are not recognized by the mm command (such as
-rC3) are passed to the nroff formatter or to MM, as appropriate. Options are:

OPTIONS

-e

-t

-c

-E

-y

-12

-T450

-T450-12

-T300'

-T300-12

-T300s

-T300s-12

-T4014

-T37

-382

-T4000a

-TX

-Thp

-T43

40-4

MEANING

The neqn is invoked; also causes neqn to read lusrlpub/eqnchar
(see eqnchar).

The tbl preprocessor is invoked.

The col postprocessor is invoked.

The -e option of the nroff formatter is invoked.

The uncompacted macros (-mm) are to be used instead of
compacted macros (-cm).

The 12-pitch mode is to be used. The pitch switch on the terminal
should be set to 12 if necessary.

Output is to a DASI 450. This is the default terminal type (unless
$TERM is set; see sh). It is also equivalent to -T1620.

Output is to a DASI 450 in 12-pitch mode.

Output is to a DASI 300 terminal.

Output is to a DASI 300 in 12-pitch mode.

Output is to a DASI 3008.

Output is to a DASI 3008 in 12-pitch mode.

Output is to a TEK 4014.

Output is to a TELETYPE Model 37.

Output is to a DTC-382.

Output is to a TRENDATA 4000A.

Output is prepared for an EBCDIC line printer.

Output is to a Hewlett-Packard 262x or 264x (implies -c).

Output is to a TELETYPE Model 43 (implies -c).

The MM Text-formatting Macros

-T40/4 Output is to a TELETYPE Model 40/4 (implies-c).

-T745

-T2631

Output is to a Texas Instrument 700 Series terminal (implies-c).

Output is prepared for a Hewlett-Packard 2631 printer where
- T2631-e and -T2631-c may be used for expanded and
compressed modes, respectively (implies -c}.

-Tip Output is to a device with no reverse or partial line motions or other
special features (implies -c).

Any other - T option given does not produce an error; it is equivalent to -Tip. A
similar command is available for use with the troff formatter (see mmt).

The -cm or -mm Option
The MM package can also be invoked by including the -cm or -mm option as an
argument to the formatter. The -cm option causes the precompacted version of the
macros to be loaded.

NOTE
The -cm option cannot be used with troff (device

independent). The troff formatter does not allow compacted
macros.

The -mm option causes the file /usrllibltmacltman.m to be read and processed
before any other files. This action:

• Defines the Memorandum Macros,

• Sets default values for various parameters,

• Initializes the formatter to be ready to process input files.

Typical Command Lines
The prototype command lines are as follows:

• Text without tables or equations:

mm [options] filename . ..
or
nroff[options] -cm filename . ..
mmt [options] filename . ..
or
troff [options] -mm filename

UTekTOOLS 40-5

The MM Text-formatting Macros

• Text with tables:

mm -t [options] filename . ..
or
tbl filename. . . : nroff [options] -cm
mmt -t [options] filename . ..
or
tbl filename. . . l troff [options] -mm
or

• Text with equations:

mm -e [options] filename . ..
or
neqn /usr/pub/eqnchar filename... : nroff [options] -cm
mmt -e [options] filename . ..
[options] -mm

• Text with both tables and equations:

mm-t -e [options] filename . ..
or
tbl filename... : neqn /usrlpubleqnchar- : nroff
[options] -cm
mmt -t -e [options] filename . ..

NOTE
On any line shown above with a call to nroff using the

-cm options, the -mm options may be used instead of -cm.

When formatting a document with the nroff processor, the output should normally
be processed for a specific type of terminal. This is because the output may require
some features that are specific to a given terminal, such as reverse paper motion or
half-line paper motion in both directions.

Some commonly used terminal types and the command lines appropriate for them
are given below. More information is found later in this section, and in term(4) of the
UTek Command Reference.

• DASI 450 in 10-pinch, six lines/inch mode, with 0.75 inch offset, and a line
length of six inches (60 characters). This is the default terminal type;
therefore, no -T option is needed (unless $TERM is set to another value):

mm filename . ..
or
nroff - T 450 -h -cm filename . ..

40-6

The MM Text-formatting Macros

• DASI 450 in 12-pitch, six line/inch mode, with 0.75 offset, and a line length of
six inches (72 characters):

mm -12 filename ...
or
nroff - T 450 -12 -f -cm filename . ..

To increase the line length to 80 characters and decrease the offset
to three characters:

mm -12 -rW80 -r03 filename . ..
or
nroff - T 450-12 -rW80 -r03 -h -cm filename . ..

• Hewlett-Packard HP262x or HP264x CRT family:

mm - Thp filename ...
or
nroff -cm filename. . . : col : hp

• Any terminal incapable of reverse paper motion and also lacking hardware tab
stops (Texas Instruments 700 Series, etc.):

mm -T745 filename . ..
or
nroff -cm filename. . . : col -x

The tbl and neqn preprocessors must be invoked as shown in the command lines
illustrated earlier.

If two-column processing is used with the nroff formatter, either the -c option must
be specified to mm (mm uses col automatically for many terminal types), or the
nroff formatter output must be postprocessed by col. In the latter case, the T37
terminal type must be specified to the nroff formatter, the -h option must not be
specified, and the output of col must be processed by the appropriate terminal filter
(such as by 450); mm, with the -c option, handles all this automatically.

Parameters Set From Command Line
Number registers are commonly used within MM to hold parameter values that
control various aspects of output style. Many of these values can be changed within
the text files with .nr requests. In addition, some of these registers can be set from
the command line. This is a useful feature for those parameters that should not be
permanently embedded within the input text. If used, the number registers (with
exception to the P register) must be set on the command line or before the MM
macro definitions are processed. The number register meanings are as follows:

-rAn n = 1 has effect of invoking the .AF macro without an argument.

-rCn sets type of copy, such as DRAFT, to be printed at the bottom of

UTekTOOLS

each page.
n = 1 for OFFICIAL FILE COPY.
n = 2 for DATE FILE COPY.

40-7

The MM Text-formatting Macros

n = 3 for DRAFT with single spacing and default paragraph style.
n = 4 for DRAFT with double spacing and 10-space paragraph
indent.

-rD1 sets debug mode.
This option requests the formatter to continue processing even if
MM detects errors that would otherwise cause termination. It also
includes some debugging information in the default page header.

-rEn controls font of Subject/Date/From fields.
n = 0, fields are bold (default for the troff formatter).
n = 1, fields are Roman font (regular text default for the nroff
formatter).

-rlk sets length of physical page to k lines.
For the nroff formatter, k is an unscaled number representing lines.
For the troff formatter, k must be scaled.
Default value is 66 lines per page.
This option is used, for example, when directing output to a
Versatec. printer.

-rNn specifies page numbering style.

4D-8

n = 0 (default), all pages get the prevailing header.
n = 1, page header replaces footer on page one only.
n = 2, page header is omitted from page one.
n = 3, "section-page" numbering occurs (.FD and .RP defines
footnotes and reference numbering in section.
n = 4, default page header is suppressed; however, a user
specified header is not affected.
n = 5, "section-page" and "section-figure" numbering occurs.

Table 40-1
EFFECTS OF THE N REGISTER ON PAGE NUMBERING STYLE

n PAGE 1 PAGE 2-END

0 header header
1 header replaces footer header
2 no header header
3 "section-page" as footer same as page 1
4 no header no header unless .PH defined

"section-page" as footer same as page 1
and "section-figure"

Contents of the prevailing header and footer do not depend on
number register N value; N controls whether the header (N = 3) or
the footer (N = 5) is printed, as well as the page numbering style. If
header and footer are null, the value of N is irrelevant.

The MM Text-formatting Macros

-rOk offsets output k spaces to the right.

-rPn

-rSn

-rTn

-rU1

-rWk

UTekTOOLS

For the nroff formatter, k is an unscaled number representing lines
or character positions.
For the troff formatter, k must be scaled.
This option is helpful for adjusting output positioning on some
terminals. The default offset, if this register is not set on the
command line, is 0. 75 inch (nroff) and 0.5 inch (troff).

Note: This register name is the
capital letter "O''.

specifies that pages of the document are to be numbered starting
with n.
This register may also be set via a .nr request in the input text.

sets point size and vertical spacing for the document.
The default n is 1 O (10-point type on 12-point vertical spacing,
giving six lines per inch).
This option applies to the troff formatter only.

provides register settings for certain devices.
If n is one , line length and page offset are set to 80 and three,
respectively.
Setting n to two changes the page length to 84 lines per page and
inhibits underlining; it is meant for output sent to the Versatec
printer.
The default value for n is zero.
This option applies to the nroff formatter only.

controls underlining of section headings.
This option causes only letters and digits to be underlined.
Otherwise, all characters (including spaces) are underlined.
This option applies to the nroff formatter only.

sets page width (line length and title length) to k.
For the nroff formatter, k is an unscaled number representing
character positions.
For the troff formatter, k must be scaled.
This option can be used to change page width from the default
value of six inches (60 characters in 10-pitch or 72 characters in
12-pitch).

40-9

The MM Text-formatting Macros

Omission of -cm or -mm Options
If a large number of arguments is required on the command line, it may be
convenient to set up the first (or only) input file of a document as follows:

zero or more initializations of registers listed in the last section
.so /usrllib!tmac/tmac.m
remainder of text.

In this case, the user must not use the -cm or -mm options (nor the mm or mmt
commands); the .so request has the equivalent effect, but registers shown in the last
section must be initialized before the .so request, because their values are
meaningful only if set before macro definitions are processed. When using this
method, it is best to lock into the input file only those parameters that are seldom
changed. For example:

.nr W 80

.nr 0 10

.nr N 3

.so /usrllibltmacltmac.m

.H 1 "INTRODUCTION"

specifies, for the nroff formatter, a line length (W) of 80, a page offset (0) of 10. and
"section-page" (N) numbering.

Formatting Concepts

Basic Terms
Normal action of the formatters is to fill output lines from one or more input lines.
Output lines may be justified so that both the left and right margins are aligned. As
lines are being filled, words may also be hyphenated as necessary. It is possible to
turn any of these modes on and off (with .SA, Hy, and the .nf and .fi formatter
requests). Turning off fill mode also turns off justification and hyphenation.

Certain formatting commands (requests and macros) cause filling of the current
output line to cease, the line (of whatever length) to be printed, and subsequent text
to begin a new output line. This printing of a partially filled output line is known as
break. A few formatter requests and most of the MM macros cause a break.

40-10

The MM Text-formatting Macros

Formatter requests can be used with MM; however, there are consequences and
side effects that each such request might have. A good rule is to use formatter
requests only when absolutely necessary. The MM macros described herein should
be used in more cases because:

• It is much easier to control (and change at any later point in time) the overall
style of the document.

• Complicated features (such as footnotes or tables of contents) can be obtained
with ease.

• User is insulated from peculiarities of the formatter language.

Arguments and Double Quotes
For any macro call, a null argument is an argument whose width is zero. Such an
argument often has special meaning; the preferred form for a null argument is '"'.
Omitting an argument is not the same as supplying a null argument! Omitted
arguments can occur only at the end of an argument list; null arguments can occur
anywhere in the list.

Any macro argument containing ordinary (paddable) spaces must be enclosed in
double quotes. A double quote (") is a single character that must not be confused
with two apostrophes ("), acute accents ("), or grave accents("). Otherwise, it will
be treated as several separate arguments.

Double quotes are not permitted as part of the value of a macro argument or of a
string that is to be used as a macro argument. If it is necessary to have a macro
argument value, two grave accents(") and/or two acute accents(") may be used
instead. This restriction is necessary because many macro arguments are
processed (interpreted) a varying number of times. For example, headings are first
printed in the text and may be reprinted in the table of contents.

Unpaddable Spaces
When output lines are justified to give an even right margin, existing spaces in a line
may have additional spaces appended to them. This may distort the desired
alignment of text. To avoid this distortion, it is necessary to specify a space that
cannot be expanded during justification (an unpaddable space, for example). There
are several ways to accomplish this:

• The user may type a backslash followed by a space(\). This pair of
characters directly generates an unpaddable space.

• The user may sacrifice some seldom-used character to be translated into a
space upon output.

UTekTOOLS 40-11

The MM Text-formatting Macros

Because this translation occurs after justification, the chosen character may be used
anywhere an unpaddable space is desired. The tilde C) is often used with the
translation macro for this purpose. To use the tilde in this way, the following is
inserted at the beginning of the document:

.tr-<sp>

If a tilde must actually appear in the output, it can be temporarily "recovered" by
inserting

.tr--

before the place where needed. Its previous usage is restored by repeating the
.tr-<sp> after a break or after the line containing the tilde has been forced out.

NOTE
Use of the tilde in this fashion is not recommended for

documents in which the tilde is used within equations.

Hyphenation
Formatters do not perform hyphenation unless requested. Hyphenation can be
turned on in the body of the text by specifying

.nr Hy 1

at the beginning of the document input file. A special case exists for hyphenation
within footnotes and across pages and is discussed later in this manual.

If hyphenation is requested, formatters will automatically hyphenate words if need
be. However, the user may specify hyphenation points for a specific occurrence of
any word with a special character, known as a hyphenation indicator, or may specify
hyphenation points for a small list of words (about 128 characters).

If the hyphenation indicator (initially, the two-character sequence\% appears at the
beginning of a word, the word is not hyphenated). Alternatively, it can be used to
indicate legal hyphenation points inside a word. All occurrences of the hyphenation
indicator disappear on output.

The user may specify a different hyphenation indicator in the following way:

. HC [hyphenation-indicator J

The circumflex C) is often used for this purpose by inserting the following at the
beginning of a document input text file:

.HCA

40-12

The MM Text-formatting Macros

NOTE
Any word containing hyphens or dashed (also know as em

dashes) will be hyphenated immediately after a hyphen or
dash if it is necessary to hyphenate the word, even if the
formatter hyphenation function is turned off

The user may supply, via the exception word .hw request, a small list of words with
the proper hyphenation points indicated. For example, to indicate the proper
hyphenation of the word "printout", the user may specify

.hw print-out

Tabs
Macros .MT, .TC, and .CS use the formatter tab .ta request to set tab stops and
then restore the default values of tab settings (every eight characters in the nroff
formatter; every 112 inch in the troff formatter). Setting tabs to other than the
default values in the user's responsibility.

Default tab setting values are 9, 17, 25, ... , 161 for a total of 20 tab stops. Values
may be separated by commas, spaces, or any other nonnumeric character. A user
may set tab stops at any value desired. For example:

.ta 9 17 25 33 41 49 57 ... 161

A tab character is interpreted with respect to its position on the input line rather than
its position on the output line. In general, tab characters should appear only on
lines processed in no-fill (.nf) mode.

The tbl program changes tab stops but does not restore default tab setting.

BEL Character
The nonprinting character BEL is used as a delimiter in many macros to compute
the width of an argument or to delimit arbitrary text. For example, it may do so in
page headers and footers, headings, and lists. Users who include BEL characters
in their input text file especially in arguments to macros) will receive mangled output.

Bullets
A bullet (•) is often obtained on a typewriter terminal by using an "o" overstruck by
a"+". For compatibility with the troff formatter, a bullet string is provided by MM
with the following sequence:

*(BU

The bullet list (.BL) macro uses this string to generate automatically the bullets for
bullet listed items.

UTek TOOLS 40-13

The MM Text-formatting Macros

Dashes, Minus Signs, and Hyphens
The troff formatter has distinct graphics for a dash, a minus sign, and a hyphen;
the nroff formatter does not.

• Users who intend to use the nroff formatter may use only the minus sign (-)
for the minus, hyphen, and dash.

• Users who plan to use the troff formatter primarily should follow troff escape
conventions.

• Users who plan to use both formatters must take care during input text file
preparation. Unfortunately, these graphic characters cannot be represented in
a way that is both compatible and convenient for both formatters.

The following approach is suggested:

Dash Type\ *(EM for each text dash for both nroff and troff formatter.
This string generates an em dash in the troff formatter and two
dashes(-) in the nroff formatter. Dash list (.DL) macros
automatically generate the em dash for each list item.

Hyphen Type - and use as is for both formatters. The nroff formatter will
print it as is. The troff formatter will print - (a true hyphen).

Minus Type\- for a true minus sign regardless of formatter. The nroff
formatter will ignore the\. The troff formatter will print a true
minus sign.

Trademark String
A trademark string *(Tm is available with MM. This places the letters "TM" one
half line above the text that it follows. For example:

The
.I
UTek
.R
*(Tm
.I
Command Reference Manual
.R
is available from the library.

yields:

The UTek rM Command Reference Manual is available from the library.

40-14

The MM Text-formatting Macros

Use of Formatter Requests
Most nroff/troff requests should not be used with MM because MM provides the
corresponding formatting functions in a much more user-oriented and surprise-free
fashion than do the basic formatter requests. However, some formatter requests are
useful with MM, namingly the following:

.af Assign format

.br Break

.ce Center

.de Define macro

.ds Define string

.fi Fill output lines

.hw Exception word

.Is Line spacing

.nf No filling of output lines

.nr Define and set number register

.nx Go to the next file (does not return)

.rm Remove macro

.rr Remove register

.rs Remove spacing

.so Switch to source file and return

.sp Space

.ta Tab stop settings

.ti Temporary indent

.ti Title

.tr Translate
Escape

The .fp, .lg, and .ss requests are also sometimes useful for the troff formatter. Use
of other requests without fully understanding their implications very often leads to
disaster.

Paragraphs and Headings

Paragraphs
.P [type]
one or more lines of text.

The .P macro is used to control paragraph style.

UTekTOOLS 40-15

The MM Text-formatting Macros

Paragraph Indentation
An indented or a nonindented paragraph is defined with the type argument:

type RESULT
0 left justified

indent

In a left-justified paragraph, the first line begins at the left margin. In an indented
paragraph, the paragraph is indented the amount specified in the Pi register (default
value is five). For example, to indent paragraphs by ten spaces, the following is
entered at the beginning of the document input file:

.nr Pi 10

A document input file possesses a default paragraph type obtained by specifying .P
before each paragraph that does not follow a heading. Default paragraph type is
controlled by the Pt number register.

• The initial value of Pt is zero, and provides left-justified paragraphs.

• All paragraphs can be forced to be indented by inserting the following at the
beginning of the document input file:

.nr Pt 1

• All paragraphs can be indented except after headings, lists, and displays by
entering the following at the beginning of the document input file:

.nr Pt 2

Both the Pi and Pt register values must be greater than zero for any paragraphs to
be indented.

NOTE
Values that specify indentation must be unscaled and are

treated as character positions (for example, as a number of
ens). In the nroff formatter, an en is equal to the width of a
character. In the troff formatter, an en is the number of
points (I point = 1172 of an inch) equal to half the current
point size.

Regardless of the value of Pt, an individual paragraph can be forced to be left
justified or indented. The .P O macro request forces left justification; .P 1 causes
indentation by the amount specified by the register Pi.

If .P occurs inside a list, the indent (if any) of the paragraph is added to the current
list indent.

Numbered Paragraphs
Numbered paragraphs may be produced by setting the Np register to 1. This
produces paragraphs numbered within first level headings, such as 1.01, 1 .02, 1.03,
2.01, etc. ·

40-16

The MM Text-formatting Macros

A different style of numbered paragraphs is obtained by using the .nP macro rather
than the .P macro for paragraphs. This produces paragraphs that are numbered
within second level headings .

. H 1 "FIRST HEADING"

.H 2 "Second Heading"

.nP
one or more lines of text

The paragraphs contain a "double-line indent" in which the text of the second line
is indented to be aliqned with the text of the first line so that the number stands out.

Spacing Between Paragraphs
The Ps number register controls the amount of spacing between paragraphs. By
default, Ps is set to one, yielding one blank space (one-half vertical space).

Numbered Headings
.H level [heading text] [heading-suffix]
zero or more lines of text

The level argument provides the numbered heading level. There are seven heading
levels; level one is the highest, level seven is the lowest.

The heading-text argument may be used for footnote marks which should not appear
with heading text in the table of contents.

There is no need for a .P macro immediately after a .H or a .HU because the .H
macro also performs the function of the .P macro. Anything immediately following
.P macro is ignored. It is, however, good practice to start every paragraph with a .P
macro, thereby ensuring that all paragraphs uniformly begin with a .P throughout an
entire document.

Normal Appearance
The effect of the .H macro varies according to the level argument. First-level
headings are preceded by two blank lines (one vertical space); all others are
preceded by one blank line (one-half a vertical space). The following table
describes the default effect of the level argument:

.H 1 heading-text

UTekTOOLS

Produces an underlined (italicized) font heading followed by
a single blank line (one-half a vertical space). The following
text begins on a new line and is indented according to the
current paragraph type. Full capital letters should be used
to make the heading stand out.

40-17

The MM Text-formatting Macros

.H 2 heading-text Produces an underlined (italicized) font heading followed by
a single blank line (one-half a vertical space). The following
text begins on a new line and is indented according to the
current paragraph type. Initial capitals should be used in
the head text.

.H n heading-text Produces an underlined (italicized) heading followed by two
spaces (3 =::; n =::; 7). The following text begins on the same
line.

Appropriate numbering and spacing (horizontal and vertical) occur even if the
heading-text argument is omitted from a .H macro call.

The following list gives the first few .H calls used for this part:

.H 1 "Paragraphs and Headings"

.H 2 "Paragraphs"

.H J "Paragraph Indentation"

.H J "Numbered Paragraphs"

.H J "Spacing Between Paragraphs"

.H 2 "Numbered Headings"

.H J "Normal Appearance"

.H J "Altering Appearance"

.H 4 "Prespacing and Page Ejection"

.H 4 "Spacing After Headings"

.H 4 "Centering Headings"

.H 4 "Bold, Italic, and Underlined Headings"

.H 5 "Control by Level"

NOTE
Users satisfied with the default appearance of headings may

skip to the paragraph entitled "Unnumbered Headings".

Altering Appearance
The user can modify the appearance of headings quite easily by setting certain
registers and strings at the beginning of the document input text file. This permits
quick alteration of a document's style, because this style-control information is
concentrated in a few lines rather than being distributed throughout the document.

Prespacing and Page Ejection
A first-level heading (.H 1) normally has two blank lines (one vertical space)
preceding it, and all other headings are preceded by one blank line (one-half a
vertical space). If a multi-line heading were to be split across pages, it is
automatically moved to the top of the next page. Every first-level heading may be
forced to the top of a new page by inserting:

.nr Ej 1

40-18

The MM Text-formatting Macros

at the beginning of the document input text file. Long documents may be made
more manageable if each section starts on a new page. Setting the Ej register to a
higher value causes the same effect for headings up to that level. For example, a
page eject occurs if the heading level is less than or equal to the Ej value.

Spacing After Headings
Three registers control the appearance of text immediately following a .H call. The
registers are Hb (heading break level), Hs (heading space level), and Hi (post
heading indent).

• If thn heading level is less than or equal to Hb, a break occurs after the
heading.

• If the heading level is less than or equal to Hs, a blank line (one-half a vertical
space) is inserted after the heading.

• If a heading level is greater than Hb and also greater than Hs, then the
heading (if any) is immediately followed by text on the same line.

These registers permit headings to be separated from the text in a consistent way
throughout a document while allowing easy alteration of white space and heading
emphasis. The default value for Hb and Hs is 2.

For any stand-alone heading, such as a heading on a line by itself, alignment of the
next line of output is controlled by the Hi number register.

• If Hi is 0, text is left-justified.

• If Hi is 1 (the default value), text is indented according to the paragraph type
as specified by the Pt register.

• If Hi is 2, text is indented to line up with the first word of the heading itself so
that the heading number stands out more clearly.

To cause a blank line (one-half a vertical space) to appear after the first three
heading levels, to have no run-in headings, and to force the text following all
headings to be left-justified (regardless of the value of Pt), the following should
appear at the beginning of the document input text file:

.nr Hs 3

.nr Hb 7

.nr Hi O

Centered Headings
The He register can be used to obtain centered headings. A heading is centered if
its level argument is less than or equal to He and if it is also a stand-alone heading.
The He register is O initially (no centered headings).

Bold, Italic, and Underlined Headings
Control by Level: Any heading that is underlined by the nroff formatter is italicized
by the troff formatter. The string HF (heading font) contains seven codes that
specify fonts for heading levels one through seven. Legal codes, code
interpretations, and defaults for HF codes are shown in Table 40-2:

UTekTOOLS 40-19

The MM Text-formatting Macros

Table 4D-2
HF STRING CODES, EFFECTS, AND DEFAULT VALUES

HF CODE FORMATTER ~~~~~~~~~~~
2 3

DEFAULT
HF CODE

nroff no underline underline bold 2 2 2 2 2 2 2
troff Roman italic bold 2 2 2 2 2 2 2

Thus, all levels are underlined by the nroff formatter and italicized by the troff
formatter. The user may reset HF as desired. Any value omitted from the right end
of the list is assumed to be a 1. The following request would result in five bold
levels and two underlined (italic) levels:

.ds HF 3 3 3 3 3

NROFF Underlining Style: The nroff formatter underlines in either of two styles:

• The normal style (.ul request) underlines only letters and digits.

• The continuous style (.cu request) underlines all characters including spaces.

By default, MM attempts to use the continuous style on any heading that is to be
underlined and is short enough to fit on a single line. If a heading is to be
underlined but is longer than a single line, the heading is underlined in the normal
style.

All underlining of headings can be forced to the normal style by using the -rU1
option when invoking the nroff formatter.

Heading Point Sizes: The user may specify the desired point size for each heading
level with the HP string (for use with the troff formatter only) .

. ds HP {psi] {ps2] {ps3] {ps4] {ps5] {ps6] {ps7]

By default, the text of headings (.H and .HU) is printed in the same point size as the
body except that bold stand-alone headings are printed in a size one point smaller
than the body. The string HP, similar to the string HF, can be specified to contain
up to seven values, corresponding to the seven levels of headings.
For example:

.ds HP 12 12 10 10 10 10 10

specifies that the first and second level headings are to be printed in 12-point type
with the remainder printed in 10-point. Specified values may also be relative point
size changes. For example:

.ds HP +2 +2 -1 -1

If absolute point sizes are specified, then absolute sizes will be used regardless of
the point size of the body of the document. If relative point sizes are specified, then
point sizes for headings will be relative to the point size of the body even if the latter
is changed.

40-20

The MM Text-formatting Macros

Null or zero values imply that default size will be used for the corresponding heading
level.

NOTE
Only the point size of the headings is affected. Specifying

a large point size without providing increased vertical spacing
(via .HX and/or .HZ) may cause overprinting.

Marking Styles - Numerals and Concatenation
.HM [argl] ... [arg2]

The registers named H1 through H7 are used as counters for the seven levels of
headings. Register values are normally printed using Arabic numerals. The .HM
macro (heading mark style) allows this choice to be overridden thus providing
"outline" and other document styles. This macro can have up to seven arguments;
each argument is a string indicating the type of marking to be used. Legal
arguments and their meanings are as follows:

ARGUMENT
1
0001

A
a
I
i
omitted
illegal

MEANING
Arabic (default for all levels)
Arabic with enough leading zeroes to get the specified number
of digits
Uppercase alphabetic
Lowercase alphabetic
Uppercase Roman
Lowercase Roman
Interpreted as 1 (Arabic)
No effect

By default, the complete heading mark for a given level is built by concatenating the
mark for that level to the right of all marks for all levels of higher value. To inhibit
the concatenation of heading level marks (in other words, to obtain just the current
level mark followed by a period), the heading mark type register (Ht) is set to 1. For
example, a commonly used "outline" style is obtained with the following:

.HM I A 1 a i

.nr Ht 1

Unnumbered Headings
.HU heading-text

The .HU macro is a special case of .H; it is handled in the same way as .H except
that no heading mark is printed. In order to preserve the hierarchical structure of
headings when .Hand .HU calls are intermixed, each .HU heading is considered to
exist at the level given by register Hu, whose initial value is two. Thus, in the
normal case, the only difference between:

UTekTOOLS 40-21

The MM Text-formatting Macros

.HU heading-text

and

.H 2 heading-text

is the printing of the heading mark for the latter. Both macros have the effect of
incrementing the numbering counter for level two and resetting to zero the counters
for levels three through seven. Typically, the value of Hu should be set to make
unnumbered headings (if any) be the lowest-level headings in a document.

The .HU macro can be especially helpful in setting up appendices and other
sections that may not fit well into the numbering scheme of the main body of a
document.

Headings and Table of Contents
The text of headings and their corresponding page numbers can be automatically
collected for a table of contents. This is accomplished by doing the following:

• Specifying in the contents level register, Cl, what level headings are to be
saved.

• Invoking the . TC macro at the end of the document.

Any heading whose level is less than or equal to the value of the Cl register is saved
and later displayed in the table of contents. The default value for the Cl register is
2; in other words, the first two levels of headings are saved.

Due to the way headings are saved, it is possible to exceed the formatter's storage
capacity, particularly when saving many levels of many headings, while also
processing displays and footnotes. If this happens, the "Out of temp file space"
formatter error message will be issued; the only remedy is to save fewer levels
and/or to have fewer words in the heading text.

First-Level Headings and Page Numbering
Style
By default, pages are numbered sequentially at the top of the page. For large
documents, it may be desirable to use page numbering of the "section-page'' form
where section is the number of the current first-level heading. This page numbering
style can be achieved by specifying the -rN3 or -rN5 option on the command line.
As a side effect, this also has the effect of setting Ej to 1 (each first level section
begins on a new page). In this style, the page number is printed at the bottom of
the page so that the correct section number is printed.

40-22

The MM Text-formatting Macros

User Exit Macros

NOTE
This paragraph is intended primarily for users who are

accustomed to writing formatter macros .

. HX d-level r-leve/ heading-text

.HY d-level r-leve/ heading-text

.HZ d-leve/ r-/eve/ heading-text

The .HX, .HY, and .HZ macros are the means by which the user obtains a final level
of control over the previously described heading mechanism. These macros are not
defined by MM; they are intended to be defined by the user. The .H macro call
invokes .HX shortly before the actual heading text is printed; it call .HZ as its last
action. After .HX is invoked, the size of the heading is calculated. This processing
causes certain features that may have been included in .HX, such as .ti for
temporary indent, to be lost. After the size calculation, .HY is invoked so that the
user may respecify these features. All default actions occur if these macros are not
defined. If .HX, .HY, and .HZ are defined by the user, user-supplied definition is
interpreted at the appropriate point. These macros can therefore influence handling
of all headings because the .HU macro is actually a special case of the .H macro.

If the user originally invoked the .H macro, then the derived level argument (d-level)
and the real level argument (r-level) are both equal to the level given in the .H
invocation. If the user originally invoked the .HU macro, d-level is equal to the
contents of the register Hu, and r-level is zero. In both cases, heading-text is the text
of the original invocation.

By the time .H calls .HX, it has already incremented the heading counter of the
specified level, produced blank lines (vertical spaces) to precede the heading, and
accumulated the "heading mark" (the string of digits, letters, and periods needed
for a numbered heading). When .HX is called, all user-accessible registers and
strings can be referenced, as well as the following:

string }O If r-level is nonzero, this string contains the "heading mark".

register ;O

string }2

UTekTOOLS

Two unpaddable spaces (to separate the mark from the
heading) have been appended to this string.
If r-leve/ is 0, this string is null.

This register indicates the type of spacing that is to follow the
heading.
A value of 0 means that the heading is run-in.
A value of 1 means a break (but no blank line) is to follow the
heading.
A value of 2 means that a blank line (one-half a vertical space)
is to follow the heading.

If register ;O is O, this string contains two unpaddable spaces
that will be used to separate the (run-in) heading from the
follow text.
If register ;O is nonzero, this string is null.

40-23

The MM Text-formatting Macros

register ;3 This register contains an adjustment factor for a .ne request
issued before the heading is actually printed. On entry to .HX,
it has the value 3 if d-/evel equals 1, and 1 otherwise. The .ne
request is for the following number of lines: the contents of
the register ;O taken as blank lines (halves of vertical space),
plus the contents of register ;3 as blank lines (halves of
vertical space), plus the number of lines of the heading.

The user may alter the values of }0,}2, and ;3 within .HX. The following are
example actions that might be performed by defining .HX to include the lines shown.
The notation <sp> denotes a space:

• Change first-level heading mark from format n. to n.O:

.if\\$1=1 .ds }O\\n(H1.0\<sp>\<sp>

• Separate run-in heading from the text with a period and two unpaddable
spaces:

.if\ \n(;O=O .ds }2.\<sp>\<sp>

• Assure that at least 15 lines are left on the page before printing a first-level
heading:

.if\\$1=1.nr ;3 (1S-\\n(;O)v

• Add three additional blank lines before each first-level heading:

.if\ \$1 =1 .sp 3

• Indent level 3 run-in headings by five spaces:

.if\\$1 =3.ti Sn

If temporary strings or macros are used within .HX, their names should be chosen
with care.

When the .HY macro is called after the .ne is issued, certain features requested in
.HX must be repeated.
For example:

.de HY

.if\\$1=3 .ti Sn

The .HZ macro is called at the end of .H to permit user-controlled actions after the
heading is produced. In a large document, sections may correspond to chapters of
a book; the user may want to change a page header of footer in the following way:

.de HZ

.if\\$1=1 .PF "Section \\$311

40-24

The MM Text-formatting Macros

Hints for Large Documents
A large document is often organized for convenience into one input text file per
section. If the files are numbered, it is wise to use enough digits in the names of
these files for the maximum number of sections (for example, use suffix numbers 01
though 20 rather than 1 through 9 and 10 through 20).

Users often want to format individual sections of long documents. To do this with
the correct section numbers, it is necessary to set register H1 to one less than the
number of the section just before the corresponding .H 1 call. For example, at the
beginning of Part 5, insert:

.nr H1 4

NOTE
This is not good practice. It defeats the automatic

(re)numbering of sections when sections are added or
deleted. Such lines should be removed as soon as possible.

Lists
This part describes different styles of lists: automatically numbered and alphabetized
lists, bullet lists, dash lists, lists with arbitrary marks, and lists starting with arbitrary
strings (such as those with terms or phrases to be defined).

List Macros
In order to avoid repetitive typing of arguments to describe the style or appearance
of items in a list, MM provides a convenient way to specify lists. All lists share the
same overall structure and are composed of the following basic parts:

• A list-initialization macro (.AL, .BL, .Ml, .RL, or .VL) determines the style of
list: line spacing, indentation, marking with special symbols, and numbering or
alphabetizing of list items.

• One or more list-item macros (.LI) identifies each unique item to the system.
It is followed by the actual text of the corresponding list item.

• The list-end macro (.LE) identifies the end of the list. It terminates the list and
restores the previous indentation.

Lists may be nested up to six levels. The list-initialization macro saves the previous
list status (indentation marking style, etc.); the .LE macro restores it.

With this approach, the format of a list is specified only once at the beginning of the
list. In addition, by building onto the existing structure, users may create their own
customized sets of list macros with relatively little effort.

UTekTOOLS 40-25

The MM Text-formatting Macros

List-Initialization Macros
List-initialization macros are implemented as calls to the more basic .LB macro.
They are:

.AL Automatically Numbered or Alphabetized List

.BL Bullet List

.DL Dash List

.ML Marked List

.RL Reference List

. VL Variable-Item List

Automatically Numbered or Alphabetized List

.AL [type] [text-indent] [1 J

The .AL macro is used to begin sequentially numbered or alphabetized lists. If
there are no arguments, the list is numbered, and text is indented by Li (initially six)
spaces from the indent in force when the .AL macro is called. This leaves room for
a space, two digits, a period, and two spaces before the text. Values that specify
indentation must be unscaled and are treated as character positions (such as number
of ens).

Spacing at the beginning of the list and between items can be suppressed by setting
the list space register (Ls). The Ls register is set to the innermost list level for
which spacing is done.
For example:

.nr Ls 0

specifies that no spacing will occur around any list items. The default value for Ls is
six (which is the maximum list nesting level).

• The type argument may be given to obtain a different type of sequencing. Its
value indicates the first element in the sequence desired. If type argument is
omitted or null, the value 1 is assumed.

ARGUMENT
1
A
a
I

INTERPRETATION
Arabic (default for all levels)
Uppercase alphabetic
Lower alphabetic
Uppercase Roman
Lowercase Roman

• If text-indent argument is nonnull, it is used as the number of spaces from the
current indent to the text; for example, the argument is used instead of the Li
register for this list only. If text-indent argument is null, the value of Li will be
used.

• If the third argument is given, a blank line (one-half a vertical space) will not
separate items in the list. A blank line will occur before the first item, however.

40-26

The MM Text-formatting Macros

Bullet List
.BL [text-indent] [1 J

The .BL macro begins a bullet list. Each list item is marked by a bullet (•) and
followed by one space.

• If the text-indent argument is nonnull, it overrides the default indentation (the
amount of paragraph indentation as given in the Pi register). In the default
case, the text of a bullet list lines up with the first line of indented paragraphs.

• If the second argument is specified, no blank lines will separate the items in
the list.

Dash List
.DL [text-indent] [1]

The .DL macro begins a dash list. Each list item is marked by a dash (-)and
followed by one space.

• If the text-indent argument is nonnull, it overrides the default indentation (the
amount of paragraph indentation as given in the Pi register). In the default
case, the text of a dash list lines up with the first line of indented paragraphs.

• If the second argument is specified, no blank lines will separate items in the
list.

Marked List
.ML mark [text-indent] [1]

The .ML macro is much like .BL and .DL, but it expects the user to specify an
arbitrary mark which may consist of more than a single character.

• Text is indented text-indent spaces if the second argument is not null;
otherwise, the text is indented one more space than the width of the mark.

• If the third argument is specified, no blank lines will separate items in the list.

NOTE
The mark must not contain ordinary (paddab/e) spaces

because alignment of items will be lost if the right margin is
justified.

Reference List
.RL [text-indent] [1]

A .RL macro call begins an automatically numbered list in which the numbers are
enclosed by square brackets ([J).

• If the text-indent argument is nonnull, it is used as the number of spaces from
the current indent to the text; for example, it is used instead of Li for this list
only. If the text-indent argument is omitted or null, the value of Li is used.

UTekTOOLS 40-27

The MAf Text-formatting Macros

• If the second argument is specified, no blank lines will separate the items in
the list.

Variable-Item List
.VL text-indent [mark-indent] [1]

When a list begins with a .VL macro, there is effectively no current mark; it is
expected that each .LI will provide its own mark. This form is typically used to
display definitions of terms or phrases.

• Text-indent provides the distance from the current indent to the beginning of
the text.

• Mark-indent produces the number of spaces from the current indent to the
beginning of the mark. Its default is zero if it is omitted or null.

• If the third argument is specified, no blank lines will separate items in the list.

An example of .VL macro usage follows:

.tr
.VL 20 2
Here is a description of mark 1;
"mark 1" of the .LI line contains a tilde
translated to an unpaddable space in order
to avoid extra spaces between
"mark" and 11111 •

. LI second-mark
This is the second mark also using a tilde translated
to an unpaddable space .
. LI third-mark-longer-than-indent:
This item shows the effect of a lone mark; one space
separates the mark from the text •
• LI
This item effectively has no mark because the tilde
following the .LI is translated into a space .
. LE

When this is formatted, it yields:

mark 1

second mark

40-28

Here is a description of mark 1;
"mark 1" of the .LI line contains a tilde
translated to an unpaddable space in order
to avoid extra spaces between
"mark" and "1".

This is the second mark also using a tilde translated to an unpaddable
space.

The MM Text-formatting Macros

third mark longer than indent: This item shows the effect of a long mark;
one space separates the mark from the text.

This item effectively has no mark because the tilde
following the .LI is translated into a space.

The tilde argument on the last .LI in the previous example is required; otherwise, a
hanging indent would have been produces. A hanging indent is produced by using
. VL and calling .LI with no arguments or with a null first argument.
For example:

.VL 10
.LI
Here is some text to show a hanging indent.
The first line of text is at the left margin.
The second is indented 10 spaces •
. LE

When this is formatted, it yields:

Here is some text to show a hanging indent. The first line of text
is at the left margin. The second is indented 10 spaces.

NOTE
The mark must not contain ordinary (paddable) spaces

because alignment of items will be lost if the right margin is
justified.

List-Item Macro
.LI [mark] [1]
one or more lines of text that make up the list item.

The .LI macro is used with all lists and for each list item. It normally causes output
of a single blank line (one-half a vertical space) before its list item although this may
be suppressed.

• If no arguments are given, .LI labels the items with the current mark which is
specified by the more recent list-initialization macro.

• If a single argument is given, that argument is output instead of the current
mark.

• If two arguments are given, the first argument becomes a prefix to the current
mark thus allowing the user to emphasize one or more items in a list. One
unpaddable space is inserted between the prefix and the mark.

For example:

.BL 6
.LI
This is a simple bullet item.

UTekTOOLS 40-29

The MM Text-formatting Macros

.LI +

This replaces the bullet with a plus .
. LI + 1
This uses a plus as prefix to the bullet .
. LE

When this is formatted, it yields:

• This is a simple bullet item.

+ This replaces the bullet with a plus.

+ • This uses a plus as prefix to the bullet.

NOTE
The mark must not contain ordinary (paddable) spaces

because alignment of items will be lost if the right margin is
justified.

If the current mark (in the current list) is a null string and the first argument of .LI is
omitted or null, the resulting effect is that of a hanging indent. For instance, the first
line of the following text is moved to the left, starting at the same place where mark
would have started.

List-End Macro
.LE [1]

The .LE macro restores the state of the list to that existing just before the most
recent list-initialization macro call. If the optional argument is given, the .LE outputs
a blank line (one-half a vertical space). This option should generally be used only
when the .LE is followed by running text but not when followed by a macro that
produces blank lines of its own, such as the .P, .H, or .LI macros.

The .H and .HU macros automatically clear all list information. The user may omit
the .LE macros that would normally occur just before either of these macros and not
receive the LE:mismatched error message. Such a practice is not recommended
because errors will occur if the list text is separated from the heading at some later
time (such as by insertion of text).

Example of Nested Lists
An example of input for the several lists and the corresponding output is shown in
the following example (the .AL and .DL macro calls contained therein are examples
of list-initialization macros).
Input text is:

40-30

.AL A

.LI
This is alphabetized list item A.

UTek TOOLS

The MM Text-formatting Macros

This text shows the alignment of the
second line of the item.
Notice the text indentations and alignment of
left and right margins •
. AL
.LI
This is number item 1.
This text shows the alignment of the
second line of the item.
The quick brown fox jumped over the lazy dog's back .
. DL

.LI

This is a dash item.
This text shows the alignment of the
second line of the item.
The quick brown fox jumped over the lazy dog s back .
. LI + 1

This is a dash item with a plus as a prefix.
This text shows the alignment of the
second line of the item.
The quick brown fox jumped over the lazy dog's back .

. LE

.LI

This is numbered item 2 •
. LE
.LI
This is another alphabetized list item B.
This text shows the alignment of the
second line of the item.
The quick brown fox jumped over the lazy dog's back •
. LE
.P
This paragraph follows a list item and ls aligned with
the left margin.
A paragraph following a list resumes the normal line
length and margins.

The output is:

A. This is alphabetized list item A. This text shows the
alignment of the second line of the item. Notice the text
indentations and alignment of left and right margins.

1. This is numbered item 1. This text hows the alignment of
the second line of the item. The quick brown fox jumped
over the lazy dog's back.

40-31

The MM Text-formatting Macros

- This is a dash item. This text shows the alignment
of the second line of the item. The quick brown fox
jumped over the lazy dog's back.

+ - This is a dash item with a plus as prefix. This text
shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back.

2. This is numbered item 2.

B. This is another alphabetized list item B. This text shows the
alignment of the second line of the item. The quick brown fox
jumped over the lazy dog's back.

This paragraph follows a list item and is aligned with the left
margin. A paragraph following a list resumes the normal line length
and margins.

List-Begin Macro and Customized Lists
.LB text-indent mark-indent pad type
[mark] [LI-space] [LB-space]

List-initialization macros described in the preceding line suffice for almost all cases.
However, if necessary, the user may obtain more control over the layout of lists by
using the basic list-begin macro (.LB). The .LB macro is used by the other list
initialization macros. Its arguments are as follows:

• The text-indent argument provides the number of spaces that the text is to be
indented from the current indent. Normally, this value is taken from the Li
register (for automatic lists) or from the Pi register (for bullet and dash lists).

• The combination of mark-indent and pad arguments determines the placement
of the mark. The mark is placed within an area (called mark area) that starts
mark-indent spaces to the right of the current indent and ends where the text
begins (for example, it ends text-indent spaces to the right of the current
indent). The mark-indent argument is typically zero.

• Within the mark area, the mark is left justified if the pad argument is zero. If
pad is a number n (greater than zero) then n blanks are appended to the mark;
the mark-indent value is ignored. The resulting string immediately precedes
the text. The mark is effectively right-justified pad spaces immediately to the
left of text.

• Arguments type and mark interact to control the type of marking used. If type
is zero, simple marking is performed using the mark character(s) found in the
mark argument. If type is greater than zero, automatic numbering or
alphabetizing is done; mark is then interpreted as the first item in the sequence
to be used for numbering or alphabetizing (it is chosen from the set (1, A, a, I,
i) as shown in the section entitled Automatically Numbered or Alphabetized
Lists). This is summarized as follows:

40-32

The MM Text-formatting Macros

ARGUMENT RESULT
type
0
0
>()

>()

mark
omitted
string
omitted
one of;

hanging indent
string is the mark
Arabic numbering
automatic numbering or
1,A,a,l,i

Each nonzero value of type from one to six selects a different way of displaying the
marks. The following table shows the output appearance for each value of type:

VALUE APPEARANCE
1 x.
2 x)
3 (x)
4 fxl
5 <x">

6 {x}

where x is the generated number or letter.

NOTE
The mark must not contain ordinary (paddable) spaces

because alignment of items will be lost if the right margin is
justified.

• The LI-space argument gives the number of blank lines (halves of a vertical
space) that should be output by each .LI macro in the list. If omitted, LI-space
defaults to one; the value 0 can be used to obtain compact lists. If LI-space is
greater than 0, the .LI macro issues a .ne request for two lines just before
printing the mark.

• The LB-space argument is the number of blank lines (one-half a vertical space)
to be output by .LB itself. If omitted, LB-space defaults to zero.

There are three combinations of LI-space and LB-space:

• The normal case is to set LI-space to one and LB-space to zero, yielding one
blank line before each item in the list; such a list is usually terminated with a
.LE 1 macro to end the list with a blank line.

• For a more compact list, LI-space is set to zero, LB-space is set to one, and the
.LE 1 macro is used at the end of the list. The result is a list with one blank
line before and after it. If both LI-space and LB-space are set to zero and the
.LE macro is used to end the list, a list without any blank lines will result.

The following subsection shows how to build upon the supplied list of
macros to obtain other kinds of lists.

UTekTOOLS 40-33

The MM Text-formatting Macros

User-Defined List Structures
NOTE

This part is intended for users accustomed to writing
formatter macros.

If a large document requires complex list structures, it is useful to define the
appearance for each list level only once instead of having to define the appearance
at the beginning of each list. This permits consistency of style in a large document.
A generalized list-initialization macro might be defined in such a way that what the
macro does depends on the list-nesting level in effect at the time the macro is
called. Levels one through five of the lists to be formatted may have the following
appearance:

A.

[1]

•
a)

+

The following code defines a macro (.al) that always begins a new list and
determines the type of list according to the current list level. To understand it, the
user should know that the number register :g is used by the MM list macros to
determine the current list level; the level is zero if there is no current, active list.
Each macro call to a list-initialization macro increments :g, and each .LE call
decrements it.

40-34

.\"register g is used as a local temporary to save :g

.de aL

.nr g \\n(:g

.if \\ng=O .AL A \" produces an A

.if \\ng=l .LB \\n(Li 0 1 4 \" produces a [1]

• if \ \ng=2 • BL \" produces a bullet
.if \\ng=J .LB \\n(Li 0 2 2 a \" produces an a)
. if \ \ng=4 . ML + \" produces a +

The MM Text-formatting Macros

This macro can be used (in conjunction with .LI and .LE) instead of .AL,
.RL, .BL, .LB, and .ML. For example, the following input:

.aL

.LI
first line
.aL
.LI
second line
.LE
.LI
third line
.LE

when formatted, yields

A . First line .

[1] Second line.

B. Third line .

There is another approach to lists that is similar to the .H mechanism.
List-initialization, as well as the .LI and the .LE macros, are all included
in a single macro. That macro (defined as .bl in the following text)
requires an argument to tell it what level of item is required; it adjusts the
list level by either beginning a new list or setting the list level back to a
previous value. It then issues a .LI macro call to produce the item, as
follows:

UTekTOOLS

.de bL

.ie \\n(.$.nr g \\$1

.el .nr g \\n(:g

.if \\ng-\\n(:g>l .)D

.\"

.if \\ng>\\n(:g \{.aL \\ng-1

.nr g \ \n(:g

.\"

.if \\n(:g>\\ng .LC \\ng

.\"

.LI

\"argument given, that is
the level
\"no argument, use current
level
\"**ILLEGAL SKIPPING OF
LEVEL
increasing level by more
than 1
\"if g>:g, begin new list
\"and reset g to current
level
(. aL changes g)
\"if :g>g, prune back to
correct level
if :g=g, stay within current
list
\"in all cases, get out an
item

40-35

The MM Text-formatting Macros

For .bl to work, the previous definition of the .al macro must be
changed to obtain the value of g from its argument rather than from :g.

Invoking .bl without arguments causes it to stay at the current list level.
The .LC (List Clear) macro removes list descriptions until the level is less
than or equal to that of its argument. For example, the .H macro
includes the call .LC 0. If text is to be resumed at the end of a list, insert
the call .LC Oto clear out the lists completely. The following example
illustrates the relatively small amount of input needed by this approach.
The input text:

The quick brown fox jumped over the lazy dog's back .
• bL 1

First line .
• bL 2
Second line .
• bL 1

Third line .
. bL

Fourth line .
. LC 0
Fifth line.

when formatted, yields:

The quick brown fox jumped over the lazy dog's back.

A. First line.

[1] Second line.

B. Third line .

C. Fourth line.
Fifth line.

Memorandum and Released
Paper Documents
One use of MM is for the preparation of memoranda and released-paper documents
which have special requirements for the first page and for the cover sheet. Data
needed (title, author, date, case numbers, etc.) is entered the same for both styles;
an argument to the .MT macro indicates which style is being used.

40-36

The MM Text-formatting Macros

Sequence of Beginning Macros
Macros, if present, must be given in the following order:

.ND new-date

.TL [charging-case] [filing-case]
one or more lines of text
.AF [company-name]
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg]
.AT [title] .. .
. TM [number] .. .
. AS [arg] [indent]
one or more lines of abstract text
.AE

.NS [arg] [1]
one or more lines of "copy to" notation
.NE
.OK [keyword] ...
. MT [type] [addressee]

The only required macros for a memorandum for file or a released-paper document
are .ti, .AU, and .MT; all other macros (and their associated input lines) may be
omitted if the features are not needed. Once .MT has been invoked, none of the
above macros (except .NS and .NE) can be reinvoked because they are removed
from the table of defined macros to save memory space.

If neither the memorandum nor released-paper style is desired, the TL, AU, TM,
AE, OK, MT, ND, and AF macros should be omitted from the input text. If these
macros are omitted, the first page will have only the page header followed by the
body of the document.

Title

NOTE
The macros for memorandum and released-paper

documents require the postprocessor col when you are using
the nroff text formatter.

. TL [charging-case] [filing-case]
one or more lines of title text

Arguments to the . TL macro are the charging-case number(s) and filing-case
number(s).

• The charging-case argument is the case number to which time was charged for
the development of the project described in the memorandum. Multiple
charging-case numbers are entered as subarguments by separating each from
the previous with a comma and a space and enclosing the entire argument
within double quotes.

UTekTOOLS 40-37

The MM Text-formatting Macros

• The filing-case argument is a number under which the memorandum is to be
filed. Multiple filing case numbers are entered similarly. For example:

.TL "12J45, 67890" 987654321
Construction of a Table of All Even Prime Numbers

The title of the memorandum or released-paper document follows the . TL macro
and is processed in fill mode. The .br request may be used to break the title into
several lines as follows:

.TL 12345
First Title Line
.br
\! .br
Second Title Line

On output, the title appears after the word subject in the memorandum style and is
centered and printed in bold in the released-paper document style.

If only a charging-case number or only a filing-case number is given, it will be
separated from the title in the memorandum style by a dash and will appear on the
same line as the title. If both case numbers are given and are the same, then
"Charging and Filing Case" followed by the number will appear on a line following
the title. If the two case numbers are different, separate lines for "Charging-Case"
and "Filing-Case" will appear after the title.

Authors
.AU name [intials] [foe] [dept] [ext]
[room] [arg] [arg]
.AT [title] ...

The .AU macro receives as arguments information that describes an author. If any
argument contains blanks, that argument must be enclosed within double quotes.
The first six arguments must appear in the order give. A separate .AU macro is
required for each author.

The .AT macro is used to specify the author's title. Up to nine arguments may be
given. Each will appear in the signature block for memorandum style on a separate
line following the signer's name. The .AT must immediately follow the .AU for the
given author. For example:

.AU "J.J.Jones" JJJ PY 9876 5432 lZ-234

.AT Director "Materials Research Laboratory"

40-38

The MM Text-formatting Macros

In the "from" portion in the memorandum style, the author's name is followed by
location and department number on one line and by room number and extension
number on the next line. The x for the extension is added automatically. Printing of
the location, department number, extension number, and room number may be
suppressed on the first page of a memorandum by setting the register Au to zero;
the default value for Au is 1. Arguments seven through nine of the .AU macro, if
present, will follow this normal author information in the "from" portion, each on a
separate line. These last three arguments may be used for organizational number
schemes, etc. For example:

.AU "S. P. LeName" SPL IH 9988 7766 5H-444
9876-543210.0lMF

The name, initials, location, and department are also used in the signature block.
Author information in the "from" portion, as well as names and initials in the
signature block, will appear in the same order as the .AU macros.

Names of authors in the released-paper style are centered below the title.
Following the name of the last author, the company name and its location are
centered. The paragraph on memorandum types contains information regarding
authors from different location.

TM Numbers
. TM [number J ...

If the memorandum is a technical memorandum, the TM numbers are supplied via
the . TM macro. Up to nine numbers may be specified. For example:

. TM 7654321 77777777

This macro call is ignored in the released-paper and external-letter styles.

Abstract
.AS [arg] [indent]
text of abstract
.AE

If a memorandum has an abstract, the input is identified with the .AS (abstract start)
and .AE (abstract end) delimiters. Abstracts are printed on page one of a document
and/or on its cover sheet. There are three styles of cover sheets:

• Released paper

• Technical memorandum

• Memorandum for file (also used for engineer's notes, memoranda for record,
etc.)

UTekTOOLS 40-39

The MM Text-formatting Macros

Cover sheets for released papers and technical memoranda are obtained by
invoking the .CS macro. In released-paper style (first argument of the .MT macro is
4) and in technical memorandum style if the first argument of .AS is:

O - Abstract will be printed on page one and on the cover sheet (if any).

1 - Abstract will appear only on the cover sheet (if any).

In memoranda for file style and in all other documents (other than external letters) if
the first argument of .AS is:

O - Abstract will appear on page one and there will be no cover sheet
printed.

2 - Abstract will appear only on the cover sheet which wi!I be produced
automatically (for example, without invoking the .CS macro).

It is not possible to get either an abstract or a cover sheet with an external letter
(first argument of the .MT macro is 5).

Notations such as a "copy to" list are allowed on memorandum for file cover sheets;
the .NS and .NE macros must appear after the .AS 2 and .AE macros. Headings
and displays are not permitted within an abstract.

The abstract is printed with ordinary text margins; an indentation to be used for both
margins can be specified as the second argument of .AS. Values that specify
indentation must be unscaled and are treated as "character positions" (such as the
number of ens).

Other Keywords
.OK [keyword] ...

Topical keywords should be specified on a technical memorandum cover sheet. Up
to nine such keywords or keyword phrases may be specified as arguments to the
.OK macro; if any keyword contains spaces, it must be enclosed within double
quotes.

Memorandum Types
.MT [type] [addressee]

The .MT macro controls the format of the top part of the first page of a
memorandum or of a released-paper document and the format of the cover sheets.
The type arguments and corresponding values are as follows:

4D-40

type

0
none
1

VALUE
no memorandum type printed
no memorandum type printed
MEMORANDUM FOR FILE
MEMORANDUM FOR FILE

The MM Text-formatting Macros

2 PROGRAMMER'S NOTES
3 ENGINEER'S NOTES
4 released-paper style
5 external-letter style
"string" string (enclosed in quotes)

If the type argument indicates a memorandum style document, the corresponding
statement indicated under VALUE above will be printed after the last line of author
information. If type is longer than one character, then the string, itself, will be
printed. For example:

.MT "Technical Note #5"

A simple letter is produced by calling .MT with a null (but not omitted) or O
argument.

The second argument to .MT is the~ name of the addressee of a letter. If present,
that name and the page number replace the normal page header on the second and
following pages of a letter. For example:

.MT 1 11John Jones"

produces

John Jones - 2

The addressee argument may not be used if the first argument is 4 (released-paper
style document).

The released-paper style is obtained by specifying

.MT 4 [1]

This results in a centered, bold title followed by centered names of authors. The
location of the last author is used as the location following the company name. If
the optional second argument to .MT 4 is given, then the name of each author is
followed by the respective company name and location. Information necessary for
the memorandum style document but not for the released-paper style document is
ignored.

If the released-paper style document is utilized, the macros for the end of a
memorandum and their associated lines of input are likewise ignored. Authors may
include their affiliations in the released-paper style by specifying the appropriate .AF
macro and defining a string (with a two-character name such as ZZ) for the address
before each .AU. For example:

.TL
A learned Treatise
.AF "Getem Inc."
.ds ZZ "22 Maple Avenue, Sometown 09999"

.AU "F. Swatter" '"' ZZ

.AF "Tektronix, Inc."

.AU "Same P. LeName" '"' CB

.MT 4 1

UTek TOOLS 40-41

The MM Text-formatting Macros

In the external-letter style document (.MT 5), only the title (without the word
"subject:") and the date are printed in the upper left and right corners, respectively,
on the first page. It is expected that preprinted stationery will be used with the
company logo and address of the author.

Date Changes
.ND new-date

The .ND macro alters the value of the string DT, which is initially set to produce the
current date. If the argument contains spaces, it must be enclosed within double
quotes.

Alternate First-Page Format
An alternate first-page format can be specified with the .AF macro. The words
subject, date, and from (in the memorandum style) are omitted and an alternate
company name is used.

If an argument is given, it replaces the default company name without affecting
other headings. If the argument is null, the default company name is suppressed;
extra blank lines are inserted to allow room for stamping the document with a logo
or a company stamp.

The .AF with no arguments suppresses the default company name and the
Subject/Date/From headings, thus allowing output on preprinted stationery. The use
of .AF with no arguments is equivalent to the use of -rA 1, except that the latter
must be used if it is necessary to change the line length and/or page offset (which
default to 5.8i and 1 i, respectively, for preprinted forms). The command line options
-rOK and -rW k are not effective with .AF. The only .AF use appropriate for the
troff formatter is to specify a replacement for the default company name.

The command line option-rEn controls the font of the Subject/Date/From block.

Example
Input text for a document may begin as follows:

.TL

40-42

MM*(EMMemorandum Macros
.AU "D.W. Smith" DWS PY
.AU "J.R. Mashey" JRM PY
.AU "E.C. Pariser (January 1980 Revision)" ECP PY
.AU "N.W. Smith (June 1980 Revision)" NWS PY
.MT 4

The MM Text-formatting Macros

Figures 40-1, 40-2, and 40-3 show the input text file and both the nroff and troff
formatter outputs for a single letter .

UTek TOOLS

. ND "May 31, 1983"

.TL 334455
Out-of-Hours Course Description
.AU "D. W. Stevenson" DWS PY 9876 5432 lX-123
.AF "Your Company"
.MT 0
.DS
J. M. Jones:
.DE
.P
Please use the following description for the
out-of-hours course
.I
Document Preparation on the UTek*
.R

.FS *
Trademark of Tektronix, Inc .
. FE
.I "System:"
.P
The course is intended for clerks, typists, and others
who intend to use the UTek system for preparing
documentation •
• VL 18
.LI Environment:
utilizing a time-sharing computer system;
accessing the system; using appropriate output terminals .
. LI Files:
how text is stored on the system; directories;
manipulating files •
. LI "Text editing:"
how to enter text so that subsequent revisions
are easier to make;
how to use the editing system to add, delete,
and move lines of text;
how to make corrections.

Figure 40-1. Example of Input for a Simple Letter.

40-43

The MM Text-formatting Macros

40-44

.LI "Text processing:"
basic concepts; use of general purpose
formatting packages .
. LI "Other facilities:"
additional capabilities useful to the typist
such as the \fispell\fR,
\fidiff\fR, and \figrep\fR commands,
and a desk-calculator package •
. LE
.SG jrm
.NS 0
S. P. LeName
I. M. Here
U. R. There
R. Rhoade
.NE

Figure 40-1 (cont). Example of Input for a Simple Letter.

The MM Text-formatting Macros

Your Company

sub]ect: Out-of-Hours Course Description
Case J344S5

date: May 31, 1983
from: D. W. Stevenson

lX-123 xS4J2

J.M. JonPS:

PleJse use the tollowing description for the out-of-hours course
Document Preparation on the UTek System:

Env1ronmE,nt:

f 1 ll'S:

Text ed1t1ng:

ut1liz1ng a time-sharing computer system; accessing the
system; using appropriate output terminals.

how text is stored on the system; directories;
manipulating files.

how to enter text so that subsequent revisions are
easier to make; how to use the ed1 ting system to add,
delete, and move lines of text; how to make corrections.

Tc>xt prOl"('SS 1 ng: basic concepts; use of general-purpose formatting
packages.

<
1 t!11,1· f,H·ll1t1Ps: adcl1t1onal capab1lit1es useful to the typist such as the

spell, d1tf, and grap commands, and a desk-calculator
packJ<JE'.

I \lf''y' t ()

S. I'. lkNam(
l. M. He>rt·

Li. 1-.i. TIHn

i'. l·<illJcidOi

D. W. Stevenson

5318-07

Figure 40-2. Example of Nroff Output for a Simple Letter.

UTek TOOLS 40-45

The MM Text-formatting Macros

Your Company

subject: Out-of-Hours Description
Case 334455

date: May 31, 1983
from: D.W. Stevenson

PY 9876
lX-123 x5432

J.M. Jones:

Please use the following description for the out-of-hours course Document Preparation on
the UTek System:

Environment:

Files:

Text editing:

utilizing a time-sharing computer system; accessing the system; using
appropriate output terminals.

how text is stored on the system; directories; manipulating files.

how to enter text so that subsequent revisions are easier to make;
how to use the editing system to add, delete, and move lines of text;
how to make corrections.

Text processing: basic concepts; use of general-purpme for malling package\.

Other facilities: additional capabilities useful to the typist such a\ the spell. dW~ and
wep commands, and a desk-calculator µadage.

PY-9876-DWS-jrm D.W. Stevenson

Copy to
S.P. LeName

l.M. Here
U.R. There

R. Rhoade

40-46

Figure 40-3. Example of Troff Output for a Simple Letter.

5318-08

The MM Text-formatting Macros

End of Memorandum Macros
At the end of a memorandum document (but not of a released-paper document),
signatures of authors and a list of notations can be requested. The following macros
and their input are ignored if the released-paper style document is selected.

Signature Block
.FC [closing]
.SG [arg] [1]

The .FC macro prints "Yours very truly," as a formal closing, if no closing argument
is used. It must be given before the .SG macro. A different closing may be
specified as an argument to .FC.

The .SG macro prints the author's name(s) after the formal closing, if any. Each
name begins at the center of the page. Three blank lines are left above each name
for the actual signature.

• If no arguments are given, the line of reference date (location code,
department number, author's initials, and typist's initials, all separated by
hyphens) will not appear.

• A nonnull first argument is treated as the typist's initials and is appended to
the reference date.

• A null first argument prints reference data without the typist's initials or the
preceding hyphen.

• If there are several authors and if the second argument is given, reference
date is placed on the line of the first author.

Reference date contains only the location and department number of the first author.
Thus, if there are authors from different departments and/or from different locations,
the reference date should be supplied manually after the invocation (without
arguments) of the .SG macro.
For example:

.SG

.rs

.sp -lv
PY/MH-9876/5432-JJJ/SPL-cen

Copy to and Other Notations
.NS [arg] [1 J
zero or more lines of the notation
.NE

UTek TOOLS 40-47

The MM Text-formatting Macros

Many types of notations (such as a list of attachments or "Copy to" lists) may follow
signature and reference data. Various notations are obtained through the .NS
macro, which provides for proper spacing and for breaking notations across pages, if
necessary.

The optional second argument, if present, causes the first argument to be used as
the entire notation string. Codes for arg and the corresponding notations are as
follows:

arg NOTATIONS
none Copy to

Copy to
0 Copy to
1 Copy (with att.) to
2 Copy (without att.) to
3 Att.
4 Atts.
5 Enc.
6 Encs.
7 Under Separate Cover
8 Letter to
9 Memorandum to
10 Copy (with atts.) to
11 Copy (without atts.) to
12 Abstract Only to
13 Complete Memorandum to
"string" Copy (string) to
"string" ,with 2nd arg string

If arg consists of more than one character, it is placed within parentheses between
the words "Copy" and "to".

For example:

.NS "with att. 1 only"

will generate

Copy (with att. 1 only) to

as the notation.

More than one notation may be specified before the .NE macro because a .NS
macro terminates the preceding notation, if any.
For example:

.NS 4
Attachment 1-List of register names
Attachment 2-List of string and macro names
.NS 1
J.J. Jones

40-48

.NS 2
S.P. LeName
G.H. Hurtz
.NE

The MM Text-formatting Macros

would be formatted as the following text demonstrates:

Atts.
Attachment 1-List of register names
Attachment 2-List of string and macro names

Copy (with att.) to
J.J. Jones

Copy (without att.) to
S.P. LeName
G.H. Hurtz

If the second argument is used, then the first argument becomes the entire notation.

For example:

.NS 11 Table of Contents to" 1

would be formatted in the following way:

Table of Contents to

The .NS and .NE macros may also be used at the beginning following .AS 2 and
.AE to place the notation list on the memorandum for file cover sheet. If notations
are given at the beginning without .AS 2, they will be saved and output at the end of
the document.

Approval Signature Line
.AV approver's-name [1]

The .AV macro may be used after the last notation block to automatically generate a
line with spaces for the approval signature and date. For example,

.AV ''Jane Doe'·

produces this format:

APPROVED:

Jane Doe Date

The optional second argument, if present, prevents the "APPROVED:" mark from
appearing above the approval line.

UTek TOOLS 40-49

The MM Text-formatting Macros

One-Page Letter
At times, the user may like more space on the page forcing the signature or items
within notations to the bottom of the page so that the letter or memo is only one
page in length. This can be accomplished by increasing the page length with the
-rLn option (for example, -rL90). This has the effect of making the formatter
believe that the page is 90 lines long; it therefore provides more space than usual
to place the signature or the notations.

NOTE
This will work only for a single-page letter or memo.

Displays
Displays are blocks of text that are to be kept together on a page and not split
across pages. They are processed in an environment that is different from the body
of the text (see the .ev request). The MM package provides two styles of displays: a
static (.OS) style and a floating (.OF) style.

• In the static style, the display appears in the same relative position in the
output text as it does in the input text. This may result in extra white space at
the bottom of the page if the display is too long to fit in the remaining page
space.

• In the floating style, the display "floats" through the input text to the top of the
next page if there is not enough space on the current page. Thus, input text
that follows a floating display may precede it in the output text. A queue of
floating display is maintained so that their relative order of appearance in the
text is not disturbed.

By default, a display is processed in no-fill mode with single spacing and is not
indented from the existing margins. The user can specify indentation or centering
as well as fill-mode processing.

40-50

NOTE
Displays and footnotes may never be nested in any

combination. Although lists and paragraphs are permitted,
no headings (.H or .HU) can occur within displays or
footnotes.

The MM Text-formatting Macros

Static Displays
.OS [format] [fill] [r-indent]
one or more lines of text
.DE

A static display is started by the .OS macro and terminated by the .DE macro. With
no arguments, .DS accepts lines of text exactly as typed (no-fill mode) and will not
indent lines from the prevailing left margin indentation or from the right margin.

• The format argument is an integer or letter used to control the left margin
indentation and centering with the following meanings:

format

O or L
1 or I
2 or C
3 or CB
omitted

MEANING
no indent
no indent
indent by standard amount
center each line
center as a block
no indent

• The fill argument is an integer or letter and can have the following meanings:

fill MEANING
no-fill mode

O or N no-fill mode
1 or F fill node
omitted no-fill mode

• The r-indent argument is the number of characters that the line length should
be decreased (such as an indentation from the right margin). This number
must be unscaled in the nroff formatter and is treated as ens. It may be scaled
in the troff formatter or else defaults to ems.

The standard amount of static display indentation is taken from the Si register, a
default value of five spaces. Thus, text of an indented display aligns with the first
line of indented paragraphs, whose indent is contained in the Pi register. Even
though their initial values are the same (default values), these two registers are
independent. ·

The display format argument value 3 (or CB) centers (horizontally) the entire display
as a block (as opposed to .OS 2 and .OF 2 which center each line individually). All
collected lines are left justified, and the display is centered based on width of the
longest line. This format must be used in order for the neqn mark and lineup
features to work with centered equations.

By default, a blank line (one-half a vertical space) is placed before and after static
and floating displays. These blank lines before and after static displays can be
inhibited by setting the register Os to zero.

UTek TOOLS 40-51

The MM Text-formatting Macros

The following example shows usage of all three arguments for static display. This
block of text will be indented five spaces (ems in troff) from the left margin, filled,
and indented five spaces (ems in troff) from the right margin (centered, for
example). The input text:

.OS I F 5
"We the people of the United States,
in order to form a more perfect union,
establish justice, ensure domestic tranquillity,
provide for the common defense,
and secure the blessings of liberty to
ourselves and our posterity,
do ordain and establish this Constitution to the
United States of America."

produces:

"We the people of the United States, in order to form a
more perfect union, establish justice, ensure domestic
tranquillity, provide for the common defense, and
secure the blessings of liberty to ourselves and our
posterity, do ordain and establish the Constitution to
the United States of America."

Floating Displays
.OF !format] !filn Er-indent]
one or more lines of text
.DE

A floating display is started by the .OF macro and terminated by the .DE macro.
Argument have the same meanings as static displays described above, except
indent, no indent, and centering are calculated with respect to the initial left margin.
This is because prevailing indent may change between when the formatter first
reads the floating display and when the display is printed. One blank line (one-half
a vertical space) occurs before and after a floating display.

The user may exercise precise control over the output positioning of floating displays
through the use of two number registers, De and Of (see the following explanation).
When a floating display is encountered by the nroff or troff formatter, it is
processed and placed onto a queue of displays waiting to be output. Displays are
removed from the queue and printed in the order entered, which is the order they
appeared in the input file. If a new floating display is encountered and the queue of
displays is empty, the new display is a candidate for immediate output on the
current page. Immediate output is governed by size of display and the setting of the
Of register code. The De register code controls whether text will appear on the
current page after a float display has been produced.

40-52

The MM Text-formatting Macros

As long as the display queue contains one or more displays, new displays will be
automatically entered there, rather than being output. When a new page is started
(or the top of the second column when in two-column mode), the next display from
the queue becomes a candidate for output if the Of register code has specified
"top-of-page" output. When a display is output, it is also removed from the queue.

When the end of a section (using section-page numbering) or the end of a
document is reached, all displays are automatically removed from the queue and
output. This occurs before a .SG, .CS, or .TC macro is processed.

A display will fit on the current page if there is enough room to contain the entire
display or if the display is longer than one page in length and less than half of the
current page has been used. A wide (full-page width) display will not fit in the
second column of a two-column document.

The De and Of number register code settings and actions are as follows:

CODE

0

De REGISTER

ACTION

No special action occurs (also the default condition).

A page eject will always follow the output of each floating
display, so only one floating display will appear on a
page and no text will follow it.

NOTE
For any other code, the action performed is the same as for

code 1.

CODE

0

Of REGISTER

ACTION

Floating displays will not be output until end of section (when
section-page numbering) or end of document.

2

3

4

UTek TOOLS

Output new floating display on current page if there is space;
otherwise, hold it until end of section or document.

Output exactly one floating display from queue to the top of a new
page or column (when in two-column mode).

Output one floating display on current page if there is space;
otherwise, output to the top of a new page or column.

Output as many displays as will fit (at least one) starting at the top
of a new page or column. If the De register is set to 1, each display
will be followed by a page eject causing a new top of page to be
reached where at least one more display will be output.

40-53

The MM Text-formatting Macros

5 Output a new floating display on the current page if there is room
(default condition). Output as many displays (but at least one) as
will fit on the page starting at the top of a new page or column. If
the De register is set to 1, each display will be followed by a page
eject causing a new top of page to be reached where at least one
more display will be output.

NOTE
For any code greater than 5, the action performed is the

same as for code 5.

The .WC macro may also be used to control handling of displays in double-column
mode and to control the break in text before floating displays.

Tables
.TS [ffi
global options;
column-descriptors.
title lines
[.TH [NJ
data within the table .
. TE

The . TS (table start) and . TE (table end) macros make possible the use of the tbl
program. These macros are used to delimit text to be examined by tbl and to set
proper spacing around the table. The display function and the tbl delimiting
function are independent. In order to permit the user to keep together blocks that
contain any mixture of tables, equations, filled text, unfilled text, and caption lines,
the .TS/.TE block should be enclosed within a display (.OSI.DE). Floating tables
may be enclosed inside floating displays (.DFl.DE).

Macros . TS and . TE permit proces~ing of tables that extend over several pages. If a
table heading is needed for each page of a multi-page table, the H argument should
be specified to the . TS macro as in the opening synopsis. Following the options and
format information, table title is typed on as many lines are required and is followed
by the . TH macro. The . TH macro must occur when ".TH H" is used for a multi
page table. This is not a feature of tbl but of the definitions provided by the MM
macro package.

The . TH (table header) macro may take as an argument the letter N. This argument
causes the table header to be printed only if it is the first table header on the page.
This option is used when it is necessary to build long tables from smaller .TS HI.TE
segments.

40-54

For example:

.TS H
global options;
column descriptors.
Title lines
.TH
data
.TE
.TS H
global options;
column descriptors.
Title lines
.TH N
data
.TE

The MM Text-formatting Macros

This input will cause the table heading to appear at the top of the first table segment
and no heading to appear at the top of the second segment when both appear on
the same page. However, the heading will still appear at the top of each page that
the table continues onto. This feature is used when a single table must be broken
into segments because of table complexity (such as one with too many blocks of
filled text). If each segment had its own .TS HI.TH sequence, it would have its own
header. However, if each table segment after the first uses .TS HI.TH N, the table
header will appear only at the beginning of the table and the top of each new page
or column that the table continues onto.

For the nroff formatter, the -e option (-E for mm) may be used for terminals, such
as the 450, that are capable of finer printing resolution. This will cause better
alignment of features such as the lines forming the corner of a box. The -e is not
effective with col.

Figure, Table, Equation, and Exhibit Titles
.FG [title] [override] [option]
. TB [title] [override J [option]
.EC [title] [override] [option]

.EX [title] [override] [option]

The .FG (figure title), . TB (table title), .EC (equation caption), and .EX (exhibit
caption) macros are normally used inside .OS pairs to automatically number and title
figures, tables, and equations. These macros use registers Tg, Tb, Ee, and Ex,
respectively (see the earlier section on -rN5 to reset counters in sections).
For example:

.FG "This is a Figure Title"

yields

UTek TOOLS 40-55

The MM Text-formatting Macros

Figure 1. This is a Figure Title

The .TB macro replaces Figure with TABLE, the .EC macro replaces Figure with
Equation, and the .EX macro replaces Figure with Exhibit. The output title is
centered if it can fit on a single line; otherwise, all lines but the first are indented to
line up with the first character of the title. The format of the numbers may be
changed using the .af request of the formatter. By setting the Of register to 1, the
format of the caption may be changed from

Figure 1. Title

to

Figure 1 - Title

The override argument is used to modify normal numbering. If the option argument
is omitted or is 0, override is used as a prefix to the number; if the option argument
is 1, override is used as a suffix; and if the option argument is 2, override replaces
the number. If -rNS is given, "section-figure" numbering is set automatically and
user-specified override argument is ignored.

As a matter of formatting style, table headings are usually placed above the text of
tables, while figure, equation, and exhibit titles are usually placed below
corresponding figures and equations.

List of Figures, Tables, Equations, and
Exhibits
A list of figures, tables, exhibits, and equations are printed following the table of
contents if the number registers Lf, Lt, Lx, and Le (respectively) are set to 1. The
Lf, Lt, and Lx registers are 1 by default; Le is O by default.

Titles of these lists may be changed by redefining the following strings which are
shown here with their default values:

.ds Lf LIST OF FIGURES

.ds Lt LIST OF TABLES

.ds Lx LIST OF EXHIBITS

.ds Le LIST OF EQUATIONS

Footnotes
There are two macros (.FS and .FE) that delimit text of footnotes, a string (F) that
automatically numbers footnotes, and a macro (.FD) that specifies the style of
footnote text. Footnotes are processed in an environment different from that of the
body of text; refer to .ev request.

40-56

The MM Text-formatting Macros

Automatic Numbering of Footnotes
Footnotes may be automatically numbered by typing the three characters '\ *F"
(invoking the string F) immediately after the text to be footnoted without any
intervening spaces. This will place the next sequential footnote number (in a smaller
point size) a half line above the text to be footnoted.

Delimiting Footnote Text
.FS Uaben
one or more lines off ootnote text
.FE

There are two macros that delimit the text of each footnote. The .FS (footnote start)
macro marks the beginning of footnote text, and the .FE (footnote end) macro marks
the end. The label on the footnote start macro, if present, will be used to mark
footnote text. Otherwise, the number retrieved from the string F will be used.
Automatically numbered and user-labeled footnotes may be intermixed. If a
footnote is labeled (.FS label), the text to be footnoted must be followed by label,
rather than by "\ *F". Text between .FS and .FE is processed in fill mode. Another
.FS, a .OS, or a .OF is not permitted between the footnote start and end macros. If
footnotes are required in the title, abstract, or table, only labeled footnotes will
appear properly. Everywhere else automatically numbered footnotes work correctly.

For example:

Automatically numbered footnote:

This is the line containing the word \ *F
.FS
This is the text of the footnote
.FE
to be footnoted.

Labeled footnote:

This is a labeled*
.FS*
The footnote is labeled with an asterisk
footnote.

Text of the footnote (enclosed within the .FS/.FE pair) should immediately follow the
word to be footnoted in the input text, so that '\ *F" or label occurs at the end of a
line of input and the next line is the .FS macro call. It is also good practice to
append an unpaddable space to ''\ *F" or label when they follow an end-of
sentence punctuation mark (such as a period, question mark, exclamation point).

UTek TOOLS 40-57

The MM Text-formatting Macros

Format Style of Footnote Text
.FD [arg} fl]

Within footnote text, the user can control formatting style by specifying text
hyphenation, right margin justification, and text indentation, as well as left or right
justification of the label when text indenting is used. The .FD macro is invoked to
select the appropriate style.

The first argument (arg) is a number from the left column of Table 40-3. Formatting
style for each number is indicated in the remaining four columns. Further
explanation of the first two of these columns is given in the definitions of the .ad,
.na, .hy, and .nh requests (adjust, no adjust, hyphenation, and no hyphenation,
respectively).

Table 4D-3
FORMAT STYLE OF FOOTNOTE TEXT

TEXT LABEL
arg HYPHENATION ADJUST INDENT JUSTIFICATION

0 .nh .ad yes left
.hy. .ad yes left

2 .nh .na yes left
3 .hy .na yes left
4 .nh .ad no left
5 .hy .ad no left

6 .nh .na no left
7 .hy .na no left
8 .nh .ad yes right
9 .hy .ad yes right

10 .nh .na yes right
11 .hy .na yes right

If the first argument to .FD is greater than 11, the effect is as if .FD O were
specified. If the first argument is omitted or null, the effect is equivalent to .FD 10 in
the nroff formatter and to .FD O in the troff formatter; these are also the respective
initial default values.

If the second argument is specified, then when a first-level heading is encountered,
automatically numbered footnotes begin again with 1. This is most useful with the
"section-page" page numbering scheme. As an example, the input line

.FD " " 1

maintains the default formatting style and causes footnotes to be numbered afresh
after each first-level heading in a document.

40-58

The MM Text-formatting Macros

Hyphenation across pages is inhibited by MM except for long footnotes that continue
to the following page. If hyphenation is permitted, it is possible for the last word on
the last line on the current page footnote to be hyphenated. The user has control
over this situation by specifying an even .FD argument.

Footnotes are separated from the body of the text by a short line rule. Those that
continue to the next page are separated from the body of the text by a full-width
rule. In the troff formatter, footnotes are set in type two points smaller than the
point size used in the body of text.

Spacing Between Footnote Entries
Normally, one blank line (a three-point vertical space) separates footnotes when
more than one occurs on a page. To change this spacing, the Fs number register is
set to the desired value. For example:

.nr Fs 2

will cause two blank lines (a six-point vertical space) to occur between footnotes.

Figure 40-4 shows input for a number of footnote styles:

UTek TOOLS

.FD 10

.P
This example illustrates several footnote styles
for both labeled and automatically numbered footnotes.
With the footnote style set to the \fBnroff\fR
default style,
the first footnote is processed *F
.FS
This is the first footnote text example.
This is the default style (.FD 10) for the \fBnroff\fR
formatter.
The right margin is not justified,
hyphenation is not permitted,
text is indented, and the automatically generated label
is right-justified in the text-indent space •
. FE
and followed by a second footnote.*****
.FS *****
This is the second footnote text example.
This is also the \fBnroff\fR formatter
default style (.FD 10)
but with a long footnote label (*****)
by the user •
. FE
.FD 1

Figure 40-4. Example of Input for Various Footnote Styles.

40-59

The MM Text-formatting Macros

Footnote style is changed by using the .FD macro to
specify hyphenation, right margin justification,
indentation, and left justification of the label.
This produces the third footnote, *F
.FS
This is the third footnote example (.FD 1).
the right margin is justified, the footnote text
is indented,
and the label is left justified in the
text-indent space.
Although not necessarily illustrated by this example,
hyphenation is permitted .
. FE
and then the fourth footnote. \(dg
.FS \(dg
This is the fourth footnote example (.FD 1).
The style is the same as the third footnote .
. FE
.FD 6
Footnote style is set again via the .FD macro
for no hyphenation,
no right margin justification,
no indentation, and with the label left justified.
This produces the fifth footnote. *F
.FS
This is the fifth footnote example (.FD 6).
The right margin is not justified,
hyphenation is not permitted,
footnote text is not indented,
and the label is placed at the beginning of the first line .
. FE

Figure 40-4 (cont). Example of Input for Various Footnote Styles.

The results of this input are shown on this page and the next page. The
output illustrates several footnote styles for both labeled and
automatically numbered footnotes. With the footnote style set to the
nroff default style, the first footnote is processed1 and followed by the
second footnote.***** Footnote style is changed by using the .FD macro

1. This is the first footnote text example. This is the default style (.FD 10) for the nroff formatter. The right
margin is not justified, hyphenation is not permitted, text is indented, and the automatically generated label is
right justified in the text-indent space.

• • • • • This is the second footnote text example. This is also the nroff formatter default style (.FD 10) but with a
long footnote label(*•••*) provided by the user.

40-60

The MM Text-formatting Macros

to specify hyphenation, right margin justification, indentation, and left
justification of the label. This produces the third footnote, 2 and then the
fourth footnote.t Footnote style is set again via the .FD macro for no
hyphenation, no right margin justification, no indentation, and with the
label left justified. This produces the fifth footnote. 3

Page Headers and Footers
Text printed at the top of each page is called page header. Text printed at the
bottom of each page is called page footer. There can be up to three lines of text
associated with the header - every page, even page only, and odd page only.
Thus, the page header may have up to two lines of text - the line that occurs at the
top of every page and the line for the even-numbered or odd-numbered page. The
same is true for the page footer.

This part describes the default appearance of page headers and page footers and
ways of changing them. The term header (not qualified by even or odd) is used to
mean the page header line that occurs on every page, and similarly for the term
footer.

Default Headers and Footers
By default, each page has a centered page number as the header. There is no
default footer and no even/odd default headers or footers except as specified later in
this subsection.

In a memorandum or a released-paper style document, the page header on the first
page is automatically suppressed provided a break does not occur before the .MT
macro is called. Macros and text in the following categories do not cause a break
and are permitted before tne memorandum type (.MT) macro:

• Memorandum and released-paper style document macros (.TL, .AU, .AT,
.TM, .AS, .AE, .OK, .ND, .AF, .NS, and .NE)

• Page headers and footers macros (.PH, .EH, .OH, .PF, .EF, and .OF)

• The .nr and .ds requests.

2. This is the third footnote example (.FD 1). This right margin is justified, the footnote text is indented, and the
label is left justified in the text-indent space. Although not necessarily illustrated by this example, hyphena
tion is permitted.

This is the fourth footnote example (.FD 1). The style is the same as the third footnote.

3. This is the fifth footnote example (.FD 6). This right margin is not justified, hyphenation is not permitted,
footnote text is not indented, and the label is placed at the beginning of the first line.

UTek TOOLS 40-61

The MM Text-formatting Macros

Header and Footer Macros
For the header and footer macros (.PH, .EH, .OH, .PH, .EF, and .OF) the argument
[arg] is of the form:

11 '1eft-initials-part'right-part' "

If it is inconvenient to use an apostrophe (') as the delimiter because it occurs within
one of the parts, it may be replaced uniformly by any other character. The .fc
request redefines the delimiter. In formatted output, the parts are left justified,
centered, and right justified, respectively.

Page Header
.PH [arg]

The .PH macro specifies the header that is to appear at the top of every page. The
initial value is the default centered page number enclosed by hyphens. The page
number contained in the P register is an Arabic number. The format of the number
may be changed by the .af macro request.

If debug mode is set using the option -r01 on the command line, additional
information printed at the top left of each page is included in the default header.
This consists of the Source Code Control System (SCCS) release and level of MM
(thus identifying the current version) followed by the current line number within the
current input file.

Even-Page Header
.EH [arg]

The .EH macro supplies a line to be printed at the top of each even-numbered page
immediately following the header. Initial value is a blank line.

Odd-Page Header
.OH [arg]

The .OH macro is the same as the .EH except that it applies to odd-numbered
pages.

Page Footer
.PF [arg]

The .PF macro specifies the iine that is to appear at the bottom of each page. Its
initial value is a blank line. If the -rCn option is specified on the command line, the
type of copy follows the footer on a separate line. In particular, if -rC3 or -rC4

(DRAFT) is specified, the footer is initialized to contain the date instead of being a
blank line.

40-62

The MM Text-formatting Macros

Even-Page Footer
.EF [arg]

The .EF macro supplies a line to be printed at the bottom of each even-numbered
page immediately preceding the footer. Initial value is a blank line.

Odd-Page Footer
.OF [arg]

The .OF macro supplies a line to be printed at the bottom of each odd-numbered
page immediately preceding the footer. Initial value is a blank line.

First Page Footer
By default, the first page footer is a blank line. If, in the input text file, the user
specifies .PF and/or .OF before the end of the first page of the document, these
lines will appear at the bottom of the first page.

The header (whatever its contents) replaces the footer on the first page only if the
-rN1 option is specified on the command line.

Default Header and Footer With Section
Page Numbering
Pages can be numbered sequentially within sections by "section-number page
number". To obtain this numbering style, -rN3 or -rN5 is specified on the
command line. In this case, the default footer is a centered "section-page" number
(it may be B-2, for example); the default page header is blank.

Strings and Registers in Header and Footer
Macros
String and register names may be placed in arguments to header and footer macros.
If the value of the string or register is to be computed when the respective header or
footer is printed, invocation must be escaped by four backslashes. This is because
string or register invocation will be processed three times:

1. As the argument to the header or footer macro,

2. In a formatting request within the header or footer macro, or

3. In a .ti request during header or footer processing.

UTek TOOLS 40-63

The MM Text-formatting Macros

For example, page number register P must be escaped with four backslashes in
order to specify a header in which the page number is to be printed at the right
margin. For example:

.PH " ' ' 'Page\\\ \nP' "

creates a right-justified header containing the word "Page" followed by the page
number. Similarly, to specify a footer with the "section-page" style, the user
specifies the following:

.PF"'''- \\\\n(H1-\\\\nP -'"

If the user arranges for the string al to contain the current section heading which is
to be printed at the bottom of each page, the .PF macro call would appear as such:

.PF"''\\\\ *(a]'' "

If only one or two backslashes were used, the footer would print a constant value for
al, namely, its value when .PF appeared in the input text.

Header and Footer Example
The following sequence specifies blank lines for header and footer lines, page
numbers on the outside margin of each page (for example, the top left margin of
even pages and top right margin of odd pages), and "Revision 3" on the top inside
margin of each page (nothing is specified for the center):

.PH " 11

.PF " 11

.EH " '\\ \\nP' 'Revision 3' "

.OH " 'Revision 3' '\ \\ \nP' "

Generalized Top-of-Page Processing

NOTE
This part is intended only for users accustomed to writing

formatter macros.

During header processing, MM invokes two user-definable macros:

• The .TP (top of page) macro is invoked in the environment (refer to .ev
request) of the header.

• The .PX is a page header user-exit macro that is invoked (without arguments)
when the normal environment has been restored and with the "no-space"
mode already in effect.

40-64

The MM Text-formatting Macros

The effective initial definition of . TP (after the first page of a document) is as follows:

.de TP

.sp 3

.tl *(}t

. if e 'tl \ * (} e

.if o 'tl *(}o

.sp 2

The string }t contains the header, the string }e contains the even-page header, and
the string }o contains the odd-page header as defined by the .PH, .EH, and .OH
macros, respectively. To obtain more specialized page titles, the user may redefine
the .TP macro to cause the desired header processing. Formatting done within the
.TP macro is processed in an environment different from that of the body. For
example, to obtain a page header that includes three centered lines of data (such as
document number, issue date, and revision date), the user could define the .TP call
as follows:

.de TP

.Sp

.ce 3
777-888-999
Iss. 2, AUG 1977
Rev. 7, SEP 1977
.sp

The .PX macro may be used to provide text that is to appear at the top of each page
after the normal header and that may have tab stops to align it with columns to text
in the body of the document.

Generalized Bottom-of-Page Processing
.BS
zero or more lines of text
.BE

Lines of text that are specified between the .BS (bottom-block start) and .BE
(bottom-block end) macros will be printed at the bottom of each page after the
footnotes (if any) but before the page footer. This block of text is removed by
specifying an empty block in the following way:

.BS

.BE

The bottom block will appear on the table of contents, pages, and the cover sheet
for memorandum for file, but not on the technical memorandum or released-paper
cover sheets.

UTek TOOLS 40-65

The MM Text-formatting Macros

Top and Bottom (Vertical) Margins
. VM [top] [bottom]

The . VM (vertical margin) macro allows the user to specify additional space at the
top and bottom of the page. This space precedes the page header and follows the
page footer. The . VM macro takes two unscaled arguments that are treated as v's.
For example:

.VM 10 15

This adds 10 blank lines to the default top of page margin and 15 blank lines to the
default bottom of page margin. Both arguments must be positive (default spacing at
the top of the page may be decreased by redefining . TP).

Proprietary Marking
.PM [code]

The .PM (proprietary marking) macro appends to the page footer a proprietary
disclaimer. The code argument may be any one of those listed here:

code
none
p

N
BP
BB (or BR)
BPN
ILL
Cl-II

DISCLAIMER
turn off previous disclaimer, if any
PRIVATE
NOTICE
TEK PRIVATE
TEK PROPRIETARY-PRIVATE
TEK-NOTICE
"RENDERED ILLEGIBLE" message
Computer Inquiry II message

These disclaimers are in a form approved for use by Tektronix, Inc. The user may
alternate disclaimers by use of the .BS/.BE macro pair. Markings are underlined
(italic in troff). The CI-II marking may be used with any other message by two
separate .PM requests. For example:

.PM Cl-II

.PM N

produces a CI-II and NOTICE mark.

40-66

The MM Text-formatting Macros

Private Documents
.nr Pv value

The word PRIVATE may be printed, centered, and underlined on the second line of
a document (preceding the page header). This is done by setting the Pv register
value:

value
0
1
2

MEANING
do not print PRIVATE (default)
PRIVATE on the first page only
PRIVATE on all pages

If value is 2, the user-definable .TP macro may not be used because the .TP macro
is used by MM to print PR/VA TE on all pages except the first page of a
memorandum (on which .TP is not invoked).

Table of Contents and Cover
Sheet
The table of contents and the cover sheet for a document are produced by invoking
the .TC and .CS macros, respectively.

NOTE
This section refers to cover sheets for technical memoranda

and released papers only. The mechanism for producing a
memorandum for file cover sheet was discussed earlier.

These macros normally appear once at the end of the document because the entire
document must be processed before the table of contents can be generated.
Similarly, the cover sheet may not be desired by a user and is therefore produced at
the end.

Table of Contents
. TC [s-levelJ [spacing] U-levelJ [tab]
[hi] [h2] [h3] [h4] [h5]

The . TC macro generates a table of contents containing heading levels that were
saved for the table of contents as determined by the value of the Cl register.
Arguments to .TC control spacing before each entry, placement of associated page
number, and additional text on the first page of the table of contents before the word
CONTENTS.

UTek TOOLS 40-67

The MM Text-formatting Macros

Spacing before each entry is controlled by the first and second arguments (s-level
and spacing). Headings whose level is less than or equal to s-level will have spacing
blank lines (halves of a vertical space) before them. Both s-level and spacing default
to 1. This means that first-level headings are preceded by one blank line (one-half
a vertical space). The s-level argument does not control what levels of heading have
been saved; saving of headings is the function of the Cl register.

The third and fourth arguments (t-level and tab) control placement of associated
page number for each heading. Page numbers can be justified at the right margin
with either blanks or dots (called leaders) separating the heading text from the page
number; an alternative way would be with the page numbers following the heading
text.

• For headings whose level is less than or equal to t-level (default 2), page
numbers are justified at the right margin. In this case, the value of tab
determines the character used to separate heading text from page number. If
tab is 0 (default value), dots, as leaders, are used. If tab is greater than 0,
spaces are used.

• For headings whose level is greater than t-level, page numbers are separated
from heading text by two spaces (such that page numbers are "ragged right",
not right justified).

Additional arguments (hi h5) are horizontally centered on the page and precede
the table of contents.

If the .TC macro is invoked with at most four arguments, the user-exit macro .TX is
invoked (without arguments) before the word CONTENTS is printed. The user-exit
macro . TY may be invoked instead, causing the word CONTENTS to not be printed.

By defining .TX or .TY and invoking .TC with at most four arguments, the user can
specify what needs to be done at the top of the first page of the table of contents.

For example:

40-68

.de TX

.ce 2
Special Application
Message Transmission
.sp 2
.in +5n
Approved: \l,2.5i
.in
.Sp

.TC

The MM Text-formatting Macros

Special Application
Message Transmission

CONTENTS
yields the following output when the file is formatted:

If the TX macro were defined as .TY, the word CONTENTS would be suppressed.
Defining .TY as an empty macro will suppress CONTENTS with no replacement:

.de TY

By default, the first level headings will appear in the table of contents left justified.
Subsequent levels will be aligned with the text of headings at the preceding level.
These indentations may be changed by defining the Ci string which takes a
maximum of seven arguments corresponding to the heading levels. It must be given
at least as many arguments as are set by the Cl register. Arguments must be
scaled.

For example, with "Cl equal to 5":

.ds Ci .25i .Si .75i 1i 1i \"troff

or

.dsCi O \"nroff

Two other registers are available to modify the format of the table of contents.
These are Oc and Cp.

• By default, table of contents pages will have lowercase Roman numeral page
numbering. If the Oc register is set to 1, the .TC macro will not print any page
number but will instead reset the P register to 1. It is the user's responsibility
to give an appropriate page footer to specify the placement of the page
number. Ordinarily, the same .PF macro (page footer) used in the body of the
document will be adequate.

• The list of figures, tables, and other such pages will be produced separately
unless Cp is set to 1, which causes these lists to appear on the same page as
the table of contents.

UTek TOOLS 40-69

The MM Text-formatting Macros

Cover Sheet
.CS [pages] [other] [total] [jigs] [tb/s] [refs]

The .CS macro generates a cover sheet in either the released paper or technical
memorandum style (see the earlier subsection, Abstract, for details of the
memorandum for file cover sheet). All other information for the cover sheet is
obtained from data given before the .MT macro call. If the technical memorandum
style is used, the .CS macro generates the Cover Sheet for Technical Memorandum.
The data that appear in the lower left corner of the technical memorandum cover
sheet (counts of: pages of text, other pages, total pages, tables, figures, and
references) are generated automatically.

NOTE
0 is used for "other pages,,.

These values may be changed by supplying the corresponding arguments to the .CS
macro. If the released-paper style is used, all arguments to .CS are ignored.

References
There are two macros (.RS and .RF) that delimit the text of references, a string that
automatically numbers the sebsequent references, and an optional macro (.RP) that
produces reference pages within the document.

Automatic Numbering of References
Automatically numbered references may be obtained by typing\ *(Rf (invoking the
string Rf) immediately after the text to be referenced. This places the next
sequential reference number (in a smaller point size) enclosed in brackets one-half
line above the text to be referenced. Reference count is kept in the Rf number
register. The number register actually used to print the reference number for each
reference call\ *(Rf in the text is :R. The :R register may have its format or value
changed to affect the reference marks, without affecting the total count of
references.

Delimiting Reference Text
.RS [string-name]
.RF

The .RS and .RF macros are used to delimit text of each reference as shown in the
following example:

A line of text to be ref ere need. *(Rf
.RS
reference text
.RF

40-70

The MM Text-formatting Macros

Subsequent References
The .RS macro takes one argument, a string-name. For example:

.RS aA
reference text
.RF

The string aA is assigned the current reference number. This string may be used
later in the document as the string call, \ *(aA, to reference text which must be
labeled with a prior reference number. The reference is output enclosed in brackets
one-half line above the text to be referenced. No .RSI.RF pair is needed for
subsequent references.

Reference Page
. RP [arg J] [arg2]

A reference page, entitled by default REFERENCES, will be generated automatically
at the end of the document (before the table of contents and cover sheet) and will be
listed in the table of contents. This page contains the reference items (the reference
text enclosed within the .RSI.RF pairs). Reference items will be separated by a
space (one-half a vertical space) unless the Ls register is set to Oto suppress this
spacing. The user may change the reference page title by defining the Rp string:

.ds Rp ''New Title''

The .RP (reference page) macro may be used to produce reference pages anywhere
else within a document. For instance, the user may want reference pages after
each major section. It is not needed to produce a separate reference page with
default spacings at the end of the document.

Two .RP macro arguments allow the user to control resetting of reference numbering
and page skipping.

arg1 MEANING
O reset reference counter (default)

do not reset reference counter

arg2 MEANING
O put on separate page (default)
1 do not cause a following .SK
2 do not cause a preceding .SK
3 no .SK before or after

If no .SK macro is issued by the .RP macro, a single blank line will separate the
reference from the following/preceding text. The user may wish to adjust spacing.
For example, to produce references at the end of each major section, the following
input is introduced:

.sp 3

.RP 1 2

.H 1 "Next Section"

UTek TOOLS 40-71

The MM Text-formatting Macros

Miscellaneous Features

Bold, Italic, and Roman Fonts
.B [bold-arg] [previous-font-arg] .. .
.I [italic-arg] [previous-font-arg] .. .
. R

When called without arguments, The .B macro changes the font to bold and the .I
macro changes to underlining (italic). This condition continues until the occurrence
of the .R macro which cause the Roman font to be restored.
Thus, the following yields underlined text via the nroff and italic text via the troff
formatter:

.I
here is some text .
. R

If the .B or .I macro is called with one argument, that argument is printed in the
appropriate font (underlined in the nroff formatter for .I). The previous font is
restored (and underlining is turned off in the nroff formatter). If two or more
arguments (with a maximum of six) are given with a .B or .I macro call, the second
argument is concatenated to the first with no intervening space (1 /12 space if the
first font is italic) but is printed in the previous font. Remaining pairs of arguments
are similarly alternated. For example:

.I italic "<sp>text<sp>'' right-justified
(<sp> indicates a space)

produces

italic text right-justified

The .B and .I macros alternate with the prevailing font at the time the macros are
invoked. To alternate specific pairs of fonts, the following macros are available:

.IB .Bl .IR .RI .RB .BR

Each macro takes a maximum of six arguments and alternates arguments between
specified fonts.

When using a terminal that cannot underline, the following can be inserted at the
beginning of the document to eliminate all underlining:

.rm ul

.rm cu

NOTE
Font changes in headings are handled separately.

40-72

The MM Text-formatting Macros

Justification of Right Margin
.SA [arg]

The .SA macro is used to set right-margin justification for the main body of text.
Two justification options are used, these being current and default. Initially, both
options are set for no justification in the nroff formatter and for justification in the
troff formatter. The argument causes the following action:

arg MEANING
O Sets both options to no justification.

omitted

It acts like the .na request.

Sets both options to cause both
right and left justification,
the same as the .ad request.

Causes the current option to be copied
from the default flag,
thus performing either a .na or .ad
depending on the default condition.

In general, the no adjust request (.na) can be used to ensure that justification is
turned off, but .SA should be used to restore justification, rather than the .ad
request. In this way, justification or no justification for the remainder of the text is
specified by inserting .SA O or .SA 1 once at the beginning of the document.

SCCS Release Identification
The RE string contains the SCCS release and the MM text formatting macro
package current version level. For example:

This is version *(RE of the macros.

produces

This is version 10. 129 of the macros.

This information is useful in analyzing suspected bugs in MM. The easiest way to
have the release identification number appear in the output is to specify -rD1 on
the command line. This causes the RE string to be output as part of the page
header.

UTek TOOLS 40-73

The MM Text-formatting Macros

Two-Column Output
.2C
text and formatting requests (except another .2C)
.1C

The MM text formatting macro package can format two columns on a page. The
.2C macro begins two-column processing which continues until a .1 C macro (one
column processing) is encountered. In two-column processing, each physical page
is thought of as containing two-column "pages" of equal (but smaller) "page"
width. Page headers and footers are not affected by two-column processing. The
.2C macro does not balance two-column output.

Footnotes and Displays for Two-Column
Output
It is possible to have full-page width footnotes and displays when in two-column
mode, although default action is for footnotes and displays to be narrow in two
column mode and wide in one-column mode. Footnote and display width is
controlled by the . WC (width control) macro, which takes the following arguments:

40-74

arg

N

WF

-WF

MEANING

Default mode (-WF, -FF, -WD, FB).

Wide footnotes (even in two-column mode).

DEFAULT: Turn off WF. Footnotes follow column mode;
wide in one-column mode (1C), narrow in two-column mode
(2C), unless FF is set.

FF First Footnote. All footnotes have same width as first
footnote encounteded for that page.

-FF DEFAULT: Turn off FF. Footnote style follows settings of
WF or -WF.

WO

-WO

FB

-FB

Wide displays (even in two-column mode).

DEFAULT: Displays follow the column mode in effect when
display is encountered.

DEFAULT: Floating displays cause a break when output on
the current page.

Floating displays on current page do not cause a break.

The MM Text-formatting Macros

NOTE
The . WC WO FF command will cause all displays to be

wide and all footnotes on a page to be the same width, while
. WC N will reinstate default actions. If conflicting settings
are given to . WC, the last one given is used. For instance, a
. WC WF -WF command has the effect of a . WC -WF.

Column Headings for Two-Column Output

NOTE
This section is intended only for users accustomed to

writing formatter macros.

In two-column processing output, it is sometimes necessary to have headers over
each column, as well as headers over the entire page. This is accomplished by
redefining the . TP macro to provide header lines both for the entire page and for
each of the columns. For example:

.de TP

.sp 2

.tl 'page \\nP'ovERALL"

.tl ''TITLE''

.sp

.nf

.ta 16C JlR 34 50C 65R
left()center()right()left~enter()right
()rirst columnc:x:-::x)second column
.fi
.sp 2

In the preceding example, ()stands for the tab character.

This example will produce two lines of page header text plus two lines of headers
over each column. Tab stops are for a 65-en overall line length.

Vertical Spacing
.SP flinesl

Several ways of obtaining vertical spacing exist, all with different effects. The .sp
request spaces the number of lines specified unless the no space (.ns) mode is on;
then, the .sp request is ignored. The no space mode is set at the end of a page
header to eliminate spacing by a .sp or .bp request that happens to occur at the top
of a page. This mode can be turned off by the .rs (restore spacing) request.

UTek TOOLS 40-75

The MM Text-formatting Macros

The .SP macro is used to avoid the accumulation of vertical space by successive
macro calls. Several .SP calls in a row will not produce the sum of the arguments
but only the maximum argument. For example, the following produces only three
blank lines:

.SP 2

.SP 3

.SP

Many MM macros utilize .SP for spacing. For example, .LE 1 immediately followed
by .P produces only a single blank line (one-half a vertical space) between the end
of the list and the following paragraph. An omitted argument defaults to one blank
line (one vertical space). Negative arguments are not permitted. The argument
must be unscaled but fractional amounts are permitted. The .SP macro (as well as
.sp) is also inhibited by the .ns request.

Skipping Pages
.SK [pages]

The .SK macro skips pages but retains the usual header and footer processing. If
the pages argument is omitted, null, or 0, .SK skips to the top of the next page
unless it is currently at the top af a page (then it does nothing). A .SK n command
skips n pages. A .SK positions text that follows it at the top of a page . . SK 1 leaves
one page blank except for the header and footer.

Forcing an Odd Page
.OP

The .OP macro is used to ensure that formatted output text following the macro
begins at the top of an odd-numbered page.

• If currently at the top of an odd-numbered page, text output begins on that
page (no motion takes place).

• If currently on an even page, text resumes printing at the top of the next page.

• If currently on an odd page (but not at the top of it), one blank page is
produced, and printing resumes on the next odd-numbered page after that.

Setting Point Size and Vertical Spacing
.S [point size} [vertical spacing}

The prevailing point size and vertical spacing may be changed by invoking the .S
macro. In the troff formatter, the default point size (obtained from the MM register

40-76

The MM Text-formatting Macros

S) is 1 O points, and the vertical spacing is 12 points (six lines per inch). The
mnemonics D (default value), C (current value), and P (previous value) may be used
for both arguments.

• If an argument is negative, current value is decremented by the specified
amount.

• If an argument is positive, current value is incremented by the specified
amount.

• If an argument is unsigned, it is used as the new value.

• If there are no arguments, the .S macro defaults to P.

• If the first argument is specified but the second is not, then (default) Dis used
for the vertical spacing.

Default value for vertical spacing is always two points greater than the current point
size. Footnotes are two points smaller than the body, with an additional three-point
space between footnotes. A null (" ") value for either argument defaults to C
(current value). Thus, if n is equal to a defined numeric value, the following applies:

.S .s pp

.S'"' n .SC n

.Sn"" .Sn C

.Sn .Sn D

.S"" .SC D

.S"" ,,,, .SC C

.Sn n .Sn n

If the first argument is greater than 99, the default point size (10 points) is restored.
If the second argument is greater than 99, the default vertical spacing (current point
size plus two points) is used. For example:

.s 100 .s 10 12

.514111 = .S1416

UTek TOOLS 40-77

The MM Text-formatting Macros

40-78

Reducing Point Size of a String
.SM string 1 lstring2] lstring3]

The .SM macro allows the user to reduce by one point the size of a string. If the
third argument (string3) is omitted, the first argument (stringl) is made smaller and is
concatenated with the second argument (string2) if specified. If all three arguments
are present (even if any are null), the second argument is made smaller and all three
arguments are concatenated. For example:

INPUT
.SM X
.SM XY
.SM Y X Y
.SM YXYX
.SM YXYX)
.SM (YXYX)
.SM Y XYX ""

Producing Accents

OUTPUT
x
XY
YXY
YXYX

YXYX)
(YXYX)
YXYX

Strings may be used to produce accents for letters as shown in the following
examples:

INPUT OUTPUT
Grave accent C\ *' c
Acute accent e\ *' e
Circumflex 0\ *- 0
Tilde n" * ii
Cedilla C\ *' ~
Lower-case umlaut U\ *: ii
Upper-case umlaut U*; u

The MM Text-formatting Macros

Inserting Text Interactively
.RD (prompt] [diversion] [string]

The .RD (read insertion) macro allows a user to stop the standard output of a
document and to read text from the standard input until two consecutive newline
characters are found. Wtien newline characters are encountered, normal output is
resumed.

• The prompt argument will be printed at the terminal. If not given, .RD signals
the user with a BEL on terminal output.

• The diversion argument allows the user to save all text typed in after the
prompt in a macro whose name is that of the diversion.

• The string argument allows the user to save for later reference the first line
following the prompt in the named string.

The .RD macro follows the formatting conventions in effect. Thus, the following
examples assume that the .RD call is invoked in no-fill mode (.nf):

.RD Name aA bB

This input produces the following:

Name: J .Jones (user types name)
16 Elm Rd.,
Piscataway

The diverted macro .aA will contain this information:

J.Jones
16 Elm Rd.,
Piscataway

The string bB (\ * (bB) contains J.Jones.

A newline character followed by an EOF (user specifiable <CTRL-D>) also allows the
user to resume normal output.

UTek TOOLS 40-79

The MM Text-formatting Macros

Errors and Debugging

Error Terminations
When a macro detects an error, the following actions occur:

• A break occurs.

• The formatter output buffer (which may contain some text) is printed to avoid
confusion regarding location of the error.

• A short message is printed giving the name of the macro that detected the
error, type of error, and approximate line number in the current input file of the
last processed input line. Error messages are explained in the last subsection
of th is section.

• Processing terminates unless register D has a positive value. In the latter
case, processing continues even though the output is guaranteed to be
nonsensical from that point on.

The error message is printed by outputting the message directly to the user terminal.
If an output filter, such as 300, 450, or hp is being used to post-process the nroff
formatter output, the message may be garbled by being intermixed with text held in
that filter's output buffer.

NOTE
If either neqn or tbl is being used, and if the -olist

option of the formatter causes the last page of the document
not to be printed, a "broken pipe" message may result; this
message is not indicative of a problem.

Disappearance of Output
Disappearance of output usually occurs because of an unclosed diversion (such as a
missing .DE or .FE macro). Fortunately, macros that use diversions were carefully
designed; these macros check to make sure that illegal nestings do not occur. If
any error message is issued concerning a missing .DE or .FE, the appropriate action
is to search backwards from the termination point looking for the corresponding
associated .OF, .OS, or .FS (since these macros are used in pairs).

The following command prints related macros that are found in Jiles . .. :

grep -n ,- \.[EDFRT] [EFNQS]' files ...

Because of what was asked for in the brackets, the macros .OF, .OS, .DE, .EQ,
.EN, .FS, .FE, .RS, .RF, .TS, and .TE are printed with each preceded by its
filename and the line number in that file. This listing can be used to check for
illegal nesting and/or omission of these macros.

40-80

The MM Text-formatting Macros

Extending and Modifying MM
Macros

Naming Conventions
In this part, the following conventions are used to describe names:

n: Digit
a: Lowercase letter
A: Uppercase letter
x: Any alpha-numeric character (n, a, or A, for example, letter or digit)
s: Any nonalpha-numeric character (special character)

All other characters are literals (characters that stand for themselves).

Request, macro, and string names are kept by the formatters in a single internal
table; therefore, there must be no duplication among such names. Number register
names are kept in a separate table.

Names Used by Formatters
requests:

registers:

aa (most common)
an (only one, currently: c2)

aa (normal)
.x (normal)
.s (only one, currently: .$)
a. (only one, currently: c.)
% (page number)

Names Used by MM
macros and strings:

UTek TOOLS

A, AA, Aa (accessible to users; for example macros
P and HU, strings F, BU, and Lt).

nA (accessible to users; only two, currently: 1 C
and 2C).

aA (accessible to users; only one, currently: nP).

s (accessible to users; only the seven accents,
currently).

)x,}x, Jx, >x, ?x (internal).

40-81

The MM Text-formatting Macros

registers: An, Aa (accessible to users; for example, H1, Fg).

A (accessible to users; meant to be set on the
command line; for example, C).

:x, ;x, #x, ?x, !x (internal).

Names Used by neqn and tbl
The mathematical equation preprocessor, neqn, uses registers and string names of
the form nn. The table preprocessor, tbl, uses T, T#, and TW, and names of the
form:

a- a+ a: nn na ~a #a #s

Names Defined by User
Names that consist either of a single lowercase letter or a lowercase letter followed
by a character other than a lowercase letter (names .c2 and .nP are already used)
should be used to avoid duplication with already used names. The following is a
possible naming convention:

macros:
strings:
registers:

aA (bG, kW, for example)
as (c), f], p, for example)
a (f, t, for example)

Sample Extensions

Appendix headings
The following is a way of generating and numbering appendix headings:

.nr Hu 1

.nr a 0

.de aH

.nr a +1

.nr P 0

.PH II

.SK

.HU "\\$1"

Appendix \\na- \\\\\\\\nP

After the above initialization and definition, each call of the form
.aH ''title''

beings a new page (with the page header changed to Appendix a-n) and generates
an unnumbered heading of title. This title, if desired, can be saved for the table of
contents. To center appendix titles, the He register must be set to 1.

40-82

The MM Text-formatting Macros

Summary
The following are qualities of MM that have been emphasized in its design in
approximate order of importance:

• Robustness in the face of error- A user need not be an nroff/troff expert to
use MM macros. When the input is incorrect, either the macros attempt to
make a reasonable interpretation of the error or an error message describing
the error is produced. An effort has been make to minimize the possibility that
a user would get cryptic system messages or strange output as a result of
simple errors.

• Ease of use for simple documents- It is not necessary to write complex
sequences of commands to produce documents. Reasonable macro argument
default values are provided where possible.

• Parameterization- There are many different preferences in the area of
document styling. Many parameters are provided so that users can adapt
input text files to produce output documents to their respective needs over a
wide range of styles.

• Extension by moderately expert users- A strong effort has been made to user
mnemonic naming conventions and consistent techniques in construction of
macros. Naming conventions are given so that a user can add new macros or
redefine existing ones if necessary.

• Device independence- A common use of MM is to produce documents on hard
copy via teletypewriter terminals using the nroff formatter. Macros can be
used conveniently with both 10- and 12-pitch terminals. In addition, output
can be displayed on an appropriate video terminal. Macros have been
constructed to allow compatibility with the troff formatter so that output can be
produced on both a photoypesetter and a teletypewriter/video terminal.

• Minimization of input- The design of macros attempts to minimize repetitive
typing. For example, if a user wants to have a blank line after all first- or
second-level headings, the user need only set a specific parameter once at the
beginning of a document rather than type a blank line after each such heading.

• Decoupling of input format from output style- There is one way to prepare
the input text although the user may obtain a number of output styles by
setting a few global options. For example, the .H macro is used for all
numbered headings, yet the actual output style of these headings may be
made to vary from document to document or within a single document.

UTek TOOLS 40-83

The MM Text-formatting Macros

MM Macro Name Summary
The following listing shows all the MM macros and their usage. Each item in the list
gives a definition of the macro followed by its normal format and arguments.

NOTE
Macros marked with an asterisk are not, in general, called

(invoked) directly by the user. They are user exits defined by
the user and called by the MM macros from inside header,
footer, or other macros.

1 C One-column processing
.1C

2C Two-column processing
.2C

AE Abstract end
.AE

AF Alternate format of Subject/Date/From block
.AF [company-name]

AL Automatically incremented list start
.AL [type] [text-indent] [1]

AS Abstract start
.AS [arg] [indent]

AT Author's title
.AT [title]

AU Author information
.AU name [initials] Uoc] [dept] [ext] [room] [arg] [arg] [arg]

AV Approval signature
.AV [name] [1]

B Bold
.B [bold-arg] [previous-font-arg] [bold] [prev] [bold] [prev]

BE Bottom block end
.BE

Bl Bold/Italic
.Bl [bold-arg] [italic-arg] [bold] [italic] [bold] [italic]

BL Bullet list start
.BL [text-indent] [1]

40-84

The MM Text-formatting Macros

BR Bold/Roman
.BR [bold-arg] [Roman-arg] [bold] [Roman] [bold] [Roman]

BS Bottom block start
.BS

CS Cover Sheet
.CS [pages] [other] [total] [jigs] [tbls] [refs]

DE Display end
.DE

OF Display floating start
.DF [format] [fill] [right-indent]

DL Dash list start
.DL [text-indent] [1]

OS Display static start
.DS [format] [fill] [right-indent]

EC Equation caption
.EC Uitle] [override] [option]

EF Even-page footer
.EF [arg]

EH Even-page header
.EH [arg]

EX Exhibit caption
.EX [title] [override] [option]

FC Formal closing
.FC [closing]

FD Footnote default format
.FD [arg] [1 J

FE Footnote end
.FE

FG Figure title
.FG [title] [override] [option]

FS Footnote start
.FS [label]

H heading-numbered
.H level [heading-text] [heading-suffix]

HC Hyphenation character
. HC [hyphenation-indicator J

UTek TOOLS 4D-85

The MM Text-formatting Macros

HM Heading mark style (Arabic or Roman numerals, or letters)
.HM [arglJ ... [arg7J

HU Heading-unnumbered
. HU heading-text

HX* Heading user exit X (before printing heading)
. HX d-level r-level heading text

HY* Heading user exit Y (before printing heading)
.HY d-level r-level heading-text

HZ* Heading user exit Z (after printing heading)
.HZ d-level r-level heading-text

Italic (underline in the nroff formatter)
.I [italic-arg] [previous-font-arg] [italic] [prev] Utalic] [prev]

IB Italic/Bold
. IB Utalic-arg] [bold-font-arg] [italic] [bold] Utalic] [bold]

IR Italic/Roman
.IR Utalic-arg] [Roman-arg] Utalic] [Roman] [italic] [Roman]

LB List begin
.LB text-indent mark-indent pad type [mark] [LI-space] [LB-space]

LC List-status clear
.LC Wst-levelJ

LE List end
.LE [1]

LI List item
.LI [mark] [1]

ML Marked list start
.ML mark [text-indent]

MT Memorandum type
.MT [type] [addressee] or .MT [4] [1 J

ND New date
.ND new-date

NE Notation end
.NE

NS Notation start
.NS [arg] [1 J nP" Double-line indented paragraphs
.nP

OF Odd-page footer
.OF [arg]

4D-86

The MM Text-formatting Macros

OH Odd-page header
.OH [arg]

OK Other keywords for the Technical Memorandum cover sheet
.OK [keyword]

OP Odd page
.OP

P Paragraph
.P [type]

PF Page footer
.PF [arg]

PH Page header
.PH [arg]

PM proprietary marking
.PM [code]

PX* Page-header user exit
.PX

R Return to regular (Roman) font
.R

RB Roman/Bold
.RB [Roman-arg] [bold-arg] [Roman] [bold] [Roman] [bold]

RD Read insertion from terminal
. RD [prompt] [diversion] [string]

RF Reference end
.RF

RI Roman/Italic
.RI [Roman-arg] Utalic-arg] [Roman] [italic] [Roman] Uta/ic]

RL Reference list start
.RL [text-indent] [1 J

RP Produce reference page
.RP [arg] [arg]

RS Reference start
.RS [string-name]

S set troff formatter point size and vertical spacing
.S [size] [spacing]

SA Set adjustment (right-margin justification) default
.SA [arg]

UTek TOOLS 40-87

The MM Text-formatting Macros

SG Signature line
.SG [arg] [1]

SK Skip pages
.SK [pages]

SM Make a string smaller
.SM string] [string2] [string3]

SP Space vertically
.SP Wnes]

TB Table title
.TB [title] [override] [option]

TC Table of contents
.TC [s-leve/] [spacing] U-leve/] [tab[] [hl] [h2] [h3] [h4] [h5]

TE Table end
.TE

TH Table header
.TH [NJ

TL Title of memorandum
. TL [charging-case J [filing-case J

TM Technical Memorandum number(s)
. TM [number J ...

TP* Top of page macro
.TP

TS Table start
.TS [fil

TX* Table of contents user exit
.TX

TY* Table of contents user exit (suppresses CONTENTS)
.TY

VL Variable-item list start
.VL text-indent [mark-indent] [1]

VM Vertical margins
.VM [top] [bottom]

WC Footnote and display width control
. WC [format]

40-88

Tfle MM Text-formatting Macros

MM String Name Summary
The following list shows the predefined string names used by the MM macro
package.

BU Bullet
NROFF:•
TROFF:•

Ci Table of contents indent list
Up to seven scaled arguments for heading levels

OT Date
Current date, unless overridden
Month, day, year (for example, May 31, 1979)

EM Em dash string
Produces an em dash in the troff formatter and a double hyphen in nroff

F Footnote number generator
NROFF: \u\ \n + (:p\d
TROFF: \v'-.4m'\s-3\ \n + (:p\SO\V' .4m'

HF Heading font list
Up to seven codes for heading levels one through seven
2 2 2 2 2 2 2 (all levels underlined by nroff and italicized by troff)

HP Heading point size list
Up to seven codes for heading levels one through seven

Le Title for LIST OF EQUATIONS

Lf Title for LIST OF FIGURES

Lt Title for LIST OF TABLES

Lx Title for LIST OF EXHIBITS

RE SCCS Release and Level of MM
Release.Level (for example, 15.129)

Rf Reference number generator

Rp Title for References

Tm Trademark string
Places the letters TM one-half line above the text that is follows

Seven accent strings are also available.

UTek TOOLS 40-89

The MM Text-formatting Macros

NOTE
If the released-paper style is used, then (in addition to the

above strings) certain BTL location codes are defined as
strings. These location strings are needed only until the .MT
macro is called. Currently, the foil owing codes are
recognized:

AK, AL, ALF, CB, CH, CP, DR, FJ, HL, HO, HOH, HP,
IH, IN, !NH, IW, MH, MV, PY, RD, RR, WB, WH, and
WV.

MM Number Register Summary
The list that follows contains a description of all the predefined number registers
used by MM. After each description is the normal value of the register followed by
the range of allowable values, enclosed in brackets[J. The lower and upper limit of
values are separated by a colon (:).

Note 1: An asterisk attached to a register name indicates that this
register can be set only from the command line or before the MM macro
definitions are read by the formatter.

Note 2: The Introduction subsection defines setting and referencing
registers. Any register having a single-character name can be set from
the command line. These are indicated by a dagger (tJ in the following
list.

A*t Handles preprinted forms and logo
0, [0:2]

Au

C*t

Cl

Cp

D*t

De

Of

40-90

Inhibits printing of author information
1, [0:1]

Copy type (original, DRAFT, etc.)
0 (original), [0:4]

Level of headings saved for table of contents
2, [0:7]

Placement of list of figures, etc.
1 (on separate pages), [O: 1J

Debug option
0, [0:1]

Display eject register for floating displays
0, [0:1]

Display format register for floating displays
5, [0:5]

Os Static display pre- and post-space
1, [0:1]

The MM Text-formatting Macros

E * t Controls font of the Subject/Date/From fields
1 (nroff) O (troff), [0:1]

Ee Equation counter used by .EC macro
0, [Q:?J
Incremented by one for each .EC call

Ej Page-ejection option for headings
O (no eject), [0:7]

Eq Equation label placement
0 (right-justified), [O: 1 J

Ex Exhibit counter, used by .EX macro
0, [Q:?J
Incremented by one for each .EX call.

Fg Figure counter, used by .FG macro
0, [Q:?J

Fs

H1-H7

Incremented by one for each .FG call.

Footnote space (for example, spacing between footnotes)
1, [Q:?J

Heading counters for levels 1 through 7
0, [Q:?]
Incremented by the .H macro of corresponding level or the .HU macro if
at level given by the Hu register. The H2 through H7 registers are reset
to Oby any .H (.HU) macro at a lower-numbered level.

Hb Heading break level (after .H and .HU)
2, [0:7]

He Heading centering level for .H and .HU
O (no centered headings), [0:7J

Hi Heading temporary indent (after .Hand .HU)
1 (indent as paragraph), [0:2]

Hs Heading space level (after .H and .HU)
2 (space only after .H 1 and .H 2), [0:7]

Ht Heading type (for .H: single or concatenated numbers)
O (concatenated numbers: 1.1.1, etc.), [O: 1 J

Hu Heading level for unnumbered heading (.HU)
2 (.HU at the same level as .H 2), [0:7]

Hy Hyphenation control for body of document
O (automatic hyphenation off), [0:1 J

UTek TOOLS 40-91

The MM Text-formatting Macros

L * t

Le

Lf

Li

Ls

Lt

Lx

N*t

Np

O*t

Oc

Of

p

Pi

Ps

Pt

40-92

Length of page
66, [20:?]
(11 i, [2i:?J in troff formatter)

List of equations
O (list not produced), [O: 1 J

List of figures
1 (list produced), [0:1]

List indent
6 (nroff) 5 (troff), [O:?J

List spacing between items by level
6 (spacing between all levels), [0:6]

List of tables
1 (list produced), [0:1]

List of exhibits
1 (list produced), [0:1]

Numbering style
0, [0:5]

Numbering style for paragraphs
0 (unnumbered), [0:1 J

Offset of page
.75i, [O:?]
(O.Si, [Qi:?] in troff formatter)
For nroff formatter, these values are unscaled numbers representing
lines or character positions. For troff formatter, these values must be
scaled.

Table of contents page numbering style
0 (lowercase Roman), [0:1]

Figure caption style
O (period separator), [0:1 J

Page number managed by MM
0, [O:?]

Paragraph indent
5 (nroff) 3 (troff), [O:?J

Paragraph spacing
1 (one blank space between paragraphs), [O:?J

Paragraph type
O (paragraphs always left-justified), [0:2]

The MM Text-formattl"g Macros

Pv "PRIVATE" header
O (not printed), [0:2]

Rf Reference counter, used by .RS macro
0, [O:?]
Incremented by one for each .RS call.

S * t The troff formatter default point size
10, {6:36]

Si Standard indent for displays
5 (nroff) 3 (troff), [O:?J

T * t Type of nroff output device
0, [0:2]

Tb Table counter, used by .TB macro
0, [O:?]
Incremented by one for each . TB call.

U Underlining style (nroff) for.Hand .HU
O (continuous underline when possible), (0: 1]

W Width of page (line and title length)
6i, [10:1365]
(6i, (2i:7.54i] in the troff formatter)

MM and Formatter Error
Messages
When processing text using the MM macro package, MM will report any errors it can
detect. Since the macros are written in the basic formatter primitives, other errors
may be found and reported by the formatter. The next two subsections contain
descriptions of any error messages which may be received from MM or the
formatter.

MM Error Messages
An MM error message has a standard part followed by a variable part. The standard
part has the form:

ERROR:(fi/ename)input linen:

Variable parts consist of a descriptive message usually beginning with a macro
name. They are listed below in alphabetical order by macro name, each with a
more complete explanation.

UTek TOOLS 40-93

The MM Text-formatting Macros

Check TL, AU, AS, AE, MT sequence

The correct order of macros at the start of a memorandum is shown in subsection
Memorandum and Released-Paper Documents. Something has disturbed this order.

Check TL, AU, AS, AE, NS, NE, MT sequence

The correct order of macros at the start of a memorandum is shown in the
subsection Memorandum and Released-Paper Documents. Something has disturbed
this order. (Occurs if the .AS 2 macro was used.)

CS:cover sheet too long

Text of the cover sheet is too long to fit on one page. The abstract should be
reduced or the indent of the abstract should be decreased.

DE:no OS or OF active

A .DE macro has been encountered, but there has not been a previous .OS or .OF
macro to match it.

DF:illegal inside TL or AS

Displays are not allowed in the title or abstract.

DF:missing DE

A .OF macro occurs within a display; for example, a .DE macro has been omitted or
mistyped.

DF:missing FE

A display starts inside a footnote. The likely cause is the omission (or misspelling)
of a .FE macro to end a previous footnote.

DF:too many displays

More than 26 floating displays are active at once; for example, more than 26 have
been accumulated but not yet output.

DS:illegal inside TL or AS

Displays are not allowed in the title or abstract.

DS:missing DE

A .OS macro occurs within a display; for example, a .DE had been omitted or
mistyped.

DS:missing FE

A display starts inside a footnote. The likely cause is the omission (or misspelling)
of a .FE to end a previous footnote.

FE:no FS active

A .FE macro has been encountered with no previous .FS to match it.

4D-94

The MM Text-formatting Macros

FS:missing DE

A footnote starts inside a display; for example, a .OS or .OF occurs without a
matching .DE.

FS:missing FE

A previous .FS macro was not matched by a closing .FE; for example, an attempt is
being made to begin a footnote inside another one.

H:bad arg:value

The first argument to the .H macro must be a single digit from one to seven, but
value has been supplied instead.

H:missing arg

The .H macro needs at least one argument.

H:missing DE

A heading macro (.Hor .HU) occurs inside a display.

H:missing FE

A heading macro (.H or .HU) occurs inside a footnote.

HU:missing arg

The .HU macro needs one argument.

LB:missing arg(s)

The .LB macro requires at least four arguments.

LB:too many nested lists

Another list was started when there were already six active lists.

LE:mismatched

The .LE macro has occurred without a previous .LB or other list-initialization macro.
This is not a serious error. The message is issued because there exists some
problem in the preceding text.

Ll:no lists active

The .LI macro occurred without a preceding list-initialization macro. The latter
probably has been omitted or entered incorrectly.

ML:missing arg

The .ML macro requires at least one argument.

ND:missing arg

The .ND macro requires one argument.

UTek TOOLS 40-95

The MM Text-formatting Macros

RF:no RS active

The .RF macro has been encountered with no previous .RS to match it.

RP:missing RF

A previous .RP macro was not matched by a closing .RF.

RS:missing RF

A previous .RS macro was not matched by a closing .RF.

S:bad arg:value

The incorrect argument value has been given for the .S macro.

SA:bad arg:value

The argument to the .SA macro (if any) must be either O or 1 . The incorrect
argument is shown as value.

SG:missing DE

The .SG macro occurred inside a display.

SG:missing FE

The .SG macro occurred inside a footnote.

SG:no authors

The .SG macro occurred without any previous .AU macro(s).

VL:missing arg

The . VL macro requires at least one argument.

WC:unknown option

An incorrect argument has been given to the . WC macro.

Formatter Error Messages
Most messages issued by the formatter are self-explanatory. Those error messages
over which the user has some control are listed below. Any other error messages
should be reported to the local system support group.

Cannot do ev

Caused by:

1. Setting a page width that is negative or extremely short

2. Setting a page length that is negative or extremely short

3. Reprocessing a macro package (for example, performing a .so request on a
macro package that was already requested on the command line)

40-96

The MM Text-formatting Macros

4. Requesting the troff formatter -sl option on a document that is longer than ten
pages.

Cannot execute filename

Given by the .! request if the filename is not found.

Cannot open filename

Indicates one of the files in the list of files to be processed cannot be opened.

Exception word list full

Indicates too many words have been specified in the hyphenation exception list (via
.hw request).

Line overflow

Indicates output line being generated was too long for the formatter line buffer
capacity. The excess was discarded. Likely causes for this message are very long
lines or words generated through the misuse of \c of the .cu request, or very long
equations produced by eqn/neqn.

Nonexistent font type

Indicates a request has been made to mount an unknown font.

Nonexistent macro file

Indicates the requested macro package does not exist.

Nonexistent terminal type

Indicates the terminal options refer to an unknown terminal type.

Out of temp file space

Indicates additional temporary space for macro definitions, diversion, etc. cannot be
allocated. This message often occurs because of unclosed diversions (missing .FE
or .DE), unclosed macro definitions (for example, missing " ... "), or a huge table of
contents.

Too many page numbers

Indicates the list of pages specified to the -o formatter option is too long.

Too many number registers

Indicates the pool of number register names is full. Unneeded registers can be
deleted by using the .rr request.

Too many string/macro names

Indicates the pool of string and macro names is full. Unneeded strings and macros
can be deleted using the .rm request.

UTek TOOLS 40-97

The MM Text-formatting Macros

Word overflow

Indicated a word being generated exceeded the formatter word buffer capacity.
Excess characters were discarded. Likely causes for this messages are very long
lines, words generated through the misuse of \C of the .cu request, or very long
equations produced by eqn/neqn.

40-98

The ME Reference
Guide

Introduction

4f

This document describes in extremely terse form the features of the -me macro
package for nroff/troff. Some familiarity is assumed with those programs,
specifically, the reader should understand breaks, fonts, point sizes, the use and
definition of number registers and strings, how to define macros, and scaling factors
for ens, points, v 's (vertical line spaces), etc.

For a more casual introduction to text processing using nroff, refer to Section 4F,
The ME Text-Formatting Macros.

There are a number of macro parameters that may be adjusted. Fonts may be set
to a font number only. In nroff font 8 is underlined, and is set in bold font in troff
(although font 3, bold in troff, is not underlined in nroff). Font O is no font change;
the font of the surrounding text is used instead. Notice that fonts 0 and 8 are
pseudo-fonts; that is, they are simulated by the macros. This means that although it
is legal to set a font register to zero or eight, it is not legal to use the escape
character form, such as:

\f8

All distances are in basic units, so it is nearly always necessary to use a scaling
factor. For example, the request to set the paragraph indent to eight one-en spaces
is:

.nr pi Sn

and not

.nr pi 8

which would set the paragraph indent to eight basic units, or about 0.02 inch.
Default parameter values are given in brackets in the remainder of this document.

Registers and strings of the form $x may be used in expressions but should not be
changed. Macros of the form $x perform some function (as described) and may be
redefined to change this function. This may be a sensitive operation; look at the
body of the original macro before changing it.

All names in -me follow a rigid naming convention. The user may define number
registers, strings, and macros, provided that s/he uses single character uppercase
names or double character names consisting of letters and digits, with at least one
uppercase letter. In no case should special characters be used in user-defined
names.

UTekTOOLS 4E-1

The ME Reference Guide

On daisy wheel-type printers in 12 pitch, the -rxl flag can be stated to make lines
default to 1 /8 inch (the normal spacing for a newline in 12-pitch). This is normally
too small for easy readability, so the default is to space 1 /6 inch.

Paragraphing
These macros are used to begin paragraphs. The standard paragraph macro is .pp;
the others are all variants to be used for special purposes.

The first call to one of the paragraphing macros defined in this section or the .sh
macro (defined in the next session) initializes the macro processor. After
initialization you cannot use any of the following requests: .sc, .lo, .th, or .ac. Also,
the effects of changing parameters that have a global effect on the format of the
page (notably page length and header and footer margins) are not well defined and
should be avoided.

.Ip

.pp

.ip TI

.np

Begin left-justified paragraph. Centering and underlining are turned
off if they were on, the font is set to \n(pf [1 J, the type size is set to
\n(pp [1 Op], and a \n(ps space is inserted before the paragraph
[0.35v in troff, 1v or 0.5v in nroff depending on device resolution].
The indent is reset \n($i [OJ plus \n(po [OJ unless the paragraph is
inside a display (see .ba). At least the first two lines of the
paragraph are kept together on a page.

Like .Ip , except that it puts \n(pi [5nJ units of indent. This is the
standard paragraph macro.

Indented paragraph with hanging tag. The body of the following
paragraph is indented I spaces (or \n(ii [5nJ spaces if I is not
specified) more than a nonindented paragraph (such as with .pp) is.
The title Tis exdented (opposite of indented). The result is a
paragraph with an even left edge and T printed in the margin. Any
spaces in T must be unpaddable. If T does not fit in the space
provided, .ip does start a new line.

A variant of .ip that numbers paragraphs. Numbering is reset after
a .Ip, .pp, or .sh. The current paragraph number is in \n($p.

Section Headings
Numbered sections are similar to paragraphs except that a section number is
automatically generated for each one. The section numbers are of the form n.n.n.
The depth of the section is the count of numbers (separated by decimal points) in
the section number.

Unnumbered section headings are similar, except that no number is attached to the
heading.

4E-2

The ME Reference Guide

.sh + N Ta b c def Begin numbered section of depth N. If N is missing the
current depth (maintained in the number register \n($0) is
used. The values of the individual parts of the section
number are maintained in \n($1 through \n($6. There is a
\n(ss [1vJ space before the section. Tis printed as a section
title in font \n(sf [8] and size \n(sp [1 Op]. The name of the
section may be accessed by using\ *($n. If \n(si is nonzero,
the base indent is set to \n(si times the section depth, and
the section title is exdented (see .ba.) Also, an additional
indent of \n(so [OJ is added to the section title (but not to the
body of the section). The font is then set to the paragraph
font, so that more information may occur on the line with the
section number and title. .sh insures that there is enough
room to print the section head plus the beginning of a
paragraph (about three lines total). If a through fare
specified, the section number is set to that number rather
than incremented automatically. If any of a through fare a
hyphen that number is not reset. If T is a single underscore
(_) then the section depth and numbering is reset, but the
base indent is not reset and nothing is printed out. This is
useful to automatically coordinate section numbers with
chapter numbers.

.sx +N

.uh T

.$p TB N

. $0 TB N

. $1-.$6

UTekTOOLS

Go to section depth N [-1], but do not print the number and title,
and do not increment the section number at level N. This has the
effect of starting a new paragraph at level N.

Unnumbered section heading. The title Tis printed with the same
rules for spacing, font, etc., as for .sh.

Print section heading. May be redefined to get fancier headings. T
is the title passed on the .sh or .uh line; B is the section number for
this section, and N is the depth of this section. These parameters
are not always present; in particular, .sh passes all three, .uh
passes only the first, and .sx passes three, but the first two are null
strings. Care should be taken if this macro is redefined; it is quite
complex and subtle .

This macro is called automatically after every call to .$p. It is
normally undefined, but may be used to automatically put every
section title into the table of contents or for some similar function. T
is the section title for the section title that was just printed, B is the
section number, and N is the section depth .

Traps called just before printing that depth section. May be defined
(for example) to give variable spacing before sections. These
macros are called from .$p, so if you redefine that macro, you may
lose this feature.

4E-3

The ME Reference Gu/de

Headers and Footers
Headers and footers are put at the top and bottom of every page automatically.
They are set in font \n(tf [3] and size \n(tp [10pJ. Each of the definitions apply as
of the next page. Three-part titles must be quoted if there are two blanks adjacent
anywhere in the title or more than eight blanks total.

The spacing of headers and footers is controlled by three number registers. \n(hm
[4vJ is the distance from the top of the page to the top of the header, \n(fm [3vJ is
the distance from the bottom of the page to the bottom of the footer, \n(tm [7vJ is
the distance from the top of the page to the top of the text, and \n(bm [6vJ is the
distance from the bottom of the page to the bottom of the text (nominal). The
following macros are also supplied for compatibility with roff documents:

.m1 .m2

.m3 .m4

.he 'l'm'r' Define three-part header, to be printed at the top of every page .

. fo 'l'm'r' Define footer, to be printed at the bottom of every page .

. eh 'l'm'r' Define header, to be printed at the top of every even-numbered
page .

. oh 'l'm'r' Define header, to be printed at the top of every odd-numbered
page .

. ef 'l'm'r' Define footer, to be printed at the bottom of every even-numbered
page .

. of 'l'm'r' Define footer, to be printed at the bottom of every odd-numbered
page .

. hx Suppress headers and footers on the next page .

. m1 + N Set the space between the top of the page and the header [4vJ .

. m2 + N Set the space between the header and the first line of text [2vJ .

. m3 + N Set the space between the bottom of the text and the footer [2vJ .

. m4 + N Set the space between the footer and the bottom of the page [4vJ .

. ep End this page, but do not begin the next page. Useful for forcing
out footnotes, but other than that rarely used. Must be followed by
a .bp or the end of input.

.$h Called at every page to print the header. May be redefined to
provide fancy (for example, multi-line) headers, but doing so loses
the function of the .he, .fo, .eh, .oh, .ef, and .of requests, as well
as the chapter-style title feature of .+c.

4E-4

. $f

.$H

The ME Reference Gulde

Print footer; same comments apply as in .$h .

A normally undefined macro that is called at the top of each page
(after outputting the header, initial saved floating keeps, etc.). In
other words, this macro is called immediately before printing text on
a page. It can be used for column headings and the like.

Displays
All displays except centered blocks and block quotes are preceded and followed by
an extra \n(bs [same as \n(ps J space. Quote spacing is stored in a separate
register; centered blocks have no default initial or trailing space. The vertical
spacing of all displays except quotes and centered blocks is stored in register \n($R
instead of \n($r.

.(I mf

.)I

.(q

.)q

.(b mf

.)b

UTekTOOLS

Begin list. Lists are single spaced, unfilled text. If f is F, the list is
filled. If m [I] is I the list is indented by \n(bi [4nJ; if M the list is
indented to the left margin; if L the list is left justified with respect to
the text (different from M only if the base indent (stored in \n($i and
set with .ba) is not zero); and if C the list is centered on a line-by
line basis. The list is set in font \n(df [OJ. Must be matched by a
.)I. This macro is almost like .(b except that no attempt is made to
keep the display on one page.

End list.

Begin major quote. These are single-spaced, filled, moved in from
the text on both sides by \n(qi [4nJ, preceded and followed by \n(qs
[same as \n(bs] space, and are set in point size \n(qp [one point
smaller than surrounding text].

End major quote .

Begin block. Blocks are a form of keep, where the text of a keep is
kept together on one page if possible. Keeps are useful for tables
and figures that should not be broken over a page. If the block
does not fit on the current page, a new page is begun, unless that
would leave more than \n(bt [OJ white space at the bottom of the
text. If \n(bt is 0, the threshold feature is turned off. Blocks are not
filled unless f is F, when they are filled. The block is left-justified if
m is L, indented by \n(bi [4nJ if m is I or absent, centered (line
for-line) if m is C, and left-justified to the margin (not to the base
indent) if m is M. The block is set in font \n(df [OJ .

End block.

4E-5

The ME Reference Guide

.(zmf

.)z

.(c

.)c

Begin floating keep. Like .(b except that the keep is floated to the
bottom of the page or the top of the next page. Therefore, its
position is relative to the text changes. The floating keep is
preceded and followed by \n(zs [1v] space. Also, it defaults to
mode M.

End floating keep .

Begin centered block. The next keep is centered as a block, rather
than on a line-by-line basis as with .(b C. This call may be nested
inside keeps .

End centered block.

Annotations
.(d

.)d n

.pd

. (f

.)f n

. $s

. (xx

.)x PA

.xpx

4E-6

Begin delayed text. Everything in the next keep is saved for output
later with .pd, in a manner similar to footnotes.

End delayed text. The delayed text number register \n($d and the
associate9 string \ *# are incremented if*# has been referenced.

Print delayed text. Everything diverted by .(d is printed and
truncated. This might be used at the end of each chapter .

Begin footnote. The text of the footnote is floated to the bottom of
the page and set in font \n(jf [1] and size \n(fp [8pJ. Each entry
is preceded by \n{js C0.2v] space, is indented \n(ji [3n] on the first
line, and is indented \n(fu [OJ from the right margin. Footnotes line
up underneath two columned output. If the text of the footnote does
not all fit on one page, it is carried over to the next page.

End footnote. The number register "- n($f and the associated string
"**are incremented if they have been referenced .

The macro to output the footnote separator. This macro may be
redefined to give other size lines or other types of separators.
Currently it draws a 1.5i line .

Begin index entry. Index entries are saved in the index x [xJ until
called up with .xp. Each entry is preceded by a \n(xs [Q.2v] space.
Each entry is undented by \n(xu CO.Si]; this register tells how far the
page number extends into the right margin.

End index entry. The index entry is finished with a row of dots with
A (null) right justified on the last line (such as for an author's name),
followed by P [\n%]. If A is specified, P must be specified; \n%
can be used to print the current page number. If P is an
underscore, no page number and no row of dots are printed.

Print index x [x]. The index is formatted in the font, size, and so
forth in effect at the time it is printed, rather than at the time it is
collected.

The ME Reference Guide

Columned Output
.2c +SN

. 1c

.be

Enter two-column mode. The column separation is set to + S [4n,
O.Si in ACM mode] (saved in \n($s). The column width, calculated
to fill the single column line length with both columns, is stored in
\n($1. The current column is in \($c. You can test register \n($m
[1] to see if you are in single column or double column mode.
Actually, the request enters N [2] columned output.

Revert to single-column mode .

Begin column. This is like .bp except that it begins a new column
on a new page only if necessary, rather than forcing a whole new
page if there is another column left on the current page.

Fonts and Sizes
.sz +P

.r WX

.i wx

.b wx

.rb W X

.u wx

.q wx

UTekTOOLS

The point size is set to P [10p], and the line spacing is set
proportionally. The ratio of line spacing to point size is stored in
\n($r. The ratio used internally by displays and annotations is
stored in \n($R (although this is not used by .sz).

Set Win Roman font, appending X in the previous font. To append
different font requests, use X = \c. If no parameters, change to
Roman font.

Set W in italics, appending X in the previous font. If no parameters,
change to italic font. Underlines in nroff.

Set W in bold font and append X in the previous font. If no
parameters, switch to bold font. Underlines in nroff.

Set W in bold font and append X in the previous font. If no
parameters, switch to bold font. .rb differs from .b in that .rb does
not underline in nroff.

Underline Wand append X. This is a true underlining, as opposed
to the .ul request, which changes to underline font (usually italics in
troff). It doesn't work correctly if W is spread or broken (including
hyphenated). In other words, it is safe in no-fill mode only.

Quote W and append X. In nroff this just surrounds W with double
quote marks (") but in troff uses directed quotes.

4E-7

The ME Reference Gulde

.bi wx

.bx WX

Set W in bold italics and append x. Actually, sets W in italic and
overstrikes once. Underlines in nroff. It doesn't work correctly if w
is spread or broken (including hyphenated). In other words, it is
safe in no-fill mode only.

Sets Win a box, with X appended. Underlines in nroff. It doesn't
work correctly if Wis spread or broken (including hyphenated). In
other words, it is safe in no-fill mode only.

Roff Support
.ix +N

.blN

. pa +N

.ro

. ar

. n1

. n2N

. sk

Indent, no break. Equivalent to 'in N.

Leave N contiguous white space, on the next page if not enough
room on this page. Equivalent to a .sp N inside a block.

Equivalent to .bp .

Set page number in Roman numerals. Equivalent to .af o/o i.

Set page number in Arabic. Equivalent to .af o/o 1 .

Number lines in margin from one on each page .

Number lines from N, stop if N = 0 .

Leave the next output page blank, except for headers and footers .
This is used to leave space for a full-page diagram, that is
produced externally and pasted in later. To get a partial-page
paste-in display, say .sv N, where N is the amount of space to
leave; this space is output immediately if there is room, and
otherwise output at the top of the next page. However, be warned:
if N is greater than the amount of available space on an empty
page, no space is ever output.

Preprocessor Support
. TS h Table start. Tables are single-spaced and kept on one page if

possible. If you have a large table that does not fit on one page,
use h = H and follow the header part (to be printed on every page
of the table) with a .TH. See Section 41, Table Formatting Program
(Tb/) .

. TH With • TS H, ends the header portion of the table .

. TE Table end. Note that this table does not float; in fact, it is not even
guaranteed to stay on one page if you use requests such as .sp
intermixed with the text of the table. If you want it to float (or if you
use requests inside the table), surround the entire table (including
the . TS and . TE requests) with the requests .(z and .)z.

4E-8

The ME Reference Gulde

Miscellaneous
. re

.ba +N

.xi +N

.II +N

.hi

.lo

Reset tabs. Set to every 0.5i in troff and every 0.8i in nroff .

Set the base indent to + N [OJ (saved in \n($1). All paragraphs,
sections, and displays come out indented by this amount. Titles
and footnotes are not affected. The .sh request performs a .ba
request if \n(si [OJ is not 0, and sets the base indent to \n(si*\n($0.

Set the line length to N [6.0iJ. This differs from .II because it
affects only the current environment.

Set line length in all environments to N [6.0iJ. This should not be
used after output has begun, and particularly not in two-columned
output. The current line length is stored in \n($1.

Draws a horizontal line the length of the page. This is useful inside
floating keeps to differentiate between the text and the figure.

This macro loads another set of macros (in lusrlliblmellocal.me),

which is intended to be a set of locally defined macros. These
macros should all be of the form . * X where Xis any letter (upper
or lower-case) or digit.

Standard Papers
.tp

.th

. ++mH

UTek TOOLS

Begin title page. Spacing at the top of the page can occur, and
headers and footers are suppressed. Also, the page number is not
incremented for this page.

Set thesis mode. It double-spaces, defines the header to be a
single-page number, and changes the margins to be 1.5 inch on
the left and one inch on the top. .++ and .+c should be used with it.
This macro must be stated before initialization, that is, before the
first call of a paragraphing macro or .sh.

This request defines the section of the paper that we are entering .
The section type is defined by m and can come from the following:

m SECTION TYPE

c
A
p

AB

B

entering chapter portion of paper
entering appendix portion of paper
material following should be
preliminary portion
(abstract, table of contents, etc.)
entering abstract
(numbered independently from 1
in Arabic numerals)
entering bibliographic portion at the end

4E-9

The ME Reference Guide

.+c T

. $c T

.$CK NT

.acA N

4E-10

Also, the variants RC and RA are allowed, which specify
renumbering of pages from one at the beginning of each chapter or
appendix, respectively. The H parameter defines the new header.
If there are any spaces in it, the entire header must be quoted. If
you want the header to have the chapter number in it, use the string
\\\\n(ch. For example, to number appendixes A.I etc., enter.++
RA '"\\\\n(ch.%'. Each section (chapter, appendix, etc.) should
be preceded by the .+c request. It is easier when using troff to put
the front material at the end of the paper, so that the table of
contents can be collected and output; this material can then be
physically moved to the beginning of the paper.

Begin chapter with title T. The chapter number is maintained in
\n(ch. This register is incremented every time .+c is called with a
parameter. The title and chapter number are printed by .$c. The
header is moved to the footer on the first page of each chapter. If T
is omitted, .$c is not called; this is useful for doing your own title

page at the beginning of papers without a title page proper. .$c
calls .$C as a hook so that chapter titles can be inserted into a
Table of Contents automatically. The footnote numbering is reset to
one .

Print chapter number (from \n(ch) and T. This macro can be
redefined to your liking. This macro calls $C, which can be defined
to make index entries, or whatever.

This macro is called by .$c. It is normally undefined, but can be
used to automatically insert index entries, or whatever. K is a
keyword, either Chapter or Appendix (depending on the .++mode);
N is the chapter or appendix number; and Tis the chapter or
appendix title.

This macro (short for .acm) sets up the nroff environment for
photo-ready papers as used by the ACM. This format is 25%
larger, and has no headers or footers. The author's name A is
printed at the bottom of the page (but off the part that is printed in
the conference proceedings), together with the current page number
and the total number of pages N. Additionally, this macro loads the
file /usr/lib/melacm.me, which may iater be augmented with other
macros useful for printing papers for ACM conferences. It should
be noted that this macro does not work correctly in troff, since it
sets the page length wider than the physical width of the
phototypesetter roll.

The ME Reference Guide

Predefined Strings
**

*#

\ *[

\ *]

*<

*>

*(dw

*(mo

\ *(td

\ *(lq

\ *(rq

*-

UTekTOOLS

Footnote number, actually \ *f\n($j\ *]. This macro is incremented
after each call to .)f.

Delayed text number. Actually [\n($d].

Superscript. This string gives upward movement and a change to a
smaller point size if possible, otherwise it gives the left bracket
character [. Extra space is left above the line to allow room for the
superscript.

Unsuperscript. Inverse to \ *[. For example, to produce a
superscript, you might type x\ *[2\ *],which produces x[2].

Subscript. Defaults to <if half-carriage motion not possible. Extra
space is left below the line to allow for the subscript.

Inverse to*<

The day of the week, as a word.

The month, as a word.

Today's date, directly printable. The date is of the form April 7,
1984. Other forms of the date can be used by using \(dy (the day of
the month; for example, 7, *(mo (as noted above) or \n(mo (the
same, but as an ordinal number; for example, April is 4), and \n(yr
(the last two digits of the current year).

Left quote marks. Double quote in nroff.

Right quote.

314 em dash in troff; two hyphens in nroff.

4E-11

The ME Reference Gulde

Special Characters and Marks
There are a number of special characters and diacritical marks (such as accents)
available through -me. To reference these characters, you must call the macro .sc
to define the characters before using them.

.SC Define special characters and diacritical marks, as described in the
remainder of this section. This macro must be stated before
initialization.

The special characters available are listed below.

Name Usage Example
Acute accent \ *' a*' a
Grave accent *' e\ *' e
Um lat \ *: U\ *: (j

Tilde * n* Fi
Caret *. e*- e
Cedilla \ *' C*' <;:

Czech *v e*v ~
Circle *o A*o ®
There exists \ *(,,, EXITSTS
For all \ *(qa FORA LL

4E-12

41
The ME Text- formattin~ ,.
Macros

Introduction
This document describes the text processing facilities available on the UTek
operating system through nroff and the me macro package. It is assumed that you,
the reader, are already familiar with the UTek operating system and a text editor
such as ex. This is intended to be a casual introduction, and is not all material is
covered. In particular, many variations and additional features of the me macro
package are not explained. For a complete discussion of this and other issues, see
Section 4E The ME Reference Guide, and section 48 The Nroff/Troff Reference
Guide.

Nroff, a computer program that runs on the UTek operating system, reads an input
file prepared by the user and outputs a formatted paper suitable for publication. The
input consists of text, or words to be printed, and requests, which give instructions to
the nroff program telling how to format the printed copy.

The first part describes the basics of text processing. The second describes the
basic requests. The third introduces displays. Annotations, such as footnotes, are
handled in the fourth part. The more complex requests that are not discussed in the
second subsection are covered in the fifth. Finally, the sixth subsection discusses
things you need to know if you want to typeset documents. If you are a novice, you
probably won't want to read beyond the fourth subsection until you have tried some
of the basic features.

When you have your text ready, call the nroff formatter by typing as a request to the
UTek shell:

nroff -me -Ttype filenames

where type describes the type of terminal you are outputting to. If the - T flag is
omitted, a lowest common denominator terminal is assumed; this is good for
previewing output on most terminals. A complete description of options to the nroff
command can be found in Section 48 The Nroff /Troff Reference Guide.

The word argument is used in this manual to mean a word or number that appears
on the same line as a request that modifies the meaning of that request. For
example, the request

.Sp

spaces one line, but

.sp 4

spaces four lines. The number 4 is an argument to the .sp request, says to space
tour lines instead of one. Arguments are separated from the request and from each
other by spaces.

UTek TOOLS 4F-1

The ME Text-formatting Macros

Basics of Text Proc
The primary function of nroff is to collect words frorr
those words, justify the right margin by inserting ext
the result. For example, the input:

Now is the time
for all good men
to come to the aid
of their party.
Four score and seven
years ago, •.•

is read, packed onto output lines, and justified to pre

Now is the time for all good men to come to t
party. Four score and seven years ago, ..•

Sometimes you may want to start a new output line 1

is not yet full (for example, at the end of a paragrapt
break, which starts a new output line. Some request
as do blank input lines and input lines beginning witl

Not all input lines are text to be formatted. Some of
describe how to format the text. Requests always he
as the first character of the input line.

The text formatter also does more complex things, s1
pages, skipping over page folds, putting footnotes in

A few hints for preparing text for input to nroff: First
Short input lines are easier to edit, and nroff packs'
anyway. In keeping with this, begin a new line after
phrase, since common corrections are to add or dele
Second, do not put spaces at the end of lines, since
nroff processor. Third, do not hyphenate words at ti
that should have hyphens in them, such as mother-i
hyphenate words for you as needed, but is not smarl
and join a word back together. Also, words such as
broken over a line, since then you could get a space
mother- in-law.

4F-2

The ME Text-formatting Ma

Headers and Fo~
Arbitrary headers and footers
requests of the form

.he title

and

.fo title

define the titles to put at the :
titles are called three-part title
and a right-justified part. To
(whatever it may be) is used ;
backslash (\) and double quo
is replaced by the current pa!
the input:

.he "o/o"

.fo 'Jane Jones"My Boo

results in the page number c1
left corner, and My Book in ti

Double Spacing
Nroff double spaces output t
done in this section. You ca1

Page Layout
A number of requests let you
called the layout of the outpu
white space (blank lines or sp
should be replaced with valu1
characters that should actual

The .bp request starts a r

The request .sp n leaves n Ii
single line) or can be of the f
example, the input:

.Sp 1.5i
My thoughts on the subjE
.Sp

leaves one and a half inches
subject, followed by a single I

4F-4

4f
The ME Text- formattin~ • Macros

Introduction
This document describes the text processing facilities available on the UTek
operating system through nroff and the me macro package. It is assumed that you,
the reader, are already familiar with the UTek operating system and a text editor
such as ex. This is intended to be a casual introduction, and is not all material is
covered. In particular, many variations and additional features of the me macro
package are not explained. For a complete discussion of this and other issues, see
Section 4E The ME Reference Guide, and section 48 The Nroff/Troff Reference
Guide.

Nroff, a computer program that runs on the UTek operating system, reads an input
file prepared by the user and outputs a formatted paper suitable for publication. The
input consists of text, or words to be printed, and requests, which give instructions to
the nroff program telling how to format the printed copy.

The first part describes the basics of text processing. The second describes the
basic requests. The third introduces displays. Annotations, such as footnotes, are
handled in the fourth part. The more complex requests that are not discussed in the
second subsection are covered in the fifth. Finally, the sixth subsection discusses
things you need to know if you want to typeset documents. If you are a novice, you
probably won't want to read beyond the fourth subsection until you have tried some
of the basic features.

When you have your text ready, call the nroff formatter by typing as a request to the
UTek shell:

nroff -me -Ttype filenames

where type describes the type of terminal you are outputting to. If the - T flag is
omitted, a lowest common denominator terminal is assumed; this is good for
previewing output on most terminals. A complete description of options to the nroff
command can be found in Section 48 The Nroff/Troff Reference Guide.

The word argument is used in this manual to mean a word or number that appears
on the same line as a request that modifies the meaning of that request. For
example, the request

.Sp

spaces one line, but

.sp 4

spaces four lines. The number 4 is an argument to the .sp request, says to space
four lines instead of one. Arguments are separated from the request and from each
other by spaces.

UTekTOOLS 4F-1

The ME Text-formatting Macros

Basics of Text Processing
The primary function of nroff is to collect words from input lines, fill output lines with
those words, justify the right margin by inserting extra spaces in the line, and output
the result. For example, the input:

Now is the time
for all good men
to come to the aid
of their party.
Four score and seven
years ago, •..

is read, packed onto output lines, and justified to produce:

Now is the time for all good men to come to the aid of their
party. Four score and seven years ago, ..•

Sometimes you may want to start a new output line even though the line you are on
is not yet full (for example, at the end of a paragraph). To do this, you can cause a
break, which starts a new output line. Some requests cause a break automatically,
as do blank input lines and input lines beginning with a space.

Not all input lines are text to be formatted. Some of the input lines are requests that
describe how to format the text. Requests always have a period or an apostrophe (')
as the first character of the input line.

The text formatter also does more complex things, such as automatically numbering
pages, skipping over page folds, putting footnotes in the correct place, and so forth.

A few hints for preparing text for input to nroff: First, keep the input lines short.
Short input lines are easier to edit, and nroff packs words onto longer lines for you
anyway. In keeping with this, begin a new line after every period, comma, or
phrase, since common corrections are to add or delete sentences or phrases.
Second, do not put spaces at the end of lines, since this can sometimes confuse the
nroff processor. Third, do not hyphenate words at the end of lines (except words
that should have hyphens in them, such as mother-in-law); nroff is smart enough to
hyphenate words for you as needed, but is not smart enough to take hyphens out
and join a word back together. Also, words such as mother-in-law should not be
broken over a line, since then you could get a space where not wanted, such as
mother- in-law.

4F-2

The ME Text-formatting Macros

Basic Requests

Paragraphs
Paragraphs are begun by using the .pp request. For example, the input:

.pp
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago, ...

produces a blank line followed by an indented first line. The result is:

Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago, ..•

Notice that the sentences of the paragraphs must not begin with a space, since
blank lines and lines beginning with spaces cause a break. For example, if you
typed:

.pp
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago, ...

the output would be:

Now is the time for all good men
to come to the aid of their party.

Four score and seven years ago, ...

A new line begins after the word men because the second line began with a space
character.

There are many fancier types of paragraphs, which are described later.

UTekTOOLS 4F-3

The ME Text-formatting Macros

Headers and Footers
Arbitrary headers and footers can be put at the top and bottom of every page. Two
requests of the form

.he title

and

.fo title

define the titles to put at the head and the foot of every page, respectively. The
titles are called three-part titles; that is, there is a left-justified part, a centered part,
and a right-justified part. To separate these three parts the first character of title
(whatever it may be) is used as a delimiter. Any character may be used, but
backslash(\) and double quotation marks(") should be avoided. The percent sign
is replaced by the current page number whenever found in the title. For example,
the input:

.he "o/o"

.fo 'Jane Jones"My Book'

results in the page number centered at the top of each page, Jane Jones in the lower
left corner, and My Book in the lower right corner.

Double Spacing
Nroff double spaces output text automatically if you use the request .Is 2 , as is
done in this section. You can revert to single-spaced mode by typing .Is 1.

Page Layout
A number of requests let you change the way the printed copy looks, sometimes
called the layout of the output page. Most of these requests adjust the placing of
white space (blank lines or spaces). In these explanations, characters in italics
should be replaced with values you wish to use; bold characters represent
characters that should actually be typed.

The .bp request starts a new page.

The request .sp n leaves n lines of blank space. N can be omitted (meaning skip a
single line) or can be of the form ni (for n inches) or nc (for n centimeters). For
example, the input:

.sp 1.51
My thoughts on the subject
.Sp

leaves one and a half inches of space, followed by the line My thoughts on the
subject, followed by a single blank line.

4F-4

The ME Text-formatting Macros

The .in + n request changes the amount of white space on the left of the page (the
indent). The argument n can be of the form +n (meaning leave n spaces more than
you are already leaving), -n (meaning leave less than you do now), or just n
(meaning leave exactly n spaces). n can be of the form ni or nc also. For example,
the input:

initial text
.in 5
some text
.in +1i
more text
.in -2c
final text

produces some text indented exactly five spaces from the left margin, more text
indented five spaces plus one inch from the left margin (fifteen spaces on a standard
lineprinter), and final text indented five spaces plus one inch minus two centimeters
from the margin. That is, the output is:

initial text
some text

more text
final text

The .ti + n (temporary indent) request is used like .in + n when the indent should
apply to one line only, after which it should revert to the previous indent. For
example, the input:

.in 1i

.ti 0
Ware, James R. The Best of Confucius,
Halcyon House, 1950.
An excellent book containing translations of
most of Confucius' most delightful sayings.
A definite must for anyone interested in the early foundations
of Chinese philosophy.

produces:

Ware, James R. The Best of Confucius,
Halcyon House, 1950.

An excellent book containing translations of
most of Confucius' most delightful sayings.
A definite must for anyone interested in the early
foundations of Chinese philosophy.

UTekTOOLS 4F-·5

The ME Text-formatting Macros

Text lines can be centered by using the .ce request. The line after the .ce is
centered (horizontally) on the page. To center more than one line, use .ce n (where
n is the number of lines to center), followed by the n lines. If you want to center
many lines but don't want to count them, type:

.ce 1000
lines you want to center
.ce O

The .ce 0 request tells nroff to center zero more lines, in other words, stop
centering.

All of these requests cause a break; that is, they always start a new line. If you
want to start a new line without performing any other action, use .br.

Underlining
Text can be underlined using the .ul request. The .ul request causes the next input
line to be underlined when output. You can underline multiple lines by stating a
count of input lines to underline, followed by those lines (as with the .ce request).
For example, the input:

.ul 2
Notice that these two input lines
are underlined.

underlines those eight words in nroff. (In troff they are set in italics.)

Displays
Displays are sections of text to be set off from the body of the paper. Major
quotations, tables, and figures are types of displays, as are all the examples used in
this document. All displays except centered blocks are output single spaced.

4F-6

The ME Text-formatting Macros

Major Quotes
Major quotations are quotations that are several lines long, and hence are set in
from the rest of the text without quotation marks around them. These can be
generated using the commands .(q and .)q to surround the quotation mark. For
example, the input:

As Weizenbaum points out:
.(q
It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming, ...
.)q

generates as output:

As Weizenbaum points out:

It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming, ..•

Lists
A list is an indented, single-spaced, unfilled display. Lists should be used when the
material to be printed should not be filled and justified like normal text, such as
columns of figures or the examples used in this paper. Lists are surrounded by the
requests .(I and .)I. For example, type:

Alternatives to avoid deadlock are:
.(1
Lock in a specified order
Detect deadlock and back out one process
Lock all r~sources needed before proceeding
.)1

produces:

Alternatives to avoid deadlock are:

Keeps

Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

A keep is a display of lines that are kept on a single page if possible, such as in a
diagram. Keeps differ from lists in that lists may be broken over a page boundary
whereas keeps are not.

UTekTOOLS 4F-7

The ME Text-formatting Macros

Blocks are the basic kind of keep. They begin with the request .(b and end with the
request .)b. If there is no room on the current page for everything in the block, a
new page is begun. This sometimes results in blank space at the bottom of the
page. When blank space is not appropriate, you can use the alternative, floating
keeps.

Floating keeps move relative to the text. They are good for things referred to by
name, such as "See Figure 3". A floating keep appears at the bottom of the current
page if it fits; otherwise, it appears at the top of the next page. Floating keeps begin
with the line .(z and end with the line .)z. For an example of a floating keep, see
Figure 4F-1. The .hi request is used to draw a horizontal line so that the figure
stands out from the text.

.(z

.hl
Text of keep to be floated .
. Sp
.ce
Figure 1. Example of a Floating Keep •
. hl
.)z

Figure 4F-1. Example of Floating Keep.

Fancier Displays
Keeps and lists are normally collected in no-fill mode, so that they are good for
tables and such. If you want a display in fill mode (for text), type .(I F (throughout
this section, comments applied to .(I also apply to .(band .(z). This kind of display
is indented from both margins. For example, the input:

.(1 F
And now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you too can have one of these modern
data processing devices.
You too can produce beautifully formatted papers
without even batting an eye!
.)1

4F-8

The ME Text-formatting Macros

is output as:

And now boys and girls, a newer, bigger, better toy than ever
before! Be the first on your block to have your own computer!
Yes kids, you too can have one of these modern data processing
devices. You too can produce beautifully formatted papers
without even batting an eye!

Lists and blocks are also indented (floating keeps are normally left-justified). To get
a left-justified list, type .(I L. To get a list centered line-for-line, type .(I C. For
example, to get a filled, left-justified list, enter:

.(IL F
text of block
.)I

The input:

.(I
first line of unfilled display
more lines
.)I

produces the indented text:

first line of unfilled display
more lines

Typing the character L after the .(I request produces the left-justified result:

first line of unfilled display
more lines

Using C instead of L produces the line-at-a-time centered output:

first line of unfilled display
more lines

Sometimes it may be that you want to center several lines as a group, rather than
centering them one line at a time. To do this, use centered blocks, which are
surrounded by the requests .(c and .)c. All the lines are centered as a unit, so that
the longest line is centered and the rest are lined up around that line. Notice that
lines do not move relative to each other using centered blocks, whereas they do
using the C argument to keeps.

UTekTOOLS 4F-9

The ME Text-formatting Macros

Centered blocks are not keeps and may be used in conjunction with keeps. For
example, to center a group of lines as a unit and keep them on one page, use:

.(b L

.(c
first line of unfilled display
more lines
.)c
.)b

to produce:

first line of unfilled display
more lines

If the block requests .(b and .)b had been omitted, the result would have been the
same, but with no guarantee that the lines of the centered block would have all been
on one page. Note the use of the L argument to .(b; this causes the centered block
to center within the entire line rather than within the line minus the indent. Also, the
center requests must be nested inside the keep requests.

Annotations
There are a number of requests to save text for later printing. Footnotes are printed
at the bottom of the current page. Delayed text is intended to be a variant form of
footnote; the text is printed only when explicitly called for, such as at the end of
each chapter. Indexes are a type of delayed text having a tag (usually the page
number) attached to each entry after a row of dots. Indexes are also saved until
called for explicitly.

Footnotes
Footnotes begin with the request .(f and end with the request .)f. The current
footnote number is maintained automatically, and can be used by typing \ * *, to
produce a footnote number1

. The number is automatically incremented after every
footnote. For example, the input:

.(q
A man who is not upright
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances.**
.(f

**James R. Ware,
.ul

1. Like this.

4F-10

2.

The ME Text-formatting Macros

The Best of Confucius,
Halcyon House, 1950.
Page 77 .
.)f
.)q

generates the result:

A man who is not upright
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances. 2

It is important that the footnote appears inside the quotation, so that you can be sure
that the footnote will appear on the same page as the quote.

Delayed Text
Delayed text is very similar to a footnote except that it is printed when called for
explicitly. This allows a list of references to appear (for example) at the end of each
chapter, as is the convention in some disciplines. Use*# for delayed text instead
of** as with footnotes.

If you are using delayed text as your standard reference mechanism, you can still
use footnotes. But you may want to reference them with special characters* rather
than numbers.

Indexes
An index (actually more like a table of contents, since the entries are not sorted
alphabetically) resembles delayed text, in that it is saved until called for. However,
each entry has the page number (or some other tag) appended to the last line of the
index entry after an ellipsis.

Index entries begin with the request .(x and end with .)x. The .)x request may have
a argument, which is the value to print as the page number. It defaults to the current
page number. If the page number given is an underscore(_) no page number or
line of dots is printed at all. To get the line of dots without a page number, type .)x
"",which specifies an explicitly null page number.

James A. Ware. The Bes! of Confucius, Halcyon House, 1950. Page 77.

• Such as an asterisk.

UTekTOOLS 4F-11

The ME Text-formatting Macros

generates:

The .xp request prints the index.

For example, the input:

.(x
Sealing wax
.)x
.(x
Cabbages and kings
.)x -
.(x
Why the sea is boiling hot
.)x 2.5a
.(x
Whether pigs have wings
•)x '"'
.(x
This is a terribly long index entry, such as might be used
for a list of illustrations, tables, or figures; I expect it to
take at least two lines •
.)x
.xp

Sealing wax ••••••.•..•.•••••.••...•••.•..•.• 13
Cabbages and kings
Why the sea is boiling hot .••.•...••.••••.••••. 2.5a
Whether pigs have wings •••.••.•..••.....•..••.

This is a terribly long index entry,
such as might be used for a list of
illustrations, tables, or figures;
I expect it to take at least two lines •........ 1.3

The .(x request may have a single character argument, specifying the name of the
index; the normal index is x. Thus, several indexes may be maintained
simultaneously (such as a list of tables, table of contents, etc.).

Notice that the index must be printed at the end of the paper, rather than at the
beginning where it will probably appear (as a table of contents). The pages may
have to be physically rearranged after printing.

Fancier Features
A large number of fancier requests exist, notably requests to provide other sorts of
paragraphs, numbered sections of the form n.n.n (such as used in this document),
and multicolumn output.

4F-12

The ME Text-formatting Macros

More Paragraphs
Paragraphs generally start with a blank line and with the first line indented. It is
possible to get left-justified, block-style paragraphs by using .Ip instead of .pp, as
demonstrated by the next paragraph.

Sometimes you want to use paragraphs that have the body indented, and the first
line exdented (opposite of indented) with a label. This can be done with the .ip
request. A word specified on the same line as .ip is printed in the margin, and the
body is lined up at a prespecified position (normally five spaces). For example, the
input:

.ip one
This is the first paragraph.
Notice how the first line
of the resulting paragraph lines up
with the other lines in the paragraph .
. ip two
And here we are at the second paragraph already.
You may notice that the argument to .ip
appears
in the margin .
. lp
We can continue text .••

produces as output:

one This is the first paragraph.
Notice how the first line of the resulting
paragraph lines up with the other
lines in the paragraph.

two And here we are e.t the second paragraph already.
You may notice that the argument to
.ip appears in the margin.

We can continue text without starting a new indented
paragraph by using the .Ip request.

UTekTOOLS 4F-13

The ME Text-formatting Macros

If you have spaces in the label of a .ip request, you must use an unpaddable space
instead of a regular space. This is typed as a backslash character\ followed by a
space. For example, to print the label Part I, enter:

.ip "Part\ 1"

If a label of an indented paragraph (that is, the argument to .ip) is longer than the
space allocated for the label, .ip begins a new line after the label. For example, the
input:

.ip longlabel
This paragraph had a long label.
The first character of text on the first line
will not line up with the text on second
and subsequent lines, although they will line up
with each other.

produces:

long label
This paragraph had a long label.
The first character of text on the first line
will not line up with the text on second
and subsequent lines, although they will line up
with each other.

It is possible to change the size of the label by using a second argument, which is
the size of the label. For example, the above example could be done correctly by
saying:

.ip long/abet 10

which makes the paragraph indent 1 O spaces for this paragraph only. If you have
many paragraphs to indent all the same amount, use the number register ii. For
example, to leave one inch of space for the label, type:

.nr ii 1i

somewhere before the first call to .ip.

If .ip is used with no argument at all, no hanging tag will be printed. For example,
the input:

. ip [a]
This is the first paragraph of the example.
Ve have seen this sort of example before .
. ip
This paragraph is lined up with the previous paragraph,
but it has no tag in the margin.

4F-14

The ME Text-formatting Macros

produces as output:

[a] This is the first paragraph of the example.
Ve have seen this sort of example before.

This paragraph is lined up with the previous paragraph,
but it has no tag in the margin.

A special case of .ip is .np, which automatically numbers paragraphs sequentially
from 1. The numbering is reset at the next .pp, .Ip, or .sh (to be described in the
next section) request. For example, the input:

.np
This is the first point .
• np
This is the second point.
Points are just regular paragraphs
that are given sequence numbers automatically
by the .np request .
• pp
This paragraph will reset numbering by .np •
. np
For example,
we have reverted to numbering from one now.

generates:

(1) This is the first point.

(2) This is the second point. Points are
just regular paragraphs that are given
sequence numbers automatically by the .np
request.

This paragraph will reset numbering by .np.

(1) For example, we have reverted to numbering
from one now.

Section Headings
Section numbers (such as the ones used in this document) can be automatically
generated using the .sh request. You must tell .sh the depth of the section number
and a section title. The depth specifies how many numbers are to appear
(separated by decimal points) in the section number. For example, the section
number 4.2.5 has a depth of three.

UTekTOOLS 4F-15

The ME Text-formatting Macros

Section numbers are incremented in a fairly intuitive fashion. If you add a number
(increase the depth), the new number starts out at one. If you subtract section
numbers (or keep the same number) the final number is incremented. For example,
the input:

.sh 1 "The Preprocessor"

.sh 2 "Basic Concepts"

.sh 2 "Control Inputs"

.sh 3

.sh 3

.sh 1 "Code Generation"

.sh 3

produces as output the result:

1. The Preprocessor
1. 1. Basic Concepts
1 .2. Control Inputs
1.2.1.
1.2.2.
2. Code Generation
2.1.1.

You can specify the section number to begin by placing the section number after the
section title, using spaces instead of dots. For example, the request:

.sh 3 "Another section" 7 3 4

begins the section numbered 7.3.4; all subsequent .sh requests will number relative
to this number.

There are more complex features that cause each section to be indented
proportionally to the depth of the section. For example, if you enter:

.nr sin

each section is indented by an amount n. n must have a scaling factor attached,
that is, it must be of the form nx, where x is a character telling what units n is in.
Common values for x are i for inches, c for centimeters, and n for ens (the width of a
single character). For example, to indent each section one-half inch, type:

.nr si O.Si

After this, sections are indented by one-half inch per level of depth in the section
number. For example, this document was produced using the request

.nr si 3n

at the beginning of the input file, giving three spaces of indent per section depth.

4F-16

The ME Text-formatting Macros

Section headers without automatically generated numbers can be done using:

.uh "Title"

which does a section heading, but puts no number on the section.

Parts of the Basic Paper
There are some requests which assist in setting up papers. The .tp request
initializes for a title page. There are no headers or footers on a title page, and
unlike other pages you can space down and leave blank space at the top. For
example, a typical title page might appear as:

.tp

.Sp 2i

.(1 c
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.Sp
by

.Sp
Frank N. Furter
.)1
.bp

The request .th sets up the environment of the nroff processor. It defines the
correct headers and footers (a page number in the upper-right corner only), sets the
margins correctly, and double spaces.

The .+c T request can be used to start chapters. Each chapter is automatically
numbered from one, and a heading is printed at the top of each chapter with the
chapter number and the chapter name T. For example, to begin a chapter called
Conclusions, use the request:

.+c 11CONCLUSIONS 11

which produces, on a new page, the lines

CHAPTER 5
CONCLUSIONS

with appropriate spacing. Also, the header is moved to the foot of the page on the
first page of a chapter.

UTekTOOLS 4F-17

The ME Text-formatting Macros

If the title parameter T is omitted from the .+c request, the result is a chapter with
no heading. This can also be used at the beginning of a paper.

Although papers traditionally have the abstract, table of contents, and so forth at the
front of the paper, it is more convenient to format and print them last when using
nroff. This is so that index entries can be collected and then printed for the table of
contents (or whatever). At the end of the paper, issue the .++ P request, which
begins the preliminary part of the paper. After issuing this request, the .+c request
begins a preliminary section of the paper. Most notably, this prints the page number
restarted from 1 in lower-case Roman numerals. .+c may be used repeatedly to
begin different parts of the front material, for example, the abstract, the table of
contents, acknowledgments, list of illustrations, etc. The request .++ B may also be
used to begin the bibliographic section at the end of the paper. For example, the
paper might appear as outlined in Figure 4F-2. (In this figure, comments begin with
the sequence \" .)

4F-18

UTekTOOLS

The ME Text-formatting Macros

.th \" set for thesis mode

.fo DRAFT \" define footer for each page

.tp \" begin title page

.(1 C \"center a large block
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
.Sp
Frank Furter
.)1 \" end centered part
.+c INTRODUCTION \" begin chapter named "INTRODUCTION"
.(x t \"make an entry into index 't'
Introduction
.) x \ 11 end of index entry
text of chapter one
.+c "NEXT CHAPTER" \" begin another chapter
.(x t \"enter into index 't' again
Next Chapter
.)x
text of chapter two
.+c CONCLUSIONS
.(x t
Conclusions
.)x
text of chapter three
.++ B \" begin bibliographic information
.+c BIBLIOGRAPHY \" begin another chapter
.(x t
Bibliography
.)x
text of bibliography
.++ P \ 11 begin preliminary material
.+c "TABLE OF CONTENTS"
.xp t \" print index t collected above
.+c PREFACE \ 11 begin another preliminary section
text of preface

Figure 4F-2. Outline of a Sample Paper.

4F-19

The ME Text-formatting Macros

Tables
A special UTek program exists to format special types of material. Tbl arranges to
print good-looking tables in a variety of formats. This document only describes the
embellishments to the standard features; consult Section 4G, Tb/ - A Table
Formatting Program for a full description of its use.

The tbl program produces tables. Tables begin with the .TS request and end with
the .TE request. Tables are normally kept on a single page. If you have a table that
is too big to fit on a single page, begin the table with the request .TS Hand put the
request .TH after the part of the table that you want duplicated at the top of every
page the table is printed on. For example, a table definition for a long table might
look like:

.TS H
c s s
n n n.
THE TABLE TITLE
.TH
text of the table
.TE

Two-Column Output
You can get two-column output automatically by using the request .2c. This causes
everything after it to be output in two-column form. The request .be starts a new
column; it differs from .bp in that .bp may leave a totally blank column when it starts
a new page. To revert to single column output, use .1c.

Defining Macros
A macro is a collection of requests and text that may be used by stating a simple
request. Macros begin with the line .de xx (where xx is the name of the macro to be
defined) and end with the line consisting of two dots. After defining the macro,
stating the line .xx is the same as stating all the other lines. For example, to define
a macro that spaces three lines and then centers the next input line, enter:

4F-20

.de SS

.sp 3

.ce

and use it by typing:

.SS
Title Line
(beginning of text)

The ME Text-formatting Macros

Macro names can be one or two characters. In order to avoid conflicts with names
in me, always use upper-case letters as names. The only names to avoid are TS,
TH, TE, EQ, and EN.

Annotations Inside Keeps
Sometimes you may want to put a footnote or index entry inside a keep. For
example, if you want to maintain a list of figures you will want to do something like:

.(z

.(c
text of figure
.)c
.ce
Figure 5 .
. (xf
Figure 5
.)x
.)z

which you hope will give you a figure with a label and an entry in the index f
(presumably a list of figures index). Unfortunately, the index entry is read and
interpreted when the keep is read, not when it is printed, so the page number in the
index is likely to be wrong. The solution is to use the magic string\! at the
beginning of all the lines dealing with the index. In other words, you should use:

UTekTOOLS 4F-21

The ME Text-formatting Macros

.(z

.(c
Text of figure
.)c
.ce
Figure 5.
\!.(xf
\!Figure 5
\!.)x
.)z

which defers the processing of the index until the figure is output. This guarantees
that the page number in the index :s correct. The same comments apply to blocks
(with .(b and .)b) as well.

Troff and the Phototypesetter
With a little care, you can prepare documents that print nicely on either a regular
terminal or when phototypesetting using the troff formatting program.

Fonts
A font is a style of type. There are three fonts that are available simultaneously,
Times Roman, Times Italic, and Times Bold, plus the special math font. The normal
font is Times Roman. Text which would be underlined in nroff with the .ul request
is set in italics in troff.

There are ways of switching between fonts. The requests .r, .i, and .b switch to
Roman, italic, and bold fonts respectively. You can set a single word in some font
by typing (for example):

.i word

which will set word in italics but does not affect the surrounding text. In nroff, italic
and bold text are underlined.

Notice that if you are setting more than one word in a font, you must surround that
word with quotation marks (") so that it appears to the nroff processor as a single
word. The quotation marks do not appear in the formatted text. If you want a
quotation mark to appear, you should quote the entire string (even if a single word),
and use two quotation marks where you want one to appear. For example, if you
want to produce the text:

4F-22

The ME Text-formatting Macros

"Master Control"

in italics, you must type:

.i """Master Control\ :1111
"

The \: produces a very narrow space so that the I does not overlap the quote sign
in troff, like this:

"Master Control"

There are also several pseudo! on ts available:

.u Underlines the text that follows it on an input line

.bi Creates a word (or words) that is both boldface and italic

.bx Places the words that follow it on the input line in a box

In nroff these all just underline the text. Notice that pseudofont requests set only
the single parameter in the pseudofont; ordinary font requests begin setting all text
in the special font if you do not provide a parameter. No more than one word should
appear with these three font requests in the middle of lines. This is because of the
way troff justifies text. For example, if you were to issue the requests:

.bi "some bold italics"
and
.bx "words in a box"

in the middle of a line, troff would produce words in a special bold and italic font,
and words encased in a box. This would not look good in the middle of text.

The second parameter of all font requests is set in the original font. For example,
the font request:

.b bold face

generates bold in bold font, but sets face in the font of the surrounding text, resulting
in:

boldface

To set the two words bold and face both in boldface, type:

.b 11 bold face"

You can mix fonts in a word by using the special sequence \Cat the end of a line to
indicate continue text processing. This allows input lines to be joined together without
a space in between them. For example, the input:

.b bold \C

.i italics

generates bolditalics. But if we had typed:

UTekTOOLS 4F-23

The ME Text-formatting Macros

.b bold

.i italics

the result would have been

bold italics

as two separate words.

Point Sizes
The phototypesetter supports different sizes of type, measured in points. The
default point size is 10 points for most text, 8 points for footnotes. To change the
point size, type:

.sz +n

where n is the size wanted in points. The vertical spacing (distance between the
bottom of most letters (the baseline) between adjacent lines) is set to be proportional
to the tvoe size.

NOTE
Changing point sizes on the phototypesetter is a slow

mechanical operation. Size changes should be considered
carefully.

Quotes
It is conventional when using the typesetter to use pairs of grave and acute accents
to generate double quotations, rather than the double quotation character ("). It
looks better to use grave and acute accents; for example, compare "quote" to
"quote".

In order to make quotations compatible between the typesetter and terminals, you
may use the sequences \ * (lq and \ * (rq to stand for the left and right quotation
mark, respectively. These both appear as " on most terminals, but are typeset as "
and " respectively. For example, use:

*(lqSome things aren't true
even if they did happen.*(rq

to generate the result:

"Some things aren't true even if they did happen."

As a shorthand, the special font request:

.q "quoted text"

generates "quoted text". Notice that you must surround the material to be quoted
with double quotation marks if it is more than one word.

4F-24

4G
Tb/ - A Table
Formatting Program

Introduction
The tbl program is a document formatting preprocessor for the nroff and troff
formatters that makes fairly complex tables easy to specify and enter. Tables
consist of columns that can be independently centered, right-aligned, left-aligned,
or aligned by decimal points. It can also:

• place headings over single columns or groups of columns

• contain text

• draw horizontal or vertical lines in the table

• enclose a table or its subparts in a box

The tbl program translates your input into a list of nroff/troff formatter requests that
produce the table. The tbl program isolates a portion of the job that it can
successfully handle (text between the . TS and . TE macros), and leaves the
remainder for other programs.

Usage
On the UTek system, the tbl program can be run on a sample table with the
command:

tbl filename l troff

When you have several input files containing tables and mm macros requests, the
normal command is:

tbl Ji/el file2 : troff -mm

The usual options can be used on the troff formatter. Using the nroff formatter is
similar to that of troff. Instead of a filename you can enter - and the standard
input is read.

If you use a line printer without adequate driving tables or post-filters, there is a
special -TX option to tbl. This option produces output that does not have fractional
line motions.

The tbl program accepts up to 35 columns; the actual number that can be
processed may be smaller depending on the availability of troff formatter number
registers. Names of number registers used by tbl must be avoided within tables.

UTek TOOLS 4G-1

Tbl - A Table Formatting Program

These include two-digit numbers from 31 to 99 and strings of the form 4x, 5x, #x,
x+, x /, -x, and x-, where xis any lowercase letter. The names##,#-, and# are
also used in certain circumstances. To conserve register names, the n and a key
letters (discussed later) share a register. Therefore, you cannot use them in the
same column.

As an aid in writing layout macros, tbl defines a number register TW that defines the
table width. The TW number register is defined by the time that the .TE macro is
invoked and may be used in the expansion of that macro. More importantly, to
assist in laying out multipage boxed tables, the macro T# is defined to produce the
bottom lines and side lines of a boxed table. By using this macro in the page footer,
a multipage table can be boxed. In particular, the mm macros can be used to print
a multipage boxed table with a repeated heading by giving the argument H to the
.TS macro. If the table start macro is written:

.TS H

then, a line of the form:

.TH

must be given in the table after any table heading. If there are no table headings,
place it at the start of the table. Material up to the . TH is placed at the top of each
page of the table. The remaining lines in the table are placed on several pages as
required. This is not a feature of tbl, but of the mm macros.

Input Commands
Input to tbl is text for a document, including the data you want to put in tables. The
table portion begins with the command .TS and ends with the command .TE. The
tbl program processes the tables, generates table formatting requests, and leaves
the text outside . TS and . TE unchanged. The text and the tbl commands within the
table are expanded into troff formatter layout codes.

4G-2

Tbl - A Table Fonnattlng Pl'Oflram

The general format of the input is:

text
.TS
table
.TE
text

The format of each table is:

.TS
options;
format.
data
.TE

Each table is independent and contains:

• Global options

• A format section describing columns and rows of the table

• Data to fill in the table

These three items are discussed in the following sections. The format and data
sections are always required, and the global options are optional.

Global Options
The single line of options can affect the whole table. If present, the options line
must immediately follow the .TS line. It contains a list of option names separated by
spaces, tabs, or commas and ends in a semicolon. Available options include:

• center - center table (default is left-aligned)

• expand - make table as wide as current line length

• box - enclose table in a box (see figure 2-1)

• allbox - enclose each item of table in a box (see figure 2-2)

• doublebox - enclose table in two boxes

• tab (x) - separate data items by using x instead of <TAB>

• linesize (n) - set lines or rules in n-point type

The tbl program tries to keep boxed tables on one page by issuing the appropriate
.ne (need) requests. These requests are calculated from the number of lines in the
tables. If there are spacing requests embedded in the input, the .ne requests may
be inaccurate. Normal troff formatter procedures, such as keep-release macros,
are used in that case. If a multipage boxed table is required, macros designed for
this purpose (.TS Hand .TH) should be used.

UTek TOOLS 4G-3

Tbl - A Table Formatting Program

INPUT:

OUTPUT:

4G-4.

.TS
box;
CCC

111.

Language(j)Authors(Vtuns on
.sp
Fortr~any(T)Almost'anything
~TL(T)i.1/45,H6000,J70
BLiss:J)carnegie-Mellon{!)PDP-10,11
IDs:J)loneywell~6000
Pascal~tanford(T)J70
.TE

Language Authors Runs on

Fortran Many Almost anything
c BTL 11/45,H6000,370
BLISS Carnegie-Mellon PDP-10, 11
IDS Honeywell H6000
Pascal Stanford 370

Figure 4G-1. Table Using box Option.

INPUT:

.TS
all box;
css
CCC

nnn.
AT&T Common Stock
Year(LlPric~ividend
1971~1-5~2.60
2(!)41-54CT)2.70
J(T)46-55(I)2.87
4@40-53(!)3.24
5(f)45-5zj)3.4o
6(1)51-5<if).95*f
.TE
*(first quarter only)

OUTPUT:

AT&T Common Stock
Year
1971

2
3
4
5
6

Price
41-54
41-54
46-55
40-53
45-52
51-59

Dividend
$2.60

2.70
2.87
3.24
3.40

.95*f
*(first quarter only)

Tb/ - A Table Formatting Program

Figure 4G-2. Table Using allbox Option.

Format Section
The format section of the table specifies the layout of the columns. Each line in the
format section corresponds to one line of table data (except the last format line,
which corresponds to all following data lines up to any . T& command line). Each
format line contains a key letter for each column of the table. Key letters can be
separated by spaces or tabs for readability purposes. Key letters for column entries
include:

UTek TOOLS 4G-5

Tbl - A Table Formatting Program

Lor I Indicates a left-aligned column entry.

R or r Indicates a right-aligned column entry.

C or c Indicates a centered column entry.

Norn Indicates a numerical column entry. Numerical entries are aligned so
that the units digits of numbers line up.

A or a Indicates an alphabetic subcolumn. All corresponding entries are aligned
on the left and positioned so that the widest entry is centered within the
column.

Sor s Indicates a spanned heading. The entry from the previous column
continues across this column (not allowed for the first column of the
table).

A Indicates a vertically spanned heading. The entry from the previous row
continues down through this row (not allowed for the first row of the table).

When numerical column alignment (n) is specified, a location for the decimal point is
sought. The rightmost dot (.) adjacent to a digit is used as a decimal point. If there
is no dot adjoining a digit, the rightmost digit is used as a unit digit. If no alignment
is necessary, the item is centered in the column. However, you can use the special
nonprinting character string \& to override decimal points and digits or to align
alphabetic data. This aligns the decimal points and the \& disappears from the final
output.

In Example 4G-1, items shown in the INPUT column are aligned numerically as
shown in the OUTPUT column:

INPUT OUTPUT
.TS
center; 13
n. 4.2
13 26.4.12
4.2 abcdefg
26.4.12 abcd\&efg
abcdefg abcdefg\&
abcd\&efg 43\&3.22
abcdefg\& 749.12
43\&3.22
749.12
.TE

Example 4G-1. Numerically Aligned Table.

4G-6

Tbl - A Table Formatting Program

If you use numerical data in the same column with L (the capital Lis used instead of
lowercase for readability) or r table type entries, the widest number is centered
relative to the wider L or r items. Alignment within numerical items is preserved.
This is similar to the behavior of a type data. Alphabetic subcolumns (requested by
the a) are always slightly indented relative to L items. If necessary, the column
width is increased to force this. This is not true for n type entries.

NOTE
The n and a items should not be used in the same column.

The end of the format section is indicated by a period (.). The layout of key letters
in the format section resembles the layout of the actual data in the table. Thus, a
simple three-column format might appear as:

css

lnn.

The first line of the table contains a heading centered across all three columns.
Each remaining line contains a left-aligned item in the first column, followed by two
columns of numerical data. Example 4G-2 illustrates a table in this format:

OVERALL FORMAT
Item-a 34.22 9.1
ltem-b 12.65 .02
ltem-c 23 5.8
Total 69.87 14.92

Example 4G-2. A Table Using Simple Three-Column Format.

Instead of listing the format of successive lines of a table on consecutive lines of the
format section, successive line formats may be give on the same line, separated by
commas. The format for the above example could be written:

css,lnn.

The order of the features is not important. You do not need to separate them with
spaces, except as indicated to avoid ambiguities involving point size and font
changes. So a numerical column entry in italic font and 12-point type with a
minimum of 2.5 inches and separated by 6 ens from the next column could be
specified as:

np12w(2.5i)fl 6

UTek TOOLS 4G-7

Tb/ - A Table Formatting Program

Additional features of the key letter system are:

• Horizontal lines - An underscore (_) indicates a horizontal line in place of the
column entry; an equal sign (=) indicates a double horizontal line. If an
adjacent column contains a horizontal line or if there are vertical lines adjoining
this column, the horizontal line is extended to meet nearby lines. If any data
entry is provided for this column, it is ignored and a warning message is
printed. See Figure 4G-3.

• Vertical lines - A vertical bar (:) placed between column key letters causes
a vertical line between the corresponding columns of the table. A vertical bar
to the left of the first key letter or to the right of the last one produces a line at
the edge of the table. If two vertical bars appear between key letters, a double
vertical line is drawn. See Figure 4G-4.

INPUT:

OUTPUT:

4G-8

.TS
box;
LLL
LL_

LL:LB
LL_

LLL.
january(!)rebruary<I)narch
april(Dnay
june<'.I)ju1y<1)Months
august(I)september
october(!)november(J)a.ecember
.TE

january
april
june
august
october

february
may
july
september
november

march

Months

december

Figure 4G-3. Table Using Horizontal Lines in Place of Key Letters.

INPUT:

OUTPUT:

UTek TOOLS

Tb/ - A Table Formatting Program

.TS
box;
css
c :c :c:
lllln.
Major New York Bridges

Bridge(T)Designet{i)Length

Brooklyn(I)J".A. Roebling(!)1595
Manhattan(l)G. Lindenthal(1)1470
Williamsburg(I)L.L. Buck.(ti1600

Queensborough(f)Palmer{I)ll82
©Iornbostel

CTXV13ao
Triborough(!):l.H. Ammann(tl_
CTXVJBJ

Bronx Whitestone(TX>.H. Ammann(1)2JOO
Throgs Nec~.H. Ammann(1)1800
.TE

Major New York Bridges

Bridge

Brooklyn
Manhattan
Williamsburg

Queensborough

Triborough

Bronx Whitestone
Throgs Neck

Designer

J .A. Roebling
G. Lindenthal
LL Buck

Palmer
Hornbostel

O.H. Ammann

O.H. Ammann
O.H. Ammann

Length

1595
1470
1600
1182

1380

383
2300
1800

Figure 4G-4. Table Using vertical bar Key Letter Feature.

4G-9

Tbl - A Table Formatting Program

• Space between columns - A number can follow the key letter, indicating the
amount of separation between this column and the next column. The number
specifies the separation in ens. One en is about the width of the letter n. More
precisely, an en is the number of points (1 point = 1/72 inch) equal to half the
current type size. If the expand option is used, these numbers are multiplied
by a constant such that the table is as wide as the current line length. The
default column separation number is 3. If the separation is changed, the
largest space requested becomes the default.

• Vertical spanning - Items spanned over several rows of the table are
centered in their vertical range. If a key letter is followed by t or T, any
corresponding vertically spanned item begins at the top line of its range.

• Font changes - A key letter, followed by the letter f or F, then a string
containing the font name or number, indicates that the corresponding column
should be in a different font from the default. All font names are one or two
letters. A one-letter font name is separated from whatever follows by a space
or tab. The single letters B, b, I, and i are shorter synonyms for fB and fl.

Font-change requests given with the table entries overrides these
specifications.

• Point size changes - A key letter followed by p or P and a number indicates
the point size of the corresponding table entries. If the number is a signed
digit, it is taken as an increment or decrement from the current point size. If
both a point size and a column separation value are given, one or more blanks
must separate them.

• Vertical spacing changes - A key letter followed by v or Vanda number
indicates the vertical line spacing used within a multi-line table entry. The
number may be a signed digit, in which case it is taken as an increment or
decrement from the current vertical spacing. A column separation value must
be separated by blanks or some other specification from a vertical spacing
request. This request has no effect unless the corresponding table entry is a
text block.

• Column width indication - A key letter followed by w or W and a width value
in parentheses indicates minimum column width. If the largest element in the
column is not as wide as the width value given after the w, the largest element
is assumed to be that wide. If the largest element in the column is wider than
the specified value, is width is used. The width is also used as a default line
length for included text blocks. You can use the troff units c (centimeters) and
i (inches) to scale the width value. The default value is ens if none are used. If
the width specification is a single integer, the parentheses can be omitted. If
another width value is given in a column, the last one controls the width.

• Equal-width columns - A key letter followed by e or E indicates equal-width
columns. All columns whose key letters are followed by e or E are made the
same width. This permits a group of regularly-spaced columns.

4G-10

Tb/ - A Table Formatting Program

• Staggered columns - A key letter followed by u or U indicates that the
corresponding entry is to be moved up one-half line. This makes it easy to
have a column of differences between numbers in an adjoining column. The
allbox option does not work with staggered columns.

• Zero-width item - A key letter followed by z or Z indicates that the
corresponding data item is to be ignored in calculating column widths. This
can be useful in allowing headings to run across adjacent columns where
spanned headings are appropriate.

• Default - Column descriptors missing from the end of a format line are
assumed to be L. The longest line in the format section, however, defines the
number of columns in the table. Extra columns in the data are ignored.

Data to be Printed
Data for the table is input after the format section. Each table line is typed as one
line of data. Very long input lines can be broken. Any line whose last character is a
backslash (\) is combined with the following line, that is, the backslash joins the
lines and is not output. Data for different columns (table entries) are separated by
tabs or by whatever character has been specified in the tab global option. See the
earlier discussion on Global Options.

There are a few special cases of when you are entering the data for the table:

• troff commands within tables - An input line beginning with a dot and
followed by anything but a number (.xx) is assumed to be a request to the
formatter and is passed through unchanged retaining its position in the table.
For example, a blank line within a table can be produced by putting the .sp
command in the data.

• Full with horizontal lines - An input line containing only the underscore
character (_) or the equal sign (=) is taken to be a single or double line,
respectively, extending the full width of the table.

• Single column horizontal lines - An input table entry containing only the
underscore character or the equal sign is taken to be a single or double line
extending the full width of the column. Such lines are extended to meet
horizontal or vertical lines adjoining this column. To obtain these characters
explicitly in a column, precede them with a\& or follow them with a space,
before the usual tab or newline character.

• Short horizontal lines - An input table entry containing only the string_
produces a single line as wide as the contents of the column. It is not
extended to meet adjoining lines.

• Repeated characters - An input table entry containing only a string of the
form \Rx, where xis any character, is replaced by repetitions of the character
x as wide as the data in the column. The sequence is not extended to meet
adjoining columns.

• Vertically spanned items - An input table entry containing only the \ -
character string indicates that the table entry immediately above spans
downward over this row. It is equivalent to a table format key letter of - .

UTek TOOLS 4G-11

Tb/ - A Table Formatting Program

• Text blocks - In order to include a block of text as a table entry, precede it
by T{ and follow it with T} on lines by themselves. So if you cannot
conveniently type a string between tabs, you can make a single table entry by
framing it in these commands. You can enter following data on the T} line, if
you precede that data with a tab character. These text blocks are pulled out
from the table, processed separately by the formatter, and replaced in the table
as a solid block. See Figure 4G-5.

INPUT:

OUTPUT:

.TS
allbox;
cfI SS

cw(li)cw(l.75i)cw(l.75i)
111.

New York Area Rocks
.sp
Era(!)Formation(!)Age (years)
Precambrian(!)Reading Prong(!)>l billion
Paleozoic<T)tanhattan Prong<1)4oo million
Mesozoic(!)t {
Neward Basin, incl.
Stockton,Lockatong, and Brunswick
formations
.ad
T}(!)200 million
Cenozoic<Licoastal Plain~{
.na
On Long Island J0,000 years;
Cretaceous sediments redeposited
by recent glaciation
.ad
T}
.TE

New York Area Rocks

Era
Precambrian
Paleozoic
Mesozoic

Formation
Reading Prong
Manhattan Prong
Neward Basin, incl.
Stockton,Lockatong, and
Brunswick formations
Coastal Plain Cenozoic

Figure 4G-5. Table Using Text Blocks.

4G-12

>1 billion
400 million
200 million

Age (years)

On Long Island 30,000 years;
Cretaceous sediments
redeposited by recent glaciation

Tbl - A Table Formatting Program

Various limits on the troff program are likely to be exceeded if 30 or more text
blocks are used in a table. This produces diagnostic messages like too many
string/macro names or too many number registers.

If no line length is specified in the block of text or in the table format, the default is
to use:

L x CI (N + 1)

In this case, L is the current line length, C is the number of table columns spanned
by the text, and N is the total number of columns in the table.

Other parameters (point size, font, and so on) used in typesetting this block of text
are:

• those in effect at the beginning of the table (including the effect of the . TS
macro

• any table format specifications of size, spacing, and font using the p, v, and f
modifiers to the column key letters

• troff requests within the text block itself (requests within the table data, but not
within the text block, do not affect that block)

Although any number of lines can be present in a table, only the first 200 lines are
used in setting up the table. See Figure 4G-6 A multipage table should be arranged
as several single-page tables if this proves to be a problem.

When calculating column widths, all table entries are assumed to be in the font and
size being used when the .TS command was encountered. This is true except for
font and size changed indicated in the table format section or within the table data
(as in the entry \s+3Data\s0). Because arbitrary troff requests can be sprinkled in
a table, care must be taken to avoid confusing width calculations. It is not possible
to change the number of columns, the space between columns, the global options
such as box, or the selection of columns to be made in equal width.

Additional Command Lines
If you want to change the format of a table in the middle, perhaps to make
subheadings or summaries, use the . T& command to change column parameters. It
is not recognized after the first 200 lines of a table.

The overall format of such a table is:

.TS
options;
format.
data
.T&
format.
data
.TE

UTek TOOLS 4G-13

Tbl - A Table Formatting Program

INPUT:

OUTPUT:

.TS
box;
cfB SSS.

Composition of Foods

.T&
c:css
c:css
c:c:c:c.
Food(f)Percent(i)weight
,-®-
\-®Protein®Fat®carbo
®®_CI)hydrate

.T&
i:n:n:n.
Apples(T).4(1).5(I)13.o
Halibut®1a.4(I)?.2'.J) •.•
Lima beans<1/7.5(f).8(1)22.o
Milk(f>J.J(il4.o(f)5.0
Mushrooms®J.5(f).~.O
Rye bread(T)9.cX1).~2.7
.TE

Composition of Foods

Percent
Food

Protein Fat

Apples .4 .5
Halibut 18.4 5.2
Lima beans 7.5 .8
Milk 3.3 4.0
Mushrooms 3.5 .4
Rye bread 9.0 .6

Carbo-
hydrate

13.0

22.0
5.0
6.0

52.7

Figure 4G-6. Table Using Additional Command Lines.

4G-14

