
User Interface Dictionary

abbreviating-output (&optional stream &key width height lozenge-returns newline-

substitute show-abbreviation abbreviate-initial-whitespace) &body body Function

Binds local environment such that character output is abbreviated. That is, output

exceeding a specified width or height (in characters) is truncated.

stream The output stream; the default is *standard-output*.�

:width Specifiesthewidth,incharacters,beyondwhichabbreviationoccurs,

or t or nil. If nil, the default, individual lines are not truncated. If

t, the width used is the value returned by the stream’s :size-in-

characters.

:height Specifiestheheight,inlines,beyondwhichabbreviationoccurs,ort

or nil. If nil, the default, no truncation occurs. If t, the height used

is the value returned by the stream’s :size-in-characters.

:lozenge-returns

Boolean option specifying whether #\return characters at line trun-

cations are displayed within a lozenge, rather than causing a new-

line; the default is nil.

� :newline-substitute

This is a generalization of :lozenge-returns. When given a string

value, line truncations are displayed with that string, rather than

causing a newline; the default is nil.

:show-abbreviation

Boolean option specifying whether an ellipsis (...) is displayed

where output truncation occurs. The default is nil, meaning that

there is no explicit indication that truncation has occurred.

You can also specify a string as an argument to :show-abbreviation. If you

specify a string, the string appears after the abbreviation instead of

ellipsis (...). �

:abbreviate-initial-whitespace

Boolean option specifying that initial whitespace (spaces, tabs, new-

lines) be suppressed; the default is nil.

Example:

Page 1129

(defun abbrev-test (width height lozenge-p)

 (abbreviating-output (() :width width :height height

 :lozenge-returns lozenge-p

 :show-abbreviation t)

 (loop for row from 1 to 20 do

 (terpri)

 (loop for col from 1 to 100 do

(format T " ~d:~d" row col)))))

(abbrev-test 42 10 nil)

�

The body code continues to run normally to completion, even though its output to

stream may be truncated.

Within abbreviating-output, the :set-cursorpos operation is restricted. Only the x

position may be specified, and then, only in characters.

For an overview of abbreviating-output and related facilities, see the section

"Controlling Line Output".

� tv:abstract-dynamic-item-list-mixin Flavor

This is a noninstantiable mixin flavor that implements the general notion of dy-

namically changing the item list. It causes the menu’s item list to be updated at

appropriate times. The actual item list is computed via the :update-item-list mes-

sage.

� accept

presentation-type &key (stream *query-io*) (prompt :enter-type) (prompt-mode

:normal) (original-type dw:presentation-type) activation-chars additional-activation-

chars blip-chars additional-blip-chars (inherit-context t) (default t) (provide-default

’dw::unless-default-is-nil) (default-type dw::original-type) (display-default

dw::prompt) present-default history (prompts-in-line dw::*accept-active*) (initially-

display-possibilities nil) input-sensitizer (handler-type #’dw::presentation-type-find-

parser) query-identifier (separate-inferior-queries nil) (confirm nil) Function

Reads printed representation of a Lisp object from a stream. If the representation

is entered via a mouse gesture, it returns the object; if the representation is en-

tered as a series of keyboard characters, it parses the series and returns the ob-

ject.

presentation-type

Presentation type of the object to be accepted.�

:stream Specifies stream from which object is read; the default is

query-io.

Page 1130

:prompt Specifies characteristics of the input prompt. (See the section "Dis-

playing Prompts in the Input Editor".) Allowable values for this op-

tion are:

nil No prompt is printed.

string String to be used as prompt.

function Function to display a prompt string. It must take two po-

sitional arguments. The first is the stream on which the

prompt is to be displayed. The second is a keyword indi-

cating the origin of the function call; for available key-

words and related information, see the section "Displaying

Prompts in the Input Editor".

You typically provide a prompt function when you want

the prompt to change dynamically. In such cases, you can

ignore the second argument.

Note: If there is no distinguishing default prompt for

them, you should specify either a prompt or a query-

identifier for each accept form within a dw:accepting-

values form; otherwise, there will be no way that the ac-

cept-variable-values stream can identify which accept

form is being run.

list A list of a format string and format arguments, for exam-

ple, where somewhere previously i and j have been set to

5 and 3:

(accept ’string

 :prompt ‘("Enter a string with ~D

letters, ~D of them vowels" ,i ,j))

=> Enter a string with 5 letters,

 3 of them vowels:

:enter-type

Causes the prompt "Enter a <presentation type>" to be

used. The presentation type is that specified by the pre-

sentation-type argument to accept.�

If :prompt is not nil, the default, if any, is displayed automatically

after the prompt string. For example, a prompt string of "to file"

for a presentation type of pathname is displayed as "to file (default

Q:>foo.bar):". See the section ":display-default Option to accept". If

you provide a prompt string, whether accept provides trailing punc-

tuation is determined by the ":prompt-mode Option to accept".�

:prompt-mode

Specifies whether a colon and space is appended to a user-supplied

prompt. A value of :normal causes a trailing colon and space to be

appended; a value of :raw does not. This option also controls the

parenthesizing in recursive calls to accept.

Page 1131

:original-type

The original type supplied, to be passed through in successive re-

cursive calls to present (or present-to-string or accept).

:activation-chars

Takes a list of characters that are used as activation characters for

the duration of the call to accept. The default activators are #\re-

turn and #\end.

Activation characters signal the end of user input to the accept

function. If input to the function is via the keyboard, the user must

necessarily press an activation character to activate the accept.

If input is via a translating mouse handler, defined by define-

presentation-to-command-translator or define-presentation-

translator, then whether an activation character is necessary de-

pends on whether the translator returns an :activate t keyword-

value pair. See the function define-presentation-translator.

:additional-activation-chars

Similar to :activation-chars; the list of characters supplied is added

to the list of activators. Additional activation characters may be

useful for activating accept when called recursively.

:blip-chars

Takes a list of characters that serve as delimiters of input fields for

the duration of the call to accept.

:additional-blip-chars

Similar to :blip-chars; the list of characters supplied is added to

the list of delimiters. Additional blip characters may be useful for

terminating input fields when accept is called recursively.

:inherit-context

Boolean option specifying whether the current invocation of accept

inherits the existing input context or establishes a new root node;

the default value is t. This option is useful for controlling the input

contexts at different levels in a recursive call to accept.

:default Specifies the object to be used as the default value for this accept.

If no object is specified by this option and a default is to be

given (see the :provide-default option) then the object offered is

the one at the top of the presentation history for the presentation

type specified in the presentation-type argument.

:provide-default

Specifies whether to provide a default value for this accept. The de-

fault is ’dw::unless-default-is-nil. If no value is supplied for this

option, a default value is given unless it is nil. If nil is a valid de-

fault that you want to be provided, then you must specify :provide-

Page 1132

default t.

:default-type

Specifies the presentation type of the object offered as the default

for completing the call to accept. The default for this option is

dw::original-type, which in turns defaults to the type given by the

presentation-type argument.

This option is used for specifying explicitly the presentation type of

the default when accepting compound presentation types created

with the or presentation type. The value supplied should be one of

the cases listed in the or or an even more specific (sub)type of one

of these. This allows the default to be presented properly. See the

presentation type or.

:display-default

Controls the display of the default object. A value of t causes the

default to be displayed whether or not a prompt is displayed; nil

suppresses the display of the default whether or not a prompt is

displayed.

The default value for this option, dw::prompt, causes the default to

be displayed when a prompt is displayed, and the default display to

be suppressed when a prompt is not displayed.

:present-default

Boolean option specifying whether the default object is presented

and accepted. This option is for the internal use of dw:accepting-

values and related facilities.

:history Specifies which presentation-type history to use for yanking purpos-

es. A value of nil, the default, causes the history of the type speci-

fied by the presentation-type argument to be used.

Aside from providing another presentation type, you may also supply

as the value to this option a history object. This would be appropri-

ate if you constructed the presentation-type history yourself, rather

than letting the presentation substrate do it for you.

:prompts-in-line

Boolean option specifying whether prompt is displayed in-line with

parentheses or with a trailing colon. The default is t if the accept

was called recursively, nil otherwise.

:initially-display-possibilities

Boolean option specifying whether to display the objects that could

be used as input in the current context; the default is nil. If t, the

possibilities are presented before the prompt appears. This is the

same list of possibilities that is displayed when the user presses

HELP after the initial prompt appears. Note that this option only

works reliably if there is a specific enumeration set of possibilities.

Page 1133

:input-sensitizer

This option is used internally by dw:accepting-values and related

facilities.

:handler-type

This option is used internally by dw:accepting-values and related

facilities.

:query-identifier

Specifies a unique identifier for this call to accept; the default is

derived from the prompt.

This option is used when the accept is used within an

dw:accepting-values form and the prompt is not unique.

If the queries do not have unique prompts, use the :query-identifier

option to accept to distinguish them. Identity will be based on

equal. Examples:

Wrong:

(dw:accepting-values ()

 (loop for i from 1 to 10

collect (accept ’integer)))

Right:

(dw:accepting-values ()

 (loop for i from 1 to 10

collect (accept ’integer

 :prompt

 (format nil "Number #~D" i))))

or

(dw:accepting-values ()

 (loop for i from 1 to 10

collect

 (accept ’integer

 :query-identifier i)))

also (valid case for same prompts)

(dw:accepting-values ()

 (loop for i from 1 to 5

 collect (let ((num (accept ’integer

 :prompt

 (format nil "Number #~D" i))))

(list num

 (when (oddp num)

 (accept ’boolean

 :query-identifier

(list :subfield i)

 :prompt

 " Subfield for that"))))))

Page 1134

See the function dw:accepting-values.

:separate-inferior-queries

Boolean option specifying whether recursive calls to accept go on separate lines

when executing an dw:accepting-values function; the default is nil.

:confirm

Specifies, when set to t, that the user must confirm input before it will be accept-

ed. The default is nil. This option is ignored unless the call to accept is made

from the Command Processor (CP).

For an overview of accept and related facilities: See the section "Using Presenta-

tion Types for Input".

� accept-from-string presentation-type string &rest args &key index (start 0) end &al-

low-other-keys Function

Reads the printed representation of a Lisp object from a string and returns the ob-

ject with a specified presentation type. This function is the presentation-system

equivalent of the Common Lisp function read-from-string.

presentation-type

Presentation type of the object to be accepted.

string String from which to accept the object.

args Keyword options to accept.�

:start Specifies the position of the first character to be parsed. The de-

fault is 0, the position of the first character.�

:end Specifies the position of the first character not to include in the

parsing of the string.�

Examples:

(accept-from-string ’string "Test 1") ==>

"Test 1"

STRING

�

(accept-from-string ’integer "Test 2" :start 5) ==>

2

INTEGER�

For an overview of accept-from-string and related facilities: See the section "Us-

ing Presentation Types for Input".

� dw:accept-values descriptions &key (prompt nil) (near-mode ’(:mouse)) (stream

query-io) (own-window nil) (temporary-p dw::own-window) (initially-select-query-

identifier nil) Function

Page 1135

Reads a series of printed representations of Lisp objects from a stream and re-

turns one value for each object read. The objects may be entered via mouse ges-

tures or as keyboard input.

descriptions

List of descriptions. Each description is a list of a presentation type

and a set of the keyword options; available keywords are those al-

lowed by accept. being returned for all occurrences of that type.

Example:

(dw:accept-values ’((integer :prompt "Half-life"

 :default 24000)

 (pathname :prompt "Log file")

 (integer :prompt "Session number"))

:prompt "Atomic experiment")�

:prompt Specifies a string, or a function returning a string, serving as the

prompt or heading for the whole series of input prompts that follow.

:near-mode

Specifies where the menu appears. The default makes it appear

near the position of the mouse cursor at the time the function is

called. For other possibilities: See the method (flavor:method

:expose-near tv:essential-set-edges).

This option is applicable only when the value of the :own-window

option is t.

:stream Specifies the stream to be used for input and output; the default is

query-io.

:own-window

Specifies whether the input/output interaction occurs in a separate,

momentary window or runs "in place" in the current window like

ordinary input/output; the default is nil.�

:temporary-p

Boolean specifying whether the menu window is temporary, that is,

whether the menu locks the underlying window without graying it

out. If the value of the :own-window option is t, then the default

for this option is t, a temporary window; if the value of :own-

window is nil, this option is inapplicable.

:initially-select-query-identifier

Specifies that a particular field is preselected when the user inter-

action begins. The field to be selected is tagged by the :query-

identifier option to accept, passed through to accept by dw:accept-

values. Use this tag as the value for the :initially-select-query-

identifier keyword, as shown in the following example:

Page 1136

(dw:accept-values ’((integer :prompt "Number of times"

 :query-identifier fred)

 (boolean :prompt "Backwards"))

 :initially-select-query-identifier ’fred)�

When the initial display is output, the mouse cursor appears after

the prompt of the tagged field, just as if the user had selected that

field by clicking on it. The default value,if any, for the selected

field is not displayed.�

For an overview of dw:accept-values and related facilities: See the section "Using

Presentation Types for Input".

� dw:accept-values-choose-from-sequence stream sequence value query-identifier

&key (type ’t) highlighted-type printer (key #’identity) (highlighting-test #’eq) high-

lighting-function (select-action #’(lambda (dw::new ignore) dw::new)) fill-p multi-

ple-choices (single-box t) Function

The function to use when writing a :choose-displayer in defining a presentation

type. Here is an example from an internal presentation-type definition for dw:alist-

subset:

:choose-displayer

 ((stream object query-identifier &key original-type)

 (dw:accept-values-choose-from-sequence

 stream alist object query-identifier

 :type original-type

 :multiple-choices t

 :highlighting-test #’(lambda (e list)

 (member e list :test highlighting-test))

 :printer #’(lambda (element stream)

 (princ (token-element-string element) stream))

 :key #’tv:menu-execute-no-side-effects

 :select-action #’(lambda (new list)

 (if (member new list :test highlighting-test)

 (remove new list :test highlighting-test)

 (adjoin new list :test highlighting-test)))))

�

stream The stream on which to display the accept-values menu.

sequence The sequence from which to choose a value.

value The current value of the query. Normally, this is the object argu-

ment to the :choose-displayer function. value is used as an argu-

ment to the :highlighting-test function.

query-identifier

Specifies a unique identifier for this accept-values call.

:type The presentation type of the object to be accepted.

Page 1137

:highlighted-type

Presentation type of choice(s) to highlight.

:printer Specifies a function of two arguments, the object and a stream, to

use to print the menu choices.

:key Specifies a function to obtain the value of a selected item from an

element of sequence. The default is #’identity.

:highlighting-test

Specifies a function that determines which value derived from se-

quence by :key is a currently selected choice, and therefore should

be highlighted. The first argument is the value derived from se-

quence, the second argument is the current value of the query, ini-

tially value. The default is (function eq). The function in the exam-

ple above allows more than one choice to be selected, by interpret-

ing value as a list of selected choices.

:highlighting-function

Specifies a function to be used to highlight the choices.

:highlighting-function gets called with continuation &rest continua-

tion-args where the continuation-args are choice, stream, and type.

The default if :highlighting-function is unspecified or nil is to

present the choice in boldface.

:select-action

The function to execute when an item is selected. It takes two ar-

guments, the value of the selected item and the current value of

the query, initially value. The value it returns is the new value of

the query. The default is a function that simply returns its first ar-

gument.

:fill-p Boolean specifying when t that the line on which the choices are

displayed should be filled, that is, displayed with newline characters

to prevent wrapping of output for long lines.

:multiple-choices

Boolean specifying when t that more than one choice can be accept-

ed.

:single-box

Boolean specifying when t, the default, that the mouse-sensitivity of

objects output by this form be highlighted by a single box.

� dw:accept-values-command-button (&optional (stream ’*standard-output*))

prompt &body conditional-forms Function

Used within dw:accepting-values form, displays prompt on stream and creates an

area, the "button," in which when a mouse button is clicked the conditional-forms

are evaluated.

Example:

Page 1138

(defun pathname-test ()

 (let ((number 10)

 (pathname #P"foo.bar"))

 (dw:accepting-values ()

(dw:accept-values-fixed-line "Here are some questions:")

(dw:accept-values-command-button ()

 (write-string "Click here to synchronize version.")

 (setq pathname (send pathname :new-version number)))

(terpri)

(list (setq number (accept ’integer :prompt "Version"

 :default number))

 (setq pathname (accept ’pathname :prompt "File"

 :default pathname))))))

� dw:accept-values-display-exit-boxes &key (stream *query-io*) (level :top-level)

Function

Used within dw:accepting-values form, displays the mouse-sensitive exit boxes

"ABORT aborts, END uses these values" on stream.

� dw:accept-values-fixed-line string &optional (stream *query-io*) Function

Used within a dw:accepting-values form, displays string on stream.

� dw:accept-values-for-defaults continuation Function

Runs continuation with a stream argument, causing calls to accept to return their

defaults. This is like the user encountering dw:accepting-values and pressing END

right away.

� dw:accept-values-into-list descriptions &key :prompt (:near-mode ’(:mouse))

(:stream *query-io*) :own-window (:temporary-p dw::own-window) :initially-select-

query-identifier Function

Performs the same operation as dw:accept-values, but returns a list rather than

multiple values. See the function dw:accept-values.

� dw:accept-variable-values variables &key (prompt "Choose Variable Values")

(near-mode ’(:mouse)) (delayed t) (stream *query-io*) (own-window nil)

(temporary-p dw::own-window) (initially-select-query-identifier nil) Function

Provides a menu-like facility for setting the values of special variables to values

provided by the user. The value for each variable is read via a call to accept us-

ing a specified presentation type.

Page 1139

(Usage note: dw:accept-variable-values is intended for use with special variables,

not local ones. As such, it is useful for conversion from tv:choose-variable-values

but is, in general, less appropriate for new applications of accept-values technology.

For the latter, we recommend using dw:accept-values and dw:accepting-values.)

variables A list of variable descriptions. Each description is a list of the form

(place &optional (prompt :enter-type) (type ’sys:expression))

where place is usually a variable name; prompt is either a prompt

string, :enter-type (the default), or a function for returning a

prompt string; and type is the presentation type of the variable

(sys:expression by default).

Example:

(dw:accept-variable-values

’((*a* "Number" integer)

 (*b* "File" pathname)

 (*c* "Printer" sys:printer))) ==>

�

Choose Variable Values

Number: an integer

File: the pathname of a file

Printer: a printer

� aborts, � uses these values

NIL�

:prompt Specifies a string, or a function returning a string, serving as the

prompt or heading for the whole series of input prompts that follow.

:near-mode

Specifies where the menu appears. The default makes it appear

near the position of the mouse cursor at the time the function is

called. For other possibilities: See the method (flavor:method

:expose-near tv:essential-set-edges).

This option is applicable only when the value of the :own-window

option is t.

:delayed Boolean option specifying whether variables are updated with user-

supplied values after the entire accept-variable-values interaction is

complete, or individually after input to each variable field is termi-

nated; the default is t.

:stream Specifies the stream to be used for input and output; the default is

query-io.

:own-window

Specifies whether the input/output interaction occurs in a separate,

momentary window or runs "in place" in the current window like

ordinary input/output; the default is nil.�

Page 1140

:temporary-p

Boolean specifying whether the menu window is temporary, that is,

whether the menu locks the underlying window without graying it

out. If the value of the :own-window option is t, then the default

for this option is t, a temporary window; if the value of :own-

window is nil, this option is inapplicable.

:initially-select-query-identifier

Specifies that a particular field is pre-selected when the user inter-

action begins. The field to be selected is tagged by the :query-

identifier option to accept; use this tag as the value for the

:initially-select-query-identifier keyword, as shown in the following

example:

 (dw:accept-variable-values

 ’((a "The file" ’pathname)

 (b "The number" ’integer)

 (c "The printer" ’sys:printer))

 :initially-select-query-identifier ’the-tag)

�

When the initial display is output, the mouse cursor appears after

the prompt of the tagged field, just as if the user had selected that

field by clicking on it. The default value, if any, for the selected

field is not displayed.

For an overview of dw:accept-variable-values and related facilities: See the sec-

tion "Using Presentation Types for Input".

� dw:accepting-values (&optional (stream ’*query-io*) &key :own-window (:display-

exit-boxes (not dw::own-window)) (:temporary-p dw::own-window) (:label "Multiple

accept") (:near-mode ’(:mouse)) :initially-select-query-identifier :resynchronize-every-

pass :queries-are-independent (:changed-value-overrides-default t) (:query-entry-mode�

:inline)) &body body Function

Causes all calls to accept within body to appear in a single, dw:accept-variable-

values-like menu that can be modified dynamically. If this macro is called from a

remote terminal or some other device that does not support menus, it just per-

forms successive calls to accept.

stream Stream for input and output; the default is *query-io*.�

If the body of an accepting-values form assigns the returned value to a variable,

as, for example, with

(setq a (accept ...))

and the user never submits any new input for this call to accept, that variable

gets set to the default value of the accept.

Page 1141

:own-window

Specifies whether the input/output interaction occurs in a separate,

momentary window or runs "in place" in the current window like

ordinary input/output; the default is nil.�

:display-exit-boxes

Boolean option specifying whether the Abort-End exit message is

displayed. The default is to display it unless the interaction is in its

own window (see the :own-window option).

:temporary-p

Boolean specifying whether the menu window is temporary, that is,

whether the menu locks the underlying window without graying it

out. If the value of the :own-window option is t, then the default

for this option is t, a temporary window; if the value of :own-

window is nil, this option is inapplicable.

:label Specifies a string to serve as the title of the interaction menu. This

option is applicable only if the value of the :own-window option is

t.

:near-mode

Specifies where the menu appears. The default makes it appear

near the position of the mouse cursor at the time the function is

called. For other possibilities: See the method (flavor:method

:expose-near tv:essential-set-edges).

This option is applicable only when the value of the :own-window

option is t.

:initially-select-query-identifier

Specifies that a particular field is pre-selected when the user inter-

action begins. The field to be selected is tagged by the :query-

identifier option to accept; use this tag as the value for the

:initially-select-query-identifier keyword, as shown in the following

example:

(let (a b c)

 (dw:accepting-values (*query-io*

:initially-select-query-identifier ’the-tag)

 (setq a (accept ’pathname :prompt "The file"))

 (setq b (accept ’integer :prompt "The number"

:query-identifier ’the-tag))

 (setq c (accept ’sys:printer

 :prompt "The printer")))

 (format t "Printing ~D copies of

 file ~A on ~A" b a c))

When the initial display is output, the mouse cursor appears after

the prompt of the tagged field, just as if the user had selected that

Page 1142

field by clicking on it. The default value, if any, for the selected

field is not displayed. Note: you must specify either a unique

prompt or a query-identifier for each accept form within an

dw:accepting-values form; otherwise, there will be no way that the

accept-variable-values stream can identify which accept form is be-

ing run.�

:resynchronize-every-pass

Boolean option specifying whether earlier queries depend on later

values; the default is nil.

You can use this option to alter dynamically the multiple-accept

display. The following is a simple example. It initially displays an

integer field that disappears if a value other than 1 is entered; in

its place a two-field display appears.

(defun alter-multiple-accept ()

 (fresh-line)

 (let ((flag 1))

 (dw:accepting-values

(t :resynchronize-every-pass t)

 (if (= flag 1)

 (setq flag (accept ’integer :default flag))

 (accept ’string)

 (accept ’pathname)))))�

As the example shows, to use this option effectively, the controlling

variable(s) must be initialized outside the lexical scope of the

dw:accepting-values macro.�

body The body is run in order to generate the initial prompt/value dis-

play. The body (or some part of it) is re-run each time a change is

made; so the dependencies that later calls to accept may have on

earlier ones will be correctly resolved. Because the body is run re-

peatedly, you must be careful of side-effects in the body code. Also,

because the stream carries the state information, all input/output

calls within the body must use the stream specified in the

dw:accepting-values options list.

If you had a file V:>RJ>tst.dwg and a printer named Audubon, you

could do something like the following. (Supply a pathname at your

site and a local printer to try these examples.)

Good examples:

Page 1143

�

(let ((a #P"V:>RJ>TST.DWG")

(b 2)

(c (net:find-object-named :printer "audubon")))

 (dw:accepting-values (*query-io*

 :prompt "Good Example")

 (setq a (accept ’pathname

:prompt "The file"

:default a))

 (setq b (accept ’integer

:prompt "The number":default b))

 (setq c (accept ’sys:printer

 :prompt "The printer"

:default c)))

 (format t "Printing ~D copies of

file ~A on ~A" b a c))

�

(multiple-value-bind (a b c)

 (dw:accepting-values ()

 (values

 (accept ’pathname :prompt "The file")

 (accept ’integer :prompt "The number")

 (accept ’sys:printer

 :prompt "The printer")))

 (format t "Printing ~D copies of

file ~A on ~A" b a c))�

Poor example:

(let ((the-list nil))

 (dw:accepting-values ()

 (push

 (list

 (accept ’pathname :prompt "The file")

 (accept ’sys:printer :prompt "The printer"))

 the-list))

 (format t "The list = ~S" the-list))�

The above example is a poor one because the output list will have

an unpredictable number of elements; this detracts from its useful-

ness.�

A useful presentation type to use with accept functions in the body of a

dw:accepting-values macro is alist-member. Its usefulness derives from the key-

word options available for inclusion in the item lists contributing to the alists.

Three options exist: :documentation, :style, and :selected-style.

The value of the :documentation keyword is a string that appears in the mouse

documentation line when the mouse cursor is over the item (that is, the item is

highlighted).

Page 1144

:style specifies the character style for the item when it is displayed. :selected-

style specifies the character style of the item when it is selected, that is, after it

has been clicked on. The :selected-style defaults to the boldface version of the un-

selected style.

Use of the alist-member presentation type with dw:accepting-values is illustrated

by the following example:

�

(defun filter-a-v ()

 (let ((low-pass-list

 ’(("Mean" :value :mean

 :documentation "1 1 1 mask"

 :style (:swiss :roman :normal)

 :selected-style (:dutch :bold nil))

 ("Gaussian" :value :gauss

 :documentation "1 2 1 mask"

 :style (:swiss :roman :normal)

 :selected-style (:dutch :bold nil))))

(edge-list

 ’(("Laplacian, HP" :value :lpl-hp

 :documentation "-1 3 -1 mask"

 :style (:swiss :roman :normal)

 :selected-style (:dutch :bold nil))

 ("Laplacian, ED" :value :lpl-ed

 :documentation "-1 2 -1 mask"

 :style (:swiss :roman :normal)

 :selected-style (:dutch :bold nil)))))

 (dw:accepting-values (*query-io* :own-window t)

 (fresh-line)

 (setq lo-pass-f (accept ‘((alist-member

 :alist ,low-pass-list)

 :description "a low-pass filter")))

 (setq edge-f (accept ‘((alist-member

 :alist ,edge-list)

 :description "a hi-pass/edge filter"))))))

�

For an overview of dw:accepting-values and related facilities: See the section "Us-

ing Presentation Types for Input".

For additional examples, see the file sys:examples;accepting-values.lisp

� (flavor:method :activate-p tv:essential-window) t-or-nil Init Option

If this option is specified non-nil, the window is activated after it is created. The

default is to leave it deactivated. Note that :activate-p and :expose-p are argu-

ments in init-options which cannot be specified in the flavor’s :default-init-plist.

Page 1145

� (flavor:method :activate-p tv:menu) t-or-nil Init Option

If this option is specified non-nil, the window is activated after it is created. The

default is to leave it deactivated.

� :activation function &rest arguments Option

For each character typed, the input editor invokes function with the character as

the first argument and arguments as the remaining arguments. If the function re-

turns nil, the input editor processes the character as it normally would. Otherwise,

the cursor is moved to the end of the input buffer, a rescan of the input is forced

(if one is pending), and the blip (:activation character numeric-arg) is returned by

the final sending of the :any-tyi message to the stream. Activation characters are

not inserted into the input buffer, nor are they echoed by the input editor. It is

the responsibility of the reading function to do any echoing. For instance,

zl:readline, not the input editor, types a Newline at the end of the input buffer

when RETURN, END, or LINE is pressed.

� (flavor:method :add-asynchronous-character si:interactive-stream) character

handler Method

Defines a new asynchronous character for the stream. character is the character to

be treated asynchronously and handler is the function to be called (with two argu-

ments, character and self). It checks the types of the arguments.

The standard handler that the system uses to intercept c-m-SUSPEND, c-ABORT, and

so on, is the function tv:kbd-asynchronous-intercept-character . Therefore, if you

have, for example, removed one of these system asynchronous characters, you can

restore it through:

(send stream :add-asynchronous-character character

 ’tv:kbd-asynchronous-intercept-character)�

� cp:add-command-accelerator command-table function-name characters Function

Adds a keyboard accelerator for an existing command named function-name in the

table command-table. The list characters includes every character that will invoke

the command. See the function cp:define-command-accelerator.

� tv:add-function-key char function documentation &rest options Function

Adds char to the list of keys that can follow the FUNCTION key. Following is an ex-

planation of the arguments:

char The character that should be typed after FUNCTION to get the

new command. Lowercase letters are converted to uppercase.

function A specification for the action to be taken when the user press-

es FUNCTION char. function can be a symbol or a list:

Page 1146

• Symbol: The name of a function to be applied to one argu-

ment. The argument is the numeric argument to FUNCTION

char (an integer) or nil if the user supplied none.

• List: A form to be evaluated.

function is applied or evaluated in a newly created process un-

less you supply the :keyboard-process option (see below).

documentation A form to be evaluated when the user presses FUNCTION HELP

to produce documentation for the command. The form should

return a string, a list of strings, or nil (of course, documenta-

tion can just be a string or nil):

• String: One line of text describing this command for FUNC-

TION HELP.

• List of strings: Each string is a line of text for

FUNCTION HELP to print successively in describing this com-

mand. (Note: you can accomplish the same effect by using a

single string containing NEWLINE characters.) Usually docu-

mentation is a Lisp form that looks like ’("line 1" "line 2"

...).

• nil

FUNCTION HELP prints nothing describing this command.

options A series of keywords sometimes followed by values. Possible op-

tions are :keyboard-process, :process-name, :process, and

:typeahead:

• :keyboard-process

function is applied or evaluated in the keyboard process in-

stead of a newly created process. This option exists because

certain built-in commands must run in the keyboard process.

You should not use this option for new commands. The cost

of creating a new process is quite low.

• :process-name string

string is the name of the newly created process in which

function is applied or evaluated. If you don’t supply this op-

tion or the :process option, the name of the process is

"Function Key".

• :process list

list is a list to be used as the first argument to process-

run-function, called to create a new process in which func-

tion is applied or evaluated. This option takes precedence

over :process-name.

Page 1147

• :typeahead

Everything the user types before pressing the FUNCTION key

is treated as typeahead to the currently selected window.

Use this option with commands that change windows to en-

sure that the user’s typed input goes to the I/O buffer of the

expected window.

Here is an example of a call to tv:add-function-key:

(tv:add-function-key #\refresh ’tv:kbd-screen-redisplay

 "Clear and redisplay all windows.")�

See the variable tv:*function-keys*.

� (flavor:method :add-highlighted-item tv:menu-highlighting-mixin) item Method

Add an item to the list of items to be highlighted.

� (flavor:method :add-highlighted-value tv:menu-highlighting-mixin) value Method

Adds an item to the list of items to be highlighted. Refers to the item by value.

For instance, if your item-list is an association list, with elements (string .�

symbol), this message uses symbol. This only works for menu items that can be ex-

ecuted without side-effects, not, for example, the :eval and :funcall kinds.See the

section "tv:multiple-menu-mixin Messages".

� tv:add-select-key char flavor name &optional (create-p t) clobber-p Function

Adds char to the list of keys that can follow the SELECT key. Following is an expla-

nation of the arguments:

char The character (character object) that should be typed after SE-

LECT to get the new command. Lower-case characters are con-

verted to upper case. Number keys are not permitted.

flavor A specification for the window to be selected when the user

presses SELECT char. flavor can be a symbol, an instance, or a

list:

• Symbol: The name of a flavor. The SELECT command search-

es the list of previously selected windows and selects a win-

dow of flavor flavor if it finds one. (flavor can be the name

of a component flavor of the window, not just the instantiat-

ed flavor.) Otherwise, if the currently selected window is of

flavor flavor, it beeps. Otherwise, it takes the actions speci-

fied by create-p.

• Instance: A window. The SELECT command selects that win-

dow.

Page 1148

• List: A form to be evaluated (in the SELECT command’s new-

ly created process). The form should return a window to be

selected or a symbol that is the name of a flavor of window

to be selected.

name A string giving the colloquial name of the program to be se-

lected. name is printed by SELECT HELP.

create-p A specification for actions that the SELECT command should

take if it cannot find a previously selected window of flavor

flavor and if the currently selected window is not of flavor fla-

vor. create-p can be nil, t, another symbol, or a list:

• nil: Beeps.

• t: Calls tv:make-window with no options to create a window

of flavor flavor. Selects that window.

• Another symbol: The name of a flavor. Calls tv:make-

window with no options to create a window of flavor

create-p. Selects that window.

flavor and create-p can be names of different flavors. For ex-

ample, flavor might be the name of a mixin that is a compo-

nent of several flavors, all of which are suitable flavors of

window to select.

• List: A form to be evaluated (in the SELECT command’s new-

ly created process). The form presumably selects a window.

clobber-p Boolean option specifying whether to reassign a key to select a

new program without first requesting confirmation; a value of

t suppresses the confirmation prompt.

If the user presses char with the c- modifier (after pressing SELECT), and if flavor

is a symbol that names a flavor or is a form that returns the name of a flavor, the

SELECT command does not search for previously selected windows of flavor flavor.

Instead, it takes the actions specified by create-p. But if flavor is a window, the

SELECT command selects that window even if the user presses char with the c-

modifier.

Here is an example of a call to tv:add-select-key:

(tv:add-select-key #/E ’zwei:zmacs-frame "Editor" :clobber-p nil)�

As of Genera 7.3 Ivory, the variable tv:*select-keys*, previously used by the SE-

LECT key, is obsolete. it is retained for compatibility. (The SELECT key now uses an

internal database.) Use tv:add-select-key where possible.

Page 1149

� dw:add-standard-menu-accelerator command-table command-symbol &optional ac-

celerator-name (menu-level ’(:top-level)) Function

Defines normal command menu actions. This is what the define-program-

command :menu-accelerator option expands into. Use this to add items to the

command menu if you do not use :menu-accelerator t or to add synonyms.

For an overview of this and related topics: See the section "How Command Menus

Work".

� tv:add-to-system-menu-create-menu name flavor documentation &optional after

Function

Adds an entry to the menu that appears when you click on [Create] in the System

menu or in the Edit Screen menu. name is a string, the name of the menu item.

flavor, a flavor name, is the flavor of window that is created when the menu item

is selected. documentation is mouse documentation for the menu item. after deter-

mines where in the [Create] menu the item should appear:

nil Bottom of the menu

t Top of the menu

string After the item named string that is now in the menu�

Example:

(tv:add-to-system-menu-create-menu

 "Concept Editor" ’crl:concept-editor

 "Edit the representation of a concept in the CRL system")�

� tv:add-to-system-menu-programs-column name form documentation &optional af-

ter Function

Adds a program to the Programs column of the System menu. name is a string,

the name to appear in the menu. form is a form to evaluate, in its own process,

when the program is selected; often this is a call to tv:select-or-create-window-of-

flavor. documentation is mouse documentation for the menu item. after determines

the position of the new program name in the Programs column:

nil Bottom of the column

t Top of the column

string After the program named string that is now in the menu�

Example:

(tv:add-to-system-menu-programs-column

 "Concept Editor" ’crl:concept-editor

 "Edit the representation of a concept in the CRL system")�

Page 1150

� tv:add-typeout-item-type Function

The following special form is used to declare information about a mouse-sensitive

type by adding an entry to an alist kept in a special variable.

(tv:add-typeout-item-type

 alist type name operation default-p documentation)�

This alist can be put into the item-type alist of a mouse-sensitive window, using,

for instance, the :item-type-alist init-plist option. Note that each possible operation

on a particular mouse-sensitive item type is defined with a separate tv:add-

typeout-item-type form; this allows each operation to be defined at the place in

the program where it is implemented, rather than collecting all the operations into

a separate table. It also allows new operations to be added in a modular fashion.

alist is the special variable that contains the alist. You should declare it nil with

defvar before defining the first item type. Each program that uses mouse-sensitive

items has its own alist of item types, so that there is no conflict in the names of

the types.

type is the keyword symbol for the type being defined.

name is the string that names the operation.

operation is the action to be taken, for instance, the function to be called.

default-p is optional; if it is supplied and non-nil, it means that this operation is

the default performed when you click the left button on an item of this type.

documentation is optional but highly recommended; it is a string that documents

what operation does. When the user points the mouse at an item of this type, the

documentation line at the bottom of the screen displays the documentation for the

default operation (reachable by the left button) and a list of the operations in the

menu (reachable by the right button). If the user clicks right, calling for a menu,

then the screen displays documentation for the operation pointed at.

alist, type, and operation are not evaluated. name, default-p, and documentation are

evaluated.

When operation is a function, the tv:add-typeout-item-type form is typically

placed near the definition of the function in the program source file.

� (flavor:method :adjust-geometry-for-new-variables tv:choose-variable-values-

window) width Method

The variable width is specified as nil if the size is not to be adjusted, otherwise

the inside-width and height are also adjusted. The :adjust-geometry-for-new-

variables message is normally sent after sending a :setup message. (It is not nec-

essary to send it after a :set-variables message.)

� :alias-for-selected-windows Message

Page 1151

When the :alias-for-selected-windows message is sent to a window, it returns the

representative window of the receiver’s activity. If two windows have the same

alias-for-selected-windows, they belong to the same activity.

This message is sent by both the system and the user and may be received by ei-

ther, although usually the system-supplied methods suffice. The default method (of

tv:sheet) returns the window to which the message is sent, declaring the window

to be in an activity by itself. tv:select-relative-mixin supplies a method that re-

turns the superior’s alias, unless the window to which the message is sent is a

top-level window (that is, its superior is a screen); in that case it returns the win-

dow itself. tv:pane-mixin and tv:basic-typeout-window supply methods that return

the superior’s alias.

� tv:*allow-pop-up-notifications* Variable

If the value is t, asynchronous notifications not handled by the selected process

will be displayed in a pop-up window. If the value is nil and the window does not

handle asynchronous notifications, any notification will just be held and an alert

will appear in the progress note area at the very bottom of the screen: "~D pending

notifications". A user who sees this can switch to a Lisp listener or press SELECT

N to see the notification.

Note that whether an asynchronous notification is "handled" by a process depends

on the process state and the activity in progress. Lisp Listeners, for example, are

almost always prepared to handle notifications, by printing them at the current

output point on the window, unless other unusual output is occurring. A Zwei-

based application (Zmacs, Zmail, Converse) prints notifications in the mode-line

window if it is in the User Input state and the message will fit in that window.

Most other applications are not prepared to handle notifications.

� tv:alu-and Variable

And alu function. Like tv:alu-seta, this is not useful with the drawing operations,

but can be useful with the bitblt operations. 1 bits in the input leave the corre-

sponding output bit alone, and 0 bits in the input clear the corresponding output

bit.

This is the same as the Common Lisp boole-and function.

� tv:alu-andca Variable

And-with-complement alu function. Bits in the object being drawn are turned off

and other bits are left alone. This is the erase-aluf of most windows. It is useful

for erasing areas of the window or for erasing particular characters or graphics.

This is the same as the Common Lisp boole-andc1 function.

� tv:alu-ior Variable

Page 1152

Inclusive-or alu function. Bits in the object being drawn are turned on and other

bits are left alone. This is the char-aluf of most windows. If you draw several

things with this alu function, they will write on top of each other, just as if you

had used a pen on paper.

This is the same as the Common Lisp boole-ior function.

� tv:alu-seta Variable

Set all bits in the affected region. This is not useful with the drawing operations,

because the exact size and shape of the affected region depend on the implementa-

tion details of the microcode. The seta function is useful with the bitblt opera-

tions, where it causes the source rectangle to be transferred to the destination

rectangle with no dependency on the previous contents of the destination.

This is the same as the Common Lisp boole-1 function.

� tv:alu-xor Variable

Exclusive-or alu function. Bits in the object being drawn are complemented and

other bits are left alone. Many graphics programs use this. The graphics messages

take quite a bit of care to do "the right thing" when an exclusive-or alu function is

used, drawing each point exactly once and including or excluding boundary points

so that adjacent objects fit together nicely. The useful thing about exclusive-or is

that if you draw the same thing twice with this alu function, the window’s con-

tents are left just as they were when you started; so this is good for drawing ob-

jects if you want to erase them afterwards.

This is the same as the Common Lisp boole-xor function.

� (flavor:method :any-tyi si:interactive-stream) &optional eof-action Method

Reads and returns the next character or blip of input from the stream, waiting if

there is none. Where the character comes from depends on the value of the vari-

able sys:rubout-handler. Following is a summary of actions for each possible val-

ue of sys:rubout-handler:

nil If the input buffer contains unscanned input, take the next

character from there. Otherwise, take the next character from

the stream.

:read If the input buffer contains unscanned input, take the next

character from there. Otherwise, if an activation blip or char-

acter is present, return that. Otherwise, enter the input editor.

:tyi Take the next character from the stream.�

If eof-action is not nil, an error is signaled when an end-of-file is encountered.

Otherwise, the method returns nil when an end-of-file is encountered. The default

for eof-action is nil.

Page 1153

� (flavor:method :any-tyi tv:stream-mixin) &optional eof-action Method

Reads and returns the next character or blip of input from the window, waiting if

there is none. Where the character comes from depends on the value of the vari-

able sys:rubout-handler. Following is a summary of actions for each possible val-

ue of sys:rubout-handler:

nil If the input buffer contains unscanned input, takes the next

character from there. Otherwise, takes the next character from

the window’s I/O buffer.

:read If the input buffer contains unscanned input, takes the next

character from there. Otherwise, if an activation blip or char-

acter is present, returns that. Otherwise, enters the input edi-

tor.

:tyi Takes the next character from the window’s I/O buffer.�

If eof-action is not nil, an error is signalled when an end-of-file is encountered.

Otherwise, the method returns nil when an end-of-file is encountered. The default

for eof-action is nil.

� (flavor:method :any-tyi-no-hang si:interactive-stream) &optional eof-action

Method

Returns the next character from the stream if it is immediately available. If no

characters are immediately available, returns nil. It is an error to call this method

from inside the input editor (that is, if the value of sys:rubout-handler is not nil).

eof-action is ignored. This is used by programs that continuously do something un-

til a key is typed, then look at the key and decide what to do next.

� (flavor:method :any-tyi-no-hang tv:stream-mixin) &optional eof-action Method

Checks the window’s I/O buffer and returns the next character if it is immediately

available. If no characters are immediately available, it returns nil. It is an error

to call this method from inside the input editor (that is, if the value of

sys:rubout-handler is not nil). eof-action is ignored. This is used by programs that

continuously do something until a key is typed, then look at the key and decide

what to do next.

� (flavor:method :append-item tv:text-scroll-window) new-item Method

Inserts new-item after the last item in the list. new-item can be any Lisp object.

If the last item in the list is visible in the window and there is room to display

the new item, the window redisplays to show the new item.

� (flavor:method :appropriate-width tv:choose-variable-values-window) &optional

extra-space Method

Page 1154

This returns the inside-width appropriate for this window to accommodate the cur-

rent set of variables and their current values. Send this message after a :setup

and before a :expose, and use the result to send an :adjust-geometry-for-new-

variables message. The returned width is not larger than the maximum that fits

inside the superior.

If extra-space is supplied, it specifies the amount of extra space to leave after the

current value of each variable of the kind that displays its current value (rather

than a menu of all possible values). This extra space allows for changing the value

to something bigger. The extra space is specified as either a number of characters

or a character string. The default is to leave no extra space.

� (flavor:method :asynchronous-character-p si:interactive-stream) character

Method

Returns non-null when character is an asynchronous character for this stream.

� (flavor:method :asynchronous-characters si:interactive-stream) spec-list

Init Option

Specifies the asynchronous characters for the stream. spec-list is a list of specs,

each of which is a list containing a character name and a function spec. The fol-

lowing default asynchronous characters are defined for si:interactive-stream:

(:default-init-plist

 :asynchronous-characters

 ’((#\c-abort tv:kbd-asynchronous-intercept-character)

 (#\c-m-abort tv:kbd-asynchronous-intercept-character)

 (#\c-suspend tv:kbd-asynchronous-intercept-character)

 (#\c-m-suspend tv:kbd-asynchronous-intercept-character)))�

Thus, tv:kbd-asynchronous-intercept-character is the standard handler for all of

the system’s asynchronous characters. The :handle-asynchronous-character

method for si:interactive-stream calls this function with two arguments, the char-

acter and the stream.

� tv:autoexposing-more-mixin Flavor

If you mix in this flavor, when a :more-exception happens, the window will be ex-

posed (a :expose message will be sent to it). This is intended to be used in con-

junction with having a deexposed typeout action of :permit, so that a process can

type out on a deexposed window and then have the window expose itself when a

MORE break happens.

� tv:back-convert-constraints constraints Function

Converts a list used as the :constraints init option for tv:basic-constraint-frame

to a list suitable for the :configurations option.

Page 1155

The function returns two values: a list suitable for use as the argument to the

:configurations option, and a list of symbols naming the panes encountered in the

list.

Example:

(tv:back-convert-constraints

 ’((first-config . ((top-strip main-pane)

 ((top-strip :horizontal (.3)

 (huey dewey louie)

 ((huey :even)

 (dewey :even)

 (louie :even))))

 ((main-pane :even))))

 (second-config . ((main-pane bottom-strip)

 ((bottom-strip :horizontal (.2)

 (random-pane menu)

 ((menu :ask :pane-size))

 ((random-pane :even))))

 ((main-pane :even))))))

�

=> ((first-config (:layout

 (first-config :column top-strip main-pane)

 (top-strip :row huey dewey louie))

 (:sizes

 (top-strip (huey :even) (dewey :even) (louie :even))

 (first-config (top-strip 0.3)

 :then (main-pane :even))))

 (second-config (:layout

 (second-config :column main-pane bottom-strip)

 (bottom-strip :row random-pane menu))

 (:sizes

 (bottom-strip (menu :ask :pane-size)

 :then (random-pane :even))

 (second-config (bottom-strip 0.2)

 :then (main-pane :even)))))

�

 (random-pane menu main-pane louie dewey huey)�

� (flavor:method :backspace-not-overprinting-flag tv:sheet) x Init Option

If x is 0, typing #\back-space will move the cursor position backward; if it is 1,

typing #\back-space will display "overstrike" in a lozenge (that is, #\back-space

will be just like other special characters). It defaults to 0.

� si:backtranslate-font font Function

Page 1156

Returns the character style object corresponding to a specified screen font. Also re-

turned are the character set, charset-offset, and device type. (The default device

type for this function is si:*b&w-screen*.)

Example:

(si:backtranslate-font fonts:eurex24i) ==>

#<CHARACTER-STYLE EUREX.ITALIC.HUGE 260273114>

#<STANDARD-CHARACTER-SET 260000540>

0

#<B&W-SCREEN-DISPLAY-DEVICE 260272253>

�

� (flavor:method :baseline tv:sheet) Method

Returns the baseline of the current font. The bases of all output characters are so

aligned as to be this many pixels below the top of the line on which the characters

are printed.

The baseline is affected by the value of the :bind-line-height option to character

style macros.

See the section "Table of Program Output Facilities".

� tv:basic-choose-variable-values Flavor

The basic flavor which makes a window implement the choose-variable-values fa-

cility. It is built out of tv:text-scroll-window. There are two ways to use this. In

the first way, the programmer creates a window giving all of the parameters in

the init-plist. In the second way one can create a window without specifying the

parameters, then send the :setup message to start the display.

� tv:basic-frame Flavor

Provides methods that allow the frame to serve as the representative window of its

activity. Usually a frame cannot become the selected window, but this flavor pro-

vides methods that handle messages about selection, typically by operating on the

selected-pane instead of the frame. The :select, :deselect, and :select-relative

methods just pass these messages on to the selected-pane when one exists; other-

wise they return nil.

This flavor provides a handler for the :select-pane message that decides which

pane should be selected when the activity is selected. The :inferior-select method

saves the argument as the selected-pane and sends the message on to the frame’s

superior with the frame as argument. The :name-for-selection method returns the

name-for-selection of the selected-pane if a selected-pane exists and has a name-

for-selection; otherwise, the method returns the name of the frame.

� tv:basic-menu Flavor

Page 1157

All the other menus in the standard menu facility are built on this flavor. The ba-

sic menu handles an item list, it remembers the last item selected, and it knows

about its geometry. See the section "The Geometry of a Menu".

� tv:basic-momentary-menu Flavor

When this flavor is mixed with a window, it creates a kind of menu that is only

momentarily on the screen. A :choose operation on a deexposed menu of this fla-

vor causes it to position itself where the mouse is and expose itself. When the

user selects an item in the menu, or alternatively moves the mouse far away from

the menu, the menu disappears and deactivates.

� tv:basic-mouse-sensitive-items Flavor

Mixing this flavor into a window provides for areas of the screen that are sensitive

to the mouse. Moving the mouse into such an area highlights the area by drawing

a box around it. At this point clicking the mouse performs a user-defined opera-

tion. This flavor is called basic because it usurps the handling of the mouse by the

window; do not mix it with another flavor that also expects to use the mouse.

However it is less basic than many basic flavors in that it does not do anything

special with the displayed image of the window.

� tv:basic-multiple-choice Flavor

The basic flavor that makes a window implement the multiple-choice facility. Like

other basic flavors, it is not instantiable on its own but it does commit any window

that incorporates it to being a multiple-choice window. tv:basic-multiple-choice is

built out of tv:text-scroll-window.

� tv:basic-scroll-bar Flavor

Provides basic scroll-bar scrolling.

� (flavor:method :bitblt tv:sheet) alu wid hei from-raster from-x from-y to-x to-y

Method

Copy a rectangle of bits from from-raster onto the window. The rectangle has di-

mensions width by height, and its upper left corner has coordinates (from-x,

from-y). It is transferred onto the window so that its upper left corner will have

coordinates (to-x, to-y). The bits of the transferred rectangle are combined with the

bits on the display according to the Boolean function specified by alu. As in the

bitblt function, if from-raster is too small it is automatically replicated.

For complete details: See the function bitblt. Note that to-raster is constrained as

described in the the description of the bitblt function. Use :draw-1-bit-raster

rather than :bitblt in programs that run without modification on color screens. See

the function tv:make-sheet-bit-array.

Page 1158

� (flavor:method :bitblt-from-sheet tv:sheet) alu wid hei from-x from-y to-raster to-x

to-y Method

Copy a rectangle of bits from the window to to-raster. All the other arguments

have the same significance as in the :bitblt method of tv:sheet. Note that to-raster

is constrained as described in the the description of the bitblt function. See the

function tv:make-sheet-bit-array.

� (flavor:method :bitblt-within-sheet tv:sheet) alu wid hei from-x from-y to-x to-y

Method

Copies a rectangle of bits from the window to some other place in the window. All

the other arguments have the same significance as in the :bitblt method of

tv:sheet.

� (flavor:method :blinker-p tv:sheet) t-or-nil Init Option

Boolean option specifying whether to provide a blinking cursor when the window is

exposed; the default is t. For more information on blinkers, see the section "Blink-

ers".

� :blip-handler function Option

Specifies a function to handle blips received while inside the input editor. function

must be a function of two arguments. The first argument is the blip; the second

argument is the stream that received the blip. The handler is invoked when the

input editor receives a blip. If the handler returns non-nil, no further action is

taken. If it returns nil and a :preemptable option is in effect, the actions specified

by that option are taken. Otherwise, the default blip handler is invoked.

In the following example, the user is prompted for a line of text. While entering

this text, the user may also click the left or middle mouse buttons. If the left

mouse button is clicked, the coordinates of the mouse with respect to the window

are inserted into the input buffer. If the middle button is clicked, the name of the

window is inserted.

(defun example-blip-handler (blip ignore)

 (destructuring-bind (type click window x y) blip

 (and (eq type :mouse-button)

 (selectq click

 (#\mouse-l-1

 (si:ie-insert-string (format nil " ~D ~D" x y))

 t)

 (#\mouse-m-1

 (si:ie-insert-string (format nil " ~A" window))

 t)))))

�

(with-input-editing-options ((:blip-handler ’example-blip-handler))

 (prompt-and-read :string "Blip handler test: "))�

Page 1159

si:ie-insert-string is an internal function for inserting a string into the input buf-

fer. Since the language for writing input editor commands has not been formal-

ized, this example might not work in a later release.

� (flavor:method :border-margin-width tv:borders-mixin) n-pixels Init Option

Set the width of the white space in the margins between the borders and the in-

side of the window. The default is 1. If some edge does not have any border (the

specification for that border was nil), that border won’t have any border margin

either, regardless of the value of this option; that is the difference between border

specifications of 0 and nil.

� (flavor:method :border-margin-width tv:borders-mixin) Method

Returns the value of the border margin width.

� tv:bordered-constraint-frame Flavor

Just tv:constraint-frame with tv:borders-mixin mixed in at the right place. It will

have a border around the edge. By default (using the :default-init-plist option of

the flavor system), the :border-margin-width is zero, so the panes at the edges of

the frame are right next to the border itself.

� tv:bordered-constraint-frame-with-shared-io-buffer Flavor

Like tv:constraint-frame-with-shared-io-buffer except that it has tv:borders-

mixin mixed into it at the right place, so that the frame has a border around it.

� (flavor:method :borders tv:borders-mixin) argument Init Option

Initializes the parameters of the borders. argument may have any of the following

values:

nil There are no borders at all.

a symbol or a number

A specification which applies to each of the four borders.

a list (left top right bottom)

Specifications for each of the four borders of the window.

a list (keyword1 spec1 keyword2 spec2...)

Specifications for the borders at the edges selected by the keywords, which

may be among :left, :top, :right, :bottom.�

Each specification for a particular border may be one of the following. It specifies

how thick the border is and the function to draw it.

nil This edge should not have any border.

Page 1160

t The border at this edge should be drawn by the default function with the

default thickness.

a number

The border at this edge should be drawn by the default function with the

specified thickness.

a symbol

The border at this edge should be drawn by the specified function with the

default thickness for that function.

a cons (function . thickness)

The border at this edge should be drawn by the specified function with the

specified thickness.�

The default (and currently only) border function is tv:draw-rectangular-border.

Its default width is 1.

To define your own border function, you should create a Lisp function that takes

six arguments: the window on which to draw the label, the "alu function" with

which to draw it, and the left, top, right, and bottom edges of the area that the

border should occupy. The returned value is ignored. The function runs inside a

tv:sheet-force-access. You should place a tv:default-border-size property on the

name of the function, whose value is the default thickness of the border; it will be

used when a specification is a non-nil symbol.

Note that setting border specifications to ask for a border width of zero is not the

same thing as giving nil as the argument to this option, because in the former

case the space for the border margin width is allocated, whereas in the latter case

it is not.

� (flavor:method :borders tv:menu) argument Init Option

Initializes the parameters of the borders. The argument can be nil, which specifies

no borders, t, which specifies default borders, or it can be a specification of a bor-

der. The specification indicates which function is used to draw the border and how

thick the border is, in pixels.

If the specification is a number, the border is drawn by the default function at the

specified thickness. The default function is tv:draw-rectangular-border.

If the specification is a symbol, the border is drawn by the specified function at a

default thickness. For more details on creating a function: See the section "Using

the Window System".

If the specification is a cons in the form (function . thickness), the borders are

drawn by the specified function at a specified thickness.

The specification can also be a list of locations on the screen: (left top right bot-

tom).

� tv:borders-mixin Flavor

Page 1161

Creates the borders around windows that you often see when using Genera. You

can control the thickness of each of the four borders separately, or of all of them

together. You can also specify your own function to draw the borders, if you want

something more elaborate than simple lines.

The borders also include some white space left between the borders and the inside

of the window. The thickness of this white space is called the border margin

width. The space is there so that characters and graphics that are up against the

edge of the inside of the window, or the next-innermost margin item, do not

"merge" with the border.

� (flavor:method :bottom tv:menu) bottom-edge Init Option

Specified in pixels and is relative to the outside of the superior window.

� (flavor:method :bottom tv:sheet) bottom-edge Init Option

Specifies the y-coordinate of the bottom edge of the window.

� (flavor:method :bottom-margin-size tv:sheet) Method

Returns the bottom margin size of the window in pixels.

� tv:box-blinker Flavor

Like tv:hollow-rectangular-blinker, except that it draws a box two pixels thick,

whereas the tv:hollow-rectangular-blinker draws a box one pixel thick. This fla-

vor includes tv:rectangular-blinker, so all of tv:rectangular-blinker’s init options

and messages work on this too.

� dw:box-bottom box Function

Returns the location of the bottom of box.

� dw:box-contained-in-region-p box other-left other-top other-right other-bottom

Function

Returns t if box is contained in the region defined by other-left, other-top, other-

right, and other-bottom; otherwise, returns nil. Any of the other coordinates can be

nil, meaning positive or negative infinity in the appropriate direction.

� dw:box-edges box Function

Returns four values in the following order: the location of the left-hand edge of

box, of the top, of the right-hand edge, and of the bottom.

Page 1162

� dw:box-left box Function

Returns the location of the left-hand side of box.

� dw:box-right box Function

Returns the location of the right-hand side of box.

� dw:box-top box Function

Returns the location of the top of box.

� dw:boxes-overlap-p box-1 box-2 Function

Returns t if box-1 and box-2 overlap; otherwise, nil.

� cp:build-command command-name &rest command-arguments Function

Constructs the internal representation of a Command Processor command.

command-name

Symbol or string naming the command to invoke; if a string, it

must be in the command table to which cp:*command-table* is

currently bound.

command-arguments

Positional and keyword arguments to the named command, either

strings or appropriate objects (or single objects when a sequence is

required.�

Examples:

(cp:build-command "show file" "test-data.text") =>

(SI:COM-SHOW-FILE (#P"V:>elm>test-data.text.newest"))

�

(cp:build-command ’si:com-load-system "doc"

 :condition :always :redefinitions-ok t) =>

(SI:COM-LOAD-SYSTEM #<SCT:SYSTEM DOC 274003470>

 :CONDITION :ALWAYS :REDEFINITIONS-OK T)

Note how, in the first example, cp:build-command "knows" the fact that com-show-

file requires a sequence as its argument. It also parses strings into objects. It

does all this by running the command parser in a mode that takes its input from

the command arguments instead of from the keyboard. This is what makes

cp:build-command useful. Suppose, for example, you want to output a command as

a presentation:

Page 1163

(present (cp:build-command ’si:com-show-file #p"Y:>elm>foo.bar")

 ’cp:command) =>

Show File (file) Y:>elm>foo.bar

#<DW::DISPLAYED-PRESENTATION (SI:COM-SHOW... CP:COMMAND 447504140>

You should not use cp:build-command within a define-presentation-to-command-

translator macro. It is too slow and you can encounter context problems in this

use if the command is a program command whose parsing depends on the pro-

gram’s dynamic state. Instead of:

(define-presentation-to-command-translator com-add-comment

 (node

 :gesture nil)

 (node)

 (cp:build-command ’com-add-comment node))

Do this instead:

(define-presentation-to-command-translator com-add-comment

 (node

 :gesture nil)

 (node)

 ‘(com-add-comment ,node))

� dw:call-presentation-menu menu-type &key :presentation :original-presentation :win-

dow :label :x :y &allow-other-keys Function

Used within a define-presentation-action that uses the :define-menu option, calls

up the specified presentation menu. For example, the following form is used to set

up the marking and yanking menu in the Lisp Listener:

(define-presentation-action marking-and-yanking-menu

 (raw-text si:input-editor

 :documentation "Marking and yanking menu"

 :gesture :marking-and-yanking-menu

 :menu (t :style (nil :italic nil))

 :defines-menu :marking-and-yanking)

 (ignore &key presentation

 (original-presentation presentation) window x y)

 (let ((use-presentation

 (or original-presentation presentation)))

 (return-from marking-and-yanking-menu

 (call-presentation-menu :marking-and-yanking

 :label

 (when

(eq use-presentation

 null-presentation)

"Marking and yanking operations")

 :presentation use-presentation

 :window window :x x :y y))))

Page 1164

Note that the menu-type argument to dw:call-presentation-menu is the one speci-

fied by :defines-menu. The :label keyword argument is used to specify the result-

ing menu’s label. The values of the other keyword arguments are obtained from

values available within the define-presentation-action form. Also note the use of

return-from to cause the presentation action to return whatever values the han-

dler invoked from the menu returns. This goes outside the scope of the nil from

the expansion of define-presentation-action, since actions normally only have side

effects.

� dw:call-presentation-mouse-handler presentation &rest arguments &key :mouse-

char :window &allow-other-keys Function

Invokes the translator for the mouse-click handler of presentation. This is for use

within an input-blip handler. For example:

(defun dynamic-window-presentation-input-blip-handler (blip)

 (destructuring-bind (nil mouse-char window x y) blip

 (call-presentation-mouse-handler

 (send window :displayed-presentation-at-position x y t)

 :mouse-char mouse-char

 :x x

 :y y

 :window window)))

The arguments are the values of the blip. See the section "Mouse Blips".

� (flavor:method :center-around tv:essential-set-edges) x y Method

Without changing the size of the window, positions the window so that its center

is as close to the point (x,y), in pixels, relative to the superior window, as is possi-

ble without hanging off an edge.

� (flavor:method :change-of-size-or-margins tv:sheet) &rest options Method

Changes window size or margins, processing options. This message is sent by the

system; you might need to provide an :after daemon for it.

� tv:changeable-name-mixin Flavor

Mixing in this flavor defines a :set-name method, so that you can change the

name of the window, redrawing the label if appropriate. This flavor includes

tv:label-mixin, so one of the above kinds of label must be in the margins of the

window.

� (flavor:method :char tv:character-blinker) char Init Option

Sets the character to display. You must provide this.

Page 1165

� char-mouse-bits char Function

Returns the value of the bits field of a mouse character. The bits field encodes the

shift keys, if any, qualifying the root mouse character:

Bits Shift Key

0 None

1 CONTROL

2 META

4 SUPER

8 HYPER

16 SHIFT�

Every combination of shift keys corresponds to a unique bits value, for example:

(char-mouse-bits #\c-s-sh-Mouse-L) ==>

21�

� char-mouse-button char Function

Returns the number corresponding to the mouse button that would have to be

pushed to generate char. 0, 1, and 2 correspond to the Left, Middle, and Right

mouse buttons, respectively.

Example:

(char-mouse-button #\m-mouse-m) ==>

1�

The complementary function is make-mouse-char.

� char-mouse-equal char1 char2 Function

Returns t if the mouse characters char1 and char2 are equal, nil otherwise. char-

mouse-equal checks that its arguments are really mouse characters and signals an

error otherwise. You can also use eql, which is slightly faster, to compare mouse

characters, when you do not require the argument checking.

� tv:character-blinker Flavor

Draws itself as a character from a font. You can control which font and which

character within the font it uses.

� (flavor:method :character-height tv:menu) spec Init Option

Specifies the height of the window. The inside height of the window is made large

enough to display spec number of lines in the default character style. If the spec is

Page 1166

a string containing carriage returns, then it is made tall enough to accommodate

the string.

� (flavor:method :character-height tv:sheet) spec Init Option

Specifies the height. spec is either a number of lines or a character string contain-

ing a certain number of lines separated by carriage returns. The inside height of

the window is made to be that many lines.

� (flavor:method :character-width tv:menu) spec Init Option

Specifies the width of the window. The inside width of the window is made large

enough to display spec number of characters in the default character style. If the

spec is a string, then it is made wide enough to display the string.

� (flavor:method :character-width tv:sheet) spec Init Option

Another way of specifying the width. spec is either a number of characters or a

character string. The inside width of the window is made to be wide enough to

display those characters, or that many characters, in the default character style.

� (flavor:method :character-width tv:sheet) ch &optional font (x tv:cursor-x) char-

acter-style Method

Returns the width of the character ch, in pixels. The font used is font or the font

resulting from merging character-style with the current character style. See the

section "Merging Character Styles". If ch is a Backspace, :character-width can re-

turn a negative number. For Tab, the number returned depends on the current

cursor position. If ch is Return, the result is defined to be zero.

� dw:check-presentation-type-argument type-arg &key (evaluated t) (function

compiler:default-warning-function) (definition-type compiler:default-warning-

definition-type) Function

Checks an argument that is expected to be a presentation type for validity.

type-arg A form evaluating to a presentation type.�

:evaluated

Boolean option specifying whether type-arg is expected to be quoted;

the default is t.

:function Specifies a symbol naming the function for which the compiler

warning is issued. This name is displayed in the warning instead of

the name of the function in which the error occurred; the latter be-

havior is the default.

Page 1167

:definition-type

Specifies the definition type (’defun, ’defvar, etc.) of the Lisp object

that caused the compiler warning. The name for objects of this type

("Function", "Variable", etc.) is displayed in the warning instead of

the name for the type of object in which the error occurred; the lat-

ter behavior is the default.

This function should be used in macros that take presentation types as arguments

and in style-checkers for functions that take presentation types.

Here is an example of the use of dw:check-presentation-type-argument in a

macro:

(defmacro with-value ((variable-name presentation-type) &body body)

 (dw:check-presentation-type-argument presentation-type :evaluated nil)

 ‘(let ((,variable-name (accept ’,presentation-type)))

 ,@body))

�

If you try to compile the following function, which contains an invalid specification

of the integer presentation type inside an invocation of with-value, you get a com-

piler error diagnosing the problem:

(defun check-type-test ()

 (with-value (x ((integer 3 5 extra-argument)))

 (format t "~&Value is ~S" x)))

�

The :evaluated keyword is used to control whether dw:check-presentation-type-

argument expects the presentation type to be quoted or not. In the macro example

above, the presentation type is inserted unquoted into the invocation of the with-

value macro. If you wanted with-value to evaluate its presentation-type argument

(for instance, so that a variable that was bound to a presentation type could be

used), then you would supply :evaluated t (the default). The rewritten example

follows:

(defmacro with-value ((variable-name presentation-type) &body body)

 (dw:check-presentation-type-argument presentation-type :evaluated t)

 ‘(let ((,variable-name (accept ,presentation-type)))

 ,@body))

�

(defun check-type-test ()

 (with-value (x ’((integer 3 5 extra-argument)))

 (format t "~&Value is ~S" x)))

�

See the section "Defining Your Own Presentation Types".

(In both of the above examples, multiple error messages result because accept it-

self uses dw:check-presentation-type-argument to validate its arguments.)

For an overview of dw:check-presentation-type-argument and related facilities:

Page 1168

� (flavor:method :choose tv:menu) Method

Exposes the window and allows the user to make a choice with the mouse. It sends

:execute to the window and performs the action specified by the item’s type.

� (flavor:method :choose tv:multiple-choice) &optional near-mode Method

Allows menu selection by the mouse. It first moves the window to the place speci-

fied by near-mode, which defaults to the list (:mouse), (that is, over the current

mouse position) and exposes it. Then it waits for the user to make a finishing

choice and returns the window to its original activate/expose status before the

:choose operation. When it is sent to a multiple-choice menu, this message returns

the same value as the function tv:multiple-choose. See the section "The Standard

Multiple Choice Function".

� cp:choose-command-arguments command-name &rest args &key (initial-arguments

nil) (start (length cp::initial-arguments)) (end nil) (command-table cp:*command-

table*) (stream *standard-input*) (typeout-stream nil) (help-stream cp::typeout-

stream) (prompt-mode :normal) (near-mode ’(:mouse)) (mode :accept-values) (type-

out-stream nil) (help-stream cp::typeout-stream) (prompt nil) (own-window nil) (full-

rubout nil) (erase-input-editor nil) (initially-select-query-identifier nil) Function

Returns arguments for the command command-name in one of three possible

modes: :accept-values, the default, displays an accept-values-type of menu with

which the user selects arguments; :keyboard allows the user to edit the command

arguments from the keyboard; and :none returns default values for the positional

arguments.

:initial-arguments

The arguments initially supplied. These are used as defaults or ini-

tial values in non :accept-values mode.

� :start The number of arguments initially supplied that should be retained

unmodified. This option is only used when the :mode is :keyboard.

� :end The number of arguments initially supplied that should be retained

unmodified. This option is only used when the :mode is :accept-

values.

� :command-table

Specifies the command table containing the command; the default is

the current command table (bound to cp:*command-table*).

� :stream Specifies the input stream; the default is *standard-input*.

� :typeout-stream

The typeout window to use in :accept-values mode.

� :help-stream

Page 1169

The stream to which responses to requests for help should be di-

rected. The default is the value specified for :typeout-stream.

� :prompt Specifies a string, or a function returning a string, serving as the

prompt or as the window label if :own-window is true.

� :prompt-mode

Specifies how the prompt is to be displayed. The default is :normal,

which means display the prompt even if the accept-values display is

not in ":own-window." The value :own-window means only show the

prompt as a label.

� :own-window

A Boolean option specifying when t that the accept-values-like menu

be displayed in its own window. The default is nil.

� :full-rubout

Specifies when non-nil that if the user rubs out all the characters

that were typed, control is returned immediately. Two values are

returned: nil and the value specified for :full-rubout. If this option

is nil, the input editor waits for more characters to be typed. This

option applies only when the :mode is :keyboard.

� :erase-input-editor

A Boolean specifying when t that the menu used should be erased

when done if called from inside the input editor. This is useful if

you are going to :replace-input the command line next anyway. The

default is nil.

� :near-mode

Specifies where the menu appears. The default makes it appear

near the position of the mouse cursor at the time the function is

called. See the method (flavor:method :expose-near tv:essential-

set-edges).This option is applicable only when the value of the

:own-window option is t.

� :mode Specifies mode for choosing. One of

:accept-values The default. Provides a menu-like facility for

setting the values of the command arguments to

values supplied by the user.

:menu The same as :accept-values.

:keyboard Applies cp:read-command-arguments for the

specified command and returns them.

:none Defaults the positional arguments of the speci-

fied command.

� :initially-select-query-identifier

Page 1170

Specifies a field to be pre-selected when the user interaction begins.

This is the same as the dw:accept-values :initially-select-query-

identifier option, see the function dw:accept-values.

� choose-user-options alist &rest options Function

Displays the values of the option variables in alist to the user and allows them to

be altered. The options are passed along to tv:choose-variable-values.

� tv:choose-variable-values variables &rest options Function

Exposes a window and displays the values of the specified variables, permitting the

user to alter them. One or more choice boxes (as in the multiple-choice facility)

appear in the bottom margin of the window. When the user clicks on the [Exit]

choice box the window disappears and this function returns. The value returned is

not meaningful; the result is expressed in the values of the variables.

variables is a list whose elements can be special variables or the more general

items described above.

options is a list of alternating init-plist option keywords and values:

The following option keywords can be specified.

(flavor:method :label tv:choose-variable-values)

(flavor:method :function tv:choose-variable-values)

(flavor:method :near-mode tv:choose-variable-values)

(flavor:method :width tv:choose-variable-values)

(flavor:method :extra-width tv:choose-variable-values)

(flavor:method :margin-choices tv:choose-variable-values)

(flavor:method :superior tv:choose-variable-values)�

See the section "tv:choose-variable-values Examples".

� tv:choose-variable-values-pane Flavor

A tv:choose-variable-values-window that can be a pane of a constraint-frame. For

more on constraint frames, see the section "Specifying Panes and Constraints". It

does not change its size automatically; the size is assumed to be controlled by the

superior.

� tv:choose-variable-values-process-message window command Function

Implements the proper response. It should be called in the process and stack-group

in which the variables being chosen are bound. The function returns t if the com-

mand indicates that the choice operation is "done", otherwise it performs the ap-

Page 1171

propriate special action and returns nil. If command is a character, it is ignored

unless it is the #/si:refresh key, in which case the choose-variable-values window is

refreshed.

� tv:choose-variable-values-window Flavor

A choose-variable-values window with a reasonable set of features, including bor-

ders, a label at the top, stream input/output, the ability to be scrolled if there are

too many variables to fit in the window, and the ability to have choice boxes in the

bottom margin.

� (flavor:method :clear-char tv:sheet) &optional char Method

Erases the character at the current cursor position. When using character styles

mapping to variable-width fonts, you tell it the character you are erasing, so that

it will know how wide the character is. If you don’t pass the char argument, it

simply erases a character-width, which is fine for fixed-width fonts.

� (flavor:method :clear-history dw:dynamic-window) Method

Eliminates all items in the output history of the window, and resets the viewport

to the top of the history.

For an overview of (flavor:method :clear-history dw:dynamic-window) and relat-

ed facilities, see the section "Presenting Formatted Output".

� (flavor:method :clear-input si:interactive-stream) Method

Clears the input buffer and any input buffered by the stream. This flushes all the

characters that have been typed at this stream, but have not yet been read.

� (flavor:method :clear-input tv:stream-mixin) Method

Clears this window’s input and I/O buffers. It flushes all the characters that have

been typed at this window but have not yet been read.

� dw:clear-presentation-input-context Function

Clears the current input context. This is useful for eliminating the input context

established by a function’s callers in order to establish a new input context that

doesn’t inherit from the callers.

For an overview of dw:clear-presentation-input-context and related facilities: See

the section "Presentation Input Context Facilities".

� (flavor:method :clear-region dw:dynamic-window) left top right bottom Method

Page 1172

Clears the output display in a rectangular area of the window. Specify the region

in terms of absolute window coordinates. Any coordinate can be given a value of

nil to indicate infinite extent in that direction.

left The x-coordinate for the left edge of the cleared area.

top The y-coordinate for the top edge of the cleared area.

right The x-coordinate for the right edge of the cleared area.

bottom The y-coordinate for the bottom edge of the cleared area.�

For an overview of (flavor:method :clear-region dw:dynamic-window) and related

facilities, see the section "Presenting Formatted Output".

� (flavor:method :clear-rest-of-line tv:sheet) Method

Erases from the current cursor position to the end of the current line; that is,

erases a rectangle horizontally from the cursor position to the inside right edge of

the window, and vertically from the cursor position to one line-height below the

cursor position.

� (flavor:method :clear-rest-of-window tv:sheet) Method

Erases from the current cursor position to the bottom of the window. In more de-

tail, first does a :clear-rest-of-line, and then clears all of the window past the cur-

rent line.

� (flavor:method :clear-window dw:dynamic-window) Method

Scrolls the window forward in the vertical dimension far enough to eliminate pre-

vious output from the current display. Note that only the display is affected, not

the window’s output history.

For an overview of (flavor:method :clear-window dw:dynamic-window) and relat-

ed facilities, see the section "Presenting Formatted Output".

� (flavor:method :clear-window tv:sheet) Method

Erases the whole window and move the cursor position to the upper left corner of

the window.

� tv:cold-load-stream-old-selected-window Variable

At a cold-load-stream break, the value is the value of tv:selected-window at the

time you entered the cold-load stream.

Page 1173

� (flavor:method :column-spec-list tv:dynamic-multicolumn-mixin) form

Init Option

Specified as a list of columns in the form:

(heading item-list-form . options)�

Heading is a string to go at the top of the column, and options are menu item op-

tions for it (typically a character style specification). item-list-form is a form to be

evaluated (without side-effects) to get the item list for that column.

� (flavor:method :columns tv:menu) n-columns Init Option

Sets the number of columns in a menu.

� :command function &rest arguments Option

This option is used to implement nonediting single-keystroke commands. For each

character typed, the input editor invokes function with the character as the first

argument and arguments as the remaining arguments. If the function returns nil,

the input editor processes the character as it normally would. Otherwise, control is

returned from the input editor immediately. Two values are returned: a blip of the

form (:command character numeric-arg) and the keyword :command. Any un-

scanned input typed before the command character remains in the input buffer,

available to the next read operation from the stream.

� cp:command-in-command-table-p command-symbol command-table &optional (need-

name t) Function

Determines the presence of a command in a Command Processor command table.

The function returns three values: t if the command is either in the specified com-

mand table or in a table from which the specified table inherits; the command’s

name (a string) or, if need-name is nil, nil; and the command table in which the

command was found.

command-symbol

The command symbol.

command-table

The command table.

need-name

A Boolean specifying whether the name (a string) of the command

should be returned. By default, it is. The function runs faster when

this is nil.�

For an overview of cp:command-in-command-table-p and related facilities: See

the section "Managing Your Program Frame".

Page 1174

� tv:command-menu Flavor

This is tv:command-menu-mixin mixed with tv:menu to make it instantiable.

� tv:command-menu-abort-on-deexpose-mixin Flavor

When a command menu built on this flavor receives the :deexpose message, it

searches its item list for an item whose displayed representation is [Abort]. If such

an item is found, a mouse blip is sent to the I/O buffer indicating that the [Abort]

item was clicked on. See the flavor tv:dynamic-pop-up-abort-on-deexpose-

command-menu.

� dw:command-menu-choose-arguments command-name &rest args &key :initial-

arguments (:command-table cp:*command-table*) (:gesture :left) :mode :own-window

(:full-rubout t) &allow-other-keys Function

Performs the normal actions taken by command menus. You can call this in addi-

tion to special actions of your own for a command menu.

command-name

A string, which identifies the command-menu item.

args The command arguments.

:initial-arguments

Arguments already specified to the command (that do not need to

be chosen).

:command-table

The command table that contains the command command-name.

:gesture A single keyword, or list of keywords, identifying which gestures

this handler applies to. A single handler can apply to more than one

gesture, and multiple handlers can be defined on different gestures.

The possible actions will then naturally be their union.

:mode The mode in which to accept arguments. Possible values are

:keyboard, :menu, and :accept-values.

:own-window

A Boolean option specifying when t that the accept-values-like menu

be displayed in its own window. The default is nil.

:full-rubout

Specifies when non-nil that if the user rubs out all the characters

that were typed, control is returned immediately. Two values are

returned: nil and the value specified for :full-rubout. If this option

is nil, the input editor waits for more characters to be typed. This

option applies only when the :mode is :keyboard.

For an overview of related topics: See the section "How Command Menus Work".

Page 1175

� tv:command-menu-mixin Flavor

The basic mixin version of the command menu flavor. It is not instantiable on its

own.

� tv:command-menu-pane Flavor

This version of the command menu flavor is meant to be used within a window

frame. See the section "Frames".

� dw:*command-menu-test-phase* Variable

Bound to t during the :tester phase when a command form body is running, and

to :documentation during the documentation phase. This for use within a

dw:define-command-menu-handler form. The command body can throw to the tag

dw:command-menu-test-phase with a command (list of command name and argu-

ments) or with a string (in the documentation case). Note that if the command

body pops up a menu or reads from the keyboard to get arguments, it must look at

this flag to prevent doing so when except when the user really clicked.

For an example of the use of the throw tag:See the section "How Command Menus

Work".

� cp:*command-table* Variable

Bound to the current command table, that is, the one used by the Command Pro-

cessor when reading commands.

For an overview of cp:*command-table* and related facilities: See the section

"System Command Tables".

� dw:compare-char-for-accept char-from-accept comparandum Function

Compares an input character with a specified character. Use this function instead

of char-equal when manipulating characters read with dw:read-char-for-accept.

char-from-accept

The input character (returned by dw:read-char-for-accept).

comparandum

The comparison character. This may be any standard character.�

For an overview of dw:compare-char-for-accept and related facilities, see the sec-

tion "Defining Your Own Presentation Types".

� dw:complete-from-sequence sequence stream &key type (name-key #’string) (value-

key #’identity) (delimiters dw::*standard-completion-delimiters*) (allow-any-input

nil) (enable-forced-return nil) (initially-display-possibilities nil) (partial-completers

nil) (complete-activates nil) (compress-choices 20) (compression-delimiter) Function

Page 1176

Provides input completion from a sequence of possible completions for input to

accept. Returned values are the object associated with the completion string; t or

nil depending on whether or not the completion was the only one possible; and the

completion string.

sequence The sequence of possible completions.

stream The input stream.�

:type Specifies the presentation type to use when displaying help informa-

tion for possible completions. This makes the displayed possibilities

mouse-sensitive.

If the completion utility is being called from the parser of a presen-

tation type, that type should be supplied as the value of this option.�

:name-key

Specifies the function called on each element in the sequence for

extracting the completion string. The default function is string. An-

other useful function is string-capitalize-words.

:value-key

Specifies the function called on each element in the sequence for

extracting the value to be associated with the element’s completion

string. The default function is identity, which extracts the element

itself.

:delimiters

Specifies a list of characters used by the standard completion mech-

anism to tokenize completion strings. The default value is the bind-

ing of dw::*standard-completion-delimiters*; this variable is preset

to "- " (hyphen and space).

:allow-any-input

Boolean option specifying whether the completer accepts keyboard

input from the user that does not match any of the possible comple-

tion strings; the default is nil.

Most parsers should specify :allow-any-input nil. In a call to

accept for which you want to allow input that does not match any

of the completions, use the type-or-string presentation type.

Note that the completion facilities always signal the error

dw:input-not-of-required-type when a user types RETURN at blank

input. This is intended to allow accept to fill in the default in the

blank case. It means, however, that a caller of a completion facility

that passes :allow-any-input t must also condition-bind for

dw:input-not-of-required-type, if you want a null line to be treated

the same as any other input.

Page 1177

:enable-forced-return

Boolean option specifying whether the user can force a response

that is not a member of the completion set; the default is nil.

If this option is t, the user can terminate input with c-RETURN,

causing the completion utility to return to the caller whatever input

the user supplied. This is useful in situations where you expect the

user to specify a member of a set of possibilities, but want to pro-

vide a way for supplying a new name to be added to the set. (The

Zmacs Select Buffer (c-X B) command uses this feature to allow the

user to create new buffers.)

:initially-display-possibilities

Boolean option specifying whether to display the entire set of com-

pletion possibilities before prompting for input; the default is nil. If

t, the behavior is as if the user typed Help before any other input.

Most parsers should supply to this option the same value that was

supplied to them by accept. accept, in turn, has an :initially-

display-possibilities option controlled by its caller. See the function

accept.

:partial-completers

Specifies a list of characters that trigger partial completion when

entered by the user.

Partial completion restricts completion to only one token of the

completion set possibilities, even if enough characters have been

supplied to uniquely identify one of the members of the completion

set. For example, the Command Processor uses #\space as a partial

completer.

The syntax of a token is defined by the :delimiters option.

:complete-activates

Boolean option specifying whether the COMPLETE key causes activa-

tion, that is, whether the completion utility returns if a unique com-

pletion was found. The default is nil.

This option is used to control completion behavior in a multi-field

input context, such as in the command processor. Normally, the END

key performs completion and then returns if the resulting comple-

tion is unique.

:compress-choices

Specifies whether to compress the display of completion possibilities

that have a common left token as defined by the :compression-

delimiter option. Three values are possible:

An integer

When the possibilities exceed this number, the display is

Page 1178

compressed. The default value is 20.

:always Whenever more than one possibility exists, the display is

compressed.

:never The display is never compressed, regardless of the number

of possibilities.�

Compressed displays have the form "token ... (n)", where token is the

shared left token and n is the number of possible completions.

To see an example of choice compression, press HELP to the com-

mand processor prompt in a Dynamic Lisp Listener. You get the fol-

lowing display (abbreviated for this example):

You are being asked to enter a command or form.

Use the Help :Format Detailed command to see a full

list of command names.

�

These are the possible command names:

 Add Paging File

 Append

 Clean File

 Clear ... (3)

 Close File

 Compare Directories

 Compile ... (2)

 Copy ... (5)

 Create ... (4)

 Debug Process

 �

"Add Paging File", "Append", and "Clean File" are full command

names. "Clear" is a left token shared by three commands, Clear All

Breakpoints, Clear Breakpoint, and Clear Output History. These

three completion choices have been compressed to "Clear ... (3)".

The user can expand this and other compressed choices by clicking

on them with the mouse.

:compression-delimiter

Specifies a character used for delimiting the shared left tokens in a

display of completion possibilities. The default value is #\space.

For an overview of dw:complete-from-sequence and related facilities, see the sec-

tion "Introduction: More Presentation-Type Concepts". For a table of available

functions relating to Presentation Types, see the section "Table of Facilities for

Defining Presentation Types".

� :complete-help &rest help-option Option

Page 1179

When the user presses HELP, the input editor types out a message determined by

help-option. None of the standard input editor help is displayed. If a :brief-help op-

tion has been specified, it overrides :complete-help. :complete-help overrides

:merged-help and :partial-help.

help-option can have one element, which can be a string, a function, or a symbol;

or it can have more than one element. For an explanation: See the section "Dis-

playing Help Messages in the Input Editor".

This option is intended for programs that supply their own input editor help mes-

sages.

� dw:complete-input stream function &key (allow-any-input nil) enable-forced-return

partial-completers (type nil) parser (compress-choices 20) (compression-delimiter)

(help-offers-possibilities t) (initially-display-possibilities nil) (complete-activates nil)

(documenter nil) (document (not (null dw::documenter))) Function

Provides input completion for input to accept. Returns three values: the object as-

sociated with the completion string; t or nil depending on whether or not the com-

pletion was the only one possible; and the completion string. dw:complete-input is

a low level function that is called by dw:completing-from-suggestions. In most

cases, the latter is easier to use and is recommended. Use dw:complete-input only

when you require finer control over the completion operations than that allowed by

dw:completing-from-suggestions.

stream The input stream.

function The completion function. The function receives two arguments, the

input supplied by the user and a keyword specifying an operation.

Operations are divided into two categories, completion operations

and possibility operations. The former attempt to complete and re-

turn the completion; the latter return either a list of possible com-

pletions or the number of possible completions. Available keywords

for each type are described below:

Completion Operations

:completeComplete and return as much as possible based on

the input so far.

:complete-limited

Complete and return the current input "chunk"

only, even if the input uniquely identifies a full

completion possibility. The meaning of "chunk" de-

pends on the type of input. For example, in the

case of command processor commands, a chunk is

a word in the command name.

:complete-maximal

Complete and return as much as possible based on

the input so far, even if that means adding empty

tokens between delimiters.�

Page 1180

Regardless of the completion operation, the completion function

must return the following five values:

1. The string resulting from completing the input string.

2. A boolean indicating that the completion is successful,

that is, that the string given to the user-supplied function

is itself a valid completion.

3. The object associated with the completion if it is success-

ful. (If the completion is not successful, the value of this

is undefined, although it is often one of the objects in the

ambiguous case where the completion is unsuccessful and

the number of possibilities is greater than one.)

4. The index in the completion string of the first point of

ambiguity if the string is not unique, that is, the leftmost

place in the string where a difference arises between two

or more completion possibilities. The completer generally

tries to position the input cursor at that point so that the

user can resolve the ambiguity.

5. The number of possible input completions; this may be 0.

Possibility Operations

:possibilities

Return a list of completion possibilities that begin

with the input string. (This list is used, for example,

when the user presses the HELP key.)

:apropos-possibilities

Return a list of the completion possibilities that con-

tain the input string anywhere in the completion

string. (This list is used, for example, when the user

types CONTROL-/.) The function may split the input in-

to tokens and search for possibilities that contain all

the tokens somewhere in the completion string. In

this case, it should return as a second value the list

of tokens extracted from the original input string.

:apropos-initial-possibilities

Return a list of the completion possibilities that con-

tain the input string in the completion string.

:possibilities-quick-length

Returns the number of completion possibilities that

begin with the input string.

Page 1181

:apropos-possibilities-quick-length

Return the number of completion possibilities that

contain the input string anywhere in the completion

string.

If the possibility operation is :possibilites or :apropos-

possibilities, the function must return a list of three-element

lists, each of which is (string object presentation-type).

The completion function can return nil to indicate that it does

not support the "quick-length" operations. In this case, the

completer utility asks for a full :possibilities or :apropos-

possibilities list and counts the number of elements to return.�

� :allow-any-input

Boolean option specifying whether the completer accepts keyboard

input from the user that does not match any of the possible comple-

tion strings; the default is nil.

Most parsers should specify :allow-any-input nil. In a call to

accept for which you want to allow input that does not match any

of the completions, use the type-or-string presentation type.

Note that the completion facilities always signal the error

dw:input-not-of-required-type when a user types RETURN at blank

input. This is intended to allow accept to fill in the default in the

blank case. It means, however, that a caller of a completion facility

that passes :allow-any-input t must also condition-bind for

dw:input-not-of-required-type, if you want a null line to be treated

the same as any other input.

:enable-forced-return

Boolean option specifying whether the user can force a response

that is not a member of the completion set; the default is nil.

If this option is t, the user can terminate input with c-RETURN,

causing the completion utility to return to the caller whatever input

the user supplied. This is useful in situations where you expect the

user to specify a member of a set of possibilities, but want to pro-

vide a way for supplying a new name to be added to the set. (The

Zmacs Select Buffer (c-X B) command uses this feature to allow the

user to create new buffers.)

:partial-completers

Specifies a list of characters that trigger partial completion when

entered by the user.

Partial completion restricts completion to only one token of the

completion set possibilities, even if enough characters have been

supplied to uniquely identify one of the members of the completion

set. For example, the Command Processor uses #\space as a partial

completer.

Page 1182

The syntax of a token is defined by the :delimiters option.

:type Specifies the presentation type to use when displaying help informa-

tion for possible completions. This makes the displayed possibilities

mouse-sensitive.

If the completion utility is being called from the parser of a presen-

tation type, that type should be supplied as the value of this option.�

:parser Specifies the function called to translate input strings into objects

of the desired type. The function is called with one argument, the

string entered by the user.

This option is typically used when the set of possible completions is

not known in advance, and can therefore not be enumerated. If they

can be enumerated, use dw:complete-from-sequence or

dw:completing-from-suggestions instead.

The parser function is called on each possible completion string

when a list of possibilities is generated, and on the user-supplied in-

put when the completion utility is about to return a value.

:compress-choices

Specifies whether to compress the display of completion possibilities

that have a common left token as defined by the :compression-

delimiter option. Three values are possible:

An integer

When the possibilities exceed this number, the display is

compressed. The default value is 20.

:always Whenever more than one possibility exists, the display is

compressed.

:never The display is never compressed, regardless of the number

of possibilities.�

Compressed displays have the form "token ... (n)", where token is the

shared left token and n is the number of possible completions.

To see an example of choice compression, press HELP to the com-

mand processor prompt in a Dynamic Lisp Listener. You get the fol-

lowing display (abbreviated for this example):

You are being asked to enter a command or form.

Use the Help :Format Detailed command to see a full

list of command names.

Page 1183

�

These are the possible command names:

 Add Paging File

 Append

 Clean File

 Clear ... (3)

 Close File

 Compare Directories

 Compile ... (2)

 Copy ... (5)

 Create ... (4)

 Debug Process

 �

"Add Paging File", "Append", and "Clean File" are full command

names. "Clear" is a left token shared by three commands, Clear All

Breakpoints, Clear Breakpoint, and Clear Output History. These

three completion choices have been compressed to "Clear ... (3)".

The user can expand this and other compressed choices by clicking

on them with the mouse.

:compression-delimiter

Specifies a character used for delimiting the shared left tokens in a

display of completion possibilities. The default value is #\space.

:help-offers-possibilities

Boolean option specifying whether the full list of completion possi-

bilities is displayed when the user presses the HELP key; the default

is t.

:initially-display-possibilities

Boolean option specifying whether to display the entire set of com-

pletion possibilities before prompting for input; the default is nil. If

t, the behavior is as if the user typed Help before any other input.

Most parsers should supply to this option the same value that was

supplied to them by accept. accept, in turn, has an :initially-

display-possibilities option controlled by its caller. See the function

accept.

:complete-activates

Boolean option specifying whether the COMPLETE key causes activa-

tion, that is, whether the completion utility returns if a unique com-

pletion was found. The default is nil.

This option is used to control completion behavior in a multi-field

input context, such as in the command processor. Normally, the END

key performs completion and then returns if the resulting comple-

tion is unique.

Page 1184

:documenter

Specifies a function called to generate documentation for the ele-

ments of a possibilities display. The function receives two argu-

ments, a completion possibility and the output stream for displaying

the documentation.

:document

Specifies how each possibility displayed as a result of a HELP re-

quest is documented. Three values are possible:

t Display the documentation. If a documentation function

is specified by the :documenter ,option, it is called on

each possibility; otherwise, the Common Lisp function

documentation is called.

nil Do not display any documentation.

:if-uniqueDisplay documentation only if there is a unique comple-

tion of the input supplied by the user.

The default for this option is t if a :documenter function is sup-

plied, nil otherwise.

For an overview of dw:complete-input and related facilities, see the section

"Defining Your Own Presentation Types".

� dw:completing-from-suggestions (stream &key (allow-any-input t) (delimiters

dw::*standard-completion-delimiters*) (enable-forced-return nil) (partial-completers

nil) (type nil) (parser nil) (complete-activates nil) (compress-choices 20) (compression-

delimiter nil) (initially-display-possibilities nil)) &body body Function

Binds local environment to build a completion table for input to accept. Three val-

ues are returned: the object associated with the completion string; t or nil depend-

ing on whether or not the completion was the only one possible; and the comple-

tion string, that is, the fully completed string generated from what the user typed.

Within this environment, you must use dw:suggest within body to add each possi-

ble choice to the completion table.

stream The input stream.�

Here is an example, excerpted from a system definition:

Page 1185

(define-presentation-type keyword-argument ((&rest keywords))

 :parser ((stream &key initially-display-possibilities type)

.

.

 .

 (multiple-value-bind (word nil nil)

 (dw:completing-from-suggestions

 (stream :force-complete t

 :partial-completers

 keyword-key-partial-completers

 :initially-display-possibilities

 initially-display-possibilities

 :type type

 :compress-choices :never)

 (loop for keyword-name being

 the array-elements of keyword-names

 for key being the array-elements of keys

 doing

 (dw:suggest keyword-name key)))

word)))))

� :allow-any-input

Boolean option specifying whether the completer accepts keyboard

input from the user that does not match any of the possible comple-

tion strings; the default is nil.

Most parsers should specify :allow-any-input nil. In a call to

accept for which you want to allow input that does not match any

of the completions, use the type-or-string presentation type.

Note that the completion facilities always signal the error

dw:input-not-of-required-type when a user types RETURN at blank

input. This is intended to allow accept to fill in the default in the

blank case. It means, however, that a caller of a completion facility

that passes :allow-any-input t must also condition-bind for

dw:input-not-of-required-type, if you want a null line to be treated

the same as any other input.

:delimiters

Specifies a list of characters used by the standard completion mech-

anism to tokenize completion strings. The default value is the bind-

ing of dw::*standard-completion-delimiters*; this variable is preset

to "- " (hyphen and space).

:enable-forced-return

Boolean option specifying whether the user can force a response

that is not a member of the completion set; the default is nil.

If this option is t, the user can terminate input with c-RETURN,

causing the completion utility to return to the caller whatever input

Page 1186

the user supplied. This is useful in situations where you expect the

user to specify a member of a set of possibilities, but want to pro-

vide a way for supplying a new name to be added to the set. (The

Zmacs Select Buffer (c-X B) command uses this feature to allow the

user to create new buffers.)

:partial-completers

Specifies a list of characters that trigger partial completion when

entered by the user.

Partial completion restricts completion to only one token of the

completion set possibilities, even if enough characters have been

supplied to uniquely identify one of the members of the completion

set. For example, the Command Processor uses #\space as a partial

completer.

The syntax of a token is defined by the :delimiters option.

:type Specifies the presentation type to use when displaying help informa-

tion for possible completions. This makes the displayed possibilities

mouse-sensitive.

If the completion utility is being called from the parser of a presen-

tation type, that type should be supplied as the value of this option.�

:parser Specifies the function called to translate input strings into objects

of the desired type. The function is called with one argument, the

string entered by the user.

This option is typically used when the set of possible completions is

not known in advance, and can therefore not be enumerated. If they

can be enumerated, use dw:complete-from-sequence or

dw:completing-from-suggestions instead.

The parser function is called on each possible completion string

when a list of possibilities is generated, and on the user-supplied in-

put when the completion utility is about to return a value.

:complete-activates

Boolean option specifying whether the COMPLETE key causes activa-

tion, that is, whether the completion utility returns if a unique com-

pletion was found. The default is nil.

This option is used to control completion behavior in a multi-field

input context, such as in the command processor. Normally, the END

key performs completion and then returns if the resulting comple-

tion is unique.

:compress-choices

Specifies whether to compress the display of completion possibilities

that have a common left token as defined by the :compression-

delimiter option. Three values are possible:

Page 1187

An integer

When the possibilities exceed this number, the display is

compressed. The default value is 20.

:always Whenever more than one possibility exists, the display is

compressed.

:never The display is never compressed, regardless of the number

of possibilities.�

Compressed displays have the form "token ... (n)", where token is the

shared left token and n is the number of possible completions.

To see an example of choice compression, press HELP to the com-

mand processor prompt in a Dynamic Lisp Listener. You get the fol-

lowing display (abbreviated for this example):

You are being asked to enter a command or form.

Use the Help :Format Detailed command to see a full

list of command names.

�

These are the possible command names:

 Add Paging File

 Append

 Clean File

 Clear ... (3)

 Close File

 Compare Directories

 Compile ... (2)

 Copy ... (5)

 Create ... (4)

 Debug Process

 �

"Add Paging File", "Append", and "Clean File" are full command

names. "Clear" is a left token shared by three commands, Clear All

Breakpoints, Clear Breakpoint, and Clear Output History. These

three completion choices have been compressed to "Clear ... (3)".

The user can expand this and other compressed choices by clicking

on them with the mouse.

:compression-delimiter

Specifies a character used for delimiting the shared left tokens in a

display of completion possibilities. The default value is #\space.

:initially-display-possibilities

Boolean option specifying whether to display the entire set of com-

pletion possibilities before prompting for input; the default is nil. If

t, the behavior is as if the user typed Help before any other input.

Page 1188

Most parsers should supply to this option the same value that was

supplied to them by accept. accept, in turn, has an :initially-

display-possibilities option controlled by its caller. See the function

accept.

For an overview of dw:completing-from-suggestions and related facilities, see the

section "Defining Your Own Presentation Types".

� (flavor:method :compute-motion tv:sheet) string &optional (start 0) (end nil) x y

cr-at-end-p (stop-x 0) stop-y Method

Determines where the cursor would end up if you were to output string using

:string-out. It does the right thing if you give it just the string as an argument.

start and end can be used to specify a substring as with :string-out. x and y can

be used to start your imaginary cursor at some point other than the present posi-

tion of the real cursor. If you specify cr-at-end-p as t, it pretends to do a :line-out

instead of a :string-out. stop-x and stop-y define the size of the imaginary window

in which the string is being printed; the printing stops if the cursor becomes si-

multaneously ≥ both of them. These default to the lower left-hand corner of the

window.

The method does a triple-value return of the x and y coordinates you ended up at

and an indication of how far down the string you got. This indication is nil if the

whole string (or the part specified by start and end) was exhausted, or the index of

the next character to be processed when the stopping point (end of window) was

reached, or t if the stopping point was reached only because of an extra carriage

return due to cr-at-end-p being t.

All coordinates for this message are in pixels.

� dw:computing-outline-from-path (&optional (stream *standard-output*) &key

:transform) &body body Macro

Returns a sequence of lines suitable for :highlighting-boxes corresponding to un-

filled graphics drawn to stream by body, possibly with a transform specified by the

keyword :transform. For example:

(dw:computing-outline-from-path (stream)

 (graphics:draw-circle center-x center-y (+ radius 2)

:stream stream :filled nil)

 (graphics:draw-circle center-x center-y (- radius 2)

:stream stream :filled nil))

� (flavor:method :configuration tv:basic-constraint-frame) Method

Returns the symbol naming the current configuration of the frame.

Page 1189

� (flavor:method :configuration tv:basic-constraint-frame) configuration-name

Init Option

Makes the initial configuration of the frame be the one named by the symbol con-

figuration-name.

� (flavor:method :configurations tv:basic-constraint-frame) configuration-

specification-list Init Option

Controls the sizes and arrangement of the panes in each possible configuration of

a constraint frame. It is required for all flavors of constraint frames.

In earlier releases, equivalent information was required to be specified under the

:constraints init option; it is still accepted for compatibility. See the section "Spec-

ifying Panes and Constraints in Non-Dynamic Windows". To convert a :constraints

option to a :configurations option, see the function tv:back-convert-constraints.

The value of the :configurations init option is an alist that associates configura-

tion names with configuration specifications. Each configuration specification con-

sists of a list of layout specifications and a list of size specifications. Thus the

skeleton of a typical :configurations argument to tv:make-window looks like:

:configurations ’((main-configuration

 (:layout spec spec...)

 (:sizes spec spec...))

 (alternate-configuration

 (:layout spec spec...)

 (:sizes spec spec...)))�

The :layout and :sizes clauses may appear in either order.

A configuration arranges entities within the frame. Each entity has a name (a

symbol). There are four kinds of entity:

pane A window inferior to the frame.

row A linear arrangement of entities, side by side. All the entities

in a row are the same height.

column A linear arrangement of entities, one above the other. All the

entities in a column are the same width.

fill An area that does not contain any windows, but is simply filled

with some pattern.�

The entities in a row can be panes, fills, or columns. The entities in a column can

be panes, fills, or rows. Rows and columns are collectively referred to as stacks.

The subentities of a stack are referred to as the members of the stack. Different

types of members can be mixed.

Configuration specifications have certain restrictions. All names used in a configu-

ration specification must be defined as entities exactly once within that specifica-

tion. Each entity must be used as a member of a stack exactly once, except for the

entity with the same name as the configuration, which must not be a member of

any stack. No stack can contain itself, directly or indirectly.

Page 1190

� tv:constraint-frame Flavor

The basic kind of constraint frame. A frame of this flavor is built out of almost

the same facilities as is tv:minimum-window; the frame does not have all the mix-

ins that go into the tv:window flavor. In particular, it will not have any borders

or a label. It also has tv:pop-up-notification-mixin as a component.

� tv:constraint-frame-with-shared-io-buffer Flavor

Like tv:constraint-frame, but all the panes of the frame share the same I/O buf-

fer used by the frame itself. However, the frame does not have tv:stream-mixin as

a component, and it does not handle :any-tyi and :tyi messages.

(tv:constraint-frame-with-shared-io-buffer is a component flavor of the Dynamic

Window flavor dw:program-frame.)

� (flavor:method :constraints tv:basic-constraint-frame) configuration-description-

list Init Option

Required for all flavors of constraint frames before Dynamic windows. It has been

replaced by the :configurations init option. See the init option (flavor:method

:configurations tv:basic-constraint-frame). To convert a :constraints option to a

:configurations option, see the function tv:back-convert-constraints.

The argument, configuration-description-list, is a list of configuration descriptions.

For the format of configuration descriptions, see the section "Specifying Panes and

Constraints in Non-Dynamic Windows".

� (flavor:method :constraints tv:basic-constraint-frame) Method

Returns the configuration description list of the frame.

� dw:continuation-output-size continuation stream &optional (unit :pixel) Function

Determines the amount of space a specified continuation would require for output

on a specified stream. Six values are returned: width, height, cursor-motion-x, and

cursor-motion-y, left, top.

The continuation is funcalled with a single argument, an internal stream, which

tracks the cursor motion caused by the output code of continuation.

continuation

The continuation to run.

stream The output stream. This must be supplied, even though no output is

actually sent to it, because information about the stream is neces-

sary. For example, if a :string-length message is involved, the de-

fault character style for the stream is needed information.

Page 1191

unit The unit of measure. The default is :pixel; the other possible value

is :character.�

Example:

(defmacro centering-about-point ((stream x y) &body body)

 ‘(centering-about-point-internal

 (zl:named-lambda centering-about-point (,stream) ,@body)

 ,stream ,x ,y))

�

(defun centering-about-point-internal (continuation stream x y)

 (multiple-value-bind (width height)

 (dw:continuation-output-size continuation stream)

 (let ((start-x (- x (round width 2)))

 (start-y (- y (round height 2))))

 (dw:in-sub-window (stream start-x start-y width height)

(funcall continuation stream))

 ;; Drawing the lines is just to verify the centering

 (graphics:draw-line start-x start-y (+ start-x width)

 (+ start-y height))

 (graphics:draw-line (+ start-x width) start-y start-x

 (+ start-y height))

)))

�

;;; Some code to test it

(defun test-centering ()

 (send *standard-output* :clear-window)

 (multiple-value-bind (left top right bottom)

 (send *standard-output* :visible-cursorpos-limits)

 (let ((center-x (round (+ left right) 2))

 (center-y (round (+ top bottom) 2)))

 (centering-about-point (*standard-output* center-x center-y)

;; Surround with border just to show

;; the bounding box of the output

(dw:surrounding-output-with-border (*standard-output*)

 ;; Generate some output

 (cp:execute-command "Show Flavor Handler"

 ’:tyo ’dw:dynamic-window

 :code :detailed))))

 ;; Drawing the lines is just to verify the centering

 (graphics:draw-line left top right bottom)

 (graphics:draw-line right top left bottom)

 ;; Pause to read a character before the command prompt

 ;;clobbers our carefully crafted output.

 (read-char)))

Page 1192

�

;; In a full-size Lisp Listener, try

;; (with-character-size (:large) (test-centering))

�

For an overview of dw:continuation-output-size and related facilities: See the sec-

tion "Writing Formatted Output Macros".

� (flavor:method :cr-not-newline-flag tv:sheet) x Init Option

If x is 0, typing #\return will move the cursor position to the beginning of the

next line and clear that line; if it is 1, typing #\return will display "return" in a

lozenge (that is, #\return will be just like other special characters). It defaults to

0. This flag does not affect the behavior of the :line-out nor the :fresh-line mes-

sages.

� (flavor:method :current-font tv:sheet) Method

Returns the current font, that is, the font used for NIL.NIL.NIL, as a font object.

Example:

(send *standard-output* :current-font) ==>

#

�

� (flavor:method :current-geometry tv:menu) Method

Returns a list of six elements that constitute the geometry corresponding to the

actual current state of the menu. This contrasts with the :geometry message,

which returns the specified default geometry. Only the maximum width and maxi-

mum height can be nil.

� dw:current-program &key window (type ’dw::program) (error-p t) Function

Returns the current program of the type specified by :type given the starting win-

dow specified by :window. This useful for command translators that need to get to

the program associated with the window in which you clicked.

� time:daylight-savings-p Function

Returns t if daylight savings time is currently in effect; otherwise, return nil.

time:day-of-the-week-string day-of-the-week &optional (mode ’:long) Function

Returns a string representing the day of the week. As usual, 0 means Monday, 1

means Tuesday, and so on. Possible values of mode are:

Page 1193

:short Return a three-letter abbreviation, such as "mon", "tue", and so on.

:long Return the full English name, such as "monday", "tuesday", and so

on. This is the default.

:medium Same as :short, but use "tues" and "thurs".

:french Return the French name, such as "lundi", "mardi", and so on.

:german Return the German name, such as "montag", "dienstag", and so on.

:italian Return the Italian name, such as "lunedi", "martedi", and so on.�

(flavor:method :deactivate tv:menu) Method

Deactivates a window, deexposing it. In momentary menus, it is sent when the

mouse is moved outside the borders of the menu.

� dw:dead-blip Flavor

The error signalled when a mouse click goes unhandled. This is also the blip for-

mat returned when an attempt to convert a mouse blip to a presentation blip fails.

This flavor has instance variable mouse-char and component flavor condition

Methods on this flavor include :report.

� decode-universal-time universal-time &optional timezone Function

Given a universal time, returns nine values for the corresponding decoded time:

second (0-59); minute (0-59); hour (0-23); date (1-31); month (1-12); year (A.D.); day-

of-week (0[Monday]-6[Sunday]); a flag (t or nil) indicating whether daylight sav-

ings time is in effect; and the timezone (hours west of GMT).

universal-time Seconds, plus or minus, since midnight, January 1, 1900 GMT.

timezone Hours west (postive) or east (negative) of GMT; it defaults to

the timezone set for the site (for more information: See the

section "Specifying a Time Zone for Your Site".) Any real num-

ber is allowed, but only numbers of the form n or n.5 can cor-

respond to actual timezones.�

Examples:

Page 1194

(decode-universal-time 0) =>

0

0

19

31

12

1899

6

NIL

5

�

(decode-universal-time 18000) =>

0

0

0

1

1

1900

0

NIL

5

�

(decode-universal-time 0 0) =>

0

0

0

1

1

1900

0

NIL

0�

time:decode-universal-time universal-time &optional timezone Function

Converts universal-time into its decoded representation. The following values are

returned: seconds, minutes, hours, date, month, year, day-of-the-week, daylight-

savings-time-p. daylight-savings-time-p tells you whether or not daylight savings

time is in effect; if so, the value of hour has been adjusted accordingly. You can

specify timezone explicitly if you want to know the equivalent representation for

this time in other parts of the world. Note that decode-universal-time is preferred

for new code.

(flavor:method :decode-variable-type tv:basic-choose-variable-values) kwd-and-

args Method

Page 1195

The system sends this message to a choose-variable-values window when it needs

to understand an item. kwd-and-args is a list whose car is the keyword for the

item and whose remaining elements, if any, are the arguments to that keyword.

Six values are returned. The default method for :decode-variable-type looks for

two properties on the keyword’s property list:

• tv:choose-variable-values-keyword The value of this property is a list of six

values.

• Unnecessary values of nil may be omitted at the end.

• tv:choose-variable-values-keyword-function The value of this property is a

function that is called with one argument, kwd-and-args. The function must re-

turn the six values.�

� Elements of the tv:choose-variable-values-keyword Property

The six elements of the tv:choose-variable-values-keyword property are listed be-

low. Note that if the specified list is shorter than six elements, the others default

to nil.

print-function

A function of two arguments, object and stream, to be used to print the val-

ue. prin1 is acceptable.

read-function

A function of one argument, a stream, to be used to read a new value.

zl:read is acceptable. If nil is specified, there is no read-function and in-

stead new values are specified by pointing at one choice from a list. If the

read-function is a symbol, it is called inside an input editor, and over-rubout

automatically leaves the variable with its original value. If read-function is

a list, its car is the function, and it is called directly rather than inside an

input editor.

choices A list of the choices to be printed, or nil if just the current value is to be

printed.

print-translate

If there are choices, and this function is supplied non-nil, it is given an ele-

ment of the choice list and must return the value to be printed (for exam-

ple, car for :assoc type items).

value-translate

If there are choices, and this function is supplied non-nil, it is given an ele-

ment of the choice list and must return the value to be stored in the vari-

able (for example, cdr for :assoc type items).

documentation

A string to display in the mouse documentation line when the mouse is

pointing at this item. This string should tell the user that clicking the

mouse changes the value of this variable, and any special information (for

example, that the value must be a number).

Page 1196

Alternatively, the documentation element can be a symbol that is the name

of a function. It is called with one argument, which is the current element

of choices or the current value of the variable if choices is nil. It should re-

turn a documentation string or nil if the default documentation is desired.

This can be useful when you want to document the meaning of a particular

choice, rather than simply saying that clicking on this choice selects it.

Note that the function should return a constant string, rather than building

one with zl:format or other string operations. This is because it will be

called over and over as long as the mouse is pointing at an item of this

type. (The function is called by the mouse documentation line updating in

the scheduler, not in the user process.)

� (flavor:method :deexpose tv:menu) Method

Causes a menu to be deexposed. The window remains activated. This message is

normally sent only by the system. It usually is meaningless if sent by a user pro-

gram, because the window is exposed again immediately.

� (flavor:method :deexposed-typein-action tv:sheet) Method

Returns the deexposed typein action of the window.

� (flavor:method :deexposed-typein-action tv:sheet) action Init Option

Initializes the deexposed typein action of the window to action. This is the action

taken when typein is required and the window is not exposed. The possibilities are

:normal and :notify. The default is :normal.

� (flavor:method :deexposed-typeout-action tv:sheet) Method

Returns the deexposed typeout action of the window.

� (flavor:method :deexposed-typeout-action tv:sheet) action Init Option

Initializes the deexposed typeout action of the window to action. This is the action

taken when typeout is attempted and the window is not exposed. The possibilities

are :normal, :error, :permit, :expose, and :notify, or a list of messages and mes-

sage arguments. The default is :normal.

� cp::*default-blank-line-mode* Variable

The default Command Processor blank line mode for cp:read-command and

cp:read-command-or-form. This is a keyword that determines what action the

Command Processor takes when you type a blank line:

Page 1197

:reprompt Redisplay the prompt, if any. This is the default.

:beep Beep.

:ignore Do nothing.�

The blank line mode used in Lisp Listeners and zl:break loops is the value of

cp:*blank-line-mode*.

� (flavor:method :default-character-style tv:menu) character-style Init Option

Specifies the default character style of the menu. Items whose character style is

unspecified are displayed in the default style. If a character style is specified for

an item, it is merged against the default style. (See the section "Menu Item Op-

tions".)

� (flavor:method :default-character-style tv:sheet) character-style Init Option

Specifies the character style for character output to the window. The default style

is inherited from the screen (and is settable via the Set Screen Options command);

the initial default character style is (:fix :roman :normal). To change a window’s

default style, use the :set-default-style method. See the method (flavor:method

:set-default-character-style tv:sheet).

For more information on character styles: See the section "Character Styles".

� cp:*default-command-accelerator-echo* Variable

Controls whether accelerated commands are echoed (full command name) on the

command line when their single-key accelerators are pressed. It is initially bound

to t.

� dw:default-command-top-level program &rest options &key (window-wakeup

#’dw::default-window-wakeup-handler) &allow-other-keys Function

The default command loop function for programs created with dw:define-program-

framework.

program The program instance. (This argument is supplied by dw:define-

program-framework).�

:window-wakeup

Specifies the function used by the program for handling asyn-

chronous events (for example, when the user presses REFRESH or re-

sizes the program frame). For an example:see the section "Handling

Asynchronous Window System Events".�

In addition to :window-wakeup, the following keyword options are available:

Page 1198

:stream Specifies the stream for program command I/O; the default is

query-io.

:prompt Specifiesthecommandprompt. Thedefaultisastring consistingof

the name of your program followed by the word "command" and a

colon, that is, "<Program-name> command:"

:dispatch-mode

Specifies the Command Processor dispatch mode, one of :command-

only, :command-preferred, :form-only, or :form-preferred. (See

the function cp:read-command-or-form.)�

� cp::*default-dispatch-mode* Variable

The default Command Processor dispatch mode for cp:read-command-or-form; a

keyword. Possible values are :form-only, :form-preferred, :command-only, and

:command-preferred. For the meanings of these values: See the section "Setting

the Command Processor Mode". The default is :command-preferred.

The dispatch mode used in Lisp Listeners and zl:break loops is the value of

cp:*dispatch-mode*.

� tv:defaulted-multiple-menu-choose alist defaults &optional near-mode Function

alist is a list of lists of menu items. The form of a menu item can be one of:

atom

(something atom)

(something . atom)

(something :value atom)

(something :eval ’atom)

(something :eval atom)

where in each case but the last atom is the item returned if selected in the menu.

(In the last case the value of atom is returned.) See the section "The Form of a

Menu Item". Each sublist corresponds to a column.

defaults is a list of menu values, one for each column, which are initially high-

lighted.

This function is similar to tv:multiple-menu-choose but the defaults received by it

and the values returned by it are values, not items. For an example, see the sec-

tion "tv:multiple-menu-choose Example".

� cp::*default-prompt* Variable

The default Command Processor prompt option for cp:read-command and cp:read-

command-or-form. The value of this variable is passed to the input editor as the

value of the :prompt option. The value can be nil, a string, a function, or a sym-

Page 1199

bol other than nil (but not a list): See the section "Displaying Prompts in the In-

put Editor". The default is "Command: ".

The prompt used in Lisp Listeners and zl:break loops is the value of cp:*prompt*.

cp:define-command name-and-options arguments &body body Macro

Defines a Command Processor command. This important macro has many features

and options. Its complete definition is contained in the chapter explaining its use,

"Managing the Command Processor". See the function cp:define-command.

cp:define-command-accelerator name command-table characters options arglist

&body body Function

Defines single-key accelerators for Command Processor commands.

name Name for this accelerator.

command-table

Command table in which command and accelerator are included.

charactersA character or list of characters (not necessarily more than one)

serving as the single-key accelerators. Prefix character sequences

are also allowed, for example, ((#\c-x #\c-f)).

options List of keyword-value pairs. Possible keywords include:

:argument-allowed

Boolean option specifying whether this accelerator is al-

lowed to take numeric arguments (for example, c-3). The

default depends on whether you provide an arglist, t if

you do, nil if you don’t.

:activate Boolean option specifying whether the command defined

by this accelerator executes immediately when the acceler-

ator is typed; the default is t. If nil, the command re-

quires confirmation and, possibly, additional args.

:echo Boolean option specifying whether the command defined

by this accelerator echoes on the command line as if it

were typed. The default is the value supplied to the

:activate option; this is because in the :activate nil

case, the command is visible after you are finished editing

and need not be repeated.�

arglist List of arguments to the accelerated command. If :argument-

allowed is nil, this arglist should be nil (no arguments allowed).

If :argument-allowed is t, the accelerator receives two arguments,

arg-p and arg. arg-p means whether or not the user gave an argu-

ment to this accelerator; arg is the numeric arg. arg-p has several

special keyword values. These are :sign, :digits, :control-u, and

:infinity. The arglist is typically just (arg-p arg), but you can put

Page 1200

anything here you want. This is just so that your body can make

reference to these symbols under the names you chose.

body A form that returns a command. It can make reference to the sym-

bols bound in arglist.

A typical body might be:

‘(si:com-delete-file ,(list path)))�

For an overview of cp:define-command-accelerator and related facilities: See the

section "Managing the Command Processor".

� cp:define-command-and-parser name-and-options arglist parser &body body

Function

Defines a Command Processor command and command line parser.

name-and-options

Either the symbol to be used as the command name or a list whose

first element is the name symbol and succeeding elements are alter-

nating keyword-value pairs. To distinguish command names from

other kinds of names, we recommend that the prefix com- be used;

the user-visible command name will not include the prefix.

Permissible keywords are the same as those listed under name-and-

options in the dictionary entry for cp:define-command.

arglist The argument list of the function that implements the body of the

command. It is a normal, Common Lisp argument list.

parser A form used to parse the command’s arguments. This form has lexi-

cal access to the internal functions cp:read-command-argument,

cp:read-keyword-arguments, and cp:assign-argument-value. It

should use these functions to do the actual reading and assigning of

values to command arguments:

cp:read-command-argument presentation-type &rest options

A fletted function within cp:define-command-and-parser.

presentation-type is the type of the argument. options are

all options acceptable in a command argument specifica-

tion to cp:define-command.

cp:read-keyword-arguments &rest keyword-specs

A macroletted macro within cp:define-command-and-

parser. keyword-specs are command argument specifica-

tions identical to those you would use if you were writing

the command using cp:define-command. Even if there

are no keyword arguments, the parser should end with

cp:read-keyword-arguments; any automatically generated

keywords (for example, :output-destination) can thereby

be read.

Page 1201

cp:assign-argument-value argument-name value

A macroletted macro within cp:define-command-and-

parser. Argument-name is a symbol naming a command

argument; value is its value. Each argument-name should

correspond to an argument in arglist above.�

Example:

(cp:define-command (com-this-is-a-test

:command-table ’user)

 ((file ’pathname :default nil :prompt "file")

 &key

 (integer ’integer :default 17

:mentioned-default 3 :prompt "the number"))

 (loop for i from 0 to integer do

 (print file)))

�

;;;is equivalent to

�

(cp:define-command-and-parser (com-this-is-a-test

 :command-table ’user)

�

;; The arglist of the function.

;; Note the presence (and need for) the

;; default value for INTEGER in the

;; argument list.

(file &key (integer 17))

�

 ;; The argument parser. It’s just one big PROGN.

 ;; Note that it ends with read-keyword-arguments.

 (progn (cp::assign-argument-value file

 (cp::read-command-argument ’pathname

:default nil :prompt "file"))

 (cp::read-keyword-arguments

 (integer ’integer :default 17

:mentioned-default 3 :prompt "the number")))

�

 ;; The body of the command.

 (loop for i from 1 to integer do (print file)))

�

To see other examples, try macroexpanding some cp:define-command definitions;

they expand into cp:define-command-and-parser definitions.

For an overview of cp:define-command-and-parser and related facilities: See the

section "Managing Your Program Frame".

� dw:define-command-menu-handler (command-name command-table menu-levels

&key (:gesture :left) (:documentation t) :tester) arglist &body command-form Macro

Page 1202

Defines a menu handler for the command named command-name in command-table�

for menu-levels. That is, defines a function that executes command-form with the

arguments in arglist when the user clicks the mouse as specified by :gesture. com-

mand-form should return a command, just as define-presentation-to-command-

translator does.

command-name

A string, which identifies the item, and which is how it is normally

displayed.

command-table

The command table into which to install the handler. It is normally

a string, but can be anything that cp:find-command-table under-

stands, including a symbol.

menu-levels

A list of keywords naming the menu levels in which the handler

should appear. The same handler can be in more than one menu

level. Normally, of course, menus for both levels would never be on

the screen at the same time in this case.

gesture A single keyword, or list of keywords, identifying which gestures

this handler applies to. A single handler can apply to more than one

gesture, and multiple handlers can be defined on different gestures.

The possible actions will then naturally be their union.

documentation

Similar to the documentation for define-presentation-to-command-

translator. It can be a fixed string or a list of arguments and body

to produce such a string. Additionally, it can be t, meaning run the

command-form to produce the desired command and use it for the

documentation. This is the default.

tester Similar to the tester for define-presentation-to-command-

translator. It is a function name (symbol) or list of arguments and

body to define such a function. The function is run to determine

whether the handler is available.

arglist (start with &key):

Contrary to the case of

define-presentation-to-command-translator, there is no initial pre-

sentation object argument. The keywords passed to as this arglist

are :menu-level and :gesture, specifying how the handler was in-

voked, and :window, giving the menu from which the presentation

was taken.

Normally, a command menu handler calls dw:standard-command-menu-handler,

which takes a command name and arguments as passed to the command form of

dw:define-command-menu-handler and does the standard actions for two mouse

gestures.

Page 1203

For an overview of how command menus work and several examples of the use of

dw:define-command-menu-handler: See the section "How Command Menus Work".

� define-cp-command name args &body body Function

The pre-Genera 7.0 facility for defining Command Processor commands. Currently,

the recommended command-definition facility is cp:define-command. For an

overview of the latter and related facilities: See the section "Managing the Com-

mand Processor".

Code that defines commands with the obsolete define-cp-command macro still

works, but the compiler will suggest that you change the syntax of any old-style

argument type specifiers (for example, :pathname) to presentation type specifiers

(for example, ’pathname) in fact, it will make that change for you. Note: You

can no longer use user-defined old-style type-specifiers. These will not compile.

define-cp-command defines a Command Processor command. name is a specifica-

tion for the command name. args is a specification for the command arguments.

define-cp-command defines a function that executes the command, with body as

the body of the function. The name of the function is derived from name and the

arguments from args.

name is a symbol or a list. If name is a symbol, it is the name of the function that

executes the command. By convention, the first four characters of the symbol’s

print name are usually "COM-".

If name is a list, the first element is a symbol, the name of the function that exe-

cutes the command. The remaining elements are alternating keywords and values.

Each keyword-value pair is optional. Following are the permissible keywords and

values:

:name A string that represents the command name that the user

types. If this option is not specified, the name is the result of

calling zl:string-capitalize-words on the symbol’s print name,

except that if the symbol’s print name begins with "COM-",

those characters are omitted from the command name. This op-

tion is useful for special capitalization of words, as in "Start

GC".�

:comtab A command table or a string naming a command table in

which to install the command. For example, to install a com-

mand in the "User" command table, you might specify "User"

or the result of (si:find-comtab "user"). This option is evalu-

ated. If it is not specified, the command is not installed in any

command table and cannot be read. See the section "Command

Processor Command Tables".�

args is nil or a list of argument specifications for the arguments to the command

and the function that executes the command. One element of args can be the sym-

bol &key instead of an argument specification. All argument specifications preced-

Page 1204

ing &key denote positional arguments to the command. All argument specifications

following &key denote keyword arguments to both the command and the function

that executes the command.

An argument specification is a list that describes one argument to the command.

The first element of an argument specification is a symbol. This symbol names a

parameter in the arglist of the function that executes the command. This parame-

ter is bound to the value of the argument when the function is called to execute

the command. body can refer to the parameter. Unless a :name option is supplied

later in the argument specification, the user-visible name of the argument is the

result of calling zl:string-capitalize-words on the symbol’s print name.

The second element of an argument specification is an argument type specification.

This is a keyword or a list. If it is a keyword, it is the name of this argument’s

type. If it is a list, the first element is a keyword that is the name of this argu-

ment’s type. The remaining elements supply information specific to the argument

type. See the section "Command Processor Argument Types".

The remaining elements of an argument specification are alternating keywords and

values. Each keyword-value pair is optional. None of the values is evaluated. Fol-

lowing are the permissible keywords and values:

:allow-multiple t if the argument can have multiple values; nil if the argu-

ment can have only one value. The user enters multiple values

as a series separated by commas. These are passed to the com-

mand function as a list of values. The default is nil.

:confirm t if the argument requires confirmation by the user; nil if it

does not. The default is nil.�

:default A form to be evaluated when the argument is read to return

the default value for the argument. If :allow-multiple is speci-

fied with a value of t, the form must return a list of values.

The form can refer to parameters defined for any positional ar-

guments (but not keyword arguments) specified in args before

this argument specification. At the time the form is evaluated,

these parameters are bound to the values of arguments already

read.

For a positional argument, if :default is not supplied the argu-

ment has no default value. When the command is read, the

user is forced to supply a value.

For a keyword argument, the default used depends on what

combination of :default and :mentioned-default options is

supplied:

Both Use the :mentioned-default default if the

user types the name of the argument; oth-

erwise use the :default default.

Page 1205

:mentioned-default only

If the user types the name of argument,

use the :mentioned-default default. Other-

wise the default is nil.

:default only Use the :default default.

Neither If the user does not type the name of the

argument, the default is nil. If the user

types the name of the argument, the argu-

ment has no default value, and the user is

forced to supply a value.�

:mentioned-default For a keyword argument, a form to be evaluated when the ar-

gument is read to return the default value if the user types

the name of the argument. If :allow-multiple is specified with

a value of t, the form must return a list of values. The form

can refer to parameters defined for any positional arguments

(but not keyword arguments) specified in args before this argu-

ment specification. At the time the form is evaluated, these pa-

rameters are bound to the values of arguments already read.

The default used depends on what combination of :default and

:mentioned-default options is supplied:

Both Use the :mentioned-default default if the

user types the name of the argument; oth-

erwise use the :default default.

:mentioned-default only

If the user types the name of argument,

use the :mentioned-default default. Other-

wise the default is nil.

:default only Use the :default default.

Neither If the user does not type the name of the

argument, the default is nil. If the user

types the name of the argument, the argu-

ment has no default value, and the user is

forced to supply a value.�

Use this option when you want the default to depend on

whether or not the user types the argument name. For exam-

ple, the Delete File command has an :Expunge keyword argu-

ment whose :default default is No and whose :mentioned-

default default is Yes.�

:use-type-default If non-nil, the default for this argument is determined by the

current default for this type of argument, for example, a path-

name for commands that deal with files. The default is t.�

Page 1206

:set-type-default If non-nil the default for this argument becomes the current

default for this type of argument (for example, a pathname for

commands that deal with files). The default is t.�

:documentation A string, usually short, that documents the meaning of the ar-

gument. The string is displayed after the argument name if

the user presses HELP while entering the argument. For exam-

ple, the string for the argument to the Show Hosts command

is "Hosts about which to display status information". The de-

fault HELP display depends on the argument type.�

:name A string that represents the user-visible name of the argu-

ment. The default name is the result of calling zl:string-

capitalize-words on the print name of the symbol that is the

first element of the argument specification. This option is use-

ful when you want the user-visible name of the argument to

differ from the parameter bound to the argument value. For

example, you might want the user-visible name to be Base

without binding the special variable zl:base.�

:prompt A string that represents a prompt for the argument, or a form

to be evaluated when the command is read to return a prompt

string. The form is evaluated with the symbol =default= bound

to the argument default. =default= is interned in the package

that is the value of zl:package when the define-cp-command

form is evaluated. The default prompt depends on the argu-

ment type. See the section "Command Processor Argument

Types".�

Example:

(define-cp-command (com-edit-file :comtab "Global")

 ((file :pathname

 :allow-multiple t

 :default ‘(,(fs:default-pathname))

 :prompt

 (format nil "file to edit [default ~A]" (first =default=))

 :documentation "Files to edit"))

 (ed file)

 (send standard-output :fresh-line)

 (send standard-output :tyo #\newline)

 (values))�

define-presentation-action name (from-presentation-type Macro

 to-presentation-type &key tester (gesture :select) documentation

 suppress-highlighting (menu t) (context-independent nil) priority

 exclude-other-handlers blank-area defines-menu) arglist &body body�

Defines a side-effecting mouse handler for performing actions on a displayed pre-

Page 1207

sentation object that are independent of the main body and command loop of an

application. The complete description of this macro is containted in the chapter

"Programming the Mouse: Writing Mouse Handlers".

define-presentation-to-command-translator name Macro

 (presentation-type &key tester (gesture :select) documentation

 suppress-highlighting (menu t) (context-independent nil) priority

 exclude-other-handlers blank-area do-not-compose) arglist &body body

Defines a mouse handler that translates from a displayed presentation object into a

Command Processor command using that object as input. The complete description

of this macro is contained in the chapter "Programming the Mouse: Writing Mouse

Handlers".

zwei:define-presentation-to-editor-command-translator name (type echo-name

comtab &rest options &key :gesture :tester &allow-other-keys) (object &rest other-

args) &body body Macro

Returns the list of a function name and argument values that calls an editor com-

mand function. The function need not be defined with zwei:defcommand. The

function should return nil if the typeout window should be flushed, or non-nil if

the typeout window should be left alone.

name The name of the command.

type The from-presentation type.

echo-name A string to echo when the mouse is clicked.

comtab A symbol whose value is the command table that determines

whenter the translator is available. Only if commands in that

command table are available is this translator available. This

is typically zwei:*standard-comtab* or zwei:*zmacs-comtab*

or it could be your own command table.

The remaining arguments are the same as those of define-presentation-to-

command-translator. See the function define-presentation-to-command-

translator.

Example:

(defun show-length-of-plist (symbol)

 (zwei:typein-line "~D" (length (symbol-plist symbol))))

�

(zwei:define-presentation-to-editor-command-translator

 show-length-of-plist

 (symbol "Plist length"

 zwei:*standard-comtab*

 :gesture :super-middle)

 (symbol)

 ’(show-length-of-plist ,symbol))

Page 1208

define-presentation-translator name (from-presentation-type Macro

 to-presentation-type &key tester (gesture :select) documentation

 suppress-highlighting (menu t) (context-independent nil) priority

 exclude-other-handlers blank-area do-not-compose) arglist &body body

Defines a mouse handler that translates from a displayed presentation object of a

certain type to a returned presentation object of a different type. The complete de-

scription of this macro is contained in chapter "Programming the Mouse: Writing

Mouse Handlers".

define-presentation-type type-name (data-arglist . pr-arglist) Macro

 &key parser printer viewspec-choices description describer no-deftype

 disallow-atomic-type (history nil history-supplied-p) expander

 abbreviation-for choose-displayer accept-values-displayer

 menu-displayer default-preprocessor history-postprocessor

 highlighting-box-function presentation-type-arguments

 presentation-subtypep key-generator key-function do-compiler-warnings

 map-over-subtypes map-over-supertypes

 map-over-supertypes-and-subtypes typep with-cache-key

 (data-arguments-are-disjoint t)

Defines a presentation type. The full description of this macro is contained in a

chapter of its own. See the section "Defining Your Own Presentation Types".

dw:define-program-command (name program-name &rest options &key (keyboard-

accelerator nil) (menu-accelerator nil) (menu-level ’(:top-level)) (menu-documentation�

t) menu-documentation-include-defaults provide-output-destination-keyword &allow-

other-keys) arglist &body body Function

Defines a Command Processor command for a program created with dw:define-

program-framework and installs it in the program’s command table. The defini-

tion generates two internal methods for the program flavor, one to parse the com-

mand and one to execute the command. These methods provide lexical access to

your program’s state variables both in the body of the command definition and in

the command argument list; that is, you may use state variables as arguments.

name The name given to the command. To distinguish command names

from other kinds of names, we recommend that the prefix com- be

used, for example com-exit-program. The user-visible command does

not include the prefix; in the above example, the user-visible com-

mand is Exit Program.

Like other commands, those you define using dw:define-program-

command occupy the function namespace.

program-name

The symbol or string naming the program flavor (created by

dw:define-program-framework) for which the command is being

written. This is also the name of the program’s command table.�

Page 1209

� :keyboard-accelerator

Specifies the key used to invoke the command; the default is nil.

For example, if you are writing an Exit Program command, you

might wish to specify #\E as the keyboard accelerator.

This option may not be used if nil is specified for the :kbd-

accelerator-p option to the :command-table keyword for dw:define-

program-framework. See the function dw:define-program-

framework.

:menu-accelerator

Specifies whether the command identifier is displayed in a command

menu pane for the program; the default is nil.

To make the command available in a menu, supply a value of t or a

string. t causes the user-visible name of the command to be dis-

played. If you provide a string, it is displayed instead of the user-

visible name.

Note that the program frame must include a pane of the

:command-menu type in order for the command identifier to be

displayed. See the function dw:define-program-framework.�

:menu-level

Specifies the command menu in which the command is to be dis-

played. You need to use this option explicitly only when more than

one command menu pane has been specified in the dw:define-

program-framework macro for your program. (See the function

dw:define-program-framework.)

:menu-documentation

Specifies documentation to be displayed in the mouse documentation

line when the mouse is over the command in the command menu.

:menu-documentation can be either a string, which is the docu-

mentation, or it can be a function that takes :window, :gesture,

:menu-level, and :arguments as keyword arguments and either re-

turns a string or a command-structure (as in ‘(si:com-show-file

,foo)). If a command-structure is returned it is unparsed to produce

the documentation.

Examples:

(dw:define-program-framework MD

 :select-key #\!

 :panes ((display :display)

 (menu :command-menu)

 (interactor :interactor))

 :command-definer t)

Page 1210

�

(define-MD-command (com-test-1 :menu-accelerator t

 :menu-documentation

 "This is the MD command")

 ((integer ’integer))

 (print integer))

�

(define-MD-command (com-test-2 :menu-accelerator t

 :menu-documentation

 ((&rest ignored)

 ‘(com-test-1 ,3)))

 ()

 ())�

:menu-documentation-include-defaults

Specifies, when t, that the defaults for this command should be pre-

sented in the mouse documentation line.

Compare what happens when you move the mouse over Test 3 and

Test 4. The mouse documentation for Test Four is "Test 4 7" (or

whatever the last integer you typed to the Test 4 command was)

while the mouse documentation for Test 3 is just "Test 3".

(dw:define-program-framework MDID

 :select-key #\~

 :panes ((display :display)

 (menu :command-menu)

 (interactor :interactor))

 :command-definer t)

�

(define-MDID-command (com-test-3 :menu-accelerator t)

 ((integer ’integer))

 (print integer))

�

(define-MDID-command (com-test-4 :menu-accelerator t

 :menu-documentation-include-defaults t)

 ((integer ’integer))

 (print integer))

:provide-output-destination-keyword

Boolean option specifying whether to provide the :output-

destination keyword. The default is nil (unlike

cp:define-command). This option allows the user of the command

to redirect the output of the command to a place other than the

screen.

Additional keyword options to dw:define-program-command are the same as

those documented under name-and-options in the Dictionary entry for

cp:define-command. These include :command-table, :explicit-arglist,

:provide-output-destination-keyword, and :values.�

Page 1211

arglist The list of command arguments. Each element of the list is itself a

list of the form (arg-name presentation-type options) where arg-name

is the name of the argument; presentation-type is the presentation-

type of the argument; and options are keyword options to the argu-

ment.

Permissible options are the same as those documented under argu-

ments in the description of cp:define-command in "Managing the

Command Processor". These include :documentation, :prompt,

:prompt-mode, :default, :mentioned-default, :when, :name,

:default-type, :provide-default, :display-default, and :confirm.�

For an overview of dw:define-program-command and related facilities, see the

section "Defining Your Own Program Framework".

dw:define-program-framework name &key pretty-name Macro

 (command-definer nil) (command-table nil) (top-level (quote

 (dw:default-command-top-level))) (command-evaluator nil) (panes

 (quote (dw::main :listener))) selected-pane query-io-pane

 terminal-io-pane label-pane (configurations nil) (state-variables nil)

 (selectable t) (select-key nil) (system-menu nil) (size-from-pane nil)

 (inherit-from (quote (dw::program))) (other-defflavor-options nil)

Defines a program framework. The complete definition of this macro is included in

its own chapter. See the section "Defining Your Own Program Framework".

define-prompt-and-read-type keyword parameter-list description &body body

Function

This function is obsolete. New types should be defined with define-presentation-

type.

define-prompt-and-read-type defines a new type keyword for prompt-and-read,

and a dispatch function to be called to get input from the user when prompt-and-

read is called with a type keyword of keyword. The dispatch function is defined as

the prompt-and-read property of keyword, which can be a symbol in any package.

Its parameter list is derived from parameter-list, and its body is body. prompt-and-

read returns whatever the dispatch function returns.

If the first argument to prompt-and-read is just keyword, the dispatch function is

called with no arguments. If the first argument to prompt-and-read is

(keyword . type-args), the arguments to the dispatch function are the elements of

type-args. These are a series of alternating keywords and values.

parameter-list is nil if no type-args are allowed, or else a list of &key elements for

the dispatch function’s parameter list. define-prompt-and-read-type inserts &key

in the parameter list itself; &key should not appear in parameter-list.

description can be nil, a zl:format control string, a list of a zl:format control

string and zl:format control args, or a form to be evaluated. description is used to

generate input-type in the default prompt, "Enter input-type: ":

Page 1212

description input-type

nil "a " followed by the print name of the type keyword.

zl:format control string

Generated by calling zl:format with arguments of t and the

control string when it is time to display the prompt.

list of zl:format control string and args

Generated by calling zl:format with arguments of t, the con-

trol string, and the control args when it is time to display the

prompt. The control args can examine any of the parameters in

parameter-list.

form Generated by evaluating the form when it is time to display

the prompt. The form can examine any of the parameters in

parameter-list. It should send output to zl:standard-output.�

body is the body of the dispatch function. Often the body is a call to a more primi-

tive reading function, such as zl:read or zl:readline. It is the responsibility of the

body or a function it calls to provide input editing if needed.

Example:

(define-prompt-and-read-type :flavor-name

 ((impossible-is-ok t))

 "the name of a flavor"

 (sys:read-flavor-name query-io impossible-is-ok))�

sys:read-flavor-name is a function that reads a flavor name with completion over

the set of defined flavors.

� define-user-option (option alist) default [type] [name] Function

(define-user-option (option alist) default type name) defines the special variable op-

tion to be an option in the alist, which must have been previously defined with

define-user-option-alist. The variable is declared and initialized via (defvar option

default). The value of the form default is remembered so that the variable can be

reset back to it later.

type is the type of the variable for purposes of the choose-variable-values facility.

It is optional and defaults to :sexp.

name is the name of the variable to be displayed in the choose-variable-values

window. It is optional and defaults to a string that is the print-name of the vari-

able except with hyphens changed to spaces and each word changed from all-

upper-case to first-letter-capitalized. If the first and last characters of the print-

name are asterisks, they are removed. For example, the default name for

so:*sunny-side-up* would be "Sunny Side Up".

� define-user-option-alist name [constructor] Function

Page 1213

(define-user-option-alist name) defines name to be a global variable whose value

is a "user option alist", something which may be used by the other functions be-

low. This alist keeps track of all of the option variables for a particular program.

(define-user-option-alist name constructor) also specifies the name of a constructor

macro to be defined, which provides a slightly different way of defining an option

variable from define-user-option. The form (constructor option default type name)

defines an option in this user-option-alist. The arguments are the same as to

define-user-option.

� tv:defwindow-resource name parameters &rest options Function

Defines a resource of windows. name is the name of the resource. parameters is a

lambda-list of parameters to defresource. options are alternating keywords and

values:

Keyword Value

:initial-copies Number of windows to be created during evaluation of

defresource form. Default: 1.

:superior A form to be evaluated when the resource is allocated to re-

turn the superior window of the desired window. If this is

not supplied, the superior is the value of tv:mouse-sheet.

:make-window List of flavor name and options to tv:make-window, which

will be called to make new windows. One of the options can

be :superior.

:constructor A form or the name of a function to make new windows. You

must supply either :make-window or :constructor.

:reusable-when Either :deexposed or :deactivated. Specifies when a window

can be reused. Supply this when you use allocate-resource

without a mtaching deallocate-resource instead of using-

resource to allocate resources. Default: reusable when not

locked and not in use.

tv:defwindow-resource also accepts any of the keywords from defresource.

tv:defwindow-resource handles its own keywords and defresource’s :checker key-

word, and any others it passes to defresource.

� tv:delayed-redisplay-label-mixin Flavor

Adds the :delayed-set-label and :update-label messages to your window. You send

a :delayed-set-label message to change the label in such a way that it will not ac-

tually be displayed until you send an :update-label message. This is especially use-

ful for programs that suppress redisplay when there is typeahead; the user’s com-

mands may change the label several times, and you may want to suppress the re-

display of the changes in the label until there isn’t any typeahead.

Page 1214

� (flavor:method :delayed-set-label tv:delayed-redisplay-label-mixin) specification

Method

Like the :set-label method, except that nothing actually happens until an :update-

label message is sent.

� (flavor:method :delayed-set-label dw:margin-mixin) new-label Method

Provides a new label for a Dynamic Window, but delays the writing of the new la-

bel until the :update-label message is sent: See the method (flavor:method

:update-label dw:margin-mixin). See the method (flavor:method :set-label

dw:margin-mixin).

new-label The new label, which can be either a string or t, which specifies

that the window’s name is to be the label, or a list of options to

dw:margin-label.�

For an overview of (flavor:method :delayed-set-label dw:margin-mixin) and relat-

ed facilities: See the section "Window Substrate Facilities".

� tv:delaying-screen-management Function

The tv:delaying-screen-management special form just has a body:

(tv:delaying-screen-management

 form-1

 form-2

 ...)�

The forms are evaluated sequentially with screen management delayed. The value

of the last form is returned.

� (flavor:method :delete-char tv:sheet) &optional (char-count 1) (unit ’:character)

Method

Without an argument, deletes the character at the current cursor position. Other-

wise, deletes char-count units, starting at the current cursor position. Moves the

display of the part of the current line that is to the right of the deleted section

leftwards to close the resultant gap. If unit is :character, char-count is interpreted

as the number of characters to delete; if unit is :pixel, char-count is interpreted as

the number of pixels to delete.

� cp:delete-command-table command-table-or-name Function

Removes a Command Processor command table from the command table registry.

command-table-or-name

A command table object or the name (symbol or string) of a com-

mand table.�

Page 1215

For an overview of cp:delete-command-table and related facilities: See the section

"Managing the Command Processor".

� (flavor:method :delete-displayed-presentation dw:dynamic-window) displayed-

presentation Method

Deletes an already displayed presentation from a Dynamic Window’s output history

and display. This method does not immediately affect the display, nor does it re-

move associated text from the screen; use dw:erase-displayed-presentation to do

these.

displayed-presentation

The presentation to delete.�

For an overview of (flavor:method :delete-displayed-presentation dw:dynamic-

window) and related facilities, see the section "Presenting Formatted Output". Ex-

ample:

(defun delete-displayed-presentation-test ()

 (let ((presentation (dw:with-output-as-presentation (:type ’sys:expression

 :object ’test)

 (princ "test object"))))

 (format t "~&Click on presentation")

 (read)

 (send *standard-output* :delete-displayed-presentation presentation)

 (format t "~&No no longer sensitive.")

))

� (flavor:method :delete-item tv:text-scroll-window) item-no Method

Deletes the item whose number is item-no.

If the item being deleted was visible, the window redisplays to show the new state

of the item list.

� (flavor:method :delete-line tv:sheet) &optional (line-count 1) (unit ’:character)

Method

Without an argument, delete the line that the cursor is on. Otherwise deletes line-

count units, starting with the one the cursor is on. Moves up the display below the

deleted section to close the resulting gap. If unit is :character, line-count is inter-

preted as the number of lines to delete; if unit is :pixel, line-count is interpreted

as the number of pixels to delete.

� dw:delete-presentation-mouse-handler name Function

Removes an already defined presentation mouse handler.

Page 1216

name The name of the mouse handler to remove.�

For an overview of dw:delete-presentation-mouse-handler and related facilities:

See the section "Programming the Mouse: Writing Mouse Handlers".

� dw:delete-presentation-type type-name Function

Deletes presentation type type-name from the type hierarchy. Note that the system

will not let you delete presentation types for which there are mouse-handlers de-

fined.

� (flavor:method :delete-string tv:sheet) string &optional (start 0) (end nil) Method

Deletes specific strings. It is one of the things to use when dealing with character

styles that map to variable-width fonts.

If string is a string, excise a region exactly as wide as that string, or a substring

specified by start and end, and closes the gap.

� dw:describe-presentation-type type &optional (stream *standard-output*) plural-

count Function

Outputs the description of a presentation type provided by the type’s definition

(define-presentation-type macro).

type The presentation type to be described.

stream The output stream; the default is *standard-output*.

plural-count

Controls whether the description is pluralized. Three values are

possible:

nil Do not pluralize the description.

t Pluralize the description.

number Include this number in the pluralization.�

Examples:

(dw:describe-presentation-type ’integer) ==>an integer

�

(dw:describe-presentation-type ’integer t t) ==>integers

�

(dw:describe-presentation-type ’integer t 12) ==>twelve integers

�

(dw:describe-presentation-type ’integer t 12.2) ==>12.2 integers

�

For an overview of dw:describe-presentation-type and related facilities: See the

section "Defining Your Own Presentation Types".

Page 1217

� :deselect &optional (restore-selected t) Message

Sent to a selectable window by a user program or by a part of the user interface

to change the selected activity. It is also sent by the system to notify a window

when it ceases to be the selected window, either because of a change of activities

or because of selection of a different window within the same activity. When sent

by the system as a notification of deselection, restore-selected is always nil.

This message is received by the system and is also received by user daemons that

wish to be notified when a window becomes deselected. Note that this message can

be sent to a window that is not the selected window; in that case it is supposed to

do nothing.

If :deselect is sent to the selected window and restore-selected is not nil, the previ-

ously selected activity is selected.

� (flavor:method :deselected-visibility tv:blinker) Method

Examines the deselected visibility of the blinker.

� (flavor:method :deselected-visibility tv:blinker) symbol Init Option

Sets the initial deselected visibility. By default, it is :on.

� dw:*display-ellipsis-help* Variable

Controls the presentation of a help message explaining the meaning of a notation

such as "Foo ... (7)" to indicate 7 possibilities beginning with "Foo". By default,

the value is t which means that this help message continues to be presented every

time such a notation is used until the first time such an item is clicked on, at

which point the value becomes nil and the message is no longer presented. The

value may be set to nil before this in order to suppress the message at an earlier

point (in an init file, for example) or it may be set to :always in order to keep it

from ever becoming nil, regardless of whether such an item is clicked on or not.

si:display-item-list stream type list &optional item-string (order-columnwise t)

Function

Displays a list of items on stream in evenly spaced columns. stream must be inter-

active. If it supports mouse sensitivity, the items displayed are also made mouse

sensitive and of type type.

list is a list of items to be displayed. Each item in the list is displayed by sending

the stream an :item message with type as the first argument. If the item is not it-

self a list, the item is the second argument to the :item message.

If the item to be displayed is a list, the arguments to the :item message depend

on item-string. If item-string is not nil, the second argument to the :item message

is the first element of the item. If item-string is nil, the item should be an alist

Page 1218

whose car is a string to be displayed and whose cdr is the item itself. In this case,

the second argument to the :item message is the cdr of the item, the third argu-

ment is "~a", and the fourth argument is the car of the item. The default for

item-string is nil.

If order-columnwise is not nil, the items are ordered down columns. If order-

columnwise is nil, the items are ordered across rows. The default is t.

� sys:display-notification stream note &optional style window-width Function

Displays a notification on stream. note is the notification, returned by the :receive-

notification message to an interactive stream. The display includes the time and

the text of the message as specified in the arguments to tv:notify.

style is nil or a keyword determining the style of the display:

nil Displays the time and the text of the message at the current

cursor position, with indentation. This is the default.

:stream Sends a :fresh-line message, then displays the time and the

text of the message, with indentation, in square brackets, then

displays a Newline. This style is for merging the notification

display with other output to the stream.

:window Sends a :fresh-line message, then displays the time and the

text of the message, with indentation, in square brackets. This

style is for using the entire window to display the notification.

It assumes the window has been cleared first.

:pop-up Displays the time and the text of the message at the current

cursor position, with indentation, then sends a :fresh-line mes-

sage. This style is used by the notification delivery process to

display notifications in a pop-up window.�

window-width is nil or the number of characters available on a line to display the

notification. If window-width is nil or not supplied, the default is the result of

sending the stream a :size-in-characters message. This is used only to determine

how much to indent lines other than the first in the notification. If window-width

is about 110 or more, lines are indented to the beginning of the text of the mes-

sage (following the time). If window-width is about 100 or less, lines are indented

only one character. You can supply a large window-width to increase the indenta-

tion in a narrow window, or supply a small window-width to decrease the indenta-

tion in a wide window.

If style is :stream, :window, or :pop-up and if a "window of interest" was supplied

as the first argument to tv:notify, a message is displayed that informs the user

that FUNCTION 0 S selects the window of interest.

sys:display-notification does not return any interesting values, unless style is

:pop-up. In that case it returns the X and Y coordinates, in pixels, of the begin-

ning of the line following the text of the notification.

Page 1219

� zl:display-notifications Function

Selects a scroll window that displays all notifications received since cold booting.

This is the same as SELECT N.

� tv:displayed-item-item mouse-sensitive-item Function

Given a mouse-sensitive item, returns the associated item.

� tv:displayed-item-type mouse-sensitive-item Function

Given a mouse-sensitive item, returns the type of the item.

� dw:displayed-presentation-clear-highlighting displayed-presentation window &op-

tional (highlighting-mode :underline) Function

Eliminates highlighting of a displayed presentation (see dw:displayed-

presentation-set-highlighting).

displayed-presentation

The highlighted presentation.

window The window displaying the presentation.

highlighting-mode

The mode in which the displayed presentation is highlighted, either

:underline (the default for dw:displayed-presentation-set-

highlighting) or :inverse-video.�

For an overview of dw:displayed-presentation-clear-highlighting and related fa-

cilities, see the section "Controlling Location and Other Aspects of Output".

� dw:displayed-presentation-highlighting-boxes displayed-presentation Function

Returns the value of the highlighting-boxes instance variable of the instance dis-

played-presentation.

� dw:displayed-presentation-set-highlighting displayed-presentation window &option-

al (highlighting-mode :underline) Function

Highlights a displayed presentation.

displayed-presentation The presentation to highlight.

window The window displaying the

 presentation.

highlighting-mode Either :underline (the default) or

 :inverse-video.

Page 1220

For an overview of dw:displayed-presentation-set-highlighting and related facili-

ties, see the section "Controlling Location and Other Aspects of Output". Example:

(defun presentation-highlighting-test ()

 (fresh-line)

 (let ((presentations ()))

 (formatting-item-list

 (t :dont-snapshot-variables (presentations))

 (loop for i from 1 to 5 do

 (formatting-cell

 (t :dont-snapshot-variables (presentations))

 (let ((presentation

 (dw:with-output-as-presentation (:object i :type ’integer)

 (format t "~R" i))))

 (when presentation

(push presentation presentations))))))

 (let ((n 3)

(highlighted nil))

 (loop

 (when highlighted

 (dw:displayed-presentation-clear-highlighting

 highlighted *standard-output*

 :inverse-video))

 (setq highlighted

 (find n presentations :key #’dw:presentation-object))

 (when highlighted

 (dw:displayed-presentation-set-highlighting

 highlighted *standard-output*

 :inverse-video))

 (sleep 1)

 (setq n (1+ (random 5)))))))�

� dw:displayed-presentation-single-box displayed-presentation Function

Returns the value of the single-box instance variable of the instance displayed-

presentation.

� :do-not-echo &rest characters Option

The characters in characters are interpreted as activation characters and are not

echoed. The comparison is done with char=, not char-equal, so that the control

and meta bits are not masked off. The characters are not inserted into the input

buffer and are not interpreted as input editor commands. When one of these char-

acters is typed, the final :tyi value returned is the character, not a blip.

This option exists only for compatibility with earlier releases. New programs

should use the :activation option.

Page 1221

� dw:do-redisplay redisplay-piece &optional (stream *standard-output*) &key full-

set-cursorpos truncate-p once-only save-cursor-position Function

Causes incremental redisplay from a redisplay object (created by dw:redisplayer).

It runs the code in the body of the redisplayer, doing output to stream with respect

to the display cache points described under dw:with-redisplayable-output.

redisplay-piece The redisplay object.

stream The output stream; the default is *standard-output*.�

:full-set-cursorpos Booleanoptionspecifyingwhetherthecursorwillmove

backwards or sideways, rather than in strict tty style, so that a spe-

cial stream is necessary; the default is nil.

� :truncate-p Optionspecifying whethertodotheredisplaywiththe

output stream in truncate mode. With :truncate-p nil, the default,

the output window rescrolls to update separate parts of the display.

With :truncate-p t, some updating happens off-screen.

A third value permitted for this option is :if-necessary. In this

case, dw:do-redisplay simulates, if necessary, some cursor motion

on behalf of the output stream.

� :once-only Specifies when t that the redisplay will not be repeat-

ed. (This is mostly for internal use by table-formatting facilities.)

The default is nil.

� :save-cursor-position Specifies when t that the cursor should be left at its

current position rather than moved to the end of the new display.

The default is nil.

dw:do-redisplay is one of a number of facilities used to do incremental redisplay.

For examples, see the file SYS:EXAMPLES;INCREMENTAL-REDISPLAY.LISP.

For an overview of dw:do-redisplay and related facilities: See the section "Display-

ing Output: Replay, Redisplay, and Formatting".

� tv:dolist-noting-progress (var listform name &optional (progress-note-variable

’tv:*current-progress-note*) (process ’sys:current-process)) &body body Function

Binds local environment such that the progress of a dolist special form is noted by

a progress bar displayed in the status line at the bottom of the screen.

var A variable bound to each successive element in listform on each

successive iteration.

listform The list.

name A string naming the operation being noted. This string is displayed

with the progress bar.

Page 1222

progress-note-variable The variable bound to the note object; the default is

tv:*current-progress-note*.

process The process on whose behalf the progress is noted; the default is

sys:current-process. This is used to determine the precedence of

notes.�

Example:

(defun note-element-printing (list)

 (tv:dolist-noting-progress (element list "Printing elements")

 (print element)

 (sleep 1)))

�

For an overview of tv:dolist-noting-progress and related facilities, see the section

"Progress Indicator Facilities".

� tv:dont-select-with-mouse-mixin Flavor

Provides a :name-for-selection message that returns nil, so that the user interface

does not treat the window as a candidate for selection.

� tv:dotimes-noting-progress (var countform name &optional (progress-note-variable

’tv:*current-progress-note*) (process ’sys:current-process)) &body body Function

Binds local environment such that the progress of a dotimes special form is noted

by a progress bar displayed in the status line at the bottom of the screen.

var A variable bound to the count (0, 1, 2, and so on) on each succes-

sive iteration.

countformThe number of iterations.

name A string naming the operation being noted. This string is dis-

played with the progress bar.

progress-note-variable The variable bound to the note object;

the default is tv:*current-progress-note*.

process The process on whose behalf the progress is noted; this is used

to determine the precedence of notes.�

Example:

(defun note-square-roots (n)

 (tv:dotimes-noting-progress

 (count n "Calculating square roots")

 (sqrt count)))

�

For an overview of tv:dotimes-noting-progress and related facilities, see the sec-

tion "Progress Indicator Facilities".

Page 1223

� :draw-1-bit-raster width height raster from-x from-y to-x to-y &optional (ones-alu

:draw) (zeros-alu :erase) Generic Function

Draws a pattern onto the screen. The pattern is replicated as needed, as with

bitblt. Unlike bitblt, which copies bits regardless of any difference in bit depth

(element type) between the source array and the screen array, :draw-1-bit-raster

draws one screen pixel for each source pixel (the source must be a 1-bit array).

Bits that are on in the source are drawn using ones-alu and bits that are off are

drawn using zeros-alu. For a 1-bit screen, the result is like bitblt would have done

with tv:alu-seta.

To say it another way, :draw-1-bit-raster copies pixels from a 1-bit-per-pixel source

to the destination, which can be any pixel depth. If the destination is also 1-bit-

per-pixel, :draw-1-bit-raster is identical to bitblt, but if the destination has more

bits, :draw-1-bit-raster will do the "right" thing where bitblt would produce use-

less results. For detailed information on all the arguments of :draw-1-bit-raster:

See the function bitblt.

For a color screen, ones-alu and zeros-alu can be color alus. So, for instance, ones

bits might be put out in green and zeros bits in red. Even when drawing in black

in white to a color screen, :draw-1-bit-raster should be used for drawing stipples,

because a whole pixel needs to be drawn black for the on pixels, not just one bit

(which is only part of a pixel). Using :draw-1-bit-raster rather than bitblt is im-

portant in programs that run without modification on color screens.

� tv:dynamic-item-list-mixin Flavor

A noninstantiable mixin flavor, built on tv:abstract-dynamic-item-list-mixin used

as a building block to make instantiable versions listed later. This flavor provides

a specific means of getting the latest item list, by evaluating a Lisp form, and pro-

vides the :item-list-pointer instance variable.

In the operation of this flavor, the old result of evaluating the value of :item-list-

pointer is saved; if the new result of evaluating the value of :item-list-pointer is

not the same (compared with the zl:equal function), the item list is considered

changed and the menu is updated. :item-list-pointer is evaluated when the :choose

message is sent.

� tv:dynamic-momentary-menu Flavor

A momentary menu with the tv:dynamic-item-list-mixin and the tv:abstract-

dynamic-item-list-mixin.

� tv:dynamic-momentary-window-hacking-menu Flavor

A momentary menu with both the tv:dynamic-item-list-mixin and the tv:window-

hacking-mixin.

Page 1224

� tv:dynamic-multicolumn-mixin Flavor

A noninstantiable mixin flavor. It makes a menu have multiple "dynamic" columns.

Each column comes from a separate item list that is recomputed at appropriate

times. The instance variable tv:column-spec-list is a list of columns. Each column

list is in the form:

(heading item-list-form . options)�

Heading is a string to go at the top of the column, and options are menu item op-

tions for it (typically a character style specification). item-list-form is a form to be

evaluated (without side-effects) to get the item list for that column.

� tv:dynamic-pop-up-abort-on-deexpose-command-menu Flavor

A command menu with the tv:dynamic-pop-up-command-menu and tv:abort-on-

deexpose mixins.

� tv:dynamic-pop-up-command-menu Flavor

Specifies a command menu with the temporary-menu and dynamic item-list mixins.

It is mixed in to form the hardcopy menu flavor press:hardcopy-dynamic-pop-up-

command-menu-with-highlighting.

� tv:dynamic-pop-up-menu Flavor

A pop-up menu with the dynamic item-list mixin.

� dw:dynamic-window Resource

A resource of Dynamic Windows. The resource is created via tv:defwindow-

resource with the :initial-copies option set to 1 and the :reuseable-when option

set to :deactivated. (For more information on resources generally, see the section

"Resources".)

The following keyword options are available when allocating from or using the Dy-

namic Window resource:

:momentary-p Boolean option specifying whether the window provided

is momentary, that is, whether it is deactivated if the mouse cursor

is moved off the window. The default is nil.

:temporary-p Boolean option specifying whether the window provided

is temporary, that is, whether it locks the superior window until it

is deactivated. The default is the value of the :momentary-p option.�

:hysteresis If the :momentary-p option is t, specifies the distance,

in pixels, that the mouse cursor must be from the edge of the win-

dow before it is deactivated. The default value is 25.

Page 1225

Note that in order to use these keywords, you must also supply an optional posi-

tional argument for the window’s superior. In the following example, the superior

is tv:main-screen, which is also the default if no arguments are supplied.

Example:

(defun dw-resource ()

 (using-resource (my-dw dw:dynamic-window tv:main-screen

 :momentary-p t :hysteresis 15)

 (send my-dw :set-size 500 300)

 (send my-dw :expose)))�

� dw:dynamic-window Flavor

The basic Dynamic Window flavor. It provides output-history recording (of dis-

played presentations) as well as vertical and horizontal scrolling. Dynamic Win-

dows are created in the same manner as static windows, with the tv:make-window

function.

dw:dynamic-window is built on several component flavors, from which it inherits

a large number of init options. These include all init options (about 40) to the ba-

sic, non-Dynamic Window flavor, tv:window. Below we provide references to these

inherited options, but first discuss four that are specific to Dynamic Windows.

:end-of-page-mode Specifies what happens when queued output exceeds

the space available in the current viewport of the window. There

are four possibilities:

:default Uses the global default for Dynamic Windows set by

the Set Screen Options command or the dw:set-default-

end-of-page-mode function on which the command is

based.

:scroll Causes the window to scroll automatically to accommo-

date the output. The amount by which the window is

scrolled is set by the :scroll-factor init option to Dy-

namic Windows.

:truncateCauses scrolling to be the responsibility of the user,

who must press the SCROLL key to see more output.

:wrap Causes new output to appear at the top of the window,

rather than at the bottom as in the case of :scroll or

:truncate.�

:scroll-factor Specifies the amount by which a Dynamic Window is

scrolled when the value of its :end-of-page-mode init option is

:scroll. Possible values include an integer (number of lines), ratio

(fraction of the screen), or nil (use the global default set by the Set

Screen Options command or the function dw:set-default-end-of-

page-mode).

Page 1226

:mouse-blinker-character Specifies the shape of the mouse cursor

when it is over the window, for example, #\mouse:fat-circle. The

default is #\mouse:nw-arrow. For a full listing of all the possibili-

ties, see the section "Mouse-Blinker Characters".

:margin-components Specifies a list of the form ((component-1 [keys])

(component-2 [keys]) ... (component-n [keys])), where component-x

is one of a set of margin-component flavors and keys are zero or

more keywords or keyword-value pairs appropriate for the given fla-

vor. Note that the same margin-component flavor can appear more

than once in this list. For example, you can have more than one

scroll bar.

Available margin-component flavors include the following:

dw:margin-borders Provides a four-sided, black (normal

video) border of a specified thickness.

dw:margin-white-borders Provides a four-sided, white border of a

specified thickness.

dw:margin-whitespace Provides whitespace of a specified thick-

ness on a specified margin.

dw:margin-drop-shadow-borders Provides a three-pixel-wide

black border shadowed on its right and bottom margins by

an eight-pixel-wide gray border.

dw:margin-ragged-borders Provides a ragged (wavy)

border of a specified thickness.

dw:margin-label Provides a label on the upper or lower

margin. By default, the label string is created from the

name of the window flavor.

dw:margin-scroll-bar Provides the standard elevator scroll bar

on the specified margin.�

For more detailed information on these flavors, including allowable

keywords, see the respective dictionary entry for each.

The following example illustrates the use of margin-component fla-

vors. Note that the margin is built from the outside in.�

Page 1227

(defun dynamic-window-margin-example ()

 (let ((test (tv:make-window ’dw:dynamic-window

:edges-from :mouse

:margin-components

’((dw:margin-borders :thickness 1)

 (dw:margin-white-borders :thickness 3)

 (dw:margin-borders :thickness 10)

 (dw:margin-white-borders :thickness 8)

 (dw:margin-borders :thickness 3)

 (dw:margin-whitespace :margin :left :thickness 10)

 (dw:margin-scroll-bar)

 (dw:margin-whitespace :margin :bottom :thickness 7)

 (dw:margin-scroll-bar :margin :bottom)

 (dw:margin-whitespace :margin :left :thickness 10)

 (dw:margin-label :margin :bottom

 :style (:sans-serif :italic :normal))

 (dw:margin-whitespace :margin :top :thickness 10)

 (dw:margin-whitespace :margin :right :thickness 13))

:expose-p t)))

 (send test :set-label "Margin Test Window")))�

The remaining init options to dw:dynamic-window are those it shares with

tv:window. These are documented elsewhere. Below is a list of references and the

associated init options.

See the section "Creating a Window".

:blinker-p

:default-character-style

:save-bits

:superior

:activate-p

:expose-p�

See the section "Window Attributes for Character Output".

:more-p

:vsp

:reverse-video-p

:deexposed-typeout-action

:deexposed-typein-action

:right-margin-character-flag

:backspace-not-overprinting-flag

:cr-not-newline-flag

:tab-nchars�

See the section "Initializing Window Size and Position".

:left :inside-width

:x :inside-height

Page 1228

:top :inside-size

:y :edges

:position :character-width

:right :character-height

:bottom :integral-p

:width:edges-from

:height :minimum-height

:size :minimum-width�

See the section "Window Borders".

Window borders are comparable to margin components. The two are incompatible:

you cannot specify one of these flavors if you specify :margin-components.

:borders

:border-margin-width�

See the section "Window Labels".

Window labels are also comparable to margin components. The two are incompati-

ble: you cannot specify one of these flavors if you specify :margin-components.

:name

:label�

See the section "Flavors for Panes and Frames".

:io-buffer�

In addition to the large overlap in init options between static and Dynamic Win-

dows, virtually all of the window methods, messages, and functions documented for

static windows can also be used with Dynamic Windows. These are too numerous

to list individually as we did for the init options; refer to the following sections for

more information:

See the section "Window Graying".

See the section "Window Status".

See the section "Activities and Window Selection".

See the section "Creating a Window".

See the section "Character Output to Windows".

See the section "Graphic Output to Windows" (also see the section "Creating

Graphic Output").

See the section "Notifications and Progress Indicators".

See the section "Using TV Fonts".

See the section "Handling the Mouse".

See the section "Window Sizes and Positions".

Page 1229

See the section "Window Labels" (Only the :name method).

Finally, a number of methods intended exclusively for Dynamic Windows are avail-

able. These are included among both Basic Program Output Facilities and window

substrate facilities (see the section "Controlling Location and Other Aspects of

Output" and see the section "Window Substrate Facilities").

� cp:echo-command command-name arguments Function

Echoes a Command Processor command and its arguments to *standard-output*.

(The echoed command is presented "acceptably", that is, in such a manner that is

can subsequently be parsed by accept.) The echoed command is displayed in ital-

ics, so this is not generally useful. Instead, use the present function with type

’cp:command.

command-name The command name (symbol).

arguments A list of command arguments.�

For an overview of cp:echo-command and related facilities: See the section "Man-

aging Your Program Frame".

� dw:echo-presentation-blip stream blip &optional (start-bp (send stream :read-

location)) for-context-type Function

Echoes a presentation blip from the input buffer.

stream The input stream.

blip The presentation blip.

start-bp The position in the input buffer where the presentation blip begins.

for-context-type The input context on whose behalf the presentation

blip is echoed. This affects the printing of the blip. For example,

the Command Processor uses this option to ensure that echoed com-

mand names are preceded by colons when in the ’command-or-form

context.�

For an overview of dw:echo-presentation-blip and related facilities: See the sec-

tion "Presentation Input Blip Facilities".

� (flavor:method :edges tv:menu) (left-edge top-edge right-edge bottom-edge)

Init Option

Sets various position and size parameters. All the edge parameters are set relative

to the outside of the superior window.

� (flavor:method :edges tv:sheet) (left-edge top-edge right-edge bottom-edge)

Init Option

Page 1230

Specifies the x-coordinates of the left and right edges and the y-coordinates of the

top and bottom edges of the window.

� (flavor:method :edges tv:sheet) Method

Returns four values: the left, top, right, and bottom edges, in pixels, relative to

the superior window, respectively.

� (flavor:method :edges-from tv:menu) source Init Option

Specifies that the window gets its edge information from the source. If the source

is a string, the inside of the window is made large enough to display the string in

the default character style. If the source is a list: (left-edge top-edge right-edge bot-

tom-edge) it is the same as the :edges option. If the source is :mouse , the user is

asked to point to where the left-top and right-bottom corners should go. If the

source is a window, the window’s edges are copied.

� (flavor:method :edges-from tv:essential-window) source Init Option

Specifies that the window is to take its edges (position and size) from source,

which can be one of:

a string The inside-size of the window is made large enough to display the

string, in the default character style.

a list (left-edge top-edge right-edge bottom-edge) Those edges, relative to the

superior, are used, exactly as if you had used the :edges init option.

:mouse The user is asked to point the mouse to where the top-left and bot-

tom-right corners of the window should go. (This is what happens when you

use the [Create] command in the System menu, for example.)

a window That window’s edges are copied.�

� :editor-command &rest command-alist Option

Lets you specify your own input editor editing commands. Each element of com-

mand-alist is a cons whose car is a character and whose cdr is a symbol or a list.

If the cdr is a symbol, it is a function to be called with no arguments when the

user types the associated character. If the cdr is a list, the car of the list is a

function to be applied to the cdr of the list when the user types the associated

character. The function can examine the internal special variables that describe

the state of the input editor.

If :editor-command specifies a command that is invoked by the same character as

one of the standard input editor editing commands, the command specified by

:editor-command overrides the standard command.

Page 1231

� encode-universal-time seconds minutes hours date month year &optional timezone

Function

Given a time in decoded time format, returns the corresponding universal time

(plus or minus seconds since midnight, January 1, 1900 GMT).

seconds An integer between 0 and 59.

minutes An integer between 0 and 59.

hours An integer between 0 and 23.

date An integer between 1 and 31.

month An integer between 1 and 12.

year An integer indicating the year A.D. This can be shortened to

an integer in the range 0-99, in which case the year is as-

sumed equal to the integer modulo 100 and within 50 years of

the current year; for example, in 1986, 36 is assumed to be

1936 and 35 to be 2035.

timezone Hours west (postive) or east (negative) of GMT; it defaults to

the timezone set for the site (for more information: See the

section "Specifying a Time Zone for Your Site".) Any real num-

ber is allowed, but only numbers of the form n or n.5 can cor-

respond to actual timezones.�

Examples:

(encode-universal-time 00 00 5 1 9 1986 5) => 2734941600

�

(encode-universal-time 00 00 5 1 9 86 5) => 2734941600�

time:encode-universal-time seconds minutes hours day month year &optional time-

zone Function

Converts the decoded time into Universal Time format and returns the Universal

Time as an integer. If you do not specify timezone, it defaults to the current time

zone adjusted for daylight saving time; if you provide it explicitly, it is not adjust-

ed for daylight saving time. year can be absolute or relative to 1900 (that is, 84

and 1984 both work).

dw:erase-displayed-presentation displayed-presentation window &optional recursive

as-single-box (clear-inferiors t) Function

Erases the specified displayed-presentation from window and removes it from the

output history. Unless recursive is t, this causes a :delete-displayed-presentation

message to be sent to window. If displayed-presentation has no inferiors or if as-

single-box is t, the whole presentation is erased as a region. If clear-inferiors is t

or if as-single-box is true, the inferiors of the presentation are erased as well.

Page 1232

� *error-output* Variable

The value is a stream to which error messages should be sent. Normally, this is

the same as *standard-output*, but *standard-output* might be bound to a file

and *error-output* left going to the terminal or a separate file of error messages.

(with-open-stream (outstream "myfile" :direction :output)

 (let ((*standard-output* outstream)

 (*error-output* outstream)) ;redirects *error-output* to myfile.lisp

 (fun-likely-to-signal-an-error)) ;capture any error messages in file

 ;end of let restores *error-output*, etc.

 ... ;more forms

) ;end of with-open-file closes file�

� zl:error-output Variable

In your new programs, we recommend that you use the variable *error-output*

which is the Common Lisp equivalent of zl:error-output. See *error-output*.

� cp:execute-command command-name &rest command-arguments Function

Invokes a Command Processor command from within a program. See also cp:build-

command, which cp:execute-command makes use of.

command-name Symbol or string naming the command to invoke; if a

string, it must be in the command table to which cp:*command-

table* is currently bound.

command-arguments Positional and keyword arguments to the named com-

mand.

Examples:

(cp:execute-command "show file" "test-data.text")

�

(cp:execute-command ’si:com-load-system "unifier"

:condition :always :automatic-answer t)�

For an overview of cp:execute-command and related facilities, see the section

"Managing the Command Processor".

� (flavor:method :execute tv:menu) item Method

Extracts the value from a chosen item and returns it, or performs a side-effect, or

both. It decides what to return based on the item’s type. See the section "Types of

Menu Items".

In a program that uses command menus, the :any-tyi message can return a blip

containing the menu and an item. The program sends the :execute message to the

menu to execute the item. See the section "Command Menus".

Page 1233

:execute is sent by the system for other kinds of menus. For example, the :choose

message, which returns a value and not an item, uses the :execute message to re-

trieve the value from the chosen menu item.

� (flavor:method :expose tv:menu) Method

Causes a menu to be exposed, that is, displayed on the screen.

� (flavor:method :expose-p tv:essential-window) t-or-nil Init Option

If non-nil, the window is exposed after it is created. The default is to leave it de-

exposed. If the value of the option is not t, it is used as the first argument to the

:expose message (the turn-on-blinkers option). Note that :activate-p and :expose-p

are arguments in init-options which cannot be specified in the flavor’s :default-

init-plist.

� (flavor:method :expose-p tv:menu) t-or-nil Init Option

When set to t, the window is immediately exposed. Otherwise, it must be explicitly

exposed with an :expose message.

� (flavor:method :extra-width tv:choose-variable-values) arg Init Option

When :width is not specified, specifies the amount of extra space to leave after

the current value of each variable of the kind that displays its current value

(rather than a menu of all possible values). This extra space allows for changing

the value to something bigger. The extra space is specified as either a number of

characters or a character string. The default is ten characters. If :width is speci-

fied, then :extra-width is ignored.

� (flavor:method :fill-p tv:menu) t-or-nil Init Option

Specifies whether to use filled format or columnar format.

� (flavor:method :fill-p tv:menu) Method

Get the menu’s fill mode. t is returned from :fill-p if the menu displays in filled

form rather than columnar form. This message is a special case of the

:geometry:set-geometry messages.

� filling-output (&optional stream &key :fill-column (:fill-characters ’(#\Space)) :after-

line-break :after-line-break-initially-too :dont-snapshot-variables) &body body Function

Binds local environment such that character output is filled; that is, filling-output

makes sure that any output done within its body does not split "words" across

lines.

Page 1234

"Words" are separated by spaces. When a line is broken to keep from wrapping

past the end of a line, the line break is made at a space.

stream The output stream; the default is *standard-output*.

� :fill-column Specifiesthelengthoffilledlines. :fill-columnisthe

cursorpos of the right end of the line. It can be specified in one of

the following ways:

integer If the output stream is one whose device units are smaller

than single characters (pixels, for example) then if the in-

teger is less than ten, it is interpreted as a number of

character spaces; otherwise, if the number is greater than

ten, it is interpreted as a number of device units. Note

that the requirement that this number be an integer pre-

cludes the specification of spacing as a fraction of a char-

acter size: use the list method below to get fractional

character spacing. (Ten is the number of pixels in a de-

vice character.)

string The spacing is the width of the string.

function The spacing is the amount of space the function would

consume when called on the stream.

list The list is of the form (number unit), where unit is one of

:pixel or :character. ’(3 :character) is different from (* 3

(send stream char-width)) or just 3, in that the charac-

ter width of whatever stream is really used to do the for-

matting is correctly used. ’(4 :pixel) is different from just

4 in that it is not subject to the special interpretation of

small numbers (< 10) normally applied.

If :fill-column is unspecified, line length is determined as follows:

If the underlying stream supports the :visible-cursorpos-limits

message, as do all Dynamic Windows, the right-hand cursorpos limit

is used. Otherwise, if the underlying stream supports the :inside-

size message, the inside size is used. If neither of the two preced-

ing messages are supported, simple character counting is used, and

lines are filled to 95 characters in width.

:fill-characters Specifies a character or characters at which to break

lines.

(progn (terpri)

 (filling-output (t :fill-column ’(30. :character)

 :fill-characters ’(#\-))

 (format t

"this-is-a-test-of-the-emergency-broadcast-system")))

this-is-a-test-of-the-

emergency-broadcast-system

Page 1235

:after-line-break Specifies a string to be sent to stream after line

breaks; the string appears at the beginning of each new line.

:after-line-break-initially-too Booleanoptionspecifyingwhether the

:after-line-break text is to be written to stream before doing body,

that is, at the beginning of the first line; the default is nil.

� :fill-on-spaces Obsolete. Use :fill-characters instead.�

Example:

(defun filling-test ()

 (fresh-line)

 (filling-output (*standard-output*

 :fill-column 420

 :after-line-break "Repeat: "

 :after-line-break-initially-too t)

 (loop for i from 1 to 100

 do

 (format t "Testing ~D " i))))�

For an overview of filling-output and related facilities, see the section "Controlling

Line Output".

� cp:find-command-table name &key (if-does-not-exist :error) Function

Returns the Command Processor command-table object specified by the command-

table name.

name The name (symbol or string) of the command table.�

� :if-does-not-exist Specifies what happens if the named command table is

not found. Three values are possible:

nil The function returns nil.

:error An error is signalled; this is the default.

:create A new command table named name is created and re-

turned.�

If name is already a command table object, it is returned. So this function is safe

to use whenever you have a command table arglist.

For an overview of cp:find-command-table and related facilities: See the section

"Managing the Command Processor".

� dw:find-graph-node redisplay-helper-stream id &key (key #’identity) (test #’eql)

Function

Page 1236

Searches for a node object given its symbol and the output stream on which it is

to be displayed. The function returns the object if it finds it, nil otherwise.

Node objects are created with formatting-graph-node. See the function

formatting-graph-node. Also, see that facility for an example.

redisplay-helper-stream The output stream for the node. This should be the

same stream in use by formatting-graph.

id A unique identifier for the node. See the function formatting-

graph-node.�

:key Specifiesafunctionappliedtoanodeobjectbeforecomparisonwith

id. The default is the identity function.�

:test Specifies the functionused tocomparenode objectswith theone

specified by id. The default is eql.�

For an overview of dw:find-graph-node and related facilities, see the section "Pre-

senting Formatted Output".

� dw:find-program-window program-name &rest make-window-options &key (create-p

t) (activate-p t) (selected-ok t) reuse-test console superior program-state-variables &al-

low-other-keys Function

Returns the window (frame) of a program (created via dw:define-program-

framework). If no such window is found and :create-p is nil, then returns nil.

program-name The name of the program.�

� :create-p Specifies whether to create an instance of the program.

Possible values are

t, the default: create an instance if one does not exist.

nil: do not create an instance if one does not exist.

:force: create an instance whether or not one exists.�

:activate-p Specifies whether to activate an instance of the pro-

gram window, if it is created.

:selected-ok Boolean option specifying whether to return the pro-

gram window if it is the currently selected activity; the

default is t. �

:reuse-test Specifies a function to return a non-nil value if an ex-

isting program window of program-name can be reused.

The function takes two arguments, the window found and

the program name. Typically, a window would be reusable

if deexposed or deactivated.

Page 1237

:console Specifies the console on which the program window is to

be sought. dw:find-program-window returns either a pre-

viously selected window of the type program-name, or, if

there is none such and :selected-ok is t, the currently se-

lected window of type program-name.

:superior Specifies whether to make superior be the superior of the

program window, if it is created.

:program-state-variables Specifies a list of initializations for the

program’s state variables. The list is of the form ((<var-

1> <val-1>) (<var-2> <val-2>) ... (<var-n> <val-n>)).

If an instance of the program is created, its state vari-

ables are initialized according to this specification. If an

instance already exists, its state variables are reset ac-

cording to the specification.�

Other keywords permitted are programmer-defined and system init options for the

frame. If an instance of the program is created, it is initialized according to the

keyword specifications.

For an overview of dw:find-program-window and related facilities, see the section

"Defining Your Own Program Framework".

� dw:find-and-select-program-window name &rest options Function

Returns the window (frame) of a program (created via dw:define-program-

framework) and selects that window. See the function dw:find-program-window.

� (flavor:method :finish-typeout si:interactive-stream) &optional spacing erase?

Method

Completes typeout to the window and causes the input buffer to be refreshed. In

the case of :temporary typeout, the erase? parameter is used to indicate whether

or not the typeout overwrote part of the current input by wrapping around the

screen. It is the responsibility of the program doing the typeout to keep track of

how much is output.

spacing can be one of the following keywords:

Keyword Action

:none No spacing before typeout.

:fresh-line Typeout begins at the beginning of a line.

:blank-line A blank line precedes typeout.�

If spacing is not specified, a default that depends on the type argument to the

:start-typeout method is computed.

Page 1238

� tv:flashy-scrolling-mixin Flavor

Provides slow scrolling by moving the mouse through margin regions.

� (flavor:method :flashy-scrolling-region tv:flashy-scrolling-mixin) scrolling-region

Init Option

Specifies the area in which the mouse maintains its "flashy-scrolling" shape.

scrolling-region is a list of two lists. The first list specifies the scrolling region for

the top of the window, and the second for the bottom of the window.

Each list contains three numbers. The first number is the height, in pixels, of the

scrolling region. The other two numbers are percentages of the window width

specifying the width of the scrolling region. The defaults are 50, 0.40, and 0.60.

� (flavor:method :follow-p tv:blinker) t-or-nil Init Option

Sets whether the blinker follows the cursor; if this option is non-nil, it does. By

default, this is nil, and so the blinker’s position gets set explicitly.

� zl:font-baseline font Function

The baseline of this font; a nonnegative integer.

� zl:font-blinker-height font Function

The blinker height of the font.

� zl:font-blinker-width font Function

The blinker width of the font.

� zl:font-char-height font Function

The character height of the font; a nonnegative integer.

� zl:font-char-width font Function

The character width of the characters of the font; a nonnegative integer. If the

zl:font-char-width-table of this font is non-nil, then this element is ignored except

that it is used to compute the distance between horizontal tab stops; it would typi-

cally be the width of a space.

� zl:font-char-width-table font Function

Page 1239

If nil all the characters of the font have the same width, and that width is given

by the zl:font-char-width of the font. Otherwise, this is an array of nonnegative

integers, one for each logical character of the font, giving the character width for

that character.

� zl:font-chars-exist-table font Function

nil if all characters exist in the font, or an sys:art-boolean array with one ele-

ment for each logical character of the file. The element is t if the character exists

and nil if the character does not exist.

� zl:font-indexing-table font Function

If nil, all characters are font-raster-width wide. Otherwise, this is the font index-

ing table of the font, an array with one element for each logical character plus

one more at the end (to show where the last character stops) containing x-

positions in the font raster.

� zl:font-left-kern-table font Function

If nil, all characters of the font have zero left kern. Otherwise, this is an array of

integers, one for each logical character of the font, giving the left kern for that

character.

� zl:font-name font Function

The name of the font. This is a symbol whose binding is this font, and which

serves to name the font. The print-name of this symbol appears in the printed rep-

resentation of the font.

� zl:font-raster-height font Function

The raster height of the font; a positive integer.

� zl:font-raster-width font Function

The raster width of the font; a positive integer.

� (flavor:method :force-rescan si:interactive-stream) Method

Can be sent by a read function that uses the input editor to force a rescan of the

current input. Before this message is sent, usually some global state has changed

and the contents of the input buffer are interpreted differently.

� format-cell object printer &key (stream *standard-output*) align-x align-y Function

Page 1240

Controls the printing of a table element within a formatting-table or formatting-

item-list macro (see formatting-table for an example).

object The table element.

printer The function used to display each element. The function is passed

two arguments, the object and the output stream. You can have the

function write to the stream any information you want included in

the table for that element. Typical functions to use are princ,

prin1, and write-string.�

� :stream Specifies the output stream; the default is *standard-output*.

:align-x Specifies how elements of a column should be aligned. The default

:left, causes the elements to be flush-left in the column. The other

possible values are :right (flush-right) and :center (centered).

:align-y Specifies how elements of a column should be aligned. The default

:bottom, causes the bottoms of the elements to be aligned at the

bottom of the cell. The other possible values are :top, and :center.

For an example of the use of format-cell: See the function formatting-table.

� format-graph-from-root root-object object-printer inferior-producer &key (stream

standard-output) (dont-draw-duplicates nil) (key #’identity) (test #’eql) (root-is-

sequence nil) (direction :after) (default-drawing-mode :line) (default-drawing-options

nil) (cutoff-depth nil) (border ’(:shape :rectangle)) (orientation dw:*default-graph-

orientation*) (balance-evenly dw:*default-graph-balance-evenly*) (row-spacing

dw:*default-graph-row-spacing*) (within-row-spacing dw:*default-graph-within-

row-spacing*) (column-spacing dw:*default-graph-column-spacing*) (within-

column-spacing dw:*default-graph-within-column-spacing*) (branch-point

dw:*default-graph-branch-point*) (allow-overlap

dw:*default-graph-allow-overlap*) Function

Constructs and displays a tree graph.

root-object

The root element of the set, from which the tree can be derived.

object-printer A function used to display each tree node. The function

is passed the object associated with that node and the stream on

which to do output.

inferior-producer A function that knows how to extract the inferiors

from a node object. It is passed one argument, the node in question.�

� :stream Specifies the output stream; the default is *standard-output*.

:dont-draw-duplicates Booleanoptionspecifyingwhetheritemsthataredupli-

cated in the tree are drawn only once (with all the reference lines

drawn to the same object) or multiple times (once for each occur-

Page 1241

rence in the tree); the default is nil. (See the :test and :key op-

tions.)

:key Specifiesthefunctionusedtoextractthenodeobjectattributeused

for duplicate comparison. The default is identity, that is, the object

itself.

:test Specifiesthetestfunctionusedforduplicatedetection. Thedefault

is eql.

:root-is-sequence Specifiesthatthevaluesuppliedforroot-objectisase-

quence. Each element of the sequence becomes a separate root.

(The resulting graphs might not themselves be separate if the

:dont-draw-duplicates option is t.)

:direction

Specifies whether new nodes should be drawn above, below, left, or

right of the current node. Possible values are :after and :before;

the default is :after.

For :orientation :horizontal, :after means to the right, :before to

the left. For :orientation :vertical, :after means below, :before

means above.

:default-drawing-mode Specifiesthedrawingmodeused tocon-

nect nodes of the tree. The default is :line, which connects the

nodes with solid lines. Other modes are :dashed-line, :arrow,

:dashed-arrow, :reverse-arrow, and :reverse-dashed-arrow.�

:default-drawing-options Specifies one or more drawing function

options that may override the default options. These are keyword

options such as :thickness, :gray-level, and the like. The drawing

options affect the drawing of the borders as well as the drawing of

the connection lines.

See the section "Drawing Function Options".

:cutoff-depth Specifieshowmanylevelsofeachbranch ofthetree

should be explored. The default is nil, which specifies no cutoff.�

:border Specifies the shape and thickness, in pixels, of the border drawn

around each node. The default is (:shape :rectangle :thickness 1).

Other possible shapes are :circle, :oval, and :diamond. nil means

no border.

Abbreviations:

Full Form Abbreviated Form

:border (:shape xxxx) :border xxxx

:border (:thickness n) :border n�

Page 1242

:orientation Specifies:verticalor:horizontal orientationforthe

"parent node to child node" direction of the graph display. The de-

fault dw:*default-graph-orientation* is initially set to :vertical.�

:balance-evenly Specifies whether the subtrees of the tree should all be

the same size (width or height, depending on :orientation), the size

of the largest subtree. The default, dw:*default-graph-balance-

evenly*, is initially set to nil.

:row-spacing For:verticalorientation,specifiesthe spacing,inpix-

els, between rows of tree nodes; the default, dw:*default-graph-

row-spacing*, is initially set to 40.

:within-row-spacing For :vertical orientation, specifies the spacing, in pix-

els, between columns of tree nodes; the default, dw:*default-graph-

within-row-spacing*, is initially set to 20.

:column-spacing For:horizontalorientation,specifiesthe spacing,in

pixels, between columns of tree nodes; the default, dw:*default-

graph-column-spacing* is initially set to 30.

:within-column-spacing For:horizontalorientation, specifiesthe

spacing, in pixels, between rows of tree nodes; the default,

dw:*default-graph-within-column-spacing*, is initially set to 10.

:branch-point Specifies whether the lines connecting nodes should

branch at the parent node (if set to :at-parent) or whether they

should make a bend somewhere in the space between generations of

nodes (if set to :between-generations). The default, dw:*default-

graph-branch-point*, is initially set to :between-generations.

Branching between generations sometimes gives less overlap when

not all links are to first generation children or when not all nodes

are the same size.

Example:

(defun branch-point-test (&optional

 (branch-point :between-generations))

 (fresh-line)

 (format-graph-from-root ’((a bbbbbbbb) (ccc) (d e f))

 #’prin1

 #’(lambda

 (node) (and (consp node) node))

 :orientation :horizontal

 :branch-point branch-point))

:allow-overlap Specifies whether or not subtrees of different superior

nodes can overlap. dw:*default-graph-allow-overlap*, the default

that is intitally t, allows overlap. Use :allow-overlap nil when you

do not need to minimize the amount of space consumed by the

graph.

Page 1243

To see the effect of this keyword, evaluate the following form, then

evaluate the second form with :allow-overlap set to t and then nil.

(defun component-flavors (flavor-name)

 (let* ((fl (flavor:find-flavor flavor-name)))

 (remove flavor-name

 (cond

 ((flavor::flavor-components-composed fl)

 (flavor:flavor-all-components fl))

 (t (flavor::compose-flavor-components

 flavor-name))))))

(format-graph-from-root ’tv:minimum-window

 #’(lambda (thing stream)

(present thing ’flavor:flavor

 :stream stream))

 #’cl-user::component-flavors

 :row-spacing 10

 :within-row-spacing 10

 :allow-overlap t)

By scrolling horizontally, you will see that in the first case the sub-

tree for tv:essential-window overlaps with subtrees of tv:essential-

activate.

Examples:

(defun format-graph-from-root-example-1 ()

 (fresh-line)

 ;; you wouldn’t actually bother to write this let, but it makes

 ;; for a clearer example.

 (let ((root (pkg-find-package "hardcopy"))

(print-function #’princ)

(inferior-producer #’si:pkg-used-by-list))

 (format-graph-from-root root

 print-function

 inferior-producer)))

�

;;; Try executing the following Show Flavor Tree command first

;;; first on simple flavors like net:object and tv:minimum-window.

;;; More complex flavors let you exercise the horizontal scrolling

;;; capability of Dynamic Windows.

�

 (defun flavor-components (flavor-name)

 (flavor::flavor-local-components

(flavor:find-flavor flavor-name)))

�

 (defun present-flavor (flavor-name

 &optional (stream *standard-output*))

 (present flavor-name ’flavor:flavor-name :stream stream))

Page 1244

�

 (cp:define-command (com-show-flavor-tree :command-table "Global")

((root-flavor-name ’flavor:flavor-name))

 (fresh-line)

 (format-graph-from-root root-flavor-name

 #’present-flavor #’flavor-components

 :dont-draw-duplicates t :orientation :horizontal))�

For an overview of format-graph-from-root and related facilities, see the section

"Presenting Formatted Output".

� format-item-list list &key (stream *standard-output*) printer presentation-type (key

#’identity) (fresh-line t) (return-at-end t) (order-columnwise t) (optimal-number-of-

rows si:*optimal-number-of-rows*) (additional-indentation 2) (equalize-column-

widths nil) max-width max-height Function

Displays the elements of a list in a tabular format.

list The list of items to display.�

:stream Specifies the output stream; the default is *standard-output*.

:printer Specifiesthefunctionusedtodisplaytheitems;thedefaultprinter

is princ. The function is passed two arguments, an item and the

output stream.

This option and the :presentation-type option are mutually exclu-

sive.

:presentation-type Specifies thepresentation type usedtodisplay the

items. Items are output via calls to present as this type. Items out-

put as presentations can be used as mouse-sensitive input in the

proper input context.

This option and the :printer option are mutually exclusive.

� :key A function of one argument that will extract from an element the

part to be printed in place of the whole element. Example:

(format-item-list sys:all-processes :key #’si:process-priority)

� :fresh-line Booleanoptionspecifyingwhetherafresh-lineopera-

tion should be performed on the output stream before the table is

displayed; the default is t.

:return-at-end Booleanoptionspecifyingwhetheranewlineshouldbe

printed on the output stream when the table display is completed;

the default is t.

:order-columnwise Booleanoptionspecifyingwhethertableitemsareor-

dered as a series of columns, the default, or rows.

Page 1245

Column-wise ordering: Row-wise ordering:

1 4 7 1 2 3

�

2 5 8 4 5 6

�

3 6 9 7 8 9�

:optimal-number-of-rows Specifiesthenumberofrowsintheta-

ble. If the number of rows specified is too small or too large to ac-

commodate the list of items supplied, the appropriate number of

rows closest to that specified is used.

:additional-indentation Specifiesthenumberofcharactersby

which the left margin of the table is indented; the default is 2.

:equalize-column-widths Booleanoptionspecifyingwhetherall

columns have the same width (that of the widest column); the de-

fault is nil.

:max-width Specifiesthemaximumwidth,inpixels,ofthetable

display.

:max-height Specifiesthemaximumheight,inpixels,ofthetable

display.

For an overview of format-item-list and related facilities, see the section "Format-

ting Tables".

� dw:format-output-macro-continuation (&key :name (:warn-p t) :dont-snapshot-

variables) var-list &body body Function

Performs variable snapshotting. Use this macro in place of zl:named-lambda in

defining macros that require snapshotting.

(defmacro my-formatting-macro ((&optional (stream ’*standard-output*)

&key dont-snapshot-variables)

 &body body)

 (dw:format-output-macro-default-stream stream)

 ‘(my-formatting-macro-helper-function

 ,stream

 (dw:format-output-macro-continuation (:name my-formatting-macro

 :dont-snapshot-variables

 dont-snapshot-variables)

 (,stream)

 . ,body)))

�

(defun my-formatting-macro-helper-function (continuation xstream)

 (funcall continuation xstream))�

Page 1246

� dw:format-output-macro-default-stream var Function

Defaults t or nil to *standard-output*; for use by output macros. Example:

(defmacro my-formatting-macro ((&optional (stream ’*standard-output*))

 &body body)

 (dw:format-output-macro-default-stream stream)

 ‘(my-formatting-macro-helper-function

 ,stream

 (dw:named-continuation my-formatting-macro (,stream) . ,body)))

�

(defun my-formatting-macro-helper-function (continuation xstream)

 (funcall continuation xstream))

� format-sequence-as-table-rows sequence printer &rest options &key (stream

standard-output) &allow-other-keys Function

Displays the elements in a sequence as a series of table rows.

sequence The sequence to be displayed. Each element of the sequence be-

comes one row in the resulting table.

printer The function used to display each element. The function is passed

two arguments, an element of the sequence and an output stream.

You can have the function write to the stream any information you

want included in the table row for that item within appropriate

formatting-cell forms.

options These are the same options as those of formatting-table, which see.

�

Note that each element becomes a row of cells, not a single cell. Use formatting-

item-list if you want a single cell.

:stream Specifies the output stream; the default is *standard-output*.

(defun format-sequence-as-table-rows-test ()

 (fresh-line)

 (format-sequence-as-table-rows

 sys:all-processes

 #’(lambda (process stream)

(formatting-cell (stream)

 (present process ’si:process :stream

 stream))

(format-cell (si:process-whostate process)

 #’princ

 :stream stream))))

Additional keyword options available for this function are the same as those

to formatting-table.�

Page 1247

For an overview of format-sequence-as-table-rows and related facilities, see the

section "Formatting Tables".

� format-textual-list sequence function &key (separator ",") finally if-two filled after-

line-break conjunction (stream *standard-output*) Function

Outputs a sequence of items as a textual list; for example, "1 2 3 4" becomes "1, 2,

3, and 4":

(defun simple-list-formatter ()

 (fresh-line)

 (format-textual-list ’(1 2 3 4) #’princ :conjunction "and"))�

sequence The sequence to output.

function The function used to print sequence elements. This should be a

function of two arguments: the object to print and the stream to

send it to.�

:separator Specifiesthecharacterstousetoseparateelementsof

a textual list. The default is ", " (comma followed by a space).

:finally Specifiestheseparatortobeusedbetweenthenext-to-lastandlast

elements of the list. The default is nil, meaning use the regular

separator (specified by the :separator option). A typical value is "

and ".

:if-two Specifiestheseparatortousewhenthereareonlytwoelementsin

the list. A typical value is " and ".

:filled Specifies whether the list should be "filled"; the default is nil.

A filled list is one containing Newline characters at appropriate

points to prevent wrapping of output from right margin to left.

Thus, specifying :filled t for a long list results in two or more

separate lines of output each of a length less than the width of

the output window rather than one long, wrapped line. Line

breaks come between list elements, not within.

Another value permitted for this option is :before. This is like t,

except that in the case where a line break occurs at a :separator,

the break is made before the separator rather than after. �

:after-line-break In:filledtmode,specifiesthestringtoinsertatthe

beginning of each new line. This is useful for specifying leading in-

dentation, etc. (See the :filled option.)

:conjunction Specifiesastringtouseinthepositionbetweenthe

last two elements. Typical values are "and" and "or".

This option is similar to the :finally option, but does not affect the

separator between the last two elements, unless only two elements

Page 1248

occur. That is, the :conjunction option takes care of the two-

element case; the :if-two option is not necessary if you use this op-

tion.

:stream Specifies the output stream; the default is *standard-output*.

For an overview of format-textual-list and related facilities, see the section "For-

matting Textual Lists". Example:

(format-textual-list sys:area-list #’prin1 :filled t :after-line-break " ")

� formatting-cell (&optional stream &key align-x align-y dont-snapshot-variables)

&body body Function

Binds local environment to control the printing of a table element within a

formatting-table or formatting-item-list macro (see the latter facilities for ex-

amples).

stream The output stream; the default is *standard-output*.�

� :align-x Specifies how elements of a column should be aligned. The default

:left, causes the elements to be flush-left in the column. The other

possible values are :right (flush-right) and :center (centered).

� :align-y Specifies how elements of a column should be aligned. The default

:bottom, causes the bottoms of the elements to be aligned at the

bottom of the cell. The other possible values are :top, and :center.

� :dont-snapshot-variables Specifies whether the free variables with-

in the output macro should be snapshotted. The default of this op-

tion, nil, specifies that the free variables should be snapshotted. See

the section "Snapshotting Variables".

For an overview of formatting-cell and related facilities, see the section "Format-

ting Tables".

� formatting-column (&optional stream &rest options) &body body Function

Controls column layout within a formatting-table macro (see the latter facility for

examples).

stream Specifies the output stream; the default is *standard-output*.

options :dont-snapshot-variables is the only option available.�

� :dont-snapshot-variables Specifies whether the free variables with-

in the output macro should be snapshotted. The default of this op-

tion, nil, specifies that the free variables should be snapshotted. See

the section "Snapshotting Variables".

Page 1249

For an overview of formatting-column and related facilities, see the section "For-

matting Tables".

� formatting-column-headings (&optional stream &rest options) &body forms

Function

Controls the display of column headings within a formatting-table macro. If any

form in forms is just a string, it is treated as

(formatting-cell (stream)

(write-string (string)

stream))

Example:

(defun table-with-column-headings

(&optional (column-one-label "Number"))

 (fresh-line)

 (formatting-table ()

 (formatting-column-headings ()

 (formatting-cell () (write-string column-one-label))

 (formatting-cell () "Square"))

 (loop for i from 1 to 10

 as square = (* i i)

 do

 (formatting-row ()

 (formatting-cell ()

 (princ i))

 (formatting-cell ()

 (princ square))))))�

stream Specifies the output stream; the default is *standard-output*.

options The following option is available:�

:underline-p Booleanoptionspecifyingwhethercol-

umn headings are underlined; the default is nil.

Note that it is an error to have more than one formatting-column-headings form

within a formatting-table form. If you need two rows to display a column heading

use a form like the following:

(defun foo ()

 (fresh-line)

 (formatting-table ()

 (formatting-column-headings () "Parsley" "Sage" "Rose-

mary" "Thyme")))

For an overview of formatting-column-headings and related facilities, see the sec-

tion "Formatting Tables".

Page 1250

� formatting-graph (&optional stream &key (orientation dw:*default-graph-

orientation*) (inverted-center dw:*default-graph-inverted-center*) (balance-evenly

dw:*default-graph-balance-evenly*) (row-spacing dw:*default-graph-row-spacing*)

(within-row-spacing dw:*default-graph-within-row-spacing*) (column-spacing

dw:*default-graph-column-spacing*) (within-column-spacing dw:*default-graph-

within-column-spacing*) (branch-point dw:*default-graph-branch-point*) (allow-

overlap dw:*default-graph-allow-overlap*) (default-drawing-mode :line) default-

drawing-options dont-snapshot-variables) &body body Function

Binds the local environment to output a graph connecting node objects generated

in the body of the macro. The node objects are created by the macro formatting-

graph-node.

stream The output stream; the default is *standard-output*.

� :orientation Specifies:verticalor:horizontal orientationforthe

"parent node to child node" direction of the graph display. The de-

fault dw:*default-graph-orientation* is initially set to :vertical.�

:inverted-center Specifies whether the lines connecting nodes are to di-

verge at the parent node (when set to nil) or at the first child node

(when set to t). The default, dw:*default-graph-inverted-center* is

initially set to nil.

:balance-evenly Specifies whether the subtrees of the tree should all be

the same size (width or height, depending on :orientation), the size

of the largest subtree. The default, dw:*default-graph-balance-

evenly*, is initially set to nil.

:row-spacing For:verticalorientation,specifiesthe spacing,inpix-

els, between rows of tree nodes; the default, dw:*default-graph-

row-spacing*, is initially set to 40.

:within-row-spacing For :vertical orientation, specifies the spacing, in pix-

els, between columns of tree nodes; the default, dw:*default-graph-

within-row-spacing*, is initially set to 20.

:column-spacing For:horizontalorientation,specifiesthe spacing,in

pixels, between columns of tree nodes; the default, dw:*default-

graph-column-spacing* is initially set to 30.

:within-column-spacing For:horizontalorientation, specifiesthe

spacing, in pixels, between rows of tree nodes; the default,

dw:*default-graph-within-column-spacing*, is initially set to 10.

:branch-point Specifies whether the lines connecting nodes should

branch at the parent node (if set to :at-parent) or whether they

should make a bend somewhere in the space between generations of

nodes (if set to :between-generations). The default, dw:*default-

graph-branch-point*, is initially set to :between-generations.

Page 1251

Branching between generations sometimes gives less overlap when

not all links are to first generation children or when not all nodes

are the same size.

Example:

(defun branch-point-test (&optional

 (branch-point :between-generations))

 (fresh-line)

 (format-graph-from-root ’((a bbbbbbbb) (ccc) (d e f))

 #’prin1

 #’(lambda

 (node) (and (consp node) node))

 :orientation :horizontal

 :branch-point branch-point))

:allow-overlap Specifies whether or not subtrees of different superior

nodes can overlap. dw:*default-graph-allow-overlap*, the default

that is intitally t, allows overlap. Use :allow-overlap nil when you

do not need to minimize the amount of space consumed by the

graph.

To see the effect of this keyword, evaluate the following form, then

evaluate the second form with :allow-overlap set to t and then nil.

(defun component-flavors (flavor-name)

 (let* ((fl (flavor:find-flavor flavor-name)))

 (remove flavor-name

 (cond

 ((flavor::flavor-components-composed fl)

 (flavor:flavor-all-components fl))

 (t (flavor::compose-flavor-components

 flavor-name))))))

(format-graph-from-root ’tv:minimum-window

 #’(lambda (thing stream)

(present thing ’flavor:flavor

 :stream stream))

 #’cl-user::component-flavors

 :row-spacing 10

 :within-row-spacing 10

 :allow-overlap t)

By scrolling horizontally, you will see that in the first case the sub-

tree for tv:essential-window overlaps with subtrees of tv:essential-

activate.

:default-drawing-mode Specifiesthedrawingmodeused tocon-

nect nodes of the tree. The default is :line, which connects the

nodes with solid lines. Other modes are :dashed-line, :arrow,

:dashed-arrow, :reverse-arrow, and :reverse-dashed-arrow.�

Page 1252

:default-drawing-options Specifies one or more drawing function

options that may override the default options. These are keyword

options such as :thickness, :gray-level, and the like. The drawing

options affect the drawing of the borders as well as the drawing of

the connection lines.

See the section "Drawing Function Options".

:dont-snapshot-variables Specifies whether the free variables with-

in the output macro should be snapshotted. The default of this op-

tion, nil, specifies that the free variables should be snapshotted. See

the section "Snapshotting Variables".

Note: you must supply a form to create borders when you use formatting-graph,

since you do not get them automatically as you would with format-graph-from-

root.

Example:

(defun simple-graph (stream)

 (fresh-line stream)

 (formatting-graph (stream :orientation :horizontal)

 (let ((node-a (formatting-graph-node (stream)

 (surrounding-output-with-border

 (stream :shape :rectangle :thickness 3)

 (princ ’a stream)))))

 (formatting-graph-node (stream :connections ‘(:right ,node-a)

 :drawing-mode :dashed-line)

(surrounding-output-with-border

 (stream :shape :rectangle :thickness 3)

 (princ ’b stream))))))

�

If you want to try this example, compile it first. For a more complex example, see

the function formatting-graph-node.

For an overview of formatting-graph and related facilities, see the section "Pre-

senting Formatted Output".

� formatting-graph-node (&optional stream &key id connections (drawing-mode t))

&body body Function

Binds local environment to create node objects for use by the formatting-graph

macro. For an example, see the dictionary entry for the latter facility.

stream The output stream; the default is *standard-output*.�

� :id Specifiesauniqueidentifierforthenode. Anode identifierisused

as an argument to dw:find-graph-node, see the function dw:find-

graph-node.

Page 1253

:connections Specifiestheconnectionsbetweenthisnode andoneor

more other nodes. The specification is a list in the form ((key node-

object-1) (key node-object-2) ... (key node-object-n)), where key is

one of :left, :right, :above, or :below; or one of :before or :after. If

the orientation of the graph is vertical, :before is equivalent to

:above, if the orientation is horizontal, :before is equivalent to

:left. Analogously, :after is equivalent to :below (vertical) or :right

(horizontal).�

:drawing-mode Specifiesthedrawingmodeusedtoconnect thisnode

with other nodes of the tree. This specification locally overrides the

:default-drawing-mode specified by formatting-graph. Possible

modes are :line, :dashed-line, :arrow, :dashed-arrow, :reverse-

arrow, and :reverse-dashed-arrow.

:drawing-options Specifies any drawing options that are to override the

default drawing options. The drawing options are :thickness, :color,

:gray-level, and the like. If :drawing-options is nil, the default

drawing options are used. See the function formatting-graph. See

the function format-graph-from-root. See the section "Drawing

Function Options".

Example:

Page 1254

(defun graph-1 (list unique-id-p)

 (let ((stream *standard-output*))

 (fresh-line stream)

 (formatting-graph (stream)

 (labels ((do-one (contents &rest connections)

 (let ((node nil))

 (when unique-id-p

 (let ((already-there

 (dw:find-graph-node stream contents)))

 (when already-there

 (dw:connect-graph-nodes

 stream already-there connections)

 (setq node already-there))))

 (unless node

 (setq node (formatting-graph-node

 (stream

 :id contents

 :connections connections)

 (surrounding-output-with-border

 (stream)

 (prin1 contents stream)))))

 (when (consp contents)

 (dolist (sublist contents)

 (do-one sublist :after node))))))

(do-one list)))))

�

(graph-1 ’(a (b c) c) nil)

(graph-1 ’(a (b c) c) t)

(graph-1 ’(#1=(x y z) (w #1#) y) nil)

(graph-1 ’(#1=(x y z) (w #1#) y) t)�

For an overview of formatting-graph-node and related facilities, see the section

"Presenting Formatted Output".

� formatting-item-list (&optional stream &key inter-row-spacing inter-column-spacing

row-wise output-row-wise n-rows n-columns inside-width inside-height max-width

max-height) &body body Function

Binds local environment to output a list of items created in the body of the macro

as a table.

Example:

Page 1255

(defun formatting-list-example ()

 (fresh-line)

 (formatting-item-list (t :n-columns 3)

 (loop for (p) in si:active-processes

 do

 (when p

(formatting-cell ()

 (write-string (si:process-name p)))))))�

stream The output stream; the default *standard-output*.�

:inter-row-spacing Specifiesthenumberofpixelsbetweenrows;thede-

fault is 0.

:inter-column-spacing Determinestheamountofspace betweencolumnsof

the table; the default is the width of two spaces. :inter-column-

spacing can be specified in one of the following ways:

integer If the output stream is one whose device units are smaller

than single characters (pixels, for example) then if the in-

teger is less than ten, it is interpreted as a number of

character spaces; otherwise, if the number is greater than

ten, it is interpreted as a number of device units. Note

that the requirement that this number be an integer pre-

cludes the specification of spacing as a fraction of a char-

acter size: use the list method below to get fractional

character spacing. (Ten is the number of pixels in a de-

vice character.)

string The spacing is the width of the string.

function The spacing is the amount of space the function would

consume when called on the stream.

list The list is of the form (number unit), where unit is one of

:pixel or :character. ’(3 :character) is different from (* 3

(send stream char-width)) or just 3, in that the charac-

ter width of whatever stream is really used to do the for-

matting is correctly used. ’(4 :pixel) is different from just

4 in that it is not subject to the special interpretation of

small numbers (< 10) normally applied.

:row-wise

Boolean option specifying that the table is built by rows, that is,

that the each succeeding item in the list be placed in the same row,

one column after the previous item (except for line breaks); the de-

fault is t. nil specifies that each item be placed in the same col-

umn, one row below the previous item.�

Page 1256

:output-row-wise Booleanoptionspecifyingthatthe tablebedisplayed

row-by-row. The default is nil, causing the table to be displayed in

the order in which it is constructed (See the :row-wise option.) If

you specify :row-wise nil :output-row-wise t, the graph will be

drawn faster, but the row cells will not be in the given order. For

example, compare the results of running the following with the list

’(a b c d e f g h i j k l), setting :row-wise to t and then nil.

(defun what-order (l row-wise)

 (terpri)

 (stack-let ((things (make-array 100 :fill-pointer 0)))

 (formatting-item-list

 (t :row-wise row-wise :output-row-wise t)

 (dolist (x l)

(formatting-cell ()

 (vector-push-extend x things)

 (princ x))))

 (coerce things ’list)))�

:n-rows Specifies the number of rows the table should have.

:n-columns Specifies the number of columns the table should have.

:inside-width Specifiestheexactwidth,inpixels,ofthetabledis-

play.

:inside-height Specifiestheexactheight,inpixels,ofthetabledis-

play.

:max-width Specifiesthemaximumwidth,inpixels,ofthetable

display.

:max-height Specifiesthemaximumheight,inpixels,ofthetable

display.

For an overview of formatting-item-list and related facilities, see the section "For-

matting Tables".

� formatting-multiple-columns (&optional stream &key number-of-columns) &body

body Function

Binds the local environment such that the lines of text generated by the body of

the macro are output in a multiple-column format.

stream The output stream; the default is *standard-output*.�

� :number-of-columns Specifiesthenumberof columnsintowhichtheitems

are arranged. If this is unspecified, it uses as many columns as will

fit, based on the stream’s :inside-size.

Page 1257

Example:

(defun test-columns (&optional (stream *standard-output*))

 (loop for hundreds from 0 to 100 by 100 do

 (terpri stream)

 (formatting-multiple-columns (stream)

 (loop for j from 1 to 20 do

(format stream "~d ~r~%" (+ j hundreds) (+ j hundreds))))))

�

Usage note: You should not use formatting-table within formatting-multiple-

columns. Instead, use the :multiple-columns option to formatting-table, see the

function formatting-table. Also, formatting-table works with redisplay, while

formatting-multiple-columns does not redisplay.

For an overview of formatting-multiple-columns and related facilities, see the sec-

tion "Formatting Tables".

� formatting-row (&optional stream &rest options) &body body Function

Controls row layout within a formatting-table macro (see the latter facility for

examples).

stream The output stream; the default is *standard-output*.

options There is only one option:

:dont-snapshot-variables Specifies whether the free

variables within the output macro should be snap-

shotted. The default of this option, nil, specifies that

the free variables should be snapshotted. See the sec-

tion "Snapshotting Variables".

For an overview of formatting-row and related facilities, see the section "Format-

ting Tables".

� formatting-table (&optional stream &key equalize-column-widths extend-width ex-

tend-height inter-row-spacing inter-column-spacing multiple-columns (multiple-

column-inter-column-spacing dw::inter-column-spacing) (equalize-multiple-column-

widths nil) (output-multiple-columns-row-wise nil)) &body body Function

Binds local environment to output items in a tabular format.

This macro must be used in conjunction with at least two others. The first,

formatting-row or formatting-column, controls whether items are output as table

rows or table columns, respectively. The second, formatting-cell or format-cell,

controls the printing of each item. Contrast the output of the following two exam-

ples:

Page 1258

(defun row-oriented-table-formatting ()

 (fresh-line)

 (formatting-table ()

 (loop for i from 1 to 10

 as square = (* i i)

 do

 (formatting-row ()

(formatting-cell ()

 (princ i))

(formatting-cell ()

 (princ square))))))

�

(defun column-oriented-table-formatting ()

 (fresh-line)

 (formatting-table ()

 (loop for i from 1 to 10

 as square = (* i i)

 do

 (formatting-column ()

(format-cell i #’princ)

(format-cell square #’princ)))))�

stream The output stream; the default is *standard-output*.�

:equalize-column-widths Booleanoptionspecifyingwhetherall

columns have the same width (that of the widest column); the de-

fault is nil.

:extend-width Specifieswhetherthespacingoftable columnsisex-

tended; the default is nil. Alternative values are t, meaning make

use of the full horizontal space available, or a number, indicating

the number of pixels over which to extend the table. If the table is

already wider than the requested total, then this option makes no

difference.�

:extend-height Specifieswhetherthespacingoftable rowsisextend-

ed; the default is nil. Alternative values are t, meaning make use of

the full vertical space available, or a number, indicating the number

of pixels over which to extend the table. If the table is already

taller than the requested total, then this option makes no differ-

ence.

:inter-row-spacing Specifiestheminimumnumberofpixelsinsertedbe-

tween rows of the table; the default is 0. This value will be the ac-

tual number of pixels inserted unless overridden by the :extend-

height option.

:inter-column-spacing Determines the amount of space inserted between

columns of the table; the default is the width of a space character.

Page 1259

This value can be overriden by the :extend-width option. :inter-

column-spacing can be specified in one of the following ways:

integer If the output stream is one whose device units are smaller

than single characters (pixels, for example) then if the in-

teger is less than ten, it is interpreted as a number of

character spaces; otherwise, if the number is greater than

ten, it is interpreted as a number of device units. Note

that the requirement that this number be an integer pre-

cludes the specification of spacing as a fraction of a char-

acter size: use the list method below to get fractional

character spacing. (Ten is the number of pixels in a de-

vice character.)

string The spacing is the width of the string.

function The spacing is the amount of space the function would

consume when called on the stream.

list The list is of the form (number unit), where unit is one of

:pixel or :character. ’(3 :character) is different from (* 3

(send stream char-width)) or just 3, in that the charac-

ter width of whatever stream is really used to do the for-

matting is correctly used. ’(4 :pixel) is different from just

4 in that it is not subject to the special interpretation of

small numbers (< 10) normally applied.

:multiple-columns Booleanoptionspecifyingthattablerowsbedistributed

among a series of two or more columns.

For example,

(defun multiple-column-example (multiple-columns)

 (fresh-line)

 (formatting-table

 (t :multiple-columns multiple-columns)

 (loop for i from 1 to 4

 as point = (+ 50 (* i i))

 do

 (formatting-row ()

 (formatting-cell ()

 (format t "Set Point #~D: ~D "

 i point))))))

Set Point #1: 51

Set Point #2: 54

Set Point #3: 59

Set Point #4: 66 �

becomes

Page 1260

Set Point #1: 51 Set Point #3: 59

Set Point #2: 54 Set Point #4: 66

The arrangement of rows and columns generated is such that the

number of columns is maximized, the number of rows is minimized,

and the hole, if any, left in the lower right corner of the table is

the smallest possible.�

:multiple-column-inter-column-spacing Specifiesthenumberof

pixels to insert between columns in a multiple-column display

(:multiple-columns option is t). It defaults to the value of the

:inter-column-spacing option.

:equalize-multiple-column-widths Booleanoptionspecifyingwhetherall

columns in a multiple column display (:multiple-columns option is

t) have the same width (that of the widest column); the default is

nil.

:output-multiple-columns-row-wise Booleanoption specifyingwhether

columns in a multiple-column display (:multiple-columns option is

t) are displayed by outputting all the elements in one row followed

by all in the next, and so on. The default is nil, meaning that the

order of display is "column-wise": first all the elements in one col-

umn are output, then all the elements in the next, and so on.

The resulting display is the same no matter which way this flag is

set; only the order in which the elements are displayed is changed.

This affects the order in which calls to formatting-row are made

within the body of the table-formatting macro. In the default case,

calls are made in the order given; in the alternative case, call order

is unpredictable. See the section "Snapshotting Variables".�

For an overview of formatting-table and related facilities, see the section "For-

matting Tables".

� formatting-textual-list (&optional stream &key (separator ",") finally if-two filled

after-line-break conjunction) &body body Function

Binds local environment to output a sequence of items as a textual list. This

macro must be used in conjunction with the formatting-textual-list-element macro

specifying the printing function.

Example:

Page 1261

(defun simple-list-formatting ()

 (fresh-line)

 (formatting-textual-list (t :conjunction "and")

 (loop for i from 1 to 4

 do

 (formatting-textual-list-element ()

 (princ i)))))�

stream The output stream; the default is *standard-output*.�

:separator Specifiesthecharacterstousetoseparateelementsof

a textual list. The default is ", " (comma followed by a space).

:finally Specifiestheseparatortobeusedbetweenthenext-to-lastandlast

elements of the list. The default is nil, meaning use the regular

separator (specified by the :separator option). A typical value is "

and ".

:if-two Specifiestheseparatortousewhenthereareonlytwoelementsin

the list. A typical value is " and ".

:filled Specifies whether the list should be "filled"; the default is nil.

A filled list is one containing Newline characters at appropriate

points to prevent wrapping of output from right margin to left.

Thus, specifying :filled t for a long list results in two or more

separate lines of output each of a length less than the width of

the output window rather than one long, wrapped line. Line

breaks come between list elements, not within.

Another value permitted for this option is :before. This is like t,

except that in the case where a line break occurs at a :separator,

the break is made before the separator rather than after. �

:after-line-break In:filledtmode,specifiesthestringtoinsertatthe

beginning of each new line. This is useful for specifying leading in-

dentation, etc. (See the :filled option.)

:conjunction Specifiesastringtouseinthepositionbetweenthe

last two elements. Typical values are "and" and "or".

This option is similar to the :finally option, but does not affect the

separator between the last two elements, unless only two elements

occur. That is, the :conjunction option takes care of the two-

element case; the :if-two option is not necessary if you use this op-

tion.

For an overview of formatting-textual-list and related facilities, see the section

"Formatting Textual Lists".

Page 1262

� formatting-textual-list-element (&optional stream) &body body Function

Controls the printing of items output as textual list elements within a formatting-

textual-list macro.

Example:

(formatting-textual-list (t :conjunction "and")

 (loop for i from 1 to 4 doing

 (formatting-textual-list-element () (princ i))))�

stream The output stream; the default is *standard-output*.�

For an overview of formatting-textual-list-element and related facilities, see the

section "Formatting Text".

� fquery Flavor

fquery is a simple condition built on condition. It is signalled by the fquery func-

tion when its :signal-condition option is t. The messages examine the arguments

given to the fquery function.

Message Value returned

:options Returns the first argument to the fquery function.

:format-string Returns the second argument to the fquery function (its for-

mat control string or prompt).

:format-args Returns the rest of the arguments to the fquery function (the

arguments to its format control string).�

The :choice proceed type is provided. It has one argument, which is a value to be

returned from the call to the fquery function.

� fquery options &optional fquery-format-string &rest fquery-format-args Function

Asks a question, printed by (format query-io format-string format-args...), and re-

turns the answer. fquery takes care of checking for valid answers, reprinting the

question when the user clears the screen, giving help, and so forth.

options is a list of alternating keywords and values, used to select among a variety

of features. Most callers have a constant list that they pass as options (rather than

consing up a list whose contents varies). The keywords allowed are:

:type

What type of answer is expected. The currently defined types are :tyi (a single

character), :readline (a line terminated by a carriage return), and :mini-

buffer-or-readline. :tyi is the default.

:mini-buffer-or-readline is like the :readline value. The exception is

that if fquery is called from inside Zwei or Zmail, the line of text is

read from the minibuffer instead of from the zl:query-io stream. The

Page 1263

idea of this feature is to let you write things that work equally well in-

side Zwei or on their own; if you use this value, you make it easier for

your code to be integrated into a Zwei extension.

:choices Defines the allowed answers. The allowed forms of choices are complicat-

ed and explained below. The default is the same set of choices as the

zl:y-or-n-p function. Note that the :type and :choices options should be

consistent with each other.

:list-choices If t, the allowed choices are listed (in parentheses) after the ques-

tion. The default is t; supplying nil causes the choices not to be listed

unless the user tries to give an answer that is not one of the allowed

choices.

:help-function Specifies a function to be called if the user presses the

HELP key. The default help function simply lists the available choices.

Specifying nil disables special treatment of HELP. If you specify a help

function, it should take one argument, the stream on which to display

the help message. The function can get the list of available choices from

the value of the special variable format:fquery-choices.

:signal-condition Basically a way to intervene and provide an answer to

a query without asking the user.

The default for :signal-condition is nil. When its value is t, the fquery

function signals an fquery condition with proceed type of :choice before

prompting the user. Any handler can invoke the :choice proceed type in

order to return a value from fquery. When no handler handles the con-

dition, fquery proceeds normally and queries the user.

The following example answers "yes" to every "Delete this entry?" query

occurring inside do-it that has :signal-condition t:

(condition-bind

 ((fquery #’(lambda (condition)

 (and (send condition ’:proceed-type-p ’:choice)

 (equal (send condition ’:format-string)

 "Delete this entry? ")

 (values ’:choice t)))))

 (do-it))�

:fresh-line If t, zl:query-io is advanced to a fresh line before asking the ques-

tion. If nil, the question is printed wherever the cursor was left by pre-

vious typeout. The default is t.

:beep If t, fquery beeps to attract the user’s attention to the question. The de-

fault is nil, which means not to beep unless the user tries to give an an-

swer that is not one of the allowed choices.

:clear-input If t, fquery throws away typeahead before reading the user’s re-

sponse to the question. Use this for unexpected questions. The default is

nil, which means not to throw away typeahead unless the user tries to

give an answer that is not one of the allowed choices. In that case, ty-

Page 1264

peahead is discarded since the user probably wasn’t expecting the ques-

tion.

:select If t and zl:query-io is a visible window, that window is temporarily se-

lected while the question is being asked. The default is nil.

:make-complete If t and zl:query-io is a typeout-window, the window is

"made complete" after the question has been answered. This tells the

system that the contents of the window are no longer useful. The default

is t.

:stream Has as its value the stream to use for both input and output. The de-

fault value is the value of the global variable zl:query-io.

:no-input-save If t, tells the input editor not to put the response to

the question into its history. The default is nil.

:status This option takes effect only if zl:query-io is a window and :type is :tyi.

If the value is :selected and the window becomes deselected while

fquery is waiting for input, fquery returns :status. If the value is

:exposed and the window becomes deexposed or deselected while fquery

is waiting for input, fquery returns :status. If the value is nil, fquery

continues to wait for input when the window is deexposed or deselected.

The default is nil.

This option is intended for queries that appear in temporary windows

that might become deexposed or deselected before the user responds.�

The argument to the :choices option is a list each of whose elements is a choice

(with one exception, described in the next paragraph). A choice is a list whose cdr

is a list of the user inputs that correspond to that choice. These should be charac-

ters for :type :tyi or strings for :type :readline. The car of a choice is either a

symbol that fquery should return if the user answers with that choice, or a list

whose first element is such a symbol and whose second element is the string to be

echoed when the user selects the choice. In the former case nothing is echoed. In

most cases :type :readline would use the first format, since the user’s input has

already been echoed, and :type :tyi would use the second format, since the input

has not been echoed and furthermore is a single character, which would not be

meaningful to see on the display.

The last element in the list of choices can be the symbol :any (instead of being a

list, like all other choices). Then if the user gives some response that is not one of

the other choices, fquery does not complain and reprompt the user, but instead re-

turns what the user typed (a single character or a string, depending on the :type

option).

For example, the zl:yes-or-no-p function uses this list of choices:

((t "Yes") (nil "No"))�

and the zl:y-or-n-p function uses this list:

(((t "Yes.") #/Y #/T #\space)

 ((nil "No.") #/N #\rubout))�

Page 1265

If you want to use the formatted output functions instead of zl:format to produce

the prompting message, write:

(fquery options (format:outfmt exp-or-string exp-or-string ...))�

format:outfmt puts the output into a list of a string, which makes zl:format print

it exactly as is. There is no need to supply additional arguments to the fquery un-

less it signals a condition. In that case the arguments might be passed so that the

condition handler can see them.

� (flavor:method :fresh-line tv:sheet) Method

Gets the cursor position to the beginning of a blank line. Do this in one of two

ways. If the cursor is already at the beginning of a line (that is, at the inside left

edge of the window), clear the line to make sure it is blank and leave the cursor

where it was. Otherwise, advance the cursor to the next line and clear the line

just as if a #\return had been output. The behavior of this operation is not affect-

ed by the :cr-not-newline-flag init option.

� :full-rubout token Option

If the user rubs out all the characters that were typed, control is returned from

the input editor immediately. Two values are returned: nil and token. If the user

does not rub out all the characters, the input editor propagates multiple values

back from the function that it calls, as usual. In the absence of this option, the in-

put editor simply waits for more characters to be typed and ignores any additional

rubouts.

� (flavor:method :function tv:basic-choose-variable-values) function Init Option

Specifies the function called when the value of a variable is changed. See the sec-

tion "The Optional Constraint Function". The default is nil (no function).

� (flavor:method :function tv:choose-variable-values) arg Init Option

Specifies the function to be called if the user changes the value of a variable. The

default is nil (no function). See the section "The Optional Constraint Function".

� tv:*function-keys* Variable

The value is an alist, each entry of which describes a subcommand of the FUNC-

TION key. Entries are of the form:

(char function documentation option1 option2 ...)�

For an explanation of the components of the entries: See the function tv:add-

function-key. Use tv:add-function-key to add a new entry or redefine an existing

one rather than changing the value of tv:*function-keys* yourself.

Page 1266

� tv:function-text-scroll-window Flavor

Lets you provide a function to print the items in a text scroll window.

� (flavor:method :geometry tv:menu) list Init Option

Sets up the complete menu geometry, using a list to specify the columns, rows, in-

side-width, inside-height, max-width, and max-height. See the section "The Geome-

try of a Menu".

� (flavor:method :geometry tv:menu) Method

This message returns a list of six elements, which constitute the menu’s geometry.

These are the menu’s default constraints, with nil in unspecified positions; con-

trast this with the :current-geometry message.

� (flavor:method :get-pane tv:basic-constraint-frame) pane-name Method

Returns the pane (the inferior window itself) that was named by the symbol pane-

name in the :panes specification of this frame.

� get-decoded-time Function

Returns the current time in decoded time format. The nine values returned are:

second (0-59); minute (0-59); hour (0-23); date (1-31); month (1-12); year (A.D.); day-

of-week (0[Monday]-6[Sunday]); a flag (t or nil) indicating whether daylight sav-

ings time is in effect; and the timezone (hours west of GMT).

The following example was run at 10:39:18 on Friday, 9/5/86 EDT:

(get-decoded-time) =>

18

39

10

5

9

1986

4

T

5�

� dw:get-program-pane name &key (:if-does-not-exist :error) Function

Returns specified pane in a program frame created with dw:define-program-

framework.

name The name of the pane as specified in the :panes option to

dw:define-program-framework.

Page 1267

:if-does-not-exist Specifies the action to be taken if the specified frame

is not found. Possible values are :error or nil.

For an overview of dw:get-program-pane and related facilities, see the section

"Defining Your Own Program Framework".

� time:get-time Function

Gets the current time, in decoded form. Return seconds, minutes, hours, date,

month, year, day-of-the-week, and daylight-savings-time-p, with the same meanings

as time:decode-universal-time. Note that you can also get the current time using

zl-user:get-decoded-time.

get-universal-time Function

Returns the current time, in Universal Time form.

(flavor:method :gray-array-for-inferiors tv:gray-deexposed-inferiors-mixin) gray

Init Option

Specifies gray as the graying specification to use in graying areas of this screen or

frame that contain no windows. See the section "Window Graying Specifications".

� (flavor:method :gray-array-for-inferiors tv:gray-deexposed-inferiors-mixin)

Method

Returns the graying specification that this frame or window uses in graying areas

that contain no windows. See the section "Window Graying Specifications".

� (flavor:method :gray-array-for-unused-areas tv:gray-unused-areas-mixin)

Method

Returns the graying specification that this frame or window uses in graying areas

that contain no windows. See the section "Window Graying Specifications".

� (flavor:method :gray-array-for-unused-areas tv:gray-unused-areas-mixin) gray

Init Option

Specifies gray as the graying specification to use in graying areas of this screen or

frame that contain no windows. See the section "Window Graying Specifications".

� tv:*gray-arrays* Variable

A list of variables bound to predefined graying specifications. You can use one of

these as the source of a pattern for background or deexposed window graying. You

can also make your own graying specifications and add them to this list. See the

section "Window Graying Specifications".

Page 1268

� tv:gray-deexposed-inferiors-mixin Flavor

This flavor, mixed into a screen or a frame, gives it the ability to gray areas with-

in it that contain windows that are not fully exposed.

� tv:gray-unused-areas-mixin Flavor

This flavor, mixed into a screen or a frame, gives it the ability to gray areas with-

in it that contain no windows.

� (flavor:method :half-period tv:blinker) n-60ths Init Option

Sets the initial value of the half-period, that is, the time between xor’s of the

blinker. This defaults to 15.

� (flavor:method :half-period tv:blinker) Method

Examines the half-period of the blinker.

� (flavor:method :edges-from tv:essential-window) source Init Option

Specifies that the window is to take its edges (position and size) from source,

which can be one of:

a string The inside-size of the window is made large enough to display the

string, in the default character style.

a list (left-edge top-edge right-edge bottom-edge) Those edges, relative to the

superior, are used, exactly as if you had used the :edges init option.

:mouse The user is asked to point the mouse to where the top-left and bot-

tom-right corners of the window should go. (This is what happens when you

use the [Create] command in the System menu, for example.)

a window That window’s edges are copied.�

� (flavor:method :handle-asynchronous-character si:interactive-stream) character

Method

Finds the function associated with character in the asynchronous characters list. It

calls the function with two arguments, character and self. This is mainly for use

by the Keyboard Process, although user processes can use it also.

� (flavor:method :handle-mouse tv:essential-mouse) Method

The mouse overseer sends this message when the mouse enters the window. The

method calls the default mouse handler, which returns when the mouse moves out-

Page 1269

side the window. You can add an after daemon to turn off the blinker when the

mouse leaves, for example.

� dw:handler-applies-in-limited-context-p context limiting-context-type Function

Intended for use in the :tester forms of mouse handlers. It takes a context as pro-

vided in the :context keyword argument to a tester, and a presentation type to use

as the limiting-context-type. It returns t if and only if the presentation type in the

context is a subtype of the limiting-context-type. Because of caching, it is much

faster than using dw:presentation-subtypep for this purpose, and it provides the

convenience of extracting the presentation type from the context. See the function

dw:presentation-subtypep-cached.

This function is typically used with translating handlers whose to-presentation-type

is a subtype of sys:expression. For example, a translator from a .bin or ibin�

pathname to a .lisp pathname may be intended for use only in the pathname in-

put context, not when any Lisp object is acceptable. By putting dw::handler-

applies-to-limited-context-p in the :tester of the handler, the handler can be lim-

ited to contexts that are looking for some type of pathname.

Example:

(define-presentation-translator source-file-pathname

 (pathname pathname

 :tester ((ignore &key context)

 (dw:handler-applies-in-limited-context-p

 context ’pathname)))

 (pathname)

 (send (send (send pathname :generic-pathname) :get

 :qfasl-source-file-unique-id)

:new-pathname :version :newest))�

For an overview of dw:handler-applies-in-limited-context-p and related facilities:

See the section "Programming the Mouse: Writing Mouse Handlers".

� (flavor:method :height tv:ibeam-blinker) n-pixels Init Option

Sets the initial height of the blinker. It defaults to the line-height of the window.

� (flavor:method :height tv:menu) arg Init Option

Height in pixels. Includes margins, as opposed to :inside-height, which does not

include margins.

� (flavor:method :height tv:rectangular-blinker) n-pixels Init Option

Sets the initial height of the blinker, in pixels. By default, it is set to the height

of the default character style of the window associated with the blinker.

Page 1270

� (flavor:method :height tv:sheet) outside-height Init Option

Specifies the outside height of the window.

� dw:help-program-check-for-help-wakeup blip Function

Checks whether the presentation type of blip is window-wakeup-help. If so, exe-

cutes a throw to catch tag return-from-read-command; otherwise, calls

dw::default-window-wakeup-handler.

� dw:help-program-help help-program stream string-so-far &optional (format-string

"") &rest format-args Function

Causes the string, "You are typing a command at the Program-name Program.", to

be displayed when the user presses the HELP key, and, if used at the top level

that is, if supplied as the value of :help in a user::define-program-framework

form also displays "For accessing more detailed documentation about the Pro-

gram-name Program itself, click on the Program-name command.", where in this

last sentence Program-name is appropriately.

You can build your own help function using dw:help-program-help as in the fol-

lowing example, taken from the Graphic Editor.

(defmethod (graphic-editor-help graphic-editor) (stream string-so-far)

 (dw:help-program-help self stream string-so-far "

Click on a command from the menus at the right,

or select a shape to enter from the menu at the bottom.

"))

graphic-editor-help is supplied as the value for :help as described above. When

the user presses the HELP key, the help program displays "You are typing a com-

mand at the Graphic-editor Program. Click on a command from the menus at the

right, or select a shape to enter from the menu at the bottom."

The arguments for dw:help-program-help are:

help-program The name of the program the help facility is for.

stream The stream that help-program uses.

string-so-far A string to be displayed after the initial string mentioned above.

� (flavor:method :highlighted-items tv:menu-highlighting-mixin) items Init Option

When a menu with the menu-highlighting mixin is created, the list of items to be

initially highlighted may be specified. The items in this list must be eq to items in

the menu’s :item-list. The default is nil.

� (flavor:method :highlighted-values tv:menu-highlighting-mixin) Method

Page 1271

Get the list of highlighted items. Refers to the items by value. For instance, if

your item-list is an association list, with elements (string . symbol), this message

uses symbol. This only works for menu items that can be executed without side-

effects, not, for example, the :eval and :funcall kinds.See the section "tv:multiple-

menu-mixin Messages".

� tv:hollow-rectangular-blinker Flavor

Displays as a hollow rectangle; the editor uses such blinkers to show you which

character the mouse is pointing at. This flavor includes tv:rectangular-blinker,

and so all of tv:rectangular-blinker’s init options and messages work on this too.

� (flavor:method :home-cursor tv:sheet) Method

Moves the cursor to the upper left corner of the window.

� (flavor:method :home-down tv:sheet) Method

Moves the cursor to the lower left corner of the window.

� (flavor:method :hysteresis tv:hysteretic-window-mixin) n-pixels Init Option

Sets the initial value of the hysteresis, in pixels. It defaults to 25. (decimal).

� (flavor:method :hysteresis tv:hysteretic-window-mixin) Method

Examines the hysteresis of the window, in pixels.

� tv:hysteretic-window-mixin Flavor

By mixing this flavor into your window, you control the mouse for a small area

outside the window as well as the area inside the window. You can control the

hysteresis, which is the number of pixels away from the window that the mouse

has to get before this window ceases to own it. This mixin is used by momentary

menus, so that if you accidentally slip a bit outside the menu, the menu will not

vanish; you have to get well away from it before it vanishes.

(The dw:dynamic-window resource has a :hysteresis option, allowing you to get

Dynamic Windows with this capability mixed in.)

� tv:ibeam-blinker Flavor

This flavor of blinker displays as an I-beam (like a capital I). Its height is control-

lable. The lines are two pixels wide, and the two horizontal lines are nine pixels

wide.

Page 1272

� indenting-output (stream indentation) &body body Function

Binds local environment to control the insertion of spaces or other characters at

the beginning of each newline output to a stream.

stream The output stream. As a special case, t and nil are abbreviations

for *standard-output*.

indentation What gets inserted at the beginning of each line out-

put to the stream. Four possibilities exist:

integer If the output stream is one whose device units are smaller

than single characters (pixels, for example) then if the in-

teger is less than ten, it is interpreted as a number of

character spaces; otherwise, if the number is greater than

ten, it is interpreted as a number of device units. Note

that the requirement that this number be an integer pre-

cludes the specification of spacing as a fraction of a char-

acter size: use the list method below to get fractional

character spacing. (Ten is the number of pixels in a de-

vice character.)

string The spacing is the width of the string.

function The spacing is the amount of space the function would

consume when called on the stream.

list The list is of the form (number unit), where unit is one of

:pixel or :character. ’(3 :character) is different from (* 3

(send stream char-width)) or just 3, in that the charac-

ter width of whatever stream is really used to do the for-

matting is correctly used. ’(4 :pixel) is different from just

4 in that it is not subject to the special interpretation of

small numbers (< 10) normally applied.

The function should be a function to print a string. It receives one argument, the

output stream. Because the system calls this function with other streams, for ex-

ample, with a dummy stream to determine the space requirements of the output, it

should output something of the same size each time it is called.

You should begin the body with (terpri stream), or equivalent, to position the

stream to the indentation initially. That is, it is perfectly valid to indent only sub-

sequent lines.

Examples:

(defun simple-indenter ()

 (indenting-output (t 10)

 (loop for i from 1 to 5

 do

 (terpri)

 (format t "This is indented line ~d" i)))) �

Page 1273

The trace special form uses indenting-output as follows:�

 (flet ((indent (stream)

 (loop for n from 1 below trace-level do

 (write-char (if ... #\| #\sp) stream))))

 (indenting-output (*trace-output* #’indent)

 (terpri *trace-output*)

 ...))�

For an overview of indenting-output and related facilities, see the section "Con-

trolling Line Output". For a related facility, see the function sys:with-indentation.

� dw:independently-redisplayable-format stream format-string &rest format-args

Function

Outputs a formatted string such that each format argument is independently re-

displayable. (See the function dw:with-redisplayable-output.)

stream The output stream; the default is *standard-output*.

format-string The format-control string. (See the function format.)

format-args The format arguments.�

The format-string is parsed at compile time, resulting in a series of calls to

dw:redisplayable-format or format. Some restrictions result:

• stream may not be nil, although format would permit it.

• format commands that need all the format arguments, like conditionals, itera-

tions, or gotos, cannot be used.�

dw:independently-redisplayable-format is one of a number of facilities used to do

incremental redisplay. For examples, see the file SYS:EXAMPLES;INCREMENTAL-

REDISPLAY.LISP.

For an overview of dw:independently-redisplayable-format and related facilities:

See the section "Displaying Output: Replay, Redisplay, and Formatting".

� :inferior-select sheet Message

Returns non-nil if it is okay to select sheet, or nil if it is not okay. If the message

returns nil, presumably some appropriate action such as selecting a different win-

dow has already been performed.

This message is sent and received by the system. It is normally sent under two

circumstances:

• If a window is selected, and if the window includes a flavor that makes it par-

ticipate in its superior’s activity, the window sends its superior an :inferior-

select message with itself as the argument. Flavors that make windows partici-

Page 1274

pate in their superiors’ activities include tv:select-relative-mixin, tv:pane-mixin,

and tv:basic-typeout-window.

• If a window receives a :select-relative message and the window’s activity is not

the currently selected activity, it sends its superior an :inferior-select message

with itself as the argument.

The :inferior-select message is propagated upwards through all levels of the win-

dow hierarchy until it reaches a screen. This informs the direct and indirect supe-

riors of window that it has been selected (or selected relative to its activity). When

a frame receives an :inferior-select message, it saves sheet as its selected-pane and

passes the message on, substituting itself for sheet.

All currently extant methods return a non-nil value. Only panes look at the re-

turned value; they don’t allow themselves to be selected if the returned value is

nil. This permits a frame to refuse to allow its selected-pane to be changed.

� (flavor:method :init tv:sheet) init-plist Method

Sets initial characteristics of the window, processing options in init-plist. This mes-

sage is sent by the system; you might need to supply a :before or :after daemon

for it.

� :initial-input string &optional begin end cursor-position Option

When the input editor is entered, string is inserted into the input buffer as if the

user had typed it. The user can edit the string before activating. begin and end

are indices into string and mark the portion of the string to be copied into the in-

put buffer. begin defaults to 0; end defaults to (zl:array-active-length string). cur-

sor-position is an index into the string where the cursor should initially be placed.

The default is to place the cursor at the end of the portion of the string copied in-

to the input buffer. string can be nil, which is the same as not specifying the op-

tion.

In the following example, the user is prompted for a line of text. The input buffer

initially contains the name of the user, and the cursor is placed at the beginning

of the input buffer.

(with-input-editing-options

 ((:initial-input fs:user-personal-name nil nil 0))

 (prompt-and-read :string "Full name: "))�

Placing a string in the input buffer is one style of input defaulting. Another style

leaves the input buffer empty but allows a default to be yanked with c-m-Y. See

the option :input-history-default.

� time:initialize-timebase &optional ut (use-network t) Function

Page 1275

Initializes the timebase. If ut, a universal-time integer, is supplied, uses ut as the

current time. If ut is nil or unspecified and if use-network is not nil, queries local

network hosts to find out the current time. (use-network is t by default.) If it can-

not get the time from the network, or if ut and use-network are both nil, prompts

the user for a string to parse as the current time. On machines in the 3600 fami-

ly, if the calendar clock has been set, uses the calendar clock reading as the de-

fault time for the user to specify. If the calendar clock has not been set, offers to

set it to the time that the user specifies.

This is called automatically during system initialization. You might want to call it

yourself to correct the time if it appears to be inaccurate or wrong. See the func-

tion time:set-local-time.

(flavor:method :input-editor si:interactive-stream) read-function &rest read-args

Method

Applies read-function to read-args after invoking the input editor. For more infor-

mation: See the section "The Input Editor Program Interface".

Normally a program does not send this message itself; it uses the special form

with-input-editing. See the function with-input-editing.

Input Editing Options

:activation function &rest arguments Option

For each character typed, the input editor invokes function with the character as

the first argument and arguments as the remaining arguments. If the function re-

turns nil, the input editor processes the character as it normally would. Otherwise,

the cursor is moved to the end of the input buffer, a rescan of the input is forced

(if one is pending), and the blip (:activation character numeric-arg) is returned by

the final sending of the :any-tyi message to the stream. Activation characters are

not inserted into the input buffer, nor are they echoed by the input editor. It is

the responsibility of the reading function to do any echoing. For instance,

zl:readline, not the input editor, types a Newline at the end of the input buffer

when RETURN, END, or LINE is pressed.

:blip-handler function Option

Specifies a function to handle blips received while inside the input editor. function

must be a function of two arguments. The first argument is the blip; the second

argument is the stream that received the blip. The handler is invoked when the

input editor receives a blip. If the handler returns non-nil, no further action is

taken. If it returns nil and a :preemptable option is in effect, the actions specified

by that option are taken. Otherwise, the default blip handler is invoked.

In the following example, the user is prompted for a line of text. While entering

this text, the user may also click the left or middle mouse buttons. If the left

mouse button is clicked, the coordinates of the mouse with respect to the window

Page 1276

are inserted into the input buffer. If the middle button is clicked, the name of the

window is inserted.

(defun example-blip-handler (blip ignore)

 (destructuring-bind (type click window x y) blip

 (and (eq type :mouse-button)

 (selectq click

 (#\mouse-l-1

 (si:ie-insert-string (format nil " ~D ~D" x y))

 t)

 (#\mouse-m-1

 (si:ie-insert-string (format nil " ~A" window))

 t)))))

�

(with-input-editing-options ((:blip-handler ’example-blip-handler))

 (prompt-and-read :string "Blip handler test: "))�

si:ie-insert-string is an internal function for inserting a string into the input buf-

fer. Since the language for writing input editor commands has not been formal-

ized, this example might not work in a later release.

:brief-help &rest help-option Option

When the user presses HELP, the input editor displays a message determined by

help-option on the same line as the typein. The message is displayed in the default

typeout font, and none of the usual conventions about input editor typeout apply.

:brief-help overrides :complete-help, :merged-help, and :partial-help.

help-option can have one element, which can be a string, a function, or a symbol;

or it can have more than one element. For an explanation: See the section "Dis-

playing Help Messages in the Input Editor".

This option is intended for programs like fquery that need to supply only a brief

help message, usually about expected typein.

:command function &rest arguments Option

This option is used to implement nonediting single-keystroke commands. For each

character typed, the input editor invokes function with the character as the first

argument and arguments as the remaining arguments. If the function returns nil,

the input editor processes the character as it normally would. Otherwise, control is

returned from the input editor immediately. Two values are returned: a blip of the

form (:command character numeric-arg) and the keyword :command. Any un-

scanned input typed before the command character remains in the input buffer,

available to the next read operation from the stream.

:complete-help &rest help-option Option

Page 1277

When the user presses HELP, the input editor types out a message determined by

help-option. None of the standard input editor help is displayed. If a :brief-help op-

tion has been specified, it overrides :complete-help. :complete-help overrides

:merged-help and :partial-help.

help-option can have one element, which can be a string, a function, or a symbol;

or it can have more than one element. For an explanation: See the section "Dis-

playing Help Messages in the Input Editor".

This option is intended for programs that supply their own input editor help mes-

sages.

:do-not-echo &rest characters Option

The characters in characters are interpreted as activation characters and are not

echoed. The comparison is done with char=, not char-equal, so that the control

and meta bits are not masked off. The characters are not inserted into the input

buffer and are not interpreted as input editor commands. When one of these char-

acters is typed, the final :tyi value returned is the character, not a blip.

This option exists only for compatibility with earlier releases. New programs

should use the :activation option.

:editor-command &rest command-alist Option

Lets you specify your own input editor editing commands. Each element of com-

mand-alist is a cons whose car is a character and whose cdr is a symbol or a list.

If the cdr is a symbol, it is a function to be called with no arguments when the

user types the associated character. If the cdr is a list, the car of the list is a

function to be applied to the cdr of the list when the user types the associated

character. The function can examine the internal special variables that describe

the state of the input editor.

If :editor-command specifies a command that is invoked by the same character as

one of the standard input editor editing commands, the command specified by

:editor-command overrides the standard command.

:full-rubout token Option

If the user rubs out all the characters that were typed, control is returned from

the input editor immediately. Two values are returned: nil and token. If the user

does not rub out all the characters, the input editor propagates multiple values

back from the function that it calls, as usual. In the absence of this option, the in-

put editor simply waits for more characters to be typed and ignores any additional

rubouts.

:initial-input string &optional begin end cursor-position Option

Page 1278

When the input editor is entered, string is inserted into the input buffer as if the

user had typed it. The user can edit the string before activating. begin and end

are indices into string and mark the portion of the string to be copied into the in-

put buffer. begin defaults to 0; end defaults to (zl:array-active-length string). cur-

sor-position is an index into the string where the cursor should initially be placed.

The default is to place the cursor at the end of the portion of the string copied in-

to the input buffer. string can be nil, which is the same as not specifying the op-

tion.

In the following example, the user is prompted for a line of text. The input buffer

initially contains the name of the user, and the cursor is placed at the beginning

of the input buffer.

(with-input-editing-options

 ((:initial-input fs:user-personal-name nil nil 0))

 (prompt-and-read :string "Full name: "))�

Placing a string in the input buffer is one style of input defaulting. Another style

leaves the input buffer empty but allows a default to be yanked with c-m-Y. See

the option :input-history-default.

:input-history-default string Option

Specifies string as the default to be yanked by c-m-Y. string is temporarily placed

at the head of the input history. If the user types c-m-Y m-Y, the true first ele-

ment of the input history is yanked. c-m-0 c-m-Y shows string at the head of the

input history, and the entries in the input history are shifted down by one.

In the following example, the user is prompted for a line of text. The input buffer

is initially empty, but the c-m-Y command yanks a default, which is the name of

the user.

(with-input-editing-options

 ((:input-history-default fs:user-personal-name))

 (prompt-and-read :string "Full name: "))�

This option is used by the :pathname option for prompt-and-read.

:input-wait &optional whostate function &rest arguments Option

When the input editor waits for input, it sends the stream an :input-wait message

with the arguments to the :input-wait option as arguments. In addition, unless the

:suppress-notifications option has been specified, :input-wait returns when a noti-

fication is received. See the message :input-wait.

:input-wait-handler function &rest arguments Option

When the input editor is waiting for input it sends the stream an :input-wait

message. After :input-wait returns, the input editor applies function to arguments.

The input editor does not process the input or display the notification until func-

tion returns.

Page 1279

:merged-help function &rest arguments Option

When the user presses HELP, the input editor types out a message determined by

the arguments. function is a function that takes at least two arguments. The input

editor calls the function to print the help message. The first argument is the

stream. The second argument is a continuation (a list) to print a standard message

describing how to invoke input editor commands and other information about the

stream. When the function wants to print this message, it should apply the car of

the continuation to the cdr. If any arguments are supplied, they are the remaining

arguments to the function.

If a :brief-help or :complete-help option has been specified, it overrides :merged-

help. :merged-help overrides :partial-help.

This option is intended for programs that want to decide when and where to dis-

play their own help messages and the standard help message.

:no-input-save Option

The input editor does not save the scanned contents of the input buffer on the in-

put history when returning from the reading function. This is intended for use by

functions such as fquery that use the input editor to ask simple questions whose

responses are not worth saving. zl:yes-or-no-p uses :no-input-save by default.

:notification-handler function &rest arguments Option

If a notification is received while in the input editor, function is called to handle

it. function should take at least one argument, the notification (as returned by the

:receive-notification message to the stream). arguments are the remaining argu-

ments to function. function can do anything it wants with the notification. To dis-

play the notification, function would usually call sys:display-notification.

If this option is not specified, notifications appear one after the other using

:insert-style typeout.

Following are two simple examples of notification handlers. The first handler as-

sumes that you want each notification to overwrite the previous one. The second

handler assumes that you want them to appear one after another. *window*

should be bound to a window and *stream* to a stream where you want the notifi-

cations to appear.

(defun my-notification-handler-1 (notification)

 (send *window* :clear-window)

 (sys:display-notification *window* notification :window))

�

(defun my-notification-handler-2 (notification)

 (sys:display-notification *stream* notification :stream))�

:partial-help &rest help-option Option

Page 1280

When the user presses HELP, the input editor first types out a message determined

by help-option. It then types out a message describing how to invoke input editor

commands and other information about the stream. If a :brief-help,

:complete-help, or :merged-help option has been specified, it overrides :partial-

help.

help-option can have one element, which can be a string, a function, or a symbol;

or it can have more than one element. For an explanation: See the section "Dis-

playing Help Messages in the Input Editor".

This option is intended for use when inexperienced users might be typing to the

input editor. Often help-option gives some information about the program to which

the user is typing and what the user can do to exit from it.

:pass-through &rest characters Option

The characters in characters are not to be treated as special by the input editor.

This option is used to pass format effectors (such as HELP or CLEAR INPUT)

through to the reading function instead of interpreting them as input editor com-

mands. :pass-through is allowed only for characters with no modifier bits set, that

is, for character codes 0 through 377 (octal). For characters that have modifier

bits set and must be visible to the reading function, use :do-not-echo or

:activation.

:preemptable token Option

A blip in the input stream causes control to be returned from the input editor im-

mediately. Two values are returned: the blip and token, which is usually a keyword

symbol. Any unscanned input typed before the blip remains in the input buffer,

available to the next read operation from the stream.

:prompt &rest prompt-option Option

When it is time for the user to be prompted, the input editor displays prompt-

option. prompt-option can have one element, which can be nil, a string, a function,

or a symbol other than nil; or it can have more than one element: See the section

"Displaying Prompts in the Input Editor".

The difference between :prompt and :reprompt is that the latter does not display

the prompt when the input editor is first entered, but only when the input is re-

displayed (for example, after a screen clear). If both options are specified,

:reprompt overrides :prompt except when the input editor is first entered.

:reprompt &rest prompt-option Option

When it is time for the user to be reprompted, the input editor displays prompt-

option. prompt-option can have one element, which can be nil, a string, a function,

or a symbol other than nil; or it can have more than one element: See the section

"Displaying Prompts in the Input Editor".

Page 1281

Unlike :prompt, :reprompt displays the prompt only when input is redisplayed (for

example, after a screen clear), not when the input editor is first entered. If both

:prompt and :reprompt are specified, :reprompt overrides :prompt except when

the input editor is first entered.

:suppress-notifications flag Option

If a notification is received while in the input editor, and flag is supplied as nil,

the input editor itself handles the notification, regardless of any other way you

have specified that notifications should be handled. If flag is t, notifications are

handled in the input editor the same way they would be handled if you were not in

the input editor. That is, the input editor does not handle the notification itself.

:input-history-default string Option

Specifies string as the default to be yanked by c-m-Y. string is temporarily placed

at the head of the input history. If the user types c-m-Y m-Y, the true first ele-

ment of the input history is yanked. c-m-0 c-m-Y shows string at the head of the

input history, and the entries in the input history are shifted down by one.

In the following example, the user is prompted for a line of text. The input buffer

is initially empty, but the c-m-Y command yanks a default, which is the name of

the user.

(with-input-editing-options

 ((:input-history-default fs:user-personal-name))

 (prompt-and-read :string "Full name: "))�

This option is used by the :pathname option for prompt-and-read.

:input-wait Specifiesafunctiontestingforsomeconditionwhilein

the input-wait state. If this condition occurs, the :input-wait-

handler is invoked.

:input-wait-handler function &rest arguments Option

When the input editor is waiting for input it sends the stream an :input-wait

message. After :input-wait returns, the input editor applies function to arguments.

The input editor does not process the input or display the notification until func-

tion returns.

� (flavor:method :insert-char tv:sheet) &optional (char-count 1) (unit ’:character)

Method

Open up a space the width of char-count units in the current line at the current

cursor position. Shift the characters to the right of the cursor further to the right

to make room. Characters pushed past the right-hand edge of the window are lost.

If unit is :character, char-count is interpreted as the number of character-widths

to insert; if unit is :pixel, char-count is interpreted as the number of pixels to in-

sert.

Page 1282

� (flavor:method :insert-item tv:text-scroll-window) item-no new-item Method

Inserts new-item into the item list before item-no. new-item can be any Lisp object.

item-no is an item number, and should be a non-negative fixnum.

If the item is inserted within the visible range, the window redisplays to show the

new item.

� (flavor:method :insert-line tv:sheet) &optional (line-count 1) (unit ’:character)

Method

Takes the line containing the cursor and all the lines below it, and moves them

down by line-count units. A blank space (whose length is variable) is created at the

cursor. Lines pushed off the bottom of the window are lost. If unit is :character,

line-count is interpreted as the number of lines to insert; if unit is :pixel, line-

count is interpreted as the number of pixels to insert.

� (flavor:method :insert-string tv:sheet) string &optional (start 0) (end nil) (type-too

t) Method

Inserts a string at the current cursor position, moving the rest of the line to the

right to make room for it.

The string to insert is specified by string; a substring thereof may be specified

with start and end, as with :string-out.

If type-too is specified as nil, suppress the actual display of the string, and the

space that was opened is left blank. :insert-string, in this case, uses :insert-char

to actually make the space.

� (flavor:method :inside-edges tv:sheet) Method

Returns four values: the left, top, right, and bottom inside edges, in pixels, relative

to the top-left corner of this window. This can be useful for clipping. Note that

this message is not analogous to the :edges message, which returns the outside

edges relative to the superior window.

� (flavor:method :inside-height tv:menu) arg Init Option

Specifies the inside height specified in pixels. Excludes margins.

� (flavor:method :inside-height tv:sheet) inside-height Init Option

Specifies the inside height of the window.

� (flavor:method :inside-size tv:menu) (inside-width inside-height) Init Option

Specifies the inside size parameters specified in pixels.

Page 1283

� (flavor:method :inside-size tv:sheet) Method

Returns two values: the inside width and the inside height.

� (flavor:method :inside-size tv:sheet) (inside-width inside-height) Init Option

Specifies the inside width and height of the window.

� (flavor:method :inside-width tv:menu) arg Init Option

Specifies the inside width of window in pixels.

� (flavor:method :inside-width tv:sheet) inside-width Init Option

Specifies the inside width of the window.

� cp:install-command command-table command-symbol &optional command-name

Function

Installs a Command Processor command into a command table.

command-table Name (symbol or string) of the command table receiv-

ing the new command. If it does not already exist, a command table

will be created.

command-symbol The command to install, a symbol.

command-name The name of the command, a string. The default is the

value supplied for the :name keyword argument in the command

definition.

For an overview of cp:install-command and related facilities: See the section

"Managing the Command Processor".

� (flavor:method :integral-p tv:sheet) t-or-nil Init Option

The default is nil. If this is specified as t, the inside dimensions of the window are

made to be an integral number of characters wide and lines high, by making the

bottom margin larger if necessary.

� :interactive Message

Returns t if the stream is interactive and nil if it is not. Interactive streams, built

on si:interactive-stream, are streams designed for interaction with human users.

They support input editing. Use the :interactive message to find out whether a

stream supports the :input-editor message.

Page 1284

� si:interactive-stream Flavor

A stream that includes this flavor is interactive, or designed for interaction with a

human user. In order to be useful, si:interactive-stream must, in turn, include

one of the following mixins: si:display-input-editor, si:printing-input-editor, or

si:halfduplex-input-editor.

To find out whether or not a stream is interactive, send the stream an

:interactive message.

� dw:invalidate-type-handler-tables Function

Invalidates presentation mouse handler lookup tables. The next time the tables are

accessed, they are updated by this function to reflect any changes in the type hier-

archy affecting handler applicability.

This function gets called by the system whenever a new presentation type is de-

fined. You need to call it directly only if your presentation-type definitions change

dynamically at runtime, for example, through a global variable in the

:abbreviation-for option. However, because the updating of the handler lookup

tables does not occur in real time, you should avoid such usage.

For an overview of dw:invalidate-type-handler-tables and related facilities: See

the section "Programming the Mouse: Writing Mouse Handlers".

� (flavor:method :io-buffer tv:choose-variable-values-window) buf Init Option

Specifies the I/O buffer to be used. The buffer can be associated with another win-

dow or it can be explicitly created for this window with the tv:make-io-buffer

function. The I/O buffer is used both for reading keyboard input (new values) and

for sending blips to the controlling process.

� (flavor:method :io-buffer tv:command-menu) buf Init Option

The I/O buffer to be used by a command menu is usually specified when it is cre-

ated. It can be shared with the I/O buffer of another window. I/O buffers are cre-

ated with the tv:make-io-buffer function.

� (flavor:method :io-buffer tv:command-menu) Method

gets the I/O buffer to which a command menu sends a command when an item is

chosen.

� (flavor:method :io-buffer tv:constraint-frame-with-shared-io-buffer) io-buffer

Init Option

If this option is present, io-buffer is used as the I/O buffer for the frame and the

panes. Otherwise, a default I/O buffer is created.

Page 1285

� (flavor:method :item tv:basic-mouse-sensitive-items) type item &rest format-args

Method

Creates and displays a mouse-sensitive item of type type with associated object

item. If format-args are supplied, they are a zl:format control-string and argu-

ments used to generate the display for this item. If format-args are not supplied,

the display is generated with princ.

� (flavor:method :item si:interactive-stream) type item &rest format-args Method

Creates and displays a (possibly mouse-sensitive) item of type type on the stream.

If the stream does not support mouse-sensitivity, this just ignores type and displays

item on the stream. If format-args are supplied, they are a format control string

and control args to be used to display the item. Otherwise, the item is displayed

by calling princ with a first argument of item.

� (flavor:method :item tv:mouse-sensitive-text-scroll-window-without-click) item

type &optional (function #’prin1) &rest print-args Method

Creates a new mouse-sensitive item. item may be any lisp object. type is a keyword

which specifies the type of item. function is the function which is used to display

the item in the window. print-args are further arguments to function.

This method prints item on the window at the current cursor position by calling

function. The first argument to function is item; the second is the window itself;

and the rest are the elements of print-args.

The portion of the window printed on by this method becomes mouse-sensitive, and

a box appears around it when the mouse is moved into that area.

� (flavor:method :item-list tv:menu) list Init Option

Initializes the item list for a menu. See the section "Types of Menu Items".

� (flavor:method :item-list-pointer tv:dynamic-...-menu) form Init Option

The ellipses in the name (...) indicate that this option works with several flavors of

dynamic menus. The form is saved and evaluated periodically to get the item-list

for the menu. form is usually a special variable but any Lisp form is valid. The

evaluation may occur in any process, so only global variables should be accessed. If

the result of evaluating form is not zl:equal to the item list, the message :set-

item-list is sent to the menu to update the new list. Note that the Lisp function

equal is used for comparison, not eq. (Do not directly and destructively modify a

menu’s item list yourself; the system will do this automatically.)

� (flavor:method :item-type-alist tv:basic-mouse-sensitive-items) alist Init Option

Page 1286

Remembers alist as the set of item types allowed in this window. alist should be

created by tv:add-typeout-item-type.

� (flavor:method :item-value tv:text-scroll-window) item-no Method

Returns the item whose number is item-no.

� (flavor:method :items tv:text-scroll-window) Method

Returns the array that the window uses, internally, to hold the items. You should

not modify the contents of this array or its fill pointer, because the window won’t

know that you did so, and redisplay will not work properly.

� sys:kbd-intercepted-characters Variable

The value is a list of characters that are intercepted when they are read from an

interactive stream.

Bind this variable when you want to change the characters that the system inter-

cepts. The default value is the value of sys:kbd-standard-intercepted-characters:

(#\Abort #\m-Abort #\Suspend #\m-Suspend). sys:kbd-intercepted-characters is

reset to this value on warm booting. You can bind sys:kbd-intercepted-characters

to any subset of the default value, including nil, but you cannot include any char-

acters that are not members of the default value. If you want the system to inter-

cept only the standard abort characters, bind sys:kbd-intercepted-characters to

the value of sys:kbd-standard-abort-characters. If you want the system to inter-

cept only the standard break characters, bind sys:kbd-intercepted-characters to

the value of sys:kbd-standard-suspend-characters.

� sys:kbd-standard-abort-characters Variable

The value is a list of characters that are the default abort characters intercepted

by the system. The default value is (#/Abort #/m-Abort). This is a constant. If you

want the system to intercept only the standard abort characters, bind sys:kbd-

intercepted-characters to the value of sys:kbd-standard-abort-characters.

� sys:kbd-standard-intercepted-characters Variable

The value is a list of characters that is the default value of sys:kbd-intercepted-

characters. The default value is (#/Abort #/m-Abort #/Suspend #/m-Suspend).

This is a constant. If you want to change the characters that the system inter-

cepts, bind sys:kbd-intercepted-characters, not sys:kbd-standard-intercepted-

characters.

� sys:kbd-standard-suspend-characters Variable

Page 1287

The value is a list of characters that are the default suspend characters intercept-

ed by the system. The default value is (#/Suspend #/m-Suspend). This is a con-

stant. If you want the system to intercept only the standard suspend characters,

bind sys:kbd-intercepted-characters to the value of sys:kbd-standard-suspend-

characters.

� tv:key-state key-name Function

Returns t if the keyboard key named key-name is currently pressed, nil if it is not.

key-name may be the symbolic name of a modifier key, from the table below, or a

character object. Modifier keys that come in pairs have three symbolic names; one

for the left-hand key, one for the right-hand key, and one for both, which is con-

sidered to be pressed if either member of the pair is.

The modifier key names are:

:shift :left-shift :right-shift

:symbol :left-symbol :right-symbol

:control :left-control:right-control

:meta :left-meta :right-meta

:super :left-super :right-super

:hyper :left-hyper :right-hyper

:caps-lock :repeat :mode-lock

� (flavor:method :label tv:choose-variable-values) string Init Option

The argument is a string that is the label displayed at the top of the window. The

default is "Choose Variable Values".

� (flavor:method :label tv:label-mixin) specification Init Option

Sets the string displayed as the label, the character style in which the label is

displayed, and whether the label is at the top or the bottom of the window. Any-

thing you don’t specify will default; by default, the string is the same as the name

of the window, the character style is the default character style for the screen,

and the label is at the bottom of the window.

specification may be any of:

nil There is no label at all.

t The label is given all the default characteristics.

:top The label is put at the top of the window.

:bottom The label is put at the bottom of the window.

a string The text displayed in the label is this string.

a character style The label is displayed in the specified character style.

Page 1288

a list (keyword1 arg1 keyword2 ...) The attributes corresponding to the key-

words are set; the rest of the attributes default. Some keywords take argu-

ments, and some do not. The following keywords may be given:

:top The label is put at the top of the window.

:bottom The label is put at the bottom of the window.

:string string The text displayed in the label is string.

:character-style character-style The label is displayed in the specified

character style, merged against the default character style.

� (flavor:method :label tv:menu) specification Init Option

Specifies the menu’s label. The specification is usually a list in the following form:

(:string "Foo" :style character-style-specification)�

� tv:label-mixin Flavor

Creates the labels in the corners of windows that you often see when using Gen-

era. You can control the text of the label, the character style in which it is dis-

played, and whether it appears at the top of the window or the bottom.

� (flavor:method :label-size tv:label-mixin) Method

Returns the width and height of the area occupied by the label.

� cp:*last-command-values* Variable

List of values returned by the most recently executed Command Processor com-

mand.

For an overview cp:*last-command-values* and related facilities, see the section

"Managing the Command Processor".

� (flavor:method :last-item tv:text-scroll-window) Method

Returns the last item in the item list.

� time:leap-year-p year Function

Returns t if year is a leap year; otherwise returns nil. year can be absolute or rel-

ative to 1900 (that is, 84 and 1984 both work).

(flavor:method :left tv:menu) arg Init Option

Page 1289

Specifies the left edge of the menu, defined in pixels relative to the outside of the

superior window.

� (flavor:method :left tv:sheet) left-edge Init Option

Specifies the x-coordinate of the left edge of the window, relative to the superior’s

coordinate system.

� (flavor:method :left-margin-size tv:sheet) Method

Returns the left margin size of the window in pixels.

� (flavor:method :line-in si:interactive-stream) &optional leader Method

Reads characters from the stream and returns them as a string. If called from out-

side the input editor, reads characters until a #\return, #\line, or #\end activation

character is encountered. If called from inside the input editor, reads characters

until a #\return delimiter is encountered. The activation or delimiter character is

not part of the returned string.

The method returns two values: the string and an eof flag. If the stream reaches

end-of-file while reading characters, it returns the characters read as a string and

returns a second value of t. Otherwise, the second returned value is nil.

If leader is an integer, the returned string has an array leader of length leader,

and the fill pointer is set to the location in the string following the last one read.

Otherwise, the string has no array leader.

Example:

This feature is useful for debugging programs that read from noninteractive

streams. For example, the following function reads a single line-oriented record, in

which the first line is a decimal number saying how many lines are in the rest of

the record.

(defun read-record (&optional (stream standard-input))

 (loop repeat (parse-number (send stream :line-in) 0 nil 10.)

collect (send stream :line-in)))�

If this function is invoked on an interactive stream, the input editor is enabled au-

tomatically each time the :line-in message is sent, but it is not possible to edit

across line boundaries. For example, once the number of lines in the record is

typed, it is not possible to change it.

(defun read-record (&optional (stream standard-input))

 (with-input-editing (stream)

 (loop repeat (parse-number (send stream :line-in) 0 nil 10.)

 collect (send stream :line-in))))�

Wrapping a with-input-editing form around the body establishes a single input

editing context for each record. with-input-editing has no effect when stream is a

Page 1290

noninteractive stream, so this same function may used for reading from a file or

reading from an interactive stream.

� (flavor:method :line-out tv:sheet) string &optional (start 0) (end nil) Method

Does the same thing as :string-out, and then advance to the next line (like typing

a #\return character). The main reason that this message exists is so that the

stream-copy-until-eof function can, under some conditions, move whole lines from

one stream to another; this is more efficient than moving characters singly. The

behavior of this operation is not affected by the :cr-not-newline-flag init option.

� tv:line-truncating-mixin Flavor

An obsolete flavor that is the same as tv:truncatable-lines-mixin. The name is

confusing; when this flavor is mixed in, truncation is enabled only if the window’s

truncate line out flag is on. Otherwise, it has no effect. tv:truncatable-lines-mixin

is built on this flavor for the sake of two-argument zl:typep.

� (flavor:method :list-tyi si:interactive-stream) Method

Like :any-tyi, except that it returns only blips, never integers. If it encounters any

integers in the input stream, it discards them entirely (they are removed from the

stream and the program never sees them).

� (flavor:method :listen si:interactive-stream) Method

Returns t if there are any characters available to :any-tyi or :tyi, or nil if there

are not. For example, the editor uses this to defer redisplay until it has caught up

with all of the characters that have been typed in.

� (flavor:method :listen tv:stream-mixin) Method

Returns t if there are any characters available to :any-tyi or :tyi, or nil if there

are not. For example, the editor uses this to defer redisplay until it has caught up

with all the characters that have been typed in.

� tv:make-blinker window &optional (flavor ’tv:rectangular-blinker) &rest options

Function

Creates and returns a new blinker. The new blinker is associated with the given

window, and is of the given flavor. The options are initialization-options to the

blinker flavor. All blinkers include the tv:blinker flavor, and so init options taken

by tv:blinker will work for any flavor of blinker. Other init options may only work

for particular flavors. See the section "General Blinker Operations" for other oper-

ations on blinkers. See the section "Specialized Blinkers" for a list of other useful

flavors of blinkers.

Page 1291

� cp:make-command-table name &rest init-options &key (if-exists :error) &allow-

other-keys Function

Creates and returns a Command Processor command table object.

name The name (symbol or string) of the command table.

init-options Keyword-values pairs that are init options to the (in-

ternal) command-table flavor from which the command table object

is created. Permissible options and values are as follows:

:inherit-from Specifies a list of command tables

(strings or objects) from which to inherit commands.

:command-table-delims Specifies a list of characters to use as

delimiters of words in command names for commands in

the table. The default list is (#\Space #\Tab #\Return).

:command-table-size An initial estimate of the number of

commands the table will include (to preclude the table

from having to grow substantially).

:kbd-accelerator-p Boolean option specifying whether single-

key accelerators may be used for commands; the default is

t. Just because accelerators are defined does not mean

that non-accelerated command reading is prohibited.

:accelerator-case-matters Boolean option specifying whether single-

key accelerators, if allowed, are case sensitive; the default

is nil.�

:if-exists Specifies what happens if the command table named name already

exists. Four values are possible:

nil No new command table is made and the existing

command table is returned.

:supersede The new command table is made and re-

places the old command table.

:update-options The existing command table remains but

its options are updated to the newly specified init op-

tions in the call to cp:make-command-table.

:error An error is signalled.�

Example:

(cp:make-command-table "shell-cmds" :inherit-from ’("user")

 :kbd-accelerator-p nil)�

For an overview of cp:make-command-table and related facilities: See the section

"Managing the Command Processor".

Page 1292

� make-mouse-char button &optional (bits 0) Function

Constructs a mouse character given a mouse button number. 0, 1, and 2 corre-

spond to the Left, Middle, and Right mouse buttons, respectively.

The optional bits argument is a number encoding the shift keys qualifying the root

mouse character as follows:

Bits Shift Key

0 None

1 CONTROL

2 META

4 SUPER

8 HYPER

16 SHIFT�

The shift keys are additive with respect to the bits value, for example:

(make-mouse-char 0 31) ==>

#\h-s-m-c-sh-Mouse-L�

� tv:make-sheet-bit-array window width height &rest make-array-options Function

Creates a two-dimensional bit-array useful for bitblting to and from windows. It

makes an array whose first dimension is at least width but is rounded up so that

bitblt’s restriction regarding multiples of 32. is met, whose second dimension is

height, and whose type is the same type as that of the screen array of window (or

the type it would be if window had a screen array). make-array-options are passed

along to zl:make-array when the array is created, so you can control other param-

eters such as the area.

� tv:make-window flavor-name &rest init-options Function

Creates, initializes, and returns a new window of the specified flavor. The init-

options argument is the init-plist (it is just like the &rest argument of make-

instance). The allowed initialization options depend on what flavor of window you

are making. Each window flavor handles some init options; the options and what

they mean are documented with the documentation of the flavor. Note that

:activate-p and :expose-p are keyword arguments which cannot be specified in the

flavor’s :default-init-plist.

Example:

Page 1293

(defun make-window-example ()

 (let ((window (tv:make-window ’tv:window

:edges-from :mouse

 :expose-p t

:blinker-p t

:default-character-style

 ’(:fix :bold :large)

:save-bits t)))

 (format window "~2%Note the character style"))) �

The above function lets you specify the location of the upper-left and lower-right

corners of the window with the mouse. Once the location is specified, the window

is created and exposed. A blinker is visible; its size is that of the default character

style for character output. Because the :save-bits init option is t, the formatted

output to the window will still be visible after the window is de-exposed and then

re-exposed.

� dw:margin-borders Flavor

Provides Dynamic Windows with a four-sided, black (or draw-alu color) border.

dw:margin-borders accepts the following init option:

:thickness Specifies the thickness, in pixels, of the border; the de-

fault is 1.

For an overview of dw:margin-borders and related facilities, see the section "Win-

dow Substrate Facilities".

� tv:margin-choice-mixin Flavor

Puts choice boxes in the bottom margin, according to a list of choice-box descrip-

tors that can be specified with the :margin-choices init-plist option or the :set-

margin-choices message. The choice boxes are spread evenly across the bottom

margin.

A choice-box descriptor is a list, defined as follows:

(name state function x1 x2)�

You can use a longer list as a choice-box descriptor and store your own data in the

additional elements.

name is a string that labels the box. state is t if the box has an "X" in it, or nil if

it is empty.

function is a function called by the system in a separate process if the user clicks

on the choice box. It receives four arguments: the window containing the choice

box, the choice-box descriptor for the choice box, the "margin region" that contains

the choice boxes, and the Y position of the mouse relative to this window. (The

last two arguments are usually ignored.)

Page 1294

The structure access functions tv:choice-box-name and tv:choice-box-state may be

of use inside function (they are just more specific names for car and cadr). If

function changes the state of the choice box, it should refresh the choice boxes in

the following way:

(send (tv:margin-region-function region) :refresh window region)�

where region is its third argument. This is why the region argument is passed.

Note that automatic implications of a choice (things that happen to the other

choice boxes when one choice box is selected), such as in the multiple choice facili-

ty are not implemented in the margin-choice facility. See the section "The Multiple

Choice Facility". Programmers must write their own implication routines.

x1 and x2 are used internally to remember the location of the choice boxes.

tv:margin-choice-mixin is built on the non-instantiable flavor tv:margin-region-

mixin; the position of the latter in the list of component flavors controls where in

the margins the choice boxes appear. The default puts tv:margin-region-mixin

right after tv:margin-choice-mixin. To place the choice boxes inside the borders,

use the following model:

(defflavor bordered-window-with-margin-choices ()

(tv:borders-mixin tv:margin-choice-mixin tv:window)�

� (flavor:method :margin-choices tv:choose-variable-values) list Init Option

The argument is a list of specifications for choice boxes to appear in the bottom

margin. Each element can be a string, which is the label for the box that means

"done," or a list containing a label string and a form to be evaluated if that choice

box is clicked on. Since this form is evaluated in the user process it can do such

things as alter the values of variables or zl:*throw out. With this facility, the de-

fault for :margin-choices is [Exit]. For an explanation of margin choices and their

use, see the section "The Margin Choice Facility".

� (flavor:method :margin-choices tv:choose-variable-values-window) choice-list

Init Option

The default is a single choice box, labelled [Done]. For an explanation of the

choice-box descriptors, see the section "The Margin Choice Facility". Note that

specifying nil for this option suppresses the margin-choices entirely.

� (flavor:method :margin-choices tv:margin-choice-mixin) choices Init Option

Causes a line of choice-boxes to appear in the bottom margin of the window. choic-

es is a list of choice-box descriptors, described previously. If choices is nil, there

are no choice boxes and no space for them in the bottom margin; however, the

window is still capable of accepting the :set-margin-choices message to create a

line of choice boxes later.

Page 1295

� dw:margin-drop-shadow-borders Flavor

Provides Dynamic Windows with a black (normal video) border shadowed on its

right and bottom margins by a gray border.

dw:margin-drop-shadow-borders accepts the following init options:

:non-shadow-thickness Specifies the thickness, in pixels, of the

black border; the default is 3.

:outside-margin Specifies the thickness, in pixels, of whitespace sur-

rounding the shadowed and non-shadowed borders of the box; the

default is 0.

:shadow-thickness Specifies the thickness, in pixels, of the gray margins

on the right and bottom edges of the window; the default is 8.

For an overview of dw:margin-drop-shadow-borders and related facilities, see the

section "Window Substrate Facilities".

� dw:margin-label Flavor

Specifies Dynamic Window labels.

dw:margin-label accepts the following init options:

:background-gray Specifies a binary array to use as a background pattern

for the label.

You can provide your own array via the tv:make-binary-array func-

tion for an example, see the dictionary entry for graphics:draw-

pattern or use one of the standard, background-gray patterns:

stipples:25%-gray, stipples:33%-gray, stipples:50%-gray, or

stipples:75%-gray.

Note that the specification is for an array object, not its symbol.

:box Specifies whether to enclose the label in a box; the default is nil.

Other permissible values are :inside and :outside. If you wish to

box the label within a just-specified border, use :inside; if you wish

to box the label outside of a border about to be specified, use

:outside.

:box-thickness Specifies the thickness, in pixels, of the line used to

draw a box around the label when the :box init option is non-nil.

:centered-p Boolean option specifying whether the label is left-right

centered. The default is nil, causing the label to appear on the left

side of the margin.

:extend-box-p Boolean option specifying whether the box drawn

(when the :box option is non-nil) extends the full length of the mar-

gin or is limited to the length of the label; the default is t.

Page 1296

:margin Specifies the margin, :top or :bottom, on which the label appears;

the default is :bottom.

:string Specifies the label string. The default string is derived from the

name of the window flavor used to make the window instance.

:style Specifies the character style used for writing the label string. The

default value is the character-style default for the screen.

� :character-style Specifies the character style used for writing the label

string. The default value is the character-style default for the

screen. :character-style and :style are different names for the same

option (for back-compatibility).

After a window instance is created, you can change its label by using

(flavor:method :set-label dw:margin-mixin).

For an overview of dw:margin-label and related facilities: See the section "Win-

dow Substrate Facilities".

� dw:margin-ragged-borders Flavor

Provides Dynamic Windows with a ragged (wavy) border to indicate that more out-

put can be viewed by scrolling in the direction indicated. The border is only

ragged when there is in fact more output to be viewed; otherwise, it is straight.

dw:margin-ragged-borders accepts the following init options:

:horizontal-too Boolean option specifying whether to provide ragged

left and right margins in addition to ragged top and bottom mar-

gins; the default is t.

:thickness Specifies the thickness, in pixels, of the border; the de-

fault is 2.

For an overview of dw:margin-ragged-borders and related facilities, see the sec-

tion "Window Substrate Facilities".

� dw:margin-scroll-bar Flavor

Provides an "elevator" scroll bar to a Dynamic Window.

dw:margin-scroll-bar accepts the following init options:

:elevator-thickness Specifies the overall width, in pixels, of the scroll bar;

the default is 10.

:history-noun Specifies a string appearing as part of the mouse docu-

mentation when the mouse cursor is moved over the scroll bar. The

specified string is substituted for the word "history", the default

value for this option.

Page 1297

For example, if you specified "graphic output", when the window

was created and the user positioned the mouse cursor in the middle

of the scroll bar, the mouse documentation line would read, "...

Middle: Move to 50% of graphic output..." instead of "... Middle:

Move to 50% of history..."

:margin Specifies the margin :left, :right, :top, or :bottom on which

the scroll bar appears; the default is :left.

:shaft-whitespace-thickness Specifies the thickness, in pixels, of addi-

tional whitespace (normal video) inserted on each side of the scroll

bar between it and the neighboring component. The default is 0,

causing the whitespace to be one-pixel-wide on both sides.

:visibility

Specifies when the scroll bar is visible. Three values are permitted:

:normal The scroll bar appears when the flavor is instantiated and

remains visible regardless of whether it is needed. This is

the default.

:if-requestedAn empty elevator shaft appears when the flavor is in-

stantiated and after each new output operation to the

window. If the user moves the mouse cursor into the

scroll bar area, the standard cross-hatched pattern is

drawn in the shaft and the scroll bar becomes normally

active.

:if-needed The scroll bar does not appear until the output exceeds

the window space available for displaying it, that is, until

the need for scrolling arises; thereafter it remains visible

and normally active. The space needed for drawing the

scroll bar is reserved by whitespace (normal video) until

the scroll bar appears.�

For an overview of dw:margin-scroll-bar and related facilities: See the section

"Window Substrate Facilities".

� tv:margin-scroll-mixin Flavor

Provides scrolling by clicking on margin regions.

� (flavor:method :margin-scroll-regions tv:margin-scroll-mixin) regions Init Option

Allows you to specify the messages at the top and bottom of the display.

regions is a list of lists. Each list contains four elements:

• :top or :bottom.

Page 1298

• A string that displays at the end of the item list in the given direction.

• A string that displays when there are more items to display in the given direc-

tion.

• The character style that the string prints in.�

The keyword :top is identical to the list:

(:top "Top" "More above" (:dutch :italic :small))

The Keyword :bottom is identical to the list:

(:bottom "Bottom" "More below" (:dutch :italic :small))

� tv:margin-scrolling-with-flashy-scrolling-mixin Flavor

Provides More above and More below style window scrolling for a text scroll win-

dow.

� (flavor:method :margin-space tv:margin-space-mixin) Init Option

Initializes the amount of blank space in the margins of the window. Possible val-

ues:

nil No space

t One pixel blank in each of the four margins

n n pixels of space in each of the four margins (n is an integer)

(left top right bottom) left pixels blank in the left margin, top pixels blank in

the top margin, and so on (values are integers)�

� (flavor:method :margin-space tv:margin-space-mixin) Method

Returns a list of four elements, (left top right bottom). These are integers repre-

senting the number of pixels of blank space in the four margins of the window.

� tv:margin-space-mixin Flavor

Provides a margin item that just leaves some blank space. It might be useful if

you’re using scroll bars, and you want to leave a little white space between the

scroll bar and the inside of the window.

� (flavor:method :margins tv:sheet) Method

Returns four values: the sizes of the left, top, right, and bottom margins, respec-

tively.

Page 1299

� dw:margin-white-borders Flavor

Provides Dynamic Windows with a four-sided, white (or erase-alu color) border.

dw:margin-white-borders accepts the following init option:

:thickness Specifies the thickness, in pixels, of the border; the de-

fault is 1.

For an overview of dw:margin-white-borders and related facilities, see the section

"Window Substrate Facilities".

� dw:margin-whitespace Flavor

Provides Dynamic Windows with whitespace (or erase-alu color) on a margin.

dw:margin-whitespace accepts the following init options. Note that the :margin

must be specified or else an error results.

:margin Specifies the margin, one of :left, :right, :top, or :bottom.

:thickness Specifies the thickness, in pixels, of the border; the de-

fault is 1.

For an overview of dw:margin-whitespace and related facilities, see the section

"Window Substrate Facilities".

� tv:menu Flavor

This is tv:basic-menu with borders and an optional label on top. By default, there

is no label, but you can specify one with the :label init-plist option or the :set-

label message. tv:menu is built on the tv:basic-menu, tv:borders-mixin, tv:top-

box-label-mixin, tv:basic-scroll-bar, and tv:minimum-window flavors.

� dw:menu-choose item-list &key (prompt nil) (default nil) (presentation-type nil)

(printer nil) (near-mode ’(:mouse)) (superior tv:mouse-sheet) (center-p

dw::*default-menu-center-p*) (character-style ’(:jess :roman :large)) (momentary-p

t) (temporary-p dw::momentary-p) (alias-for-selected-windows nil) (minimum-width

nil) (minimum-height nil) Function

Constructs a menu from a list of items and returns the value associated with the

selected item; also returned are the item and the mouse character that was used

to select it.

item-list A quoted list of items to include in the menu display. A menu item

can have various forms: See the section "The Form of a Menu

Item".

If you wish to control the mouse documentation associated with an

item, use the "general list" form and include the :documentation

menu-item option.

Page 1300

Example:

(dw:menu-choose ’(("First Choice" :value 1

 :documentation "Mouse Doc One")

 ("Second Choice" :value 2

 :documentation "Mouse Doc Two")))�

The other available menu-item option is :style, specifying the char-

acter style of the individual item. This contrasts with the

:character-style option to dw:menu-choose as a whole, which speci-

fies the style for all items. If both are specified, the locally specified

:style prevails. For an example, see the :character-style option; de-

scriptions of this and other options to dw:menu-choose follow.�

:prompt Specifies a string to use as a title for the menu. The menu title ap-

pears at the top of the menu.

:default Specifies an item in the item-list that is the currently selected

(highlighted) item when the menu is first displayed.

If the item list is a simple one containing symbols, then specify the

default item by its symbol as shown below:

Simple example:

(dw:menu-choose ’(a b c) :default ’a)�

If the items are themselves lists, then supply the default item in a

fashion similar to that shown in the following example. (That is, be

sure to specify an item, not the item’s value. The default you speci-

fy must be eq to the item.)

(setq item-list ’(("One" :value 1) ("Two" :value 2)))

(dw:menu-choose item-list :default (first item-list))�

:presentation-type Specifies the presentation type of the items presented

in the menu. This results in the printer for that presentation type

being used to display the items in the menu.

Because each item (element) in item-list is passed to the presenta-

tion type’s printer, using this option is, in general, only appropriate

when item-list is a simple list of objects (as opposed to a "general

list"). In this case, you might also consider using dw:menu-choose-

from-set rather than dw:menu-choose.

:printer Specifies a function of two arguments for printing the menu items.

The arguments are an object one element of the item-list and

a stream. If both this option and the :presentation-type option are

specified, the printer used is the one specified by this option, not

that of the presentation type.

Example:

Page 1301

(dw:menu-choose ’((a :value test)

 (b :value 17))

 :printer

 #’(lambda (object stream)

 (format stream

"xxx~Axxx" (car object))))

�

The example function pops up a menu displaying two choices,

"xxxAxxx" and "xxxBxxx". Clicking on "xxxAxxx" returns TEST;

clicking on "xxxBxxx" returns 17.�

:near-mode Specifies where the menu appears. The default makes

it appear near the position of the mouse cursor at the time the

function is called. For other possibilities: See the method

(flavor:method :expose-near tv:essential-set-edges).

:superior Specifies the window that is the superior of the menu window; the

default is tv:mouse-sheet.

:center-p Boolean option specifying whether items displayed in the menu are

centered, left to right. The default is nil, which causes the items to

be flush left.

:character-style Specifies the character style for display of menu items.

The default is (:jess :roman :large).

If the :style option for an individual item is specified, this locally

overrides the :character-style specified for the menu as a whole,

but does not affect other items. The example below illustrates this:

(dw:menu-choose ’(("First Choice" :value 1

 :style (nil nil :normal))

 ("Second Choice" :value 2))

 :character-style

 ’(:serif :bold :very-large))�

:momentary-p Boolean option specifying whether the menu is momen-

tary or temporary; the default is momentary. If you wish to make

the menu temporary, supply a value of nil to this option and t to

the :temporary-p option.

A momentary window is deactivated and returns a value of nil if

the user moves the mouse cursor off the menu. A temporary menu

remains active until the user selects a menu item.

:temporary-p Boolean option specifying whether the menu is tempo-

rary or momentary; the default is momentary. If you wish to make

the menu temporary, supply a value of t to this option and nil to

the :momentary-p option.

Page 1302

A momentary window is deactivated and returns a value of nil if

the user moves the mouse cursor off the menu. A temporary menu

remains active until the user selects a menu item.

:alias-for-selected-windows Specifies the activity to be returned by

the menu in response to the :alias-for-selected-windows window

message. The default value, nil, specifies that the menu should re-

turn itself.

Using :alias-for-selected-windows allows you to join the menu to

another activity, as opposed to having the menu be an activity in its

own right. This causes Function S to select a different activity

when invoked while the menu is popped up, instead of selecting the

window under the menu.

For example, if you type

(dw:menu-choose-from-set ’(a b c) ’symbol

 :alias-for-selected-windows *terminal-io*)�

from the Lisp Listener, and issue a FUNCTION S command while the

menu is present, you will select the window that was selected just

before the Lisp Listener. If you had taken the default for :alias-for-

selected-windows, FUNCTION S over the window would have selected

the Lisp Listener.

:minimum-width Specifies the minimum width of the menu in pixel

units. The default, nil, causes the width of the window to be only as

wide as is necessary to contain the menu items.

:minimum-height Specifies the minimum height of the menu in pixel

units. The default, nil, causes the width of the window to be only

as high as is necessary to contain the menu items.

For an overview of dw:menu-choose and related facilities: See the section "Using

Presentation Types for Input".

� tv:menu-choose item-list &optional label near-mode default-item Function

item-list is a list of menu items. See the section "Types of Menu Items". This func-

tion pops up a menu and allows the user to make a choice with the mouse. When

the choice is made, the menu disappears and the chosen item is executed. The val-

ue of that item is returned. If the user moves the mouse out of the menu and far

away, it pops down without making any choice and nil is returned.

label is a string to be displayed at the top of the menu, or nil (the default) to

specify the absence of a label.

near-mode specifies where to put the menu on the screen. It defaults to the list

(:mouse) and must be an acceptable argument to tv:expose-window-near.

Page 1303

default-item is the item over which the mouse should be positioned initially. This

allows the user to select that item without moving the mouse. If default-item is nil

or unspecified, the mouse is initially positioned in the center of the menu.

� dw:menu-choose-from-copy-of-window-contents window presentation-type &key

:prompt :default (:near-mode ’(:mouse)) (:superior (tv:mouse-default-superior

dw::window)) (:momentary-p t) (:temporary-p dw::momentary-p) Function

Displays a pop-up copy of window and chooses an item of presentation-type from it.

Similar to dw:menu-choose-from-set.

window A window, typically, a menu pane of a program frame.

presentation-type The presentation type used to present the objects.

Here is an example taken from the graphic editor:

(define-presentation-to-command-translator pop-up-shapes-menu

 (graphic-input:grid-output

 :blank-area t :menu ()

 :gesture :pop-up-shapes-menu ;:menu

 :documentation "Shapes menu")

 (ignore &key window x y)

 (when (drawing-window-point-p window x y)

 (if dw:*inside-handler-test-phase*

‘(com-create-entity)

(let* ((frame (send window :superior))

 (shape (dw:menu-choose-from-copy-of-window-contents

(send frame :get-pane ’shapes-menu) ’entity-shape

:prompt "Create a shape" :superior frame)))

 (if (null shape)

 (signal ’sys:abort)

 ‘(com-create-entity ,shape))))))

� :prompt Specifies a string to use as a title for the menu. The menu title ap-

pears at the top of the menu.

� :default Specifies an item to be the currently selected (highlighted) item

when the menu is first displayed.

Examples:

(dw:menu-choose-from-set ’(a b c) ’symbol :default ’a)

�

(setq item-list ’("One" "Two"))

(dw:menu-choose-from-set item-list ’string

 :default (first item-list))�

� :near-mode Specifies where the menu appears. The default makes

it appear near the position of the mouse cursor at the time the

function is called. For other possibilities: See the method

Page 1304

(flavor:method :expose-near tv:essential-set-edges).

� :superior Specifies the window that is the superior of the menu window; the

default is tv:mouse-sheet.

� :momentary-p Boolean option specifying whether the menu is momen-

tary or temporary; the default is momentary. If you wish to make

the menu temporary, supply a value of nil to this option and t to

the :temporary-p option.

A momentary window is deactivated and returns a value of nil if

the user moves the mouse cursor off the menu. A temporary menu

remains active until the user selects a menu item.

� :temporary-p Boolean option specifying whether the menu is tempo-

rary or momentary; the default is momentary. If you wish to make

the menu temporary, supply a value of t to this option and nil to

the :momentary-p option.

A momentary window is deactivated and returns a value of nil if

the user moves the mouse cursor off the menu. A temporary menu

remains active until the user selects a menu item.

� dw:menu-choose-from-copy-of-window-contents window presentation-type &key

:prompt :default (:near-mode ’(:mouse)) (:superior (tv:mouse-default-superior

dw::window)) (:momentary-p t) (:temporary-p dw::momentary-p) Function

Displays a pop-up copy of window and chooses an item of presentation-type from it.

Similar to dw:menu-choose-from-set.

window A window, typically, a menu pane of a program frame.

presentation-type The presentation type used to present the objects.

Here is an example taken from the graphic editor:

Page 1305

(define-presentation-to-command-translator pop-up-shapes-menu

 (graphic-input:grid-output

 :blank-area t :menu ()

 :gesture :pop-up-shapes-menu ;:menu

 :documentation "Shapes menu")

 (ignore &key window x y)

 (when (drawing-window-point-p window x y)

 (if dw:*inside-handler-test-phase*

‘(com-create-entity)

(let* ((frame (send window :superior))

 (shape (dw:menu-choose-from-copy-of-window-contents

(send frame :get-pane ’shapes-menu) ’entity-shape

:prompt "Create a shape" :superior frame)))

 (if (null shape)

 (signal ’sys:abort)

 ‘(com-create-entity ,shape))))))

� :prompt Specifies a string to use as a title for the menu. The menu title ap-

pears at the top of the menu.

� :default Specifies an item to be the currently selected (highlighted) item

when the menu is first displayed.

Examples:

(dw:menu-choose-from-set ’(a b c) ’symbol :default ’a)

�

(setq item-list ’("One" "Two"))

(dw:menu-choose-from-set item-list ’string

 :default (first item-list))�

� :near-mode Specifies where the menu appears. The default makes

it appear near the position of the mouse cursor at the time the

function is called. For other possibilities: See the method

(flavor:method :expose-near tv:essential-set-edges).

� :superior Specifies the window that is the superior of the menu window; the

default is tv:mouse-sheet.

� :momentary-p Boolean option specifying whether the menu is momen-

tary or temporary; the default is momentary. If you wish to make

the menu temporary, supply a value of nil to this option and t to

the :temporary-p option.

A momentary window is deactivated and returns a value of nil if

the user moves the mouse cursor off the menu. A temporary menu

remains active until the user selects a menu item.

� :temporary-p Boolean option specifying whether the menu is tempo-

rary or momentary; the default is momentary. If you wish to make

the menu temporary, supply a value of t to this option and nil to

the :momentary-p option.

Page 1306

A momentary window is deactivated and returns a value of nil if

the user moves the mouse cursor off the menu. A temporary menu

remains active until the user selects a menu item.

� dw:menu-choose-from-drawer drawer presentation-type &key :prompt :default

(:near-mode ’(:mouse)) (:superior (tv:mouse-default-superior)) :alias-for-selected-

windows (:row-wise t) (:center-p dw::*default-menu-center-p*) (:character-style

dw::*default-menu-character-style*) (:momentary-p t) (:temporary-p

dw::momentary-p) (:use-redisplay t) :minimum-width :minimum-height Function

Constructs a menu from a collection of presentations produced by drawer of pre-

sentation type presentation-type and returns the selected object. This function is

similar to dw:menu-choose-from-set.

drawer A function that returns a set of presentations. It is funcalled (per-

haps several times, within redisplayer) given stream and the key-

word arguments :max-width and :max-height. For example:

#’(lambda (stream &rest ignore)

 (loop for item in handler-list

 collect

 (present item presentation-type

 :stream stream

 :single-box t

 :allow-sensitive-inferiors nil

 :allow-sensitive-raw-text nil)

 do (send stream :tyo #\return)))

presentation-type The presentation type used to present the objects (but

see the :printer option below).

� :prompt Specifies a string to use as a title for the menu. The menu title ap-

pears at the top of the menu.

� :default Specifies an item to be the currently selected (highlighted) item

when the menu is first displayed.

Examples:

(dw:menu-choose-from-set ’(a b c) ’symbol :default ’a)

�

(setq item-list ’("One" "Two"))

(dw:menu-choose-from-set item-list ’string

 :default (first item-list))�

� :near-mode Specifies where the menu appears. The default makes

it appear near the position of the mouse cursor at the time the

function is called. For other possibilities: See the method

(flavor:method :expose-near tv:essential-set-edges).

Page 1307

� :superior Specifies the window that is the superior of the menu window; the

default is tv:mouse-sheet.

� :alias-for-selected-windows Specifies the activity to be returned by

the menu in response to the :alias-for-selected-windows window

message. The default value, nil, specifies that the menu should re-

turn itself.

Using :alias-for-selected-windows allows you to join the menu to

another activity, as opposed to having the menu be an activity in its

own right. This causes Function S to select a different activity

when invoked while the menu is popped up, instead of selecting the

window under the menu.

For example, if you type

(dw:menu-choose-from-set ’(a b c) ’symbol

 :alias-for-selected-windows *terminal-io*)�

from the Lisp Listener, and issue a FUNCTION S command while the

menu is present, you will select the window that was selected just

before the Lisp Listener. If you had taken the default for :alias-for-

selected-windows, FUNCTION S over the window would have selected

the Lisp Listener.

� :row-wiseA Boolean specifying when t, that the menu items are to be dis-

played row-wise.

� :center-p Boolean option specifying whether items displayed in the menu are

centered, left to right. The default is nil, which causes the items to

be flush left.

� :character-style Specifies the character style for display of menu items.

The default is (:jess :roman :large).

� :momentary-p Boolean option specifying whether the menu is momen-

tary or temporary; the default is momentary. If you wish to make

the menu temporary, supply a value of nil to this option and t to

the :temporary-p option.

A momentary window is deactivated and returns a value of nil if

the user moves the mouse cursor off the menu. A temporary menu

remains active until the user selects a menu item.

� :temporary-p Boolean option specifying whether the menu is tempo-

rary or momentary; the default is momentary. If you wish to make

the menu temporary, supply a value of t to this option and nil to

the :momentary-p option.

A momentary window is deactivated and returns a value of nil if

the user moves the mouse cursor off the menu. A temporary menu

remains active until the user selects a menu item.

Page 1308

� :use-redisplay A Boolean specifying when t that the menu is to be

displayed redisplayably.

� :minimum-width Specifies the minimum width of the menu in pixel

units. The default, nil, causes the width of the window to be only as

wide as is necessary to contain the menu items.

� :minimum-height Specifies the minimum height of the menu in pixel

units. The default, nil, causes the width of the window to be only

as high as is necessary to contain the menu items.

� dw:menu-choose-from-set list presentation-type &key (printer nil) (prompt nil) (de-

fault nil) (near-mode ’(:mouse)) (superior tv:mouse-sheet) (center-p dw::*default-

menu-center-p*) (character-style ’(:jess :roman :large)) (momentary-p t) (tempo-

rary-p dw::momentary-p) (alias-for-selected-windows nil) (minimum-width nil)

(minimum-height nil) Function

Constructs a menu from a list of objects of a specified presentation type and re-

turns the selected object.

This function is similar to dw:menu-choose, but is intended primarily for present-

ing a simple list of items in menu format, not items of the "general list" form that

dw:menu-choose handles.

list The list of objects.

presentation-type The presentation type used to present the objects (but

see the :printer option below).�

Examples:

(dw:menu-choose-from-set ’(a b c) ’symbol)

�

(dw:menu-choose-from-set ’(#p"sys:site;foo.bar"

 #p"y:>doughty>a.b") ’pathname)

�

(setq item-list ’("One" "Two"))

(dw:menu-choose-from-set item-list ’string)�

:printer Specifies a function of two arguments for printing menu items. The

arguments are an object one element of list and a stream. If

specified, this printer is used for displaying menu items rather than

that of the specified presentation-type.

Example:

Page 1309

(dw:menu-choose-from-set ’(#p"sys:site;config.data"

#p"y:>doty>examples.lisp") ’pathname

 :printer

 #’(lambda (object stream)

 (write-string

(send object :name)

 stream)))

�

The example function creates a menu displaying the choices "CON-

FIG" and "EXAMPLES". Pathname objects are still returned when

clicked on; just the appearance in the menu has changed.�

:prompt Specifies a string to use as a title for the menu. The menu title ap-

pears at the top of the menu.

:default Specifies an item to be the currently selected (highlighted) item

when the menu is first displayed.

Examples:

(dw:menu-choose-from-set ’(a b c) ’symbol :default ’a)

�

(setq item-list ’("One" "Two"))

(dw:menu-choose-from-set item-list ’string

 :default (first item-list))�

:near-mode Specifies where the menu appears. The default makes

it appear near the position of the mouse cursor at the time the

function is called. For other possibilities: See the method

(flavor:method :expose-near tv:essential-set-edges).

:superior Specifies the window that is the superior of the menu window; the

default is tv:mouse-sheet.

:center-p Boolean option specifying whether items displayed in the menu are

centered, left to right. The default is nil, which causes the items to

be flush left.

:character-style Specifies the character style for display of menu items.

The default is (:jess :roman :large).

:momentary-p Boolean option specifying whether the menu is momen-

tary or temporary; the default is momentary. If you wish to make

the menu temporary, supply a value of nil to this option and t to

the :temporary-p option.

A momentary window is deactivated and returns a value of nil if

the user moves the mouse cursor off the menu. A temporary menu

remains active until the user selects a menu item.

Page 1310

:temporary-p Boolean option specifying whether the menu is tempo-

rary or momentary; the default is momentary. If you wish to make

the menu temporary, supply a value of t to this option and nil to

the :momentary-p option.

A momentary window is deactivated and returns a value of nil if

the user moves the mouse cursor off the menu. A temporary menu

remains active until the user selects a menu item.

:alias-for-selected-windows Specifies the activity to be returned by

the menu in response to the :alias-for-selected-windows window

message. The default value, nil, specifies that the menu should re-

turn itself.

Using :alias-for-selected-windows allows you to join the menu to

another activity, as opposed to having the menu be an activity in its

own right. This causes Function S to select a different activity

when invoked while the menu is popped up, instead of selecting the

window under the menu.

For example, if you type

(dw:menu-choose-from-set ’(a b c) ’symbol

 :alias-for-selected-windows *terminal-io*)�

from the Lisp Listener, and issue a FUNCTION S command while the

menu is present, you will select the window that was selected just

before the Lisp Listener. If you had taken the default for :alias-for-

selected-windows, FUNCTION S over the window would have selected

the Lisp Listener.

:minimum-width Specifies the minimum width of the menu in pixel

units. The default, nil, causes the width of the window to be only as

wide as is necessary to contain the menu items.

:minimum-height Specifies the minimum height of the menu in pixel

units. The default, nil, causes the width of the window to be only

as high as is necessary to contain the menu items.

For an overview of dw:menu-choose-from-set and related facilities: See the sec-

tion "Using Presentation Types for Input".

� (flavor:method :menu-highlighted-items tv:menu-highlighting-mixin) Method

Get the list of highlighted items.

� tv:menu-highlighting-mixin Flavor

Allows some of the menu items to be highlighted with inverse video. This is typi-

cally used with menus of options, where the options currently in effect are high-

lighted. The menu items corresponding to modes are typically set up so that when

Page 1311

executed, they adjust the highlighting to reflect the enabling or disabling of a

mode.

� :merged-help function &rest arguments Option

When the user presses HELP, the input editor types out a message determined by

the arguments. function is a function that takes at least two arguments. The input

editor calls the function to print the help message. The first argument is the

stream. The second argument is a continuation (a list) to print a standard message

describing how to invoke input editor commands and other information about the

stream. When the function wants to print this message, it should apply the car of

the continuation to the cdr. If any arguments are supplied, they are the remaining

arguments to the function.

If a :brief-help or :complete-help option has been specified, it overrides :merged-

help. :merged-help overrides :partial-help.

This option is intended for programs that want to decide when and where to dis-

play their own help messages and the standard help message.

� (flavor:method :minimum-height tv:essential-window) n-pixels Init Option

In combination with the :edges-from :mouse init option, this option and

:minimum-width specify the minimum size of the rectangle accepted from the

user. If the user tries to specify a size smaller than one or both of these minima,

the console will beep or flash, and the user will be prompted to start over again

with a new top-left corner.

� (flavor:method :minimum-height tv:menu) arg Init Option

� (flavor:method :minimum-width tv:essential-window) n-pixels Init Option

In combination with the :edges-from :mouse init option, this option and

:minimum-height specify the minimum size of the rectangle accepted from the

user. If the user tries to specify a size smaller than one or both of these minima,

the console will beep or flash, and the user will be prompted to start over again

with a new top-left corner.

� (flavor:method :minimum-width tv:menu) arg Init Option

In combination with the :edges-from :mouse init option, :minimum-height and

:minimum-width specify the minimum size (in pixels) of the rectangle accepted

from the user. If the user tries to specify a size smaller than one or both of these

minimums, the screen beeps and the system prompts the user with a new left-

corner.

Page 1312

� tv:momentary-menu &optional (superior tv:mouse-sheet) Resource

A resource of momentary menus. tv:menu-choose allocates a window from this re-

source.

� tv:momentary-menu Flavor

Built on tv:basic-momentary-menu mixed with tv:menu. See the section "The

Flavor Network of tv:menu".

Momentary menus display a list of items. The user can avoid making a choice by

moving the mouse outside the menu. In this case, the menu disappears.

� tv:momentary-multiple-item-list-menu Flavor

The instantiable version of the multiple-item-list-menu flavor. It is a mixture of

tv:multiple-item-list-menu-mixin with tv:basic-momentary-menu and other appro-

priate flavors.

� tv:momentary-multiple-menu Flavor

Built on tv:multiple-menu-mixin and tv:menu-highlighting-mixin with

tv:momentary-menu.

The menu is exposed near the mouse, and like any momentary menu, the menu

disappears once the user has made a choice.

� tv:momentary-window-hacking-menu Flavor

A momentary menu combined with tv:window-hacking-menu-mixin. The window

that the menu is exposed over is remembered when the :choose message is sent.

The remembered window is used if a :window-op type item is selected.

� time:month-length month year Function

Returns the number of days in month; you must supply a year in case the month

is February (which has a different length during leap years). year can be absolute

or relative to 1900 (that is, 84 and 1984 both work).

time:month-string month &optional (mode ’:long) Function

Returns a string representing the month of the year. As usual, 1 means January, 2

means February, and so on. Possible values of mode are:

:short Return a three-letter abbreviation, such as "jan", "feb", and so on.

:long Return the full English name, such as "january", "february", and so

on. This is the default.

Page 1313

:medium Same as :short, but use "sept", "novem", and "decem".

:french Return the French name, such as "janvier", "fevrier", and so on.

:roman Return the Roman numeral for month (this convention is used in Eu-

rope).

:german Return the German name, such as "januar", "februar", and so on.

:italian Return the Italian name, such as "gennaio", "febbraio", and so on.�

(flavor:method :more-p tv:sheet) t-or-nil Init Option

Initializes whether the window should have more processing. It defaults to t.

� (flavor:method :more-p tv:sheet) Method

Returns t if more processing is enabled; otherwise, return nil.

� tv:mouse-button-encode bd Function

Watches the mouse button and determines whether a single-click or double-click is

happening. Call this function when a mouse button has been pushed and you want

to interpret the push as a click. It returns nil if no button is pushed, or an encod-

ed integer giving the click in the usual way.

You call tv:mouse-button-encode only when a button has just been pushed; that

is, when you see some button down that was not down before. You must pass in

the argument, bd, which is a bit mask saying which buttons are down now that

were not down "before". The form (boole 2 old-buttons new-buttons) computes this

mask.

� sys:mouse-buttons &optional peek Function

Returns the current state of the mouse buttons. If peek is not nil, it looks at the

state without pulling anything out of the buffer (of pending mouse-button transi-

tions).

It returns four values:

• An integer representing the state of the mouse buttons. 0 means no buttons

were pressed; 1, 2, and 4 represent the Left, Middle, and Right buttons, respec-

tively. (Except on the Symbolics 3600, chording is not supported; that is, if more

than one button is pressed, the integer returned is not the sum of the individual

button codes.)

• An integer representing the time when that state was true.

• The X-coordinate of the mouse at that time.

Page 1314

• The Y-coordinate of the mouse at that time.�

To use some parts of the mouse software, such as tv:mouse-button-encode, you

can store these four returned values into the variables tv:mouse-last-buttons,

tv:mouse-last-buttons-time, tv:mouse-last-buttons-x, and tv:mouse-last-buttons-y,

respectively. The mouse process does this itself when the mouse is not usurped.

� mouse-char-p char Function

Returns t if char is a mouse character, nil otherwise.

� (flavor:method :mouse-click tv:essential-mouse) buttons x y Method

Called by the :mouse-buttons method of tv:essential-mouse, which is called by

the default mouse handler when mouse buttons are pushed. buttons is a structure

representing the buttons pushed; use reader macros like #\Mouse-R to handle

these structures in your program. (See the section "Mouse Characters".) x and y

represent the position of the mouse at the time of the click, in the window’s out-

side coordinates.

If the click is #\sh-Mouse-R, the :mouse-buttons method pops up a system menu.

Otherwise, if the window has an I/O buffer, :mouse-click sends it a blip of the

form (:mouse-button buttons window x y). In addition, if the click is #\Mouse-L,

the window is selected.

:mouse-click methods are combined using :or combination, so the :mouse-click

method of tv:essential-mouse runs only if no earlier method handles the message

(and all earlier methods return nil). This allows a method to intercept only certain

clicks and return non-nil, and to pass on other clicks and return nil.

� tv:mouse-double-click-time Variable

The maximum period of time (in microseconds) between mouse clicks for which

the clicks are interpreted as a double click instead of two single clicks. Default:

200000 (decimal). If you set this to nil, disabling double clicking entirely, mouse

response time improves slightly in static windows and appreciably in Dynamic

Windows. This is the recommended setting.

� tv:*mouse-incrementing-keystates* Variable

A list of names of keys, acceptable to tv:key-state. If one or more of these keys

are pressed, single mouse clicks are interpreted as double clicks. Default: (:shift).

� tv:mouse-input &optional (wait-flag t) Function

Waits until something happens with the mouse, then returns saying what hap-

pened. It returns six values. The first two are delta-x and delta-y, which are the

Page 1315

distance that the mouse has moved since the last time tv:mouse-input was called.

The second two are buttons-newly-pushed and buttons-newly-raised, which are bit

masks (using the bit assignment used by tv:mouse-last-buttons) saying what but-

tons have changed since the last time tv:mouse-input was called. The last two

values are the current x- and y-position of the mouse or, if any buttons changed,

the position of the mouse at that time.

You can call this function only with the mouse usurped; otherwise you will get in

the way of the mouse process, which calls it itself, and mouse tracking will not

work correctly.

The variables sys:mouse-x and sys:mouse-y are not maintained by this function;

you must do it yourself if you want to keep track of a cumulative mouse position.

tv:mouse-last-buttons is maintained.

The buttons-newly-pushed value is suitable for being passed as an argument to

tv:mouse-buttons-encode, which can be used with the mouse usurped as well as

with the mouse grabbed.

If wait-flag is nil, then the function does not wait; it can return with all zeroes,

indicating that nothing has changed.

� tv:mouse-last-buttons Variable

Contains the last setting of the mouse buttons noticed by the process handling the

mouse, which is normally the mouse process. The numbers 1, 2, and 4 represent

the Left, Middle, and Right buttons, respectively. (Except on the Symbolics 3600,

chording is not supported; that is, if more than one button is pressed, the integer

returned is not the sum of the individual button codes.)

� tv:*mouse-modifying-keystates* Variable

A list of names of keys acceptable to tv:key-state. If one or more of these keys

are pressed, sets the corresponding modifier bits in the mouse character. Default:

(:control :meta :super :hyper). If a key appears as an element of both this list

and the list that is the value of tv:*mouse-incrementing-keystates*, the modifier

bit is set and the click is interpreted as a double click.

� (flavor:method :mouse-moves tv:essential-mouse) x y Method

The default mouse handler sends this message to the window when the mouse has

moved or buttons have been pushed. x and y represent the current position of the

mouse if it has moved or its position at the time of the click if buttons have been

pushed. The arguments are in the window’s outside coordinate system. The method

tracks the mouse blinker.

� dw:mouse-char-for-gesture gesture Function

Page 1316

Returns the mouse character associated with a gesture. You can use this function

to assign a new gesture symbol to a mouse character.

gesture An existing or new gesture symbol.�

To assign your own symbolic name to a mouse character, use the following form:

(setf (mouse-char-for-gesture gesture) #\mouse-x)

Conventionally, the gesture symbol is a keyword.

For an overview of dw:mouse-char-for-gesture and related facilities: See the sec-

tion "Mouse Gesture Interface Facilities".

For information on mouse characters: See the section "Mouse Characters".

� dw:mouse-char-gesture mouse-char Function

Returns the standard gesture associated with a mouse character.

mouse-char The mouse character (for example, #\mouse-m).�

For an overview of dw:mouse-char-gesture and related facilities: See the section

"Mouse Gesture Interface Facilities".

For information on mouse characters: See the section "Mouse Characters".

� dw:mouse-char-gestures mouse-char Function

Returns a list of gestures associated with a mouse character.

mouse-char The mouse character (for example, #\mouse-m).�

For an overview of dw:mouse-char-gestures and related facilities: See the section

"Mouse Gesture Interface Facilities".

For information on mouse characters: See the section "Mouse Characters".

� :mouse-select &optional (save-selected t) Message

When sent to a window selects the window, as a result of a user command, usually

clicking the mouse on it. This takes care of various window system issues, such as

making sure that typeahead goes to the correct activity and getting rid of any

temporary windows that are covering this window, preventing it from being ex-

posed.

The operation fails and returns nil if this window is not contained inside its supe-

rior (it might be too large), which prevents it from being exposed. The operation

can also fail and return nil if the message is sent to a frame whose selected-pane

is nil. If the operation succeeds, the message returns t.

Page 1317

If save-selected is not nil, the previously selected activity is saved for restoring by

the FUNCTION S command and the :deselect message.

The :mouse-select message to a pane (a window with tv:pane-mixin) selects the

activity of which the pane is a part, without changing its selected-pane. Thus, the

message does not necessarily select the window to which it is sent; it might select

some other window in the same activity. :mouse-select is intended to be a com-

mand for switching activities.

User programs should send the :select-relative message rather than :select or

:mouse-select, unless they are really responding to a user command to switch ac-

tivities. Using :select-relative rather than :mouse-select or :select to change win-

dows within an activity ensures that the right thing happens when that activity is

not the selected one and avoids suddenly changing the selected activity without the

consent of the user.

This message is sent by many parts of the user interface.

This message is usually received by the system, although users could define meth-

ods for it: either a method that returns nil to prevent a window from being select-

ed, or a daemon. The default method is defined on tv:essential-window.

� (flavor:method :mouse-sensitive-item tv:mouse-sensitive-text-scroll-window-

without-click) x y Method

Returns the mouse-sensitive item at a given location.

The arguments are the x and y coordinates of the location. Two values are re-

turned: the item and its type, or nil and nil if the mouse was not over any mouse-

sensitive item.

This message is useful to send from your :mouse-click handler; the x and y pa-

rameters from :mouse-click can be passed along.

� tv:mouse-sensitive-text-scroll-window Flavor

To use this flavor, you must create your own flavor based on this one, and rede-

fine the :print-item message. Your new handler for :print-item can send the :item

message to the window to create a new mouse-sensitive item.

� tv:mouse-sensitive-text-scroll-window-without-click Flavor

Like tv:mouse-sensitive-text-scroll-window, but without the :mouse-click method,

so that you can provide your own. (You can’t just override it, because :mouse-click

is combined with the :or) method combination.

� tv:mouse-set-blinker-cursorpos Function

Positions the mouse blinker at point (sys:mouse-x, sys:mouse-y) on tv:mouse-

sheet.

Page 1318

� tv:mouse-sheet Variable

The value is the superior window, usually the main screen, that contains the posi-

tion of the mouse.

� tv:mouse-wait &optional (old-x sys:mouse-x) (old-y sys:mouse-y) (old-buttons

tv:mouse-last-buttons) (whostate "Mouse") (timeout nil) Function

Waits until any of the variables sys:mouse-x, sys:mouse-y, or tv:mouse-last-

buttons becomes different from the values passed as arguments, or until timeout

sixtieths of a second have elapsed. While waiting, whostate is displayed in the sta-

tus line. To avoid timing errors, your program should examine the values of the

variables, use them, and then pass in the values that it examined as arguments to

tv:mouse-wait when it is done using the values and wants to wait for them to

change again. It is important to do things in this order, or else your program

might fail to wake up if one of the variables changed while you were using the old

values and before you called tv:mouse-wait.

tv:mouse-wait returns three values:

• An integer representing the state of the mouse buttons, in the format used by

the variable tv:mouse-last-buttons.

• The X-coordinate of the mouse.

• The Y-coordinate of the mouse.�

� sys:mouse-wakeup Function

Causes tv:mouse-input to return as if the mouse had moved. This causes the de-

fault mouse handler to send the window owning the mouse a :mouse-moves mes-

sage.

� tv:mouse-warp x y &optional (mouse tv:main-mouse) Function

Positions the mouse blinker at screen coordinates x and y. (The optional argument

mouse is used in multiple-console systems.)

To position the mouse blinker at coordinates relative to a particular window, use

(flavor:method :set-mouse-position tv:essential-mouse).

� sys:mouse-x Variable

The value is the x-coordinate of the position of the mouse, in pixels, measured

from the upper-left corner of the screen the mouse is on (the value of tv:mouse-

sheet). This variable is maintained by the process handling the mouse, normally

the mouse process. It is in outside coordinates, since the mouse might be in the

margins somewhere.

Page 1319

� tv:mouse-x-scale-array Variable

The value is an array that, along with the array that is the value of tv:mouse-y-

scale-array, can be used to control mouse scaling. These arrays determine the re-

lation between the rates of motion of the mouse on the table and the mouse cursor

on the screen. This relation can be nonlinear and can vary with the speed of the

mouse. For example, fast mouse motion can move the cursor a distance that is

proportionally greater than slow mouse motion.

Scaling is computed as follows. The even-numbered elements of tv:mouse-x-scale-

array are compared with the value of tv:mouse-x-speed, and the even-numbered

elements of tv:mouse-y-scale-array are compared with the value of tv:mouse-y-

speed. tv:mouse-x-speed and tv:mouse-y-speed are the x- and y-components of the

mouse speed on the table, typically in units of hundredths of an inch per second.

For each array, the first even array element that is greater than the mouse speed

causes its corresponding odd-numbered array element to be multiplied by the

mouse motion on the table and then divided by 1024 (decimal). The result is the

mouse motion on the screen. Appropriate care is taken to save the fractions for

the next computation.

The default array setup code is as follows:

;;; Use a scale of 2/3 in X, 3/5 in Y when moving at slow speed,

;;; double that at high speed

(aset 80. tv:mouse-x-scale-array 0)

(aset (// (lsh 2 10.) 3) tv:mouse-x-scale-array 1)

(aset 80. tv:mouse-y-scale-array 0)

(aset (// (lsh 3 10.) 5) tv:mouse-y-scale-array 1)

(aset #o17777777777 tv:mouse-x-scale-array 2)

(aset (// (lsh 4 10.) 3) tv:mouse-x-scale-array 3)

(aset #o17777777777 tv:mouse-y-scale-array 2)

(aset (// (lsh 6 10.) 5) tv:mouse-y-scale-array 3))�

The following code provides for simple scaling of motion for the Hawley mouse.

The arrays are specially wired. You can store into each array, but you cannot re-

place it with a new array or use zl:adjust-array-size on it.

;;; Aids to trying speed-dependent scaling

;;; Specs are scale-factor speed-break

;;; No attempt to treat X and Y differently

;;; Args of (1 80. 2) seem to be about right for the Hawley mouse

(defun mouse-speed-hack (&rest specs)

 (loop for (scale speed) on specs by ’cddr

for i from 0 by 2

do (aset (or speed #o37777777) tv:mouse-x-scale-array i)

(aset (or speed #o37777777) tv:mouse-y-scale-array i)

(aset (// (fix (* 2 scale 1024.)) 3)

 tv:mouse-x-scale-array (1+ i))

(aset (// (fix (* 3 scale 1024.)) 5)

 tv:mouse-y-scale-array (1+ i))))

Page 1320

�

(defun hawley-mouse-hack ()

 (mouse-speed-hack 1 80. 2))�

� sys:mouse-y Variable

The value is the y-coordinate of the position of the mouse, in pixels, measured

from the upper-left corner of the screen the mouse is on (the value of tv:mouse-

sheet). This variable is maintained by the process handling the mouse, normally

the mouse process. It is in outside coordinates, since the mouse might be in the

margins somewhere.

� tv:mouse-y-or-n-p item Function

Takes an item as its argument and displays it in a menu. item is usually a string.

If the user clicks on "Yes" with the mouse button, the value of the item is re-

turned. If the user clicks on "No" with the mouse or moves the mouse out of the

menu, nil is returned.

� tv:mouse-y-scale-array Variable

The value is an array that, along with the array that is the value of tv:mouse-x-

scale-array, can be used to control mouse scaling.

See the variable tv:mouse-x-scale-array.

� tv:multiple-choice Flavor

An instantiable window flavor with the multiple-choice facility in it. It has borders

and a label area on top which is used for the column headings.

� tv:multiple-choose item-name item-list keyword-alist &optional (near-mode

’(:mouse)) (maxlines 20) sup (blinker-style ’(nil :bold nil)) Function

Pops up a multiple-choice window and allows the user to make choices with the

mouse. Unless you specifiy otherwise, the dimensions of the window are automati-

cally chosen for the best presentation of the specified choices. If there are too

many choices, scrolling of the window is enabled.

See the section "The Multiple Choice Facility". item-name is a string of the name

of the type of item, for example, /"Buffer/".

item-list is an alist, (item name choices). item is the item itself, name a string of

its name, and choices a list of possible keywords, either keyword or (keyword de-

fault), where if default is non-nil the keyword is initially on.

keyword-alist is a list of the possible keywords, (keyword name . implications). key-

word is a symbol, the same as in item-list’s choices. name is a string of its name.

Page 1321

implications is a list of on-positive, on-negative, off-positive, and off-negative impli-

cations for when the keyword is selected, each one either a list of (other) keywords

or t for all other keywords. The default for implications is (nil t nil nil).

The finishing-choices, [Do It] and [Abort], are prespecified by the system and can-

not be changed by the user.

When the user clicks on one of the two finishing choices in the bottom margin

([Do It] and [Abort]), the window disappears and tv:multiple-choose returns. Two

cases obtain:

• If the user finishes by choosing [Abort] the returned value is nil.

• If the user chooses [Do It], the returned value is a list with one element for

each item. Each element is a list whose car is the item (that arbitrary object

which the user passed in the item-list argument) and whose cdr is a list of the

keywords for the "yes" choices selected for that item.�

near-mode tells the window where to pop up. It is a suitable argument for

tv:expose-window-near. The default is the list (:mouse).

maxlines, which defaults to twenty, is the maximum number of choices allowed be-

fore scrolling is used.

sup is the superior of the menu. By default, this is the sheet superior of the win-

dow that the mouse is near, if the near-mode is :window; otherwise, it is the

mouse-sheet.

blinker-style is a character style specification that indicates how selected items in

the menu are to be highlighted. The default is ’(nil :bold nil).

� tv:multiple-menu Flavor

A combination of tv:multiple-menu-mixin with tv:menu. It must be explicitly de-

activated by the user program.

� tv:multiple-menu-choose item-list defaults &optional near-mode Function

item-list is a list of lists of menu items. Each sublist corresponds to a column. de-

faults is a list of menu items, one for each column, which are initially highlighted.

The function pops up a menu and allows the user to make choices with the mouse.

The special choices [Do It] and [Abort] are supplied automatically. The function re-

turns the list of selected menu items or nil if the user aborts. Note: The

tv:multiple-menu-choose function executes items when they are chosen, not when

the [Do It] choice is made. The menu items should not have any side-effects when

executing. For an example, See the section "tv:multiple-menu-choose Example".

� tv:multiple-menu-choose-menu Flavor

Page 1322

The instantiable version of the multiple-menu-choose flavor, constructed by mixing

tv:multiple-menu-choose-menu-mixin with tv:menu. It accepts the :multiple-

choose message.

� tv:multiple-menu-choose-menu-mixin Flavor

The basic flavor that makes a window exhibit multiple-menu-choose behavior.

� tv:multiple-menu-mixin Flavor

Gives a menu the ability to have multiple items "selected". Selected items are

highlighted with inverse video, using the tv:menu-highlighting-mixin. Clicking on

an item merely complements its selected state and does not execute it or return

from the :choose message.

Normally, at the top of the menu, in italics, are displayed some "special choices"

(for example, [Do It] or [Abort]) that cannot be highlighted. Clicking on one of

these behaves the same as clicking on an item of an ordinary menu.

By default, the only special choice is [Do It], which returns (from the :choose

message) a list of the results of executing all the highlighted choices (that is, the

result of the :highlighted-values message). You can define your own special choic-

es with the :special-choices init-plist option, or get rid of them entirely by giving

nil as the argument to this option.

� (flavor:method :name tv:menu) string Init Option

Names the window. The name appears in such places as the list of windows gener-

ated by [Select] in the System menu and in the window display option of Peek.

The name is the default string for the label if another label string is not specified.

� (flavor:method :name tv:sheet) Method

Returns the name of the window, which is a string.

� (flavor:method :name tv:sheet) name Init Option

The value is the name of the window, which should be a string. All windows have

names; note that this is an init option of tv:sheet. It is mentioned here because

the main use of the name is as the default string for the label, if there is a label.

� :name-for-selection Message

Returns nil if the window is not supposed to be selected. Otherwise, it returns a

string that serves as the name of the window in menus of selectable windows.

This message is sent by many parts of the user interface. Some use it just as a

predicate; others put the returned string into a menu.

Page 1323

This message is usually received by the user. The default method (of tv:sheet) re-

turns nil. tv:select-mixin provides a method that computes a name based on the

window’s label, if it has one, or else on the window’s name.

Many application programs shadow this method and supply their own. This is espe-

cially so in the case of program frames. Typically, you do not want pane names to

show up in select menus. The recommended procedure for addressing this issue is:

1. Make your frame’s panes include tv:pane-no-mouse-select-mixin instead of

tv:pane-mixin if you do not want them showing up in menus.

2. Give your frame a name that you do want to show up in menus.

3. If you want the name to be something separate, or if you have some panes

that are menu-selectable for some reason, provide your own :name-for-

selection method for the frame.�

� (flavor:method :name-style tv:basic-choose-variable-values) character-style

Init Option

Specifies the character style in which names of variables are displayed. The de-

fault is the system default character style.

� dw:named-value-snapshot-continuation name var-list &body body Function

Generates a lexical closure of its body, except that it snapshots the current values

of lexical variables used free within body.

name The internal-function name for the generated lexical closure. This

supplies the X in names like (:INTERNAL SOMETHING 2 X).

var-list The lambda-list for the generated lexical closure.�

dw:named-value-snapshot-continuation can be of use, for example, when collect-

ing closures within an iteration. The following code

(defun print-reverse-of-list (list)

 (let ((list-of-closures ()))

 (dolist (x list)

 (push (lambda (stream) (print x stream))

 list-of-closures))

 (dolist (closure list-of-closures)

 (funcall closure *standard-output*))))

�

(print-reverse-of-list ’(1 2 3))

�

would print three occurrences of 3. This is because the first dolist might

macroexpand into something like

Page 1324

 (let ((x) (temp list))

 (prog nil

 loop (when (null temp) (return))

 (setq x (pop temp))

 (push (lambda (stream) (print x stream))

 list-of-closures)

 (go loop)))

�

where all the (lambda ...) share exactly the same binding of x. Unfortunately, this

means that each time through the loop, x the same x in all the closures gets

setq’d. A way around this is to introduce a new binding for the x at the point the

closure is produced:

 (let ((x)

 (temp list))

 (prog nil

 (when (null temp) (return))

 (setq x (pop temp))

 (push (let ((x x))

 (lambda (stream) (print x stream)))

 list-of-closures)))

�

Here the x snapshotted by the closure is different for each closure, achieving the

desired effect.

dw:named-value-snapshot-continuation processes the body, identifying freely-

referenced lexical variables which need such snapshotting. It also does special pro-

cessing for self and instance variables referenced within flavor methods. As a re-

sult, the above fragment could be written

(defun print-reverse-of-list (list)

 (let ((list-of-closures ()))

 (dolist (x list)

 (push (dw:named-value-snapshot-continuation

 writer (stream)

 (print x stream))

 list-of-closures))

 (dolist (closure list-of-closures)

 (funcall closure *standard-output*))))

�

and then (print-reverse-of-list ’(1 2 3)) would correctly print 3, 2, 1.

For an overview of dw:named-value-snapshot-continuation and related facilities:

See the section "Writing Formatted Output Macros". See the section "Snapshotting

Variables".

� (flavor:method :near-mode tv:choose-variable-values) arg Init Option

Page 1325

Specifies where to position the window. The default is the list (:mouse). See the

section "Input from Windows".

� :no-input-save Option

The input editor does not save the scanned contents of the input buffer on the in-

put history when returning from the reading function. This is intended for use by

functions such as fquery that use the input editor to ask simple questions whose

responses are not worth saving. zl:yes-or-no-p uses :no-input-save by default.

� tv:no-screen-managing-mixin Flavor

Prevents the screen manager from dealing with the inferiors of a window.

� tv:*no-window-alternate-wholine-string* Variable

Controls what appears in the status line when switching windows. A program can

set tv:*no-window-alternate-wholine-string* to indicate what is happening. The

default string is (no window).

(flavor:method :noise-string-out si:interactive-stream) string &optional (rescan-

mode :ignore) Method

Can be sent by a read function to display a string that is not to be treated as in-

put. For example, the string might prompt the user for a particular kind of input.

string is displayed on the screen without changing the scan pointer, and a rescan

does not take place. If a rescan takes place at some later time, the characters in

string are ignored.

rescan-mode specifies what action to take if the :noise-string-out message is sent

when the scan pointer is not at the end of the input buffer:

:ignore Do not perform the :noise-string-out operation. This is the de-

fault.

:enable Perform the operation.

:error Signal an error.�

� :notification-cell Message

Sent to an interactive stream, it returns the locative in which the notification de-

livery process stores notifications. If some process notifies the user, the notifica-

tion delivery process gives the process associated with the selected window a

chance to accept the notification. It does this by trying to store the notification in

the locative returned by the :notification-cell message to the selected window, un-

less the locative contains a notification already. In that case the notification deliv-

ery process usually tries to display the notification itself.

Page 1326

A user process that wants to accept notifications should find this locative by send-

ing the :notification-cell message to the selected window. It should wait (usually

in an :input-wait wait function) for the locative to contain something other than

nil. The user process can receive the notification by sending the selected window a

:receive-notification message.

� tv:*notification-deliver-timeout* Variable

The length of time, in sixtieths of a second, that the notification delivery process

waits for the process associated with the selected window to accept a notification.

If the selected window’s process does not accept the notification during this time,

the delivery process takes the notification back and usually tries to display it it-

self. Default: 180. (three seconds).

� :notification-handler function &rest arguments Option

If a notification is received while in the input editor, function is called to handle

it. function should take at least one argument, the notification (as returned by the

:receive-notification message to the stream). arguments are the remaining argu-

ments to function. function can do anything it wants with the notification. To dis-

play the notification, function would usually call sys:display-notification.

If this option is not specified, notifications appear one after the other using

:insert-style typeout.

Following are two simple examples of notification handlers. The first handler as-

sumes that you want each notification to overwrite the previous one. The second

handler assumes that you want them to appear one after another. *window*

should be bound to a window and *stream* to a stream where you want the notifi-

cations to appear.

(defun my-notification-handler-1 (notification)

 (send *window* :clear-window)

 (sys:display-notification *window* notification :window))

�

(defun my-notification-handler-2 (notification)

 (sys:display-notification *stream* notification :stream))�

� :notification-mode Message

Sent to an interactive stream, it returns the stream’s notification mode. The notifi-

cation mode determines what the notification delivery process does with a notifica-

tion when the process associated with the stream does not accept it:

:pop-up The notification is displayed in a pop-up window. This is the

default.

:blast The notification is displayed on the stream.

Page 1327

:ignore The notification is ignored but is added to the notification his-

tory for SELECT N and the Show Notifications command.

nil The same as :pop-up.

� tv:*notification-pop-down-delay* Variable

The amount of time, in sixtieths of a second, that a notification pop-up window re-

mains exposed if the user types no characters to the window. A value of nil means

that the window remains exposed indefinitely. Default: 54000. (15 minutes).

� tv:notify window-of-interest format-control &rest format-args Function

Issues an asynchronous notification to the user. Constructs a notification and push-

es it onto a queue. A central notification delivery process delivers the notification

to the user. The text of the notification is constructed from format-control and for-

mat-args. If window-of-interest is not nil, it is a window to be made available via

FUNCTION 0 S.

� (flavor:method :number-of-items tv:text-scroll-window) Method

Returns the number of items in the item list.

� tv:note-progress numerator &optional (denominator 1) (note tv:*current-progress-

note*) Function

Notes the progress of an operation by updating the progress bar. This function is

only used in the body of the tv:noting-progress macro (for examples, look at the

dictionary entry for that facility). The progress bar is updated by fractional

amounts between 0 and 1.

numeratorThe numerator of the fraction by which to update the bar.

denominator The denominator of the fraction by which to update

the bar; the default is 1.

note The note object (bound to the variable supplied to tv:noting-

progress).�

For an overview of tv:note-progress and related facilities, see the section

"Progress Indicator Facilities".

� tv:noting-progress (name &optional (variable ’tv:*current-progress-note*) (process

’sys:current-process)) &body body Function

Binds local environment such that the progress of an operation performed within

the body of the macro is noted by a progress bar displayed in the status line at

the bottom of the screen. The function tv:note-progress does the updating of the

progress bar.

Page 1328

name A string naming the operation being noted. This string is displayed

above the progress bar.

variable The variable bound to the note object; the default is tv:*current-

progress-note*. This variable is an argument to tv:note-progress.

process The process on whose behalf the progress is noted; the default is

sys:current-process. This is used to determine the precedence of

notes.

Examples:

(tv:noting-progress ("Working Away By Tenths")

 (loop for i from .1 to 1.0 by .1

do

 (tv:note-progress i)

 (sleep 1)))

�

(tv:noting-progress ("Working Away By Fifths")

 (loop for i from 1 to 2 by 1

do

 (sleep 1))

 (tv:note-progress 1 5)

 (loop for i from 1 to 2 by 1

do

 (sleep 1))

 (tv:note-progress 2 5)

 (loop for i from 1 to 2 by 1

do

 (sleep 1))

 (tv:note-progress 3 5)

 (loop for i from 1 to 2 by 1

do

 (sleep 1))

 (tv:note-progress 4 5)

 (loop for i from 1 to 2 by 1

do

 (sleep 1))

 (tv:note-progress 5 5)

 (sleep 1))

�

For an overview of tv:noting-progress and related facilities, see the section

"Progress Indicator Facilities".

� tv:pane-mixin Flavor

Must be one of the components of the flavor of any window used as a pane of a

frame. For example, the flavor tv:window-pane, used when you want a pane of a

frame that understands everything that tv:window does, is defined as follows:

Page 1329

(defflavor tv:window-pane () (tv:pane-mixin tv:window))�

Among other things, tv:pane-mixin provides methods that let the pane participate

in its superior’s activity. The :alias-for-selected-windows method returns the su-

perior’s alias. When a window of this flavor receives a :select message, it first

sends its superior an :inferior-select message. If the :inferior-select message re-

turns nil, the :select message fails and just returns nil. When a window of this

flavor receives a :mouse-select message, it passes the message on to its superior.

� (flavor:method :pane-name tv:basic-constraint-frame) pane Method

Returns the symbol that was used to name pane in the :panes specification of this

frame. If pane is not one of the panes, return nil.

� tv:pane-no-mouse-select-mixin Flavor

Makes a window a pane of a frame and ensure that it cannot be selected from a

system menu. This flavor includes tv:pane-mixin and tv:dont-select-with-mouse-

mixin.

� (flavor:method :panes tv:basic-constraint-frame) pane-descriptions Init Option

Required for all flavors of constraint frames. The argument, pane-descriptions, is a

list of pane descriptions. Every pane description looks like this:

(name flavor . options)�

name is the internal name (a symbol). flavor is the flavor of which the pane should

be an instance. options is a list to be appended to the initialization plist for the

pane when it is created. When the frame is first created, it will create all of its

panes, using the flavor and options. The frame will add some of its own options to

control the position and shape of the window; you should not pass any such options

in the options list.

� time:parse string &optional (start 0) end (futurep t) base-time must-have-time date-

must-have-year time-must-have-second (day-must-be-valid t) Function

Interprets string as a date and/or time, and return seconds, minutes, hours, date,

month, year, day-of-the-week, daylight-savings-time-p, and relative-p. start and end

delimit a substring of the string; if end is nil, the end of the string is used. must-

have-time means that string must not be empty. date-must-have-year means that a

year must be explicitly specified. time-must-have-second means that the second

must be specified. day-must-be-valid means that if a day of the week is given, it

must actually be the day that corresponds to the date. base-time provides the de-

faults for unspecified components; if it is nil, the current time is used. futurep

means that the time should be interpreted as being in the future; for example, if

the base time is 5:00 and the string refers to the time 3:00, that means the next

day if futurep is non-nil, but it means two hours ago if futurep is nil. The

relative-p returned value is t if the string included a relative part, such as "one

minute after" or "two days before" or "tomorrow" or "now"; otherwise, it is nil.

Page 1330

� si:parse-interval-or-never string Function

Returns an integer if string represents an interval, or nil if string represents

"never". string is the character-string representation of an interval of time. start

and end specify a substring of string to be parsed; they default to the beginning

and end of string, respectively. If string is anything else, an error occurs. Examples

of acceptable strings:

"4 seconds" "4 secs" "4 s"

"5 mins 23 secs" "5 m 23 s" "23 SECONDS 5 M"

"never" "not ever" "no"

"" "3 yrs 1 week 1 hr 2 mins 1 sec"�

Note that several abbreviations are understood, the components can be in any or-

der, and case (upper versus lower) is ignored. Also, "months" is not acceptable,

since months vary in length. This function accepts anything that time:print-

interval-or-never produces, and it returns the same integer (or nil).

See the presentation type time:time-interval.

time:parse-present-based-universal-time time-being-parsed Function

Like time:parse-universal-time, except that missing components in time-being-

parsed are defaulted to the beginning of the smallest unsupplied unit of time. The

returned values are the same as those of time:parse-universal-time. time-being-

parsed is a string suitable as the first argument to time:parse-universal-time.

For example, "5 pm" is parsed as 5 pm on the current day, whether the current

time is before or after 5 pm. "Thursday" is parsed as Thursday of the current

week, whether today is Wednesday or Friday. "1 June" is parsed as June 1 of the

current year, whether the date is before or after June 1.

� time:parse-universal-time string &optional (start 0) end (futurep t) base-time must-

have-time date-must-have-year time-must-have-second (day-must-be-valid t) Function

The same as time:parse except that it returns one integer, representing the time

in Universal Time, and the relative-p value. It also returns a third value, which is

t if hours, minutes, or seconds were specified by string, or nil if they were not.

� time:parse-universal-time-relative date-spec reference-date-spec &optional (future-p

t) Function

Like time:parse-universal-time, except that date-spec is parsed relative to refer-

ence-date-spec. The returned values are the same as those of time:parse-universal-

time.

date-spec is a string suitable as the first argument to time:parse-universal-time.

reference-date-spec is a universal-time integer or a string that can be parsed as an

unambiguous time. If future-p is nil, an ambiguous date-spec is interpreted as be-

ing in the past relative to reference-date-spec; otherwise, it is interpreted as being

in the future. The default for future-p is t.

Page 1331

For example:

(time:parse-universal-time-relative "5 pm" "today")�

returns the same value when evaluated anytime today, whether or not the current

time is before or after 5 pm.

� :partial-help &rest help-option Option

When the user presses HELP, the input editor first types out a message determined

by help-option. It then types out a message describing how to invoke input editor

commands and other information about the stream. If a :brief-help,

:complete-help, or :merged-help option has been specified, it overrides :partial-

help.

help-option can have one element, which can be a string, a function, or a symbol;

or it can have more than one element. For an explanation: See the section "Dis-

playing Help Messages in the Input Editor".

This option is intended for use when inexperienced users might be typing to the

input editor. Often help-option gives some information about the program to which

the user is typing and what the user can do to exit from it.

� :pass-through &rest characters Option

The characters in characters are not to be treated as special by the input editor.

This option is used to pass format effectors (such as HELP or CLEAR INPUT)

through to the reading function instead of interpreting them as input editor com-

mands. :pass-through is allowed only for characters with no modifier bits set, that

is, for character codes 0 through 377 (octal). For characters that have modifier

bits set and must be visible to the reading function, use :do-not-echo or

:activation.

� peek-char &optional peek-type input-stream (eof-error-p t) eof-value recursive-p

Function

Returns the next character to be read from input-stream, without actually remov-

ing it from the stream. (This is the default behavior, which can be modified by the

peek-type argument.)

What peek-char does depends on peek-type. The effects of peek-type are as follows:

Value Effect

nil Returns the next character to be read from input-stream, with-

out actually removing it from the stream. The next time input

is done from input-stream, the character will still be there. It

is as if you had called read-char, then unread-char in succes-

sion.

Page 1332

t Skips over whitespace characters (but not comments), and then

performs the peeking operation on the next character. This is

useful for finding the beginning of the next printed representa-

tion of a Lisp object. The last character examined (the one

that starts an object) is not removed from the input stream.

character object Skips over input characters until a character that is char= to

that object is found. That character is left in the input stream.�

A value of t for input-stream indicates *terminal-io*. If input-stream is unspecified

or nil, then *standard-input* is used.

The arguments eof-error-p and eof-value control what happens when the function is

called at the end of input-source. If the first argument, eof-error-p is nil, then

nothing is done, otherwise an end-of-file error is signalled, and the value returned

is eof-value.

The recursive-p argument is used to signal that the call to peek-char is not at the

top level.

(list (read-char) (peek-char) (read-char) (read))abcdef

=> (#\a #\b #\b CDEF)

�

(list (read-char) (peek-char) (read))abcdef

=> (#\a #\b #\b BCDEF)�

For a discussion of keyboard input differences between CLOE and Genera, see the

function read-char.

� dw:peek-char-for-accept stream &optional hang Function

Returns the next character in the input stream without removing it from the

stream. This is equivalent to calling dw:read-char-for-accept followed by

dw:unread-char-for-accept.

stream The input stream.

hang Boolean option specifying whether, if no character is available in

the input stream, the function waits until a character is available

or returns nil. The default is nil. �

For an overview of dw:peek-char-for-accept and related facilities, see the section

"Defining Your Own Presentation Types".

� (flavor:method :point tv:graphics-mixin) x y Method

Returns the numerical value of the picture element at the specified coordinates.

The result is 0 or 1 on a black-and-white TV. Clipping is performed; if the coordi-

nates are outside the window, the result will be 0.

Page 1333

� tv:pop-up-menu Flavor

A combination of tv:menu and tv:temporary-window-mixin, but does not have the

automatic expose and deexpose features of tv:momentary-menu. See the section

"Temporary Windows". It is appropriate to use a pop-up menu rather than a mo-

mentary menu when you want to pop a menu up and make several choices from it

before popping it back down. Another use is if you want to force the user to make

a choice. Moving the mouse outside of the menu boundary does not deexpose the

menu.

� tv:pop-up-multiple-menu-choose-menu Flavor

A combination of tv:multiple-menu-choose-menu-mixin and tv:pop-up-menu. The

arguments are the same as tv:multiple-menu-choose-menu. It accepts the :multi-

ple-choose message.

� tv:pop-up-multiple-menu-choose-resource Resource

A resource of multiple-menu-choose menus.

� (flavor:method :position tv:menu) (left-edge top-edge) Init Option

Specifies the left and top edges of the window. All specifications are given with re-

spect to the outside of the superior window.

� (flavor:method :position tv:sheet) Method

Returns two values: the x and y positions of the upper-left corner of the window,

in pixels, relative to the superior window, respectively.

� (flavor:method :position tv:sheet) (left-edge top-edge) Init Option

Specifies the x-coordinate of the left edge and the y-coordinate of the top edge of

the window.

� :preemptable token Option

A blip in the input stream causes control to be returned from the input editor im-

mediately. Two values are returned: the blip and token, which is usually a keyword

symbol. Any unscanned input typed before the blip remains in the input buffer,

available to the next read operation from the stream.

� tv:prepare-sheet (sheet) body... Function

Prepares sheet for input or output. Ensures that sheet is not locked or in output-

hold. Opens blinkers on inferiors and exposed superiors.

Page 1334

� present object &optional (presentation-type (type-of dw::object)) &key (stream

standard-output) (acceptably nil) (sensitive t) for-context-type (original-type nil)

(form nil) (location nil) (single-box nil) (allow-sensitive-inferiors t) (allow-sensitive-

raw-text t) Function

Outputs a presentation object to a stream. The manner in which the object is dis-

played depends on the presentation type of the object. If the stream supports pre-

sentation remembering, the presented object is accessible via the mouse in the ap-

propriate input context; if not, the printed representation is the same, but the ob-

ject is not mouse-sensitive.

object The object to be presented.

presentation-type The presentation type to be used in presenting the ob-

ject; the default is the type of the object.�

:stream Specifies stream on which the object is presented; the default is

standard-output.

:acceptably Specifies when t to present the object in such a way

that it can later be parsed by accept; the default is nil. A third

possible value, :very, is for use with :for-context-type. This option

is useful when output is to strings or files, but not necessary when

output is to Dynamic Windows.

:sensitive

Boolean option specifying whether the presentation is mouse-

sensitive; the default is t. This option is useful for explicitly pre-

venting mouse sensitivity of objects presented to Dynamic Windows.�

:form Specifies a form that can be passed to setf to store a new value in

place of the current output value. This option and :location are mu-

tually exclusive.

The form supplied for this option is used by a predefined, side-

effecting mouse handler (available on c-m-Right) to modify the con-

tents of structure slots.

:for-context-type Specifies the context in which the presentation is to be

presented with :acceptably :very. The most often used value is

’((cp:command-or-form :dispatch-mode :form-preferred))), which

causes presentations of the type cp:command to be printed with a

leading colon.

:original-type The original type supplied, to be passed through in

successive recursive calls to present (or present-to-string or

accept).

:location Specifies a locative that can be used to store a new value in place

of the current output value. This option and :form are mutually ex-

clusive.

Page 1335

The locative supplied for this option is used by a predefined, side-

effecting mouse handler (available on c-m-Right) to modify the con-

tents of structure slots.

:single-box Specifies that mouse-sensitivity of objects output in a

series of inferior calls to this form be indicated by a single, large

box for highlighting rather than the sum of all the individual boxes.

This option is used mostly with graphic presentations.

:allow-sensitive-inferiors Boolean option specifying whether nested

calls to present or dw:with-output-as-presentation from inside this

presentation for example, when presenting the individual ele-

ments of a Lisp list generate presentation objects. The default is

t.

For an example, see the function dw:with-output-as-presentation.

� :allow-sensitive-raw-text Boolean options specifying when t that

raw text, that is, the individual characters that make up the pre-

sentation, are to be mouse-sensitive.

For an overview of present and related facilities: See the section "Using Presenta-

tion Types for Output".

� dw:presentation-blip-case blip &body clauses Function

Dispatches to clauses based on the presentation-type field of a presentation blip.

blip The presentation blip.

clauses The case clauses.�

This macro is similar to the case special form, and could be written as

(case (dw:presentation-blip-presentation-type blip)

 <clauses>)�

but with one exception: comparison of the extracted presentation type with the

types used as keys to the clauses is based on dw:presentation-subtypep, not eql.

Normally, you would not use this macro directly. See the function dw:with-

presentation-input-context.

For an overview of dw:presentation-blip-case and related facilities: See the sec-

tion "Presentation Input Blip Facilities".

� dw:presentation-blip-ecase blip &body clauses Function

Dispatches to clauses based on the presentation-type field of a presentation blip.

blip The presentation blip.

Page 1336

clauses The ecase clauses.�

This macro is similar to the ecase special form, and could be written as

(ecase (dw:presentation-blip-presentation-type blip)

 <clauses>)�

but with one exception: comparison of the extracted presentation type with the

types used as keys to the clauses is based on dw:presentation-subtypep, not eql.

Normally, you would not use this macro directly. See the function dw:with-

presentation-input-context.

For an overview of dw:presentation-blip-ecase and related facilities: See the sec-

tion "Presentation Input Blip Facilities".

� dw:presentation-blip-mouse-char presentation-blip Function

Returns the mouse character from a presentation blip.

presentation-blip The presentation blip.�

For an overview of dw:presentation-blip-mouse-char and related facilities: See the

section "Presentation Input Blip Facilities".

� dw:presentation-blip-object presentation-blip Function

Returns the presentation object from a presentation blip.

presentation-blip The presentation blip.�

For an overview of dw:presentation-blip-object and related facilities: See the sec-

tion "Presentation Input Blip Facilities".

� dw:presentation-blip-options presentation-blip Function

Returns the options field (a list of keyword-value pairs) of a presentation blip.

presentation-blip The presentation blip.�

The options inserted in a presentation blip are obtained from the values returned

by translating mouse handlers. A standard blip option is :activate, which can be

used by a translator to promote or prevent activation of the current field, that is,

a return from the current call to accept. (See the function define-presentation-

translator.)

For an overview of dw:presentation-blip-options and related facilities: See the

section "Presentation Input Blip Facilities".

� dw:presentation-blip-p blip Function

Page 1337

Determines whether a blip is a presentation blip.

blip The blip.�

For an overview of dw:presentation-blip-p and related facilities: See the section

"Presentation Input Blip Facilities".

� dw:presentation-blip-presentation-type presentation-blip Function

Returns the presentation type from a presentation blip.

presentation-blip The presentation blip.�

For an overview of dw:presentation-blip-presentation-type and related facilities:

See the section "Presentation Input Blip Facilities".

� dw:presentation-blip-typep blip type Function

Determines whether the presentation type of a presentation blip is of a specified

type. (The comparison is based on dw:presentation-subtypep).

blip The presentation blip.

type The presentation type with which the type of the blip is compared.�

For an overview of dw:presentation-blip-typep and related facilities: See the sec-

tion "Presentation Input Blip Facilities".

� dw:presentation-equal presentation-1 presentation-2 Function

Determines whether two presentations are "equal", that is, whether they are pre-

senting the same object in the same manner.

presentation-1 The first presentation.

presentation-2 The second presentation.�

For an overview of dw:presentation-equal and related facilities:

See the section "Defining Your Own Presentation Types".

� dw:*presentation-input-context* Variable

Bound to the current presentation input context.

An input context is a list of the form (presentation-type superior-context throw-

flag . options). Each time a new input context is established, it becomes the new

top-level context, enclosing the previous top-level context. (See the function

dw:with-presentation-input-context.) Thus, there may be a hierarchy of contexts.

Page 1338

For example, if you have a presentation type microcode-version whose parser is

defined as follows

(define-presentation-type microcode-version ()

 :parser ((stream)

 (accept ’integer :stream stream))

 :printer ((object stream)

 (princ object stream)))�

the call (accept ’((microcode-version))) results in the following input context:

(INTEGER (MICROCODE-VERSION NIL T :INHERIT T) T :INHERIT T)

The initial call to accept establishes the MICROCODE-VERSION context and calls the

parser for microcode-version. The parser calls accept with the presentation type

integer, and accept establishes a new context for INTEGER; the new context con-

tains the old context for MICROCODE-VERSION.

For an overview of dw:*presentation-input-context* and related facilities: See the

section "Presentation Input Context Facilities".

� dw:presentation-input-context-option presentation-input-context indicator Function

Extracts the value of the specified option from an input context. The input context

options are supplied in the options clause to dw:with-presentation-input-context.

presentation-input-context Specifies the input context.

indicator Specifies the name of the option to be extracted from the input

context.�

For an overview of dw:presentation-input-context-option and related facilities:

See the section "Presentation Input Context Facilities".

� dw:presentation-subtypep subtype supertype Function

Determines whether one presentation type is a subtype of another presentation

type and encaches the result of the lookup.

subtype The putative subtype presentation type.

supertype The putative supertype presentation type.�

This function is the presentation system equivalent of the Common Lisp function

subtypep. As does the latter, it returns two values: the first indicates whether the

first type is a subtype of the second; the second whether the first result is certain.

Three combinations are possible:

t t subtype is definitely a subtype of supertype

nil t subtype is definitely not a subtype of supertype

nil nil the relationship could not be determined with certainty�

Page 1339

One use of this function is in the :tester forms of mouse handlers. Although it is

generally more convenient to use dw:handler-applies-in-limited-context-p, more

complex testers may need dw:presentation-subtypep, on which the former is

based:

(defun handler-applies-in-limited-context-p

 (context limiting-context-type)

 (let ((context-type

 (presentation-input-context-presentation-type

 context)))

 (presentation-subtypep

 context-type limiting-context-type)))

See the function dw:handler-applies-in-limited-context-p. See the section "Defin-

ing Your Own Presentation Types".

For an overview of dw:presentation-subtypep and related facilities: See the sec-

tion "Programming the Mouse: Writing Mouse Handlers".

� dw:presentation-subtypep-cached subtype supertype Function

Obsolete. Use instead the function

dw:presentation-subtypep.

� dw:presentation-type-default presentation-type Function

Returns the current default the object at the top of the type history for a

presentation type, if the type supports a history; otherwise, it returns nil.

presentation-type The presentation type.�

Example:

(dw:presentation-type-default ’pathname)

==>#P"Y:>reg>saved-mail>ui>defpgm.babyl.newest"

FS:LMFS-PATHNAME

T

�

For an overview of dw:presentation-type-default and related facilities:

See the section "Defining Your Own Presentation Types".

� dw:presentation-type-name type Function

Returns the name of the presentation type from a presentation-type specification.

type The type specification.�

Example:

Page 1340

(dw:presentation-type-name ’((pathname) :dont-merge-default nil))

PATHNAME�

For an overview of dw:presentation-type-name and related facilities:

See the section "Defining Your Own Presentation Types".

� dw:presentation-type-p type Function

Returns the presentation type descriptor if its argument is a presentation type, nil

otherwise. If the argument is a user-defined flavor, the descriptor of that type is

returned. If it is a user-defined structure, t is returned.

type An object.�

Example:

(dw:presentation-type-p ’((integer 1 10)))

=> #<DW:PRESENTATION-TYPE-DESCRIPTOR INTEGER 42516527>

(dw:presentation-type-p ’dw:dynamic-window)

=> #<DW:PRESENTATION-TYPE-DESCRIPTOR DW:DYNAMIC-WINDOW 42506626>

(defflavor a-flavor () ())

(dw:presentation-type-p ’a-flavor)

=> #<FLAVOR A-FLAVOR 1230276>�

For an overview of dw:presentation-type-p and related facilities:

See the section "Defining Your Own Presentation Types".

� present-to-string object &optional (presentation-type (type-of dw::object)) &key

(original-type dw:presentation-type) (string nil) (index nil) acceptably for-context-

type Function

Outputs a presentation object to a string or returns a new string.

object The object to be presented.

presentation-type The presentation type to be used in presenting the ob-

ject; the default is the type of the object.�

:string Specifies a string to which the object is presented. The default is

nil, causing a new string object to be created and returned as the

value.

:index The character position in the string array where the presenting of

the object begins; the default is position 0. Use this option only if

the :string option is non-nil.�

:acceptably Specifies when t that the object should be presented in

such a way that it can later be parsed by accept; the default is nil.

A third value, :very is for use with :for-context-type.�

Page 1341

:for-context-type Specifies the context in which the presentation is to be

presented with :acceptably :very. The most often used value is

’((cp:command-or-form :dispatch-mode :form-preferred))), which

causes presentations of the type cp:command to be printed with a

leading colon.�

� :original-type The original type supplied, to be passed through in

successive recursive calls to present (or present-to-string or

accept).

For an overview of present-to-string and related facilities: See the section "Using

Presentation Types for Output".

� (flavor:method :primitive-item tv:basic-mouse-sensitive-items) type item left top

right bottom Method

The primary means for creating a mouse-sensitive-area of the screen. It creates a

mouse-sensitive item of type type with associated object item. When the mouse

moves into the area, a box is overlaid around it. left, top, right, and bottom are the

coordinates of a rectangular area of the window assumed to contain the display.

The coordinates are "inside" coordinates. This is the same coordinate system that

:read-cursorpos uses.

� time:print-brief-universal-time ut &optional (stream standard-output) (ref-ut (zl-

user:get-universal-time)) Function

Like time:print-universal-time except that it omits seconds and only prints those

parts of ut that differ from ref-ut, a universal time that defaults to the current

time. Thus the output will be in one of the following three forms:

02:59 ;the same day

3/4 14:01 ;a different day in the same year

8/17/74 15:30 ;a different year�

time:print-current-date &optional (stream standard-output) Function

Prints the current time, formatted as in Friday the twenty-fifth of November,

1988; 3:50:41 pm, to the specified stream.

time:print-current-time &optional (stream standard-output) Function

Prints the current time, formatted as in 11/25/83 14:50:02, to the specified stream.

time:print-date seconds minutes hours day month year day-of-the-week &optional

(stream standard-output) Function

Page 1342

Prints the specified time, formatted as in Friday the twenty-fifth of November,

1983; 3:50:41 pm, to the specified stream.

(flavor:method :print-function tv:function-text-scroll-window) Method

Returns the window’s printing function.

� (flavor:method :print-function-arg tv:function-text-scroll-window) Method

Returns the object which the window passes as the second argument to the print

function.

� time:print-interval-or-never interval &optional (stream zl:standard-output)

Function

Prints the representation of interval as a time interval onto stream. If interval is

nil, it prints "Never". interval should be a nonnegative integer, or nil.

:print-item item line-no item-no Message

A text scroll window sends itself this message to display item on a line of the

screen. line-no is the number of the line on the screen, and item-no is the number

of the item in the list of items. When this message is sent, the cursor is already

positioned to the beginning of line line-no; your method should send stream output

messages to the window (that is, to self) to print item.

For "mouse-sensitive items" within the "item", send :item to self.

� time:print-time seconds minutes hours day month year &optional (stream standard-

output) Function

Prints the specified time, formatted as in 11/25/83 14:50:02, to the specified

stream.

time:print-universal-time ut &optional (stream standard-output) timezone

Function

Prints the specified time, formatted as in 11/25/83 14:50:02, to the specified

stream.

time:print-universal-date ut &optional (stream standard-output) timezone

Function

Prints the specified time, formatted as in Friday the twenty-fifth of November,

1983; 3:50:41 pm, to the specified stream.

Page 1343

(flavor:method :process tv:process-mixin) (initial-function . options) Init Option

initial-function is called in the window’s process with the window as its argument.

options are options to make-process.

� tv:process-mixin Flavor

Creates a new process associated with each window of the dependent flavor. (The

Dynamic Window flavor dw:program-frame, used by dw:define-program-

framework, includes this mixin.)

� dw:*program* Variable

Bound to the currently active instance of a program flavor (created via dw:define-

program-framework).

For an overview of dw:*program* and related facilities, see the section "Defining

Your Own Program Framework".

� dw:program-command-table program Function

Returns the command table used by an instance of a program flavor (created via

dw:define-program-framework).

program The program instance. (The currently active program instance can

be accessed as the value of dw:*program*.)�

For an overview of dw:program-command-table and related facilities, see the sec-

tion "Defining Your Own Program Framework".

� dw:*program-frame* Variable

Bound to the program frame associated with the current instance of a program fla-

vor (created via dw:define-program-framework).

Use this variable for access to the program frame from a generic function or

method of the program flavor, or from a program command definition macro.

Example (for a program flavor named "my-program"):

(define-my-program-command (com-enable-secondary-commands

:menu-accelerator "More Commands"

:menu-level :main)

 ()

 (send dw:*program-frame* :set-configuration ’secondary))�

For access to a particular pane of the program frame, send a :get-pane message to

dw:*program-frame* or use dw:get-program-pane.

For an overview of dw:*program-frame* and related facilities, see the section

"Defining Your Own Program Framework".

Page 1344

� dw:program-frame Flavor

The flavor used by dw:define-program-framework for the program frames it cre-

ates. dw:program-frame is the Dynamic Window equivalent of tv:constraint-

frame-with-shared-io-buffer, which it incorporates as one of its component flavors;

another component flavor is tv:process-mixin. Generally, you do not make direct

use of this flavor; that you leave up to dw:define-program-framework.

Init options, methods, and messages for this flavor include all of those for

tv:constraint-frame-with-shared-io-buffer:See the section "Frames". The following

are additional init options:

:label See the section "Window Labels".

:margin-components See the flavor dw:dynamic-window.

:process See the section "Windows and Processes". Normally you automatical-

ly get a process running the program’s top-level function when you

program an application using dw:define-program-framework.�

:programThe name of the program for which this is the program frame.

:query-io-pane Specifies the pane to which *query-io* is bound when

an instance of the program frame is active.

:size-from-pane Specifies the pane on which to base the size of the

program frame.

:terminal-io-pane Specifies the pane to which *terminal-io* is bound

when an instance of the program frame is active.

For an overview of dw:program-frame and related facilities: See the section "Win-

dow Substrate Facilities".

� dw:program-frame Resource

A resource of program frames (of the kind used by

dw:define-program-framework). The resource is created via tv:defwindow-

resource with the :initial-copies option set to nil and the :reuseable-when option

set to :deactivated. (For more information on resources generally: See the section

"Resources".)

In addition to the required argument program-name and the optional argument su-

perior (the frame’s superior), the following keyword options are available when al-

locating from or using the program frame resource:

:temporary-p Boolean option specifying whether the frame provided

is temporary, that is, whether it locks the superior window until it

is deactivated.

:process The process associated with the frame or nil, for no associated pro-

cess. The default process is that of the program for which this

Page 1345

frame was created (by dw:define-program-framework). You can, for

example, set this option to nil to run a program in you own process.�

When using this resource, you must supply the name of the program whose frame

is to be provided. In the following example, a Frame-Up Layout Designer frame is

specified.

Example:

(defun pf-resource ()

 (using-resource (my-pf dw:program-frame ’dw::layout-designer)

 (send my-pf :expose)))�

� :prompt &rest prompt-option Option

When it is time for the user to be prompted, the input editor displays prompt-

option. prompt-option can have one element, which can be nil, a string, a function,

or a symbol other than nil; or it can have more than one element: See the section

"Displaying Prompts in the Input Editor".

The difference between :prompt and :reprompt is that the latter does not display

the prompt when the input editor is first entered, but only when the input is re-

displayed (for example, after a screen clear). If both options are specified,

:reprompt overrides :prompt except when the input editor is first entered.

� prompt-and-accept presentation-type-or-args &optional format-string &rest format-

args Function

Prompts for and accepts user input. (This function is similar to accept; it differs

in that it uses the format function for creating the input prompt.)

presentation-type-or-args Presentation type of the input object or,

alternatively, a list of keyword-value pairs.

Available keywords are the same as those for accept with one ex-

ception. This is the :type keyword, specifying the presentation type

of the input object. If keywords are provided, one of them must be

:type.

format-string Control string for the format function.

format-args Arguments for the format specifiers included in the

format-string.

Example:

(let ((x 5) (y 9))

(prompt-and-accept ’integer "Value for cell ~D ~D" x y))�

For an overview of prompt-and-accept and related facilities: See the section "Us-

ing Presentation Types for Input".

Page 1346

� prompt-and-read type &optional format-string &rest format-args Function

Prompts the user, with format-string and its arguments as the prompt. It uses

zl:format to zl:query-io to produce the prompt; it reads from the zl:query-io

stream, calling the reading function associated with the type keyword. If format-

string is not specified, it generates a prompt appropriate to type. The type argu-

ment can be a list in which the first element is the type keyword and the rest are

keyword/value pairs to serve as arguments to the reading function. (For the

:object and :object-list types, type must be a list with the :class keyword sup-

plied.) prompt-and-read returns whatever the reading function returns.

This function is obsolete. The function accept should be used to perform this op-

eration.

(prompt-and-read :number "Please enter a number: ") =>

Please enter a number: 4

4

(prompt-and-read :string "Please enter a string: ") =>

Please enter a string: 4

"4"

�

It expects to collect input of type type, where type is a keyword. It handles the fol-

lowing types of input:

Option Action

:eval-form Reads a Lisp form. Evaluates it and returns the first value.

Asks for confirmation of nonconstant values. The Debugger us-

es this to prompt for a form to evaluate.

:eval-form-or-end Reads a Lisp form or just END. Evaluates it and returns the

first value for a form. Returns two values, nil and :end, for

END. Asks for confirmation of nonconstant values. The Debug-

ger uses this to prompt for a form to evaluate.

:expression Reads a Lisp expression and returns the expression without

evaluating it.

:expression-or-end Reads a Lisp expression or just END. It returns the expression

without evaluating it. If the user just presses END, it returns

two values, nil and :end.

:character Reads and returns a character. The returned value is a charac-

ter code (an integer).

:symbol Reads and returns a symbol.

(:function-spec :defined-p defined-p) Reads and returns a function spec. If

:defined-p is specified with a value other than nil, the function

spec must be defined as a function. The default for defined-p is

nil.

:string Reads a string terminated by RETURN, LINE, or END. It returns

the empty string when the string is empty.

Page 1347

:string-trim Reads a string terminated by RETURN, LINE, or END. It trims

any leading or trailing white space. It returns the empty string

when the string is empty.

:string-or-nil Reads a string terminated by RETURN, LINE, or END. It trims

any leading or trailing white space. It returns nil when the

string is empty.

(:string-list :or-nil or-nil) Reads a series of strings separated by commas and ter-

minated by RETURN, LINE, or END. It returns a list of the

strings, unless or-nil is not nil and the user just presses RE-

TURN, LINE, or END. In that case it returns nil. The default for

or-nil is t.

(:delimited-string :delimiter delimiter :visible-delimiter visible-delimiter :buffer-

size size :or-nil or-nil) Reads characters until the

user types a delimiter, then returns the input as a string with-

out the delimiter.

:delimiter and :visible-delimiter are mutually exclusive. If one

of them is specified, it must be nil or a list of characters that

delimit the string. If neither is specified, or if one is specified

with a value of nil, the only delimiter is #/End.

The difference between :delimiter and :visible-delimiter is

that if a prompt is supplied as the second argument to

prompt-and-read, the :visible-delimiter characters are dis-

played to the user after the prompt, but the :delimiter charac-

ters is not. If a prompt is supplied and neither :delimiter nor

:visible-delimiter is specified, the delimiting character is not

displayed. If no prompt is supplied, the delimiting characters

are always displayed, whether they come from :delimiter,

:visible-delimiter, or the default delimiter.

If :buffer-size is specified, an initial buffer of size size charac-

ters is allocated; otherwise, the initial size is 100. characters.

It returns the empty string when the string is empty, unless

:or-nil is specified with a value other than nil. In that case it

returns nil when the string is empty. The default for or-nil is

nil.

(:delimited-string-or-nil :delimiter delimiter :visible-delimiter visible-delimiter

:buffer-size size) The same as (delimited-string :delimiter

delimiter :visible-delimiter visible-delimiter :buffer-size size

:or-nil t). This option is obsolete.

(:complete-string :alist alist :delimiters delimiters :impossible-is-ok impossible-is-

ok :or-nil or-nil :complete-on-space complete-on-space)

Reads and returns a (possibly completed) string, terminated by

RETURN, LINE, or END.

Page 1348

If the user presses COMPLETE, the input so far is completed

over the set of possibilities determined by alist. If complete-on-

space is not nil, the input is also completed when the user

presses SPACE at the end of the input buffer. The default for

complete-on-space is t.

If the user presses c-?, the possible completions of the input

are displayed. If the user presses HELP, the possible comple-

tions are displayed unless many exist; in that case a general

help message is displayed.

The style of completion is the same as that offered by Zwei. al-

ist can be nil, an alist, an sys:art-q-list array, or a keyword:

nil No completion is offered. This is the de-

fault.

alist The car of each alist element is a string

representing one possible completion.

array Each element is a list whose car is a string

representing one possible completion. The

array must be sorted alphabetically on the

cars of the elements.

keyword If the symbol is :zmacs, completion is of-

fered over the definitions in Zmacs buffers.

If the symbol is :flavors, completion is of-

fered over all flavor names. If the symbol

is :documentation, completion is offered

over all documentation topics available to

Document Examiner.�

Example:

(prompt-and-read

 ’(:complete-string :alist :documentation))

Enter a string with completion, or <RETURN>

for none: formatted output

=> "Formatted Output"

=> (("Formatted Output" DOC:|FORMATTED OUTPUT|))�

delimiters is nil or a list of characters that delimit "chunks"

for completion. As in Zwei, completion works by matching ini-

tial substrings of "chunks" of text. If delimiters is nil, the en-

tire text of the input is a single "chunk". The default is nil.

If or-nil is nil and the user just presses RETURN, LINE, or END,

:complete-string waits for more input. If or-nil is not nil and

the user just presses RETURN, LINE, or END, it returns nil. The

default for or-nil is t.

Page 1349

If the user presses RETURN, LINE, or END and the input buffer

is not empty, the input is completed as far as possible. If the

completed string is the car of an alist element, the completed

string is returned. Otherwise, if the user pressed END or if im-

possible-is-ok is nil, :complete-string waits for more input. If

the user pressed RETURN or LINE and if impossible-is-ok is not

nil, the completed string is returned. The default for impossi-

ble-is-ok is t.

Unless :complete-string returns nil, it also returns a second

value, a list of the alist elements that represent possible com-

pletions of the returned string.

(:flavor-name :impossible-is-ok impossible-is-ok) Reads and returns the

name of a flavor, terminated by RETURN, LINE, or END. The user

can type the flavor name with or without a package prefix.

If the user presses COMPLETE, the input so far is completed

over the set of defined flavors. If the user presses c-?, the

possible completions of the input are displayed. If the user

presses HELP, the possible completions are displayed unless

many exist; in that case a general help message is displayed.

If the user presses RETURN, LINE, or END and the input buffer

is not empty, the input is completed as far as possible. If the

completed input is the name of a flavor, the flavor name (a

symbol in the appropriate package) is returned. Otherwise, if

the user pressed END, :flavor-name waits for more input. If the

user pressed RETURN or LINE and if impossible-is-ok is not nil,

the completed input is returned as a symbol. If the user

pressed RETURN or LINE and if impossible-is-ok is nil, an error

is signalled and caught by the input editor. The default for im-

possible-is-ok is t.

(:number :base input-base :or-nil or-nil) Reads and returns a number, terminated

by RETURN, LINE, or END. If :base is specified, the number is

read in base input-base; otherwise, it is read as a decimal

number. If :or-nil is specified with a value other than nil, it

returns nil if the user just presses RETURN, LINE, or END. The

default for or-nil is nil.

(:number-or-nil :base input-base) The same as (:number :base input-base

:or-nil t). This option is obsolete.

(:decimal-number :or-nil or-nil) The same as (:number :base 10. :or-nil

or-nil). This option is obsolete.

:decimal-number-or-nil The same as (:number :base 10. :or-nil t). This op-

tion is obsolete.

(:integer :base input-base :or-nil or-nil :from from :to to) Reads and re-

turns an integer, terminated by RETURN, LINE, or END. If :base

Page 1350

is specified, the integer is read in base input-base; otherwise, it

is read as a decimal number. If :or-nil is specified with a value

other than nil, it returns nil if the user just presses RETURN,

LINE, or END. The default for or-nil is nil. If :from is specified,

the integer must be greater than or equal to from. If :to is

specified, the integer must be less than or equal to to. The de-

fault for from and to is to place no limits on the integer.

(:date :past-p past-p :never-p never-p :base-time base-time :or-nil or-nil)

Reads and returns a date, terminated by RETURN, LINE, or END.

The returned date is a universal-time integer of the form re-

turned by time:parse-universal-time. If :past-p is specified

with a value other than nil, an ambiguous date is interpreted

as being in the past, relative to the base time; otherwise, it is

interpreted as being in the future. The default for past-p is nil.

If :never-p is specified with a value other than nil, it returns

nil if the user types "never". The default for never-p is nil. If

:base-time is specified, it must be a universal-time integer that

is used to fill in components that the user omits. If :base-time

is not specified, the time when the user’s input is read is used

as the base time.

(:past-date :never-p never-p :base-time base-time :or-nil or-nil) The same as

(:date :past-p t :never-p never-p :base-time base-time :or-nil

or-nil). This option is obsolete.

(:date-or-never :past-p past-p :base-time base-time :or-nil or-nil) The same as

(:date :past-p past-p :never-p t :base-time base-time :or-nil or-

nil). This option is obsolete.

(:past-date-or-never :base-time base-time :or-nil or-nil)The same as (:date :past-p

t :never-p t :base-time base-time :or-nil or-nil). This option is

obsolete.

:time-interval-or-never Reads a time interval, terminated by RETURN, LINE, or

END. The interval must be either "never" or alternating num-

bers and units of time; the units can include seconds, minutes,

hours, days, weeks, or years. It returns nil if the user types

"never". Otherwise, it returns an integer representing the num-

ber of seconds in the time interval.

Example:

(prompt-and-read :time-interval-or-never)

Enter a time interval, or "never": 1 day 2 hrs 13 min =>

94380.�

(:pathname :default default :visible-default visible-default :default-version version

:or-nil or-nil) Reads a pathname, terminated by RETURN,

LINE, or END, merging it with a default.

Page 1351

:default and :visible-default are mutually exclusive. If either

is specified, its value can be nil, a pathname, a pathname

string, or an alist of hosts and pathnames of the sort that is

the value of fs:*default-pathname-defaults*. If the value is nil

or a defaults alist, the default used is the result of calling

fs:default-pathname on the value. If the value is a pathname

or a pathname string, the default used is the result of calling

fs:parse-pathname on the value. If neither :default nor

:visible-default is specified, the default used is the result of

(fs:default-pathname).

The difference between :default and :visible-default is that if

a prompt is supplied as the second argument to prompt-and-

read, the :visible-default pathname is displayed to the user af-

ter the prompt, but the :default pathname is not. If a prompt

is supplied and neither :default nor :visible-default is speci-

fied, the default pathname is not displayed. If no prompt is

supplied, the default pathname is always displayed, whether it

comes from :default, :visible-default, or the default default.

If :default-version is not specified, the default version is nil.

If :default-version is specified, its value should be an integer

or keyword suitable as the third argument to fs:merge-

pathnames.

If the user just presses RETURN or LINE this option returns the

default pathname. If the user just presses END this option re-

turns the default pathname, unless :or-nil is specified with a

value other than nil. In that case it returns nil. Otherwise this

option returns the pathname the user typed, merged against

the default and the default version. The default for or-nil is

nil.

If the user presses COMPLETE an attempt is made to complete

the pathname string typed so far. If the user presses END after

typing some text, an attempt is made to complete the path-

name string, and if completion is successful the merged path-

name is returned.

Example:

(prompt-and-read

 ‘(:pathname :visible-default ,my-defaults-alist)

 "Enter a name"))�

(:pathname-or-nil :default default :visible-default visible-default :default-version

version) The same as (:pathname :default default :visible-

default visible-default :default-version version :or-nil t). This

option is obsolete.

(:pathname-list :default default :visible-default visible-default :or-nil or-nil)

Reads a series of pathnames, separated by commas and termi-

Page 1352

nated by RETURN, LINE, or END. The meaning of :default and

:visible-default is the same as for the :pathname option.

:pathname-list merges the pathnames with the default and

with a default version of :newest. It returns a list of the

merged pathnames, unless or-nil is not nil and the user just

presses RETURN, LINE, or END. In that case it returns nil. The

default for or-nil is t.

(:host :host-type type :default default :or-nil or-nil) Reads the name of a host,

terminated by RETURN, LINE, or END.

:host-type is a keyword that determines what kind of input is

acceptable:

:physical The name of a network host. This is the

default.

:chaos-only The name of a network host on the chaos-

net.

:or-local The name of a network host or "local",

meaning the local host.

:pathname The name of a pathname host or "local",

meaning the local host.

:or-pathname The name of a network host, a pathname

host, or "local", meaning the local host.�

If :default is specified, it should be a network host or the

name of a host as a symbol or string. If :default is specified

and the user just presses RETURN, LINE, or END, it returns the

host specified by :default.

If :default is not specified or is nil, :or-nil is specified with a

value other than nil, and the user just presses RETURN, LINE,

or END, it returns nil. Otherwise, it returns the host object

whose name the user types. The default for or-nil is nil.

(:host-or-local :default default :or-nil or-nil) The same as (:host :host-

type :or-local :default default :or-nil or-nil). This option is ob-

solete.

(:pathname-host :default default :or-nil or-nil) The same as (:host :host-

type :pathname :default default :or-nil or-nil). This option is

obsolete.

(:host-list :host-type host-type :or-nil or-nil) Reads a series of names of

network hosts, separated by spaces or commas, and terminated

by RETURN, LINE, or END. :host-type has the same meaning as

for the :host option. :host-list returns a list of the host objects

whose names the user types, unless or-nil is not nil and the

user just presses RETURN, LINE, or END. In that case it returns

nil. The default for or-nil is t.

Page 1353

(:keyword :or-nil or-nil) Reads the name of a symbol to be interned in the

keyword package, terminated by RETURN, LINE, or END. The

symbol name should not have a package prefix (that is, it

should not be preceded by a colon). Lowercase letters in the

name are converted to upper case. :keyword returns the key-

word symbol whose name the user types, unless :or-nil is spec-

ified with a value other than nil and the user just presses RE-

TURN, LINE, or END. In that case it returns nil. The default for

or-nil is nil.

(:keyword-list :or-nil or-nil) Reads a series of names of symbols to be

interned in the keyword package, separated by spaces or com-

mas, and terminated by RETURN, LINE, or END. The symbol

names should not have package prefixes (that is, they should

not be preceded by colons). Lowercase letters in the names are

converted to upper case. :keyword-list returns a list of key-

word symbols whose names the user types, unless or-nil is not

nil and the user just presses RETURN, LINE, or END. In that case

it returns nil. The default for or-nil is t.

(:font :or-nil or-nil)Reads the name of a font, terminated by RETURN, LINE, or END.

The font name should not have a package prefix (that is, it

should not be preceded by fonts:), and it must be the name of

a known font. :font returns the font (not the symbol) whose

name the user types, unless :or-nil is specified with a value

other than nil and the user just presses RETURN, LINE, or END.

In that case it returns nil. The default for or-nil is nil.

(:font-list :or-nil or-nil) Reads a series of names of fonts, separated by spaces

or commas, and terminated by RETURN, LINE, or END. The font

names should not have package prefixes (that is, they should

not be preceded by fonts:), and they must be names of known

fonts. :font-list returns a list of the fonts (not the symbols)

whose names the user types, unless or-nil is not nil and the

user just presses RETURN, LINE, or END. In that case it returns

nil. The default for or-nil is t.

(:object :class class :or-nil or-nil) Reads the name of an object in the net-

work namespace, terminated by RETURN, LINE, or END. class is a

keyword representing a namespace class or a string that is the

print name of a class keyword. You must supply this argument.

:object returns the namespace object whose name the user

types, unless :or-nil is specified with a value other than nil

and the user just presses RETURN, LINE, or END. In that case it

returns nil. The default for or-nil is nil.

(:object-list :class class :or-nil or-nil) Reads a series of names of objects in the

network namespace, separated by spaces or commas, and termi-

nated by RETURN, LINE, or END. class is a keyword representing

a namespace class or a string that is the print name of a class

Page 1354

keyword. You must supply this argument. :object-list returns a

list of the namespace objects whose names the user types, un-

less or-nil is not nil and the user just presses RETURN, LINE, or

END. In that case it returns nil. The default for or-nil is t.

(:class :or-nil or-nil) Reads the name of a network namespace class, termi-

nated by RETURN, LINE, or END. The name should not contain a

package prefix (that is, it should not be preceded by a colon).

It returns the keyword representing the class whose name the

user types, unless :or-nil is specified with a value other than

nil and the user just presses RETURN, LINE, or END. In that case

it returns nil. The default for or-nil is nil.

Streams are permitted to have a handler for :prompt-and-read messages. The

prompt-and-read function first determines whether the zl:query-io stream handles

the :prompt-and-read message. If so, it sends a :prompt-and-read message with

its own arguments on to the stream. The stream returns several values. The first

value the stream returns says whether or not it wants to handle the interaction

with the user itself. It returns nil to indicate that it declines to handle the mes-

sage, in which case the prompt-and-read function continues its normal action of

prompting the user. When the first value is not nil, the prompt-and-read function

returns the rest of the values to its caller.

� (flavor:method :put-item-in-window tv:text-scroll-window) item Method

The first occurrence of item is located. If it occurs before the first item in the

window, the window redisplays so that item appears in the top line. If it occurs af-

ter the last item in the window, the window redisplays so that item appears in the

bottom line.

If item is already visible or is not in the list, nothing happens.

� (flavor:method :put-last-item-in-window tv:text-scroll-window) Method

If the last item is not visible, the window redisplays so that the last item appears

in the bottom line.

� cp:read-accelerated-command &key (command-table cp:*command-table*) (stream

query-io) (help-stream stream) (echo-stream stream) (whostate nil) (prompt nil)

(command-prompt cp::*full-command-prompt*) (full-command-full-rubout nil) (spe-

cial-blip-handler nil) (timeout nil) (input-wait nil) (input-wait-handler nil) (form-p

nil) (handle-clear-input nil) (catch-accelerator-errors t) (unknown-accelerator-is-

command nil) (unknown-accelerator-tester nil) (unknown-accelerator-reader nil) (un-

known-accelerator-reader-prompt nil) (abort-chars nil) (suspend-chars nil) (status nil)

(intercept-function nil) (window-wakeup nil) Function

Reads a Command Processor command input as a single-key accelerator.

Page 1355

The values returned by this function depend on whether a command or form is ex-

pected (see the :form-p option below). If the caller is expecting a command

(:form-p is nil), the values returned are the command name, command arguments,

and a flag. If the caller is expecting a form (:form-p is t), the values returned are

the form and a flag.

Possible values for the returned flag are:

:command A command was read.

:form A form was read.

:accelerator An accelerator character was read.

:timeout A timeout expired.

:status The window’s status changed.

:wakeup The window was asynchronously refreshed, selected, exposed, and so

on.

:unknown (or nil) Something unknown was typed.�

cp:read-accelerated-command accepts the following keyword options:

:command-table Specifiesthecommandtablecontainingtheaccelerator;

the default is the current binding of cp:*command-table*.

:stream Specifiesthestreamfromwhichtoreadthecommand;thedefault

is *query-io*.

:help-stream Specifiestheoutputstreamforhelpmessages;thede-

fault is the stream specified by the :stream option.

:echo-stream Specifiesthestreamtowhichtheinputcommandis

echoed; the default is the stream specified by the :stream option.

To suppress echoing, supply this option with #’ignore.

:whostate Specifiesastringtoappearinthestatuslineinplace

of "User Input".

:prompt Specifies a string to be used as the prompt, or a prompt option.

(See the section "Displaying Prompts in the Input Editor".)

:command-prompt Specifiesastringtobeusedasthepromptifa com-

mand is to be read, that is, if the user types ":" or m-x. The default

is cp::*full-command-prompt*, which is "Command: ".

:full-command-full-rubout Booleanoptionspecifying whethertore-

turn if CLEAR INPUT is pressed (or a series RUBOUTs back to the

prompt) after the command prompt (":" or m-X, for example) is

typed. The default is nil, allowing the continuation of command

parsing.

Page 1356

:special-blip-handler Specifiesafunctioncalledwithmouseblipsthatare

not presentation input blips. (See the section "Mouse Blips".)

:timeout Specifies the length of time, in 60ths of a second, after which, if

the user types nothing, cp:read-accelerated-command returns

:timeout as the flag and nil for the other values.

:input-wait Specifiesafunctiontestingforsomeconditionwhilein

the input-wait state. If this condition occurs, the :input-wait-

handler is invoked.

:input-wait-handler Specifiesafunctioncalledafteraconditionsatisfying

the :input-wait function occurs.

:form-p Booleanoptionspecifyingwhetheraform orcommandisexpected;

the default is nil. If t, the function returns an evaluable form

rather than the command name and arguments.

:handle-clear-input Booleanoptionspecifyingwhether#/clear-inputis

treated specially; the default is nil. If t and the CLEAR INPUT key is

pressed, the function clears the input buffer and reprompts.

:catch-accelerator-errors Booleanoptionspecifyingwhether,when

an unknown accelerator character is typed, the function beeps and

prints out a warning message; the default is t. If nil, the error fla-

vor cp::accelerator-error is signaled.

:unknown-accelerator-is-command Specifieswhether unknownaccelerators

are dispatched to the :unknown-accelerator-reader function.

The default is nil. Unknown accelerators that do not pass the

:unknown-accelerator-tester function give errors (which may or

may not get through to the user see the :catch-accelerator-

errors option).

If t, all unknown accelerators dispatch to the unknown-accelerator

reader which should return a command.

A third value permitted for this option is :alpha, causing only un-

known accelerators that are alphabetic characters to be dispatched

to the unknown-accelerator reader.

:unknown-accelerator-tester Specifiesafunctionofoneargument, the

character typed, which should return something non-nil if this par-

ticular unknown accelerator is permitted. In this case, :unknown is

returned as the flag and the value from this function is the first

value. If :form-p is nil, the character is returned as the second val-

ue.

:unknown-accelerator-reader Specifiesafunctionofnoarguments that

should return a form. (The function can call cp:read-command,

etc., but it should return a form.)

Page 1357

:unknown-accelerator-reader-prompt Specifiesastringtouseas

the prompt in this case, or a prompt option. (See the section "Dis-

playing Prompts in the Input Editor".)

:abort-chars Specifies a list of "abort" characters; the default is nil.

If a list of characters is provided and the user types one, sys:abort

is signalled.

:suspend-chars Specifiesalistof"suspend"characters;thedefaultis

nil.

If a list of characters is provided and the user types one, a break

loop is entered.

:status Specifieswhathappensifthewindow’sstatuschanges. Threevalues

are permitted, :selected, :exposed, and nil.

If the value is :selected and the window is no longer selected, the

function returns :status.

If the value is :exposed and the window is no longer exposed or se-

lected, the function returns :status.

If the value is nil, the function continues to wait for input when

the window is deexposed or deselected. This is the default.

:intercept-function Specifiesafunctionofoneargument, acharacter,that

gets called on each typed character that is one of :abort-chars or

:suspend-chars.

:window-wakeup Booleanoptionspecifyingwhethertoreturn:wakeup

when an asynchronous window system condition like expose, select,

or refresh occurs; the default is nil.

For an overview of cp:read-accelerated-command and related facilities: See the

section "Managing Your Program Frame".

� zl:read-and-eval &optional stream (catch-errors t) Function

Calls zl:read-expression to read a form, without completion. It then evaluates the

form and returns the result. If catch-errors is not nil, it calls zl:parse-ferror if an

error occurs during the evaluation (but not the reading) so that the input editor

catches the error.

stream defaults to zl:standard-input. This function is intended to read only from

interactive streams.

� (flavor:method :read-bp si:interactive-stream) Method

Page 1358

Returns the value of the scan pointer. This is for the benefit of read functions

that might want to return a pointer into the input buffer when signalling an error

of type sys:parse-error.

� dw:read-char-for-accept stream Function

Returns the next character in the input stream and removes this character from

the stream.

stream The input stream.�

The character returned may be a presentation blip character containing informa-

tion specific to the accept input mechanism. Therefore, characters read via

dw:read-char-for-accept should only be manipulated by the related Dynamic Win-

dow input functions. For example, you cannot use char-equal to compare a charac-

ter returned by dw:read-char-for-accept with a standard character; you must use

dw:compare-char-for-accept instead.

For an overview of dw:read-char-for-accept and related facilities, see the section

"Defining Your Own Presentation Types".

� sys:read-character &optional stream &key (fresh-line t) (any-tyi nil) (eof nil) (noti-

fication t) (prompt nil) (help nil) (refresh t) (suspend t) (abort t) (status nil) presen-

tation-context Function

Reads and returns a single character from stream. This function displays notifica-

tions and help messages and reprompts at appropriate times. It is used by fquery

and the :character option for prompt-and-read.

stream must be interactive. It defaults to zl:query-io.

Following are the permissible keywords:

:fresh-line If not nil, the function sends the stream a :fresh-line message

before displaying the prompt. If nil, it does not send a :fresh-

line message. The default is t.

:any-tyi If not nil, the function returns blips. If nil, blips are treated as

the :tyi message to an interactive stream treats them. The de-

fault is nil.

:eof If not nil and the function encounters end-of-file, it returns

nil. If nil and the function encounters end-of-file, it beeps and

waits for more input. The default is nil.

:notification If not nil and a notification is received, the function displays

the notification and reprompts. If nil and a notification is re-

ceived, the notification is ignored. The default is t.

:prompt If nil, no prompt is displayed. Otherwise, the value should be a

prompt option to be displayed at appropriate times. See the

section "Displaying Prompts in the Input Editor". The default

is nil.

Page 1359

:help If not nil, the value should be a help option. See the section

"Displaying Help Messages in the Input Editor". Then, when

the user presses HELP, the function displays the help option

and reprompts. If nil and the user presses HELP, the function

just returns #\help. The default is nil.

:refresh If not nil and the user presses REFRESH, the function sends the

stream a :clear-window message and reprompts. If nil and the

user presses REFRESH, the function just returns #\refresh. The

default is t.

:suspend If not nil and the user types one of the sys:kbd-standard-

suspend-characters, a zl:break loop is entered. If nil and the

user types a suspend character, the function just returns the

character. The default is t.

:abort If not nil and the user types one of the sys:kbd-standard-

abort-characters, sys:abort is signalled. If nil and the user

types an abort character, the function just returns the charac-

ter. The default is t.

:status This option takes effect only if the stream is a window. If the

value is :selected and the window is no longer selected, the

function returns :status. If the value is :exposed and the win-

dow is no longer exposed or selected, the function returns

:status. If the value is nil, the function continues to wait for

input when the window is deexposed or deselected. The default

is nil.

:presentation-context If this is not nil, the presentation system is enabled,

that is, presentations that are targets of existing mouse han-

dlers will be sensitive.

� cp:read-command &optional (stream zl-user:*standard-input*) &key (command-

table cp:*command-table*) (blank-line-mode cp::*default-blank-line-mode*)

(prompt cp::*default-prompt*) Function

Reads a Command Processor command from stream, terminated by RETURN or END.

If stream is not supplied or is nil, it defaults to *cl:standard-input*.

From the user’s point of view, a command consists of a command name, positional

arguments, and keyword arguments: See the section "Parts of a Command".

cp:read-command offers completion over command names, keyword argument

names, and some argument values, and it completes any unspecified command com-

ponents when the command is terminated: See the section "Completion in the Com-

mand Processor".

cp:read-command prompts for arguments and gives information about what sort

of values are expected. Some arguments have default values. The user can press

HELP to see documentation appropriate to the current stage of entering the com-

Page 1360

mand: See the section "Help in the Command Processor". For a general description

of how the user enters a command: See the section "Entering a Command".

If :command-table is supplied, it is a command table of the acceptable commands.

The default command table is the value of cp:*command-table*. The initial de-

fault is the "User" command table. See the section "Command Processor Command

Tables".

If :blank-line-mode is supplied, it is a keyword that determines what action the

command processor takes when the user types a blank line:

:reprompt Redisplay the prompt, if any.

:beep Beep.

:ignore Do nothing.�

The default blank-line-mode is the value of cp::*default-blank-line-mode*. The ini-

tial default is :reprompt.

If :prompt is supplied, it is a prompt option for the input editor to display at ap-

propriate times. prompt can be nil, a string, a function, or a symbol other than nil

(but not a list): See the section "Displaying Prompts in the Input Editor". The de-

fault prompt is the value of cp::*default-prompt*. The initial default is "Com-

mand: ".

cp:read-command returns two values. The first is a symbol, the name of the com-

mand, which is defined as a function. The second is a list of the arguments, con-

verted to the appropriate types. Usually you execute the command by applying the

first value (the function) to the second (the arguments).

For an overview of cp:read-command and related facilities: See the section "Man-

aging the Command Processor".

� cp:read-command-arguments command-name &key initial-arguments (command-

table cp:*command-table*) (stream *standard-input*) (prompt nil) Function

Prompts for and returns the arguments to a Command Processor command.

command-name The command name (symbol).�

:initial-arguments Specifies a list containing zero or more of the initial

arguments to the command.

:command-table Specifies the command table containing the command;

the default is the current command table (bound to cp:*command-

table*).

:stream Specifies the input stream; the default is *standard-input*.

:prompt Specifies a string, or a function returning a string, to be used as

the prompt for the command arguments. The default value for this

option is nil, causing the prompt to be derived from the user-visible

name of the command.

Page 1361

Example:

(cp:read-command-arguments ’si:com-show-file :prompt

 "File for viewing")�

You can apply the command function to the arguments returned in order to exe-

cute it.

For an overview of cp:read-command-arguments and related facilities: See the

section "Managing Your Program Frame".

� cp:read-command-or-form &optional (stream zl-user:*standard-input*) &key (com-

mand-table cp:*command-table*) (dispatch-mode cp::*default-dispatch-mode*)

(blank-line-mode cp::*default-blank-line-mode*) (prompt cp::*default-prompt*) ex-

ception-chars expression-reader expression-printer (environment si:*read-form-

environment*) Function

Reads a form or a Command Processor command from stream. This is an appropri-

ate function to use at top level in a command loop that uses the command proces-

sor.

If stream is not supplied or is nil, it defaults to *cl:standard-input*.

If :dispatch-mode is specified, it is a keyword that indicates the command proces-

sor dispatch mode. The default is the value of cp::*default-dispatch-mode*. The

initial default is :command-preferred.

The actions that cp:read-command-or-form takes depend on dispatch-mode:

:form-only Calls zl:read-form to read a form from stream.

:command-only Calls cp:read-command to read a command from stream.

:form-preferred Calls zl:read-form unless the first character typed is a com-

mand dispatch character (by default, a colon). In that case

calls cp:read-command.

:command-preferred If the first character typed is a command dispatch

character or an alphabetic character, calls cp:read-command;

otherwise, calls zl:read-form. The user can evaluate a form

that begins with an alphabetic character by first typing a form

dispatch character (by default, a comma).�

For a general description of how the user enters a command: See the section "En-

tering a Command".

If :command-table is supplied, it is a command table of the acceptable commands.

The default command table is the value of cp:*command-table*. The initial de-

fault is the "User" command table. See the section "Command Processor Command

Tables".

If :blank-line-mode is supplied, it is a keyword that determines what action the

command processor takes when the user types a blank line:

Page 1362

:reprompt Redisplay the prompt, if any.

:beep Beep.

:ignore Do nothing.�

The default blank-line-mode is the value of cp::*default-blank-line-mode*. The ini-

tial default is :reprompt.

If :prompt is supplied, it is a prompt option for the input editor to display at ap-

propriate times. prompt can be nil, a string, a function, or a symbol other than nil

(but not a list): See the section "Displaying Prompts in the Input Editor". The de-

fault prompt is the value of cp::*default-prompt*. The initial default is "Com-

mand: ".

The keyword :exception-chars is for internal use. It is ignored by cp:read-

command-or-form.

Possible values of the keywords :expression-reader and :expression-printer are

functions for reading and writing expressions in languages other than Lisp, such

as Pascal, Fortran, or C. These are for use by the debugger.

cp:read-command-or-form returns a form. If cp:read-command-or-form calls

zl:read-form to read from stream, it returns the form that zl:read-form returns. If

it calls cp:read-command, it returns a list whose first element is a symbol, the

name of the command, which is defined as a function. The remaining elements of

the list are the arguments to the command, coerced to the appropriate types. Usu-

ally you execute the command by evaluating the returned list.

For an overview of cp:read-command-or-form and related facilities: See the sec-

tion "Managing the Command Processor".

� (flavor:method :read-cursorpos tv:blinker) Method

Returns two values: the x and y components of the position of the blinker within

the inside of the window.

� (flavor:method :read-cursorpos tv:sheet) &optional (units ’:pixel) Method

Return two values: the x and y coordinates of the cursor position, that is, <x, y> is

the upper left corner of the next character drawn. These coordinates are in pixels

by default, but if units is :character, the coordinates are given in character-widths

and line-heights. (Note that character-widths don’t mean much when you are using

variable-width fonts.)

� zl:read-expression &optional stream &key (completion-alist nil) (completion-

delimiters nil) Function

Like sys:read-for-top-level except that if it encounters a top-level end-of-file, it

just beeps and waits for more input. This function is used by the :expression op-

tion for prompt-and-read.

Page 1363

stream defaults to zl:standard-input. This function is intended to read only from

interactive streams.

If completion-alist is not nil, this function also sets up COMPLETE and c-? as input

editor commands. When the user presses COMPLETE, the input editor tries to com-

plete the current symbol over the set of possibilities defined by completion-alist.

When the user presses c-?, the input editor displays the possible completions of

the current symbol.

The style of completion is the same as that offered by Zwei. completion-alist can be

nil, an alist, an sys:art-q-list array, or a keyword:

nil No completion is offered.

alist The car of each alist element is a string representing one pos-

sible completion.

array Each element is a list whose car is a string representing one

possible completion. The array must be sorted alphabetically on

the cars of the elements.

keyword If the symbol is :zmacs, completion is offered over the defini-

tions in Zmacs buffers. If the symbol is :flavors, completion is

offered over all flavor names. If the symbol is :documentation,

completion is offered over all documentation topics available to

Document Examiner.�

The default for completion-alist is nil.

completion-delimiters is nil or a list of characters that delimit "chunks" for com-

pletion. As in Zwei, completion works by matching initial substrings of "chunks" of

text. If completion-delimiters is nil, the entire text of the current symbol is a sin-

gle "chunk". The default is nil.

� zl:read-form &optional stream &key (edit-trivial-errors-p zl:*read-form-edit-trivial-

errors-p*) (completion-alist zl:*read-form-completion-alist*) (completion-delimiters

zl:*read-form-completion-delimiters*) Function

Like zl:read-expression, but assumes that the returned value will be given imme-

diately to eval. This function is used by the Lisp command loop and by the :eval-

form and :eval-form-or-end options for prompt-and-read.

stream defaults to zl:standard-input. This function is intended to read only from

interactive streams.

If edit-trivial-errors-p is not nil, the function checks for two kinds of errors. If a

symbol is read, it checks whether the symbol is bound. If a list whose first ele-

ment is a symbol is read, it checks whether the symbol has a function definition.

If it finds an unbound symbol or undefined function, it offers to use a lookalike

symbol in another package or calls zl:parse-ferror to let the user correct the in-

put. edit-trivial-errors-p defaults to the value of zl:*read-form-edit-trivial-errors-p*.

The default value is t.

Page 1364

If completion-alist is not nil, this function also sets up COMPLETE and c-? as input

editor commands. When the user presses COMPLETE, the input editor tries to com-

plete the current symbol over the set of possibilities defined by completion-alist.

When the user presses c-?, the input editor displays the possible completions of

the current symbol.

The style of completion is the same as that offered by Zwei. completion-alist can be

nil, an alist, an sys:art-q-list array, or a keyword:

nil No completion is offered.

alist The car of each alist element is a string representing one pos-

sible completion.

array Each element is a list whose car is a string representing one

possible completion. The array must be sorted alphabetically on

the cars of the elements.

keyword If the symbol is :zmacs, completion is offered over the defini-

tions in Zmacs buffers. If the symbol is :flavors, completion is

offered over all flavor names. If the symbol is :documentation,

completion is offered over all documentation topics available to

Document Examiner.

The default for completion-alist is the value of zl:*read-form-completion-alist*.

The default value is :zmacs.

completion-delimiters is nil or a list of characters that delimit "chunks" for com-

pletion. As in Zwei, completion works by matching initial substrings of "chunks" of

text. If completion-delimiters is nil, the entire text of the current symbol is a sin-

gle "chunk". The default is the value of zl:*read-form-completion-delimiters*. The

default value is (#\- #\: #\space).

� zl:*read-form-completion-alist* Variable

If not nil, zl:read-form sets up COMPLETE and c-? as input editor commands.

When the user presses COMPLETE, the input editor tries to complete the current

symbol over the set of possibilities defined by completion-alist. When the user

presses c-?, the input editor displays the possible completions of the current sym-

bol.

The style of completion is the same as that offered by Zwei. zl:*read-form-

completion-alist* can be nil, an alist, an sys:art-q-list array, or a keyword:

nil No completion is offered.

alist The car of each alist element is a string representing one pos-

sible completion.

array Each element is a list whose car is a string representing one

possible completion. The array must be sorted alphabetically on

the cars of the elements.

Page 1365

keyword If the symbol is :zmacs, completion is offered over the defini-

tions in Zmacs buffers. If the symbol is :flavors, completion is

offered over all flavor names. If the symbol is :documentation,

completion is offered over all documentation topics available to

Document Examiner.�

The default value is :zmacs.

� zl:*read-form-completion-delimiters* Variable

The value is nil or a list of characters that delimit "chunks" for completion in

zl:read-form. As in Zwei, completion works by matching initial substrings of

"chunks" of text. If zl:*read-form-completion-delimiters* is nil, the entire text of

the current symbol is a single "chunk". The default value is (#\- #\: #\space).

� zl:*read-form-edit-trivial-errors-p* Variable

If not nil, zl:read-form checks for two kinds of errors. If a symbol is read, it

checks whether the symbol is bound. If a list whose first element is a symbol is

read, it checks whether the symbol has a function definition. If it finds an un-

bound symbol or undefined function, it offers to use a lookalike symbol in another

package or calls zl:parse-ferror to let the user correct the input. The default is t.

� cp:read-full-command arg-p ignore Function

This is the m-X (extended) and colon-full-command Command Processor command

accelerator, which lets you type extended commands to the single command accel-

erator reader.

cp:read-full-command is a function that is suitable for use as a command accel-

erator’s function. However, because it is already installed on ":" and m-X in the

"Colon Full Command" command-table, the best way to make use of this facility is

to have the command tables in your applications that use accelerator characters in-

herit from "Colon Full Command".

See the function cp:add-command-accelerator. For an overview of cp:read-full-

command and related facilities: See the section "Managing Your Program Frame".

� sys:read-interval-or-never &optional stream or-nil Function

Reads a line of input from stream (using zl:readline) and calls si:parse-interval-

or-never on the resulting string.

zl:readline-no-echo &optional stream &key (terminators ’(#\return #\line #\end))

(full-rubout nil) (notification t) (prompt nil) (help nil) Function

Reads a line of input from stream without echoing the input, and returns the input

as a string, without the terminating character. This function is used to read pass-

Page 1366

words and encryption keys. It does not use the input editor but does allow input to

be edited using RUBOUT.

stream must be interactive. It defaults to zl:query-io.

Following are the permissible keywords:

:terminators A list of characters that terminate the input. If the user types

#\return, #\line, or #\end as a terminator, the function echoes

a Newline. If the user types any other character as a termina-

tor, the function echoes that character. The default is

(#\return #\line #\end).

:full-rubout If not nil and the user rubs out all characters on the line, the

function returns nil. If nil and the user rubs out all characters

on the line, the function waits for more input. The default is

nil.

:notification If not nil and a notification is received, the function displays

the notification and reprompts. If nil and a notification is re-

ceived, the notification is ignored. The default is t.

:prompt If nil, no prompt is displayed. Otherwise, the value should be a

prompt option to be displayed at appropriate times. See the

section "Displaying Prompts in the Input Editor". The default

is nil.

:help If not nil, the value should be a help option. See the section

"Displaying Help Messages in the Input Editor". Then, when

the user presses HELP, the function displays the help option

and reprompts. If nil and the user presses HELP, the function

just returns #\help. The default is nil.�

� (flavor:method :read-location si:interactive-stream) Method

Returns the value of the scan pointer. This is also defined on noninteractive

streams.

� zl:read-or-character &optional delimiters stream reader Function

Like zl:read-expression, except that if it is reading from an interactive stream

and the user types one of the delimiters as the first character or the first charac-

ter after only whitespace characters, it returns four values: nil, :character, the

character code of the delimiter, and any numeric argument to the delimiter. If it

encounters any nonwhitespace characters, it calls the reader function with an argu-

ment of stream to read the input.

delimiters is a character, a list of characters, or nil. The default is nil. reader de-

faults to zl:read-expression. stream defaults to zl:standard-input. This function is

intended to read only from interactive streams.

Page 1367

� read-or-end &optional (stream zl:standard-input) reader Function

Like zl:read-expression except that if it is reading from an interactive stream and

the user presses END as the first character or the first character after only whites-

pace characters, it returns two values, nil and :end. If it encounters any non-

whitespace characters, it calls the reader function with an argument of stream to

read the input. reader defaults to zl:read-expression. stream defaults to

zl:standard-input.

The :expression-or-end and :eval-form-or-end options for prompt-and-read invoke

read-or-end.

This function is intended to read only from interactive streams.

� dw:read-standard-token stream Function

Parses string as delimited by activation and blip characters established by

dw:with-accept-activation-chars and dw:with-accept-blip-chars, respectively.

stream The input stream.�

For an overview of dw:read-standard-token and related facilities, see the section

"Defining Your Own Presentation Types".

� :receive-notification Message

Sent to an interactive stream, it returns a notification when one exists in the

stream’s notification cell. The message checks the contents of the locative returned

by the :notification-cell message to the stream. When the locative contains a noti-

fication, :receive-notification returns the notification and stores nil in the loca-

tive. When the locative does not contain a notification, :receive-notification re-

turns nil.

� tv:rectangular-blinker Flavor

One of the flavors of blinker provided for your use. A rectangular blinker is dis-

played as a solid rectangle; this is the kind of blinker you see in Lisp Listeners

and Editor windows. The width and height of the rectangle can be controlled.

� (flavor:method :redisplay tv:basic-scroll-window) Method

When a scroll window is sent the :redisplay message, it examines all parts of the

top-level item, including all items contained in it and all items contained in them

and so on. It adds new lines to the display as they are found, removes ones no

longer found, and updates ones still found, that are in need of updating.

� (flavor:method :redisplay-variable tv:choose-variable-values-window) variable

Method

Page 1368

Redisplays just the value of the specified variable.

� dw:redisplayable-format stream format-string &rest format-args Function

Outputs a formatted string redisplayably. This simply calls format within a

caching point for incremental redisplay. (See the function dw:with-redisplayable-

output.) format-string is used as the cache-id; the list format-args is used as the

cache-value.

stream The output stream; the default is *standard-output*.

format-string The format-control string. (See the function format.)

format-args The format arguments.�

dw:redisplayable-format is one of a number of facilities used to do incremental

redisplay. For examples, see the file SYS:EXAMPLES;INCREMENTAL-REDISPLAY.LISP.

For an overview of dw:redisplayable-format and related facilities: See the section

"Displaying Output: Replay, Redisplay, and Formatting".

� dw:redisplayable-present object &optional presentation-type &key (stream

standard-output) (unique-id nil) &allow-other-keys Function

Presents an object redisplayably. This simply calls present within a caching point

for incremental redisplay. (See the function dw:with-redisplayable-output.) The

object itself is used as the cache-value.

object The object to present.

presentation-type The presentation type to display the object as; the de-

fault is the Lisp object type of the object, that is, (type-of object).

:stream Specifies the output stream; the default is *standard-output*.

:unique-id Identifiestheparticularincrementalredisplay cache.

This may be any object, as long as it is unique with respect to the

id-test predicate among all such ids in the current incremental re-

display. The default is that there is no id, not that nil is the id.

Other keyword options to dw:redisplayable-present are the same as those to

present, to which they are passed: See the function present.

dw:redisplayable-present is one of a number of facilities used to do incremental

redisplay. For examples, see the file SYS:EXAMPLES;INCREMENTAL-REDISPLAY.LISP.

For an overview of dw:redisplayable-present and related facilities: See the section

"Displaying Output: Replay, Redisplay, and Formatting".

� dw:redisplayer (&optional stream) &body body Function

Page 1369

Creates a redisplay object out of its body, which can be used to do incremental re-

display on stream. Provide the redisplay object as the redisplay-piece argument to

dw:do-redisplay: See the function dw:do-redisplay.

stream The output stream; the default is *standard-output*.

dw:redisplayer is one of a number of facilities used to do incremental redisplay.

For examples, see the file SYS:EXAMPLES;INCREMENTAL-REDISPLAY.LISP.

For an overview of dw:redisplayer and related facilities: See the section "Display-

ing Output: Replay, Redisplay, and Formatting".

Note that you cannot currently use any options with this function.

� (flavor:method :refresh tv:menu) &optional type Method

Redraws the menu. The system sends this message with different type symbols de-

pending on the event that caused redrawing. You can also send it; in this case the

type argument is usually not supplied and is allowed to take on a default value.

The menu refreshes itself from a bit-save array or redraws itself from scratch, as

appropriate. If the bit-save array is invalid, or type is :complete-redisplay (this is

the default), or the size of the menu has changed, it redraws from scratch.

� (flavor:method :refresh tv:sheet) &optional type Method

Redisplays the window. Depending on type and the existence of a bit-save array,

clears the window or restores the image from the bit-save array. This message is

usually sent by the system. You might need to provide an :after daemon to recon-

struct the contents of the window.

� (flavor:method :remove-asynchronous-character si:interactive-stream) character

Method

Removes an asynchronous character from the list for the stream.

See the section "Asynchronous Characters".

� (flavor:method :remove-highlighted-value tv:menu-highlighting-mixin) value

Method

Removes an item from the list of highlighted items. Refers to the item by value.

For instance, if your item-list is an association list, with elements (string .�

symbol), this message uses symbol. This only works for menu items that can be ex-

ecuted without side-effects, not, for example, the :eval and :funcall kinds.

See the section "tv:multiple-menu-mixin Messages".

Page 1370

� (flavor:method :replace-input si:interactive-stream) n-chars string &optional (be-

gin 0) end (rescan-mode :ignore) Method

Can be sent by a read function that uses the input editor to provide completion of

the current input.

n-chars specifies the number of characters to be removed from the end of the in-

put buffer and erased from the screen. It can be an integer, a string, or nil:

integer Removes n-chars characters from immediately before the scan

pointer

string Removes as many characters as the string contains

nil Removes characters from the beginning of the input buffer to

the scan pointer�

The substring of string determined by begin and end is then displayed on the

screen. end defaults to (string-length string). The scan pointer is left after the

string, and a rescan does not take place. If a rescan takes place at some later

time, the characters in string are seen as input.

rescan-mode specifies what action to take if the :replace-input message is sent

when the scan pointer is not at the end of the input buffer:

:ignore Do not perform the :replace-input operation. This is the de-

fault.

:enable Perform the operation.

:error Signal an error.�

� (flavor:method :replace-item tv:text-scroll-window) item-no new-item Method

Replaces the item whose number is item-no with new-item.

If the item is currently visible, the window redisplays to show the new item.

� :reprompt &rest prompt-option Option

When it is time for the user to be reprompted, the input editor displays prompt-

option. prompt-option can have one element, which can be nil, a string, a function,

or a symbol other than nil; or it can have more than one element: See the section

"Displaying Prompts in the Input Editor".

Unlike :prompt, :reprompt displays the prompt only when input is redisplayed (for

example, after a screen clear), not when the input editor is first entered. If both

:prompt and :reprompt are specified, :reprompt overrides :prompt except when

the input editor is first entered.

� (flavor:method :rescanning-p si:interactive-stream) Method

Page 1371

Can be sent by a read function that uses the input editor to determine whether

the next character returned by :tyi will come from the input buffer or from the

keyboard. If t is returned, the input is being rescanned and the next character will

come from the input buffer. If nil is returned, the next character will come from

the keyboard.

� reset-user-options alist Function

Resets each of the option variables in alist to its default initial value.

� (flavor:method :reverse-video-p tv:menu) t-or-nil Init Option

If set to t, the menu is displayed in reverse video, that is, white-on-black instead

of black-on-white.

� (flavor:method :reverse-video-p tv:sheet) Method

Returns nil normally or t if the window displays in white on black rather than

black on white. This is separate from the whole screen’s inverse video mode (set

by FUNCTION C).

� (flavor:method :right tv:menu) right-edge Init Option

Right edge of the window specified in pixels, relative to the outside of the superior

window.

� (flavor:method :right tv:sheet) right-edge Init Option

Specifies the x-coordinate of the right edge of the window.

� (flavor:method :right-margin-character-flag tv:sheet) x Init Option

If x is 1, print an exclamation point in the right margin when :end-of-line-

exception happens; if x is 0, don’t. It defaults to 0.

� (flavor:method :right-margin-size tv:sheet) Method

Returns the right margin size of the window in pixels.

� (flavor:method :rows tv:menu) n-rows Init Option

Sets the number of rows.

� sys:rubout-handler Variable

Page 1372

Indicates the status of input editing within a process.

This variable is used internally by the :input-editor method and the input editor.

It should not be necessary for user programs to examine its value since the with-

input-editing special form is provided for this purpose.

The possible values for this variable are:

Value Meaning

nil The process is outside the input editor.

:read The process is inside the :input-editor method.

:tyi The process is inside the editing portion of the :tyi method.�

� (flavor:method :save-bits tv:sheet) t-or-nil Init Option

Specifies whether output to the window is written to a bit-save array when the

window is deexposed; the default is nil. If t, the output is redisplayed following re-

exposure of the window. The value of this option can also be :delayed. For more

information on bit-save arrays, see the section "Pixels and Bit-Save Arrays".

� (flavor:method :screen tv:menu) screen Init Option

In a system with multiple screens, sets the screen on which the menu appears.

� :screen-manage-deexposed-gray-array Message

The screen manager sends this message to deexposed windows to give them an op-

portunity to override the kind of graying that their superior (or the screen) wants

to provide. This message should return two values. Following are the possible

pairs of values and their meaning:

graying specification and nilUse graying specification to gray the window.

nil and nil Let the superior decide how to gray the window.

nil and t Disable graying of the window.�

See the section "Window Graying Specifications".

� tv:screen-manage-update-permitted-windows Variable

Controls whether the screen manager looks for partially visible windows with deex-

posed typeout actions of :permit and updates the visible portion of their contents

on the screen. If the value is nil, which it is initially, the screen manager does not

do this. Otherwise the value should be the interval between screen updates, in

60ths of a second.

Page 1373

� tv:scroll-maintain-list init-fun item-fun &optional per-element-fun stepper-fun com-

pact-p pre-proc-fun &rest init-args Function

Constructs and returns a list item that updates itself when the scroll window is

asked to redisplay. Takes the following arguments:

init-fun The init function that will be called at redisplay time to pro-

vide a representation of the set of objects to be displayed.

init-args Arguments to be passed to init-fun when called at redisplay

time.

item-fun The item function, to be applied to each object of yours to pro-

duce a display item.

per-element-fun A function to be put in the list item plist of the list item as

the :function function.

stepper-fun The function that is called on the set of objects and all "rest"s

of the set. It is expected to return three values: the next ele-

ment, the "rest" of the set, and t if it has returned the last el-

ement of the set. If not given, stepper-fun defaults to tv:scroll-

maintain-list-stepper, a function that handles ordinary lists.

compact-p An optional flag that causes tv:scroll-maintain-list to copy the

list it builds at each redisplay into a special area for such lists,

in order to optimize paging performance. The list so construct-

ed will be stored in compact (that is, cdr-coded) form.

pre-proc-fun A function to be put in the list item plist of the list item as

the :pre-process-function function. If not given, pre-proc-fun

defaults to tv:scroll-maintain-list-update-function.�

Following is a simple example:

(tv:scroll-maintain-list #’(lambda (instance) ;The init function

 (send instance ’:value-list))

 #’(lambda (value) ;The item function

 (tv:scroll-parse-item

 ‘(:string ,(format nil "~S" value))))

 nil nil nil nil

 self) ;Argument to init function�

� tv:scroll-parse-item &rest line-item-spec Function

Receives its arguments as a single &rest argument that is a line item spec. It con-

structs and returns a line item. For the format of line item specs, see the section

"Constructing Line Items".

� (flavor:method :scroll-to tv:basic-scroll-bar) number type Method

Page 1374

Scrolls the window depending on type. If type is :relative, then scrolls the window

number items in either the positive or negative direction. If type is :absolute then

puts the item whose number is number in the topmost line.

� :select &optional (save-selected t) Message

Sent to a selectable window by a user program or by a part of the user interface

to change the selected activity. It is also sent by the system to notify a window

when it becomes the selected window, either because of a change of activities or

because of selection of this window instead of a different window within the same

activity.

This message is received by the system and is also received by user daemons that

wish to be notified when a window becomes selected.

If save-selected is not nil, the previously selected activity is saved for restoring by

the FUNCTION S command and the :deselect message.

The message returns t if it works, nil if it fails. It can fail when sent to a pane if

the :inferior-select message that the pane sends to the frame returns nil. It can

also fail when sent to a frame that has no selected-pane.

User programs should send the :select-relative message rather than :select or

:mouse-select, unless they are really responding to a user command to switch ac-

tivities. Using :select-relative rather than :select to change windows within an ac-

tivity ensures that the right thing happens when that activity is not the selected

one and avoids suddenly changing the selected activity without the consent of the

user.

� tv:*select-keys* Variable

As of Genera 7.3 Ivory, the SELECT key uses an internal database rather than

tv:*select-keys*. It is retained for compatibility.

The value of this variable is an alist, each entry of which describes a subcommand

of the SELECT key. Entries are of the form:

(char flavor name create-p)�

For an explanation of the components of the entries: See the function tv:add-

select-key. Use tv:add-select-key to add a new entry or redefine an existing one

rather than changing the value of tv:*select-keys* yourself.

� tv:select-mixin Flavor

Allows a window to be selectable. It provides methods for the :select, :deselect,

:select-relative, and :name-for-selection messages.

� tv:select-or-create-window-of-flavor find-flavor &optional (create-flavor find-flavor)�

Function

Page 1375

Selects the most recently selected window of flavor find-flavor. If no window of

that flavor exists, makes a window of flavor create-flavor and selects it.

� :select-pane pane Message

Sent to a frame, makes pane the selected-pane of the frame. pane must be either

an exposed inferior of the frame or nil, which means to set the selected-pane to

nil. This message also deselects the current selected-pane if it is a window differ-

ent from pane. Unless pane is nil, this message sends pane a :select-relative mes-

sage.

� :select-relative Message

Sent to a selectable window selects the window relative to its activity, but does not

select a different activity.

If the window that receives this message belongs to the same activity as the cur-

rently selected window, the receiver becomes the new selected window. Otherwise,

the window that receives this message sends the :inferior-select message to its su-

perior to select the receiver relative to its activity.

User programs should send the :select-relative message rather than :select or

:mouse-select, unless they are really responding to a user command to switch ac-

tivities. Using :select-relative rather than :select to change windows within an ac-

tivity ensures that the right thing happens when that activity is not the selected

one and avoids suddenly changing the selected activity without the consent of the

user.

This message returns no significant values. It is sent by the user and received by

the system. Users should not need to define methods for it.

� tv:select-relative-mixin Flavor

Makes a window participate in the same activity as its superior. It provides a

method for the :alias-for-selected-windows message that returns the window if its

superior is a screen, or the superior’s alias otherwise. It also provides a daemon

for the :select message that sends an :inferior-select message to the superior with

an argument of the window.

This flavor does not provide a method for the :select-relative message; that is

handled by tv:select-mixin.

� :selectable-windows Message

Sent to a window, it returns a menu item-list of activities containing or inferior to

the window. The :name-for-selection and :alias-for-selected-windows messages

are used to discover the available activities. When sent to a screen, this message

returns a menu item-list of all the activities that screen contains.

Page 1376

This message is sent by [Select] in the System menu and is received by the sys-

tem. Users shouldn’t need to send this message or to define methods for it.

� (flavor:method :selected-choice-style tv:basic-choose-variable-values) character-

style Init Option

Specifies the character style in which the current value of a variable is displayed,

when there is a finite set of choices. This should be a bold-face version of the pre-

ceding character style. The default is the bold-face version of the default unselect-

ed-choice character style.

� :selected-pane Message

Sent to a frame, it returns the selected-pane of the frame. This message is sent by

users and received by the system.

� (flavor:method :selected-pane tv:basic-constraint-frame) pane Init Option

Makes pane the selected-pane of this frame. pane can be the symbol used in the

:panes init option to name the pane.

� tv:selected-window Variable

The value is the currently selected window.

� (flavor:method :send-all-exposed-panes tv:basic-constraint-frame) message &rest

arguments Method

Sends the specified message with the specified arguments to all of the exposed

panes of this frame.

� (flavor:method :send-all-panes tv:basic-constraint-frame) message &rest argu-

ments Method

Sends the specified message with the specified arguments to all of the panes of this

frame, including the nonexposed ones.

� (flavor:method :send-pane tv:basic-constraint-frame) pane-name message &rest

arguments Method

Sends the specified message with the specified arguments to the pane that was

named by the symbol pane-name in the :panes specification of this frame.

� tv:sensitive-item-types Variable

Page 1377

A gettable, settable, and initable instance variable of tv:mouse-sensitive-text-

scroll-window-without-click that controls which types of mouse-sensitive items are

actually sensitive at any given time.

There are several possible values for tv:sensitive-item-types:

• t: All mouse-sensitive objects are sensitive, regardless of type. This is the de-

fault.

• A list: Only items whose type is an element of the list are sensitive.

• A function: The function must take as its only argument a mouse-sensitive item

object and it should return t if it wants the item to be sensitive and nil other-

wise.

• A symbol other than t: Taken to be a message to be sent to the window. The

corresponding method should be a function of one argument returning t or nil

as in the case of the function.�

� (flavor:method :set-border-margin-width tv:borders-mixin) new-width Method

Sets the value of the border margin width.

� (flavor:method :set-borders dw:margin-mixin) borders Method

Replaces the current borders of a Dynamic Window with simple borders (like those

provided by dw:margin-borders).

borders The thickness, in pixels, of the new borders; the default is 1.�

For an overview of (flavor:method :set-borders dw:margin-mixin) and related fa-

cilities: See the section "Window Substrate Facilities".

� (flavor:method :set-character tv:character-blinker) nchar Method

Sets the character to display to nchar.

� (flavor:method :set-configuration tv:basic-constraint-frame) configuration-name

Method

Sets the configuration of the frame to the one named by the symbol configuration-

name.

� (flavor:method :set-cursorpos tv:blinker) x y Method

Page 1378

Sets the position of the blinker within the inside of the window. If the blinker had

been following the cursor, it stops doing so, and stays where you put it.

� (flavor:method :set-cursorpos tv:sheet) x y &optional (units ’:pixel) Method

Moves the cursor position to the specified coordinates. The units may be specified

as with :read-cursorpos. If the coordinates are outside the window, move the cur-

sor position to the point nearest to the specified coordinates that is within the

window. Sending nil for x or y leaves the current value unmodified.

� (flavor:method :set-deexposed-typein-action tv:sheet) action Method

Sets the deexposed typein action of the window to action.

� (flavor:method :set-deexposed-typeout-action tv:sheet) action Method

Sets the deexposed typeout action of the window to action.

� (flavor:method :set-default-character-style tv:menu) new-style Method

Changes the default character style of the menu. All items displayed in the menu

whose character style are not otherwise specified are displayed in the default char-

acter style.

� (flavor:method :set-default-character-style tv:sheet) new-default-style Method

Changes the default character style of the window.

� dw:set-default-end-of-page-mode new-end-of-page-mode &optional new-scroll-factor

Function

Sets global default for what happens when queued output exceeds the space avail-

able in the current viewport of a Dynamic Window.

new-end-of-page-mode The new mode. There are three possibilities:

:scroll Causes the window to scroll automatically to accommodate

the output. If you supply this argument, make sure you

also supply a numeric value for the new-scroll-factor argu-

ment.

:truncateCauses scrolling to be the responsibility of the user, who

must press the SCROLL key to see more output.

:wrap Causes new output to appear at the top of the window,

rather than at the bottom as in the case of :scroll or

:truncate.�

Page 1379

new-scroll-factor The amount by which the window is scrolled when the

value of the new-end-of-page-mode argument is :scroll. Permissible

values include integers (number of lines) and ratios (fraction of the

screen).

For an overview of dw:set-default-end-of-page-mode and related facilities: See the

section "Window Substrate Facilities".

� tv:set-default-window-size flavor-name superior existing-windows &rest options

Function

Allows you to modify the default size chosen by the system when you create a win-

dow without specifying either a size or a position for it. For example, when you

create a Lisp Listener by pressing SELECT c-L, the default size is the full size of

the screen, unless you modify it.

The arguments to tv:set-default-window-size are:

flavor-name The flavor of window to be affected. Flavors built on top of

this do not inherit this flavor’s default window size. nil here

means all windows.

superior The window whose direct inferiors are to be affected; typically,

the value of tv:main-screen.

existing-windows An indicator as to whether existing windows must conform to

these options. Any non-nil argument forces all existing win-

dows of the specified flavor-name and superior to conform to

the options.

options Alternating keywords and values that are used as defaults in

creating windows whose size or position is not specified. Valid

keywords are :width, :left, :right, :height, :top, and :bottom.

They have the same meaning as in tv:make-window.�

For example:

(tv:set-default-window-size

 ’zwei:zmacs-frame tv:main-screen t ’:width 1400)�

� (flavor:method :set-deselected-visibility tv:blinker) new-visibility Method

Changes the deselected visibility of the blinker.

� (flavor:method :set-display-item tv:basic-scroll-window) item Method

Sets the top-level item of the scroll window to item.

Page 1380

� (flavor:method :set-edges tv:essential-set-edges) new-left new-top new-right new-

bottom &optional option Method

Sets the edges of the window to new-left, new-top, new-right, and new-bottom, in

pixels, relative to the superior window, respectively.

� (flavor:method :set-edges tv:menu) new-left new-top new-right new-bottom Method

Sets the edges of the window to the four values supplied as arguments, in pixels

relative to the superior window.

� (flavor:method :set-fill-p tv:menu) t-or-nil Method

Sets the menu’s fill mode. Thus, use t to set the fill characteristic. This message

is a special case of the :geometry:set-geometry messages.

� (flavor:method :set-follow-p tv:blinker) new-follow-p Method

Set whether the blinker follows the cursor. If this is nil, the blinker stops follow-

ing the cursor and stays where it is until explicitly moved. Otherwise, the blinker

starts following the cursor.

� (flavor:method :set-geometry tv:menu) &optional columns rows inside-width in-

side-height max-width max-height Method

Takes six arguments, rather than a list of six things, as you might expect. This is

because you frequently want to omit most of the arguments. The geometry is set

from the arguments, which can cause the menu to change its shape and redisplay.

An argument of nil means to make that aspect of the geometry unconstrained. An

omitted argument or an argument of t means to leave that aspect of the geometry

the way it is.

� (flavor:method :set-gray-array-for-inferiors tv:gray-deexposed-inferiors-mixin)

gray Method

Sets gray as the graying specification to use in graying areas of this screen or

frame that contain no windows. See the section "Window Graying Specifications".

� (flavor:method :set-gray-array-for-unused-areas tv:gray-unused-areas-mixin)

gray Method

Sets gray as the graying specification to use in graying areas of this screen or

frame that contain no windows. See the section "Window Graying Specifications".

� (flavor:method :set-half-period tv:blinker) new-half-period Method

Page 1381

Changes the half-period of the blinker.

� (flavor:method :set-highlighted-items tv:menu-highlighting-mixin) list Method

Sets the list of items to be highlighted.

� (flavor:method :set-highlighted-values tv:menu-highlighting-mixin) list Method

Sets the list of items to be highlighted. Refers to the items by value. For instance,

if your item-list is an association list, with elements (string . symbol), this message

uses symbol. This only works for menu items that can be executed without side-

effects, not, for example, the :eval and :funcall kinds.

See the section "tv:multiple-menu-mixin Messages".

� (flavor:method :set-hysteresis tv:hysteretic-window-mixin) new-hysteresis Method

Sets the hysteresis of the window, in pixels.

� (flavor:method :set-inside-size tv:essential-set-edges) new-inside-width new-inside-

height &optional option Method

Sets the inside width and inside height of the window to new-inside-height and

new-inside-width, without changing the position of the upper-left corner.

� (flavor:method :set-io-buffer tv:command-menu) io-buffer Method

Sets the I/O buffer to which a command-menu sends a command when an item is

chosen.

� (flavor:method :set-item-list tv:menu) list Method

Sets the item list of a menu.

� (flavor:method :set-items tv:text-scroll-window) new-items &optional (new-top-item

0) Method

new-items should be an array with a fill pointer. It becomes the new array used in-

ternally to hold the list of items. The window redisplays with the item whose num-

ber is new-top-item in the topmost line.

new-items can also be an integer, in which case this method allocates a new array

of that length, and set its fill pointer to zero, making the list of items empty.

� (flavor:method :set-label tv:label-mixin) specification Method

Page 1382

Changes some attributes of the label. specification can be anything accepted by the

:label init option. Any attribute that specification doesn’t mention retains its old

value.

� (flavor:method :set-label dw:margin-mixin) label Method

Provides a new label for a Dynamic Window.

label The label string.�

The label can be specified with any of the options acceptable to dw:margin-mixin.

For an overview of (flavor:method :set-label dw:margin-mixin) and related facili-

ties: See the section "Window Substrate Facilities".

� (flavor:method :set-label tv:menu) label Method

Sets the label of a menu.

� (flavor:method :set-location si:interactive-stream) location Method

Sets the value of the scan pointer. This is used for complicated parsing and for er-

ror recovery.

� (flavor:method :set-margin-choices tv:margin-choice-mixin) choices Method

Changes the set of margin choices according to choices, which is nil to turn them

off or a list of choice-box descriptors. If the choice boxes are turned on or off, the

size of the window’s bottom margin changes accordingly.

� (flavor:method :set-margin-components dw:margin-mixin) new-components

Method

Replaces the current margin components of a Dynamic Window with a new set of

components.

new-components Specifies a list of the form ((component-1 [keys])

(component-2 [keys]) ... (component-n [keys])), where component-x

is one of a set of margin-component flavors and keys are zero or

more keywords or keyword-value pairs appropriate for the given fla-

vor.

For a list of available margin-component flavors and an example,

see the flavor dw:dynamic-window.

For an overview of (flavor:method :set-margin-components dw:margin-mixin)

and related facilities: See the section "Window Substrate Facilities".

Page 1383

� (flavor:method :set-margin-space tv:margin-space-mixin) new-space Method

Specifies the amount of blank space to be left in the margins of the window. Possi-

ble values of new-space:

nil No space

t One pixel blank in each of the four margins

n n pixels of space in each of the four margins (n is an integer)

(left top right bottom) left pixels blank in the left margin, top pixels blank in

the top margin, and so on (values are integers)�

� (flavor:method :set-more-p tv:sheet) more-p Method

If more-p is nil, turns off **More** processing; otherwise, turns it on.

� (flavor:method :set-mouse-position tv:essential-mouse) x y Method

Positions the mouse blinker at window coordinates x and y.

To position the mouse blinker at absolute screen coordinates, use the function

tv:mouse-warp.

For an example showing the use of :set-mouse-position, see the function

dw:tracking-mouse.

� (flavor:method :set-name tv:changeable-name-mixin) new-name Method

Set the name of the window to new-name, which should be a string. If the window

is currently displaying the old name of the window as the label, then redraw the

label using the new name as the text to be displayed.

� :set-notification-mode new-mode Message

Sent to an interactive stream, sets the stream’s notification mode. The notification

mode determines what the notification delivery process does with a notification

when the process associated with the stream does not accept it. new-mode can be a

keyword or nil:

:pop-up The notification is displayed in a pop-up window. This is the

default.

:always-pop-up Like :pop-up except that the window is not first given a choice

of whether to accept the message.

:blast The notification is displayed on the stream.

:ignore The notification is ignored but is added to the notification his-

tory for SELECT N and the Show Notifications command.

Page 1384

:always-ignore Like :ignore except that the window is not first given a choice

of whether to accept the message.

nil The same as :pop-up.�

� (flavor:method :set-position tv:essential-set-edges) new-x new-y &optional option

Method

Sets the x and y position of the upper-left corner of the window, in pixels, relative

to the superior window, respectively.

� (flavor:method :set-print-function tv:function-text-scroll-window) function

Method

Sets the printing function of the window to function.

� (flavor:method :set-print-function-arg tv:function-text-scroll-window) new-

function-arg Method

Sets the object which the window passes as the second argument to the print

function.

� (flavor:method :set-reverse-video-p tv:sheet) t-or-nil Method

Enable or disable reverse-video display. Changing this mode inverts all of the bits

in the window.

� tv:set-screen-background-gray gray &optional (screen tv:main-screen) Function

Specifies what pattern should be used to gray areas of a screen or frame that con-

tain no windows. gray is a graying specification. See the section "Window Graying

Specifications". Give an argument of nil to disable graying.

screen can be a screen or frame. It defaults to the main monochrome screen.

� tv:set-screen-deexposed-gray gray &optional (screen tv:main-screen) Function

Specifies what pattern should be used to gray areas of a screen or frame that con-

tain windows that are not fully exposed. gray is a graying specification. See the

section "Window Graying Specifications". Give an argument of nil to disable gray-

ing.

screen can be a screen or frame. It defaults to the main monochrome screen.

� (flavor:method :set-sheet tv:blinker) new-window Method

Page 1385

Sets the window associated with the blinker to be new-window. If the old window

is an ancestor or descendant of new-window, adjust the (relative) position of the

blinker so that it does not move. Otherwise, moves it to the point (0,0).

� (flavor:method :set-size tv:essential-set-edges) new-width new-height &optional

option Method

Sets the outside width and outside height of the window to new-height and new-

width, without changing the position of the upper-left corner.

� (flavor:method :set-size tv:rectangular-blinker) new-width new-height Method

Sets the width and height of the blinker, in pixels.

� (flavor:method :set-size-in-characters tv:sheet) width-spec height-spec &optional

option Method

Sets the inside size of the window, according to the two specifications, without

changing the position of the upper-left corner. width-spec and height-spec are inter-

preted the same way as arguments to the :character-width and :character-height

init options, respectively.

� (flavor:method :set-status tv:essential-activate) new-status Method

Sets the status of a window to :deactivated, :deexposed, :exposed, or :selected.

� time:set-local-time &optional new-time Function

Sets the local time to new-time. If new-time is supplied, it must be either a univer-

sal time or a suitable argument to time:parse. If it is not supplied, or if there is

an error parsing the argument, you will be prompted for the new time. Note that

you will not normally need to call this function; it is mainly useful when the time-

base becomes unreliable for one reason or another.

� (flavor:method :set-truncate-line-out tv:sheet) new-value Method

Sets the value of the window’s truncate line out flag. If new-value is t the flag is

turned on; if nil, it is turned off.

� (flavor:method :set-variables tv:choose-variable-values-window) item-list &op-

tional dont-set-height Method

Changes the list of items (variables) and redisplays. Unless dont-set-height is sup-

plied non-nil, the height of the window is adjusted according to the number of

lines required. If more than 25. lines would be required, 25. lines are used and

scrolling is enabled. The :setup message uses :set-variables to do part of its work.

Page 1386

� (flavor:method :set-viewport-position dw:dynamic-window) new-left new-top

Method

Scrolls the window to a specified location in the window’s output history. Specify

the location in terms of absolute window coordinates.

new-left The x-coordinate for the viewport’s left edge.

new-top The y-coordinate for the viewport’s top edge.�

For an overview of (flavor:method :set-viewport-position dw:dynamic-window)

and related facilities, see the section "Presenting Formatted Output".

� (flavor:method :set-visibility tv:blinker) new-visibility Method

Sets the visibility of the blinker. new-visibility should be one of :on, nil, :off, t, or

:blink. For the meaning of these values: See the section "Blinkers".

� (flavor:method :set-vsp tv:sheet) new-vsp Method

Sets the value of vsp for this window to new-vsp.

� (flavor:method :setup tv:choose-variable-values-window) items label function

margin-choices Method

Changes the list of items (variables), the window label, the constraint function,

and the choices in the bottom margin and sets up the display. This message re-

members the current stack-group as the stack-group in which the variables are

bound. If the window is not exposed this chooses a good size for it.

� (flavor:method :setup tv:multiple-choice) item-name keyword-alist finishing-choices

item-list &optional maxlines Method

Sets up all the various parameters of the window. Usually one sends this message

while the window is deexposed. The window decides what size it should be and

whether all the items will fit or scrolling is required, then draws the display into

its bit-array. Thus, when the window is exposed, the display appears instanta-

neously.

For an explanation of item-name, keyword-alist, and finishing-choices, see the sec-

tion "The Multiple Choice Facility".

maxlines is the maximum number of lines the window can have; if there are more

items than this only some of them are displayed and scrolling is enabled. maxlines

defaults to 20.

� tv:sheet-following-blinker window Function

Page 1387

Takes a window and return a blinker that follows the window’s cursor. If there

isn’t any, it returns nil. If there is more than one, it returns the first one it finds

(it is pretty useless to have more than one, anyway).

� tv:sheet-force-access (sheet don’t-prepare-sheet) body... Function

Allows typeout on sheet if it has a screen array (that is, if it is exposed or has a

bit-save array). If don’t-prepare-sheet is nil, prepares the sheet before executing

body. If sheet does not have a screen array, tv:sheet-force-access just returns

without executing body. Use this to put output onto a deexposed window that has

a bit-save array.

� tv:show-partially-visible-mixin Flavor

If a window has this flavor mixed in, the screen manager will attempt to show it

to the user when it is partially visible even if it doesn’t have a bit-save array. The

screen manager cannot display the contents of the window, since there is no bit-

save array to hold them, but it does give the window a screen array temporarily,

tells it to refresh itself, and then shows whatever the window displays. Often this

means that you will see the label and borders of the window, but no contents.

� (flavor:method :size tv:sheet) (outside-width outside-height) Init Option

Specifies the outside width and height of the window.

� (flavor:method :size tv:sheet) Method

Returns two values: the outside width and outside height.

� (flavor:method :size-in-characters tv:sheet) Method

Returns two values: the inside size in characters, and the inside height in lines.

The size of the default character style is used.

� (flavor:method :special-choices tv:multiple-menu-mixin) choice-list Init Option

Each element of choice-list specifies a menu item for a multiple menu. These are

the items that behave like normal menu items; the items from the :item-list init

option behave as on/off switches as described above. An element of choice-list may

be any form of menu item.

� (flavor:method :stack-group tv:basic-choose-variable-values) sg Init Option

Specifies the stack group in which the variables whose values are to be chosen are

bound. The window needs to know this so that it can get the values while running

in another process, for instance the mouse process, in order to update the window

Page 1388

display when it is refreshed or scrolled. This option is required, unless you use the

:setup message.

� dw:standard-command-menu-handler command-name &rest args Function

Takes command-name and arguments args as passed to the command form of a

dw:define-command-menu-handler form, and does the standard actions for two

mouse gestures:

:mouse-left If the command has :confirm arguments, read them from the

keyboard. Otherwise, run the command with all arguments de-

faulted.

:mouse-right If the command has any arguments at all, read them from an

accept-values menu. Otherwise, just run the command.

For an overview of related topic, see the section "How Command Menus Work".

� *standard-output* Variable

In the normal Lisp top-level loop, output is sent to whatever stream is the value of

standard-output. Many input functions, including write and write-char, take a

stream argument that defaults to *standard-output*.

(print ’foo) = (print ’foo *standard-output*)�

The variable *standard-output* may be set to a file, for example, rather than an

interactive stream, thus redirecting subsequent output to the file:

(setq outstream

 (open "myfile" :direction :output)) ;opens myfile.lisp

(setq old-standard-out *standard-output*) ;save old value

(setq *standard-output* outstream) ;redirects output

(print ’foo) ;prints ’foo in myfile.lisp

(setq *standard-output* old-standard-out) ;restore *standard-output*�

It is much better, however, to use let to temporarily bind the stream:

(with-open-file (outstream "myfile" :direction :output)

 (let ((*standard-output* outstream)) ;redirects output

 (print ’foo)) ;end of let form restores

 ; *standard-output*

 ... ;more forms

) ;end of with-open-file closes file�

By setting *standard-output* to a synonym-stream of *terminal-io*, *standard-

output* can resume writing to the user console.

� zl:standard-output Variable

In your new programs, we recommend that you use the variable *standard-

output*, which is the Common Lisp equivalent of zl:standard-output. See the

variable *standard-output*.

Page 1389

� (flavor:method :start-typeout si:interactive-stream) type &optional spacing

Method

Informs the input editor that typeout to the window will follow. The word "type-

out" is used in the name of this message because this is very similar to typeout in

the editor, even though typeout windows are not actually used. type can be one of

the following keywords:

Keyword Action

:insert Typeout is inserted before the current input, as is done with

notifications or input editor documentation.

:overwrite Like :insert, but the next time :insert or :overwrite typeout is

performed, this typeout is overwritten.

:append Typeout appears after the current input, which remains visible

before the typeout. This is the style used by zl:break.

:temporary Typeout appears after the current input and is erased after the

user types a character.

:clear-window The window is cleared, and typeout appears at the top.�

spacing can be one of the following keywords:

Keyword Action

:none No spacing before typeout.

:fresh-line Typeout begins at the beginning of a line.

:blank-line A blank line precedes typeout.�

If spacing is not specified, a default that depends on type is computed.

� (flavor:method :status tv:essential-activate) Method

Returns one of :deactivated, :deexposed, :exposed, :selected, and :exposed-in-

superior, indicating the current status of a window.

� tv:stream-mixin Flavor

Allows a window to function as an interactive stream. It should be mixed into any

window that can be used for interacting with a user, and particularly into any win-

dow that can become the value of zl:terminal-io. It gives the window an I/O buf-

fer, allows the window to handle input messages, and provides the window with in-

put editing.

� (flavor:method :string-in si:interactive-stream) eof string &optional (start 0) end

Method

Page 1390

Reads characters from the stream into string, using the substring delimited by

start and end. start defaults to 0, and end defaults to the length of the string.

eof specifies stopping actions:

Value Action

nil Reading characters into the string stops either when it has

transferred the specified character count or when end-of-file is

reached, whichever comes first. For a string with a fill pointer,

sets the fill pointer to the location one greater than the last

location into which a character was stored.

not nil If end-of-file is encountered while trying to transfer a specific

number of characters, signals sys:end-of-file, with the value of

eof as the report string. If eof is t, a default report string is

used.�

The method returns two values. The first is the location in the string that is one

greater than the last one into which a character was stored. The second value is t

if end-of-file was reached, nil otherwise.

� (flavor:method :string-length tv:sheet) string &optional (start 0) (end nil) (stop-x

nil) character-style (start-x 0) (max-x 0) Method

Like :compute-motion, but works in only one dimension. It tells you how far the

cursor would move if string were to be displayed in the default character style (or

that specified by character-style) starting at the left margin, or at start-x if that is

specified. start and end work as with :string-out to specify a substring of string. If

stop-x is not specified or nil, the window is assumed to have infinite width; other-

wise the simulated display will stop when a position stop-x pixels from the left

edge is reached.

:string-length returns three values: where the imaginary cursor ended up, the in-

dex of the next character in the string (the length of the string if the whole

string was processed, or the index of the character which would have moved the

cursor past stop-x), and the maximum x-coordinate reached by the cursor (this is

the same as the first value unless there are #/return characters in the string).

� (flavor:method :string-line-in si:interactive-stream) eof string &optional (start 0)

end Method

A combination of :string-in and :line-in. It reads a line of characters from the

stream into string, using the substring delimited by start and end. start defaults to

0 and end to the length of string. If called from outside the input editor, reads

characters until a #\return, #\line, or #\end activation character is encountered. If

called from inside the input editor, reads characters until a #\return delimiter is

encountered. The activation or delimiter character is not stored into string.

eof specifies stopping actions:

Page 1391

Value Action

nil Reading characters into the string stops when a delimiter is

encountered, when the string is full, or when end-of-file is

reached, whichever comes first. For a string with a fill pointer,

sets the fill pointer to the location one greater than the last

location into which a character was stored.

not nil If end-of-file is encountered, signals sys:end-of-file, with the

value of eof as the report string. If eof is t, a default report

string is used.�

The method returns three values:

• The location in string that is one greater than the last location into which a

character was stored.

• t if end-of-file was reached, nil otherwise.

• nil if the entire contents of the line fit into the string or end-of-file was

reached, otherwise t. If this value is t, as much of the line as possible was

stored into the string and more is waiting to be read.�

If the second and third values are both nil, a delimiter was read. If either is t, no

delimiter was read.

� (flavor:method :string-out tv:sheet) string &optional (start 0) (end nil) Method

Types string on the window, starting at the character start and ending with the

character end. If end is nil, continue to the end of the string; if neither optional

argument is given, the entire string is typed. This behaves exactly as if each char-

acter in the string (or the specified substring) were sent to the window with a

:tyo message, but it is much faster.

� (flavor:method :string-style tv:basic-choose-variable-values) character-style

Init Option

The character style in which items that are just strings (typically heading lines)

are displayed. The default is the system default character style.

� dw:suggest completion-string object Function

Adds an element to a completion table being constructed inside a dw:completing-

from-suggestions macro. dw:suggest is not used independently of this macro.

completion-string The completion string, that is, the fully completed

string generated from what the user typed in.

Page 1392

object The object associated with the completion string (and to be re-

turned by dw:completing-from-suggestions).�

For an overview of dw:suggest and related facilities, see the section "Defining

Your Own Presentation Types".

� (flavor:method :superior tv:choose-variable-values) window Init Option

The argument is the window to which the pop-up choose-variable-values window

should be inferior. The default is the value of tv:mouse-sheet, or the superior of

w if the :near-mode option is already set to (:window w).

� (flavor:method :superior tv:sheet) superior Init Option

Makes superior the superior window of the window being created.

� :suppress-notifications flag Option

If a notification is received while in the input editor, and flag is supplied as nil,

the input editor itself handles the notification, regardless of any other way you

have specified that notifications should be handled. If flag is t, notifications are

handled in the input editor the same way they would be handled if you were not in

the input editor. That is, the input editor does not handle the notification itself.

� surrounding-output-with-border (&optional stream &key (shape :rectangle) (thick-

ness 1) (margin 1) (pattern t) (gray-level 1) (opaque nil) (filled nil) alu (label nil) (la-

bel-position :bottom) (label-separator-line nil) (label-separator-line-thickness 1) (label-

alignment :left) (width nil) (height nil) (move-cursor t)) &body body Function

Binds the local environment such that output generated in the body of the macro

is enclosed within a border. The border is sized to just surround the output.

stream The output stream; the default is *standard-output*.�

� :shape Specifiestheshapeoftheborder;thedefaultis:rectangle. Other

possible shapes are :circle, :oval, and :diamond.

� :thickness Specifiesthethickness,inpixels,oftheborder;thede-

fault is 1.

� :margin Specifiestheminimumwhitespace,inpixels,betweentheborder

and the enclosed output.

� :pattern Specifies the pattern to be used in drawing the border.

Example:

Page 1393

(defun pattern-test ()

 (fresh-line)

 (surrounding-output-with-border

 (*standard-output* :shape :rectangle

 :pattern tv:50%-gray)

 (present tv:selected-window ’tv:window)))

�

If the :filled option is t, the pattern is drawn throughout the rect-

angular area and XORed with the unfilled values of the area’s pix-

els.

For more information on how to specify patterns, see the section

"Texturing".

� :gray-level Specifies the black-to-white level of the border as a ra-

tio or decimal fraction between 0 and 1; the default value is 1, that

is, 100% black. This option only takes effect if you specify a

:thickness of 1 or greater.

� :opaque A Boolean option specifying whether pixels already being displayed

are cleared (before the border is drawn) or left alone; the default is

t. :opaque t means draw pixels that are off in the background

color.

:filled Booleanoptionspecifyingwhethertheshapedenclosedbythebor-

der is filled; the default is nil. If t, filling occurs by XORing the

turned-on and unfilled values of the pixels in the filled area.

If a pattern is specified by the :pattern option, filling occurs by

XORing the pattern values and unfilled values of the pixels. In

general, the best results are achieved by leaving the :pattern option

unspecified if you intend to fill.�

:alu Specifies the drawing mode for drawing drawing the border. Possi-

ble values for this option are:

:draw Pixels in the border are turned on, regardless of whether

some of the pixels were already on. This is the default

drawing mode.

:erase Pixels in the border are turned off, regardless of whether

some of the pixels were already off.

:flip Pixels in the border are turned on if they were previously

off, and off if they were previously on.

:label A string to be included within the border as a label, or a form that

prints a label. Note that if you use a form, you must explicitly print

the label, for example:

Page 1394

(scl:surrounding-output-with-border (nil :label (princ "ID"))

 (princ "Stuff"))

�

� :label-position Specifies the position of the label within the surround-

ing box. The possible values are :top: put the label above the pre-

sented output; and :bottom: put it below. In either case, the label is

flush left with the output.

:label-separator-line A Boolean option specifying whether to draw a line be-

tween the label and the output. The default is nil: no line.

:label-separator-line-thickness Specifies the thickness, in pixels, of the

line separating the label and the output.

:label-alignment Specifies how the label for the surrounding border is

to be aligned. The possibilities are :left, :right, and :center.

:width Specifiesthethemaximumwidth, inpixels,oftheborder;thede-

fault (nil) places no limit on the maximum.

:height Specifiesthethemaximumheight,inpixels,oftheborder;thede-

fault (nil) places no limit on the maximum.

� :move-cursor Booleanoptionspecifyingwhethera newlineisper-

formed at the end of body. If this is t, the cursor is moved to posi-

tion x = old-x-position + 0, y = old-y-position + height; if nil, then it

is moved to x = old-x-position + width, y = old-y-position + 0.�

Example:

(defun shape-test (shape fill-p)

 (fresh-line)

 (surrounding-output-with-border

 (*standard-output* :shape shape

 :filled fill-p)

 (present tv:selected-window ’tv:window)))

�

To see how the differently shaped borders look, try calling the above with the vari-

ous shape keywords.

For an overview of surrounding-output-with-border and related facilities, see the

section "Presenting Formatted Output".

� (flavor:method :tab-nchars tv:sheet) n Init Option

n is the separation of tab stops on this window, in units of the window’s char-

width. This controls how the #\tab character prints. n defaults to 8.

Page 1395

� tv:temporary-choose-variable-values-window &optional (superior tv:mouse-sheet)

Resource

A resource of windows, from which tv:choose-variable-values gets a window to

use.

� tv:temporary-choose-variable-values-window Flavor

A tv:choose-variable-values-window that is exposed temporarily. For an explana-

tion of temporary windows, see the section "Temporary Windows".

� tv:temporary-multiple-choice-window Flavor

A mixture of tv:multiple-choice and tv:temporary-window-mixin. Its behavior is

that of a multiple-choice window that can be exposed and deexposed without deex-

posing the windows it covers up.

� tv:temporary-multiple-choice-window &optional (superior tv:mouse-sheet)

Resource

A resource of temporary multiple-choice windows. It is used by the tv:multiple-

choose function.

� tv:temporary-typeout-window Flavor

A flavor of typeout window that saves and restores the bits of its superior. When

tv:with-terminal-io-on-typeout-window is used with a window that has this kind

of typeout window over it, the program does not have to take any action to restore

the display when the typeout window goes away.

� tv:text-scroll-window Flavor

The base flavor of text scroll window, on which all the others are built. Each item

displays using the prin1 function, truncating at the end of the line.

tv:text-scroll-window must be treated as a mixin.

� time:timezone-string &optional (timezone time:*timezone*) (daylight-savings-p

(time:daylight-savings-p time:timezone)) force-numeric-p punctuate Function

Returns the printed representation of a timezone; the default timezone is the cur-

rent one for the user’s site. The value returned is either the commonly accepted

abbreviation for the timezone, for example, "EST" (for Eastern Standard Time); or,

if more than one or no abbreviation is available, a signed digit string, for example,

"-0500".

The sign of a returned digit string indicates the location of the timezone relative

to Greenwich; positive means east, negative west. Note that the sign of the printed

Page 1396

representation is opposite to that used internally; the printed digit string "-0500",

for example, corresponds to an internal representation of 5.0.

timezone A number between -12 and 12 of the form n.0 or n.5. This number

is the internal representation of the timezone whose printed repre-

sentation is returned. Its sign is positive if you want to specify a

timezone west of Greenwich, negative for one east of Greenwich.

The value returned depends on the setting of the daylight-savings-p

flag.

daylight-savings-p Boolean option specifying whether the timezone argu-

ment refers to the daylight-savings timezone or non-daylight-savings

timezone. For example, supplying 5 as the timezone argument re-

turns "EST" when daylight-savings-p is nil and "EDT" (Eastern Day-

light Time) when it is t.

For timezones for which straightforward rules exist governing the

change from standard to daylight-savings time and back again, the

timezone utility automatically switches over to the appropriate ab-

breviation. For other timezones, the switch must be made manually.

For more information: See the section "Specifying a Time Zone for

Your Site".

force-numeric-p Boolean option specifying whether to force the return

of a signed digit string, even if a unique abbreviation is available.

punctuate Boolean option specifying whether to insert a space at the begin-

ning of the returned abbreviation string, for example, " EST" versus

"EST".�

(flavor:method :top tv:menu) top-edge Init Option

Top edge of the window specified in pixels, relative to the outside of the superior

window.

� (flavor:method :top tv:sheet) top-edge Init Option

Specifies the y-coordinate of the top edge of the window.

� tv:top-box-label-mixin Flavor

Like tv:top-label-mixin except that in addition to the label in the top margin, it

also draws a line below the label in the top margin. If you surround the label with

borders, then the label will appear inside a box. You have probably seen windows

like this appear as momentary menus, with a prompt at the top in a box.

� (flavor:method :top-item tv:text-scroll-window) Method

Page 1397

Returns the number of the item being displayed in the topmost line of the window,

or zero if the item list is empty.

� tv:top-label-mixin Flavor

Like tv:label-mixin except that the label is placed at the top of the window by de-

fault, instead of the bottom.

� (flavor:method :top-margin-size tv:sheet) Method

Returns the top margin size of the window in pixels.

� dw:tracking-mouse (&optional stream &key (:whostate "Track Mouse") :who-line-

documentation-string :who-line-more-documentation-string :multiple-window) &body

clauses Function

Tracks the mouse in the user process. User-supplied routines are executed when

mouse events occur, such as position changes and the pressing or releasing of a

button. Note that, of the options listed here, there are two groups whose use is

mutually exclusive: the presentation set, including :presentation, :presentation-

hold, and :presentation-click; and the mouse-motion set, including :mouse-motion,

:mouse-motion-hold, and :mouse-click. Use of the presentation set is preferred.

Also note that presentation can be nil sometimes.

stream The output stream; the default is *standard-output*.�

:whostate Specifiesthestringdisplayedintherun-stateslotof

the status line. The default value is "Track Mouse".

:who-line-documentation-string Specifiesthemousedocumentation

string.

:multiple-window All functions are called with their x and y coordinates

relative to the window. This allows you to track the mouse across

different panes.

clauses Keyword-value pairs supplying routines (the values) executed when

the mouse event indicated by the keyword occurs. Some keywords

provide arguments. Available keywords and their arguments are de-

scribed below:

:presentation (presentation) Smallest presentation under

mouse, or nil; called when the mouse moves.

:presentation-hold (presentation) Same as :presentation, but

used if a mouse button is still down.

:mouse-motion (x y) Position of the mouse; called when the

mouse moves.

Page 1398

:mouse-motion-feedback (x y)

:mouse-motion-hold (x y) Same as :mouse-motion, but used if a

mouse button is still down.

:who-line-documentation-string () Allows dynamic control of

mouse documentation line; called whenever anything

changes.

:release-mouse () Called when all mouse buttons are up af-

ter some were down.

:keyboard (char) Called when user presses a keyboard key

(rather than clicking).

:presentation-click (mouse-char presentation) Called when

a mouse button is pressed. presentation is the smallest

presentation under mouse, or nil; mouse-char is the

mouse-character object corresponding to the mouse ges-

ture used.

:mouse-click (mouse-char x y) Called when a mouse but-

ton is pressed. Arguments are the mouse position and the

mouse-character object corresponding to the mouse ges-

ture used.

To see the macro in action, try the following example:

;;; To run this function create two lisp listeners side by side.

;;; In the first Lisp Listener type the form:

;;; (setq *LL1* *terminal-io*).

;;; Click left on the second Lisp Listener and enter the form:

;;; (mouse-1 *terminal-io*).

�

(defvar *LL1*)

Page 1399

�

(defun mouse-1 (window)

 (dw:tracking-mouse (window)

 (:who-line-documentation-string

 ()

 (if (zerop (tv:mouse-buttons))

 "Buttons up"

 "Buttons Down"))

 (:release-mouse ()

(format *LL1* "~&Mouse key released"))

 (:mouse-motion (x y)

 (format *LL1* "~&Mouse motion(~d,~d)" x y))

 (:mouse-motion-hold (x y)

 (format *LL1* "~&Mouse motion hold(~d,~d)" x y))

 (:mouse-click (button x y)

 (graphics:draw-rectangle x y (+ x 10) (+ y 10))

 (selector button char-mouse-equal

 (#\mouse-left (format *LL1* "~&Left click"))

 (#\mouse-middle-2

 (return-from mouse-1 "~&That’s All Folks!"))))))�

Here is another example, showing how you can effect "rubber-banding" while draw-

ing a line.

Page 1400

(defun input-a-line ()

 (multiple-value-bind (start-x start-y)

 (dw:tracking-mouse

 (t :whostate "Pick starting point"

 :who-line-documentation-string "Put start of line here.")

 (:mouse-click (click x y)

 (unless (eql click #\mouse-l)

 (signal ’sys:abort))

 (return (values x y))))

 (let ((old-x nil) (old-y nil))

 (dw:with-output-recording-disabled

 ()

 (dw:tracking-mouse (t :whostate "Pick end point"

:who-line-documentation-string

"Put other end of line here.")

 (:mouse-motion (x y)

 (when (and old-x old-y)

 (graphics:draw-line start-x start-y old-x old-y :alu :flip))

 (graphics:draw-line start-x start-y x y :alu :flip)

 (setq old-x x old-y y))

 (:mouse-click (click x y)

 (unless (eql click #\mouse-l)

 (signal ’sys:abort))

 (when (and old-x old-y)

 (graphics:draw-line start-x start-y old-x old-y :alu :flip))

 (return (values start-x start-y x y))))))))

(defun input-a-line ()

 (multiple-value-bind (start-x start-y)

 (dw:tracking-mouse

(t :whostate "Pick starting point"

 :who-line-documentation-string "Put start of line here.")

(:mouse-click (click x y)

 (unless (eql click #\mouse-l)

 (signal ’sys:abort))

 (return (values x y))))

 (dw:tracking-mouse (t :whostate "Pick end point"

 :who-line-documentation-string

"Put other end of line here.")

 (:mouse-motion-feedback (x y)

 (graphics:draw-line start-x start-y x y :alu :flip))

 (:mouse-click (click x y)

 (unless (eql click #\mouse-l)

 (signal ’sys:abort))

 (return (values start-x start-y x y))))))

This last example shows the use of still lower-level facilities, such as the messages

(flavor:method :visible-cursorpos-limits dw:dynamic-window) and

(flavor:method :set-mouse-position tv:essential-mouse) to monitor and control

Page 1401

the position of the mouse cursor. :visible-cursorpos-limits is needed because

dw:tracking-mouse provides the mouse cursor position in terms of absolute win-

dow coordinates. Therefore, cursor positioning and output operations performed in

conjuction with dw:tracking-mouse must also use absolute window coordinates.

(defun line-art ()

 ;; Get the limits of the current window viewport

 ;; in absolute window coordinates

 (multiple-value-bind (x1 y1 x2 y2)

 (send *standard-output* :visible-cursorpos-limits)

 (ignore x2 y2)

 ;; Move mouse cursor to relative window

 ;; coordinates (200 200)

 (send *standard-output* :set-mouse-position

 (+ x1 200) (+ y1 200))

 (dw:tracking-mouse (t)

 ;; Draw lines from cursor to relative (200 200)

 (:mouse-motion (x y)

 (graphics:draw-line (+ x1 200) (+ y1 200) x y))

 (:mouse-click (button x y)

 (ignore x y)

 ;; When Mouse-M is clicked, exit and leave

 ;; mouse cursor at relative (0 200)

 (if (char-mouse-equal button #\mouse-m)

 (return-from line-art

 (values

 (send *standard-output* :set-mouse-position

 (+ x1 0) (+ y1 200))

 (values))))))))�

For an overview of dw:tracking-mouse and related facilities, see the section "Pro-

gramming the Mouse: Writing Mouse Handlers".

� tv:truncatable-lines-mixin Flavor

If you mix in this flavor and the window’s truncate line out flag is on, typeout does

not wrap around when lines are too long. That is, when the cursor is near the

right-hand edge of the window and an attempt is made to type out a character, the

character is not typed out; text is truncated at the edge of the window. When the

truncate line out flag is turned off, this flavor has no effect.

� (flavor:method :truncate-line-out tv:sheet) Method

Returns t if the window’s truncate line out flag is set, or nil if it is not.

� tv:truncating-lines-mixin Flavor

Page 1402

When this flavor is mixed in, lines of output that are too long to fit inside the

window do not wrap around but are truncated at the edge of the window. This fla-

vor is built on tv:truncatable-lines-mixin. It initializes the window’s truncate line

out flag to be on.

� tv:truncating-window Flavor

Built on tv:window with tv:truncating-lines-mixin mixed in. If you instantiate a

window of this flavor, it will be like regular windows of flavor tv:window except

that lines will be truncated instead of wrapping around.

� cp:turn-command-into-form command arguments Function

Translates a Command Processor command into an evaluable form by quoting non-

self-evaluating elements of arguments.

command The command.

arguments The arguments to the command.�

For an overview of cp:turn-command-into-form and related facilities: See the sec-

tion "Managing Your Program Frame".

� tv:turn-off-sheet-blinkers window Function

Sets the visibility of all blinkers on window to :off.

� (flavor:method :tyi si:interactive-stream) &optional eof-action Method

If called from outside the input editor, this is the same as :any-tyi, except that

only integers and nil can be returned. Blips are discarded, unless the first element

of the blip is :mouse-button and the second element is #\Mouse-R; in this case,

the method pops up a system menu. If called from inside the input editor with

:full-rubout specified and if an activation blip is read when the input buffer is

empty, the method causes control to be returned from the input editor.

� (flavor:method :tyi-no-hang si:interactive-stream) &optional eof-action Method

Like :any-tyi-no-hang, except that only integers and nil can be returned. Blips are

discarded, unless the first element of the blip is :mouse-button and the second el-

ement is #\Mouse-R; in this case, the method pops up a system menu.

� (flavor:method :tyo tv:sheet) ch Method

Type ch on the window, as described in "How Windows Display Characters". Basi-

cally, type the character ch in the current font at the cursor position, and advance

the cursor position.

Page 1403

� si:*typeout-default* Variable

A keyword that determines how the Command Processor prints help messages.

Possible values are those acceptable as the first argument to the :start-typeout

message to interactive streams:

:insert The help message, like a notification, is inserted before the

current input.

:overwrite The help message is inserted before the current input, but the

next time an :insert or :overwrite operation is done, this mes-

sage is overwritten. This is the default.

:append The help message appears after the current input, which is

reprinted after the help message.

:temporary The help message appears after the current input and disap-

pears when you type the next character.

:clear-window The window is cleared and the help message appears at the

top.�

For more information: See the method (flavor:method :start-typeout

si:interactive-stream).

� (flavor:method :typeout-window tv:essential-window-with-typeout-mixin) (flavor-

name . options) Init Option

Provides a typeout window inferior to the window. flavor-name is the flavor of

typeout window to create; options are options to tv:make-window. You can set to

nil to suppress the typeout window.

� tv:typeout-window Flavor

Standard flavor of typeout window.

� tv:typeout-window-with-mouse-sensitive-items Flavor

A typeout window with tv:basic-mouse-sensitive-items mixed in.

� tv:unexpected-select-delay Variable

The amount of time, in sixtieths of a second, that a user is given to notice a pop-

up notification and stop typing. Until that time has elapsed, all typein is directed

to the previously selected window. During this time the user can press ABORT to

deexpose the pop-up window. A value of nil means no delay time and no display of

the message that typing any character deexposes the pop-up window. Default: 180.

(three seconds).

Page 1404

� cp:unparse-command command-name arguments &optional (command-table

cp:*command-table*) (acceptably t) Function

Returns the input string corresponding to a Command Processor command and its

arguments. (The string is created via a call to present-to-string.)

command-name The command name (symbol).

arguments The list of command arguments.

command-table The command table containing the named command;

the default is the current command table.

acceptablyBoolean argument passed through to present-to-string and speci-

fying whether the output string can subsequently be parsed by

accept and used for input.�

For an overview of cp:unparse-command and related facilities: See the section

"Managing Your Program Frame".

� dw:unread-char-for-accept char stream Function

Puts a character back into the input stream. This character will be the next one

read by a subsequent call to dw:read-char-for-accept.

char The character.

stream The input stream.�

For an overview of dw:unread-char-for-accept and related facilities, see the sec-

tion "Defining Your Own Presentation Types".

� (flavor:method :unselected-choice-style tv:basic-choose-variable-values) charac-

ter-style Init Option

Determines the character style in which choices for a value, other than the cur-

rent value, are displayed. The default is a small distinctive character style.

� (flavor:method :untyi si:interactive-stream) ch Method

Returns ch to the input buffer or the stream so that it will be the next character

returned by :any-tyi or :tyi. ch must be the last character that was :tyi’ed, and it

is illegal to do two :untyi’s in a row. Where ch is put depends on the value of the

variable sys:rubout-handler. Following is a summary of actions for each possible

value of sys:rubout-handler:

nil If the input buffer contains scanned input, decrement the scan

pointer. Otherwise, give ch back to the stream.

:read Decrement the input editor scan pointer.

:tyi Give ch back to the stream.�

Page 1405

This method is used by parsers that look ahead one character, such as zl:read.

� (flavor:method :untyi tv:stream-mixin) ch Method

Return ch to the proper buffer so that it will be the next character returned by

:any-tyi or :tyi. ch must be the last character that was :tyi’ed, and it is illegal to

do two :untyi’s in a row. Where ch is put depends on the value of the variable

sys:rubout-handler. Following is a summary of actions for each possible value of

sys:rubout-handler:

nil If the input buffer contains scanned input, decrements the scan

pointer. Otherwise, puts ch back into the window’s I/O buffer.

:read Decrements the input editor scan pointer.

:tyi Puts ch back into the window’s I/O buffer.�

This method is used by parsers that look ahead one character, such as zl:read.

� (flavor:method :update-item-list tv:dynamic-...-menu) Method

Updates the item list if it needs to change; this message is accepted by menus

with the dynamic item-list mixin. The :update-item-list message sends a :set-item-

list if one is necessary. The dynamic menu sends itself this message automatically

at appropriate times. The appropriate times are before :choose, :move-near-

window, :center-around, :size, and :pane-size messages.

� (flavor:method :update-label dw:margin-mixin) Method

Causes a new label to be written for a Dynamic Window. The label must have pre-

viously been created via the :delayed-set-label method: See the method

(flavor:method :delayed-set-label dw:margin-mixin).

For an overview of (flavor:method :update-label dw:margin-mixin) and related

facilities: See the section "Window Substrate Facilities".

� (flavor:method :value-style tv:basic-choose-variable-values) character-style

Init Option

The character style in which values of variables are displayed. The default is the

system default character style.

� (flavor:method :variables tv:basic-choose-variable-values) item-list Init Option

Specifies the list of variables whose values are to be chosen. These can be either

symbols that are variables, or the more general items defined previously. see the

section "Variables and Types".

Page 1406

� time:verify-date day month year day-of-the-week Function

Returns nil if the day of the week of the date specified by day, month, and year is

the same as day-of-the-week; otherwise, returns a string that contains a suitable er-

ror message. year can be absolute or relative to 1900 (that is, 84 and 1984 both

work).

(flavor:method :visible-cursorpos-limits dw:dynamic-window) &optional (unit

:pixel) Method

Returns the left, top, right, and bottom limits of the current viewport. The limits

are returned as absolute window locations.

unit The unit of measure for the viewport limits; the default is :pixel.

The alternative is :character. The character used is the space char-

acter in the window’s default character style.�

For an example showing the use of :visible-cursorpos-limits, see the function

dw:tracking-mouse.

For an overview of (flavor:method :visible-cursorpos-limits dw:dynamic-window)

and related facilities, see the section "Presenting Formatted Output".

� (flavor:method :update-label tv:delayed-redisplay-label-mixin) Method

Actually does the :set-label operation on the specification given by the most recent

:delayed-set-label message.

� (flavor:method :visibility tv:blinker) symbol Init Option

Sets the initial visibility of the blinker. This defaults to :blink.

� (flavor:method :vsp tv:menu) n-pixels Init Option

Sets the vertical spacing between lines in the menu. The default is 2 pixels.

� (flavor:method :vsp tv:sheet) n-pixels Init Option

Initializes the window’s vsp. It defaults to 2. The vsp is the space between lines:

below the lowest descender and above the highest ascender.

� (flavor:method :vsp tv:sheet) Method

Returns the value of vsp for this window.

� tv:wait-for-mouse-button-down &optional (prompt "Button") Function

Page 1407

If any buttons are down, waits until all the buttons are up, then waits for any

mouse button to be pushed. If no buttons are down, waits for any button to be

pushed. prompt is the whostate to display while waiting. Returns the same three

values as tv:mouse-wait.

This must be called inside a tv:with-mouse-and-buttons-grabbed or a tv:with-

mouse-and-buttons-grabbed-on-sheet form.

� tv:wait-for-mouse-button-up &optional (prompt "Release Button") (timeout nil)

Function

Waits until all mouse buttons are up, or until timeout sixtieths of a second have

elapsed. prompt is the whostate to display while waiting. Returns the same three

values as tv:mouse-wait.

This must be called inside a tv:with-mouse-and-buttons-grabbed or a tv:with-

mouse-and-buttons-grabbed-on-sheet form.

� (flavor:method :who-line-documentation-string tv:sheet) Method

The Scheduler periodically sends this message to the window owning the mouse.

The returned value is displayed in the mouse documentation line. The value should

be a string or, for no documentation, nil. This method returns nil; supply your

own to provide mouse documentation. You can supply two values to obtain two

lines of documentation.

� tv:*who-line-function-hook* Variable

Allows you to add your own functions to display things in the progress note area

of the status line. You set this variable to a function. The function is called in sev-

eral places in the :update routine.

Note: Only one function is allowed and the variable must be reset when the hook

function is changed.

tv:who-line-mouse-grabbed-documentation Variable

When grabbing or usurping the mouse, you should explain what is going on in the

mouse documentation line at the bottom of the screen. tv:with-mouse-grabbed and

tv:with-mouse-usurped bind this variable to nil, which makes the mouse documen-

tation line blank. Inside the body of one of these special forms, you can setq this

variable to a string to be displayed in the mouse documentation line. If your pro-

gram has "modes" that affect how the click acts, each part of the program should

setq this variable to its own documentation.

� tv:who-line-mouse-grabbed-more-documentation Variable

Page 1408

The value is the string displayed as the message in the second (lower) mouse doc-

umentation line when the mouse has been grabbed (as within a tv:with-mouse-

grabbed). Inside the body of tv:with-mouse-grabbed or tv:with-mouse-usurped,

you should setq this variable to an appropriate string. See the variable tv:who-

line-mouse-grabbed-documentation.

� (flavor:method :width tv:choose-variable-values) arg Init Option

Specifies how wide to make the window. This can be a number of characters, or a

string (it is made just wide enough to display that string). The default is to make

it wide enough to display the current values of all the variables, provided that is

not too wide to fit in the superior window.

� (flavor:method :width tv:menu) arg Init Option

Specifies the width of the window in pixels.

� (flavor:method :width tv:rectangular-blinker) n-pixels Init Option

Sets the initial width of the blinker, in pixels. By default, it is set to the width of

a space character in the default character style of the window associated with the

blinker.

� (flavor:method :width tv:sheet) outside-width Init Option

Specifies the outside width of the window.

� tv:window-call (window &optional final-action &rest final-action-args) &body body

Function

Temporarily selects a window selecting a new activity if the window is not part

of the currently selected activity executes the body, then (in an

unwind-protect) usually restores the previously selected activity. The previously

selected activity is not restored if at that time the selected window is not window

or a direct or indirect inferior of it. This heuristic deals with the case where the

user has switched activities explicitly during the execution of body.

This uses the :select message but is different from using the save-selected and re-

store-selected arguments to :select and :deselect: tv:window-call restores the activ-

ity that was current when its execution began, not the second most recently select-

ed activity, as sending a :deselect message with an argument of t would.

window is a variable that is bound to the window to be selected. If final-action is

specified, it is a message to be sent to window when done with it, and final-action-

args are forms supplying arguments to that message. final-action is often

:deactivate.

Page 1409

tv:window-call-relative is preferred over tv:window-call for use by application

programs that are not responding to an explicit user command to switch activities.

� tv:window-call-relative (window &optional final-action &rest final-action-args)

&body body Function

Temporarily selects a window relative to its activity, executes the body, then (in

an unwind-protect) restores the previous selected-pane of that activity. This uses

the :select-relative message.

window is a variable that is bound to the window to be selected. If final-action is

specified, it is a message to be sent to window when done with it, and final-action-

args are forms supplying arguments to that message. final-action is often

:deactivate.

tv:window-call-relative is preferred over tv:window-call for use by application

programs that are not responding to an explicit user command to switch activities.

� tv:window-hacking-menu-mixin Flavor

Provides for the :window-op item type. The window that the menu is exposed over

is remembered. The remembered window is used if an item of type :window-op is

selected. See the section "Types of Menu Items".

� tv:window-mouse-call (window &optional final-action &rest final-action-args)

&body body Function

Similar to tv:window-call but uses :mouse-select instead of :select to select win-

dow. It is used by parts of the user interface that want the temporary-window-

clearing features of :mouse-select.

� tv:window-pane Flavor

An instantiable flavor that includes tv:pane-mixin and tv:window.

� tv:window-with-typeout-mixin Flavor

Flavor to mix into a superior window to provide an inferior typeout window.

� dw:with-accept-activation-chars (additional-characters &key override) &body body

Function

Binds local environment to establish additional characters to be used as delimiters

of input strings. Predefined activation characters are #\Return and #\End.

additional-characters A list of characters to be used as additional delimiters.

Page 1410

:override Boolean option specifying whether the characters provided in the

additional-characters argument are the only delimiters used within

the body of the macro. If t, the provided characters replace the ex-

isting set for the dynamic extent of the macro. The default is nil,

meaning that the supplied characters are added to the existing set

of delimiters.

For an overview of dw:with-accept-activation-chars and related facilities, see the

section "Defining Your Own Presentation Types".

� dw:with-accept-blip-chars (additional-characters &key override) &body body

Function

Binds local environment to establish additional characters to be used as delimiters

of input blips. The characters are additional only if a previous, higher-level call to

this macro in a nested structure has established an existing set of delimiters; no

predefined set exists.

additional-characters A list of characters to be used as additional delimiters.

:override Boolean option specifying whether the characters provided in the

additional-characters argument are the only delimiters used within

the body of the macro. If t, the provided characters replace the ex-

isting set for the dynamic extent of the macro. The default is nil,

meaning that the supplied characters are added to the existing set

of delimiters.

For an overview of dw:with-accept-blip-chars and related facilities, see the sec-

tion "Defining Your Own Presentation Types".

� dw:with-accept-help options &body body Function

Binds local environment to control HELP-key documentation for input to accept.

options A list of option specifications. Each specification is itself a list of

the form (<help-option> <help-string>).�

help-option The help-type or a list of the form (<help-type> <mode-

flag>). Help types are:

:top-level-help Specifies that help-string be used instead

of the default help documentation provided by

accept.

:subhelp Specifies that help-string be used in addition to

the default help documentation provided by

accept.�

Available modes include:

Page 1411

:append Specifies that the current help string be append-

ed to any previous help strings of this type (top-

level help or subhelp). This is the default mode.

:override Specifies that the current help string is the help

for this help type; no lower-level calls to

dw:with-accept-help can override this.

(:override works from the outside in.)

:establish-unless-overridden Specifies that the current

help string be the help text for this help unless

a higher-level call to dw:with-accept-help has

already established a help string for this help

type in the :override mode.�

help-string A string or a function returning a string. If a function,

it receives two arguments, the stream and the string-so-

far.

Examples:

(dw:with-accept-help ((:subhelp "This is a test."))

 (accept ’pathname))

�

==> You are being asked to enter a pathname. [ACCEPT did this]

 This is a test. [You did this]

 Use c-? or c-/ for a list of possibilities.[Completer did this]

�

(dw:with-accept-help ((:top-level-help "This is a test."))

 (accept ’pathname))

�

==> This is a test. [You did this]

 Use c-? or c-/ for a list of possibilities.[Completer did this]

�

(dw:with-accept-help (((:subhelp :override) "This is a test."))

 (accept ’pathname))

�

==> You are being asked to enter a pathname. [ACCEPT did this]

 This is a test. [You did this]

 [Completer did

 nothing because

 you overrode it]

(define-presentation-type test ()

 :parser ((stream)

 (values (dw:with-accept-help

((:subhelp "A test is made up of three things:"))

 (dw:completing-from-suggestions ...)))))

Page 1412

�

(accept ’test) ==> You are being asked to enter a test.

 A test is made up of three things:

�

;;;use function to provide help string

(dw:with-accept-help (((:top-level-help :override)

 (lambda (stream string-so-far)

 (format stream "You are typing

a pathname"))))

 )�

For an overview of dw:with-accept-help and related facilities, see the section

"Defining Your Own Presentation Types".

� dw:with-accept-help-if cond options &body body Function

Conditionally binds local environment to control HELP-key documentation for input

to accept. Similar to dw:with-accept-help, but conditional.

cond The condition.

options A list of option specifications. Each specification is itself a list of

the form (<help-option> <help-string>).�

help-option The help-type or a list of the form (<help-type> <mode-

flag>). Help types are:

:top-level-help Specifies that help-string be used instead

of the default help documentation provided by

accept.

:subhelp Specifies that help-string be used in addition to

the default help documentation provided by

accept.�

Available modes include:

:append Specifies that the current help string be append-

ed to any previous help strings of this type (top-

level help or subhelp). This is the default mode.

:override Specifies that the current help string is the help

for this help type; no lower-level calls to

dw:with-accept-help can override this.

(:override works from the outside in.)

:establish-unless-overridden Specifies that the current

help string be the help text for this help unless

a higher-level call to dw:with-accept-help has

already established a help string for this help

type in the :override mode.�

Page 1413

help-string A string or a function returning a string. If a function,

it receives two arguments, the stream and the string-so-

far.

This macro is equivalent to the following form:

(if <cond>

 (dw:with-accept-help <> body)

 body)�

For examples, see the dictionary entry for dw:with-accept-help.

For an overview of dw:with-accept-help-if and related facilities, see the section

"Defining Your Own Presentation Types".

� with-character-face (face &optional (stream t) &key bind-line-height) &body body

Function

Binds the local environment such that character output is in the specified face.

face The face to be used for character output, for example, :bold or

:italic.

stream Output stream; the default is *standard-output*.

:bind-line-height Boolean option specifying whether the height, in pixels,

of the line containing the character output is based on the size of

the default character style or of the style specified in the macro.

Whether you specify t or nil (the default) depends on the context of

the output. To see the difference, run the following function first

with nil, then with t (put the code in an editor buffer first and

change the fonts of the strings to nil.):

(defun line-height-binder (bind)

 (format t "~&First line")

 (format t "~&Foo")

 (with-character-style (’(:fix :roman :very-large) t

:bind-line-height bind)

 (write-string "bar"))

 (write-string "baz")

 (terpri)

 (write-string "Another string")

 (with-character-style (’(:fix :roman :very-large) t

:bind-line-height bind)

 (format t "~&Frob one~%Frob two~%"))

 (format t "Last line"))�

In this example, the difference is apparent though subtle; even

more subtle are the differences produced when only the character

family or face is changed, as opposed to its size.

Page 1414

The height of the default character style is determined from the

height of the space character.

To see a list of valid character style faces, evaluate the variable si:*valid-faces*.

For more information on character styles, see the section "Character Styles".

For an overview of with-character-face and related facilities, see the section

"Character Environment Facilities".

� with-character-family (family &optional (stream t) &key bind-line-height) &body

body Function

Binds the local environment such that character output is in the specified family.

style The family to be used for character output, for example, :serif or

:jess.

stream Output stream; the default is *standard-output*.

:bind-line-height Boolean option specifying whether the height, in pixels,

of the line containing the character output is based on the size of

the default character style or of the style specified in the macro.

Whether you specify t or nil (the default) depends on the context of

the output. To see the difference, run the following function first

with nil, then with t (put the code in an editor buffer first and

change the fonts of the strings to nil.):

(defun line-height-binder (bind)

 (format t "~&First line")

 (format t "~&Foo")

 (with-character-style (’(:fix :roman :very-large) t

:bind-line-height bind)

 (write-string "bar"))

 (write-string "baz")

 (terpri)

 (write-string "Another string")

 (with-character-style (’(:fix :roman :very-large) t

:bind-line-height bind)

 (format t "~&Frob one~%Frob two~%"))

 (format t "Last line"))�

In this example, the difference is apparent though subtle; even

more subtle are the differences produced when only the character

family or face is changed, as opposed to its size.

The height of the default character style is determined from the

height of the space character.

To see a list of valid character style families, evaluate the variable si:*valid-

families*. For more information on character styles, see the section "Character

Styles".

Page 1415

For an overview of with-character-family and related facilities, see the section

"Character Environment Facilities".

� with-character-size (size &optional (stream t) &key bind-line-height) &body body

Function

Binds the local environment such that character output is of the specified size.

size The size of character output, for example, :very-small or :very-

large.

stream Output stream; the default is *standard-output*.

:bind-line-height Boolean option specifying whether the height, in pixels,

of the line containing the character output is based on the size of

the default character style or of the style specified in the macro.

Whether you specify t or nil (the default) depends on the context of

the output. To see the difference, run the following function first

with nil, then with t (put the code in an editor buffer first and

change the fonts of the strings to nil.):

(defun line-height-binder (bind)

 (format t "~&First line")

 (format t "~&Foo")

 (with-character-style (’(:fix :roman :very-large) t

:bind-line-height bind)

 (write-string "bar"))

 (write-string "baz")

 (terpri)

 (write-string "Another string")

 (with-character-style (’(:fix :roman :very-large) t

:bind-line-height bind)

 (format t "~&Frob one~%Frob two~%"))

 (format t "Last line"))�

In this example, the difference is apparent though subtle; even

more subtle are the differences produced when only the character

family or face is changed, as opposed to its size.

The height of the default character style is determined from the

height of the space character.

To see a list of valid character style sizes, evaluate the variable si:*valid-sizes*.

For more information on character styles, see the section "Character Styles".

For an overview of with-character-size and related facilities, see the section

"Character Environment Facilities".

� with-character-style (style &optional (stream t) &key bind-line-height) &body body

Function

Page 1416

Binds the local environment such that character output is in the specified style.

style List of the form (:family :face :size) specifying character style.

stream Output stream; the default is *standard-output*.

:bind-line-height Boolean option specifying whether the height, in pixels,

of the line containing the character output is based on the size of

the default character style or of the style specified in the macro.

Whether you specify t or nil (the default) depends on the context of

the output. To see the difference, run the following function first

with nil, then with t (put the code in an editor buffer first and

change the fonts of the strings to nil.):

(defun line-height-binder (bind)

 (format t "~&First line")

 (format t "~&Foo")

 (with-character-style (’(:fix :roman :very-large) t

:bind-line-height bind)

 (write-string "bar"))

 (write-string "baz")

 (terpri)

 (write-string "Another string")

 (with-character-style (’(:fix :roman :very-large) t

:bind-line-height bind)

 (format t "~&Frob one~%Frob two~%"))

 (format t "Last line"))�

In this example, the difference is apparent though subtle; even

more subtle are the differences produced when only the character

family or face is changed, as opposed to its size.

The height of the default character style is determined from the

height of the space character.

A character style specifies three style components: family, face, and size. To see

lists of valid families, faces, and sizes, evaluate the variables si:*valid-families*,

si:*valid-faces*, and si:*valid-sizes*. (The same information is presented in anoth-

er section; see the section "Available Character Styles".) Note that not all permuta-

tions of family, face, and size are legitimate character styles.

A partially specified character style is merged against the default character style

for the window. (See the init option (flavor:method :default-character-style

tv:sheet) and see the section "Merging Character Styles".) Consider the following

example (which has to be compiled):

(defun character-style-merge ()

 (dw:with-own-coordinates (t)

 (with-character-style (’(nil :bold :large) t)

 (graphics:draw-string "CURRENT DATA" 100 100

 :alu :flip))))

�

Page 1417

The character style specification in the above example only specifies two compo-

nents, face and size. The nil supplied in the family component slot means that the

default family for the window is used. If you wish to keep the defaults for two of

the components, then you can use one of the following macros:

with-character-family

with-character-face

with-character-size�

You can determine the character style corresponding to a particular TV font by us-

ing the si:backtranslate-font function. (See the function si:backtranslate-font.)

Example:

(si:backtranslate-font ’fonts:bigfnt)

#<CHARACTER-STYLE FIX.ROMAN.VERY-LARGE 260250707>

#<STANDARD-CHARACTER-SET 260000540>

0

#<B&W-SCREEN-DISPLAY-DEVICE 260302767>

�

The example shows that fonts:bigfnt corresponds to the (:fix :roman :very-large)

character style.

For more information on character styles, see the section "Character Styles".

For an overview of with-character-style and related facilities, see the section

"Controlling Character Style".

� with-input-editing (&optional stream keyword) &body body Function

Provides a convenient way of invoking the input editor for use by a reading func-

tion. It establishes a context in which input editing should be provided. Use with-

input-editing instead of sending an :input-editor message directly.

Both "arguments" are optional. stream is the stream from which characters are

read; if stream is not provided or is nil, *standard-input* is used.

keyword determines the activation characters for the input editor:

Value Activation characters

nil None (unless specified at a higher level). This is the default.

:end-activation #\end

:line-activation #\end, #\return, and #\line

:line #\end, #\return, and #\line. In addition, a Newline is echoed af-

ter the reading function returns.�

To supply other input editor options: See the function with-input-editing-options.

See the function with-input-editing-options-if.

Page 1418

with-input-editing defines an internal lexical closure with body as its body. When

the with-input-editing form is evaluated from outside the input editor, the stream

is sent an :input-editor message if it handles it. The argument to the :input-

editor message is the lexical closure, except that if the :line keyword is supplied,

with-input-editing also arranges to echo a Newline after the lexical closure re-

turns. If the with-input-editing form is evaluated from inside the input editor or

if the stream does not handle the :input-editor message, the lexical closure is

called instead.

with-input-editing returns whatever values body returns.

The following example defines a simple sentence parser.

(defun read-sentence (&optional (stream cl:*standard-input*))

 (with-input-editing-options ((:prompt "Type a sentence: "))

 (with-input-editing (stream)

 (loop named sentence

 with sentence = nil

 for word = (make-array 20. :type art-string :fill-pointer 0)

 do (loop for char = (send stream :tyi)

 do

 (cond ((memq char ’(#\space #\return #\. #\? #\,))

(if (not (equal word ""))

 (push word sentence))

(selectq char

 ((#\space #\return #\,)

 (return))

 (#\.

 (push :period sentence)

 (return-from sentence (nreverse sentence)))

 (#\?

 (push :question-mark sentence)

 (return-from sentence (nreverse sentence)))))

 (t (array-push-extend word char))))))))�

For an overview of this and related functions: See the section "Invoking the Input

Editor".

Provides a convenient way of invoking the input editor for use by a reading

function, and establishes a context in which input editing should be provided.

Both "arguments" are optional. stream is the stream from which characters are

read; if stream is not provided or is nil, *terminal-io* is used.

keyword is reserved for future use.

with-input-editing returns whatever values body returns.

� with-input-editing-options options &body body Function

Specifies input editing options and executes body with those options in effect. The

scope of the option specifications is dynamic.

Page 1419

options is a list of input editor option specifications. Each element is a list whose

car is an option-name specification and whose cdr is a list of forms to be evaluated

to yield "arguments" for the option. The option-name specification is a keyword

symbol or a list whose car is a keyword symbol. The symbol is the name of the

option.

If the option-name specification is a list and if the symbol :override is an element

of the cdr of the list, this option specification overrides any higher-level specifica-

tions for this option. Otherwise, the specification for each option that is dynamical-

ly outermost (that is, the specification from the highest-level caller) is in effect

during the execution of body.

with-input-editing-options returns whatever values body returns.

In the following example, the user is prompted for a Lisp expression. Two input

editor options are specified. The first says that the caller is also willing to receive

mouse or menu blips. The second specifies a prompt.

(with-input-editing-options ((:preemptable :blip)

 (:prompt "Form: "))

 (read))�

In the following example, the user is prompted for a line of text. The text may be

activated by any of the characters RETURN, END, or TRIANGLE. This might be useful

if activating with TRIANGLE meant something different from activating with

RETURN. This example also demonstrates the use of :override to make this

:activation specification override any higher-level :activation specifications.

(with-input-editing-options

 (((:activation :override) ’memq ’(#\return #\end #\triangle)))

 (prompt-and-read :string "Name: "))�

For an overview of this and related functions: See the section "Invoking the Input

Editor"

For a list of input editor options: See the section "Input Editor Options". See the

function with-input-editing-options-if.

In the following example, the user is prompted for a Lisp expression. One input

editor option is specified, and that option specifies a prompt.

(with-input-editing-options (((:prompt :override) "Form: "))

 (read))�

To write a reading function that invokes the input editor, you should use the with-

input-editing macro.

� with-input-editing-options-if cond options &body body Function

Executes body, possibly with specified input editing options in effect. The scope of

the option specifications is dynamic.

cond is a form to be evaluated at run-time. If cond returns non-nil, the specified

input editor options are in effect during the execution of body.

Page 1420

options is a list of input editor option specifications. Each element is a list whose

car is an option-name specification and whose cdr is a list of forms to be evaluated

to yield "arguments" for the option. The option-name specification is a keyword

symbol or a list whose car is a keyword symbol. The symbol is the name of the

option.

If the option-name specification is a list and if the symbol :override is an element

of the cdr of the list, this option specification overrides any higher-level specifica-

tions for this option. Otherwise, the specification for each option that is dynamical-

ly outermost (that is, the specification from the highest-level caller) is in effect

during the execution of body.

with-input-editing-options-if returns whatever values body returns.

For an overview of this and related forms:

See the section "Invoking the Input Editor".

For a list of input editor options: See the section "Input Editor Options". See the

function with-input-editing-options.

� tv:with-mouse-and-buttons-grabbed &body body Function

The forms in body are evaluated with the mouse and buttons grabbed. When the

buttons are grabbed, the mouse process does not maintain the value of tv:mouse-

last-buttons. Instead, the user process can read directly from the mouse buttons,

without losing clicks that the mouse process might fail to notice. Within the body

of this form, you can call the functions tv:mouse-wait, tv:wait-for-mouse-button-

down, tv:wait-for-mouse-button-up, and sys:mouse-buttons.

� tv:with-mouse-and-buttons-grabbed-on-sheet (&optional (sheet ’self)) &body body

Function

Like tv:with-mouse-and-buttons-grabbed, except that the mouse is confined to

sheet. During execution the variables sys:mouse-x and sys:mouse-y are relative to

the window’s outside coordinates. The default value of sheet is self, so if sheet is

not supplied, this form needs to appear inside a method or defun-method of a win-

dow flavor.

� tv:with-mouse-grabbed Function

A tv:with-mouse-grabbed special form has only a body:

 (tv:with-mouse-grabbed

 form1

 form2)�

The forms inside are evaluated with the mouse grabbed.

� tv:with-mouse-grabbed-on-sheet (&optional (sheet ’self)) &body body Function

Page 1421

Evaluates body with the mouse grabbed and confined to sheet. During execution

the variables sys:mouse-x and sys:mouse-y are relative to the window’s outside

coordinates. The default value of sheet is self, so if sheet is not supplied, this form

needs to appear inside a method or defun-method of a window flavor.

� tv:with-mouse-usurped Function

A tv:with-mouse-usurped special form has just a body:

 (tv:with-mouse-usurped

 form1

 form2)�

The forms inside are evaluated with the mouse usurped. The system does not han-

dle mouse moves at all when the mouse is usurped; it does not even maintain the

mouse x-y position.

� tv:with-notification-mode (new-mode &optional stream) &body body Function

Executes body with the notification mode of stream bound to new-mode. stream de-

faults to zl:standard-output. The notification mode determines what the notifica-

tion delivery process does with a notification when the process associated with

stream doesn’t accept it. new-mode can be a keyword or nil:

:pop-up The notification is displayed in a pop-up window. This is the

default.

:blast The notification is displayed on the stream.

:ignore The notification is ignored but is added to the notification his-

tory for SELECT N and the Show Notifications command.

nil The same as :pop-up.�

� dw:with-output-as-presentation (&key stream object type form location single-box

(allow-sensitive-inferiors t)) &body body Function

Outputs an object as a presentation object; in effect, allows you to rewrite the

printer function (used locally) for a presentation type. The following example illus-

trates this point:

(defun present-this-as-that (this that

&optional (stream *standard-output*))

 (send stream :clear-history)

 (dw:with-output-as-presentation (:single-box t

:stream stream :type that :object this)

 (send stream :draw-circle 250 200 25)

 (send stream :draw-circle 270 200 25)))�

Page 1422

Try calling this function with "ABC" as the first argument and ’string as the sec-

ond. Now, do (accept ’string) and click on the graphic.

Note the :single-box t option used in the above example. This is nearly always

appropriate when using this macro for graphic presentations.

Following are the keyword arguments recognized by dw:with-output-as-

presentation. Note that some of them are required.

:stream Specifies stream on which the object is presented; the default is

standard-output.

:object Specifies the presentation object of the output presentation. If you

do not use this option, then you must supply either the :form or

:location option.

:type Specifies the type of the presentation. You must provide this option.

:form Specifies a form that can be passed to setf to store a new value in

place of the current output value. This option and :location are mu-

tually exclusive.

The form supplied for this option is used by a predefined, side-

effecting mouse handler (available on c-m-Right) to modify the con-

tents of structure slots.

:location Specifies a locative that can be used to store a new value in place

of the current output value. This option and :form are mutually ex-

clusive.

The locative supplied for this option is used by a predefined, side-

effecting mouse handler (available on c-m-Right) to modify the con-

tents of structure slots.

:single-box Specifies that mouse-sensitivity of objects output in a

series of inferior calls to this form be indicated by a single, large

box for highlighting rather than the sum of all the individual boxes.

This option is used mostly with graphic presentations.

:allow-sensitive-inferiors Boolean option specifying whether nested

calls to present or dw:with-output-as-presentation from inside this

presentation for example, when presenting the individual ele-

ments of a Lisp list generate presentation objects. The default is

t.

Example:

Page 1423

�

(defun sensitive-inferior-test (sensitive-p)

 (let ((fl ’dw:dynamic-window))

 (dw:with-output-as-presentation

 (:object fl

 :type ’sys:flavor-name

 :allow-sensitive-inferiors sensitive-p)

 (format t "The flavor ~S." fl))))�

Try calling sensitive-inferiors-test with t, then nil. You should

find that in the first case both the entire presentation and the fla-

vor name are individually sensitive depending on where you have

the mouse cursor; in the latter case, only the entire presentation is

sensitive.

For an overview of dw:with-output-as-presentation and related facilities; See the

section "Using Presentation Types for Output".

� (flavor:method :with-output-recording-disabled dw:dynamic-window) continua-

tion xstream Method

Disables output recording on a specified window for a specified continuation.

continuation The continuation, a function of one argument, the out-

put stream.

xstream The window whose output recording is disabled.�

Example:

(defun draw-circles (stream)

 (loop repeat 50

do

 (graphics:draw-circle

 (random 500)

 (random 500) 10 :stream stream)))

�

(send *standard-output*

 :with-output-recording-disabled

 #’draw-circles *terminal-io*)�

See also the macros, dw:with-output-recording-disabled and dw:with-output-

recording-enabled.

� dw:with-output-to-presentation-recording-string (stream) &body body Function

Binds the local environment to output to a string, the way with-output-to-string

does, except that the string records presentations resulting from calls to present

and dw:with-output-as-presentation. If the resulting string is subsequently print-

ed (via princ or present) to a stream supporting presentations, the recorded pre-

sentations are re-presented to that stream.

Page 1424

stream The output stream; the default is *standard-output*.

dw:with-output-to-presentation-recording-string is distinguished from present-to-

string as follows:

w-o-to-p-r-string present-to-string

Returns a presentation-recording string Returns an ordinary string

Arbitrary body writing to string Single object to be presented�

Example:

(defun test-pr-string ()

 (let ((string (dw:with-output-to-presentation-recording-string

 (*standard-output*)

 (dolist (symbol ’(butcher baker candlestick-maker))

 (write-string " ")

 (present symbol ’symbol)))))

 (princ string)

 (accept ’symbol)))

�

For an overview of dw:with-output-to-presentation-recording-string and related

facilities: See the section "Displaying Output: Replay, Redisplay, and Formatting".

� dw:with-output-truncation (&optional stream &rest options) &body body Function

Binds the local environment to allow textual output to extend beyond the bottom

and right borders of the output window.

stream The output stream; the default is *standard-output*.

To access text extending beyond the margins of the output window,

the window needs vertical and horizontal scroll bars. For informa-

tion on how to equip Dynamic Windows with scroll bars (and other

margin components), see the flavor dw:dynamic-window.

options Two options are available:

:horizontal Boolean option specifying whether truncation occurs in

the horizontal dimension. If you do not specify any option,

they both default to t. If you specify either :horizontal or

:vertical to be t, then the other option defaults to nil.

"Truncation" here means that output exceeding the width

of the window extends beyond the right margin of the

current window viewport; the margin truncates the user’s

view of the output. If nil, the output wraps to the next

line.

:vertical Boolean option specifying whether truncation occurs in

the vertical dimension. The default, when neither option

is specified, is t, meaning that output exceeding the

Page 1425

height of the window extends below the bottom margin of

the current window viewport. If you specify either

:horizontal or :vertical to be t, then the other option de-

faults to nil.

Example:

(defun truncation-test (t-or-nil)

 (dw::with-output-truncation (t :horizontal t-or-nil)

 (loop repeat 100 do (write-char #\a))))�

For an overview of dw:with-output-truncation and related facilities, see the sec-

tion "Presenting Formatted Output".

� dw:with-own-coordinates (&optional stream &key left top right bottom (clear-

window t) (erase-window nil) (enable-output-recording t)) &body body Function

Binds the local environment such that output to a Dynamic Window is in a re-

freshed area, and the coordinate system is relative to the current viewport, not the

window’s origin.

dw:with-own-coordinates is only appropriate when you are dealing with absolute

constant coordinates. If you are doing anything relative, it is not for you. All mes-

sages like :read-cursorpos and :mouse-position deal in plane coordinates. If you

are doing anything relative to those values, the right thing will happen. Do not be

put off by the fact that the y coordinates keep getting larger as the history gets

longer big numbers are nothing to be afraid of.

Examples:

A valid use:

(dw:with-own-coordinates ()

 (graphics:draw-circle 100 100 100))

Some things that do not require it.

Cursor relative graphics block:

(graphics:with-room-for-graphics ()

 (graphics:draw-triangle 0 0 200 0 150 45))

Mouse relative graphics:

(tracking-mouse line drawing example above)

stream The output stream; the default is *standard-output*.�

:left Specifiesthex-coordinateatthebeginningoftheareatobeerased

when the :erase-window option is t.

:top Specifiesthey-coordinateatthebeginningoftheareatobeerased

when the :erase-window option is t.

Page 1426

:right Specifiesthex-coordinateattheendoftheareatobeerasedwhen

the :erase-window option is t.

:bottom Specifiesthey-coordinateattheendoftheareatobeerasedwhen

the :erase-window option is t.

:clear-window Boolean option specifying whether the window is

scrolled to a clear area before output begins; the default is t.

:erase-window Booleanoptionspecifyingthattheoutputwindowbe

erased before output begins; the default is nil.

If this option is t, use the :left, :top, :right, and :bottom keywords

to specify the coordinates of the area to be erased. If no coordinates

are specified, they default to the coordinates of the current view-

port. Output begins at the top of the erased area.

:enable-output-recording Booleanoptionspecifyingwhetheroutput

is retained in the output history of the window; the default is t.

This option is useful with animated graphic presentations that, be-

cause of the time required for redisplay, can impede scrolling

through a window’s history.

� dw:with-presentation-input-context (presentation-type &rest options) (&optional

(blip-var ’dw::.blip.)) non-blip-form &body blip-cases Function

Binds local environment to the input context of a specified presentation type. (This

essentially establishes mouse sensitivity for that type, and is one of the building

blocks for accept.) The body (non-blip-form) is executed. If no mouse gestures are

made by the user during execution of the body, this form returns the value of the

non-blip-form. If the user clicks on a presentation of an appropriate type, the cor-

responding blip-cases form is executed, with the resulting presentation blip bound

as the value of blip-var.

presentation-type The presentation type establishing the new input con-

text. This may be a compound type incorporating more than one

primitive type.

options Two predefined keyword options are available:

:stream Specifies the input stream; the default is *standard-

input*.

:inherit Boolean option specifying whether to inherit an existing

input context or to establish a new root node; the default

is t. �

You may use any additional keywords you want.

Page 1427

blip-var The symbol to bind to the blip generated by clicking on an object of

the specified type while in the context.

non-blip-form The body form to execute inside the established input

context.

blip-cases A case statement clause list. The keys are presentation types. The

clause whose key matches the presentation type of the blip is exe-

cuted, with the blip-var bound to the blip.

The presentation types available for use as keys are limited to the

type specified by the presentation-type argument or, in the case of a

compound presentation type (for example, or), the types specified;

and the type or types inherited in the case of a nested use of this

macro.�

For an overview of dw:with-presentation-input-context and related facilities: See

the section "Presentation Input Context Facilities".

� dw:with-presentation-input-editor-context (stream presentation-type . options)

(&optional (blip-var ’dw::.blip.) start-loc-var) non-blip-form &body blip-cases�

Function

Establishes an input context around a call to the input editor to read keyboard in-

put from the user. The body (non-blip-form) is executed. If no mouse gestures are

made by the user during execution of the body, this form returns the value of the

non-blip-form. If the user clicks on a presentation of an appropriate type, the re-

sulting presentation blip is bound as the value of blip-var; the current location in

the input buffer is bound as the value of start-loc-var; and the corresponding blip-

cases form is executed.

accept uses this mechanism to establish an input context for the presentation type

being read. This is one of the substrate functions used to build accept. Most pro-

grams simply want to call accept, instead of working at this low level.

stream The input stream; the default is *standard-input*.

presentation-type The presentation type establishing the new input con-

text. This may be a compound type incorporating more than one

primitive type.

options One predefined keyword option is available:

:inherit Boolean option specifying whether to inherit an existing

input context or to establish a new root node; the default

is t. �

You may use any additional keywords you want.

blip-var The symbol to bind to the blip generated by clicking on an object of

the specified type while in the context.

Page 1428

start-loc-var The symbol to bind to the input buffer location at the

time the presentation blip is received.

non-blip-form The body form to execute inside the established input

context.

blip-cases A case statement clause list. The keys are presentation types. The

clause whose key matches the presentation type of the blip is exe-

cuted, with the blip-var bound to the blip.

The presentation types available for use as keys are limited to the

type specified by the presentation-type argument or, in the case of a

compound presentation type (for example, or), the types specified;

and the type or types inherited in the case of a nested use of this

macro.

This macro is built on dw:with-presentation-input-context, to which it is similar:

(dw:with-presentation-input-editor-context (stream type)

 (blip-var)

 body-form

 blip-clauses)�

is the same as

(with-input-editing (stream)

 (dw:with-presentation-input-context

 (type :stream stream)

 (blip-var)

 body-form

 blip-clauses))�

For an overview of dw:with-presentation-input-editor-context and related facili-

ties: See the section "Presentation Input Context Facilities".

� dw:with-presentation-type-arguments (type-name type) &body body Function

Binds local environment such that the arguments in a presentation-type specifica-

tion are lexically available within the body of the macro.

type-nameThe name of the presentation type whose arguments are to be used,

for example, pathname.

type The type specification, for example, ’((pathname) :format :directo-

ry :direction :write).�

The type-name argument is known at compile time. It fixes the template for decod-

ing the arguments of the particular type specification passed to the macro at run-

time.

Example:

Page 1429

(define-presentation-type wood ((&key tree grade)

 &key show-price)

 :printer ((wood stream &key type)

 (format stream "~A [wood ~A, ~A~:[~; ~2D cents~]]"

 wood tree grade show-price

 (compute-wood-price type))))

�

(defun compute-wood-price (presentation-type)

 (dw:with-presentation-type-arguments (wood presentation-type)

 (let ((base-price

 (ecase tree

 (mahogany 69)

 (pine 12)

 (teak 75)))

 (grade-multiplier

 (ecase grade

 (firsts-and-seconds 1.3)

 (firewood .2))))

 (* base-price grade-multiplier))))

�

(compute-wood-price ’((wood :tree teak :grade firewood)

 :show-price t)) ==>

15.0�

See the section "Defining Your Own Presentation Types".

For an overview of dw:with-presentation-type-arguments and related facilities,

see dw:with-type-decoded.

� dw:with-redisplayable-output (&key stream cache-value unique-id (cache-test #’eql)

copy-cache-value (id-test #’eql)) &body body�

Function

Introduces a caching point for incremental redisplay. If this is used outside the dy-

namic scope of an incremental redisplay, it has no particular effect. However,

when incremental redisplay is occurring, the supplied cache-value is compared with

the value stored in the cache identified by unique-id. If the values differ, the code

in body runs, and cache-value is saved for next time. If the cache values are the

same, the code in body is not run, because the current output is still valid.

:stream Specifies the output stream; the default is *standard-output*.

:cache-value Specifiesthevaluetobe comparedeachtimeagainst

the value stored in the cache.

:unique-id Identifiestheparticularincrementalredisplay cache.

This may be any object, as long as it is unique with respect to the

id-test predicate among all such ids in the current incremental re-

display. The default is that there is no id, not that nil is the id.

Page 1430

:cache-test Specifiesthetestusedtocompare cache-valueagainst

the value saved in the cache. The default is eql.

:copy-cache-value Booleanoptionspecifyingwhethertocopy-seq the

cache value before saving it in the cache. Use this, for example,

when the cache value is a stack list which must be copied before

being stored away somewhere.

:id-test Specifies thetestusedto locatethe cache identifiedbyunique-id

among the caches used by the current incremental redisplay. The

default is eql.

dw:with-redisplayable-output is one of a number of facilities used to do incre-

mental redisplay. For examples, see the file

SYS:EXAMPLES;INCREMENTAL-REDISPLAY.LISP.

For an overview of dw:with-redisplayable-output and related facilities: See the

section "Displaying Output: Replay, Redisplay, and Formatting".

� dw:with-replayable-output (&rest parameters) &body body Function

Binds the local environment such that all of the output generated by body becomes

a single, replayable presentation.

The code in body is snapshotted (using dw:named-value-snapshot-continuation)

so that it can be rerun (replayed) in an altered environment; this results in a new

printed representation. The user specifies the new output parameters at runtime

via the Edit Viewspecs mouse handler. This handler is invoked by clicking

s-sh-Middle on a replayable presentation.

parameters A list of variable specifications in the style of

dw:accept-variable-values. That is, each item in the list is a list of

the form (variable-name prompt-string presentation-type).

The parameters are used to construct an dw:accept-variable-values

menu which pops up in response to the mouse gesture Edit

Viewspecs (s-sh-Middle). The values of the variables then be

changed by the user, and the presentation rerun with the new val-

ues.�

Example:

Page 1431

;;; Compile and run this code, then Edit Viewspecs by

;;; clicking s-sh-Middle on its output.

(defun wrpo ()

 (fresh-line)

 (let ((style ’(:fix :roman :normal))

(width 50)

(start 1))

 (dw:with-replayable-output

 ((style "Character style" character-style)

 (width "Width in characters" ((integer 5 120)))

 (start "Starting from" integer))

 (with-character-style (style)

(let ((fill-width

(* width (send *standard-output* :char-width))))

 (filling-output (() :fill-column fill-width)

 (loop repeat 50

 for i from start

 do (format T " ~r" i))))))))

�

dw:with-replayable-output is similar to dw:with-output-as-presentation in the

sense that it lets you define a presentation-type printer "on the fly", that is, not as

part of a presentation type. In the case of dw:with-replayable-output, you are

writing a printer that can be modified by the user at runtime, via the Edit

Viewspecs handler. This is not the only way to provide users with the ability to al-

ter displayed presentations; you can use the :viewspec-choices option to define-

presentation-type to provide the same capability with regard to all presentations

of the defined type. See the section ":viewspec-choices Option to define-

presentation-type".

dw:with-resortable-output is a specialization of dw:with-replayable-output for re-

ordering and redisplaying lists: See the function dw:with-resortable-output.

For an overview of dw:with-replayable-output and related facilities: See the sec-

tion "Displaying Output: Replay, Redisplay, and Formatting".

� dw:with-resortable-output ((list key &key copy-of) &rest sort-clauses) other-

parameters &body body Function

Binds the local environment such that all of the output generated by body becomes

a single, replayable presentation. The list can be output in one of several orders

specified by sorting predicates. Which sorting predicate is used can be specified by

users at runtime via the Edit Viewspecs mouse handler, available on s-sh-Middle.

list A variable holding the sequence of items for output.

key A variable holding an identifier for selecting which of the sort-

clauses is used.

Page 1432

:copy-of Specifies a list to be copied and sorted instead of list. The value is

copied by copy-seq. Typically, the value of this option is list. Use it

when you do not want the order of the original list to be destroyed

by sorting.

sort-clauses An ecase body, selecting on sort keys (the value of

key), and returning a sort predicate.

other-parameters Other parameters included in the parameters argument

passed to dw:with-replayable-output: See the function dw:with-

replayable-output. These and the sorting options appear in the

dw:accept-variable-values display created by the Edit Viewspecs

handler.

To see this macro in action, execute the Command Processor command Show Pro-

cesses or Show Directory. Both use dw:with-resortable-output and produce output

resortable via the Edit Viewspecs handler (s-sh-Middle).

Another example:

�

(defun sortable-output ()

 (let ((data (make-array 10))

(how :alpha)

(style ’(:swiss nil nil)))

 (dotimes (i 10)

 (setf (aref data i)

 (list i (format nil "~r" i))))

 (dw:with-resortable-output

 ;; list and key

 ((data how)

 ;; sort clauses

 (:alpha

 (lambda (x y)

 (string-lessp (second x) (second y))))

 (:length

 (lambda (x y)

 (< (string-length (second x))

 (string-length (second y)))))

 (:number

 (lambda (x y)

 (< (first x) (first y)))))

 ;; other parameter

 ((style "Character style" character-style))

 ;; body

 (with-character-style (style)

(format t "~&Here come the data, sorted by ~(~a~): " how)

(format-textual-list data

 (lambda (x stream)

 (princ (second x) stream)))))))�

Page 1433

For an overview of dw:with-resortable-output and related facilities: See the sec-

tion "Displaying Output: Replay, Redisplay, and Formatting".

� tv:with-terminal-io-on-typeout-window (window wait-for-space-p) &body body

Function

Binds zl:terminal-io to the typeout-window of window over the duration of the

body, taking care of exposing and deexposing the typeout window, selection, etc.

wait-for-space-p, if supplied and not nil, means that after executing the body the

user should be prompted to type a space to get rid of the typeout window. Other-

wise the typeout window goes away as soon as the body returns. All values of the

body are returned.

� dw:with-type-decoded (type-name-var &optional data-args-var presentation-args-var)

type &body body Function

Binds local environment such that the type-name and, optionally, arguments in a

presentation-type specification are bound to variables lexically available within the

body of the macro.

type-name-var Symbol to bind the type-name of the presentation type.

data-args-var Symbol to bind to a list of the data arguments of the

presentation type.

presentation-args-var Symbol to bind to a list of the presentation arguments

of the presentation type.�

Example:

(defun with-type-decoded-test ()

 (dw:with-type-decoded (type-name data-args pres-args)

 ’((integer 1 10) :base 8

 :description "Integer between 1 and 10")

 (format t "~2%Type: ~A

 ~%Data Arguments: ~A

 ~%Presentation Arguments: ~A"

 type-name data-args pres-args)))

�

(with-type-args-test) ==>

�

Type: INTEGER

Data Arguments: (1 10)

Presentation Arguments: (BASE 8 DESCRIPTION Integer between 1 and 10)

�

See the section "Defining Your Own Presentation Types".

Page 1434

For an overview of dw:with-type-decoded and related facilities: See also: dw:with-

presentation-type-arguments.

� with-underlining (&optional stream &key (underline-whitespace t)) &body body

Function

Binds the local environment such that character output is underlined.

stream Output stream; the default is *standard-output*.

:underline-whitespaceBooleanoptionspecifying whetherwhitespaceisunder-

lined (in addition to characters); the default is t. If the output you

are underlining contains any newline characters, we recommend

that you set this option to nil.�

Example:

(defun underline-example ()

 (fresh-line)

 (with-underlining ()

 (princ 12345)

 (sleep 2)

 (princ 56789)))�

For an overview of with-underlining and related facilities: see the section "Con-

trolling Line Output".

� (flavor:method :x tv:menu) arg Init Option

Specifies the left edge of the menu in pixels, relative to the outside of the superior

window.

� (flavor:method :x tv:sheet) left-edge Init Option

Specifies the x-coordinate of the left edge of the window.

� (flavor:method :x-pos tv:blinker) x Init Option

Along with the :y-pos init option, sets the initial position of the blinker within the

window. This init option is irrelevant for blinkers that follow the cursor. The ini-

tial position for nonfollowing blinkers defaults to the current cursor position.

� (flavor:method :x-scroll-position dw:dynamic-window) Method

Returns four values:

1. The absolute location of the current viewport’s left edge.

Page 1435

2. The viewport’s horizontal extent.

3. The window’s minimum x-coordinate (typically 0).

4. The absolute location of the viewport’s right edge.�

For an overview of (flavor:method :x-scroll-position dw:dynamic-window) and re-

lated facilities, see the section "Presenting Formatted Output".

� (flavor:method :x-scroll-to dw:dynamic-window) position type Method

Scrolls the window to a specified x-coordinate.

position The x-coordinate to scroll to.

type The type of scrolling operation. Three possibilities exist:

:absolute The position argument specifies an absolute window loca-

tion.

:relative The position argument specifies a location, in pixels, rela-

tive to the current position of the cursor.

:relative-jump The position argument specifies a loca-

tion, in characters, relative to the current position of the

cursor. The width of a character in pixels depends on the

default character style for the window; the width of the

space character is used.

For an overview of (flavor:method :x-scroll-to dw:dynamic-window) and related

facilities, see the section "Presenting Formatted Output".

� (flavor:method :y tv:menu) arg Init Option

Specifies the top edge of the menu in pixels, relative to the outside of the superior

window.

� (flavor:method :y tv:sheet) top-edge Init Option

Specifies the y-coordinate of the top edge of the window.

� y-or-n-p &optional format-string &rest args Function

Provides a convenient and consistent interface for asking questions of the user. It

types out a message (if supplied), reads a single character (Y or N), and returns t

if the answer was one of the characters "y" or "Y" or "SPACE", or nil if the answer

was one of the characters "n" or "N" or "RUBOUT".

y-or-n-p uses *query-io* to print the questions and read the answers. *query-io*

is normally synonymous with *terminal-io*, but can be rebound to another stream

for special applications.

Page 1436

If format-string is supplied and non-nil, then a fresh-line operation is performed.

After that a message is printed as if format-string and args were given to format.

Otherwise it is assumed that any message has already been printed by other

means.

Here are some examples of the use of y-or-n-p:

(y-or-n-p "Produce listing file?" *terminal-io*) =>

Produce listing file?(Y or N) y

T

�

(y-or-n-p "Cannot connect to network host ~S. Retry?" host) =>

Cannot connect to network host TURKEY. Retry?(Y or N) n

NIL�

y-or-n-p should only be used for questions that the user knows are coming or in

situations where the user is known to be waiting for a response of some kind. If

the user is unlikely to anticipate the question, or if the consequences of the an-

swer might be irreparable, then y-or-n-p should not be used because the user

might type ahead and thereby accidentally answer the question. For such questions

as "Shall I delete all of your files?", it is better to use yes-or-no-p.

(defun show-directory (&optional dirname)

 (when (not dirname)

 (if (y-or-n-p "Use your home directory? ")

(setq dirname (user-homedir-pathname))

(return-from show-directory nil)))

 (dolist (path (directory dirname))

 (format t "~&~A~%" path)))

=> SHOW-DIRECTORY

�

(show-directory)

Use your home directory? (Y or N) Y

foo.lisp

junk.text

=> NIL�

� zl:y-or-n-p &optional message (query-io zl:query-io) Function

Provides a convenient and consistent interface for asking questions of the user. It

types out a message (if supplied), reads a single character (Y or N), and returns t

if the answer was one of the characters "y" or "Y" or "SPACE", or nil if the answer

was one of the characters "n" or "N" or "RUBOUT".

Asks the user a question whose answer is either "yes" or "no". It types out a mes-

sage (if supplied), reads a single character (Y or N), and returns t if the answer

was one of the characters "y" or "Y" or "SPACE", or nil if the answer was one of

the characters "n" or "N" or "RUBOUT". If any other character is typed, the function

beeps and demands a "Y or N" answer.

Page 1437

If the message argument is supplied, it is printed on a fresh line (using the :fresh-

line stream operation). Otherwise the caller is assumed to have printed the mes-

sage already. If you want a question mark and/or a space at the end of the mes-

sage, you must put it there yourself; zl:y-or-n-p does not add it. query-io defaults

to the value of zl:query-io.

zl:y-or-n-p should only be used for questions that the user knows are coming. If

the user is not going to be anticipating the question (for example, if the question

is "Do you really want to delete all of your files?" out of the blue) zl:y-or-n-p

should not be used, because the user might type ahead a T, Y, N, space, or rubout,

and therefore accidentally answer the question. In such cases, use zl:yes-or-no-p.

zl:y-or-n-p supplies a prompt that indicates which form of answer (single letter or

full word plus RETURN) is required. This prompt is appended to any message that

you supply with the function.

(y-or-n-p "More? ") =>

More? (Y or N) Yes.�

� (flavor:method :y-pos tv:blinker) y Init Option

Along with the :x-pos init option, set the initial position of the blinker within the

window. This init option is irrelevant for blinkers that follow the cursor. The ini-

tial position for nonfollowing blinkers defaults to the current cursor position.

� (flavor:method :y-scroll-position dw:dynamic-window) Method

Returns four values:

1. The absolute location of the current viewport’s top edge.

2. The viewport’s vertical extent.

3. The window’s minimum y-coordinate (typically 0).

4. The absolute location of the viewport’s bottom edge.�

For an overview of (flavor:method :y-scroll-position dw:dynamic-window) and re-

lated facilities, see the section "Presenting Formatted Output".

� (flavor:method :y-scroll-to dw:dynamic-window) position type Method

Scrolls the window to a specified y-coordinate.

position The y-coordinate to scroll to.

type The type of scrolling operation. Three possibilities exist:

:absolute The position argument specifies an absolute window loca-

tion.

Page 1438

:relative The position argument specifies a location, in pixels, rela-

tive to the current position of the cursor.

:relative-jump The position argument specifies a loca-

tion, in lines, relative to the current position of the cur-

sor. The height of a line in pixels depends on the default

character style for the window.�

For an overview of (flavor:method :y-scroll-to dw:dynamic-window) and related

facilities, see the section "Presenting Formatted Output".

� cp:yank-and-read-full-command numeric-arg-p numeric-arg Function

The c-m-Y Command Processor command accelerator. It yanks back the last com-

mand typed for editing.

cp:yank-and-read-full-command is a function that is suitable for use as a com-

mand-accelerator’s function. However, the easiest way to make use of this facility

is to have the command tables in your applications that use accelerator characters

inherit from "Colon Full Command".

For an overview of cp:yank-and-read-full-command and related facilities: See the

section "Managing Your Program Frame".

� yes-or-no-p &optional format-string &rest args Function

Provides a convenient and consistent interface for asking questions of the user. It

types out a message (if supplied), reads a word (Yes or No), and returns t if the

answer was the word "Yes", or nil if the answer was the word "No". yes-or-no-p

allows completion, so you can type any subset of the word "Yes" or "No" followed

by the END or RETURN keys.

yes-or-no-p uses *query-io* to print the questions and read the answers. *query-

io* is normally synonymous with *terminal-io*, but can be rebound to another

stream for special applications.

If format-string is supplied and non-nil, a fresh-line operation is performed. After

that a message is printed as if format-string and args were given to format. Oth-

erwise it is assumed that any message has already been printed by other means.

Here are some examples of the use of yes-or-no-p:

(yes-or-no-p "Shall I delete all of your files?") =>

Shall I delete all of your files?(Yes or No) noRETURN

NIL

�

(yes-or-no-p "List the entire set of commands?") =>

List the entire set of commands?(Yes or No) yeEND

T�

To allow the user to answer a yes or no question with a single character, use

y-or-n-p. yes-or-no-p whould be used for unanticipated or important questions,

which is why it requires a multiple-action sequence to answer it.

Page 1439

Writes out a message supplied in format-string, just as though it were the con-

trol-string to format, then reads a newline terminated word, which should be ei-

ther ‘yes’ or ‘no’, in upper or lower case.

(defvar *the-hash-tables* ’())

�

(defun clear-the-hash-tables ()

 (when (yes-or-no-p "~&Clear all hash tables? ")

 (mapc #’clrhash *the-hash-tables*)))

�

(push (make-hash-table) *the-hash-tables*)

(push (make-hash-table) *the-hash-tables*)

�

(clear-the-hash-tables)

Clear all hash tables? yes

→ (#<Hash-Table 32432> #<Hash-Table 32497>)�

See Also: CLtL 408, write, y-or-n-p

� zl:yes-or-no-p &optional message (query-io zl:query-io) Function

Asks the user a question whose answer is either "Yes" or "No". It types out mes-

sage (if any), beeps, and reads in a line from the keyboard. If the line is the string

"Yes", it returns t. If the line is "No", it returns nil. (Case is ignored, as are lead-

ing and trailing spaces and tabs.) If the input line is anything else, zl:yes-or-no-p

beeps and demands a "yes" or "no" answer.

If the message argument is supplied, it is printed on a fresh line (using the :fresh-

line stream operation). Otherwise the caller is assumed to have printed the mes-

sage already. If you want a question mark and/or a space at the end of the mes-

sage, you must put it there yourself; zl:yes-or-no-p does not add it. query-io de-

faults to the value of zl:query-io.

To allow the user to answer a yes-or-no question with a single character, use zl:y-

or-n-p. zl:yes-or-no-p should be used for unanticipated or momentous questions;

this is why it beeps and why it requires several keystrokes to answer it.

zl:yes-or-no-p supplies a prompt that indicates which form of answer (single letter

or full word plus RETURN) is required. This prompt is appended to any message

that you supply with the function.

(yes-or-no-p "Detonate terminal? ") =>

Detonate terminal? (Yes or No) no�

alist-member (&key alist) &key convert-spaces-to-dashes nil Presentation Type

Type for accepting or presenting an association list item.

:alist Data option specifying the list of items. The usual form of item is a

dotted pair of the print string and its object: ((String-1 . object-1)

(string-2 . object-2) ... (string-n . object-n)).

Page 1440

Alternatively, items can be in the "general list" form. See the sec-

tion "The Form of a Menu Item". One of the advantages of this

form is that documentation for each item can be added that will ap-

pear if the user asks for help (presses the HELP key) during an

accept of this type. Documentation is specified with the

:documentation keyword. See the examples section of

alist-member.

Two other keywords are permitted in an item list. The first is

:style, specifying the character style of the presented item.

The second is :selected-style. This keyword may only be used when

alist-member is part of a dw:accepting-values function. It specifies

the character style of the item when it is selected, that is, after it

has been clicked on. The :selected-style defaults to the boldface

version of the unselected style.

:convert-spaces-to-dashes Presentation option specifying whether

spaces in the print string should be converted to dashes; the default

is nil. This option can be used to avoid space overloading when

alist-member is being used with the command processor.

Examples:

(accept ’((alist-member :alist (("Item 1" . a) ("Item 2" . b)))

 :convert-spaces-to-dashes t)) ==>

Enter Item-1 or Item-2: Item-2

B

((ALIST-MEMBER :ALIST (("Item 1" . A) ("Item 2" . B)))

:CONVERT-SPACES-TO-DASHES T)

(present ’b ’((alist-member :alist (("Item 1" . a) ("Item 2" . b)))

 :convert-spaces-to-dashes t)) ==>

Item-2

#<DISPLAYED-PRESENTATION 444272462>

Page 1441

(defun filter-alist-example ()

 (let ((operator-alist

 ’(("Gaussian" :value :gauss

 :documentation "low-pass filter")

 ("Laplacian, HP" :value :lpl-hp

 :documentation "high-pass filter")

 ("Laplacian, ED" :value :lpl-ed

 :documentation "edge detector")

 ("Roberts" :value :rbts

 :documentation "edge detector")

 ("Prewitt, Hz" :value :prw-hz

 :documentation "horizontal edge detector")

 ("Prewitt, Vt" :value :prw-vt

 :documentation "vertical edge detector")

 ("Sobel, Hz" :value :sbl-hz

 :documentation "horizontal edge detector")

 ("Sobel, Vt" :value :sbl-vt

 :documentation "vertical edge detector"))))

 (accept ‘((alist-member :alist ,operator-alist)

 :description "a 2-dimensional image filter"))))

(filter-alist-example) ==>

Enter a 2-dimensional image filter: HELP

You are being asked to enter a 2-dimensional image filter.

�

These are the possible 2-dimensional image filters:

Gaussian low-pass filter

Laplacian, ED edge detector

Laplacian, HP high-pass filter

Prewitt, Hz horizontal edge detector

Prewitt, Vt vertical edge detector

Roberts edge detector

Sobel, Hz horizontal edge detector

Sobel, Vt vertical edge detector

Page 1442

�

Enter a 2-dimensional image filter: Laplacian, HP

:LPL-HP

((ALIST-MEMBER :ALIST

 (("Gaussian" :VALUE :GAUSS :DOCUMENTATION

"low-pass filter")

 ("Laplacian, HP" :VALUE :LPL-HP :DOCUMENTATION

"high-pass filter")

 ("Laplacian, ED" :VALUE :LPL-ED :DOCUMENTATION

"edge detector")

 ("Roberts" :VALUE :RBTS :DOCUMENTATION

"edge detector")

 ("Prewitt, Hz" :VALUE :PRW-HZ :DOCUMENTATION

"horizontal edge detector")

 ("Prewitt, Vt" :VALUE :PRW-VT :DOCUMENTATION

"vertical edge detector")

 ("Sobel, Hz" :VALUE :SBL-HZ :DOCUMENTATION

"horizontal edge detector")

 ("Sobel, Vt" :VALUE :SBL-VT :DOCUMENTATION

"vertical edge detector")))

 :DESCRIPTION "a 2-dimensional image filter")

Because the prompt generated by accept for input of alist-member items can

sometimes be awkward, you may want to use the meta-presentation argument

:description to change it. (See the section "The Presentation Type System: an

Overview".) This was done in the (filter-alist-example) above.

The filter example also demonstrates the advantage of providing an alist of the

general list form. The :documentation provided in the alist can add much useful

information to the display.

A type history is not available for the alist-member presentation type.

alist-member is one of a number of types defined in SYS:DYNAMIC-

WINDOWS;SEQUENCE-TYPES.LISP. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� and (&rest types) Presentation Type

Compound type for accepting or presenting an object of two or more presentation

types. Typically, the second and subsequent types are derived via the satisfies pre-

sentation type.

types Data arguments specifying the contributing presentation types.�

Examples:

Page 1443

(accept ’((and sys:expression (satisfies symbolp)))) ==>

Enter the representation of any Lisp

object satisfying SYMBOLP: ramjet

RAMJET

((AND SYS:EXPRESSION

 (SATISFIES SYMBOLP)))

�

(accept ’((and ((integer)) ((satisfies oddp))

 ((satisfies plusp))))) ==>

Enter an integer satisfying ODDP and

PLUSP [default 9]: 21

21

((AND ((INTEGER))

 ((SATISFIES ODDP))

 ((SATISFIES PLUSP))))

�

The compound presentation type in the first example is equivalent to the symbol

presentation type and is, in fact, how that type is defined.

and can combine any number of satisfies types with an initial, non-satisfies type.

The second example above shows an initial integer type used with two satisfies

types to solicit input of odd, positive integers.

Note that the compound type has access to the type history of the initial presenta-

tion type, if one exists. However, it does not automatically use the value at the top

of the history as the default value in an accept function. Rather, it uses the item

most recently added to the type history that also satisfies the satisfies function(s).

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� boolean Presentation Type

Type for accepting or presenting a yes-or-no answer, where "yes" is t and "no" is

nil.

Examples:

(accept ’((boolean))) ==>

Enter Yes or No: No

NIL

((BOOLEAN))

�

(present t ’((boolean))) ==>Yes

#<DISPLAYED-PRESENTATION 444300153>

�

A type history is not available for the boolean presentation type.

boolean is one of a number of types defined in sys:dynamic-windows;standard-

presentation-types.lisp. See that file for the source code.

Page 1444

See also the inverted-boolean presentation type.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� zwei:buffer &key (create-p :if-forced) Presentation Type

Type for accepting or presenting Zmacs editor buffers.

:create-p Presentation option specifying whether to create the buffer entered

in response to an accept prompt if it does not already exist.

The default is :if-forced. This gives the user the option of changing

the input or creating the new buffer by terminating with

CONTROL-RETURN, rather than just creating the buffer as in the case

of :create-p t.

Examples:

(accept ’((zwei:buffer))) ==>

Enter an editor buffer

[default ui-dict15.sar >sys>doc>uims Q:]: HELP ==>

You are being asked to enter an editor buffer.

�

These are the possible editor buffers:

 Buffer-1

 Definitions-1

 doc-29-55.lisp >sys>doc>patch>doc-29 Q:

 miscui2.sar >sys>doc>miscui Q:

 standard-presentation-types.lisp >sys>dynamic-windows Q:

 ui-dict15.sar >sys>doc>uims Q:

�

Enter an editor buffer

[default ui-dict15.sar >sys>doc>uims Q:]: *Buffer-1*

#<NON-FILE-BUFFER "*Buffer-1*" 47700004>

�

(accept ’((zwei:buffer) :create-p t)) ==>

Enter an editor buffer

[default ui-dict15.sar >sys>doc>uims Q:]: foo.test

#<NON-FILE-BUFFER "foo.test" 47700567>

((ZWEI:BUFFER) :CREATE-P T)

�

(present (zwei:make-buffer ’zwei:non-file-buffer)

 ’((zwei:buffer))) ==>*Buffer-2*

#<DISPLAYED-PRESENTATION 274672153>

�

The zwei:buffer presentation type uses the special variable zwei:*buffer-history*

to provide its type history.

Page 1445

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� character Presentation Type

Type for accepting or presenting single characters. When reading, this is just a

single character without termination.

Examples:

(accept ’((character)) ==>

Enter a character: R

#\R

((CHARACTER))

�

(accept ’((character)) ==>

Enter a character: r

#\r

((CHARACTER))

�

(accept ’((character)) ==>

Enter a character: %

#\%

((CHARACTER))

�

(accept ’((character)) ==>

Enter a character: 3

#\3

�

(present #\, ’((character))) ==>,

#<DISPLAYED-PRESENTATION 445346702>

((CHARACTER))

�

Use the character presentation type for normal, editable character input. To ac-

cept characters that would be mistaken as input-editor commands, for example

#\C-B, use dw:out-of-band-character instead.

There is no type history for the character presentation type.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� character-face-or-style (&key device (against-default si:*standard-default-character-

style*)) &key for-attribute-list Presentation Type

Type for accepting either a fully specified character style, or just the face compo-

nent. (The device argument, although implemented as a keyword, is required.)

Page 1446

:device Dataoptionspecifyingthedeviceforthecharacter style. Thereare

four possibilities: si:*b&w-screen*, lgp:*lgp-printer*, lgp:*lgp2-

printer*, and dmp1:*dmp1-printer*. This is normally gotten with

the :display-device-type message to a stream.

:against-default Data option specifying a character style against which

the input character style is merged. This is used to limit possibili-

ties since the merge result must be valid. See the section "Merging

Character Styles".

:for-attribute-list Presentation option specifying whether the character

style should be presented in list form, for example, (:fix :bold

:normal). The default is nil. Supply a value of t when presenting a

character style for inclusion in the attribute list of file.

Examples:

 (accept ‘((character-face-or-style

:device (send *terminal-io* :display-device-type))) ==>

Enter a character face or style: BOLD

#<CHARACTER-STYLE NIL.BOLD.NIL 155157247>

((CHARACTER-FACE-OR-STYLE :DEVICE

#<B&W-SCREEN-DISPLAY-DEVICE 154221604>))

�

(accept ‘((character-face-or-style

:device ,si:*b&w-screen*))) ==>

Enter a character face or style: DUTCH.ROMAN.NORMAL

#<CHARACTER-STYLE DUTCH.ROMAN.NORMAL 154174235>

((CHARACTER-FACE-OR-STYLE :DEVICE

#<B&W-SCREEN-DISPLAY-DEVICE 154221604>))

�

The character-face-or-style presentation type does not support a type history.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� character-style (&key against-default) &key for-attribute-list Presentation Type

Type for accepting or presenting character styles.

:against-default Data option specifying a character style against which

the input character style is merged. This is used to limit possibili-

ties since the merge result must be valid. See the section "Merging

Character Styles".

:for-attribute-list Presentation option specifying whether the character

style should be presented in list form, for example, (:fix :bold

:normal). The default is nil. Supply a value of t when presenting a

character style for inclusion in the attribute list of file.

Page 1447

When accepting a character style, the user is prompted for the family, face, and

size, in that order. The first two entries must be terminated by a period, the last

by RETURN or END.

Examples:

(accept ’((character-style))) ==>

Enter a valid character style: SWISS.BOLD.LARGE

#<CHARACTER-STYLE SWISS.BOLD.LARGE 264231477>

�

(present (si:parse-character-style ’(:swiss :bold :large))) ==>

SWISS.BOLD.LARGE

#<DISPLAYED-PRESENTATION 425221252>�

The character-style presentation type supports a type history.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� character-style-for-device (&key device (against-default si:*standard-default-

character-style*) (allow-relative t) (allow-device-font nil)) &key for-attribute-list (pro-

vide-subhelp t) Presentation Type

Type for accepting or presenting character styles for a specified device. (The de-

vice argument, although implemented as a keyword, is required.)

:device Dataoptionspecifyingthedeviceforthecharacter style. Thereare

four possibilities: si:*b&w-screen*, lgp:*lgp-printer*, lgp:*lgp2-

printer*, and dmp1:*dmp1-printer*. This is normally gotten with

the :display-device-type message to a stream.

:against-default Data option specifying a character style against which

the input character style is merged. This is used to limit possibili-

ties since the merge result must be valid. See the section "Merging

Character Styles".

:allow-relative Data option specifying whether relative style specifica-

tions, such as smaller or larger, are permitted. See the section

"Merging Character Styles".

:allow-device-font Dataoptionspecifyingwhetheradevicefontisper-

mitted; the default is nil.

For more information about device fonts, see the section "Mapping a

Character Style to a Font".

:for-attribute-list Presentation option specifying whether the character

style should be presented in list form, for example, (:fix :bold

:normal). The default is nil. Supply a value of t when presenting a

character style for inclusion in the attribute list of file.

Page 1448

:provide-subhelp Presentation option specifying whether to provide a

HELP display; the default is t. Disable this if a higher-level call pro-

vides help.

Examples:

(accept ‘((character-style-for-device

:device ,si:*b&w-screen*))) ==>

Enter a character style: FIX.BOLD.TINY

#<CHARACTER-STYLE FIX.BOLD.TINY 154222436>

((CHARACTER-STYLE-FOR-DEVICE :DEVICE

#<B&W-SCREEN-DISPLAY-DEVICE 154221604>))

�

(accept ‘((character-style-for-device

:device ,lgp:*lgp2-printer* :allow-relative t))) ==>

Enter a character style [default FIX.BOLD.TINY]: SWISS.BOLD.SAME

#<CHARACTER-STYLE SWISS.BOLD.SAME 15212221>

((CHARACTER-STYLE-FOR-DEVICE :DEVICE

#<LGP2-DISPLAY-DEVICE 154173651> :ALLOW-RELATIVE T))

�

(accept ‘((character-style-for-device

:device ,si:*b&w-screen* :allow-device-font t))) ==>

Enter a character style: DEVICE-FONT.BIGFNT

#<CHARACTER-STYLE DEVICE-FONT.BIGFNT.NORMAL 14251534>

((CHARACTER-STYLE-FOR-DEVICE :DEVICE

#<B&W-SCREEN-DISPLAY-DEVICE 154221604> :ALLOW-DEVICE-FONT T))

�

character-style-for-device is a subtype of character-style, from which it inherits

a type history.

For an overview of presentation types and related facilitie,: see the section "Using

Presentation Types".

� sys:code-fragment Presentation Type

Type for accepting or presenting pieces of Lisp code. This presentation type is a

subtype of sys:form, and intended primarily for accessing code fragments in editor

buffers. The following example, the definition of a translating mouse handler for

editor commands, uses sys:code-fragment as the from-presentation-type argument:

(zwei:define-presentation-to-editor-command-translator

typeout-menu-arglist-from-buffer

(sys:code-fragment "Arglist" *standard-comtab*

 :gesture :hyper-meta-middle)

 (function-spec)

 (when (and (sys:validate-function-spec function-spec)

 (fdefinedp function-spec))

 ‘(typeout-menu-arglist ,function-spec)))

�

Page 1449

For an overview of presentation types and related facilities: See the section "Using

Presentation Types".

� cp:command (&key command-table *command-table* command-table-p) &key wait-

for-activation t Presentation Type

Type for accepting or presenting a command processor command.

:command-table Data option specifying the command table in which to

find the command. The default, *command-table*, is bound to the

command table currently in use. See the section "Managing Com-

mand Tables".

:wait-for-activation Presentation option specifying, when nil that the com-

mand should be executed when the presentation is accepted. With

the default, t, the user is required to enter an activation character

to execute the command.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� fs:directory-pathname &key (default-version :newest) (default-type nil) (default-

name nil) dont-merge-default (direction :read) (format :normal) Presentation Type

Type for accepting or presenting a directory pathname. This is a directory as a

file, that is, something like >a>b.directory, as opposed to >a>b.

This presentation type can be useful if you need to distinguish unequivocally be-

tween directory pathname presentations and file pathname presentations. For ex-

ample, if you can arrange for the availability to your users of some fs:directory-

pathname presentations, then mouse handlers performing directory-related func-

tions can be defined that do not have to test whether a given pathname presenta-

tion is a directory pathname, or extract directory objects from pathname presen-

tations.

fs:directory-pathname is a subtype of the pathname presentation type, from

which it inherits a printer, parser, and type history. It also takes the same key-

word arguments, as follows:

:default-version Presentation option specifying the default version num-

ber of an accepted file. The default value for this option is :newest,

the newest file version.

:default-type Presentation option specifying the default file type, for

example, "lisp", "text", "data", and so on. The default value for this

option is nil.

:default-name Presentation option specifying the default file name.

The default value for this option is nil.

Page 1450

:dont-merge-default Presentationoptionspecifying whethertoprevent

merging of a partially specified pathname entered by the user

against the default pathname. The default value for this option is

nil, meaning that merging occurs when appropriate; that is, parts of

the pathname not entered by the user are supplied from the default.

Suppression of merging against the default and providing a differ-

ent default (against which merging may or may not be enabled) are

different issues. To deal with the latter, use the :default option to

accept. (See the function accept.) An example follows:

(accept ’((pathname) :default-type nil)

:default (send (fs:default-pathname)

 :new-pathname :type nil

 :version :newest))�

:direction

Presentation option specifying either :read (the default) or :write.

The value supplied is passed through to fs:complete-pathname and

affects completion behavior. (See the function fs:complete-

pathname.)

Use the default (:read) if the user is likely to enter the pathname

of an already existing file when prompted by accept, :write other-

wise.�

:format Presentation option specifying the output format of the pathname.

There are four choices:

:normal For example, S:>mb>dw-pgms>fancy-windows.lisp. This is

the default format.

:directory For example, >mb>dw-pgms>. The host, file name, and

file type are not displayed.

:dired For example, fancy-windows.lisp. Only the file name and

type are displayed.

:editor For example, fancy-windows.lisp >mb>dw-pgms S. The dis-

play format is that used by Zmacs.�

For examples illustrating the use of these keywords in pathname presentations, see

the presentation type pathname.

fs:directory-pathname is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� dw:dynamic-window Presentation Type

Page 1451

Type for accepting or presenting dynamic window objects.

Examples:

 (accept ’((dw:dynamic-window)))

You are being asked to enter a dynamic window.

�

These are the possible dynamic windows:

 Dynamic ... (19)

 Terminal 1

�

Enter a dynamic window [default Terminal 1]: Terminal 1

#<NVT-WINDOW Terminal 1 700372 deexposed>

((DW:DYNAMIC-WINDOW))

(present (tv:make-window ’dw:dynamic-window)

 ’((dw:dynamic-window)))Dynamic Window 2

#<DW::DISPLAYED-PRESENTATION 650404277>�

The dw:dynamic-window presentation type supports a type history.

dw:dynamic-window is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� sys:expression &rest options Presentation Type

Type for accepting or presenting expressions. An expression is the readable, print-

ed representation of a Lisp object. The expression is not evaluated.

options Presentation options controlling the generation of the printed rep-

resentation. They are listed in the following table, along with the

special variables providing each option with its default value. (Note

that these options are the same as those available for the Common

Lisp function write.)

Page 1452

Option Special Variable

:escape *print-escape*

:pretty *print-pretty*

:abbreviate-quote *print-abbreviate-quote*

:radix *print-radix*

:base *print-base*

:circle *print-circle*

:level *print-level*

:length *print-length*

:case *print-case*

:gensym *print-gensym*

:array *print-array*

:readably *print-readably*

:array-length *print-array-length*

:string-length *print-string-length*

:bit-vector-length *print-bit-vector-length*

:structure-contents *print-structure-contents*

�

The special variables are documented together in another section:

See the section "Output Functions". Consult the documentation for

the individual variables to find out what they do and what values

they can have. These values are the same that can be supplied with

the corresponding presentation options to sys:expression.�

Examples:

(accept ’((sys:expression))) ==>

Enter the representation of any Lisp object

[default (ACCEPT ’((SYS:EXPRESSION)))]: setq

SETQ

SYS:EXPRESSION

�

(accept ’((sys:expression))) ==>

Enter the representation of any Lisp object

[default (ACCEPT ’((SYS:EXPRESSION)))]: (+ 33 900)

(+ 33 900)

SYS:EXPRESSION

�

(present (net:find-object-named :network "DNA")

’((sys:expression))) ==>#<DNA-NETWORK DNA 13702517>

#<DISPLAYED-PRESENTATION 275045641>

Page 1453

�

(accept ’((sys:expression))) ==>

Enter the representation of any Lisp object

[default (ACCEPT ’((SYS:EXPRESSION)))]:

’#<DISPLAYED-PRESENTATION 275045641>

’#<DISPLAYED-PRESENTATION 275045641>

SYS:FORM

�

The sys:expression type occupies a unique position in the data type hierarchy,

namely, the highest spot but for one, that occupied by t. This means that, with a

few exceptions, sys:expression is supertype to all other Symbolics Common Lisp

types.

For all data types not explicitly defined as presentation types (via define-

presentation-type), sys:expression serves as the access point to the presentation

system. It provides these types with a parser, printer, and type history. In fact, it

provides one or more of these functions to many defined presentation types as

well.

sys:expression’s history includes all previously accepted Lisp objects. This is why,

in the accept examples above, the default is always (ACCEPT ’((SYS:EXPRESSION)));

this expression is the most recently accepted one.

When accessed by other types, sys:expression’s type history is pruned to objects of

the accessing type. For example, number and types descended from number do

not maintain their own type histories. When a previously accepted value is needed

to provide, say, a default value in an accept of an integer, the expression history

is pruned to integer objects of which the most recently accepted is used as the de-

fault.

For an overview of presentation types and related facilities: See the section "Using

Presentation Types".

� sys:flavor-name Presentation Type

Type for accepting or presenting symbols that name flavors.

Examples:

(accept ’((sys:flavor-name))) ==>

Enter a flavor name: DW:PROGRAM-FRAME

DW:PROGRAM-FRAME

((SYS:FLAVOR-NAME))

�

(present ’dw:margin-mixin ’((sys:flavor-name))) ==>DW:MARGIN-MIXIN

#<DISPLAYED-PRESENTATION 275147735>

Page 1454

�

(accept ’((sys:flavor-name))) ==>

Enter a flavor name [default DW:PROGRAM-FRAME]: DW:MARGIN-MIXIN

DW:MARGIN-MIXIN

((SYS:FLAVOR-NAME))

�

The sys:flavor-name presentation type supports a type history and completion.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� sys:font Presentation Type

Type for accepting or presenting loaded fonts.

Examples:

(accept ’((sys:font))) ==>

Enter a loaded font: HELP ==>

You are being asked to enter a loaded font.

�

There are 87 possible loaded fonts. Do you want to see them all?

(Y or N) Yes.

These are the possible loaded fonts:

 5X5 DUTCH20B HL14I MEDFNTBI TR12BI

 BIGFNT DUTCH20BI HL18 MEDFNTI TR12I

 BIGFNTB DUTCH20I HL18B MOUSE TR14

 BIGFNTBI EINY7 HL18BI NARROW TR14B

 BIGFNTI EUREX12I HL18I SWISS12-CCAPS TR14I

 BOXFONT EUREX24I HL8 SWISS12B-CCAPS TR18

 CPTFONT HIPPO12 HL8B SWISS20 TR18B

 CPTFONTB HL10 HL8BI SWISS20B TR8

 CPTFONTBI HL10B HL8I SWISS20BI TR8B

 CPTFONTC HL10BI JESS13 SWISS20I TR8BI

 CPTFONTCB HL10I JESS13B SYMBOL12 TR8I

 CPTFONTCC HL12 JESS13I TINY TVFONT

 CPTFONTI HL12B JESS14 TR10 TVFONTB

 DUTCH14 HL12BI JESS14B TR10B TVFONTBI

 DUTCH14B HL12I JESS14I TR10BI TVFONTI

 DUTCH14BI HL14 MATH12 TR10I

 DUTCH14I HL14B MEDFNT TR12

 DUTCH20 HL14BI MEDFNTB TR12B

�

Enter a loaded font: DUTCH20

#

SYS:FONT

Page 1455

�

(accept ’((sys:font))) ==>

Enter a loaded font [default DUTCH20]: SWISS20

#

((SYS:FONT))

�

(present (si:get-font si:*b&w-screen* si:*standard-character-set*

’(:jess :roman :normal))) ==>JESS13

#<DISPLAYED-PRESENTATION 440305757>

�

The sys:font presentation type supports a type history.

sys:font is one of a number of types defined in sys:dynamic-windows;standard-

presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the section "Using

Presentation Types".

� sys:form &key (environment si:*read-form-environment* environment-p) (expres-

sion-reader nil) (expression-printer nil) (edit-trivial-errors-p zl:*read-form-edit-

trivial-errors-p*) Presentation Type

Type for accepting or presenting Lisp forms.

:environment Presentation option specifying the lexical environment

of an input form. (For more on environments: See the section "Lexi-

cal Environment Objects and Arguments".)

� :edit-trivial-errors Specifies, when t, that two kinds of errors should be

checked for: If a symbol is read, check whether the symbol is

bound. If a list whose first element is a symbol is read, check

whether the symbol has a function definition. If an unbound symbol

or undefined function is encountered, the parser offers to use a

lookalike symbol in another package or calls zl:parse-ferror to let

the user correct the input. The default is t.

Possible values of the keywords :expression-reader and :expression-printer are

functions for reading and writing expressions in languages other than Lisp, such

as Pascal, Fortran, or C. These are for use by the debugger.

(accept ’((sys:form))) ==>

Enter A Lisp expression to be evaluated

[default (ACCEPT ’((SYS:FORM)))]: (symbolp t)

(SYMBOLP T)

((SYS:FORM))

�

(present ’(symbolp t) ’((sys:form))) ==>(SYMBOLP T)

#<DISPLAYED-PRESENTATION 275141170>

Page 1456

�

Command: (SYMBOLP T)

T

�

Presented forms are evaluable. In the above examples, run in the command-or-form

context, the (SYMBOLP T) form was entered to the Command: prompt by clicking

left on the output of the preceding present function. This form was immediately

evaluated. Contrast this behavior with that of sys:expression presentations; pre-

sented forms are quoted and not evaluable directly.

The sys:form presentation type inherits its printer and type history from

sys:expression.

For an overview of presentation types and related facilities: See the section "Using

Presentation Types".

� sys:function-spec (&key defined-p) &key (partial-completers ’(#/space))

Presentation Type

Type for accepting or presenting valid function specs. (For information on function

specs, see the section "Function Specs".) Note that a valid function spec is any-

thing that can be parsed to record-source-file-name. It is not restricted to those

objects actually defined as functions, except in the :defined-p t case.

:defined-p Data option restricting function specs to those that are

defined; possible values are t, nil, or :any, which last means any

kind of definition. The default is nil.

:partial-completers Presentation option specifying a list of characters to be

used as completers of function-spec tokens during input; the default

list is (#/space).

Examples:

(present ’+ ’((sys:function-spec))) ==>+

#<DISPLAYED-PRESENTATION 275374421>

�

(accept ’((sys:function-spec))) ==>

Enter a valid function spec: +

+

((SYS:FUNCTION-SPEC))

�

(accept ’((sys:function-spec))) ==>

Enter a valid function spec [default +]: (:PROPERTY alpha bravo)

(:PROPERTY ALPHA BRAVO)

((SYS:FUNCTION-SPEC))

Page 1457

�

(accept ’((sys:function-spec :defined-p t))) ==>

Enter a defined function spec: (:PROPERTY alpha bravo)

(:PROPERTY ALPHA BRAVO) is not a defined function spec.

Type RUBOUT to correct your input. [Abort]

�

(defun (:property alpha bravo) () 1) ==>

(:PROPERTY ALPHA BRAVO)

�

(accept ’((sys:function-spec :defined-p t))) ==>

Enter a defined function spec

[default (:PROPERTY ALPHA BRAVO)]: (:PROPERTY ALPHA BRAVO)

(:PROPERTY ALPHA BRAVO)

((SYS:FUNCTION-SPEC :DEFINED-P T))

�

The sys:function-spec presentation type supports a type history. For an overview

of presentation types and related facilities, see the section "Using Presentation

Types".

� sys:generic-function-name &key show-compatible-message Presentation Type

Type for accepting or presenting function specs for generic functions.

:show-compatible-message Presentation option specifying whether to

also print, if defined, the name of the compatible message for the

generic function. (Compatible messages are specified by an option to

defgeneric, see the section "Defining a Compatible Message for a

Generic Function".)

Examples:

(accept ’((sys:generic-function-name))) ==>

Enter a generic function name: HELP

You are being asked to enter a generic function name.

�

There are 11630 possible generic function names.

Do you want to see them all? (Y or N) No. [Thanks, anyway.]

�

Enter a generic function name: DW:DO-REDISPLAY

DW:DO-REDISPLAY

((SYS:GENERIC-FUNCTION-NAME))

�

(present ’sys:print-self ’((sys:generic-function-name))) ==>

SYS:PRINT-SELF

#<DISPLAYED-PRESENTATION 275755254>

Page 1458

�

(present ’sys:print-self ’((sys:generic-function-name)

:show-compatible-message t)) ==>SYS:PRINT-SELF (:PRINT-SELF)

#<DISPLAYED-PRESENTATION 275755527>

�

The sys:generic-function-name presentation type supports a type history and

completion.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� net:host Presentation Type

Type for accepting or presenting a network host.

Examples:

(accept ’((net:host))) ==>

Enter the name of a host: Harpagornis

#<LISPM-HOST HARPAGORNIS 53344734>

((NET:HOST))

�

(accept ’((net:host))) ==>

Enter the name of a host [default HARPAGORNIS]: laurent

#<MSDOS-HOST YVES-ST-LAURENT 533601167>

((NET:HOST))

�

(present (si:parse-host "owl") ’((net:host))) ==>OWL

#<DISPLAYED-PRESENTATION 275435731>

�

(accept ’((net:host))) ==>

Enter the name of a host [default YVES-ST-LAURENT]: OWL

#<LISPM-HOST OWL 13707365>

((NET:HOST))

�

The net:host presentation type has its own parser and type history; it inherits its

printer via net:object, to which it is subtype, from sys:expression.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� instance (&optional (flavor ’*)) Presentation Type

Type for accepting or presenting flavor instances.

flavor Data argument specifying what flavor this is an instance of; the de-

fault leaves the flavor unspecified.�

Examples:

Page 1459

(present (tv:make-window ’dw:dynamic-window) ’instance) ==>

Dynamic Window 1

#<DW::DISPLAYED-PRESENTATION #<DYNAMIC-WI... INSTANCE 420070634>

�

(accept ’((instance))) ==>

Enter the Lisp representation of an instance [default Dynamic Window 1]:

#<DYNAMIC-WINDOW Dynamic Window 1 3132740 deactivated>

((INSTANCE))

�

The instance presentation type inherits its printer and parser functions as well

as a type history from the sys:expression presentation type. Thus, in the first

accept function above, the prompt says to "Enter the representation of any Lisp

object". We override this by providing our own prompt in the second call to

accept.

In the first accept form, the entered Dynamic Window 1 is in italics because it

was entered via a mouse click on the presentation created by the present function.

If we had tried to type in "dynamic window 1", accept would have returned the ob-

ject DYNAMIC when the first space character was typed.

instance is not a presentation type that you are likely to need for writing end-user

interfaces to applications. A number of Common Lisp presentation types are in this

category, for example, structure and hash-table. Like instance, all inherit their

parser, printer, and type history from sys:expression. And, as in the case of

instance, when sys:expression’s type history is accessed to provide, for example, a

default value in an accept function, the history is "pruned" to objects only of the

sought-after type. Thus, in the second accept function above, not any Lisp object

is offered as a default, but an instance object.

All flavors are subtype to the instance presentation type. Similarly, all structures

are subtype to the structure type. The two types are thereby important for links

they provide to the presentation-type system for flavors and structures, respective-

ly.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� integer (&optional (range-low ’*) (range-high ’*)) &key (base 10) Presentation Type

Type for accepting or presenting integers.

range-low Data argument specifying a lower limit for integer objects. The de-

fault is no lower limit. As in Common Lisp type specifications, *

stands for an unspecified subsidiary item.

range-high Data argument specifying an upper limit for integer

objects. The default is no upper limit. As in Common Lisp type

specifications, * stands for an unspecified subsidiary item.�

Page 1460

:base Presentation option specifying the base used for integer presenta-

tions; the default is 10.

Examples:

(accept ’((integer 0 100))) ==>

Enter an integer greater than or equal to 0

and less than or equal to 100: 0

0

((INTEGER 0 100))

�

(accept ’((integer (0) (100)))) ==>

Enter an integer greater than 0 and less than 100: 1

1

((INTEGER (0) (100)))

�

(present 10 ’((integer) :base 8)) ==>12

#<DISPLAYED-PRESENTATION 445411244>

�

(accept ’((integer 0 100)))

Enter an integer greater than or equal to 0

and less than or equal to 100: 12

10

((INTEGER) :BASE 8)

�

(accept ’((integer 0 100) :base 8)) ==>

Enter an octal integer greater than or equal to 0

and less than or equal to 144: 12

10

((INTEGER) :BASE 8)

�

(present 50 ’((integer 0 100))) ==>50

#<DISPLAYED-PRESENTATION 445430232>

�

(accept ’((integer)))

Enter an integer [default 8]: 50

50

((INTEGER 0 100))

�

(accept ’((integer))) ==>

Enter an integer [default 5]: 50

50

((INTEGER 0 100))

�

When specifying range limits, if the limits are provided without enclosing paren-

theses, they are inclusive; with parentheses, exclusive. Contrast the first two

present functions.

Page 1461

The 12 input to the second and third accept functions above was entered by click-

ing on the output of the first present function. Note that, regardless of the base

used for the integer presentation, the object returned remains the same.

Note also in the second and third accepts that the data type returned is the one

entered, an integer, not a range-restricted integer, even though the functions re-

stricted the range of acceptable integers. Contrast this with the final

present-accept pair: the object presented as a range-restricted integer is entered

to a non-restricted integer accepting function; the object’s data type (subtype, ac-

tually) is retained.

Finally, note that the integer presentation type supports a type history (inherited

from sys:expression), the source of the default value offered in the last accept

function, but that range-restricted integer types do not.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� inverted-boolean Presentation Type

Type for accepting or presenting a yes-or-no answer, where "yes" is nil and "no" is

t. Use it when the sense of the internal action is inverted from the user sense.

Examples:

(accept ’((inverted-boolean))) ==>

Enter Yes or No: No

T

((INVERTED-BOOLEAN))

�

(present t ’((inverted-boolean))) ==>No

#<DISPLAYED-PRESENTATION 444312267>

�

A type history is not available for the inverted-boolean presentation type.

inverted-boolean is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

See also the boolean presentation type.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� keyword Presentation Type

Type for accepting or presenting keywords.

Examples:

Page 1462

(accept ’((keyword))) ==>

Enter a keyword: orientation

:ORIENTATION

((KEYWORD))

�

(accept ’((keyword))) ==>

Enter a keyword [default ORIENTATION]: :sojac

:|:SOJAC|

((KEYWORD))

�

(accept ’((keyword)))

Enter a keyword: 1492

:|1492|

((KEYWORD))

�

(present :orientation ’((keyword))) ==>ORIENTATION

#<DISPLAYED-PRESENTATION 454276732>

�

keyword inherits its printer and type history from the sys:expression presentation

type.

keyword is one of a number of types defined in sys:dynamic-windows;standard-

presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� net:local-host Presentation Type

Type for accepting or presenting the local host. The local host is accepted and pre-

sented as "Local". This is useful to use with or and net:host to obtain output of

host objects with the special syntax for a local host.

Examples:

(accept ’((si:local-host))) ==>

Enter a local host: Local

#<LISPM-HOST OYSTERCATCHER 13702373>

((SI:LOCAL-HOST))

�

(present net:*local-host* ’((si:local-host))) ==>Local

#<DISPLAYED-PRESENTATION 275456200>

�

(accept ’((si:local-host))) ==>

Enter a local host [default Local]: Local

#<LISPM-HOST OYSTERCATCHER 13702373>

((SI:LOCAL-HOST))

�

The net:local-host presentation type is subtype to the net:host type, but has its

Page 1463

own parser and printer. It inherits a type history from the latter, but prunes it to

occurrences of "Local".

net:local-host is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� neti:local-network Presentation Type

Type for accepting or presenting local network objects. (A local network is one to

which the current machine is connected.)

Examples:

(accept ’((neti:local-network))) ==>

Enter a local network: HELP

You are being asked to enter a local network.

�

These are the possible local networks:

 CHAOS

 FBAND

 INTERNET

�

Enter a local network: INTERNET

#<INTERNET-NETWORK INTERNET 13700021>

((NETI:LOCAL-NETWORK))

�

(present (car neti:*local-networks*)

 ’((neti:local-network))) ==>FBAND

#<DISPLAYED-PRESENTATION 275517001>

�

(accept ’((neti:local-network)))

Enter a local network [default INTERNET]: FBAND

#<FBAND-NETWORK FBAND 261216753>

((NETI:LOCAL-NETWORK))

�

The neti:local-network presentation type supports its own type history.

neti:local-network is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� member (&rest elements) Presentation Type

Type for accepting or presenting one of a series of objects. The printed representa-

tions of the objects must be unique, that is, no two representations can be string-

equal.

Page 1464

elements The series of objects. These objects are data arguments for this pre-

sentation type.�

Examples:

(accept ’((member New York Stock Exchange))) ==>

Enter New, York, Stock, or Exchange: York

YORK

((MEMBER NEW YORK STOCK EXCHANGE))

�

(accept ‘((member ,(pathname "y:>pgm>ui-1.lisp")

 ,(pathname "y:>pgm>ui-2.lisp")

 ,(pathname "y:>pgm>ui-3.lisp")))) ==>

Enter Y:>pgm>ui-1.lisp, Y:>pgm>ui-2.lisp,

or Y:>pgm>ui-3.lisp: Y:>pgm>ui-2.lisp

#P"Y:>pgm>ui-2.lisp"

((MEMBER #P"Y:>pgm>ui-1.lisp" #P"Y:>pgm>ui-2.lisp"

#P"Y:>pgm>ui-3.lisp"))

�

Because the prompt generated by accept for input of member objects can some-

times be awkward, you may want to use the meta-presentation argument

:description to change the prompt. (See the section "The Presentation Type Sys-

tem: an Overview".)

The member presentation type works differently from the member function in

how it determines group membership. The presentation type merely checks to see

if the printed representation of an object is the same as one of its elements. The

function bases membership decisions on eql.

There is no type history for the member presentation type.

The dw:member-sequence presentation type is similar to member, except that it

takes a single argument instead of a series of arguments. See the presentation

type dw:member-sequence.

For an overview of presentation types and related facilities, see the section "Pre-

sentation Substrate Facilities".

� dw:member-sequence (sequence) Presentation Type

Type for accepting or presenting one of a series of objects. The printed representa-

tions of the objects must be unique, that is, no two representations can be string-

equal.

sequence Data argument specifying a sequence containing the objects.�

Examples:

Page 1465

(accept ’((dw:member-sequence

 (Kierkegaard Heidegger Buber Barth)))) ==>

Enter Kierkegaard, Heidegger, Buber, or Barth: Heidegger

HEIDEGGER

((DW:MEMBER-SEQUENCE (KIERKEGAARD HEIDEGGER BUBAR BARTH)))

�

(setq adenosine-list ’("AMP" "ADP" "ATP"))

("AMP" "ADP" "ATP")

�

(accept ‘((dw:member-sequence ,adenosine-list)))

Enter AMP, ADP, or ATP: ATP

"ATP"

((DW:MEMBER-SEQUENCE ("AMP" "ADP" "ATP")))

�

Because the prompt generated by accept for input of dw:member-sequence objects

can sometimes be awkward, you may want to use the meta-presentation argument

:description to change it. (See the section "The Presentation Type System: an

Overview".)

dw:member-sequence is similar to the member presentation type, except that it

takes a single argument instead of a series of arguments. See the presentation

type member.

The dw:member-sequence presentation type does not support a type history.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� neti:namespace Presentation Type

Type for accepting or presenting namespace objects.

Examples:

(present net:*namespace* ’((neti:namespace))) ==>SCRC

#<DISPLAYED-PRESENTATION 275467554>

�

(accept ’((neti:namespace)))

Enter a namespace: SCRC

#<NAMESPACE SCRC 13700207>

((NETI:NAMESPACE))

�

(accept ’((neti:namespace)))

Enter a namespace [default SCRC]: SCRC

#<NAMESPACE SCRC 13700207>

((NETI:NAMESPACE))

�

Through flavor inheritance, the neti:namespace presentation type is subtype to

the net:object type, from which it inherits a type history. The history inherited in-

cludes all accepted objects of the net:object type; that is, no pruning of the histo-

ry occurs.

Page 1466

For presentations of namespace classes, as opposed to the namespace objects

themselves, use the net:namespace-class presentation type.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� net:namespace-class Presentation Type

Type for accepting or presenting namespace classes, of which there are currently

seven:

:file-system

:user

:printer

:network

:host

:site

:namespace �

Examples:

(accept ’((net:namespace-class))) ==>

Enter a namespace class: printer

:PRINTER

((NET:NAMESPACE-CLASS))

�

(accept ’((net:namespace-class))) ==>

Enter a namespace class: Namespace

:NAMESPACE

((NET:NAMESPACE-CLASS))

�

(present :site ’((net:namespace-class))) ==>Site

#<DISPLAYED-PRESENTATION 275427546>

�

The net:namespace-class presentation type is based on the dw:member-sequence

type. Neither supports a type history.

For presentations of namespace objects, as opposed to namespace classes, use the

net:namespace presentation type.

net:namespace-class is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� net:network Presentation Type

Type for accepting or presenting network objects.

Examples:

Page 1467

(present (net:find-object-named

 :network "DNA") ’((net:network))) ==>DNA

#<DISPLAYED-PRESENTATION 275510033>

�

(accept ’((net:network))) ==>

Enter a network: DNA

#<DNA-NETWORK DNA 13702517>

((NET:NETWORK))

�

Through flavor inheritance, the net:network presentation type is subtype to the

net:object type, from which it inherits a type history. The history inherited in-

cludes all accepted objects of the net:object type; that is, no pruning of the histo-

ry occurs.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� dw:no-type Presentation Type

Bogus presentation type for use with mouse handlers. dw:no-type is used to en-

sure that handlers intended to be active only over blank areas of a window are not

active over presentations. See the section ":blank-area Option to Mouse Handlers".

For an overview of dw:no-type and related facilities, see the section "Using Pre-

sentation Types".

� not (inverted-type) Presentation Type

Type for modifying another presentation type. There is no parser or printer for

this type; it can only be used as part of a compound type specifically, only as

part of an and presentation type.

inverted-type Data argument specifying the presentation type to

qualify.�

There is no type history for the not presentation type. Example:

(accept ’((and number ((not integer)))))

For an overview of presentation types and related facilities, see the section "Pre-

sentation Substrate Facilities".

� null Presentation Type

Type for accepting or presenting a null object (nil). The null type is necessary be-

cause no parser or printer can be defined for nil.

Null objects are presented as "None". They can be accepted by pressing RETURN to

the accept function prompt, or clicking on a previously presented "None".

Examples:

Page 1468

(present nil ’((null))) ==>None

#<DISPLAYED-PRESENTATION 454227454>

�

(present nil) ==>None

#<DISPLAYED-PRESENTATION 454227707>

�

(accept ’((null))) ==>

Enter a null value: <RETURN>

NIL

((NULL))

�

(accept ’((null))) ==>

Enter a null value: None

NIL

NULL

�

The most common use of null is as part of an or compound presentation type. For

such a combination, use the null-or-type presentation type.

For an overview of presentation types and related facilities, see the section "Pre-

sentation Substrate Facilities".

� null-or-type (presentation-type) Presentation Type

Compound type for accepting or presenting either nil or an object of a specified

presentation type. nil is accepted or presented as "None".

presentation-type Data argument specifying a presentation type.�

Examples:

(accept ’((null-or-type number))) ==>

Enter a null or type: 2.2

2.2

((NULL-OR-TYPE NUMBER))

�

(accept ’((null-or-type number))

 :prompt "Enter a number or \"None\"") ==>

Enter a number or "None" [default 2.2]: None

NIL

((NULL-OR-TYPE NUMBER))

�

(present nil ’((null-or-type number))) ==>None

#<DISPLAYED-PRESENTATION 444713264>

�

If the type specified in the null-or-type presentation type supports a type history,

this history is used. This is the source of the default value shown in the second

call to accept above.

Page 1469

null-or-type is one of a number of types defined in sys:dynamic-windows;standard-

presentation-types.lisp. See that file for the source code.

� number (&optional range-low range-high) &key (base 10) Presentation Type

Type for accepting or presenting numbers.

range-low Data argument specifying a lower limit for number objects. The de-

fault is no lower limit.

range-high Data argument specifying an upper limit for number

objects. The default is no upper limit.�

:base Presentation option specifying the base used for integer presenta-

tions; the default is 10.

Examples:

(accept ’number)

Enter a number: 23

23

(NUMBER)

�

(accept ’(number :base 10)) ==>

Enter a decimal number: 12

12

(NUMBER :BASE 10)

�

(accept ’((number 0 10) :base 2)) ==>

Enter a binary number greater than or equal to 0

and less than or equal to 1010: 111

7

((NUMBER 0 10) :BASE 2)

�

(accept ’((number 0 10) :base 2)) ==>

Enter a binary number greater than or equal to 0

and less than or equal to 1010: 2

2

((NUMBER 0 10) :BASE 2)

�

When specifying range limits, if the limits are provided without enclosing paren-

theses, they are inclusive; with parentheses, exclusive.

Unlike the integer presentation type, number does not check input for violation of

the :base specification. Thus, in the final accept function above, a 2 is entered

and returned even though binary numbers are sought.

number is supertype to all other numeric presentation types. See the section

"Types of Numbers". It provides the family with its printer and parser functions.

As with other Common Lisp types, number is subtype to sys:expression, from

which it inherits a type history.

Page 1470

For an overview of presentation types and related facilities, see the section "Pre-

sentation Substrate Facilities".

� net:object Presentation Type

Type for accepting or presenting network objects.

Examples:

(accept ’((net:object))) ==>

Enter a namespace object: (Class) HELP==>

You are being asked to enter a namespace object.

�

These are the possible namespace classes:

 File-System Printer

 Host Site

 Namespace User

 Network

�

Enter a namespace object: User JO

#<USER JO 13731243>

((NET:OBJECT))

�

(accept ’((net:object))) ==>

Enter a namespace object [default JO]: Host OYSTERCATCHER

#<LISPM-HOST OYSTERCATCHER 13702373>

((NET:OBJECT))

�

(present (net:find-object-named :network "chaos")

’((net:object))) ==>CHAOS

#<DISPLAYED-PRESENTATION 275037261>

�

(accept ’((net:object))) ==>

Enter a namespace object [default OYSTERCATCHER]: CHAOS

#<CHAOS-NETWORK CHAOS 13700033>

CHAOS:CHAOS-NETWORK

�

When accepting net:object input, the user is first prompted for the class of the

object. The possible classes, from File-System to User, are listed in the help dis-

play shown in the first example above. After entering the class of net object, the

user should type a space and then the name of the object itself.

The net:object presentation type is built on a flavor of the same name. It inherits

its printer and type history from the sys:expression presentation type. It is, in

turn, supertype to several other network-related types:

net:host

net:local-host

neti:namespace

Page 1471

net:network

neti:site

net:user�

When you wish handle a particular class of network object, as opposed to any ob-

ject, one of the above presentation types might be more suitable than net:object.

net:object is one of a number of types defined in sys:dynamic-windows;standard-

presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� or (&rest types) Presentation Type

Compound type for accepting objects as one of two or more possible presentation

types. (Presenting objects as or types is not useful.)

types Data arguments specifying the possible presentation types.

Examples:

(present ’some-symbol) ==>SOME-SYMBOL

#<DISPLAYED-PRESENTATION 274336643>

�

(present "some-string") ==>some-string

#<DISPLAYED-PRESENTATION 274337201>

�

(accept ’((or symbol string))) ==>

Enter a symbol or a string: SOME-SYMBOL

SOME-SYMBOL

SYMBOL

�

(accept ’((or symbol string))) ==>

Enter a symbol or a string [default SOME-SYMBOL]: some-string

"some-string"

STRING

�

Some tips on the use of or: If you give it to accept directly or use it in a

cp:define-command, remember to specify a type for the default using the

:default-type keyword. or is useful for automatically writing token rescanning

multiple syntax parsers for your own presentation type. Use it in an :expander.

See the section ":expander Option to define-presentation-type". The types null-or-

type, token-or-type, and type-or-string are provided for the common cases.

The or presentation type has access to the sys:expression type history. The value

provided as a default in an accept of an or type is the most recently accepted ob-

ject whose presentation type is one of the possible types.

For an overview of presentation types and related facilities, see the section "Pre-

sentation Substrate Facilities".

Page 1472

� dw:out-of-band-character (&rest chars) Presentation Type

Type for accepting characters that would normally be interpreted as input editor

commands, such as the shifted characters c-B or c-E.

chars Data arguments specifying the shifted characters.�

Examples:

(accept ’((dw:out-of-band-character #\c-F #\m-Scroll #\m-C))) ==>

Enter one of the characters c-F, m-SCROLL, or m-sh-C: m-SCROLL

#\m-Scroll

((DW:OUT-OF-BAND-CHARACTER #\c-F #\m-Scroll #\m-C))

�

(accept ’((dw:out-of-band-character #\c-F #\m-SCROLL #\m-C))) ==>

Enter one of the characters c-F, m-SCROLL, or m-sh-C

[default Meta-Scroll]: c-F

#\c-F

((DW:OUT-OF-BAND-CHARACTER #\c-F #\m-Scroll #\m-C))

�

dw:out-of-band-character is subtype to the character presentation type, from

which it inherits its printer and type history. The type history is pruned to include

only previously accepted out-of-band characters.

To accept or present ordinary characters, use character. See the presentation type

character.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� package Presentation Type

Type for accepting or presenting packages.

Examples:

(present (find-package ’dynamic-windows) ’((package))) ==>

DYNAMIC-WINDOWS

#<DISPLAYED-PRESENTATION 274353464>

�

(accept ’((package))) ==>

Enter a package: DYNAMIC-WINDOWS

#<Package DYNAMIC-WINDOWS 45652740>

((PACKAGE))

�

(accept ’((package))) ==>

Enter a package [default DYNAMIC-WINDOWS]: SCL

#<Package SYMBOLICS-COMMON-LISP 46405507>

((PACKAGE))

�

Page 1473

The package presentation type supports a type history.

package is one of a number of types defined in sys:dynamic-windows;standard-

presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Pre-

sentation Substrate Facilities".

� pathname &key (default-version :newest) (default-type nil) (default-name nil) dont-

merge-default (direction :read) (format :normal) Presentation Type

Type for accepting or presenting pathnames.

:default-version Presentation option specifying the default version num-

ber of an accepted file. The default value for this option is :newest,

the newest file version.

:default-type Presentation option specifying the default file type, for

example, "lisp", "text", "data", and so on. The default value for this

option is nil.

:default-name Presentation option specifying the default file name.

The default value for this option is nil.

:dont-merge-default Presentationoptionspecifying whethertoprevent

merging of a partially specified pathname entered by the user

against the default pathname. The default value for this option is

nil, meaning that merging occurs when appropriate; that is, parts of

the pathname not entered by the user are supplied from the default.

Suppression of merging against the default and providing a differ-

ent default (against which merging may or may not be enabled) are

different issues. To deal with the latter, use the :default option to

accept. (See the function accept.) An example follows:

(accept ’((pathname) :default-type nil)

:default (send (fs:default-pathname)

 :new-pathname :type nil

 :version :newest))�

:direction

Presentation option specifying either :read (the default) or :write.

The value supplied is passed through to fs:complete-pathname and

affects completion behavior. (See the function fs:complete-

pathname.)

Use the default (:read) if the user is likely to enter the pathname

of an already existing file when prompted by accept, :write other-

wise.�

Page 1474

:format Presentation option specifying the output format of the pathname.

There are four choices:

:normal For example, S:>mb>dw-pgms>fancy-windows.lisp. This is

the default format.

:directory For example, >mb>dw-pgms>. The host, file name, and

file type are not displayed.

:dired For example, fancy-windows.lisp. Only the file name and

type are displayed.

:editor For example, fancy-windows.lisp >mb>dw-pgms S. The dis-

play format is that used by Zmacs.�

Examples:

(present #p"y:>yosemite-s>gold.text") ==>Y:>yosemite-s>gold.text

#<DISPLAYED-PRESENTATION 274370245>

�

(present #p"y:>yosemite-s>gold.text" ’((pathname)

:format :editor)) ==>

gold.text >yosemite-s Y:

#<DISPLAYED-PRESENTATION 274370523>

�

(accept ’((pathname))) ==>

Enter the pathname of a file: gold.text >yosemite-s Y:

#P"Y:>yosemite-s>gold.text"

((PATHNAME) :FORMAT :EDITOR)

�

(accept ’((pathname) :default-version 1)) ==>

Enter the pathname of a file

[default Y:>yosemite-s>gold.text]: silver

#P"Y:>yosemite-s>silver.text.1"

FS:LMFS-PATHNAME

�

(accept ’((pathname) :default-type "data"

 :default-name "the-rabbit")) ==>

Enter the pathname of a file

[default Y:>yosemite-s>silver.text.1]: Y:>yosemite-s>

#P"Y:>yosemite-s>the-rabbit.data.newest"

FS:LMFS-PATHNAME

�

(accept ’((pathname) :dont-merge-default t)) ==>

Enter the pathname of a file

[default Y:>yosemite-s>the-rabbit.data]: other-varmints

#P"Y:other-varmints"

FS:LMFS-PATHNAME

Page 1475

�

(accept ’((pathname))) ==>

Enter the pathname of a file

[default Y:>other-varmints]: VIXEN:/b-bunny/y-s.data

#P"VIXEN:/b-bunny/y-s.data"

FS:UNIX42-PATHNAME

�

The pathname presentation type supports a type history.

pathname is one of a number of types defined in sys:dynamic-windows;standard-

presentation-types.lisp. See that file for the source code.

Two subtypes to pathname are included among the documented predefined presen-

tation types:

• fs:directory-pathname

• fs:wildcard-pathname�

For an overview of presentation types and related facilities, see the section "Pre-

sentation Substrate Facilities".

� sys:printer Presentation Type

Type for accepting or presenting printers, that is, hardcopy output devices.

Examples:

(accept ’((sys:printer)))

Enter a printer [default Symbolics Paradigm]: Symbolics Paradigm

#<LGP2-PRINTER PARADIGM 13701250>

SYS:PRINTER

�

(present (net:find-object-named :printer "Asahi")

 ’((sys:printer))) ==>Asahi Shimbun

#<DISPLAYED-PRESENTATION 275641455>

�

The sys:printer presentation type supports a type history.

sys:printer is one of a number of types defined in sys:dynamic-windows;standard-

presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� neti:protocol-name (&key service) Presentation Type

Type for accepting or presenting names of network protocols.

Examples:

Page 1476

(accept ’((neti:protocol-name))) ==>

Enter a network protocol: Domain-Simple

:DOMAIN-SIMPLE

((NETI:PROTOCOL-NAME))

�

(present :converse ’((neti:protocol-name))) ==>CONVERSE

#<DISPLAYED-PRESENTATION 275603433>

�

(present (car neti:*protocol-list*)

 ’((neti:protocol-name))) ==>MANDELBROT

#<DISPLAYED-PRESENTATION 275607026>

�

There is no type history for the neti:protocol-name presentation type.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� dw:raw-text Presentation Type

Type providing access to the individual characters from which all textual presenta-

tions are constructed. This type is for the exclusive use of mouse handlers, usually

as the from-presentation-type argument. (For more on handlers, see the section

"Mouse Handler Facilities".) You cannot use it to accept or present text or charac-

ters.

The following example is the source code for a translating mouse handler defined

on dw:raw-text, translating it to an internal presentation type, dw::character-

style-family:

(define-presentation-translator

si:characters-character-style-family

(dw:raw-text dw::character-style-family) (bp)

 (when (< (second bp) (string-length (first bp)))

 (let ((char (aref (first bp) (second bp))))

 (si:cs-family (si:char-style char)))))

�

zwei:bp is a presentation type inheriting from dw:raw-text, and used for accessing

text characters in editor buffers.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� satisfies (satisfies-function) Presentation Type

Type for forming compound presentation types using the presentation type and by

specializing an initial type with the argument satisfies-function, a predicate that re-

turns t or nil when applied to the object in question. The satisfies type is used

only as part of an and presentation type. For example,

Page 1477

(accept ’((and character ((satisfies digit-char-p)))

 :description "a digit"))

For an overview of presentation types and related facilities: See the section "Using

Presentation Types".

� sequence (&optional (type ’*)) &key (sequence-delimiter #\,) (echo-space t)

Presentation Type

Type for accepting or presenting one or more objects of a specified presentation

type.

type Presentation type for the objects in the sequence. The specified type

is a data argument to the sequence presentation type.

The default type argument, ’*, results in the use of the t presenta-

tion type. Because t has no parser and uses princ as its printer, not

supplying the type argument when you use the sequence presenta-

tion type does not produce useful results.�

:sequence-delimiter Presentation option specifying the character used to

delimit items in the sequence; the default is the comma character,

#\,.

When accepting objects in an enumerated sequence, the user must

enter the sequence-delimiter character between items.

:echo-space Presentation option specifying whether to echo a space

character after the comma (or other :sequence-delimiter character)

is typed; the default is t.

:element-default objectSpecifies that object is to be used as the default when

doing a recursive accept of the first element of the sequence. This

is different than specifying the default for the sequence, since you

might want the sequence default to be empty, and yet you might

want to specify that if the user decides to type an element, that ele-

ment should be parsed against a particular default. For example:

Page 1478

(accept ’((sequence pathname)) :default ’())

Enter pathnames of files: tennis

 ;completes to "ACME:tennis"

=> (#P"ACME:tennis")

 ((SEQUENCE-ENUMERATED FS:LMFS-PATHNAME))

(accept ’((sequence pathname)

 :element-default #P"S:>Joe>bowling.text")

:default ’())

Enter pathnames of files: golf

 ;completes to "ACME:>Joe>golf.text.newest"

=> (#P"ACME:>Joe>golf.text.newest")

 ((SEQUENCE-ENUMERATED FS:LMFS-PATHNAME))�

Although not a subtype, sequence can be regarded as a specialized version of the

sequence-enumerated presentation type. Instead of specifying a series of presenta-

tion types as in the case of sequence-enumerated, you specify only one type for

the entire series of objects. In fact, when objects are entered individually to an

accept of a sequence, the types of the objects, although identical, are enumerated.

Observe this behavior in the first example below.

Examples:

(accept ’((sequence package))) ==>

Enter one or more packages

[default SYMBOLICS-COMMON-LISP]: SCL, DW, TV, SCT

(#<Package SYMBOLICS-COMMON-LISP 46405507>

#<Package DYNAMIC-WINDOWS 45652740>

#<Package TV 46031453>

#<Package SYSTEM-CONSTRUCTION-TOOL 46366410>)

((SEQUENCE-ENUMERATED PACKAGE PACKAGE PACKAGE PACKAGE))

�

(present ’(0 16 32 64) ’((sequence ((integer) :base 16))))

#<DISPLAYED-PRESENTATION 274631670>

�

(accept ’((integer))) ==>

Enter an integer: 40

64

((INTEGER) :BASE 16)

�

(accept ’((sequence integer))) ==>

Enter one or more integers: 0, 10, 20, 40

(0 16 32 64)

((SEQUENCE ((INTEGER) :BASE 16)))�

Note that when you have presented a sequence of objects, the objects are subse-

quently acceptable as input either as individual objects or as the sequence. This is

shown by the last three examples above. We present a series of integers, and sub-

sequently click on one of them (40) to enter it to an accept or an integer; and

then click on the entire sequence to give it to an accept of and integer sequence.

Page 1479

The syntax for use of presentation type arguments with sequence is shown in the

next example.

 (accept ’((sequence sys:printer) :sequence-delimiter #\;)

The sequence presentation type has access to the type history supported, if any,

by the specified type.

For an overview of presentation types and related facilities: See the section "Using

Presentation Types".

� sequence-enumerated (&rest data-types) &key (sequence-delimiter "") (echo-space t)�

Presentation Type

Compound type for accepting or presenting a sequence of objects, each of a speci-

fied presentation type.

data-types

The presentation types of the objects. These are the data arguments

to the sequence-enumerated presentation type.�

:sequence-delimiter Presentation option specifying the character used to

delimit items in the sequence; the default is the comma character,

",".

When accepting objects in an enumerated sequence, the user must

enter the sequence-delimiter character between items.

:echo-space Presentation option specifying whether to echo a space

character after the comma (or other :sequence-delimiter character)

is typed; the default is t.

:element-defaults ’(object1 object2 ...) Specifies an enumerated se-

quence of objects to be used one by one as the default for each re-

cursive accept involved in accepting elements of the enumerated

sequence. This is different than specifying the default for the se-

quence, since you might want the sequence default to be empty, and

yet you might want to specify that if the user decides to type an

element, that element should be parsed against a particular default.

For example:

(accept ’((sequence-enumerated pathname pathname)

 :element-defaults (#P"ACME:>JDoe>file.text"

 #P"ACME:>Fred>file.text"))

:provide-default nil)

�

Enter the pathnames of two files: a, b

 ;completes to "ACME:>JDoe>a.text.newest, ACME:>Fred>b.text.newest"

=> (#P"ACME:>JDoe>a.text.newest" #P"ACME:>Fred>b.text.newest")

 ((SEQUENCE-ENUMERATED FS:LMFS-PATHNAME FS:LMFS-PATHNAME))�

Page 1480

Examples:

(accept ’((sequence-enumerated (integer 1 10)

sys:form string))) ==>

Enter an integer greater than or equal to 1 and less

than or equal to 10, A Lisp expression to be evaluated,

and a string: 5, (setq alpha "bravo"), "Not very useful"

(5 (SETQ ALPHA "bravo") "Not very useful")

((SEQUENCE-ENUMERATED (INTEGER 1 10) SYS:FORM STRING))

�

(present ‘(,(pathname "y:>ui.lisp") telson

 ,(find-package "dynamic-windows"))

 ’((sequence-enumerated pathname symbol package))) ==>

Y:>ui.lisp, TELSON, and DYNAMIC-WINDOWS

#<DISPLAYED-PRESENTATION 444476230>

�

The sequence-enumerated presentation type does not support a type history.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� tv:sheet Presentation Type

Type for accepting or presenting window objects.

Examples:

(accept ’((tv:sheet))) ==>

Enter a window [default Graphic Editor 1]: HELP ==>

You are being asked to enter a window.

�

These are the possible windows:

 Command ... (3) Dynamic ... (19) Mode Line Window 4 Zmail ... (4)

 Converse Fsmaint ... (2) Terminal 1 Zwei ... (3)

 Converse Frame 1 Graphic Editor 1 Typein ... (3) Who ... (8)

 Dex ... (6) Main ... (2) Zmacs ... (3)

�

Enter a window [default Dex Frame 1]: Graphic Editor 1

#<PROGRAM-FRAME Graphic Editor 1 701735 deexposed>

((TV:SHEET))

�

(present (tv:make-window ’dw:dynamic-window)

 ’((tv:sheet)))Dynamic Window 1

#<DW::DISPLAYED-PRESENTATION 650364063>

�

The tv:sheet presentation type supports a type history.

tv:sheet is one of a number of types defined in sys:dynamic-windows;standard-

presentation-types.lisp. See that file for the source code.

Page 1481

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� neti:site Presentation Type

Type for accepting or presenting site objects.

Examples:

(present net:*local-site* ’((neti:site))) ==>SCRC

#<DISPLAYED-PRESENTATION 275626405>

�

(accept ’((neti:site))) ==>

Enter a site: SCRC

#<SITE SCRC 13700014>

((NETI:SITE))

�

Through flavor inheritance, the neti:site presentation type is subtype to the

net:object type, from which it inherits a type history. The history inherited in-

cludes all accepted objects of the net:object type; that is, no pruning of the histo-

ry occurs.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� sys:stack-frame Presentation Type

Type for accepting or presenting stack frames. This presentation type is intended

primarily for use by the debugger and debugging functions.

The following example shows entry into the debugger from an editor typeout win-

dow. The debugger was entered because oddp was called with no arguments. The

frame, ODDP, containing the error is at the top of the stack.

Command: (oddp) ==>

Trap: The function ODDP was called with too few arguments.

Page 1482

�

ODDP:

 --Missing args:--

 Arg 0 (INTEGER)

s-A, RESUME: Supply the missing arguments.

s-B: Retry the FUNCALL-N-RETURN instruction

s-C, ABORT: Return to Breakpoint ZMACS in Editor Typeout Window

s-D: Editor Top Level

s-E: Restart process ZMACS-WINDOWS

→ Eval (program): (setq stk-frm (accept ’((sys:stack-frame)))) ==>

Enter a stack frame: ODDP

(#<DTP-LOCATIVE 52700741> . #<TOO-FEW-ARGUMENTS-TRAP 44070612>)

→ Eval (program): (present stk-frm ’((sys:stack-frame))) ==>ODDP

#<DISPLAYED-PRESENTATION 276024201>

→ Abort Abort

Return to Breakpoint ZMACS in Editor Typeout Window

�

sys:stack-frame does not support a type history.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� string (&optional size) &key delimiters Presentation Type

size An integer specifying the length of the string.

Type for accepting or presenting strings.

:delimiters Presentation option specifying a list of characters serv-

ing as string delimiters (terminators) during input of strings to

accept. The default delimiters are #\return and #\end.

Examples:

(accept ’((string))) ==>

Enter a string: "Morgan the Pirate"

"Morgan the Pirate"

((STRING))

�

(accept ’((string) :delimiters (#\line))) ==>

Enter a string (end with LINE)

[default Morgan the Pirate]: Several species

of small, furry

creatures gathered

together in a cave ...

Page 1483

�

"Several species

of small, furry

creatures gathered

together in a cave ..."

((STRING) :DELIMITERS (#\Line))

�

(present "Another whimsical string") ==>Another whimsical string

#<DISPLAYED-PRESENTATION 274760165>

�

(accept ’((string)))

Enter a string: Another whimsical string

"Another whimsical string"

STRING

�

The string presentation type supports a type history.

For an overview of presentation types and related facilities: See the section "Using

Presentation Types".

� subset (&rest keywords) Presentation Type

Type for accepting or presenting zero or more objects from a group of keyword

identifiers.

keywords The set of keywords. These are data arguments to the subset pre-

sentation type.�

Examples:

 (accept ’((subset :mercenaria :mya :mytilus))) ==>

Enter a subset of the identifiers MERCENARIA,

MYA, and MYTILUS: Mercenaria, Mytilus

(:MERCENARIA :MYTILUS)

((SUBSET :MERCENARIA :MYA :MYTILUS))

�

(present ’(:mya) ’((subset :mercenaria :mya :mytilus))) ==>MYA

#<DISPLAYED-PRESENTATION 444621057>

�

When accepting input of this type, the user must separate identifiers with com-

mas. If input is terminated without any identifiers having been entered, accept re-

turns nil.

A type history is not available for the subset presentation type.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

Page 1484

� symbol Presentation Type

Type for accepting or presenting symbols.

Examples:

(accept ’((symbol)))

Enter a symbol: RNA

RNA

((SYMBOL))

�

(accept ’((symbol)))

Enter a symbol [default RNA]: DNA

DNA

((SYMBOL))

�

(present ’t-RNA)

#<DISPLAYED-PRESENTATION 274753204>

�

(accept ’((symbol)))

Enter a symbol [default RNA]: T-RNA

T-RNA

SYMBOL

�

The symbol presentation type inherits its parser, printer, and type history from

the sys:expression presentation type.

To accept or present symbol names as opposed to symbol objects, use the symbol-

name presentation type.

For an overview of presentation types and related facilities: See the section "Using

Presentation Types".

� symbol-name Presentation Type

Type for accepting or presenting a symbol name, that is, the print name of a sym-

bol. (For accepting or presenting symbol objects, use the symbol presentation

type.)

Examples:

(accept ’((symbol-name)))

Enter a symbol name: T-M-S

"T-M-S"

((SYMBOL-NAME))

�

(present "T-M-S" ’((symbol-name))) ==>T-M-S

#<DISPLAYED-PRESENTATION 444645436>

�

The symbol-name presentation type inherits its printer and type history from the

string presentation type.

Page 1485

symbol-name is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the section "Using

Presentation Types".

� sct:system ((&key (patchable-only nil))) Presentation Type

Type for accepting or presenting systems.

:patchable-only Data option restricting systems to those that are

patchable; the default is nil.

Examples:

(accept ’((sct:system))) ==>

Enter a system: Zmail

#<SCT:SYSTEM ZMAIL 520001430>

((SCT:SYSTEM))

�

(accept ’((sct:system :patchable-only t))) ==>

Enter a system: Documentation Database

#<SYSTEM DOC 261374510>

((SCT:SYSTEM :PATCHABLE-ONLY T))

�

(present (sct:find-system-named ’extended-help)

’((sct:system))) ==>Extended Help

#<DISPLAYED-PRESENTATION 274651506>

�

(present (car sct:*all-systems*) ’((sct:system))) ==>System

#<DISPLAYED-PRESENTATION 274641244>

�

The sct:system presentation type supports a type history.

sct:system is one of a number of types defined in sys:dynamic-windows;standard-

presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the section "Using

Presentation Types".

� sct:system-version Presentation Type

Type for accepting or presenting a system version designator. Three kinds of des-

ignators are permitted:

• a positive, non-zero integer

• one of the special keywords :released, :latest, or :newest

• an arbitrary keyword�

Page 1486

Examples:

(accept ’((sct:system-version))) ==>

Enter a version designator: 2

2

((SCT:SYSTEM-VERSION))

�

(accept ’((sct:system-version))) ==>

Enter a version designator: Released

:RELEASED

((SCT:SYSTEM-VERSION))

�

(accept ’((sct:system-version))) ==>

Enter a version designator: arbitrary

:ARBITRARY

((SCT:SYSTEM-VERSION))

�

(present :newest ’((sct:system-version))) ==>Newest

#<DISPLAYED-PRESENTATION 274677471>

�

The sct:system-version presentation type does not support a type history.

sct:system-version is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities: See the section "Using

Presentation Types".

� t Presentation Type

Type that is supertype to all other presentation types.

t occupies a necessary spot (the top) in the type hierarchy, and is important for

that reason. However, it has no parser and cannot be used with accept. Moreover,

objects presented as t presentations are not mouse-sensitive in any input context.

One of the key uses for the t type is in mouse handlers, as the from-presentation-

type or to-presentation-type. If the former, it means that the handler in question is

potentially applicable to any type of presentation; if the latter, it means that the

handler is potentially applicable in any input context. See the section "Mouse Han-

dler Concepts".

For an overview of presentation types and related facilities: See the section "Using

Presentation Types".

� time:time-interval Presentation Type

Type for accepting or presenting intervals of time. Internally, time intervals are in

seconds; externally, in seconds, minutes, hours, days, weeks, and years. nil is rep-

resented as "never".

Page 1487

Examples:

(accept ’((time:time-interval))) ==>

Enter a time interval: 1 second

1

((TIME:TIME-INTERVAL))

�

(accept ’((time:time-interval))) ==>

Enter a time interval [default 1 second]: 1 minute

60

((TIME:TIME-INTERVAL))

�

(accept ’((time:time-interval))) ==>

Enter a time interval [default 1 minute]: 1 hour

3600

((TIME:TIME-INTERVAL))

�

(present 3661 ’((time:time-interval))) ==>1 hour 1 minute 1 second

#<DISPLAYED-PRESENTATION 276047342>

�

(present nil ’((time:time-interval))) ==>never

#<DISPLAYED-PRESENTATION 276047575>

�

Note that time intervals are specified with integers only.

The time:time-interval presentation type supports a type history.

time:time-interval is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types". See the function si:parse-interval-or-never.

� time:time-interval-60ths Presentation Type

Type for accepting or presenting intervals of time. Internally, time intervals are in

60ths of a second; externally, in seconds, minutes, hours, days, weeks, and years.

nil is represented as "never".

Examples:

(accept ’((time:time-interval-60ths))) ==>

Enter a time interval 60ths: 1 second

60

((TIME:TIME-INTERVAL-60THS))

�

(accept ’((time:time-interval-60ths))) ==>

Enter a time interval 60ths [default 1 second]: 1 minute

3600

((TIME:TIME-INTERVAL-60THS))

Page 1488

�

(accept ’((time:time-interval-60ths))) ==>

Enter a time interval 60ths [default 1 minute]: 1 hour

216000

((TIME:TIME-INTERVAL-60THS))

�

(present 3661 ’((time:time-interval-60ths))) ==>1 minute 1 second

#<DISPLAYED-PRESENTATION 276061445>

�

(present 30 ’((time:time-interval-60ths))) ==>0 seconds

#<DISPLAYED-PRESENTATION 276062366>

�

(present 31 ’((time:time-interval-60ths))) ==>1 second

#<DISPLAYED-PRESENTATION 276062621>

�

(present nil ’((time:time-interval-60ths))) ==>never

#<DISPLAYED-PRESENTATION 276061700>

�

Note that time intervals are specified with integers only; also, that they are round-

ed to the nearest second when presented.

The time:time-interval-60ths presentation type supports a type history.

time:time-interval-60ths is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� time:timezone &key force-numeric-p Presentation Type

Type for accepting or presenting timezones.

Timezones are represented externally either by commonly accepted abbreviations,

for example, "EST" (for Eastern Standard Time), or by a signed digit string, for

example, "-0500". The sign of the digit string indicates the location of the time-

zone relative to Greenwich; positive means east, negative west.

Internally, timezones are represented by numbers in the form n.0 or n.5. Note that

the sign of the externally displayed digit string is opposite to that of the number

used internally. The printed digit string "-0530", for example, corresponds to an in-

ternal representation of 5.5.

:force-numeric-p Presentation option specifying whether a timezone is

presented only by a signed digit string. The default is nil; this

causes the timezone’s unique abbreviation, if there is one, to be

printed. If a unique abbreviation is not available, the digit string is

printed regardless of the value supplied for this option.

Examples:

Page 1489

(accept ’((time:timezone))) ==>

Enter a defined timezone symbol or an hour offset from GMT

such as +0500 (east of GMT) or -0330 (west of GMT): EST

5

((TIME:TIMEZONE))

�

(accept ’((time:timezone))) ==>

Enter a defined timezone symbol or an hour offset from GMT

such as +0500 (east of GMT) or -0330 (west of GMT): -0500

5

((TIME:TIMEZONE))

�

(present 5 ’((time:timezone))) ==>EDT

#<DISPLAYED-PRESENTATION 274454265>

�

(present 5 ’((time:timezone) :force-numeric-p t)) ==>-0400

#<DISPLAYED-PRESENTATION 274454520>

�

Note in the last two examples, created in July, that the displayed presentations re-

flect daylight savings time. At sites in timezones for which straightforward rules

exist governing the change from standard to daylight-savings time and back again,

the timezone utility automatically switches over to the appropriate abbreviation

and digit string. For other timezones, the switch must be made manually. In either

case, time:timezone presentations display the current setting for daylight savings

time. For more information, see the section "Specifying a Time Zone for Your

Site".

The time:timezone presentation type does not support a type history.

time:timezone is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� token-or-type (special-tokens otherwise-type) Presentation Type

Compound type for accepting or presenting a special token for example "None",

"Any", "All" or an object of a specified type.

special-tokens Data argument specifying a list of tokens. The list is

an alist: each item is a dotted pair of a print string and its object:

((String-1 . object-1) (string-2 . object-2) ... (string-n . object-n))

otherwise-type Data argument specifying the presentation type to use

for accepting or presenting objects other than listed tokens.�

Examples:

Page 1490

(defun try-it ()

 (accept ’((token-or-type (("either" . :either)

 ("neither" . :neither)

 ("both" . :both))

 ((subset :fixed-wing :rotary-wing))))

 :prompt

"Enter \"fixed-wing\", \"rotary-wing\", \"either\", \"neither\", or \"both\""))

�

(try-it)==>

Enter "fixed-wing", "rotary-wing", "either", "neither", or "both": Fixed-Wing

(:FIXED-WING)

SUBSET

�

(try-it)==>

Enter "fixed-wing", "rotary-wing", "either", "neither", or "both": neither

:NEITHER

((ALIST-MEMBER :ALIST (("either" . :EITHER) ("neither" . :NEITHER) ("both" . :BOTH)))

 :DESCRIPTION "special token")

Here is an example of a common idiom in the system:

(cp:define-command (com-filename-example :command-table "GLOBAL"

 :provide-output-destination-keyword nil)

 ((pathnames ’((token-or-type (("All" :all))

 ((sequence pathname))))

:default :all))

(present pathnames))

If the presentation type specified by otherwise-type supports a type history, the his-

tory is available for objects of that type.

token-or-type is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� type-or-string (presentation-type) &key reject-null-string string-if-quoted

Presentation Type

Compound type for accepting or presenting objects of a specified type or strings.

presentation-type Data argument specifying the presentation type to use

for accepting or presenting objects which are not strings.

:reject-null-string Takes a boolean value. A non-null value allows you to

give no default value, but still not allow a null (string) as input. A

null value means that this presentation type refuses a null string

only if there is a non-null default. This keyword enables you to con-

trol whether or not a null string is allowed as input separately from

the default value.

Page 1491

:string-if-quoted Takes a boolean value, which controls whether the fol-

lowing is parsed as a type or as a string when explicit quotes are

present.

((type-or-string type) :string-if-quoted string-if-quoted)�

The default, if :string-if-quoted is not supplied, or is nil, is to al-

ways try to parse it first as a type and then as a string if that

fails. However, if :string-if-quoted is t, then explicit quoting (with

doublequotes) will force the object to be parsed as a string.

Examples:

(accept ’((type-or-string net:user)))

Enter a user: JWALKER

#<USER JWALKER 6434203>

SI:USER

�

(accept ’((type-or-string net:user))

 :default (dw:presentation-type-default ’net:user)

Enter a user [default JWALKER]: JBIRD

"JBIRD"

STRING

�

(present ’JWALKER ’((type-or-string net:user))) ==>JWALKER

#<DISPLAYED-PRESENTATION 445112577>

�

(present "JWALKER" ’((type-or-string net:user))) ==>JWALKER

#<DISPLAYED-PRESENTATION 445105072>

�

Here is an example of :string-if-quoted:

;;; the following treats "3" as an integer

(accept ’(type-or-string integer))

�

;;; the following treats "3" as a string

(accept ’((type-or-string integer) :string-if-quoted t) �

Although the type specified by presentation-type might support a type history, ac-

cepting a type-or-string does not automatically display the default; you have to

provide one to accept yourself. This is illustrated in the second accept form

above.

Note in the present examples that the objects presented have the same printed

representation. The first, however, is an net:user object, the second a string ob-

ject. Each will only be mouse-sensitive in the appropriate input context.

type-or-string is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

Page 1492

� time:universal-time &key base-time past-p must-have timezone long-date brief (re-

place-relative-time nil) present-based Presentation Type

Type for accepting or presenting universal times. (Universal time is measured in

seconds elapsed since midnight, Jan 1, 1900, GMT.)

When accepting universal times, a large variety of input formats are possible. For

more information and examples, see the section "Reading Dates and Times".

The following keyword options, all presentation arguments, are available. The first

three :base-time, :past-p, and :must-have affect the input of universal

times. The remaining options, :timezone, :long-date, :brief, :replace-relative-

time, and :present-based affect their output. The discussion of each includes

examples.

:base-time Presentation option specifying a base time from which

defaults are taken for unspecified components when accepting a uni-

versal time.

The base time is specified as the number of seconds since midnight,

January 1, 1986 (that is, 1/01/00 00:00:00). In the following example,

the base time is midnight, January 1, 1986.

Example:

(accept ’((time:universal-time) :base-time 2713928400

 :description "a date in 1986"))) ==>

Enter a date in 1986: 3/2 ==>3/02/86 00:00:00

2719112400

((TIME:UNIVERSAL-TIME) :BASE-TIME 2713928400)

�

:past-p Presentation option specifying whether partially specified times de-

fault to the nearest corresponding universal time in the past or fu-

ture; the default is nil.

The following examples were created in 7/86.

Examples:

(accept ’((time:universal-time))) ==>

Enter a universal time: 3/2 ==>3/02/87 00:00:00

2750648400

((TIME:UNIVERSAL-TIME))

�

(accept ’((time:universal-time))) ==>

Enter a universal time

[default 3/02/87 00:00:00]: 8/2 ==>8/02/86 00:00:00

2732328000

((TIME:UNIVERSAL-TIME))

Page 1493

�

(accept ’((time:universal-time) :past-p t)) ==>

Enter a universal time in the past

[default 8/02/86 00:00:00]: 3/2 ==>3/02/86 00:00:00

2719112400

((TIME:UNIVERSAL-TIME) :PAST-P T)

�

(accept ’((time:universal-time) :past-p t)) ==>

Enter a universal time in the past

[default 3/02/86 00:00:00]: 8/2 ==>8/02/85 00:00:00

2700792000

((TIME:UNIVERSAL-TIME) :PAST-P T)

�

:must-have Presentation option specifying that the year field or

second field or both must be explicitly entered when accepting a

universal time. The required fields are provided as a list of key-

words.

Example:

(accept ’((time:universal-time) :must-have (:year year))) ==>

Enter a universal time, year is required

[default 7/07/86 19:19:00]: 12/12 ==>

no year supplied

Type RUBOUT to correct your input.

Enter a universal time, year is required

[default 7/07/86 19:19:00]: 12/12/47 00:00:00

1512968400

((TIME:UNIVERSAL-TIME) :MUST-HAVE (YEAR))

�

:timezone Presentation option specifying the timezone used when

presenting universal times. time:*timezone* provides the default

value.

Supply the value as a number (either n or n.5): 0 specifies Green-

wich Mean Time; positive numbers timezones to the west of Green-

wich; negative numbers timezones to the east. (For more on time-

zone representations, see the presentation type time:timezone.)

Examples:

(present 123456789 ’((time:universal-time)

 :timezone -5)) ==>12/1/03 02:33:09

#<DISPLAYED-PRESENTATION 274337427>

�

(present 123456789 ’((time:universal-time)

 :timezone 0)) ==>11/30/03 21:33:09

#<DISPLAYED-PRESENTATION 274340115>

Page 1494

�

(present 123456789 ’((time:universal-time)

 :timezone 5)) ==>11/30/03 16:33:09

#<DISPLAYED-PRESENTATION 274337662>

�

(present 123456789 ’((time:universal-time)

 :timezone 5.5)) ==>11/30/03 16:03:09

#<DISPLAYED-PRESENTATION 274345125>

�

:long-date Presentation option specifying that the date be present-

ed as in the following example when presenting universal times;

(present 123456789 ’((time:universal-time)

 :long-date t)) ==>

Monday the thirtieth of November, 1903; 4:33:09 pm

#<DISPLAYED-PRESENTATION 274353534>

�

:brief Presentation option specifying whether presented times should be

printed briefly, that is, without the seconds field. Contrast the fol-

lowing two examples:

(present (time:get-universal-time)

 ’((time:universal-time))) ==>7/07/86 14:55:35

#<DISPLAYED-PRESENTATION 274421523>

�

(present (time:get-universal-time)

 ’((time:universal-time) :brief t)) ==>7/7/86 14:55

#<DISPLAYED-PRESENTATION 274421756>

�

:replace-relative-time Presentation option specifying that if a relative time,

for example, 3 minutes from now, is supplied, it should be replaced

with the actual time in the output history. The default is nil, since

usually if you are giving a relative time and re-run that command,

you want the same relative offset from the current time, not the

time the command was previously run.

:present-based Presentation option specifying that missing components

in the supplied time default to the beginning of the smallest unsup-

plied unit of time. For example, 5:00 pm means 5:00 pm today,

whether it is before or after 5:00 pm. Thursday means Thursday of

this week, whether it is currently Monday or Friday. The default is

nil, meaning that missing components default to the future.

For example, if it is Wednesday, December 27, and you specify Monday:

Page 1495

(accept ’(time:universal-time))

Enter a universal time [default 12/28/89 10:00:00]: Monday

=> 1/01/90 00:00:00

 2840158800

 (TIME:UNIVERSAL-TIME)

�

(accept ’((time:universal-time) :present-based t))

Enter a universal time [default 1/01/90 00:00:00]: Monday

=> 12/25/89 00:00:00

 2839554000

 ((TIME:UNIVERSAL-TIME) :PRESENT-BASED T)�

time:universal-time is one of a number of types defined in SYS:DYNAMIC-

WINDOWS;PRESENTATION-TYPES.LISP. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� net:user Presentation Type

Type for accepting or presenting user objects.

Examples:

(present si:*user* ’((si:user))) ==>REG

#<DISPLAYED-PRESENTATION 275633757>

�

(accept ’((si:user))) ==>

Enter a user: REG

#<USER REG 13730364>

((SI:USER))

�

Through flavor inheritance, the net:user presentation type is subtype to the

net:object type, from which it inherits a type history. The history inherited in-

cludes all accepted objects of the net:object type; that is, no pruning of the histo-

ry occurs.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� fs:wildcard-pathname &key (default-version :newest) (default-type nil) (default-name

nil) dont-merge-default (direction :read) (format :normal) Presentation Type

Type for accepting or presenting pathnames that include wildcard characters.

This presentation type can be useful if you need to distinguish unequivocally be-

tween pathname presentations that include wildcard characters (asterisks) and oth-

er file pathname presentations. For example, if you can arrange for the availability

to your users of some fs:wildcard-pathname presentations, then mouse handlers

performing functions specifically on pathnames containing wildcards can be defined

Page 1496

that do not have to test whether a given pathname presentation includes a wild-

card character.

fs:wildcard-pathname is a subtype of the pathname presentation type, from

which it inherits a printer, parser, and type history. It also takes the same key-

word arguments, as follows:

:default-version Presentation option specifying the default version num-

ber of an accepted file. The default value for this option is :newest,

the newest file version.

:default-type Presentation option specifying the default file type, for

example, "lisp", "text", "data", and so on. The default value for this

option is nil.

:default-name Presentation option specifying the default file name.

The default value for this option is nil.

:dont-merge-default Presentationoptionspecifying whethertoprevent

merging of a partially specified pathname entered by the user

against the default pathname. The default value for this option is

nil, meaning that merging occurs when appropriate; that is, parts of

the pathname not entered by the user are supplied from the default.

Suppression of merging against the default and providing a differ-

ent default (against which merging may or may not be enabled) are

different issues. To deal with the latter, use the :default option to

accept. (See the function accept.) An example follows:

(accept ’((pathname) :default-type nil)

:default (send (fs:default-pathname)

 :new-pathname :type nil

 :version :newest))�

:direction

Presentation option specifying either :read (the default) or :write.

The value supplied is passed through to fs:complete-pathname and

affects completion behavior. (See the function fs:complete-

pathname.)

Use the default (:read) if the user is likely to enter the pathname

of an already existing file when prompted by accept, :write other-

wise.�

:format Presentation option specifying the output format of the pathname.

There are four choices:

:normal For example, S:>mb>dw-pgms>fancy-windows.lisp. This is

the default format.

:directory For example, >mb>dw-pgms>. The host, file name, and

file type are not displayed.

Page 1497

:dired For example, fancy-windows.lisp. Only the file name and

type are displayed.

:editor For example, fancy-windows.lisp >mb>dw-pgms S. The dis-

play format is that used by Zmacs.�

For examples illustrating the use of these keywords in pathname presentations, see

the presentation type pathname.

fs:wildcard-pathname is one of a number of types defined in sys:dynamic-

windows;standard-presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

� tv:window Presentation Type

Type for accepting or presenting old-style (static) window objects.

Examples:

 (present (tv:make-window ’tv:window) ’((tv:window))) ==>

Window 2

#<DW::DISPLAYED-PRESENTATION #<WINDOW Win... ((TV:WINDOW)) 420205722>

�

 (accept ’((tv:window)))

Enter an old-style window: Window 2

#<WINDOW Window 2 3133400 deactivated>

((TV:WINDOW))

�

The tv:window presentation type supports a type history.

tv:window is one of a number of types defined in sys:dynamic-windows;standard-

presentation-types.lisp. See that file for the source code.

For an overview of presentation types and related facilities, see the section "Using

Presentation Types".

sys:%draw-line x1 y1 x2 y2 alu draw-end-point sheet-or-raster Function

This is analogous to the :draw-line message to tv:graphics-mixin.

� sys:%draw-rectangle width height x y alu sheet-or-raster Function

This is analogous to the :draw-rectangle message to tv:stream-mixin.

� sys:%draw-triangle x1 y1 x2 y2 x3 y3 alu sheet-or-raster Function

This is analogous to the :draw-triangle message to tv:graphics-mixin.

Page 1498

� graphics:2pi Variable

An approximation to 2π in double floating-point format.

For an overview of graphics:2pi and related functions: See the section "Other Ba-

sic Facilities for Graphic Output".

� :alu Option

Specifies the drawing mode for a drawing function. Possible values for this

option are:

:draw Pixels specified by the drawing function are turned on, regardless

of whether some of the pixels were already on. This is the default

drawing mode.

:erase Pixels specified by the drawing function are turned off, regardless

of whether some of the pixels were already off.

:flip Pixels specified by the drawing function are turned on if they were

previously off, and off if they were previously on.�

Additionally, numeric and color-extended alu operations are valid values for

this option. Whether "on" means white or black depends on the whether or

not the display window is in inverse video mode: if inverse video is not in ef-

fect, on means white.�

� graphics:angle-between-angles-p theta theta-1 theta-2 Function

Returns a Boolean value: t if theta is between theta-1 and theta-2 considered clock-

wise; otherwise nil.

Example:

(graphics:angle-between-angles-p (/ graphics:2pi 4) (/ graphics:2pi 8) 0)

�

T

� graphics:basic-pattern Flavor

The basis for the graphics pattern drawing protocol. It has one required method:

graphics:pattern-call-with-drawing-parameters.

� graphics:binary-decode-graphics-from-array-into-function array &rest args

Function

array An array with elements of type (unsigned-byte 8) produced by the

function graphics:binary-encode-graphics-to-array, which contains

the encoded version of a graphics function.

Page 1499

args The optional keyword :compile. When t, the function returned is

compiled.�

Returns a function of one argument, stream. When called, this function produces

the same graphics output that the originally encoded function produces. See the

section "Other Advanced Facilities for Graphic Output".

� graphics:binary-encode-graphics-to-array function Function

function A graphics function of one argument, stream.�

Returns an array containing an encoded version of function. See the section "Other

Advanced Facilities for Graphic Output".

� graphics:build-graphics-transform &key (:rotation 0) (:scale 1) (:scale-x 1) (:scale-y

1) :translation :transform Function

Creates a coordinate transformation matrix based on the values of the keyword ar-

guments given. The transformation is a result of composing coordinate system

transforms for scaling, rotation, and then translation, in that order. The graphics

dictionary contains separate entries for this function’s keyword arguments:

:rotation

:scale

:scale-x

:scale-y

:translation

:transform

For more information on coordinate transformation matrices: See the section "Ad-

vanced Transformation Facilities".

� graphics:build-multiple-point-transform points Function

Takes two, four, or six points (4, 8, or 12 numbers) and returns a transform ma-

trix that converts the figure described by the first half of the points into the fig-

ure described by the second half.

Example:

(graphics:build-multiple-point-transform ’(0 0 0 4 10 10 10 20)) ==>

(5/2 0 0 5/2 10 10)

� graphics:building-graphics-transform (&optional stream) &body body Function

Returns a coordinate transformation matrix to affect the stream stream based on

the results of the graphics transformation functions as, for example,

graphics:graphics-translate, graphics:graphics-rotate, or graphics:graphics-

Page 1500

scale included in body, in the order in which they are specified. Use this to

compose several operations in a specific order, rather than graphics:build-

graphics-transform, as the latter uses a canonical order, not the order of the ar-

glist.

Example:

(graphics:building-graphics-transform ()

(graphics:graphics-translate 0 10)

(graphics:graphics-scale 5 2)

(graphics:graphics-rotate (/ graphics:2pi 4))) ==>

(0 2 -5 0 0 10)

(graphics:build-graphics-transform :rotation (/ graphics:2pi 4)

 :scale-x 5 :scale-y 2

 :translation (0 10)) ==>

(graphics:build-graphics-transform :rotation (/ graphics:2pi 4)

 :scale-x 5 :scale-y 2

 :translation (0 10)) ==>

(0 5 -2 0 0 10)

� graphics:close-path &key (alu :draw) (pattern nil) (stipple nil) (tile nil) (color nil)

(gray-level 1) (opaque t) (mask nil) (mask-x 0) (mask-y 0) (thickness 0) (scale-

thickness t) (line-end-shape :butt) (line-joint-shape :miter) (dashed nil) (dash-pattern

#(10 10)) (initial-dash-phase 0) (draw-partial-dashes t) (scale-dashes nil) (stream

standard-output) (return-presentation nil) (rotation 0) (scale 1) (scale-x 1) (scale-y

1) (translation nil) (transform nil) Function

Draws a straight-line segment from the current position of the graphics cursor to

the beginning of the current path segment and ends that segment. The beginning

of the current path segment is specified by the last graphics:set-current-position

operation.

This function is intended primarily for path building, that is, within path-drawing

functions supplied to graphics:draw-path or graphics:with-clipping-path. For ex-

ample uses: See the function graphics:draw-path.

The listed keyword options are common to all drawing functions and documented

separately: See the section "Keyword Options to Drawing Functions".

For an overview of graphics:close-path and related functions: See the section

"Path-Drawing Functions".

� graphics:compose-transforms transform additional-transform Function

transform

A list of the essential six elements of a two-dimensional homoge-

neous graphics transformation matrix describing a combination of

scaling, rotation, and translation.

Page 1501

additional-transform A second such list. �

Destructively modifies transform so that it contains the essential elements of a new

graphics transformation matrix that is the result of the matrix dot product of the

matrix for additional-transform and the matrix for transform.

The transformation effected by the result of graphics:compose-transforms is

equivalent to the result obtained by first effecting the transformation represented

by transform and then transforming the result by applying additional-transform.

See the section "Advanced Transformation Facilities".

Compare the following three examples:

(defun nested ()

 (graphics:with-room-for-graphics (t 100)

 (graphics:draw-line 0 0 0 100)

 (graphics:draw-line 0 0 100 0)

 (graphics:with-graphics-scale (t 2)

 (graphics:with-graphics-translation (t 10 20)

 (graphics:draw-rectangle 0 10 20 0)))))

�

(defun composed ()

 (graphics:with-room-for-graphics (t 100)

 (graphics:draw-line 0 0 0 100)

 (graphics:draw-line 0 0 100 0)

 (graphics:with-graphics-transform (t

 (graphics:compose-transforms

 (graphics:build-graphics-transform :scale 2)

 (graphics:build-graphics-transform :translation ’(10 20))))

 (graphics:draw-rectangle 0 10 20 0))))

�

(defun composed-backward ()

 (graphics:with-room-for-graphics (t 100)

 (graphics:draw-line 0 0 0 100)

 (graphics:draw-line 0 0 100 0)

 (graphics:with-graphics-transform (t

 (graphics:compose-transforms

 (graphics:build-graphics-transform :translation ’(10 20))

 (graphics:build-graphics-transform :scale 2)))

 (graphics:draw-rectangle 0 10 20 0))))

� graphics:compute-cubic-spline px py z &optional cx cy (c1 :relaxed) (c2

graphics::c1) p1-prime-x p1-prime-y pn-prime-x pn-prime-y Function

px A list of the x coordinates of the points through which the cubic

spline is to pass.

py A list of the y coordinates of the points through which the cubic

spline is to pass.

Page 1502

z The number of intermediate points to be calculated.

cx An array to be filled in with the computed x coordinates. Its length

should be (+ N (* z (- N 1))), where N is the number of points spec-

ified in px and py.

cy An array to be filled in with the computed y coordinates. Its length

should be (+ N (* z (- N 1))), where N is the number of points.

c1 The initial end condition, one of :relaxed, :clamped, :cylic, or

:anticyclic. The default is :relaxed.

c2 The final end condition, one of :relaxed or :clamped. The default

for the final end condition to be the same as the initial end condi-

tion, that is, graphics::c1.

p1-prime-x The x value of the initial slope if the initial end condi-

tion is :clamped.

p1-prime-y The y value of the initial slope if the initial end condi-

tion is :clamped.

pn-prime-x The x value of the final slope if the final end condition

is :clamped.

pn-prime-y The y value of the final slope if the final end condition

is :clamped.�

Where a list of points is specified by the lists, px and py, graphics:compute-cubic-

spline computes z additional points between each pair of specified points. The z

points lie on a cubic spline that passes through the specified points and conform to

the end conditions specified by c1, c2, and the remaining optional arguments. The

function returns three values, cx, cy, and N. cx and cy are lists containing the co-

ordinates of the original points together with the computed points inserted, and N

is the number of points originally specified. The caller can plot lines between suc-

cessive points of cx and cy to draw a smooth curve through the given points. For

an explanation of the end conditions: See the function graphics:draw-cubic-spline.

� graphics:compute-cubic-spline-points (points &key (start-relaxation :relaxed) (end-

relaxation graphics::start-relaxation) start-slope-dx start-slope-dy end-slope-dx end-

slope-dy (number-of-samples 20)) Function

Like graphics:compute-cubic-spline, except that instead of two lists of x and y co-

ordinates of points through which to draw the spline, graphics:compute-cubic-

spline-points takes a single list of alternating x and y values for the points. In-

stead of returning two arrays, it returns a single list in a format like that of the

input. The remaining positional arguments of graphics:compute-cubic-spline are

provided by keyword arguments for graphics:compute-cubic-spline-points.

� graphics:current-position &key (stream *standard-output*) Function

Page 1503

Returns the current position of the graphics cursor in the user coordinate system.

Note that the value of current position may change without the cursor moving if

the stream transform changes.

:stream Specifies the output stream; the default is *standard-output*.

This facility is useful with drawing functions that explictly use the graphics cur-

sor. Such functions include graphics:draw-bezier-curve-to, graphics:draw-

circular-arc-to, graphics:draw-line-to, and other facilities commonly used for cre-

ating path-drawing functions. For examples of path-drawing functions: See the

function graphics:draw-path.

For an overview of graphics:current-position and related functions: See the sec-

tion "Drawing Functions".

� :dash-pattern Option

Specifies a sequence, usually a vector, controlling the dash pattern of a draw-

ing function. If no pattern is specified, the default dashes are 10 pixels long

and separated by spaces of 10 pixels. The vector must contain an even num-

ber of elements or you will get an error.

The following example draws a line as a series of dashes, alternating in

length between 16 and 8 pixels, with intervening spaces of 4 pixels. Note that

these lengths result from applying a scaling factor of 4, implemented by the

:scale and :scale-dashes keywords.

(graphics:with-room-for-graphics (t 200)

 (graphics:draw-line 25 25 100 25

 :dashed t :scale 4

 :scale-thickness nil

 :scale-dashes t

 :dash-pattern #(4 1 2 1)))

�

This option is not operable if the :dashed option is nil.�

� :dashed Option

Boolean option specifying whether lines are drawn as a series of dashes by a

drawing function; the default is nil.

This option is not operable if the function draws a filled (:filled t) figure.�

Page 1504

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-rectangle 0 0 100 100 :filled nil :dashed t))

�

� graphics:decompose-transform transform Function

transform

A list of the essential six elements of a two-dimensional homoge-

neous graphics transformation matrix describing a combination of

scaling, rotation, and translation.

Returns six values that describe the three basic coordinate-system transformations

specified by transform. Transform is regarded as having been composed of a trans-

lation, followed by a rotation, followed by a scaling. This composition has the ef-

fect on the coordinates of any given point of first scaling those coordinates, then

rotating them, and finally translating them. For an explanation: See the section

"The Transformation Matrix".

The values returned are:

• The angle of the rotation in radians

• The scaling factor for the x dimension

• The scaling factor for the y dimension

• The x offset for translation

• The y offset for translation

• The x skew

(setq translate-trnsfm ’(1 0 0 1 50 50))

 ;x offset = y offset = 50

(setq rotate-trnsfm ’(0 1 -1 0 0 0))

 ;rotate pi/4 radians

(setq scale-trnsfm ’(4 0 0 4 0 0))

 ;scale x = scale y = 4

(setq scale-then-rotate

 (graphics:compose-transforms scale-trnsfm rotate-trnsfm))

(setq composite-trnsfm

 (graphics:compose-transforms scale-then-rotate translate-trnsfm)))

(graphics:decompose-transform composite-trnsfm)�

Page 1505

� tv:*default-arrow-length* Variable

Bound to the default value of the ratio of the length of the arrowhead to the

thickness of the arrow shaft of arrows drawn by graphics:draw-arrow. Initially set

to 10.

� tv:*default-arrow-width* Variable

Bound to the default value of the ratio of the base width of the arrowhead to the

thickness of the arrow shaft of arrows drawn by graphics:draw-arrow. Initially set

to 5.

� graphics:defstipple name (height width) (&key :pretty-name :gray-level :tv-gray) pat-

terns Function

Defines a stipple array named name. patterns is a list of integers, typically using

#b, in which case there are height integers, each of which is width binary digits

long. The keywords :gray-level and :tv-gray specify when t that the resulting stip-

ple be added to the lists graphics::*gray-level-arrays* or tv:*gray-arrays*, re-

spectively.

The system defined stipples have a named array leader using the following def-

struct:

(defstruct (stipple-array :named-array-leader

 (:print-function print-stipple-array)

 (:constructor make-stipple-array)

 (:constructor-make-array-keywords (dimensions ’(1 32))

 (type ’sys:art-1b)))

 (name nil)

 (gray-level nil)

 (x-phase nil)

)

From this definition, the following constructor functions are derived:

graphics:make-stipple-array, graphics:stipple-array, graphics:stipple-array-

gray-level, graphics:stipple-array-name, graphics:stipple-array-repeat-size, and

graphics:stipple-array-x-phase.

Example:

(graphics:defstipple stipples:33%-gray (3 3) (:tv-gray t) (:gray-level t))

� graphics:device-pattern Flavor

The flavor for device-dependent patterns. It has one method, graphics:pattern-

call-with-drawing-parameters, which can be called with :pattern self to invoke a

device-specific drawing protocol.

Page 1506

� :draw-1-bit-raster width height raster from-x from-y to-x to-y &optional (ones-alu

:draw) (zeros-alu :erase) Generic Function

Draws a pattern onto the screen. The pattern is replicated as needed, as with

bitblt. Unlike bitblt, which copies bits regardless of any difference in bit depth

(element type) between the source array and the screen array, :draw-1-bit-raster

draws one screen pixel for each source pixel (the source must be a 1-bit array).

Bits that are on in the source are drawn using ones-alu and bits that are off are

drawn using zeros-alu. For a 1-bit screen, the result is like bitblt would have done

with tv:alu-seta.

To say it another way, :draw-1-bit-raster copies pixels from a 1-bit-per-pixel source

to the destination, which can be any pixel depth. If the destination is also 1-bit-

per-pixel, :draw-1-bit-raster is identical to bitblt, but if the destination has more

bits, :draw-1-bit-raster will do the "right" thing where bitblt would produce use-

less results. For detailed information on all the arguments of :draw-1-bit-raster:

See the function bitblt.

For a color screen, ones-alu and zeros-alu can be color alus. So, for instance, ones

bits might be put out in green and zeros bits in red. Even when drawing in black

in white to a color screen, :draw-1-bit-raster should be used for drawing stipples,

because a whole pixel needs to be drawn black for the on pixels, not just one bit

(which is only part of a pixel). Using :draw-1-bit-raster rather than bitblt is im-

portant in programs that run without modification on color screens.

� graphics:draw-arrow from-x from-y to-x to-y &rest args &key (arrow-head-length

tv:*default-arrow-length*) (arrow-base-width tv:*default-arrow-width*) (alu

:draw) (pattern nil) (stipple nil) (tile nil) (color nil) (gray-level 1) (opaque t) (mask

nil) (mask-x 0) (mask-y 0) (thickness 0) (scale-thickness t) (line-end-shape :butt)

(line-joint-shape :miter) (dashed nil) (dash-pattern ’(10 10)) (initial-dash-phase 0)

(draw-partial-dashes t) (scale-dashes nil) (stream *standard-output*) (return-

presentation nil) (rotation 0) (scale 1) (scale-x 1) (scale-y 1) (translation nil) (trans-

form nil) Function

Draws an arrow.

from-x The x-coordinate for the base of the arrow.

from-y The y-coordinate for the base of the arrow.

to-x The x-coordinate for the tip of the arrow.

to-y The y-coordinate for the tip of the arrow.�

Of the listed keyword options, :arrow-head-length and :arrow-base-width are

unique to graphics:draw-arrow and documented below. The remaining options are

common to other drawing functions and documented separately: See the section

"Keyword Options to Drawing Functions".

:arrow-head-length Specifiestheratioofthelengthofthe arrowheadto

the thickness of the arrow shaft. The default is the value of

Page 1507

tv:*default-arrow-length*, initially set to 10; thus, if thickness is 1

pixel, arrowhead length is 10 pixels, if thickness is 2, the length is

20, and so on.�

(graphics:with-room-for-graphics (t 100)

 (graphics:graphics-translate 20 0)

 (graphics:draw-arrow 0 0 0 50 :arrow-head-length 10)

 (graphics:graphics-translate 20 0)

 (graphics:draw-arrow 0 0 0 50 :arrow-head-length 20)

 (graphics:graphics-translate 20 0)

 (graphics:draw-arrow 0 0 0 50 :thickness 2 :arrow-head-length 10))

�

:arrow-base-width Specifiestheratioofthebasewidthof thearrowhead

to the thickness of the arrow shaft. The default is the value of

tv:*default-arrow-width*, initially set to 5; thus, if thickness is 1

pixel, arrowhead width is 5 pixels, if thickness is 2, the width is 10,

and so on.�

(graphics:with-room-for-graphics (t 100)

 (graphics:graphics-translate 20 0)

 (graphics:draw-arrow 0 0 0 50 :arrow-base-width 5)

 (graphics:graphics-translate 20 0)

 (graphics:draw-arrow 0 0 0 50 :arrow-base-width 10)

 (graphics:graphics-translate 20 0)

 (graphics:draw-arrow 0 0 0 50 :thickness 2 :arrow-base-width 5))

�

For an overview of graphics:draw-arrow and related functions: See the section

"Drawing Functions". Example:

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-arrow 0 0 100 100 :thickness 4))

�

� graphics:draw-bezier-curve start-x start-y end-x end-y control-1-x control-1-y control-

2-x control-2-y &key (alu :draw) (pattern nil) (stipple nil) (tile nil) (color nil) (gray-

Page 1508

level 1) (opaque t) (mask nil) (mask-x 0) (mask-y 0) (thickness 0) (scale-thickness t)

(line-end-shape :butt) (line-joint-shape :miter) (dashed nil) (dash-pattern ’(10 10))

(initial-dash-phase 0) (draw-partial-dashes t) (scale-dashes nil) (stream *standard-

output*) (return-presentation nil) (rotation 0) (scale 1) (scale-x 1) (scale-y 1) (transla-

tion nil) (transform nil) Function

Draws a Bezier parameterization of a cubic curve.

The curve passes through (start-x, start-y) and (end-x, end-y). The vector from

(start-x, start-y) to (control-1-x, control-1-y) determines the starting slope of the

curve; its length determines the next derivative. A similar relation exists between

(end-x, end-y) and (control-2-x, control-2-y). The curve is bounded by the quadrilat-

eral determined by the four points.

The following example approximates a couple of sine wave curves and shows the

bounding quadrilaterals for each:

(graphics:with-room-for-graphics (t 400)

 (graphics:with-graphics-translation (t 0 200)

 (graphics:draw-bezier-curve 0 0 200 0 100 200 100 -200)

 (graphics:draw-lines ’(0 0 100 200 200 0 100 -200 0 0)))

 (graphics:with-graphics-translation (t 200 200)

 (graphics:draw-bezier-curve 0 0 200 0 100 200 100 -200)

 (graphics:draw-lines ’(0 0 100 200 200 0 100 -200 0 0))))

�

The listed keyword options are common to other drawing functions and document-

ed separately: See the section "Keyword Options to Drawing Functions".

Page 1509

For an overview of graphics:draw-bezier-curve and related functions: See the sec-

tion "Drawing Functions".

� graphics:draw-bezier-curve-to px4 py4 px2 py2 px3 py3 &key (alu :draw) (pattern

nil) (stipple nil) (tile nil) (color nil) (gray-level 1) (opaque t) (mask nil) (mask-x 0)

(mask-y 0) (thickness 0) (scale-thickness t) (line-end-shape :butt) (line-joint-shape

:miter) (dashed nil) (dash-pattern #(10 10)) (initial-dash-phase 0) (draw-partial-

dashes t) (scale-dashes nil) (stream *standard-output*) (return-presentation nil) (ro-

tation 0) (scale 1) (scale-x 1) (scale-y 1) (translation nil) (transform nil) Function

Draws a Bezier parameterization of a cubic parabola from the current position of

the graphics cursor to a specified end point (px4, py4). The vector from the cur-

rent cursor position to (px2, py2) determines the starting slope of the curve; its

length determines the next derivative. A similar relation exists between (px4, py4)

and (px3, py3). The curve is bounded by the quadrilateral determined by the four

points. When done, the graphics cursor is moved to the end point.

This function is intended primarily for path building, that is, within path-drawing

functions supplied to graphics:draw-path or graphics:with-clipping-path. For an

example: See the function graphics:draw-path. Also: See the function

graphics:draw-bezier-curve.

The listed keyword options are common to all drawing functions and documented

separately: See the section "Keyword Options to Drawing Functions".

For an overview of graphics:draw-bezier-curve-to and related functions: See the

section "Drawing Functions".

(graphics:with-room-for-graphics (t 100)

 (graphics:drawing-path ()

 (graphics:set-current-position 0 0)

 (graphics:draw-bezier-curve-to 50 50 25 75 40 0)

 (graphics:draw-line-to 50 0)

 (graphics:close-path)))

� (flavor:method :draw-char tv:sheet) char x-bitpos y-bitpos &optional (alu tv:char-

aluf) Method

Displays char with its upper left corner at coordinates (x-bitpos, y-bitpos).

� graphics:draw-circle center-x center-y radius &key (:inner-radius 0) (:start-angle 0)

(:end-angle graphics:2pi) (:alu :draw) (:filled t) :color (:gray-level 1) :tile :stipple :re-

turn-presentation :pattern (:opaque t) :mask (:mask-x 0) (:mask-y 0) :thickness (:scale-

thickness t) (:line-end-shape :butt) (:line-joint-shape :miter) :dashed :dash-pattern

(:initial-dash-phase 0) (:draw-partial-dashes t) :scale-dashes (:stream *standard-

Page 1510

output*) (:rotation 0) :clockwise :join-to-path (:scale 1) (:scale-x 1) (:scale-y 1) :trans-

lation :transform Function

Draws a circle. The circle may end up looking like an ellipse on the screen if the

current transformation matrix does not scale x and y uniformly.

center-x The x-coordinate for the center of the circle.

center-y The y-coordinate for the center of the circle.

radius The radius of the circle.�

Of the listed keyword options, :inner-radius, :start-angle, :end-angle, and

:clockwise are unique to graphics:draw-circle and documented below. The remain-

ing options are common to other drawing functions and documented separately:

See the section "Keyword Options to Drawing Functions".

:inner-radius Specifiestheinnerradiusofacircularringfigure;the

default is 0.

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-circle 50 50 50 :inner-radius 25))

�

:start-angle Specifiestheangleinradiansatwhichdrawing ofthe

circle begins; the default is 0. This argument is interpreted the

same way that the argument returned by the atan function is in-

terpreted. Since in a window increasing y is down the screen, this

means that angles with positive sines also point down the screen.

(This is not the way the :draw-circular-arc message interprets an-

gles.) To avoid confusion, use a local coordinate system oriented in

the direction you prefer, such as with graphics:with-room-for-

graphics.

Used in conjunction with the :end-angle option, arbitrary circular

arcs or wedges can be drawn. The following example draws a filled

semicircle starting at 90 degrees and ending at 270 degrees:

(graphics:with-room-for-graphics (t 200)

 (graphics:draw-circle 100 100 50

:start-angle (* pi 1/2)

:end-angle (* pi 3/2)))

Page 1511

�

�

:end-angle Specifiestheangleinradiansatwhichdrawing ofthe

circle ends; the default is graphics:2pi. Refer to the :start-angle

option for a note about the orientation of angles and for an exam-

ple.

Used in conjunction with the :start-angle option, arbitrary circular

arcs or wedges can be drawn. For an example, see the :start-angle

option.

:clockwise Booleanoptionspecifyingwhetherthecircleisdrawn

in a clockwise or counterclockwise direction. The default is nil,

counterclockwise.

When graphics:draw-circle is being used as a standalone drawing

function, this option only has a visible effect when less than a full

circle is drawn, that is, when the :start-angle or :end-angle option

is specified to some non-default value. The following example illus-

trates this:

(defun clockwise-circle (t-or-nil)

 (graphics:with-room-for-graphics (t 200)

 (graphics:draw-circle 100 100 50

 :end-angle (* .5 pi)

 :clockwise t-or-nil)))

Page 1512

�

(clockwise-circle t)

(clockwise-circle nil)

When graphics:draw-circle is being used as a path-drawing func-

tion inside graphics:draw-path, this option affects path winding

rules. For more information: See the function graphics:draw-path.

Note that if you wish to include an arc as part of a drawing-path

outline, you should use the graphics:draw-ellipse function and, in

particular, that function’s :join-to-path option, instead of

graphics:draw-circle.�

For an overview of graphics:draw-circle and related functions: See the section

"Drawing Functions". For information on how circles are drawn and how to obtain

the appearance you prefer: See the section "Scan Conversion".

See the macro graphics:with-coordinate-mode.

(graphics:with-room-for-graphics (t 200)

 (graphics:draw-circle 50 50 50)

 (graphics:draw-circle 0 0 50 :translation ’(250 50) :scale-x 2)

 (graphics:draw-circle 0 0 50 :translation ’(450 50) :scale-x 1.5 :rotation 1))

�

� (flavor:method :draw-circle tv:graphics-mixin) center-x center-y radius &optional

alu Method

Page 1513

Draw the outline of a circle specified by its center and radius.

� graphics:draw-circle-driver center-x center-y radius slice-function Function

Scan-converts the given circle, that is, computes the coordinates of the pixels that

lie in the circle on a two-dimensional raster grid, and calls slice-function to draw

these pixels. See the section "Graphics Drivers".

center-x The x-coordinate for the center of the circle.

center-y The y-coordinate for the center of the circle.

radius The radius of the circle.

slice-function A function specifying how a rectangular slice of the

circle is to be drawn on a raster device and possibly specifying any

other operations to be performed in conjunction with drawing the

slice. This function must take four arguments: width, the width of

the slice; height, its height; and x and y, the coordinates of the

slice’s location. A typical slice function is

#’(lambda (width height x y)

(send *standard-output* :draw-rectangle

width height x y :draw))�

� (flavor:method :draw-circular-arc tv:graphics-mixin) center-x center-y radius

start-theta end-theta &optional (alu tv:char-aluf) Method

Draws a circular arc for the circle centered at center-x, center-y with radius radius.

It draws the part of the circle swept counterclockwise from the starting angle to

the finishing angle. The angles are assumed to be in radians and are reduced mod

2pi before drawing. For example, drawing from pi/4 to -pi/4 draws a "C". The same

"C" appears when you draw from pi/4 to 7pi/4. Note: the interpretation of start-

theta and end-theta are different for this message than it is for the graphics:draw-

circle start-angle and end-angle: the angles are measured as they appear, not as a

call to zl:atan would return if you gave it the position of the relevant points, since

the positive y-direction is down.

For tv:alu-xor, the behavior with respect to points that would fall on the same

pixel is not defined.

� graphics:draw-circular-arc-through-point-to to-x to-y through-x through-y &key

(alu :draw) (pattern nil) (stipple nil) (tile nil) (color nil) (gray-level 1) (opaque t)

(mask nil) (mask-x 0) (mask-y 0) (thickness 0) (scale-thickness t) (line-end-shape

:butt) (line-joint-shape :miter) (dashed nil) (dash-pattern #(10 10)) (initial-dash-

phase 0) (draw-partial-dashes t) (scale-dashes nil) (stream *standard-output*) (re-

turn-presentation nil) (rotation 0) (scale 1) (scale-x 1) (scale-y 1) (translation nil)

(transform nil) Function

Page 1514

Draws a circular arc through three points. The first point is the current position.

The final position, specified by (to-x to-y), is the second point. The third point,

specified by (through-x through-y), also lies on the circle.

(graphics:with-room-for-graphics (t 200)

 (graphics:drawing-path (t :filled nil)

 (graphics:with-graphics-translation (t 100 50)

(graphics:set-current-position 0 0)

(graphics:draw-circular-arc-through-point-to 100 100 20 80)

(graphics:draw-line-to 20 80)

(graphics:close-path))))

�

This function is intended primarily for path building, that is, within path-drawing

functions supplied to graphics:draw-path or graphics:with-clipping-path. For ex-

amples of path-drawing functions: See the function graphics:draw-path.

The listed keyword options are common to all drawing functions and documented

separately: See the section "Keyword Options to Drawing Functions".

For an overview of graphics:draw-circular-arc-through-point-to and related func-

tions: See the section "Drawing Functions".

� graphics:draw-circular-arc-to to-x to-y tangent-intersection-x tangent-intersection-y

radius &key (alu :draw) (pattern nil) (stipple nil) (tile nil) (color nil) (gray-level 1)

(opaque t) (mask nil) (mask-x 0) (mask-y 0) (thickness 0) (scale-thickness t) (line-

end-shape :butt) (line-joint-shape :miter) (dashed nil) (dash-pattern #(10 10)) (ini-

tial-dash-phase 0) (draw-partial-dashes t) (scale-dashes nil) (stream *standard-

output*) (return-presentation nil) (rotation 0) (scale 1) (scale-x 1) (scale-y 1) (transla-

tion nil) (transform nil) Function

Draws a circular arc, with a specified radius, tangent to two lines. The first tan-

gent passes through the current position of the graphics cursor and the point spec-

ified by (tangent-intersection-x tangent-intersection-y). The second passes through the

intersection point and (to-x to-y). The two tangents, articulating at (tangent-

intersection-x tangent-intersection-y), form the "sharpened" version of the arc you

wish to draw.

The arc is drawn in the direction of (to-x to-y), between the two tangent intersec-

tion points, that is, the points where the arc intersects the tangent lines. If the

starting position of the graphics cursor is different than the first tangent intersec-

tion point, then a straight line segment is drawn from the current cursor position

Page 1515

to the starting point of the arc. When done, the graphics cursor is moved to the

end of the arc. The function returns four values: tangent-point-x1, tangent-point-y1,

tangent-point-x2, and tangent-point-y2, the coordinates of the points of tangency.

The following example draws arcs providing two rounded corners, one convex and

one concave:

(graphics:with-room-for-graphics (t 300)

 (graphics:drawing-path ()

 (graphics:with-graphics-translation (t 100 50)

(graphics:set-current-position 0 0)

(graphics:draw-circular-arc-to 200 200 0 200 50)

(graphics:draw-line-to 200 200)

(graphics:close-path)

(graphics:set-current-position 0 0)

(graphics:draw-line-to 150 0)

(graphics:draw-circular-arc-to 200 50 150 50 50)

(graphics:draw-line-to 200 200)

(graphics:close-path))))

�

�

This function is intended primarily for path building, that is, within path-drawing

functions supplied to graphics:draw-path or graphics:with-clipping-path. For ex-

amples of path-drawing functions: See the function graphics:draw-path.

The listed keyword options are common to all drawing functions and documented

separately: See the section "Keyword Options to Drawing Functions".

For an overview of graphics:draw-circular-arc-to and related functions: See the

section "Drawing Functions".

� graphics:draw-circular-arc-to-compute-points from-x from-y to-x to-y tangent-

intersection-x tangent-intersection-y radius Function

from-x The x coordinate of the first tangent line.

Page 1516

from-y The y coordinate of the first tangent line.

to-x The x coordinate of the second tangent line.

to-y The y coordinate of the second tangent line.

tangent-intersection-x The x coordinate of the intersection of the tangent

lines.

tangent-intersection-y The y coordinate of the intersection of the tangent

lines.

radius The radius of the circle to be drawn.�

Where a circular arc is to be drawn tangent to two given lines with a specified

radius, graphics:draw-circular-arc-to-compute-points computes and returns nine

values:

center-x The x coordinate of center of the circle.

center-y The y coordinate of center of the circle.

theta-1 The starting angle of circular arc to be drawn.

theta-2 The ending angle of circular arc to be drawn.

clockwise A Boolean specifying, when t, that the arc is to be drawn in a

clockwise direction from theta-1 to theta-2 or, when nil, conterclock-

wise.

tangent-point-x1 The x coordinate of the beginning of the arc.

tangent-point-y1 The y coordinate of the beginning of the arc.

tangent-point-x2 The x coordinate of the end of the arc.

tangent-point-y2 The y coordinate of the end of the arc.

theta-1, theta-2, and clockwise are calculated such that the arc drawn is never

greater than a semicircle (> (- theta-2 theta-1) pi) and the direction is the one

specified.

� graphics:draw-circular-ring-driver center-x center-y inner-radius outer-radius slice-

function Function

Scan-converts the circular ring, that is, computes the coordinates of the pixels that

lie between an outer circle specified by major-radius and an inner circle specified

by minor-radius on a two-dimensional raster grid, and calls slice-function to draw

these pixels. See the section "Graphics Drivers".

center-x The x-coordinate for the center of the circular ring.

center-y The y-coordinate for the center of the circular ring.

major-radius The outer radius of the circular ring.

minor-radius The inner radius of the circular ring.

Page 1517

slice-function A function specifying how a rectangular slice of the

circular ring is to be drawn on a raster device and possibly specify-

ing any other operations to be performed in conjunction with draw-

ing the slice. This function must take four arguments: width, the

width of the slice; height, its height; and x and y, the coordinates of

the slice’s location. A typical slice function is

#’(lambda (width height x y)

(send *standard-output* :draw-rectangle width height x y :draw))�

� (flavor:method :draw-closed-curve tv:graphics-mixin) x-array y-array &optional

end (alu tv:char-aluf) Method

:draw-closed-curve draws a sequence of connected line segments, using the points

in x-array and y-array as the x and y coordinates for the end-points of the lines. It

ensures that each particular point is drawn only once, which is necessary for pro-

ducing a connected line with tv:alu-xor. It plots the points in the arrays until end

elements or until it encounters nil in either of the arrays. The default for end is

the length of x-array. alu specifies how the pixels being drawn combine with those

already there. It plots the points in the arrays until end elements or until it en-

counters nil in either of the arrays.

:draw-closed-curve is the same as :draw-curve except that it closes the figure by

joining the first and last points.

� graphics:draw-conic-section from-x from-y to-x to-y tangent-x tangent-y &key :shape

(:alu :draw) :pattern :stipple :tile :color (:gray-level 1) (:opaque t) :mask (:mask-x 0)

(:mask-y 0) :thickness (:scale-thickness t) (:line-end-shape :butt) (:line-joint-shape

:miter) :dashed (:dash-pattern #<ART-Q-2 550031730>) (:initial-dash-phase 0)

(:draw-partial-dashes t) :scale-dashes (:stream *standard-output*) :return-

presentation (:rotation 0) (:scale 1) (:scale-x 1) (:scale-y 1) :translation :transform

Function

Draws a conic section through two points, <from-x from-y> and <to-x, to-y>. The

section is tangent to the two lines whose intersection is <tangent-x, tangent-y>. The

first tangent passes through <from-x from-y> and the point <tangent-x, tangent-y>.

The second tangent passes through <tangent-x, tangent-y> and <to-x, to-y>. The two

tangents, articulating at <tangent-x, tangent-y>, form the "sharpened" version of the

section you wish to draw. Parametrically, the curve drawn is the Bezier quadratic

curve t^2*P2+2s*t(1-t)*Pc+(1-t)^2*P1, where t is the parameter, P1 and P2 are the

two endpoints, Pc is the intersection of the tangents, and s is related to the shape

parameter.

shape The eccentricity of the conic section from a parabola: if shape=1,

the curve is a parabola; if shape<1, the curve is an ellipse; if

shape>1, the curve is a hyperbola. The default of shape specifies the

curve of the least eccentricity that will satisfy the constraints. If

you take the default, the section will always be an elliptical arc. If

Page 1518

the tangents meet at a right angle, the axes of the ellipse will be

parallel to the tangents, and, additionally, if the magnitudes of the

tangent lines are equal, the section will be a circular arc. If you

specify shape to be less than or equal to 1, your bounding triangle

can be any shape; however, keep in mind that if you specify

shape>1, the angle at <tangent-x, tangent-y> has to be large enough

so that its secant is at least equal to shape.

The section is drawn in the direction of (to-x to-y). When done, the graphics cursor

is moved to the end of the section.

(defun conic-example (from-x from-y

 to-x to-y tan-x tan-y &optional (shape nil))

 (graphics:with-room-for-graphics (t 200)

 (graphics:with-graphics-translation (t 50 50)

 (graphics:draw-line tan-x tan-y to-x to-y)

 (graphics:draw-line tan-x tan-y from-x from-y)

 (graphics:draw-conic-section from-x from-y

 to-x to-y tan-x tan-y :shape shape))))�

(conic-example 0 100 100 0 0 0)

�

�

(conic-example 0 100 100 0 0 0 1)

�

�

�

(conic-example 0 100 100 0 40 40)

Page 1519

�

�

(conic-example 0 100 100 0 40 40 1)

�

�

(conic-example 0 100 100 0 40 40 1.1)

�

� graphics:draw-conic-section-to to-x to-y tangent-x tangent-y &key shape (alu :draw)

(pattern nil) (stipple nil) (tile nil) (color nil) (gray-level 1) (opaque t) (mask nil)

(mask-x 0) (mask-y 0) (thickness 0) (scale-thickness t) (line-end-shape :butt) (line-

joint-shape :miter) (dashed nil) (dash-pattern #(10 10)) (initial-dash-phase 0) (draw-

partial-dashes t) (scale-dashes nil) (stream *standard-output*) (return-presentation

nil) (rotation 0) (scale 1) (scale-x 1) (scale-y 1) (translation nil) (transform nil)

Function

Draws a conic section through two points, the current graphics cursor position and

<to-x, to-y>. The section is tangent to the two lines whose intersection is

<tangent-x, tangent-y>. The first tangent passes through the current position of the

graphics cursor and the point <tangent-x, tangent-y>. The second tangent passes

through <tangent-x, tangent-y> and <to-x, to-y>. The two tangents, articulating at

Page 1520

<tangent-x, tangent-y>, form the "sharpened" version of the section you wish to

draw. Parametrically, the curve drawn is the Bezier quadratic curve

t^2*P2+2s*t(1-t)*Pc+(1-t)^2*P1, where t is the parameter, P1 and P2 are the two

endpoints, Pc is the intersection of the tangents, and s is related to the shape pa-

rameter.

shape The eccentricity of the conic section from a parabola: if shape=1,

the curve is a parabola; if shape<1, the curve is an ellipse; if

shape>1, the curve is a hyperbola. The default of shape specifies the

curve of the least eccentricity that will satisfy the constraints. If

you take the default, the section will always be an elliptical arc. If

the tangents meet at a right angle, the axes of the ellipse will be

parallel to the tangents, and, additionally, if the magnitudes of the

tangent lines are equal, the section will be a circular arc. If you

specify shape to be less than or equal to 1, your bounding triangle

can be any shape; however, keep in mind that if you specify

shape>1, the angle at <tangent-x, tangent-y> has to be large enough

so that its secant is at least equal to shape.�

The section is drawn in the direction of (to-x to-y). When done, the graphics cursor

is moved to the end of the section.

This function is intended primarily for path building, that is, within path-drawing

functions supplied to graphics:draw-path or graphics:with-clipping-path. For ex-

amples of path-drawing functions: See the function graphics:draw-path.

With the exception of :shape, documented above, the listed keyword options are

common to all drawing functions and documented separately: See the section "Key-

word Options to Drawing Functions".

For an overview of graphics:draw-conic-section-to and related functions: See the

section "Path-Drawing Functions".

� graphics:draw-cubic-spline points &key (start-relaxation :relaxed) (end-relaxation

graphics::start-relaxation) start-slope-dx start-slope-dy end-slope-dx end-slope-dy

(number-of-samples 20) &allow-other-keys (alu :draw) (pattern nil) (stipple nil) (tile

nil) (color nil) (gray-level 1) (opaque t) (mask nil) (mask-x 0) (mask-y 0) (thickness

0) (scale-thickness t) (line-end-shape :butt) (line-joint-shape :miter) (dashed nil)

(dash-pattern ’(10 10)) (initial-dash-phase 0) (draw-partial-dashes t) (scale-dashes

nil) (stream *standard-output*) (return-presentation nil) (rotation 0) (scale 1)

(scale-x 1) (scale-y 1) (translation nil) (transform nil) Function

Draws a cubic spline through a series of points.

points A list of points in the form (x1 y1 x2 y2 ... xn yn).�

Of the listed keyword options, :start-relaxation, :end-relaxation, :start-slope-dx,

:start-slope-dy, :end-slope-dx, :end-slope-dy, and :number-of-samples are unique

to graphics:draw-cubic-spline and documented below. The :number-of-samples

documentation includes an example. The remaining options are common to other

Page 1521

drawing functions and documented separately: See the section "Keyword Options to

Drawing Functions".

:start-relaxation Determinestheboundarycondition(derivative)ofthe

curve at its starting point (x1, y1). Four values are possible:

:relaxed The derivative is set to a value that continues the trend

of the curve established by neighboring points. This is the

default.

:cyclic If you specify this value, then the value of :end-

relaxation must also be :cyclic. This forces the deriva-

tives at the two end-points of the curve to be equal. When

the starting and ending points are equal, this results in a

smooth, continuous curve. This that is, the specifica-

tion of identical start and end points is the normal way

to make use of the cyclic option. If the starting and end-

ing points specified by the user are not equal, the drawing

function adds the beginning point on to the end of the list

of points it uses, resulting in a closed curve in which a

straight line connects the starting and ending point.

:anti-cyclic If you specify this value, then the value of :end-

relaxation must also be :anti-cyclic. This forces the

derivatives at the two end-points of the curve to be equal

in magnitude but opposite in sign. When the starting and

ending points are equal, this causes the curve to come to

a point. This that is, the specification of identical start

and end points is the normal way to make use of the

anti-cyclic option. If the starting and ending points speci-

fied by the user are not equal, the drawing function adds

the beginning point on to the end of the list of points it

uses, resulting in a closed curve in which a straight line

connects the starting and ending point.

:clamped Clamps the derivative to the values specified by the

:start-slope-dx, :start-slope-dy, :end-slope-dx, and :end-

slope-dy options.�

(defun spline-relaxation (start-relaxation)

 (graphics:with-room-for-graphics (t 50)

 (graphics:draw-cubic-spline ’(0 20 20 40 40 20 20 0 0 20)

:number-of-samples 5

:start-relaxation start-relaxation)))

�

(spline-relaxation :cyclic)

(spline-relaxation :anti-cyclic)

Page 1522

:end-relaxation Determinestheboundarycondition(derivative)ofthe

curve at its ending point (xn, yn). It defaults to the value of :start-

relaxation. Four values are possible:

:relaxed The derivative is set to a value that continues the trend

of the curve established by neighboring points.

:cyclic If you specify this value, then the value of :start-

relaxation must also be :cyclic. This forces the deriva-

tives at the two end-points of the curve to be equal. When

the starting and ending points are equal, this results in a

smooth, continuous curve. This that is, the specifica-

tion of identical start and end points is the normal way

to make use of the cyclic option.

:anti-cyclic If you specify this value, then the value of :start-

relaxation must also be :anti-cyclic. This forces the

derivatives at the two end-points of the curve to be equal

in magnitude but opposite in sign. When the starting and

ending points are equal, this causes the curve to come to

a point. This that is, the specification of identical start

and end points is the normal way to make use of the

anti-cyclic option.

:clamped Clamps the derivative to the values specified by :start-

slope-dx, :start-slope-dy, :end-slope-dx, and :end-slope-dy

options.�

:start-slope-dx Specifiesthedxcomponentofthederivativeatthe

starting point (x1, y1) of the curve. If you wish to specify this value,

then you must supply :start-relaxation :clamped and specify the

remaining three slope values.

:start-slope-dy Specifiesthedycomponentofthederivativeatthe

starting point (x1, y1) of the curve. If you wish to specify this value,

then you must supply :start-relaxation :clamped and specify the

remaining three slope values.

:end-slope-dx Specifiesthedxcomponentofthederivativeatthe

ending point (xn, yn) of the curve. If you wish to specify this value,

then you must supply :end-relaxation :clamped and specify the re-

maining three slope values.

:end-slope-dy Specifiesthedycomponentofthederivativeatthe

ending point (xn, yn) of the curve. If you wish to specify this value,

then you must supply :end-relaxation :clamped and specify the re-

maining three slope values.

:number-of-samples Thenumberofintermediatepointsgeneratedbetween

each pair of points specified in the points argument. The default is

Page 1523

20.

Because the curve is drawn through each intermediate point, the

more such points the smoother the curve, but the longer it takes to

get drawn. This is illustrated by the following example:�

�

(defun cubic-spline-example (n)

 (graphics:with-room-for-graphics (t 450)

 (graphics:with-graphics-translation (t 200 200)

 (let ((points-1 (list 0 50 25 90 40 70 30 0 50 70

 70 80 70 50 100 90 100 40 110 0

 130 30 150 40 130 20 145 0 160 20

 145 35 170 40 190 40 190 0 200 30

 220 20 240 40 250 20 260 0 270 20))

 (points-2 (list 160 -200 60 -80 -40 0 -70 100 40 190

 145 130 144 129 200 200 300 200 330 60

 230 -80 160 -200)))

 (graphics:draw-cubic-spline points-1 :number-of-samples 3

 :thickness 4)

 (graphics:draw-cubic-spline points-2

 :start-relaxation :anti-cyclic

 :number-of-samples n

 :thickness 4)))))�

(cubic-spline-example 1)

(cubic-spline-example 5)

�

A reasonable :number-of-samples for the inner spline was deter-

mined, by trial and error, to be 3. For the outer spline, 4 or 5

seems about right, but try a range of values and note the trade-off

between smoothness and speed. (For best results, REFRESH the

screen each time you run this example.)

For an overview of graphics:draw-cubic-spline and related functions: See the sec-

tion "Drawing Functions".

(graphics:with-room-for-graphics (t 50)

 (graphics:draw-cubic-spline ’(0 0 20 20 30 0) :number-of-samples 5))

�

� (flavor:method :draw-cubic-spline tv:graphics-mixin) px py z &optional curve-

width alu c1 c2 p1-prime-x p1-prime-y pn-prime-x pn-prime-y Method

Draws a cubic spline curve that passes through a sequence of points. The arrays

px and py hold the x and y coordinates of the sequence of points; the number of

points is determined from the active length of px. Through each successive pair of

points, a parametric cubic curve is drawn with the :draw-curve message, using z

Page 1524

points for each such curve. If curve-width is provided, the :draw-wide-curve mes-

sage is used instead, with the given width. The cubics are computed so that they

match in position and first derivative at each of the points. At the end points,

there are no derivatives to be matched, so the caller must specify the boundary

conditions. c1 is the boundary condition for the starting point, and it defaults to

:relaxed; c2 is the boundary condition for the ending point, and it defaults to the

value of c1. The possible values of boundary conditions are:

:relaxed Makes the derivative zero at this end.

:clamped Allows the caller to specify the derivative. The arguments p1-prime-x

and p1-prime-y specify the derivative at the starting point, and are only

used if c1 is :clamped; likewise, pn-prime-x and pn-prime-y specify the

derivative at the ending point, and are only used if c2 is :clamped.

:cyclic Makes the derivative at the starting point and the ending point be equal. If

c1 is :cyclic then c2 is ignored. To draw a closed curve through n points, in

addition to using :cyclic, you must pass in px and py with one more than n

entries, since you must pass in the first point twice, once at the beginning

and once at the end.

:anti-cyclic Makes the derivative at the starting point be the negative of the

derivative at the ending point. If c1 is :anticyclic then c2 is ignored.�

� (flavor:method :draw-curve tv:graphics-mixin) x-array y-array &optional end alu

Method

Draws a sequence of connected line segments. The x and y coordinates of the

points at the ends of the segments are in the arrays x-array and y-array. The

points between line segments are drawn exactly once and the point at the end of

the last line is not drawn at all; this is especially useful when alu is tv:alu-xor.

The number of line segments drawn is 1 less than the length of the arrays, unless

a nil is found in one of the arrays first in which case the lines stop being drawn.

If end is specified it is used in place of the actual length of the arrays.

� (flavor:method :draw-dashed-line tv:graphics-mixin) from-x from-y to-x to-y &op-

tional (alu tv:char-aluf) (dash-spacing 20) space-literally-p (offset 0) dash-length

Method

Draws a dashed line along the line lying between two points. All the dashes are

the same length; all the spaces between the dashes are the same length. (The

spaces, however, need not be the same length as the dashes). The spacing and

lengths of the dashes are controlled by separate arguments.

alu Controls how the pixels being drawn combine with pixels al-

ready in the window. The default is the tv:char-aluf for the

window.

Page 1525

dash-spacing Specifies the distance from the beginning of one dash to the

beginning of the next dash. It is expressed in pixels. The de-

fault is 20. (The spacing between dashes is dash-spacing minus

dash-length.) This specifies the "frequency" of the line.

space-literally-p Controls what happens when the distance between the points,

given the specified spacings, would not produce a full-size dash

connected to the endpoint.

The default value, nil, allows the size of dash-spacing to be ad-

justed slightly so that the dashes are all of equal size and both

endpoints look the same, as far as dash length goes. In this

case, the dash-length is always exactly half of the dash-spacing;

any values for offset and dash-length are ignored.

The value t means to use dash-spacing exactly, with no adjust-

ment. The endpoint might or might not have a dash connected

to it, depending on the exact distances involved.

offset Specifies a distance (in pixels) from the starting point (from-x,

from-y) for the beginning of the first dash. This lets you con-

trol the "phase" of the dashed line.

dash-length Specifies the length of the line segments, in pixels. It must be

less than dash-spacing. This lets you control the "duty cycle" of

the line. The default is half the value of dash-spacing.�

You can make complex dashing by using :draw-dashed-line many times with space-

literally-p as t. For example:

(progn

 (dw:with-own-coordinates (CL:*standard-output*)

 (send CL:*standard-output*

 ’:draw-dashed-line 0 0 200. 200. tv:alu-ior 25. t 0 10.)

 (send CL:*standard-output*

 ’:draw-dashed-line 0 0 200. 200. tv:alu-ior 25. t 15. 5.)))

This gives you alternating long and short dashes. Because the default value, nil,

for space-literally-p changes the spacing, this technique does not work well when

space-literally-p is nil.

� graphics:draw-ellipse center-x center-y x-radius y-radius &key (inner-x-radius 0)

(inner-y-radius (/ (* graphics::inner-x-radius graphics::y-radius) graphics::x-

radius)) (start-angle 0) (end-angle graphics:2pi) (clockwise nil) (join-to-path nil)

(alu :draw) (pattern nil) (filled t) (stipple nil) (tile nil) (color nil) (gray-level 1)

(opaque t) (mask nil) (mask-x 0) (mask-y 0) (thickness 0) (scale-thickness t) (line-

end-shape :butt) (line-joint-shape :miter) (dashed nil) (dash-pattern ’(10 10)) (ini-

tial-dash-phase 0) (draw-partial-dashes t) (scale-dashes nil) (stream *standard-

output*) (return-presentation nil) (rotation 0) (scale 1) (scale-x 1) (scale-y 1) (transla-

tion nil) (transform nil) Function

Draws an ellipse, with

Page 1526

center-x The horizontal center of the ellipse.

center-y The vertical center of the ellipse.

x-radius The length of one of the ellipse’s semi-axes; in the unrotated figure

this axis is oriented horizontally.

y-radius The length of the other semi-axis of the ellipse; in the unrotated

figure this axis is oriented vertically.�

Of the listed keyword options, :inner-x-radius, :inner-y-radius, :start-angle, :end-

angle, :clockwise, and :join-to-path are unique to graphics:draw-ellipse and docu-

mented below. The remaining options are common to other drawing functions and

documented separately: See the section "Keyword Options to Drawing Functions".

:inner-x-radius Specifiestheinnerhorizontal(unrotated)semi-axisof

an elliptical ring figure; the default is 0.

Example:

(graphics:with-room-for-graphics (t 200)

 (graphics:with-graphics-translation (t 200 100)

 (graphics:draw-ellipse 0 0 115 100

 :inner-x-radius 114

 :inner-y-radius 40)

 (graphics:draw-ellipse 0 0 32 28)))

�

:inner-y-radius Specifiestheinnervertical(unrotated)semi-axisofan

elliptical ring figure. The default value is calculated so that the ra-

tio of the two inner semi-axes equals the ratio of the two outer se-

mi-axes.

For an example, see the :inner-x-radius option.

:start-angle Specifiestheangleinradiansatwhichdrawing ofthe

ellipse begins; the default is 0. This argument is interpreted the

same way that the argument returned by the atan function is in-

terpreted. Since in a window increasing y is down the screen, this

means that angles with positive sines also point down the screen.

(This is not the way the :draw-circular-arc message interprets an-

Page 1527

gles.) To avoid confusion, use a local coordinate system oriented in

the direction you prefer, such as with graphics:with-room-for-

graphics.

Used in conjunction with the :end-angle option, arbitrary elliptical

wedges can be drawn. The following example draws a semi-ellipse

starting at 90 degrees and ending at 370 degrees:

(graphics:with-room-for-graphics (t 200)

 (graphics:draw-ellipse 200 100 100 35

:start-angle (* .5 pi)

:end-angle (* 1.5 pi)))

�

:end-angle Specifiestheangleinradiansatwhichdrawing ofthe

circle ends; the default is graphics:2pi. Refer to the :start-angle

option for a note about angle orientation.

Used in conjunction with the :start-angle option, arbitrary elliptical

wedges can be drawn. For an example, see the :start-angle option.

:clockwise Booleanoptionspecifyingwhethertheellipseisdrawn

in a clockwise or counterclockwise direction. The default is nil,

counterclockwise.

When graphics:draw-ellipse is being used as a standalone drawing

function, this option only has a visible effect when less than a full

ellipse is drawn, that is, when the :start-angle or :end-angle option

is specified to some non-default value. The following example illus-

trates this:

(defun clockwise-ellipse (t-or-nil)

 (graphics:with-room-for-graphics (t 200)

 (graphics:draw-ellipse 200 100 100 35

 :end-angle (* .5 pi)

 :clockwise t-or-nil)))

�

�

(clockwise-ellipse t)

Page 1528

�

�

(clockwise-ellipse nil)

�

When graphics:draw-ellipse is being used as a path-drawing func-

tion inside graphics:draw-path, this option affects path-winding

rules. For more information: See the function graphics:draw-path.

See also the :join-to-path option below.

:join-to-path Specifythisoptiontwhenyouaremakinganelliptical

arc part of a path outline, that is, using it in a graphics:draw-path

function. This is to ensure that the arc joins the path properly to

allow for filling without gaps.

For an overview of graphics:draw-ellipse and related functions: See the section

"Drawing Functions".

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-ellipse 100 50 40 20 :filled nil)

 (graphics:draw-ellipse 0 0 40 20

 :translation ’(300 50) :rotation (* pi 1/4)))

�

� graphics:draw-ellipse-driver center-x center-y x-radius y-radius slice-function

Function

center-x The x-coordinate of the horizontal center of the ellipse.

Page 1529

center-y The y-coordinate of the vertical center of the ellipse.

x-radius The length of the ellipse’s horizontal semi-axis.

y-radius The length of the vertical semi-axis of the ellipse.

slice-function A function specifying how a rectangular slice of the el-

lipse is to be drawn on a raster device and possibly specifying any

other operations to be performed in conjunction with drawing the

slice. This function must take four arguments: width, the width of

the slice; height, its height; and x and y, the coordinates of the

slice’s location. A typical slice function is

#’(lambda (width height x y)

(send *standard-output* :draw-rectangle width height x y :draw))�

Scan-converts the given ellipse, that is, computes the coordinates of the pixels that

lie in the ellipse on a two-dimensional raster grid, and calls slice-function to draw

these pixels. See the section "Graphics Drivers".

� graphics:draw-elliptical-ring-driver center-x center-y inner-x-radius inner-y-radius

outer-x-radius outer-y-radius slice-function Function

center-x The x-coordinate of the horizontal center of the elliptical ring.

center-y The y-coordinate of the vertical center of the elliptical ring.

inner-x-radius The length of the elliptical ring’s inner horizontal se-

mi-axis.

inner-y-radius The length of the vertical inner semi-axis of the ellip-

tical ring.

outer-x-radius The length of the elliptical ring’s outer horizontal se-

mi-axis.

outer-y-radius The length of the vertical outer semi-axis of the ellipti-

cal ring.

slice-function A function specifying how a rectangular slice of the el-

liptical ring is to be drawn on a raster device and possibly specify-

ing any other operations to be performed in conjunction with draw-

ing the slice. This function must take four arguments: width, the

width of the slice; height, its height; and x and y, the coordinates of

the slice’s location. A typical slice function is

#’(lambda (width height x y)

(send *standard-output* :draw-rectangle width height x y :draw))

Scan-converts the given elliptical ring, that is, computes the coordinates of the pix-

els that lie on the elliptical ring on a two-dimensional raster grid, and calls slice-

function to draw these pixels. See the section "Graphics Drivers".

Page 1530

� (flavor:method :draw-filled-in-circle tv:graphics-mixin) center-x center-y radius

&optional alu Method

Draws a filled-in circle specified by its center and radius. The actual figure pro-

duced is one pixel wider than radius.

� (flavor:method :draw-filled-in-sector tv:graphics-mixin) center-x center-y radius

theta-1 theta-2 &optional alu Method

Draws a "triangular" section of a filled-in circle, bounded by an arc of the circle

and the two radii at theta-1 and theta-2. These angles are in radians; an angle of

zero is the positive-X direction, and angles increase counter-clockwise. Note: the

interpretation of start-theta and end-theta are different for this message than it is

for the graphics:draw-circle start-angle and end-angle. Also, the figure is not quite

the same s the relevant portion produced by :draw-filled-in-circle.

� graphics:draw-glyph index font x y &key (alu :draw) (pattern nil) (stipple nil) (tile

nil) (color nil) (gray-level 1) (opaque t) (mask nil) (mask-x 0) (mask-y 0) (stream

standard-output) (return-presentation nil) (rotation 0) (scale 1) (scale-x 1) (scale-y

1) (translation nil) (transform nil) Function

Draws a figure referenced by a font array. The orientation of the glyph is unaf-

fected by transforms.

index The index into the font array.

font The font.

x The x-coordinate where the glyph is drawn (left edge).

y The y-coordinate where the glyph is drawn (top edge).�

Example:

(graphics:with-room-for-graphics (t 20)

 (graphics:draw-glyph (sys:char-subindex #\mouse:fat-double-horizontal-arrow)

 fonts:mouse 200 10))

To see the elements of a font, use the Show Font command. To see the list of

loaded fonts, press the HELP key to the Show Font command. For more information

on fonts, including information on how to create your own: See the section "Font

Editor".

Note that graphics:draw-glyph accepts relatively few of the keywords permitted

by other drawing functions. All are documented separately: See the section "Key-

word Options to Drawing Functions".

For an overview of graphics:draw-glyph and related functions: See the section

"Drawing Functions".

Page 1531

� graphics:draw-image image left top &key (image-left 0) (image-top 0) (image-right

nil) (image-bottom nil) (copy-image nil) (alu :draw) (pattern nil) (stipple nil) (tile

nil) (color nil) (gray-level 1) (opaque t) (mask nil) (mask-x 0) (mask-y 0) (stream

standard-output) (return-presentation nil) (rotation 0) (scale 1) (scale-x 1) (scale-y

1) (translation nil) (transform nil) Function

Draws a bit array as a graphics image. The orientation of the image is affected by

transforms.

image The bit array. This must be of "correct width" that is, the width

in bits must be a multiple of 32.

left The x-coordinate where drawing of the image begins.

top The y-coordinate where drawing of the image begins.�

Of the listed keyword options, :image-left, :image-top, :image-right, :image-

bottom, and :copy-image are unique to graphics:draw-image and documented be-

low. The remaining options are common to other drawing functions and document-

ed separately: See the section "Keyword Options to Drawing Functions".

:image-left Thefirstcolumninthebitarraytobeincludedinthe

output image.

:image-top The first row in the bit array to be included in the

output image.

:image-right Thelastcolumninthebitarraytobeincludedinthe

output image. It defaults to the width of the image plus left.

:image-bottom Thelastrowinthebitarraytobeincludedintheout-

put image.

:copy-image Booleanoptionspecifyingwhethertomakeacopyof

the image argument (bit array) and use the copy for drawing the

image as opposed to using the original. The default is nil, meaning

that the original is used.

Specify :copy-image t if the bit array is re-used in your code but

you want the image output by this particular operation to remain

constant, that is, to always appear the same when the window is

scrolled backwards and the image is redrawn.

Example:

Page 1532

(defun draw-logo (&optional (stream *standard-output*)

 &key (scale 50))

 (graphics:with-graphics-scale (stream scale)

 (graphics:draw-regular-polygon .75 .5 1.25 .5 4

:stream stream :gray-level .25)

 (graphics:draw-regular-polygon 0 0 1 0 3

:stream stream :gray-level .75)

 (graphics:draw-circle 1.5 .5 .4 :stream stream

:gray-level .5 :opaque t)))

�

(graphics:with-room-for-graphics (t 50)

 (draw-logo))

�

(setq logo (graphics:with-output-to-bitmap (t) (draw-logo)))

�

(graphics:with-room-for-graphics (t 50)

 (graphics:draw-image logo 0 0))

For an overview of graphics:draw-image and related functions: See the section

"Drawing Functions".

� graphics:draw-line start-x start-y end-x end-y &key (draw-end-point t) (alu :draw)

(pattern nil) (stipple nil) (tile nil) (color nil) (gray-level 1) (opaque t) (mask nil)

(mask-x 0) (mask-y 0) (thickness 0) (scale-thickness t) (line-end-shape :butt) (line-

joint-shape :miter) (dashed nil) (dash-pattern ’(10 10)) (initial-dash-phase 0) (draw-

partial-dashes t) (scale-dashes nil) (stream *standard-output*) (return-presentation

nil) (rotation 0) (scale 1) (scale-x 1) (scale-y 1) (translation nil) (transform nil)

Function

Draws a line.

start-x The x-coordinate of the starting point.

start-y The y-coordinate of the starting point.

end-x The x-coordinate of the ending point.

end-y The y-coordinate of the ending point.�

All of the options are common to other drawing functions and documented sepa-

rately: See the section "Keyword Options to Drawing Functions".

For an overview of graphics:draw-line and related functions: See the section

"Drawing Functions".

Page 1533

(graphics:with-room-for-graphics (t 100)

 (graphics:with-graphics-translation (t 50 50)

 (dotimes (r 8)

 (graphics:draw-line 0 0 25 0 :rotation (* graphics:2pi (/ r 8))))))

�

�

� (flavor:method :draw-line tv:graphics-mixin) x1 y1 x2 y2 &optional alu (draw-end-

point t) Method

Draws a line on the window with endpoints (x1, y1) and (x2, y2). If draw-end-point

is specified as nil, do not draw the last point. This is useful in cases such as xor-

ing a polygon made up of several connected line segments. Note: :draw-line does

not always clip properly. If correct clipping is important, use the function

graphics:draw-line. See the section "Thin-Line Clipping".

� graphics:draw-line-driver x1 y1 x2 y2 draw-end-point slice-function Function

Scan-converts the given line, that is, computes the coordinates of the pixels that

lie near the line on a two-dimensional raster grid, and calls slice-function to draw

these pixels. See the section "Graphics Drivers".

x1 The x-coordinate of the starting point of the line. This must be an

integer.

y1 The y-coordinate of the starting point of the line. This must be an

integer.

x2 The x-coordinate of the ending point of the line. This must be an

integer.

y2 The y-coordinate of the ending point of the line. This must be an

integer.

draw-end-point A Boolean option specifying whether the end point of

the line should be drawn. If draw-end-point is t, the pixel at

<x2,y2> will be drawn; otherwise, it will not.

slice-function A function specifying how a rectangular slice of the

line is to be drawn on a raster device and possibly specifying any

other operations to be performed in conjunction with drawing the

slice. This function must take four arguments: width, the width of

the slice; height, its height; and x and y, the coordinates of the

slice’s location. A typical slice function is

Page 1534

 #’(lambda

 (width height x y)

 (send *standard-output* :draw-rectangle width

 height

 x y :draw)) �

� graphics:draw-line-to end-x end-y &key (alu :draw) (pattern nil) (stipple nil) (tile

nil) (color nil) (gray-level 1) (opaque t) (mask nil) (mask-x 0) (mask-y 0) (thickness

0) (scale-thickness t) (line-end-shape :butt) (line-joint-shape :miter) (dashed nil)

(dash-pattern #(10 10)) (initial-dash-phase 0) (draw-partial-dashes t) (scale-dashes

nil) (stream *standard-output*) (return-presentation nil) (rotation 0) (scale 1)

(scale-x 1) (scale-y 1) (translation nil) (transform nil) Function

Draws a line from the current position of the graphics cursor to a specified point.

When done, the graphics cursor is moved to the point.

end-x The x-coordinate of the end-point.

end-y The y-coordinate of the end-point.�

This function is intended primarily for path building, that is, within path-drawing

functions supplied to graphics:draw-path or graphics:with-clipping-path. For ex-

ample uses: See the function graphics:draw-path.

The listed keyword options are common to all drawing functions and documented

separately: See the section "Keyword Options to Drawing Functions".

For an overview of graphics:draw-line-to and related functions: See the section

"Drawing Functions".

(graphics:with-room-for-graphics (t 100)

 (graphics:with-graphics-translation (t 50 50)

 (graphics:with-graphics-scale (t 40)

 (graphics:drawing-path (t :filled nil :scale-thickness nil)

 (graphics:set-current-position 0 0)

 (loop for r below 10 by 1/10 do

 (graphics:draw-line-to r (sin r)))))))

�

� graphics:draw-lines points &key (closed nil) (join-to-path nil) (alu :draw) (pattern

nil) (stipple nil) (tile nil) (color nil) (gray-level 1) (opaque t) (mask nil) (mask-x 0)

(mask-y 0) (thickness 0) (scale-thickness t) (line-end-shape :butt) (line-joint-shape

:miter) (dashed nil) (dash-pattern ’(10 10)) (initial-dash-phase 0) (draw-partial-

dashes t) (scale-dashes nil) (stream *standard-output*) (return-presentation nil) (ro-

tation 0) (scale 1) (scale-x 1) (scale-y 1) (translation nil) (transform nil) Function

Page 1535

Draws a connected series of line segments.

points A sequence of points in the form (x1 y1 x2 y2 ... xn yn).�

Of the listed keyword options, :closed and :join-path-to are documented below.

The remaining options are common to other drawing functions and documented

separately: See the section "Keyword Options to Drawing Functions".

:closed Booleanoptionspecifyingwhetherthepointsaretoformaclosed

figure, that is, whether to draw a line connecting the last point

specified with the first; the default is nil.�

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-lines ’(0 0 10 20 20 30 30 80 40 20 50 0) :closed t))

:join-to-path Specify this option twhenyouaremaking the line

series part of a path outline, that is, using it in a graphics:draw-

path function. This is to ensure that the multiple-line segment joins

the path properly to allow for filling without gaps.

For an overview of graphics:draw-lines and related functions: See the section

"Drawing Functions".

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-lines ’(0 0 10 20 20 30 30 80 40 20 50 0) :thickness 2))

� (flavor:method :draw-lines tv:graphics-mixin) alu x0 y0 x1 y1 ... xn yn Method

Draws n lines on the screen, the first with endpoints (x0, y0) and (x1, y1), the sec-

ond with endpoints (x1, y1) and (x2, y2), and so on. The points between lines are

drawn exactly once and the last endpoint, at (xn, yn), is not drawn.

� graphics:draw-oval center-x center-y x-radius y-radius &rest args &key (:filled t)

&allow-other-keys Function

Draws an oval, that is, a "race-track" shape, centered on (center-x center-y): if x-ra-

dius or y-radius is 0, draws a circle with the specified non-zero radius; otherwise,

draws the figure that results from drawing a rectangle with dimensions x-radius

and y-radius and then replacing the two short sides with semicircular arc of appro-

Page 1536

priate size. Example:

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-oval 100 50 40 20 :filled nil))

� :draw-partial-dashes Option

Boolean option specifying whether a partial dash is drawn at the end of a

dashed line so that it reaches its specified end-point. The default is t: dashes

are drawn with the specified numbers of pixels on and off until the endpoint

is reached, at which point drawing stops wherever in the pattern you happen

to be.

If you specify nil for this option, the drawing routine will adjust the spacing

of the dashes so that the lines ends on a "dash." In the simple case that

is, with only a single pair of numbers in the dash pattern a dash is a solid

line of (on) pixels, so both ends of such a line are drawn. For example, try

these:

(graphics:with-room-for-graphics (t 10)

 (graphics:draw-line 0 3 200 3 :dashed t :dash-pattern #(20 15)

 :draw-partial-dashes t)

 (graphics:draw-line 0 -3 200 -3 :dashed t

 :dash-pattern #(20 15) :draw-partial-dashes nil)

 (graphics:draw-line 200 -3 200 3))

�

�

(graphics:with-room-for-graphics (t 250)

 (let ((zoom 5))

 (dolist (partial ’(t nil))

 (graphics:with-graphics-translation (t 0 (if partial (* 25 zoom) 0))

(dotimes (i 20)

 (let ((y (* (- 19 i) zoom)))

 (graphics:draw-line 0 y (* i 4 zoom) y

:dashed T

:dash-pattern #(20 15)

:draw-partial-dashes partial)

 (graphics:draw-line 0 (- y 1) (* i 4 zoom) (- y 1))))))))

For more complicated dash patterns, a dash is considered to be a solid line

somewhere in the pattern: you will have to experiment to determine the exact

result of using the option.

This option is not operable if the :dashed option to the drawing function is

nil.

Page 1537

Some hardcopy devices, most notably PostScript printers, cannot adjust the

spacing of the dashes; that is, they will draw partial dashes even if you speci-

fy :draw-partial-dashes nil.

� graphics:draw-path path-function &key (winding-rule :non-zero) (alu :draw) (pat-

tern nil) (filled t) (stipple nil) (tile nil) (color nil) (gray-level 1) (opaque t) (mask

nil) (mask-x 0) (mask-y 0) (thickness 0) (scale-thickness t) (line-end-shape :butt)

(line-joint-shape :miter) (dashed nil) (dash-pattern #(10 10)) (initial-dash-phase 0)

(draw-partial-dashes t) (scale-dashes nil) (stream *standard-output*) (return-

presentation nil) (rotation 0) (scale 1) (scale-x 1) (scale-y 1) (translation nil) (trans-

form nil) Function

Draws a fillable figure whose outline is specified by a user-supplied path function.

path-function A drawing function creating the outline of a figure,

that is, a path. This path can be arbitrarily complex, contain

straight- and curved-line segments, and include more than one

closed subpath.�

Of the listed keyword options, :winding-rule is unique to graphics:draw-path and

documented below. The remaining options are common to all drawing functions

and documented separately: See the section "Keyword Options to Drawing Func-

tions".

:winding-rule Controls filling of the region outlinedby thepath-

drawing function. Two values are possible:

:non-zeroA point is within the area to be filled if a ray from the

point to infinity crosses an unequal number of left-to-right

and right-to-left path segments.

:odd-evenA point is within the area to be filled if a ray from the

point to infinity crosses the path an odd number of times.�

The :non-zero rule is generally the more robust in terms of filling

complex shapes completely. The :odd-even rule is useful mostly for

special effects. See the path-drawing-examples function in the "Ex-

amples" section below for winding-rule effects on the filling of a

star-shaped path.

Note that the direction in which ellipses and circles are drawn,

when part of a path-drawing function, affects filling using the :non-

zero rule. This is demonstrated in the overlapping-circles function

below. �

Page 1538

(graphics:with-room-for-graphics (t 100)

 (graphics:drawing-path ()

 (graphics:draw-circle 50 50 40 :filled nil)

 (graphics:draw-circle 50 50 20 :filled nil))

 (graphics:graphics-translate 100 0)

 (graphics:drawing-path (t :winding-rule :odd-even)

 (graphics:draw-circle 50 50 40 :filled nil)

 (graphics:draw-circle 50 50 20 :filled nil))

 (graphics:graphics-translate 100 0)

 (graphics:drawing-path ()

 (graphics:draw-circle 50 50 40 :filled nil)

 (graphics:draw-circle 50 50 20 :filled nil :clockwise t))

 (graphics:graphics-translate 100 0)

 (graphics:drawing-path (t :winding-rule :odd-even)

 (graphics:draw-circle 50 50 40 :filled nil)

 (graphics:draw-circle 50 50 20 :filled nil :clockwise t)))�

Examples:

;;; The following three functions are "drawers" to be

;;; called by the function "path-drawing-examples".

�

(defun star-drawer (*standard-output*)

 (graphics:set-current-position 0 0)

 (dotimes (i 4)

 (graphics:draw-line-to 1 0)

 (graphics:graphics-origin-to-current-position)

 (graphics:graphics-rotate (float (* -4/5 pi) 0.0)))

 (graphics:close-path))

(defun bz-drawer (*standard-output*)

 (graphics:set-current-position 0 0)

 (graphics:draw-bezier-curve-to 1 1 1/2 3/2 3/4 -1/2)

 (graphics:draw-line-to 1 -1)

Page 1539

 (graphics:close-path))

(defun widget-drawer (*standard-output*)

 (graphics:graphics-scale 1/10)

 (graphics:set-current-position 1 0)

 (graphics:draw-line-to 2 0)

 (graphics:draw-line-to 2 1)

 (graphics:draw-line-to 7 1)

 (graphics:draw-line-to 7 0)

 (graphics:draw-line-to 8 0)

 (graphics:draw-line-to 8 3)

 (graphics:draw-line-to 7 3)

 (graphics:draw-line-to 7 2)

 (graphics:draw-line-to 5 2)

 (graphics:draw-line-to 5 8)

 (graphics:draw-line-to 4 8)

 (graphics:draw-line-to 4 2)

 (graphics:draw-line-to 2 2)

 (graphics:draw-line-to 2 3)

 (graphics:draw-line-to 1 3)

 (graphics:close-path))

�

�

;;; This function applies graphics:draw-path to one

;;; of the drawers (above drawing functions). You

;;; specify which drawer with the :drawer keyword,

;;; one of #’star-drawer (the default), #’bz-drawer,

;;; or #’widget-drawer. You can also provide any

;;; other keywords recognized by graphics:draw-path;

;;; for example, try :filled t and :winding-rule

;;; :odd-even (versus. :non-zero) on the star-drawer.

;;; (For another winding rule example, see the

;;; overlapping-circles function, below.)

�

(defun path-drawing-examples (&rest args

 &key (scale 100)

 (rotation 0)

 (drawer #’star-drawer)

 &allow-other-keys)

 (graphics:with-room-for-graphics (t 200)

 (graphics:with-graphics-translation (t 100 100)

 (graphics:with-graphics-scale (t scale)

(graphics:with-graphics-rotation (t rotation)

 (si:with-rem-keywords

 (some-args args

 ’(:scale :drawer))

 (apply #’graphics:draw-path

 drawer some-args)))))))

Page 1540

�

;;; How circles and ellipses are drawn, that is,

;;; whether clockwise or counterclockwise, affects

;;; path filling via the :non-zero winding rule.

�

(defun overlapping-circles (clockwise-p winding-rule)

 (graphics:with-room-for-graphics (t 200)

 (graphics:draw-path

 (lambda (s)

(graphics:draw-circle 100 100 75

 :stream s

 :filled nil

 :clockwise

 clockwise-p)

(graphics:draw-circle 200 100 75

 :stream s

 :filled nil))

 :translation ’(100 0)

 :filled t

 :gray-level 4/5

 :winding-rule winding-rule)))�

For an overview of graphics:draw-path and related functions: See the section

"Drawing Functions".

� graphics:draw-pattern left top pattern &key (:stream *standard-output*) (:alu

:draw) :right :bottom (:pattern-left 0) (:pattern-top 0) :copy-pattern Function

Included only for compatibility with Genera 7.1. If you are writing new code, use

the function graphics:draw-image for drawing images and the :stipple option to

graphics:draw-rectangle for repeating patterns.

� graphics:draw-point x y &key (alu :draw) (pattern nil) (stipple nil) (tile nil) (color

nil) (gray-level 1) (opaque t) (mask nil) (mask-x 0) (mask-y 0) (stream *standard-

output*) (return-presentation nil) (rotation 0) (scale 1) (scale-x 1) (scale-y 1) (transla-

tion nil) (transform nil) Function

Draws a point. The single-pixel size of the point is unaffected by transforms. Note

that if you have a lot of points to draw to a dynamic window, it is better to draw

them to a bitmap first and then to the screen, since this will help reduce the size

of the output history.

Page 1541

(multiple-value-bind (bitmap x y)

 (graphics:with-output-to-bitmap ()

 (dotimes (i 100)

 (graphics:draw-point (random 50) (random 50) :alu :flip)))

 (graphics:with-room-for-graphics (t 60)

 (graphics:draw-image bitmap (+ x 50) (- y 50) :scale-y -1)))

x The point’s x-coordinate.

y The point’s y-coordinate.�

All of the options are common to other drawing functions and documented sepa-

rately: See the section "Keyword Options to Drawing Functions".

For an overview of graphics:draw-point and related functions: See the section

"Drawing Functions".

� (flavor:method :draw-point tv:graphics-mixin) x y &optional alu value Method

Draws value into the picture element at the specified coordinates, combining it

with the previous contents according to the specified alu function (value is the

first argument to the operation, and the previous contents is the second argu-

ment.) value should be 0 or 1 on a black-and-white TV. Clipping is performed; that

is, this message will have no effect if the coordinates are outside the window. val-

ue defaults to -1, that is, a number with all ones.

� graphics:draw-polygon points &key (points-are-convex-p nil) &allow-other-keys (alu

:draw) (pattern nil) (filled t) (stipple nil) (tile nil) (color nil) (gray-level 1) (opaque

t) (mask nil) (mask-x 0) (mask-y 0) (thickness 0) (scale-thickness t) (line-end-shape

:butt) (line-joint-shape :miter) (dashed nil) (dash-pattern ’(10 10)) (initial-dash-

phase 0) (draw-partial-dashes t) (scale-dashes nil) (stream *standard-output*) (re-

turn-presentation nil) (rotation 0) (scale 1) (scale-x 1) (scale-y 1) (translation nil)

(transform nil) Function

Draws a polygon connecting a set of points.

points A sequence of points in the form (x1 y1 x2 y2 ... xn yn); these form

the points of the polygon.�

Of the listed keyword options, :points-are-convex-p is unique to graphics:draw-

polygon and documented below. The remaining options are common to other draw-

ing functions and documented separately: See the section "Keyword Options to

Drawing Functions".

:points-are-convex-p Booleanoptionspecifyingwhetherthepointsdescribea

convex polygon; the default is nil. If t, an algorithm more efficient

for drawing convex polygons, as opposed to any polygon, is used.

Page 1542

For an overview of graphics:draw-polygon and related functions: See the section

"Drawing Functions".

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-polygon ’(0 100 100 0 100 100 0 0)))

� graphics:draw-rectangle left top right bottom &key (alu :draw) (pattern nil) (filled

t) (stipple nil) (tile nil) (color nil) (gray-level 1) (opaque t) (mask nil) (mask-x 0)

(mask-y 0) (thickness 0) (scale-thickness t) (line-end-shape :butt) (line-joint-shape

:miter) (dashed nil) (dash-pattern ’(10 10)) (initial-dash-phase 0) (draw-partial-

dashes t) (scale-dashes nil) (stream *standard-output*) (return-presentation nil) (ro-

tation 0) (scale 1) (scale-x 1) (scale-y 1) (translation nil) (transform nil) Function

Draws a rectangle.

left The x-coordinate of the left side of the rectangle.

top The y-coordinate of the top side of the rectangle.

right The x-coordinate of the right side of the rectangle.

bottom The y-coordinate of the bottom side of the rectangle.�

The listed keyword options are common to other drawing functions and document-

ed separately: See the section "Keyword Options to Drawing Functions".

For an overview of graphics:draw-rectangle and related functions: See the section

"Drawing Functions".

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-rectangle 60 30 140 70 :filled nil)

 (graphics:draw-rectangle -40 -20 40 20 :translation ’(300 50) :rotation (* pi 1/4)))

� (flavor:method :draw-rectangle tv:sheet) width height x y &optional alu Method

Draws a filled-in rectangle with dimensions width by height on the window with its

upper left corner at coordinates (x, y).

Page 1543

� graphics:draw-regular-polygon start-x start-y end-x end-y number-of-sides &key

(handedness :left) &allow-other-keys (alu :draw) (pattern nil) (filled t) (stipple nil)

(tile nil) (color nil) (gray-level 1) (opaque t) (mask nil) (mask-x 0) (mask-y 0) (thick-

ness 0) (scale-thickness t) (line-end-shape :butt) (line-joint-shape :miter) (dashed nil)

(dash-pattern ’(10 10)) (initial-dash-phase 0) (draw-partial-dashes t) (scale-dashes

nil) (stream *standard-output*) (return-presentation nil) (rotation 0) (scale 1)

(scale-x 1) (scale-y 1) (translation nil) (transform nil) Function

Given the starting and ending coordinates for a single side and the number of

sides, draws a regular polygon.

start-x The x-coordinate of the starting point for side 1.

start-y The y-coordinate of the starting point for side 1.

end-x The x-coordinate of the ending point for side 1.

end-y The y-coordinate of the ending point for side 1.

number-of-sides The total number of sides.�

Of the listed keyword options, :handedness is unique to graphics:draw-regular-

polygon and documented below. The remaining options are common to other draw-

ing functions and documented separately: See the section "Keyword Options to

Drawing Functions".

:handedness Specifieswhetherthepolygonisdrawntothe:leftor

:right of side 1. The default is :left, meaning that, if you were lo-

cated at (start-x start-y) and facing (end-x end-y), the polygon would

be drawn to your left.

For an overview of graphics:draw-regular-polygon and related functions: See the

section "Drawing Functions".

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-regular-polygon 100 0 140 0 7 :filled nil :thickness 2))

� (flavor:method :draw-regular-polygon tv:graphics-mixin) x1 y1 x2 y2 n &optional

alu Method

Draws a filled-in, closed, convex, regular polygon of (abs n) sides, where the line

from (x1, y1) to (x2, y2) is one of the sides. If n is positive, the interior of the poly-

gon is on the right-hand side of the edge (that is, if you were walking from (x1,

y1) to (x2, y2), you would see the interior of the polygon on your right-hand side;

this does not mean "toward the right-hand edge of the window").

Page 1544

� graphics:draw-string string x y &key (:attachment-y :baseline) (:attachment-x :left)

(:toward-x (1+ graphics::start-x)) (:toward-y graphics::start-y) :stretch-p :character-

style :record-as-text (:alu :draw) :pattern :stipple :tile :color (:gray-level 1) (:opaque t)

:mask (:mask-x 0) (:mask-y 0) (:stream *standard-output*) :return-presentation (:ro-

tation 0) (:scale 1) (:scale-x 1) (:scale-y 1) :translation :transform Function

Draws a character string.

string The string.

x The x-coordinate where drawing of the string begins (see the

:attachment-x option below).

y The y-coordinate where drawing of the string begins (see the

:attachment-y option below).�

Of the listed keyword options, :attachment-x, :attachment-y, :toward-x,

:toward-y, :stretch-p, and :character-style are unique to graphics:draw-string

and documented below. The remaining options are common to other drawing func-

tions and documented separately: See the section "Keyword Options to Drawing

Functions".

Note that coordinate system options (:rotation, :scale, and so on) affect the posi-

tion of the character string (baseline) but not the size or orientation of the indi-

vidual characters. Character size is controlled by the :character-style option and

the orientation of the individual glyphs is always upright. If you want the charac-

ter string, including glyphs, to respond similarly to other graphic images, use the

graphics:draw-string-image function.

:attachment-x Specifiesthestringattachmentpointtothexcoordi-

nate:

:left The left edge of the first character is positioned at x.

This is the default.

:right The right edge of the last character is positioned at x.

:center The horizontal center of the string is positioned at x.�

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-arrow 0 0 40 40)

 (graphics:draw-string "string" 40 40 :attachment-x :center))

�

string

:attachment-y Specifiesthestringattachmentpointtotheycoordi-

nate:

Page 1545

:baseline The baseline of the string is positioned at y. This is the

default.

:bottom The bottom of the string is positioned at y.

:top The top of the string is positioned at y.

:center The vertical center of the string is positioned at y.�

The following example illustrates the differences among these pos-

sibilities:

(graphics:with-room-for-graphics (t 150)

 (graphics:draw-string ":baseline-yy" 10 50

:attachment-y :baseline

:character-style

’(nil nil :very-large))

 (graphics:draw-line 10 50 155 50)

 (graphics:draw-string ":bottom-yy" 200 50

:attachment-y :bottom

:character-style

’(nil :roman :very-large))

 (graphics:draw-line 200 50 320 50)

 (graphics:draw-string ":top-yy" 365 50

:attachment-y :top

:character-style

’(nil nil :very-large))

 (graphics:draw-line 365 50 450 50)

 (graphics:draw-string ":center-yy" 500 50

:attachment-y :center

:character-style

’(nil nil :very-large))

 (graphics:draw-line 500 50 620 50))

�

�

:baseline-yy :bottom-yy
:top-yy

:center-yy

�

:toward-xThex-coordinatetowardwhichthestringisdrawn. Thedefaultval-

ue is one greater than the starting x-coordinate, meaning that the

string is drawn to the right; its deviation from the horizontal is de-

termined by the :toward-y option.

:toward-yThey-coordinatetowardwhichthestringis drawn. Thedefaultval-

ue is equal to the starting y-coordinate, meaning that the string is

drawn horizontally.�

Page 1546

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-string "string" 0 0 :toward-x 100 :toward-y 50))

�

s
t
r
i
n
g

:stretch-pBooleanoptionspecifyingwhetherthecharacters arespacedevenly

between the starting (start-x start-y) and ending (:toward-x <end-x>

:toward-y <end-y>) coordinates.

If the space provided is greater than that required by the default

spacing between characters of the given style, then additional spac-

ing is inserted; the string is stretched. If the space is less than that

required by the default spacing, space is eliminated; the string is

compressed.

The default is nil, meaning that the default spacing for the charac-

ter style in question is used, regardless of the distance between the

starting and ending coordinates.�

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-string "normal" 0 40 :toward-x 200)

 (graphics:draw-string "stretched" 0 20 :toward-x 200 :stretch-p t))
normal

s t r e t c h e d

:character-style Specifiesacharacterstyle for thestring. Merging

against the default character style for the output stream is support-

ed.�

(graphics:with-room-for-graphics (t 30)

 (graphics:draw-string "string" 10 10 :character-style ’(:dutch nil nil)))
string

For an overview of graphics:draw-string and related functions: See the section

"Drawing Functions".

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-string "right" 0 0)

 (graphics:draw-string "down" 0 50 :toward-x 0 :toward-y 0)

 (graphics:draw-string "away" 10 10 :toward-x 50 :toward-y 50 :stretch-p t))

�

right

d

o

w

n a

w

a

y

Page 1547

� (flavor:method :draw-string tv:graphics-mixin) string from-x from-y &optional (to-

ward-x (1+ tv:from-x)) (toward-y tv:from-y) (stretch-p nil) character-style (alu

tv:char-aluf) Method

Draws a character string between two points.

The left baseline point of each character lies on the line between the two points

defined by from-x, from-y and toward-x, toward-y.

The string is always written from left to right, starting at the leftmost point, re-

gardless of whether that is the first point or the second point. When the string is

longer than the line between the points, the full string appears anyhow.

toward-x, toward-y Controls the direction in which printing takes place. The de-

fault values specify ordinary horizontal output.

(send (tv:window-under-mouse) ’:draw-string

 "hi there" 600 50)�

stretch-p Controls the spacing of the characters. When it is nil (the

default), the characters appear literally, with no change to

the spacing. Otherwise, the distance between the characters

is adjusted so that the string starts and ends as close to the

two points as possible.

character-style Specifies the character style to use. The default is the default

character style for the window, or that specified by a charac-

ter style macro: See the section "Character Environment Fa-

cilities".

alu Controls how the pixels being drawn combine with pixels al-

ready in the window. The default is the tv:char-aluf for the

window.�

This message is useful for placing text at absolute screen positions (as opposed to

treating the window as a stream), for labelling graphs, or for putting text into

pictures.

� graphics:draw-string-image string x y &key (attachment-y :baseline) (attachment-x

:left) (character-style nil) (character-size nil) string-width (scale-down-allowed t) (alu

:draw) (pattern nil) (stipple nil) (tile nil) (color nil) (gray-level 1) (opaque t) (mask

nil) (mask-x 0) (mask-y 0) (stream *standard-output*) (return-presentation nil) (ro-

tation 0) (scale 1) (scale-x 1) (scale-y 1) (translation nil) (transform nil) Function

Draws a character string as a graphics image. This enables the string to be ma-

nipulated in the same manner that other images can be manipulated. For example,

the string can be scaled or rotated as a unit. This allows you to draw slanted or

tilted character strings. This is unlike strings generated by graphics:draw-string,

in which only the position of the baseline is affected by coordinate system changes;

the character glyphs remain the same. Note that graphics:draw-string-image

draws the image upside down relative to the character glyphs. You can use

graphics:with-room-for-graphics around graphics:draw-string-image or transform

coordinates to get the character glyphs oriented the way you want it.

Page 1548

string The string.

x The x-coordinate where drawing of the string begins (see the

:attachment-x option below).

y The y-coordinate where drawing of the string begins (see the

:attachment-y option below).�

Of the listed keyword options, :attachment-x, :attachment-y, :character-style,

:character-size, :string-width, and :scale-down-allowed are unique to

graphics:draw-string-image and documented below. The remaining options are

common to other drawing functions and documented separately: See the section

"Keyword Options to Drawing Functions". Example:

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-string-image "normal" 0 0)

 (graphics:draw-string-image "sideways" 10 0

 :translation ’(50 0) :rotation (/ pi 2)))

�

normal

s
i
d
e
w
a
y
s

� :attachment-x Specifiesthestringattachmentpointtothexcoordi-

nate:

:left The left edge of the first character is positioned at x.

This is the default.

:right The right edge of the last character is positioned at x.

:center The horizontal center of the string is positioned at x.�

The position in the string is as viewed in the user coordinate sys-

tem, so if the string is being rotated, it may not be that point of

the string on the screen.

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-arrow 0 0 40 0 :rotation (/ pi 4))

 (graphics:draw-string-image "string" 40 0

:rotation (/ pi 4) :attachment-x :center))

�

s
t
r
i
n
g

:attachment-y Specifiesthestringattachmentpointtothe ycoordi-

nate, one of the following:

:baseline The baseline of the string is positioned at y. This is the

default.

Page 1549

:bottom The bottom of the string is positioned at y.

:top The top of the string is positioned at y.

:center The vertical center of the string is positioned at y.�

For an example showing the differences among the different attach-

ment points: See the function graphics:draw-string. In particular,

look at the :attachment-y option.�

:character-style Specifies the character style for the string. Merging

against the default character style for the output stream is support-

ed.

If the :character-size option is specified, it overrides the size com-

ponent of the :character-style specification.�

:character-size Specifiesanumbercontrollingcharactersize. Thede-

fault is nil, meaning that character size is determined by the size

component of the output character style.

If you use this option, the number specified is scaled and a font

chosen with the same family and face as the output character style,

but with a size as close as possible to that desired. If you supply

this option with a large number and none of the predefined fonts

are big enough, then the largest font available is scaled up, pixel by

pixel, to achieve the desired size.

To see the effects of this option, try calling the following with the

string of your choice and various numbers in the 10 to 100 range

(you are not limited to this range, however). The horizontal lines

are 20 pixels apart, except for the first three which are 10 pixels

apart.

(defun string-size (string size)

 (graphics:with-room-for-graphics (t 100)

 (graphics:draw-string-image string 0 0

:character-size size)

 (graphics:draw-line 0 0 300 0 :thickness 2)

 (graphics:draw-line 0 10 300 10)

 (graphics:draw-line 0 20 300 20)

 (graphics:draw-line 0 40 300 40)

 (graphics:draw-line 0 60 300 60)

 (graphics:draw-line 0 80 300 80)

 (graphics:draw-line 0 100 300 100)))�

�

(string-size "string" 10)

�

Page 1550

�

string

�

�

(string-size "string" 30)

�

string
�

(string-size "string" 60)

�

string �

� :string-width Specifies the final width of the string drawn. The

image is scaled if necessary so that this width is attained. The

spacing within characters is adjusted to make up for differences be-

tween the font sizes available and the desired size. When used in

conjunction with the :character-size option, a string can be drawn

of exactly the desired size using the closest available font.

(graphics:with-room-for-graphics (t 100)

 (loop for scale in ’(1/2 1 2 4) do

 (graphics:draw-string-image "string" 0 10

 :scale scale

 :string-width 100

 :character-size 10)))

� :scale-down-allowed A Boolean option specifying when true, the default,

that the string image may be scaled down, that is, drawn with a

Page 1551

scale factor less than one, if necessary to accommodate the require-

ment of :string-width. If :scale-down-allowed is t, the resulting

string will probabaly not be readable is :string-width is small; if it

is nil, the string will exceed the size constraint.

For an overview of graphics:draw-string-image and related functions: See the sec-

tion "Drawing Functions".

� graphics:draw-triangle x1 y1 x2 y2 x3 y3 &key (alu :draw) (pattern nil) (filled t)

(stipple nil) (tile nil) (color nil) (gray-level 1) (opaque t) (mask nil) (mask-x 0)

(mask-y 0) (thickness 0) (scale-thickness t) (line-end-shape :butt) (line-joint-shape

:miter) (dashed nil) (dash-pattern ’(10 10)) (initial-dash-phase 0) (draw-partial-

dashes t) (scale-dashes nil) (stream *standard-output*) (return-presentation nil) (ro-

tation 0) (scale 1) (scale-x 1) (scale-y 1) (translation nil) (transform nil) Function

Draws a triangle.

x1 The x-coordinate of the first point of the triangle.

y1 The y-coordinate of the first point of the triangle.

x2 The x-coordinate of the second point of the triangle.

y2 The y-coordinate of the second point of the triangle.

x3 The x-coordinate of the third point of the triangle.

y3 The y-coordinate of the third point of the triangle.�

The listed keyword options are common to other drawing functions and document-

ed separately: See the section "Keyword Options to Drawing Functions".

For an overview of graphics:draw-triangle and related functions: See the section

"Drawing Functions".

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-triangle 0 0 120 0 40 75 :filled nil))

� (flavor:method :draw-triangle tv:graphics-mixin) x1 y1 x2 y2 x3 y3 &optional alu

Method

Draws a filled-in triangle with its corners at (x1, y1), (x2, y2), and (x3, y3).

� graphics:draw-triangle-driver x1 y1 x2 y2 x3 y3 slice-function Function

Page 1552

Scan-converts the given triangle, that is, computes the coordinates of the pixels

that lie in the triangle on a two-dimensional raster grid, and calls slice-function to

draw these pixels. See the section "Graphics Drivers".

x1 The x-coordinate of the first vertex of the triangle. This must be an

integer.

y1 The y-coordinate of the first vertex of the triangle. This must be an

integer.

x2 The x-coordinate of the second vertex of the triangle. This must be

an integer.

y2 The y-coordinate of the second vertex of the triangle. This must be

an integer.

x3 The x-coordinate of the third vertex of the triangle. This must be

an integer.

y3 The y-coordinate of the third vertex of the triangle. This must be

an integer.

slice-function A function specifying how a rectangular slice of the

triangle is to be drawn on a raster device and possibly specifying

any other operations to be performed in conjunction with drawing

the slice. This function must take four arguments: width, the width

of the slice; height, its height; and x and y, the coordinates of the

slice’s location. A typical slice function is

#’(lambda (width height x y)

(send *standard-output* :draw-rectangle width height x y :draw))�

� graphics:draw-unfilled-circle-driver center-x center-y radius point-function &option-

al (separate-quadrants nil) Function

Scan-converts the outline of the circle, that is, computes the coordinates of the

pixels that lie near the outline of the circle on a two-dimensional raster grid, and

calls point-function to draw these pixels. See the section "Graphics Drivers".

center-x The x-coordinate for the center of the circle.

center-y The y-coordinate for the center of the circle.

radius The radius of the circle.

point-function A function specifying how a point on the circle is to be

drawn on a raster device and possibly specifying any other opera-

tions to be performed in conjunction with drawing the point. This

function must take two arguments, x and y, the point’s coordinates.

A point function could be, for example,

(graphics:draw-point x y)�

Page 1553

separate-quadrants A Boolean option specifying whether all the points in a

quadrant should be drawn before the another quadrant is started.

When separate-quadrants is t, each quadrant’s points are drawn in

turn, making it possible for the points to be a connected set of line

segments. This is necessary if the circle is to be part of a path.

When the default, nil, is taken, the unfilled circle is drawn with

slices, possibly overlapping the axes, which are converted to points,

by calling draw-circular-ring-driver with appropriate radii.

� graphics:draw-unfilled-ellipse-driver center-x center-y x-radius y-radius point-

function &optional (separate-quadrants nil) Function

Scan-converts the outline of the ellipse, that is, computes the coordinates of the

pixels that lie near the outline of the ellipse on a two-dimensional raster grid, and

calls point-function to draw these pixels. See the section "Graphics Drivers".

center-x The x-coordinate for the horizontal center of the ellipse.

center-y The y-coordinate for the vertical center of the ellipse.

x-radius The length of one of the ellipse’s semi-axes; in the unrotated figure

this axis is oriented horizontally.

y-radius The length of the other semi-axis of the ellipse; in the unrotated

figure this axis is oriented vertically.

point-function A function specifying how a point on the ellipse is to

be drawn on a raster device and possibly specifying any other opera-

tions to be performed in conjunction with drawing the point. This

function must take two arguments, x and y, the point’s coordinates.

A point function could be, for example,

(send *standard-output* :draw-line x y (1+ x) (1+ y) :draw nil)�

separate-quadrants A Boolean option specifying whether all the points in a

quadrant should be drawn before the another quadrant is started.

When separate-quadrants is t, each quadrant’s points are drawn in

turn, making it possible for the points to be a connected set of line

segments. This is necessary if the circle is to be part of a path.

When the default, nil, is taken, the unfilled circle is drawn by call-

ing draw-circular-ring-driver with appropriate radii.

� (flavor:method :draw-wide-curve tv:graphics-mixin) x-array y-array width &op-

tional end alu Method

Like :draw-curve, but width is how wide to make the lines.

� graphics:drawing-path (&optional stream &rest draw-path-args) &body body

Function

Page 1554

Draws a fillable figure whose outline is specified by the functions in body, which

are executed within an implicit progn form. Collects and returns any values pro-

duced by these functions. The arguments in draw-path-args include any of the key-

word arguments accepted by the graphics:draw-path function.

Here is an example in which the progn and value-return features are used, though

not in drawing a fillable figure:

(graphics:with-room-for-graphics (t 240)

 (graphics:with-graphics-translation (t 300 100)

 (loop for (angle xa ya) in ’((0 :left :center)

 (1/4 :left :baseline)

 (1/2 :center :bottom)

 (3/4 :right :baseline)

 (1 :right :center)

 (5/4 :right :top)

 (3/2 :center :top)

 (7/4 :left :top))

 do

 (multiple-value-bind (x y)

 (graphics:drawing-path (t :filled nil)

 (graphics:set-current-position 0 0)

 (graphics:draw-line-to 100 0 :rotation (* pi angle))

 (graphics:current-position))

(let ((string (format nil "~(~A+~A~)" xa ya)))

 (graphics:draw-string string x y

:attachment-x xa :attachment-y ya))))))

�

left+center

left+baseline

center+bottom

right+baseline

right+center

right+top

center+top

left+top

�

� graphics:erase-graphics-presentation presentation &key (stream *standard-

output*) (redisplay-overlapping-presentations t) Function

Erases a graphics presentation. Graphic presentations are created with

graphics::with-output-as-graphic-presentation.

Page 1555

presentation The presentation to erase.�

:stream Specifies the output stream; the default is *standard-output*.

:redisplay-overlapping-presentations Booleanoptionspecifying

whether presentations overlapping the erased presentation are re-

displayed; the default is t.

For an example: See the function graphics:with-output-as-graphics-presentation.

For an overview of graphics:erase-graphics-presentation and related functions:

See the section "Other Basic Facilities for Graphic Output".

� graphics:erase-rectangle left top right bottom &key (stream *standard-output*)

Function

Clears a rectangular area of a graphics display.

left The x-coordinate of the left side of the rectangular area.

top The y-coordinate of the top side of the rectangular area.

right The x-coordinate of the bottom side of the rectangular area.

bottom The y-coordinate of the bottom side of the rectangular area.�

� :stream Specifies the output stream; the default is *standard-output*.

For an overview of graphics:with-room-for-graphics and related functions: See

the section "Other Basic Facilities for Graphic Output".

� :filled Option

Boolean option specifying whether all pixels within the figure created by a

drawing function are turned on, or only the outline pixels; the default is t

(filled).

� tv:graphics-mixin Flavor

A flavor mixed into almost all windows. It provides basic graphics capabilities.

� graphics:graphics-origin-to-current-position &key (stream *standard-output*)

Function

Moves the graphics origin (0, 0) to the current position of the graphics cursor.

:stream Specifies the output stream; the default is *standard-output*.

This facility is useful with drawing functions that explictly use the graphics cur-

sor. Such functions include graphics:draw-bezier-curve-to, graphics:draw-

Page 1556

circular-arc-to, graphics:draw-line-to, and other facilities commonly used for cre-

ating path-drawing functions. For examples of path-drawing functions: See the

function graphics:draw-path.

For an overview of graphics:graphics-origin-to-current-position and related func-

tions: See the section "Drawing Functions".

(graphics:with-room-for-graphics (t 100)

 (graphics:with-graphics-translation (t 50 50)

 (graphics:with-graphics-scale (t 50)

 (graphics:drawing-path ()

 (graphics:set-current-position 0 0)

 (dotimes (i 4)

 (graphics:draw-line-to 1 0)

 (graphics:graphics-origin-to-current-position)

 (graphics:graphics-rotate (* -4/5 pi)))

 (graphics:close-path)))))

�

� graphics:graphics-rotate theta &key (stream *standard-output*) Function

Modifies the graphics transformation matrix to rotate graphics output; rotation is

about the local origin. (For an explanation of the graphics tranformation matrix:

See the function graphics:with-graphics-transform.)

theta A number specifying the rotation in radians.�

:stream Specifies the output stream; the default is *standard-output*.

Example:

Page 1557

(graphics:with-room-for-graphics (t 200)

 (graphics:with-graphics-translation (t 100 100)

 (graphics:draw-point 0 0)

 (graphics:graphics-rotate (* 1/3 pi))

 (graphics:draw-rectangle -50 50 50 -50 :filled nil)

 (graphics:graphics-rotate (* -1/3 pi))

 (graphics:draw-rectangle -50 50 50 -50 :filled nil)))

�

This and two related functions (graphics:graphics-translate and

graphics:graphics-scale) are intended primarily for use within path-drawing func-

tions supplied to graphics:draw-path and graphics:with-clipping-path or within

graphics encapsulating macros such as graphics:with-room-for-graphics and

graphics:with-graphics-transform. For examples: See the function graphics:draw-

path. In other contexts, graphics:with-graphics-rotation is generally more appro-

priate.

For an overview of graphics:graphics-rotate and related functions: See the section

"Coordinate System Facilities". Also: See the section "Keyword Options Affecting

the Coordinate System".

� graphics:graphics-scale x-scale &optional (y-scale graphics::x-scale) &key (stream

standard-output) Function

Modifies the graphics transformation matrix to apply a scaling factor to graphics

output. (For an explanation of the graphics tranformation matrix: See the function

graphics:with-graphics-transform.)

x-scale A number specifying the x scaling factor.

y-scale A number specifying the y scaling factor (if different than x-scale).�

:stream Specifies the output stream; the default is *standard-output*.

Example:

(graphics:with-room-for-graphics (t 100)

 (graphics:graphics-scale 5 5)

 (graphics:draw-rectangle 10 20 20 10)

 (graphics:graphics-scale 1/2 1/2)

 (graphics:draw-rectangle 10 20 20 10 :gray-level .5))

Page 1558

�

This and two related functions (graphics:graphics-translate and

graphics:graphics-rotate) are intended primarily for use within path-drawing

functions supplied to graphics:draw-path and graphics:with-clipping-path or

within graphics encapsulating macros such as graphics:with-room-for-graphics

and graphics:with-graphics-transform. For examples: See the function

graphics:draw-path. In other contexts, graphics:with-graphics-scale is generally

more appropriate.

For an overview of graphics:graphics-scale and related functions: See the section

"Coordinate System Facilities". Also: See the section "Keyword Options Affecting

the Coordinate System".

� graphics:graphics-stream-p stream Function

Returns a Boolean value: t if stream supports the generic graphics protocol; other-

wise nil. Use this predicate to determine whether to use a graphical or a textual

representation of an object.

� graphics:graphics-transform transform &key (stream *standard-output*) Function

Modifies the graphics transformation matrix move the origin of the graphics coor-

dinate system in accordance with the translation, rotation, and scaling specified by

transform. (For an explanation of the graphics tranformation matrix: See the func-

tion graphics:with-graphics-transform.)

transform A list of the essential six elements of a two-dimensional homoge-

neous graphics transformation matrix describing a combination of

scaling, rotation, and translation.

:stream Specifies the output stream; the default is *standard-output*.

Example:

(graphics:with-room-for-graphics (t 100)

 (graphics:graphics-translate 40 40)

 (graphics:draw-rectangle 0 40 40 0)

 (graphics:graphics-transform ’(2 0 0 1 10 10))

 (graphics:draw-rectangle 0 40 40 0 :gray-level .5))

Page 1559

�

This and related functions such as (graphics:graphics-scale and

graphics:graphics-rotate) are intended primarily for use within path-drawing

functions supplied to graphics:draw-path and graphics:with-clipping-path or

within graphics encapsulating macros such as graphics:with-room-for-graphics

and graphics:with-graphics-transform. For examples: See the function

graphics:draw-path. In other contexts, graphics:with-graphics-transform is gen-

erally more appropriate.

For an overview of graphics:graphics-transform and related functions: See the

section "Coordinate System Facilities". Also: See the section "Keyword Options Af-

fecting the Coordinate System".

� graphics:graphics-translate delta-x delta-y &key (stream *standard-output*)

Function

Modifies the graphics transformation matrix to offset the origin of the graphics co-

ordinate system. (For an explanation of the graphics tranformation matrix: See the

function graphics:with-graphics-transform.)

delta-x A number specifying the x offset.

delta-y A number specifying the y offset.�

:stream Specifies the output stream; the default is *standard-output*.

Example:

(graphics:with-room-for-graphics (t 100)

 (graphics:graphics-translate 40 40)

 (graphics:draw-rectangle 0 40 40 0)

 (graphics:graphics-translate -40 -40)

 (graphics:draw-rectangle 0 40 40 0 :gray-level .5))

�

This and two related functions (graphics:graphics-scale and graphics:graphics-

rotate) are intended primarily for use within path-drawing functions supplied to

graphics:draw-path and graphics:with-clipping-path or within graphics encapsu-

lating macros such as graphics:with-room-for-graphics and graphics:with-

graphics-transform. For examples: See the function graphics:draw-path. In other

contexts, graphics:with-graphics-translation is generally more appropriate.

Page 1560

For an overview of graphics:graphics-translate and related functions: See the sec-

tion "Coordinate System Facilities". Also: See the section "Keyword Options Affect-

ing the Coordinate System".

� :gray-level Option

Specifies the black-to-white level of the graphic as a ratio or decimal fraction

between 0 and 1; the default value is 1. On 1-bit devices, gray levels are sim-

ulated by stippling.

Example:

(defun gray-level-example ()

 (graphics:with-room-for-graphics (t 200)

 (graphics:draw-polygon

 ’(100 10 350 10 350 100 225 150 100 100 100 10)

 :gray-level 1/4

 :convex-p t)

 (graphics:draw-polygon

 ’(100 10 350 10 350 100 225 150 100 100 100 10)

 :filled nil

 :convex-p t)

 (graphics:draw-polygon

 ’(259 137 259 165 289 165 289 124 259 137)

 :gray-level 3/4

 :convex-p t)

 (graphics:draw-rectangle 200 70 250 10

 :gray-level 1/2

 :opaque t)

 (graphics:draw-rectangle 200 70 250 10

 :filled nil)

 (graphics:draw-rectangle 135 90 175 40

 :gray-level 1/20

 :opaque t)

 (graphics:draw-rectangle 135 90 175 40

 :filled nil)

 (graphics:draw-line 135 65 175 65)

 (graphics:draw-rectangle 275 90 315 40

 :gray-level 1/20

 :opaque t)

 (graphics:draw-rectangle 275 90 315 40

 :filled nil)

 (graphics:draw-line 275 65 315 65)))

Page 1561

�

(gray-level-example)

�

� graphics:gray-level-stipple gray-level Function

Returns a stipple array that approximates gray-level, a number between 0 and 1.

Example:

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-circle 50 50 50 :stipple (graphics:gray-level-stipple .5)))

� graphics:*identity-transform* Variable

The list (1 0 0 1 0 0), which is the representation of the two-dimensional homoge-

neous transform matrix:

1 0 0

0 1 0

0 0 1�

Applying the identity transform to any set of coordinates results in the same set of

coordinates. Composing the identity transform with any other transform t results

in t. See the section "Coordinate System Facilities".

� :initial-dash-phase Option

Specifies the offset, in pixels, of the start of the first dash from the starting

point of the line; the default value is 0.

This option is not operable if the :dashed option to the drawing function is

nil.�

� graphics:invert-transform transform &optional (into-transform (graphics:make-

graphics-transform)) Function

transform

A list of the essential six elements of a two-dimensional homoge-

Page 1562

neous graphics transformation matrix describing a combination of

scaling, rotation, and translation.

into-transform Another such list that is to become the result of the

inversion.

Returns or optionally stores into into-transform the result of calculating the in-

verse of the matrix represented by transform. Application of the transform result-

ing from graphics:invert-transform to a point originally moved by applying trans-

form will restore the point to its original location. See the section "Coordinate Sys-

tem Facilities".

� :line-end-shape Option

Specifies the shape for the ends of lines drawn by a drawing function, one of

:butt, :square, :round, or :no-end-point; the default is :butt.

To see the differences among end shapes, try evaluating the following:

 (graphics:with-room-for-graphics (t 200)

 (graphics:draw-line 200 40 200 140

:line-end-shape :butt

:thickness 20)

 (graphics:draw-line 240 40 240 140

:line-end-shape :no-end-point

:thickness 20)

 (graphics:draw-line 280 40 280 140

:line-end-shape :square

:thickness 20)

 (graphics:draw-line 320 40 320 140

:line-end-shape :round

:thickness 20)

 (graphics:draw-line 190 30 330 30)

 (graphics:draw-line 190 150 330 150))

The vertical lines on the left have :butted ends; they do not extend beyond

the y-coordinates (40 and 140) given for the line. The lines on the right have

:squared and :rounded ends. These lines extend, because of the :thickness

parameter (20), 10 pixels above and below the top and bottom line coordinates.

This option is not operable if the function draws a filled (:filled t) figure.�

� graphics:line-intersection x1 y1 x2 y2 x3 y3 x4 y4 &optional (interval :closed)

Function

Returns the intersection point of the two lines specified by <x1 y1> to <x2 y2> and�

<x3 y3> to <x4 y4>, or nil if the lines do not intersect. interval can be t to indicate

you want the intersection point wherever it is, :open to indicate the endpoints do

not count as matching, or :closed (default) to include endpoints.

Page 1563

(defun show-line-intersection (x1 y1 x2 y2 x3 y3 x4 y4)

 (graphics:with-room-for-graphics ()

 (graphics:draw-line x1 y1 x2 y2)

 (graphics:draw-line x3 y3 x4 y4)

 (block done

 (multiple-value-bind (x y)

 (graphics:line-intersection x1 y1 x2 y2 x3 y3 x4 y4)

 (when (and x y)

 (return-from done

 (graphics:draw-arrow 0 0 x y))))

 (multiple-value-bind (x y)

 (graphics:line-intersection x1 y1 x2 y2 x3 y3 x4 y4 t)

 (when (and x y)

 (return-from done

 (graphics:draw-arrow 0 0 x y :dashed t)))))))�

�

(show-line-intersection 100 0 200 100 100 100 200 0)

�

�

(show-line-intersection 100 50 150 50 100 200 150 175)

�

�

� :line-joint-shape Option

Specifies the shape of joints between line segments of closed, unfilled figures,

when the :thickness option to a drawing function is greater than 1. The pos-

sible shapes are :miter, :bevel, :round, and :none; the default is :miter.

The following example draws four pentagons illustrating the differences

among, from left to right, the :miter, :bevel, :round, and :none joint shapes:

Page 1564

(graphics:with-room-for-graphics (t 200)

 (graphics:draw-regular-polygon 40 40 100 40 5

 :filled nil

 :thickness 15

 :line-joint-shape :miter)

 (graphics:draw-regular-polygon 190 40 250 40 5

 :filled nil

 :thickness 15

 :line-joint-shape :bevel)

 (graphics:draw-regular-polygon 340 40 400 40 5

 :filled nil

 :thickness 15

 :line-joint-shape :round)

 (graphics:draw-regular-polygon 490 40 550 40 5

 :filled nil

 :thickness 15

 :line-joint-shape :none))

�

This option is not operable if the function draws a filled (:filled t) figure.

Some hardcopy devices may not support all line joint shapes. Notably,

PostScript printers treat :none as :bevel.

� graphics:make-contrasting-pattern index-number number-of-indices Function

Returns a pattern instance that draws a distinct (recognizably different) pattern

for adjacent indices. This is done with a few colors if the output stream supports

color and with a few stipples otherwise.

Example:

Page 1565

(defun pie-chart ()

 (let ((nitems 4)

 (total 2.0))

 (graphics:with-room-for-graphics (t 300)

 (graphics:with-graphics-translation (t 350 150)

 (loop for (fraction . rest) on ’(1.0 .7 .1 .2)

 for angle = (* pi 1/2) then nangle

 as nangle = (if rest (- angle

 (* graphics:2pi (/ fraction total)))(* pi 5/2))

 for item-no from 0

 do

 (graphics:draw-circle 0 0 50 :start-angle angle

 :end-angle nangle :clockwise t

 :pattern

 (graphics:make-contrasting-pattern item-no nitems))

 (graphics:draw-circle 0 0 50 :start-angle angle

 :end-angle nangle

 :clockwise t

 :filled nil :thickness 2)

 (graphics:draw-line 0 0 50 0 :rotation angle

 :thickness 2))))))

�

� graphics:make-device-conditional-pattern device-alist Function

Creates a pattern instance that draws in a way that is conditionalized by the out-

put stream. Each device-alist element is (type . drawing-args). The types are:

:color A stream that can draw in color.

:postscript A stream that goes to a postscript interpreter.

:window A window stream.

otherwise (the symbol otherwise) Anything.

The first element that matches is used, which means that drawing is done with its

drawing-args, which is a set of keyword/value pairs acceptable to graphics:with-

drawing-state. Example:

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-rectangle 0 75 90 0 :pattern

 (graphics:make-device-conditional-pattern

‘((:color :color :magenta)

 (otherwise :stipple ,stipples:horizontal-dashes)))))

� graphics:make-graphics-transform &key :r11 :r12 :r21 :r22 :tx :ty Function

Page 1566

The defstruct constructor for a transform matrix: it returns the transform matrix

specified by the keyword arguments. See the section "Advanced Transformation Fa-

cilities".

� graphics:make-identity-transform Function

Creates and returns the list (1 0 0 1 0 0).

� graphics:make-raster-array-with-correct-width width height &rest args &key (:el-

ement-type t) &allow-other-keys Function

width The minimum width of the raster array in pixels.

height The height of the raster array.

args A list containing the remaining arguments, which can include the

keyword argument :element-type and other keys, which are the pos-

sible options for make-array.�

:element-type Specifies the element type of the raster array. One of

(unsigned-byte n), fixnum, character, string-char, or boolean.

See the section "Common Lisp Array Element Types".

Calls make-raster-array with the width argument adjusted if necessary to ensure

that it is an acceptable width for a raster array (that is, it is a multiple of 32 so

it can be used by bitblt).

� graphics:make-simple-pattern &rest drawing-args Function

Returns a pattern instance which does the drawing as if drawing-args had been

passed in place of :pattern <instance>. The possible drawing arguments are the

same as those acceptable to graphics:with-drawing-state. The most useful key-

words to include are :alu, :pattern, :stipple, :tile, :gray-level, :color, and :opaque.

(graphics:with-room-for-graphics (t 100)

(graphics:draw-circle 50 50 50 :pattern

 (graphics:make-simple-pattern

 :stipple stipples:weave8 :gray-level .5))

� graphics:make-two-color-stipple stipple ones-color zeros-color Function

Returns a pattern instance that draws the stipple pattern stipple in the two colors

specified by ones-color and zeros-color. If the output stream does not support color,

the stipple is drawn in black-and-white in the normal way.

Example:

Page 1567

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-circle 50 50 50 :pattern

(graphics:make-two-color-stipple

 stipples:filled-diamonds

 :red :yellow)))

� graphics:map-points function points Function

function A function that accepts three arguments: x, y, and last-point-p. This

last argument is a Boolean which indicates that this is the last

point to be processed.

points A sequence, that is, a list or an array, of x and y coordinates of a

collection of points, for example, (x1 y1 x2 y2 x3 y3 x4 y4).�

Sequentially calls function on each coordinate pair in the sequence.

� :mask Option

Specifies a bitmap of points affected by the drawing operation; the default is

nil, that is, no bitmap.

Use this option to mask out portions of the output graphic that you do not

want displayed. For example, the following form outputs a rectangle, but does

so through a triangular mask, so that only a triangle gets displayed:

(graphics:with-room-for-graphics (t 200)

 (multiple-value-bind (bitmap x y)

(graphics:with-output-to-bitmap ()

 (graphics:draw-triangle 100 50 200 150 300 50))

 (graphics:draw-rectangle 0 200 400 0

 :gray-level .33

 :mask bitmap :mask-x x :mask-y (+ 100 y))))

�

� :mask-x Option

Specifies the x-coordinate, with respect to the local graphics origin, of the

lower lefthand corner of the position of the rectangular bitmap region speci-

fied by the :mask option.

Page 1568

� :mask-y Option

Specifies the y-coordinate, with respect to the local graphics origin, of the

lower lefthand corner of the position of the rectangular bitmap region speci-

fied by the :mask option.

� :opaque Option

Boolean option specifying whether pixels in the source pattern of a drawing

function are cleared (before the graphic is output) or left alone; the default is

t. :opaque t means draw pixels that are off in the background color. The re-

sult of :opaque t is not influenced by the :alu supplied for the pixels that are

on. If you draw something over an existing figure using :opaque t :alu :flip,

the pixels that were originally on are inverted, and pixels that were originally

off are cleared (set to the background color).

To see the effect of this option, try calling the following function with t and

then nil.

(defun opaque-example (t-or-nil)

 (graphics:with-room-for-graphics (t 200)

 (graphics:draw-circle 200 100 50

 :pattern tv:75%-gray)

 (graphics:draw-triangle 165 65 235 65 200 150

 :pattern tv:25%-gray

 :opaque t-or-nil)))

�

(opaque-example t)

�

(opaque-example nil)

�

Page 1569

� :pattern Option

Specifies a pattern to be drawn within the figure created by a drawing func-

tion. :pattern is the most general control of the "looks" of thie inside of a

filled shape. The default is nil. The :pattern drawing option can be a(n)

• stipple This is identical to :stipple <value>.

• color This is identical to :color <value>.

• instance The case of interest here.

Several functions are provided for making instances to pass as the pattern.

See the function graphics:make-simple-pattern. See the function

graphics:make-two-color-stipple. See the function graphics:make-

contrasting-pattern. See the function graphics:make-device-conditional-

pattern. Additionally, there are three layered protocols for implementing

one’s own instances to be passed as :pattern. See the section "Texturing".

(defun pattern-example1 ()

 (graphics:with-room-for-graphics (t 200)

 (let ((bitmap (tv:make-binary-gray 8 8

 ’(#b00000000 ; The picture of

 #b00001000 ; what you want

 #b00111000 ; the bit pattern

 #b00001000 ; displayed to

 #b00001000 ; look like, in

 #b00001000 ; this case the

 #b00001000 ; number 1.

 #b00111110))))

 (graphics:draw-circle 200 100 50

 :pattern bitmap))))

�

(defun pattern-example2 ()

 (let ((bitmap (tv:with-output-to-bitmap (t)

 (graphics:draw-string

 "symbolics" 0 0

 :character-style

 ’(:swiss :bold-italic :large)))))

 (graphics:with-room-for-graphics (t 250)

 (graphics:draw-triangle 100 25 400 25 250 250

 :pattern bitmap))))�

(pattern-example1)

(pattern-example2)�

� graphics:pattern-call-with-drawing-parameters pattern function stream drawing-

state Generic Function

Page 1570

As implemented by pattern, which should be built upon graphics:basic-pattern,

should call function with keyword arguments such as would be acceptable to

graphics:with-drawing-state. It can examine stream and drawing-state to deter-

mine what arguments to supply. See the section "Texturing". Example:

(defflavor my-pattern () (graphics:basic-pattern))

�

(defmethod (graphics:pattern-call-with-drawing-parameters

 my-pattern)

 (function stream drawing-state)

 (ignore drawing-state)

 (if (color:color-stream-p stream)

 (funcall function :color :magenta)

 (funcall function :stipple stipples:hearts :gray-level .75)))

(compile-flavor-methods my-pattern)

�

(graphics:with-room-for-graphics ()

 (graphics:draw-rectangle 0 0 200 100 :pattern (make-instance

 ’my-pattern)))

Note that this example could have been done in a data-driven way rather than in

this procedural way by using graphics:make-device-conditional-pattern.

� graphics:pattern-compute-raster-source-pattern pattern source-so-far ones-alu ze-

ros-alu temporary-p stream drawing-state Generic Function

Returns updated-source, ones-alu, zeros-alu, and temporary-p; fills in the source-so-

far with pattern; and updates the alus with ones-alu and zeros-alu. If temporary-p is

true, the temporary raster sheet is deallocated. Pattern is to be drawn on stream

with drawing-state. Methods that need to exercise fuller control over the individual

slices in the shape should return self as the source. See the section "Texturing".

Example:

(defflavor my-pattern-2 () (graphics:raster-device-pattern))

Page 1571

�

(defmethod (graphics:pattern-compute-raster-source-pattern my-pattern-2)

 (source-so-far ones-alu zeros-alu temporary-p ignore ignore)

 ;; Get a raster we can modify.

 (unless temporary-p

 (multiple-value-bind (width height)

 (if source-so-far

 (multiple-value-bind (width height)

 (decode-raster-array source-so-far)

 (values (lcm width 32) height))

 (values 32 1))

 (let ((source (with-stack-list (dims height width)

 (tv:allocate-temp-sheet-raster-and-header

 dims :type ’tv:art-1b))))

(if source-so-far

 (bitblt boole-1 width height source-so-far 0 0 source 0 0)

 (bitblt boole-set width height source 0 0 source 0 0))

(setq source-so-far source

 temporary-p t))))

 (multiple-value-bind (width height)

 (decode-raster-array source-so-far)

 (bitblt boole-xor width height stipples:vertical-lines 0 0

 source-so-far 0 0))

 (values source-so-far ones-alu zeros-alu temporary-p))

�

(compile-flavor-methods my-pattern-2)

�

(graphics:with-room-for-graphics ()

 (let ((pattern (make-instance ’my-pattern-2)))

 (graphics:draw-rectangle 0 0 200 100 :pattern pattern)

 (graphics:draw-rectangle 0 100 200 200

 :stipple stipples:hearts :pattern pattern)))�

� graphics:pattern-draw-raster-slice pattern width height x y ones-alu zeros-alu

stream drawing-state Generic Function

pattern should use some of the primitive raster drawing messages (such as :draw-

rectangle or :draw-1-bit-raster) to output an appropriately patterned slice to

stream whose upper-left corner is at x,y and whose size is width,height. See the

section "Texturing". Example:

(defflavor random-pattern

(phase)

(graphics:raster-slice-device-pattern

 lgp:postscript-device-pattern)

 (:constructor make-random-pattern (phase)))

Page 1572

�

(defmethod (graphics:pattern-draw-raster-slice random-pattern)

 (width height x y ones-alu zeros-alu stream ignore)

 (let ((raster (graphics:make-raster-array-with-correct-width

 width height

 :element-type ’bit)))

 (loop for real-y from y

 for y from 0 below height

 do

 (loop repeat (floor (* width (mod real-y phase)) phase)

 do

(setf (raster-aref raster (random width) y) 1)))

 (send stream :draw-1-bit-raster width height

 raster 0 0 x y ones-alu zeros-alu)))

�

(defmethod (lgp:pattern-output-postscript-code random-pattern)

 (device-stream filled ignore ignore)

 (format device-stream

 "8 0 {pop pop 1 rand and} setscreen .25 setgray ")

 (write-string (if filled "fill" "stroke") device-stream))

�

(compile-flavor-methods random-pattern)

�

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-triangle 0 0 50 100 100 0

 :pattern (make-random-pattern 8)))

� lgp:pattern-output-postscript-code pattern device-stream filled stream drawing-state�

Generic Function

As implemented by pattern, which should be built upon lgp:postscript-device-

pattern, should send PostScript code to device-stream, which will be a thin charac-

ter output stream. The current path will be the figure being drawn. filled is t if

the outline is to be filled and nil if it is to be stroked. The implementation can ex-

amine stream and drawing-state to determine what to do. See the section "Textur-

ing".

� graphics:*pattern-stipple-arrays* Variable

A list of those stipple arrays that are patterns, as opposed to gray levels.

Page 1573

See the variable graphics:*stipple-arrays*.

filled-diamonds weave8weave8b

bricks

alt-rain

parquet

small-diamonds hearts tiles double-bricks

half-bricks

horizontal-dasheshorizontal-lines

large-diamonds

southeast-rain

southeast-thick-hatch

southeast-thin-hatch

vertical-lines vertical-dashes

tracks southeast-dense-hatchsouthwest-thin-hatch

southwest-thick-hatchsouthwest-rain

southwest-dense-hatch

� (flavor:method :point tv:graphics-mixin) x y Method

Returns the numerical value of the picture element at the specified coordinates.

The result is 0 or 1 on a black-and-white TV. Clipping is performed; if the coordi-

nates are outside the window, the result will be 0.

� lgp:postscript-device-pattern Flavor

The flavor for patterns on postscript devices. Built on graphics:raster-device-

pattern, it has the required method, lgp:pattern-output-postscript-code.

� graphics:raster-graphics-mixin Flavor

A flavor mixin to windows and other raster devices that implements graphics by

means of primitive slice functions.

� graphics:read-encoded-graphics-as-characters stream Function

Returns an array with elements of type (unsigned-byte 8), which contains an en-

coded version of a graphics function.

See the function graphics:binary-encode-graphics-to-array.See the section "Other

Advanced Facilities for Graphic Output".

Page 1574

stream A character stream to which an encoded graphics function has been

written with the function graphics:write-encoded-graphics-as-

characters.

� graphics:replacing-graphics-presentation (stream presentation &rest args) &body

body Function

Replaces a graphic presentation with the graphic output generated in body. The

new output will also be a graphics presentation and is returned as such. The re-

placing operation is done in such a way that flicker is minimized, making this fa-

cility useful for simple animations. Returns two values, the old display, which is a

bitmap stream, and the pattern array generated by the body.

stream The output stream.

presentation The graphics presentation to be replaced.

args Optional keyword arguments, including :pattern-array, the array

that holds the pattern array generated by the body, and :bitmap-

stream, a specially allocated raster array that contains the old dis-

play.�

The following example illustrates the use of the :bitmap-stream and :pattern-

array options to graphics:replacing-graphics-presentation:

(defun animation-example ()

 (graphics:with-room-for-graphics (t 150)

 (graphics:with-output-to-bitmap-stream (bitmap-stream

 :for-stream *standard-output*)

 (let ((old-output nil)

 (old-pattern nil))

(loop for i to 25

 as x = (+ 100 (* i 16))

 do

 (multiple-value-setq (old-output old-pattern)

 (graphics:replacing-graphics-presentation (t old-output

 :pattern-array old-pattern

 :bitmap-stream bitmap-stream)

 (graphics:with-graphics-translation (t x 100)

(graphics:draw-circle 0 0 20)

(let ((angle (/ (* pi i) 25)))

 (graphics:draw-triangle 20 0 40 0 40 10

 :rotation angle)

 (graphics:draw-circle 0 0 30

 :inner-radius 20 :start-angle angle))))))))))

�

(animation-example)

Use of the options as illustrated saves the cost of allocation of arrays and bitmap

streams each time around the loop. For an overview of graphics:replacing-

graphics-presentation and related functions:

Page 1575

See the section "Other Basic Facilities for Graphic Output".

� :return-presentation Option

Boolean option specifying whether a drawing function should return the newly

created graphic as a presentation object; the default is nil.

Use this option when you wish to manipulate the output of a single drawing

function as a presentation. If you want to manipulate the collective output of

a series of drawing functions as a single presentation, use the graphics:with-

output-as-graphics-presentation macro instead.

Some facilities are provided for handling graphic presentations, in particular,

graphics:erase-graphics-presentation and graphics:replacing-graphics-

presentation. The following example uses the former in conjunction with the

:return-presentation keyword:

(graphics:with-room-for-graphics (t 100)

 (graphics:with-graphics-scale (t 50)

 (let ((presentations

 (list

 (graphics:draw-regular-polygon .75 .5 1.25 .5 4

 :gray-level .25 :return-presentation t)

 (graphics:draw-regular-polygon .25 0 1.25 0 3

 :gray-level .75 :return-presentation t)

 (graphics:draw-ellipse 1.5 .5 .4 .4

 :gray-level .5 :return-presentation t))))

 (sleep 2)

 (graphics:erase-graphics-presentation (first presentations)))))�

� :rotation Option

Specifies the rotation of the graphic in plus or minus radians; the default is

0. The axis of rotation is the local origin (0, 0).

In the following example, the origin is first established at the lower, left

corner of the graphic display area created by graphics:with-room-for-

graphics, then translated 300 pixels to the right and 15 pixels up by the

graphics:with-graphics-translation macro. In this coordinate system, the ar-

row is rotated counter-clockwise about the origin at an offset of 10 pixels.

Page 1576

(defun rotating-arrow ()

 (graphics:with-room-for-graphics (t 225)

 (graphics:with-graphics-translation (t 300 15)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5)

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .125))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .25))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .375))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .5))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .625))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .75))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .875))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation pi))))�

�

(rotating-arrow)�

� graphics:saving-graphics-transform (&optional stream) &body body Function

Perform body while stream has a modifiable copy of its current transformation

matrix. That is, functions like graphics:graphics-rotate can be called from within

graphics:saving-graphics-transform without permanent effect.

Page 1577

� :scale Option

Specifies a number applied as a scaling factor to the x and y parameters of a

drawing function; the default is 1.

:scale does not affect the line thickness parameter. To do so, use the :scale-

thickness keyword.�

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-circle 1 1 1 :scale 20))

�

� :scale-dashes Option

Boolean option specifying whether to scale dashes when the :dashed option to

a drawing function is t and a scaling factor is specified (via the :scale key-

word: See the option :scale.). The default is nil.

For an example: See the option :dash-pattern.

This option is not operable if the :dashed option is nil.�

� scale-float float integer Function

Computes and returns (* float 2integer).

Although the same result can be obtained by using exponentiation and multiplica-

tion, the use of scale-float can be much more efficient and avoids the intermediate

overflow and underflow if the final result is representable.

Examples:

(scale-float .5 2) => 2.0

(scale-float .5 3) => 4.0

(scale-float .5 4) => 8.0

(scale-float .75 2) => 3.0�

For a table of related items, see the section "Functions that Decompose and Con-

struct Floating-point Numbers".

� :scale-thickness Option

Boolean option specifying whether to scale thickness, as well as other linear

dimensions, when a scaling factor is specified (via the :scale keyword to a

drawing function: See the option :scale.). The default is nil.

This option is not operable if the function draws a filled (:filled t) figure.�

Page 1578

(graphics:with-room-for-graphics (t 100)

 (graphics:with-graphics-translation (t 100 50)

 (graphics:draw-rectangle -10 -10 10 10 :filled nil :thickness 1)

 (graphics:draw-rectangle -10 -10 10 10 :filled nil :thickness 1 :scale 2)

 (graphics:draw-rectangle -10 -10 10 10 :filled nil :thickness 1 :scale 4

 :scale-thickness nil)))

�

� graphics:sector-wide-p start-angle end-angle Function

Returns a Boolean value that is t if the angle from start-angle to end-angle is no

more than a quarter circle in the clockwise direction; otherwise nil.

(graphics:sector-wide-p (* pi 1/4) (* pi 3/8))

�

NIL

� graphics:set-current-position new-x new-y &key (stream *standard-output*) (ex-

plicit t) Function

Moves the graphics cursor to a specified position.

new-x The new x-coordinate.

new-y The new y-coordinate.�

:stream Specifies the output stream; the default is *standard-output*.

:explicit Booleanoptionspecifyingwhetherthismovementopensupanew

portion of a path for graphics:draw-path; the default is t. Specify

nil for operations that do output and then move the cursor.

This facility is useful with drawing functions that explictly use the graphics cur-

sor. Such functions include graphics:draw-bezier-curve-to, graphics:draw-

circular-arc-to, graphics:draw-line-to, and other facilities commonly used for cre-

ating path-drawing functions. For examples of path-drawing functions: See the

function graphics:draw-path.

For an overview of graphics:set-current-position and related functions: See the

section "Drawing Functions".

� graphics:standard-graphics-mixin Flavor

Page 1579

A flavor mixin defining required methods of graphics primitives. It should be in-

cluded in all streams that support graphics.

� graphics:*stipple-arrays* Variable

A list of predefined stipple arrays that can be specified for the graphics :stipple

option. These are the names of the arrays in the list:

stipples:large-diamonds stipples:small-diamonds

stipples:filled-diamonds stipples:weave8b

stipples:weave8 stipples:parquet

stipples:diagonals stipples:small-diamonds

stipples:hearts stipples:tiles

stipples:double-bricks stipples:half-bricks

stipples:bricks stipples:vertical-lines

stipples:horizontal-lines stipples:vertical-dashes

stipples:horizontal-dashes stipples:tracks

stipples:alt-rain stipples:southwest-rain

stipples:southeast-rain stipples:southwest-thick-hatch

stipples:southeast-thick-hatch stipples:southwest-thin-hatch

stipples:southeast-thin-hatch stipples:southwest-dense-hatch

stipples:southeast-dense-hatch stipples:5.5%-gray

stipples:6%-gray stipples:7%-gray

stipples:8%-gray stipples:9%-gray

stipples:10%-gray stipples:12%-gray

stipples:hes-gray stipples:33%-gray

stipples:75%-gray stipples:25%-gray

stipples:50%-gray

� :stream Option

Specifies the output stream for a drawing function; the default is *standard-

output*.

� graphics:stream-transform stream Function

stream Any graphics stream, that is, any stream that has a flavor compo-

nent of graphics:standard-graphics-mixin.

Returns a list whose elements are the current transform matrix of stream. If the

coordinate context is established with one of the graphics:with-graphics ...

macros, the value returned is a stack list. See the section "Coordinate System Fa-

cilities".

� graphics:stream-transform-point x y stream Function

Page 1580

Returns the result of transforming the point <x y> by the inverse of the current

transformation matrix of stream, that is, it returns the coordinates the point would

have if the current transformation matrix were not applied.

� graphics:stream-untransform-point x y stream Function

Returns the result of transforming the point <x y> by the current transformation

matrix of stream.

� :scale-x Option

Specifies a number applied as a scaling factor to the x parameters of a draw-

ing function; the default is 1.�

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-circle 50 50 20 :scale-x 4))

:scale-y Option

Specifies a number applied as a scaling factor to the y parameters of a draw-

ing function; the default is 1.�

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-circle 100 100 50 :scale-y 1/2))

:thickness Option

Specifies the thickness, in pixels, of the line or lines drawn by a drawing

function. The default is device-dependent: for the screen, it is 0, which speci-

fies the minimum thickness for that device; for the lgp2 and lgp3, it is 1. The

thinnest possible thickness is 0, which also specifies that the line is to be po-

sitioned roughly. For accurate positioning, specify a thickness of 1.

This option is not operable if the function draws a filled (:filled t) figure.�

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-triangle 0 0 50 0 25 25 :filled nil :thickness 2)

 (graphics:draw-triangle 100 0 150 0 125 25 :filled nil :thickness 4)

 (graphics:draw-triangle 200 0 250 0 225 25 :filled nil :thickness 8))

�

� :transform Option

Page 1581

Specifies a list of six elements in the graphics transformation matrix applied

to the local coordinate system used for a drawing function. The element order

is a, b, c, d, x, and y (see below). The default is nil, resulting in no transfor-

mation.

Arbitrary transformation of coordinates is effected by multiplication of coordi-

nate vectors by a transformation matrix. For coordinates in two-dimensional

space, a 3 x 3 transformation matrix is used,

a b 0

�

c d 0

�

x y 1�

of which the elements in the third column are constant. Thus, six elements,

effectively control the transformation as follows:

• Scaling in the x and y dimensions is controlled by elements a and d, re-

spectively. Values of 1 for these elements result in no scaling.

• Translation in the x and y dimensions is controlled by elements x and y,

respectively. Values of 0 for these elements result in no translation.

• Rotation about the origin is controlled by elements a, b, c, and d. Counter-

clockwise rotation by an angle α is effected by a = cosα, b = sinα, c = -

sinα, and d = cosα. A value of 0 for b and c results in no rotation (α = 0). �

Example:

;;; This example scales the size of the rectangle by a

;;; factor of 4 and translates its position by 100 in

;;; the x direction and 50 in the y direction.

�

(graphics:with-room-for-graphics (t 200)

 (graphics:draw-rectangle 0 20 20 0

 :transform ’(4 0 0 4 100 50)))�

� graphics:transform-distance x y transform Function

Returns the product of the matrix multiplication of the vector <x, y> and the

transformation matrix of transform. The values returned are the transformed val-

ues of the x and y distances. See the section "Coordinate System Facilities".

x A number representing a distance along the x direction.

y A number representing a distance along the y direction.

transform A list of the essential six elements of a two-dimensional homoge-

neous graphics transformation matrix describing a combination of

scaling, rotation, and translation.

Page 1582

� graphics:transform-point x y transform Function

Returns the product of the matrix multiplication of the vector <x, y> and the

transformation matrix of transform. The values returned are the transformed coor-

dinates of the point. See the section "Coordinate System Facilities".

x A number representing the x-coordinate of a point.

y A number representing the y-coordinate of a point.

transform A list of the essential six elements of a two-dimensional homoge-

neous graphics transformation matrix describing a combination of

scaling, rotation, and translation.

� :translation Option

Specifies x and y offsets relative to the local origin (0, 0) used for a drawing

function. The offsets are specified as a list, (x y). The offset units depend on

the output device; if it is the terminal screen, the units are pixels.

Using this option has the effect of moving the local origin to the new position

specified by x and y. The default is nil, no translation.�

;;; Contrast this with giving 50 50 as the center, which would have caused it to

;;; be rotated.

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-ellipse 0 0 40 20 :translation ’(50 50) :rotation (/ pi 4)))

�

� graphics:untransform-distance x y transform Function

Returns the product of the matrix multiplication of the vector <x, y> and the in-

verse of the transformation matrix represented by transform. The values returned

are the original values of x and y; that is, if the given distance <x, y> is the re-

sult of having undergone transform transform, then graphics:untransform-

distance returns the coordinates of the original distance.

Another way to look at the result is to consider that transform is composed of a

set of transformations of a point: a translation, followed by a rotation, followed by

a scaling. graphics:untransform-distance performs these same transformations in

reverse, restoring the transformed distance to its original values. See the section

"Coordinate System Facilities".

x A number representing a distance along the x direction.

y A number representing a distance along the y direction.

Page 1583

transform A list of the essential six elements of a two-dimensional homoge-

neous graphics transformation matrix describing a combination of

scaling, rotation, and translation.

� graphics:untransform-point x y transform Function

Returns the product of the matrix multiplication of the vector <x, y> and the in-

verse of the transformation matrix represented by transform. The values returned

are the original coordinates of the point <x, y>; that is, if the given point <x, y>

is at its current location as a result of having undergone transform transform from

some original location, then graphics:untransform-point returns the coordinates

of that original location.

Another way to look at the result is to consider that transform is composed of a

set of transformations of a point: a translation, followed by a rotation, followed by

a scaling. graphics:untransform-point performs these same transformations in re-

verse, restoring the transformed point to its original coordinates. See the section

"Coordinate System Facilities".

x A number representing the x-coordinate of a point.

y A number representing the y-coordinate of a point.

transform A list of the essential six elements of a two-dimensional homoge-

neous graphics transformation matrix describing a combination of

scaling, rotation, and translation.

� graphics:untransform-window-points stream &rest points Macro

points A list of numbers representing pairs of x- and y-coordinates of

points.�

Modifies a list containing the products of the matrix multiplication of each vector

<x, y> and the inverse of the transformation matrix of stream. The new values in

the list are the transformed coordinates of the points.

See the macro graphics:transform-window-points.See the section "Coordinate Sys-

tem Facilities".

� graphics:with-clipping-from-output (stream &body clipping-region-body) &body out-

put-body Function

Binds the local environment to apply a clipping region to the output of drawing

functions in the body. The clipping region limits output from the drawing func-

tions to points within the region. The shape of the clipping region is defined by a

drawing function.

stream The output stream.

Page 1584

clipping-region-body A drawing function outlining the clipping region. This

can be any function generating a closed figure as output, including

functions based on graphics:draw-path for complex figures. Output

should be to stream.�

graphics:with-clipping-path is a facility closely related to graphics:with-clipping-

from-output. You use it to apply clipping regions defined by path-drawing func-

tions, rather than by drawing functions as in the case of graphics:with-clipping-

from-output. For an example illustrating the use of the two facilities: See the

function graphics:with-clipping-path.

For an overview of graphics:with-clipping-from-output and related functions: See

the section "Drawing Functions".

� graphics:with-clipping-mask (stream mask &rest mask-args) &body body Macro

Performs the graphics output specified by body on stream using mask as a clipping

region. This is similar to using a drawing function with :mask mask. mask-args

are &key (left 0) (top 0) right bottom.

� graphics:with-clipping-path (stream path-function &rest path-filling-args) &body

body Function

Binds the local environment to apply a clipping region to the output of drawing

functions in the body. The clipping region limits output from the drawing func-

tions to points within the region. The shape of the clipping region is defined by a

path-drawing function.

stream The output stream.

path-function A path-drawing function outlining the clipping region.

The path can be arbitrarily complex, contain straight- and curved-

line segments, and include more than one closed subpath. (For sev-

eral examples of path functions: See the function graphics:draw-

path.)�

graphics:with-clipping-from-output is a facility closely related to graphics:with-

clipping-path. You use it to apply clipping regions defined by drawing functions,

rather than by path-drawing functions as in the case of graphics:with-clipping-

path. The following example shows the use of both facilities to achieve, in this

case, the same graphic effect.

;;; Star-shaped path drawer used by clipping-example

Page 1585

�

(defun star-drawer (*standard-output*)

 (graphics:set-current-position 0 0)

 (dotimes (i 4)

 (graphics:draw-line-to 1 0)

 (graphics:graphics-origin-to-current-position)

 (graphics:graphics-rotate (float (* -4/5 pi) 0.0)))

 (graphics:close-path))

�

;;; This function draws four figures:

;;; 1) a star

;;; 2) a circle

;;; 3) a circle clipped by a star-shaped path,

;;; demonstrating graphics:with-clipping-path,

;;; 4) a star clipped by a circular path,

;;; demonstrating the closely related macro

;;; graphics:with-clipping-from-output.

�

(defun clipping-example ()

 (graphics:with-room-for-graphics (t 100)

 (graphics:with-graphics-translation (t 100 50)

 (graphics:with-graphics-scale (t 50)

 (graphics:draw-path #’star-drawer)))

 (graphics:with-graphics-translation (t 200 50)

(graphics:with-graphics-scale (t 50)

 (graphics:draw-circle 0 0 1/2)))

 (graphics:with-graphics-translation (t 300 50)

(graphics:with-graphics-scale (t 50)

 (graphics:with-clipping-path (t #’star-drawer)

 (graphics:draw-circle 0 0 1/2))))

 (graphics:with-graphics-translation (t 400 50)

(graphics:with-graphics-scale (t 50)

 (graphics::with-clipping-from-output

 (t (graphics:draw-circle 0 0 1/2))

 (graphics:draw-path #’star-drawer))))))

�

(clipping-example)

�

For an overview of graphics:with-clipping-path and related functions: See the sec-

tion "Drawing Functions".

� graphics:with-coordinate-mode (stream mode) &body body Macro

Page 1586

Binds the local environment such that the figures produced within it are drawn

with the specified coordinate mode.

stream The output stream.

mode Specifies the coordinate mode to be used, which is one of:

:exact This is the default. Figures are drawn exactly

according to the coordinates specified. Use this

mode if it is important that figures tile correct-

ly or if you require that shapes with fractional

coordinates not be rounded to integer shapes.

:integer The coordinates specified to the drawing func-

tion are rounded to integer values and special,

faster integer drawing methods are used. Use

this mode when speed is important in drawing a

filled figure or one with thick lines and exact-

ness is of little importance.

:center Figures are drawn so that they are centered

around a whole pixel. For example, a circle with

specified raduis r and center <x, y> would be

drawn with actual center <x+1,y+1> and radius

r+1/2. Use this mode when you want small cir-

cles to appear symmetrical about a single pixel

and the circles need not align with other

shapes.�

See the section "Scan Conversion".

� graphics:with-drawing-state (stream &rest args) &body body Macro

Binds the local environment such that the drawing-state arguments in args are in

effect during the execution of body with the output being sent to stream. These ar-

guments can include any of the drawing keyword arguments other than the trans-

form arguments. These are:

:thickness :scale-dashes

:scale-thickness :alu

:line-end-shape :pattern

:line-joint-shape :stipple

:dashed :tile

:dash-pattern:gray-level

:initial-dash-phase :color

:draw-partial-dashes :opaque�

Example:

Page 1587

(graphics:with-room-for-graphics (t 100)

 (graphics:with-drawing-state (t :thickness 4 :dashed t)

 (graphics:draw-rectangle 0 100 200 0 :filled nil)

 (graphics:draw-circle 50 50 50 :filled nil)))

�

� graphics:with-graphics-identity-transform (&optional stream) &body body

Function

Binds the local environment such that the graphics transformation matrix is the

identity matrix. Graphics output from functions in the body is subject only to those

coordinate system changes that are implemented by drawing-function keywords.

(See the section "Keyword Options Affecting the Coordinate System".)

stream The output stream.�

Examples:

;;; Note that these will draw at the beginning of the window, because

;;; the with-room-for-graphics is defeated.

(graphics:with-room-for-graphics (t 200)

 (graphics:with-graphics-transform

 (*standard-output* ’(4 0 0 4 100 50))

 (graphics:with-graphics-identity-transform (t)

 (graphics:draw-rectangle 0 20 20 0))))

�

(graphics:with-room-for-graphics (t 200)

 (graphics:with-graphics-transform

 (*standard-output* ’(4 0 0 4 100 50))

 (graphics:with-graphics-identity-transform (t)

 (graphics:draw-rectangle 0 20 20 0

 :transform

 ’(4 0 0 4 100 50)))))�

For an overview of graphics:with-graphics-identity-transform and related func-

tions: See the section "Coordinate System Facilities".

� graphics:with-graphics-rotation (stream theta) &body body Function

Binds the local environment such that the graphics transformation matrix is modi-

fied to rotate graphics output. (For an explanation of the graphics tranformation

matrix: See the function graphics:with-graphics-transform.)

Page 1588

stream The output stream.

theta A number specifying the rotation in radians.�

Example:

(graphics:with-room-for-graphics (t 200)

 (graphics:with-graphics-translation (t 100 100)

 (graphics:with-graphics-rotation (t (* 1/3 pi))

 (graphics:draw-rectangle -50 50 50 -50 :filled nil))

 (graphics:draw-rectangle -50 50 50 -50 :filled nil)))

�

For an overview of graphics:with-graphics-rotation and related functions: See the

section "Coordinate System Facilities". Also: See the section "Keyword Options Af-

fecting the Coordinate System".

� graphics:with-graphics-scale (stream scale &optional (y-scale graphics::scale))

&body body Function

Binds the local environment such that the graphics transformation matrix is modi-

fied to apply a scaling factor to graphics output. (For an explanation of the graph-

ics tranformation matrix: See the function graphics:with-graphics-transform.)

stream The output stream.

scale A number specifying the scaling factor.

y-scale A number specifying the y scaling factor (if different from scale).�

Example:

(graphics:with-room-for-graphics (t 100)

 (graphics:with-graphics-scale (t 5)

 (graphics:draw-rectangle 10 10 20 20))

 (graphics:draw-rectangle 10 10 20 20 :gray-level .5))

Page 1589

�

For an overview of graphics:with-graphics-scale and related functions: See the

section "Coordinate System Facilities". Also: See the section "Keyword Options Af-

fecting the Coordinate System".

� graphics:with-graphics-subroutine (&optional (stream ’*standard-output*) &rest

special-variable-arguments) &body body Function

Improves the density of binary encoding.

stream The graphic output stream

special-variable-arguments Arguments for special variables accessed

within body.

� graphics:with-graphics-transform (stream transform) &body body Function

Binds the local environment such that the graphics transformation matrix is com-

posed with transform.

stream The output stream.

transform Specifies a list of six elements in the graphics transformation ma-

trix applied to the local coordinate system used for a drawing func-

tion. The element order is a, b, c, d, e, and f (see below).

Arbitrary transformation of coordinates is effected by multiplication

of coordinate vectors by a transformation matrix. For coordinates in

two-dimensional space, a 3 x 3 transformation matrix is used,

a b 0

�

c d 0

�

e f 1�

of which the elements in the third column are constant. Thus, six

elements, effectively control the transformation as follows:

• Scaling in the x and y dimensions is controlled by elements a

and d, respectively. Values of 1 for these elements result in no

scaling.

Page 1590

• Translation in the x and y dimensions is controlled by elements

e and f, respectively. Values of 0 for these elements result in no

translation.

• Rotation about the origin is controlled by elements a, b, c, and

d. Counterclockwise rotation by an angle α is effected by a =

cosα, b = sinα, c = -sinα, and d = cosα. A value of 0 for b and c

results in no rotation (α = 0). �

Example:

;;; This example scales the size of the rectangle by a

;;; factor of 4 and translates its position by 100 in

;;; the x direction and 50 in the y direction.

�

(graphics:with-room-for-graphics (t 200)

 (graphics:with-graphics-transform (t ’(4 0 0 4 100 50))

 (graphics:draw-rectangle 0 20 20 0)))�

For an overview of graphics:with-graphics-transform and related functions: See

the section "Coordinate System Facilities". Also: See the section "Keyword Options

Affecting the Coordinate System".

� graphics:with-graphics-translation (stream delta-x delta-y) &body body Function

Binds the local environment such that the graphics transformation matrix is modi-

fied to offset the origin of the graphics coordinate system. (For an explanation of

the graphics tranformation matrix: See the function graphics:with-graphics-

transform.)

stream The output stream.

delta-x A number specifying the x offset.

delta-y A number specifying the y offset.�

Example:

(graphics:with-room-for-graphics (t 100)

 (graphics:with-graphics-translation (t 40 40)

 (graphics:draw-rectangle 0 40 40 0))

 (graphics:draw-rectangle 0 40 40 0 :filled nil))

�

For an overview of graphics:with-graphics-translation and related functions: See

the section "Coordinate System Facilities". Also: See the section "Keyword Options

Affecting the Coordinate System".

Page 1591

� graphics:with-output-as-graphics-presentation (&optional stream &rest args)

&body body Function

Binds the local environment such that graphics output generated in the body is re-

turned as a presentation.

stream The output stream.�

This macro is the graphics equivalent of dw:with-output-as-presentation (on

which it is based). It is useful with functions for manipulating graphics presenta-

tions, namely, graphics:erase-graphics-presentation and graphics:replacing-

graphics-presentation. The following example shows the use of all three facilities:

(defun replacing-example ()

 (graphics:with-room-for-graphics (t 200)

 (let (poly)

 (setq poly (graphics:with-output-as-graphics-presentation ()

 (graphics:draw-polygon

 ’(100 10 350 10 350 100 225 150 100 100 100 10)

 :filled t

 :gray-level .25

 :convex-p t)))

 (sleep 1)

 (setq poly (graphics:replacing-graphics-presentation (t poly)

 (graphics:draw-polygon

 ’(100 10 350 10 350 100 225 150 100 100 100 10)

 :filled t

 :gray-level 1

 :convex-p t)))

 (sleep 1)

 (graphics:erase-graphics-presentation poly))))�

(replacing-example)�

For an overview of graphics:with-output-as-graphics-presentation and related

functions: See the section "Other Basic Facilities for Graphic Output".

tv:bitmap-stream-copy-bitmap stream Function

Makes a copy of the bitmap or raster associated with a stream and returns five

values:

• The bitmap

• Left top

• Right top

• Left bottom

Page 1592

• Right bottom�

tv:with-output-to-bitmap (&optional stream &key :for-stream :graphics-transform)

&body body Function

stream The stream to which to return the bitmap.

:for-stream The stream for which the bitmap is intended.

:graphics-transform An optional transform to be applied.�

Returns a raster array and positions containing the image output by body.

(defun bitmap-example (&optional (stream *standard-output*))

 (graphics:with-room-for-graphics ()

 (graphics:draw-triangle 0 0 200 0 50 50

 :tile (tv:with-output-to-bitmap (bstream

 :for-stream stream)

 (graphics:draw-circle 0 0 10

 :gray-level .25 :stream bstream)

 (graphics:draw-regular-polygon 8 0 16 0 6

 :gray-level .75

 :stream bstream)))))

� tv:with-output-to-bitmap-stream (bitmap-stream &rest args &key (for-stream nil)

&allow-other-keys) &body body Function

bitmap-stream A stream that is a raster array intended to hold the

image generated by body.

args :for-stream, the stream for which the bitmap is intended, and, op-

tionally, :graphics-transform, an optional transform to be applied.�

Binds bitmap-stream to a specially allocated stream that accepts the graphic output

during execution of body. At any time, the :bitmap-and-edges message to this

stream returns the current image.

� graphics:with-physical-device-scale (stream scale unit) &body body Macro

Scales the output produced by body on stream so that it really is the size specified

on the output device used. scale is a number and unit is one of :inch, :centimeter,

or :mica.

Note that a scale factor is applied that assumes that the current scale is 1. There-

fore, you can still zoom a picture drawn using this by surrounding it with a

graphics:with-graphics-scale.

Page 1593

(graphics:with-room-for-graphics ()

 (graphics:with-physical-device-scale (t 1 :centimeter)

 (graphics:draw-circle 1 1/2 1/2)))�

� graphics:with-room-for-graphics (&optional stream height) &body body Function

Binds the local environment to establish a Cartesian coordinate system for doing

graphics output. The origin <0, 0> of the local coordinate system is in the lower

left corner of the area created. After graphic output is completed, the cursor is po-

sitioned past (immediately below) this origin. The bottom of the vertical block allo-

cated is at this location -- that is, just below point <0, 0> -- not necessarily at the

bottom of the output done. If your drawing extends in the negative y direction,

then you should use graphics:with-graphics-translation to position it within the

allocated space. This works for the screen, the lgp2, and the lgp3, even though

their coordinate systems are really not the same.

stream The output stream. If this argument is t or not supplied, it defaults

to *standard-output*.

height A number specifying the vertical space, in pixels, created for graph-

ics output. If this argument is not supplied, the height is computed

from the height of the output to be done.�

Example:

;;; Try evaluating the following forms. Note the orientation

;;; of the lines drawn and the position of the cursor when done.

�

(multiple-value-bind (x1 y1 x2 y2)

 (send *standard-output* :visible-cursorpos-limits)

 (ignore x1 x2 y2)

 (graphics:draw-line 0 (+ 0 y1) 200 (+ 200 y1)))

�

(graphics:with-room-for-graphics (t 200)

 (graphics:draw-line 0 0 200 200))

�

(graphics:with-room-for-graphics (t 200)

 (graphics:draw-line 0 0 200 -200))

�

(graphics:with-room-for-graphics (t 200)

 (graphics:with-graphics-translation (t 0 200)

 (graphics:draw-line 0 0 200 -200)))�

For an overview of graphics:with-room-for-graphics and related functions: See

the section "Coordinate System Facilities".

� graphics:write-encoded-graphics-as-characters array stream Function

Page 1594

Translates each element of array into a character, possibly preceded by a code

character, and writes the result to stream. See the section "Other Advanced Facili-

ties for Graphic Output".

array An array with elements of type (unsigned-byte 8) produced by the

function graphics:binary-encode-graphics-to-array, which contains

the encoded version of a graphics function.

stream Any output stream.

Standard Keyword Options to Drawing Functions

:stream Option

Specifies the output stream for a drawing function; the default is *standard-

output*.

:alu Option

Specifies the drawing mode for a drawing function. Possible values for this

option are:

:draw Pixels specified by the drawing function are turned on, regardless

of whether some of the pixels were already on. This is the default

drawing mode.

:erase Pixels specified by the drawing function are turned off, regardless

of whether some of the pixels were already off.

:flip Pixels specified by the drawing function are turned on if they were

previously off, and off if they were previously on.�

Additionally, numeric and color-extended alu operations are valid values for

this option. Whether "on" means white or black depends on the whether or

not the display window is in inverse video mode: if inverse video is not in ef-

fect, on means white.�

:stipple Option

Specifies a two-dimensional one-bit array. In normal, :alu :draw, mode, a 1 in

the array specifies that the corresponding pixel is on; 0, off. The origin of the

array is aligned with the coordinate origin of the output display.

Predefined stipple patterns are in graphics:*stipple-arrays*.

You can create your own stipple patterns using the Stipple Editor which, if it

is loaded, is invoked by pressing SELECT |. You can also generate a stipple

pattern by using the tv:with-output-to-bitmap macro.

1595 Keyword Options to Drawing Functions

:tile Option

Specifies a two-dimensional array of n-bit values. The n bits of each entry in

the array specify the color of the corresponding pixel. The origin of the array

is aligned with the coordinate origin of the output display. You can also gen-

erate a tiling pattern by using the tv:with-output-to-bitmap macro.

:color Option

Specifies a color to be used for output on a device that supports color. On de-

vices that do not support color, a gray-level pattern appropriate to the intensi-

ty of the specified color is displayed instead. The possible choices are: :black,

:red, :green, :blue, :cyan, :yellow, :magenta, and :white.

:filled Option

Boolean option specifying whether all pixels within the figure created by a

drawing function are turned on, or only the outline pixels; the default is t

(filled).

:pattern Option

Specifies a pattern to be drawn within the figure created by a drawing func-

tion. :pattern is the most general control of the "looks" of thie inside of a

filled shape. The default is nil. The :pattern drawing option can be a(n)

• stipple This is identical to :stipple <value>.

• color This is identical to :color <value>.

• instance The case of interest here.

Several functions are provided for making instances to pass as the pattern.

See the function graphics:make-simple-pattern. See the function

graphics:make-two-color-stipple. See the function graphics:make-

contrasting-pattern. See the function graphics:make-device-conditional-

pattern. Additionally, there are three layered protocols for implementing

one’s own instances to be passed as :pattern. See the section "Texturing".

Keyword Options to Drawing Functions 1596

(defun pattern-example1 ()

 (graphics:with-room-for-graphics (t 200)

 (let ((bitmap (tv:make-binary-gray 8 8

 ’(#b00000000 ; The picture of

 #b00001000 ; what you want

 #b00111000 ; the bit pattern

 #b00001000 ; displayed to

 #b00001000 ; look like, in

 #b00001000 ; this case the

 #b00001000 ; number 1.

 #b00111110))))

 (graphics:draw-circle 200 100 50

 :pattern bitmap))))

�

(defun pattern-example2 ()

 (let ((bitmap (tv:with-output-to-bitmap (t)

 (graphics:draw-string

 "symbolics" 0 0

 :character-style

 ’(:swiss :bold-italic :large)))))

 (graphics:with-room-for-graphics (t 250)

 (graphics:draw-triangle 100 25 400 25 250 250

 :pattern bitmap))))�

(pattern-example1)

(pattern-example2)�

:gray-level Option

Specifies the black-to-white level of the graphic as a ratio or decimal fraction

between 0 and 1; the default value is 1. On 1-bit devices, gray levels are sim-

ulated by stippling.

Example:

1597 Keyword Options to Drawing Functions

(defun gray-level-example ()

 (graphics:with-room-for-graphics (t 200)

 (graphics:draw-polygon

 ’(100 10 350 10 350 100 225 150 100 100 100 10)

 :gray-level 1/4

 :convex-p t)

 (graphics:draw-polygon

 ’(100 10 350 10 350 100 225 150 100 100 100 10)

 :filled nil

 :convex-p t)

 (graphics:draw-polygon

 ’(259 137 259 165 289 165 289 124 259 137)

 :gray-level 3/4

 :convex-p t)

 (graphics:draw-rectangle 200 70 250 10

 :gray-level 1/2

 :opaque t)

 (graphics:draw-rectangle 200 70 250 10

 :filled nil)

 (graphics:draw-rectangle 135 90 175 40

 :gray-level 1/20

 :opaque t)

 (graphics:draw-rectangle 135 90 175 40

 :filled nil)

 (graphics:draw-line 135 65 175 65)

 (graphics:draw-rectangle 275 90 315 40

 :gray-level 1/20

 :opaque t)

 (graphics:draw-rectangle 275 90 315 40

 :filled nil)

 (graphics:draw-line 275 65 315 65)))

�

(gray-level-example)

�

:opaque Option

Keyword Options to Drawing Functions 1598

Boolean option specifying whether pixels in the source pattern of a drawing

function are cleared (before the graphic is output) or left alone; the default is

t. :opaque t means draw pixels that are off in the background color. The re-

sult of :opaque t is not influenced by the :alu supplied for the pixels that are

on. If you draw something over an existing figure using :opaque t :alu :flip,

the pixels that were originally on are inverted, and pixels that were originally

off are cleared (set to the background color).

To see the effect of this option, try calling the following function with t and

then nil.

(defun opaque-example (t-or-nil)

 (graphics:with-room-for-graphics (t 200)

 (graphics:draw-circle 200 100 50

 :pattern tv:75%-gray)

 (graphics:draw-triangle 165 65 235 65 200 150

 :pattern tv:25%-gray

 :opaque t-or-nil)))

�

(opaque-example t)

�

(opaque-example nil)

�

:thickness Option

Specifies the thickness, in pixels, of the line or lines drawn by a drawing

function. The default is device-dependent: for the screen, it is 0, which speci-

fies the minimum thickness for that device; for the lgp2 and lgp3, it is 1. The

thinnest possible thickness is 0, which also specifies that the line is to be po-

sitioned roughly. For accurate positioning, specify a thickness of 1.

This option is not operable if the function draws a filled (:filled t) figure.�

1599 Keyword Options to Drawing Functions

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-triangle 0 0 50 0 25 25 :filled nil :thickness 2)

 (graphics:draw-triangle 100 0 150 0 125 25 :filled nil :thickness 4)

 (graphics:draw-triangle 200 0 250 0 225 25 :filled nil :thickness 8))

�

:scale-thickness Option

Boolean option specifying whether to scale thickness, as well as other linear

dimensions, when a scaling factor is specified (via the :scale keyword to a

drawing function: See the option :scale.). The default is nil.

This option is not operable if the function draws a filled (:filled t) figure.�

(graphics:with-room-for-graphics (t 100)

 (graphics:with-graphics-translation (t 100 50)

 (graphics:draw-rectangle -10 -10 10 10 :filled nil :thickness 1)

 (graphics:draw-rectangle -10 -10 10 10 :filled nil :thickness 1 :scale 2)

 (graphics:draw-rectangle -10 -10 10 10 :filled nil :thickness 1 :scale 4

 :scale-thickness nil)))

�

:dashed Option

Boolean option specifying whether lines are drawn as a series of dashes by a

drawing function; the default is nil.

This option is not operable if the function draws a filled (:filled t) figure.�

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-rectangle 0 0 100 100 :filled nil :dashed t))

�

:dash-pattern Option

Keyword Options to Drawing Functions 1600

Specifies a sequence, usually a vector, controlling the dash pattern of a draw-

ing function. If no pattern is specified, the default dashes are 10 pixels long

and separated by spaces of 10 pixels. The vector must contain an even num-

ber of elements or you will get an error.

The following example draws a line as a series of dashes, alternating in

length between 16 and 8 pixels, with intervening spaces of 4 pixels. Note that

these lengths result from applying a scaling factor of 4, implemented by the

:scale and :scale-dashes keywords.

(graphics:with-room-for-graphics (t 200)

 (graphics:draw-line 25 25 100 25

 :dashed t :scale 4

 :scale-thickness nil

 :scale-dashes t

 :dash-pattern #(4 1 2 1)))

�

This option is not operable if the :dashed option is nil.�

:scale-dashes Option

Boolean option specifying whether to scale dashes when the :dashed option to

a drawing function is t and a scaling factor is specified (via the :scale key-

word: See the option :scale.). The default is nil.

For an example: See the option :dash-pattern.

This option is not operable if the :dashed option is nil.�

:initial-dash-phase Option

Specifies the offset, in pixels, of the start of the first dash from the starting

point of the line; the default value is 0.

This option is not operable if the :dashed option to the drawing function is

nil.�

:draw-partial-dashes Option

Boolean option specifying whether a partial dash is drawn at the end of a

dashed line so that it reaches its specified end-point. The default is t: dashes

are drawn with the specified numbers of pixels on and off until the endpoint

is reached, at which point drawing stops wherever in the pattern you happen

to be.

1601 Keyword Options to Drawing Functions

If you specify nil for this option, the drawing routine will adjust the spacing

of the dashes so that the lines ends on a "dash." In the simple case that

is, with only a single pair of numbers in the dash pattern a dash is a solid

line of (on) pixels, so both ends of such a line are drawn. For example, try

these:

(graphics:with-room-for-graphics (t 10)

 (graphics:draw-line 0 3 200 3 :dashed t :dash-pattern #(20 15)

 :draw-partial-dashes t)

 (graphics:draw-line 0 -3 200 -3 :dashed t

 :dash-pattern #(20 15) :draw-partial-dashes nil)

 (graphics:draw-line 200 -3 200 3))

�

�

(graphics:with-room-for-graphics (t 250)

 (let ((zoom 5))

 (dolist (partial ’(t nil))

 (graphics:with-graphics-translation (t 0 (if partial (* 25 zoom) 0))

(dotimes (i 20)

 (let ((y (* (- 19 i) zoom)))

 (graphics:draw-line 0 y (* i 4 zoom) y

:dashed T

:dash-pattern #(20 15)

:draw-partial-dashes partial)

 (graphics:draw-line 0 (- y 1) (* i 4 zoom) (- y 1))))))))

For more complicated dash patterns, a dash is considered to be a solid line

somewhere in the pattern: you will have to experiment to determine the exact

result of using the option.

This option is not operable if the :dashed option to the drawing function is

nil.

Some hardcopy devices, most notably PostScript printers, cannot adjust the

spacing of the dashes; that is, they will draw partial dashes even if you speci-

fy :draw-partial-dashes nil.

:line-end-shape Option

Specifies the shape for the ends of lines drawn by a drawing function, one of

:butt, :square, :round, or :no-end-point; the default is :butt.

To see the differences among end shapes, try evaluating the following:

Keyword Options to Drawing Functions 1602

 (graphics:with-room-for-graphics (t 200)

 (graphics:draw-line 200 40 200 140

:line-end-shape :butt

:thickness 20)

 (graphics:draw-line 240 40 240 140

:line-end-shape :no-end-point

:thickness 20)

 (graphics:draw-line 280 40 280 140

:line-end-shape :square

:thickness 20)

 (graphics:draw-line 320 40 320 140

:line-end-shape :round

:thickness 20)

 (graphics:draw-line 190 30 330 30)

 (graphics:draw-line 190 150 330 150))

The vertical lines on the left have :butted ends; they do not extend beyond

the y-coordinates (40 and 140) given for the line. The lines on the right have

:squared and :rounded ends. These lines extend, because of the :thickness

parameter (20), 10 pixels above and below the top and bottom line coordinates.

This option is not operable if the function draws a filled (:filled t) figure.�

:line-joint-shape Option

Specifies the shape of joints between line segments of closed, unfilled figures,

when the :thickness option to a drawing function is greater than 1. The pos-

sible shapes are :miter, :bevel, :round, and :none; the default is :miter.

The following example draws four pentagons illustrating the differences

among, from left to right, the :miter, :bevel, :round, and :none joint shapes:

1603 Keyword Options to Drawing Functions

(graphics:with-room-for-graphics (t 200)

 (graphics:draw-regular-polygon 40 40 100 40 5

 :filled nil

 :thickness 15

 :line-joint-shape :miter)

 (graphics:draw-regular-polygon 190 40 250 40 5

 :filled nil

 :thickness 15

 :line-joint-shape :bevel)

 (graphics:draw-regular-polygon 340 40 400 40 5

 :filled nil

 :thickness 15

 :line-joint-shape :round)

 (graphics:draw-regular-polygon 490 40 550 40 5

 :filled nil

 :thickness 15

 :line-joint-shape :none))

�

This option is not operable if the function draws a filled (:filled t) figure.

Some hardcopy devices may not support all line joint shapes. Notably,

PostScript printers treat :none as :bevel.

:mask Option

Specifies a bitmap of points affected by the drawing operation; the default is

nil, that is, no bitmap.

Use this option to mask out portions of the output graphic that you do not

want displayed. For example, the following form outputs a rectangle, but does

so through a triangular mask, so that only a triangle gets displayed:

(graphics:with-room-for-graphics (t 200)

 (multiple-value-bind (bitmap x y)

(graphics:with-output-to-bitmap ()

 (graphics:draw-triangle 100 50 200 150 300 50))

 (graphics:draw-rectangle 0 200 400 0

 :gray-level .33

 :mask bitmap :mask-x x :mask-y (+ 100 y))))

Keyword Options to Drawing Functions 1604

�

:mask-x Option

Specifies the x-coordinate, with respect to the local graphics origin, of the

lower lefthand corner of the position of the rectangular bitmap region speci-

fied by the :mask option.

:mask-y Option

Specifies the y-coordinate, with respect to the local graphics origin, of the

lower lefthand corner of the position of the rectangular bitmap region speci-

fied by the :mask option.

:return-presentation Option

Boolean option specifying whether a drawing function should return the newly

created graphic as a presentation object; the default is nil.

Use this option when you wish to manipulate the output of a single drawing

function as a presentation. If you want to manipulate the collective output of

a series of drawing functions as a single presentation, use the graphics:with-

output-as-graphics-presentation macro instead.

Some facilities are provided for handling graphic presentations, in particular,

graphics:erase-graphics-presentation and graphics:replacing-graphics-

presentation. The following example uses the former in conjunction with the

:return-presentation keyword:

1605 Keyword Options to Drawing Functions

(graphics:with-room-for-graphics (t 100)

 (graphics:with-graphics-scale (t 50)

 (let ((presentations

 (list

 (graphics:draw-regular-polygon .75 .5 1.25 .5 4

 :gray-level .25 :return-presentation t)

 (graphics:draw-regular-polygon .25 0 1.25 0 3

 :gray-level .75 :return-presentation t)

 (graphics:draw-ellipse 1.5 .5 .4 .4

 :gray-level .5 :return-presentation t))))

 (sleep 2)

 (graphics:erase-graphics-presentation (first presentations)))))�

Coordinate-System Keyword Options

:rotation Option

Specifies the rotation of the graphic in plus or minus radians; the default is

0. The axis of rotation is the local origin (0, 0).

In the following example, the origin is first established at the lower, left

corner of the graphic display area created by graphics:with-room-for-

graphics, then translated 300 pixels to the right and 15 pixels up by the

graphics:with-graphics-translation macro. In this coordinate system, the ar-

row is rotated counter-clockwise about the origin at an offset of 10 pixels.

Keyword Options to Drawing Functions 1606

(defun rotating-arrow ()

 (graphics:with-room-for-graphics (t 225)

 (graphics:with-graphics-translation (t 300 15)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5)

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .125))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .25))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .375))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .5))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .625))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .75))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation (* pi .875))

 (sleep .2)

 (graphics:draw-arrow 10 0 200 0

 :thickness 5

 :rotation pi))))�

�

(rotating-arrow)�

� :scale Option

Specifies a number applied as a scaling factor to the x and y parameters of a

drawing function; the default is 1.

:scale does not affect the line thickness parameter. To do so, use the :scale-

thickness keyword.�

1607 Keyword Options to Drawing Functions

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-circle 1 1 1 :scale 20))

�

� :scale-x Option

Specifies a number applied as a scaling factor to the x parameters of a draw-

ing function; the default is 1.�

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-circle 50 50 20 :scale-x 4))

:scale-y Option

Specifies a number applied as a scaling factor to the y parameters of a draw-

ing function; the default is 1.�

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-circle 100 100 50 :scale-y 1/2))

:transform Option

Specifies a list of six elements in the graphics transformation matrix applied

to the local coordinate system used for a drawing function. The element order

is a, b, c, d, x, and y (see below). The default is nil, resulting in no transfor-

mation.

Arbitrary transformation of coordinates is effected by multiplication of coordi-

nate vectors by a transformation matrix. For coordinates in two-dimensional

space, a 3 x 3 transformation matrix is used,

a b 0

�

c d 0

�

x y 1�

of which the elements in the third column are constant. Thus, six elements,

effectively control the transformation as follows:

• Scaling in the x and y dimensions is controlled by elements a and d, re-

spectively. Values of 1 for these elements result in no scaling.

Keyword Options to Drawing Functions 1608

• Translation in the x and y dimensions is controlled by elements x and y,

respectively. Values of 0 for these elements result in no translation.

• Rotation about the origin is controlled by elements a, b, c, and d. Counter-

clockwise rotation by an angle α is effected by a = cosα, b = sinα, c = -

sinα, and d = cosα. A value of 0 for b and c results in no rotation (α = 0). �

Example:

;;; This example scales the size of the rectangle by a

;;; factor of 4 and translates its position by 100 in

;;; the x direction and 50 in the y direction.

�

(graphics:with-room-for-graphics (t 200)

 (graphics:draw-rectangle 0 20 20 0

 :transform ’(4 0 0 4 100 50)))�

� :translation Option

Specifies x and y offsets relative to the local origin (0, 0) used for a drawing

function. The offsets are specified as a list, (x y). The offset units depend on

the output device; if it is the terminal screen, the units are pixels.

Using this option has the effect of moving the local origin to the new position

specified by x and y. The default is nil, no translation.�

;;; Contrast this with giving 50 50 as the center, which would have caused it to

;;; be rotated.

(graphics:with-room-for-graphics (t 100)

 (graphics:draw-ellipse 0 0 40 20 :translation ’(50 50) :rotation (/ pi 4)))

�

