
TDL Z80 Relocating/Linking Assembler

User's Manual

Revision 2.2

October 15, 19ii

Written by Neil J. Colvin

Copyright 1976, 19i7 by Technical Design Labs, Inc.

TDL ZSO Relocating/Linking Assembler User's Manual
Chapter 1: Introduction

Chapter l

Introduction

The TDL ZSO Relocating/Linking Assembler is the symbolic
assembly program for the ZBO. It is a two-pass assembler
(requiring the source program to be read twice to complete
the assembly process) designed to run under the TDL system
monitor. It is therefore device independent, allowing
complete user flexibility in the selection of standard input
and output device options.

The assembler performs many functions, making machine
language programming easier, faster, and more efficient.
Basically, the assembler processes the ZBO programmer's
source proqram statements by translating mnemonic operation
codes to the binary codes needed in machine instructions,
relatinq symbols to numeric values, assigning relocatable or
absolute ~emory addresses for program instructions and data,
and preparing an output listing of the program which
includes any errors encountered during the assembly.

The TDL zeo Assembler also contains a powerful macro
capability which allows the prog1·ammer to create new
language elements, thus expanding and adapting the assembler
to perform specialized functions for each programming job.

In addition, the TDL Assembler provides the facilities
required to specify program module linkaqes, allowing the
TDL Linkage Editor to link independently assembled program
modules together into a single executable program. This
allows for the modular and systematic development of large
programs, and for easy sharing of common program modules
among different programs.

Statements

Assembler programs are usually prepared on a terminal,
with the aid of a text editing program. A program consists
of a sequence of statements in the assembly language. Each
statement is normally written on one line, and terminated by
a carriaqe return/line feed sequence. TDL assembler
statements are free-format. This means that the various
statement elements are not placed at a specific numbered
column on the line.

There are four elements
of which are optional),
specific characters. These
order of appearance in the
(or delimiti:iq) character
elements.

in an asse~bler statement (three
separated from each other by
elements are identified by their
statement, and by the separating
which follows or precedes the

TDL ZSO Relocating/Linking Assembler User's Manual Page 2
Chapter 1: Introduction

Statements are written in the general form:

label: operator operand,operand ;comment <CR-LF>

The assembler converts statements written in this form into
the binary machine instructions.

Instruction Formats

The zeo uses a variable length instruction format. A
given machine instruction may be one, two, three, or four
bytes long depending on the specific machine code and on the
addressing mode specified. The TDL assembler automatically
produces the correct number of machine code bytes for Lhe
particular operation specified. Appendix A specifies the
various machine code mnemonics accepted by the assembler and
the format of the operands reauired.

Statement Format

As previously described, assembler statements consist of
a combination of a label, an operator, one or more operands,
and a comment: the particular combination depends on the
statement usage and operator requirements.

The assembler interpret~ and processes these statements,
generating one or more binary instructions or data bytes, or
performing some assembly control pr·ocess. A statement must
contain at least one of these elements, and ~ay contain all
four. Some statements have no operands, while others may
have many.

Statement labels, operators, and operands
represented numerically or symbolically. The
interprets all symbols and replaces them with
(binary) value.

Symbols

may be
assembler
a numeric

The programmer may create symbols
labels, as operators, and as operands.
of any combination of from one to six
following set:

to use as statement
A symbol may consist
characters from the

The 26 l~tters: A-z
Ten digits: 0-9
Three soecial characters:

S
0

(Dollar Sign)
% (Percent)

{Period)

rhese characters constitute the Radix-40 cnaracter set {so
named because it contains only 40 char2cters). ~ny
state~ent character which is not in t~e ~adix-4U set is

TDL ZBO Relocating/Linking Assembler User's Manual Page 3
Chapter 1: Introduction

treated as a symbol delimiter when encountered by the
assembler.

The first character of a symbol must not be numeric.
Symbols may also not contain embedded spaces. A symbol may
contain more than six characters, but only the first six are
used by the assembler.

The TDL assembler will accept
both upper and lower case letters
letters are treated as upper case
special characters and lower case
taken unchanged.

programs written using
and symbols. Lower case

in symbols. Additional
letters elsewhere are

Labels

A label is the symbolic name created by the programmer
to identify a statement. If present, the label is written
as the first item in a statement, and is terminated by a
colon (:). A statement may contain more than one label, in
which case all identify the sa~e statement. Each label must
be followed by a colon, however. A statement may consist of
just a label (or labels), in which case the label(s)
identifies the following statement.

When a symbol is used as a label, it specifies a
symbolic address. Such symbols are said to be defined (have
a value). A defined symbol can reference an instruction or
data byte at any point in the program.

A label can be defined with only
attempt is made to redefine a label with
the second value is ignored, and an error

The following are legal labels:

SSUr1:
ABC:
8123:
WHERE I:

The following are illegal:

one value. If an
a different value,
is indicated.

JOQRT:
AB CD:

(First character must not be a digit)
(Cannot contain embedded space)

If too many characters are used in a label, only the
first six are used. For example the label ZYX~VUTSR: is
recognized by the assembler lo be the same as ZYXWVUABC:.

Operators

An operator may be one of
instruction codes, a pseudo-operation
assembly process, or a user defined
or macro). The asse:.1bler pseudo-op
Chapter 3 and summarized in Appendix

the
code
code

codes
a.

mnemonic machine
which directs the
(either pseudo-op
are described in

TDL ZBO Relocating/Linking Assembler User's Manual Page 4
Chapter 1: Introduction

The operator element of a statement is terminated by any
character not in the Radix-40 set (usually a S?ace or a
tab). If a statement has no label, the operator must appear
first in the statement.

A symbol used as an operator must
assembler or the programmer before its
an operator in a statement.

Operands

be predefined by the
first appearance as

Operands are usually the symbolic addresses of the data
to be accessed when an instruction is executed, the names of
processor registers to be used in the operation, or the
input data or arguments to a pseudo-op or macro instruction.
In each case, the precise interpretation of the operand(s)
is dependent on the specific statement operator being
processed. Operands are separated by commas, and are
terminated by a semicolon (:) or a carriage return/line
feed.

Symbols used as operands must have a value predefined by
the assembler or defined by the proqrammer. These may be
symbolic references to previously defined labels where the
arguments used by this instruction are to be found, or the
symbols may represent constant values or character strings.

Comments

The programmer may add a comment to a statement by
preceding it with a semicolon {:). Comments are ignored by
the assembler but are useful for documentation and later
program debugging. The comment is terminated by the
carriage return/line feed at the end of the statement. In
certain cases (e.g. conditional assembly and macro
definitions), the use of the left and right square brackets
([]) should be avoided in a comment as it could affect the
assembly process.

An assembler stateraent may consist of just a comment,
but each such statement must begin with a semicolon.

Statement Processing

The assembler maintains several internal symbol tables
for recording the names and values of sy~bols used durin~
the assembly. These tables are:

1. Macro Table - This
initially empty, and
~acros.

table contai~s
grows as the

all macros. It is
?rogrammer defines

2. Op-Code Table - This table contai~s all of the ~ac ine
operation mnemonics (op-codes), the asse~ !er
?Seudo-operations (pseudo-ops), and user def ned

TDL ZSO Relocating/Linking Assembler User's Manual Page 5
Chapter 1: Introduction

operators (.OPSYNs). It initially
op-codes and pseudo-ops, and grows
provides additional definitions.

contains the basic
as the programmer

J, Symbol Table This table contains all
programmer-defined symbols other than those described
above. It initially contains the standard register
names, and then grows as new symbols are defined.

Internally, all of these tables occupy the same space, so
that all of the available space can be used as required.

Order of Symbol Evaluation

The following table shows the order in which the
assembler searches the tables for a symbol appearing in each
of the statement fields:

Label Pield:
l. Symbol followed by a colon. If no colon is found,

no label is present.

Operator
1.
2.
3.
4.

Operand
1.
2.
3.
4.

Pield:
Macro
Machine operator
Assembler operator
Symbol

field:
Number
Macro
Symbol
Machine operator

Because of the different table searching
field, the same symbol could be used as
operator, and a macro, with no ambiguity.

Programmer-Defined Symbols

orders for each
a label, an

There are two types of programmer-defined symbols:
labels and assignments. As previously described, labels are
generated by entering a symbol followed by a colon (e.g.
LABEL:). Symbols used as labels cannot be redefined with a
different value once they have been defined. The value of a
label is the value of the location counter at the time the
label is defined.

Assignments are used to represent, symbolically,
numbers, bit patterns, or character slrings. Assi~nments
simplify the program development task by allowing a single
source program modification (the assionment state~ent) to
change all uses of triat number or bit pa~tern throuqhout the

TDL Z90 Relocating/Linking Assembler Use['s Manual Page 6
Chapter 1: Introduction

p[ogram. Symbols given values in an assignment statement
may have new values assigned in subsequent statements. The
cu[rent value of an assigned symbol is the last one given to
it.

A symbol may be entered into the symbol table with its
assigned value by using a di[ect assignment statement of the
fo[m:

symbol"' value {: or CR-LF}

whe[e the value may be any valid nume[iC value O[
exp[ession.

The value assigned to the symbol may subsequently be
changed by anothe[direct assignment statement.

The following are valid assignment statements:

VALUEl • 23
SIZE "' 4*36
ZETA = SIZE

If it is desired to fix the value assiqned to a symbol
so that it cannot subsequently be [edefined, the di[ect
fixed assignment statement should be used. This statement
is the same as the direct assignment statement except that
the symbol is followed by two equal signs instead of one.
For example:

FIXED ="' 46
~EWIJAL ... SIZE

Assembly-·rime Assignments

It is often desi[able to defer the assignment of a value
to a symbol until the assembly is actually unde[way (i.e.
not specify the value as part of the SOU[Ce p[O~[am). This
is especially useful in setting p[Og[am origin, buffe[
sizes, and in specifying parameter values which will be used
to cont[Ol conditional assembly pseudo-ops.

The TOL Assemble[p~ovides the ability to specify
symbols with values to be determined at assembly time, and
the mechanism by which the values may be interactively
defined. To specify an assembly-time assignment, the
following format is used:

symbol •\ [dt•xtd)

where the dtextd in b[ackets indic3tes the optional
soecification of a message to be out9ut on the console
device at assembly ti~e befO[e [equesting the symbol's
value. The d [ep[esents a text delimiter, and may be any
cha[acte[(other than a space or tab) which is not contained
in the text itself. The text may contain ca[riaqe

TDL ZBO Relocating/Linking Assembler User's Manual Page 7
cnapter 1: Introduction

return/line feed sequences, which would result in a
multi-line message on the console.

After the optional message is output on the console, a
colon (:) is output to indicate that the assembler is
waitinq for the desired value to be entered. Th'e value
which is to be assigned to the symbol is then input on the
console device and the assembly continues wilh the symbol
having the specified value. This interaction only occurs
during the first assembly pass. The symbol's value remains
unchanged during subsequent passes.

Only numeric values may be entered through the console
in this fashion. The number which is input must conform to
the same rules as any other number used in the assembly
source program, and may be followed by an optional radix
modifier (see the section on Numbers below). The number is
assumed to be decimal unless followed by a radix modifier.

The value being input is not processed until a carriaqe
return is entered. Any mistyped character may be deleted by
the use of the DELETE (or RUBOUT) key (which will echo the
deleted character), and the entire number ~ay be deleted by
entering CTL-U (simultaneous use of Lhe CTRL and the U key).
Any character which is input but is not valid as part of a
number will not be echoed and will be ignored.

The following are examples of assembly-time assignment
statements:

BUFSJZ =\ ft3UFFER SIZE (50 TO 500 CHARACTERS)"
DISK=\ "VERSIOH (0-PAPER TAPE 1-DISK)"

Assembly-time assignment
direct fixed assignments (==)
be redefined elsewhere in the

Local and Global Symbols

statements are similar to
in not allowing the symbol to
program.

When assembling a large pro9ram, it is sometimes
difficult to keep track of the symbols used for local data
references and branchinq. To facilitate modular
programming, the TDL assembler provides for both c;ilobal and
local symbols within a single program. All symbols which
start with two periods are defined as being local, and all
other symbols are global. For example, the following are
valid local symbols:

.. ASCD:
•. 1234:
.. :
A particular occurrence of a local symbol is only defined
within the boundaries of its enclosing global symbols. For
example, in the following sequence of label definitions, the
symbol .. SYMl is only defined (and can only be referenced)

TDL ZSO Relocating/Linking Assembler User's Manual Page 6
Chapter 1: Introduction

within the program between the definition of GLOB! and
GLOB2:

GLOBl:

•• SYMl:

GLOB2:

This localization of symbol definitions allows the same
symbol to be used unambiguously more than once in the
program. It also simplifies program understandability by
immediately differentiating between local and global
symbols.

In addition to labels, any other programmer-defined
symbol may be specified as local (e.g. macros) in the same
manner. Because of the local usage of these symbols, they
do not appear in the symbol table listing or in the symbol
table optionally punched on the object tape.

External, Internal, and Entry Symbols

Programmer-defined symbols may also be used as external,
internal, and entry point symbols in addition to their
appearance as labels or in assignment statements.

Symbols which fall into one of these lhree gL·oups are
different from other symbols in the program because they can
be referenced by other, separately assembled, program
modules. The manner in which they are used depends or. where
they are located: in the program in which they are defined,
or in the program in which they are a reference to a symbol
defined elsewhere.

If the symbol appears in a program in which it is
defined, it must be declared as being available to other
programs by the use of the pseudo-ops .INTERN or .ENTRi, or
through the use of the delimiters M::~, ft=:M, ft==:~, or
••\:M in their definition statements. These special
delimiters are exactly equivalent to the sequence:

.INTERN symbol
symbol <delimiter without colon (:)>

In each case, the delimiter is the normal sy~bol definition
ooerator (:, ""• ==, =\) with an additional colon (:) added
tO indicate an internal symbol definition.

If the symbol is located in a ~rogram in w~ich it is a
reference to a symbol defined in another program, it ~ust be
declared as external by the use of the .EXTE~~ pseuCo-op, or
through the use of the ft*Q symbol modifier. This speci~l
symbol modifier is appended to the end of any symcol to

TDL Z80 Relocating/Linking Assembler User's Manual Page 9
Chapter 1: Introduction

declare it external. for example, the statement:

LXI H,SYMBOLt

is exactly equivalent to:

.EXTERNAL SYMBOL
LXI H,SYMBOL

Numbers

Numbers used in a program are interpreted by the
assembler according to a radix (number base) specified by
the programmer, where the radix may be 2 (binary), 8
(octal), 10 (decimal), or 16 (hexadecimal). The programmer
uses the .RADIX pseudo-op to set the radix for all numbers
which follow. If the .RADIX statement is not used, the
assembler assumes a radix of 10 (decimal).

The radix may be changed for a single number by
appending a radix modifier to the end of the number. These
modifiers are 8 for binary, 0 or Q for octal, D or .
(period) for decimal, and H for hexadecimal. To specify the
hexadecimal digits, the letters A through F are used for the
values 10 through 15 decimal. All numbers, however, must
begin with a numeral. for example, the following are valid
numbers:

10
10.
108
OFFH

10 in cu~rent radix
10 decimal
10 binary (2 decimal)
PP hexadecimal (255 decimal)

The following are invalid numbers:

148 4 is not a binary digit
PFH the number must start with a numeral

Arithmetic and Logical Operations

Numbers and defined symbols may
arithmetic and logical operators. The
are available:

be combined using
following operators

+

•
I
@

•
I

Add (or unary plus)
Subtract (or unary minus)
Mulliply
Integer division (remainder discarded)
Integer remainder (quotient discarded)
Logical .l\ND
Logical inclusive OR
Logical exclusive OR (or unary radix change)
Logical unary NOT

TDL ZBO Relocating/Linking Assembler User's Manual Page 10
Chapter 1: Introduction

< Left binary shift
> Right binary shift

The assembler computes the 16-bit value of a series of
numbers and defined symbols connected by these operators.
All results are truncated to the left, if necessary. Two's
complement arithmetic is used, with the meaning of the sign
bit (the most significant bit) being left to the programmer.
This means that a numeric value may be either between 0 and
65,535 or between -32,i68 and J2,i6i, depending on whether
it is signed or unsigned.

These combinations of number and defined symbols with
arithmetic and logical op~rators are called expressions.
When evaluating an expression, the assembler performs the
specified operations in a particular order, as follows:

1. Unary minus or plus (- +)
2. Unary radix change 1-a -o -o -o -H)
3, Left and right binary shift (< >)
4. Logical operators (& ! - fl
5. Multiply/Divide (* /)
6. Remainder (@)
,, Add/Subtract (+ -)

Within each of
performed from
expression:

the
left

above
to

-ALPHA+3*BETA/DELTA&-H55

groups, the operations
right. for example, in

are
the

the unary minus of ALPHA is done first, then DELTA is ANDed
with a hexadecimal 55, then BETA is multiplied by 3, the
result of which is divided by the result of the A~D, and
finally, that result is added to the negated ALPHA.

To change the order in which the operations are
performed, parentheses may be used to delimit expressions
and to specify the desired order of computation. Each
ex?ression within parentheses is considered to be a single
numeric value, and is completely evaluated before it is used
to compute any further values. For example, in the
expression:

4* (ALPHA+OETA)

the addition of ALPHA to BETA is peformed before the
multiplication.

Radix Chanqe Operator

The radix change operator is used to temporarily chgnge
the radix in which a following number or expression is to be
interpreted. It is written as an u9-arrow (-) followed by

TDL Z80 Relocating/Linking Assemble[Use['S Manual Page 11
Chapte[1: Int[oduction

the [adix modifie[of the desired radix. These modifie[S
are the same as those used to specify the [adix of a single
numbe[(B-binary, 0 or O-octal, D-decimal, and
U-hexadecimal). The [ad ix change only affects the
immedia~ely following number 0[pa[enthesized nume[ic
expression. FO[example, all of the following a[e valid
[ep[esentations of the decimal number 33:

33.
330
-033
-oc1o•J+JJ
-D(lO*THREE+THREE)
-010•-03+-03

but the following is not a [ep[esentation of decimal 33 if
the prevailing radix is not decimal:

-03*10+3

because the [adix change only affects the value immediately
following it, in this case 3.

Binary Shifting

The binary shift ope1·ators (< left, > right) are used to
logically shift a 16-bit value to the left or right. The
number of places to be shifted is specified by the value
following the shift operator. If that value is negative,
the direction of the shift is reversed. Po[example, all of
the following expressions have a value of 4 decimal:

8>1
1<2
2>-1

One-byte Values

All of the above discussion has been based on the
computation of 16-bit (two byte) numeric values. Many of
the Z80 operations require an 8-bit (one byte) value. Since
all computations are done as a 16-bit value, an operation
calling for only eight bits will discard the high order
eight bits (the most significant byte) of the value. If the
byte discarded is not eithe[zero or minus one (all one
bits), a warning will be given on the assembly listing.

Character Values

To generate a binary value equivalent to the ASCII
[ep[esentation of a characte[st[ing, the single (') or
double (~) quotation mark is used. The character string is

TDL 'zeo Relocating/Linking Assembler User's Manual Page 12
Chapter l: Introduction

enclosed in a pair of the quotation marks. For example, all
of the followin9 are valid character values:

"A"
'B'
nAan
'CO'

~ote that whichever quotation mark is used to initiate the
character string it must also be used to terminate it. If
the string is longer than two bytes, it is truncated to the
left. Each i-bit ASCII character is stored in an 8-bit
byte, with the high-order bit set to zero.

A character string of this type may be used wherever a
numeric value is allowed.

A single quote may be used inside a string delimited by
double quotes, and vice-versa. If it is necessary to use a
single quote within a string delimited by single quotes, two
single quotes must be used. The same is true for a double
quote in a string delimited by double quotes.

Location Counter Reference

The location counter may be referenced as a numeric
16-bit value by the use of the symbol . (period). The value
represented by . is always the location counter value at the
start of the current assembly language statement. For
example:

JMP •

is an effective error trap, jumping to itself continuously.

TDL Z80 Relocating/Linking Assembler User's Manual Page 13
Chapter 2: Addressing and Relocation

Chapter 2

Addressing and Relocation

Address Assignment

As source statements are processed by the assembler,
consecutive raemory addresses are assigned to the instruclion
and data bytes of the object program. This is done by
incrementing an internal program counter each ti~e a memory
byte is assigned. Some statements may increment this
internal counter by only one, while others could increase it
by a large amount. Certain pseudo-ops and direct assignment
statements have no effect on the counter at all.

In the program listing generated by the assembler, the
address assigned to every statement is shown.

Relocation

The TDL Z80 Assembler will create a relocatable object
program. This program may be loaded into any part of memory
as a function of what has been previously loaded. To
accomplish this, certain 16-bit values which repL"esent
addresses within the program must have a relocation consLant
added to them. This relocation constant, added when the
program is loaded into memory, is the difference between the
memory location an instruction (or piece of data) is
actually loaded into, and the location it was assembled at.
If an instruction had been assembled al location 100
{decimal), and was loaded into location 1100 {decimal), then
the relocation constant would be 1000 (decimal).

Not all 16-bit quantities must be modified by the
relocation constant. For example, the instruction:

LXI ii, OOFFH

references a 16-bit quantity {OOFF~) which does not need
relocation. However, the set of instructions:

JZ DONE

DONE:

does reference a 16-bit quantity {the address of DONE) which
must be relocated, since the physical location of DOclE
changes depending on where the proqram is loaded into
raemory.

To accomplish this relocation, the 16-bit value forming

TDL ZBO Relocating/Linking Assembler User's Manual Page 14
Chapter 2: Addressing and Relocation

an address reference is marked by the assembler for later
modification by the loader or linkage editor. Whether a
particular 16-bit value is so marked depends on the
evaluation of the arithmetic expression from which it is
obtained. A constant val1Je (integer) is absolute (not
relocatable), and never modified. Point references (.) are
relocatable_ (ass1Jming relocatable code is being generated),
and are always modified by the loader or linkage editor.
Symbolic references may be either absol1Jte or relocatable.

If a symbol is defined by a direct assignment statement,
it may be absol1Jte or relocatable depending on the
expression following the equal sign (~). If the symbol is a
label (and relocatable code is being generated) then it is
relocatable.

To evaluate the relocatability of an expression,
consider what happens at load or linkage edit time. A
relocation constant, r, must be added to each relocatable
element, and the expression evaluated. For example, in the
expression:

Z = Y+2*X-3*W+V

where V, W,
relocation
relocatable

X, and Y are relocatable. Assume that r is the
constant. Adding this constant to each

term, the expression becomes:

Z(r) • (Y+r)+2*(X+r)-3*(W+r)+(V+r)

By rearranging the expression, the following is obtained:

Z(r) 2 Y+2*X-l*W+V + r

This ex?ression is suitable for
contains only a single addition of
r. In general, if the exoression
result in the addition of either of
legal:

O*r absolute expression
l*r r~locatable expression

If the rearrangement results in
illegal:

n*r where n is not 0 or l

relocation because it
the relocation constant
can be rearranged to

the following, it is

the following, it is

Also, if the expression involves [to any power otner than
1,

l.

2.

it is illegal. This leads to the following

Only two values of relocatability for
exoression are allowed (ie. n*r where n = 0
DiVision by a relocatable value is illegal.

rules:

a complete
or 1).

TDL ZBO Relocating/Linking Assembler User•s Manual ~age 15
Chapter 2: Addressing and Relocation

3. Two relocatable values may not be multiplied together.
4. Relocatable values may not be combined by logical

operators.
5. A relocatable value may not be logically shifted.

If any of these rules is broken, the expression is illegal
and an error message is given.

If X, Y, and Z are relocatable symbols, then:

X+Y-Z
x-z
X+i
l*X-Y-Z
4&X-Z

is
is
is
is
is

relocatable
absolute
relocatable
relocatable
illegal

Only 16-bit quantities rnay be relocated. All 8-bit
values must be absolute or an error will be given.

Relocation Bases

One of the unique capabilities of the TDL Z80 Assembler
is its ability to handle symbolic references to separately
located areas of memory, where the mapping of symbols to
physical addresses occurs at linkage edit time. The
symbolic names for independently located memory areas are
called Mrelocation bases~. These relocation bases may
represent ROM vs. RAM, shared COMMON areas, special memory
areas such as video refresh, memory mapped I/O, etc. Within
each subprogram, each of these memory areas is referenced by
a unique name, with the actual allocation deferred to the
link edit and load process. All memory references within
the assembled program are relative to one of these
relocation bases.

As each relocation base is
program (through the use of the
implicitly assigned a sequential
number appears in the listing
relative to that base.

assiqned a name in the
.EXTERN pseudo-op), it is
identifying number. This

as part of any address

Four of these relocation bases (0-3) have predefined
names and meanings, and are treated differently at linkage
edit time than the remainder of the bases. Base 0
represents absolute memory locations (i.e. it always has the
value of 0). Base 1 has the name .PROG. and represents the
program area (maybe PROM or ROM). Most program code (and
data in non-rammed programs) is generated relative to this
relocation base. Base 2 has the name .DATA. and represents
the local data area for each module. Most local data is
defined relative to this base. Base 3 has the name .BLNK.
and represents the global Nblank common". ·rhis relocation
base is always assigned the value of the first free byte in
memory after the local data storage (.DATA.) and o~her data
relocation segments by the linkage editor. Because it is

TDL ZBO Relocating/Linkin~ Assembler User's Manual Page 16
Chapter 2: Addressing and Relocation

always the last allocated, modules referencing this area can
be included in any order, regardless of the amount of the
area they use.

Relocation segments relative to bases 1 and 2 (.PROG.
and .DATA.) are always allocated additively (i.e. after each
module is allocated, the value of the relocation base is
increased by the size of the segment). All other relocation
bases are normally assumed to have constant values during
the allocation process (usually assigned by the linkage
editor).

Each symbol defined during the assembly has a relocation
base associated with it. There are no limitations on
inter-base references (i.e. code relative to .PROG. can
freely reference data relative to .DATA.). Expressions
containing symbols must evaluate to a value relative to a
single relocation base, but may contain references to
multiple relocation bases. All relocation base references
except for the final result must be part of sub-expressions
which evaluate to absolute values. For example, if T and U
are symbols relative to base 1, V and W relative to base 2,
and X and Y relative to base 3, then the followinq are valid
expressions;

T+(V-W) (note the parentheses to make V-W
a subexpression)

X+3
T-(V-W)•U+(X-Y)

and the following are invalid:

T+U

T+V-W

(within a relocation base, the
normal relocation rules apply)

(T+V is the first subexpression,
and it is mixed relocation bases)

It should be noted that conceptually, normal external
symbols are simply relocation bases with a size of zero (0),
and the assembler treats them that way. An assignment of
the form:

N==P+S

where P is an external
address is relative to P,
ex?ressions of the form:

S*(P-~)

symbol, makes ~ a symbol whose
even though P has no size. Hence,

where P and N have the same relocation base, are in fact
valid.

TDL ZBO Relocating/Linking Assembler User's Manual Page li
Chapter 3: Pseudo-Operations

Chapter 3

Pseudo-Operations

Pseudo-operations (pseudo-ops) are directions to the
assembler to perform certain operations for the programmer,
as opposed to machine operations which are instructions to
the computer. Pseudo-ops perform such functions as listing
control, data conversion, or storage allocation.

Address Mode and Origin

The TDL ZBO Assembler normally assembles programs in
relocatable mode, so that the resultant program can be
loaded anywhere in memory for execution. Therefore, all
programs are assembled assuming their first byte is at
address zero (0), because they can be relocated anywhere.
When desired, however, the assembler will generate absol~te
object code, either for the entire program, or just selected
portions. The assembler will also locate the assembled code
at any address desired. The two pseudo-ops which control
address mode, relocation base and address origin are .LDC
and .RELDC .

. LDC n

This statement sets the location counter to the value n,
which may be any valid expression. If n is an absolute
value, then the assembler will assign absolute addresses to
all of the instructions and data which follow. If n is
relocatable, then relocatable addresses will be assigned,
relative to the relocation base of the expression.

The program is assumed to start with an implicit .LDC to
relocatable address zero (0) of the relocation base named
.PROG. (the default relocation base for normal programs).
A program can contain more than one .LOC, each controls the
assignment of addresses to the statements following it.

To reset the program counter to its value prior to the
last .LOC, the statement:

.RELOC

is used.
relocation
before the
done, then

.LOC 0

This statement restores both the value, the
base and the addressing mode which were in effect
immediately preceding .LDC. If no .LDC has been
a .RELOC is equivalent to a:

TDL Z80 Relocating/Linking Assembler User's Manual Page 18
Chapter 3: Pseudo-Operations

When in relocatable addressing
determine whether each 16-bit
relocatable as described in Chapter

Data Definition

mode,
value
2.

The TDL Z80 Assembler
pseudo-ops fo[describing
the program •

provides a
and entering

. RADIX

the assembler will
is absolute 0[

number of diffe[ent
data to be used by

When the assemble[encounters a numbe[in a
statement, it converts it to a 16-bit bina[y value
according to the [adix indicated by the prog[ammer. The
statement:

.RADIX n

whe[e n is 2, 8, 10, or 16,
numbers which follow, unless
encountered, or the radix is
or a suffix radix modifie[.

The statement:

.RADIX 10

sets the radix to n for all
another .RADIX statement is
modified by the -r ope[ator

implicitly begins each assembly program, settinQ the
initial radix to decimal .

. BYTE:
To enter one (or more) 9-bit (one byte) data values

into the p[Og[am, the statement:

.BYTE n (, n ••.)

where n is any exp[ession with a valid 9-bit value is
used. More than one byte can be defined at a time by
separating it from the preceding value with a comma.
All of the bytes defined in a single .BYTE statement are
assigned consecutive memory locations. Fo[example:

.BYTE 23,4*-HOFF,BETA-ALPHA

defines three sequential bytes of data.

,WORD
To ente[a 16-bit (two byte) value into the

prog[am, the statement:

.WORD nn (, nn ... }

TDL ZBO Relocating/Linking Assembler User's Manual Page 19
Chapter 3: Pseudo-Operations

where nn is any expression with a valid 16-bit
used. Multiple 16-bit values may be defined
.WORD statement by separating each from the
one with a comma.

value, is
with one

preceding

All 16-bit values defined
are stored in standard zeo
significant byte first.

by the
word

.WORD pseudo-op
format, least

For example, the following statement:

.WORD ALPHA,~34*BETA,-HOEEFF

defines three sequential 16-bit values, or a total of
six bytes of data .

• ASCII, .ASClZ, and
To enter

program, one of

.ASCIS
strings of text
the statements:

.ASCII dtextd (n)

.ASCIZ dtextd (n)

.ASCIS dtextd (n)

characters into lhe

is used. The d represents a text delimiter, and may be
any character (other than space or tab) not contained in
the text itself. Each character in the text is
converted to its 7-bit ASCII representation (with the
eighth bit zero), and stored in sequential memory
locations. When the delimiter character is again
encountered, the text is considered terminated (the
delimiter is not stored with the string). The delimited
string may be followed by another delimiter, and another
string, and this may be repeated as desired.

If it is necessary to include values in the text
string for which no character exisls, then the second
option shown above may be used. If in place of a string
delimiter, the assembler finds a left square bracket
([), then the numeric expression enclosed within it and
a matching right square bracket ()) is evaluated as an
8-bit value and stored as the next byte of the string.
These 8-bit values may be intermixed with delimited
strings as required.

to note that tab, carriage return,
all valid characters within a

It is therefore possible that a
encompass more than one line in

It is important
and line feed are
delimited text string.
.ASCix statement will
the source program.

The difference between the three pseudo-ops
described above is in their treatment of the last byte
~enerated by the statement. The .ASCII state~ent just
stores the byte. The .ASCIZ statement stores one
additional byte after the last one, a null (zero) ~yte
to mark the end of the string in memory. The .ASCIS

TDL ZBO Relocating/Linking Assembler User's Manual Page 20
Chapter 3: Pseudo-Operations

pseudo-op sets the high-order (eighth) bit of the last
byte to one to flag the last byte.

The followinq are all valid .ASCix statements:

.ASCII /This is a string/

.ASCIZ /This is two/ 1 strinqs in one place'

.ASCIS [-HOD] (-HOA] "Message on new line"

.ASCII \
Message on new line\

.RAD40
The Radix-40 character set for symbols was chosen

because it allows a six character symbol to be stored in
only four bytes of memory. To allow the program to
define data bytes in this character set, th~ statement:

.RAD40 symbol! (, symbol2 ... }

is used. The symbol must conform to all the rules
specified for assembler symbols, and is converted into
the Radix-40 notation and stored in four sequential
bytes of memory. If multiple symbols are to be
converted and stored, each must be separated from the
preceding one by a comma.

Storage Allocation

The TDL Z80 Assembler ·allows the programmer to reserve
single locations, or blocks of many locaLions, for use
during the execution of the program. The two pseudo-ops
used for this purpose are .BLKB and .BLKW. The format of
the statement using these pseudo-ops is:

.aLKx n

where n is the number of storage locations to be reserved.
For the .BLKB pseudo-op, each storage location consists

of one byte, so the above statement will reserve n
contiguous bytes of memory, starting at the current location
counter. The .BLK~ pseudo-op uses a word (two bytes) as its
storage unit, so the above statement would reserve n words,
or two times n bytes of contiguous memory.

For example, each of the following statements reserves
24 (decimal) bytes of sloraqe:

.BLKB 24 .

. BL~W -012

.BLKB 2•12.

TDL Z80 Relocating/Linking Assembler User's Manual Page 21
Chapter 3: Pseudo-Operations

Program Termination

Every program must be terminated by a .END pseudo-op.
The format of this statement is:

.END start

where start is an optional starting address for the program.
The startinq address is normally only necessary for the main
program. Subprograms, which are· called from the main
program, need no starting address. •

When the assembler encounters the .END pseudo-op during
pass 1 of the assembly, it returns to the initialization
point to await further instructions (see Appendix C). On a
listing pass, the .END pseudo-op initiates the printing of
the symbol table (if not suppressed by a prior .XSYM
pseudo-op). On a punching pass, the .END pseudo-op punches
the EOF record on the object tape.

Subprogram Linkage

Programs usually consist of a main program and numerous
subroutines which communicate with each other through
parameter linkages and through reference to symbols defined
elsewhere in the program. Since the TDL ZBO Assembler
provides the means for the various progL·am components to be
assembled separately from each other, the linkage editor
(which finally puts the pieces together) must be able to
identify those symbols which are references (or referenced)
external to the current program. For a given subprogram,
these •1inkaqe• symbols are either symbols defined
internally which must be available to other programs to
reference, or symbols used internally but defined externally
to the program. Symbols defined within the program but
available to other subprograms are called "internal•
symbols. Symbols used internally but defined elsewhere are
called ~external" symbols.

To set up these linkages between subprograms, four
pseudo-ops are provided: .JDENT, .EXTERN, .INTERN, and
. ENTRY'.

The .IDENT statement has the format:

• I DENT symbol

where symbol is the relocatable module name. This name is
used by the linkage editor to identify the module on memory
allocation maps, and to allow the selective loading of the
module if it is part of a subprogL·am library. If the . IDENT
statement does not appear in a program, the name d.MAIN.d is
assumed. The .IDENT name appears at the top of every
listing page, and is displayed on the console at the start
of the second assembly pass of that module.

TDL ZSO Relocating/Linking Assembler User's Manual Page 22
Chapter J: Pseudo-Operations

All three remaining statements have the same format:

.EXTERN symbol! (, symbol2 ••• }

.INTERN symbol! [, symbol2 ... }

.ENTRY symbol! {, symbol2 •..)

where symbol! is the symbol being declared as external,
internal, or as an entry point. Multiple symbols may be
declared in the same statement by separating each from the
preceding one with a comma.

The .EXTE~ statement identifies symbols which are
defined elsewhere. External symbols must not be defined
within the current subprogram. The external symbols may
only be used as addresses, or in expressions that are to be
used as addresses. External symbols may be used in the same
manner as any other relocatable symbol, with the following
restrictions:

1. The use of more than one external symbol in a single
expression is illegal. Thus X+Y where X and Y are both
external is illegal.

2. Externals may only be additive. Therefore the following
expressions are illegal (where Xis an external symbol):

-x
2*X
SQR-X
2*X-X

Symbols declared as external by the .EXTERN pseudo-op
may also be used as relocation bases. This is done by using
an external symbol as the argument to a .LOC pseudo-op. All
memory allocated by the assembler after the .LOC will be
addressed relative to the specified relocation base. The
most common use of this capability is the declaration of
COMMON blocks for the sharing of data between assembler and
PORTRAN subprograms. All named COMMON blocks are in fact
just different relocation bases. Symbols used as relocation
bases have unique values during the assembly of the progt·am
module. At any point in time, the current value of the
relocation base symbol is the number of bytes which have
been allocated to that base so far. This means that
subsequent .LOC pseudo-ops referencing the same external
symbol will start the memory allocation at the next
available byte in that relocation base, not at relative
location zero (!)).

There are three predefined relocation base symbols:
.PROG., .DA·rA. and .BLNK .. These relocation bases are used
for the program code, separately located data (in a ROM/RAi-1
environment), and blank (unnamed) common respectively.

The .INT8RN pseudo-op identifies those symbols within
the current subprogram which at·e to be made accessibl~ to

TOL Z00 Relocating/Linking Assemble[Use['S Manual Page 2)
Chapte[3: Pseudo-Operations

othe[p[ograms as exte[nal symbols. This statement has no
effect on the assembly process for the cur[ent p[Og[am, but
me[ely [eCO[dS the name and value of the identified symbols
on the object tape for late[use by the linkage editor. An
internal symbol must be defined within the cur[ent p[ogram
as a label, O[in a direct assignment statement.

The .ENTRY pseudo-op functions identically to the
.INTERN pseudo-op, with one addition. It is sometimes
desirable to put many subroutines with common usage into one
Hlibra[y~, and to allow the linkage edito[to select only
those p[ograms from the lib[a[y which are called by the
prog[am being linkage edited.

The .ENTRY statement, in addition to functioning as a
.INTERN statement, also flags the specified symbols as
p[Og[am entry points. If the subprogram is later put into a
lib[ary, this will specify to the linkage editor that this
p[ogram is to be included only if one of its entry points is
[efe[enced as an exte[nal symbol by an already included
program.

Since these entry points a[e exte[nal to the program
[efe[encing them, they must be listed in a .EXTERN statement
in the calling program.

Listing Control

Prog[am listings are printed on the list device during
pass 2 and 4 (see Appendix C) of the assembly. The listing
is printed as the source p[ogram statements are processed
during the pass. The standard listing contains (from left
to right):

1. Error flags (if present).
2. Location counter for the first byte generated by this

statement.
3. Instruction or data in hexadecimal (maximum of five

bytes per line printed).
4. EKact image of the input statement.

The standard listing displays all 16-bit quantities in
16-bit (two byte), most significant byte first, format.
These quantities are prope[ly reversed in the object code as
required by the ZBO. A 16-bit relocatable address relative
to the .PROG. relocation base is flagged with an apostrophe
('),one relative to the .DATA. relocation base is flagged
with an asterisk (*), and all others are followed by the
assigned number of their relocation base.

Within a macro expansion, only the mac[O call and those
statements which generate actual object code are normally
listed.

If a single statement generates more than the maximum of
five bytes that can be listed on a single line, the
remaining bytes are properly generated, but not normally

TDL Z~O Relocating/Linking Assembler User's Manual Page 24
Chapter J: Pseudo-Operations

listed.
A listing always begins at the top line of the page, and

60 lines are printed per page, with a two line margin at the
top, and a two line margin at the bottom. A page is assumed
to be i2 (or 79) columns wide (depending on the list device
selected - see A~pendix C). Each page is numbered, and can
have an optional title and sub-title.

The standard listing options can be changed and expanded
by the use of the following pseudo-operations:

.PAGE

.XLIST

.LIST

.LALL

.XALL

.SALL

.XS<H

• LS<H

. LA DOR

. XADDR

This statement causes the assembler to skip to
the top of the next page (by counting lines).
A form feed character in the input text will
have the same effect.

This statement causes the assembler to stop
listing the assembled program at this point.

This statement is normally used following a
.XLIST to resume program listing.

This statement causes the assembler to list
everything which is processed. This includes
all text, macro expansions, and all other
statements normally suppressed in the standard
listing.

This statement is normally used following a
.LALL to resume the normal listing.

This statement causes
macro expansions and
reset by a subsequent

the suppression
their text. It
.LALL or .XALL.

of all
can be

This statement suppresses
listing normally performed
the .END statement.

the symbol table
upon encountering

Normally not used, this statement
listinq of the symbol table
suppressed by the .XSYM pseudo-op.

enables the
previously

This statement causes the
all 16-bit quantities in
generates them in the
significant byte first).

assembler to list
the same order it

object code (least

Normally used following a .LADDR statement,
this statement resumes the normal listing of
16-bit quantities in non-swap~ed format.

TDL ZSO Relocating/Linking Assembler User's Manual Page 25
Chapter 3: Pseudo-Operations

.LIMAGE

.XJMAGE

This statement causes the assembler to list
every byte generated, even if more than one
line (at five bytes per line) is required. In
this mode, the assembler will attempt to split
the input source statement to indicate which
part of the statement is generating which
bytes.

Normally used following a .LIMAGE
this statement resumes the normal
only five bytes of generated
statement .

statement,
listing of
data per

. LCTL This statement causes all subsequent listing
control statements (e.g .. XLIST) to be listed
themselves. Normally, no listing control
statement is itself listed. The .XCTL
pseudo-op is used to reset this option .

. XCTL Normally used following a .LCTL statement,
this statement resumes the default suppression
of the listing of listing control statements .

. SLIST This statement causes the current listing
control flags to be saved on a four element
push-down stack. The current flag settings
remain unchanged. These settings may later be
restored with the .RLIST pseudo-op. This
pseudo-op may be followed on the same line
with another listing control pseudo-op, which
will take effect prior to the listing of the
.SLIST statement •

. RLIST This statement restores the listing control
flags from the top element of the .SLIST
push-down stack. These new flags take effect
with the statement following the .RLIST .

. TITLE dtextd This statement defines the delimited
string text to be the title to be printed at
the top of every page of the listing. The
text must be delimited in the same manner as
in the .ASCII pseudo-op, and must be no longer
than 72 characters. If the .TITLE pseudo op
is the first statement on a page, then the new
title will be printed at the top of that page .

. SBTTL dtextd This statement defines the deli~ited
string text to be the sub-title to be printed
at the top of every page of the listi~g. It
follows tile same rules as the .·rJTLE
pseudo-op.

·rcL ZBO Relocating/Linking Assembler User's Manual Page 26
Chapter 3: Pseudo-Operations

.REMARK dtextd This
listing.
of lines
matching

statement inserts a remark into the
The delimited text can be any number
long, being terminated only by the

delimiter .

. PRNTX dtextd This statement, when encountered, causes
the delimited text string to be typed on the
console. This statement is frequently used to
print out conditional information, and to
report the progress through pass 1 on very
long assemblies.

Punch Control

The TDL zeo Assembler normally produces an object tape
in the TDL Standard Relocatable Format (see Appendix E).
However, the assembler can produce an object tape compatible
with the "INTEL Standard• hex tape. To control which format
is beinq produced, the two pseudo-ops .PREL and .PASS are
used. The .PASS pseudo-op causes the assembler to produce
an INTEL compatible tape for all following generated code.
The .PREL causes the assembler to return to producing TDL
Standard Object Tape.

Every program starts with an implicit .PREL pseudo-op.
In addition, the assembler can punch the output tape in

both binary and ASCII. To control which type of output is
being produced, the two pseudo-ops .PBIN and .PHEK are used.
The .PBIN pseudo-op causes the assembler to produce a binary
tape in the current format. The .PHEX pseudo-op causes the
output of an ASCII tape. Every program starts with an
implicit .PHEX pseudo-op.

To control the generation of linkable object modules,
two pseudo-ops are provided. The .LINK pseudo-op indicates
that linkage information is to be included in the object
file produced. The .XLINK pseudo-op inhibits this
information from being output. Every program starts with an
implicit .XLINK pseudo-op.

The TDL ZBO Assembler provides one additional facility
to assist the TDL ZBO Debugging System. At the programmers
option, the assembler will punch all of the global
(non-local) symbols in the program module onto the end of
the object tape. For each symbol, the assembler also
punches its relocation base and its value relative to that
base. Two pseudo-ops are provided to control this symbol
table punching. The .PSYM Pseudo-op enables the punching,
and the .XPSYM pseudo-op disables it. The default is to not
punch the symbol table (.XPSYM).

TDL Z80 Relocating/Linking Assembler User's Manual Page 27
Chapter 3: Pseudo-Operations

Conditional Assembly

Parts of a program may be assembled on a conditonal
basis depending on the results of certain tests specified to
the assembler through the use of the .IFx pseudo-op.

The general form of the pseudo-op is:

.IFx arg, [true text] ..• [(false text]}

where the text within the first square brackets is assembled
only if the specified test on the argument is TRUE, and the
optional text within the second set of brackets is assembled
if the condition is false. Any number of spaces or blank
lines (or lines with only comments) may separate the true
and false texts.

The square brackets around the true text may be omitted
if there is no false text, and the entire true text is
contained on the same line as the .IFx pseudo-op.

The first set of conditions which can be tested are the
numeric value of the argument. These pseudo-ops are listed
below:

.IFE n, (.•. l TRUE if n=O or n=blank

.IFN n, (••• l TRUE if n<O or n>O

.IFG n, (••• I TRUE if n>O

.IfGE n, I ... l TRUE if n>O or n=O

.IFL n I (• • • J TRUE if n<O

.IFLE n, (... J TRUE if n<O or n=O

The following .IF pseudo-ops test
assembler is processing pass l or not:

.Ifl ,(. ..]

. IF 2 , (... I
TRUE if it is pass l
TRUE if it is not pass l

for whether the

The next set of conditionals tests for whether a symbol
has been defined yet or not:

. IFDEF symbol, (...)

.IFNOEF symbol,(•.• I
TRUE if the symbol is defined
TRUE if the symbol is undefined

The next set of .IF pseudo-ops tests to see whether its
argument is blank or not. These pseudo-ops require that the
argument be enclosed in square brackets ((]). The format is
as follows:

.IFS (.,,], [...] TRUE if blank

.IFNB (...), (...] TRUE if not blank

The quantity enclosed in the brackets is blank if it is
empty, or consists only of spaces and tabs. Optionally, the
argument being tested may be enclosed in paired delimiters

TOL Z80 Relocating/Linking Assembler User's Manual Page 28
Chapter 3: Pseudo-Operations

in the same manner as the .ASCix pseudo-ops. If the first
non-blank, non-tab, character after the pseudo-op is a left
square bracket ([), the bracket method is used, otherwise,
the delimiter method. For example:

.IFS/ ... /.(.••)

The last pair of conditionals operate on character
strings. They take two arguments which are interpreted as
7-bit ASCII character strings, and make a character by
character comparison of the two strings to determine if the
condition is met. Each of the strings may either be
enclosed in square brackets or delimited by a character, as
in the .IFB/.IFNB pseudo-ops above. The same method need
not be used for both strings. The format of these
conditionals is as follows:

.IFID~ (••.)

.IFDIF (...)
(... I,(... I
I ... I .I ... I

The maximum lenqth of the
characters. In making the
and tabs are ignored in the

Synonyms

TRUE if identical
TRUE if different

strings to be
comparison, all
two arguments.

compared .is 255
trailing blanks

It sometimes becomes useful, for documentation or ease
of programming, to define new names for already existing
symbols. The TDL Z80 Assembler has four pseudo-ops which
allow the definition of synonyms for already defined
symbols. The format of these pseudo-ops is:

.xxSYN symboll,symbol2

The four pseudo-ops
The only difference
three limit the type
being defined.

are .SYN, .OPSYN, .SYSYN, and .MASY~.

between the four is that the latter
of symbol for which the synonym is

The statement above defines the second operand as being
synonymous with the first operand. In the case of the .SY~

pseudo-op, the symbol tables are searched for the first
operand in the order: programmer defined symbol, macro,
operation. The .OPSYN pseudo-op limits the search to
ope1·ations, the .SYSY~ to programmer defined symbols, and
the .MASYN to macros. The second operand is defined to be
identical to the first operand at the time the synonym is
defined. Later changes to the first operand will not affect
the second.

The following are valid synonym definitions:

,OPSYN .BY1'E,DB
.SY~ .WORD,DW

TDL ZBO Relocating/Linking Assemble[Use['S Manual Page 29
Chapter 3: Pseudo-Ope[ations

.SYSYN ALPHA,BETA

.SYN A,Rl

Object Machine Validation

Although the TDL MacL·o Assembler will run only on a ZBO
processor, it can obviously be used to gene[ate object code
for any of the BOBO compatible micro-proce·ssors. To
facilitate the use of the assembler for this purpose, two
additional pseudo-ops are available: .IBOBO and .ZBO.

The .IB080 pseudo-op causes all subsequent uses of
machine operations which are unique to the zeo (and hence
unavailable on the BOBO) to be flagged with a Z warning
message. Such uses will be prope[ly assembled howeve[.

The .zeo pseudo-op (which is the default) disables the
feature so that no further Z Wa[nings will be given.

TDL Z80 Relocating/Linking Assembler User's Manual Page 30
Chapter 4: Macros

Chapter 4

Macros

A common characteristic of assembly language programs is
that many coding sequences are repeated over and over with
only a change in one or two of the operands. It is
convenient, therefore, to provide a mechanism by which the
repeated sequences can be generated by ~ single statement.
The TDL ZSO Assembler provides the capability to do so by
allowing the repeated sequences to be written, with dummy
values for the changed operands, as a macro. A single
statement, referring to the macro by name and providing
values for the dummy operands, can then generate the
repeated sequence.

Macro Definition

A macro is defined by use of the .DEFINE pseudo-op.
This is followed by the symbolic name of the macro. The
macro name must follow the rules for the construction of
symbols. The name may be followed by a list of dummy
arguments enclosed in square brackets. The dummy arguments
are separated by commas, and may be any symbol which is
convenient. Following the macro name and optional dummy
arguments must be an equal sign (~). The following are
examples of the heading part of a macro definition:

.DEFINE MACRO ~

.DEFINE MOVE(A,B) •

.DEFINE BIGMAC(ARG1,ARG2,ARG),\ARG5] ~

Following the macro definition header coraes the body of
the macro. It need not start on the same line as the
definition header. The body of the macro is delimited by a
matched pair of left and right square brackets (()). For
example:

.DEFINE MOVE[A,B)•
(LOA A

STA BJ

Macro Calls

A macro may be called by any statement. A macro call
consists of the ~aero name followed (optionally) by a list
of arguments. The arguments are separated by commas, and
may optionally be enclosed in left and right square brackets
(()). If the brackets are used (the first non-blank/non-tab
character after the macro name is a left square bracket),

TDL Z80 Relocating/Linking Assembler User's Manual Page 31
Chapter 4: Macros

then the arguments are terminated by a right square bracket.
If there are n dummy arguments in the macro definition, then
all arguments after the first n are ignored (although they
do take space and time to process). If the brackets are
omitted, the argument string ends when a carriage return or
semicolon is encountered.

The arguments must be written in the order in which they
are to be substituted for the dummy arguments. The first
argument is substituted for each appearance of the first
dummy argument, the second for the second, etc. The actual
arguments ace substituted as character strings for the dummy
arguments, no evaluation of the arguments takes place until
the macro is processed.

Referring to the definition of MOVE above, the
occurrence of the statement:

MOVE ALPHA,BETA

will cause the substitution of ALPHA for A and BETA for 8 in
the macro.

Statements which contain macro calls may be labelled and
have comments like any other statement.

Macro arguments are terminated only by comma, carriage
return, semicolon, or right square bracket (when started by
left square bracket). These characters may not be used in
the arguments unless the argument is enclosed in
parentheses. Each time an argument is passed to a macro,
one set of matched parentheses is removed, but all of the
characters within the parentheses are substituted for the
dummy argument in the macro. Note that spaces and tabs do
not terminate arguments, but are considered to be part of
them.

Macros do not need to have arguments. The macro name
(and arguments if any) may appear anywhere in a statement
where a symbol would normally appear, and the text of the
macro exactly replaces the macro name and its arguments in
that statement.

Comments

Comments may be included within a macro definition.
Storing the comments with the macro (so that they will
appear when the macro is expanded) takes space however. If
the comment within the macro definition is preceded by two
semicolons (instead of the normal one), the comment will be
ignored during the definition of the macro, and will not be
stored as part of the definition. This will eliminate the
appearance of the comment every time the macro expansion is
listed, however.

TDL ZBO Relocating/Linking Assembler User's Manual Page 32
Chapter 4: Macros

Created Symbols

When a macro is called, it is often useful to generate
symbols without explicitly stating them in the call. A good
example of this is labels within the macro body. It is
usually not necessary to refer to these label externally lo
the macro expansion, therefore there is no reason why the
programmer should be concerned as to what those labels are.
The same with temporary data areas. To avoid conflicts,
however, it ·is necessary that a different symbol be used
each time the macro is called (even with local symbols, the
macro could be called more than once between two global
symbols). Created symbols are used for this purpose.

Each time a macro that requires a created symbol is
called, a symbol is generated and inserted into the macro.
These symbols are of the form •. nnnn (two periods followed
by four digits). It should be noted that this makes these
symbols local symbols (start with two periods). The
programmer is advised not to use symbols of this form. The
four digits start at 0000 and are increment2d by one each
time a symbol is created.

A created symbol is specified in the macro definition by
preceding a dummy argument by a percent sign (%). When the
macro is called, all dummy arguments of the form %symbol are
replaced by created symbols (each with a different one).
If, however, the position of the dummy argument in the
argument list corresponds to an actual argument provided in
the call, then the actual argument is used in place of the
created one.

An actual argument can in fact be empty (signified by
two consecutive commas in the argument list). An argument
of this kind (a Mnu11• argument) is considered to be defined
as having a value of the empty string (no characters), and
will prevent the generation of a created symbol for its
corresponding dummy argument.

For example:

.DEFINE PRJ~T[A,%8)~
(CALL LINPRT

JMP %8
.ASCIS \A\
\B:]

This macro prints a message on the printer. The first
argument to the macro is the text string to be printed.
LINPRT is a line printer routine. Labelling the location
following the text is necessary because of the indeterminate
length of the message. The use of 3 created symbol here is
useful since there would normally be no reason to reference
the label. Calling the macro by:

TDL Z80 Relocating/Linking Assembler User's Manual Page 33
Chapter 4: Macros

PRINT This is the message

would result in printing "This is the message" when the
assembled macro was executed. If it had been called:

PRINT This is the message,MAJN

the message would have been printed, but control would be
transferred to the label MAIN, which substituted for %8
instead of a created symbol.

Concatenation

The apostrophe or single quote {') is defined within a
macro definition as the concatenation operator. This allows
a macro argument to be only part of a symbol or expression,
with the character string which is substituted for the dummy
argument being joined with other character strings that are
part of the macro definition to form a complete symbol or
expression. This joining is called concatenation.
Concatenation is performed by the assembler when an
apostrophe is used between the strings to be joined (one or
both of which must be a dummy macro argument). For example:

.DEPINE BR(A,B]=
(JR'A B]

defines a conditional branch
argument A is appended to the
If the call were:

BR Z,LOOP

statement. When called, the
JR to form a single symbol.

then the generated code would be:

JRZ LOOP

Default Arguments

Normally, missing arguments in a macro are replaced by
nulls. Por example, in the macro:

.DEFINE BYTES(Al,A2,A3,A4,A5,A6J~
(.BYTE Al,A2,A3,A4,A5,A6]

a call of BYTES(l,2] would generate an error because of the
missing arguments to the pseudo-op .aYTE.

To remedy this, the assembler provides the programmer
with the means to supply default arguments to be used when
no argument is provided in the macro call. Default
arguments are defined as part of the macro definition by
enclosinq them in parentheses and inserting them i~mediately

TDL ZBO Relocating/Linking Assembler User's Manual Page 34
Chapter 4: Macros

after the dummy argument to which they refer. To solve the
above problem, the definition would be written as:

.DEFrnE aYTES [Al co> ,A2 co> ,A3 co> ,A4 co> ,AS co> ,A6 CO> J •
[.BYTE Al,A2,A3,A4,A5,A5]

which would always generate six bytes of data, regardless of
how many arguments were provided in the call.

ASCII Interpretation of Numeric ~rguments

If the reverse slash (\) preceeds the first character of
an argument in a macro call, the value of the expression
following the reverse slash is converted to an ASCII string.
This string is then used as the argument to the call. The
value is considered to be a 16-bit positive value, and the
conversion is done in the current radix. Leading zeros are
suppressed unless the value is zero.

For example:

A • 5
B • 6
MACRO \A+B, \A*B

is the same as:

MACRO 11, 30

if the current radix is 10.

Macro Expansion Termination

Under normal conditions, a macro exoansion terminates at
the end of the macro definition. It iS sometimes desirable
to terminate the macro expansion prior to the end of the
definition. This is usually done as part of some
conditional assembly within the macro. A special pseudo-op
is provided for this purpose:

.EXIT

When processed by the assembler, the .EXIT pseudo-op
immediately terminates the macro expansion, just as if the
end of the macro had been encountered. Only the current
expansion is terminated if multiple macro expansions are
being nested.

User Defined Macro Errors

It is sometimes desirable to have a macro cause an
assembly error. This might be done when invalid parameters
are passed to the macro, or if parameters are missing. A

TDL ZBO Relocating/Linking Assembler User's Manual Page 35
Chapter 4: Macros

special pseudo-op is provided to allow this:

.ERROR dtextd

This pseudo-op will cause an asterisk (*) to be listed as
the error code, the error count to be incremented by one,
and the line to be listed as an error. The delimited text
is treated exactly as in a .REMARK pseudo-op, and can be
used to provide information about the nature of the error.

Macros may be nested. This means that macros may be both
called and defined within other macros. A macro that is
defined within another macro may not be called until the
defining macro has been called. At that time, the new macro
is available to be called by any statement.

The only limit to how many levels deep macro calls and
definitions may be nested is the amount of memory available.

TDL ZBO Relocating/Linking Assembler User's Manual Page 36
Appendix A: Summary of Machine Operation Mnemonics

Appendix A

Summary of Machine Operation Mnemonics

The following section presents a summary of the zeo
machine operations and their assembler mnemonics. The
appendix is arranged by type of instruction for ease of
reference. For further information on the · machine
operations, refer to the "ZILOG ZBO-CPU ·rechnical Manual".

To make the information presented more readily usable, a
shorthand notation is used for describing the assembler
format of the instruction and its actual operation. All
capital letters and special charcters in the mnemonic
description are required. The lower case letters indicate a
class of values which can be inserted in the instruction at
that point. A single lower case letter indicates an 8-bit
quanity or register, while a double lower case letter
indicates a 16-bit quantity or register. A symbol enclosed
in parentheses in the machine operation section indicates
that the value whose address is specified is used. The
following is a summary of the notation used; exceptions will
be noted where appropriate in the following sections.

r one of the 8-bit registers A, B, C, D, E, H, L
n any 8-bit absolute value
ii an index register reference, either X or Y
d an 8-bit index displacement where -128 < d < 12i
zz B for the BC register pair, D for the DE pair
nn any 16-bit value, absolute or relocatable
rr B for the BC register pair, D for the DE pair, H for the

HL pair, SP for the stack pointer
gq B for the BC register pair, D for the DE pair, H for the

HL pair, PSW for the A/Flag pair
s any of r (defined above), M, or d(ii)
!Pf interupt flip-flop
CY carry flip-flop
ZF zero flag
tt B for the BC register pair, 0 for the DE pair, SP for

the stack pointer, X for index register IX
uu B for the BC register pair, D for the DE pair, SP for

the stack pointer, Y for index register IY
b a bit position in an 8-bit byte, where the bits are

numbered from right to left 0 to i
PC program counter
v(n) bit n of the 8-bit value or register v
v(n-m] bits n through m of the 8-bit value or register v
vv\H the most significant byte of the 16-bit value or

register vv
vv\L the least significant byte of the 16-bit value or

register vv

TDL ZBO Relocating/Linking Assembler User's Manual Page 37
Appendix A: Summary of Machine Operation Mnemonics

Iv an
Ov an
w<-v
w<->v

input operation on poet v
output operation on port v
the value of w is replaced by the value of v
the value of w is exchanged with the value of v

TOL Z80 Relocating/Linking Assembler User's Manual Page 38
Appendix A: Summary of Machine Operation Mnemonics

8-Bit Load Group

Mnemonic Operation I of Bytes
-------- --------- ----------
HOV r,r' r <- r' 1
HOV r,H r <- IHL) 1
HOV r,d(ii) r <- (ii+d) 3
HOV M, r IHL) <- r 1
HOV d (ii), r (ii+d) <- r J
MVI r,n r <- n 2
MVI H,n IHL) <- n 2
MVI d (ii) ,n (ii+d) <- n 4
LOA nn A <- Inn) 3
STA nn Inn) <- A 3
LOAX zz A <- (zz) 1
STAJ(zz (ZZ) <- A 1
LOAI A <- I 2
LOAR A <- R 2
STAI I <- A 2
STAi! R <- A 2

TDL ZBO Relocating/Linking Assembler User's Manual Page 39
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

LXI
LXI
LBCD

LDED

LHLD

LIXD

LrYD

LSPD

SBCD

SDED

SHLD

SIXD

SI~D

SSPD

SPHL
SPIX
SPIY
PUSH

PUSH

POP

POP

rr,nn
ii,nn
nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

nn

qq

ii

qq

ii

16-Bit Load Group

Operation

rr <- nn
ii <- nn
B <- (nn+l)
c <- (nn)
0 <- (nn+l)
E <- (nn)
H <- (nn+l)
L <- (nn)
IX\H <- (nn+l)
IX\L <- (nn)
JY\H <- (nn+l}
IY\L <- (nn)
SP\H <- lnn+l)
SP\L <- Inn)
(nn+l) <- B
(nn) <- c
(nn+l) <- D
(nn) <- E
(nn+l) <- H
(nn) <- L
(nn+l) <- IX\H
(nn) <- rx\L
(nn+l) <- JY\H
(nn) <- JY\L
(nn+l) <- SP\H
(nn) <- SP\L

SP <- HL
SP <- IX
SP <- IY
(SP-1) <- qq\H
(SP-2) <- qq\L
SP <- SP - 2
(SP-1) <- ii\H
(SP-2) <- ii\L
SP <- SP - 2
qq\H <- (SP+l)
qq\L <- (SP)
SP <- SP + 2
ii\H <- (SP+l)
ii\L <- (SP)
SP <- SP + 2

t of aytes

]

4
4

4

]

4

4

4

4

4

]

4

4

4

1
2
2
1

2

1

2

TDL ZSO Relocating/Linking Assembler User's Manual Page 40
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

XCHG
EXAf
EXX
XTHL

XTIX

XTJ~

LOI

LOIR
LOO

LDDR
CCI

CCIR

cco

CCDR

Exchange and Block Transfer and Search Group

Operation

HL <-> DE
PSW' <-> PSW I

SCDEHL <-> aco&HL'
H <-> (SP+l l
L <-> (SP)
IX\H <-> (SP+l)
IX\L <-> (SP)
U\H <-> (SP+l)
IY\L <-> (SP)
(OE) <- (HL)

OE <- DE + l
HL <- HL + l
BC <- BC - l
repeat LOI until BC=O
(OE) <- (HL)
OE <- OE - l
HL <- HL - l
BC <- BC - l
repeat LOO until BC=O
A - (HL)
HL <- HL + l
BC <- BC - l
repeat CCI until

or BC=-0
A - (HL)
HL <- HL - l
BC <- BC - l
repeat CCD until

or BC"'O

A• (HL)

A• (HL)

I of bytes

l
l
l
l

2

2

2

2
2

2
2

2

2

2

TOL ZSO Relocating/Linking Assembler User's Manual Page 41
Appendix A: Summary of Machine Operation Mnemonics

8-Bit Arithmetic and Logical Group

Mnemonic Operation I of Bytes
-------- --------- ----------
ADD r A <- A + r 1
ADD M A <- A + (HL) 1
ADD d (ii) A <- A + (ii+d) J
ADI n A <- A + n 2
ADC s A <- A + s + CY
ACI n
SUB s A <- A - s
SUI n
SBB s A <- A - s - CY
SBI n
ANA s A <- A • s
ANI n
ORA s A <- A I s
ORI n
XRA s A <- A s
XRI n
CMP s A - s
CPI n
INR s s <- s + 1
OCR s s <- s - 1

TDL ZSO Relocating/Linking Assembler User's Manual Page 42
Appendix A: Summary of Machine Opecation Mnemonics

General Purpose Arithmetic and Control Group

Mnemonic Operation t of Bytes
-------- --------- ----------
CAA convert A to packed BCD l

after an add or
subtract of packed BCD
operands

CMA A <- tA l
NEG A <- -A 2
CMC CY <- tCY l
STC CY <- l l
NOP no operation l
HLT halt l
DI IFF <- 0 l
EI IFF <- l l
IMO interrupt mode 0 2
I Ml interrupt mode 1 2
IM2 interrupt mode 2 2

TDL Z80 Relocating/Linking Assembler User's Manual Page 43
Appendix A: Summary of Machine Operation Mnemonics

16-Bit Arithmetic Group

Mnemonic Operation • of Bytes
-------- --------- ----------
DAD rr HL <- HL + rr l
DADC rr HL <- HL + rr + CY 2
DSBC rr BL <- HL - rr - CY 2
DADX tt rx <- rx + tt 2
DADY uu rY <- rY + uu 2
INX rr rr <- rr + l l
INX ii ii <- ii + l 2
DCX rr rr <- rr - l l
DCX ii ii <- ii - l 2

TDL ZBO Relocating/Linking Assembler User's Manual Page 44
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

RLC

RAL

RRC

RAR

RLCR s

RALR s

RRCR s

RARR s

SLAR s

SRAR s

SRLR s

RLD

RRD

Rotate and Shift Group

Operation

Aln+l] <-Aini
AIOJ <- Al7]
CY <- Al7]
Aln+l] <-Aini
AIOJ <-CY
CY<- A(7]
A In] <- A ln+l]
Al7J <- AIOJ
CY <-AIOI
A In] <- A ln+l]
Al7J <-CY
CY <- AIOJ
s ln+l] <- s In]
slOJ <- sl7J
CY<- s(7]
sln+l] <-sin]
slOJ<-CY
CY<- sl7J
sin] <- sln+l]
sl7J <- slOJ
CY<- slOJ
s In] <- s ln+l]
sl7J <-CY
CY<- slOJ
s ln+l J <- s In]
slOJ <- 0
CY <- s(7]
s In] <- s (n+l)
sl7] <- sl7]
CY <- slOJ
sin) <- sln+l]
•171 <- 0
CY <- slOJ
AI0-3] <- (HL) 14-7)
(HL) 14-7) <- (HL) I0-3)
(HLJI0-3] <- AI0-3]
(HL))0-3 I <- (HL) 14-;j
(HL) 14-7] <- AI0-3]
A I0-3] <- (HL) 10-3]

I of Bytes

1

1

1

1

2 (or 4)

2

2

TDL Z80 Relocating/Linking Assembler User's Manual Page 45
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

BIT
BIT
BIT
SET
RES

b,r
b,M
b,d (ii)
b,s
b,s

Bit Set, Reset, and Test Group

Operation

ZF <- lr[b)
ZF <- I (HL) [b)
ZF <- I (ii+d) [b)
s[b) <- l
s [b) <- 0

I of Bytes

2
2
4

TDL Z80 Relocating/Linking Assembler User's Manual Page 46
Appendix A: Summary of Machine Operation M~emonics

Jump Group

Mnemonic Operation J of Bytes
-------- --------- ----------
JMP nn PC <- nn 3
JZ nn if zero, then JMP 3

else continue
JNZ nn if not zero 3
JC nn if carry 3
JNC nn if not carry 3
JPO nn if parity odd 3
JPE nn if parity even 3
JP nn if sign positive 3
JM nn if sign negative 3
JO nn if overflow J
JNO nn if not overflow 3
JMPR nn PC <- nn 2

where -126 < nn-PC < 129
JRZ nn if zero, then JMPR 2

else continue
JRNZ nn if not zero 2
JRC nn if carry 2
JRNC nn if not carry 2
OJNZ nn B <- B - 1 2

if B•O then continue
else JMPR

PCHL PC <- HL 1
PCIX PC <- IX 2
PC!Y PC <- IY 2

TOL Z80 Relocating/Linking Assembler User's Manual Page 47
Appendix A: Summary of Machine Operation Mnemonics

Mnemonic

CALL

CZ

CNZ
cc
CNC
CPO
CPE
CP
CM
co
CNO
RET

RZ

RNZ
RC
RNC
RPO
RPE
RP
RM
RO
RNO
RETI
RETN

RST

nn

nn

nn
nn
nn
nn
nn
nn
nn
nn
nn

n

Call and Return Group

Operation

(SP-1) <- PC\H
(SP-2) <- PC\L
SP <- SP - 2
PC <- nn
if zero, then CALL

else continue
if not zero
if carry
if not carry
if parity odd
if parity even
if sign positive
if sign negative
if overflow
if not overflow
PC\H <- (SP+l)
PC\L <- (SP)
SP <- SP + 2
if zero, then RET

else continue
if not zero
if carry
if not car t·y
if parity odd
if parity even
if sign positive
if sign negative
if overflow
if no overflow
return from interrupt
return from non-maskable
interrupt

(SP-1) <- PC\H
(SP-2) <- PC\L
PC <- 8 * n

where 0 <= n < a

t of Bytes

3

3

3
3
3
3
3
3
3
3
3
1

1

1
1
1
1
l
1
1
1
l
2
2

1

TDL Z80 Relocating/Linking Assembler User's Manual Page 48
Appendix A: Summary of Machine Operation Mnemonics

Input and Output Group

:otnemonic Operation I Of Bytes
-------- --------- ----------
IN n A <- In 2
rnP [[<- I(C) 2
INI (HL) <- I (C) 2

B <-a.- l
HL <- HL + l

INIR repeat I~I until B=O 2
IND (HL) <- I (C) 2

B <- B - l
HL <- HL - l

INDR repeat IND until B=O 2
OUT n On <- A 2
OUTP [O(C) <- [2
OUTI O(C) <- (HL) 2

B <- B - l
HL <- HL + l

OUT IR repeat OUTI until B•O 2
OUTD O(C) <- (HL) 2

B <- B - l
HL <- HL - l

OUT DR repeat OUTD until B=O 2

TDL Z80 Relocating/Linking Assemble[Use['S Manual Page 49
Appendix B: Summary of Pseudo-Ope[ation Mnemonics

Appendix B

Summary of Pseudo-Operation Mnemonics

.ASCII dtextd I [n) .••

The .ASCII pseudo-op enters 7-bit ASCII characters into
the program. The text is either ente[ed between two
delimiters, or as a numeric value enclosed in square
brackets ([]),and the two forms may be intermixed and
repeated as desi[ed.

• ASCIS dtextd [n) •••

The .ASCJS pseudo-op enters 7-bit ASCII characters into
the p[Og[am, and flags the last cha[acter by setting
its high-order bit on. The format of the text is the
same as fo[the .ASCII pseudo-op .

• ASCIZ dtextd I [n) •••

The .ASCIZ pseudo-op enters i-bit ASCII characte[S into
the program, and flags the end of the cha[acters by
inserting an additional null byte. The fo[mat of the
text is the sa~e as for the .ASCII pseudo-op .

. BLKB nn

The .BLKB pseudo-op rese[ves a block of contiguous
sto[age nn bytes long •

• BLKW nn

The .BLKW pseudo-op [eserves a block of contiguous
storage nn words long (nn x 2 bytes) .

. BY'TE n (, n ...)

The .BYTE pseudo-op enters single
p[ogram. Multiple values may be
them with a comma .

. DEFINE symbol(argl,arg2, .•.]=(text]

byte values into the
entered by separating

The .DEFINE pseudo-op defines a macro with the name
symbol. argl through argn are optional dummy
a[guments. The body of the mac[o is [@p[esenled by
text.

TDL Z80 Relocating/Linking Assembler User's Manual Page 50
Appendix 8: Summary of Pseudo-Operation Mnemonics

.END nn

The .END pseudo-op signals the end of the assembly.
When encountered during PASS 1, it simply returns to
the initialization section. During a listing pass, it
initiates the listing of the symbol table (if not
previously suppressed by the .XS~M pseudo-op). During
a punch pass, it generates an EOP record on the hex
tape containing the value nn as the starting address of
the object program .

. ENTRI symbol! (, symbol2 •.•)

The .ENTRY pseudo-op identifies the internally defined
symbols which are subroutine library entry points to
this program. Multiple symbols may be identified by
separating them with commas .

. ERROR dtextd

• EXIT

The .ERROR pseudo-op causes an n•• error to occur,
forcing the listing of the current line, and an error
notification. The delimited text is treated as a
.REMARK .

The .EXIT pseudo-op causes an immediate exit from the
current macro expansion to occur .

• EXTERN symbol! (, symbol2 ... }

The .EXTERN pseudo-op defines
referenced in this program but
separately assembled, program.
defined by separating them with

• I BOBO

those symbols which are
are defined in another,
Multiple symbols can be
commas .

The .18080 pseudo-op
This warning will be
unique to the zeo is

enables the Z warning message.
given whenever a machine operation
encountered •

. !DENT symbol

The .!DENT pseudo-op gives the module a name for later
use by the linkage editor.

TDL ZOO Relocating/Linking Assembler User's Manual Page 51
Appendix B: Summary of Pseudo-Operation Mnemonics

.INTERN symboll {, symbol2 ..•]

The .INTERN pseudo-op identifies those symbols which
ace defined in this program and which will be
referenced as external symbols by some separately
assembled program. Multiple symbols may be identified
by separating them with commas .

. LA.DOR

.LALL

The .LAOOR
displaying
image with

pseudo-op changes the listing
16-bit quantities to displaying
the least significant byte first.

mode from
the zeo

The .LALL pseudo-op causes the assembler to list every
text character processed, including those suppressed in
the normal listing .

. LCTL

. LINK

. LIST

The .LCTL pseudo-op causes the assembler to list all
listing control statements .

The .LINK pseudo-op causes the assembler to output
linkage information to the object file •

The .LIST pseudo-op resumes a listing which has been
stopped by the .XLIST pseudo-op .

. LIMAGE

The .LIMAGE pseudo-op changes the listing mode to
display every byte of object code generated rather than
the normal mode of a maximum of five bytes per
statement .

. LOC nn

The .LOC pseudo-op changes the value of the assembler's
program counter to nn. If nn is relocatable, then all
labels will be assigned relocatable values. If it is
absolute, then absolute values will be assigned.

TDL Z&O Relocating/Linking Assembler User's Manual Page 52
Appendix B: Summary of Pseudo-Operation Mnemonics

.LSYM

The .LSYM pseudo-op reenables the listing of the symbol
table during the .END pseudo-op processing after it has
been disabled by the .XSYM pseudo-op. The .LSYM
pseudo-op must occur prior to the .END pseudo-op to be
effective •

• MASYN symboll,symbol2

The .MASYN pseudo-op
macro to be the same
Symbol2 is defined to
defined as symbol! .

allows the definition of a new
as a previously defined one.

be a macro identical to the one

. OPSYN symboll,symbol2

. PABS

• PAGE

. PBIN

The .OPSYN pseudo-op allows the definition of a new op
code mnemonic as a synonym of an already existing one.
The symbol! must be a defined machine or pseudo op code
(or one previously defined using .OPSYN), symbol2 will
be defined to be the same operation .

The .PASS pseudo-op signals that the hex
produced from this point on in the assembly
absolute (INTEL compatable) format •

object tape
is to be in

The .PAGE pseudo-op causes a skip to the top of the
next page during a listing pass •

The .PBIN pseudo-op specifies that the object tape is
to be produced in binary .

• PHEX

. PREL

The .PHEX pseudo-op specifies that the object tape is
to be produced in ASCII .

The .PREL pseudo-op signals that
produced from this point on in the
relocatable (TDL standard) format.

the hex object tape
asse~bly is to be in

TDL Z80 Relocating/Linking Assembler User's Manual Page 53
Appendix B: Summary of Pseudo-Operation Mnemonics

.PRNTX dtextd

. PSYH

The .PRNTX pseudo-op will cause
printed on the console whenever
the assembly process .

its text string to be
it is encountered in

The .PSYM pseudo-op signals that the entire symbol
table from the assembly is to be punched at the end of
the object tape. The .PSYM pseudo-op must appear prior
to the .END pseudo-op to be effective .

. RADIX n

The .RADIX pseudo-op changes the default base in which
a numeric constant is interpreted during the assembly
to n. The valid values for n are 2, 8, 10, or 16. The
value is always interpreted as a decimal number .

. RAD40 symbol

The .RAD40 pseudo-op generates a unique 4 byte value in
radix-40 notation for the symbol given. The symbol
must conform to the rules for any symbol in the
assembly. This pseudo-op is used mostly for developing
system software utilizing symbol tables .

. RELOC

The .RELOC pseudo-op restores the
assembler's program counter to whatever
the immediately preceding .LOC pseudo-op .

value of the
it was before

. REMARK dtextd

The .REMARK pseudo-op allows the entry of multiple
comments into the source program. All of the
between the delimiters is listed but is ignored.
text may contain carriage return/line feeds .

line
Lext
The

. RLIST

. SALL

The .RLIST pseudo-op restores the listing control flags
from the top element of the .SLIST push-down stack .

The .SALL pseudo-op suppresses all macro expansions on
the assembly listing (normally all lines generating
code are listed).

TDL Z80 Relocating/Linking Assembler User's Manual Page 54
Appendix B: Summary of Pseudo-Operation Mnemonics

.SBTTL dtextd

The .SBTTL pseudo-op sets the sub-title foe the
assembly listing to the specified text string (which
must be less than 72 characters in length). If the
.SBTTL pseudo-op is the first operation after a .PAGE,
the sub-title will appear on the new page •

. SLIST

The .SLIST pseudo-op saves the current listing control
flags on the top of a four element push-down stack .

• SYN symboll,symbol2

The .SYN pseudo-op makes any two symbols synonymous.
The symbol tables are searched for symbol! in the
nocmal opecand field order (label/symbol, macro,
opcode), and symbol2 is defined to have the same value
as symbol! .

• SYSYN symboll,symbol2

The .SYSYN pseudo-op makes one symbol the synonym of an
already defined symbol/label. The value of a
symbol/label symbol! is obtained, and symbol2 is
defined to be the same type and value .

. TITLE dtextd

The .TITLE pseudo-op sets the title for the assembly
listing to the specified text string (which must be
less than 72 chacacters in length). The title is put
at the top of every page during a listing. If the
.TITLE pseudo-op is the first operation after a .PAGE
pseudo-op, the title will be listed on the new page .

• WORD nn (, nn •..)

The .WORD pseudo-op enters 2-byte values into the
program in proper zeo format (least significant byte
first). Multiple values may by entered by separating
them with a comma .

. XAOOR

The .XADDR pseudo-op is used after
to return to the standard format
values.

a .LADDR pseudo-op
of listing 16-bit

TDL ZBO Relocating/Linking Assembler User's Manual Page 55
Appendix B: Summary of Pseudo-Operation Mnemonics

.XALL

The .XALL pseudo-op is used after a .LALL oc .SALL
pseudo-op to return to the standard listing mode .

. XCTL

The .XCTL pseuod-op is used
cetucn the standard mode of
listing control statements •

after a .LCTL pseudo-op to
suppressing the listing of

. XI MAGE

The .XIMAGE pseudo-op is used after
to cetucn to the standard listing
object bytes pee statement .

a .LIMAGE pseudo-op
mode of only five

. XLINK

The .XLlNK pseudo-op is used after a .LINK pseudo-op to
suppress the inclusion of linkage information in the
object file .

. XLIST

The .XLIST pseudo-op suppresses
following statements (unlil a
encountered) •

the listing of all
.LIST pseudo-op is

. XPSYM

. XSYM

• ZBO

The .XPSYM pseudo-op disables the punching of the
symbol table at the end of the object tape after it has
been enabled by the • PSYM pseudo-op. The . XPS YM
pseudo-op must occur pcioc to the .END pseudo-op to be
effective .

The .XSYM pseudo-op disables the listing of the
table by the . END pseudo-op (unless reenabled
.LSYM pseudo-op). The .XSYM pseudo-op must
before the .END pseudo-op to be effective .

symbol
by the
appear

The .ZOO pseudo-op is used to disable the effect of a
previous .reoeo pseudo-op. This inhibits the z warning
message on machine operations unigue to the Z80.

TDL ZBO Relocating/Linking Assembler User's Manual Page 56
Appendix B: Summary of Pseudo-Operation Mnemonics

.IFx ar9, (true text) ... {(false text)}

The .IFx pseudo-op will assemble the true text
specified only if the particular condition being tested
for is true, The optional false text is assembled if
the condition is false. The .IFx pseudo-ops and their
conditions are as follows:

.IFl: assembling pass l

.IF2: not assembling pass 1

.IFB: blank

.IFDEF: defined

.IFDIF: different

.IFE: zero or blank

.IFG: positive

.IFGE: zero or positive

.IFIDN: identical
• IFL: negative
.IFLE: zero or negative
.IFN: not zero
.IFNB: not blank
.IFND&F: not defined

TDL Z80 Relocating/Linking Assembler User's Manual Page 57
Appendix C: Operation of the Assembler with a TDL Monitor

Appendix C

Operation of the Assembler with a TOL Monitor

The TDL Z80 Relocating Assembler is designed to operate
with a TDL System Monitor. It relies upon the Monitor for
all I/O and memory management functions. (For further
information on the TDL Monitors, consult the appropriate
monitor reference manual.) When operating, the assembler
will use all available memory for its various tables (all
memory between the end of the assembler and the highest
available memory location). No memory location below lhe
assembler is changed by its operation.

The first step in using the assembler is to load it into
the desired memory location using the monitor nR" command.
After the load has been completed, if the monitor is not
located at the standard memory address (FOOO hex), it will
be necessary to change the assembler's monitor transfer
vector to point to the monitor. This transfer vector
consists of nine (9) JHP instructions located beginning at
relative address six (6 hex) in the program. The addresses
of these instructions should be modified to point to the
correct locations.

After the assembler is loaded and ready to operate, the
appropriate monitor commands should be used to designate the
reader, punch, and list devices as desired. The console
device is also used during the assembly. Afler readying the
source program in the reader, a "G" command should be used
to start the assembler.

It is important to note that the assembler requires a
"controlled'' reader device (a device which provides
characters on demand, at whatever rate the program wants
them). In the same manner in which the assembler "waits"
for the next character from the reader, the reader must be
capable of wwaiting" for the next demand from the assembler.
(For further information on converting a non-controlled
reader to a controlled one, see one of the TOL System
Monitor reference manuals.)

When first started (and whenever an assembly pass is
completed), the assembler asks "PASS=" on the console.
Valid responses to this are only the numbers from 0 to a. A
response of 0 will return to the monitor, but in a manner
which will allow resumption of the assembly by reentering
the "G" command. The values l through 4 signify which
assembler pass is desired, as follows:

l signifies the first assembly pass. The source is read,
and all necessary tables are built.

TDL ZBO Relocating/Linking Assembler User's Manual Page 58
Appendix C: Operation of the Assembler with a TDL Monitor

2 signifies the listing
and a listing of the
the list device.

only pass. The source is re-read,
assembled program is produced on

3 signifies the punch only pass. The source is re-read,
and an object tape of the assembled program is produced
on the punch device.

4 signifies the combination of passes 2 and 3.

The values of S through e provide the same options as l
through 4, but do not reinitialize the assembler in any way
before proceeding. This allows the assembly of a program
residing on more than one source tape. Each of the pieces
must, however, be terminated by its own .END pseudo-op.

During the first assembly pass (pass 1), it is possible
that some error messages will be output on the list device.
These errors will be those uniquely determined during the
pass.

During the punch only pass (pass 3), no error messages
will be listed, but an errors indication will be given on
the console at the end of the assembly.

While an assembly is taking place, a number of console
control options are available. A control-C will always trap
back to the monitor after the com?letion of the current
statement. The assembly may be resumed (if no registers
have been changed) by using the monitor "G" command. A
control-C will, however, result in monitor output on the
console device, which could spoil a listing if the console
is the list device. To avoid this, the use of a control-S
will temporarily halt the assembly (e.g. to put more paper
in the teletype), but will not return lo the monitor or
cause any spurious output on the console device. A
control-Q will resume the assembly. If a control-C is
entered after the control-S, a trap to the monitor will
occur as above. In addition, a control-T may be used to
stop the assembly at the top of the next output page of lhe
listing. When the control-T is entered on the keyboard,
nothing will happen until the top-of-page is reached, at
which time the assembler will act as if a control-S had been
entered (see above). All of the above features will,
however, be disabled if the reader device is specified as
the Teletype.

When starting a listing pass, the paper in the list
device should be positioned at the top line of a page. The
assembler will count lines and put a page number and heading
at the top of every page. The page width is determined by
the assigned list device. If the list device is the
teletype (AL:::1TJ, then the page is assumed to be i2
characters wide. If not, then il is assumed to be ao
characters wide. In either case, it is assu~ed to be 66
lines long, and a two line margin is left at the top and the

TDL ZBO Relocating/Linking Assembler User's Manual Page 59
Appendix D: Error Codes

bottom of the page.

TDL ZBO Relocating/Linking Assembler User's Manual Page 60
Appendix D: Error Codes

Appendix D

Error Codes

Errors in the source program encountered during the
assembly process are indicated on the listing by a single
letter code at the left of the statement in error. Although
the assembler may detect more than two errors per statement,
only the first two codes are given. As an added aid to
locating the error in the statement, a question mark is
printed to the right of the character which triggered the
error. All errors generate a question mark, even if they
are not one of the first two per statement.

The following is a list of the error codes and their
meanings:

A Argument error. This is a broad class of errors which
may be caused by many different things.

B

D

Bad macro error. Either an error
or a call on a bad macro.

Duplicate symbol reference error.
multiply-defined. The first value
is used in the assembly.

in a mac[O definition

The symbol flagged is
given to the symbol

E External symbol error. An external symbol is improperly
used in the statement.

I Internal symbol error. An internal symbol is improperly
used in the statement.

L Label error. An invalid character has been found in the
label field of the statement.

M Multiply-defined symbol error. A symbol is defined more
than once. This error is given mostly during Pass 1.
During the other passes, it usually will appear as a
phase error (P).

0 Operation error. The
not a valid machine
symbol.

symbol in the operation field is
ope[ation code, macro name, or

P Phase error. A label is assigr.ed a value during Pass 2
(or 3 or 4) which is different than that assigned during
Pass 1. ·

0 Questionable error. This is
which the assembler gives

a broad
when it

class of warnings
finds ambiguous

TDL Z80 Relocating/Linking Assembler User's Manual Page 61
Appendix D: Error Codes

statements. Q errors
code. The assembler
programmer intended.

may or may not generate correct
will attempt to do what the

R Relocation error. A relocatable symbol or expression is
incorrectly used (eg. in a .BLKB pseudo-op).

T Table overflow. One of the Assembler's internal tables
has overflowed. The Assembler will attempt to continue,
but no new labels or macros will be defined.

U Undefined label/symbol error. A symbolic reference
which was never defined is used in the statement.

X Index error. Another character appears in a statement
at a point where only an index register reference is
allowed (X or Y).

z Z80 error. A Z80 machine operation has been encountered
while in 8080 mode (.18080). This is only a warning and
the opcode will be properly assembled •

• User defined macro error. A
encountered.

. ERROR pseudo-op was

TDL ZBO Relocating/Linking Assembler User's Manual Page 62
Appendix E: Object Tape Formats

Appendix E

Object Tape Formats

The TDL Assembler produces two different object tape formats
depending on the use of the .PASS and the .PREL pseudo-ops.
It also punches the two formats two different ways, binary
(.PBIN) and ASCII (.PHEX). Each of the two formats will be
described separately, and where differences between binary
and ASCII exist, they will be noted. In addition, the
.XLJNK option allows the suppression of some of the
information in the relocatable format to allow the direct
production of a relocatable core image module instead of a
relocatable object module.

TDL Object Module Foi·mat Definition

The use of the .PREL pseudo-op (which is default if neither
is specified) causes the generation of the TDL Object Module
Format. This format allows for simple relocation of
complete programs by the TDL System Monitors, and for
complex relocation and linking of modules by the TDL Linkage
Editor.

The default object module format is an extension of the
INTEL dhex f ileM format, but is not compatible with that
format. The module consists of a sequential file of ASCII
characters representing the binary data, symbol, and control
information required to construct a final program from the
module. All binary bytes within this structure are
represented as two ASCII characters corresponding to the
hexadecimal value of the byte (e.g. 11001001 -> C9). All
ASCII values are represented by the corres?onding ASCII
character (e.g. A -> A). In the binary punch mode, the
format is basically the same, but all binary bytes are
represented by themselves, not as two ASCII characters.

Each of the different records within
by the use of a prompt character as
the record (in the ISTEL format,
valid prompt characters are:

the module is indicated
the first character of

this is the•:"). The

-> module identification record
@ -> entry point record
I -> internal sy:nbol record
\ -> external symbol/relocation base record
& -> symbol table record

-> data/program/end-of-file record

TDL Z80 Relocating/Linking Assembler User's Manual Page 63
Appendix E: Object Tape Formats

(Note that only the records prompted by a ; are output if
the .XLINK mode is in effect.)

Every record in the module is terminated by a one byte
binary checksum of all of the preceeding bytes in the record
except for the prompt character. The checksum is the two's
complement of the sum of the preceeding bytes. Any output
format (two character binary, one character ASCII oc one
byte binary) still counts as only one byte in the checksum
(i.e. before conversion foe output),

In addition, each cecocd in the ASCII punch mode is
pceceeded by a carriage cetucn/line feed sequence to
facilitate listing the module on an external device. It is
not present in the binary punch mode.

The following descriptions ace specified ·assuming ASCII
punch mode. With the above noted exception of the carriage
cetucn/line feed pceceeding each record, the binary format
is identical, with each binary byte being left unexpanded.
ASCII characters ace left as they ace in either mode.

Module Identification Record (!)

Byte 1-2
3
4-9
10-11

CR/LF
Exclamation point (!) prompt.
ASCII module name.
Checksum.

Entry Point Record (@)

Byte 1-2
3
4-5
6-??

??

CR/LF
At-sign (@) prompt.
Number of entry points in this record.
ASCII names of entry points, 6 bytes per name.
The names are left justified and blank filled.
Checksum

Internal Symbol Record II)

Byte 1-2
3
4-5
6-11

12-13

CR/LF
Pound sign (I) prompt.
Number of internal symbols in this record.
ASCII name of internal symbol, left justified
and blank filled.
Relocation base for symbol. The value of this

TDL ZBO Relocating/Linking Assembler User's Manual Page 64
Appendix E: Object Tape Formats

symbol is relative to the relocation base
specified.

14-17 Symbol value (16 bit).
The above three fields are repeated for each
internal symbol in the record.

?? Checksum.

External Symbol/Relocation Base Record (\)

Byte 1-2
3
4-S

CR/LF
Back-slash
Number of
record.

(\) prompt.
external/relocation symbols in this

6-11 ASCII name of the symbol, left justified and
blank filled.

12-13 Relocation number assigned to this symbol in
this module. This number is unique for each
symbol. It starts with one and increases
sequentially for each subsequent
external/relocation base symbol.

14-li Relocation segment size/exte1·nal reference flag.
If this value is zero, it represents a reference
to a symbol defined externally to this module
(usually a subroutine or global data item). If
it is non-zero, then the value is the size of
the relocation segment as defined in this object
module. This segment can contain either code or
data, and may be located anywhere in memory by
the linkage editor, independent of any other
segment.
The above three fields are repeated for each
symbol contained in this record.

?? Checksum.

Symbol Table Record (&)

Byte 1-2
3
4-??

CR/LF
Ampersand (&) prompt.
The remainder of this record
internal symbol record. All
this module are contained in

Data/Program Record (;)

9yte 1-2
3

CR/LF
Semicolon (;) prompt

is identical to the
symbols defined in

these records.

TDL ZBO Relocating/Linking Assembler User's Manual Page 65
Appendix E: Object Tape Formats

4-S

6-9

10-11

12-13

14-29
lO-??

??

Number of binary data bytes in this record. The
maximum is 32 binary bytes (64 bytes of ASCII
representation). If this value is zero, this
record is a end-of-file record, described below.
Load address of the data relative to the
specified relocation base.
Relocation base for all relocation in this
record. All relocatable values in this record
are added to the current value of the specified
relocation base before being put into memory.
(If . XLINK is in effect, the only allowable
relocation bases are 0 and 1.)
Relocation control byte. This byte controls the
relocation of the next eight bytes in the record
(if that many remain according to the count
field). The bits are used from left to right.
The bits have the following meanings:

0: a single absolute byte -> load
unmodified.

10: a two byte relocatable value, least
significant byte first -> add the 16
bit value to the current relocation
base, and load the result least
significant byte first. (If .><LINK is
in effect, and the current relocation
base is 0, then the 16 bit value is
added to relocation base 1.)

110: a three byte reference to a different
relocation base. The first byte is
the relocation base number, and the
two after that are the 16 bit value,
least significant byte first -> add
the specified relocation base to the
16 bit value, and load the result
least significant byte first. (In
.XLINK mode, this control pattern is
not generated.)

Note that a two or three byte combination is
never broken across a record boundary.
Data bytes controlled as above.
The above control/data byte combinations are
repeated as specified by the count.
Checksum.

End-of-File Record (;)

Byte 1-2
3
4-S
6-9

CR/LF
Semicolon (;) prompt.
Zero to indicate end-of-file record.
Starting address for module relative to the

TDL ZSO Relocating/Linking Assembler User's Manual Page 66
Appendix E: Object Tape Formats

10-11

12-13

specified
optionally
and may be
Relocation
.XLINK mode
Checksum.

relocation base. This address is
generated by the language processor,
zero.

base for starting address. (In
may be only 0 or 1.)

INTEL Object Format

The use of the .PABS pseudo-op causes an INTEL nhexw object
module to be produced. This object tape can also be loaded
by the TDL System Monitors, but provides no relocatability.

All of the above comments concerning byte formats and
checksums apply to this format as well.

Byte 1-2
3
4-5

6-9
10-11
12-??
??

CR/LF
Colon (:) prompt.
Number of binary data bytes in this record. The
maximum number is 32 binary bytes (64 bytes of
ASCII representation). If this value is zero,
this record is an end-of-file record, and the
load address is the program starting address.
Load address of the data in this record.
Unused.
Data bytes.
Checksum.

TDL Z80 Relocating/Linking Assembler User's Manual Page 67
Appendix F: Additional Capabilities under CP/M

Appendix F

Additional Capabilities under CP/M

Library File Generation

It is often desirable to maintain a related set of
independent object modules as a single source and object
file for later use with the library search facility of the
TDL Linkage Editor. To facilitate this the .PRGEND
pseudo-op can be used. The format is:

.PRGENO

This pseudo-op functions identically to the .END pseudo-op,
except that, after completing the assembly of the current
module, the assembler continues with another module
following. Multiple modules assembled in this manner from a
single source file produce a single object file which can be
linked in library search mode, and a single listing. Each
module assembly is completely independent however. The last
module in the source file must be terminated by a .END
pseudo-op, not a .PRGEND.

Library Source File Usage

It is often convenient to be able to utilize the same
section of assembler source code in a number of different
assemblies. The .INSERT pseudo-op allows this to be done
easily. The format is:

.INSERT (d:)file(.ext)

where d is the optional CP/M disk specifier (defaulting to
the source file disk), file is the desired file name, and
ext is the optional file extension (defaulting to ASM).

This pseudo-op causes the specified file to be copied
into the assembly in its entirety, and to be treated exactly
as if it were part of the original source file. All
inserted source is flagged with an "@" on the listing. Only
one level of .INSERT is allowed, they cannot be nested.

This pseudo-op will generate an "F" error if the file is
not found, incorrectly specified, or if an .INSERT is
already in progress.

TDL Z80 Relocating/Linking Assemblec Usec's Manual Page 68
Appendix G: Assemblec Opecation with CP/M

Appendix G

Assemblec Opecation with CP/M

The TDL Z80 Relocating/Linking Assemblec is initiated by
"the CP/M command:

ASH [sd:)file(.ext) [dd:) (switches)

whece

sd is the
soucce

file is the

specification foe the
logged in disk)

ext is the

optional CP/M disk
file (defaults to the
soucce file name
optional source file extension (defaults to

dd
ASH)
is the optional CP/M
output files (defaults

disk specification foe the
to the same as the soucce

file)
switches ace the

each of which
appear in any

optional assembly contco.l switches,
is a single lettec and which may

ocder (with no intervening spaces)

The object file cceated by the
name as the source file, with
.~ABS option was used, and .REL
<.the default).

Switches

A . !ALL

assembly will have the same
an extension of .HEX if the
if the .PRg~ option was used

B listing to both disk ar.d list device
C • LCTL
D listing to disk (file name same as source with extension

of PRtl)
a .PHEX (CP/M default is .PBIN)
I • LIMAGE
K .XLINK (CP/M default is .LINK)
L listinq only - no object file generated
o object only - no listing generated
P • PSYM
S .SALL
X .XLIST
Y • XSYM

Note that all switches with pseudo-op equivale~ts will be
overridden by contrary pseudo-ops within the source prcgram.

TDL ZBO Relocating/Linking Assembler User's Manual Page 6~
Appendix G: Assembler Operation with CP/M

Assemb~y Time Control

All of the assembly time control options (ctl-C, ctl-S,
ctl-T) and page width options described in Appendix C also
apply to the CP/M based version.

	Chapter 1: Introduction
	Chapter 2: Addressing and Relocation
	Chapter 3: Pseudo-Operations
	Chapter 4: Macros
	Appendix A: Summary of Machine Operation Mnemonics
	Appendix B: Summary of Pseudo-Operation Mnemonics
	Appendix C: Operation of the Assembler with a TDL Monitor
	Appendix D: Error Codes
	Appendix E: Object Tape Formats
	Appendix F: Additional Capabilities under CP/M
	Appendix G: Assembler Operation with CP/M

