
,'~.J
-':1- ' _ ...

-,-..
<l~'

... > T d 0: an em :l "

~_ NonStopTM II
System Description
Manual

PIN 82077 BOO

TANDEM NonStop II (TM)

SYSTEM DESCRIPTION MANUAL

Second Edition

Tandem Computers Incorporated
19333 Vallco Parkway

Cupertino, California 95014

April 1982
Printed in U.S.A.

Summary of Changes in This Revision

This manual is the second edition of the NonStop II System Description
Manual. It includes the following changes to the first edition:

• The instruction set definitions have been updated to reflect the
new memory management algorithm for choosing pages to swap out,
which results in the deletion of the PHYREF table and the FLRU,
SLRU, and UREF instructions, plus microcode changes in the MAPS and
UMPS instructions. Microcode changes in the LCKX, BNDW, XSTR, and
XSTP instructions have also been recorded.

• The introductory description of the processor hardware has been
expanded to include a brief discussion of the memory control unit,
control panel, loadable control store, clock generator, PMI,
and DDT.

• Some of the instruction definitions in Section 3 have been
rewritten for greater clarity, and more information on overflow
conditions has been added.

• Appendixes A and C have been combined into a single appendix (B),
in order to bring the symbol definitions next to the table that
uses the symbols. Old Appendix B has been renumbered to
Appendix A.

• Minor technical and typographical errors have been corrected.

Copyright (c) 1981, 1982 by Tandem Computers Incorporated.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
programming language, without the prior written consent of Tandem
Computers Incorporated.

The following are trademarks of Tandem Computers Incorporated:
Tandem, NonStop, AXCESS, DYNABUS, ENABLE, ENCOMPASS, ENFORM, ENSCRIBE,
ENVOY, EXCHANGE, EXPAND, GUARDIAN, PATHWAY, TGAL, XRAY.

PREFACE

This manual provides a conceptual and functional description of the
Tandem NonStop II (TM) system, presented as follows:

• Section 1 summarizes the factors involved in NonStop computer
operation, and tells how this type of operation is achieved
in the Tandem system. This section also stresses the close
interrelationship between the system's hardware and software,
and illustrates how these two aspects of the system interact
to make NonStop performance possible.

• Section 2 describes the principles on which the system hardware
.operates, and shows how the hardware supports NonStop operation.

-~ecTrlcaI~y, lC dlscusses-such raccors as: hardware system
structure, fundamental NonStop functions~ processpr,module
organization, program execution from the hardware standpoint J

data formats and number representation, logical memory
organization, the interrupt system, interprocessor buses and
input/output channels, and physical memory mapping.

• Section 3 defines the instruction set for the Tandem system,
in text form with illustrations.

• Appendixes A and B consist of reference tables pertaining to the
instruction set.

• An index is provided to assist the reader in locating specific
topics in this manual.

This manual was written for potential and present Tandem customers
seeking a functional description of the hardware and instruction set,
for Tandem field analysts and service engineers, and for enrollees
in various courses provided by Tandem.

Before using this manual, one should read Introduction to Tandem
Computer Systems for a more general overview of the system. This
introductory manual explains the basic concepts and purposes behind
the system architecture described in this manual and its counterpart
for Tandem NonStop systems, the NonStop System Description Manual.
Ideally, the reader should also have some working experience with
the Tandem system.

iii

CONTENTS

SECTION 1. INTRODUCING THE TANDEM NonStop II
Introducing Tandem's NonStop and NonStop II
Hardware and Software Integration ••••••••••

COMPUTER SYSTEM ••• l-l
Systems •• .1-4

• .1-5

SECTION 2. HARDWARE PRINCIPLES OF OPERATION.. .2-1
System Structure................... ••••• ..2-1

Independent Multiple Processors.. ••••• .2-2
Dual-Bus Data Paths................. ••••• ..2-2
Dual-Port Device Controllers. ••••• .2-2
Dual-Ported/Mirrored Discs. • •••• 2-5
Multiple Power Sources..... ••••• .2-5
Power Failure Recovery..... •• ••••••••• •••••• ..2-6

----G-t-he-£--F-a--i--;1 u r e To 1 era n t -Fe-a-t-.u--r;..e-s-------~-._ -. -. .-_.----.--.. -_._,----.---. _____________________________ • __ • ___ • ___ • .2J-
Fundamental NonStop Operations.......... • ••• 2-8

Hardware View of the Operating System. .2-8
Primary and Alternate I/O Paths......... ••••• .2-9
Processor Module Checking..... •••••••• .2-11
A NonStop Application....... • •• 2-11

Processor Module Organization.. •• .2-15
Instruction Processing Unit. ..2-15
Memory ••••••••••••••••••••••••
Input/Output Channel ••••••••••
Interprocessor Bus Interface ••
Other Processor Components •••

Operations and Service Processor (OSP)
How the Hardware Executes Programs •••

Code and Data Separation ••
Procedures •••••
Memory Stack •••
Register Stack ••

Data Formats.
Words ••
Bi ts ••
Bytes ••
Doublewords ••
Quadruplewords •••

Number Representation ••
Single Word ••
Doubleword ••
Byte •••••••

. ...

.2-17
• ••• 2-18

.2-20
..2-22

.2-24
•• 2-25

• ••••• 2-25
.2-25

• ••••• 2-26
.2-28
.2-29

• •• 2-29
.2-32

• ••• 2-32
.2-34

..2-34
.2-36

..2-36
.2-37

• •• 2-37

v

Quadrupleword (Decimal Arithmetic Option) ••
Floating-Point and Extended Floating-Point ••
Arithmetic ••••••••

Program Environment.
Code Segment .•••
Data Segment ••••
Register Stack.
Environment Register ••
Procedures and the Memory Stack •••
Memory Stack Operation •••••••••••

Logical Memory .••.•••••.•••••••••••
Calling External Procedures ••
System Tables •.••••••••••••••••
Interrupt System •••••••••••••••

INT and MASK Registers.
System Interrupt Vector.
Interrupt Stack Marker
Interrupt Sequence.
Interrupt Types .••••

Interprocessor Buses.
Bus Receive Table ••
SEND Instruction •••
Bus Transfer Sequence •••
OUTQ, INQ, and Packets ••
INT and MASK Registers ••

Input/Output Channel.
I/O Control Table •.
EIO Instruction ••••••••
IIO and HIIO Instructions .•
Input/Output Sequence ••••••
Dual-Port Controllers and Ownership ••
I/O Channel Interrupts ••.
High-Priority I/O ••••••

Memory Access ••••••••••••••
Logical vs. Physical Memory ••
Memory Table Formats.
Memory Maps •••••.•••••
Absolute Segment Addressing.
Relative
Extended
Extended

Segment Addressing .•
Data Segments •••••••
Address Instructions ••

Memory Errors ••••••••••••••••••

......... . 2-38
• •• 2-38

. 2-39
.2-41

. .• 2-41
• ••• 2-47

• .2-60
.2-63

..2-70
. 2-79

• .2-93
• .2-96

• •••••• 2-101
.2-104

• •• 2-104
• •• 2-107

• ••• 2-107
.2-110

..2-114
.2-117

• •••• 2-119
• ••• 2-119

• ••••••• 2-121
.2-125

• •••• 2-128
.2-130

• ••• 2-130
.2-134

· .2-135
.2-137

• .2-139
• 2-142

· ••.••• 2-142
• ••• 2-142

• •••.• 2-142
• ••••• 2-143

• ••••••• 2-146
• .2-148

• •••••• 2-150
.2-151

..2-152
• •• 2-152

. 3-1
.3-1

SECTION 3. INSTRUCTION SET ••
General Information •••••••••
16-Bit Arithmetic ••••••••• 3-2

vi

32-Bit Signed Arithmetic •••••••••••••••
l6-Bit Signed Arithmetic ••
Decimal Arithmetic Store and Load ••
Decimal Integer Arithmetic •••••••••
Decimal Arithmetic Scaling and Rounding ••
Decimal Arithmetic Conversions ••••••
Floating-Point Arithmetic •••••••••••
Extended Floating-Point Arithmetic ••

.3-4

.3-7
• .3-8

. 3-8
.3-9

. •• 3-10
.3-12

..3-13

Floating-Point Conversions •••
Floating-Point Functionals ••
Register Stack Manipulation •••
Boolean Operations ••••
Bit Deposit and Shift •••••••
Byte Test •••••••••••••••••••
Memory Stack to/from Register Stack •••
Load and Store via Address on Register Stack.
Branching ••••••••••••••••••••••••••••••••••••
Moves, Compares, Scans, and Checksum Computations •••
Program Register Control •••
Routine Calls and Returns ••
Interrupt System •••
Bus Communication.
Input/Output •••••••
Miscellaneous ••••••
Operating System Functions ••

• •• 3-14
.3-17

. 3-18
.3-20

. 3-24
.3-27

. 3-27
.3-36

. 3-41
.3-44

•• 3-51
.3-52

• •• 3-54
.3-55

• •••• 3-56
.3-57

. •• 3-58

APPENDIX A. HARDWARE INSTRUCTION LISTS. .A-l

APPENDIX B. INSTRUCTION SET DEFINITION. .B-l

--------- -------- -

vii

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
2-11.
2-12.
2-13.
2-14.
2-15.
2-16.
2-17.
2-18.
2-19.
2-20.
2-21.
2-22.
2-23.
2-24.
2-25.
2-26.

2-27.
2-28.
2-29.
2-30.
2-31 ..
2-32.

viii

LIST OF FIGURES

Stand-Alone Computer •••••••••••••••••••••••••••••••••••• l-l
Multiprogramming Environment •••••••••••••••••••••••••••• 1-2
Multiple-Processor Environment •••••••••••••••••••••••••• 1-3
Network-Based.Environment ••••••••••••••••••••••••••••••• 1-3
Fault-Tolerant Device Management in a NonStop System •••• 1-6
Controller Port Logic Failure ••••••••••••••••••••••••••• 1-7
Switching Controller Ownership •••••••••••••••••••••••••• 1-8
Elements of Hardware System Structure ••••••••••••••••••• 2-3
Power Distribution in the NonStop II System ••••••••••••• 2-4
I/O Data Paths •• 2-l0
Processor Module Checking ••••••••••••••••••••••••••••••• 2-l2
CPU Down Message •• 2-12
NonStop Application ••••••••••••••••••••••••••••••••••••• 2-l3
Application Takeover by Backup •••••••••••••••••••••••••• 2-l4
Input/Output Channel •••••••••••••••••••••••••••••••••••• 2-l9
Interprocessor Bus Interface •••••••••••••••••••••••••••• 2-2l
Block Diagram of NonStop II Processor Hardware •••••••••• 2-23
Code and Data Separation ••••••• ~ •• ,.,.~,., •••• = •• e •••• ,.2-25
Memory Stack Operation •••••••••••••••••••••••••••••••••• 2-27
Register Stack Operation •••••••••••••••••••••••••••••••• 2-28
Data Formats •• 2-30
Word Addressing ••• 2-31
Byte Addressing ••• 2-33
Doubleword Addressing ••••••••••••••••••••••••••••••••••• 2-35
Quadrupleword Addressing •••••••••••••••••••••••••••••••• 2-35
Elements of the Program Environment ••••••••••••••••••••• 2-42
Code Segment Addressing Range ••••••••••••••••••••••••••• 2-43
P Register and I Register ••••••••••••••••••••••••••••••• 2-43
Displacement Field for Code Segment Instructions •••••••• 2-44
Addressing in the Code Segment •••••••••••••••••••••••••• 2-46
Data Segment Addressing Range ••••••••••••••••••••••••••• 2-48
L Register and S Register ••••••••••••••••••••••••••••••• 2-48
Mode and Displacement Field for Memory Reference

Instructions ••• 2-50
Memory Reference Instruction Addressing Modes ••••••••••• 2-5l
Direct Addressing in the Data Segment ••••••••••••••••••• 2-54
Indirect Addressing in the Data Segrnent ••••••••••••••••• 2-54
Indirect Byte Addressing in the Data Segment •••••••••••• 2-56
Indexing ••• , .. 2-56
Examples of Indexing •••••••••••••••••••••••••••••••••••• 2-59

2-33.
2-34.
2-35.
2-36.
2-37.
2-38.
2-39.
2-40.
2-41.
2-42.
2-43a.
2-43b.
2-44.
2-45.
2-46.
2-47.
2-48.
2-49.
2-50.
2-51.
2-52.
2-53.
2-54.
2-55.
2-56.
2-57.
2-58.
2-59.
2-60.
2-61.
2-62.
2-63.
2-64.
2-65a.
2-65b.
2-66.
2-67a.
2-67b.
2-68.
2-69.
2-70.
2-71.
2-72.
2-73.
2-74.
2-75.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.

Register Stack •• 2-61
Example of Register Stack Operation ••••••••••••••••••••• 2-61
Action of the Register Pointer •••••••••••••••••••••••••• 2-62
Naming Registers in the Register Stack •••••••••••••••••• 2-64
Environment Register •••••••••••••••••••••••••••••••••••• 2-65
Procedure Entry Point and External Entry Point Tables ••• 2-72
Procedure Call and Exit ••••••••••••••••••••••••••••••••• 2-74
First Entries in Procedure Entry Point Table •••••••••••• 2-74
Execution of PCAL Instruction ••••••••••••••••••••••••••• 2-76
Execution of EXIT Instruction ••••••••••••••••••••••••••• 2-78
Land S Registers in Procedure Calls •••••••••••••••••••• 2-80
Land S Registers in Procedure Calls •••••••••••••••••••• 2-81
L-Plus Addressing Mode •••••••••••••••••••••••••••••••••• 2-84
PUSH and POP Instructions ••••••••••••••••••••••••••••••• 2-84
Parameter Passing ••••••••••••••••••••••••••••••••••••••• 2-86
Parameter Access •• 2-86
Value Returned via Register Stack ••••••••••••••••••••••• 2-88
Stack Marker Chain •••••••••••••••••••••••••••••••••••••• 2-9l
Subprocedure Calls •••••••••••••••••••••••••••••••••••••• 2-92
Example of S-Minus Addressing ••••••••••••••••••••••••••• 2-94
Logical Memory •• 2-95
System Procedure Call and Exit •••••••••••••••••••••••••• 2-98
SG-Relative Addressing Mode ••••••••••••••••••••••••••••• 2-100
Dedicated Memory Locations in System Data ••••••••••••••• 2-l03
General Interrupt Sequence •••••••••••••••••••••••••••••• 2-l05
INT and MASK Registers.: ••••••••• .- ••••••• · ••••••••••••••• 2-l06
System Interrupt Vector ••••••••••••••••••••••••••••••••• 2-l08
SIV Entry and Interrupt Stack Marker •••••••••••••••••••• 2-l09
Interrupt Sequence •••••••••••• · •••••••••••••••••••••••••• 2-11l
IXIT Sequence •••••••••••••••••••••••••••••••••• ~ ••• ~.i •• 2-l13
Processor Module Addressing ••••••••••••••••••••••••••••• 2-117
Simplified Bus Transfer Sequence •••••••••••••••••••••••• 2-ll8
Formats Associated with Bus Transfers ••••••••••••••••••• 2-l20
Bus Transfer Sequence (Send) •••••••••••••••••••••••••••• 2-l22
Bus Transfer Sequence (Receive) ••••••••••••••.•••••••••• 2-l23
Incoming Data Storage ••••••••••••••••••••••••••••••••••• 2-l25
Sending and Receiving Packets ••••••••••••••••••••••••••• 2-l26
Sending and Receiving Packets ••••••••••••••••••••••••••• 2-l27
Bus Receive Enabling •••••••••••••••••••••••••••••••••••• 2-l29
I/O Channel Addressing •••••••••••••••••••••••••••••••••• 2-l31
Simplified I/O Sequence ••••••••••••••••••••••••••••••••• 2-132
Formats Associated with Input/Output •••••••••••••••••••• 2-l33
Input/Output Sequence ••••••••••••••••••••••••••••••••••• 2-l38
Dual-Port Addressing •••••••••••••••••••••••••••••••••••• 2-140
I/O Controller Ownership •••••••••••••••••••••••••••••••• 2-141
Formats Used in Memory Access Operations •••••••••••••••• 2-144
Immediate Operand ••••••••••••••••••••••••••••••••••••••• 3-5
Boolean Operations •••••••••••••••••••••••••••••••••••••• 3-21
Boolean Instructions with Immediate Operands •••••••••••• 3-23
Deposit Field Example ••••••••••••••••••••••••••••••••••• 3-24
Arithmetic vs. Logical Shifts ••••••••••••••••••••••••••• 3-26
LWP Instruction Addressing •••••••••••••••••••••••••••••• 3-28
LBP Instruction Addressing •••••••••••••••••••••••••••••• 3-30
Memory Reference Instruction Format ••••••••••••••••••••• 3-3l

ix

3-9.
3-10.
3-11.
3-12.
3-13.

Doubleword Addressing ••.•••••••••••••••••••.•••••••••.•• 3-33
PUSH and POP Instructions •••••.•.•.••••.•..••..••••••.•. 3-34
Direct vs. Indirect Branching ••••••••••••••••••••••••••• 3-42
Branch Forward Indirect •••••••••.••••••••••••••••••••••• 3-45
Directions for Moves, Compares, and Scans •••••.••••••••• 3-46

LIST OF TABLES

2-1. Floating-Point Error Terminations ••••••••••••••••••••••• 2-40
2-2~ System Data Segment Table Values •••••••••••••••••••••••• 2-l02
2-3. Interrupt Conditions ••••••••••••••••••••.••••••••••••••• 2-l04
A-I. Alphabetical List of Instructions ••••••••••••••••••••••• A-2
A-2. Categorized List of Instructions •••••••••••••••••••••.•• A-8
A-3. Binary Coding, Memory Reference Instructions •••••••••••• A-l6
A-4. Binary Coding, Immediate Instructions ••••••••.•••••••..• A-l7
A-5. Binary Coding, Move/Shift/Call/Extended Instructions •••. A-18
A-6. Binary Coding, Branch Instructions ••••••••••.•••••••••.• A-19
A-7. Binary Coding, Stack Instructions ••.••••••••••••.••••••• A-20
A-8. Binary Coding, Decimal Arithmetic Instructions~~.~~~~.e.A-22
A-9. Binary Coding,'Floating-Point Instructions ••.••••••••••• A-23
B-1. Instruction Set Definition ••••••••.•.•.•••••••••••••••.• B-l
B-2. Definitions of Symbols ••••••.••.••••.••••••••••••••••.•• B-27

x

SECTION 1

INTRODUCING THE TANDEM NonStop II (TM) COMPUTER SYSTEM

During the recent past, computer systems have evolved from the
massive, unreliable vacuum tube machines of yesteryear to the compact,
dependable systems of today. Early computers were very restrictive
and limited; they required programmers to run their programs in a
stand-alone environment (as shown in Figure 1-1).

Figure 1-1. Stand-Alone Computer

These stand-alone programs were written in machine language and
consisted of long lists of numbers. They required painstaking care to
create. In fact, the programmer's responsibility included not only
coding the application but implementing the details of physical
input/output as well. In its stand-alone operating environment, a
running program preempted all hardware resources of the entire
machine--but seldom actually used them all.

1-1

Introduction

Eventually, the primitive stand-alone environment gave way to one
where the machine's hardware resources were managed by a
control-oriented software package called an operating system. This
simplified and generalized access to peripheral input/output devices.
Building upon this idea, software designers extended operating systems
to allow several user programs to share the limited processor and
memory resources of the machine in a multiprogramming environment
(Figure 1-2).

o
P
E S

R Y

A S
T T
I E

N M

G

Figure 1-2. Multiprogramming Environment

Further developments led to operating systems that managed programming
environments spread over several processors (Figure 1-3). These
multiple processor configurations offered an additional advantage:
they allowed a customer to increase the overall power of his system
just by adding more processors to it.

1-2

Introduction

OPERATING
SYSTEM

If 0 DEVICES

Figure 1-3. Multiple-Processor Environment

Finally, designers further extended the power of the computer by
joining several groups of processors into networks of systems
connected by long-distance communication lines (Figure 1-4).
This approach to distributed computing power matched the natural
organization of offices and plants found in many businesses and
permitted them to establish and manage geographically-independent
data bases.

NEW YORK

NETWORK

CHICAGO

LOS ANGELES

Figure 1-4. Network-Based Environment

1-3

Introduction

INTRODUCING TANDEM'S NonStop AND NonStop II SYSTEMS

The Tandem NonStop and NonStop II systems incorporate all of the above
technological advances: they are multiprogramming, multiple-processor,
network-oriented systems. But beyond this, Tandem's primary design
goal was to make these computers "NonStop," easily-expandable systems.
Where the overall design required trade-offs between reliability and
other factors, reliability always came first.

At the heart of NonStop operation are three interrelated factors:
fault tolerance, on-line repair, and modular design. FAULT TOLERANCE
implies that the system is able to continue operation even if a
particular component fails. ON-LINE REPAIR means that field engineers
can repair or replace faulty cpu's, power supplies, input/output
controllers, or buses while the rest of the system continues to
operate. And once an item is repaired, it can be reintegrated into
the system without interrupting the on-line application work in
progress. Both of these features are related to the MODULAR SYSTEM
DESIGN, where system components are constructed to allow flexible
system configuration and simplified maintenance.

The expandability feature that allows customers to incrementally
extend the size and power of their systems also arises from the
system's modular design. This feature lets customers upgrade system
performance just by adding more cpu's, memory, or peripheral devices.
Conventional systems, typically, cannot be easily expanded to add more
cpu capability: as a result, they cannot grow with a customer's
application or evolve to fit a wide range of computing needs.

The NonStop and NonStop II systems perform many different kinds of
operations to make processing easier for their users.
their major functions, these systems:

• Prepare program files for execution as processes (running programs)
in a virtual environment.

• Schedule cpu time among multiple processes according to their
assigned priorities and their time of entry into an executable
state.

• Provide the virtual memory function by automatically bringing
absent memory pages in from disc when needed.

• Allow processes to communicate with each other regardless of the
cpu's on which they are running.

• Permit logical, file-oriented access to all physical devices
regardless of the cpu's to which these devices are attached.

• Allocate resources among running processes so that each process
appears to have all resources in the system available to it.

1-4

Introduction

HARDWARE AND SOFTWARE INTEGRATION

Ultimately, all of the major functions listed above depend on
fundamental services provided by the basic software for the computer
--the GUARDIAN operating system. Many of these functions are
performed so often, however, that the designers could greatly increase
overall system efficiency by closely integrating various software
operations with those of the hardware components. In fact, certain
critical procedures (originally part of the operating system) have
been partially or entirely reimplemented in the hardware microcode.
NOw, these procedures are invoked just by executing a single
hardware instruction.

A good example of how the hardware and software interact to increase
system efficiency is provided by an instruction which queues a process
for execution--the MRL (Merge Ready List) instruction. This
instruction takes a pointer to a system table entry representing a
process, searches a list of similar entries arranged by execution
priority, and merges the entry into the list. If the priority in the
new process entry exceeds that of the currently-executing process, the
instruction noti£ies the operating system by interrupt. By removing
this function from the software and placing it in the microcode,
system designers have reduced to ONE the number of instruction fetches
needed to do the operation. This, of course, dramatically increased
the speed of the function. As the system software evolved, this type
of hardware/software integration at the instruction set level
increased. This, in turn, both simplified the GUARDIAN software and
made the total computer system much more efficient.

In the NonStop II system, Loadable Control Store (LCS) has been added
for system microcode and diagnostics. This allows Tandem to supply
new versions of the microcode to customers on tape, to be loaded into
the processors by system utility programs whenever new versions of the
software are installed. Loadable Control Store thus provides a simple
means for Tandem to add further system improvements at the microcode
level.

while hardware/software cooperation is desirable for overall system
efficiency, it is ABSOLUTELY NECESSARY to ensure such NonStop features
as a failure-tolerant input/output system. As an example, consider a
system that includes a device controller with two ports, each
connected to a different cpu. In this system, the ownership of the
device is agreed upon by the controller hardware AND by operating
system software in each cpu. In this example, suppose
that the controller is presently being serviced by CPU 1 (Figure 1-5).

1-5

Introduction

I~ I CPU 1 I
I I

CPU 2

I
I
I
I

PORT PORT I
~--------------~ I

CONTROLLER _.J

Figure 1-5. Fault-Tolerant Device Management in a NonStop System

The importance of jOint hardware/software interaction in this system
is underscored by considering what happens when certain kinds of
errors occur. For example, suppose that the logic in Port 1 of the
controller fails (Figure 1-6).

1-6

CPU 1 CPU 2

I
I
I

PORT I
P-----------------~ I

CONTROLLER ..J

Figure 1-6. Controller Port Logic Failure

Introduction

If this hardware failure results in a constant flow of interrupts,
they will be detected by the GUARDIAN software in CPU 1. Now
interrupts are not, of course, abnormal in the system. But when they
occur with too great a frequency as in this case, the operating system
assumes that an abnormal situation exists and executes a hardware
instruction to disable Port 1 of the controller. This completely
stops the flow of interrupts from the faulty port. At this point,
software ownership of the controller may be switched to CPU 2, which
in turn switches hardware controller ownership to the remaining
operational port, and NonStop operation continues (Figure 1-7).

1-7

Introduction

CPU 1 CPU 2

PORT

CONTROLLER

Figure 1-7. Switching Controller Ownership

This kind of joint hardware/software cooperation is necessary for any
system that must function in a failure-tolerant way--the total burden
of reliability must be carried by both the hardware and software.
without this mutual support, such a system would be impossible. And
to implement such a system, a fully-unified overall design is required
that carefully integrates the hardware and software with one another.
The Tandem system is based on this kind of design.

1-8

SECTION 2

HARDWARE PRINCIPLES OF OPERATION

SYSTEM STRUCTURE

Hardware components of a NonStop system must be designed to allow
continued execution of processes and access to data bases even if a
single component fails. These design goals are illustrated in diagram
1 of Figure 2-1.

From a software point of view, failure tolerance for the user's
process is accomplished by executing a secondary (or "backup") process
in another processor, so programmed to require only periodic
checkpoint messages to keep up to date on the current state of the
primary process. Upon any failure of the processor that is executing
the primary process, the backup process can resume execution of the
work from the point of the last valid checkpoint. The backup process,
instead of the primary process, will then be accessing the data base
on disc. As indicated in the diagram, dual data paths are desired in
order to assure communication of the checkpoint messages.

From a hardware point of view, failure tolerance for the user's data
base is accomplished by the use of dual-ported controllers and,
optionally, by maintaining duplicate data on two separate disc volumes
("mirrored" volumes). For mirrored volumes, all data written out to
the user's files is automatically written into both disc volumes.
Thus, whenever data is read from the files, either volume may be
accessed, since they contain identical information. Like the
interprocessor communications, two data paths to the disc volumes are
desirable.

The various hardware features that accomplish these two major goals
work together as an effective total solution. But for illustrative
purposes, each feature is considered as a separate entity in the
following discussions--illustrated by the remaining six diagrams in
Figures 2-1 and 2-2.

It should be noted in considering the following information that,
although the mechanics of instant on-line reconfigurability reside
in the hardware, the control of such actions is a function of the
GUARDIAN operating system.

2-1

System Structure

Independent Multiple Processors

The NonStop II system consists of two to sixteen processor modules.
A processor module is sometimes referred to as a central processing
unit, or cpu, for convenience, although in a Tandem system, no one
processor is more "central" than any other. Each processor (cpu)
contains the functions that normally comprise a complete computer
system: instruction processing unit (IPU), memory, and input/output
channel. In addition, each module contains logic for a fourth main
function: the interprocessor bus interface through which the
processors communicate with each other. Furthermore, each module is
associated with its own separate power supply. (See diagram 2 in
Figure 2-1.) Therefore, each processor module is capable of operating
independently of, and simultaneously with, all other processor modules
in the system.

This fundamental design feature means that each processor is totally
self-sufficient. An IPU failure, for example, cannot prevent another
processor from functioning, since there are no shared elements, such
as memory. A failing IPU cannot contaminate any memory data outside
of its own module.

Dual-Bus Data Paths

Each processor module is connected to all other processor modules via
redundant high-speed interprocessor buses, each controlled by its
own separate bus controller. See diagram 3 in Figure 2-1. Programs
running in one processor module communicate with programs running in
other processor modules by means of these buses. Each interprocessor
bus is fully autonomous, operating independently of (but
simultaneously with) the other bus.

The use of two buses assures that two paths exist between all
processor modules in the system. If one bus fails, all interprocessor
communication is automatically routed over the remaining bus. The use
of bus controllers that are separate and independent of the logic
circuits within the modules assures that no failure of a processor
module will cut off bus transmission.

The interprocessor bus interface in each module is capable of
accepting transmissions from either bus, under control of the
operating system.

Dual-Port Device Controllers

Data is transferred between an input/output device (i.e., disc,
terminal, line printer, etc.) and a processor module by means of an
input/output channel. Each processor module has one i/o channel that
is capable of communicating with up to 256 i/o devices. See diagram 4
in Figure 2-1.

2-2

System Structure

1. GOALS OF A NONSTOP SYSTEM 4. DUAL·PORT DEVICE CONTROLLERS

PROCESSOR a PROCESSOR 1

D---.--- ----r-- ------1

1/0 CHANNEL 1/0 CHANNEL

2. INDEPENDENT MULTIPLE PROCESSORS

INTERPROCESSOR BUS

~ , + ~
IPB I NTER FACE IPB INTERFACE

0:> IPU IPU
0:>

w oJ w oJ

~~ ~~
O~ O~
~V; MEMORY MEMORY ~ V;

5. DUAL-PORTED/MIRRORED DISCS

1/0 CHANNEL 1/0 CHANNEL

1/0 1/0

3. DUAL·BUS DATA PATHS
1/0 CHANNEL 1/0 CHANNEL

X BUS

Y BUS

IPB INTERFACE

Figure 2-1. Elements of Hardware System Structure

2-3

System Structure

6. MULTIPLE POWER SOURCES

2A

7. POWER FAILURE RECOVERY

AC
LIN E

48V
DC

BATTERY
MODULE

110 A HI
I

PROCESSOR 0 SUPPLY
100A CAPACITY

72A LOAD

50A

lOA

lOA

./ "

I/O-ONLY
POWER
SUPPL Y

5V UNINTERRUPTIBLE

L
cr
Ocr>
CIlw..J

~~el.
gOel.

el.~
12V UNINTERRUPTIBLE cr

el.

lOA

lOA

lOA

10A

PROCESSOR 1 SUPPL Y
100A CAPACITY

72A LOAD

50A

j
100A CA PACITY

D 40A LOA

F
IPB INTERFACE

IPU

MEMORY

)
I/O CHANNEL

5V INTERRUPTIBLE (100A)

l
POWER FAIL WARNING INTERRUPT

~

Figure 2-2. Power Distribution in the NonStop II System

2-4

System Structure

I/O devices are interfaced to the i/o channels by dual-port
controllers. Each dual-port controller is connected to the i/o
channels of any two processor modules. Therefore, each i/o device can
be controlled by either of two processor modules. However, in
operation, an i/o device is controlled exclusively by one processor
module until a failure occurs such that the processor module can no
longer communicate with the i/o device. If such a failure occurs, the
other processor module takes control of the i/o device.

Dual-Ported/Mirrored Discs

Because discs represent the most critical class of i/o devices, disc
drives can also have dual ports. In combination with the dual ports
on the disc controller, various configurations are possible, to meet
any desired degree of failure tolerance. For example, connecting the
dual ports of the controller to separate i/o channels provides for
failure tolerance of the i/o channels. Connecting dual ports of a
disc drive to separate controllers provides for failure tolerance of
the disc controllers. Diagram 5 of Figure 2-1 shows an example of a
fully mirrored, fully dual-ported configuration.

Multiple Power Sources

Power is distributed in the system in such a manner that each dual
port controller receives power from two sources. If a supply fails,
causing a processor module to become inoperative, the alternate power
supply can assume the full load.

As mentioned previously, there is a power supply associated with each
processor, supplying power to that module. The processor consumes
approximately half the power available from its supply; the remainder
is available to help power the device controllers. In some cases, the
power available from these supplies is sufficient to power all the
device controllers; in other cases, a supplementary power supply for
i/o only is necessary.

Diagram 6 in Figure 2-2 shows, in simplified form, the way in which
power is distributed in the NonStop II system in order to achieve
reliable power backup. The current values shown are mostly
illustrative only; device controllers, for example, generally take
much less than the 20 amperes assumed in this figure. Exact values
and the adjustments required to achieve good power distribution are
evaluated for each particular system by Tandem when the system is
configured.

As shown, the two bus controllers require a total of about 4 amperes,
2 amperes each from the supplies associated with processor 0 and
processor 1. {Bus controller power is always taken from the supplies

2-5

System Structure

for these particular cpu's.) The processor modules are assumed to
require 50 amperes each; this depends on memory size and
configuration. The output current capacity of the supplies is 100
amperes each (for the 5-volt interruptible supply, discussed later).
Note that each device controller nominally receives one-half of its
requirements (10 amperes) from each of two different power supplies.
(In actuality, adjustments are made so that the cpu supply provides
somewhat less than half the needed power, and the i/o supply provides
slightly more than half.) Under the assumed conditions, then, each
processor's power supply is loaded to 72 amperes, and the i/o-only
supply is loaded to 40 amperes.

Now assume a failure in the processor 0 power supply. The processor 0
module goes down, but none of the device controllers or bus
controllers is affected. The processor 1 power supply now delivers
the full 4 amperes needed by the bus controllers (increasing its load
to 74 amperes), and the i/o-only power supply delivers the full 20
amperes to each of the uppermost two device controllers (increasing
its load to 60 amperes).

Likewise, if the i/o-only power supply should fail, the load on each
processor's power supply would increase by 20 amperes (to 92), still
within the 100-ampere capacity. Thus any single power supply failure
can be compensated by increased loading on the remaining supplies.
However, the failure of any two supplies cannot always be accommodated
by the remaining ones.

Power Failure Recovery

Diagram 7 in Figure 2-2 illustrates the power failure recovery
features that are incorporated into the internal circuits of each
processor module. Note that memory is powered separately from the
rest of the module, with its own 5-volt and l2-volt supplies; these
are termed uninterruptible supplies, since they are maintained by
battery power if an AC line failure occurs. Battery power then allows
memory to retain its contents for 1.5 hours or more, depending on
memory size and the charge state of the battery.

The interruptible 5-volt supply powers the remainder of the module.
In order to allow the operating system to bring the central processing
unit to an orderly halt, the power supply issues a special signal
(power fail warning interrupt) when AC power is lost for more than 24
milliseconds. This signal gives a minimum of 5 milliseconds warning
(depending on loading of the supply) that the 5-volt supply will be
going down.

The system automatically restarts upon restoration of power, resuming
execution of the processes that were in progress at the time of the
power failure.

2-6

System Structure

Other Failure-Tolerant Features

The ability of the Tandem computer system to provide an environment
where applications can continue to run regardless of a module failure
is due primarily to its unique NonStop features, described above. In
addition to those unique features, the Tandem system also incorporates
various other reliability features and certain standard design
features currently found other systems. These include the following:

• The GUARDIAN operating system in each processor module saves the
current operating state of its module in memory when a system-wide
power failure occurs. For system power failures, the operating
system automatically resumes all operations (including application
programs) when power is restored.

• If an uncorrectable error occurs in memory, the operating system
determines if the associated area is critical to system operation.
If it is not, the area is flagged as bad and not used again until
the memory is repaired. (Typically, the memory would be repaired
during system preventive maintenance. However, the associated
processor module could be taken off line to repair the memory,
leaving the remainder of the system operable.) If the area is
critical, the operating system halts execution in its processor.

• Critical portions of the operating system are main-memory resident;
this assures their availability in the event that a virtual memory
(disc) failure occurs.

• The cooling system for the computer is designed so that if a single
failure occurs, ample cooling is still available.

• Any module in the system (i.e., processor, i/o controller, power
supply, fan, etc.) can be removed from the system and replaced
on-line without stopping operation of other system modules.

• Routing, sequence, and checksum words are generated by the
transmitting processor module and checked by the receiving
processor for every packet of 13 data words transferred over the
interprocessor buses.

• A parity bit is associated with each l6-bit word transmitted over
the i/o channels.

• An interval timer is provided; the operating system and the File
System use the timers to notify the application program in the
event a data transfer does not complete.

• Six error correction bits are generated and stored with each 16-bit
word in the semiconductor memory; circuitry is provided to correct
all slngle-bit errors and detect all double-bit errors.

• The addressing and count information associated with i/o transfers
are kept in the controlling processor module. This prevents a
controller from contaminating more than one processor module

2-7

System Structure

because of a failure of an address or word count register.

• The File System protects against a failing input/output controller
erroneously writing into memory (in the IOC table, either the
device's count field is set to zero or its write-only bit is set).

• The memory mapping scheme provides separate system/user maps.
Operating system data areas can be accessed only by operating
system programs; application programs cannot inadvertently destroy
the operating system.

• Two hardware modes of processor operation are provided: privileged
and nonprivileged. Certain critical operations (such as accessing
system tables from application programs or initiating input/output
transfers) can be performed only while in privileged mode.
Typically, only the GUARDIAN operating system runs in privileged
mode; privileged operations are performed on behalf of application
programs through calls to operating system procedures. Application
programs running in nonprivileged mode are prevented from becoming
privileged.

FUNDAMENTAL NonStop OPERATIONS

Hardware View of the Operating System

The GUARDIAN operating system oversees system operation. The
operating system provides the multiprocessing (concurrent processing
in separate processor modules) and multiprogramming (interleaved
processing in one processor module) capabilities, and exercises
control over the NonStop features of the Tandem system. A copy of the
GUARDIAN operating system resides in each processor module (with the
exception of system i/o processes, which only reside where they are
needed) •

The operating system automatically schedules application programs
for execution according to an application-assigned priority, provides
memory management functions (automatic overlaying, swapping to disc,
and so on), and gives application programs the capability to start
other programs executing in any processor module from any processor
module.

Four major components of the GUARDIAN operating system that
particularly relate to hardware operation are the Kernel, the Message
System, system processes, and the File System. These are briefly
discussed in the following paragraphs, in order to show the close
interrelationship between the hardware and the software and to provide
an understandable basis for the hardware functions described in this
section of the manual.

2-8

Fundamental NonStop Operations

KERNEL. The Kernel provides the capability for multiple processes to
execute in parallel in a single processor module (the term "process"
denotes an executing program). Among the Kernel's functions are
scheduling processes for execution based on a run-time assigned
execution priority and resolving system resource allocation conflicts.

MESSAGE SYSTEM. The Message System is actually part of the Kernel,
but is listed separately here to emphasize its importance. It
provides the means for processes (i.e., running programs) to
communicate with each other. If two communicating processes are
executing in different processor modules, the Message System
automatically routes the communication over an interprocessor bus.
The Message System makes use of both buses and guarantees delivery of
a message even if one bus fails.

SYSTEM PROCESSES. The system processes are running programs that
perform operating system related functions. These functions include
loading programs into memory for execution, supporting virtual memory,
and providing physical control of i/o devices.

FILE SYSTEM. Application processes do not interface directly with the
Kernel, Message System, or system processes. Rather, they make use of
the File System to communicate with other processes and with i/o
devices. The File System provides a single interface between a user
process and the outside world. Other processes and all i/o devices
are accessed as "files" through a single set of system calls.
Processes and i/o devices are referenced by means of preassigned,
symbolic file names. The physical locations of i/o devices and of the
processor modules where processes are executing are transparent to
application programs.

Primary and Alternate I/O Paths

The use of dual-port controllers guarantees that a communication path
exists to each i/o device even if a failure occurs. Each device has a
"primary" path over which communication normally occurs. In addition,
assuming the system is so configured, there exists an "alternate"
path. See Figure 2-3.

If a failure occurs in a primary path, whether by cpu failure or i/o
channel failure, the File System can reroute communication to the
affected i/o device via the alternate path. Figure 2-3 assumes an i/o
channel failure, requiring a switch from the primary device i/o
process to the backup device i/o process.

2-9

Fundamental NonStop Operations

2-10

OPERATING
SYSTEM IN
PROCESSOR 0

Proc 1 = USER PROCESS
Proc 2 = PRIMARY DEVICE

I/O PROCESS
Proc 3 = BACKUP DEVICE

I/O PROCESS

PRIMARY
PATH

Figure 2-3.

ALTERNATE
PATH

DUAL-PORT
CONTROLLER

I/O Data Paths

OPERATING
SYSTEM IN
PROCESSOR 1

Fundamental NonStop Operations

Once the alternate path is put into use, all subsequent access to the
i/o device is via that path. When the original primary path is
restored, it may either become the alternate path or be restored as
the primary path, depending upon system configuration choices.

The File System enables processes running in the same processor or in
separate and redundant processor modules to communicate with each
other and with any i/o device connected to the system. The hardware
provides at least two paths to each processor module and to each i/o
device. The operating system then guarantees that if at least a
single path is available, communication will occur.

Processor Module Checking

The GUARDIAN operating system provides an additional function.
Concurrent with application program execution, the Message System part
of the GUARDIAN software in each processor module periodically
transmits an III'M" ALIVE" message to all other processor modules in the
system. (See Figure 2-4.) The Message System in each processor
module, in turn, periodically checks for receipt of an "I'M ALlVEIl
message from every other processor module.

If the GUARDIAN operating system finds that more than one of these
messages have not been received as expected (see Figure 2-5), it
assumes that the nontransmitting processor module has failed. The
operating system then sends a "CPU DOWN".m~ssage to interested system
and application processes in its processor module. (This action
occurs in every operational processor module.)

A NonStop Application

To show how the NonStop II system provides the means for creating a
NonStop application, the following example is given. The example is
illustrated in Figures 2-6 and 2-7.

The NonStop application consists of a IIprimary" application process
running in processor module 0 (the primary process is designated A)
and its "backup" process running in processor module I (the backup
process is designated A'). The coded instructions for A and A' are
identical. with the aid of the GUARDIAN software, each can determine
whether it is the primary or the backup process, then perform its
proper role.

2-11

Fundamental NonStop Operations

2-12

G G
Figure 2-4.

I'M ALIVE

I'M ALIVE

Processor Module Checking

I'M ALIVE

''I'M ALIVE"
MESSAGE NOT

RECEIVED
FROMCPUl

Figure 2-5. CPU Down Message

Fundamental NonStop Operations

I'M ALIVE MESSAGES

CD
CHECKPOINT MESSAGE ~

~--:-------+-.,/~

,/
,/

,/

/
/

/
/

/

~~-'/--I'_I----------~
,/,/ /

,/
,/

,/

/
/

/
/

/
/

/
/

/

TERMINAL

THE PROCESS: A THE PROCESS: A'

G) READ (a record from the terminal) READ (the checkpoint message from Al

® READ (a record from the disc)

® WRITE (the updated disc record to A') Checkpoint

o WRITE (the updated record to disc)

@ WRITE (the result on the terminal)

Figure 2-6. NonStop Application

2-13

Fundamental NonStop Operations

PROCESS A' ACTION

I'M ALIVE NOT
RECEIVED FROM

MODULE 0

8 READ (the cpu 0 down message)

CPU 1

TERMINAL

o WR ITE (to the disc using the last checkpoint message to ensure update of the record)

Then continue with the same program as A.

READ (a record from the terminal)

READ (a record from the disc)

Except that there is no backup for A' at this time, so no checkpoint message is sent.

CPU 0
DOWN

Figure 2-7. Application Takeover by Backup

2-14

Fundamental NonStop Operations

The "primary" process, while operable, performs ALL of the
application's work. At critical points during each transaction cycle
(such as prior to altering the contents of a disc file), the primary
process sends a message, via the File System, to its backup process.
These messages contain "checkpointing" information (such as an updated
disc record) and keep the backup process up-to-date on the state of
the application. All such messages are the result of checkpointing
code that the programmer inserts in the application programs.

The "backup" process's responsibility, while the primary is operable,
is to accept and process the checkpointing messages and be ready to
take over the application if the primary process becomes inoperable.

If processor module 0 fails (see Figure 2-7), the GUARDIAN operating
system in processor module I sends a "CPU 0 DOWN" message to the
backup process A'. This is the signal for the backup process to take
over the application's work. First, the backup process uses the
latest checkpointing message (e.g., an updated disc record) to
complete the transaction that the primary started just prior to its
failure, leaving the application's data in the same state as if the
primary had completed-its last transaction successfully. At that
point, the backup becomes the primary and continues with the
application's work. (Note that there is no "backup" process at this
time, therefore no checkpointing messages are sent).

When processor module 0 is reloaded, the GUARDIAN operating system
sends a "CPU 0 UP" message to the current primary process (formerly
the backup process). The primary process (through use of the GUARDIAN
software) may then start a new backup process running in processor
module O. The primary also begins sending checkpointing information
to the backup process. The application is now fully fault-tolerant
once again.

PROCESSOR MODULE ORGANIZATION

Instruction Processing Unit

The instruction processing unit (IPU) has three functions: 1) to
execute machine instructions, 2) to provide for the orderly
interruption of a running process, and 3) to transfer data from the
interprocessor buses into memory (this last item is invisible to the
executing process and is handled entirely by the IPU's
microprocessor) .

A program's instructions reside in memory. In order to execute an
instruction, it is first fetched from a location in memory determined
by the address held in an IPU register; the register into which it is
fetched is another IPU register. The instruction is decoded by the
hardware to determine what sequence of microinstructions must be used
to execute the instruction. During execution of the instruction, one
or more memory transfers may occur, the IPU's scratchpad registers may

2-15

Processor Module Organization

be used to hold intermediate computations, and operands may be added
to or deleted from the IPU's Register Stack.

While the current instruction is being executed, the next instruction
in sequence is fetched from memory.

The instruction processing unit's microinstruction cycle time is 100
nanoseconds; microinstructions are 32 bits in length.

An IPU's basic instruction set consists of approximately 230
instructions. These include arithmetic operations (add, subtract,
etc.), logical operations (and, or, exclusive or), bit shift and
deposit, block (multiple~element) moves/compares/scans, procedure call
and exit, interprocessor bus send, and the input/output instructions.
All instructions are 16 bits in length.

Processor modules equipped with the Decimal Arithmetic option have an
additional 14 instructions (six decimal arithmetic instructions are
standard in all processors). These instructions operate on four-word
operands and include add, subtract, multiply, divide, etc. (See
Decimal Arithmetic Option headings in Section 3, "Instruction Set".)
Modules equipped with the Floating Point option have an additional 41
instructions for doubleword and quadrupleword (extended) floating
point arithmetic and related operations. (See "Floating-Point
Arithmetic" and "Extended Floating-Point Arithmetic" headings in
Section 3.) With these options, a module has a total of approximately
280 instructions.

Two modes of process execution are provided: privileged and
nonprivileged. A process executing in nonprivileged mode is not
permitted to execute the instructions designated as privileged.
Privileged instructions are associated with operations that, if
performed incorrectly or inadvertently, could have an adverse affect
on other processes or the operating system. These "privileged"
operations include: interprocessor bus send, input/output, changes to
map registers, execution of privileged procedures, and access to the
system data segment. Normally, only the GUARDIAN operating system
executes in privileged mode; application (user) processes execute in
nonprivileged mode. Privileged operations are performed for
nonprivileged processes through calls to operating system procedures.
An attempt by a nonprivileged process to execute a privileged
instruction causes the process to be trapped (interrupted).

The interrupt function provides for the orderly transfer of IPU
control from an executing process to one of several routines in the
operating system called interrupt handlers. This transfer of control
is called an interrupt. Interrupts occur for several reasons. Among
them are: data received over the interprocessor bus, completion of an
i/o transfer, memory error, memory page absent, instruction failure
(e.g., attempt by a nonprivileged process to execute a privileged
instruction), and power failure.

2-16

Processor Module Organization

Memory

Data is stored in memory in the form of 16-bit words. The maximum
amount of memory addressable in a NonStop II system is sixteen
megabytes (eight megawords). The maximum memory available for each
processor is two megabytes. All accesses to memory are on word
boundaries, even though the hardware provides element access to bytes,
doublewords, and quadruplewords.

Addressing of processor memory is defined by two terms: logical
addresses, which are relative to the start of code space or data space
used by a single process; and physical addresses, the absolute
addresses that define particular cells in physical memory.

A logical address most commonly consists of 16 bits; 16-bit addresses
are capable of addressing a maximum of 65,536 words, which is defined
as a "segment" of memory. Because a program consists of independently
addressable areas (one or two code segments and one standard data
segment), and each area can consist of 65,536 words, a single process
can access up to 196,608 words (three segments) without using extended
addressing. Extended addressing, which opens up the entire range of
virtual memory, is considered at length under the heading "Memory
Access".

A physical address consists of 23 bits; 23-bit addresses are capable
of referencing any location in physical memory, and thus have a
possible addressing range of sixteen megabytes. The conversion of
the 16-bit logical address to a 23-bit physical address is
accomplished through a mapping scheme. Sixteen maps are provided;
each map consists of 64 entries, and is capable of completely defining
one memory segment. Each map entry can be assigned to point to the
start of a block of 1024 words of memory (called a page of memory).

The sixteen maps provide separate addressing of user code, user data,
system code, system data, i/o buffers, and tables used in the
implementation of the virtual memory addressing scheme. Some map
entries are also used as IPU scratchpad registers and as a map entry
cache to support virtual memory.

Several application processes and parts of the operating system can
reside in memory concurrently. As each process is granted execution
time in the processor, its logical memory space becomes part of the
currently accessible portion of physical memory--that is, the
process's segments become "mapped."

The data path between memory and other processor module functions is
16 bits wide. All data is verified for accuracy when it is read from
memory. Six error correction bits are appended to each 16-bit word
when it is stored. The use of the six error correction bits in the
semiconductor memory permits the hardware to automatically correct all
single-bit errors and to detect all double-bit errors. The detection
of a memory error (whether correctable or uncorrectable) causes an
interrupt to an operating system interrupt handler, which takes
appropriate action.

2-17

Processor Module Organization

Input/Output Channel

Each processor module has its own i/o channel that is capable of
transferring data between i/o devices and memory at full memory speed.
I/O operations, which are controlled by the operating system, are
initiated by setting up an entry in a table in memory and then
executing an EIO instruction. Once initiated, data transfer occurs
concurrently with software process execution. The only time the
software process is affected is when both the i/o channel and the IPU
need to access memory at the same instant. If this occurs, the
process's memory access is momentarily deferred while the i/o data is
transferred between memory and the i/o channel (the action is
invisible to the executing process). When the i/o operation
completes, the currently executing process is interrupted, and control
of the IPU is transferred to an operating system interrupt handler.

Each channel is capable of addressing 256 i/o devices, addressing each
as a separate "subchannel." A single i/o operation is capable of
transferring data in blocks of from one to 64k-l bytes.

The table to control i/o transfers is called the I/O Control Table
(IOC). Each processor module has its own IOC. (See Figure 2-8.)
The IOC is known to the microcode and maintained by the operating
system. The IOC table contains up to 256 entries, corresponding to
the 256 possible devices (subchannels) on that processor's channel:
each entry contains a buffer address (in one of the i/o buffer
segments) and a count of the number of bytes to be transferred. The
use of the IOC permits an i/o channel to run any number of devices (up
to 256) concurrently while maintaining control on a device-by-device
basis. When the number of bytes indicated in the ICC have been
transferred; the device interrupts the currently executing process.

Data is buffered by each controller so that data is transferred in
bursts through the channel at memory speed (the number of bytes in a
"burst" depends upon the type of controller). Controllers are
designed so that they signal the channel prior ~o actually emptying
their buffers (during a write operation) or filling their buffers
(during a read operation). This gives the channel ample time to
respond, thereby providing a means to avoid data overrun. All 256
devices can be transferring simultaneously, with "bursts" from one
device being interleaved with "bursts" from others, subject to i/o
data rate configuration limits.

2-18

IPU

EIO

MEMORY

Processor Module Organization

UP TO 256 BUFFERS

I
/

D·· D D

MIC,RO
PROCESSOR

READY TO SEND

II
I I
II
II
It- --
tI-
I I
II
I I
I I

P
0
R
T

II
I I

__ ~I
--H

I I

I I
P I I .,- ~ =-~

I II
L--_---4-_---.J

1 - ___ II--c::0
I I
I I

Figure 2-8. Input/Output Channel

2-19

Processor Module Organization

Interprocessor Bus Interface

The NonStop II system has two interprocessor buses. Each bus
functions independently of the other, transferring data from one
processor module's memory to another processor module's memory.
Both buses can be in use simultaneously. See Figure 2-9.

Data is transferred over each interprocessor bus at a rate of 13.33
megabytes per second. Each bus is capable of transferring data
among all processor modules concurrently on a packet-multiplexed
basis.

An interprocessor bus transfer involves two processor modules: the
sender module and the receiver module. The transfer is initiated by
the sender when a SEND instruction is executed. The receiver module
checks the incoming packet for correct transmission, and directs the
incoming data to a main memory buffer indicated by a firmware-known,
software-maintained table.

The SEND instruction can transmit blocks of 1 to 64k-l bytes to a
designated processor module over one of the buses. Data is actually
sent across a bus in "packets" of 16 words (a routing word, a sequence
word, 13 data words, and a checksum word); each processor module
contains two high-speed 16-word buffers (one for each bus) for
receiving the incoming information. These buffers are designated INQ
X (for the X bus) and INQ Y (for the Y bus). Transfers into the
buffers occur simultaneously with IPU microprogram execution; when a
buffer fills, the IPU microprogram is interrupted and a special
microroutine moves the contents of the buffer into memory.

Each processor" module's main memory contains a table called the Bus
Receive Table (BRT). The BRT's are known by the firmware and are
maintained by the operating system. They are used to direct the
incoming bus data to a specified location in a processor module's
memory. Each BRT contains 16 entries (corresponding to the 16
possible processor modules in a system); each entry specifies an
expected packet sequence number, a buffer address where the incoming
data is to be stored, and the number of bytes expected. When the
expected number of bytes has been received, the currently executing
process is interrupted, and the process for which the message is
intended is notified.

2-20

BUS CONTROL

IPU !
MICRO

SEND 10, Y'" PROCESSOR

\
MEMORY

PROCESSOR 1

Figure 2-9.

PROCESSOR
NUMBER

1

Processor Module Organization

BUS CONTROL I

IPU

QJ£6J
I
I

MICRO-INTERRUPT
....... ----, WHEN BUFFER

FULL I
MICRO-

PROCESSOR

~\
I
I

I
MEMORY PROCESSOR

NUMBER

- _-";",--...1
'------ BUFFER ~DDRESS I

:t-----+n---+--..il D
PROCESSOR 10

'~ __ --,-__ --..JI
I

BUFFERS

Interprocessor Bus Interface

2-21

Processor Module Organization

Other Processor Components

In addition to the four main processor components just described-
the IPU, memory, i/o channel, and interprocessor bus interface-
each processor in a NonStop II system contains several other
important components. These are discussed briefly in the following
paragraphs. Figure 2-10 illustrates these components, showing
their relationships to each other and to the four major components
already discussed.

CLOCK GENERATOR. The clock generator is the main processor clock.
It provides the synchronization of all hardware functions within the
processor. The clock has a full cycle time of 100 nanoseconds, and
a half-cycle time of 50 nanoseconds. Some clocking functions are
performed on the half-cycle transition of the clock.

LOADABLE CONTROL STORE. The Loadable Control Store (LCS) contains
microinstructions for use by the IPU. Each machine instruction causes
the IPU to execute a specific set of microinstructions to implement
the functions of that machine instruction. The Loadable Control Store
cannot be written to by user programs, but it may be loaded with new
versions of the system microcode and microcode options as they are
purchased from or supplied by Tandem.

CONTROL PANEL. The control panel allows operators and maintenance
personnel to interact directly with each NonStop II processor. The
control panel can be used to reset a processor, cold load a processor,
ready a processor for reload, and give visual indications of a
processor's status. It also can be used to initiate some
micro-diagnostics.

MEMORY CONTROL UNIT= The Memory Control Unit (MCU) provides access to
memory for both the i/o channel and the IPU. The Memory Control unit
prioritizes memory requests; provides overlapped access, mapping of
logical to physical memory, error control, and error reporting; and
provides semiconductor memory refresh timing capability.

DIAGNOSTIC DATA TRANSCEIVER. The Diagnostic Data Transceiver (DDT)
provides a communication path between a NonStop II processor and the
Operations and Service Processor (OSP). Connected to the OSP through
the Processor Maintenance Interface (PMI), it communicates at two
distinct levels, as directed by the microprogram in the Loadable
Control Store or by a running process. It can accept commands from
the OSP to communicate with the operating system and diagnostiCS
for operations or fault isolation. It can also report status
conditions of the IPU, Memory Control Unit, i/o channel, and Loadable
Control Store to the OSP.

PROCESSOR MAINTENANCE INTERFACE. The Processor Maintenance Interface
(PMI) provides a common interface point for up to four processors to
communicate with the Operations and Service Processor (OSP). If there
are more than four processors in the system, additional PMI units are
added, and the PMI's are connected together.

2-22

OPERATIONS
AND SERVICE
PROCESSOR

(OSP)

PROCESSOR
MAINTENANCE

INTERFACE
(PMI)·

I I I
TO OTHER

PROCESSOR
MODULES

·ONE PER 4
PROCESSOR
MODULES

Processor Module Organization

TO ONE OR MORE
f--. OTHER PMI's
f--. (IF SYSTEM HAS
_ MORE THAN 4

PROCESSORS)

TO OTHER
PROCESSOR

MODULES

X BUS

Y BUS

r------------------~

CLOCK
GENERATOR

LOADABLE
CONTROL

STORE
(LCS)

CONTROL
PANEL

I
I
I
1

1

I
I
I
I

,

INTERPROCESSOR t--4--I __J

I

INSTRUCTION
PROCESSING

H
I
I
I
I
I
I
I
1

1

I

DIAGNOSTIC
DATA

TRANSCEIVER

~ ___ (_D_D_T) ____ ~r---

I

UNIT
(IPU)

MEMORY
CONTROL

UNIT

MEMORY

1
I

BUS
INTERFACE

1/0
CHANNEL

--~----------~

I

I
I
I
I
I

I-
I
I
I
I~
I
I
I
1---
I
I

L~s~~~~~ ____________ J

1/0
CONTROLLER

1/0
CONTROLLER

•
•
•

(,
(,

Figure 2-10. Block Diagram of NonStop II Processor Hardware

2-23

Operations and Service Processor (OSP)

The PMI provides switch functions and indicator lights showing
processor and DDT status. In addition, it provides signal level
conversion; it connects to the processors through differential
signals, which it passes on to the OSP. The PMI may be used in a
loopback mode to test the functionality of each processor's DDT.
Finally, the PMI notifies the DDT of the speed at which the local
or remote asp is operating.

OPERATIONS AND SERVICE PROCESSOR (OSP)

The Operations and Service Processor (OSP) is the control center for
the NonStop II system. Through the OSP, operators and maintenance
personnel can communicate easily and flexibly with many low-level
system functions, including all the essential functions of the control
panel for each processor. Thus it enhances fault detection and
isolation.

The OSP provides both local and remote operations and maintenance
capabilities. As previously described, it is connected to each
processor through the PMI and the DDT.

The OSP subsystem is made up of six components:

• Processor--The processor is the central part of the OSP subsystem.
Most of the OSP functions are controlled by the processor. It
provides intelligence and coordination of the subsystem. (The
OSP processor is not to be confused with a processor module,
or cpu.)

• Floppy Discs--The floppy discs are used to load the asp operating
system and diagnostlcs into the asp processor. Two floppy discs
are provided for failure tolerance.

• Switches and Indicators--The OSP switches and indicators provide
access control and OSP functional indications.

• OSP Terminal--The OSP terminal, normally a 6520 terminal, provides
an easy, flexible operations and maintenance interface with the OSP
and the NonStop II system. Function keys are provided to allow
fast interaction with the OSP.

• Modem--The modem included in the OSP subsystem allows communication
with remote asP's, remote terminals, and remote NonStop or NonStop
II systems. Maintenance may be performed from all of these
devices. Operations may be performed from a remote OSP or a remote
6520 terminal.

• Hard-Copy Printer--The optional 5508 hard-copy printer is provided
for hard-copy logging of system console activity.

2-24

How the Hardware Executes Programs

HOW THE HARDWARE EXECUTES PROGRAMS

Code and Data Separation

Programs executing as processes in memory are physically separated
into two areas: code segments containing machine instructions and
program constants, and data segments containing program variables.
See Figure 2-11. The code segments of a process can be thought of as
read-only storage, since no machine instructions can write into them.

Since code segments cannot be modified, they can be shared by a number
of processes. In particular, operating system routines are shared by
all application processes running in a given processor module (i.e.,
only one copy resides in memory).

Procedures

Programs are functionally separated into blocks of machine
instructions called procedures. A procedure, like a program, has its
own "local" data area (in the process's data segment). A procedure
(i.e., the block of instructions that a procedure represents) is
called into execution when a PCAL (procedure call) instruction is
executed. The peAL instruction saves the caller's environment and
transfers control to the entry point instruction of the procedure.

, ,
EIGHT-

ELEMENT
REGISTER

STACK

NON-
f- MACHINE

MODIFIABLE. '-----
MODIFIABLE. PRIVATE :- i

INSTRUCTIONS i
SHARABLE DATA ARITHMETIC

CODE AREA OPERATIONS
AREA

I
I

i I
I) ,) "

Figure 2-11. Code and Data Separation

2-25

How the Hardware Executes Programs

The procedure's instructions are then executed. The last instruction
that a procedure executes is an ExiT instruction. The EXIT
instruction restores the caller's environment and transfers control
back to the caller's next instruction.

A procedure, while it executes, has its own local data area. This
area is allocated for a procedure each time the procedure is called
and is deallocated when the procedure exits (see "Memory Stack"). It
can also access a shared global data area, which is accessible to all
procedures of the process. The global data area and all the memory
used for procedure local data areas are contained in the process's
data segment.

Procedures can be written so that they can receive parameter
information (arguments), perform computations using the parameters,
then return results to the caller. (The machine instructions for
passing parameters and returning results are generated automatically
by compilers.)

Operating system functions (e.g., File System functions) are performed
by calling procedures that are part of the operating system. A system
procedure is called when an XCAL (external procedure call) instruction
is executed. This is discussed later in this section under the
heading "Calling External Procedures".

Memory Stack

Process segments are organized in main memory as stacks. A stack is a
storage allocation method in which the last item (or block of items)
added is the first item removed--like a stack of dishes. The "local"
areas for procedures are blocks of data items in the memory stack. A
procedure's local data is allocated in the memory stack only while. it
executes: after a procedure returns to the point where it was called,
its data area is deallocated and may be used by another procedure
called later. Therefore, the total amount of memory space required by
a program is kept to a minimum.

Figure 2-12 illustrates the memory stack manipulations ("Data Area")
during a sequence of procedure calls ("Code Area"). Sequence number
(1) shows the memory stack when procedure A starts executing. At (2),
a call to procedure C pushes C's parameters onto the stack (3), along
with the link back to A. At (4), C begins to execute, using the stack
for its local variables (5). Then a call to B (6, 7, 8) pushes B's
parameters onto the stack, along with the link back to C, and Buses
the stack for its local variables (9). Then, when B completes, it
executes a return (10) back to C, deallocating its local variables,
calling parameters, and return link from the stack. Procedure C, in
turn, runs to completion and executes a return (11) back to A,
deallocating its unneeded information from the stack. Procedure A
continues its execution (12), with the stack back to the condition it
was in prior to the calls: no unneeded data from these manipulations
remains behind to waste memory.

2-26

CODE AREA

DATA AREA

MEMORY STACK
WHEN A
STARTS
EXECUTING

Figure 2-12.

How the Hardware Executes Programs

MEMORY STACK
WHEN C
STARTS
EXECUTING MEMORY STACK

WHEN B
STARTS
EXECUTING

MEMORY STACK
AFTER RETURNING
FROM B

Memory Stack Operation

MEMORY STACK
AFTER RETURNING
FROM C

2-27

How the Hardware Executes Programs

Register Stack

Each instruction processing unit contains a Register Stack consisting
of eight separate registers. Each register stores one 16-bit word.
The Register Stack provides a highly efficient means of executing
arithmetic operations; operands are loaded onto the stack, arithmetic
operations are performed, the operands are deleted, and a result is
left on the stack. An add of two 16-bit numbers is illustrated in
Figure 2-13.

The use of the Register Stack is transparent to programmers using
Tandem-supplied languages. The language compilers automatically
generate the machine instructions for efficiently using the Register
Stack. The Transaction Application Language (TAL), however, does
provide the capability of using the Register Stack explicitly.

REGISTER STACK

Figure 2-13. Register Stack Operation

2-28

Data Formats

DATA FORMATS

The basic unit of information in the NonStop II system is the 16-bit
word. Individual access to and operations on single or multiple bits
(bit fields) in a word, a-bit bytes, 16-bit words, 32-bit doublewords,
and 64-bit quadruplewords are possible. See Figure 2-14.

In this manual, a number surrounded by brackets is used to denote an
individual element (i.e., word, doubleword, byte, or quadrupleword) in
a block of elements:

block [element]

For example, to indicate the fourth element in a word block (beginning
with element 0), the following notation is used:

WORD [3]

When referencing a block of words (or any elements), the first element
is indicated by the element number that is the lowest numerically; the
last element has the highest element number. The following notation
is used to denote a block of elements:

block [first element:last element]

For example, to indicate the second through twentieth words in a
block, the following notation is used:

WORD [1:19]

Words

The 16-bit word defines the machine instruction length and logical
addressing range for the NonStop II system. The 16-bit word is the
basic addressable unit stored in memory. The first word in each
segment (i.e., code, data) of logical memory is apdressed as WORD [0] ,
the last addressable location is WORD[65,535]. This is shown in
Figure 2-15.

The following instructions are provided for referencing words in
logical memory:

LOAD:
STOR:
LWP:
NSTO:

ADM:

LDX:

Load word into Register Stack from data segment
Store word from Register Stack into data segment
Load Word into Register Stack from Program (code segment)
Non-destructive Store word from Register Stack into data
segment
Add word from Register Stack to word in Memory (data
segment)
Load Index Register from data segment

2-29

Data Formats

2-30

BASIC ADDRESSABLE UNIT IS A WORD

o 1 2 3 4 5 6 7 8 S 10 11 12 13 14 15

I I

A WORD CAN CONTAIN

TWO BYTES

o 7 8 15

BYTE 0 BYTE 1

TWO WORDS FORM A DOUBLEWORD

o 15 o 15

FOUR WORDS FORM A QUADRUPLEWORD (FOR PROCESSOR MODULES WITH DECIMAL ARITHMETIC OPTION)

0 15 0 15 0 15 0 15

I 1 I ~ ~I I
--
I II ~l I I

--
I I I l[JJ:] I I II I -- --

'" / '" / '" / '" /

W0t>OI) WORD1 WORD2 WORD 3

TWO WORDS ARE NEEDED TO FORM A FLOATING-PQINT DOUBLEWORD

o 1 15 0 5 6 7 8 S 10 11 12 13 14 15

~I --.1-~ __ I) ~\ I-,....-~--r---"I"---.[] I 1 < ~ I ~---'---I.---'-""---'-~~
I ~~------------------~----------------~/ ~~------~------~/

SIGN FRACTION (22 BITS)

FOUR WORDS ARE NEEDED TO FORM AN EXTENDED FLOATING-POINT QUADRUPLEWORD

EXPONENT
(SBITS)

EXPONENT
SIGN FRACTION (54 BITS) (S BITS)

I
I I

/~----------------------~--------------------~~/ ~

o 1 15 0 15 0 15 0 6 7 15

I I I ({~I .,.......,[~I ~I (/~I """"""'1 [=I~ I~I ([JJ:]r--"Il~1 11,-,--1 ~II m
~~-----~~----~/ "'~----~--~/ ~~--~--~/ "'~------~------~/

WORD 0 WORD 1 WORD 2 WORD3

Figure 2-14. Data Formats

Data Formats

o 15

WORD ADDRESS [OJ -4--- FIRST ELEMENT

[1J

[2]

[3J

[4]

[5] 1
ASCENDING ADDRESSES

[6]

[7]

[8]

[65,533]

[65,534]

[65,535] -4--- LAST ELEMENT

Figure 2-15. Word Addressing

2-31

Data Formats

Two instructions operate on blocks of words:

MOVW: Move Words from one memory location to another
COMW: Compare Words in one memory location with another

Bits

The individual bits in a word are numbered from zero (0) through
fifteen (15), from left to right:

1 1 III 1
WORD: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

The following notation is used in this manual (and in the TAL
language) to describe bit fields:

WORD.<left bit:right bit>

For ~xample, to indicate a field starting with bit four and extending
through bit 15, the following notation would be used:

WORD.<4:15>

Or to indicate just bit 0 (zero) the following is used:

WORD.<O>

Bytes

The 16-bit word has the capability to store two bytes. The most
significant byte in a word occupies WORD.<0:7> (left half); the least
significant byte occupies WORD.<8:15>. The 16-bit address provides
for element addressing of 65,536 bytes.

In the data segment, byte-addressable locations start at BYTE[O] and
extend through BYTE[65,535]. Two bytes are stored per word;
therefore the first 32,768 words of the data area (WORD[O:32,767])
can store 65,536 bytes. The upper half of the data segment,
WORD[32,768:65,535], is not byte-addressable without the use of
extended addressing.

In the code segment, byte addresses are computed by the hardware
relative to whether the current setting of the P (for Program counter)
Register is in the lower or the upper half of the code segment.
Therefore, the entire code segment (WORD[0:65,535]) is byte
addressable, as explained in the description of the LBP instruction
in Section 3.

2-32

Data Formats

BYTE ADDRESS 0 7 8 15

[0] [1] WORD [OJ

BYTE
[2] [3] WORD [1]

[4l [51 WORD [2]

[6] [7] WORD [3]

[8] [9] WORD [4]

[10] [11] WORD [5]

[12] [13] WORD [6]

~~
[65,532] [65,533J WORD [32,766]

UPPER LIMIT OF [65,534] [65,535] WORD [32,7671

BYTE ADDRESSING ----+

BYTE ADDRESS TO WORD ADDRESS CONVERSION

0 15

I I I I I I I I I I I I I I I I I BYTE ADDRESS [0:65,535].. , \,L ByTE : , 0= WORD. <0:7>, 1 = WORD. <8:15> , \

I 0 I [I I I I I I I I I I I I I I WORD ADDRESS [0:32,7671

Figure 2-16. Byte Addressing

2-33

Data Formats

The IPU converts a byte address to a word address and bit field in
that word as shown in Figure 2-16. That is, bit 15 of the byte
address is extracted and used to specify left (0) or right (1) byte;
the remaining 15 bits are logically shifted right by one bit to form
the word address. In addressing a byte in the code segment, bit 0
of the word address is copied from bit 0 of the P Register.

The following instructions are provided for referencing bytes in
logical memory:

LOB: Load Byte into Register Stack from data segment
STB: Store Byte from Register Stack into data segment
LBP: Load Byte into Register Stack from Program (code segment)

Four instructions operate on blocks of bytes:

MOVB:
COMB:
SBW:
SBU:

Move Bytes from one memory location to another
Compare Bytes in one memory location with another
Scan a block of Bytes While a test character is encountered
Scan a block of Bytes Until a test character is encountered

Doublewords

Two 16-bit words can be accessed as a single 32-bit element. The
hardware provides element access to doublewords in the data area (the
software simulates doubleword access of elements in the code area).
Doubleword elements are addressed on word boundaries; therefore
doubleword addressing is permitted in all of the data area.

Two instructions are provided for referencing doublewords in logical
memory:

LDD: Load Doubleword into Register Stack from data segment
STD: Store Doubleword from Register Stack into data segment

Quadruplewords

Four 16-bit words can be accessed as a single 64-bit element. The
hardware provides element access to quadruplewords in the data segment
(the software simulates quadrupleword access of elements in the code
segment). Quadrupleword elements are addressed on word boundaries;
therefore quadrupleword addressing is permitted in all of the data
segment.

Two instructions are provided for referencing quadruplewords in the
data segment:

QLD: Quadrupleword Load into Register Stack from data segment
QST: Quadrupleword Store from Register Stack into data segment

2-34

Data Formats

A DOUBLEWORD CONSISTS OF ANY TWO CONSECUTIVE MEMORY LOCATIONS

DDUBLEWDRD-(I~ ~I '1 DOUBLE-

o / WORD

- - -

~=I
WORD [5]

- - -
WORD [6] - - -
WORD [7]

- - -

Figure 2-17. Doub1eword Addressing

A QUADRUPLEWORD CONSISTS OF ANY FOUR CONSECUTIVE MEMORY LOCATIONS

OUADRUPLEWORD {

WORD [10)

WORD [11]

WORD i12)

WORD [13)

~--------------------~

Figure 2-18. Quadrup1eword Addressing

2-35

Number Representation

NUMBER REPRESENTATION

The system hardware provides arithmetic on both signed and unsigned
numbers. Signed numbers are characterized by being able to represent
both positive and negative values~ unsigned numbers represent only
positive values. Signed numbers are represented in 16 bits (a word),
32 bits (doubleword), or 64 bits (quadrupleword). Representation of
unsigned numbers is restricted to 8- and 16-bit quantities.

Positive values are represented in true binary notation. Negative
values are represented in two's-complement notation with the sign bit
of the most significant word set to one (i.e., WORD [0] .<0». The
two's complement of a number is obtained by inverting each bit
position in the number then adding a one. For example, in 16 bits,
the number 2 is represented:

o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

and the number -2 is represented:

1 1 1 1 111 1 1 1 1 1 1 1 1 0

The representable range of numbers is determined by the sizes of
operands (i.e., word, doubleword, and quadrupleword).

Single Word

Single--word operands can represent signed numbers in the range of

-32,768 to +32,767.

and unsigned numbers in the range of

o to +65,535.

Whether a word operand is treated as a signed or an unsigned value is
determined by the instruction used when a calculation is performed.
Signed arithmetic is indicated by the execution of "integer"
instructions. The integer instructions are:

IADD:
ISUB:
IMPY:
IDIV:
INEG:
ICMP:
ADDI:
CMPI:
ADM:

2-36

Integer Add
Integer Subtract
Integer Multiply
Integer Divide
Integer Negate (two's complement)
Integer Compare
(integer) Add Immediate
(integer) Compare Immediate
(integer) Add to Memory

Number Representation

Unsigned arithmetic is indicated by the execution of "logical"
instructions. The logical instructions are:

LADD:
LSUB:
LMPY:
LDIV:
LNEG:
LCMP:
LADI:

Doubleword

Logical Add
Logical Subtract
Logical Multiply (returns doubleword product)
Logical Divide (returns 2-word quotient/remainder)
Logical Negate (one's complement)
Logical Compare
Logical Add Immediate

Doubleword operands can represent signed numbers in the range of

-2,147,483,648 to +2,147,483,647.

Ten instructions perform integer arithmetic on doubleword operands.
They are:

DADO:
DSUB:
DMPY:
DDIV:
DNEG:
DCMP:
DTST:
MONO:
ZERD:
ONED:

Byte

Doubleword Add
Doubleword Subtract
Doubleword Multiply
Doubleword Divide
Doubleword Negate (two's complement)
Doubleword Compare
Doubleword Test
(load) Minus One in Doubleword form
(load) Zero in Doubleword form
(load) One in Doubleword form

Byte operands represent unsigned values in the range of

o to +255

This, of course, includes the ASCII character set. Byte operands
are treated as the right half of word operands (i.e., WORD.<8:l5»
when arithmetic is performed (the left half of the word is assumed to
be zero).

There is one instruction for testing the class (i.e., ASCII alpha,
ASCII numeric, and ASCII special) of a byte operand. It is:

BTST: Byte Test

2-37

Number Representation

Quadrupleword (Decimal Arithmetic Option)

Quadrupleword operands for decimal arithmetic can represent 19-digit
numbers in the range of

-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

Six instructions perform integer arithmetic on quadrupleword
operands:

QADD:
QSUB:

*QMPY:
*QDIV:
*QNEG:
*QCMP:

Quadrupleword Add
Quadrupleword Subtract
Quadrupleword Multiply
Quadrupleword Divide
Quadrupleword Negate
Quadrupleword Compare

Three instructions are provided for scaling (i.e, normalizing) and
rounding quadrupleword operands:

QUP:
QDWN:

*QRND:

Quadrupleword Scale Up
Quadrupleword Scale Down
Quadrupleword Round

Nine instructions are provided for converting operands between
quadrupleword and other data formats:

*CQI:
*CQL:
*CQD:
*CQA:
*CIQ:
*CLQ:
*CDQ:
*CAQ:
*CAQV:

Convert Quadrupleword to Singleword Integer
Convert Quadrupleword to Singleword Logical
Convert Quadrupleword to Doubleword
Convert Quadrupleword to ASCII
Convert Singleword Integer to Quadrupleword
Convert Singleword Logical to Quadrupleword
Convert Doubleword to Quadrupleword
Convert ASCII to Quadrupleword
Convert ASCII to Quadrupleword with Initial Value

The asterisk indicates "optional instruction." Quadrupleword
instructions not marked with an asterisk are part of the basic
instruction set.

Floating-Point and Extended Floating-Point

The fraction of the floating-point numbers is always normalized, to be
greater than or equal to 1 and less than 2. The high-order integer
bit is therefore dropped and assumed to have the value of 1. For all
calculations the sign is moved and the bit inserted. The integer plus
22 fraction bits of a floating-point number are equivalent to 6.9
decimal digits: the 55 bits for an extended floating-point number is
equivalent to 16.5 decimal digits. If the value of the number to be
represented is zero, the sign is 0, the fraction is 0, and the
exponent is o.

2-38

Number Representation

The fraction of the floating-point number is a binary number with the
binary point always between the assumed integer bit and the high-order
fraction bit. The exponent part of the number, bits 7 through 15 of
the low-order word (see Figure 2-14), indicates the power of 2
multiplied by 1 + the fraction. This field may contain values from 0
to 511. In order to express numbers of both large and small absolute
magnitude, the exponent is expressed as an excess-256 value. That is,
256 is added to the actual exponent of the number before it is stored.
The exponent range is therefore actually -256 through +255.

The sign of the floating-point number is explicitly stated in the
high-order bit (i.e., signed magnitude representation). A 0 is
positive and a 1 is negative.

The absolute-value range of floating-point numbers is:

-256
+/- 2

-78
(approx. +/- 8.62 * 10)

to
-23 256

+/- (1 - 2) * 2
77

(approx. +/- 1.16 * 10)

For extended floating-point numbers, the range is the same; only the
precision is increased:

-256
+/- 2

-78
(approx. +/- 8.62 * 10)

Arithmetic

to
-55 256

+/- (1 - 2) * 2
77

(approx. +/- 1.16 * 10)

The result of integer arithmetic (IADD, ISUB, IMPY, DADD, DSUB, DMPY,
QADD, QSUB) must be representable within the number of bits comprising
the operand minus the sign bit (e.g., 15 bits for a word operand, 31
'bits for a doubleword operand). If the result cannot be represented,
an arithmetic overflow condition occurs, and no part of the results on
the stack can be assumed valid. When an overflow occurs, the hardware
Overflow indicator sets and (if enabled) an interrupt to the operating
system Overflow interrupt handler occurs. An overflow condition also
occurs if a divide operation is attempted with a divisor of zero.

The results obtained from a logical add and subtract (LADD and LSUB)
are identical to that obtained from integer add and subtract except
that logical add and subtract do not set the Overflow indicator. The
16-bit result, the condition code setting, and the Carry indicator
setting are the same. Logical divide (LDIV), however, sets the
Overflow indicator if the quotient cannot be represented in 16 bits.

2-39

Number Representation

In addition to the Overflow indicator, two other hardware indicators
are subject to change as the result of an arithmetic operation. They
are:

• Condition Code (CC)--generally, indicates if the result of a
computation was a negative value, zero, or a positive value.
(The condition code can be tested by one of the branch-on
condition-code instructions and program execution sequence altered
accordingly.)

• Carry--indicates that a carry out of the high-order bit position
occurred.

For floating-point and extended floating-point arithmetic, the
Overflow indicator is set if the exponent becomes either greater than
+255 (exponent overflow) or less than -256 (exponent underflow) in
trying to represent the normalized result of some operation. If the
divisor in a divide operation is zero, the Overflow indicator is also
set. If any conversion instruction causes a numeric overflow
("illegal conversion"), the Overflow indicator is set and the result
(including Condition Code) is undefined. If the result of some
operation has a zero fraction and nonzero exponent or sign, the value
is forced to zero.

Table 2-1 defines termination conditions for various floating-point
arithmetic errors. (For further explanation of the condition code CC,
refer to the "Environment Register" section later in this manual.)

Table 2-1. Floating-Point Error Terminations

Condition Overflow CC Result

Exponent Overflow
I

1 00
Calculated result

Exponent Underflow 1 10 with error
truncated

Divide by Zero 1 01

Illegal Conversion 1 xx Undefined

2-40

Program Environment

PROGRAM ENVIRONMENT

A program executing as a process in a processor module consists of
instruction codes in a CODE SEGMENT in memory that manipulate variable
data in a separate DATA SEGMENT in memory. The IPU's eight-element
REGISTER STACK is used to perform arithmetic operations and memory
indexing. The instruction-to-instruction environment of a program is
maintained in the IPU's ENVIRONMENT REGISTER. Programs themselves are
separated into functional blocks of instructions called PROCEDURES.

These fundamental elements of the program environment are illustrated
in Figure 2-19 and are discussed under separate subheadings below.

Code Segment

Information in a code segment consists of instruction codes and
program constants. Although it is possible to address the code
segments (via extended addressing or the LBP, LWP, or LWUC
instruction), only read access is permitted; a write access attempt
results in an address trap. Therefore the code segments cannot be
modified during execution.

A given process may have two code segments: the User Code segment
(standard for every process), and the User Library Code segment
(optionally requested during compilation or at run time). External
procedure calls allow the process to execute in e~ther segment.

A code segment consists of up to 65,536 16-bit words. Words in a code
segment are numbered consecutively from C[O] (code, element 0) through
C[65,535]. This is illustrated in Figure 2-20.

Two registers are associated with code segments. These are described
in the following paragraphs.

P REGISTER. The P (for program) Register is the program counter. It
contains the 16-bit C[O]-relative address of the current instruction
plus one. The contents of the P Register are incremented by one at
the beginning of instruction execution so that, nominally,
instructions are fetched (and executed) from ascending memory
locations. (See top diagram of Figure 2-21.)

When a program branch is taken, a procedure or subprocedure is called,
or an interrupt occurs, the C[O]-relative address of the next
instruction to be executed is placed in the P Register. (See bottom
diagram of Figure 2-21.)

2-41

Program Environment

2-42

DATA SEGMENT

CODE SEGMENT IN MEMORY
ENV REGISTER 1,\ IN MEMORY (MEMORY STACK)

/
""

/ '" c (0) ----+ G[O] ----+

l){
r-= ;,

EIGHT·ELEMENT /~~
REGISTER

STACK

GLOBAL
DATA

I~
INSTRUCTION

I REGISTER CODES AND f-
CONSTANTS

F'
P REGISTER .---. ~-----

LOCAL L REGISTER
DATA

t- SUB.LOCAL - I S REGISTER DATA
1----- --

DEFINITIONS:

ENV REGISTER: ENVIRONMENT LI_0.....L1_1~_2..J...1_3-'-1_4--1.1_5--'1_6_'L-7~_8~_9 1I..l_0..J...I_ll~l_l_2 I_l_3...11_1_4 1_15...J1

ENV.<4> lIBRARYMAP(lIB=1)--.-J I I I Y
ENV.<5> PRIVILEGED ------ .
ENV.<6> DATA MAP (USER=O, SYS=1)

~~~:: ~: ~~~: ~~B~U~S_E~ = 0, SYS = 1) 

ENV.<9> CARRY = 1 _____________ --' I 
ENV.<10> OVERFLOW = 1 -------------~ I 

CONDITION CODE -( ENV.<11 > NEGATIVE OR NUMERIC CONDITION 
ENV.<12> ZERO OR ALPHABETIC CONDITION __________ ......l 

RP - ENV.< 13:15> REGISTER STACK POINTER _______________ ...J 

I REGISTER: CURRENT INSTRUCTION REGISTER 
P REGISTER: PROGRAM COUNTER; ADDRESS OF CURRENT INSTRUCTION + 1 (RELATIVE TO CIO)) 
CIO]: FIRST ELEMENT IN THE CODE SEGMENT 
GIO]: FIRST ELEMENT IN THE DATA SEGMENT 
GLOBAL DATA: DATA AREA ACCESSIBLE FROM ANY POINT IN A PROGRAM 
LOCAL DATA: DATA AREA ACCESSIBLE ONLY FROM CURRENTLY EXECUTING PROCEDURE 
SUB·LOCAL DATA: DATA AREA ACCESSIBLE ONLY FROM CURRENTLY EXISTING SUBPROCEDURE 
L REGISTER: LOCAL DATA POINTER: GIO] RELATIVE ADDRESS OF FIRST ELEMENT IN THE 

LOCAL DATA AREA. ALSO INDICATES THE LOCATION IN THE MEMORY 
STACK OF THE LINK (i.e., STACK MARKER) BACK TO THE CALLING PROCEDURE 

S REGISTER: TOP OF STACK: GIO] RELATIVE ADDRESS OF THE LAST ACTIVE ELEMENT 
IN THE MEMORY STACK 

REGISTER STACK: EIGHT·ELEMENT REGISTER STACK WHERE ARITHMETIC OPERATIONS ARE 
PERFORMED. THREE ELEMENTS CAN ALSO BE USED FOR INDEXING 

RP: REGISTER STACK POINTER: INDICATES THE TOP ELEMENT IN THE REGISTER STACK 

Figure 2-19. Elements of the Program Environment 



Program Environment 

e[o] 

-

e[65,535] 

CODE 

SEGMENT 

-

-

Figure 2-20. Code Segment Addressing Range 

C[oJ 

C[oJ RELATIVE 

ADDRESS OF NEXT 

INSTRUCTION TO 

BE EXECUTED 

~ 
1 P REGISTER I ~ 

INITIALLY SET BY OPERATING 

SYSTEM TO C[oJ RELATIVE 

ADDRESS OF FIRST INSTRUCTION 

IN PROGRAM 

INSTRUCTIONS ARE EXECUTED 

IN ASCENDING ORDER UNLESS 

A BRANCH INSTRUCTION IS 

ENCOUNTERED 

P REGISTER 

-

C[1015J 
1016 I ---+ C[1016J ~ 

CODE 

SEGMENT 

-

-

-

----+1 I REGISTER I 

CURRENT INSTRUCTION 

DECODED AND 

EXECUTED BY HARDWARE 

I REGISTER 

--"Li _....!;!.B,:;:.U:.:.N..:.+~5_...I1 I BRANCH 
I UNCONDITIONALLY 

I 
+5 ~ - - -~ 

+ 

--_t--

-
L.1 __ 1;.;;0~2.;..1_---,1 ---+ C[1021J '/////////// 

Figure 2-21. P Register and I Register 

2-43 



Program Environment 

I REGISTER. The I (for instruction) Register contains the machine 
instruction currently being executed. When the current instruction is 
completed, this 16-bit register is filled with the instruction in a 
code segment pointed to by the current setting of the P Register. 
The contents of the P Register are then incremented by one, as 
described above. 

ADDRESSING. Addresses for branching (and for constants) in a code 
segment are calculated relative to the current setting of the P 
Register. This is referred to as self-relative addressing. 

Instructions that reference a code segment have an eight-bit field for 
specifying a relative displacement from the current P Register 
setting. The range of the displacement is therefore -128:+127 words. 
An example, the BUN instruction, is shown in Figure 2-22. 

The location that is addressed by the displacement is referred to as 
the directly addressable location. This may be the location 
referenced by the instruction (i.e., it may be the branch location or 
it may contain the constant) or may itself contain a self-relative 
address. If the latter, then the referenced location is a relative 
displacement from the directly addressable location. Whether the 
direct location is the one referenced by the instruction or contains a 
self-relative address, is specified by the indirect bit, <i>, in the 
instruction. 

The address of the location in a code segment referenced by an 
instruction is called "branchAaddrs" (branch address). This is the 
address i!1 the P Register when a program bra!1ch is taken: 

P := branchAaddrs; 

I : = code [ P ]; 

("code" refers to a code segment.) 

BUN (BRANCH UNCONDITIONALLY) INSTRUCTION FORMAT: 

0 1 2 3 4 5 6 7 8 9 I 10 11 12 I 13 14 15 
~ ~ I I 1 I I I 

I , I 

I 
I I I I I I I 

I 0 0 1 0 0 0 1 DISPLACEMENT 

Figure 2-22. Displacement Field for Code Segment Instructions 

2-44 



Program Environment 

and used when fetching a program constant from memory: 

A := code [ branchAaddrs ]; 

(A is the top element of the Register Stack.) 

The address calculated by adding the displacement to the current p 
register setting is referred to as "dirAbranchAaddrs" (direct branch 
address): 

dirAbranchAaddress = P + <displacement>; 

If the referenced location is within the range of the displacement 
(i.e., P [-128:+127]) then direct addressing is indicated and the 
direct branch address is used as the branch address. If the 
referenced location is beyond the range of the displacement, then 
indirection is indicated and the referenced location (branchAaddrs) 
is a relative displacement from the direct branch address. 

Direct addressing is specified by the <i> (indirection) bit, I.<O>, of 
the instruction -equal to "0"; bits I.<8:15> are a two'so"complement 
number (bit I.<8> is the sign bit) giving a positive or negative 
displacement from the current P Register setting. Therefore 

Indirect addressing is specified by the <i> bit of the instruction 
equal to "I"; bits I.<8:15> are a positive or negative displacement 
from the current P Register setting. Therefore 

Verbally, the C[O]-relative direct branch address is first calculated 
(a displacement from the current P Register setting). Then the 
contents of the direct location (containing a displacement from 
itself) is added to the direct branch address. The result is the 
C[O]-relative branch address. 

Examples of both direct and indirect addressing are given in Figure 
2-23. The "I" in the LWP 9,I instruction signifies indirect 
addressing. 

In addition to direct and indirect addressing, an offset value in a 
hardware register can be added to the address of the direct or 
indirect location before the final address is calculated. This 
permits a code segment location to be referenced as an offset from a 
base location (this is called indexing). Indexing in a code segment 
is discussed in Section 3, "Instruction Set", under the LWP 
instruction. 

2-45 



Program Environment 

115 -128 = -13 

DIRECT / 

CODE 

~ 
I I 

-- --- -- - -'------f ~ 
4 5 6 7 8 9 10 11 12 13 14 15 

o ~~1111111!01011111-----------Y' I / -----------
_______ ':.Jt. __ LW_P_-_13_-f C [607J 

2-46 

SIGN DISPLACEMENT 

INDIRECT 

~~&~ 0 10 10 10 11 I 0 1 0 11 I 
'-/'\ / 

I I 
SIGN DISPLACEMENT 

,...-----'--..., 
608 

P REGISTER 

CODE 
SEGMENT 

---------------+-------f 
LWP 9, 1 ------ -- --- --- --~----_f 

Figure 2-23. Addressing in the Code Segment 

C [3727J 



Program Environment 

Address'ing of byte elements (with indexing) is also permitted in the 
code segment, though restricted to only half of the segment (the same 
half in which the current P Register setting is located). Byte 
addressing is discussed in Section 3 under the LBP (load byte from 
program) instruction. 

Data Segment 

DATA STORAGE AND ACCESS. The data segment contains a program's 
temporary storage locations (i.e., variables). Information in this 
segment consists of single-element items, multiple'--element items 
(arrays), and address pointers. Input/output transfers (which are 
performed on behalf of application programs by the GUARDIAN File 
System) are via arrays in a program's data segment. 

Part of -the data segment is used for dynamic allocation of storage 
when procedures are invoked (see "Procedures"): this area is referred 
to as the "memory stack." 

The data segment consists of up to 65,536 16-bit words. Addresses in 
the data segment start at G[O] (global data, word 0) and progress 
consecutively through G[65,535]. See Figure 2-24. The "memory stack" 
portion of the data segment is limited to the lower 32,768 words 
(i.e., G[0:32,767]). 

Data is accessed through use of the memory reference instructions. 
Locations in the data segment are addressed either through the address 
field in a memory reference instruction (this is called direct 
addressing) or through an address pointer in memory (this is called 
indirect addressing). Additionally, the memory reference instructions 
permit an offset value (in a hardware register) to be added to a 
direct or indirect address before a final address is calculated. This 
permits one data element to be referenced as an offset from another 
data element (this is called indexing). The memory reference 
instructions are: 

LDX: 
NSTO: 
LOAD: 
STOR: 
LDB: 
STB: 
LDD: 
STD: 
ADM: 

Load Index register from data segment 
Non-destructive Store from Register Stack into data segment 
Load word into Register Stack from data segment 
Store word from Register Stack into data segment 
Load Byte into Register Stack from data segment 
Store Byte from Register Stack into data segment 
Load Doubleword into Register Stack from data segment 
Store Doubleword from Register Stack into data segment 
Add to Memory 

2-47 



Program Environment 

2-48 

G[O] T 1 ] 
I MEMORY I 

I STACK 

! 
AREA 

~ DATA 
G [32,767] 

. SEGMENT 

I 
I 

1 ~ -
G [65,535] 

Figure 2-24. Data Segment Addressing Range 

GIO] 

L REGISTER 

INITIALLY SET BY THE 
OPERATING SYSTEM TO 
AN ADDRESS JUST ABOVE 
THE GLOBAL DATA 

I S REGISTER 

(TOP-OF- STACK) 

DATA ACCESSIBLE 
BY A NY INSTRUCTION 
IN THE CODE SEGMENT 

DATA KNOWN ONLY TO 
THE CURRENTLY EXECUTING 
PROCEDURE 

Figure 2-25. L Register and S Register 



Program Environment 

The data segment is logically separated into three areas: global, 
local, and sublocal. Each logical area has an addressing base so that 
relative addressing can be performed. The logical areas are described 
in the following paragraphs and illustrated in Figure 2-25. 

• Global Area 

Data within the global area is addressable by any instruction in 
the program. The addressing base of the global area is defined 
as G [0] • 

The beginning of the global area coincides with the beginning of 
the data segment. Thus, the G[O]-relative address of an item is 
its logical address within the data segment. G[O] is logical 
address O. 

• Local Area 

Data within the local area is known only to the currently executing 
procedure. The local area is defined by the 16-bit L Register. 
The L (for local) Register contains the G[O]-relative address of 
the word at the beginning of this area. The addressing base of the 
local area is defined as L[O]. 

When a procedure is called, a new local area is defined. This 
occurs because the address contained in the L Register advances to 
point above the current local area (the caller's local area is then 
undefined). Conversely, when a procedure exits, the exiting 
procedure's local area is deleted (and the preceding local area 
redefined) because the address in the L Register recedes back to 
its previous setting. 

• Top-of-Stack (or Sublocal) Area 

Data in the top-of-stack area is known only to the currently 
executing procedure. The top-of-stack location is defined by the 
16-bit S Register. The S (for stack) Register contains the G[O]
relative address of the last word currently defined in the memory 
stack (this is not to be confused with the last word in the total 
area set aside for the memory stack). The addressing base of the 
top-of-stack area is defined as S[O]. 

During execution of a procedure, the address in the S Register 
advances as elements are moved from the Register Stack to the top 
of the memory stack (PUSHed) and recedes as elements are moved from 
the top of the memory stack to the Register Stack (POPed). The 
address also advances when procedures and subprocedures are invoked 
and recedes when they are exited. 

ADDRESSING. Data elements in the data segment are fetched and stored 
by the hardware in terms of word addresses, regardless of the type of 
operand involved. (The instruction set microcode also provides for 

2-49 



Program Environment 

the addressing of bytes within a word, as described in the sections on 
"Direct Addressing" and "Indirect Addressing" that follow.) For 
purposes of explanation, "data" refers to a data segment and "address" 
refers to the G[O]-relative address of a word referenced by an 
instruction. Together, "data" and "address" are used to indicate 
access to a location in a data segment referenced by an instruction: 

A := data [ address ]; 

is a LOAD instruction (A is the top of the Register Stack). 

All addressing in the data segment is relative to one of the three 
addressing bases: G[O], L[O], or S[O]. Instructions that reference 
memory data locations contain a 9-bit address field for specifying one 
of the three addressing bases and a relative displacement from that 
base. Four addressing modes are provided for addressing relative to 
these bases. The address indicated by the address field in a memory 
reference instruction is referred to as the directAaddress. The 
addressing modes are: G-relative, L-plus-relative, L-minus-relative, 
and S-minus-relative. These are described in the following 
paragraphs. Figure 2-26 shows an example of a memory reference 
instruction and defines the bit patterns for the four addressing 
modes. Figure 2-27 illustrates each of the addressing modes. 

I 
I 
I 

2-50 

LOAD INSTRUCTION FORMAT: 

I I I I 
I 0 I 1 2 3 I 4 5 b I 8 ~ I 1U 11 1£ -u i4 i5 

I I I I 
I 

I 0 0 0 X MODE AND DISPLACEMENT 

ADDRESSING MODES: 

G-RELATIVE 0 0: 255 

L-PLUS-RELATIVE 1 0 0: 127 

SG-RELATIVE 1 1 a 0: 63 

L-MINUS-RELATIVE 1 1 1 0 0: 31 

S-MINUS-RELATIVE 1 1 1 1 0: 31 

MODE DISPLACEMENT 

Figure 2-26. Mode and Displacement Field for Memory Reference 
Instructions 

d 



MEMORY REFERENCE 
INSTRUCTION IN CODE SEGMENT: 

7 8 9 10 11 12 13 14 15 

~~-------,,-------~/ 
ADDRESSING MODE AND 

DISPLACEMENT FROM BASE 

it" 

G 
(256 WORDS) 

L·MINUS 
(32 WORDS) 

L·PLUS 
(128 WORDS) 

{ S·MINUS 
(32 WORDS) 

Program Environment 

DATA 
SEGMENT 

GLOBAL 
DATA 

---

LOCAL 
DATA 

STACK 
AREA 

G [0) !BASE 

G [255) 

L [-31) . 

L [0) !BASE 

L [127) 

S [-31) 

S [0) ! BASE 

Figure 2-27. Memory Reference Instruction .Addressing Modes 

• G-Relative Mode 

This mode addresses the first 256 locations in the global area 
(G[0:255]). The G-relative mode is indicated by bit 1.<7> of a 

memory reference instruction equal to 0; bits 1.<8:15> specify a 
positive word displacement from G[O]. That is: 

directAaddress := 1.<8:15> 

2-51 



Program Environment 

• L-Plus-Relative Mode 

This mode addresses the first 128 words of a procedure's local data 
area (L[0:127]). The L-plus-relative mode is indicated by bits 
1.<7:8> of a memory reference instruction equal to 10 (binary); 
bits 1.<9:15> specify a positive word displacement from the current 
L[O]. The hardware calculates a G[O]-relative address by adding 
1.<9:15> to the contents of the L Register: 

directAaddress := L + 1.<9:15> 

• L-Minus-Relative Mode 

This mode addresses the 32 words just below and including the word 
pointed to by the current L Register setting, L[-31:0] (this area 
is used for procedure parameter passing). The L-minus-relative 
addressing mode is indicated by bits 1.<7:10> of the memory 
reference instruction equal to 1110 (binary); bits 1.<11:15> are a 
negative word displacement from the current L[O]. The hardware 
calculates a G[O]-relative address by subtracting 1.<11:15> from 
the contents of the L Register: 

directAaddress := L - 1.<11:15> 

• S-Minus-Relative Mode 

This mode addresses the 32 words just below, and including, the 
current top-of-stack word (S[-31:0]). (This area is used for a 
subprocedure's sublocal data and for temporary storage of the 
Register Stack contents by the PUSH and POP instructions). The 
S-minus-relative mode is indicated by bits 1.<7:10> equal to 1111 
(binary); bits 1.<11:15> are a negative word displacement from the 
current S[O]. The hardware calculates a G[O]-relative address by 
subtracting 1.<11:15> from the contents of the S Register: 

directAaddress := S - 1.<11:15> 

An additional addressing mode is provided that accesses the operating 
system's data segment from the user environment--the SG-Relative mode 
(see "Environment Register" for an explanation of user environment). 
This mode addresses the first 64 locations of the operating system's 
data segment (SG[0:63]) and is usable only by procedures executing in 
privileged mode (e.g., the operating system). The SG-relative 
addressing mode is indicated by bits 1.<7:9> of a memory reference 
instruction equal to 110 (binary). Bits I.<10:15> are a positive word 
displacement from SG[O]. (See "Calling External Procedures" for an 
explanation of SG-relative addressing.) 

2-52 



Program Environment 

Direct Addressing. If the <i> (indirection) bit, I.<O>, of a memory 
reference instruction is a "0", then direct addressing is specified. 
The ranges of directly addressable locations in the data segment are: 

G[0:255] 
L[0:127] 
L[-31:0] 
S[-31:0] 

256 words 
128 words 

32 words 
32 words 

G-Relative Mode 
L-Plus-Relative Mode 
L-Minus-Relative Mode 
S-Minus-Relative Mode 

with direct addressing, the address of an operand referenced by an 
instruction, relative to one of the addressing bases, is specified in 
the address field of the memory reference instruction. Therefore, 

address := directAaddress 

and only one memory reference is needed to access the referenced 
memory location. Figure 2-28 gives an example of direct addressing. 

If a byte operand is referenced, it is in the left half of the 
referenced location: 

byt:e := data [ address] .<0:7> 

If doubleword operand is referenced, it consists of two words starting 
at the referenced location: 

doubleword := data [ address:address + 1] ! two words. 

Quadruplewords cannot be accessed as such by any of these modes. A 
quadrupleword must be accessed as some combination of smaller units, 
such as two doublewords or four words. 

Indirect Addressing. If the <i> (indirection) bit, I.<O>, of a memory 
reference instruction is a "1", then indirect addressing is specified. 
The range of indirect addressing is G[0:65,535] (i.e., any location in 
the data segment). 

with indirect addressing, the address of the referenced location, 
relative to G[O], is contained in a location that can be addressed 
directly (the contents of the direct location are referred to as an 
address pointer). Two memory references are needed to access the 
referenced location; the first to fetch the address, 

address := data [ directAaddress ]; 

the second to access the operand. Figure 2-29 gives an example. 

2-53 



Program Environment 

2-54 

G [01 

7 8 9 10 11 12 13 14 15 

~~~~~ 0 o 1 0 o 1 0 11 0 11 11 I 
DIRECT

Y" /

G·RELATIVE DISPLACEMENT
ADDRESSING (% 13)

MODE

Figure 2-28. Direct Addressing in the Data Segment

o

t
i" N
D
I
R
E
C
T
I
o
N

10 11 12 13 14 15

I F BIT ZERO (I. < 0> I OF THE

INSTRUCTION IS A "1", THE

CONTENTS OF THE DIRECTL Y

ADDRESSED WORD ARE USED

AS A GIOi RELATIVE ADDRESS

OF ANOTHER WORD IN THE

DATA SEGMENT

o 10 11 12 13 14 15

G]~Olololo 01 1 1 0
1

1
1

1 1

INDIRECT \(~~----~------~/

G·RELATIVE
ADDRESSING

MODE

DISPLACEMENT

G[O]

----+ G[11]

G[1037] -+

1037

I
J

Figure 2-29. Indirect Addressing in the Data Segment

Program Environment

If a byte operand is accessed, the address pointer contains a G[O]
relative byte address. Bits <0:14> of the address pointer are the
word address of the byte operand, bit <15> of the address pointer
indicates whether the referenced byte is in the left-hand part of the
word, <0:7> or the right-hand part, <8:15>:

byteaddress := data [directAaddress];

address := byteaddress.<0:14>;

and the referenced byte is

byte := if byteaddress.<15> then
data [address].<8:15>

else
data address].<0:7>;

An example is shown in Figure 2-30.

right byte.

left byte.

Note that, because a byte address is effectively divided by two (to
provide a word address), and the maximum byte address is 65,535,
addressing of bytes is limited to the lower 32,768 words of a data
segment (the memory stack area).

If a doubleword operand is accessed, the address pointer contains a
G[O]-relative word address:

address := data [directAaddress];

and the referenced doubleword is

doubleword := data [address:address + 1]

Indexing. Indexing is used to reference memory locations relative to
a data element in memory. A typical use is when an element in an
array is accessed.

Generally, indexing is done as follows. An initial address is first
calculated as described previously (any addressing mode as well as
direct and indirect addressing is permitted). This initial address is
then used as a base address for indexing. The indexing value,
contained in an index register (referred to as "X"), is added to the
initial address to provide the address of the referenced operand.
This is shown in the upper part of Figure 2-31.

Anyone of three registers in the Register Stack (R[5:7]) can be used
as index registers. The register to be used for indexing is specified
in the <x> (index) field, 1.<5:6>, that is part of all memory
reference instructions. (Note the instruction format in the lower
part of Figure 2-31.) The index field corresponds to Register Stack
elements as follows:

2-55

Program Environment

t G[O]
INDIREC T, NO INDEX ~ -
~ ~ 01 01 01 01 01 01 01 Oi 0111 01 12345

~ / I
INDEX G·REL OFFSET
REG ADDRESSING ...-----
(NONE) MODE

,....,...

12345 ~ 2 = 6172, r = 1
~ 1 = RIGHT HALF

G[6172]

~ -

Figure 2-30. Indirect Byte Addressing in the Data Segment

2-56

DIRECT, INDEXED

----+, DIRECT ADDRESS I +

INDIRECT, INDEXED

----+, DIRECT ADDRESS 1--.' INDIRECT ADDRESS I +

INSTRUCTION FORMAT

o 4 5 6 7 8 9 10 11 12 13 14 15

~~~~~~~~~~ 
INDIR

ECTION 

INDEX 

REGISTER 

0= NO INDEXING 

1 = R5 
2= R6 

3 = R7 

ADDRESSING MODE 
AND 

OFFSET FROM BASE 

Figure 2-31. Indexing 



Program Environment 

I.<5:6> VALUE INDEX REGISTER 

0 X = no indexing 
1 X = R[5] 
2 X = R[6] 
3 X = R[7] 

An index register can contain values from -32,768 through +32,767 to 
provide direct word and doubleword addressing of any location in the 
data area (all addressing is modulo 65,535). The value in an index 
register is always treated as an element indexing value. That is, if 
a byte instruction is being executed, the contents of an index 
register are treated as a byte offset; if a doubleword instruction is 
being executed, the contents are treated as a doubleword offset. 

Specifically, 

• For direct, indexed addressing of word operands, 

address := directAaddress + X 

the contents of the index register, X, are added to the 
direct address; and the referenced element (referred to 
as "wordx") is 

wordx := data [ address ] 

• For indirect, indexed addressing of word operands, 

address := data [ directAaddress ] + X 

wordx := data [ address ] 

• For direct, indexed addressing of byte operands, 

byteaddress := 2 * directAaddress + X 

The directAaddress (a word address) is multiplied by two to obtain 
a byte address. The indexing value (a byte offset) is added to 
that. The G[O]-relative address of the referenced byte is 
converted to a word address as follows: 

address := byteaddress.<0:14>; 

And the referenced byte (referred to as "bytex") is 

bytex := if byteaddress.<15> then 
data [ address] .<8:15> 

else 
data [ address] .<0:7> 

right byte. 

left byte. 

2-57 



Program Environment 

• For indirect, indexed addressing of byte operands, 

byteaddress := data [ directAaddress ] + X 

The address pointer indicated by "data [ directAaddress ]" contains 
a byte address. X, which contains a byte offset, is added to the 
byte address. The "address" and "bytex" are then determined as 
described above. 

• For direct, indexed doubleword operands, 

address := directAaddress + 2 * X 

That is, the indexing value (a doubleword element index) is 
multiplied by two to provide a word index. This value is added to 
the initial address (also a word address) to generate a G[O]
relative word address, and the element referenced (referred to 
as "dwordx") is 

dwordx := data [ address : address + 1 ] two words. 

• For indirect, indexed doubleword operands, 

address := data [ directAaddress ] + 2 * X 

The address pointer indicated by "data [ directAaddress ]" contains 
a word address. X, which contains a doubleword offset, is 
multiplied by two (to generate a word offset) and added to the 
initial address. The "dwordx" is the same as described above. 

Figure 2=32 shows examples of word and byte indexing. 

Three instructions deal with loading and modifying index register 
contents. They are: 

LOX: Load an Index register from data segment 
LOXI: Load an Index register with Immediate operand 
AOXI: Add to an Index register the Immediate operand 

An additional instruction is used for branching on the contents of an 
index register. It is: 

BOX: 

2-58 

Branch on Index register less than A (top of register 
stack) or increment index register 



WORD: 

BYTE: 

DIRECT, INDEXED 

DIRECT Y'(" 
INDEX 

REG 
G·RELATIVE 

ADDRESSING 
MODE 

INDIRECT, INDEXED 

[2]?J?;a 1 1 0 10 I o I 0 

INDIRECT YY" 
INDEX I REG 

G·RELATIVE 

ADDRESSING 
MODE 

INDIRECT, INDEXED 

o I 0 o 11 I 0 11 

/ 

OFFSET 

REGISTER 

STACK 

R17] ~ 

I 0 I 0 11 I 0 I 1 I o I 
/ 

OFFSET 

REGISTER 

STACK 

R16] § 

12345 INDIRECT Y'( "~------r-------'/ 
INDEX OFFSET 
REG -7 

G·RELATIVE 

ADDRESSING 
MODE 

R17] 

REGISTER 
STACK 

-7 

+ 

Program Environment 

5 
+ --+ 
~ 

1234 

j 
7 

------. + 

L. 

12338 

12338 7 2= 6169, 

R=O 

0= LEFT HALF 

GIS] 

G117] 

GIO] 

1234 

G11241] 

GIO] 
t- -

12345 G12] 

G16169] 
~"",,",'-"'~---I 

4 

3 2 

o GI6172] 
t------'~--... 

Figure 2-32. Examples of Indexing 

2-59 



Program Environment 

Register Stack 

The Register Stack is where arithmetic computations are performed and, 
except for the Compare Words and Compare Bytes instructions, where 
comparisons are made. The Register Stack consists of eight l6-bit 
registers, designated R[O] (Register Stack, element 0) through R[7]; 
see Figure 2-33. Three elements of the Register Stack, R[5:7], also 
double as index registers (see "Indexing"). 

A typical operation to add two numbers in the Register Stack is as 
follows: the operands are first loaded into the Register Stack using 
LOAD instructions, an IADD (integer add) instruction is then executed 
performing the desired arithmetic, the result then stored back into 
memory using a STOR instruction. Grouped together to form a program, 
the preceding operation would look like this: 

LOAD G + 002 
LOAD G + 003 
IADD 
STOR G + 004 

load data element G[2] onto Register Stack 
load data element G[3] onto Register Stack 
integer add 
store the result from the Register Stack into G[4] 

The condition of the register stack for each of these instructions is 
shown in Figure 2-34. 

usually, elements in the Register Stack are addressed implicitly. 
That is, an instruction operates on the top element (or elements) 
without specifying the actual register(s) involved. The current top 
element of the Register Stack is defined by the Register Stack 
Pointer, RP. RP, which is a three-bit field in the Environment 
Register (next described), contains the register number, 0:7, of the 
top element. The RP setting is incremented when operands are loaded 
into the Register Stack: 

RP := RP + <size of element> 

and decremented when arithmetic is performed or results are stored: 

RP := RP - <size of element> 

The empty state of the Register Stack is defined as RP = 7. The full 
state is also RP = 7. There is no protection against rolling RP over 
from 7 to O. 

The operation of the Register Pointer for the above program example is 
shown in Figure 2-35. 

The elements in the Register Stack are named as to their location 
relative to the current top element. The top element is designated 

2-60 



Program Environment 

R[O] --

- REGISTER -
- STACK -
- -

R[7] --

Figure 2-33. Register Stack 

DATA REGISTER 

AREA STACK 

G[O] ~ I G[l] 5 LOAD G+OO2 
/" G[2] 5 

G[3] 6 

1 G[4] 11 4 
I 

~I 5 
LOAD G+OO3 

6 

11 IADD 

(EMPTY) STOR G+004 

Figure 2-34. Example of Register Stack Operation 

2-61 



Program Environment 

2-62 

RP 

~ 
1 I 1 I 1 I ~~~ISTER 
~ EMPTY STATE ~ 

§ -R[71 4 EMPTY ~-------j 
RP 

~ 
o I 0 I 0 I ~~~ISTER 
~ 

TOP ) 
LOAD G"'002 Ea -R[O] .4-------------~ 

RP 

~ 

LOAD G"003 

IADD 

STOR G"004 

~~ 01 Olll~~~ISTER 

"'-~ 
~ -R['! .4_TO_P ____________ ~) 

I I 
I I RP 

~ 
o 1 0 1 0 I ~~~ISTER 
.~ 

~
61 =::~; U·~D-:-~~-NE-D--------------) 

RP 

~ 
1 I 1 I 1 I ~~~ISTER 

~
1 -R[O] UNDEFINED ~ 

6 -R[l] UNDEFINED 

EMPTY J 
-R[71 +--4 --------

Figure 2-35. Action of the Register Pointer 



Program Environment 

nA", the second from the top "B", and so on through "H": 

A = RP ! top of Register Stack 
B = RP [ -1] 
C = RP [ -2] 
D = RP [-3 ] 
E = RP [-4 ] 
F = RP [-5 ] 
G = RP [ -6] 
H = RP [ -7] 

Examples of register naming are shown in Figure 2-36. 

Environment Register 

The l6-bit ENV (for Environment) Register maintains the IPU state of 
the currently executing process. The individual bits and bit fields 
of the ENV Register are continually referenced and updated by the IPU 
hardware and firmware. The ENV Register contents are saved (along 
with the contents of the P and L Registers) by the firmware as part of 
the executing state of a process when a procedure is invoked or when 
an interrupt occurs. The firmware restores the ENV Register to its 
previous state when the procedure or interrupt finishes. 

The format of the ENV Register is shown in Figure 2-37. The following 
paragraphs describe the meanings of the bits in this register. (The 
four high-order bits are reserved for use as flags by the microcode.) 

LIBRARY SPACE BIT. The LS bit (ENV.<4» works with the CS bit (7) to 
define the current code segment. When this bit is a "I", one of the 
alternate (or "library") code segments is made current, rather than 
one of the standard segments--system code or user code, as selected by 
the CS bit. In the case of "system" selection by CS, the System Code 
Extension is selecte4 as the library segment~ in the case of "user" 
selection by CS, the user's Library Code segment is selected. 

PRIVILEGED MODE BIT. The PRIV bit (ENV.<5», when a "I", means that 
the program is currently executing in privileged mode and is permitted 
to perform privileged operations. Privileged operations are 
characterized by having the potential to adversely affect the 
operating system if misused. Some examples of privileged operations 
are: sending data over an interprocessor bus (SEND), initiating 
input/output operations (EIO), calling privileged procedures, and 
accessing system tables. Normally, only the operating system executes 
in privileged mode~ privileged operations are performed on behalf of 
application programs by the operating system. 

2-63 



Program Environment 

2-64 

16·BIT OPERANDS 

m-R131 

RP 

~ 
o 11 11 I 
~ 

.4_T_OP __________________________ ~) 

RP 

~~111101 

!I~ ~ 
B TOP J 
~ -R[6] ... -----------------------------

P ""'RAND' 18' 
TOP-+ ~ OPERAND 2 (AI 

32·BIT OPERANDS 

64·BIT OPERANDS 

>- OPERAND 1 (DCI >- OPERAND 2 (BAI 

)- ""'RAND, IH" 

)- D"RAND' IDA' 

Figure 2-36. Naming Registers in the Register Stack 



Program Environment 

Nonprivileged programs can perform privileged operations only 
indirectly, by calling procedures designated "callable". (Callable 
procedures execute in privileged mode, but can be called by 
nonprivileged procedures.) When a nonprivileged procedure calls a 
callable procedure, its nonprivileged state is restored on return. 

Instructions designated privileged can be executed only if the PRIV 
bit in the ENV Register is a "1". If a nonprivileged program (i.e., 
PRIV = O) attempts to execute a privileged instruction or call a 
privileged procedure, the firmware transfers control to the operating 
system Instruction Failure Trap Handler. 

4 5 6 7 8 9 10 11 12 13 14 15 

~ LS Ip~vl os I cs I T I K I v I N I z I I RP I I 

::::::: ~:I~::R~R:O:::I:I:L~G~:, 1 - PRIVILEG_E_D ______ 1_W
I ENV.<6> os (DATASPACE): 00 USER,1 SYSTEM . 

ENV. < 7 > CS (CODE SPACE): 0 ~ USER, 1 - SYSTEM -------

ENV. < 8> T (TRAP ENABLE): 0 = DISABLE, 1 ENABLE __________ .........J 

ENV.<9> K (CARRY Bin ____________________ ..-.1 

ENV.<10> V (OVERFLOW): 0 = NO OVERFLOW, 1 OVERFLOW __________ ----l 

ENV.<11:12> CC(CONDITION CODE): 10, CCL (LESS THAN) 
01- CCE (EQUAL) 
00 CCG (GREATER THAN) 

ENV.<13:15> RP (REGISTER STACK POINTER) _____________________ ---.l 

Figure 2-37. Environment Register 

2-65 



Program Environment 

DATA SPACE BIT. The DS bit (ENV.<6» defines the "current" data 
segment. This specifies which data area is to be accessed when a data 
reference is made. DS, when "0", specifies the user data segment: "1" 
specifies the system data segment. (Programs executing in privileged 
mode can make explicit system data references regardless of the state 
of the DS bit through use of the SG-relative addressing mode.) 

CODE SPACE BIT. The CS bit (ENV.<7», together with the LS bit 
(ENV.<4», defines the "current" code segment. This specifies which 
code segment is to be accessed when an instruction or code area 
constant is fetched. CS, when "0", specifies the User Code segment 
(or user's Library Code Segment if LS is "1"): "1" specifies the 
System Code segment (or System Code Extension if LS is"l"). 

TRAP ENABLE BIT. The T bit (ENV.<8» specifies whether or not control 
is to be transferred to the operating system if an arithmetic overflow 
occurs or a divide with a divisor of zero is attempted. If T is a "1" 
and an arithmetic overflow occurs (V, ENV.<lO>, = I), control is 
transferred to the operating system Arithmetic Overflow Interrupt 
Handler (see the GUARDIAN Operating System Programming Manual for 
possible recovery procedures). If T is a "0", control remains with 
the program having the overflow condition. 

Generally, the T bit is under control of the operating system. 
However, application programs can set T to "0" by means of the SETE 
instruction if it is desired to handle arithmetic overflow conditions 
locally. 

CARRY BIT. The K bit (ENV.<9», when "1", indicates that a carry out 
of the high-order bit position occurred when executing an arithmetic 
instruction on a 16-, 32-, or 64-bit operand. The state of the K bit 
reflects the last arithmetic type instruction executed. The state of 
the K bit is also altered as the result of executing a scan 
instruction (SBW or SBU). 

Two instructions test the state of the carry bit. They are: 

BIC: Branch if carry 
BNOC: Branch if no carry 

OVERFLOW BIT. The V bit (ENV.<lO», if a "1", indicates that an 
overflow condition occurred or a divide (IDIV) with a divisor of zero 
was attempted. Overflow is generally associated with arithmetic 
operations on 16-, 32-, and 64-bit operands. Overflow also occurs in 
a LDIV instruction if the quotient cannot be represented in 16 bits, 
or in floating-point arithmetic if the exponent is too large or too 

2-66 



Program Environment 

small (see "Number Representation" earlier in this section). 

The state of the V bit is tested by the BNOV (Branch if no overflow) 
instruction. 

CONDITION CODE BITS. This two-bit field (ENV.<11:12» forms the 
Condition Code. The Condition Code generally reflects the outcome of 
a computation, comparison, bus transfer, or input/output operation. 
(The Condition Code is also set by the GUARDIAN File System to reflect 
the outcome of File System calls.) 

The two bits that form the Condition Code are designated: 

N = negative or numeric, ENV.<ll>, and 

Z = zero or alphabetic, ENV.<12>. 

The Condition Code has three states. They are: 

CCL = less than, ENV.<11:12> = 10 
CCE = equal to, ENV.<11:12> = 01 
CCG = greater than, ENV.<11:12>.= 00 

(N.= 1, Z = 0) 
(N = 0, Z = 1) 
(N = 0, Z = 0) 

The state of the Condition Code is tested by the following branch 
instructions: 

BLSS: Branch if CCL 
BEQL: Branch if CCE 
BGTR: Branch if CCG 

BLEQ: Branch if CCL or CCE 
BLEG: Branch if CCL or CCG 
BGEQ: Branch if CCE of CCG 

The Condition Code is set explicitly by the following instructions: 

CCL: Set CCL 
CCE: Set CCE 
CCG: Set CCG 

The following paragraphs define the manner of setting the Condition 
Code in various cases. 

Following a Computation. In this case, a hardware "cc (x)" operation 
sets the Condition Code bits as follows: 

cc (x): 
N := if x < 0 then 1 else 0; 
Z := if x = 0 then 1 else 0; 

x is the operand. 

negative 
zero 

2-67 



Program Environment 

Therefore, for a computation, 

CCL: 
CCE: 
CCG: 

operand < 0 
operand = 0 
operand > 0 

Following a computation, the Condition Code reflects the resultant 
value in a data area location, the top of the Register Stack, or 
in an index register. The location reflected by the Condition Code 
depends on the last instruction executed (see Section 3 for 
particulars). For example, a simple program to add two numbers and 
then store the result affects the Condition Code as follows: 

Data in Global Area 
G [2] = 5 
G [3] = -5 

LOAD G + 002 
sets the Condition Code to CCG (5 on the top of the register 
stack) 

LOAD G + 003 
sets the Condition Code to CCL (-5 on the top of the register 
stack) 

IADD 
sets the Condition Code to CCE (0 on the top of the register 
stack) 

STOR G + 004 
does not change the Condition Code 

For a Comparison. In this case, a hardware "cc (x:y)" operation 
(for signed operands) or a "cc (x':'y)" operation (for unsigned 

~ operands) sets the Condition Code bits as follows: 

for a signed comparison, for an unsigned comparison, 

CCL: x < y CCL: x ' < ' y 
CCE: x = y CCE: x = y 
CCG: x > y CCG: x ' > ' y 

In the table above, "operandI" refers to the first element loaded 
onto the Register Stack (i.e., the second element from the top of the 
stack), and "operand2" refers to the top element in the Register 
Stack. When two arrays are compared by a COMW or COMB instruction, 
"operandI" refers to the element in the destination array, and 
"operand2" refers to the element in the source array. The single 
quote marks surrounding an operator symbol signify a logical rather 
than arithmetic operation; thus ':' and '<I are logical comparison 
operations. 

2-68 



Program Environment 

For a Byte Test. In this case, a hardware "ccb (x)" operation sets 
the Condition Code bits as follows: 

ccb (x) : 
N := if "0" <= x <= "9" then 

else 
Z := if "A" <= x <= "z" 

or 
"a" <= x <= "z" then 

else 

Therefore, for a byte test, 

CCL: ASCII numeric 
CCE: ASCII alpha 
CCG: ASCII special 

1 numeric. 
0 not numeric. 

1 alpha. 
0 not alpha. 

For byte test, the Condition Code is set according to bits <8:15> of 
the operand on the top of the Register Stack when a BTST (Byte Test) 
or any "load byte" instruction (LOB, LBP, LBA, LBAS, LBX, LBXX) is 
executed. A Condition Code of CCL indicates that an ASCII numerical 
character (i.e., "0, 1, ••• , 9") is on the top of the register stack. 
CCE indicates a lowercase or uppercase ASCII alphabetical character 
(i.e., "a, b, .•• , zIt or "A, B, .•• , Z"), CCG indicates an ASCII 
special character (i.e., not numerical and not "alphabetical) • 

For IPB Communication. For the Condition Code setting result from 
interprocessor bus communication, see the interprocessor bus 
description elsewhere in this section and see the description of the 
SEND instruction in Section 3. 

For input/output, see the input/output channel description in this 
section and the EIO, 110, and HIIO instructions in Section 3. 

REGISTER STACK POINTER BITS. This three-bit field (ENV.<13:l5» 
defines the current top element of the Register Stack. The value of 
RP is implicitly changed by instructions that operate on values on the 
top of the Register Stack. RP is incremented as instructions are 
executed to load operands into the Register Stack, decremented when 
computations are performed or results stored. 

The STRP instruction is used to ex~licitly set the RP value. 

2-69 



Program Environment 

ENV REGISTER INITIAL SETTINGS. The ENV Register is given the 
following setting as a result of a cold load: 

%3447 

This setting specifies: privileged mode, system data, system code, 
traps disabled, no carry, overflow, CCG, and RP = 7. 

The ENV Register is given the following setting as a result of an 
interrupt: 

%3447 

This setting specifies: privileged mode, system data, system code, 
traps disabled, no carry, overflow, CCG, and RP = 7. 

NOTE 

The overflow bit is set in the initial ENV on a NonStop II 
processor to distinguish it from a NonStop processor, whose 
initial ENV setting is %3407. 

SETE INSTRUCTION. The SETE instruction is used to alter the ENV 
Register contents. ENV.<8:15> can be set to any value desired; the 
bits of ENV.<0:7> are either cleared or left unchanged. This prevents 
nonprivileged processes from becoming privileged and/or accessing 
system data. A similar mechanism is used in the EXIT instruction to 
restore the ENV Register contents when a procedure finishes. The 
programmer should take care whe!'! clearing ENV.<O:7> on NcnStop II 
systems, since it is possible to inadvertently clear the Library Space 
(LS) bit, ENV.<4>. 

Procedures and the Memory Stack 

A procedure is a functional block of instructions that, when called 
into execution, performs a specific operation. A procedure can 
perform an operation as simple as adding two numbers or as complex as 
locating an entry in a data base. A program typically consists of 
many procedures. 

Several characteristics of procedures are: 

• A procedure can be called into execution (invoked) from any point 
in a program. 

• Procedures are assigned a "callability" attribute. The attribute 
specifies whether or not the caller must be executing in privileged 
mode and whether or not the called procedure executes in 
privileged mode. 

2-70 



Program Environment 

• The caller need not be concerned with its environment or the 
environment of the procedure it called, because: 

The caller's environment is automatically saved by the hardware 
when a procedure is called and is restored by the hardware when 
the called procedure finishes. 

When a procedure is called into execution, it is allocated a 
temporary storage area called a local data area. The local data 
area is known only to the executing procedure and is logically 
separate from other procedures' local data areas. 

• Parameters (or arguments) can be passed to a procedure for 
evaluation. The parameters can be actual operands or can be 
addresses of operands. 

• A procedure can return a value (such as the result of a 
computation) to its caller. 

• A procedure itself can contain one or more subprocedures. A 
subprocedure is similar to a procedure in that it is also a 
functional block of instructions, called into execution to perform 
a specific operation. There are several similarities between 
procedures and subprocedures: a subprocedure, like a procedure, is 
allocated a temporary (sublocal) storage area while it executes, 
parameters can be passed to a subprocedure, and a subprocedure can 
return a value to its caller. Some significant differences between 
procedures and subprocedures are: different instructions are used 
to call a subprocedure than a procedure, a subprocedure has no 
"callability" attribute (it executes in the mode of its caller), 
and the amount of sublocal storage available to a subprocedure is 
significantly less than the amount of local storage available to a 
procedure. In addition, a subprocedure can be called only by 
the procedure that contains it. 

A procedure consists of a contiguous block of instruction codes and 
program constants in a code segment. All procedures that comprise a 
program are in the same code segment, except for any system or user 
library procedures called (these are in the System Code segment, 
System Code Extension, or User Library code segment). The address of 
the first instruction in a procedure is called the "entry point". The 
entry points for all procedures in a program are located in a table, 
known to the hardware, called the Procedure Entry Point (PEP) table. 
The PEP itself is located at the beginning of the code segment. See 
Figure 2-38. The External Entry Point Table, also shown in Figure 
2-38, is discussed later under the heading "Calling External 
Procedures". This table begins on a page boundary, with entries 
consecutively assigned backward toward the end of code, using the 
first available space that fits (either on the same page as the end of 
code, or on a separate page). 

2-71 



Program Environment 

CODE SEGMENT 

CiOi----. 

} PROCEDURE ENTRY PO'NT TABLE ,PEP 

/"\...--.. --" ~ 
ADDRS OF z 

r- -

PROC a 

r- -

PROC b 

.- -

PROC c 

r-- -~~----... 
PROC d 

~ 

.. ~ 

UNASSIGNED 

ADDRESSES 

ADDRS OF xd 

ADDRS OF xc 
} EXTERNAL ENTRY pmNT TABLElX", 

ADDRS OF xb 

ADDRS OF xa PAGE BOUNDARY 

UNALLOCATED 
SPACE 

C(%177777] ~ END OF CODE SEGMENT 

Figure 2-38. Procedure Entry Point and External Entry Point Tables 

2-72 



Program Environment 

Procedures are invoked using the PCAL (Procedure Call) instruction. 
During PCAL execution, the caller's environment (specifically, the 
address of the instruction following the PCAL and the current ENV and 
L Register settings) is saved in a three-word stack marker. The stack 
marker is written at the current top of the memory stack. The PCAL 
instruction then references the entry in the Procedure Entry Point 
table corresponding to the procedure being called. The address in the 
PEP entry is placed in the P Register so that the next instruction 
executed is the instruction at the entry point of the procedure. 

The last instruction that a procedure executes is an EXIT instruction. 
The EXIT instruction is used to return control to the caller. 
Specifically, the caller's ENVand L Register settings are restored 
and the return address (i.e., that of the instruction following the 
PCAL) is set into the P Register. 

An example of a procedure call and exit is shown in Figure 2-39. 

ATTRIBUTES. So that a nonprivileged process cannot execute in 
privileged mode and so that execution of privileged operations can be 
controlled, every procedure has one of the following attributes: 

• Nonprivileged 
Procedures having this attribute are callable by any procedure in 
the program. They execute in the same mode (i.e., privileged or 
nonprivileged) as the caller. This is the attribute typically 
given to procedures in an application program. 

• Callable 
Procedures having this attribute are also callable by any 
procedure in the program but execute in privileged mode (i.e., 
PRIV = "1"). The caller's mode is restored when a callable 
procedure exits. This attribute is typically assigned only to 
operating system procedures. It is used so that a controlled 
interface exists between a nonprivileged application program and 
the privileged operating system. 

• Privileged 
Privileged procedures execute in privileged mode and are callable 
only by procedures currently executing in privileged mode. An 
attempt by a nonprivileged procedure to call a privileged 
procedure results in control being transferred to the operating 
system Instruction Failure Trap Handler. This attribute should 
be used only by the operating system. It is typically used when 
an operation, if done improperly, would have an adverse effect on 
processor module operation. A nonprivileged application program's 
only interface to an operating system privileged procedure is 
through a callable procedure. 

In the PEP, procedure entry points are grouped according to attribute. 
There are three groups: the first is nonprivileged procedures, the 
second is callable procedures, and the last is privileged procedures. 

2-73 



Program Environment 

[ 

P REGISTER 

CODE 
SEGMENT 

401 

PROC a 

peAL 4, 

PROC b 

~ 
EXIT 

C[272] _ 

C [401] 

TOp·OF·STACK 
AT TIME OF 
CALL TO PROC b " 

P REGISTER 

272 

DATA 
SEGMENT 

272 

Figure 2-39. Procedure Call and Exit 

PEP TABLE ADDRESS 

OF FIRST CALLABLE 

/ PROCEDURE 

~ 
-CIO) PEP TABLE ADDRESS 
-C(1) -- OF FIRST PRIVILEGED 

_C(2)} PROCEDURE 

. ENTRY POINTS OF 

. NON·PRIVILEGED 

~ 
: } PROCEDURES 

ENTRY POINTS OF 

CALLABLE 
PROCEDURES 

ENTRY POINTS OF 

PRIVILEGED 
PROCEDURES 

- PEP 

STACK MARKER 
USED TO SAVE AND 
RESTORE CALLER'S 

(Le., PROC a's) 
ENVIRONMENT 

Figure 2-40. First Entries in Procedure Entry Point Table 

2-74 



Program Environment 

The first two words in the PEP Table, C[O:l], describe where the 
callable and privileged entry points begin in the PEP. Specifically, 
C[O] is the address of the first PEP entry for a callable procedure, 
and C[l] is the address of the first PEP entry for a privileged 
procedure. See Figure 2-40. These words are used to check whether a 
nonprivileged caller is attempting to invoke a privileged procedure. 

PCAL INSTRUCTION. The steps involved when a Procedure Call 
instruction is executed are described below, with step numbers 
referring to the accompanying illustration, Figure 2-41. Note that 
before the PCAL executes, the procedure parameters (and the mask word 
or words, for procedures with a variable number of parameters) must be 
pushed onto the stack. 

1. The caller's environment is saved in a three-word stack marker. 

data [S+l] 
data [S+2] 
data [S+3] 

:= 
:= 
:= 

p. , 
ENV; stack marker. 
L; 

The stack marker is stored in the top-of-stack location plus one 
as indicated by the address in the S Register. The stack marker 
contains the following information: 

• the current P Register ~etting (the address of the instruction 
following the PCAL) 

• the current ENV Register setting 

• the current L Register setting (the beginning of the caller's 
local data area). 

2. If the calling procedure is not executing in privileged mode, the 
"callability" attribute of the procedure being called is checked. 

First, the PEP Number field of the PCAL instruction is compared 
with the entry in C[O] (the address of the first PEP entry for 
callable procedures). If the PEP Number is greater than or equal 
to the C[O] entry, then this is a call to a callable or privileged 
procedure, so a second check is made: the PEP Number field of the 
PCAL instruction is compared with the entry in C[l] (the address 
of the first PEP entry for privileged procedures). If the PEP 
Number is greater than or equal to the entry in C[l], then this is 
a call to a privileged procedure, so an Instruction Failure trap 
occurs and the PCAL instruction aborts. Otherwise, this is a call 
to a callable procedure, so the PRIV bit is set. 

2-75 



Program Environment 

2-76 

PROCEDURE CAll (PCAL) 

15 

PEP NUMBER (PNI I NSTR UCTI ON FORMAT 

CODE 
SEGMENT 

(i)~ CIPN'a ·1 
P REGISTER 

~ ~CAllER 
PCAl PN 

1 

C [PEPI r----~r--1 ... ---------/ 

rn 

DATA 
SEGMENT 

CALLER'S 

LOCAL 
DATA 

CI~~IIrI~.J--+ TOP·Of·STACK 

ENV 

I L REGISTER ~ 
0r---:;t 

: S REGISTER r 
L 

THREE·WORD STACK 

MARKER SAVING 

CALLER'S ENVI RONMENT 

CALLER'S P REGISTER 
(NEXT INSTRUCTION I 

~~~IGThT]~ +-----+-........ , CALLER'S ENV REGISTER 

~

~",mRIRPI
t
7

o

~--~C~A~L~L~E~R~'S~L-R~E~G~'~S~T~ER~---'
(lAST STACK MARKERI

Figure 2-41. Execution of peAL Instruction

)-

PRECEDING

STACK

MARKER

)-l
I

Program Environment

3. The Sand L Registers are set with the G[O]-relative address of
the new top-of-stack location (the third word of the stack
marker) •

L := S := S+3;

The new L Register setting defines the base of the local area for
the procedure being called.

4. The new S Register setting is tested for an address within the
memory stack area, G[O:32767]. If the value is greater than
32,767, control is transferred to the operating system Stack
Overflow trap (and the PCAL instruction is aborted).

if S I>' 32767 then stack~overflow~trap;

5. The C[O]-relative address of the procedure being called is
obtained from the PEP table entry pointed to by the <PEP number>
field in the PCAL instruction. This address is put in the P
Register so that the next instruction executed will be the first
instruction of the called procedure.

6. Finally, the Register Stack Pointer, RP, is given an initial value
of seven (stack empty).

RP := 7· ,

Following the PCAL, the instructions comprlslng the procedure are
executed. The last instruction that a procedure executes is an EXIT
instruction.

EXIT INSTRUCTION. The EXIT instruction uses the three-word stack
marker to restore the caller's environment. The sequence is as
follows, with reference to Figure 2-42.

1. The S Register setting is moved below the local area, the stack
marker, and any parameters to the exiting procedure.

S := L - <S decrement>;

The <S decrement> value is subtracted from the current L register
setting and placed in the S Register. The value of <S decrement>
is three (for the stack marker) plus the number of words of
parameter and mask information passed to the exiting procedure.

2. The P Register is set with the P Register value saved in the stack
marker at L[-2].

P := data [L-2];

The next instruction to,be executed will be the one following the
PCAL instruction.

2-77

Program Environment

CODE
SEGMENT

~~

PCAL PN

(

A
EXIT DECS

-

-

15

DECREMENT S Idecs) INSTRUCTION FORMAT

0
I P REGISTER I

[.:IITG.E~R:-J

(
SDEC

L

I

I

I

L REGISTER

S REGISTER

THREE WORD STACK MARKER

SAVING CALLER'S

ENVI RONMENT

CALLER'S L REGISTER

CURRENT ENV REGISTER SETIING

ENV REGISTER AFTER EXIT

DATA
SEGMENT

STACK
MARKER

CALLER'S

LOCAL

DATA

Figure 2-42. Execution of EXIT Instruction

2-78

)-

Program Environment

3. The ENV Register is restored from a combination of the current ENV
Register setting and the ENV Register value saved in the Register
Stack at L[-l].

The mode (privileged or nonprivileged) and data area are
reestablished to be the lesser of the caller's and the current
settings. This is so that a nonprivileged user cannot exit with
privileged capability. The caller's CS (code space), LS (library
space), T (traps), V (overflow), and K (carry) are reestablished
from L[-l]. Z and N (Condition Code) are left at their current
settings to reflect the results of the call. RP is left at its
current setting so that a value in the Register Stack can be
returned to the caller.

4. The L Register is restored from the L Register value saved in the
stack marker at L[O].

L := data [L]i

This moves L back to point to the preceding stack marker, thereby
reestablishing the preceding local data area.

The instruction following the PCAL instruction then executes.

Memory Stack Operation

Figures 2-43a and b depict an example of a memory stack operation from
an initial state (i.e., start of process execution) through a call to,
and subsequent return from, a procedure. The purpose of the diagram
is to show the action of the Land S Registers as a procedure
generates its local variables and prepares to call a procedure by
passing parameters, how Land S are set when a procedure is called,
and how Land S are set when the return is made to the caller.

1. Initial State

After the operating system has loaded a program into memory but
before the first instruction of the process executes, the
following initial conditions are present: the process's global
variables are initialized and present, and the Land S Registers
are set to the address of the word just above the global area.
There are no local variables defined at this time.

2. Proc "A" generates its local variables

The first few instructions of a procedure generate the procedure's
local variables. As the local variables are generated, the S
Register setting increases, defining a new upper limit to the
procedure's local area. Note that the L Register setting does not
change.

2-79

Program Environment

2-80

1. INITIALLY (PROGRAM STARTS)

L REGISTER

2. PROC A GENERATES ITS
LOCAL VARIABLES

n
123 :7 1--------1 Gi 123j L REGISTER

Gi 123 j

I
I

S REGISTER

123

3. PROC A PUTS PARAMETERS
ON THE STACK IN PREPARATION
TO CALLING B

1
"f'

L REGISTER

123 I~

- --+-
r-------,

/ -L _______ J

A·s
LOCAL
DATA

P1

\ S REGISTER

!~
P2

'...J 160

123

_r------,/
/" L. ______ ...J

I
I
\
\
, S REGISTER

..... ---{ 167

I

I

I
I

A·s
LOCAL
DATA

Gi 158j

4. PROC A CALLS PROC B

1
"I'

I

I ,

\

r-------, __ _
/L _______ J

I

I

Gi160i \ -~=~: _-_-_-_J--
/ \

"

\ L REGISTER

\ , 163

, S REGISTER

'J 163

1
!

P2

STACK
MARKER

1

I--____ ~ G[1631

Figure 2-43a. Land S Registers in Procedure Calls

,
I

I

5. PROC B GENERATES ITS
LOCAL VARIABLES

L REGISTER

163

r - - - - - - - .., ... '"
...... -L _______ J

n

B's
LOCAL
DATA

, S REGISTER I I
.... -1 217 I~~ G[217;

\
\

\

Program Environment

6. PROC B EXITS BACK TO A

n
L REGISTER

11'---__ 12_3_---1

I

I
I ,

S REGISTER

) ___ 1_58 __ ~
,

\ I

"

,

\

\
\

\
\

\
\

\~ ~ ~ ~ = ~ ~ ~} - -..

\~ ~ = ~ ~ ~ : -j - - - •

A's
LOCAL
DATA

Figure 2-43b. Land S Registers in Procedure Calls

2-81

Program Environment

3. Proc "A" passes parameters to "B"

In preparation for calling the procedure "B", the parameter words
(two in this example) are placed on the top-of-stack location as
indicated by the S Register setting. The S Register setting is
increased by two to account for the parameters.

4. "A" calls "B"

After the parameters are loaded onto the memory stack, a PCAL
instruction is executed. Execution of the PCAL instruction places
a three-word stack marker at the current S Register setting plus
one (just above the parameters). Land S Registers are given a
new setting; they both point to the third word of the stack
marker. The new L Register setting defines the start of "B's"
local area. At this point, no local variables have been generated
for the procedure "B". (Note that "A's" local area, which is
normally addressed relative to the L Register, is no longer
addressable by the L-plus addressing mode.)

5. Proc "B" generates its local variables

In the same manner as procedure "A" did, procedure "B" generates
its local variables. This increases the S Register setting
accordingly so that the S Register defines the new upper limit to
"B's" local area.

6. Proc "B" exits back to proc "A"

When procedure "B" completes, an EXIT instruction is executed to
return to "A". Execution of the EXIT instruction moves the L
Register setting back to the beginning of "A's" local area and
moves the S Register setting back to the top-of-stack location
that was in effect before the parameters were loaded on the stack
(this is accomplished by the <S decrement> value in the EXIT
Instruction). Specifically, for the return to the procedure "A",
the EXIT instruction is

EXIT 5

This deletes the three-word stack marker from the top-of-stack
plus the two parameter words.

GENERATION OF AND ACCESS TO LOCAL DATA. Unlike the global data area,
which exists at all times, the local data area for a procedure exists
only while the procedure is actually executing. The local variables
are generated and initialized by instructions at the start of a
procedure's code. Thus a procedure can be called any number of times
(and in fact can call itself) and each call generates a fresh copy of
the procedure's local data area.

2-82

Program Environment

An example of the instructions used to generate the following local
variables will next be considered (referring to Figure 2-44):

INT i,
j : = 5,
.k [0:31];

L[l]
L [2]
L[3] (pointer to k, which starts at L[4])

These are three local variables declared in a TAL source program: "i"
is a one-word uninitialized variable, "j" is a one-word variable
initialized with the value 5, "k" is an indirectly addressed array
variable consisting of 32 words. The instructions to generate these
variables are:

ADDS
LDI
LADR
PUSH
ADDS

+001
+005

L+004
711

+040

Add to S
Load Immediate
Load Address
PUSH to Memory
Add to S

The ADDS instruction increments the S Register setting by one. This
allocates one word for the variable "i".

The LDI instruction puts the initialization value for "j" (5) on the
top of the Register Stack.

The LADR instruction calculates the G[O]-relative address of the first
word of the indirect array "k" and puts the address on the top of the
Register Stack.

The PUSH instruction performs two functions: 1) it puts both the
initialization value in "j" and the address of the array "k" into L[2]
and L[3] of the process's stack, respectively, and 2) increments the S
Register setting by two to allocate the two words needed for "j" and
the address pointer to "k".

The ADDS instruction increments the S Register setting by 32 (octal
40). This allocates 32 words for the indirect array "k".

Following the generation of the local variables, the local area for
this example consists of:

L [1] = i
L[2] = j (initialized with a value of 5)
L[3] = an address pointer to the array "k"
L[4:35] = the array "k"

Once allocated, data in the local area is addressed relative to the
current L Register setting using the L-plus addressing mode. As
illustrated, this mode can access local data directly, or can use the
direct address as an address pointer (indexing is also permitted) •

The top-of-stack area is addressable implicitly through use of the
PUSH and POP instructions. These are illustrated in Figure 2-45.
The PUSH instruction is used to store the Register Stack contents,

2-83

Program Environment

0

ACCESS TO A PROCEDURE'S
LOCAL DATA USING THE
L-PLUS ADDRESSING MODE

10

X 11 I 0 I 0 I 0 I
13 15

~~ t / ~'" '----~-----'/ I
DIRECT L-PLUS DISPLACEMENT

ADDRESSING

MODE

0

~~ X 11 I 0 I 0 I 0 I
t / ~'" '---r--~/ I

INDIRECl L-PLUS DISPLACEMENT

ADDRESSING

MODE

Figure 2-44. L-Plus Addressing Mode

ADDING ELEMENTS TO THE
TOP-OF-STACK (S INCREASES)

REGISTER STACK ~ 158= ~ •

PUSH 777; ~!6~)t --+-L'--------+~_5]{

DELETING ELEMENTS FROM THE

TOP-OF-STACK (S DECREASES)

S REGISTER

r---""'!'1~66:---" ---.~ S [0]

DATA
SEGMENT

K

G [158]

G [166]

G [158]

REGISTER STACK

~ } --+-[-~-~:-:, -:::::-------._-------. {
S [0] - t-------7------i

G [162]

POP 333

Figure 2-45.

2-84

PUSH and POP Instructions

}

UNDEFINED

AFTER "POP"

Program Environment

usually prior to calling a procedure, on the top of the memory stack.
When a PUSH instruction is executed, the S Register setting is
incremented by the number of words pushed. The POP instruction is
used to restore the Register Stack contents from the top of the memory
stack, then decrement the S Register setting accordingly.

PARAMETER PASSING. Parameters are passed to a procedure in the
top-of-stack area. Naturally, there must be coordination between the
caller and the called when passing parameters. The caller must know
the order in which a procedure expects parameters, and whether a
parameter is to be an actual operand (called a "value" parameter) or
an address pointer (called a "reference" parameter).

Before the caller invokes a procedure, the parameters are prepared in
the Register Stack. The actual operands (for value parameters) and
the addresses of operands (for reference parameters) are loaded into
the Register Stack in the order required by the procedure being
called. The address of a reference parameter is obtained by the
execution of an LADR (load address) instruction. The parameters that
have been prepared in the Register Stack are loaded on the top of the
memory stack by executing a PUSH instruction (which increments the S
Register accordingly).

An example will now be considered to show the instructions used to
prepare the top of the memory stack area for parameter passingo This
example uses the variables declared in the preceding example, and is
illustrated in Figure 2-46. The procedure being called is of the
form:

PROC b (pl,p2):
INT pI, .p2:

Parameter "pI" is a value parameter, therefore the procedure expects
an actual value to be passed. Parameter "p2" is a reference parameter
and, therefore, the procedure expects the G[O]-relative address of a
variable to be passed.

The call being made from procedure "A" is:

CALL b (j,i):

The instructions to pass these two parameters are:

LOAD L +002
LADR L +001
PUSH 711

The LOAD instruction puts the contents of the variable "j" (the value
5) on the top of the Register Stack. (This is the parameter passed as
"pI", a value parameter, to "B".)

2-85

Program Environment

2-86

DATA

~ r-------------------L[l] I G[124J

,....-----------------l[211 5 G[125J

LOAD L+002
LADR L+001

RP AFTER LADR

RP AFTER PUSH

REGISTER

S REGISTER
BEFORE PUSH

_ I - - 158' - - .,
/" L _______ .J

I ____ ---------;~ ____ ---.1 G [159]
, fl.. __ 1_24 __ ..j G[160J

S REGISTER
AFTER PUSH

160

Figure 2-46. Parameter Passing

0

ACCESS TO A PROCEDURE'S

PARAMETERS USING THE

L·MINUS ADDRESSING MODE

x

10 13 15

B~
t "" / "'~-""'-----J/ ~ I

DIRECT L-MINUS DISPLACEMENT
(FOR VALUE ADDRESSING
PARAMETER) MODE

a~ x

t '
~~1~11~1~1~01~01~1~01~11~11----~

"" / "'~--.------'/ ~ I
L REGISTER

163
INDIRECT L-MINUS DISPLACEMENT

(FOR REFERENCE ADDRESSING
PARAMETER) MODE

S REGISTER

Figure 2-47. Parameter Access

a's
LOCAL
DATA

I--------i G [163]

Program Environment

The LADR instruction calculates the G[O]-relative address of the
variable "in and puts the address on the top of the Register Stack.
(This is the parameter passed as "p2", a reference parameter, to "B".)

The PUSH instruction places the two parameters from the Register Stack
on the top of the memory stack and increments the S Register setting
by two.

PARAMETER ACCESS. Parameters are accessed by using the L-minus
addressing mode. This mode provides access to the 32 locations just
below and including the current L Register setting (L[-3l:0]).
Subtracting the three words used for the stack marker, this leaves 29
words addressable as parameters. If value parameters are passed, the
parameter location is addressed directly «i>, indirect, bit of a
memory reference instruction = 0); if reference parameters are passed,
the parameter location is used as an indirect address «i> bit = 1).
Indexing in either mode is permitted.

Figure 2-47 shows an example of both value and reference parameter
access.

RETURNING A VALUE TO THE CALLER. A procedure can return a value to
its caller via the top of the Register Stack. This, like parameter
passing, requires coordination between the caller and the called.
That is, the calling procedure must know the element size of the
return value (i.e., number of words comprising the value).

The following paragraphs describe an example of a procedure, named
"f", that returns a value, and the instructions used to do so. The
example is illustrated in Figure 2-48.

The procedure is of the form:

INT PROC f (x);
INT x;

BEGIN
RETURN x * x;

END;

This procedure returns the square of a number, "x". The instructions
to return the square of "x" are:

LOAD L -003
LOAD L -003
IMPY
EXIT 4

parameter x is obtained from L-003
load another copy of x
squared result now exists in R[O]
delete stack marker and parameter x

2-87

Program Environment

INSTRUCTIONS IN THE CALLING PROCEDURE
TO EXECUTE THE FOLLOWING STATEMENT:
z : = i + j - f(5); DATA AREA

KNOWN TO

REGISTER THE CALLING

STACK PROCEDURE

LOAD L + 001

~I I: L[l]

LOAD L + 002 L[2]

L[3]

IADD
o I i + j

S REGISTER
AFTER EXIT 4

S REGISTER
LDI 5 0 i + j AFTER PUSH
PUSH 711
PCAL f

5

o I r-' ON RETURN
25

FROM f

:i 25
STAR 1

25

DATA AREA

0 i + j KNOWN TO

25
PROCEDURE f

POP 100

ISUB 0 I i + j - 25

~
5 L[-3]

STOW003 i
STACK

MARKER
,NSTRUCTIONS 'N THE PRO~

5 L[O] LOAD L -003 0

LOAD L -003 1 5
I

I
IMPY

o I 25 r- J EXIT 4

Figure 2-48. Value Returned via Register Stack

2-88

Program Environment

The first LOAD instruction loads the parameter "x" onto the top of the
Register Stack. Following the LOAD, the RP setting is O. (The RP
setting is 7 when a procedure begins executing.) The second LOAD
again loads the parameter "x". Following this load, the RP setting
is 1.

The IMPY instruction multiplies the values in the Register Stack,
leaving the result of the multiplication in R[O]. Following this
operation, the RP setting is o.

The EXIT instruction causes a return to the caller, deleting the
parameter and stack marker (1 + 3 = 4), but leaving the squared value
on the top of the stack.

A call is now made to procedure "f", as follows:

z : = i + j - f (5) i

That is, subtract the square of 5 from the sum of the contents of the
variables "in and "j" then store the result in the variable HZ".
Variables "in, "j", and HZ" are local variables at L[l], L[2], and
L[3] respectively.

The instructions to perform this operation are:

LOAD
LOAD
IADD
LDI
PUSH
PCAL
STAR
POP
ISUB
STOR

L +001
L +002

+005
711

1
100

L +003

load "i"
load "j"
"i" + "j"
load parameter to "fIt
push sum and parameter onto memory stack
procedure call to "f"
move returned value from R[O] to R[l]
bring saved sum back to R[O]
subtract returned value from "i+j" sum
store result into "z"

The first three instructions calculate the sum of "i" + "j" and leave
the result in R[O]. The LDI +005 instruction loads the parameter to
"fIt onto the top of the Register Stack at R[l].

The PUSH instruction pushes R[O:l] onto the memory stack. Following
the PUSH, the two top-of-memory-stack locations contain:

S[-l] = sum of "i" + "j"
S[O] = 5, the parameter to "f"

This clears the register stack for use by the procedure which now is
invoked by the PCAL instruction. On the return from "f", R[O] of the
Register Stack contains the square of 5.

The STAR instruction moves the return value in the R[O] register stack
location to R[l] in preparation for the subtraction from the sum of
"i" + "j".

2-89

Program Environment

The POP 100 instruction brings the sum of "in + "j" (calculated
previously) into R[O] and sets RP to 1 (to point to the returned
value).

The ISUB Instruction subtracts the return value of "f" from the sum of
"in + "j". The STOR instruction stores the result in the variable
HZ", and RP becomes 7.

STACK MARKER CHAIN. In examples shown previously, only one procedure
call occurred and, therefore, only one stack marker was generated.
However, in practice, there may be several stack markers (and local
areas) present in a memory stack at once. This occurs when a called
procedure calls another procedure and that procedure calls still
another procedure, etc. The nature of this "chain" of stack markers
and the action of the Land S Registers is such that the returns are
always made in the reverse order of the calls, and the local data
areas are redefined as the returns are made.

Figure 2-49 shows the condition of a memory stack after the following
calls have taken place!

In procedure "a", CALL b:

In procedure "b", CALL c:

In procedure "c", CALL d:

The procedure "d" is currently executing.

Specifically, the L Register, which is given a new (higher) setting
when a procedure is called, and the local data areas, which are
allocated and generated relative to the current L Register setting,
result in a stack of procedure environments that are physically placed
in the chronological order in which the calls were made. (Remember,
when a procedure is called, the stack marker is placed at the current
S Register setting plus one. In this manner, a procedure's local data
is always retained when it calls another procedure.) The stack
markers, which contain the environment of the preceding procedure (and
point to the preceding stack marker) restore the preceding
environments in the reverse order of the calls.

SUBPROCEDURES. Subprocedures are invoked using the BSUB (branch to
subprocedure) instruction. Because the BSUB is a branching-type
instruction, the subprocedure entry point is calculated as a
self-relative address. Execution of the BSUB instruction differs from
other branching instructions in that it places a return address on the
top of the memory stack. See Figure 2-50. Note that before the BSUB
executes, the subprocedure parameters must be pushed onto the stack.

2-90

PROC

I
I
I
I

r
I
I
I
L_

PROC

r--
1
I
I
I

L_~

PROC

Program Environment

CODE
SEGMENT

C[O]

~~""""'~""'"'~ C[201] .. - - - - - - - - - - ""\
\

\
\

\
\

~~...."..7"7-....r"'" C[564] .. - - - - - - - - - - - - "\

\

\

\

\

\
\

\

\
\

\

\

\

\

\

\
\

\

\
\

\

\
\

\
\

\
I

1
\ I
'-- - - - --1---

DATA
SEGMENT

GLOBAL
DATA

GIO]

f-".-..,..--,..-,-..,-,....,..-...-! G I 1 23]

"""''"'''..,.....,......,.-,.L,~ GI163J

b-',""""7'7"T-:ff'l""7i C[1485] • - - - - - - - - - - - - - - - - """"\

I """r"-'''''''7'~~
L __ ~:""""-,",,<...,I.~o"l
r - G1237]

I REGISTER

t P REGISTER

Figure 2-49.

\

\
\

\
\

\
1

\
I

~ __ J ___

L REGISTER I

452 I~

S REGISTER

529 1-

Stack Marker Chain

P 1485

ENV

f-------l G1452] L 237

PROC

d s
LOCAL
DATA

f-------I G1529]

2-91

Program Environment

BSUB

(2)

P REGISTER ..

CODE
SEGMENT

AFTER BSUB SUB-

PROCEDURE

RSUB 5

RSUB

BSUB + 10

~

RSUB 5

PARAMETERS

TO SUBPROCEDURE

DATA
SEGMENT

Pl

P2

P3

P4

S REGIST~]
BEFORE BSUB

RETURN P ...------[S REGIST~]
LP REGISTER

BEFORE BSUB

MEMORY STACK WHILE

SUBPROCEDURE EXECUTES

AFTER BSUB

S REGIST~R ~

P REGISTER

PR"eGIST~]

SUBLOCAL DATA
ADDRESSED S-MINUS
RELATIVE (INCLUDING
PARAMETERS)

CURRENT TOP

SUBlOCAL
VARIABLES

ELEMENTOF ----. ---- ~ S REGISTER

'.EMORY STACK ~

-+---f S REGISTER

) PARAMETERS
DELETED

S REGISTER ---

STACK MUST

BE CUT BACK

POINTING S

AT RETURN P

BEFORE RSUB

~--

\

\
\
,

/
/

/
~

I~

/

" \

/
Y

\
\
I
I

/

Figure 2-50. Subprocedure Calls

2-92

Program Environment

Specifically, the steps involved when a BSUB instruction is executed
are as follows:

1. The return address (i.e., that of the instruction following the
BSUB) is placed on the top of the memory stack.

S := S + 1;
data[S] := P;

2. The self-relative branch address of the subprocedure is put into
the P Register.

P := branchAaddress;

The last instruction that a subprocedure executes is an RSUB (return
from subprocedure) instruction. The RSUB instruction returns control
to the instruction following the BSUB instruction by putting the
return address, at the current top of memory stack location, into the
P Register:

P := data [S];
S := S - <S decrement>;

The <S decrement> value is used to move the S Register setting below
the sublocal data area. <S decrement> is at least one, to account for
the one-word return address.

The sublocal data area consists of a subprocedure's variables and
parameters. It is addressable using the S-minus addressing mode,
shown in Figure 2-51. This provides direct access to the 32 locations
including and below the current S Register setting (i.e., S[-31:0]).

LOGICAL MEMORY

Logical memory (for nonprivileged users using nonextended addressing)
is separated into six segments, each of which is defined by its own
map. These six segments, as shown in Figure 2-52, are:

Map Segment

o User Data
1 System Data
2 User Code
3 System Code
4 User Library Code
5 System Code Extension

The memory segments defined by the odd-numbered maps (1, 3, 5) contain
the GUARDIAN operating system. Since there is only one operating
system in a processor, this is a permanent assignment of maps. The
memory segments defined by the even-numbered maps (0, 2, 4) contain

2-93

Program Environment

G[OI u
G [17011 f-.L.'-L"--LL"",,-,,-~

L REGISTER P
ENV

S 014 2047 -----. LlOI

8 9 10 11 12 13 14 15

8i~11 111 11 I 0 I 1 11 I 0 : o I

1 t ~ /"-.. /

DIRECT S-MINUS DISPLACEMENT
ADDRESSING 1-: 14) ~ 5[-121

MODE i

S 005.1

J ~~ I 1 I 1 I 1 I 0 I 0 11 I 0 [1
\

t "----------1-----./ "-.. / ~ 5[-51 1701

INDIRECT S-MINUS DISPLACEMENT S REGISTER

ADDRESSING
3102 ---+ S[OI 1234

MODE G[31021

DEFINES TOP OF-STACK

LOCATION

Figure 2-51. Example of S-Minus Addressing

2-94

/
I

DATA

DATA

/
G[OI

USER
DATA

SEGMENT
(64 KW)

(MAP 0)

1

PROGRAM CODE FOR
OTHER PROCESSES
WAITING TO EXECUTE

C[O)

I

CODE

CODE

I
I
!
I

I I
CURRENTLY
EXECUTING

PROCESS
I

USER
CODE

SEGMENT
(64 KW)

(MAP 2)

o 0

C[O)

"-

LIBRARY
CODE

USER
LIBRARY

CODE
SEGMENT

(64 KW)

(MAP 4)

o

I

0

GUARDIAN
OPERATING

SYSTEM

/
I

SG[O) C[O)

SYSTEM SYSTEM
DATA CODE

SEGMENT SEGMENT
(64 KW) (64 KW)

(MAP 1) (MAP 3)

o

ENVIRONMENT~~77.~vr.~~~~~~~~~~~~~r.M~~

REGISTER~~~~~~~~~~~~~~~~~~~~~~
4 6 7

Figure 2-52. Logical Memory

Logical Memory

"-
C[O)

SYSTEM
CODE

EXTENSION
SEGMENT

(64 KW)

(MAP 5)

2-95

Logical Memory

the code and data of the currently executing process. Since many
processes typically exist in a processor (including user application
processes, i/o processes, compiler processes, GUARDIAN processes,
etc.), the actual code and data indicated by these maps switches each
time a different process comes into execution. Every such process
performs its addressing relative to its own G[O] and C[O] bases.

For any single memory-referencing instruction, only one code segment
and one data segment can be used. This selection, from among the six
segments of logical memory, is made by the existing state of three
bits in the Environment Register. As shown in Figure 2-52, the
selection of a data segment is made by the state of the DS bit
(bit 6). If DS is a "1", the System Data segment is accessed by the
instruction; if DS is a "0", the User Data segment is accessed. The
selection of a code segment is made by the combined states of the
LS and CS bits, as follows:

LS CS

0 0 User Code (Map 2)
0 1 System Code (Map 3)
1 0 User Library Code (Map 4)
1 1 System Code Extension (Map 5)

The User Code and System Code segments defined by Maps 2 and 3 are
referred to as the "standard" code segments, whereas the alternate
code segments defined by Maps 4 and 5 (User Library Code and System
Code Extension) are referred to as the "library" code segments. There
is some difference in the way the library segments are used by a user
and by the system, in that the user's library segment contains
procedures that all belong to one program~ on the other hand~ the
system's code extension segment is simply an extension of the standard
system code segment, altogether containing the many procedures that
make up the GUARDIAN operating system. This code resides in the two
memory segments defined by Maps 3 and 5, which provide a total
capacity of 128k words.

The System Data segment (64k words defined by Map 1) contains various
system values and tables. This space is accessible by all programs,
but only if the DS or PRIV bit in the Environment Register is set.
SG addressing and the location of system tables is discussed under
subsequent headings in the next few pages.

CALLING EXTERNAL PROCEDURES

Procedures in an external code segment can be called and executed as
efficiently as a program's own procedures. The XCAL (external
procedure call) instruction and the SG-relative addressing mode are
two important features that make this possible.

2-96

calling External Procedures

Figure 2-53 illustrates an example of a call from a User Code segment
to a procedure in the System Code segment. (The general method
applies also to any external calls between any of the four code
segments--User Code, User Library Code, System Code, and System Code
Extension.) When the application program calls the external
procedure, -an XCAL instruction is executed. This instruction places a
three-word stack marker on the top of the user stack and moves Land S
in the same manner as a PCAL instruction (i.e., defines a new local
area). However, instead of transferring control directly to a
procedure within the segment, control is vectored out of the segment
(via its XEP, External Entry Point Table) into another code segment
(through that segment's PEP, Procedure Entry Point Table). In this
example, the System Code Segment's Procedure Entry Point table (PEP)
is used to determine the procedure's starting address, and the CS bit
in the ENV Register is set to "1" so that instructions will be
executed from the System Code segment. The DS bit, however, remains a
"0" so that the user environment (as opposed to the system
environment) is still in effect. The local area for the system
procedure is therefore in the User Data segment. Specifically, the
steps involved when the XCAL instruction is executed are:

1. The caller's environment is stored in a stack marker.

data [S+l]
data [S+2]
data [S+3]

:=
:=
:=

p. ,
E~;

L;

2. The C[O]-relative address of the procedure being called is
obtained by a two-step process. First, the XCAL instruction
specifies a location in the caller's External Entry Point Table
(XEP; refer back to Figure 2-38). Then, the XEP entry is used to
locate the desired code segment (bits 0 through 3 of the entry
specify a map number) and Procedure Entry Point address (bits 7
through 15 of the entry specify a PEP number), which in this case
is in the System Code segment's Procedure Entry Point Table. This
address is put in the P Register so that the next instruction
executed will be the first instruction of the system procedure.

3. If the calling procedure is not executing in privileged mode, the
callability attribute of the system procedure being called is
checked.

map := 3; ! system code map, in this case
temp := <PEP number>;
if not PRIV then

if temp >= mem(3,0) then call to callable
begin

if temp >= mem(3,1) then ! call to privileged
instructionAfailureAtrap;

PRIV := 1; ! set privileged mode
end;

P := mem(pepmap,temp) get entry point address into P

2-97

Calling External Procedures

C ALL READ(. .. 1;

NON

PRIV

GROUP

PUTS CPU CALLABLE.
IN .. HIV MuuE
(CS POiNTS

TO SYSTEM CODE.

OS POINTS TO

USER DATA,

LS POINTS TO

SYSTEM CODE

EXTENSION)

42037

F-KIV

GROUP

UNCALL

ABLE.
PRIV

GROUP

P REGISTER

AFTER EXIT, CS, OS, AND LS

3

1
0

USER

CODE

~

PROC z

· · ·
XCAL 2

· · ·
3 r@ 41

~"\..

SYSTEM

CODE

{I
22 I

(I I
"1 r 1

42037

r 1

{ I I

A

EXIT

POINT TO USER CODE, USER DATA,

AND USER LIBRARY, RESPECTIVELY

}

PROCEDURE

ENTRY POINT

TABLE

(PEPI

C [4075[_ 4075

)

EXTERNAL

ENTRY POINT

TABLE (XEP)

P REGISTER

clot 1
C[22[~~~~E~~"p~

~ FN~~~-P~;~T
C[lIl [TABLE

(SEPI

C [42037[

PROCEDURES EXECUTING

IN PRIVI LEGED MODE FROM

THE USER ENVIRONMENT

CAN ACCESS SYSTEM DATA

AS WELL AS USER DATA

...

USER

DATA

D
~

l '5

LOCAL

DATA

~ -
I-PARAMETERS-

- TO READ -
- -
oJ 4075 P

ENV
L

READ'S

LOCAL

DATA

SYSTEM

DATA

n

G[O[

}
STACK MARKER

(IN THE CALLER'S ENV,

CS POINTS TO USER CODE.

OS POINTS TO USER DATA,

AND LS POINTS TO USER

LIBRARY)

SG[O[

Figure 2-53. System Procedure Call and Exit

2-98

calling External Procedures

4. The Sand L Registers are set with the G[O]-relative address of
the new top-of-stack location.

L := S := S + 3;

The new L Register setting defines the base of the local area for
the system procedure being called.

5. The new S Register setting is tested for an address within the
memory stack area, G[0:32767]. If the value is greater than
32,767, control is transferred to the operating system Stack
Overflow trap (and the XCAL instruction is aborted).

if S > 32767 then stackAoverflowAtrap;

6. The CS bit of the ENV Register is set to 1 and the LS bit is set
to 0, so that further code area references will be in the System
Code segment (in this example). LS and CS are set based on the
map number in the XEP Table.

7. Finally, the Register Stack Pointer, RP, is given an initial value
of seven (stack empty).

When the system procedure finishes, the usual EXIT instruction is
executed. The CS bit is restored from the stack marker so that the
next instruction is executed from the User Code segment.

If the system procedure must access the System Data segment from the
user environment it is given the attribute "callable" (so that it can
be called by the nonprivileged application program) and executes in
privileged mode. Executing in privileged mode permits the procedure
to make use of the "SG" addressing mode. This addressing mode,
illustrated in Figure 2-54, provides access to the System Data segment
(and, therefore any system tables) even when OS indicates User Data.

The SG-Relative mode for a memory reference
addressing of the first 64 locations of the
segment (SG[0:63]). This mode is indicated
memory reference instruction equal to 110.
positive word displacement from SG[O]:

directAaddress = 1.<10:15>

instruction allows direct
operating system's data
by bits 1.<7:9> of the
Bits 1.<10:15> are a

The data map used for the SG-relative addressing mode is determined
by the function:

datamap:
if 1.<7:9> = 6 and PRIV then 1

else OS;
system data map.
current data map.

Indirect addressing and indexing are both permitted with the
SG-relative addressing mode.

2-99

Calling External Procedures

B(f%] X 1110000 1 0 0

t ~ ''------,,--------/
DIRECT

[2]~ X

t
INDIRECT

SG·RELATIVE
ADDRESSING

MODE

1 1 0

~'
SG·RELATIVE
ADDRESSING

MODE

DISPLACEMENT

0 0 1 1 0 1 I
/

DISPLACEMENT

SG[O]

SYSTEM
DATA

---.~ SG[13] 42176

SG [42176J t'-"-L-L.J.~.L.L..L.L...t

Figure 2-54. SG-Relative Addressing Mode

2-100

System Tables

Executing in privileged mode while in the user environment also means
that data can be moved, compared, and scanned (with the MOVW, MOVB,
COMW, COMB, SBW, and SBU instructions) between the User Data segment
and the System Data segment. (The File System uses a MOVW instruction
to transfer data between the User Data segment and the System Data
segment.)

SYSTEM TABLES

Some processor-known data assignments within the first two pages of
the System Data segment are listed in Table 2-2. Note that all of
page 1 is assigned to use for the I/O Control Table. Both pages 0 and
1 of this segment are always located in pages 0 and 1 of physical
memory.

The locations of the major tables discussed at length later in this
section are illustrated in Figure 2-55, and briefly described in the
following paragraphs.

SYSTEM INTERRUPT VECTOR. SG[%1200:%1337] is the System Interrupt
Vector (SIV). This table contains 24 four-word entries; each entry
defines the executing environment for one of the operating system
interrupt handlers (see "Interrupt System").

BUS RECEIVE TABLE. SG[%1400:%1477] is the Bus Receive Table (BRT).
This table contains 16 four-word entries, each of which is assigned to
manage the interprocessor transfers for one processor module. Each
entry describes the number of words expected and the system buffer
location where the data is to be stored (see "Interprocessor Buses").

I/O CONTROL TABLE. SG[%2000:%3777] is the I/O Control Table (IOC).
This table contains 256 entries corresponding to the 256 subchannels
that can be connected to an i/o channel. Each entry describes the
number of bytes to be transferred and the system buffer location where
the data transfer takes place (see "Input/Output Channel").

2-101

System Tables

Table 2-2. System Data Segment Table Values

Location Contents

%2
%3

%4:%77
%100:%101

%102
%103:%106
%107:%110
%111:%114
%115:%116

%117
%120
%121
%122
%123
%124
%125

%1153:%1177
%1200:%1337
%1340:%1357
%1360:%1377
%1400:%1477
%2000:%3777

2-102

Dummy Priority Value
Current Process Control Block Pointer
Software Values
Ready List Header
Dummy Priority Value
Microsecond Counter
Time List Header
OSP I/O Control Block
Memory Breakpoint Trap Address
Trace Buffer Base
Trace Buffer Limit
Trace Buffer Pointer
LIGHTS Save Area
Breakpoint Table Base
Breakpoint Table Entry Size
Breakpoint Table Limit
Processor Dump Save Area
System Interrupt Vector
Currently Mapped Segment Table
Interprocessor Bus Error Packet
Bus Receive Table
Input/Output Control Table

Figure 2-55.

96 WORDS
(4 WORDS*
24 ENTRIES)

64 WORDS
(4 WORDS*
16 ENTRIES)

1024 WORDS
IF NEEDED
(4 WORDS*

256 ENTRIES)

/

1

SYSTEM

DATA

SYSTEM

INTERRUPT

VECTOR
(SIV)

BUS
RECEIVE

TABLE
(BRT)

INPUT/

OUTPUT

CONTROL

TABLE
(IOC)

1 SGIOI

SG [%1177]

SG [%1200]

SG [%1337]

SG [%1400]

SG [%1477]

SG [%2000]

SG [%3777]

~

System Tables

Dedicated Memory Locations in System Data

2-103

Interrupt System

INTERRUPT SYSTEM

The interrupt system transfers control to a specific location in the
operating system (called an interrupt handler) upon the occurrence of
any of the conditions listed in Table 2-3.

Table 2-3. Interrupt Conditions

Interrupt No. Event

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20-23

Special channel error
uncorrectable memory error
Memory access breakpoint
Instruction failure
Page fault
Undefined
Undefined
OSP (Operations & Service Processor) i/o
Power fail
Correctable memory error
High-priority i/o
Interprocessor bus receive completion
Undefined
Time list
Standard i/o
Dispatcher
Power on
Stack overflow
Arithmetic overflow or divide by zero
Instruction breakpoint
Undefined

Generally, when an interrupt occurs the interrupted environment is
saved in an interrupt stack marker. An operating system interrupt
handler executes to process the particular interrupt. Then an IXIT
(interrupt exit) instruction is executed to restore the interrupted
environment. See Figure 2-56.

INT and Mask Registers

Three registers are associated with interrupts: two 16-bit interrupt
registers and a 16-bit Mask Register. The bit assignments of these
registers are illustrated in Figure 2-57. Only four bits of INTB are
relevant to interrupts; however, these four are the highest-priority
interrupt bits, being examined first at the conclusion of each
instruction. The interrupts represented by the bits of INTA are

2-104

Interrupt System

INTERRUPT
HANDLER

PROCESSES
INTERRUPT

Figure 2-56. General Interrupt Sequence

"maskable." That is, the corresponding bits of the Mask Register are
used by the operating system to allow or disallow particular interrupt
types at various critical or noncritical times. Bit 6 of INTA
(arithmetic overflow or divide by zero) is separately masked by the
Trap Enable bit of the Environment Register (ENV.<8», but is used in
a similar way to enable or disable that interrupt. For all maskable
interrupts, the interrupt condition is ignored if the corresponding
Mask bit is a "0", and will continue to be deferred until the Mask bit
is set to "1". The checking operation is performed by a logical AND
of the two registers.

Most interrupt types can occur only at the end of an instruction, when
the hardware routinely checks for the presence of "1" bits in the
interrupt registers. However, three interrupt types (power on,
uncorrectable memory error, and page fault) are "preemptive"~ that is,
they will interrupt during an executing instruction. Also, certain
long-running instructions (e.g., the Move instructions) may be
interrupted during execution.

If two or more interrupt conditions exist simultaneously in INTA, and
each has its corresponding Mask Register bit set, the interrupt type
with the highest priority (lowest bit number) takes precedence~ the
others are deferred until the interrupt handler finishes executing and
executes an IXIT instruction.

Interrupts for stack overflow, instruction failure, and instruction
breakpoint have entries neither in the interrupt registers nor in the
Mask Register~ these cause an interrupt whenever they occur, ignoring

2-105

Interrupt System

INTB

*
HALT

OSP HAL T

MANUAL RESET 10

POWER ON 11

* 12

* 13

14

* 1S

INTA

SPECIAL CHANNEL ERROR

UNCORRECTABLE MEM ERROR

MEMORY ACCESS BREAKPOINT

INOT USEDI

DATA PAGE ABSENT

CODE PAGE AClSENT

ARITHMETIC OVERFLOW

asp 10

POWER FAIL

CORRECTABLE MEMORY ERROR

HIGH PRIORITY I 0 10

X BUS RECEIVE COMPLETION 11

Y BUS RECE IVE COMPl E liON

~" TIME LIST 13

STANDARD 1.'0 14

DISPATCHER 15

•

MICROCODE
INTERRUPT SERVICE

ROUTINES

HALT

OSP HAL T

MANUAL RESET

INSTRUCTION

FAILURE

MASK
REGISTER

("AND"I

10

11

12

13

14

15

10

11

12

13

14

15

16

17

18

19

20

SYSTEM
INTERRUPT

VECTOR

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED
STACK OVERFLOW ______ ---J

21 UNDEFINED

22 UNDEFINED

23 UNDEFINED
INSTRUCTION BREAKPOINT

* NON INTERRUPT BITS

USED AS MICROCODE FLAGS

~
~
~I

INTERRUPT

HANDLERS

SPECIAL CHANNEL ERROR

UNCORRECTABLE MEM ERROR

MEMORY ACCESS BREAKPOINT

INSTRUCTION FAILURE

PAGE FAUL T

OSP 110

POWER FAIL

CORRECTABLE MEM ERROR

HIGH PRIORITY 10

BUS RECEIVE COMPLETION

TIME LIST

STANDARD 10

DISPATCHER

POWER ON

STACK OVERFLOW

ARITHME TIC OVE RF LOW

INSTRUCTION BREAKPOINT

Figure 2-57. INT and MASK Registers

2-106

I

Interrupt System

priority. The hardware-only interrupts (halt, asp halt, and manual
reset) are serviced entirely within microcode.

As shown in the diagram (Figure 2-57), detected interrupt conditions
are passed to software interrupt handlers through the System Interrupt
Vector, which is discussed next.

System Interrupt Vector

Each interrupt event that is to be serviced by software has a
corresponding entry in the System Interrupt Vector (SIV). The SIV,
which is initialized by the operating system, defines the executing
environment for each of the 17 operating system interrupt handlers.
The SIV, shown in Figure 2-58, begins at system data location %1200
and contains 24 four-word entries (seven are undefined).

Each four-word entry in the System Interrupt Vector contains the
following information:

Li
Mi

=
=

L Register setting for inter~upt handler
MASK Register setting for interrupt handler

Pi
Vi

=
=

P Register setting of first instruction in interrupt handler
Interrupt-related parameter put here by firmware

The following paragraphs further describe the functions of each of
these entries, as illustrated in Figure 2-59.

• Li: This is the address in the system data area for an interrupt
handler's local storage (stack).

• Mi: This is a mask value for masking off unwanted interrupts while
an interrupt handler executes. The MASKi value in the SIV entry is
ANDed with the current MASK register setting to derive a new
setting. This permits nesting of interrupts of different types.

• Pi: This is the system code address of the interrupt handler's
entry point.

• Vi: This is a location where an interrupt-related parameter may be
returned by firmware.

Interrupt Stack Marker

When an interrupt occurs, the interrupted environment is saved in an
interrupt stack marker. The interrupt stack marker is placed at
Li[-4:0] in the interrupt handler's stack; see Figure 2-59. The
interrupt stack marker contains the following information:

2-107

Interrupt System

INTERRUPT
SYSTEM

NUMBER
INTERRUPT

VECTOR

SG[%1200]

§ SPECIAL CHANNEL ERROR

SG[%1204]

UNCORRECTABLE MEMORY ERROR

SG[%1210]

MEMORY ACCESS BREAKPOINT

SG[%1214]

INSTRUCTION FAILURE

SG[%1220]

PAGE FAULT

SG[%1224]

UNDEFINED

SG[%1230]

UNDEFINED

SG[%1234]

f
OSP I/O

SG[%1240]

L POWER FAIL

SG[%1244] /
'\

CORRECTABLE MEMORY ERROR

10 SG[%1250]
'\

HIGH-PRIORITY INPUT/OUTPUT

11 SG[%1254]
/

INTERPROCESSOR BUS RECEIVE COMPLETION

12 SG[%1260]

UNDEFINED

/
13 SG[",1264]

't TIME LIST

14 SG[%1270]
1

STANDARD INPUT/OUTPUT
)

15 SG[%1274]

r DISPATCHER
J

16 SG["01300]

POWER ON

17 SG[%1304]

MEMORY STACK OVERFLOW

18 SG[%1310]

ARITHMETIC OVERFLOW OR DIVIDE BY ZERO

/
19 SG[%1314]

INSTRUCTION BREAKPOINT

20 SG[%1320] /

UNDEFINED

/
21 SG[%1324] /

UNOEFINED
/

22 SG[%1330] /

UNDEFINED

23 SG[%1334] /

UNDEFINED

/

Figure 2-58. System Interrupt Vector

2-108

Interrupt System

SYSTEM

INTERRUPT

VECTOR

(SYSTEM

~ SIV TABLE ENTRY SYSTEM
(DEFINES THE INTERRUPT CODE

HANDLER'S ENVIRONMENT)

Li
---- ~ ADDRESS OF INTERRUPT STACK

Mi Li
MARKER FOR INTERRUPT HANDLER

Pi
Vi Mi

MASK FOR MASKING OFF

OTHER INTERRUPTS
~ STARTING ADDRESS OF
~, Pi

INTERRUPT HANDLER
""- - " PARAMETER RELATED TO - -----.../ ~ Vi

'-..... INTERRUPT

~
I- _ CIP,I

INTERRUPT STACK MARKER

(SAVES THE INTERRUPTED

ENVIRONMENT)

M
---~-

I I ~
S

- INTERRUPTED MASK
f-

P
-

f-
ENV =~

INTERRUPTED S
f-

L INTERRUPT SGiLoi INTERRUPTED P (OR P-1)
f-- - "-. HANDLER

e- - "-..... INTERRUPTED ENV CODE
~ - "-.....
- - "'-. INTERRUPTED L - -
r-- - RO

Rl

INTERRUPT
R2

HANDLER

STACK R3
(I.e .. LOCAL IXIT

STORAGE) R4

R5

...--
R6

R7 ~

Figure 2-59. SIV Entry and Interrupt Stack Marker

2-109

Interrupt System

Li[-4] = M, the MASK Register setting at the time of the interrupt
Li[-3] = S, the S Register setting at the time of the interrupt
Li[-2] = P, the P Register setting at the time of the interrupt
Li[-l] = ENV, the ENV Register setting at the time of the interrupt
Li[O] = L, the L Register setting at the time of the interrupt

In addition, each time an interrupt occurs the current contents of the
Register Stack (RO through R7) are saved in the first eight locations
of local storage (i.e., SG[Li+l] through SG[Li+8]).

Interrupt Sequence

An interrupt (i is the interrupt number) is defined as:

if INTA.<i> land MASK.<i> then
begin

Vi := interrupt parameter;
sysdata[Li-4] := MASK;
sysdata[Li-3] := S;
sysdata[Li-2] := P;
sysdata[Li-l] := ENV;
sysdata[Li] := L;
sysdata[Li+l] := RO

thru
sysdata[Li+8] := R7
ENV := %3447;
L := Li;
S := L + 8:
P := Pi;
MASK := MASK LAND Mi;

end;

an interrupt occurred

if any

interrupt stack marker

saved Register Stack

PRIV, OS, CS, V, RP = 7

An example is discussed in the following paragraphs, with reference to
Figures 2-60 and 2-61. (The first 10 steps are shown in Figure 2-60.)

1. An interrupt condition occurs (in this example, a device is
requesting standard i/o servicing).

INTA.<14> := 1;

2. The current instruction completes executing and, since MASK.<14>
is a "1", an interrupt occurs.

if INTA land MASK then
begin

interrupt.

3. There is no interrupt parameter for a standard i/o interrupt.

4. The interrupted environment (including the current MASK and S
Register settings) is saved in the area pointed to by Li in the
SIV entry for the standard i/o interrupt.

2-110

Interrupt System

INTERRUPTED

CODE

(USER OR SYSTEM I

(21 INSTRUCTION

/ COMPLETES

1--________ --1 / PRE G IS TE R

1------------1 _ [=o/~~-=-_

SYSTEM

CODE

~

(1) STANDARD 110 INTERRUPT

OCCURS
INTA REGISTER

0 1 2 3 4 5 6 7 8 9 10 11 12 13 ~ 15

I o I 0 1 o 1 o 1 0 1 01 0
1

0 1 0 10
1 o I o I o 1 1 I o I o I

MASK REGISTER ~

....----4-r,[[EEE[]~~-ECE~E[E[J

• ~----------------------~ (SILAND

11
1

1 I 1 I 1

STACK {
MARKER

MASK .. REGISTER

11 I 1 I 1 I, I 1 I o 1 1 I o I 0 1 0

%177640

INTE RRUPTE D

DATA

(USE R OR SYSTEM I

----- ~~
L REGISTER

+-- [~'.fJ&J~_

,-----.

LOCAL

DATA

SYSTEM

DATA

S REGISTER

I o I o I

LI %3131

} SG[%1270]
Mi %177640
P, %1747

SIV ENTRY FOR

V, STANDARD 110 [~P:R=E~G~IS~T~E~R::\7:13-__ -+ __ +-~~~==~========~==~~~~:l 1-----\9·-1----~ - I % 17 47

STANDARD 110

INTERRUPT

HANDLER

IX IT (10)

[

I

ENV REGISTER

'% 17

ENV REGISTER

%3447

151PRIV MODE

SYSTEM DATA

SYSTEM CODE

.,

. .J

I

....

....

LI
MI
P,

\II

~ .---

~

M %177777
S %3670
P %12765

ENV %17
L %3476

RO
Rl
R2
R3
R4
R5
R6
R7

STANDARD 110
INTERRUPT

HANCLER

STACK

~~

INTERRUPT STACK

MARKER PUSHED

L REGISTE R
}

(41

_ 1r---%'""""3~13~1--~" (61

S REGISTER

~ 1r----%-31-41-+----'

Figure 2-60. Interrupt Sequence

2-111

Interrupt System

sysdata[Li-4] := MASK;
sysdata[Li-3] := S;
sysdata[Li-2] := p. , interrupt stack marker
sysdata[Li-l] := ENV;
sysdata[Li] := L· ,
sysdata[Li+l] := RO

thru saved Register Stack
sysdata[Li+8] := R7

5. The PRIV (privileged mode), DS (data space), and CS (code space)
bits in the ENV Register are set. This defines the interrupt
handler executing environment.

ENV := %3447;

6. The Land S Registers are set with the address of the interrupt
handler's local data area. This is the value Li in the SIV
entry for the standard i/o interrupt.

L := Li;
S := L + 8;

7. The P Register is set with the address of the first instruction
in the Standard I/O Interrupt Handler. This is the value Pi in
the SIV entry for standard i/o.

P := Pi;

8. The Mi value in the SIV entry is ANDed with the current MASK
Register setting to derive a new MASK Register setting.

MASK := MASK la~d Mi;

9. The first instruction of the Standard I/O Interrupt Handler
executes.

I : = code [P] ;

10. The interrupt handler runs to completion, unless the interrupt
handler's mask allows interrupts or purposely unmasks any or all
interrupts and corresponding interrupts do occur. Finally, an
IXIT instruction is executed to return to the interrupted
process.

11. The IXIT instruction (see Figure 2-61) restores the interrupted
environment saved in the interrupt stack marker (at L[-4:0]);
that is, the MASK, S, P, ENV, and L Registers are returned to
their pre-interrupt values.

MASK := sysdata [L-4] ; (a)
S := sysdata [L-3] ; (b)
p := sysdata [L-2] ; (c)
ENV := sysdata [L-l] ; (d)
L := sysdata [L] ; lei

2-112

INTE RRUPTED

CODE

(12a) _____

SYSTEM

CODE

STANDARD 1/0

INTERRUPT

HANDLER

IXIT P REGISTER -C===:I
ENV REGISTER

%17

ENV REGISTER

L=--=--_~

Figure 2-61.

r-
-v

M %177777
S %3670
P %12765

ENV %17
L %3476

I- -

~ ~-

Interrupt System

DISPATCHER

INTERRUPT

I
INT REGISTER •

MASK REGISTER

}

INTERRUPT

STACK

MARKER
L REGISTER -c_ %3131 =:l

S REGISTER

-c ~"3.!2?=J

IX IT Sequence

2-113

Interrupt System

Also the Register Stack (values saved in L+l through L+8) is
returned to its pre-interrupt condition.

l2a. If no interrupt is pending when the IXIT instruction completes,
process execution resumes at the point of interruption.

l2b. If another interrupt is pending, the interrupt sequence is
repeated from step 1, using the appropriate SIV entry to set up
the interrupt handler's environment.

Interrupt Types

The following paragraphs describe each of the interrupt types.

SPECIAL CHANNEL ERROR (0). This interrupt occurs when the i/o channel
detects types of errors that require software servicing. The error
number is placed in the parameter word. Certain errors have a second
error word giving the subchannel address and command, which is found
in R7 on entry to the interrupt handler.

UNCORRECTABLE MEMORY ERROR (1). This interrupt occurs when a memory
word is accessed by the IPU and contains an error which cannot be
corrected. The parameter contains the logical address of the page at
fault and the six syndrome bits generated by the error correction
circuitry. These syndrome bits provide information for Tandem service
personnel. The format of the parameter word is:

Vl.<O:S>
V1.<6:1l>
V1.<12:lS>

= logical page
= syndrome
= map number

The contents of the data word that was in error is found in R7 on
entry to the interrupt handler.

MEMORY ACCESS BREAKPOINT (2). This interrupt occurs when the memory
breakpoint has been armed by the 5MBP instruction and the breakpoint
memory address has been accessed in the desired manner. There is no
parameter. No interrupt occurs if the breakpoint was armed by the
Operations and Service Processor (OSP); instead, the processor
performs a system freeze and enters the idle loop.

INSTRUCTION FAILURE (3). This interrupt occurs when an unimplemented
instruction is executed, or when execution of a privileged instruction

2-114

Interrupt System

is attempted by a program which is not in privileged mode, or when an
abnormal condition is detected during the execution of certain
instructions. The parameter for this trap is the current instruction.

PAGE FAULT (4). This interrupt occurs when an attempt is made to
access an absent memory page (i.e., its map entry "absent" bit is set
to 1). The parameter word is:

V4.<0:5>
V4.<12:l5>

= logical page
= map number

OSP I/O COMPLETION (7). The i/o completion interrupt for the
Operations and Service Processor occurs when either a read or a write
operation to the OSP completes. The parameter word indicates the
status, as follows:

o
1

%177777
%177776
%177775

normal read completion
normal write completion
character overrun detected on a read
write interrupt with negative byte count
read interrupt with zero or negative byte count

POWER FAIL (8). This interrupt occurs when a processor module power
failure is detected. A minimum of five milliseconds is available for
processing after this interrupt occurs before power is lost. There is
no parameter.

CORRECTABLE MEMORY ERROR (9). This interrupt occurs when a memory
error occurred and can be corrected. The parameter word is of the
same form as that for an uncorrectable memory error.

HIGH-PRIORITY I/O COMPLETION (10). This interrupt occurs when a
device that is connected to the high-priority interrupt poll line
requires servicing. There is no parameter.

INTERPROCESSOR BUS RECEIVE COMPLETION (11). This interrupt occurs
when a transmission is received on either the X-bus or the y-bus.
The parameter word is of the following form:

Vll.<O> = bus
o
1

received on X-bus
received on Y-bus

2-115

Interrupt System

Vll.<1:7> = status
o normal completion
1 unexpected packet
2 checksum error
3 misrouted packet
4 "unsequenced" packet
5 sequence error
6 illegal extended buffer address

Vll.<8:15> = processor number of sender

In addition, R7 contains the checksum+l computed by the microcode
when a checksum error is detected.

TIME LIST (13). Every 10 milliseconds the microcode detects an
interval clock micro-interrupt and decrements the wait time of the
element at the head of the Time List. If it has gone to zero, control
passes to the Time List Interrupt Handler; otherwise, no action is
taken. There is no parameter.

STANDARD I/O COMPLETION (14). This interrupt occurs when a device
that is connected to the standard interrupt poll line requires
servicing. There is no parameter.

DISPATCHER (15). This i~terrupt cccur~ when a nISP or SNDQ
instruction is executed, or when a PSEM or VSEM instruction is
executed that requires operating system aid. Bit 15 of the parameter
word is set on a DISP, bit 14 is set on a SNDQ, bits 13 and 15 are set
on a PSEM when the semaphore cannot be obtained, and bit 12 is set
when a VSEM instruction must release a blocked process. No part of
the parameter word is ever cleared by the processor. If a Dispatcher
interrupt is pending but the contents of the parameter word are zero,
the interrupt is cleared.

POWER ON (16). This interrupt occurs when power is applied following
a power failure when memory is in a valid state and the maps have been
successfully loaded with no uncorrectable memory errors. The contents
of Loadable Control Store are invalid. There is no parameter for this
interrupt.

STACK OVERFLOW (17). This interrupt occurs when S exceeds 32,767
(i.e., the limit of the memory stack) following the execution of any
instruction which can change the S Register setting-- SETS, PCAL,
XCAL, ADDS, BSUB, or PUSH. There is no parameter.

2-116

Interrupt System

ARITHMETIC OVERFLOW (18). This interrupt occurs when the T (trap
enable) and V (arithmetic overflow) bits in the ENV Register are
simultaneously set to 1. There is no parameter.

INSTRUCTION BREAKPOINT (19). This interrupt occurs when a BPT
instruction is executed, or when an EXIT or DXIT instruction is
executed with ENV.<l> set to 1 in the stack marker. The parameter is
the instruction which caused the interrupt.

INTERPROCESSOR BUSES

A NonStop II computer system has two interprocessor buses,
designated the X-bus and the Y-bus. Each processor module in the
system is connected to both buses and is capable of communicating
wjth any processor module (including itself) over either bus. See
Figure 2-62.

with any given interprocessor bus transfer, one processor module is
the source (and initiator), the other is the destination (and
receiver). Before a processor module can receive data over an

X BUS (0)
n

Y BUS (1)
»

I
"

I
PROCESSOR PROCESSOR PROCESSOR PROCESSOR

MODULE MODULE MODULE . . . MODULE

0 1 2 15

Figure 2-62. Processor Module Addressing

2-117

Interprocessor Buses

interprocessor bus, the operating system first configures an entry in
a table known as the Bus Receive Table (BRT). Each BRT entry
contains, among other things, the address where the incoming data is
to be stored and the number of bytes expected.

To transfer data over a bus (see Figure 2-63), a SEND instruction is
executed in the source processor module. The SEND instruction
specifies the bus to be used for the transfer, the destination
processor module, the number of bytes to be sent, the source location
in memory of the data to be sent, the sender's processor number, a
timeout value, and a sequence number. While the source processor
module is executing the SEND instruction and sending data over the
bus, the firmware in the destination processor module is storing the
data away according to the appropriate BRT entry (this occurs
concurrently with program execution). When the destination processor
module receives the expected number of bytes (the bus transfer is
complete), a Bus Receive interrupt is posted.

SOFTWARE

SOURCE
PROCESSOR
MODULE

Figure 2-63.

2-118

DESTINATION
PROCESSOR
MODULE

SOFTWARE

DATAISSTOREDIN
THE SYSTEM DATA
AREA POINTED TO

BY THE BUS
RECEIVE TABLE.

SOFTWARE PROGRAM
IS INTERRUPTED WHEN
TRANSFER COMPLETES.

HARDWARE

Simplified Bus Transfer Sequence

Interprocessor Buses

Bus Receive Table

The Bus Receive Table (BRT) contains 16 four-word entries, which
correspond to the 16 processor modules possible in a system. The
table begins at location SG[%1400].

Each entry in the BRT (see format in Figure 2-64) contains the address
in the virtual memory where the incoming data is to be stored, a count
of the number of bytes expected, and the expected sequence number.
(Refer to the "Memory Access" discussion for a description of virtual

memory addressing using absolute extended addresses.)

If a processor is to receive data over a designated bus, the
corresponding bit in the interrupt Mask Register must be a "1". These
mask bits, when on, enable both the receipt of data and the interrupt
itself. The bits are:

X-Bus Receive Enable = MASK.<ll>
Y-Bus Receive Enable = MASK.<12>

SEND Instruction

The SEND instruction expects seven parameter words in the Register
Stack. These are shown in Figure 2-64, and are described as follows.

• G.<15> specifies the bus (0 = X bus, 1 = y bus) to be used.

• F.<O:15> is the sequence number to be sent.

• E.<O:7> specifies the sender processor module, and E.<8:15>
specifies the receiving processor module.

• D.<O:15> is a value that is subtracted from 32,768 to derive the
number of O.8-microsecond units allotted to completing a single
packet (16-word) transfer. The timeout period is restarted for
each packet transferred. (This parameter is normally zero when
the operating system issues a SEND.)

• c.<O:15> and B.<O:15> form the absolute extended (byte) address of
the buffer containing the data to be transferred.

• A.<O:15> is an unsigned count of the number of data bytes to be
transferred.

Following execution of the SEND instruction, the condition code is set
to either of two values:

CCL = Packet Timeout
CCE = Successful

2-119

Interprocessor Buses

BUS RECEIVE
TABLE

(SYSTEM DATA)

CPU 0 -<
1-<
2-<

~
~

13 -<
14 --<

15-< ~

Figure 2-64.

2-120

BRT ENTRY

SG[% 1400y ABSOLUTE EXTENDED BUFFER ADDRESS
~ ~--~

/' (ADDRESS CONTINUED)

UNSIGNED BYTE COUNT

SEQUENCE NUMBER EXPECTED
- - - ... _-------------------_ ..

o
G

F

E

D

C

B

A

SEND PARAMETERS
IN REGISTER STACK

7 8

SEQUENCE NUMBER

12

SENDER CPU RECEIVER CPU

TIMEOUT VALUE

ABSOLUTE EXTENDED BUFFER ADDRESS

(ADDRESS CONTINUED)

BYTE COUNT

Formats Associated with Bus Transfers

15

B

Interprocessor Buses

Specifically, the SEND instruction executes as follows:

1. The hardware checks whether the OUTQ is empty, since it must be
empty when the send begins. If the OUTQ is not empty, the
hardware checks for interrupts and services any that are pending.
Then it checks for a timer overflow. If the timer did not
overflow, it updates the timer and begins step 1 again. If a
timer overflow occurred, indicating that the OUTQ did not become
empty within the timeout period, a packet timeout occurs and the
SEND is aborted. Timeout is defined as:

0.8{32768 - D) microseconds

2. If data remains to be sent (i.e., count <> 0), it is placed in the
OUTQ (bytes 4 through 29, or OUTQ[2:14]). If there are fewer than
26 bytes to be transferred, OUTQ[2:14] is padded with zeros. The
sequence number is placed in OUTQ[l] and the routing word in
OUTQ[O]i an odd parity checksum is calculated and placed in
OUTQ[15]. The packet is then sent, and the transfer address and
count parameters are updated. The transfer address is an absolute
extended address, and the count is an unsigned byte count.

3. If no data remains to be sent, the SEND is flagged internally as
"done" and the condition code is set to CCE to indicate a
successful completion.

4. If a packet timeout occurs, the operation is also flagged
internally as "done". However, the condition code is set to CCL
to indicate a packet timeout.

5. The sequence repeats back to step 2.

Bus Transfer Sequence

As previously stated, there must be coordination between the source
processor module and the destination module in regard to the number of
bytes to be transferred. The operating system accomplishes this by
preceding each transfer with a separate transfer (i.e., SEND) of a
predetermined number of bytes of control information. In general,
this control information tells the operating system in the destination
module to expect a specified number of bytes over a specified bus. In
the following example, illustrated in Figures 2-65a and b, assume that
the initial transfer has taken place. The operating system in the
destination module has configured the appropriate BRT entry for
receiving 400 bytes.

2-121

Interprocessor Buses

SYSTEM
CODE

'--____ ~ (1)
SEND E J-~----!---=---I

---- D ~ J--~--~

----- ---..... ; '---: :-: -: :-: :-: ~-~-~~---I
A L.... __ 4;;,;:OO.;;...._

X BUS

Y BUS

ABSOLUTE
ADDRESS

- - -- --1466

SOURCE
DATA

BUFFER

SYSTEM
DATA

DATA

TO BE
SENT

(400 BYTES)

Figure 2-65a. Bus Transfer Sequence (Send)

2-122

TO PROCESSOR
MODULE 3

PROCESSOR
MODULE 1

Interprocessor Buses

FROM PROCESSOR
MODULE 1

X BUS

Y BUS

(2) X BUS RECEIVE ~

MASK REGISTER ~ 1 ~

INTERRUPT PARAMETER

SYSTEM
DATA

(- EJL: SG[%1254]

-1 P , ~I~~:~~:~~~ION
I 0 I 0 1 0 1 0 I 0 1 0 1 0 I 0 1 0 1 0 I 0 1 0 1 0 I 0 1 0 11 I -~ Vi

I ~~ ____ ~ __ ~/ ~~ ____ ~ ______ ~/ _

BUS STAITUS CP~ 1 ::1 r -: : : :40

0

: ~1-;;~ - :~~Q/;~:~(~OR
r x BUS, CPU 1

SYSTEM

COD' : : _

(41 l - : :----rn
X BUS

COMPLETION

1530

(31 I
400 BYTES

I OF DATA
f- ----"' INTERRUPT (51

HANDLER
CODE

IX IT (61

1

l--.

I I
I I
I I
I I

~
M

ENV

STACK FOR

X BUS
COMPLETION

INTERRUPT

FROM CPU 1

VIA X BUS

DESTINATION
DATA BUFFER

}

INTERRUPT STACK
MARKER SAVING
INTERRUPTED

ENVIRONMENT

PROCESSOR

MODULE 3

Figure 2-65b. Bus Transfer Sequence (Receive)

2-123

Int~rprocessor Buses

1. A SEND instruction is executed in the source processor module
(processor module 1). The SEND parameters specify:

• X-Bus to Processor Module 3 (stack register G).

• A sequence number (ignored in this example) (F).

• Sender cpu 1 and receiving cpu 3 (E).

• A packet timeout value of 0 (meaning that a timeout occurs if a
single packet transfer takes longer than 26 milliseconds) (D).

• A source buffer location address of 1466, which represents only
the word and byte field values (11 bits of B) of the full
32-bit virtual memory address. (This is an absolute extended
address. For simplicity, the other 21 bits of the address,
representing the segment and page fields, are ignored
throughout this example. Refer to the "Memory Access"
discussion for a description of virtual memory addressing using
absolute extended addresses. Also note that since extended
addresses are byte addresses, transfers on odd byte boundaries
are permitted.)

• A count of 400 bytes to be transmitted (A).

The SEND instruction transmits the 400 bytes to processor module 3
via the X-bus, then completes. The parameters are deleted from
the Register Stack and the condition code is set to CCE
(indicating a successful operation).

2. Meanwhile, processor module 3, which has been previously readied
for this transfer, has MASK.<ll> set to a "1" to enable receipt of
data over the X-bus and has its BRT entry for processor module 1
configured as follows:

• The transfer address where the incoming data is to be stored,
starting at byte address 1530.

• The count of the number of bytes expected, 400.

• The initial sequence number.

3. The data, as received, is stored away as indicated by the BRT
entry. As the data is stored, the transfer address is incremented
accordingly and the count is decremented accordingly.

4. When the count in the BRT entry reaches zero, 400 bytes have been
received. At this point an interrupt occurs through the SIV
(System Interrupt Vector) for interprocessor bus completion. The
parameter associated with this type of interrupt contains the
processor module number of the source processor moaUie, the bus
flag (0 in this example), and the error (also 0 in this example).

2-124

Interprocessor Buses

5. The interrupt handler code for bus completion now executes.
Because INT.<II> in the interrupt register is now set, further
data transmissions to this processor module over the X-bus are
rejected. Additionally, the Mi word in the SIV entry for bus
completion masks off further interrupts in the MASK.<11:12>
positions.

6. When the IXIT instruction executes, the previous MASK register
setting is restored. Since the interrupt handler has already
reset INT.<II>, processor module 3 is again enabled for receiving
data over the X-bus.

Figure 2-66 shows the relationships of the transfer address, count,
and sequence number in the BRT entry, and also the incoming data
storage in the transfer location.

OUTQ, INQ, and Packets

The interprocessor buses are significantly faster than memory.
rherefore each processor has a buffered interface to both buses,
consisting of two 16-word output buffers (called OUTQ X and OUTQ y),
and two 16-word input buffers (called INQ X and INQ y). See Figures
2-67a and b.

BRT ENTRY

ADDRESS:
COUNT:
SeQUENCE:

DESTINATION

DATA BUFFER

~ __ ,NTERRUPT

START MIDDLE FINISH

Figure 2-66. Incoming Data Storage

2-125

Interprocessor Buses

Y BUS

x BUS

I

I
I

r , t ROUTING WORD

I I SEOUENCE #

I ~_..J -< 13 WORDS

I I L ____ .J CHECKSUM
SYSTEM

aUTO Y DATA OUTO X

~

C

I - --------~~-;~~- ---.- -
ADDRESS

B

}'" COUNT A I- 26 -
BYTES I

I
--- ---- --- 1-----: -
.----- -1256 I

374 26 - },,~~
BYTES

I
.--." .-.---

1---- -- r -
--- I - - - - - - - -1282

I- -)-"~ ~ 348 26

BYTES

I
'-'." ._ ... - 1---/-: -
- - - - - -- -1308 - }'" ~ 322 26

BYTES - I
- -

-~
~ - - - - -

"\
I --_.- J I --- E:j ~-(1'--_::_:_:_::_:_ 1)-"':J

AFTER { F ---
COMPLETION - - - - - - - 1630

OF SEND '-___ --'---_-----'

'I'

)-

PROCESSOR

MODULE 1

Figure 2-67a. Sending and Receiving Packets

2-126

(

Interprocessor Buses

X BUS

I

: Y BUS

; I

:

[I

L {
ROUTING WORD I INO Y
SE~UENCE # - -

t~
l I I

13 WORDS I '----.. I I

CHECKSUM - CHECKED BY L. - - ~
INO X HARDWARE

10 12 13 14 15

MASK REGISTER ~ 1~

I

~

I

BUS RECEIVE

TABLE ENTRY

I I ~5
~ - - - - _. - - 1530 ADDRESS t- -

1ST PACKET 400 COUNT
I I

26 BYTES

I f-- - - -
~ - - - - - - 1556

L(~ f- -
2ND PACKET 374

~'~~
26 BYTES

f-- - - ---
~ - - - - 1582

f- -
3RD PACKET 348

26 BYTES

I
.....

f-- - - -
~ - - - - 1608

~(~ f- 4TH PACKET
-

322

I
26 BYTES

f-- - - -
I

~ I

~(16) 16TH PACKET

I f-- WBYTES - ~ - - - - - - -·1920 -<
10

I

I ·1930
0 - INTERRUPT

THROUGH

~ SIV 11

PROCESSOR

MODULE 3

Figure 2-67b. Sending and Receiving Packets

2-127

Interprocessor Buses

Data is transmitted over a bus in the form of 16-word packets. The
SEND instruction fills the output buffer with 26 data bytes (13
words), plus a one-word sequence number, one word for sender and
receiver numbers, and a one-word odd-parity checksum. The instruction
then signals the bus interface hardware that it has a packet ready for
transmission. After the 16-word packet is transmitted, execution of
the SEND instruction resumes at the point where it left off. If the
last packet of the block contaihs less than 26 data bytes, the
remaining data bytes are filled in with zeros. The SEND instruction
terminates when the last packet is transmitted.

When either of the INQ X or INQ Y buffers in the destination processor
module is filled and the corresponding MASK register bit is a "1", a
microinterrupt occurs. The action taken by the processor module
during the microinterrupt (which is transparent to the executing
process and to the operating system) is:

• The count in the BRT entry is checked. If the count indicates that
data is expected, 26 bytes (or less if the count is less) are read
into memory at the location specified. The transfer address and
count are then updated accordingly.

• The checksum of the packet is checked. If the checksum is valid
and the count still exceeds zero, the INQ is marked empty
(permitting further transmissions to take place) and the normal
instruction execution sequence continues.

• If the count is now zero or if any transmission error is detected
(checksum error, incorrect target, sequence error, etc.), the INT
register bit associated with the bus used for the transmission
sets, and an interrupt occurs: In the case of a transmission
error, the count word is not updated. When a normal receive
completes, the count word will contain zero.

INT and MASK Registers

These registers have a direct bearing on the ability of a processor
module to accept data over an interprocessor bus. As shown in Figure
2-68, data packets from the buses are accepted into INQ X or INQ Y
whenever the data is sent to this module (provided that the INQ is
empty). Once the data is accepted, the corresponding bit in the
Interrupt Register (bit 11 and/or 12 of INTA) is then set. If the
corresponding bit of the Mask Register is also set (i.e., Mask and
INTA bits ANDed together), a Bus Receive interrupt occurs that causes
the IPU to transfer data to memory.

If a source processor module attempts a SEND to a processor module
that is not enabled for receiving data (Mask bit inhibits destination
IPU from emptying its INQ), the source module receives a Packet
Timeout indication.

2-128

Interprocessor Buses

X BUS

Y BUS

INTA REGISTER
11 12

1 11 ~ ::~::: ~~CpKAE;K~~CEPTED

~ ~
AND AND

~ ~
MASK" REGISTER 11 12

[
1 [; I I ''1'' ENABLES INTERRUPT

L.--'--_"_--I...---'_.l...-....I..-........ --I...---l._L.-...I.. --1._ ---I_~ 0 IN H I BI TS INTER R UPT

~ ~
y

TO MEMORY

Figure 2-68. Bus Receive Enabling

2-129

Input/Output Channel

INPUT/OUTPUT CHANNEL

Each processor module has a single block-multiplexed input/output
channel through which all input/output takes place. Device-dependent
i/o controllers are attached to the channel, and each controller may
have one or more subchannels. A processor may address up to 256
subchannels. See Figure 2-69. Each controller is connected to two
different processors, and the subchannel numbers that it responds to
need not be the same on both processors. (Dual-port operation is
considered later in this section.)

The first subchannel number for a given controller must be a multiple
of 8, and the remaining subchannels follow in consecutive order.

The operating system performs input/output operations (see Figure
2-70) by first configuring an entry in a system table called the I/O
Control table (laC). The laC contains 256 entries, one for each
subchannel that can possibly communicate over the i/o channel. Each
entry contains the address of the data buffer and a count of the
number of bytes to be transferred. Once the entry corresponding to
the device is configured, an EIO (Execute I/O) instruction is executed
to initiate the i/o transfer; the actual data transfer is performed
concurrently with program execution. When the transfer completes, an
interrupt to an operating system interrupt handler takes place. In
the interrupt handler, an 110 (Interrogate I/O) instruction or an HIla
(High-priority Interrogate I/O) instruction is executed to check the
outcome of the operation.

I/O Control Table

The data to be transferred between memory and a specific unit is
determined by an entry in the I/O Control Table (laC). As illustrated
earlier (Figure 2-55 and Table 2-2) this table occupies all of the
second page of the System Data segment. It contains a four-word entry
for every possible subchannel which may be connected to a processor
module. See Figure 2-71.

The first word of the the laC entry specifies the starting address of
the i/o buffer in virtual memory. Bits 6 through 9 specify one of the
maps, and bits 10 through 15 specify the starting logical page number
within the map. It is permissible for i/o buffers to cross map
boundaries.

The second word of the IOC entry specifies the number of bytes
remaining to be transferred. This value is decremented after each
word transfer.

2-130

PROCESSOR

MODULE

DUAL-PORT

CONTROLLER

/

I

I
L

~~O ________________ -, ________________ --J/

%30 %31

UP TO 8 UNITS PER CONTROLLER

%32 %33

I
I
L

%34

I
I

L

%35 %36 %37

%200 %201 %202 %203 %204 %205 %206 %207

Input/Output Channel

SUBCHANNELS

SUBCHANNELS

SUBCHANNELS

Figure 2-69. I/O Channel Addressing

2-131

Input/Output Channel

SOFTWARE

Figure 2-70.

2-132

HARDWARE

ItO TRANSFER,
DIRECTED BY 10C TABLE,

OCCURS CONCURRENTLY

WITH SOFTWARE

PROCESS EXECUTION

SOFTWARE PROCESS
IS INTERRUPTED

WHEN itO COMPLETES

Simplified I/O Sequence

Input/Output Channel

252J

~
(

253~

\
/

1/0 CONTROL
TABLE

ISYSTEM DATAl
o 1 5 6 9 10 15

STATUS I MAP 1 BASE PAGE I SG[1024] __ - P --- ~~----------~~----------~------------~
BYTE COUNT

PAGE OFFSET I WORD
..... ------1-

(RESERVED)
1------1.- - - - ----'--------------------......

L

A

P= PROTECT BIT (1=OUTPUT ONLY)

STATUS=TRANSFER STATUS

MAP=MAP NUMBER

BASE PAGE= STARTING PAGE OF BUFFER

BYTE COUNT= NUMBER OF BYTES REMAINING TO BE TRANSFERRED

PAGE OFFSET=PAGE NUMBER RELATIVE TO BASE PAGE FOR
CURRENT WORD TRANSFER

WORD= WORD IN PAGE FOR CURRENT WORD TRANSFER

EIO PARAMETERS IN

REGISTER STACK

PARAMETER INFORMATION

CMD MOD I CMD I CXT I
3 4 5 6 7 8

CMD = COMMAND IA . (45))

0.= SENSE

1 = WRITE

2 = READ
3= CONTROL

CXT = COMMAND EXTENSION

SUBCHANNEL

CMD MOD = COMMAND MODIFIER IA <03> 1 IS
DEVICE DEPENDENT EXCEPT;

0= COLD LOAD IF CMD = 2
%17 = TAKE OWNERSHIP & CLEAR DEVICE IF CMD <: > 2

% 17 = PORT DISABLE IF CMD = 2

15

I

254-(~
255-/

" SG[2047]

DEVICE STATUS RETURNED

IN REGISTER STACK

FROM EIO

o 1 :2 3 4 15

SUBCHANNEL STATUS

Figure 2-71.

A

C

A

CHANNEL STATUS

0= OWNERSHIP 11 = OWNED BY OTHER PORTI
I = INTERRUPT PENDING 11 = DEVICE IS

SIGNALLING INTERRUPTI

B = BUSY CONTROLLER (=1 I
P = PARITY ERROR 1 =11

EIO CONDITION CODES:

CCL = CHANNEL ERROR

CCE = OPERATION SUCCESSFUL

CCG = CHANNEL ERROR

STATUS RETURNED IN REGISTER

STACK FROM 110 & HIIO

INTERRUPT CAUSE

J SUBCHANNEL

CHANNEL STATUS

o 1 2 3 4

0& I ARE DESCRIBED ABOVE

A = DATA TRANSFER ABORTED (011

P=PARITYERROR (=11

110 & HIIO CONDITION CODES:

CCL = CHANNEL ERROR DURING 110

CCE = OPERATION SUCCESSFUL

CCG=CHANNELERROR

15

Formats Associated with Input/Output

2-133

Input/Output Channel

The third word of the IOC entry specifies the current word in the
buffer that needs to be transferred. Since the page offset value
given in bits 0 through 5 is relative to the base page value given in
the first word of the entry, these two values are added together to
derive the actual logical page in memory currently being accessed for
word transfers. This value is incremented after each word transfer.

To prevent erroneous data transfers, the operating system either sets
the second word in IOC entry to zero when transfers are not expected,
or, if the last transfer was outbound, sets the protect bit. If a
device attempts to transfer data and the byte count is zero, the i/o
channel aborts the operation, causing an interrupt to occur. In such
a case, the status returned by the device as· a result of an 110 or
HIIO reflects the error.

EIO Instruction

To perform an I/O operation, the IOC entry for the unit must first be
correctly initialized. An EIO instruction is then executed,
specifying the controller, unit, command, and other parameter
information. These parameters are placed in B and A of the Register
Stack. (See format in Figure 2-71.)

The parameters to the EIO instruction are described as follows:

• The parameter information word in B is a device-dependent parameter
that is sent to the specified device.

• Command bits A.<O:5> specify the operation that the device is to
perform. The CMD bits, A.<4:5>, specify the general type of
command:

0 = sense
1 = write
2 = read
3 = control

The CMD MOD bits, A.<O:3>, modify the command, allowing up to 64
device-dependent commands.

Three configurations of these fields are reserved:

CMD

2
3
3

CMD MOD

o
%16
%17

Description

Perform cold load
Disable port (kill)
Take ownership and clear device

• The CXT bits, A.<6:7>, are available as command extension bits,
specific to each device that requires them.

2-134

Input/Output Channel

• The subchannel field, A.<8:15>, specifies one of 256 subchannels.

The EIO instruction replaces the two parameter words by two words
containing the device status, and sets the condition code according to
the outcome of the instruction. The condition code settings are as
follows:

CCL:
CCE:
CCG:

Channel error (while executing EIO)
Operation successful
Channel, controller, or device error

The device status is of the form:

B.<O> = ownership
B.<l> = interrupt pending
B.<2> = busy
B.<3> = parity error
B.<4:15> = subchannel status
A.<O:15> = channel status

The status bits returned in B have the following meanings:

• 0 <ownership>, B.<O> is a "1" if the device is owned by other port.
No data is transferred.

• I <interrupt pending>, B.<l> is a "1" if the device is
interrupting. No data is transferred.

• B <busy>, B.<2> indicates that the device is already executing an
i/o transfer (this includes seeking on a disc or rewinding on a
magnetic tape). No data is transferred because of this EIO.

• P <parity>, B.<3> indicates (if a "1") that a parity error
occurred.

110 and HIIO Instructions

Following the successful initiation of an i/o operation by an EIO
instruction, an interrupt occurs when the operation completes. At
this point, an 110 (or HIIO) instruction must be executed to determine
the cause of the interrupt. (110 is "Interrogate I/O"~ HIIO is
"High-Priority Interrogate I/O n .) When the 110 or HIIO is executed,
the highest priority device with an interrupt pending returns its
subchannel number, and status pertaining to the interrupt.

2-135

Input/Output Channel

The three status words returned by the execution of an 110 or HIIO
instruction to the Register Stack are of the form:

C.<0:15> = interrupt cause
B.<O> = ownership
B.<l> = interrupt pending
B.<2> = aborted
B.<3> = parity error
B.<8:15> = subchannel number
A.<0:15> = channel status

The status bits have the following meanings:

• ~he interrupt-cause field, C.<0:15>, is related to the particular
subchannel that is interrupting.

• 0 (ownership), B.<O>, is a "1" if the controller is "owned" by the
alternate port (see the description of "Dual Port Controllers and
Ownership" that follows).

• I (interrupt pending), B.<l>, is a "1" if the device has an
interrupt pending. Normally this should not be set at this time;
otherwise some problem is indicated.

• A (aborted) B.<2>, is a "1" if the data transfer was aborted.

• P (parity error), B.<3>, is a "1" if a parity error was detected
during the data transfer sequence.

• The subchannel field, B.<8:15>, is the controller and unit number
associated with the interrupt.

• The channel status "field, A.<0:15>, defines a possible channel
error and may have the following values:

%000000
%000100
%000200

%000400

%177777

%1-----

No error detected by the channel
Device Status <0:3> non-zero
Channel detected a parity error on RIC (Read Interrupt

Command)
Channel detected a parity error on RIST (Read Interrupt

Status) or RDST (Read Status)
Instruction timed out waiting for the i/o channel to

become available
Channel Status = lOBUS Control Field

FolJowing execution of an 110 or an HIIO instruction, the condition
code is set as follows:

CCL:
CCE:
CCG:

2-136

Channel error (while executing the instruction)
Operation successful
Channel, controller, or device error

Input/Output Channel

Input/Output Sequence

A typical data transfer sequence over the input/output channel is
depicted in Figure 2-72. The sequence is as follows:

1. Instructions in the i/o driver procedure are executed to configure
the IOC entry for the subchannel where the transfer is to
take place. In this case, the IOC entry is at SG[%2030] for
subchannel 6.

2. The EIO parameters are loaded onto the Register Stack.

3. An EIO instruction is executed. The parameter information is sent
to subchannel 6.

4. To indicate its outcome, the EIO instruction returns two status
words to the top of the Register Stack and sets the Condition
Code. These are checked by subsequent instructions.

5. Meanwhile, the data transfer takes place. Data is transferred
from subchannel 6 to the location in memory indicated by the IOC
entry for that subchannel. As the data is transferred into
memory, the transfer address and count word in the roc are updated
accordingly.

6. When the count word in the IOC reaches zero, indicating that the
transfer is completed, the channel signals the controller. The
controller stops transferring and signals the IPU with an
interrupt. The INTA.<14> bit in the interrupt register is set to
"1" to signal interrupt pending. If the corresponding bit in the
MASK register is set, an interrupt through the SIV entry for
Standard I/O (at SG[696]) occurs. The Mi entry in the SIV
causes any further standard i/o interrupts to be deferred while
the i/o completion interrupt handler is active.

7. The interrupt handler executes an IIO instruction. Executing IIO
signals the highest priority interrupting controller to stop
interrupting and returns three words of status information to the
top of the Register Stack. (Controller priorities are set into
the hardware at installation time, and may be adjusted by Tandem
field service representatives as necessary for load balancing.)
The status words contain the subchannel number of the interrupting
device as well as interrupt cause and channel status information.

8. When the interrupt handler for standard i/o completes, an IXIT
instruction is executed. IXIT restores the previous Mask Register
value (which allows any pending standard i/o interrupt to occur)
and attempts to return control to the interrupted code. Typically
the operating system intervenes at this point and the i/o process
and, later, the user process are notified of the completion of the
original input/output request.

2-137

Input/Output Channel

2-138

SYSTEM

CODE

r:I
e=J
~~

110

STANDARD

1/0

INTERRUPT

HANDLER

CODE

IXIT

~~ ~

18

REGISTER

STACK

12~ ~~PARAM 61 y31_--1 .. _------------~

141
B STATUS

A ~==~S~T=A~TU~S~==~ ..

I
,- ~ C I INTCAUSE L
I B I)
I A I STATUS

I

III

r- - --")

SYSTEM

DATA

I '""""'~""-"-"-I

\ I
, I } .--------.

SIV ENTRY FOR

I

STACK

FOR

STANDARD

1'0

INTERRUPT

HANDLER

STANDARD 1/0

COMPLETION

INTERRUPT

STACK MARKER

SAVING INTERRUPTED

ENVIRONMENT

CONTROLLER

SUBCHANNEL

6

BUFFER

AREA

Figure 2-72. Input/Output Sequence

Input/Output Channel

Dual-Port Controllers and Ownership

Each controller in the NonStop II computer system is connected to the
input/output channels of two processor modules. This provides
redundant communication paths to i/o devices. As shown in Figure
2-73, this means that a single subchannel has entries in the IOC's of
two processor modules. Note that the ports need not have the same
subchannel address on both channels.

Although each controller has two ports and is fully capable of
communicating through either i/o channel, only one channel is used
during normal operation; the other channel, as far as a particular
controller is concerned, is not used. The i/o channel through which
communication to a particular controller occurs is said to "own" the
controller. All input/output transfers (i.e., control and data) occur
through the channel owning the controller. This is illustrated in
Figure 2-74.

Each of the two ports in a controller contains a flag bit known as the
"ownership" error bit. The state of these bits determine the channel
from which the controller will accept commands. An operating system
configuration parameter specifies which channel is to be the primary
channel of communication for a particular controller.

The operating system transfers data only through the owned side.
(An attempt to communicate through the unowned side results in the EIO
instruction being rejected with an ownership error). If, during the
course of a data transfer, the primary path to the controller (i.e.,
the primary processor module, channel, or port) becomes inoperable,
the operating system generally executes a "take ownership" operation
(of an EIO instruction) over the alternate (backup) channel. (One
exception: in case of a port failure on a multiple-controller device,
the operation is retried using another controller, with no change of
ownership.) The "ownership" bits in the controller switch over to
point to the alternate i/o channel. All subsequent data transfers now
occur through this channel.

Each port also has two "disable" bits that are separate from its
ownership bits. A disable bit, if a "1", prevents a controller from
transmitting information through that port onto an i/o channel. The
disable bit is set by an EIO instruction "set disable" command.
Normally, this is used by the operating system when a controller
performs some unexpected action that could affect the entire channel.
The disable bit is associated with a port, so if the malfunction is in
one port, normal communication with the controller still occurs via
the other port.

2-139

Input/Output Channel

10C

o
CPU 0

1/0 CHANNEL

JUMPER WIRED
WITH SUBCHANNEL

ADDRESSES ON
CPU O'S I/O CHANNEL

SUBCHANNEL NO.

FROM CPU 0: %20 %21

FROM CPU 2: %40 %41

%22

%42

Figure 2-73.

2-140

/

DUAL-PORT
CONTROLLER

P

o
p

o
R R
T T

%23 %24

%43 %44

%25

%45

JUMPER WIRED WITH
SUBCHANNEL

ADDRESSES ON
CPU 2'S I/O CHANNEL

%26 %27

%46 %47

Dual-Port Addressing

10C

n
U

CPU 2

I/O CHANNEL

ALL DATA AND

CONTROL

INFORMATION

TRANSFERS

OCCUR VIA THE

"OWNED" SIDE.

TYPICALLY.

OWNERSHIP IS NOT

CHANGED UNLESS

A FAILURE OCCURS.

CPU 0

OWNERSHIP IS TAKEN

BY CUP 0 WHEN AN

EIO WITH "TAKE OWNERSHIP"

IS ISSUED TO THIS CONTROLLER.

OWNERSHIP
ERROR BIT

("- .0.
I
I

PORT

OWNERSHIP

ERROR BIT

---- ~ .
PORT

SUBCHANNELS

Input/Output Channel

CPU 2

AN EIO TO THE

"UNOWNED" SIDE

IS REJECTED WITH

A "DEVICE IS

OWNED BY OTHER

PORT" STATUS

IF NECESSARY, CPU 2 CAN
TAKE OWNERSHIP AWAY FROM

CPU 0 BY ISSUING AN EIO

WITH "TAKE OWNERSHIP" TO
THIS CONTROLLER.

Figure 2-74. I/O Controller Ownership

2-141

Input/Output Channel

I/O Channel Interrupts

A controller signals an interrupt to the IPU when its associated
transfer has completed. A controller also interrupts if it is
necessary to terminate a transfer prematurely.

When simultaneous interrupts occur on an i/o channel, a priority
scheme determines which interrupt is handled first. A subchannel
continues to interrupt until cleared. Normally, this clearing is done
via an IIO or HIIO instruction.

High-Priority I/O

Two levels of interrupt are available on an i/o channel: standard i/o
and high-priority i/o. Standard i/o is characterized by controllers
that interrupt through the SIV entry for standard i/o. Likewise,
high-priority i/o is characterized by controllers that interrupt
through the SIV entry for high-priority i/o. Whether a controller
interrupts with standard or high priority is determined by a jumper
connection on a controller.

High-priority i/o is used by applications requiring an ultra-fast
response time (as in some communications environments). The operating
system never masks off the high-priority interrupt position, thereby
ensuring that no matter what is executing in a processor module, a
high-priority interrupt will be recognized instantly.

MEMORY ACCESS

Logical vs. Physical Memory

Physical memory consists of some number of pages of main memory, each
page holding 2048 bytes in specific fixed locations.

Logical memory, on the other hand, is not defined in terms of physical
locations; instead, it is defined in terms of segments. A segment is
a contiguous logical address space rather than a partition of memory.
Thus, for example, if a program occupies 30 pages of a code segment
(which allows for 64 pages), the other 34 pages are not wasted
physical memory--onlY unused addresses.

2-142

Memory Access

Here is a list of thumbnail definitions for terms that are used in the
following discussions.

Standard Addressing Terms
page:
logical page number:
logical address:
physical page number:
physical address:
segment (nonextended):
logical segment:

Extended Addressing Terms
relative segment number:
absolute segment number:
extended address:
extended data segment:

Memory Entities
physical memory:
virtual memory~
logical memory:

2048 bytes
o to 63
logical page, word, and byte
o to 8191
physical page, word, and byte
a 1- to 64-page logical address space
any segment mapped by Maps 0 thru 5

o to 8191
o to 8191
segment, logical page, word, and byte
1 byte to 128 megabytes

up to 8192 pages of main memory
Up to 524288 pages of disc + main memory
Up to 6 logic~l segments (Maps 0 thru 5)

In general usage, the term "segment" is usually understood to mean a
nonextended segment--that is, 1 to 64 pages. When referring to an
"extended" data segment, it is usually fully described as such.

Logical memory, the segments mapped by Maps 0 through 5, changes as
different processes corne into execution, since new sets of code and
data are mapped by the "user maps." Thus, logical memory forms a
time-variable subset of virtual memory.

Note also that there are four kinds of addresses. For standard
(16-bit) addresses, there are logical and physical addresses. For
extended (32-bit) addresses, there are relative and absolute
addresses.

Memory Table Formats

Figure 2-75 illustrates the formats for the various address word and
table entries. The following paragraphs describe each of these
formats.

2-143

Memory Access

10 11 12 13 14 15

PAGE WORD
16 BIT ADDRESS
(WORD ACCESSI

10631 10 10231

10 11 12 13 14 15

PAGE WORD I B I 16 BIT ADDRESS
IBYTE ACCESSI

(0 311 10 10231 (0 11

10 11 12 13 14 15

I A I 0 SEGMENT I "G' 32 81T ADDRESS
PAGE WORD B I

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A 0:1

SEGMENT 0:8191
PAGE: 0:63
WORD 0: 1 023
B IBYTEI: 0: 1

10 11 12 13 i4 15

PHYSICAL PAGE 1081911
MAP ENTRY
PAGE TABLE ENTRY

R REFERENCE BIT
D DIRTY BIT
A ABSENT BIT

10 11 12 13 14 15

T 1\ O. C CI 7C.
.,." ~ --- -

PAGE STARTING WORD

16 17 18 19 20 21 22 23 24 25 lG 21 28 29 30 31

10 11 121314.15 MAP 15
IE XTENDED ADDRESS CACHE I

PHYSICAL PAGE 1 RID A

PHYSICAL PAGE I RID A

MAP ENTRY CACHE

31 PHYSICAL PAGE 1 RID A

0 0 SEGMENT PG

0 0 SEGMENT PG

:
CACHE IDENTIFIERS

.
31 0 0 SEGMENT PG

10 11 12 13 14 15

Figure 2-75. Formats Used in Memory Access Operations

2-144

Memory Access

16-BIT ADDRESS. 16-bit addresses are normally used to access both
code and data. Depending on whether the instruction being executed is
a word-addressing instruction or a byte-addressing instruction, a
16-bit address can take one of two forms, as shown in the first two
formats. For word access, the first six bits (0 through 5) specify
the logical page number. Bits 6 through 15 then specify which of the
1024 words on that page is the desired word. For byte access, bit 15
is used to specify a particular byte within a word: 0 for the left
byte and 1 for the right byte. The page field of the address word in
this case is therefore one bit smaller (bits 0 through 4), allowing
only the first 32 pages of a segment to be accessed for byte access
--that is, the first 32768 words of the segment. (For code
addressing, however, both halves of the segment can be accessed, since
the address is taken to be in the same 32 pages as the current setting
of the P Register.)

32-BIT ADDRESS. This is the address format required for accessing
extended data segments. The operating system can also use extended
addressing to access any segment in virtual memory, either in absolute
mode or in relative mode. Bit 0 of the address doubleword is used to
specify the mode: 0 for relative mode (as in all user applications)
or 1 for absolute mode (restricted to privileged users). Bit 1 is
always O. Bits 2 through 14 specify one of 8192 segments of virtual
memory; bits 15 through 20 specify the page within the segment; bits
21 through 30 specify the word within the page; and bit 31 specifies
the byte within the word if byte access is required. This format
provides a 3D-bit virtual address space (1073 megabytes). Unlike the
l6-bit address form, the 32-bit address does not borrow a bit from the
page field to allow a byte specifier; thus all 32-bit addresses are
byte addresses.

MAP ENTRY. The processor uses entries kept in map registers to
convert logical addresses to physical addresses. All words in the
maps are formatted as shown in the map entry/Page Table entry layout
(except in Maps 14 and 15, described below). Bits 0 through 12
specify a physical page number in the range of 0 through 8191.
However, if the Absent bit (bit 15) is a 1, the page is logically
absent, and attempting to access it will cause a page fault interrupt.
Bit 13, the Reference bit, is set to 1 on any access to the page, and
bit 14, the Dirty bit, is set to 1 on any write access to the page.
These two bits are used by the Memory Management software to select
the best pages for overlay when absent pages need to be brought into
physical memory from disc, and to keep track of whether a page that is
being replaced must first be copied to disc (i.e., is a dirty page).
Since maps are loaded from Page Tables, this format also applies to
Page Table entries and entries in the Map Entry Cache (see "Extended
Address Cache Entries" below). .

2-145

Memory Access

SEGMENT TABLE ENTRY. Segment Table entries are used to define the
location of a Page Table for a particular segment. (For an
explanation of the Page Tables, see the discussion of "Absolute
Segment Addressing" later in this section.) Page Tables that are
currently not in use (i.e., not "mapped") are located in a memory
pool called MAPPOOL; however, if the table being sought is currently
in a map, the only valid copy of the Page Table is the one in the map.
In the latter case, bits 0 through 4 are used to specify that map
number, and all other bits in the entry can be disregarded. But an
entry of five lis in this field indicates that the Page Table is not
in a map, and in this case bits 5 through 31 are used to locate the
table within MAPPOOL. Bits 5 through 8 specify which map defines
the location of the desired Page Table; bits 9 through 15 specify the
table size in words; bits 16 through 21 specify which entry in the map
defines the physical page number; and bits 22 through 31 specify the
word location on that page at which the Page Table actually starts.

EXTENDED ADDRESS CACHE ENTRIES. The Extended Address Cache (Map 15)
is divided into two halves. The first 32 entries comprise the Map
Entry Cache, and the second 32 entries are used for cache identifiers.
Each entry of the Map Entry Cache is formatted identically to the map
entry described above. The cache identifiers, however, each contain a
13-bit segment number and a single bit that represents the most
significant bit of a page number. These bits are used to determine
that the corresponding entry in the first half (the Map Entry Cache)
is correct for the logical page being addressed.

Memory Maps

The complete set of maps for one processor is a 16 by 64 array of 1024
registers; that is, there are 16 maps, each consisting of 64
individual registers. These map registers define the logical memory
and are used to provide the logical-to-physical address translation on
an access to memory.

Each 64-register map defines a 64k word address space (maximum).
These maps are used as follows:

o User Data Segment. This map is loaded with the Page Table that
defines the data space of a particular program when that program
is activated. If DS is set to 0, all data references will be
into the space defined by this map unless they are via
instructions which use either extended addresses or the SG
relative addressing mode.

1 System Data Segment. This map defines space for system tables
and stacks and for the interrupt handlers. The space defined by
this map is common to all programs, but it may be accessed only
if DS or PRIV is set. The following fixed tables known to the
processor reside in the first two pages of this space:

2-146

Dummy Priority Value, (=%O)
Current Process Control Block (CPCB)
Ready List (RLIST)
Dummy Priority Value, (=%377)
Microsecond Counter (CLOCK)
Time List Header (TLIST)
OSP I/O Control Block
Memory Breakpoint Trap Address (BPADDR)
Trace Buffer Base (TRBASE)
Trace Buffer Limit (TRLIM)
Trace Buffer Pointer (TRACE)
LIGHTS Save Area
Breakpoint Table Base (BPBASE)
Breakpoint Table Entry Size (BPSIZE)
Breakpoint Table Limit (BPLIM)
Processor Dump Save Area
System Interrupt Vector (SIV)
Currently Mapped Segments (CMSEG)
Interprocessor Bus Error Packet
Bus Receive Table (BRT)
Input/Output Control Table (IOC)

Memory Access

%2
%3

%100:%101
%102

%103:%106
%107:%110
%111:%114
%115:%116

%117
%120
%121
%122
%123
%124
%125

%1153:%1177
%1200:%1337
%1340:%1357
%1360:%1377
%1400:%1477
%2000:%3777

System data pages 0 and 1 are always assigned to physical memory
pages 0 and 1; these pages are always mapped. Physical page 2
is used as the power fail map save area. This page need not be
mapped via any map during normal operation.

2 User Code Segment. All code space references specify the
segment defined by this map if the CS and LS bits in the ENV
Register are O. In addition, the LWUC instruction always
references this segment regardless of the ENV Register bit
settings. This map is loaded with the Page Table that defines
the code space of a particular program when that program is
activated.

3 System Code Segment. All code space references (except via the
LWUC instruction) specify the segment defined by this map if the
LS bit in the ENV Register is 0 and the CS bit in the ENV
Register is 1. This space is common to all programs.

4 User Library Code Segment. All code space references (except
via the LWUC instruction) specify the segment defined by this
map if the LS bit in the ENV Register is 1 and the CS bit in the
ENV Register is O~ This map is loaded with the Page Table that
defines the library code space of a particular program (if such
space exists for the program) when that program is activated.

5 System Code Extension Segment. All code space references
(except via the LWUC instruction) specify the segment defined by
this map if the LS bit in the ENV Register is 1 and the CS bit
in the ENV Register is 1. This space may be viewed as an
extension to the System Code segment and is common to all
programs.

2-147

Memory Access

6-13 Buffer Space. Buffers for i/o transfers and the Page Tables are
normally mapped into this space.

14 This map is reserved by the system for special purposes, and is
divided into several areas:

Microcode Scratch Registers
Segment Table (SEG)
Physical Page Segment Table (PHYSEG)
Physical Page/Logical Page Table (PHYPAGE)
Extended Address Base (Segment Base)
Extended Address Limit (Segment Limit)

15 Extended Address Cache. See Figure 2-75.

Absolute Segment Addressing

Entries 0:27
28:43
44:51
52:59
60:61
62:63

Each processor is viewed as having up to 8192 segments of virtual
memory, with each segment having from 1 to 64 pages. This allows a
processor to access up to 536,870,912 words of memory--that is, 64
times its maximum possible physical memory.

Segment numbers may be in the range of 0 through 8191, page numbers in
the range of 0 through 63, and byte-in-page numbers in the range of 0
through 2047. This then gives each processor a virtual address space
of the size: 8192*64*2048 bytes, or 1073 megabytes.

However, such an address requires 30 bits to represent it. To
accommodate this, a 32-bit addressing word is used. An extended
address is a 32-bit value having the following format (see Figure
2-75) :

0 Absolute
1 Not Used (=0)

2:14 Segment
15:20 Logical Page
21:30 Word

31 Byte

The Absolute addressing bit (A) indicates whether the address is to be
a relative address (=0) or is absolute (=1).

The Segment field (2:14) indicates the number of the segment (0:8191)
in which the item is found.

The Page field (15:20) defines the logical page (0:63) within the
segment.

The Word field (21:30) defines the word (0:1023) within the page.

The Byte field (31) defines the byte (0:1) within the word.

2-148

Memory Access

Each segment has an entry in the Segment Table, which contains the
address of the Page Table for the segment. Each segment's Page Table
contains entries which define the physical memory location (if
present) where each page of the segment resides.

Access to memory then occurs as follows. First, the segment number is
used as an index into the Segment Table to find the address of the
Page Table; second, the page number is added to the address of the
Page Table and this is used to read the physical page number from
memory; finally, the physical page number is used with the word
address to access the desired word in memory.

The Segment Table provides, for each segment, a two word entry
formatted as follows (see Figure (2-75):

0:4
5:8

9:15
16:21
22:31

Map Number if
Map Number of
Table Size
Page Number
Starting Word

Mapped
Page Table

} address of Page Table
within the map

The first Map Number field (0:4) indicates the. number (0:15) of the
map which contains the segment's Page Table if the segment's Page
Table has been loaded into one of the maps, or contains a %37 if the
segment is not currently mapped. (A segment, such as a process' code
space, might be in a map, such as the User Code map, when an extended
address reference was made to it. In such a case, the Page Table
entry in the map is accessed rather than the copy of the Page Table in
memory.)

The second Map Number field (5:8) defines the map (0:15) which defines
the address space containing the Page Table for the segment.

The Table Size field (9:15) defines the number of pages (0:64) that
are contained in the segment.

The Page Number and Starting Word fields (16:31) define the address
(within the space mapped by the map defined in bits 5:8) where the
Page Table for the segment is stored.

Each segment's Page Table contains a one-word entry for each page in
the segment. Each of these entries is of the same format as entries
in a map (see Figure 2-75).

using the above defined data structures, a byte with an absolute
extended address in logical memory is found by the following steps:

1. First, the Page Table is found by indexing into the Segment Table
using the Segment Number field of the address.

2. The Page Number field of the address is used to access the Page
Table to see if the page is in main memory. If the page is not in
main memory, indicated by the Absent bit being set, then a Page
Fault interrupt occurs.

2-149

Memory Access

3. On the other hand, if the page is in main memory, then the
Physical Page field of the Page Table entry is used to select a
physical page of main memory.

4. Finally, the Word and Byte fields of the address specify one of
the 2048 bytes on that page in memory for access.

If a page fault occurs, then the operating system must bring the page
into main memory. The instruction which got the page fault is then
retried.

On any access to a given page, the R bit of the map element for that
page is set to 1 if it is not already set, and if the access is a
write, the D bit is set to 1 as well.

Byte addressing is not handled by the map or the memory, but must be
done by the IPU. On a byte read, the word containing the byte is
read, and then the IPU selects the appropriate byte. On a byte write,
the word containing the byte is read, the byte is changed by the IPU,
and then the word is written back to memory.

Relative Segment Addressing

Although internally the operating system must use absolute segment
numbers, this is never the case for user processes. A relative
segment mechanism is defined which is the default mode of access.
A relative segment address is similar to the absolute segment address,
except that the Segment Number field defines a relative rather than an
absolute segment. The two types of addresses are differentiated by
the A (Absolute) bit in the address, and only privileged programs may
use absolute extended addresses.

The first four relative segment numbers are defined for standard
(register-relative) addressing of code and data--though extended
addresses may also reference these segment numbers. These four
defined segment numbers are:

o Current Data Segment. The DS bit of ENV selects whether Map 0 or
Map 1 holds the Page Table for the appropriate segment. This
provides access to the same segment that a LOAD G+O would access.

1 System Data Segment. The PRIV bit of ENV selects whether Map 0 or
Map 1 holds the Page Table for the appropriate segment. This
provides access to the same segment that a LOAD SG+O would
access.

2 User Code Segment. Map 2 holds the Page Table for the appropriate
segment. This provides access to the same segment that an LWUC
instruction would access.

2-150

Memory Access

3 Current Code Segment. The combination of the LS and CS bits in ENV
defines the map number of the map which holds the Page Table for
the appropriate segment. This provides access to the same segment
that instructions are fetched from or that an LWP instruction would
access.

Extended Data Segments

For the four relative segments previously mentioned, the limitation
exists that the size of a segment is 64 pages (128k bytes), which in
turn puts definite limits on program and data structure sizes.
However, this limit is greatly expanded for access to data in the
fifth relative segment type:

4-n Extended Data Segment. As many absolute segments as necessary
are allocated to accommodate the extended segment size requested
in an ALLOCATESEGMENT procedure call to the operating system.
The segment size is specified as a number of bytes.

This segment is not defined by a map, but is accessed via the Segment
Table and one or more Page Tables. Each process has a segment base
register and a segment limit register maintained by the operating
system. A relative segment number of 4 or higher results in the
address being checked against the limit register, and then the base
register is added to the logical address to form an absolute extended
address.

To minimize the number of memory accesses to the various tables, two
special applications of Maps 14 and IS are used. First, the
relocation values for the current process are saved in four map
entries:

Map 14, entries 60:61 Segment Base (base extended address)

Map 14, entries 62:63 Segment Limit (one's complement of the
maximum allowed address)

Second, Map IS is used as a cache for map entries. After the extended
address has been optionally relocated and bounds~tested, the cache is
examined to see if the appropriate page of the segment has its
Page Table map entry in it~ This is done by reading
MAP[lS,32+(page mod 32)] and comparing that value with the
high-order word of the extended address. If they are equal, then
MAP [IS, page mod 32] contains the Page Table map entry needed, and
memory may be accessed via that map entry. On the other hand, if
there is no match, then the entry in the cache must be written back to
the appropriate Page Table (to save the current R, D, and A values) ,
and the correct entry can then be cached.

The first half of the cache holds Page Table map entries (see Figure
2-7S), and the second half of the cache holds entries which identify

2-lS1

Memory Access

the Page Table map entry that has been cached. This latter entry
consists of the segment number in bits 2 through 14, and the most
significant bit of the page number in bit 15. An entry with the value
%177777 indicates that the corresponding cache entry is empty.

Extended Address Instructions

The NonStop II processor provides a new class of instructions to
access data using extended addresses. These instructions are capable
of accessing memory which is not referenced in any of the maps. An
example of this is the MVBX instruction, which allows bytes to be
moved from one extended address to another. In addition, all
interprocessor bus transfers use these addresses, thus opening up the
processor's entire address space for transfers.

The following is a list of extended addressing instructions. These 23
instructions are nonprivileged, and most are supported by TAL language
constructs. (Exceptions are MNDX, XSMX, and CDX.)

ANX
ORX
MNDX
XSMX
CDX
LBX
SBX
LWX
SWX
LDDX
SDDX
LQX
SQX
DFX
MVBX
MBXR
MBXX
CMBX
SCS
LWXX
SWXX
LBXX
SBXX

AND to Extended Memory
OR to Extended Memory
Move Words While Not Duplicate
Compute Checksum Extended
count Duplicate Words Extended
Load Byte Extended
Store Byte Extended
Load Word Extended
Store Word Extended
Load Doubleword Extended
Store Doubleword Extended
Load Quadrupleword Extended
Store Quadrupleword Extended
Deposit Field Extended
Move Bytes Extended
Move Bytes Extended, Reverse
Move Bytes Extended, Checksum
Compare Bytes Extended
Set Code Segment
Load Word Extended
Store Word Extended
Load Byte Extended
Store Byte Extended

Memory Errors

Correctable and uncorrectable memory errors are reported to the
processor either as interrupts or as i/o termination conditions. An
uncorrectable error generally indicates that the page should no longer

2-152

Memory Access

be used. A correctable error, on the other hand, may occur because of
either a transient failure or a hard error. A hard error can be
detected by rewriting a page that gets a correctable error and then
seeing if the error occurs again. A privileged instruction, CMRW, is
used by the operating system for this purpose; this instruction holds
off memory accesses by the i/o channel while a word of memory is being
rewritten.

2-153

SECTION 3

INSTRUCTION SET

GENERAL INFORMATION

The instruction set of the NonStop II system, including the decimal
arithmetic and floatIng-point options, consists of approximately 280
machine instructions. This section provides text descriptions of all
these instructions, with the exception of those reserved for operating
system use. Diagrams are also included showing the action of some of
the more commonly used instructions. To locate the text description
for any instruction, refer to the alphabetical listing under
"Instructions" in the general index at the back of this manual.

These descriptions assume familiarity with the information presented
in Section 2. For explanations of terms and concepts mentioned here,
refer to the Index to find the appropriate portions of Section 2.

In addition, Appendixes A and B provide a number of useful reference
tables pertaining to the instruction set.

Instructions in this section are categorized by general function and
discussed under the following headings:

16-Bit Arithmetic
32-Bit Signed Arithmetic
16-Bit Signed Arithmetic (Register Stack Element)
Decimal Arithmetic Store and Load (Standard Instructions)
Decimal Integer Arithmetic (Standard and Optional Instructions)
Decimal Arithmetic Scaling and Rounding (Standard and Optional

Instructions)
Decimal Arithmetic Conversions (Optional Instructions)
Floating-Point Arithmetic (Optional Instructions)
Extended Floating-Point Arithmetic (Optional Instructions)
Floating-Point Conversions (Optional Instructions)
Floating-Point Functionals (Optional Instructions)
Register Stack Manipulation
Boolean Operations
Bit Deposit and Shift
Byte Test

3-1

General Information

Memory Stack to/from Register Stack
Load and Store Via Address on Register Stack
Branching
Moves, Compares, Scans, and Checksum Computations
Program Register Control
Routine Calls and Returns
Interrupt System
Bus Communication
Input/Output
Miscellaneous
Operating System Functions

NOTE

The instruction descriptions in this section state the
conditions under which Overflow is set in the ENV Register.
For details on the setting of the Condition Code and Carry
bits, refer to "Program Environment" in Section 2. Unless
otherwise stated, "stack" refers to the Register Stack.

16-BIT ARITHMETIC (Top of Register Stack)

IADD (000210). Integer (signed) Add A to B. A is added to B in
integer form. A and B are then deleted from the stack and the sum is
pushed onto the stack. Overflow is set if the result is greater than
32767 or less than -32768. Condition Code is set.

LADD (000200). Logical (unsigned) Add A to B. A and B are added as
16-bit positive integers. A and B are then deleted from the stack and
the result pushed on. Carry is set if the addition overflows bit O.
Condition Code is set.

ISUB (000211). Integer (signed) Subtract A from B. A is subtracted
from B in integer form. A and B are deleted and the difference is
pushed onto the stack. Overflow is set if the result is greater than
32767 or less than -32768. Condition Code is set.

LSUB (000201). Logical (unsigned) Subtract A from B. A is subtracted
from B logically. A and B are then deleted from the stack and the
result pushed on. Carry is set if A is less than or equal to B.
Condition Code is set.

3-2

16-Bit Arithmetic

IMPY (000212). Integer (signed) Multiply A times B. B is multiplied
by A in integer form. A and B are deleted from the stack and the
result pushed on. Overflow is set if the result is greater than 32767
or less than -32768. Condition Code is set.

LMPY (000202). Logical (unsigned) Multiply A times B. A and Bare
multiplied as 16-bit positive integers. A and B are then replaced by
the doubleword result, with the least significant half in A. Overflow
is implicitly cleared. Condition Code is set.

IDIV (000213). Integer (signed) Divide B by A. B is divided by A in
integer form. A and B are deleted from the stack and the result
pushed on. Overflow is set if the divisor is zero, or if the result
is greater than 32767 or less than -32768. Condition Code is set.

LDIV (000203). Logical (unsigned) Divide CB by A, leaving the
remainder in B. The 32-bit positive integer in C and B is divided by
the 16-bit positive integer in A. The divisor and dividend are
deleted from the stack, the remainder is pushed onto the stack (B),
and the quotient is pushed onto the stack (A). Overflow is set if the
original C is greater than or equal to the original A. Condition Code
is set.

INEG (000214). Integer (signed) Negate A. A is converted to its
two's complement form. Overflow is set if the original operand was
-32768. Condition Code is set.

LNEG (000204). Logical (unsigned) Negate A. A is converted to its
two's complement. Carry is set if the original value of A is zero.
Condition Code is set.

ICMP (000215). Integer (signed) Compare B with A. B is compared to A
in integer form and the Condition Code set accordingly. A and Bare
then deleted from the stack.

LCMP (000205). Logical (unsigned) Compare B with A. B is logically
compared to A and the Condition Code set accordingly. A and B are then
deleted from the stack.

3-3

16-Bit Arithmetic

CMPI (001---). Compare A with Immediate Operand. The Condition Code
is set as a result of the 16-bit integer comparison of A and the
immediate operand. A is then deleted from the stack. Examples of the
use of immediate operands are shown in Figure 3-1.

ADDI (104---). Add Immediate Operand to A. The immediate operand is
added to A in integer form. Overflow is set if the result is greater
than 32767 or less than -32768. Condition Code is set.

LADI (003---). Logical (unsigned) Add Immediate Operand to A. The
immediate operand is added to A in 16-bit unsigned integer form.
Condition Code is set.

32-BIT SIGNED ARITHMETIC

DADD (000220). Double Add DC to BA. The two doubleword integers
contained in DC and BA are added in doubleword integer form. Both
operands are then deleted, and the doubleword result is pushed onto
the stack. Overflow is set if the result is greater than (2**31)-1 or
less than -(2**31). Carry can be set, and Condition Code is set on
the result.

DSUB {000221}. Double Subtract BA from DC. The doubleword integer
contained in BA is subtracted in doubleword integer form from the
doubleword integer in DC. Both operands are then deleted, and the
result is pushed onto the stack. Overflow is set if the result is
greater than (2**31)-1 or less than -(2**31). Carry can be set, and
Condition Code is set on the result.

DMPY (000222). Double Multiply DC by BA. The doubleword integer
contained in DC is multiplied in doubleword integer form by the
doubleword integer in BA. Both operands are then deleted, and the
result is pushed onto the stack. Overflow is set if the result is
greater than (2**31)-1 or less than -(2**31). Carry can be set, and
Condition Code is set on the result.

DDIV (000223). Double Divide DC by BA. The doubleword integer
contained in DC is divided in doubleword integer form by the
doubleword integer in BA. Both operands are then deleted, and the
result is pushed onto the stack. Overflow is set if the result is
greater than (2**31)-1 or less than -(2**31), or if the divisor (BA)
is zero. Carry can be set, and Condition Code is set on the result.

3-4

EXAMPLES

16-Bit Arithmetic

INSTRUCTION FORMAT

o 4 7 10 13

~'-------~------/
SIGN

BIT IMMEDIATE OPERAND
TWO'S COMPLEMENT INTEGER
RANGE IS -256 : +255

CMPI -2 (COMPARE IMMEDIATE -21

r~>r~?:6?:6:~~~)/;? 1 I
~Z(1(~«~(!(~{(L(~ .

IS TREATED AS

OPERAND 2: (1 11 1 1 1

LDU-2 (LOAD LEFT IMMEDIATE -2)

~T'~)~/J/~';;1 ~ ?:>0~(U~9~

o I

1 11 1 11 1 o I

1 11 01
SIGN BIT IS
EXTENDED

(-21

VALUE LOADED INTO A THROUGH A_ (8: 15)

A: 1 11 1 1 0 1 11 1 11 1 I (-257)

Figure 3-1. Immediate Operand

3-5

32-Bit Signed Arithmetic

DNEG (000224). Double Negate BA. The doubleword integer contained in
BA is replaced with its two's complement. Overflow is set if the
original operand was -(2**3l). Carry can be set, and Condition Code
is set on the result.

DCMP (000225). Double Compare DC with BA. The Condition Code in the
ENV Register is set as a result of the doubleword integer comparison
of DC and BA. Both operands are then deleted from the stack.

DTST (000031). Double Test BA. The Condition Code is set according
to the contents of the doubleword contained in BA.

CDI (000307). Convert Double to Integer. The doubleword integer in
BA is converted to a singleword integer by copying the contents of A
into B and deleting A. Overflow is set if the doubleword quantity is
greater than 32767 or less than -32768.

CID (000327). Convert Integer to Double. The singleword integer in
A is extended to a doubleword quantity on the top of the Register
Stack. A is copied into H, and then A is filled with zeros if A was
positive, or ones if A was negative; the Register Pointer is
incremented to give the result in BA.

MOND (000001). Minus One Double. A doubleword minus one is pushed
onto the top of the Register Stack (BA). Condition Code is set.

ZERO (000002). Zero Double.
of the Register Stack (BA).

A doubleword zero is pushed onto the top
Condition Code is set.

ONED (000003). One Double. A doubleword of one is pushed onto the
top of the Register Stack (BA). Condition Code is set.

3-6

l6-Bit Signed Arithmetic

l6-BIT SIGNED ARITHMETIC (Register Stack Element)

NOTE

For binary coding details of the first four instructions
that follow (ADRA, SBRA, ADAR, SBAR), refer to Table A-7 in
Appendix A. For ADXI, refer to Table A-4.

ADRA (00014-). Add Register to A. The contents of the register
pointed to by the Register field of the instruction is added in
integer form to register A. Overflow is set if the result is greater
than 32767 or less than -32768. Carry can be set, and Condition Code
is set on the result.

SBRA (00015-). Subtract Register from A. The contents of the
register pointed to by the Register field of the instruction are
subtracted in integer form from register A. Overflow is set if the
result is greater than 32767 or less than -32768. Carry can be set,
and Condition Code is set on the result.

ADAR (00016-). Add A to a Register. A is added in signed integer
form to the register pointed to by the Register field of the
instruction. A is deleted from the stack. Overflow is set if the
result is greater than 32767 or less than -32768. Carry can be set,
and Condition Code is set on the result.

SBAR (00017-). Subtract A from a Register. A is subtracted in signed
integer form from the register pointed to by the Register field of the
instruction. A is deleted from the stack. Overflow is set if the
result is greater than 32767 or less than -32768. Carry can be set,
and Condition Code is set on the result.

-AaX-I (-±-94--~}.· -- -Add- -Immedi-a-te--Oper-an-d- t-o---a-n---Tnd-ex . Reg-i-s-t---e-f--.- ---'Ph-e---------
immediate operand is added in signed integer form to the contents of
the index register specified by the "x" field of the instruction.
Overflow is set if the result is greater than 32767 or less than
-32768. Carry can be set, and Condition Code is set on the result.

3-7

Decimal Arithmetic

DECIMAL ARITHMETIC STORE AND LOAD (Standard Instructions)

NOTE

For binary coding details of the following two instructions,
refer to Table A-a in Appendix A.

QST (00023-). Quadruple Store. The quadrupleword operand contained
in EDCB is stored in the effective memory location indicated by A plus
4 times the index value. No indexing occurs for coding 000230. For
code 000231, 000232, or 000233, indexing for the effective address
uses register R[5], R[6], or R[7], respectively. The quadrupleword
operand and A are then deleted from the stack.

QLD (00023-). Quadruple Load. The quadrupleword operand contained in
the effective memory location indicated by A plus 4 times the index
value is fetched. A is deleted, and the fetched quadrupleword is
pushed onto the stack. No indexing occurs for coding 000234. For
code 000235, 000236, or 000237, indexing for the effective address
uses register R[5], R[6], or R[7], respectively. Condition Code is
set on the loaded quadrupleword.

DF.CIMAL INTEGER ARITHMETIC (Stannarn ann Optional In8trll~tinns)

QADD (000240). Quadruple Add. The two quadrupleword integers
contained in HGFE and DCBA are added in quadrupleword integer form.
Both operands are deleted, and the quadrupleword result is pushed onto
the stack. Overflow is set if the result IS greater than (2**63)-1 or
less than -(2**63). Carry can be set, and Condition Code is set on
the result. (This is a standard instruction.)

QSUB (000241). Quadruple Subtract. The quadrupleword integer
contained in DCBA is subtracted in quadruple-length integer form from
the quadrupleword integer in HGFE. Both operands are deleted, and the
quadrupleword result is pushed onto the stack. Overflow is set if the
result is greater than (2**63)-1 or less than -(2**63). Carry can be
set, and Condition Code is set on the result. (This is a standard
instruction.)

3-8

Decimal Arithmetic

QMPY (000242). Quadruple Multiply. The quadrupleword integer
contained in HGFE is multiplied in quadrupleword integer form by the
quadrupleword integer in DCBA. Both operands are deleted, and the
quadrupleword result is pushed onto the stack. Overflow is set if the
result is greater than (2**63)-1 or less than -(2**63). Carry can be
set, and Condition Code is set on the result. (This is an optional
instruction.)

QDIV (000243). Quadruple Divide. The quadrupleword integer contained
in HGFE is divided in quadrupleword integer form by the quadrupleword
integer in DCBA. Both operands are deleted, and the quadrupleword
result is pushed onto the stack. Overflow is set if the divisor
(DCBA) is zero. Condition Code is set. (This is an optional
instruction.)

QNEG (000244). Quadruple Negate. The quadrupleword integer contained
is DCBA is replaced with its two's complement. Overflow is set if the
original operand was -(2**63). Condition Code is set on the result.
(This is an optional instruction.)

QCMP (000245). Quadruple Compare. The Condition Code in the
Environment Register is set according to the quadruple integer
comparison of HGFE (operand 1) and DCBA (operand 2). (See Table A-3
for Condition Code settings; the "a" states apply for compares.)
Both operands are then deleted from the stack. (This is an optional
instruction.)

DECIMAL ARITHMETIC SCALING AND ROUNDING (Standard and Optional
Instructions)

NOTE

~Qr binary coding details of the following three instructions,
refer to Table A-a in Appe na IXA--. ------------

QUP (00025-). Quadruple Scale Up. The operand value in DCBA is
multiplied by a specified power of ten (1, 2, 3, or 4), and the new
value replaces the former contents of DCBA. Overflow is set if the
result is greater than (2**63)-1 or less than -(2**63). Condition
Code is set on the resul t. (This is a standard instruction.)

3-9

Decimal Arithmetic

QDWN (00025-). Quadruple Scale Down. The operand value in DCBA is
divided by a specified power of ten (1, 2, 3, or 4), and the new value
replaces the former contents of DCBA. Condition Code is set, and the
Overflow bit is cleared. (This is a standard instruction.)

QRND (000263). Quadruple Round. Five is added to the operand in DCBA
if the operand is positive (-5 is added if negative), and the result
is divided by 10. The new value replaces the former contents of DCBA.
Condition Code is set, and the Overflow bit is cleared. (This is an
optional instruction.)

DECIMAL ARITHMETIC CONVERSIONS (Optional Instructions)

CQI (000264). Convert Quad to Integer. The four-word value in DCBA
is converted to an integer by extracting the least significant word.
DCBA is deleted, and the integer result is pushed onto the stack.
Overflow is set if the operand was greater than 32767 or less than
-32768.

CQL (000246). Convert Quad to Logical. The four-word value in DCBA
is converted to a logical value by extracting the least significant
word. DCBA is deleted, and the integer result is pushed onto the
stack~ Overflow is set if the operand was greater than 65535~

CQD (000247). Convert Quad to Double. The four-word value in DCBA is
converted to a doubleword by extracting the least significant two
words. DCBA is deleted, and the doubleword result is pushed onto the
stack. Overflow is set if the operand was greater than (2**31)-1 or
less than -(2**31).

CQA (000260). Convert Quad to ASCII. The binary-coded quadrupleword
integer in FEDC is converted to a string of ASCII-coded digits
(decimal base), and stores them in the memory space defined by a
starting byte address in B and a byte count in A. If the conversion
results in a truncation of leading digits, overflow is set. Condition
Code is set on the original value.

3-10

Decimal Arithmetic

CIQ (000266). convert Integer to Quad. The singleword integer in A
is extended to a quadrupleword quantity, filling the most significant
three words with zeros if A was positive, or ones if A was negative.
A is deleted, and the quadrupleword result is pushed onto the stack.

CLQ (000267). convert Logical to Quad. The singleword logical
quantity in A is extended to a quadrupleword quantity, filling the
most significant three words with zeros. A is deleted, and the
quadrupleword result is pushed onto the stack.

CDQ (000265). Convert Double to Quad. The doubleword integer in BA
is extended to a quadrupleword quantity, filling the most significant
two words with zeros if B is positive, or ones if B is negative. BA
is deleted, and the quadrupleword result is pushed onto the stack.

CAQ (000262). Convert ASCII to Quad. A string of ASCII-coded digits
in memory, defined by a starting byte address in B and a byte count in
A, is converted to a binary-coded quadrupleword integer. A and Bare
deleted, and the quadrupleword result is pushed onto the stack. If a
nondigit ASCII code is encountered, only the preceding digits are
converted, and CCG indicates that only part of the string was
converted; CCE indicates that the entire string was converted.
Overflow is set if the result is greater than (2**63)-1 or less than
-(2**63). If overflow is set, the value in DCBA is undefined.

CAQV (000261). Convert ASCII to Quad with Initial Value. A string of
ASCII-coded digits in memory, defined by a starting byte address in F
and a byte count in E, is converted to a binary-coded quadrupleword
integer in DCBA. DCBA contains an initial value (greater than or
equal to zero) which is scaled by 10, providing a high-order value to
which the converted value is added to produce the result in DCBA. If
a nondigit ASCII code is encountered, only the preceding digits are
converted, and CCG indicates that only part of the string was
converted; CCE indicates that the entire string was converted.
!Ner-flow -is se±-if-------the--xe 5 111 t - i 5 9 r ea.te-I:---ut-han--(2~~>__d---Or1 e s s than
-(2**63). If overflow is set, the value in DCBA is undefined.

3-11

Floating-Point Arithmetic

FLOATING-POINT ARITHMETIC (Optional Instructions)

NOTE

For the range of floating-point numbers, refer to "Number
Representation" in section 2.

FADD (000270). Floating-Point Add. The floating-point quantities in
DC and BA are added in floating-point form. Both operands are
deleted, and the two-word result is pushed onto the stack. Overflow
is set if the result falls outside the range of floating-point
numbers. Condition Code is set on the result.

FSUB (000271). Floating-Point Subtract. The floating-point quantity
in BA is negated, and then DC and BA are added in floating-point form.
Both operands are deleted, and the result is pushed onto the stack.
Overflow is set if the result falls outside the range of floating
point numbers. Condition Code is set on the result.

FMPY (000272). Floating-Point Multiply. The floating-point
quantities in DC and BA are multiplied in floating-point form. Both
operands are deleted, and the result is pushed onto the stack.
Overflow is set if the result falls outside the range of floating
point numbers. Condition Code is set on the result.

FDIV (000273). Floating-Point Divide. The floating-point quantity in
DC is divided in floating-point form by the floating-point quantity in
BA. Both operands are deleted and the result is pushed onto the
stack. Overflow is set if the result falls outside the range of
floating-point numbers. Condition Code is set on the result.

FNEG (000274). Floating-Point Negate. The floating-point quantity in
BA (if not zero) is negated. The sign of BA is reversed from positive
to negative or negative to positive, and the Condition Code reflects
the final state of the sign (see Table A-3).

FCMP (000275). Floating-Point Compare. The Condition Code is set
according to the comparison of DC (operand 1) with BA (operand 2).
(See Table A-3 for Condition Code settings~ the "a" states apply for
comparisons.) Both operands are then deleted from the stack.

3-12

Floating-Point Arithmetic

EXTENDED FLOATING-POINT ARITHMETIC (Optional Instructions)

NOTE

For the range of extended floating-point numbers, refer to
"Number Representation" in section 2.

EADD (000300). Extended Add. The extended floating-point quantities
in HGFE and DCBA are added in extended floating-point form. Both
operands are deleted and the result is pushed onto the stack.
Overflow is set if the result falls outside the range of extended
floating-point numbers. Condition Code is set on the result.

ESUB (000301). Extended Subtract. The extended floating-point
quantity in HGFE is negated, and then HGFE and DCBA are added in
extended floating-point form. Both operands are deleted and the
result is pushed onto the stack. Overflow is set if the result falls
outside the range of extended floating-point numbers. Condition Code
is set on the result.

EMPY (000302). Extended Multiply. The extended floating-point
quantities in HGFE and DCBA are multiplied in extended floating-point
form. Both operands are deleted and the result is pushed onto the
stack. Overflow is set if the result falls outside the range of
extended floating-point numbers. Condition Code is set on the result.

EDIV (000303). Extended Divide. The extended floating-point quantity
in HGFE is divided in extended floating-point form by the extended
floating-point quantity in DCBA. Both operands are deleted and the
result is pushed onto the stack. Overflow is set if the result falls
outside the range of extended floating-point numbers. Condition Code
is set on the result.

ENEG t{)O-O-Je-~)~ -Extende-d Negate -~ - The -exe-ena-ed-float-tng-..;;-p-otn-r--qa-anti ty
in DCBA (if not zero) is negated. The sign of DCBA is reversed from
positive to negative or negative to positive. Overflow is cleared,
and the Condition Code reflects the final state of the sign.

ECMP (000305). Extended Compare. The Condition Code is set according
to the comparison of HGFE (operand 1) with DCBA (operand 2). Both
operands are then deleted from the stack.

3-13

Floating-Point Arithmetic

FLOATING-POINT CONVERSIONS (Optional Instructions)

CEF (000276). Convert Extended to Floating. The four-word floating
point quantity in DCBA is converted to a two-word floating-point
quantity. DCBA is deleted, and the two-word result is pushed onto the
stack.

CEFR (000277). Convert Extended to Floating, Rounded. The four-word
floating-point quantity in DCBA is converted to a two-word floating
point quantity. The new quantity is rounded according to the contents
of truncated bit 7 of C. DCBA is deleted, and the two-word result is
pushed onto the stack.

CFI (000311). Convert Floating to Integer. The floating-point
quantity in BA is converted to a singleword signed integer. A is
deleted, and the singleword result is pushed onto the stack. Overflow
is set if the value of the operand was greater than 32767 or less than
-32768. Condition Code is set on the result.

CFIR (000310). Convert Floating to Integer, Rounded. The floating
point quantity in BA is converted to a singleword signed integer, with
rounding according to the contents of the most significant fractional
bit. A is deleted, and the singleword result is pushed onto the
stack. Overflow is set if the value of the operand was greater than
32767 or less than =32768. Condition Code is set on the result.

CFD (000312). Convert Floating to Double. The floating-point
quantity in BA is converted to a doubleword signed integer in BA.
Overflow is set if the value of the operand was greater than (2**31)-1
or less than -(2**31). Condition Code is set on the result.

CFDR (000313). Convert Floating to Double, Rounded. The floating
point quantity in BA is converted to a doubleword signed integer in
BA, with rounding according to the contents of the most significant
fractional bit. Overflow is set if the value of the operand was
greater than (2**31)-1 or less than -(2**31). Condition Code is set
on the result.

CED (000314). Convert
point quantity in DCBA
BA is deleted, and the
Overflow is set if the
or less than -(2**31).

3-14

Extended to Double. The extended floating-
is converted to a doubleword signed integer.
doubleword result is pushed onto the stack.
value of the operand was greater than (2**31)-1
Condition Code is set on the result.

Floating-Point Arithmetic

CEDR (000315). Convert Extended to Double, Rounded. The extended
floating-point quantity in DCBA is converted to a doubleword signed
integer, with rounding according to the contents of the most
significant fractional bit. BA is deleted, and the doubleword result
is pushed onto the stack. Overflow is set if the value of the operand
was greater than (2**31)-1 or less than -(2**31). Condition Code is
set on the result.

CEI (000337). Convert Extended to Integer. The extended floating
point quantity in DCBA is converted to a singleword signed integer.
CBA is deleted, and the singleword result is pushed onto the
stack. Overflow is set if the value of the operand was greater than
32767 or less than -32768. Condition Code is set on the result.

CEIR (000316). Convert Extended to Integer, Rounded. The extended
floating-point quantity in DCBA is converted"to a singleword signed
quantity, with rounding according to the contents of the most
significant fractional bit. CBA is deleted, and the singleword result
is pushed onto the stack. Overflow is set if the value of the operand
was greater than 32767 or less than -32768. Condition Code is set on
the result.

CFQ (000320). Convert Floating to Quadruple. The floating-point
quantity in BA is converted to a quadrupleword integer in DCBA.
Overflow is set if the value of the operand was greater than (2**63)-1
or less than -(2**63). Condition Code is set on the result.

CFQR (000321). Convert Floating to Quadruple, Rounded. The floating
point quantity in BA is converted to a quadrupleword integer in DCBA,
with rounding according to the contents of the most significant
fractional bit. Overflow is set if the value of the operand was
gr e_a t_er Hlan _ L2 ~ * 63) -1 Dr __ less __ than_ - (2~_:k_n1L .. ____ Condilio~ __ Code~_~-±'_
on the result.

CEQ (000322). Convert Extended to Quadruple. The extended floating
point quantity in DCBA is converted to a quadrupleword integer in
DCBA. Overflow is set if the value of the operand was greater than
(2**63)-1 or less than -(2**63). Condition Code is set on the result.

3-15

Floating-Point Arithmetic

CEQR (000323). convert Extended to Quadruple, Rounded. The extended
floating-point quantity in DCBA is converted to a quadrupleword
integer in DCBA, with rounding according to the contents of the most
significant fractional bit. Overflow is set if the value of the
operand was greater than (2**63)-1 or less than -(2**63). Condition
Code is set on the result.

CFE (000325). Convert Floating to Extended. The floating-point
quantity in BA is converted to an extended floating-point quantity.
BA is deleted, and the four-word result is pushed onto the stack.

CIF (000331). Convert Integer to Floating.
is converted to a floating-point quantity.
two-word result is pushed onto the stack.

The signed integer in A
A is deleted, and the

CDF (000306). Convert Double to Floating. The doubleword signed
integer in BA is converted to a floating-point quantity in BA, with
truncation if the result exceeds 23 significant bits.

CDFR (000326). Convert Double to Floating, Rounded. The doubleword
signed integer in BA is converted to a floating-point quantity in BA,
with rounding if the result exceeds 23 significant bits.

CQF (000324). Convert Quadruple to Floating. The quadrupleword
signed integer in DCBA is converted to a floating-point quantity,
with truncation if the result exceeds 23 significant bits. DCBA is
deleted, and the two-word result is pushed onto the stack.

CQFR (000330). Convert Quadruple to Floating, Rounded. The
quadrupleword signed integer in DCBA is converted to a floating-point
quantity, with rounding if the result exceeds 23 significant bits.
DCBA is deleted, and the two-word result is pushed onto the stack.

CIE (000332). Convert Integer to Extended. The signed integer in A
is converted to an extended floating-point quantity. A is deleted,
and the four-word result is pushed onto the stack.

3-16

Floating-Point Arithmetic

CDE (000334). Convert Double to Extended. The doubleword signed
integer in BA is converted to an extended floating-point quantity.
BA is deleted, and the four-word result is pushed onto the stack.

CQE (000336). Convert Quadruple to Extended. The quadrupleword
signed integer in DCBA is converted to an extended floating-point
quantity in DCBA, with truncation if the result exceeds 55 significant
bits.

CQER (000335). Convert Quadruple to Extended, Rounded. The
quadrupleword signed integer in DCBA is converted to an extended
floating-point quantity in DCBA, with rounding if the result exceeds
55 significant bits.

FLOATING-POINT FUNCTIONALS (Optional Instructions)

IDXl (000344). Calculate Index, 1 Dimension. For a one-dimensional
array, lDXl compares the subscript value in B against lower and upper
bounds in a two-word table in the current code segment starting at the
address specified in A. If the value is in bounds, the element offset
value is computed and is stored in register R[7]. If the subscript is
out of bounds, overflow is set, R[7] receives the erroneous subscript,
and CCL indicates too low or CCG indicates too high. BA is then
deleted.

IDX2 (000345). Calculate Index, 2 Dimensions. For a two-dimensional
array, IDX2 compares the subscript values in Band C against lower and
upper bounds in a 4-word table in the current code segment starting at
the address in A. If the values are in bounds, the element offset
value is computed and stored in register R[7]. If a subscript is out
of bounds, overflow is set, R[7] receives the erroneous subscript, and
CCL indicates too low or CCG indicates too high. CBA is then deleted.

IDX3 (000346). Calculate Index, 3 Dimensions. For a three
dimensional array, IDX3 compares the subscript values in B, C, and D
against lower and upper bounds in a 6-word table in the current code
segment starting at the address in A. If the values are in bounds,
the element offset value is computed and stored in register R[7]. If
any subscript is out of bounds, overflow is set, R[7] receives the
erroneous subscript, and CCL indicates too low or CCG indicates too
high. DCBA is then deleted.

3-17

Floating-Point Arithmetic

IDXP (000347). Calculate Index, Code Space. For an n-dimensional
array, IDXP compares the subscript values in n stack registers (B, C,
D, etc.) against lower and upper bounds in a table in the current code
segment (2n words) specified by a starting address in A. (The first
word of the table in memory is the number of dimensions.) If the
values are in bounds, the element offset value is computed and stored
in register R[7]. If any subscript is out of bounds, overflow is set,
R[7] receives the erroneous subscript, and CCL indicates too low or
CCG indicates too high. All stack data used is deleted.

IDXD (000317). Calculate Index, Data Space. For an n-dimensional
array, IDXD compares the subscript values in n stack registers (B, C,
D, etc.) against lower and upper bounds in a table in the current data
segment (2n words) specified by a starting address in A. (The first
word of the table in memory is the number of dimensions.) If the
values are in bounds, the element offset value is computed and stored
in register R[7]. If any subscript is out of bounds, overflow is set,
R[7] receives the erroneous subscript, and CCL indicates too low or
CCG indicates too high. All stack data used is deleted.

REGISTER STACK MANIPULATION

EXCH (000004). Exchange A and B. A and B of the Register Stack are
interchanged, Condition Code is set on the reSlllt in A.

DXCH (000005). Double Exchange BA with DC. The doubleword contained
in DC is interchanged with the doubleword ~ontained in BA. Condition
Code is set on the result in BA.

DDUP (000006). Double Duplicate BA in DC. The doubleword in the top
two registers of the stack is duplicated by pushing a copy of it onto
the Register Stack. Condition Code is set.

3-18

Register Stack Manipulation

NOTE

For binary coding details of the following three instructions
(STAR, NSAR, LORA), refer to Table A-7 in Appendix A.

STAR (00011-). Store A in a Register. The A Register contents are
stored in the register pointed to by the Register field of the
instruction. A is then deleted from the stack.

NSAR (00012-). Non-destructive Store A into a Register. The A
Register is stored in the register pointed to by the Register field of
the instruction.

LORA (00013-). Load A from a Register. The contents of the register
pointed to by the Register field of the instruction are pushed onto
the stack. Condition Code is set.

NOTE

For binary coding details of the following three instructions
(LOI, LOXI, LOLl), refer to Table A-4 in Appendix A.

LOI (100---). Load Immediate Operand into A. The immediate operand
is pushed onto the stack, with the sign bit propagating into the high
order bits. Condition Code is set.

LOXI (10----). Load Index Register with Immediate Operand. The index
register specified by the "x" field of the instruction is loaded with
the immediate operand, and the sign bit propagates into the high
order bits. Condition Code is set.

LOLl (005---). Load Left Immediate Operand into bits 0:7 of A. The
immediate operand, shifted left eight places, is loaded into A, with
the sign bits propagating into the low-order bits of A. Condition
Code is set.

3-19

Boolean Operations

BOOLEAN OPERATIONS

Figure 3-2 illustrates the fundamental principles of boolean
operations as performed by four of the instructions. Figure 3-3 shows
the equivalent operations as performed on immediate operands.

LAND (000010). Logical AND A with B. A and B are logically ANDed.
The two words are deleted from the stack and the result pushed on.
Condition Code is set.

LOR (000011). Logical OR A with B. A and B are merged by a logical
inclusive OR. A and B are deleted and the result pushed onto the
stack. Condition Code is set.

XOR (000012). Logical Exclusive OR A with B. The two words in A and
B of the Register Stack are combined by a logical exclusive OR. The
two words are then deleted and the result is pushed onto the stack.
Condition Code is set.

NOT (000013). One's Complement A. The word contained in Register A
of thp ~tack is converted to its one's complement. Condition Code is
set.

3-20

Boolean Operations

LOGICAL AND
LAND

o + 0 = 0
0+1 = 0
1 + 0 = 0
1 + 1 = 1

LOGICAL OR
LOR:

0+0=0
o + 1 = 1
1 + 0 = 1
1 + 1 = 1

EXCLUSIVE OR
XOR:

o + 0 = 0
0+1 = 1
1 + 0 = 1
1 + 1 = 0

ONE'S COMPLEMENT
NOT:

0=1

l//'iAo 1

~~O 0

W~O 0

~~O 1

~~do 0

V///j 0 1

l'?/mlo 1

W/Z]O 0

lV~o 1

1 I 0 1 1 I OPERAND 1

1 I 1 1 01 OPERAND 2

1 I 0 1 01 RESULT

1 I 0 1 1 1 OPERAND 1

1 I 1 01 OPERAND 2

1 I 1 1 1 RESULT

1 I 0 1 1 I OPERAND 1

1 I 1 01 OPERAND 2

01 1 0 1 1 RESULT

1 I 0 1 1 I OPERAND

1 = 0 Vij//j 1 0 0 1 1 0 0 1 RESULT

Figure 3-2. Boolean Operations

3-21

Boolean Operations

NOTE

For binary coding details of the following four instructions
(ORRI, ORLI, ANRI, ANLI), refer to Table A-4 in Appendix A.

ORRI (004---). OR Right Immediate Operand with A. The 8-bit
immediate operand is merged with the A Register by a logical inclusive
OR. The sign bit is not propagated, but is actually part of the
instruction; see Figure 3-3. Condition Code is set.

ORLI (004---). OR Left Immediate Operand with A. The 8-bit immediate
operand is shifted left eight places and merged with A by a logical
inclusive OR. The sign bit is not propagated, but is actually part of
the instruction; see Figure 3-3. Condition Code is set.

ANRI (006---). AND Right Immediate Operand to A. The 8-bit immediate
operand is extended to 16 bits by propagating the sign into the high
order bits, and the resulting integer is logically ANDed to A; see
Figure 3-3. Condition Code is set.

ANLI (007---). AND Left Immediate Operand with A. The 8-bit
immediate operand is shifted left eight places, the sign bit is
propagated into the low-order bits: and the resulting integer is
logically ANDed to A; see Figure 3-3. Condition Code is set.

3-22

Boolean Operations

ORRI (OR RIGHT IMMEDIATE)

~0:~0~0~91;J~q/~0~0~ 1
\

THE IMMEDIATE IS
TREATED AS:

10 1 0

ORLI (OR LEFT IMMEDIATE)

THE IMMEDIATE IS
TREATED AS:

0
/

01 0 0 o 1 0 1

01 1 0 1 I 0 1 1J
/

~
o 1 1 0 1 I 0 1 1 I OPERAND 1

11 1 0 1 0 1 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 I OPERAND 1

ANRI (AND RIGHT IMMEDIATE)

THE IMMEDIATE IS
TREATED AS:

ANLI (AND LEFT IMMEDIATE)

THE IMMEDIATE OPERAND IS
TREATED AS:

Figure 3-3. Boolean Instructions with Immediate Operands

3-23

Bit Deposit and Shift

BIT DEPOSIT AND SHIFT

DPF (000014). Deposit Field in A. This instruction combines the
words contained in registers A and C of the stack as a function of a
mask word contained in register B of the stack. A logical OR
operation is performed on the logical AND of Band C and the logical
AND of not B and A, so that all bits in C corresponding to ones in B
are deposited into corresponding bits in A. The original three words
are deleted from the stack and the result pushed onto the stack.
Condition Code is set. An example of this operation is shown in
Figure 3-4.

INT i : = % 023003

i. \5:10) : = 5;

VALUE IN REGISTER STACK DO ABOVE:

3-24

C

B

o 1 4 7 10 13
l?-;Qa?:o?&:o?%o3?o: 0 0 I 0 1 0 I 1 ~oZo?fo~o?}oJ

I ,
I
I

VALUE TO BE DEPOSITED: 5

MASK CONTAINING "1" BITS
IN POSITIONS SUBJECT TO
DEPOSIT: (5:10)

A RoJA0:(ZoXo~ 1 1 I 0 0 0 I 0 il:Z:o%OJ/101%1 OPERAND ACCEPTING DEPOSIT:
I % 023003
I
I
I
I

RESULT IN A I 0 I 0 1 0 I 0 0 0 I 0 1 0 I 1 0 0 I 0 1 1 I % 020243

Figure 3-4. Deposit Field Example

Bit Deposit and Shift

LLS (0300--). Logical (unsigned) Left Shift. If the Shift Count
field is zero, the word contained in B is shifted left by the count
(modulo %377) contained in A. A is then deleted from the stack.
However, if Shift Count is not zero, A is shifted left by that number.
Condition Code is set. Figure 3-5 presents a comparison of logical
(unsigned) shifts and arithmetic (signed) shifts.

DLLS (1300--). Double Logical (unsigned) Left Shift. If the Shift
Count field is zero, the doubleword contained in CB is shifted left by
the count (modulo %377) contained in A. A is then deleted from the
stack. However, if Shift Count is not zero, BA is shifted left by
that number. Condition Code is set.

LRS (0301--). Logical (unsigned) Right Shift. If the Shift Count
field is zero, the word contained in B is shifted right by the count
(modulo %377) contained in A. A is then deleted from the stack.
However, if Shift Count is not zero, A is shifted right by that
number. Condition Code is set.

DLRS (1301--). Double Logical (unsigned) Right Shift. If the Shift
Count field is zero, the doubleword contained in CB is shifted right
by the count (modulo %377) contained in A. A is then deleted from the
stack. However, if Shift Count is not zero, BA is shifted right by
that number. Condition Code is set.

ALS (0302--). Arithmetic (signed) Left Shift. If the Shift Count
field is zero, the word contained in B is shifted left preserving the
sign bit by the count (modulo %377) contained in A. A is then deleted
from the stack. However, if Shift Count is not zero, A is shifted
left, preserving the sign bit, by that number. Condition Code is set.

DALS (1302--). Double Arithmetic (signed) Left Shift. If the Shift
Count fJelg __ J~L_J:_ero_,th~ __ q_Q1JJ:~le_\"LQrQ. __ colltained_ in CB_i.s ____ ~hiftedleftL _____ ._
preserving the sign bit, by the count (modulo %377) contained in A. A
is then deleted from the stack. However, if Shift Count is not zero,
BA is shifted left, preserving the sign bit, by that number.
Condition Code is set.

3-25

Bit Deposit and Shift

LEFT SHIFTS

ALS 3 (ARITHMETIC LEFT SHIFT THREE POSITIONS)

OPERAND IN A: 10 1 0 1 1 1 o 1 0 0 o I 1 1 I 0 0 1 I % 056071

"- : ! 0
,/ V

1

RESULT IN A: I 0 1 1 01 0 0 o 1 1 1 1 0 0 1 I 0 0 01 % 060710

Y
STATE OF SIGN BIT
IS PRESERVED

LLS 3 (LOGICAL LEFT SHIFT THREE POSITIONS)

OPERAND IN A: 10 1 0 1 1 1 o 1 0 0 o 1 1 1 I 0 0 1 I % 056071

"- /

f 0

/ ,,/ i

" RESULT IN A: 11 I 01 0 0 o 1 1 1 I 0 0 1 1 0 0 o I % 160710

RIGHT SHIFTS

ARS 7 (ARITHMETIC RIGHT SHIFT SEVEN POSITIONS)

OPERAND IN A: 11 : 1 1 I 0 0 1 I 1 Oi 0 0 o I 0 0 1 I % 171601

~
/

! ! v \.

RESUL T IN A: 11 1 1 1 1 1 1 1 1 1 1 1 0 o I 1 1 I % 177747

"- /

SIGN BIT IS PROPAGATED
SEVEN POSITIONS

LRS 7 (LOGICAL RIGHT SHIFT SEVEN POSITIONS)

OPERAND IN A: 11 I 1 1 I 0 0 1 I 1 1 o I 0 0 010 0 1 I %171601

'\ /

0 !
/

t ,,/ \.

RESULT IN A: I 0 1 0 0 010 0 o I 1 1 I 1 0 o I 1 1 I % 000747

Figure 3-5. Arithmetic vs. Logical Shifts

3-26

Bit Deposit and Shift

ARS (0303--). Arithmetic (signed) Right Shift. If the Shift Count
field is zero, the word contained in B is shifted right, propagating
the sign bit, by the count (modulo %377) contained in A. A is then
deleted from the stack. However, if Shift Count is not zero, A is
shifted right, propagating the sign bit, by that number. Condition
Code is set.

DARS (1303--). Double Arithmetic (signed) Right Shift. If the Shift
Count field is zero, the doubleword contained in CB is shifted right,
propagating the sign bit, by the count (modulo %377) contained in A.
A is then deleted from the stack. However, if Shift Count is not
zero, BA is shifted right, propagating the sign bit, by that number.
Condition Code is set.

BYTE TEST

BTST (000007). Byte Test A. The Condition Code is set on the value
of the test byte in bits 8:15 of Ai CCL indicates ASCII numeric, CCE
indicates ASCII alphabetic, and CCG indicates special ASCII character.
A is deleted after the test.

MEMORY TO/FROM REGISTER STACK

NOTE

For binary coding details of the first twelve instructions
below (LWP through ADM), refer to Table A-3 in Appendix A.

LWP (-2----). Load Word from Program (Code) Area into A. The
contents of the address which is computed as a function of
displacement (a signed 8-bit value), and optionally indexing and/or
in9ixectionL is_PllsJte9. ontg the_R~is.t~.r._StgQ_~_ •.... _. __ CQn9.:l.tt . .Qn CQ(:I~ .. is set
on the loaded word. Figure 3-6 illustrates the addressing operations
for the LWP instruction.

3-27

Memory to/from Register Stack

3-28

INDIRECT, INDEXED

~, 0 I~~O\O I 0 I 0 I 0 I 1 I 0 I 0 I 0)= ~== =

I
INDEX DISPLACEMENT
REG

CODE
SEGMENT

I------"""i

t-""'~~~~~

- -- -- - --- --- - - --~-----1
LWP 8.I.X

- -- - - - - - - - - - - - - -+--------4
-'

p 1 __ 3-,72-,9_----11 / ./~

~

C[3433]

C[3439]

C[3728]

+8
'----------i-------'.-+ -304 C[3737]

~-----1

+ r - 3737---1 L _______ ..J

~ -304
+....-----'

I ~
I I r - 3433- - -- l

L I R~~~S~iR I 13439 L __ ~_ ru

-"

R[S) S _______ S----Jt

Figure 3-6. LWP Instruction Addressing

Memory to/from Register Stack

LBP (-2-4--). Load Byte from Program (Code) Area into A. The
contents of the P-relative byte address which is computed as a
function of displacement (a signed 8-bit value), and optionally
indexing and/or indirection, is pushed onto the Register Stack. The
high-order byte is set to zero. If the P Register currently indicates
an address in the upper half of the code segment (bit 0 of P = 1),
%100000 is added to the computed address, so that the address will
always be relative to whichever half of the segment P currently
indicates. The Condition Code is set on the value of the loaded byte
in bits 8:15 of Ai CCL indicates ASCII numeric, CCE indicates ASCII
alphabetic, and CCL indicates special ASCII character. Figure 3-7
illustrates the addressing operations for the LBP instruction,
assuming addresses in the first half of the code segment.

LDX (-3----). Load Index Register from Data Space. The index
register specified by the "x" field of the instruction is loaded with
the contents of the effective memory address. Condition Code is set.
Figure 3-8 shows the instruction word format for memory data reference
instructions, such as LDX.

NSTO (-34---). Nondestructive Store from A. The contents of the A
Register are stored into effective address memory location. The
Register Stack is not modified.

LOAD (-40---). Load A from Data Space. The contents of the effective
address memory location are pushed onto the stack. Condition Code is
set.

STOR (-44---). Store A into Data Space. The contents of the A
Register are stored into the effective memory location. A is then
deleted from the stack.

___ J:~DB __ L~5- ... ~_~~ __ Load---.A __ wi th-__ B¥te £rQm Data __ .5Race __ L The-----.C_Qntents __ .nf_---±.he._
effective memory location are loaded into bits 8:15 of A. .The
Condition Code is set on the value of the loaded byte in bits 8:15 of
Ai CCL indicates ASCII numeric, CCE indicates ASCII alphabetic, and
CCG indicates special ASCII character.

STB (-54---). Store Byte from A to Data Space. The contents of the
byte in bits 8:15 of A are stored in the effective memory location.

3-29

Memory to/from Register Stack

3-30

DIRECT. INDEXED

REGISTER
STACK

,--------. R[7] 17

99-12S ==

INDEX
REG DISPLACEMENT
~ I
~ /r---~--~~

~~ 1 11 t%2l1 11 11 10101011 11 I

P ~ 1

LBP INDIRECT

o::R~olololol111loiol
" /

DISPLACEMENT ,

177 -;- 2 == SS. r == 1

CODE
SEGMENT

!"'--

C[SO]
~-----f

• C[SS] I 1 == right half ~----""""""""""""Ii
17

+ = 177 L 2 x SO == 160

r - - -SO - --,

L~9--r--~
.. +

- --- ---I--~~~--;
_______ I--_LB_P_2_9_,X_-tC[10S]

'" ;'

./
109

;'

CODE

P REGISTER SEGMENT

C[763J

/
P REGISTER /

1/ / 764

I
12 ,

• +

~ r-----
2613 C[776] L _ .!.76 __ -.J

2 776 ~ 1552 r
2613

NOTE: THESE EXAMPLES ASSUME ADDRESSES IN THE LOWER
HALF OF THE CODE SEGMENT, i.e., P.<O> =O.IF P.<O> = 1,
%100000 IS ADDED TO THE COMPUTED ADDRESS BEFORE THE
BYTE IS FETCHED FROM MEMORY.

+

r--L---,
L_~165 __ ...J

L----.t--~~~ C[20S2]

4165 7 2 == 20S2. r = 1

1 == right half

Figure 3-7. LBP Instruction Addressing

Memory to/from Register Stack

o 5 6 7 15

I I I I I I I I I I I I I I I I I
V I~I" /\ . \

I I x I MODE AND DISPLACEMENT \

[QJ = DIRECT

[I] = INDIRECT

I I \
I I \

DISPLACEMENT (0:255) I
I
I
I

I
I

0

1

1

1

1

0
1

1

1

DISPLACEMENT (0:127)
0 DISPLACEMENT (0:63)

1 o I DISPLACEMENT (0:31)

1 1 I DISPLACEMENT (0:31)

I~I;I~G
~R[51
~ R[6]

R[7]

REGISTER
STACK

INDEX VALUE

INDEX VALUE

INDEX VALUE

MODE
G·RELATIVE
L·PLUS·RELATIVE
SG·RELATIVE
L·MINUS·RELATIVE
S·MINUS·RELATIVE

Figure 3-8. Memory Reference Instruction Format

3-31

Memory to/from Register Stack

LDD (-6----). Load Double from Data Space into BA. The doubleword
integer contained in the effective memory location is pushed into the
stack. Condition Code is set. Figure 3-9 illustrates the addressing
methods for doubleword instructions.

STD (-64---). Store Double from BA into Data Space. The contents of
BA are stored in the effective memory location. BA is deleted.

LADR (-7----). Load G-Relative Address of Variable into A. The
G-relative address of the variable is pushed onto the stack.

ADM (-74---). Add A to Variable in Data Space. The A Register is
added in integer form to the contents of the effective memory location
and the Condition Code is set on the sum. Overflow is set if the
result is greater than 32767 or less than -32768. Carry can also be
set. A is then deleted from the stack.

NOTE

For binary coding details of the following six instructions
(PUSH through SBXX) , refer to Table A-5 in Appendix A.

PUSH (024nrc). Push Registers to Data Space. This instruction
transfers the contents of a specified number of elements in the
Register Stack to the top of the data stack in memory. The "n" field
of the instruction is the value to which RP will be set following the
instruction: the "r" field specifies the last register stack element
to be pushed: the "c" field is the number of registers minus one that
will be pushed to memory. Following the PUSH instruction, the S
Register points to the last element pushed onto the memory stack. If
the resultant value of S is greater than %77777, a stack overflow trap
occurs. Figure 3-10 illustrates the bit fields and the action of the
PUSH instruction.

POP (124nrc). Pop Data Space to Registers. This instruction loads
the Register Stack with the top elements of the data stack (as
indicated by the current S Register setting). The "n" field of the
instruction indicates the value RP will have following the
instruction: the "r" field specifies the last Register Stack element
to be loaded from memory: the "c" field specifies the number of
registers minus one that will be loaded. If the resultant value of S
is greater than %77777, a stack overflow trap occurs. Figure 3-10
illustrates the bit fields and the action of the POP instruction.

3-32

Memory to/from Register Stack

DIRECT, NO INDEXING

~w 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 1 I 1

~T' REG
(NONE)

G-RELATIVE
ADDRESSING

MODE

INDIRECT, INDEXED

I
DISPLACEMENT

/

ITI3SI 0 I 1 I 1 I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 1 I

G-RELATIVE DISPLACEMENT
ADDRESSING

ER
K ~

y'\ I /

MODE REGIST
STAC

INDEX
REG

I

247
2*17 = 34 I ________ ~ I 17 t------.. +

........ ----..... 281

7

'- -

9
~ 247

u

Figure 3-9. Doubleword Addressing

G[O]

G[7]

G[O]

G[9]

G[281]

3-33

Memory to/from Register Stack

PUSH

R[O]

R[7]

POP

R[OJ

R[7]

3-34

REGISTER
STACK

2
3
4

S
6

n c

/ V V "

@%Oa:H~O*l%O%p] 1 11 11 11 10 11 1 1 1 011 1

" A A / I I I
NEW RP LAST REG COUNT-1

R[7J R[S] (6 REGS)

/' ~ -~ ~ f B~!SI~R-=-~ J •
/ BEFORE PUSH

I
I
\

DATA

SEGMENT

r------ -

1
2
3
4
S \

"-
'--____ --I~ RP AFTER PUSH 1 S REGISTER

-[
~ 6

REGISTER
STACK

1
2
3
4

S
6

AFTER PUSH

L-"'

n c

/ 'V V "
~~~J~~)%@1~Q%9}J1 LO,~L1J_~JO 11 J,~ lolD 

]- RP AFTER POP 

" A A / I I I 

I 
\ 

/ 

I 

\ , 

NEW RP LAST REG COUNT-1 DATA 
R[S] R[S] (6 REGS) SEGMENT 

~ 

.. 
/ 1 

/ ~ .... I _S_RE_G_IS_T_E_R---, 

AFTER POP 
2 
3 

4 
S 

~, 6 ' .... _rS-REGISTER-' L _______ .J 

BEFORE POP 

-

-

Figure 3-10. PUSH and POP Instructions 

J 



Memory to/from Register Stack 

LWXX (0254--, 0264--). Load Word Extended, Indexed. The word 
contained in a computed extended memory location is loaded onto the 
stack, replacing the prior contents of A. The extended memory address 
is obtained as follows. The displacement value (0 through 63) in bits 
10 through 15 of the instruction word is added to a base value which 
is either the current L Register value (coded 0254--) or G[O] (coded 
0264--); the data word so indicated is assumed to be the first word of 
a two-word extended memory pointer. The index value in A is shifted 
left one bit position (multiplication by 2, since this instruction 
requires word addressing rather than byte addressing) and is then 
added to the extended memory pointer to address the word that is to be 
loaded. Condition Code is set. 

SWXX (0255--, 0265--). Store Word Extended, Indexed. The word 
contained in B is stored into a computed extended memory location. 
The extended memory address is obtained as follows. The displacement 
value (0 through 63) in bits 10 through 15 of the instruction word is 
added to a base-value which is either the current L Register value 
(coded 0255--) or G[O] (coded 0265--); the data word so indicated is 
assumed to be the first word of a two-word extended memory pointer. 
The index value in A is shifted left one bit position (multiplication 
by 2, since this instruction requires word addressing rather than byte 
addressing) and is then added to the extended memory pointer to 
address the location that is to receive the word being stored. 

LBXX (0256--, 0266--). Load Byte Extended, Indexed. The byte 
contained in a computed extended memory location is loaded onto the 
stack, replacing the prior contents of A. The extended memory address 
is obtained as follows. The displacement value (0 through 63) in bits 
10 through 15 of the instruction word is added to a base value which 
is either the current L Register value (coded 0256--) or G [0] (coded 
0266--); the data word so indicated is assumed to be the first word of 
a two-word extended memory pointer. The index value in A is then 
added to the extended memory pointer to address the byte that is to be 
loaded. The Condition Code is set on the value of the loaded byte in 
bits 8:15 of A; CCL indicates ASCII numeric, CCE indicates ASCII 
alphabetic, and CCL indicates special ASCII character. 

SBXX (0257--, 0267--). Store Byte Extended, Indexed. The byte 
contained B.<8:15> is stored into a computed extended memory location. 
The extended memory address is obtained as follows. The displacement 
value (0 through 63) in bits 10 through 15 of the instruction word is 
added to a base value which is either the current L Register value 
(coded 0257--) or G[O] (coded 0267--); the data word so indicated is 
assumed to be the first word of a two-word extended memory pointer. 
The index value in A is then added to the extended memory pointer to 
address the location that is to receive the byte being stored. 

3-35 



Load and Store via Address on Register Stack 

LOAD AND STORE VIA ADDRESS ON REGISTER STACK 

ANS (000034). AND to SG Memory. The word in B is logically ANDed to 
a word in the System Data segment that is specified by a l6-bit 
address in A. The result remains in the System Data location, and 
A and B are deleted from the stack. If privileged mode is in effect 
when this instruction is executed, A refers to an address in the 
System Data segment. Otherwise data segment selection (system or 
user) is determined by the DS bit (bit 6) of the ENV Register. 
Condition Code is set. 

ORS (000035). OR to SG Memory. The word in B is logically ORed to a 
word in the System Data segment that is specified by a l6-bit address 
in A. The result remains in the System Data location, and A and Bare 
deleted from the stack. If privileged mode is in effect when this 
instruction is executed, A refers to an address in the System Data 
segment. Otherwise data segment selection (system or user) is 
determined by the DS bit (bit 6) of the ENV Register. Condition Code 
is set. 

ANG (000044). AND to Memory. The word in B is logically ANDed to a 
word in the current data segment that is specified by a l6-bit address 
in A. The result remains in the data segment location, and A and B 
are deleted from the stack. Condition Code is set. 

ORG (000045). OR to Memory. The word in B is logically ORed to a 
word in the current data segment that is specified by a l6-bit address 
in A. The result remains in the data segment location, and A and B 
are deleted from the stack. Condition Code is set. 

ANX (000046). AND to Extended Memory. The word in C is logically 
ANDed to a word in extended memory that is specified by a 32-bit 
address in BA. The result remains in the memory location, and A, B, 
and C are deleted from the stack. Condition Code is set. 

ORX (000047). OR to Extended Memory. The word in C is logically ORed 
to a word in extended memory that is specified by a 32-bit address in 
BA. The result remains in the memory location, and A, B, and Care 
deleted from the stack. Condition Code is set. 

3-36 



Load and Store via Address on Register Stack 

LWUC (000342). Load Word from User Code Space. A word in the user 
code segment, specified by a 16-bit address in A, is loaded onto the 
stack, replacing the prior contents of A. Condition Code is set. 

LWAS (000350). Load Word via A from System. The word contained in 
the effective memory location pointed to by the address in A is loaded 
onto the stack, replacing the prior contents of A. If privileged mode 
is in effect when this instruction is executed, A refers to an address 
in the System Data segment. Otherwise data segment selection (system 
or user) is determined by the DS bit (bit 6) of the ENV Register. 
Condition Code is set. 

LWA (000360). Load Word via A. The word contained in the effective 
memory location pointed to by the address in A is loaded onto the 
stack, replacing the prior contents of A. LWA accesses the current 
data segment only. Condition Code is set. 

SWAS (00035l). Store Word via A into System. The word contained in B 
is stored into the effective memory location pointed to by the address 
in A. Both words are then deleted from the stack. If privileged mode 
is in effect when this instruction is executed, A refers to an address 
in the System Data segment. Otherwise data segment selection (user or 
system) is determined by the OS bit (bit 6) of the ENV Register. 

SWA (000361). Store Word via A. The word contained in B is stored 
into the effective memory location pointed to by the address in A. 
Both words are then deleted from the stack. SWA accesses the current 
data segment only. 

LDAS (000352). Load Double via A from System. The doubleword 
contained in the effective memory locations starting at the location 
pointed to by the address in A is loaded into BA (after the address in 
A is deleted). I£.pr.ivilegedmode- is---in-effect--when -th-is---insu-uction 
is executed, A refers to an address in the System Data segment. 
Otherwise data segment selection (user or system) is determined by the 
OS bit (bit 6) of the ENV Register. Condition Code is set. 

LOA (000362). Load Double via A. The doubleword contained in the 
effective memory locations starting at the location pointed to by the 
address in A is loaded into BA (after the address in A is deleted). 
LOA accesses the current data segment only. Condition Code is set. 

3-37 



Load and Store via Address on Register Stack 

SDAS (000353). Store Double via A into System. The doubleword in CB 
is stored into the effective memory locations starting at the location 
pointed to by the address in A. CBA is then deleted. If privileged 
mode is in effect when this instruction is executed, A refers to an 
address in the System Data segment. Otherwise data segment selection 
(user or system) is determined by the DS bit (bit 6) of the ENV 
Register. 

SDA (000363). Store Double via A. The doubleword in CB is stored 
into the effective memory locations starting at the location pointed 
to by the address in A. CBA is then deleted. SDA accesses the 
current data segment only. 

LBAS (000354). Load Byte via A from System. The byte contained in 
the effective memory location pointed to by the byte address in A is 
loaded onto the stack, replacing the prior contents of A. If 
privileged mode is in effect when this instruction is executed, A 
refers to an address in the System Data segment. Otherwise data 
segment selection (user or system) is determined by the DS bit (bit 6) 
of the ENV Register. The Condition Code is set on the value of the 
loaded byte in bits 8:15 of Ai CCL indicates ASCII numeric, CCE 
indicates ASCII alphabetic, and CCL indicates special ASCII character. 

LBA (000364). Load Byte via A. The byte contained in the effective 
memory location pOinted to by the byte address in A is loaded onto the 
stack, replacing the prior contents of A. LBA accesses the current 
data segment only. The Condition Code is set on the value of the 
loaded byte in bits 8:15 of Ai CCL indicates ASCII numeric, CCE 
indicates ASCII alphabetic, and CCL indicates special ASCII character. 

SBAS (000355). Store Byte via A into System. The byte in B is stored 
into the effective memory location pointed to by the byte address in 
A. Both B and A are then deleted. If privileged mode is in effect 
when this instruction is executed, A refers to an address in the 
System Data segment. Otherwise data segment selection (user or 
system) is determined by the DS bit (bit 6) of the ENV Register. 

3-38 



Load and Store via Address on Register Stack 

SBA (000365). Store Byte via A. The byte in B is stored into the 
effective memory location pointed to by the byte address in A. Both B 
and A are then deleted. SBA accesses the current data segment only. 

DFS (000357). Deposit Field into System Data. Using the mask bits 
in register B, this instruction deposits the bits in register C into 
the location specified by the 16-bit address in A. A, B, and Care 
then deleted. (See Figure 3-4 and DPF description under "Bit Deposit 
and Shift" for further details on this operation.) If privileged mode 
is in effect, the destination is in the System Data segment; 
otherwise, the destination is in the current data segment. A, B, and 
C are then deleted. Condition Code is set. 

DFG (000367). Deposit Field in Memory. Using the mask bits in 
register B, this instruction deposits the bits in register C into the 
location specified by the 16-bit address in A. A, B, and C are then 
deleted. (See Fi~ure 3-4 and DPF description under "Bit Deposit and 
Shift" for further details on this operation.) DFG accesses the 
current data segment. Condition Code is set. 

LBX (000406). Load Byte Extended. The byte in the extended memory 
location specified by the 32-bit address in registers B and A is 
loaded onto the Register Stack (bits 8 through 15 of A), after the 
address in BA is deleted. The left byte is zero. The Condition Code 
is set on the value of the loaded byte in bits 8:15 of A; CCL 
indicates ASCII numeric, CCE indicates ASCII alphabetic, and CCL 
indicates special ASCII character. 

SBX (000407). Store Byte Extended. The byte in bits 8 through 15 of 
C is stored into the extended memory location specified by the 32-bit 
address in registers Band A. C, B, and A are then deleted. 

LWXn_LOOQ_4_1Ql_. ___ Load __ Word Exi:ended. The word.in--t.he extended--memoL¥----
location specified by the 32-bit address in registers B and A is 
loaded into register A (after the address in BA is deleted). 
Condition Code is set. 

SWX (000411). Store Word Extended. The word in register C is stored 
into the extended memory location specified by the 32-bit address in 
registers Band A. C, B, and A are then deleted. 

3-39 



Load and Store via Address on Register Stack 

LDDX (000412). Load Doubleword Extended. The doubleword starting at 
the extended memory location specified by the 32-bit address in 
registers B and A is loaded onto the register stack, replacing the 
prior contents of Band A. Condition Code is set. 

SDDX (000413). Store Doubleword Extended. The doubleword in 
registers D and C is stored into extended memory starting at the 
location specified by the 32-bit address in registers Band A. All 
four words are then deleted from the Register Stack. 

LQX (000414). Load Quadrupleword Extended. The quadrupleword 
starting at the extended memory location specified by the 32-bit 
address in registers B and A is loaded into registers DCBA of the 
Register Stack (after the address in BA is deleted). Condition Code 
is set. 

SQX (000415). Store Quadrupleword Extended. The quadrupleword in 
registers FE DC is stored into extended memory (8 bytes) starting at 
the location specified by the 32-bit address in registers Band A. 
All six words are then deleted from the Register Stack. 

DFX (000416). Deposit Field Extended. using the mask bits in 
register C, this instruction deposits the bits in register D into the 
extended memory location specified by the 32-bit address in registers 
Band A. All four words are then deleted from the Register Stack. 
(See Figure 3-4 and DPF description under "Bit Deposit and Shift" for 
further details on this operation.) Condition Code is set. 

scs (000444). Set Code Segment. Registers B and A are assumed to 
contain a 17-bit byte address. This instruction sets a logical 
segment number into the segment number field (bits 0 through 14 of B) 
to formulate a complete 32-bit address. Only two values may be set 
for this field: 3 (indicating current code segment) if either the CS 
or LS bit of the Environment Register contains a one; 2 (indicating 
User Code segment) if both of these bits are zero. 

LQAS (000445). Load Quadrupleword via A from SG. The quadrupleword 
contained in the four memory locations starting at the location 
pointed to by the address in A is loaded into DCBA (after the address 
in A is deleted). The address in A refers to an address in the System 
Data segment. Condition Code is set. This is a privileged 
instruction. 

3-40 



Load and Store via Address on Register Stack 

SQAS (000446). Store Quadrupleword via A to SG. The quadrupleword in 
registers EDCB is stored into the four memory locations starting at 
the location pointed to by the address in A. The address in A refers 
to an address in the System Data segment. All five words are then 
deleted from the Register Stack. This is a privileged instruction. 

BRANCHING 

NOTE 

For binary coding details of the following branch instructions, 
refer to Table A-6 in Appendix A. 

BIC (-100--). Branch if CARRY. If the carry bit (K) in the 
Environment Register is set (K = 1), then a direct or indirect branch 
is taken (depending on the "i" field of the instruction). If the 
condition is not met, then the next instruction is executed. Figure 
3-11 compares direct and indirect branching. 

BUN (-104--). Branch Unconditionally. A direct or indirect 
unconditional branch is taken (depending on the "i" field of the 
instruction) • 

BOX (-1-4--). Branch on X Less Than A and Increment X. If the index 
register as specified by the "x" field of the instruction is less than 
A, that index register is incremented and a direct or indirect branch 
is taken (depending on the "i" field of the instruction). If X is 
greater than or equal to A, then A is deleted from the stack and the 
next instruction is executed. 

BGTR (-11---). Branch if CC is Greater. If the Condition Code in the 
ENV Register is CCG (N = 0, Z = 0) then a direct or indirect branch is 
taken (depending on the "i" field of the instruction). If the 
condition is not met, then the next instruction is executed. 

3-41 



Branching 

01 RECT 

~~ 0101010 111110 11 I=======-=--=-~-_-_-~-=--=--_--=-_ 
" / P REGISTER /'~ 

~ __ 1_06 __ ...J1/' /," DISPLACEMENT 

I + 13 t 
L----_~.+ 

1 
119 

P REGISTER 

CODE 
SEGMENT 

BRANCH + 13 C [105] 

C [119] 

CODE 
SEGMENT 

I' N D~ ~b-.C,.,.,T777T7r7T7"77(7;'77T_'----"'---'----'_'-"-11_1--'1 _____ -_-_- _- ___ - ___ -_-_-_-_______ ~, 1 C [320 ] 1 :;~010IoI0111111.. ~ 
,'------r-------"/ P REGISTER ~~ ____ ~ I ____ 

DISPLACEMENT 321 I 
II: +15 ~ 

.. + 

~ 
r - - - 3-3~ - - - 1 L _______ ~ 

C[336] 
1------"""" 

336 ~ 207 
+ ___ ---J 

P REGISTER 

Figure 3-11. Direct VS. Indirect Branching 

3-42 



Branching 

BEQL (-12---). Branch if CC is Equal. If the Condition Code in the 
ENV Register is CCE (N = 0, Z = 1), then a direct or indirect branch 
is taken (depending on the Hi" field of the instruction). If the 
condition is not met, then the next instruction is executed. 

BGEQ (-13---). Branch if CC is Greater or Equal. If the Condition 
Code in the ENV Register is CCG or CCE (N = 0) then a direct or 
indirect branch is taken (depending on the Hi" field of the 
instruction). If the condition is not met, then the next instruction 
is executed. 

BLSS (-14---). Branch if CC is Less. If the Condition Code in the 
ENV Register is CCL (N = 1) then a direct or indirect branch is taken 
(depending on the Hi" field of the instruction). If the condition is 
not met, then the next instruction is executed. 

BAZ (-144--). Branch on A Zero. If the A Register equals zero then a 
direct or indirect branch is taken (depending on the Hi" field of the 
instruction). If the A Register does not equal zero, then the next 
instruction is executed. In either case, A is deleted from the stack. 

BNEQ (-15---). Branch if CC is not equal. If the Condition Code in 
the ENV Register is not CCE (Z = 0) then a direct or indirect branch 
is taken (depending on the Hi" field of the instruction). If the 
condition is not met, then the next instruction is executed. 

BANZ (-154--). Branch on A Not Zero. If the A Register is non-zero 
then a direct or indirect branch is taken (depending on the Hi" field 
of the instruction). If the A Register equals zero, then the next 
instruction is executed. In either case, A is deleted from the stack. 

BLEQ (-16---). Branch if CC is Less or Equal. If the Condition Code 
in the ENV Register is CCL or CCE (N = 1 or Z = 1) then a direct or 
indirect branch is taken (depending on the Hi" field of the 
instruction). If the condition is not met, then the next instruction 
is executed. 

3-43 



Branching 

BNOV (-164--). Branch if no OVERFLOW. If the overflow bit (V) in the 
ENV Register is not set (V = 0), then a direct or indirect branch is 
taken (depending on the Hi" field of the instruction). If the 
condition is not met, then the next instruction is executed. 

BNOC (-17---). Branch if no CARRY. If the carry bit (K) in the ENV 
Register is not set (K = 0), then a direct or indirect branch is taken 
(depending on the Hi" field of the instruction). If the condition is 
not met, then the next instruction is executed. 

BFI (000030). Branch Forward Indirect. The instruction expects an 
offset from the current P register setting to be contained in A. An 
indirect branch is then made through the location specified by P + A. 
Figure 3-12 illustrates the action of the BFI instruction. 

MOVES, COMPARES, SCANS, AND CHECKSUM COMPUTATIONS 

Figure 3-13 provides a comparison of ascending and descending moves, 
compares, and scans, as described in the following paragraphs. Bit 9 
of the instruction word specifies ascending (0) or descending (1). 
Interrupts can occur between words (or bytes) moved or compared on 
each of these instructions. 

MNGG (000226). Move Words While Not Duplicate. Register D is assumed 
to contain a destination address in the current data segment, and 
register C is assumed to contain a source address in the current data 
segment. The MNGG instruction moves words from the source to the 
destination while the count value in register B is not zero and the 
source word is not equal to the word in A. The word in A is always 
the previous word moved. The instruction stops on the first duplicate 
word or on zero count. After execution, the word in A is deleted, so 
that A then contains the count, B contains the source address, and C 
contains the destination address. 

CDG (000366). Count Duplicate Words. Beginning at the address (in 
the current data segment) specified in register C, and for a maximum 
count of words specified in register B, this instruction counts the 
number of duplicate words in the buffer. Register A is incremented on 
each duplicate found, and may contain an initial value. After execu
tion, A contains the original A value plus the number of duplicate 
words, B contains a count of the words left in the buffer (zero if 
empty), and C contains the address of the first word that did not 
match its predecessor (or the word after the last word in the buffer). 
The comparison actually starts with the words specified by C and C-I. 
This instruction is intended to be used in conjunction with MNGG. 

3-44 



Moves, Compares, Scans, and Checksum Computations 

P REGISTER BFI C[161) 

------~r-~==~~2~09~--~} gREGISTER 162 

STACK I 

A 0 _____________ O~.~ + 

~ r-- 162-- -, 
L ______ ...J 

209 
+ .... -----' 

371 

P REGISTER 

P REGISTER 

162 

3 W
EGISTER 
STACK 

A 3 --------------~.~+ 

r --t--l L __ 2.6~ __ J 

+ ..... ___ --1 

P REGISTER 

310 

1134 

Figure 3-12. Branch Forward Indirect 

BRANCH 
LIST 

3-45 



Moves, Compares, Scans, and Checksum Computations 

9 

MOVESTEP: 
0= LEFT-TO-RIGHT (ASCENDING ADDRESSES) 

1 = RIGHT-TO-LEFT (DESCENDING ADDRESSES) 

MOVESTEP = 0 (ASCENDING) 

REGISTER 
STACK 

C DESTINATION 
B SOURCE 
A COUNT 

MOVESTEP == 1 (DESCE 

C 
B 
A 

NDING) 

REGISTER 
STACK 

DESTINATION 
SOURCE 
COUNT 

1 
DEST 

i----------I/ 

r DEST J-.. 

V -
-..-

1 
SOURCE f-----

/ 

- -v 

COUNT 
ELEMENTS 

COUNT 
ELEMENTS 

Figure 3-13. Directions for Moves, Compares, and Scans 

3-46 



Moves, Compares, Scans, and Checksum Computations 

NOTE 

For binary coding details of the following six move 
instructions (MOVW, MOVB, COMW, COMB, SBW, SBU), refer 
to Table A-5 in Appendix A. 

MOVW (026---). Move Words. This instruction transfers a specified 
number of words from one area of memory to another. The instruction 
expects A to contain a word count, B to contain the source word 
address, and C to contain the destination word address. The source 
and destination maps to be used are specified by the Us" and "d" 
fields of the instruction and by the DS, CS, LS, and Privileged Bits 
of the ENV Register. The "m" field of the instruction (see format 
diagram at the top of Figure 3-13) determines whether the source and 
destination addresses will be incremented ("m" = 0) or decremented 
("m" = 1) after each move. The Un" field of the instruction is the 
value to which RP is set upon instruction end. The move is made one 
word at a time from the source to the destination. After each word 
transfer the addresses are decremented or incremented and A is 
decremented. If A is equal to zero the instruction ends; otherwise 
the next word is moved. Interrupts can occur after each compare. 

MOVB (126---). Move Bytes. This instruction transfers a specified 
number of bytes from one area of memory to another. The instruction 
expects A to contain a byte count, B to contain the source byte 
address, and C to contain the destination byte address. The source 
and destination maps to be used are specified by the Us" and "d" 
fields of the instruction and by the DS, CS, LS, and Privileged Bits 
of the ENV Register. The "m" field of the instruction determines 
whether the source and destination addresses will be incremented ("m" 
= 0) or decremented ("m" = 1) after each move. The Un" field of the 
instruction is the value to which RP is set upon instruction end. The 
move is made one byte at a time from the source to the destination. 
After each byte transfer the addresses are decremented or incremented 
and A is decremented. If A is equal to zero, the instruction ends; 
otherwise the next byte is moved. If the source is a code segment and 
the P Register currently indicates an address in the upper half of the 
code segment (bit 0 of P = 1), %100000 is added to the computed 
address, so that the source and destination addresses will always be 

--r: e 1 at i ve------to. wh i ch e1.l--e--r----ha-l-f----O-f---t-h-e---S-e-9me n t -----P cur r en t l-¥-- -i nd i cat e s • 
Interrupts can occur after each compare. 

COMW (0262--). Compare Words. This instruction compares one area of 
memory with another, a word at a time, until a miscompare occurs or 
until a specified number of comparisons have been made. The words 
being compared are treated as unsigned quantities. COMW expects A to 
contain a word count, B to contain a source word address and C to 
contain a destination word address. The source and destination maps to 
be used are specified by the Us" and "d" fields of the instruction and 

3-47 



Moves, Compares, Scans, and Checksum Computations 

by the DS, CS, LS, and Privileged bits of the ENV Register. The "m" 
field determines whether the source and destination addresses will be 
incremented ("m" = 0) or decremented ("m" = 1) after each comparison. 
The Un" field is the value to which RP will be set upon instruction 
termination. The instruction fetches the contents of source and 
destination addresses, compares them, increments or decrements the 
address by one according to the "m" field, and decrements the word 
count in A until either A = 0 or a noncomparison is reached. If 
termination is due to a noncomparison, CC indicates the results of the 
compare or CCE due to A going to zero. Interrupts can occur after 
each compare. 

COMB (1262--). Compare Bytes. This instruction compares one area of 
memory with another, a byte at a time, until the bytes are not equal 
or until a specified number of comparisons have been made. It expects 
A to contain a byte count, B to contain a source byte address and C to 
contain a destination byte address. The source and destination maps to 
be used are specified by the Us" and "d" fields of the instruction and 
by the DS, CS, LS, and Privileged bits of the ENV Register. If the 
source address is in a code segment, the byte address is taken to be 
in the same 64K half of the code space as the current P Register 
value. The "m" field determines whether the source and destination 
addresses will be incremented ("m" = 0) or decremented ("m" = 1) after 
each comparison. The Un" field is the value to which RP will be set 
upon instruction termination. The instruction fetches the contents of 
source and destination addresses, compares them, increments or 
decrements the address by one according to the "m" field, and 
decrements the byte count in A until either A = 0 or a noncomparison 
is reached. If termination is due to a noncomparison, CCG indicates 
that the byte at C is greater than the byte at B, or CCL indicates 
that the byte at C is less than the byte at B; A indicates the number 
of bytes left to compare. If termination is due to the count running 
out, CCE indicates that all bytes compared exactly, and C and B will 
point to the next locations not compared. Interrupts can occur after 
each compare. 

SBW (1264--). Scan Bytes While. The SBW instruction expects A to 
contain a comparison byte in bits 8:15 and B to contain the byte 
address of the string to be scanned. The map to be used is determined 
by the Us" field of the instruction and by the DS, CS, LS, and 
Privileged bits of the ENV Register. The "m" field of the instruction 
determines if the source address will be incremented ("m" = 0) or 
decremented «m> = 1) after each comparison. The scan is terminated 
when either a null byte is found in the string or a byte in the string 
does not match the test byte in A. When null byte termination occurs, 
the Carry (K) bit in the ENV Register is set. In either termination 
case, B points to the byte address that caused termination. RP is set 
to the "n" field of the instruction at instruction termination. 
Interrupts can occur after each compare. 

3-48 



Moves, Compares, Scans, and Checksum Computations 

SBU (1266--). Scan Bytes until. The SBU instruction expects A.<8:l5> 
to contain a test byte and B to contain the byte address of the string 
to be scanned. The map to be used is determined by the "s" field of 
the instruction and by the DS, CS, LS, and Privileged Bits of the ENV 
Register. The "m" field of the instruction determines if the scan 
address will be incremented ("m" = 0) or decremented «m> = 1) after 
each comparison. The scan is terminated when either a null byte is 
found in the string or the test byte matches a byte in the string. 
The Carry (K) bit is set in the ENV Register when null byte 
termination occurs. In either case, B points to the byte address that 
caused the scan to cease. RP is set to the "n" field of the 
instruction at termination. Interrupts can occur after each compare. 

MNDX (000227). Move Words While Not Duplicate, Extended. FE is 
assumed to contain a 32-bit destination address in extended memory, 
and DC is assumed to contain a 32-bit source address. The MNDX 
instruction moves words from the source to the destination while the 
count value in register B is not zero and the source word is not equal 
to the word in A. The word in A is always the previous word moved. 
The instruction stops on the first duplicate word or on zero count. 
After execution, the word in A is deleted, so that A then contains the 
count, CB contains the source address, and ED contains the destination 
address. Interrupts can occur after each compare. 

CDX (000356). Count Duplicate Words, Extended. Beginning at the 
32-bit address (in extended memory) specified in DC, and for a maximum 
count of words specified in B, this instruction counts the number of 
duplicate words in the buffer. A is incremented on each duplicate 
found, and may contain an initial value. After execution, A contains 
the original A value plus the number of duplicate words, B contains a 
count of the words left in the buffer (zero if empty), and DC contains 
the extended address of the first word that did not match its 
predecessor (or the word after the last word in the buffer). The 
comparison actually starts with the words specified by DC and DC-2. 
Interrupts can occur after each compare. This instruction is intended 
to be used in conjunction with MNDX. 

MVBX (000417). Move Bytes Extended. This instruction transfers a 
specified number of bytes from one area of extended memory to another. 
The instruction expects A to contain a byte count, CB to contain a 
32-bit source byte address, and ED to contain a 32-bit destination 
byte address. The move is made one byte at a time from the source to 
the destination. After each byte transfer the addresses are 
incremented and A is decremented. If A is equal to zero the 
instruction ends; otherwise the next byte is moved. All five words 
are deleted from the stack when the instruction ends. Interrupts can 
occur after each compare. 

3-49 



Moves, Compares, Scans, and Checksum Computations 

MBXR (000420). Move Bytes Extended, Reverse. This instruction 
transfers a specified number of bytes from one area of extended memory 
to another, using reverse (decrementing) addresses. The instruction 
expects A to contain a byte count, CB to contain a 32-bit source byte 
address, and ED to contain a 32-bit destination byte address. The 
move is made one byte at a time from the source to the destination. 
After each byte transfer the addresses are decremented and A is 
decremented. If A is equal to zero the instruction ends; otherwise 
the next byte is moved. All five words are deleted from the stack 
when the instruction ends. Interrupts can occur after each compare. 

MBXX (000421). Move Bytes Extended, and Checksum. This instruction 
transfers a specified number of bytes from one area of extended memory 
to another, and computes a checksum value after each byte is moved. 
The instruction expects A to contain a byte count, CB to contain a 
32-bit source byte address, ED to contain a 32-bit destination byte 
address, and F to contain the initial checksum value. The move is 
made one byte at a time from the source to the destination. After 
each byte transfer the addresses are incremented, A is decremented, 
and new checksum is entered in F. If A is equal to zero, the 
instruction ends; otherwise the next byte is moved. Five words are 
deleted from the Register Stack when the instruction ends, leaving the 
final checksum value in A. Interrupts can occur after each compare. 

CMBX (000422). Compare Bytes Extended. This instruction compares one 
area of extended memory with another, a byte at a time, until the 
bytes are not equal or until a specified number of comparisons have 
been made. It expects A to contain a byte count, CB to contain a 
32-bit source byte address and ED to contain a 32-bit destination byte 
address. The instruction fetches the contents of the source and 
destination addresses, compares them, increments the addresses by one, 
and decrements the byte count in A until either A = 0 or a 
noncomparison is reached. If termination is due to a noncomparison, 
CCG indicates that the byte at ED is greater than the byte at CB, or 
CCL indicates that the byte at ED is less than the byte at CB; A 
indicates the count of bytes left to compare. If termination is due 
to the count running out, CCE indicates that all bytes compared 
exactly; ED and CB point to the bytes after the last ones compared, 
and A is O. Interrupts can occur after each compare. 

XSMG (000343). Compute Checksum in Current Data. Starting at the 
address defined in register B, for a count of words defined in 
register A, the XSMG instruction exclusive-ORs each word into register 
C. When the count goes to zero, the two top words on the stack are 
deleted, leaving the final checksum in register A. The address in B 
refers to the current data segment only. 

3-50 



Moves, Compares, Scans, and Checksum Computations 

XSMX (000333). Compute Checksum Extended. Starting at the extended 
memory location defined by the 32-bit address in CB, for a count of 
words defined in register A, the XSMX instruction exclusive-ORs each 
word into register D. When the count goes to zero, the three 
top words on the stack are deleted, leaving the final checksum in 
register A. 

PROGRAM REGISTER CONTROL 

SETL (000020). Set L with A. The contents of the L Register, which 
points to the current stack marker, are replaced with the contents of 
register A. A is then deleted from the Register Stack. 

SETS (000021). Set S with A. The contents of the S Register, which 
points to the top word of the stack in memory, are replaced with the 
contents of register A. A is then deleted from the stack. A Stack 
Overflow trap occurs if the result is greater than 32767. 

SETE (000022) 0 Set ENV with A~ The least significant eight bits of 
the Environment Register (ENV) are replaced with the lower eight bits 
of the A Register. The most significant eight bits of the Environment 
Register are logically ANDed with the upper eight bits of the A 
Register. Thus this instruction may only clear the PRIV, DS, CS, and 
LS bits of the Environment Register, and may not set them. The 
programmer shoUld take care with this instruction on NonStop II 
systems, since it is possible to inadvertently clear the Library Space 
(LS) bit, ENV.<4>. 

SETP (000023). Set P with A. The contents of the Program Counter (P) 
are replaced with the contents of the A Register. A is deleted from 
the stack, and control is transferred to the new location indicated 
by P. 

RDE (000024). Read ENV into A. The contents of the Environment 
Register (ENV) are pushed onto the Register Stack. 

RDP (000025). Read Pinto A. The contents of the Program Counter (P) 
are pushed onto the Register Stack. 

3-51 



Program Register Control 

STRP (00010-). Set RP. The register pointer is set to the value in 
the Register field of the instruction. For binary coding details, see 
Table A-7 in Appendix A. 

ADDS (002---}e Add Immediate Operand to S. The signed immediate 
operand is added to the S register in integer form. If the resultant 
S is greater than 32767, then a Stack Overflow trap occurs. 

CCL (000015). Set Condition Code to Less. A Condition Code of CCL 
(N = 1 and Z = 0) is set into the ENV Register. 

CCE (000016). Set Condition Code to Equal. A Condition Code of CCE 
(N = 0 and Z = 1) is set into the ENV Register. 

CCG (000017). Set Condition Code to Greater. A Condition Code of CCG 
(N = 0 and Z = 0) is set into the ENV Register. 

ROUTINE CALLS AND RETURNS 

PCAL (027---). Procedure Call. Control is transferred to an 
instruction specified by an entry in the Procedure Entry Point l~~~J 
Table; the specific PEP entry is indicated by the PEP Number field 
of the instruction. First, a three word stack marker, consisting of 
the current P, ENV, and L, is stored on the top of the current stack. 
If the caller is not privileged, the PEP Number is checked against 
PEP[O] and PEP [1] to see if the call is legal. If the call is not 
legal, an instruction failure trap occurs. (If the caller is 
privileged no checks are made.) Land S are set to S + 3 to point to 
the base of a new local data area. The final value of S is then 
checked for a value greater than 32767; if it is, a stack overflow 
trap occurs. Finally, P is set from the PEP entry and control is 
transferred to the procedure. 

XCAL (127---). External Procedure Call. The XCAL instruction is used 
to invoke procedures that are outside the current code segment. 
Control is transferred to an instruction in the external segment by a 
three-step sequence: 1) a number in the XEP field of the instruction 
refers to an entry in the XEP table of the current code segment; 2) 
the ~EP entry specifies a PEP entry in one of the other three code 
segments that are currently mapped; 3) the PEP entry of the other code 
segment specifies a procedure entry point within that segment. See 
detailed description in Section 2 under the heading, "Calling External 
Procedures". 

3-52 



Routine Calls and Returns 

SCMP (000454). Set Code Map. This instruction is used to establish a 
code map number in register A for use by the DPCL instruction (next 
described). The instruction determines which code map defines the 
currently executing code (by examining the CS and LS bits of ENV) and 
loads the code map number into A.<0:3>. The code map number is equal 
to (LS*2 + CS + 2). In typical usage, succeeding instructions would 
pass this value to a procedure which would then issue the DPCL 
instruction. 

DPCL (000032). Dynamic Procedure Call. Control is transferred to an 
instruction specified by an entry in the Procedure Entry Point (PEP) 
table: the specific PEP entry is indicated by bits 7:15 of A in the 
Register Stack. Bits 0:3 of register A specify the code map to use (2 
= User Code, 3 = System Code, 4 = User Library, 5 = System Code 
Extension: any other value defaults to 2). First, a three word stack 
marker, consisting of the current P, ENV, and L, is stored on the top 
of the current stack. If the caller is not privileged, the PEP Number 
is checked to see i~ the call is legal. If the call is not legal, an 
Instruction Failure trap occurs. If the caller is privileged, no 
checks are made. Land S are set to S + 3 to point to the base of a 
new local data area. The final value of S is then checked for a value 
greater than 32767: if it is, a stack overflow trap occurs. Next, if 
the call is to a callable system procedure, the PRIV bit in the ENV 
Register is set. CS is set to 1 if A.<O:3> is 3 or 5; otherwise it is 
set to O. LS is set to 1 if A.<0:3> is 4 or 5; otherwise it is set to 
O. Finally, P is set from the PEP entry, transferring control to the 
procedure. 

EXIT (125---). Exit from Procedure. This instruction is used to 
return from a procedure called by a PCAL, XCAL, or DPCL instruction. 
EXIT assumes L[-2] to L[O] to contain a standard three-word stack 
marker consisting of P, ENV, and L. S is moved below the current 
stack marker and any parameters by setting it with the "S decrement" 
value subtracted from the current L Register setting. P is set to the 
return P value contained in L[-2] of the current stack marker. The 
caller's ENV Register value is set as follows: the mode (privileged or 
nonprivileged) and data area are reinstated to the lesser of the 
caller's and the current settings (e.g., a privileged caller can be 
made nonprivileged on the return, but not vice versa); the caller's CS 
(code space), LS (library space), T (traps), V (overflow), and K 
(carry) are reinstated from L[-l]; Z and N (Condition Code) and RP are 
set to those of the current procedure. L is moved back to the 
preceding stack marker, thereby reinstating the preceding local data 
area, by setting L with the contents of the L[O] of the current stack 
marker. 

3-53 



Routine Calls and Returns 

DXIT (000072). DEBUG Exit. This instruction is used to reestablish 
the environment present at the time the DEBUG procedure was called. 
P, ENV, and L are restored from the stack marker generated by the 
DEBUG call, and S is reset to its value at the time of the call to 
DEBUG. This is a privileged instruction. 

BSUB (-174--). Branch to Subprocedure. S is incremented by one and 
the return address (P) is saved in that location. Then a direct or 
indirect unconditional branch is taken (depending on the Hi" field of 
the instruction). For binary coding details, see Table A-6 in 
Appendix A. 

RSUB (025---). Return from Subroutine. This instruction is used to 
return from a subroutine called by a BSUB instruction. The 
instruction assumes that the return address is on the top of the 
memory stack (indicated by S) and returns control to that address. 
S is set to S - "S decrement". "S decrement" may be any number from 
o to 255; however, in order to delete the return address from the 
stack, it must be at least 1. For binary coding details, see Table 
A-5 in Appendix A. 

INTERRUPT SYSTEM 

RIR (000063). Reset Interrupt Register. This instruction is used by 
the operating system interrupt handlers to reset the appropriate INTA 
Register bit after an interrupt has occurred. Some interrupt bits 
must be reset (along with the clearing of a MASK bit) in order to 
allow fUrther interrupts through that SIV ·(System Interrupt Vector 
Table) entry. The instruction expects A to contain the number of the 
bit in the INTA Register that is to be reset. This is a privileged 
instruction. 

XMSK (000064). Exchange MASK with A. The contents of the MASK 
Register are interchanged with the contents of the A Register. This 
is a privileged instruction. 

IXIT (000071). Interrupt Exit. This instruction is used by the 
operating system interrupt procedures to return control to the 
interrupted process. At the time the interrupt occurred, a stack 
marker was generated at the L pointed to by the System Interrupt 
Vector Table (SIV) for the specific interrupt. This was a special 
five-word marker (see Figure 2-59) that consisted of the MASK, S, P, 

3-54 



Interrupt System 

ENV, and L at the time of the interrupt. This instruction 
reestablishes this environment (by loading the five registers with the 
values in the stack marker, and loading the Register Stack with the 
values in L+l through L+8) and resumes execution of the interrupted 
process. At the time this instruction is executed, the needed values 
in L-4 through L+8 must be present and DS must be equal to one. 
This is a privileged instruction. 

DISP (000073). Dispatch. This instruction sets bit IS of INTA, and 
also sets Vi.<lS> in the System Interrupt Vector (SIV) table entry for 
the Dispatcher interrupt. If bit 15 of MASK is set, a Dispatcher 
interrupt occurs immediately following this instruction (provided 
there are no interrupts of higher priority pending). Control is then 
transferred to the operating system Dispatcher whose location is 
pointed to by the SIV table entry. This is a privileged instruction. 

BUS COMMUNICATION 

TOTQ (0000S6). Test Out Queues. This instruction sets CCE if neither 
of the two Out Queues is full, or CCG if at least one Out Queue is 
full. 

SEND (000065). Send Data over Interprocessor Bus. The SEND 
instruction expects register A to contain a byte count and registers 
CB to contain the absolute extended address of the source buffer. 
Register D is the OUTQ Full Timer; the timeout value is computed as: 
(32768 - <timeout» times 0.8 specifies the time in microseconds for 
the specified bus to become ready (e.g., <timeout> of 0 = 32768 * 0.8 
microseconds). Register E bits 0:7 specify the sender cpu and 8:1S 
specify the destination cpu. Register F specifies a sequence number, 
and register G bit 15 specifies which bus is to be used (0 = X, 
1 = y) • 

Data in the buffer is transmitted in 16-word packets consisting of 26 
data bytes (13 words) plus three words for sequence number, sender and 
receiver cpu numbers, and checksum. Packets are transmitted until the 
byte count is zero. If the byte count is not a multiple of 26, then 
the last packet is padded with zeros to round the number of data bytes 
up to 26. Condition Code CCE indicates successful completion, and the 
Register Stack is marked empty. 

If a timeout condition occurs, a Condition Code of CCL is returned, 
and the instruction terminates. The Out Queue is cleared. 

SEND is a privileged instruction. 

3-55 



Input/Output 

INPUT/OUTPUT 

RSW (000026). Read the Switch Register into A. The contents of the 
Switch Register are pushed onto the Register Stack. Condition Code is 
set. 

ssw (000027). Store A into Switch Register. The contents of the A 
Register are set in the Register Display and into sysstack[%122]. 
A is then deleted. 

EIO (000060). Execute Input/Output. The EIO instruction expects bits 
8:15 of A to contain the subchannel number, bits 0:7 of A to contain a 
command to its controller, and 0:15 of B to contain a parameter which 
is to be passed to that controller via the channel. The instruction 
first checks to see if tre channel is available. If not it loops, 
waiting for channel availability but testing for other interrupts. 
When the channel becomes available, the command and address are sent 
to the controller by the channel via the LAC (Load Address and 
Command) T-bus command and the parameter is sent to the controller 
which is now selected via the LPRM (Load Parameter) T-bus command. 
Device status is then read from the controller via the RDST (Read 
Device Status) T-bus command. RP is decremented by one, and if there 
were no channel errors, device status is placed in A, the controller 
is then deselected via the DSEL (Deselect) T-bus command, the 
Condition Code is set to CCE and the instruction terminates. If there 
was a channel error, the ABTI (Abort Instruction) T-bus command is 
issued to the controller, deselecting it and terminating its activity. 
The contents of IOD, although probably invalid due to the channel 
error, are placed in A for evaluation. The Condition Code is set to 
CCL and the instruction terminates. This is a privileged instruction. 

IIO (000061). Interrogate I/O. This instruction is used by the 
operating system interrupt handler to get the interrupt cause and 
interrupt status from a controller and to reset that interrupt. It 
first checks to see if the channel is available. If not it loops, 
waiting for channel availability but testing for other interrupts. 
When the channel is available, first rank 0 and then rank 1 of the i/o 
system are polled via the LPOL (Low Poll) T-bus command. The 
interrupting controller on the highest rank with the highest priority 
is then selected via the SEL (Select) T-bus command. The channel then 
loads the controller's interrupt cause into the C register, the 
interrupt status into the B register, and the channel status into the 
A register. Then the interrupt in the controller is cleared. If 
there were no channel errors indicated in A, and if interrupt status 
bits 0:3 are equal to zero, then CCE is set, and the instruction 
terminates. If there was a channel error then CCL is set, and the 
instruction terminates. CCG is set in the event of a device error or 
parity error. This is a privileged instruction. 

3-56 



Input/Output 

HIIO (000062). High-Priority Interrogate I/O. This instruction is 
used by the operating system's high-priority interrupt handler to get 
the interrupt cause and status from a high-priority controller and to 
reset the corresponding interrupt. Execution is identical to the IIO 
instruction, except that HPOL (high priority polls) TBUS commands are 
issued and only controllers with the high-priority interrupt jumper 
installed can respond.' This is a privileged instruction. 

RCHN (000447). Reset I/O Channel. This instruction is used by the 
operating system to control the i/o channel in the event of a 
catastrophic error. If register A contains a value greater than or 
equal to zero, RCHN resets the i/o channel; if A contains a 
negative value, RCHN performs a lockup on the channel. Condition 
Code CCE indicates that the reset or lockup was performed, or CCL 
indicates that the channel was not available. This is a privileged 
instruction. 

MISCELLANEOUS 

NOP (000000). No Operation. 

RCLK (000050). Read Clock. This instruction reads the quadrupleword 
microsecond counter (located in the System Data segment), adds the 
instantaneous value of the l4-bit hardware microsecond counter to it, 
and pushes the result onto the Register Stack. Note that since the 
software counter is updated only every 10 microseconds (each time the 
hardware counter rolls over), adding the hardware count to it provides 
an accurate clock indication at the instant that RCLK is executed. 

RCPU (000051). Read CPU Number. This instruction reads this 
processor's cpu number from bits 0:7 of INTB and pushes this value 
onto the register stack. 

BPT (000451). Instruction Breakpoint Trap. This instruction, 
although necessarily nonprivileged, can be used only by system 
software (DEBUG); proper operation requires access to the Environment 
Register, which requires privileged capability. The instruction 
assumes that DEBUG has inserted the BPT instruction at some user
specified point in the code, and has saved the instruction that 
formerly occupied that location in the Breakpoint Table in the System 
Data segment. When the code containing the BPT instruction is 
executed, BPT is normally executed twice--once when encountered 

3-57 



Miscellaneous 

following the preceding instruction, and once again to resume program 
execution at the following instruction. A bit (1) in the Environment 
Register is used as a flag to differentiate the two functions. 

When BPT is first executed, bit 1 of the Environment Register is zero, 
which causes an interrupt to be generated (through SIV 19) to DEBUG. 
DEBUG sets ENV bit 1 to one and, after user debugging has been 
completed, returns to the interrupted code at the BPT instruction. 
This time, BPT first sets ENV bit 1 back to zero, then searches the 
Breakpoint Table, locates the saved instruction, loads that 
instruction into the Instruction (I) Register, and sets the microcode 
entry point for that instruction into the ROMA Register. Thus the 
breakpointed instruction gets executed, and execution proceeds 
normally to the succeeding instruction. 

OPERATING SYSTEM FUNCTIONS 

The following groups of instructions, most of them privileged, are 
used solely to implement certain operating system and diagnostic 
functions in firmware. These instructions are not intended for use in 
any user applications, and are listed here only for completeness. 

Resource Management 

XADD 
MXON 
MXFF 
SNDQ 
SFRZ 
DOFS 
DLEN 
HALT 
PSEM 
VSEM 
RPV 
WWCS 
VWCS 
RWCS 
FRST 
RSMT 
WSMT 
RIBA 
XSTR 
XSTP 
BCLD 
TPEF 

3-58 

(000033) 
(000040) 
(000041) 
(000052) 
(000053) 
(000057) 
(000070) 
(000074) 
(000076) 
(000077) 
(000216) 
(000400) 
(000401) 
(000402) 
(000405) 
(000436) 
(000437) 
(000440) 
(000442) 
(000443) 
(000452) 
(000453) 

XRAY Add 
Mutual Exclusion On 
Mutual Exclusion Off 
Signal a Send Is Queued 
System Freeze 
Disc Record Offset 
Disc Record Length 
Processor Halt 
"P" a Semaphore 
"V" a Semaphore 
Read PROM Version Numbers 
Write LCS 
Verify LCS 
Read LCS 
Firmware Reset 
Read from Operations and Service Processor (OSP) 
Write to Operations and Service Processor (OSP) 
Read INTB and INTA Registers 
XRAY Start Timer 
XRAY Stop Timer 
Bus Cold Load 
Test Parity Error Freeze Circuits 



Operating System Functions 

Memory Management 

MAPS (000042) 
UMPS (000043) 
RMAP (000066) 
SMAP (000067) 
CRAX (000423) 
RSPT (000424) 
WSPT (000425) 
RXBL (000426) 
SXBL (000427) 
LCKX (000430) 
ULKX (000431) 
CMRW (000432) 
RMEM (000434) 
WMEM (000435) 
SVMP (000441) 
BNDW (000450) 

List Management 

DLTE 
INSR 
MRL 
FTL 
DTL 

(000054) 
(000055) 
(000075) 
(000206) 
(000207) 

Map in a Segment 
Unmap a Segment 
Read Map 
Set Map 
Convert Relative to Absolute Extended Address 
Read Segment Page Table Entry 
write Segment Page Table Entry 
Read Extended Base and Limit 
Set Extended Base and Limit 
Lock Down Extended Memory 
Unlock Extended Memory 
Correctable Memory Error Read/Write 
Read Memory 
Write Memory 
Save Map Entries 
Bounds Test Words 

Delete Element from List 
Insert Element into List 
Merge onto Ready List 
Find Position in Time List 
Determine Time Left for Element 

Trace and Memory Breakpoint 

TRCE (000217) 
5MBP (000404) 

Add Entry to Trace Table 
Set Memory Breakpoint 

3-59 





APPENDIX A 

HARDWARE INSTRUCTION LISTS 

This appendix provides a number of reference tables pertaining to the 
instruction set of the NonStop II system. 

The first two tables list all instructions in the instruction set with 
their mnemonics and opcodes, first in alphabetical order and then 
grouped by type of instruction. The remaining tables provide binary 
coding details for most of the instructions, grouped according to the 
coding patterns of the fields of the instruction words. (For example, 
all memory reference instructions are listed together.) These tables 
break down each instruction, bit by bit, into its component parts, 
indicate the operands, results, and ENV register bit settings, and 
show relationships between similar instructions~ 

The following tables are included in this appendix: 

A-I. 
A-2. 
A-3. 
A-4. 
A-S. 
A-6. 
A-7. 
A-8. 
A-9. 

Alphabetical List of Instructions 
Categorized List of Instructions 
Binary Coding, Memory Reference Instructions 
Binary Coding, Immediate Instructions 
Binary Coding, Move/Shift/Call/Extended Instructions 
Binary Coding, Branch Instructions 
Binary Coding, Stack Instructions 
Binary Coding, Decimal Arithmetic Instructions 
Binary Coding, Floating-Point Instructions 

A key at the end of each table explains the symbols used. 

NOTE 

For some instructions, the six-digit opcode notation 
used in Tables A-I and A-2 cannot give complete 
information about the opcode. For instance, the 
distinctions between QUP and QDWN, ORRI and ORLI, 
and LWP and LBP cannot be clearly shown. For complete 
information, refer to the entries for these instructions 
in Tables A-3 through A-9. 

A-I 



Appendix A: Hardware Instruction Lists 

Table A-I. Alphabetical List of Instructions 

Description I Mnemonic I 
ADAR Add A to Register ••.•••••••••••••••..•••••••••• 
ADDI Add Immediate ••••.•••••.••.•••.••••••.••••.•.•• 
ADDS Add to S ••••••••••••••••••••••••••••••••••••••• 
ADM Add to Memor y ••••••••••••....•.••.•.••••••••••. 
ADRA Add Register to A ...•.••••••••••••••••••••••••• 
ADXI Add to Index Immediate .••.••••••.•..•.•..•.•••• 

A-2 

ALS Arithmetic Left Shift •••••••••••••••••••••.•••• 
ANG AND to Memor y ••••••••.•••••.••••••••••••••.•••. 
ANLI AND Left Immediate ••••••••••••••••••••••••••••• 
ANRI AND Right Immediate •••••••••..••••••••••••.•••• 
ANS AND to SG Memory •.•.•.•.••••••••••••••••••••••• 
ANX AND to Extended Memory •••••.•••••••••••.••••••• 
ARS Arithmetic Right Shift •••••••.•.••••••••••••••• 
BANZ Br anch on A •••••••..•••.••••••••••••••••••••••• 
BAZ Branch on A Zero ••••••••••••••••••••••••••••••• 
BCLD Bus Cold Load •••••••••••••••••••••••••••••••••• 
BEQL Branch if Equal ••••••.••••••••••••••••••••••••• 
BFI Branch Forward Indirect ••••••••...•••••••••.••• 
BGEQ Branch if Greater or Equal ••••••••••••.•••••••• 
BGTR Branch if Greater •.••.•.•.•.••••••••••••••..••• 
BIC Branch if Carry •••••...••••••••••••.••••.•••••• 
BLEQ Branch if Less or Equal ••••••••.••••••..•.••••. 
BLSS Branch if Less ••••.••••.•••••••••••.••••••.•••• 
BNDW Bounds Test Words •.••.••••.••.••.•.•••••.•••••• 
BNEQ Branch if Not Equal ....•••••••••••••••••••.•••• 
BNOC 
BNOV 
BOX 
BPT 
BSUB 
BTST 
BUN 
CAQ 
CAQV 
CCE 
CCG 
CCL 
CDE 
CDF 
CDFR 
CDG 
CDI 
CDQ 
CDX 
CED 
CEDR 

Branch if No Carry .••••..••••....••.........••• 
Branch if No Overflow ••••••..••••••••••••.•••.• 
Branch on X •••••••••••••••••••••••••••••••••••• 
Instruction Breakpoint Trap •••••••••••••••••••• 
Branch to Subprocedure ••••••••.••••••••...••••• 
Byte Tes t ..................................... . 
Br anch ..••....••.......•.••.....••...••••.••.•. 
Convert ASCII to Quad •••••••••••.•••••••••••••• 
Convert ASCII to Quad with Initial Value ••••••• 
Condition Code Equal to •••••••••••••••••••••••• 
Condition Code Greater than •••.•••••••••••••••• 
Condition Code Less than ••••••••••••••••••••••• 
Convert Doubleword to Extended Float ••••••••••• 
Convert Doubleword to Float •••••••••••••••••••• 
Convert Doubleword to Float (Round) •••••••••.•• 
Count Duplicate Words •••••••••••••••••••••••..• 
Convert Doubleword to Integer •••••••••••••••••• 
Convert Doubleword to Quad ••••••.•••••••••••••• 
Count Duplicate Words Extended ••••••••••••••••• 
Extended Float to Doubleword ••••••••••••••••••• 
Extended Float to Doubleword (Round) •• ~ ••.••••• 

Octal 
Code 

00016-
104---
002--
-74---
00014-
104---
0302--
000044 
007---
006---
000034 
000046 
0303-
-154--
-144--
000452 * 
-12---
000030 
-13---
-11---
-10---
-16---
-14---
000450 * 
-15---
-17---
-164--
-1-4--
000451 
-174--
000007 
-104--
000262 $ 
000261 $ 
000016 
000017 
000015 
000334 # 
000306 # 
000326 # 
000366 
000307 
000265 $ 
000356 
000314 # 
000315 # 



Appendix A: Hardware Instruction Lists 

Table A-I. Alphabetical List of Instructions (Continued) 

CEF 
CEFR 
CEI 
CEIR 
CEQ 
CEQR 
CFD 
CFDR 
CFE 
CFI 
CFIR 
CFQ 
CFQR 
CID 
CIE 
CIF 
CIQ 
CLQ 
CMBX 
CMPI 
CMRW 
COMB 
COMW 
CQA 
CQD 
CQE 
CQER 
CQF 
CQFR 
CQI 
CQL 
CRAX 
DADD 
DALS 
DARS 
DCMP 
DDIV 
DDUP 
DFG 
DFS 
DFX 
DISP 
DLEN 
DLLS 
DLRS 
DLTE 
DMPY 
DNEG 
DOFS 

Extended Float to Float .•••••.•••••.•••••••••.• 
Extended Float to Float (Round) ••••••••••••.••• 
Extended Float to Integer •••••••••••••••••.••.• 
Extended Float to Integer (Round) •••••••••••••• 
Extended Float to Quadrupleword •.••••••.••••••• 
Extended Float to Quadrupleword (Round) •••••.•• 
Floating to Doubleword ••••••••••••••.•••••••••• 
Floa ting to Doubleword (Round) ••.•..••••••••••. 
Floating to Extended Float •••••••••••••••.••••• 
Floating to Integer •••••••••••••••••••••••••.•• 
Floating to Integer (Round) •••••••••••••••••••• 
Floating to Quadrupleword •••••••••••••••••.•••• 
Floating to Quadrupleword (Round) •••••••••••••• 
Convert Integer to Doubleword •••••••••••••••••. 
Convert Integer to Extended Float ••.••••••••••• 
Convert Integer to Floating •••••••••••••••••••• 
Convert Integer to Quad .••••••••••••••••••••••• 
Convert Logical to Quad •••••••••••••••••••••••. 
Compare Bytes Extended ••••••••••••••••••.•••••• 
Compare Immediate ••••••.••••••••••• : •••••••••.• 
Correctable Memory Error Read/Write •••••••••••• 
Compare Bytes ••••••••••••.••••••••••••••••••••• 
Compare Words .................................. . 
Convert Quad to ASCII~~~555~&e~e~5e •• e.e •••••• 
Convert Quad to Doubleword ••••••••••••••••••••• 
Convert Quad to Extended •••••••.••••••••••••••• 
Convert Quad to Extended (Round) •••.••••••••••• 
Convert Quad to Floating ••••.•••••••••••••••••• 
Convert Quad to Floating (Round) ••••••••••••••• 
Convert Quad to Integer •••••••••••••••••••••••• 
Convert Quad to Logical ••.••••••••••••••••••••• 
Convert Relative to Absolute Extended ••••••••.• 
Double Add ••••••••••••••••••••••••••••••••••••• 
Double Arithmetic Left Shift ••••••••••••••••••• 
Double Arithmetic Right Shift •••••••••••••••••• 
Double Compar e ••••••••••••••••••••••••••••••••• 
Double Divide .................................. . 
Double Duplicate ••••••••••••••••••••••••••••••• 
Deposit Field in Memory •••••••••••••••••••••••• 
Deposit Field in System .••••••••••••••••••.•••• 
Deposit Field in Extended Memory ••••••••••••••• 
Dispatch ...................................... . 
Disc Record Length ••••••••••••••.•••••••••••••• 
Double Logical Left Shift •••••••••••••••••••••• 
Double Logical Right Shift .•••••••.••••••••.••• 
Delete from Linked List •••••••••••••••••••••••• 
Double Multiply •••••••••••••••••••••••••••••••• 
Double Negate ••••••••••••••••••••.••••••••••••• 
Disc Record Offset ••••••••••••••••••••••••••••• 

000276 # 
000277 # 
000337 # 
000316 # 
000322 # 
000323 # 
000312 # 
000313 # 
000325 # 
000311 # 
000310 # 
000320 # 
000321 # 
000327 
000332 # 
000331 # 
000266 $ 
000267 $ 
000422 
001---
000432 * 
1262--
0262--
000260 $ 
000247 $ 
000336 # 
000335 # 
000324 # 
000330 # 
000264 $ 
000246 $ 
000423 * 
000220 
1302--
1303--
000225 
000223 
000006 
000367 
000357 
000416 
000073 * 
000070 @ 
1300--
1301--
000054 * 
000222 
000224 
000057 @ 

A-3 



Appendix A: Hardware Instruction Lists 

Table A-I. Alphabetical List of Instructions (Continued) 

A-4 

DPCL 
DPF 
DSUB 
DTL 
DTST 
DXCH 
DXIT 
EADD 
ECMP 
EDIV 
EIO 
EMPY 
ENEG 
ESUB 
EXCH 
EXIT 
FADD 
FCMP 
FDIV 
FMPY 
FNEG 
FRST 
FSUB 
FTL 
HALT 
HIIO 
IADD 
ICMP 
IDIV 
IDXl 
IDX2 
IDX3 
IDXD 
IDXP 
110 
IMPY 
INEG 
INSR 
ISUB 
IXIT 
LADD 
LADI 
LADR 
LAND 
LBA 
LBAS 
LBP 
LBX 
LBXX 

Dynamic Procedure Call ••••••••••••••••••••••.•• 
Deposi t Field ••••••.••••••••••••••••••••••••••• 
Double Subtract •••..••••••••••••••••••••••••••• 
Determine Time Left for Element •••••••••••••••• 
Double Test •••••.••••••••.••••••••••••••••••••• 
Double Exchange •••••••••••••••••••••••••••••••• 
DEBUG Exi t .................................... . 
Extended Floating-Point Add •••••••••••••••••••• 
Extended Floating-Point Compare •••••••••••••••• 
Extended Floating-Point Divide ••••••••••••••••• 
Execute I/O •••••••••••••••••••••••••••••••••••• 
Extended Floating-Point Multiply ••••••••••••••• 
Extended Floating-Point Negate ••••••••••••••••• 
Extended Floating-Point Subtract ••••••••••••••• 
Exchange .......................•.••..•......•.• 
Exi t Procedure •••••••.••••••••••••••••••••••••• 
Floating-Point Add ••••••••••••••••••••••••••••• 
Floating-Point Compare ••••••••••••••••.•••••••• 
Floating-Point Divide .••••••••••••••••••••••••• 
Floating-Point Multiply •••••••••••••••••••••••• 
Floating-Point Negate ••••••.•••••.••••••••••••• 
Firmware Reset •••••••.•••••.••••••••••••••••••• 
Floating-Point Subtract •••••••••••••••••••••••• 
Find Position in Time List ••.•••••••••••••••••• 
Processor Hal t .•••.••••.•.•..•••••••••••••••••• 
High-Priority Interrogate I/O •••••••••••.•••••• 
Integer Add ••••••••••••••••••••••••.•••.••••••• 
! n t e 9 ere om par e " ~ " ~ ~ .. ~ - - - - ~ ~ - - - - - - - .. - - - - .. .. .. • . . • 
Integer Divide •.••.••••...•••••••••••••.••••.•• 
Calculate Index, 1 Dimension ••••••••••••••••••• 
Calculate Index, 2 Dimension ••••••••••.•••••••• 
Calculate Index, 3 Dimension ••••••••••••••••••• 
Calculate Index, Bounds in Data Space •••••••••• 
Calculate Index, Bounds in Code Space •••••••••• 
Interrogate I/O .••••••••••••••••.•••••••••••.•• 
Integer Multiply ••••••••••••••••••••••••••••••• 
Integer Negate ••••.•••••••••••••••••••••••••••• 
Insert Element into Linked List •••••••••••••••• 
Integer Subtract ••••••••••••••••••••••••••••••• 
Interrupt Exit ••••••••••••••••••••••••••••••••• 
Log ical Add •••••••••••••••••••••••••••••••••••• 
Logical Add Immediate •••••••••••••••••••••••••• 
Lo a d Ad d res s • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
Log ical AND •••••••••••••••••••••••••••••••••••• 
Load Byte via A •••••••••••••••••••••••••••••••• 
Load Byte via A from System ••••••.••••••.•••••• 
Load Byte from Program •••••••.•••••••••••••••.• 
Load Byte Extended ••••••••••••••••••••••••••••• 
Load Byte Extended, Indexed ••• ~ ••••••••••••••.• 

000032 
000014 
000221 
000207 * 
000031 
000005 
000072 * 
000300 # 
000305 # 
000303 # 
000060 * 
000302 # 
000304 # 
000301 # 
000004 
125---
000270 # 
000275 # 
000273 # 
000272 # 
000274 # 
000405 * 
000271 # 
000206 * 
000074 * 
000062 * 
000210 
000215 
000213 
000344 # 
000345 # 
000346 # 
000317 # 
000347 # 
000061 * 
000212 
000214 
000055 * 
000211 
000071 * 
000200 
003---
-7----
000010 
000364 
000354 
-2-4--
000406 
0256--, 
0266--



Appendix A: Hardware Instruction Lists 

Table A-I. Alphabetical List of Instructions (Continued) 

LCKX 
LCMP 
LDA 
LDAS 
LDB 
LDD 
LDDX 
LDI 
LDIV 
LDLI 
LDRA 
LDX 
LDXI 
LLS 
LMPY 
LNEG 
LOAD 
LOR 
LQAS 
LQX 
LRS 
LSUB 
LWA 
LWAS 
LWP 
LWUC 
LWX 
LWXX 

MAPS 
MBXR 
MBXX 
MNDX 
MNGG 
MOND 
MOVB 
MOVW 
MRL 
MVBX 
MXFF 
MXON 
NOP 
NOT 
NSAR 
NSTO 
ONED 
ORG 
ORLI 
ORRI 
ORS 

Lock Down Extended Memory •.••.•••••••.••••••••• 
Logical Compare ••••••.•..•••••••••••••••.•.•.•• 
Load Double v ia A •••••••••••••••.•••••.••••.••• 
Load Double via A from System •••••••••••.•••.•• 
Load Byte •••••.•••••••......•••••••••......•... 
Load Double •••••••••••••.•.•••••••.••.••••••.•• 
Load Double Extended ..•••••••.•.••••••.••••.••• 
Load Immed i ate •••••••••••..••••••••••••••••••.• 
Logical Divide ••••••••••••••••.•••••••••••••••• 
Load Left Immediate •••••••.•••••••••••••••••.•• 
Load Register to A •.•.•••••.••••••••••••••••..• 
Load x ........................................ . 
Load X Immed i ate ••••••••.•••••••••.•••.•••••••• 
Logical Left Shift •••••.•••.•••••••..•••••••••• 
Logical Multiply ••••••••.•••••••••••••.•••••••• 
Log i cal Neg ate • • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • 
Load .••••••••••••••••••••••••••••.••••••••••••. 
Log i ca 1 OR ••••••••••••••••••••••••••••••••••••• 
Load Quadrupleword via A from SG ••••••••••••••• 
Load Quadrupleword Extended •••..••••••••••••..• 
Logical Right Shift .•••••••••••.•••••.•••.••••• 
Logi6al Subtract •••••..••.••••••••••••••••••••• 
Lo a d W 0 r d v i a A................................ 
Load Word via A from System •••••.••••••..••.••. 
Load Word from Program •••••••••••••••••••..•••• 
Load Word from User Code Space ••••••••••••••.•. 
Load Word Extended ••••••••••••••••••••••••••••• 
Load Word Extended, Indexed •••••••.•••••••••••• 

Map In a Segment .•••••••.••••••••••••••••••.••• 
Move Bytes Extended, Reverse ••••..••••••••••••• 
Move Bytes Extended, Checksum •••••.•••••••••••• 
Move Words while Not Duplicate, Extended •••••.• 
Move Words while Not Duplicate ••••••••••••••••• 
Minus One Double ••••••••••••••••••••••••••••••• 
Move Byte s ....•................................ 
Move Words •••••••••.••••••••••••••••••••••••••• 
Merge onto Ready List •••••••••••••••••••••••••• 
Move Bytes Extended .••••••••••••••••••••••••••• 
Mutual Exclusion Off •.••••••••••••••••••••••••• 
Mutual Exclusion On ••.••••••.•••••••••••••••••• 
No Ope rat ion •••••••••••••••••••.•••.••••••••••• 
Not ••••••.•.••.••.••••••.•••••......•••.•••••.• 
Non-Destructive Store A in a Register •••••••••• 
Non-Destructive Store •••.•••••.•••••••••••••••• 
One Double ••••••••••..••••••••••••••••••••••••• 
OR to Memor y ••••••.•••••.•••••••••••••••••••••• 
OR Left Immediate •••••••••••••••••••••••••••••• 
OR Right Immediate ••••••••••••••••••••••••••••• 
OR to SG Memory •••••••••••••••••••••••••••••••• 

000430 * 
000205 
000362 
000352 
-5----
-6----
000412 
100---
000203 
005---
00013-
-3----
10----
0300--
000202 
000204 
-4----
000011 
000445 * 
000414 
0301--
000201 
000360 
000350 
-2----
000342 
000410 
0254--, 
0264--
000042 * 
000420 
000421 
000227 
000226 
000001 
126---
026---
000075 * 
000417 
000041 * 
000040 * 
000000 
000013 
00012-
-34---
000003 
000045 
0044--
004---
000035 

A-5 



Appendix A: Hardware Instruction Lists 

Table A-I. Alphabetical List of Instructions (Continued) 

A-6 

ORX 
PCAL 
POP 
PSEM 
PUSH 
QADD 
QCMP 
QDIV 
QDWN 
QLD 
QMPY 
QNEG 
QRND 
QST 
QSUB 
QUP 
RCHN 
RCLK 
RCPU 
RDE 
RDP 
RIBA 
RIR 
RMAP 
RMEM 
RPV 
RSMT 
'O~'Om .L"'..., .... ..L. 

RSUB 
RSW 
RWCS 
RXBL 
SBA 
SBAR 
SBAS 
SBRA 
SBU 
SBW 
SBX 
SBXX 

SCMP 
SCS 
SDA 
SDAS 
SDDX 
SEND 
SETE 
SETL 
SETP 

OR to Extended Memory •• 
Procedure Call •••. 
Pop from Stack ••.••••••• 
"PH a Semaphore ••••••••.•• 
Push to Stack ••• 
Quad Add ..•••••• 
Quad 
Quad 

Compar e •••••••.•••••••••••••••.••••••••••• 
Divide.................. • •••••••••• 

Quad Scale Down •••••••••. 
Quad Load •••••• 
Quad 
Quad 
Quad 

Multiply ••• 
Negate .• 
Round •••••. 

Quad Store ••••• 
Quad Subtract •• 
Quad Scale Up .••••••••••• 
Reset I/O Channel ••• 
Read Clock ••.••••••• 
Read Processor Number. 
Read 
Read 
Read 

E Register ••••••••••• 
P Register •••••..•••• 
INTA and INTB Registers ••••••••.• 

Reset Interrupt •.•••••••••••••••••••••••••••••• 
Read Map ••••.•.••••••••••• 
Read Memory •••••••••••••••••••••••••••••••••• 
Read PROM Version Numbers •••••••••••••••••••• 
Read from Operations and Service Processor •••.• 
Read Segment Page Table Entry. 
Return from Subprocedure. 
Read Switches ••.••••••••• 
Read LCS ••••••.•••••••••• 
Read Extended Base and Limit •. 
Store Byte via A ••••••••••••• 
Subtract A from a Register ••• 
Store Byte via A into System ••• 
Subtract Register from A. • •••••• 
Scan Bytes Until............. • ••••••••••••••• 
Scan Bytes While ••••••.•••••••••••••••••••••••• 
Store Byte Extended ••.•••.••••••••••••••••••••• 
Store Byte Extended, Indexed ••••••••••••••••••• 

Set Code Map •••••••••••••• 
Set Code Segment •••••••••• 
Store Double via A ••••••• 
Store Double via A into System •• 
Store Double Extended •• 
Send ••••••••••••••••••.••.••••.•••. 
Set ENV Register •••••• 
Set L Register ••••• 
Set P Register •••••••••••• 

000047 
027---
124---
000076 * 
024---
000240 
000245 $ 
000243 $ 
00025-
00023-
000242 $ 
000244 $ 
000263 $ 
00023-
000241 
00025-
000447 * 
000050 
000051 
000024 
000025 
000440 * 
000063 * 
000066 * 
000434 * 
000216 * 
000436 * 
000424 * 
025---
000026 
000402 * 
000426 * 
000365 
00017-
000355 
00015-
1266--
1264--
000407 
0257--, 
0267--
000454 
000444 
000363 
000353 
000413 
000065 * 
000022 
000020 
000023 



Appendix A: Hardware Instruction Lists 

Table A-I. Alphabetical List of Instructions (Continued) 

SETS 
SFRZ 
SMAP 
5MBP 
SNDQ 
SQAS 
SQX 
SSW 
STAR 
STB 
STD 
STOR 
STRP 
SVMP 
SWA 
SWAS 
SWX 
SWXX 

SXBL 
TOTQ 
TPEF 
TRCE 
ULKX 
UMPS 
VSEM 
VWCS 
WMEM 
WSMT 
WSPT 
WWCS 
XADD 
XCAL 
XMSK 
XOR 
XSMG 
XSMX 
XSTP 
XSTR 
ZERD 

Set S Register .•••••••••••••••.•••••••••••••••• 
Sys tern Fr ee ze .................................. . 
Set Map •••••••.••••••••••••••••••••.••••••••••• 
Set Memory Breakpoint •••.•.•••••••••••••••••••• 
Signal a Send Is Queued ..•••••••••.•••••••••... 
Store Quadrupleword via A to SG ••••••••••••.••• 
Store Quadrupleword Extended ••.•••••••••••••••. 
Set Switches ••••••••••••••••••••••••••••••••••• 
Store A in Register .•••••••••.••.•••••••••••••• 
Store Byte ••..••••••••••••••••••••••••••••••••• 
Stor e Double .•••••••••••••••••••••••••••••.•••• 
Store ......................................... . 
Se t RP ••••••••••••••••••••••••••••••••••••••••• " 
Save Map Entries ••••.•••••••••••••••••••••••••• 
Store Word via A ••••••••••••••••••••••••••••••• 
Store Word via A into System ••••••••••••••••••• 
Store Word Extended •••••••••••••••••••••••••••• 
Store-Word Extended, Indexed •••••••••••••••.••. 

Set Extended Base and Limit •• _ ••••••••••••••••• 
Tes t OUTQ •••••••••••••••••••••••••••••••••••••• 
Test Parity Error Freeze Circuits •••••••••••••• 
Add an Entry to the Trace Table •••••••.•••••••• 
Unlock Extended Memory ••••••••••••••••••••••••• 
Unmap a Segment •••••••••••••••••••••••••••••.•• 
11 V" a Semaphor e •••••••••••••••••••••••••••••.•• 
Verify LCS .•••••••••••.•••••••••••••••••••••.•• 
Wr i te to Memory •••••••••••••••••••••••••••••••• 
Write to Operations and Service Processor •••••• 
write Segment Page Table Entry ••••••••••••••••• 
Wr i te to LCS ••••••••••••••••••••••••••••••••.•• 
XRAY Add ••••••••••••••••••••••••••••••••••••••• 
External Call •••••••••••••••••••••••••••••••••• 
Exchange Mas k •••••••••••••••••••••••••••••••.•• 
Exclusive OR ••••••••••••••••••••••••••••••••••• 
Checksum Block ••••••••••••••••••••••••••••••.•• 
Checksum Block Extended •••••••••••••••••••••••• 
XRAY Stop Timer •••••••••••••••••••••••••••••••• 
XRAY Star t Timer ••••••••••••••••••••••••••.•••• 
Zero Double .................................... . 

000021 
000053 
000067 
000404 
000052 
000446 
000415 
000027 
00011-
-54---
-64---
-44---
00010-
000441 
000361 
000351 
000411 
0255--, 
0265--
000427 
000056 
000453 
000217 
000431 
000043 
000077 
000401 
000435 
000437 
000425 
000400 
000033 
127---
000064 
000012 
000343 
000333 
000443 
000442 
000002 

The one-character symbols immediately to the right of the 
instruction opcodes have the following meanings: 

* indicates a privileged instruction. 
@ indicates an instruction designated for 

operating system use only. 
$ indicates a decimal arithmetic optional instruction. 
# indicates a floating-point arithmetic optional 

instruction. 

* 
* 
* 
* 
* 

* 

* 
@ 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 

* 
* 

A-7 



Appendix A: Hardware Instruction Lists 

Table A-2. Categorized List of Instructions 

l6-Bit Arithmetic (Top of Register Stack) 
IADD In tege r Add •••••••••••••••••••••••••••••••••• 
LADD Log ical Add •••.•..•.•••••••••••••••••• ~ ••••.• 
ISUB Integer Subtract ••••••••••••••••••••••••••••• 
LSUB Logical Subtract .••••••••••••••••••••••.••••• 
IMPY Integer Multiply ••••.•.••••••••••••.••••••••• 
LMPY Logical Multiply •••••..•••••.•••••••••••••••• 
IDIV Integer Divide .••••••••••••••••••••••••••. ~ •• 
LDIV Logical Divide ••••••••••••••••.••••.•.•••••.• 
INEG Integer Negate •••••••••••••••.•...••••••••••• 
LNEG Logical Negate ••••••••..••••••••••••••••••••• 
ICMP Integer Compare ..•••••••••••••••••••••••••••• 
LCMP Logical Compare .••••••••••.•••••••••••••••••• 
CMPI Integer Compare Immediate •••••••••••••••••••• 
ADDI Integer Add Immediate •••••••••••••••••.•••••• 
LADI Logical Add Immediate ...••••••••••••••••••••• 

32-Bit Signed Arithmetic 
CDI Convert Double to Integer •••••••••••.•••••••• 
CID Convert Integer to Double •••••••••••••••••..• 
DADD Double Add ..••••••••••••••••••••••••••••••••• 
DSUB Double Subtract •••.••.••••••••••••••••.•••... 
DMPY Double Multiply ••••.••••••••••••••••••••••••• 
DDIV Double Divide ••••••••••••••••••••••••••••••.• 
DNEG Double Negate ••••••••••••••••••••••••.•...••• 
DCMP Double Compare •.••.•••••••••••••••••••••••••• 
DTST Double Test •••••••••••••••••.••••••••••••.••• 
MOND 
ZERD 
ONED 

(Load) Minus One Double~.~~. __ ._ .•... ~.~~~~~~ 
(Load) Zero Double ••••••••••••••••••••••••••• 
(Load) One Double •••••••••••••••••••••••.•••• 

l6-Bit Signed Arithmetic (Register Stack Element) 
ADRA Add Register to A ••••••••••••••••••••••••••.• 
SBRA Subtract Register from A •.••••••••••••••••••• 
ADAR Add A to Reg ister ••••...•••••••••••••.••••••• 
SBAR Subtract A from Register ••••••.••••••••••.••• 
ADXI Add to Index Immediate ••••••.••••••••.•.••••• 

Decimal Arithmetic Load and Store 
QLD Quadruple Load •••••••••••••••••••••••••••.••• 
QST Quadruple Store •••••••••••••••••••••••••••••• 

Decimal 
QADD 
QSUB 
QMPY 
QDIV 
QNEG 
QCMP 

A-a 

Integer Arithmetic 
Quadruple Add •••••••••••••••••••••••••••••••• 
Quadruple Subtract ••••••••••••••••••••••••••• 
Quadruple Multiply .••••.••••••••••••••••••••• 
Quadruple Divide ••.••..••.•••••••••••••.•.••• 
Quadruple Negate •••••••.•••••••••••••••••.••• 
Quadruple Compare •.•.••••••••.•••••.••••••••• 

000210 
000200 
000211 
000201 
000212 
000202 
000213 
000203 
000214 
000204 
000215 
000205 
001---
104---
003---

000307 
000327 
000220 
000221 
000222 
000223 
000224 
000225 
000031 
000001 
000002 
000003 

00014-
00015-
00016-
00017-
104---

00023-
00023-

000240 
000241 
000242 $ 
000243 $ 
000244 $ 
000245 $ 



Appendix A: Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

Decimal Arithmetic Scaling and Rounding 
QUP Quadruple Scale Up •••••••••••••••••••••..••.. 
QDWN Quadruple Scale Down ..••••••••••••.•.••••••.. 
QRND Quadr uple Round •••••••••••••••••.•••.•••••••. 

Decimal 
CQI 
CQL 
CQD 
CQA 
CIQ 
CLQ 
CDQ 
CAQ 
CAQV 

Arithmetic Conversions 
Convert Quad to Integer •••••..••••••••••••••• 
Convert Quad to Logical ••••..••••••••...••••• 
Convert Quad to Double •..••••••••••.••.•••••• 
Convert Quad to ASCII •••••••.••••••...•••••.. 
Convert Integer to Quad ••••.•••..••••••.•.••. 
convert Logical to Quad ••••••••.••••••••••..• 
Convert Double to Quad •..••••...••••.•••••••• 
Convert ASCII to Quad •••.•••••..••.••••••••.• 
Convert ASCII to Quad with Initial Value .•••• 

Floating-Point Arithmetic 
FADD Floating-Point Add .•.••••••••..••••••••.••••• 
FSUB Floating-Point Subtract ••••••••••..•••••••••. 
FMPY Floating-Point Multiply ••••••.••••••••.•••••• 
FDIV Floating-Point Divide •••••••••••••.••••••.•.• 
FNEG Floating-Point Negate ••.••••••••••...•••••..• 
FCMP Floating-Point Compare •••.•.•••.•••.••••••... 

Extended 
EADD 
ESUB 
EMPY 
EDIV 
ENEG 
ECMP 

Floating-Point Arithmetic 
Extended Floating-Point Add ••.••••.•••••••••. 
Extended Floating-Point Subtract •...•••••••.• 
Extended Floating-Point Multiply ••••••••••••• 
Extended Floating-Point Divide •••••.••••••.•• 
Extended Floating-Point Negate •..•••••••••••• 
Extended Floating-Point Compare •.•••.•••••••• 

Floating-Point Conversions 
CEF Convert Extended to Floating ••••••••••••••••• 
CEFR Convert Extended to Floating, Rounded •••••.•• 
CFI Convert Floating to Integer •••••••••••••••.•• 
CFIR Convert Floating to Integer, Rounded ••••.•••• 
CFD Convert Floating to Double ••••••••••.•••.•••• 
CFDR Convert Floating to Double, Rounded •••••••••• 
CED Convert Extended to Double ••••••.•.•••••••.•• 
CEDR Convert Extended to Double, Rounded •••••.•••• 
CEI Convert Extended to Integer •.•••••••••••••.•• 
CEIR Convert Extended to Integer, Rounded ••••••••. 
CFQ Convert Floating to Quad ••••••••••.•••••••••• 
CFQR Convert Floating to Quad, Rounded .••••••••••. 
CEQ Convert Extended to Quad •••••••••.••••••.•••• 
CEQR Convert Extended to Quad, Rounded •••••••••••• 

00025-
00025-
000263 $ 

000264 
000246 
000247 
000260 
000266 
000267 
000265 
000262 
000261 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

000270 # 
000271 # 
000272 # 
000273 # 
000274 # 
000275 # 

000300 
000301 
000302 
000303 
000304 
000305 

# 
# 
# 
# 
# 
# 

000276 # 
000277 # 
000311 # 
000310 # 
000312 # 
000313 # 
000314 # 
000315 # 
000337 # 
000316 # 
000320 # 
000321 # 
000322 # 
000323 # 

A-9 



Appendix A: Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

CFE 
CIF 
CDF 
CDFR 
CQF 
CQFR 
CIE 
CDE 
CQE 
CQER 

Convert 
Convert 
Convert 
Convert 
Convert 
Convert 
Convert 
Convert 
Convert 
Convert 

Floating to Extended ••••••••••••••••• 
Integer to Floating •••••••••••••••••• 
Double to Floating ••••••••••••••••••• 
Double to Floating, Rounded •••••••••• 
Quad to Floa t i ng ••••••••••••••••••••• 
Quad to Floating, Rounded •••••••••••• 
Integer to Extended •••••••••••••••••• 
Double to Extended ••••••••••••••••••• 
Quad to Extended ••••••••••••••••••••• 
Quad to Extended, Rounded •••••••••••• 

Floating-Point Functionals 
IDXl Calculate Index, 1 Dimension ••••••••••••••••• 
IDX2 Calculate Index, 2 Dimensions •••••••••••••.•• 
IDX3 Calculate Index, 3 Dimensions •••••••••••••••• 
IDXP Calculate Index, Bounds in Code Space •••••••• 
IDXD Calculate Index, Bounds in Data Space •••••••• 

Register 
EXCH 
DXCH 
DDUP 
STAR 
NSAR 
LDRA 
LDI 
LDXI 
LOLT 

Stack Manipulation 
Exchange A with B •••••••••••••••••••••••••••• 
Double Exchange •••••••••••••••••••••••••••••• 
Double Duplicate ••••••••••••••••••••••••••••• 
Store A in a Register •••••••••••••••••••••••• 
Non-Destructive Store A in a Register •••••••• 
Load A from a Register ••••••••••••••••••••••• 
Load Immed i ate ••••••••••••••••••••••••••••••• 
Load Index Immediate ••••••••••••••••••••••••• 
Load Left Immediate •••••••••••••••••••••••••• 

Boolean 
LAND 
LOR 
XOR 
NOT 
ORRI 
ORLI 
ANRI 
ANLI 

Operations 

Bit Shift 
DPF 
LLS 
DLLS 
LRS 
DLRS 
ALS 
DALS 
ARS 
DARS 

A-IO 

Log ical AND •••••••••••••••••••••••••••••••••• 
Log ical OR ••••••••••••••••••••••••••••••••••• 
Exclusive OR ••••••••••••••••••••••••••••••••• 
NOT •••••••••••••••••••••••••••••••••••••••••• 
OR Right Immediate ••••••••••••••••••••••••••• 
OR Left Immediate •••••••••••••••••••••••••••• 
AND Ri gh t Immed i a te •••••••••••••••••••••••••• 
AND Le f t Immed i a te ••••••••••••••••••••••••••• 

and Deposit 
Deposit Field •••••••••••••••••••••••••••••••• 
Logical Left Shift ••••••••••••••••••••••••••• 
Double Logical Left Shift •••••••••••••••••••• 
Logical Right Shift •••••••••••••••••••••••••• 
Double Logical Right Shift ••••••••••••••••••• 
Ar i thmetic Left Shift •••••••••••••••••••••••• 
Double Arithmetic Left Shift ••••••••••••••••• 
Arithmetic Right Shift ••••••••••••••••••••••• 
Double Arithmetic Right Shift •••••••••••••••• 

000325 
000331 
000306 
000326 
000324 
000330 
000332 
000334 
000336 
000335 

000344 
000345 
000346 
000347 
000317 

000004 
000005 
000006 
00011-
00012-
00013-
100---
10----
005---

000010 
000011 
000012 
000013 
004---
0044--
006---
007---

000014 
0300--
1300--
0301--
1301--
0302--
1302--
0303--
1303--

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

# 
# 
# 
# 
# 



Appendix A: Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

Byte Test 
BTST Byte Test ..••••.••••••••.•••••••••••....••••• 000007 

Memory Stack to/from Register Stack 
LWP Load Word from Program •••••.••.•..•••.•.•••.. 
LBP Load Byte from Program •••••••••••••..•••.•••• 
PUSH Push Registers to Memory •••••••••..•••••••••• 
POP Pop Memory to Registers •••.••••••..••.••••••. 
LWXX Load Word Extended, Indexed .•••••••..•••••••• 

SWXX 

LBXX 

SBXX 

LDX 
NSTO 
LOAD 
STOR 
LDB 
STB 
LDD 
STD 
LADR 
ADM 

Load and 
ANS 
ORS 
ANG 
ORG 
ANX 
ORX 
LWUC 
LWAS 
LWA 
SWAS 
SWA 
LDAS 
LDA 
SDAS 
SDA 
LBAS 
LBA 
SBAS 
SBA 
DFS 
DFG 

Store Word Extended, Indexed ••••••••••.•••... 

Load Byte Extended, Indexed •.•••••••••••••.•. 

Store Byte Extended, Indexed ••••••••••••••••. 

Load Inde x ••••••••••••••••••••••..••••••••••• 
Non~Destructive Store ••••••.••••..••.•.•••••• 
Load Word •••••••••••••••••••••.••••••.•••••.• 
Store Word .•••...•••••••••••••••••..••••••••• 
Load Byte ................................... . 
Store Byte .................................. . 
Load Double •••••••••••••.•••••••••..•••••••.• 
S tor e Do ubI e • . • • • • • • • • • • • • • • • • • • • . • • • • . • • • . • • 
Load Address of Variable •••••••••••..•.•..••• 
Add to Memor y •••••••.••••••••..•.•••••.••..•• 

Store via Address on Register Stack 
AND to SG Memor y •.••••••••••••••.•••.•••...•• 
OR to SG Memory ••.•.•••••••.••.•••.•••••••... 
AND to Current Data ..•.•••...•.••.•••••••.••• 
OR to Current Data •••.•••.•••....•••••••.•.•. 
AND to Extended Memory ••••.••.••.••••.•••.••• 
OR to Extended Memory •••••••••••••••••••••.•• 
Load Word from User Code Segment ..••••.•••.•. 
Load Word via A from System ••••••••••..•••.•• 
Load Word via A .•••.•••••.••••••••••••.•••.•. 
Store Word via A into System ••••••••••••••..• 
Store Word via A .••••••••.••••••••••••••••••• 
Load Double via A from System ••.•••.••.•••..• 
Load Double via A •••••••••••••••••••.•••••.•• 
Store Double via A into System .•••••••••.•••• 
Store Double via A .•••••••••••••••••••••••••• 
Load Byte via A from System •••.••••••••••••.• 
Load Byte via A •.••.•••••.•••••.••••••••••••• 
Store Byte via A into System •••••••••••.••••• 
Store Byte via A .•..•.••••••.•••..•••.••••••• 
Deposit Field into System Data •••.••••••••••• 
Deposit Field in Current Data •••••••••••••••• 

-2----
-2-4--
024---
124---
0254--, 
0264--
0255--, 
0265--
0256--, 
0266--
0257--, 
0267--
-3----
-34---
-4----
-44---
-5----
-54---
-6----
-64---
-7----
-74---

000034 
000035 
000044 
000045 
000046 
000047 
000342 
000350 
000360 
000351 
000361 
000352 
000362 
000353 
000363 
000354 
000364 
000355 
000365 
000357 
000367 

A-II 



Appendix A: Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

LBX 
SBX 
LWX 
SWX 
LDDX 
SDDX 
LQX 
SQX 
DFX 
SCS 
LQAS 
SQAS 

Branching 
BIC 
BUN 
BOX 
BGTR 
BEQL 
BGEQ 
BLSS 
BAZ 
BNEQ 
BANZ 
BLEQ 
BNOV 
BNOC 
BF! 

Load Byte Extended •..•••••••••••••••••••••••• 
Store Byte Extended •••••.•••••..•••.••••••••• 
Load Word Extended ..•••.••••••••••••••..••.•• 
Store Word Extended .••••••••••••••••••••••.•• 
Load Doubleword Extended ••••••••.•••••••••••• 
Store Doubleword Extended •••••••••••••••••••• 
Load Quadrupleword Extended •••••••••••••••••• 
Store Quadrupleword Extended ••••••••••••••.•• 
Deposit Field Extended •••••••••.•••••••.••••. 
Set Code Segment •••••••.•.•••••••••••••••••.• 
Load Quadrupleword via A from SG ••••••••••.•• 
Store Quadrupleword via A to SG ••••••••••.••• 

Branch if Carry •••••••••••••••••••••••••••••• 
Branch Unconditionally ••••••••••••••••••••••• 
Branch on Index •.•••••••••••••••••••••••••••• 
Branch if CC Greater .•••.•.••••.••••••••••••• 
Branch if CC Equal .••••••••••.••••••••••••••. 
Branch if CC Greater or Equal ••.••••.••••.••• 
Branch if CC Less ••••••..••.••••••••••••••••• 
Branch if A Zero ••.•.•••.••••••.••••••••••••• 
Branch if CC Not Equal ••••••••.••.••••••••••• 
Branch if A Not Zero •••••••••••.•••.••••••.•• 
Branch if CC Less or Equal •••.••••••••••••••• 
Branch if no Overflow •••••••••••••••••••••••• 
Branch if no Carry ••.•.••..•••••••.•••••••••• 
Branch Forward !ndirect~~~~~~.~.~ .........•.. 

Moves, Compares, and Scans 
MNGG Move Words While Not Duplicate ••••••••••••••• 
CDG Count Duplicate Words ••.••••••••••.•••••••••• 
MOVW Move Words •.•••••••••••••••••••••• ' •••.••••••• 
MOVB Move Byte s ••••••••..•••.••••••••••••••••••••• 
COMW Compare Words •••••••••••••••••••••••••••••••• 
COMB Compare Bytes •••••••••••••••••••••••••••••••• 
SBW Scan Bytes While ••••••••••••••••••••••••.•••• 
SBU Scan Bytes Until ••••••••••••••••••••••••••••• 
MNDX Move Words While Not Duplicate, Extended ••••• 
CDX Count Duplicate Words Extended ••••••.•••••••• 
MVBX Move Bytes Extended •••••••••••••••••••••••••• 
MBXR Move Bytes Extended Reverse •••••••••••••••••• 
MBXX Move Bytes Extended, and Checksum •••••••••••• 
CMBX Compare Bytes Extended •••••••••••••••.••••••• 

Program 
SETL 
SETS 
SETE 
SETP 

Register Control 
Set L Reg ister ••••••••••••••••••••••••••••••• 
Set S Register •••••••••••••••••••.••••••••••• 
Set ENV Reg ister ................................ . 
Set P Register ••••••••••••••••••••••••••••••• 

A-12 

000406 
000407 
000410 
000411 
000412 
000413 
000414 
000415 
000416 
000444 
000445 
000446 

-10---
-104--
-1-4--
-11---
-12---
-13---
-14---
-144--
-15---
-154--
-16---
-164--
-17---
000030 

000226 
000366 
026---
126---
0262--
1262--
1264--
1266--
000227 
000356 
000417 
000420 
000421 
000422 

000020 
000021 
000022 
000023 

* 
* 



Appendix A: Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

RDE Read E Register •••••.•••••••••.••••••••.••••• 000024 
RDP Read P Register •••••••••••••••••••••••••••••. 000025 
STRP Set Register Pointer •••••••••••••••••••••..•• 00010-
ADDS Add to S Register ••••••••••••••••••.••••••••• 002---
CCL Set CC Less •••••••••••••••••••••••••••••••••• 000015 
CCE Set CC Equal ••••••••••••••••••••••••••••••••• 000016 
CCG Set CC Greater •••••••.••.••••••••••.••••••••. 000017 

Routine Calls/Returns 
PCAL Procedure Call ••••••••••••.•••••••••••••••••• 027---
XCAL External Procedure Call •••••••••••••••••••.•• 127---
SCMP Set Code Map ••••••••••••••••••••••••••••••••• 000454 
DPCL Dynamic Procedure Call ••••••••••••••••••.••.• 000032 
EXIT Exit from Procedure •••••••••••••••••••••••••• 125---
DXIT DEBUG Exi t •.•...••••.•.•••.•.•••.••••.•.••••. 000072 
BSUB Branch to Subprocedure ••••••••••••••••••••••• -174--
RSUB Return from Subprocedure ••••••••••••••••••••• 025---

Checksum Computation 
XSMG Compute Checksum in Current Data ••••••••••••• 000343 
XSMX Compute Checksum Extended ••••••••••••••••••• 000333 

Interrupt 
RIR 
XMSK 
IXIT 
DISP 
RIBA 

System 
Reset INT Register ••••••••••••••••••••••••••• 
Exchange MASK Register •••••••••••.••••••••••• 
Exit from Interrupt Handler •••••••••••••••.•• 
Dispatch ••••••••••••••••••••••••••••••••••••• 
Read INTA and INTB Registers ••••••••••••••••• 

Bus Communication 
TOTQ Test Out Queues •••••••••••••••••••••••••••••• 
SEND Send Packet •••••••••••••••••••••••••••••••••• 

Input/Output 
RSW Read Switch Register ••••••••••••••••••••••••• 
SSW Set Switch Register •••••••••••••••••••••••••• 
E 10 Execu te I/O •••••••••••••••••••••••••••••••••• 
110 Interrogate I/O .••••••••••••••••••••••••••••• 
HIIO High-Priority Interrogate I/O •••••••••••••••• 
RCHN Reset I/O Channel •••••••••••••••••••••••••••• 

Miscellaneous Nonprivileged 
NOP No Operation ••.•••••••••••••••••••••••••••••• 
RCLK Read Cloc k ••••••••••••••••••••••••••••••••••• 
RCPU Read Processor Number •••••••••••••••••••••••• 
BPT Instruction Breakpoint Trap •••••••••••••••••. 

000063 
000064 
000071 
000073 
000440 

000056 
000065 

000026 
000027 
000060 
000061 
000062 
000447 

000000 
000050 
000051 
000451 

* 

* 
* 
* 
* 
* 

@ 

* 

* 
* 
* 
* 

A-13 



Appendix A: Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

Resource 
XADD 
MXON 
MXFF 
SNDQ 
SFRZ 
DOFS 
DLEN 
HALT 
PSEM 
VSEM 
RPV 
WWCS 
VWCS 
RWCS 
FRST 
RSMT 
WSMT 
XSTR 
XSTP 
BCLD 
TPEF 

Management 
XRAY Add •••.••..•••••••••••••••••••..•••••••• 
Mutual Exclusion On •••••••••••••••••••••••••• 
Mutual Exclusion Off ••••••••••••••••••••••••• 
Signal a Send Is Queued ••••••••••••••••••••• ~ 
System Free ze ••••.•••••••••••.••••••••••••••• 
Disc Record Offset •••••.••••••••••••••••••••• 
Disc Record Length •••••..•••.•••••.••.••••••• 
Processor Halt ••.••.•.••••••••••..••••••••••• 
"P" a Semaphore ••.••••••.•••••••••••••••••••• 
"V" a Semaphor e .••••••••••••••••••••••••••••• 
Read PROM Version Numbers ••••••••••••••••.••. 
write LCS •••••••••••••••••••.•••••••••••••••• 
Ver ify LCS .•••.••••••••••.•••.••••••••••••••• 
Read LCS •..••••.••.•••••••••••••••••••••••••. 
Firmware Reset •.•...•.•••••.••••••••••••••••• 
Read from Operations and Service Processor ••• 
write to Operations and Service Processor •••• 
XRAY Start Timer •••..•••••••••••••••••••••••• 
XRAY Stop Timer •.•••..••••••••••.••..•••••••• 
Bus Cold Load •.••••••••••••.•••.••••••••••••• 
Test Parity Error Freeze Circuits •••••••••••• 

Memory Management 
MAPS Map In a Segmen t •••.•••••••••••••••••.•••••.• 
UMPS Unmap a Segment •••••••••••••••.•••.•••..••••• 
RMAP Read Map •.•••••••.••••••••••••••••••••••••••• 
SMAP 
CRAX 
RSPT 
WSPT 
RXBL 
SXBL 
LCKX 
ULKX 
CMRW 
RMEM 
WMEM 
SVMP 
BNDW 

Se t Map ~ '" ~ ~ " '" ? Z ~ " = = = " " ~ " " " ~ " ~ " " = " = .. ~ " ~ ~ = ~ " ., ., ., 
Convert Relative to Absolute Extended •••••••• 
Read Segment Page Table Entry •••••••••••••••• 
Write Segment Page Table Entry ••••••••••••••• 
Read Extended Base and Limit ••••••••••••••••• 
Set Extended Base and Limit ••••••• o •••••••••• 

Lock Down Extended Memory •••••• o ••••••••••••• 

Unlock Extended Memory ••••••••••••••••••••••• 
Correctable Memory Error Read/Write •••••••••• 
Read Memor y ••••.••••••••••••••••••••••••••••• 
Wr i te Memory ••••••••••••••••••••••••••••••••• 
Save Map Entries ••••••••••••••••••••••••••••• 
Bounds Test Words ••••••••••••••••••••.••••••• 

List Management 

A-14 

DLTE Delete Element from List •••••••••••.••••••••• 
INSR Insert Element into List ••••••••••••••••••••• 
MRL Merge onto Ready List ••••••••••••••.••••••••• 
FTL Find Position in Time List ••••••••••••••••••• 
DTL Determine Time Left for Element ••.••••••••••• 

000033 
000040 
000041 
000052 
000053 
000057 
000070 
000074 
000076 
000077 
000216 
000400 
000401 
000402 
000405 
000436 
000437 
000442 
000443 
000452 
000453 

000042 
000043 
000066 
000067 
000423 
000424 
000425 
000426 
000427 
000430 
000431 
000432 
000434 
000435 
000441 
000450 

000054 
000055 
000075 
000206 
000207 

* 
* 
* 
* 
* 
@ 
@ 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 



Appendix A: Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

Trace and Breakpoints 
TRCE Add Entry to Trace Table ••••••••••.••••••••.• 
5MBP Set Memory Breakpoint •••••••••••••.•••••••••• 

000217 * 
000404 * 

The one-character symbols immediately to the right of the 
instruction opcodes have the following meanings: 

* indicates a privileged instruction. 
@ indicates an instruction designated for 

operating system use only .. 
$ indicates a decimal arithmetic optional instruction. 
# indicates a floating-point arithmetic optional 

instruction. 

A-IS 



Appendix A: Hardware Instruction Lists 

Table A-3. Binary Coding, Memory Reference Instructions 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vkcc 

2 0 I 0 +/- I I X X III P I LWP a 
I 2 0 X X 1 +/- p LBP b 
I 3 0 X X .. G,L,SG,S ~ LDX a 
I 3 1 X X .. G,L,SG,S ~ NSTO 
I 4 0 X X .. G,L,SG,S .. LOAD a 
I 4 1 X X IIIf G,L,SG,S .. STOR 
I 5 0 X X III! G,L,SG,S .. LDB b 
I 5 1 X X .. G,L,SG,S ~ STB 
I 6 0 X X III G,L,SG,S .. LDD a 
I 6 1 X X .. G,L,SG,S .. STD 
I 7 0 X X .. G,L,SG,S .. LA DR 
I 7 1 X X IIIf G,L,SG,S ~ ADM vk a 

P+ 0 · · · · · · · 0:177 
p- I · · · · · · · 0:177 

G+ 0 . · · · · · · · 0:377 
L+ 1 0 · · · · · · · 0:177 
SG 1 1 0 · · · · · · 0:77 
L- 1 1 1 0 · · · · · 0:37 
s- 1 1 1 1 · · · · · 0:37 

+/- (0/1) implies two's-complement notation; the sign is extended 
through bit 0 at execution. 

I (0/1) indicates direct or indirect address. 

v = Overflow 

k = Carry 

cc = Condition Codes: 

A-16 

a 
L (result < 0) or (oprl < opr2) 
E (result = 0) or (oprl = opr2) 
G (result > 0) or (oprl > opr2) 

L (ASCII numeric) 
b E (ASCII alpha) 

G (ASCII special) 

L (channel error or timeout)! 
c E (no error) 

G (unusual condition) I 

Note: oprl is first 
item pushed on 
stack; opr2 is 
second. 

I 
I 
I 



Appendix A: Hardware Instruction Lists 

Table A-4. Binary Coding, Immediate Instructions 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vkcc 

1 0 0 +/- ~ OPERAND • LDI a 
1 0 0 X X +/- ~ OPERAND • LDXI a 
0 0 1 +/- ~ OPERAND • CMPI a 
0 0 2 +/- ~ OPERAND • ADDS a 
0 0 3 +/- ~ OPERAND • LADI k a 
0 0 4 0 ~ OPERAND • ORRI a 
0 0 4 1 ~ OPERAND • ORLI a 
1 0 4 +/- ~ OPERAND .. ADDI vk a 
1 0 1 X X +/- --+--- OPERAND • ADXI vk a 
0 0 5 +/- ~ OPERAND ~ LDLI a 
0 0 6 +/- --+--- OPERAND ~ ANRI a 
0 0 7 +/- --+--- OPERAND • ANLI a 

+/- (0/1) implies two's-complement notation; the sign is extended 
through bit 0 at execution. 

I (0/1) indicates direct or indirect address. 

vkcc: see Table A-3 footnote. 

A-17 



Appendix A: Hardware Instruction Lists 

Table A-5. Binary Coding, Move/Shift/Call/Extended Instructions 

0 

0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 4 LAST COUNT-l I N I 
2 4 N LAST COUNT-l 
2 5 0 ....-- SDEC • 
2 5 0 ....-- SDEC • 
2 5/6 4 DISPLACEMENT 
2 5/6 5 DISPLACEMENT 
2 5/6 6 DISPLACEMENT 
2 5/6 7 DISPLACEMENT 
2 6 0 0 RL S S D RP 
2 6 0 1 RL S S D RP 
2 6 0 0 RL S S D RP 
2 6 0 1 RL S S D RP 
2 6 1 0 RL S S D RP 
2 6 1 1 RL S S D RP 
2 7 III PEP • 
2 7 III PEP ., 
3 0 0 ~ SHIFT COUNT ----.. 
3 0 0 ~ SHIFT COUNT ----.. 
3 0 1 ~ SHIFT COUNT ----.. 
3 0 1 -.- SHIFT COUNT ----.. 
3 0 2 -+- SHIFT COUNT ----.. 
3 0 2 ~ SHIFT COUNT~ 
3 0 3 ~ SHIFT COUNT~ 

3 0 3 ~ SHIFT COUNT~ 

RL (all) left-to-right (increasing addresses) 
right-to-left (decreasing addresses) 

SS (source map): 
00 Current Data 
01 System Data (Current Data if nonprivileged user) 
10 Current Code 
11 User Code 

D = (destination map), data only 
o Current Data 
1 System Data (Current Data if Nonprivileged User) 

PEP = Procedure Entry Point Table 

SDEC = stack S decrement 

vkcc: see Table A-3 footnote. 

A-18 

vkcc 

PUSH 
POP 
RSUB 
EXIT 
LWXX a 
SWXX 
LBXX b 
SBXX 
MOVW 
COMW a 
MOVB 
COMB a 
SBW k 
SBU k 
PCAL 
XCAL 
LLS a 
DLLS a 
LRS a 
DLRS a 
ALS a 
DALS a 
ARS a 
DARS a 

I 
I 



0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Appendix A: Hardware Instruction Lists 

Table A-6. Binary Coding, Branch Instructions 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vkcc 

1 0 0 +/- p .. BIC 
1 0 4 +/- P • BUN 
1 0 X X 4 +/- p • BOX 
1 1 0 +/- P .. BGTR 
1 2 0 +/- P • BEQL 
1 3 0 +/- P • BGEQ 
1 4 0 +/- P • BLSS 
1 4 4 +/- P .. BAZ 
1 5 0 +/- p .. BNEQ 
1 5 4 +/- P .. BANZ 
1 6 0 +/- P .. BLEQ 
1 6 4 +/- P • BNOV 
1 7 0 +/- P • BNOC 
1 7 4 +/- P • BSUB 

+/- ( 0/1) implies two's-complement notation; the sign is extended 
through bit a at execution. 

I (0/1) indicates direct or indirect address. 

Note: since the Program Counter register holds the address of the 
next instruction, a branch-self instruction (Branch *) 
would be coded: BUN p-l. 

vkcc: see Table A-3 footnote. 

A-19 



Appendix A: Hardware Instruction Lists 

Table A-7. Binary Coding, Stack Instructions 

0 1 2 3 4 5 6 7 8 9 I 10 11 12 I 13 14 15 

0 0 0 ~ STACK OPERAND CODE ~I 

1 I 
7:15> vkcc <7:15> vkcc 

0 0 0 NOP 0 5 1 *RCPU 
0 0 1 MOND a 0 5 2 *SNDQ 
0 0 2 ZERO a 0 5 3 *SFRZ 
0 0 3 ONED a 0 5 4 *DLTE 
0 0 4 EXCH a 0 5 5 *INSR 
0 0 5 DXCH a 0 5 6 @TOTQ ! 
0 0 6 DDUP a 0 5 7 @DOFS c 
0 0 7 BTST b 0 6 0 *EIO c 
0 1 0 LAND a 0 6 1 *IIO c 
0 1 1 LOR a 0 6 2 *HIIO 
0 1 2 XOR a 0 6 3 *RIR 
0 1 3 NOT a 0 6 4 *XMSK 
0 1 4 DPF a 0 6 5 *SEND ! 
0 1 5 CCL a 0 6 6 *RMAP 
0 1 6 CCE a 0 6 7 *SMAP 
0 1 7 CCG a 0 7 0 @DLEN 
0 2 0 SETL 0 7 1 *IXIT 
0 2 1 SETS 0 7 2 *DXIT 
0 2 2 SETE ! ! a 7 3 *DISP 
0 2 3 SETP 0 7 4 *HALT 
0 2 4 RDE 0 7 5 *MRL 
0 2 5 RDP 0 7 6 *PSEM 
0 2 6 RSW a 0 7 7 *VSEM 
0 2 7 SSW 1 0 reg STRP 
0 3 0 BFI 1 1 reg STAR 
0 3 1 DTST a 1 2 reg NSAR 
0 3 2 DPCL 1 3 reg LORA a 
0 3 3 *XADD 1 4 reg ADRA vk a 
0 3 4 ANS a 1 5 reg SBRA vk 
0 3 5 ORS a 1 6 reg ADAR vk 
0 4 0 *MXON 1 7 reg SBAR vk a 
0 4 1 *MXFF 2 0 0 LADD k a 
0 4 2 *MAPS 2 0 1 LSUB k a 
0 4 3 *UMPS 2 0 2 LMPY v=Oa 
0 4 4 ANG a 2 0 3 LDIV v a 
0 4 5 ORG a 2 0 4 LNEG k a 
0 4 6 ANX a 2 0 5 LCMP a 
0 4 7 ORX a 2 0 6 *FTL 
0 5 0 RCLK 2 0 7 *DTL 

A-20 



Appendix A: Hardware Instruction Lists 

Table A-7. Binary Coding, Stack Instructions (Continued) 

0 1 2 3 4 5 6 7 8 9 J 10 11 12 I 13 14 15 

0 0 0 ~ STACK OPERAND CODE ~ 

I ! 
<7:15> vkcc <7:15> vkcc 

2 1 0 IADD vk a 4 0 5 *FRST 
2 1 1 ISUB vk a 4 0 6 LBX b 
2 1 2 IMPY v a 4 0 7 SBX 
2 1 3 IDIV v a 4 1 0 LWX a 
2 1 4 INEG vk a 4 1 1 SWX 
2 1 5 ICMP a 4 1 2 LDDX a 
2 1 6 *RPV 4 1 3 SDDX 
2 1 7 *TRCE 4 1 4 LQX a 
2 2 0 DADO vk a 4 1 5 SQX 
2 2 1 DSUB vk a 4 1 6 DFX a 
2 2 2 DMPY vk a 4 1 7 MVBX 
2 2 3 DDIV vk a 4 2 0 MBXR 
2 2 4 DNEG vk a 4 2 1 MBXX 
2 2 5 DCMP a 4 2 2 CMBX ! 
2 2 6 MNGG ! 4 2 3 *CRAX 
2 2 7 MNDX ! 4 2 4 *RSPT ! 
3 3 3 XSMX 4 2 5 *WSPT 
3 4 2 LWUC a 4 2 6 *RXBL 
3 4 3 XSMG" 4 2 7 *SXBL 
3 5 0 LWAS a 4 3 0 *LCKX ! 
3 5 1 SWAS 4 3 1 *ULKX ! 
3 5 2 LDAS a 4 3 2 *CMRW ! 
3 5 3 SDAS 4 3 4 *RMEM a 
3 5 4 LBAS b 4 3 5 *WMEM 
3 5 5 SBAS 4 3 6 *RSMT 
3 5 6 COX 4 3 7 *WSMT 
3 5 7 DFS a 4 4 0 *RIBA 
3 6 0 LWA a 4 4 1 *SVMP 
3 6 1 SWA 4 4 2 *XSTR 
3 6 2 LOA a 4 4 3 *XSTP 
3 6 3 SDA 4 4 4 SCS 
3 6 4 LBA b 4 4 5 *LQAS a 
3 6 5 SBA 4 4 6 *SQAS 
3 6 6 COG 4 4 7 *RCHN ! 
3 6 7 DFG a 4 5 0 *BNDW ! 
4 0 0 *WWCS ! 4 5 1 BPT 
4 0 1 *VWCS ! 4 5 2 *BCLD 
4 0 2 * RWCS 4 5 3 *TPEF 
4 0 4 *SMBP 4 5 4 SCMP 

A-21 



Appendix A: Hardware Instruction Lists 

A-22 

Table A-7. Binary Coding, Stack Instructions (Continued) 

* indicates a privileged instruction. 
@ indicates an instruction designated for operating 

system use only. 

vkcc: see Table A-3 footnote. 

= special vkcc meanings; see instruction definitions 
in Table B-1. 

Table A-a. Binary Coding, Decimal Arithmetic Instructions 

0 1 2 3 4 5 6 7 a 9 I 10 11 12 I 13 14 15 

0 0 0 ..- STACK OPERAND CODE ~ 

1 ! 
<7:15> vkcc <7:15> vkcc 

2 3 0 +QST I I 2 5 0 +QUP v a 
2 3 1 +QST x5 2 5 1 +QDWN v=Q 
2 2 6 2 5 ("" .J +QST x ,j. ~ +QUP ~) v a 
2 3 3 +QST x7 2 5 3 +QDWN(2) v=Oa 
2 3 4 +QLD a 2 5 4 +QUP(3) v a 
2 3 5 +QLD xS a 2 5 5 +QDWN (3) v=Oa 
2 3 6 +QLD x6 a 2 5 6 +QUP(4) v a 
2 3 7 +QLD x7 a 2 5 7 +QDWN (4) v=Oa 
2 4 0 +QADD vk a 2 6 0 CQA v a 
2 4 1 +QSUB vk a 2 6 1 CAQV v ! 
2 4 2 QMPY v a 2 6 2 CAQ v ! 
2 4 3 QDIV v a 2 6 3 QRND v=Oa 
2 4 4 QNEG vk a 2 6 4 CQI v 
2 4 5 QCMP a 2 6 5 CDQ 
2 4 6 CQL v 2 6 6 CIQ 
2 4 7 CQD v 2 6 7 CLQ 

+ indicates an instruction that is standard in all 
processors (not part of decimal option). 

CCE 1f ent1re str1ng 1S ASCII d1gits, CCG 1f not. 

vkcc: see Table A-3 footnote. 



Appendix A: Hardware Instruction Lists 

Table A-9. Binary Coding, Floating-Point Instructions 

0 1 2 3 4 5 6 7 8 9 I 10 11 12 1 13 14 15 

0 0 0 ...- STACK OPERAND CODE ~ 

1 1 
<7:15> vkcc <7:15> vkcc 

2 7 0 FAOO v a 3 1 6 CEIR a 
2 7 1 FSUB v a 3 1 7 IOXO a 
2 7 2 FMPY v a 3 2 0 CFQ a 
2 7 3 FOIV v a 3 2 1 CFQR a 
2 7 4 FNEG a 3 2 2 CEQ a 
2 7 5 FCMP a 3 2 3 CEQR a 
2 7 6 CEF a 3 2 4 CQF a 
2 7 7 CEFR a 3 2 5 CFE a 
3 0 0 EAOO v a 3 2 6 COFR a 
3 0 1 ESUB v a 3 2 7 +CIO a 
3 0 2 EMPY v a 3 3 0 CQFR a 
3 0 3 EOIV v a 3 3 1 CIF a 
3 0 4 ENEG a 3 3 2 CIE a 
3 0 5 ECMP a 3 3 4 CDE a 
3 0 6 COF a 3 3 5 CQER a 
3 0 7 +COI a 3 3 6 CQE a 
3 1 0 CFIR a 3 3 7 CEI a 
3 1 1 CFI a 3 4 4 IOXI a 
3 1 2 CFO a 3 4 5 IOX2 a 
3 1 3 CFOR a 3 4 6 IOX3 a 
3 1 4 CEO a 3 4 7 IOXP a 
3 1 5 CEOR a 

+ indicates an instruction that is standard in all 
processors (not part of floating-point option). 

vkcc: see Table A-3 footnote. 

A-23 





APPENDIX B 

INSTRUCTION SET DEFINITION 

This appendix consists of a table (B-1) giving brief definitions of 
all the instructions in the NonStop II instruction set, in numeric 
opcode order. A TAL-like notation is used for the definitions. 
This table is a specification of the instruction microcode, and is 
provided for those interested in microcode details such as the use 
of the register stack. 

Table B-2 is a key to the symbols used in the instruction definitions. 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

Table B-1. Instruction Set Definition 

Note: The one-character symbols immediately to the 
right of the instruction opcodes have the following 
meanings: 

* 
@ 

$ 
# 

op(x) 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

indicates a privileged instruction. 
indicates an instruction designated for 

operating system use only. 
indicates a decimal arithmetic optional instruction. 
indicates a floating-point arithmetic optional 

instruction. 
indicates that an operation similar to that 

performed by the instruction ~op~ should be 
done using the value(s) ~x~. 

0 0 INOP Ino operation I 
0 1 MOND minus one double RP:=RP+2: cc(B:=A:=-l) 
0 2 ZERD zero double RP: =RP+2: cc(B:=A:=O) 
0 3 ONED one double RP:=RP+2: B:=O: cc (A:=l) 
0 4 EXCH exchange A:=:B: cc (A) 
0 5 DXCH double exchange BA:=:CD: cc(BA) 
0 6 DDUP double duplicate RP:=RP+2: cc(BA:=DC) 
0 7 BTST byte test ccb(A.<8:l5» : RP:=RP-l 
1 0 I LAND logical AND cc(B:=B&A); RP:=RP-l 
1 1 LOR logical OR cc(B:=BIA) ; RP:=RP-l 

B-1 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition {Continued} 

B-2 

o 0 
o 0 
o 0 

o 0 
o 0 
o 0 
o 0 
a a 
a a 

a a 
a 0 
a a 
o a 
o 0 

o 0 

o a 
a a 

o a 

o a 

a a 

a a 
o a 
a a 

o a 

o 
a 
o 

o 
a 
o 
o 
o 
o 

o 
a 
o 
o 
o 

o 

o 
o 

o 

o 

o 

o 
a 
o 

o 

o 
o 
o 

o 
o 
o 
o 
a 
o 

o 
a 
o 
o 
a 
o 

o 
o 

o 

a 

o 

o 
a 
o 

o 

1 
1 
1 

1 
1 
1 
2 
2 
2 

2 
2 
2 
2 
2 

3 

3 
3 

3 

3 

3 

3 
3 
4 

4 

2 \XOR 
3 NOT 
4 DPF 

5 CCL 
6 CCE 
7 CCG 
o SETL 
1 SETS 
2 SETE 

exclusive OR 
logical NOT 
deposit field 

condo code less 
condo code equal 
condo code greater 
set L register 
set S register 
set ENV register 

3 SETP set P register 
4 \RDE \read ENV register 
5 RDP read P register 
6 RSW read switches 
7 SSW set switches 

a BFI branch forward 

\ 
indirect 

1 DTST double test 
2 DPCL dynamic procedure 

call 

3' IIXADD 1\· XRAY add 
D=value to add to 

I \ 
counter 

C=offset to cntr 
BA=extended addr 

of XRAY ptr 
4 ANS AND to SG memory 

5 IORS lOR to SG memory 

6 
7 
0* MXON mutual exclusion 

on 

I
A=<0:7> code size 

<8:l5>stack size 

1* MXFF mutual exclusion 
off 

cc(B:=B xor A); RP:=RP-l 
cc (A:= - A) 
cc(C:=(C&B I A&-B»; 
RP:=RP-2 
Z:=O; N:=l 
Z:=l; N:=O 
Z:=N:=O 
L:=A; RP:=RP-l 
S:=A; RP:=RP-l 
ENV.<0:7>:=ENV.<0:7>&A.<0:7>; 
ENV.<8:l5>:=A.<8:l5> 
P:=A; RP:=RP-l 
RP:=RP+l; A:=ENV 
RP:=RP+l; A:=P 
RP:=RP+l; cc(A:=SWITCHES) 
sysstack[%122] :=LIGHTS:=A; 
RP:=RP-l 
P:=P+A+code[P+A] ; 
RP:=RP-l 
cc(BA) 
stack[S+1:S+3] :=(P,ENV,L); 
m:=A.<0:3>; t:=A.<7:l5>; 
if m<2 or m>5 then m:=2; 
if - PRIV then 
{if t>=mem[m,O] then 
{if t>=mem[m,l] 
then priv trap; 
PRIV:=l 

} ~ 
L:=S:=S+3; 
LS:=(m-2) .<14>! 

iCs:=m.<15>; . 
P:=code[t]; RP:=7 
if (t:=xmem[BA])<>O then 

{a:=%40000 A{t+C)AO; 
xmem[a:a+3] :=xmem[a:a+3]+D; 
if D<O and xmem[a:a+l]<O 
then xmem[a:a+3] :=O}; 

RP:=RP-4 
cc(dest(A) :=dest(A) & B); 
RP:=RP-2 

Icc (dest (A) :=dest (A) 
RP:=RP-2 

*** undefined *** 

B) ; 

*** undefined *** 
chkp{stack[(L-20) max 0]); 
chkp(stack[S+A.<8:l5>]) ; 
if A.<0:7> 
then chkp (code [P+A. <0: 7>] ) ; 
stack [L+l] :=MASK; 
MASK:=MASK & %177640; 
RP:=RP-l 

IMASK:=staCk[L+l] 



o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 
o 0 

o 0 

Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

o 

o 

o 

o 

o 

o 

o 

o 
o 

o 

o 

o 

o 

o 

o 

o 

o 

o 
o 

o 

4 

4 

4 

4 

4 

4 

5 

5 
5 

5 

2* MAPS map in a segment 
B=segment number 
A=map number 

3* UMPS unmap a segment 
A=map number 

4 lANG lAND to memory 

5 ORG OR to memory 

6 ANX AND to extended 
memory 

7 IORX lOR to extended 
,memory 

o \RCLK\read clock 

1 RCPU read processor # 
2* SNDQ signal that a SEND 

is queued 
3*lsFRzlsystem freeze 

if CMSEG[A]<>B then 
{if CMSEG [A] <>-1 
then UMPS(A): 
j:=B*2: 
for i:=32 to 

$min(64,32+SEG[j].<9:15» 
do 
{if MAP[15,i].<0:14>=B then 

{ mem [ SEG [ j] • < 5 : 8> , 
SEG[j+l]+i-32+ 
MAP [ 15 , i] • < 15 > * 3 2 ] 

: = t : = MAP [ 15 , i - 3 2] ; 
MAP [ 15 , i] : = -l} } ; 

i:=O; 
while i<SEG[j] .<9:15> do 
{MAP [A, i] := 

mem [SEG [j] • <5: 8>, 
SEG [j + 1] + i] ; 

i := i+l}; 
while i <= 63 do 
{ MAP [A , i] : = 1: i: = i + l} ; 
SEG[j] .<0:4> .= A; 
CMSEG[A] .= B' 

} ; , 
RP:=RP-2: 
!!! Note!!! 
the page table must be 
in memory 
j:= SEG[CMSEG[A] *2] .<9:15>; 
m:= SEG[CMSEG[A] *2] .<5:8> 
p:= SEG[CMSEG[A] *2+1] ; 
for i := 0 to j-l do 

{ mem [m , p+ i] : = t : =MAP [A, i] ; 
SEG [CMSEG [A] *2] .<0:4>:=%37; 
CMSEG[A] := -1: 
RP:=RP-l 
!!! Note!!! 
the page table must be 
in memory 

Icc (stack [A] :=stack [A] & B) ; 
RP:=RP-2 
cc (stack [A] :=stack [A] B) : 
RP:=RP-2 
cc(xmem[BA] :=xmem[BA] & C); 
RP:=RP-3 
cc(xmem[BA] :=xmem[BA] C); 
RP:=RP-3 
RP :=RP+4: 
DCBA:=sysstack[%103:%106]+ 

microsecond counter 
RP:=RP+l: A:=processor # 
set dispatcher interrupt; 
sysstack[%1277].<14>:=1 
assert system freeze; halt 

B-3 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

o 0 o o 

o 0 o o 

o 0 o o 

o 0 o o 

o 0 o o 

o 0 o o 

o 0 o o 

o 0 o o 

o 0 o o 

B-4 

5 

5 

5 

5 

6 

6 

6 

6 

6 

4* DLTE delete an element 
from a doubly 
linked, circular 
list 

A=element address 

5* INSR insert an element 
into a doubly 
linked, circular 
list 

B=list header 
A=list element 

7@ DOFS disc record offset 
A=record number 
on return, A holds 
offset into 
buffer of record 

0* EIO execute i/o 

1* 110 interrogate i/o 

2* HIIO high-priority 
interrogate i/o 

3* RIR reset interrupt 
register 

4* XMSK exchange mask 

if sysstack[A] <> 0 then 
{if sysstack[sysstack[A]+l] 

<> A or 
sysstack[sysstack[A+l]] 
<> A 

then Instruction Failure; 
f:=sysstack[A]; 
b:=sysstack[A+l]; 
sysstack[b]:=f; 
sysstack[f+l]:=b; 
sysstack[A]:=O; 
sysstack[A+l]:=O; 
} ; 

RP:=RP-l 
!!! Note!!! 
all memory locations accessed 
must be present 
if A=O or 

sysstack[sysstack[B]+l] 
<> B or 
sysstack[sysstack[B+l]] 
<> B 

then Instruction Failure; 
f:=sysstack[B]; 
sysstack[B] :=A; 
sysstack[A]:=f; 
sysstack[A+l] :=B; 
sysstack[f+l]:=A; 
RP:=RP-2 
!!! Note!!! 
all memory locations accessed 

\ITIU5l bli:: prli::5E:l1t 
N:=O; Z:=l; 
if either OUTQ full then Z:=O 
if A'>='512 or 

(A:=xmem[stack[L+2:3]-A*2]) 
'>='stack[L+4] . 

then {P:=stack[L+5]; RP:=7}; 

ioselect(A.subchannel) ; 
iocontrol(A.command,B) : 
B:='device status'; 
cc(A:='channel status') 
RP:=RP+3: 
C:='interrupt cause': 
B:='interrupt status'; 
cc(A:='channel status'): 
RP:=RP+3: 
C:='high-priority interrupt 

cause' ; 
B:='high-priority interrupt 

status'; 
cc(A:='channel status'); 
'clear interrupt' A.<12:15> 
RP:=RP-l 
MASK:=:A 



o 0 

o 0 
o 0 

o 0 

o 0 

o 0 

o 0 

o 0 
o 0 

Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

o o 6 

006 
006 

007 

007 

007 

007 

007 
007 

5*lsENDlsend 

G=<15> bus 

\ I F=sequence it 
E=<0:7> sender 

cpu it 
<8:15> receiver 

cpu it 
D=OUTQ full timer 
CB=buffer address 
A=byte count 

6* RMAP read map 
7* SMAP set map 

do 
{do until OUTQEMPTY or 

.8(32768-D) microsec; 
if OUTQEMPTY then 
{if A<>O then 

{bus:=G.<15> 
receiver:=E.<8:15>; 
OUTQ[bus,O] :=E; 
OUTQ[bus,l] :=F; 
for i:=4 to 29 do 
{if A <> 0 then 
{boq[bus,i] :=bxmem[CB] ; 
A:=A-l; CB:=CB+l} 

else boq [bus, i] : =O} ; 
OUTQ[bus,15]:=(-1) xor 

OUTQ[bus,O] 
••• OUTQ[bus,14]; 

D:=O; 
if (F:=F+l)=O then 
{done:=true; N:=O; Z:=l}; 

} else 
ldone:=true; N:=O; Z:=l 

1 else 
{done:=true; N:=l; Z:=O; 
OUTQEMPTY:=true 

} ; 
I} until done; 
RP:=RP-7 
!!! Note!!! 
xmem[CB:CB+A*2-1] must be 
in memory 

I
A:=MAP[A.<12:15>,A.<0:5>]i 
MAP[A.<12:15>,A.<0:5>] :=B; 
RP:=RP-2 

O@. DLEN disc record length if (A:=DOFS(A+l)-DOFS(A» < 0 
A=record number then {P:=stack[L+5]; RP:=7} 

1* IXIT interrupt exit (MASK,S,P,ENV,L) 

2* DXIT DEBUG exit 

\ 

3* DISP dispatch 

4* HALT processor halt 
5*\MRL merge onto ready 

list 
A=PCB address 

:=sysstack[L-4:L]; 

\
R[0:7] :=sysstack [L+l:L+8] 
!!! Note!!! 

I
sYSstaCk[L-4:L+8] must be 
present 
DS must be 1 

I
S:=L-3 i 
(P,ENV,L) :=stack [L-2:L]; 
if ENV.<O> 
then Instruction Breakpoint 
set dispatcher interrupt; 
sysstack [%1277] . <15>: =1 
halt 
t := sysstack[ %101]; 
while sysstack[t+2] .<8:15> < 

sysstack[A+2] .<8:15> 
do t:=sysstack[t+l]; 
if sysstack[CPCB+2].<8:15> < 

! sysstack[A+2] .<8:15> 

\
then DISP; 
insert A after t; RP:=RP-l 

B-5 



Appendix B: Instruction Set Definition 

o 0 

o 0 

o 0 
o 0 
o 0 

o 0 
o 0 
o 0 

o 0 

o 0 

o 0 
o 0 
o 0 
o 0 

o 0 
o 0 
o 0 

o 0 

o 0 
o 0 
o 0 

o 0 

o 0 
o 0 

B-6 

Table B-1. Instruction Set Definition (Continued) 

o 0 7 6*IPSEM\"P" a semaphore 

I ICB=wait time 
I IA=semaPhore addr 

o 0 7 7* VSEM "V" a semaphore 

o 
o 
o 

o 
o 
o 

o 

o 

o 
o 
o 
o 

o 
o 
o 

o 

o 
o 
o 

o 

o 
o 

A=semaphore addr 

1 0 reg STRP set RP 
1 1 reg STAR store A in reg 
1 2 reg NSAR non-destructive 

store A in reg 
1 3 reg LDRA load register to A 
1 4 reg ADRA add register to A 
1 5 reg SBRA subtract register 

from A 
1 6 reg ADAR add A to register 

1 

2 
2 
2 
2 

7 reglSBARlsub~ract A from 
reglster 

o 0 LADD logical add 
o 1 LSUB logical subtract 
o 2 LMPY logical multiply 
o 3 LDIV loqical divide 

I r· 
I 1 

2 0 4 LNEG logical negate 
2 0 5 LCMP logical compare 
2 0 6* FTL find position in 

time list 

BA=time value 

2 0 7*\DTL \delete from time 
list 

210 
211 
212 

213 

A=element address 

IADD integer add 
ISUB integer subtract 
IMPY integer multiply 

IDIV integer divide 

2 1 
2' 1 

4 \INEGlinteger negate 
5 ICMP integer compare 

\
sysstack[A+2] :=sysstack[A+2] 

I -I: 
lif < then 

j

' {set dispatcher interrupt: 
sysstack [%1277] : = 

sysstack[%1277] I 5} 
else {C:=l: 

sysstack[A+3] :=CPCB}: 
RP:=RP-2 

!!! Note!!! 
sysstack must be resident 

sysstack[A+2] :=sysstack[A+2] 
+1: 

if <= then 
{set dispatcher interrupt: 

sysstack[%1277] .<12>:=1} 
else sysstack[A+3] :=0; 
RP:=RP-l 

!!! Note!!! 
sysstack must be resident 

RP:=reg 
R[reg] :=A: RP:=RP-l 
R[reg] :=A 

RP:=RP+l: cc(A:=R[reg]) 
ccn(A:=A+R[reg] ) 
ccn (A:=A-R[reg]) 

ccn (R[reg] :=R[reg] +A) : 
RP:=RP-l 

ICCn(R[reg ] :=R[reg]-A): 
RP:=RP-l 

I
CCl(B:=B+A): RP:=RP-l 
ccl(B:=B-A): RP:=RP-l 
cc(BA:=B~*~A): V:=O 

Iv:= (C~>=~A) : 
f fC B' .= fCB ~ d~ A CB~ /~A) 
l~c(B); RP:=R~~\ - 1 I --,; 

Iccl(A:=-A) 
cc(B~:~A): RP:=RP-2 
RP:=RP+l: BA:=CB: 
C:=sysstack[%107] ; 
while C<>%107 do 

{BA:=BA-sysstack[C+2:C+3] : 
if < then done: 
C:=sysstack[C]} 

!!! Note!!! 
sysstack must be resident 

a:=A: t:=sysstack[%107]; 
RP:=RP+l: 
BA:=sysstack[t+2:t+3] ; 
while a <> t do 

{t:=sysstack[t] : 
BA:=BA+sysstack[t+2:t+3] } 

!!! Note!!! 
sysstack must be resident 

Iccn{B:=B+A): RP:=RP-l 
ccn(B:=B-A): RP:=RP-l 
V:=-{-32768<=B*A<=32767) : 
cc{B:=B*A); RP:=RP-l 
V:=-{-32768<=B/A<=32767) : 

/
CC{B:=B/A): RP:=RP-l 
ccn(A:=-A) 

ICC(B:A): RP:=RP-2 



o 0 

o 0 

o 0 
o 0 
o 0 
o 0 

o 0 
o 0 
o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

o 

o 

o 
o 
o 
o 

o 
o 
o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

2 

2 

2 
2 
2 
2 

2 
2 
2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 

1 

2 
2 
2 
2 

2 
2 
2 

2 

6*\RPV \read PROM version 
numbers 

7*\TRCE\add an entry to 
the trace table 
EDCBA=entry 

o \DADD\double 
1 DSUB double 
2 DMPY double 
3 DD1V double 

add 
subtract 
multiply 
divide 

4 \DNEG double negate 
S DCMP double compare 
6 MNGG move words while 

not duplicate 

D=destination 

\ \
c=source 
B=count 

I I
A=value<>to value 

of source 
7 MNDX move words while 

I I 
not duplicate 

FE=destination 
DC=source 
B=count 
A=value<>to value 

of source 
3 OXX\QST \qUad store 

3 4xx QLD quad load 

4 0 QADD quad add 

4 1 QSUB quad subtract 

4 2$ QMPY quad multiply 

4 3$ QD1V quad divide 

4 4$ QNEG quad negate 

4 S$!QCMPlquad compare 

RP:=RP+S: N:=O: Z:=li 
CBA:=cs prom numbers 
D:=ept pro~ numbers 
E:=i/o channel prom number 
if i/o channel not available 
then {N:=l: Z:=O} 
if TRBASE~<~TRL1M then 

{sysstack[TRACE:TRACE+4] := 
EDCBA; 

TRACE:=TRACE+Si 
if TRACE~>~TRL1M 
then TRACE:=TRBASE}; 

RP:=RP-S 
ccn(DC:=DC+BA); RP:=RP-2 
ccn(DC:=DC-BA)i RP:=RP-2 
ccn(DC:=DC*BA} i RP:=RP-2 
ccn(DC:=DC/BA); V:= BA=Oi 
RP:=RP-2 
ccn(BA:=-BA) 
cc(DC:BA}; RP:=RP-4 

while cc(B}<>"=" and 
stack [Cl<>A do 

{A:=stack[D] :=stack[C]; 
D:=D+li 
C:=C+l· 
B:=B-l}i 

RP:=RP-l 

while cC(B}<>"=" and 
xmem[DC]<>A do 

{A:=xmem[FE] :=xmem[DC] : 
FE:=FE+2; 
DC:=DC+2i 
B:=B-l}i 

RP:=RP-l 
adr:=(if 1=%230 then 0 

else R[I.<14:1S>+4])*4+A; 
stack[adr:adr+3] :=EDCB; 
RP:=RP-S 
adr:=(if 1=%234 then 0 

else R[1.<14:1S>+4])*4+A; 
RP:=RP+3: 
CC(DCBA:=stack[adr:adr+3]} 
ccn(HGFE:=HGFE + DCBA); 
RP:=RP-4 
ccn(HGFE:=HGFE - DCBA) ; 
RP:=RP-4 
V:=if 

-2**63<=HGFE*DCBA<=2**63-1 
then 0 else 1; 

HGFE:=HGFE * DCBA; 
cc(HGFE) ; 
R?:=RP-4 
V:=if DCBA=O then 1 else 0; 
HGFE:=HGFE / DCBA; 

I
CC (HGFE) : 
RP:=RP-4 
DCBA:=-DCBAi 

ICCn(DCBA} 
cc(HGFE:DCBA) 

B-7 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

0 0 0 2 4 6$/CQL Iconvert quad to IV:=if 0 <= DCBA <=2**16-1 
logical ! then 0 else 1; 

D:=A; 
RP: =RP-3 

0 0 0 2 4 7$ CQD convert quad to V:=if -2**31 <=DCBA<= 2**31-1 
double then 0 else 1· I 

DC:=BA; 
RP:=RP-2 

0 0 0 2 5 nnO QUP Iquad scale up !DCBA:=DBCA* 
10** (I.<13:14>+1); 

V:=if -2**63<=DCBA<=2**63-1 
then o else 1; 

cC(DCBA) 
0 0 0 2 5 nnl QDWN quad scale down DCBA:=DBCA/ 

10**(I.<13:14>+1) ; 
V:=O; cc(DCBA} ; 

0 0 0 2 6 0$ CQA convert quad to cc(FEDC} ; 
ASCII B:=B+Ai 

while A<>O do 
{B:=B-li 
bytedest(B} := 

%60+abs(FEDC) mod 10; 
FEDC:=FEDC/IO; 
A:=A-l} 

V:=if FEDC=O then 0 else 1; 
RP:=RP-6 

0 0 0 2 6 1$ CAQV convert ASCII to IV:=o, 
quad with initial N:=l; 
value while E<>O and V=O and N=l do 

{ccb(t:=bytedest(F» ; 
if N=l then 

{DCBA:=DCBA*lO + t&%17; 
V:=if DCBA<=2**63-1 

then 0 else 1· I 

F:=F+l· 
I 

__ .f1 
I I ~:=~-J..JJ 

I I 

iCC(El !cce if entire string 
! is ASCII digits. 
!ccg if not. 

I \ 

!Note: initial value (DCBA) 
should be positive. 

0 0 0 2 6 2$ CAQ convert ASCII to RP:=RP+4; 
quad DCBA:=O; 

V:=O; 
N:=l; 
W?ile E<>O and V=O and N=l do 

ccb(t:=bytedest(F» ; 
if N=l then 

{DCBA:=DCBA*lO + t&%17; 
V:=if DCBA<=2**63-1 

then 0 else 1· I 

F:=F+l· 
E:=E-11} 

jCC(El !cce if entire string 
lis ASCII digits. 
!ccg if not. 

0 0 0 2 6 3$ QRND quad round DCBA:=(if DCBA<O then DCBA-5 
else DCBA+5) / 10; 

V:=O; 
cc(DCBA) 

0 0 0 2 6 4$ CQI convert quad to IV:=if -2**15 <=DCBA<= 2**15-1 

\ 

integer then 0 else 1; 
D:=A; RP:=RP-3; 

B-8 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

0 0 0 2 6 5$\CDQ \convert double to I (t,u) :=BA; 
quad s:=if B<O 

then %177777 else 0; 
RP:=RP+2; 
DCBA:=(s,s,t,u) 

0 0 0 2 6 6$ CIQ convert integer to t:=A; 
quad s:=if A<O 

then %177777 else 0; 
RP :=RP+3; 
DCBA:=(s,s,s,t) 

0 0 0 2 6 7$ CLQ convert logical to t:=A;RP:=RP+3; 
quad DCBA:=(O,O,O,t) 

0 0 0 2 7 O*\FADD\floating add tl:=exponent{C} ; 
DC:=OC+BA t2:=exponent(A) ; 

if BA<>O and DC<>O 
and abs(tl-t2)<24 then 

{signl:=D.<O>; 
sign2:=B.<0>; 
D.<O>:=B.<O>:=l; 
exponent (C) :=0; 
exponent (A) :=0; 
~:=tl-t2; 
if s>=O then 

BA:=BA"'»"'s; 
else 

{DC:=DC"'»"'-s; 
DC:=:BA; 
tl:=t2} 

if signl=sign2 then 
{DC:=DC"'+"'BA; 
if carry then 

{DC:=DC"'»"'l; 
tl:=tl+l; 
D.<O>:=l}} 

else 
{DC:=DC"'-"'BA; 
if not carry then 

{DC:=-DC; 
signl:=-signl} 

if OC=O then 
tl:=signl:=O 

else 
while D.<O>=O do 

{DC:=DC"'«"'l; 
tl:=tl-l}} 

DC:=OC"'+"'%400; 
if carry then 

tl:=tl+l; 
if tl.<6>=1 then 

call overflow; 
D.<O>:=signl; 
exponent (C) :=tl} 

else 
if DC=O or tl-t2<=-24 then 

DC:=BA; 
cc (DC) ; RP:=RP-2 

0 0 0 2 7 lilFSUBlfloating subtract if BA<>O then 
DC:=DC-BA B.<O>:=-B.<O>; 

go to FADD 

B-9 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

0 0 0 2 7 2# I FMPY I floating multiply lif DC=D or BA=D then 

\ 

\DC:=DC*BA DC:=O 
else 

{tl:=exponent(C) ; 
t2:=exponent(A) ; 
exp:=tl+t2-255; 
sign:=D.<O> xor B.<O>; 
D.<O>:=B.<O>:=I; 
exponent (C) :=0; 
exponent (A) :=0; 
DCBA:=DC'*""BA; 
norm(DC); 
DC:=DC""+'%400; 
if carry then 

exp:=exp+l; 
if exp.<6>=1 then 

call overflow; 
D.<O>:=sign; 
exponent (C) :=exp} 

cc(DC}; RP:=RP-2 
0 0 0 2 7 3# FDIV floating divide if BA=O then 

DC:=DC/BA call overflow; 
if DC<>O then 

{tl:=exponent(C) ; 
t2:=exponent(A) ; 
exp:=tl-t2+256; 
sign:=D.<O> xor B.<O>; 
D.<O>:=B.<O>:=I; 
exponent (C) : =0; 
exponent (A) :=0; 
DC:=DC""/""BA; 
norm (DC) ; 
DC:=DC'+""%400; 
if carry then 

exp:=exp+l; 
if exp.<6>=1 then 

call overflow; 
D.<O>:=sign; 
exponent (C) :=exp} 

cc(DC); RP:=RP-2 
0 0 0 2 7 4# FNEG floating negate if BA<>O then 

BA:=-BA B.<O>:=-B.<O>; 
cc(BA) 

0 0 0 2 7 5# FCMP floating compare if D.<O> <> B.<O> then 
DC:BA cC(D:B) 

else 
{sign:=D.<O>; 
D.<O>:=B.<O>:=O; 
tl:=exponent(C}; 
t2:=exponent(A) ; 
if tl<>t2 then 

if sign=O then 
cc(tl:t2) 

else cc(t2:tl) 
else 

if sign=O then 
cc(DC:BA) 

else cc(BA:DC) } 
RP:=RP-4 

0 0 0 2 7 6#[CEF \convert extended texponent(C) :=exponent(A); 
I to floating IRP:=RP-2 

B-IO 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

0 0 0 2 7 7#!CEFR\convert extended \sign:=D.<O>; D.<O>:=l; 
to floating with exp:=exponent(A) ; 
rounding DC:=DC"+"%400; 

if carry then 
{exp:=exp+l; 
if exp.<6> then V:=l} 

D.<O>:=sign; 
exponent (C) :=exp; 
RP:=RP-2 

0 0 0 3 0 0# EADD extended add tl:=exponent(E) ; 
HGFE:=HGFE+DCBA t2:=exponent(A) ; 

if DCBA<>O and HGFE<>O 
and abs(tl-t2)<56 then 

{signl:=H.<O>; 
sign2:=D.<0>; 
H.<O>:=D.<O>:=l; 
exponent (E) :=0; 
exponent (A) : =0; 
s:=tl-t2; 
if s>=O then 

DCBA:=DCBA"»"S; 
else 

{HGFE:=HGFE"»"-S; 
HGFE:=:DCBA; 
tl:=t2} 

if signl=sign2 then 
tHGFE:=HGFE"+"DCBA; 
if carry then 

{HGFE:=HGFE"»"l; 
tl:=tl+l· 
H.<O>:=lJ} 

else 
{HGFE:=HGFE"-"DCBA; 
if not carry then 

{HGFE:=-HGFE; 
signl:=-signl} 

if HGFE=O then 
tl:=signl:=O 

else 
while H.<O>=O do 

{HGFE:=HGFE"«"l; 
tl:=tl-l}} 

HGFE:=HGFE"+"%400; 
if carry then 

tl:=tl+l; 
if tl. <6>=1 then 

call overflow; 
H.<O>:=signl; 

\ exponent (E) :=tl} 
else 

if HGFE=O or tl-t2<=-56 
then HGFE:=DCBA; 

cc(HGFE); RP:=RP-4 
0 0 0 3 0 1# ESUB extended subtract if DCBA<>O then 

HGFE:=HGFE-DCBA I D.<O>:=-D.<O>; 
goto EADD 

B-11 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

o 0 o 3 

o 0 o 3 

o 0 o 3 

o 0 o 3 

o 0 o 3 

B-12 

o 

o 

o 

o 

o 

2#\EMPY\extended multiply I IHGFE:=HGFE*DCBA 

I I 
\ \ 

3# EDIV extended divide 
HGFE:=HGFE/DCBA 

4# ENEG extended negate 
DCBA:=-DCBA 

5# ECMP extended compare 
HGFE:DCBA 

6# CDF convert double 
to floating 

\ 

\ 

lif HGFE=O or DCBA=O then 

I 
HGFE:=O 

else 

I 
{tl:=exponent(E); 
t2:=exponent(A) ; 
exp:=tl+t2-255; 

\ 
sign:=H.<O> xor D.<O>; 
H.<O>:=D.<O>:=l; 
exponent (E) :=0; 
exponent (A) :=0; 
HGFE:=HGFE~*~DCBA; 

norm (HGFE) ; 
HGFE:=HGFE~+~%400; 
if carry then 

exp:=exp+l; 
if exp.<6>=l then 

call overflow; 
H.<O>:=sign; 
exponent (E) :=exp} 

cc(HGFE); RP:=RP-4 
if DCBA=O then 

call overflow; 
if HGFE<>O then 

{tl:=exponent(E} ; 
t2:=exponent(A) ; 
exp:=tl-t2+256; 
sign:=H.<O> xor D.<O>; 
H.<O>:=D.<O>:=l; 
exponent (E) :=0; 
exponent (A) :=0; 
HGFE:=HGFE~/~DCBA; 
norm (HGFE) ; 
HGFE:=HGFE~+~%400; 

if carry then 
exp:=exp+l; 

if exp.<6>=l then 
call overflow; 

H.<O>:=sign; 
exponent(E} :=exp} 

cc(HGFE); RP:=RP-4 
if DCBA<>O then 

D.<O>:=-D.<O>; 
CC (DCBA) 
if H.<O> <> D.<O> then 

cc(H:D) 
else 

{sign:=H.<O>; 
H.<O>:=D.<O>:=O; 
tl:=exponent(E) ; 
t2:=exponent(A) ; 
if tl<>t2 then 

if sign=O then 
cc(tl:t2) 

else cc(t2:tl) 
else 

if sign=O then 
cc(HGFE:DCBA) 

else CC(DCBA:HGFE)} 
sign:=B.<O>; exp:=3l+256; 
if sign=l then BA:=-BA; 
if BA<>O then 

{norm (BA) ; 
exponent (A) :=exp; 
B.<O>:=sign} 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

0 0 0 3 0 7 ICDl \c:onvert double to if B+A.<O> <> 0 then V:=l; 
Integer B:=Ai RP:=RP-1 

0 0 0 3 1 0# CFlR convert floating t:=15+256-exponent(A) : 
to integer with sign:=B.<O>; 
rounding if -2**15 <= BA <= 2**15-1 

then {B.<O>:=l; 
BA:=BA"'»"'t; 
BA:=BA"'+"'%100000; 
if sign=l then B:=-B 
else if B.<O>=l then 

V:=l} 
else V:=l; 

l#\CFl 
cc(B); RP:=RP-1 

0 0 0 3 1 convert floating t:=15+256-exponent(A) ; 
to integer sign:=B.<O>; 

if -2**15 <= BA <= 2**15-1 
then {B.<O>:=l; 

BA:=BA"'»""t; 
B:=-B} if sign=l then 

else V:=l; 
cc(B) ; RP:=RP-1 

0 0 0 3 1 2# CFD convert floating t:=31+256-exponent(A) ; 
to double sign:=B.<O>; 

if -2**31 <= BA <= 2**31-1 

I 
then {B.<O>:=l; 

exponent (A) :=0; 
BA:=BA"'»""t; 
if sign=l then 

BA:=-BA} 
else V:=l; 

3#\CFDR 
cc(BA) 

0 0 0 3 1 convert floating t:=31+256-exponent(A) ; 
to double with sign:=B.<O>; 
rounding if -2**31 <= BA <= 2**31-1 

then {B.<O>:=l; 
exponent (A) :=0; 
BAs:=BAs""»""t; 
BAs:=BAs""+""%100000: 
if sign=l then 

BA:=-BA 
else if B.<O>=l then 

V:=l} 
\ else V:=l: 
cc(BA) 

0 0 0 3 1 4# CED convert extended t:=31+256-exponent(A) : 
to double sign:=D.<O>: 

if -2**31 <= DCBA <= 2**31-1 
then {D.<O>:=l; 

DC:=DC""»""t: 
if sign=l then 

DC:=-DC} 
else V:=l: 

ICC(DC): RP:=RP-2 

B-13 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

0 0 0 3 1 Si!CEDR!COnvert extended t:=31+256-exponent(A) ; 
to double with sign:=D.<O>; 
rounding if -2**31 <-= DCBA <= 2**31-1 

I I then {D.<O>:=l; 
DCB:=(DCB'»'t) 

'+'%100000; 
if sign=l then 

DC:=-DC 
else if D.<O>=l then 

V:=l} 
else V:=l; 

cc(DC); RP:=RP-2 
0 0 0 3 1 6# CEIR convert extended t:=15+256-exponent(A) ; 

to integer with sign:=D.<O>; 
rounding if -2**15 <= DCBA <= 2**15-1 

\ 

then {D.<O>:=l; 
DC:=(DC'»'t) 

'+'%100000; 
if sign=l then D:=-D 
else if D.<O>=l then 

V:=l} I else V:=l, 
cc (D); RP: =RP-3 

0 0 0 3 1 7# IDXD calculate index t:=stack[A]; 
offset and test bc:=t.<O>; t.<O>:=O; 
indices for indv:=O; psize:=l; 
bounds violation s:=A; 

while t>O do 
(bounds table {lower:=stack[s:=s+l] ; 

Jin data space) upper:=stack[s:=s+l] ; 
if B<lower and bc=O then 

JH._', ". -no 
\ 

l Y • --.&.. , ... v, 
I cc (-1) ; R[7] :=B} 

\ 

if B>upper and bc=O then 
{V:=l; t =0· 
cc (1) ; R[7] :=B} 

size:=upper-1ower+1; 
B:=B-lower; 
indv:=indv+psize*B; 
psize:=psize*size; 
RP:=RP-1; t:=t-1} 

if v=O then 
{R[7] :=in1v; 
cc(R[7] ) 

RP:=RP-1 
0 0 0 3 2 O#\CFQ \convert floating \t:=63+256-exponent(A) ; 

to quad sign:=B.<O>; RP:=RP+2; 

I \ 

if -2**63 <= DC <= 2**63-1 
then {D.<O>:=l; 

I \ 

exponent (C) :=0; 
B:=A:=O; 
DCBA:=DCBA'»'t; 
if sign=l then 

DCBA:=-DCBA} 
else V:=l; 

cc(DCBA) 

B-14 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

0 0 0 3 2 1# CFQR convert floating t:=63+256-exponent(A) ; 
to quad with sign:=B.<O>; RP:=RP+2; 
rounding if -2**63 <= DC <= 2**63-1 

then {D.<O>:=l; 
exponent (C) :=0; 
B:=A:=s:=O; 
DCBAs:=(DCBAs~»~t) 

~+~%100000; 

if sign=l then I DCBA:=-DCBA} 
else V:=l; 

cc(DCBA) 
0 0 0 3 2 2# CEQ convert extended t:=63+256-exponent(A) ; 

to quad sign:=D.<O>j 
if -2**63 <= DCBA <= 2**63-1 
then {D.<O>:=l; 

exponent (A) :=0; 
DCBA:=DCBA~»~t; 

if sign=l then 
DCBA:=-DCBA} 

else V:=l; 
cc(DCBA) 

0 0 0 3 2 3# CEQR convert extended t:=63+256-exponent(A) ; 
to quad with sign:=D.<O>; 
rounding if -2**63 <= DCBA <= 2**63-1 

then {D.<O>:=l; 
exponent (A) :=0; 
s:=O; 
DCBAs:=(DCBAs~»~t) 

~+~%100000; 

if sign=l then 
DCBA:=-DCBA} 

else V:=l; 
cc (DCBA) 

0 0 0 3 2 4# CQF convert quad sign:=D.<O>; exp:=63+256; 
to floating if sign=l then 

DCBA:=-DCBA; 
if DCBA<>O then 

{norm (DCBA) ; I exponent (C) :=exp; 
D.<O>:=sign} 

RP:=RP-2 
0 0 0 3 2 5# CFE convert floating G:=exponent(A) ; 

to extended exponent (A) :=0; 
H:=Oj 
RP:=RP+2 

0 0 0 3 2 6# CDFR convert double sign:=B.<O>; exp:=31+256; 
to floating with if sign=l then 
rounding BA:=-BA; 

if BA<>O then 
{norm (BA) ; 
BA:=BA~+~%400; 

if carry then 
exp:=exp+l; 

exponent (A) :=expi 

ICID 
I B.<O>:=sign} 

0 0 0 3 2 7 Iconvert integer /H:=Ai A .= A»15; RP: =RP+l 
to double 

B-1S 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

0 0 0 3 3 Oi CQFR convert quad sign:=D.<O>: exp:=63+256: 
to floating with if sign=l then 
rounding OCBA:-=-DCBA: 

if DCBA<>O then 
{norm (DCBA) : 
DC:=OC'+'%400; 
if carry then 

exp:=exp+l: 
exponent (C) :=exp: 

\ D.<O>:=sign} 
RP:=RP-2 

0 0 0 3 3 Ii ClF convert integer sign:=A.<O>: exp:=15+256: 
to floating if sign=l then A:=-A: 

if A<>O then 
{norm (A) : 
H:=exp: 
A. <0> :=sign} 

else H:=O: 
RP:=RP+l 

0 0 0 3 3 2i lClE convert integer sign:=A.<O>: exp:=15+256; 
to extended if sign=l then A:=-A; 

! 
H:=G:=O: 
if A<>O then 

! {norm (A) ; 
F:=exp: 
A.<O>:=sign} 

else F:=O: 
RP:=RP+3 

0 0 0 3 ; 3 3 XSMX checksum extended while A<>O do 
block {D:=D xor xmem[CB] : 
D=initial checksum A:=A-l: 
CB=block address CB:=CB+2}: 
A=("!(")llnt RP:='RP-1 

0 0 0 3 3 4~1"'T\t;' 'convert double Isign:=B.<O>: exp:=31+256 i 1t"1'-U~ 
to extended lif sign=l then BA:=-BAi 

H:=Oi 
if BA<>O then 

{norm(BA} : 
G:=exPi 

\else 
B.<O>:=sign} 

G:=O: 
RP:=RP+2 

0 0 0 3 3 5# CQER convert quad sign:=D.<O>: exp:=63+256; 
to extended with if sign=l then 
rounding DCBA:=-DCBA: 

if YCBA<>O then 
norm (DCBA) : 
DCBA:=DCBA'+'%400: 
if carry then 

exp:=exp+l: 
exponent (A) :=expi 
D.<O>:=sign} 

0 0 0 3 3 6# CQE convert quad sign:=D.<O>: exp:=63+256: 

I to extended if sign=l then 
DCBA:=-DCBA: 

I lif DCBA<>O then 
{norm (DCBA) ; 

I \ 
exponent (A) :=expi 
D.<O>:=sign} 

B-16 



o 0 

o 0 
o 0 
o 0 

o 0 

o 0 

o 0 

Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

o 

o 
o 
o 

o 

o 

o 

3 

3 
3 
3 

3 

3 

3 

3 

4 
4 
4 

4 

4 

4 

7*\CEI \con~ert extended 
to Integer 

o 
1 
2 LWUC load word from 

user code space 
3 \XSMG\checksum block 

C=initial checksum 
B=block address 
A=count 

4* IDXl calculate index 

\
offset and test 
index bounds 
for 1 dimension 

(bounds table 
in code space) 

5* IDX2 calculate index 
offset and test 
index bounds 

I I 

for 2 dimensions 

(bounds table 
in code space) 

t:=15+256-exponent(A) i 
sign:=D.<O>; 
if -2**15 <= DCBA <= 2**15-1 
then {D.<O>:=l; 

D:=D"»"t; 
if sign=l then D:=-D} 

\ 
else V:=li 

cc(D); RP:=RP-3 
*** undefined *** 
*** undefined *** 

cc (A:=mem[2,A]) 

while A<>O do 
{C:=C xor stack[B]; 
A:=A-l; 
B:=B+l}; 

RP:=RP-2 
lower:=code[A] ; 
upper:=code[A+l] ; 
if B<lower then 

{V:=l: cc (-1) i 
R[7] :=B} 

if B>upper then 
{V:=l; cc(l); 

R[7] :=B} 
if v=o then 

I 
{R[7] :=B-lower: 
cc (R[7]) } 

RP:=RP-2 
lower:=code[A] : 
upper:=code[A+l] : 
if B<lower then 

{V:=l: cc (-1) ; 
R[7] :=B} 

if B>upper then 
{V:=l; cc(l); 
R [7] : =B} 

s:=upper-lower+l; 
B:=B-lower; 
lower:=code[A+2] ; 
upper:=code[A+3] ; 
if C<lower then 

\ 
{V:=l: cc(-l): 

R[ 7] : =C} 
if C>upper then 

{V:=l; cc(l); 
R [7] : =C} 

if V=O then 

I 
{R[7] :=(C-lower)*s+B: 
cc (R [7] ) } 

RP: =RP-3 

B-17 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

0 0 0 3 4 6ilIDX3!Calculate index !indv:=O; psize:=l; 
offset and test Ifor i=l to 3 by 1 do 

,index bounds {lower:=code[AJ; 

I 
Ifor 3 dimensions I upper:=code[A:=A+ll, 

if B<lower then 
(bounds table {V:=l; 
in code space) I cc(-ll, R[71 :=BJ 

if B>upper then 
{V:=l; 
cc (1); R[7] :=B} 

size:=upper-lower+l; 
B:=B-lower; 
indv:=indv+psize*B; 
psize:=psize*size; 
B:=A+l; 
RP:=RP-l} 

if V=O then 
{R[7] :=indv; 
cc (R [7]) } 

RP:=RP-l 
0 0 0 3 4 7# IDXP calculate index t:=code[A] ; 

I 
offset and test bc:=t.<O>; t.<O>:=O; 
indices for indv:=O; psize:=l; 
bounds violation s:=A; 

while t>O do 
(bounds table {lower:=code[s:=s+l] ; 
in code space) upper:=code[s:=s+l] ; 

if B<lower and bc=O then 
{V:=l; t:=O; 
cc(-l); R[7] :=B} 

if B>upper and 
{V:=l; t:=O; 

bc=O then 

cc (1); R[ 7] : =B} 
size:=upper-lower+l; 
B:=B-lower; 

I i~nv~=innv+psize*B, , 
psize:=psize*size; 

I RP:=RP-l; t:=t-l} 
if V=O then I (R[71 :=indv, 

cc (R[7]) } 
RP:=RP-l 

0 0 0 3 5 0 LWAS load SG word via A cc(A:=dest(A» 
0 0 0 3 5 1 SWAS stor SG word via A dest (A) :=B; RP:=RP-2 
0 0 0 3 5 2 LDAS load SG double RP:=RP+l; 

via A cc(BA:=dest(B:B+l» 
0 0 0 3 5 3 SDAS store SG double dest(A:A+l) :=CB; 

via A RP:=RP-3; 
0 0 0 3 5 4 LBAS load SG byte via A ccb(A:=bytedest(A» 
0 0 0 3 5 5 \SBAS store SG byte bytedest(A) :=B; 

via A RP:=RP-2 
0 0 0 3 5 6 \CDX \count duplicate while B<>O and 

words extended xmem[DC]=xmem[DC-2] do 

! 
!DC=buffer address {A:=A+l; 
B=buffer size B:=B-l; 

\DFS 
A=duplicate count DC:=DC+2} 

0 0 0 3 5 7 deposit field in cc (dest (A) : = (dest (A) & -B) 

\ 

SG memory I (C & B» ; 
RP:=RP-3 

0 0 0 3 6 0 !LWA Iload word via A cc(A:=stack[A]) 
0 0 0 3 6 1 

I
SWA /store word via A \staCk[Al :=B, RP:=RP-2 

0 0 0 3 6 2 LDA Iload double via A RP:=RP+li 
cc(BA:=stack[B:B+l]) 

B-18 



o 0 
o 0 

o 0 

Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

o 
o 

o 

3 
4 

4 

7 
o 

o 

7 
0* WWCS write WCS 

\ 

D=WCS address 
C=buffer map 
B=buffer address 

A=ucode word count 

1* VWCS verify WCS 
D=WCS address 
C=buffer map 
B=buffer address 

\A=ucode word count 

while A>O do 
{WCS[D] :=mem[C,B] Amem [C,B+l] 

Amem [C ,B+2] • <0: 3>; 
if (A:=A-l)=O 
then goto done; 
D:=D+l;B:=B+2i 
WCS[D] :=mem[C,B].<8:15> 

\ 
Amem(C,B+l] 
Amem [C,B+2] .<0:11>; 

D:=D+li B:=B+3i A:=A-li 
} i 
done: N:=Oi Z:=li RP:=RP-4 

!!! Note!!! 
all memory referenced must be 
present 
N:=OiZ:=li 
while Z and A>O do 
{if WCS[D] <>mem[C,B] 

"'mem[C,B+l] 
"'memJC,B+2].<0:3> 

then {N:=liZ:=O}i 
if N or (A:=A-l)=O 
then goto donei 
D:=D+liB:=B+2; 
if WCS[D]<>mem[C,B].<8:15> 

"'mem[C,B+l] 
"'mem[C,B+2] .<0:11> 

then {N:=liZ:=O} 
}~lse {D:=D+liB:=B+3;A:=A-l}i 

done: RP:=RP-4 
!!! Note I!! 

all memory referenced must be 
present 
bus packets may not be 
received correctly while a 
VWCS is executing 

B-19 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

o 0 

o 0 
o 0 

o 0 

o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

o 0 

a a 

o a 

o a 

o a 

B-20 

a 

a 
a 

o 

o 
o 
o 
o 
a 
a 
o 

o 

a 

a 

o 

a 

4 o 

4 a 
4 a 

4 0 

4 a 
4 a 
4 1 
4 1 
4 1 
4 1 
4 1 

4 1 

4 1 

4 1 

4 2 

4 2 

2*\RWCS\read WCS 
D=WCS address 

3 
4* 5MBP 

C=buffer map 
B=buffer address 
A=ucode word count 

set memory brkpt 
B.<O>=read flag 

.<l>=execute flag 

.<2>=write flag 

\ 
. <9: 15>=high

order addr 
A=low-order addr 

\
while A>O do 
{mem[C,B] Amem[C,B+l] 

Amem[C,~+2].<O:3>:=WCS[D] : 
if (A:=A-l)=O then 
then goto done; 
D:=D+l;B:=B+2: 
mem[C,B].<8:l5>Amem [C,B+l]A 

mem[C,B+2] .<O:ll>:=WCS[D]: 
D:=D+l:B:=B+3:A:=A-l}: 

done: RP:=RP-4 
!!! Note!!! 

all memory referenced must be 
present 

*** undefined *** 
breakpointmode:=B.<O:2>: 
breakpointaddress:= 

B.<9:l5>AA: 
BPADDR:=BA: RP:=RP-2: 

!!! Note!!! 
the address is a physical 
memory address 
any and all combinations of 
access flags may be set 
BA=OD will disable the trap 

5*IFRSTlfirmware reset \reset ~nd stop instruction 
executIon 

6 LBX load byte extended ccb(B:=bxmem[BA]):RP:=RP-l 
7 SBX store byte extnd. bxmem[BA] :=C: RP:=RP-3 
a LWX load word extended cc(B:=xmem[BA]) :RP:=RP-l 
1 SWX store word extnd. xmem[BA] :=C: RP:=RP-3 
2 \LDDX load double extnd. cc(BA:=xmem[BA:BA+3]) 
3 SDDX store dbl. extnd. xmem[BA:BA+3] :=DC:RP:=RP-4 
4 I T.ny I, ,",.:arl rTl1.:arl <=>"I"t-onrlon ~p ~ ="RP+2 ~ I- x -- 1---- .,.--- ----------.\-_. - - . 

I 
I ICC(DCBA:=xmem[DC:DC+7]) 

5 SQX \store quad xmem[BA:BA+7] :=FEDC: 
extended RP:=RP-6 

6' \DFX \deposit field cc(xmem[BA] :=(xmem[BA] & 
extended -C I (D & C»); 

7 MVBX move bytes 
extended 
ED=destination 

\ 
address 

CB=source address 
A=byte count 

o MBXR move bytes 
extended reverse 
ED=destination 

\ 
address 

CB=source address 
A=byte count 

1 MBXX move bytes extnd. 
and checksum 
F=initial xsum 
ED=destination 

address 

\
CB=source address 
A=byte count 

RP:=RP-4': 
while A<>O do 

{bxmem[ED] :=bxmem[CB] : 
ED:=ED+l: 
CB:=CB+l: 
A:=A-l:}: 

RP:=RP-5: 
while A<>O do 

{bxmem[ED] : =bxmem[CB] : 
ED:=ED-l: 
CB:=CB-l: 
A:=A-l:}: 

RP: =RP-5: 
w1)ile A<>O do 

{bxmem[ED] :=t:=bxmem[CB] : 
F:=F xor t: 
ED:=ED+l: 
CB:=CB+l: 
A:=A-l:}; 

RP:=RP-5 



o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

o 0 

Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

o 

o 

o 

o 

o 

o 

o 

4 

4 

4 

4 

4 

4 

4 

2 

2 

2 

2 

2 

2 

3 

2 \ CMBX \ compare bytes 
extended 
ED=destination 

address 
CB=source address 
A=byte count 

3* CRAX convert reI. to 
abs. ext. address 

4* RSPT read segment page 
table entry 

\BA=ext. address 

5* WSPT write segment page 
table entry 

C=entry 
BA=ext. address 

\ 

6* RXBL read extended base 
and limit 

7* SXBL set extended base 
and limit 

0* LCKX lock down extended 
memory 
D.<O>=lock only if 

already locked 
C=lock count 
BA=ext. address 

N:=O; Z:=l; 
while Z and A<>O do 

{cc(bxmem[ED] :bxmem[CB]); 
if Z then 

{A:=A-l;ED:=ED+l; 
CB : =CB+J; } } ; 

RP:=RP-5 
if B.<0:14>=0 then 

{B.<0:14>:=CMSEG[DS]} 
else if B.<0:14><=2 then 

{B.<0:14>:=CMSEG[B.<0:14>]} 
else if B.<0:14>=3 then 

{B.<0:14>:=CMSEG[cmap]} 
else if B.<O>=O then 

{BA:=BA+segment base}; 
B.<O>:=l; 
xa: =CRAX (BA) ; 
p:=xa.<15:20>; 
s:=xa.<2:14>; 
K:=O; 
if MAP[15,p mod 32+32] 

= s"p.<lO> then 
{B:=MAP[15,p mod 32]} 

else 
{if SEG[s*2].<0>=0 then 

B:=MAP [SEG [s*2] • <0: 4> ,p] 
else 
{if p<SEG[s*2] .<9:15> then 

B:=mem[SEG[s*2].<5:8>, 
SEG[s*2+1)+p] 

else {B:=l; K:=l}}}; 
RP:=RP-l 
xa : =CRAX (BA) ; 
p:=xa.<15:20>; 
s:=xa.<2:14>; 
if MAP[15,p mod 32+32] 

= s"p.<lO> then 
{MAP[15,p mod 32] :=C} 

else 
{if SEG[s*2].<0>=0 then 

MAP [SEG [s * 2] • < 0 : 4> , p] : =C 
else 
mem[SEG[s*2] .<5:8>, 

SEG[s*2+1]+p] :=C}; 
RP:=RP-3; 
RP:=RP+4; 
DCBA:=MAP[14,60:63] 
MAP[14,60:63] :=DCBA; 
RP:=RP-4 
m:=RSPT(BA) ; 
p:=m.<0:12>; 
if m.<15>=0 and (D.<O>=O 

or PHYSEG[p]<O) then 
{if PHYSEG[p] < 0 

then 
{PHYSEGfP] :=PHYSEG[p]-C; 
K := 0 

else 
{PHYSEG[p] :=-C; 

K := I} 
Z:=l; N:=O} 

else {Z:=O; N:=l}; 
RP:=RP-4 

B-21 



Appendix B: Instruction Set Definition 

B-22 

Table B-1. Instruction Set Definition (Continued) 

o 0 

o 0 

o 0 
o 0 

o 0 
o 0 
o 0 
o 0 

o 0 

o 0 

o 

o 

o 
o 

o 
o 
o 
o 

o 

o 

4 

4 

4 
4 

4 
4 
4 
4 

4 

4 

3 

3 

3 
3 

3 
3 
3 
4 

4 

4 

00044 

o 0 0 4 4 

o 0 0 4 4 

l*jULKX!unlock extended 
\ memory 
I ,D=map entry mask 

C=unlock count 
BA=ext. address 

2* CMRW CME read/write 
B.<0:3>=map 
A=word address 

3 
4* RMEM read mem 

5* WMEM write mem 
6* RSMT read from asp 
7* WSMT write to asp 
0* RIBA read INTB and INTA 

registers 
l*lsVMP\save map entries 

2*lxSTR XRAY start timer 
, 'n_~~~~h'~ &,~~ 

I IC:~ff;;t~t~~~~tr 

I \
BA=extended addr 

of XRAY ptr 

\ \ 

I I 

3*\XSTP XRAY stop timer 
D=disable flag 
C=offset to cntr 
BA=extended addr 

of XRAY ptr 

I
m:=RsPT(xa:=cRAX(BA» ; 
p:=m.<0:12>; 
if m.<15>=O and 

[x:=PHYSEG[p]+C)<=O then 
tif x<>O then PHYSEG[p] :=x 
else 

{PHYSEG[p] :=xa.<2:l4>; 
WSPT( BA, m&D )}; 

ccz (x) } 

\
else {Z:=O: N:=l}; 
RP:=RP-4 

IN:=O;Z:=l; 
if I/O locked out then 

{mem[B.<0:3>,A] 
:=mem[B.<0:3>,A] ; 

free I/O channel; 
if CME interru~t then Z:=O} 

else {N:=l; Z:=OS; 
RP:=RP-2 

*** undefined *** 
cc(B:=mem[B.<0:3>,A]) ; 
RP:=RP-l 
mem[B.<0:3>,A] :=C; RP:=RP-3 
enable read from asp 
write first character to asp 
RP:=RP+2; 
B:=INTB; A:=INTA 
m:=word:=O; 
while word<%2000 do 
{memory[2,word] := 

MAP[m.<12:l5>,m.<0:5>] 
m:=m+%2000; 
if alu carry then m:=m+l; 
word:=word+l} 

if (t:=xmem[BA])<>O then 
{a:-~4CCCC~(t+C)~O: 
if xmem[a)<>D then 

{xmem[a] :=xmem[al+l; 
a:=a+2; 
if (a+7) .<0:5> <> a.<0:5> 

then 
Instruction Failure; 

xmem[a:a+7] :=xmem[a:a+7] 
-sysstack[%103:%106] 
-microsecond counter}}; 

RP:=RP-4 
if (t:=xmem[BA])<>O then 
{a:=%40000~(t+C)~0; 
if xmem[a]<>D then 

{xmem[a] :=xmem[a]-l; 
a:=a+2; 
if (a+7) .<0:5> <> a.<0:5> 

then 
Instruction Failure; 

xmem[a:a+7] :=xmem[a:a+7] 

\ 
+sysstack[%103:%106] 
+microsecond counter}}; 

\ 
RP:=RP-4 

4 SCS set code segment if ENV.CS=l or ENV.LS=l 

I 
BA=byte address in then B.<0:14>:=3 

current code else B.<0:14>:=2; 
5*ILQASlload SG quad via A\RP:=RP+3; 

CC(DCBA:=sysstack[A:A+3]) 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition {Continued} 

00044 

00044 

00045 

00045 

00045 

00045 

00045 

00045 

o 0 0 7 7 
001 
002 
003 

o 0 4 0-- -
o 0 4 4-- -
005 

006 

007 
1 0 0 
1 0 Oxx -
104 
1 0 4xx -
I 1 0 O .... ~ -

6*ISQASI~tore SG quad via 

7* RCHN reset I/O channel 
I
s y sstaCk[A:A+3] :=EDCB; 
RP:=RP-5 
if i/o channel available then 
{if A>=O 
then channel ioreset 
else channel lockup 

at %0777; 
N:=O; Z:=l} 

else {N:=l; Z:=O}; 
RP:=RP-l 

0* BNDW bounds test words if A'>' L then 
cc(C:=l) 

1 BPT 

C=word address in 
stack 

B=buffer size in 
words 

A=number of words 
of parameters 
and stack marker 

instruction 
breakpoint trap 

else 
if B=O or (C'<='L-A and 
C+B-l'<='L-A and C'<='C+B-l) 
or (C'>'L+350 and 
C'<='C+B-l and 
(C+B-l) • <0: 5> < 

SEG[CMSEG[0]*2].<9:15» 
then cc(C:=O) 
else cc(C:=l); 
RP:=RP-2 
if ENV.<l> = 0 
then interrupt via SIV #19 
ENV . < 1> . = 0; 
i:=BPBASE; 
do 

{if sysstack[i]=CMSEG[cmap] 
and sysstack[i+l]=P-l 

then {I:=sysstack[i+2]; 
roma:=EPT[I]}; 

i:=i+BPSIZE} 

2* BCLD bus cold load 

until i '>' BPLIM; 
Instruction failure 
simulate a bus cold load 
from the panel 

3*\TPEFltest par~ty ~rror 
freeze Clrcults 

RP:=RP+l; 
A .= if IPU error then 1 

4 

5 \ 

7 

SCMP set code map 

CMPI compare immediate 
ADDS add to S 
LADI logical add 

immediate 

else if MCB error then 2 
else if CCD error then 3 
else 0 

l

if A.<0:3>=0 
then A.<0:3>:=cmap 

I ..• undefined •• * 

cc(A:imm); RP:=RP-l; 
S:=S+imm 
ccl (A:=A'+'imm) 

ORRI OR right immediatelcc(A:=AII.<8:15» 
ORLI OR left immediate cc(A:=A (1.<8:15>'«'8» 
LDLI load left RP:=RP+l; 

immediate ICC(A:=imm rotate 8) 
ANRI AND right cc(A:=A&imm) 

immediate 
ANLI AND left immediate cc(A:=A&(imm rotate 8» 
LDI load immediate RP:=RP+l; cc(A:=imm) 
LDXI load x immediate cc(X:=imm) 
ADDlladd immediate ccn(A:=A+imm) 
ADXI add x immediate ccn(X:=X+imm) 
BIC branch if carry if K then branch 

B-23 



Appendix B: Instruction Set Definition 

B-24 

Table B-1. Instruction Set Definition (Continued) 

I 1 
I 1 
I 1 

I 1 
I 1 

I 1 

I 1 
I 1 

1 0-- -
2 0-- -
3 0--

4 0-- -
5 0-- -

6 0-- -

7 0-- -
o 4-- -

I 1 Oxx4-- -

I 1 
I 1 

I 1 

I 1 

4 4-- -
5 4-- -

6 4-- -

7 4-- -

I 2 OxxO-- -

I 2 Oxx4-- -

o 2 

1 2 

o 2 

1 2 

o 2 
o 2 
o 2 
o 2 
o 2 
o 2 
o 2 

4 n r 

4 n r 

5 0-- -

5 0-- -

5 4 
6 4 
5 5 
6 5 
5 6 
6 6 
5 7 
6 7 
5 4-- -

- IBGTRlbranch if greater lif -(N!Z) then branch 
BEQL branch if equal lif Z then branch 
BGEQ branch if greater if - N then branch 

or equal 
BLSS branch if less 
BNEQ branch if not 

equal 

if N then branch 
if - Z then branch 

BLEQ branch if less or if Nlz then branch 

c 

equal 
BNOe branch no carry 
BUN branch 

unconditional 
BOX branch on X 

BAZ branch on A zero 
BANZ branch on A 

BNOV 

BSUB 

LWP 

LBP 

nonzero 
branch if no 
overflow 
branch to 
subroutine 
load word from 
program 
load byte from 
program 

PUSH push to stack 

I I 
c lpop Ipop from stack 

I 

!
RSUB return from 

subroutine 
- \EXIT\exit procedure 

LWXX 

SWXX 

LBXX 

SBXX 

load word extended 
indexed 
store word extnded 
indexed 
load byte extended 
indexed 
store byte extnded 
indexed 

if - K then branch 
branch 

lif X<A then {X:=X+l~ branch} 
else RP:=RP-l 

if A=O then branch~ RP:=RP-l 
if A<>O then branch~ 
RP:=RP-l 
if - V then branch 

stack[S:=S+l) :=P~ branch 

RP:=RP+l~ 
cc(A:=code[branchadr+X) 
RP:=RP+l~ 
adr:=(if indirect then 

code [dba) else 0) 
+dba"'«"'l+Xi 

I A:~cOde[adr.<0:14> +(dba&%100000)]. 
<8*adr.<15>:8*adr.<15>+7>~ 

ccb(A) 
stack [S+l:S+c+l) 

: =R [ (r -c) mod 8: r] ~ . 
IRP:=n; S:=S+c+l 

" 

R [ (r -c) mod 8: r] 
: =stack [S-c: S] ~ 

RP:=n~ S:=S-c-l 
P:=stack [S] ~ 
S:=S-I.<8:15> 
( S , P , ENV , L) : = ( 

L-I.<8:15>, 
stack[L-2] , 
(t:=stack[L-l])&ENV&%173000 

I 
stack[L-l]&%4740 
ENV&%37, stack[L]) ~ 

if t.<O> 
then Instruction Breakpoint 
cc(A:=xmem[A«l+xbase]) 

xmem[A«l+xbase] :=Bi 
RP:=RP-2 
ccb(A:=bxmem[A+xbase]} 

bxmem[A+xbase) :=B~ 
RP:=RP-2 o 2 

1 2 
o 2 6 OOmssd n MOVW move words 

*** undefined *** 
while A>O do 

{dest (e) :=source (B) i 
A:=A-l~ B:=B+movestep; 

I e:=e+movestep}; 
IRP:=n 

1 



o 2 

1 2 

1 2 

1 2 

1 2 

o 2 

1 2 

0 3 

0 3 

0 3 

0 3 

0 3 

Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

6 02mssd n \ COMW I compare words 

6 OOmssd n \MOVB\move bytes 

6 02mssd n COMB compare bytes 

6 40mssd n SBW scan bytes while 

6 42mssd n SBU scan bytes until 

7 PCAL procedure call 

7 - \XCAL external call 

0 0 - ILLS Ilogical left shift 

0 1 LRS logical right 
shift 

0 2 ALS arithmetic left 
shift 

0 3 - lARS \arithmetic right 
shift 

0 4 ... - - - I I 

\
N:=O; Z:=l; 
while Z and A>O do 

{cc(dest(C)':'source(B» ; 
if Z then 
{A:=A-l; B:=B+movestep; 
C:=C+mov:estep}}; 

RP:=n 
while A>O do 

{bytedest(C) :=bytesource(B); 
A:=A-l; B:=B+~ovestep~ 
C:=C+movestepj; 

RP:=n 
N:=O; z:=l~ 
while Z and A>O do 

{cc(bytedest(C) : 
bytesource(B» ; 

if z then 
{A:=A-l; B:=B+movestep; 

\ 
c:=c+movestep}}; 

RP:=n 
while bytesource(B)<>O and 

bytesource(B)=A do 
B:=B+movestep 

K:=bytesource(B)=O; RP:=n 
while bytesource(B) <>0 and 

bytesource(B)<>A do 
B:=B+movestep 

K:=bytesource(B)=O; RP:=n 
stack[S+1:S+3] :=(P,ENV,L); 
t:=I.<7:15>, 
if - PRIV then 
{if t>=code[O] then 
{if t>=code[l] 
then priv trap~ 
PRIV:=l}}; 

L:=S:=S+3; 

I
P:=code[t]; RP:=7 
if CMSEG[CMAP] = -1 then 

priv trap; 
stack[S+1:S+3] :=(P,ENV,L); 
i:=SEG[CMSEG[CMAP] *2] 

.<9:15>*%2000-1; 

\
m:=«COde[i-I.<7:15>].<0:3> 

-2) mod 4)+2; 
t:=code[i-I.<7:15>] .<7:15>; 
if - PRIV then 
{if t>=mem[m,O] then 
{if t>=mem[m,l] 

\ 
then priv trap; 
PRIV:=l}}; 

L:=S:=S+3i 
LS:=(m-2)/2~ 
CS:=m.<15>; 
P:=code[t]; RP:=7 
computeshiftcounti 
CC(A:=A'«'shiftcount) 
computeshiftcount; 
cc(A:=A'»'shiftcount) 
computeshiftcount; 
CC(A:=A«shiftcount) 
computeshiftcounti 
cC(A:=A»shiftcount) 

*** undefined *** 

B-25 



Appendix B: Instruction Set Definition 

Table B-1. Instruction Set Definition (Continued) 

1 3 0 0 - IDLLSldouble logical Icomputeshiftcounti 
left shift cc(BA:=BA'«'shiftcount) 

1 3 a 1 - !DLRSldouble logical computeshi~tcounti 

I Iright shift cc(BA:=BA'»'shiftcount) 
1 3 0 2 - DALS double arithmetic computeshiftcounti 

Ileft shift cc(BA:=BA«shiftcount) 
1 3 a 3 DARS double arithmetic computeshiftcounti 

right shift cc(BA:=BA»shiftcount) 
1 3 0 4-- - *** undefined *** 
I 3 Oxx - LDX load X cc(X:=word) 
I 3 4xx - NSTO nondestructive wordx:=A 

store 
I 4 Oxx - LOAD load RP:=RP+li cc(A:=wordx) 
I 4 4xx - STOR store wordx:=Ai RP:=RP-l 
I 5 Oxx - LDB load byte RP:=RP+li ccb(A:=bytex) 
I 5 4xx - STB store byte bytex:=A.<8:l5>i RP:=RP-l 
I 6 Oxx - LDD load double RP:=RP+2i cc(BA:=dwordx) 
I 6 4xx - -

i
STD store double dwordx:=BAi RP:=RP-2 

I 7 Oxx - LADR load address RP:=RP+li A:=address+X 
I 7 4xx - ADM add to memory ccn(wordx:=wordx+A) i RP :=RP-l 

B-26 



Appendix B: Instruction Set Definition 

Table B-2. Definitions of Symbols 

X&y= 
xlY= 

bitwise "and" of x and y 
bitwise "or" of x and y 

x xor y= 
x mod y= 

bitwise "exclusive or" of x and y 
x modulo y 

x= bitwise "complement" of x 
x«n= 
x»n= 
x'«'n= 
x'»'n= 

x arithmetically shifted left n bits 
x arithmetically shifted right n bits 
x logically shifted left n bits 

x rotate n= 
x:y= 

x logically shifted right n bits 
x'«'n + x.<O:n-l> 

x'<'y= 
x':'y= 

if x<y then -1 else if x=y then 0 else 1 
comparison of x and y as l6-bit unsigned numbers 
if x'<'y then -1 else if x=y then 0 else 1 

x max y= 
x:=:y= 
x"y= 

if x>y then x else y 
exchange x and y 
concatenate x and y 

R[RP] A= 
address= if indirect then mem[ memmap, dir.adr. ] else dir.adr. 

B= R[RP-l] 
BA.<0:31>= B.<0:15>"A.<0:15> 
binq[ bus,la ]= INQ[ bus, la.<0:14> ].byteflag 
boq[ bus,la ]= OUTQ[ bus, la.<0:14> ].byteflag 
BPADDR= sysstack[ %115:%116 ] 
BPBASE= sysstack[ %123 ] 
BPLIM= sysstack[ %125 ] 
BPSIZE= sysstack[ %124 ] 
branch= P:=branch address 
branch address= if indirect then code[dba] + dba else dba 
BRT= sysstack[ %1400:%1777 ] 
bxmem[ xaddr ]= the byte at xaddr 
byteaddress= if indirect then mem[memmap,dir.adr.]+X else 2*dir.adr.+X 
bytedest[ la ]= mem[ destmap,la.<0:14> ].byteflag 
byteflag= <8*la.<15>:8*la.<15>+7> 
bytesource[ la ]= mem[ srcmap, la.<0:14>+ 

(I.<10:11>=2)*P.<0>*%100000 ].byteflag 
bytex= mem[ memmap, byteaddress.<0:14> ].byteflag 

C= R[RP-2] 
CB.<0:31>= C.<0:15>"B.<0:15> 
cc(x)= Z:=(X=O)i N:=(x<O) 
ccb(x)= Z:=("A"<=x<="Z") or ("a"<=x<="z"); N:=("0"<=x<="9") 
CCE= N:=O; Z:=l 
CCG= N:=O; Z:=O 
CCL= N:=li Z:=O 
ccl(x)= cc(x) i K:=adder carry 
ccn(x)= ccl(X)i V:=adder overflow 
chkp(x)= if memory location "x" is absent then Page Fault 
CLOCK= sysstack[ %103:%106 ] 
cmap= LS*2+CS+2 
CMSEG= sysstack[ %1340:%1357 
code [ la]= mem[ cmap, la ] 
computeshiftcount= if I.<10:15>=0 then {shiftcount:=A.<8:15>; 

RP:=RP-l} else shiftcount:=I.<10:15> 
CPCB= sysstack[ %3 ] 
CS= ENV.<7> 
ccz(x)= Z:=(x=O); N:=O; 

D= R[RP-3] 
dba= P+I.<9:15>-128*I.<8> 
DC.<0:31>= D.<0:15>"C.<0:15> 
DCBA.<0:63>= D.<0:15>"C.<0:15>"B.<0:15>"A.<0:15> 

B-27 



Appendix B: 

B-28 

Instruction Set Definition 

Table B-2. Definitions of Symbols (Continued) 

dest[ la]= mem[ destmap, la ] 
destmap= if I.<12>&PRIV then 1 else DS 
dir.adr.= if I.<7>=0 then I.<8:15> 'global variable' 

else (0:255) 
if I.<8>=0 then L+I.<9:15> 'local variable' 
else (0:127) 
if I.<9>=0 then I.<10:15> 'system global' 
else (0:63) 
if I.<10>=0 then L-I.<11:15> 'procedure parameter' 
else (0:31) 

S-I.<11:15>; 'subroutine parameter' 
(0:31) 

DS= ENV.<6> 
dwordx= mem[ memmap, address+2*X:address+2*X+l 

E= R[RP-4] 
ED.<0:31>= E.<0:15>AD.<0:15> 
ENV.<0:15>= environment register 
EPT= entry point table for instruction decoding 
extended address= segment A page A word A byte 

F= 
FE.<0:31>= 

G= 

R[RP-5] 
F.<0:15>AE .<0:15> 

R[RP-6] 

H= R[RP-7] 
HGFE.<0:63>= H.<0:15>AG.<0:15>AF .<0:15>AE.<0:15> 

I.<0:15>= instruction register 
imm= I.<8:15>-256*I.<7> 
indirect= I.<O> 
INQ[0:1,0:15] .<0:15>= interprocessor bus in queues 
INTA.<0:15>= interrupt register A 
INTB.<0:15>= interrupt register B 
IOC= sysstack[ %2000:%3777 ] 

K= ENV.<9> 

L.<0:15>= local data pointer=location of current stack marker 
LIGHTS.<0:15>= switch register output 
LS= ENV.<4> 

MAP[0:15,0:63] .<0:15>= memory map 
MASK.<0:15>= interrupt mask register 
mem[ m,a]= MEMORY [ MAP [ m,a.<0:5> ].<0:12>, a.<6:15> 
memmap= if I.<7:9>=6 and PRIV then 1 else DS 
MEMORY[0:8191,0:1023].<0:15>= physical memory 
movestep= if I.<9> then -1 else 1 

N= ENV.<ll> 

OUTQ[0:1,0:15] .<0:15>= interprocessor bus out queues 
P.<0:15>= program counter=l+location of current instruction 
PHYPAGE= mem[ %16, %150000:%167777 ] 
PHYSEG= mem[ %16, %130000:%147777 ] 
PRIV= ENV.<5> 
PRIV TRAP= cause an instruction failure interrupt 

RLIST= 
roma= 
RP= 

sysstack[ %100:%101 ] 
program counter for instruction microprocessor 
ENV.<13:15> 



Appendix B: Instruction Set Definition 

Table B-2. Definitions of Symbols (Continued) 

S.<0:15>= 
SO= 

stack pointer=location of last word of stack 
1PU scratch pad register. When the 1PU is in the idle 

SEG= 
segment 
segment 
S1V= 
source[ 
srcmap= 

loop, it will indicate the reason: 
%000000 HALT instruction 
%000014 bus cold load sequence error 
%000040 manual reset 
%000053 SFRZ instruction 
%000100 DDT halt interrupt 
%000115 asp memory access breakpoint 
%000200 halt interrupt 
%000377 bus cold load checksum error 
%001000 i/o channel timeout on a cold load 
%001154 memory dump completed 
%002000 power-on interrupt with invalid memory 
%177772 illegal cold load switch setting 
%177773 i/o channel timeout on a tape dump 
%177774 error during memory dump to tape 
%177775 interrupt during memory dump to 

%177776 
interprocessor bus 
uncorrectable memory error during map 
recovery following a power-on 

%177777 spurious interrupt 
mem[ 14, %70000:%127777 ] 

base= MAP[ 14, 60:61 ] 
limit= MAP[ 14, 62:63 ] 

sysstack[ %1200:%1337 ] 
la ]= mem[ srcmap, la ] 

if 1.<10> then {if 1.<11> then 2 else cmap} 
else if 1.<ll>&PR1V then 1 else OS 

stack [ la ] = mem[ OS, la ] 
SW1TCHES.<0:15>= switch register input 
sysstack[ la ]= mem[ 1, la ] 

T= ENV.<8> 
TL1ST= sysstack[ %107:%110 
TRACE= sysstack[ %121 ] 
TRBASE= sysstack[ %117 ] 
TRL1M= sysstack[ %120 ] 

UC= ENV.<O> 

V= ENV.<lO> 

word= mem[ memmap, address ] 
wordx= mem[ memmap, address+X 

X= if 1.<5:6>=0 then 0 else R[1.<5:6>+4] 
xaddr.<0:31>= a 32-bit extended address 
xQase= stack[ L*1.<5>+1.<10:15> : L*1.<5>+1.<lO:15>+l 
xmem[ xaddr ]= the word located at xaddr 

Z= ENV.<l2> 

B-29 





A Register 2-63 
Absent bit 2-145 
Absolute segment 2-143 

address 2-148 
number 2-143 

Address 
extended 
formats 
logical 
physical 

2--17, 2-143 
2-143 
2-17, 2-143 
2-17, 2-143 

Addressable memory size 2-17 
Addressing 

16-bit address 2-145 
32-bit address 2-145 

INDEX 

absolute segment 2-143, 2-148 
byte 2-32, 3-29 
byte, extended 2-148 
byte, indirect 2-55 
code segment 2-43, 2-44 
code, direct 2-45 
code, indirect 2-45 
data segment 2-47 
data, direct 2-47, 2-53 
data, indirect 2-47, 2-53 
displacement 2-44 
doubleword 2-34, 3-33 
G-relative mode 2-50 
i/o channel 2-130 
indexed 2-55 
L-minus-relative mode 2-50, 2-87 
L-plus-relative mode 2-50, 2-83 
LBP instruction 3-29 
LWP instruction 3-27 
map entry 2-145 
modes, data segment 2-50 
offset 2-45, 2-57 
quadrupleword 2-34 
relative segment 2-150 
S-minus-relative mode 2-50, 2-93 
SG-relative mode 2-52, 2-99 

Index-l 



INDEX 

table entry formats 2-143 
word 2-29 
word, indirect 2-53 

Alternate i/o path 2-9 
Arithmetic overflow 2-39, 2-40, 2-66, 2-70, 3-2 

interrupt 2-105, 2-117 
interrupt handler 2-39, 2-66 

ASCII characters 2-37 

B Register 2-63 
Backup process 2-1, 2-11, 2-15 
Battery power 2-6 
Bit deposit instructions 3-24 
Bit numbering convention 2-32 
Boolean operations 3-20 
Branching instructions 3-41 

table A-19 
Breakpoint 

instruction, interrupt 2-117 
memory access, interrupt 2-114 

BSUB instruction 3-54 
execution 2-90 

Buffers 

Bus 

bus receive (INQ X, INQ y) 2-20, 2-125 
i/o 2-130, 2-148 
i/o controller 2-18 

communication 2-117 
controllers 2-2 
instructions 3-55 
inte~facei interprocessor 2-2: 2-20 
transfer sequence 2-118, 2-121 

Bus Receive Table (BRT) 2-20, 2-101, 2-118, 2-119 
Byte 

addressing 2-32, 2-55, 2-148, 3-29 
data 2-32 
number range 2-37 
test instruction 2-69, 3-27 

C Register 2-63 
Cache 

extended address 2-146, 2-151 
map entry 2-151 

Call instructions, table A-18 
Cal1abi1ity 2-70, 2-75, 2-97 
Callable procedures 2-65, 2-73 
Calling procedures 2-75 

external 2-96 
Carry (K) bit 2-40, 2-66 
CC 2-40, 2-67 
CCE 2-67, 3-52 
CCG 2-67, 3-52 
CCL 2-67, 3-52 
Central processing unit (cpu) 2-2 

Index-2 



Checkpointing 2-1, 2-15 
Checksum computation instructions 3-50 
Checksum word, in SEND packet 2-20, 2-128 
Clock generator 2-22 
Code and data separation 2-25 
Code segment 2-17, 2-25, 2-41, 2-96 
Code Space (CS) bit 2-66, 2-96 
Compare instructions 3-44 

table A-18 
Condition Code (CC) 2-40, 2-67 

following a computation 2-67 
for a byte test or byte load 2-69 
for a comparison 2-68 
for input/output 2-135, 2-136, 3-56 
for IPB communication 2-121, 3-55 

Constants, program 2-41, 2-45 
Control panel 2-22 
Controllers, bus 2-2 
Controllers, i/o device 2-130 

buffering 2-18 
dual-port 1~5, 2-5, 2-139 
ownership of 1-5, 2-139 

Correctable memory error 2-17, 2-152 
interrupt 2-115 

CPU 2-2 
CS bit 2-66, 2-96 
Current Code segment 2-151 
Current Data segment 2-150 
Cycle time 

clock 2-22 
microinstruction 2-16 

D Register 2-63 
Data formats 2-29 
Data segment 2-17, 2-25, 2-41, 2-47, 2-96 

global area 2-49 
local area 2-49 
top-of-stack (sublocal) area 2-49 

Data segment, extended 2-143, 2-151 
Data Space (DS) bit 2-66, 2-96 
DDT 2-22 
Decimal arithmetic instructions 3-8 

conversions 3-10 
integer arithmetic 3-8 
scaling and rounding 3-9 
store and load 3-8 
table A-22 

Device controllers 2-130 
buffering 2-18 
dual-port 1-5, 2-5, 2-139 
ownership of 1-5, 2-139 

Diagnostic Data Transceiver (DDT) 2-22 
Direct addressing 

code segment 2-45 

INDEX 

Index-3 



INDEX 

data segment 2-47, 2-53 
Direction for moves, compares, scans 3-44 
Directly addressable location 2-44 
Dirty bit 2-145 
Disc drives, dual-port 2-5 
Dispatcher interrupt 2-116 
Displacement, in code addressing 2-44 
Division by zero 2-39, 2-40 
Doubleword 

accessing 2-34 
addressing, diagram 3-33 
data format 2-34 
number range 2-37 

DS bit 2-66, 2-96 
Dual-bus data paths 2-2 
Dual-port device controllers 1-5, 2-5, 2-139 
Dual-port disc drives 2-5 

E Register 2-63 
EIO instruction 2-18, 3-56 

execution 2-134 
Environment 

program 2-41 
Register (ENV) 2-41, 2-63, 2-70 
saving during interrupt 2-107 
saving during procedure call 2-71, 2-75, 2-97 

Errors, memory 2-17, 2-152 
interrupts for 2-114, 2-115 

EXIT instruction 2-26, 2-73, 2-82, 2-99, 3-53 
execution 2-77 

Expandability 1-4 
Exponent overflow 2-40 
Exponent underflow 2-40 
Extended address 2-17, 2-143 

cache 2-146, 2-151 
instructions 2-152, A-18 

Extended data segment 2-143, 2-151 
Extended floating-point instructions 3-13 
Extended floating-point number range 2-39 
External Entry Point (XEP) Table 2-71, 2-97 
External procedures, calling 2-96 

F Register 2-63 
Fault tolerance 1-4, 2-1 
File System 2-8, 2-9 
Floating-point arithmetic errors 2-40 
Floating-point instructions 3-12 

arithmetic 3-12 
conversions 3-14 
extended arithmetic 3-13 
functionals 3-17 
table A-23 

Floating-point number ranges 2-39 

Index-4 



G Register 2-63 
G-relative addressing mode 2-51 
Global data area 2-26, 2-49 
GUARDIAN operating system 1-5 

H Register 2-63 
Halt interrupt 2-107 
Hardware and software integration 1-5 
Hardware instructions 3-1 

reference tables A-I, B-1 
Hardware-only interrupts 2-107 
High-priority i/o 2-142 

completion interrupt 2-115 
HIla instruction 3-57 

execution 2-135 

I Register 2-43, 2-44, 2-51 
I'm alive messages 2-11 
I/O buffers 2-130, 2-148 
I/O channel 2-2, 2-18, 2-130 

addressing 2-130 
interrupts 2-142 

I/O completion interrupt 2-116 
I/O Control (laC) Table 2-18, 2-101, 2-130 
I/O controllers 2-130 

buffering 2-18 
dual-port 1-5, 2-5, 2-139 
ownership of 1-5, 2-139 

I/O paths, primary and alternate 2-9 
I/O sequence 2-137 
110 instruction 3-56 

execution 2-135 
Illegal arithmetic conversion 2-40 
Immediate instructions 

diagrams 3-5, 3-23 
table A-17 

Index registers 2-55 
Indexing 

code segment 2-45, 3-27, 3-29 
data segment 2-47, 2-55 

Indirect addressing 
byte operands 2-55 
code segment 2-45 
data segment 2-47, 2-53 

Input/output 
channel 2-2; 2-18, 2-130 
machine instructions 3-56 
sequence 2-137 

INQ X buffer 2-20, 2-125 
INQ Y buffer 2-20, 2-125 
Instruction breakpoint interrupt 2-105, 2-117 
Instruction categories 

16-bit arithmetic (top of Reg. Stack) 3-2 
16-bit signed arithmetic (stack element) 3-7 

INDEX 

Index-5 



INDEX 

32-bit signed arithmetic 3-4 
bit deposit and shift 3-24 
boolean operations 3-20 
branching 3-41 
bus communication 3-55 
byte test 3-27 
decimal arithmetic conversions 3-10 
decimal arithmetic scaling & rounding 3-9 
decimal arithmetic store and load 3-8 
decimal integer arithmetic 3-8· 
extended floating-point arithmetic 3-13 
floating-point arithmetic 3-12 
floating-point conversions 3-14 
floating-point functionals 3-17 
input/output 3-56 
interrupt system 3-54 
load/store via address on Reg. Stack 3-36 
memory to/from Register Stack 3-27 
miscellaneous 3-57 
moves, compares, scans, and checksums 3-44 
operating system functions 3-58 
program register control 3-51 
Register Stack manipulation 3-18 
routine calls and returns 3-52 

Instruction failure interrupt 2-105, 2-114 
Instruction failure trap 2-65 
Instruction processing unit (IPU) 2-2, 2-15 
Instruction register 2-43, 2-44, 2-51 
Instruction set definition table A-I 
Instructions 2-15, 3-1, A-I, B-1 

ADAR ,,,,,,,'c , ? ..., 
\VVV.J..V-, ,J-, 

ADDI (104---) 3-4 
ADDS (002---) 3-52 
ADM (-74---) 3-32 
ADRA (00014-) 3-7 
ADXI (104---) 3-7 
ALS (0302--) 3-25 
ANG (000044) 3-36 
ANLI (007---) 3-22 
ANRI (006---) 3-22 
ANS (000034) 3-36 
ANX (000046) 3-36 
ARS (0303--) 3-27 
BANZ (-154--) 3-43 
BAZ (-144--) 3-43 
BCLD (000452) 3-58 
BEQL (-12--- ) 3-43 
BFI (000030) 3-44 
BGEQ (-13---) 3-43 
BGTR (-11---) 3-41 
BIC (-100--) 3-41 
BLEQ (-16---) 3-43 
BLSS (-14--- ) 3-43 
BNDW (000450) 3-59 

Index-6 



INDEX 

BNEQ (-15--- ) 3-43 
BNOC (-17---) 3-44 
BNOV (-164--) 3-44 
BOX (-1-4--) 3-41 
BPT (000451) 3-57 
BSUB (-174--) 2-90, 3-54 
BTST (000007) 3-27 
BUN (-104-- ) 3-41 
CAQ (000262) 3-11 
CAQV (000261) 3-11 
CCE (000016) 3-52 
CCG (000017) 3-52 
CCL (000015) 3-52 
CDE (000334) 3-17 
CDF (000306) 3-16 
CDFR (000326) 3-16 
CDG (000366) 3-44 
CDI (000307) 3-6 
CDQ (000265) 3-11 
CDX (000356) 3-49 
CED (000314) 3-14 
CEDR (000315) 3-15 
CEF (000276) 3-14 
CEFR (000277) 3-14 
CEI (000337) 3-15 
CEIR (000316) 3-15 
CEQ (000322) 3-15 
CEQR (000323) 3-16 
CFD (000312) 3-14 
CFDR (000313) 3-14 
CFE (000325) 3-16 
CFI (000311) 3-14 
CFIR (000310) 3-14 
CFQ (000320) 3-15 
CFQR (000321) 3-15 
CID (000327) 3-6 
CIE (000332) 3-16 
CIF (000331) 3-16 
CIQ (000266) 3-11 
CLQ (000267) 3-11 
CMBX (000422) 3-50 
eMPI (001---) 3-4 
CMRW (000432) 3-59 
COMB (1262--) 3-48 
COMW (0262--) 3-47 
CQA (000260) 3-10 
CQD (000247) 3-10 
CQE (000336) 3-17 
CQER (000335) 3-17 
CQF (000324) 3-16 
CQFR (000330) 3-16 
CQI (000264) 3-10 
CQL (000246) 3-10 
CRAX (000423) 3-59 

Index-7 



INDEX 

DADO (000220) 3-4 
DALS (1302--) 3-25 
OARS (1303--) 3-27 
DCMP (000225) 3-6 
DDIV (000223) 3-4 
DDUP (000006) 3-18 
DFG (000367) 3-39 
DFS (000357) 3-39 
DFX (000416) 3-40 
DISP (000073) 3-55 
OLEN (000070) 3-58 
DLLS (1300--) 3-25 
DLRS (1301--) 3-25 
DLTE (000054) 3-59 
DMPY (000222) 3-4 
DNEG (000224) 3-6 
DOFS (0000S7) 3-58 
DPCL (000032) 3-53 
DPF (000014) 3-24 
DSUB (000221) 3-4 
DTL (000207) 3-59 
DTST (000031) 3-6 
DXCH (000005) 3-18 
DXIT (000072) 3-54 
EADD (000300) 3-13 
ECMP (000305) 3-13 
EDIV (000303) 3-13 
EIO (000060) 2-18, 2-130, 2-134, 3-56 
EMPY (000302) 3-13 
ENEG (000304) 3-13 
ESUB (000301) 3-13 
EXCH (OOOO04) 3-18 
EXIT (125---) 2-26, 2-73, 2-77, 2-82, 2-99, 3-53 
FADD (000270) 3-12 
FCMP (000275) 3-12 
FDIV (000273) 3-12 
FMPY (000272) 3-12 
FNEG (000274) 3-12 
FRST (000405) 3-58 
FSUB (000271) 3-12 
FTL (000206) 3-59 
HALT (000074) 3-58 
HIla (000062) 2-130, 2-135, 3-57 
IADD (000210) 3-2 
ICMP (000215) 3-3 
IDIV (000213) 3-3 
IDX1 (000344) 3-17 
IDX2 (000345) 3-17 
IDX3 (000346) 3-17 
IDXD (000317) 3-18 
IDXP (000347) 3-18 
IIO (000061) 2-130, 2-135, 3-56 
IMPY (000212) 3-3 
INEG (000214) 3-3 

Index-8 



INDEX 

INSR (000055) 3-59 
ISUB (000211) 3-2 
IXIT (000071) 2-112, 3-54 
LADD (000200) 3-2 
LAD I (003---) 3-4 
LADR (-7----) 3-32 
LAND (000010) 3-20 
LBA (000364) 3-38 
LBAS (000354) 3-38 
LBP (-2-4--) 3-29 
LBX (000406) 3-39 
LBXX (0256--) 3-35 
LCKX (000430) 3-59 
LCMP (000205) 3-3 
LDA (000362) 3-37 
LDAS (000352) 3-37 
LDB (-5---- ) 3-29 
LDD (-6----) 3-32 
LDDX (000412) 3-40 
LDI (100---) 3-19 
LDIV ( 00020~) 3-3 
LDLI (005---) 3-19 
LDRA (00013-) 3-19 
LDX (-3---- ) 3-29 
LDXI (10----) 3-19 
LLS (0300--) 3-25 
LMPY (000202) 3-3 
LNEG (000204) 3-3 
LOAD (-40---) 3-29 
LOR (000011) 3-20 
LQAS (000445) 3-40 
LQX (000414) 3-40 
LRS (0301--) 3-25 
LSUB (000201) 3-2 
LWA (000360) 3-37 
LWAS (000350) 3-37 
LWP (-2---- ) 3-27 
LWUC (000342) 3-37 
LWX (000410) 3-39 
LWXX (0254--) 3-35 
MAPS (000042) 3-59 
MBXR (000420) 3-50 
MBXX ( 000421) 3-50 
MNDX (000227) 3-49 
MNGG (000226) 3-44 
MOND (000001) 3-6 
MOVB (126---) 3-47 
MOVW (026---) 3-47 
MRL (000075) 1-5, 3-59 
MVBX (000417) 3-49 
MXFF (000041) 3-58 
MXON (000040) 3-58 
NOP (000000) 3-57 
NOT (000013) 3-20 

Index-9 



INDEX 

NSAR (00012-) 3-19 
NSTO (-34---) 3-29 
ONED (000003) 3-6 
ORG (000045) 3-36 
ORLI (004---) 3-22 
ORRI (004---) 3-22 
ORS (000035) 3-36 
ORX (000047) 3-36 
PCAL (027---) 2-25, 2-73, 2-82, 3-52 
POP (124nrc) 2-83, 3-32 
PSEM (000076) 3-58 
PUSH (024nrc) 2-83, 3-32 
QADD (000240) 3-8 
QCMP (000245) 3 ... 9 
QDIV (000243) 3-9 
QDWN (00025-) 3-10 
QLD (00023-) 3-8 
QMPY (000242) 3-9 
QNEG (000244) 3-9 
QRND (000263) 3-10 
QST (00023-) 3-8 
QSUB (000241) 3-8 
QUP (00025-) 3-9 
RCHN (000447) 3-57 
RCLK (000050) 3-57 
RCPU (000051) 3-57 
RDE (000024) 3-51 
RDP (000025) 3-51 
RIBA (000440) 3-58 
RIR (000063) 3-54 
Rr4AP {OOOO66} 3~59 

RMEM (000434) 3-59 
RPV (000216) 3-58 
RSMT (000436) 3-58 
RSPT (000424) 3-59 
RSUB (025---) 2-93, 3-54 
RSW (000026) 3-56 
RWCS (000402) 3-58 
RXBL (000426) 3-59 
SBA (000365) 3-39 
SBAR (00017-) 3-7 
SBAS (000355) 3-38 
SBRA (00015-) 3-7 
SBU (1266--) 3-49 
SBW (1264--) 3-48 
SBX (000407) 3-39 
SBXX (0257--) 3-35 
SCMP (000454) 3-53 
SCS (000444) 3-40 
SDA (000363) 3-38 
SDAS (000353) 3-38 
SDDX (000413) 3-40 
SEND (000065) 2-20, 2-119, 3-55 
SETE (000022) 3-51 

Index-l0 



SETL (000020) 3-51 
SETP (000023) 3-51 
SETS (000021) 3-51 
SFRZ (000053) 3-58 
SMAP (000067) 3-59 
5MBP (000404) 3-59 
SNDQ (000052) 3-58 
SQAS (000446) 3-41 
SQX (000415) 3-40 
ssw (000027) 3-56 
STAR (00011-) 3-19 
STB (-54---) 3-29 
STD (-64---) 3-32 
STOR (-44---) 3-29 
STRP (00010-) 3-52 
SVMP (000441) 3-59 
SWA (000361) 3-37 
SWAS (000351) 3-37 
SWX (000411) 3-39 
SWXX (0255--) 3-35 
SXBL (000427) 3-59 
TOTQ (000056) 3-55 
TPEF (000453) 3-58 
TRCE (000217) 3-59 
ULKX (000431) 3-59 
UMPS (000043) 3-59 
VSEM (000077) 3-58 
VWCS (000401) 3-58 
WMEM (000435) 3-59 
WSMT (000437) 3-58 
WSPT (000425) 3-59 
WWCS (000400) 3-58 
XADD (000033) 3-58 
XCAL (127---) 2-97, 3-52 
XMSK (000064) 3-54 
XOR (000012) 3-20 
XSMG (000343) 3-50 
XSMX (000333) 3-51 
XSTP (000443) 3-58 
XSTR (000442) 3-58 
ZERD (000002) 3-6 

INTA Register 2-104 
INTB Register 2-104 
Interprocessor bus 2-2, 2-117 

communication 2-117 
controllers 2-2 
interface 2-2, 2-20 
receive interrupt 2-115 

Interrupt handlers 2-16, 2-107, 2-112 
Interrupt stack marker 2-104, 2-107 
Interrupt types 2-104, 2-114 

arithmetic overflow (18) 2-117 
correctable memory error (9) 2-115 
dispatcher (15) 2-116 

INDEX 

Index-II 



INDEX 

halt 2-107 
hardware-only 2-107 
high-priority i/o completion (10) 2-115 
instruction breakpoint (19) 2-117 
instruction failure (3) 2-114 
interprocessor bus receive (11) 2-115 
manual reset 2-107 
memory access breakpoint (2) 2-114 
asp halt 2-107 
asp i/o completion (7) 2-115 
page fault (4) 2-115 
power fail (8) 2-115 
power on (16) 2-116 
special channel error (O) 2-114 
stack overflow (17) 2-116 
standard i/o completion (14) 2-116 
time list (13) 2-116 
uncorrectable memory error (I) 2-114 

Interruptible instructions 2-105 
Interrupts 2-16, 2-104 

i/o channel 2-142 
machine instructions for 3-54 
maskable 2-105 
preemptive 2-105 
priority 2-105 
sequence 2-110 

IPU 2-2, 2-15 
IXIT instruction 3-54 

execution 2-112 

K <Carry) bit 2-40; 2-66 
Kernel 2-9 

L Register 2-48, 2-52, 2-75, 2-79, 2-99 
L-minus-relative addressing mode 2-52 
L-plus-relative addressing mode 2-52, 2-83 
Library segments 2-96 
Library Space (LS) bit 2-63, 2-70, 2-96 
Load instructions 

decimal arithmetic 3-8 
from register 3-19 
onto Register Stack 3-27, 3-29, 3-32, 3-35 
via address on Register Stack 3-36 

Loadable Control Store (LCS) 1-5, 2-22, 2-116 
Local data area, memory stack 2-26, 2-49, 2-82 
Local variables 2-79, 2-82, 2-90 
Logical address 2-17, 2-143 
Logical instructions 2-37, 2-39, 3-2, 3-10 
Logical memory 2-93, 2-142 
Logical page 2-143 

number 2-143 
Logical segment 2-143 
LS bit 2-63, 2-70, 2-96 

Index-12 



Machine instructions 3-1 
reference tables A-I, B-1 

Manual reset interrupt 2-107 
Map 2-17, 2-93, 2-146 
Map entry 2-145 
Map Entry Cache 2-146, 2-151 
MASK Register 2-104 
Mask word, for parameter passing 2-75 
Maskable interrupts 2-105 
Memory 2-2, 2-17 

absolute segment 2-143, 2-148 
access to 2-18 
addressable 2-17 
code segment 2-17, 2-25, 2-41~ 2-96 
Current Code segment 2-151 
Current Data segment 2-150 
data segment 2-17, 2-25, 2-41, 2-47, 2-96 
errors 2-17, 2-114, 2-115, 2-152 
extended address 2-17, 2-143 
Extended Address Cache 2-146, 2-151 
extended data segment 2-143, 2-151 
logical 2-93, 2-142 
logical address 2-17, 2-143 
logical page 2-143 
logical segment 2-93, 2-143 
map 2-17, 2-93, 2-146 
map entry 2-145 
Map Entry Cache 2-146, 2-151 
nonextended segment 2-143 
page 2-17, 2-143 
Page Table 2-146, 2-149 
physical 2-142 
physical address 2-143 
physical page 2-143 
relative segment 2-143, 2-150 
segment 2-143 
Segment Table 2-146, 2-149 
size 2-17 
stack 2-26, 2-47, 2-52, 2-79 
System Code Extension segment 2-93, 2-147 
System Code segment 2-93, 2-147 
System Data segment 2-93, 2-146, 2-150 
User Code segment 2-93, 2-147, 2-150 
User Data segment 2-93, 2-146 
User Library Code segment 2-93, 2-147 
virtual 1-4, 2-143 

Memory access breakpoint interrupt 2-114 
Memory Control unit 2-22 
Memory reference instructions 2-47, 2-50 

diagram 3-31 
table A-16 

Memory stack 2-23, 2-44, 2-52 
operation 2-79 

Memory to/from Register Stack 3-27 

INDEX 

Index-13 



INDEX 

Merge Ready List (MRL) instruction 1-5, 3-59 
Message System 2-9, 2-11 
Microinstructions 2-15, 2-22 

cycle time 2-16 
Mirrored disc volume 2-1, 2-5 
Miscellaneous instructions 3-57 
Modern, of OSP 2-24 
Modular system design 1-4 
Move instructions 3-44 

table A-18 
Multiple-processor environment 1-2 
Multiprogramming environment 1-2 

Naming registers in the Register Stack 2-60 
Network-based environment 1-3 
Nonextended segment 2-143 
Nonprivileged mode 2-8, 2-16, 2-65, 2-79 
Nonprivileged procedure 2-73 
NonStop application 2-11 
NonStop operation 1-4, 1-5 
Notation 

bit 2-32 
element 2-29 
instruction set definition table A-27 
two's-complement binary 2-36 

Number range 
byte 2-37 
doubleword 2-37 
extended floating-point 2-39 
floating-point 2-39 
quadruplewcrd 2-38 
word 2-36 

Number representations 2-36 

Offset, in addressing 2-45, 2-57 
On-line repair 1-4 
Opcodes, instruction A-I, B-1 
Operating system functions 

machine instructions for 3-58 
Operations and Service Processor (OSP) 2-24 

halt interrupt 2-107 
i/o completion interrupt 2-115 

Optional machine instructions 2-16 
decimal 3-8 
floating-point 3-12 

OSP 2-24 
OUTQ X buffer 2-125 
OUTQ Y buffer 2-125 
Overflow, arithmetic 2-39, 2-40, 2-66, 2-70, 3-2 

interrupt 2-105, 2-117 
interrupt handler 2-39 

Overflow, exponent 2-40 
Overflow, stack, interrupt 2-116 
Ownership of i/o controllers 1-5, 2-139 

Index-14 



P Register 2-41, 3-29 
Packet 2-20, 2-125 

timeout 2-128 
Page 2-17, 2-143 

fault interrupt 2-105, 2-115, 2-145, 2-150 
number, logical 2-143 
number, physical 2-143 

Page Table 2-146, 2-149 
Parameter 

access, memory stack 2-87 
passing, memory stack 2-26, 2-79, 2-85 
reference 2-85 
value 2-85 

peAL instruction 2-25, 2-73, 2-82, 3-52 
execution 2-75 

PEP Number 2-75 
PEP Table 2-71, 2-97 
Physical address 2-17, 2-143 
Physical memory 2-142 
Physical page 2-143 

number 2-143 
PMI 2-22 
POP instruction 3-32 

execution 2-83 
Power 

distribution 2-5 
fail interrupt 2-115 
failure recovery 2-6 
on interrupt 2-105, 2-116 
supplies 2-5 

Preemptive interrupts 2-102 
Primary i/o path 2-9 
Primary process 2-1, 2-11, 2-15 
PRIV bit 2-63, 2-96 
Privileged mode 2-8, 2-16, 2-63, 2-70, 2-79, 2-96, 2-101 
Privileged procedure 2-73 
Procedure 2-25, 2-41, 2-70 
Procedure attributes 

callable 2-73 
nonprivileged 2-73 
privileged 2-73 

Procedure calling 2-75 
external 2-96 
system 2-97 

Procedure Entry Point (PEP) Table 2-71, 2-97 
Process 1-4, 2-9 

backup 2-1, 2-11, 2-15 
primary 2-1, 2-11, 2-15 

Processes, system 2-9 
Processor halt interrupt 2-107 
Processor Maintenance Interface (PMI) 2-22 
Processor module 2-2 

checking 2-11 
components 2-15 

INDEX 

Index-15 



INDEX 

Processor, of asp 2-24 
Program constants 2-41, 2-45 
Program counter 2-41 
Program execution environment 2-41 
Program register control instructions 3-51 
PUSH instruction 3-32 

execution 2-83 

Quadrup1eword 
accessing 2-34 
data format 2-34 
number range 2-38 

Reference bit 2-145 
Reference parameter 2-85 
Reference tables 

hardware instruction lists A-I 
instruction set definition B-1 

Register Stack 2-28, 2-41, 2-60, 3-2 
machine instructions 3-2, 3-18, 3-27, 3-36 
naming registers in 2-60 
operation 2-60 
Pointer (RP) 2-60, 2-69 
saving during interrupt 2-110 

Registers 
A through H (Register Stack) 2-28, 2-41, 2-60, 3-2 
Environment (ENV) 2-41, 2-63 
I 2-44 
INTA 2-104 
INTB 2-104 
L 2-75 
MASK 2-104 
P 2-41 
S 2-75 

Relative segment 2-143 
address 2-150 
number 2-143 

Returning a value 2-87 
Routine calls and returns 3-52 
Routing word, in SEND packet 2-20, 2-128 
RP 2-60, 2-69 
RSUB instruction 3-54 

execution 2-93 

S Register 2-48, 2-52, 2-75, 2-79, 2-99 
S-minus-relative addressing mode 2-52 
Saving environment 

during interrupt 2-107 
during procedure call 2-71, 2-75, 2-97 

Scan instructions 3-44 
table A-IS 

Segment 2-17, 2-143 
absolute 2-143, 2-148 
base 2-151 

Index-16 



code 2-17, 2-25, 2-41, 2-96 
Current Code 2-151 
Current Data 2-150 
data 2-17, 2-25, 2-41, 2-47, 2-96 
extended data 2-143, 2-151 
i/o buffer 2-148 
limit 2-151 
logical 2-143 
number, logical 2-143 
number, physical 2-143 
relative 2-143, 2-150 
System Code 2-93, 2-147 
System Code Extension 2-93, 2-147 
System Data 2-93, 2-146, 2-150 
User Code 2-93, 2-147, 2-150 
User Data 2-93, 2-146 
User Library Code 2-93, 2-147 

Segment Table 2-146, 2-149 
Self-relative addressing 2-44 
SEND instruction 2-20, 2-118, 3-55 

execution 2-119 
Sequence word, in SEND packet 2-20, 2-128 
SG-relative addressing mode 2-52, 2-99 
Shift instructions 3-24 

table A-18 
Signed integer arithmetic 

16-bit 3-2, 3-7 
32-bit 3-4 

Signed numbers 2-36, 2-37 
Single-word data 2-29 
Single-word number range 2-36 
SIV Table 2-107 
Special channel error interrupt 2-114 
Stack 

instructions 3-2, 3-18, 3-27, A-20 
marker 2-75 
marker chain 2-90 
marker, interrupt 2-104, 2-107 
memory 2-26, 2-47, 2-52 
memory, operation of 2-79 
overflow interrupt 2-105, 2-116 
register 2-28, 2-41, 2-60 
register, operation of 2-60 

Standard i/o completion interrupt 2-116 
Store instructions 

decimal arithmetic 3-8 
from Register Stack 3-29, 3-32, 3-35 
into register 3-19 
via address on Register Stack 3-36 

Subchannel 2-18, 2-130 
Sublocal data area, memory stack 2-49, 2-93 
Subprocedure 2-71, 2-90 
System Code Extension segment 2-93, 2-147 
System Code segment 2-93, 2-147 

INDEX 

Index-17 



INDEX 

System Data segment 2-93, 2-96, 2-146, 2-150 
contents 2-101 

System Interrupt Vector (SIV) Table 2-101, 2-107 
System procedures, calling 2-97 
System processes 2-9 
System tables 2-101 

Time 
clock cycle 2-22 
microinstruction cycle 2-16 

Time list interrupt 2-116 
Top-of-stack (sublocal) area, 

in data segment 2-49, 2-84, 2-93 
Transfer memory to/from Register Stack 3-27 
Trap Enable (T) bit 2-66, 2-105 

Uncorrectable memory error 2-17, 2-152 
interrupt 2-105, 2-114 

Underflow, exponent 2-40 
Unsigned integer arithmetic 3-2 
Unsigned numbers 2-36, 2-37 
User Code segment 2-93, 2-147, 2-150 
User Data segment 2-93, 2-146 
User Library Code segment 2-93, 2-147 

V (arithmetic overflow) bit 2-39, 2-40, 2-66, 2-70 
Value parameter 2-85 
Virtual memory 1-4, 2-143 

Word 
addressing 2-29, 2-53 
data 2-29 
number range 2-36 

X-bus 2-117 
XCAL instruction 2-26, 3-52 

execution 2-96 
XEP Table 2-71, 2-97 

Y-bus 2-117 

Zero divide condition 2-39, 2-40, 2-105 

Index-18 



I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 482 CUPERTINO. CA. U.S.A. 

POSTAGE WILL BE PAID BY ADDRESSEE 

¥~~@)§~ 
COMPUTERS 

19333 Valleo Parkway 
Cupertino, CA U.S.A. 95014 
Attn: Technical Communications-Software 

STAPLE HERE 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

-C FOLD 

~ FOLD 



FOLD ~ 

FOLD ~ 

READER'S COMMENTS 

Tandem welcomes your feedback on the quality and usefulness of Its publications Please indicatl 
a specific section and page number when commenting on any manual. Does this manual have thl 
desired completeness and flow of organization? Are the examples clear and useful? Is it easil' 
understood? Does it have obvious errors? Are helpful additions needed? 

Title of manual(s): _____________________________ _ 

FROM: 

Name 

Company 

Address 

City/State __________________ _ Zip 

A written response is requested yes no 



82077 BOO TANDEM COMPUTERS INCORPORATED 
19333 Vallea Parkway 
Cuper'tina. CA 95014 


