
Internals

The Scheduler

Overview of the Scheduler

About the Scheduler

A Symbolics machine has a single processor, multiplexed among several different

processes. A process, loosely defined, is the state of a computation: a thread of con-

trol and an environment.

At any time a set of active processes exists; these are all the processes that are not

stopped. Each active process is either running, trying to run, or waiting for some

condition to become true. Many processes can run on a single processor only by

sharing it. The processor performs work on behalf of each process, in turn, for a

short period of time.

If all the processes are simply trying to compute, the machine time-slices among

them. This is not a particularly efficient mode of operation, since dividing the

finite memory and finite processor power of the machine among several processes

does not increase the available power and in fact wastes some of it in overhead.

The processor could run one process at a time (until completion) and then start on

the next process. This is the way that older computers often worked, batch-

processing jobs. However, there are (at least) two reasons why having multiple ac-

tive processes is desirable.

1. Efficiency. There are many times during the course of a single computation

when the process is not using the processor. It is waiting for an external

event (perhaps for a disk operation to complete, real time to pass, or for a

user to type a character). Alternatively, it can be waiting for an internal

event (for another process on the machine to change a value in a shared da-

ta-structure, or for some relationship between several objects in memory to

become true). During that waiting period we can run other processes with no

loss of performance.

2. Convenience. People seem to prefer a style of interaction in which the com-

puter operates on their behalf in the background while they type characters

at it (or provide input in other ways) in the foreground. Programmers, too,

often find it easier to express an algorithm as if the activity is divided among

several processes, each executing at the same time. The illusion that several

processes are running concurrently allows the programmer to avoid dealing

with issues of explicitly yielding the processor, or explicitly controlling the

flow of two independent computations that might need to be interleaved.�

The illusion that several processes are running concurrently comes at a price,

though. First, there is some overhead associated with switching from one process

Page 862

to another the processor has to save and restore the context. Secondly, synchro-

nization and communication become important. Synchronization and communication

primitives are intimately connected to the scheduler. Programmers need to syn-

chronize between two processes that are running "simultaneously" that share re-

sources. Some examples of synchronization mechanisms used in other computer

systems are locks, monitors, semaphores, and atomic-actions. Two cooperating pro-

cesses that are running simultaneously presumably need to communicate. Since all

Genera processes run in a single address space, interprocess communication is

straightforward. Two or more processes can share arbitrary objects in memory.

If all processes waited (went blocked) often enough, and long enough, to allow oth-

er processes to get their fair share of the machine, the system would have no

problems in managing the processor. When a process yielded the processor, the

scheduler would simply switch to another process, eventually satisfying them all.

Unfortunately, the processor is a scarce resource on most computer systems. Many

processes want as much time on the processor as they can get.

The scheduler is the part of the system that manages the processor and imple-

ments processes. It must allocate the processor "fairly" between competing pro-

cesses. Therefore it cannot always wait for a process to voluntarily yield the pro-

cessor, occasionally it must preempt the currently running process. The decision of

when to preempt a process, and what process to switch to, is the province of the

scheduler.

How the Scheduler Works

The scheduler consists of three parts:

• A context switcher

• A dispatcher

• A priority manager�

The context switcher switches from one process to another. It takes care of the

mechanics of transferring control from one process to another, and making certain

that each process executes in the proper execution context.

The dispatcher runs every time a process yields the processor, and every time the

current process is preempted. Its duty is to determine the highest priority runnable

process on the machine, and call the context-switcher to switch to it.

The priority manager translates priorities explicitly assigned by a program or a

programmer to internal scheduler priorities.

In the Genera system, the context switcher is simple. All it needs to do is execute

a stack-group switch. All of the context and the state of the computation for a pro-

cess is captured in the stack group. See the section "Stack Groups". Since all Gen-

era processes execute in a single address space there is no need to change virtual

memory, switch page tables, or do any of the assorted things that other computers

Page 863

might do. The context switcher does have to restore the binding environment and

set up the processor to begin executing the next instruction in the new process.

The dispatcher makes sure that the currently running process (stored in the vari-

able *current-process*) is always the highest priority runnable process.

Two runnable processes never have equal priority. The priorities used by the dis-

patcher to order processes on the RUNNABLE queue are internal priorities used only

by the system. If two priorities are equal, the process that is closer to the head of

the RUNNABLE queue is defined to have higher priority. The reason that this arbi-

trary ordering is not unfair is because the order changes over time.

It is the job of the priority manager to translate from programmer priorities to in-

ternal dispatcher priorities. The priority manager makes sure that at any given

time there is an internal ordering of all processes. This order can change over

time as the priority manager decides that one process is getting too much of the

processor, or another process is getting too little.

The priority manager also has an internal process that runs periodically and per-

forms various tasks necessary for its operation for example, processing statistics

about process utilization.

Any time a program sets the priority of a process, the priority manager translates

that priority to an internal priority. The criteria it uses to do this is called its pol-

icy. The default policy combines the program specified priority with the recent his-

tory of the process in order to compute the internal dispatcher priority. To learn

more about the default policy, see "Priorities and Scheduler Policy". Additionally,

see the function process:allow-preemption.

The priority manager can use any criteria static priorities, recent history, past

performance, or a round robin scheme. You can write your own scheduler policy;

see the section "Extensible Scheduler". The priority manager also runs periodically,

interrupting compute bound processes, to recompute the priorities of processes that

do not voluntarily give the priority manager a chance to adjust their internal pri-

ority.

Together, the context switcher, dispatcher, and priority manager constitute the

scheduler. This section discusses the scheduler.

There are other facilities that are tightly connected to the scheduler: the timer fa-

cility, synchronization primitives, managing the control-abort gesture, and warm

boot actions. They are documented here, too.

We also briefly discuss ways to customize the scheduler.

Scheduler Concepts

Using Processes for Computations

To start a computation in another process, you must first create a process and

specify the computation you want to occur in that process. The computation to be

executed by a process is specified as an initial function for the process and a list

Page 864

of arguments to the initial function. When the process starts up it applies the

function to the arguments. In some cases the initial function is written so that it

never returns, for example, a Lisp Listener that has a read-eval-print loop that

just keeps going, while in other cases it performs a certain computation and then

returns, which stops the process, for example a compile-file operation.

When you create a process, it is active, assuming you have provided the necessary

initial function and, for a simple process, a verify function. You can override this

default by use of the :run-reasons keyword to process:make-process.

To reset a process means to "throw out" of its entire computation, then force it to

call its initial function again. (See the special form throw.) Resetting a process

clears any waiting condition, and so if it is active it becomes runnable. To preset a

process is to set up its initial function (and arguments), and then reset it. This is

one way to start up or change a computation in a process.

To interrupt a process means to tell it to execute some function on your behalf in

its environment. If the function returns normally the interrupted computation is

resumed. You can interrupt a process in order to throw out of its computation,

though, in which case you have aborted the interrupted computation.

To abort a process means to throw out of a process by signalling sys:abort, but re-

specting processes that are in the dynamic extent of a sys:without-aborts form.

(See the function sys:without-aborts.).

For functions that allow you to create, preset, reset, interrupt, or abort a process,

see the sections "Creating and Enabling Processes" and "Resetting, Interrupting,

and Aborting Processes".

Process States

A process can be in one of several states.

When a process is created it is alive. When it is killed it is dead. A dead process

is inaccessible to functions such as process:map-over-all-processes and

process:map-over-active-processes. A dead process consumes very few resources

 it is frozen. A dead process can be restored to life by resetting and enabling it.

(For more information about resetting a process, see the section "Resetting, Inter-

rupting, and Aborting Processes". For more information about enabling a process,

see the section "Creating and Enabling Processes".)

Live processes can be further subdivided into active and stopped processes.

A process has two sets of Lisp objects associated with it, called its run reasons and

its arrest reasons. These sets are implemented as lists. Any kind of object can be

in these sets; typically, keyword symbols and active objects such as windows and

other processes are found. A process is considered active when it has at least one

run reason and no arrest reasons. A process that is not active is stopped.

Stopped processes are not considered by the scheduler. They cannot run until they

first become active. Stopped processes can either be suspended or frozen. A sus-

pended process is "ready to run" if it were active, it could become runnable. A

Page 865

DEADALIVE

ACTIVE
STOPPED

RUNNABLE BLOCKED SUSPENDED

FROZEN

Figure 28. Process States

�

�

frozen process has released all of its resources, and needs to reacquire a stack-

group (for example) in order to become active. The internal state of a frozen pro-

cess is the same as the internal state of a dead process except that the frozen pro-

cess is still accessible to the process mapping functions (it shows up in the Peek

display, and in the output of the Show Processes command.) Stopped processes ex-

isted in the old scheduler, and therefore functions and documentation refer to

them. They are interchangeably referred to as stopped, arrested, or disabled pro-

cesses. Stopped process is the preferred term.

An active process is either runnable or blocked. The term active process is synony-

mous with enabled process and with unarrested process. These terms are used inter-

changeably throughout the existing documentation. Active process is the preferred

term.

A process is runnable when it can use the processor immediately. A process is

blocked when it has yielded the processor and has no need to use it.

If a process is blocked you can try to make it runnable by calling process:wakeup

on it. If the verify function returns nil, however, it does not become runnable. See

the section "Blocking, Waiting, and Waking Processes". If a process is runnable it

can go blocked by yielding the processor. The simplest ways to go blocked are to

call process:block-process, process:block-and-poll-wait-function, or process-wait.

For more information about functions to add and delete objects to the set of run

and arrest reasons for a process, see the section "Creating and Enabling

Processes".

See the section "About the Scheduler".

Page 866

Blocking Vs. Waiting

When a process yields the processor it specifies a verify-function. The verify-

function is a predicate that evaluates to a non-nil value when the process is ready

to run again.

The new scheduler is a hybrid event-driven and polling scheduler which means

that the programmer has a choice of whether to block or wait. To block means that

the programmer believes that some other process (or interrupt handler) has ac-

cepted the responsibility to wakeup this process when its verify function becomes

true. To wait means that the programmer request the scheduler to periodically poll

the verify function and, when it becomes true, wakeup the process.

A process can block by calling process:block-process. If no wakeup is forthcoming,

or if the wakeup occurs before the verify-function becomes true, the process might

never be awakened. This is a "lost wakeup" and is one of the dangers of an event-

driven scheduler.

A process can wait by calling process:block-and-poll-wait-function. When it does

this, the scheduler consumes system resources in order to poll the process.

See the section "Event-Driven Scheduler".

When a process goes blocked and provides a verify-function, the verify-function is

tested before the process goes blocked. If it returns a non-nil value the process

does not go blocked.

process:block-process does not return unless the verify-function has been true at

least once after the process went blocked.

A common idiom is to want to block, or wait, for an event, but to give up after a

certain interval has passed. process:block-with-timeout, process:block-and-poll-

with-timeout, and process:wait-with-timeout allow the programmer to specify a

timeout period (in seconds), after which the function should just return.

(process:wakeup process) evaluates the verify-function of process. It does not wake

up a process unless the verify-function returns a non-nil value. It is not always

convenient, legal, or possible to execute an arbitrary piece of code from another

process. process:wakeup-without-test wakes up the process without testing its

verify-function. The verify function is tested, instead, in the target process by

process:block-process. It does not return to its caller unless the verify function is

true. If the verify function returns nil, the process goes blocked again.

Verify-Functions and Wait-Functions

When a process goes blocked, it supplies a verify-function to the system. The first

purpose of the verify-function is to avoid unnecessary process switches. Since

stack-group switching is expensive, we first evaluate the verify-function to verify

that the process is in fact runnable. A call to process:block-process, or a related

function, returns only if the verify-function evaluated to a non-nil value at least

once since the call to go blocked.

Page 867

The second purpose of a verify-function is to allow more flexibility in setting the

priority of a process. The value returned by a verify-function is treated as a pro-

cess priority. If it is nil or t, the priority is not changed. If it is any other value,

the priority of the process is set to the returned value.

This behavior is useful because if a process goes blocked, waiting for more than

one event, it does not know which path it will take after it awakes. It is conceiv-

able that some events are higher priority than others. If we required the process

to set the priority itself, after it is awakened one of the two following situations

may occur.

If a process, P, waits with the highest priority it may take after awakening, P can

needlessly preempt another process before P lowers its own priority. If, on the oth-

er hand, P waits with the lowest priority, and another process is runnable when P

wakes up, that other process may hold P off for a long time before P gets a

chance to raise its priority. Finally, it is convenient to be able to set :deadline pri-

orities from the time a process is awakened, rather than from the time it was

blocked.

When a process waits instead of blocking (see the section "Blocking Vs. Waiting")

the verify-function has one more purpose. It is periodically polled by the wait-

function poller, and if it returns a non-nil value the process is awakened. The veri-

fy function of a waiting process is called the wait-function.

Verify-functions can be executed in dynamic environment if another process

calls (process:wakeup p), then p’s verify-function will be evaluated in the dynamic

environment of the waking process.

Thus, extreme care must be taken in designing wait-functions.

• A verify-function cannot depend on any special bindings. It cannot depend on the

binding environment being empty, either. The verify- function is not executed in

the global environment it is executed in some processes dynamic environ-

ment. This means that you cannot "hide" a special from a verify-function by

binding it in your process. This restriction has some non-obvious corollaries
for example, you must call (si:follow-syn-stream stream) on any stream that

you pass as an argument to a verify-function, since a synonym-stream might de-

pend on the current binding of *terminal-io*.

• A verify-function must return either t, nil, or a process priority created by

process:make-process-priority.

• A verify-function cannot go blocked or wait.

• There is no guarantee that a verify-function will only be executed once after it

becomes true. For example, you must be wary of code that uses store-

conditional, or any atomic operations.

• It is desirable in the new scheduler, but not necessary, that a verify-function

does not start returning nil after it becomes true, until after the process be-

comes runnable. This condition was critical in the old scheduler.�

Page 868

Verify Function Compatibility Note

In the old scheduler all verify functions were called wait functions. They were

evaluated in the global environment, so it was possible to hide values from a wait-

function by binding the variables in your own process.

The value returned by a wait-function in the old scheduler was not interpreted as

a priority the only consideration was whether or not it returned nil. Therefore,

for compatibility, all wait-functions specified by calling an old scheduler entry-point

have an implicit (not (null ... body ...)) wrapped around them.

All of the other constraints also held in the old scheduler.

Priorities

At any given instant in time, all of the runnable processes on the machine are

strictly ordered. The dispatcher makes sure that the highest priority runnable pro-

cess is the *current-process*.

The priority manager converts process priorities to instantaneous priorities to facil-

itate this ordering. These instantaneous priorities are internal dispatcher priorities.

Programmers or users need never concern themselves with them. Process priorities

do not impose a strict ordering on the processes. They are interpreted by the pri-

ority manager, and converted to dispatcher priorities. The rules that govern these

conversions are the implementation of the scheduler policy. See the section "Priori-

ties and Scheduler Policy". The text that follows is specific to the current imple-

mentation of scheduler policy.

There are three types of priorities: :deadline, :foreground, and :background.

You can specify a :deadline priority by using process:with-process-priority with a

:deadline priority. The deadline is specified in microseconds, and refers to the

maximum desired elapsed time spent in the body of process:with-process-priority.

All processes executing with :deadline priorities are higher priority than any pro-

cess with a :foreground or :background priorities. Although you specify deadlines

in relative microseconds, the scheduler converts the deadline to an absolute comple-

tion time. The processes are ordered by earliest completion deadline first.

process:with-process-priority defines a priority region the priority will only be

set inside that form, and will revert to the previous priority on exit. Because of

the dangers involved with careless use, :deadline priorities can only be set within

regions and not by calls to process:set-process-priority or equivalent functions.

This behavior is controlled by process:*policy-hook-region-priority* and

process:*policy-hook-set-priority*.

If you are already within a priority region (within a call to process:with-process-

priority or an equivalent region defining form), you can set the priority with calls

to process:set-process-priority and the set of legal priorities is the same as the

set for a region. The priority change has limited extent. Upon exiting the inner-

most priority region, the old priority is restored, and all changes made by

process:set-process-priority are lost. The priority regions nest, and form a stack

of process priorities. The bottom of the stack is called the base priority. The func-

tion process:set-process-base-priority can be used to set the base priority.

Page 869

:foreground priorities have integer values. They represent different priority levels.

The larger (more positive) the number, the higher priority. Foreground priorities

are analogous to old scheduler priorities. Unlike old scheduler priorities, however,

a priority 1 process will not always take precedence over a priority 0 process.

This behavior is controlled by the scheduler parameters. Currently the scheduler

parameters are global there is one set for the entire system. At some time in

the near future, scheduler parameters will be settable on a per-process basis, as

part of the specification of a foreground priority.

The scheduler parameters are: :record, :hysteresis, :resolution, :spread, :boost,

:promotion-boost, and :wakeup.

In the normal course of events priority 1 processes run ahead of priority 0 pro-

cesses. If a foreground process holds the processor for N% of the time, its priority

is degraded by :spread times N%.

The computation of N% is controlled by :record, :hysteresis, and :resolution.

In order for the priority manager to recompute the priority of a compute bound

process that does not explicitly call it, the priority manager must wakeup every so

often and recompute the dispatcher priorities. The interval between wakeups is

measured in seconds and controlled by :wakeup.

Every few seconds the priority manager captures the state of all runnable process-

es. This interval is controlled by :record.

:hysteresis controls the number of recording intervals used to compute N%.

N% is rounded to within the value of :resolution.

If a process is runnable, but is denied the processor by higher priority processes

for S seconds, its priority increases by S times :boost. (Its dispatcher priority is

incremented by :boost each second.) For more information about the scheduler pa-

rameters, see the section "Priorities and Scheduler Policy".

If a process has a :preemptive priority, it immediately preempts the current pro-

cess upon becoming runnable, if the current process has a lower priority. If a pro-

cess is not preemptive, then it does not preempt a process of a lower priority un-

less the lower process explicitly yields the processor or another preemptive process

preempts the currently running process. A process that does not have a preemptive

priority does not initiate a process switch, but if one occurs, then that process is

considered in the pool of runnable processes.

Choosing Process Priority Levels

The following are some guidelines about what values to use when you modify a

process’s priority.

Normal processes run with a default :foreground priority of 0 (controlled by

process:*default-process-priority*) when computing and a :foreground priority of

1 (controlled by process:*process-interactive-priority*) when they are interacting

with a user. If the priority number is higher, the process receives higher priority.

You should avoid using priority values higher than 9, since some critical system

Page 870

processes use priorities of 10 to 30; setting up competing processes could lead to

degraded performance or system failure. You can also use negative values to get

processes to run in the with even lower priority. Values of -5 or -10 for unimpor-

tant processes and 2 or 5 for urgent processes are reasonable.

Only the relative values of these numbers are important. Once these relative prior-

ity values are set, be advised that the process priorities are interpreted consistent-

ly.

Although processes with priorities of -5 consume very little of the machines re-

sources, they still take a toll. If you really do not care when the process runs you

can specify a :background priority, which effectively submits the process as a

background job that runs whenever the machine is idle. All background processes

have equal priority. All foreground processes (even those with priorities of -100)

have priority over background processes.

If there is a critical piece of code with a real time deadline (for example, a dead-

line between loading a register and reading it, or a deadline in responding to an

interrupt from a device) you can use process:with-process-priority with a

:deadline priority. Setting a deadline priority provides no guarantee that the dead-

line will be met, just a promise that the best attempt will be made.

A process with a deadline priority has a higher priority than all foreground pro-

cesses, and is therefore as dangerous as executing code within a without-

interrupts form. Deadline priorities should be used sparingly, if at all.

Use the Command Processor command Show Processes to see the priorities used

by existing processes.

Promotion

Problem: If there are three processes P1, P2, and P3, that have priorities PR1,

PR2, and PR3 respectively, and PR1 > PR2 > PR3. (where priority-1 > priority-2

implies that a process with priority-1 has precedence over processes with priority-

2).

If P3 holds some resource that P1 is waiting for, and if P2 is compute bound, ef-

fectively there is a subversion of the priority system, since P2 now has effective

precedence over P1.

There are many variations on this theme.

Solution: If a resource obeys the promotion protocol, when P1 waits on a resource

held by P3, P3 is promoted to the priority of P1.

This problem and its solution comes up in many guises in the scheduler. The most

common case is locking. Promotion is built into the locking substrate, so if there

is contention for locks, the scheduler will promote the process holding the lock to

the priority of the highest priority waiter. (In the case where the lock’s owner is

waiting for another lock, in turn, promotion recurses.)

In order to make promotion available as a solution to similar problems elsewhere

in the system we have separated the promotion protocol out of locking, and docu-

mented it.

Page 871

For the specification of this protocol, and the functions involved, see the section

"Promotion Protocol".

Promotion occurs "under the covers". When a process is promoted, its visible prior-

ity remains the same. In scheduler terms promotion occurs at the level of dispatch-

er priorities, not process priorities.

� Comparison of New and Old Scheduler Functionality

There are two important changes in the way the scheduler works:

• The new scheduler is event-driven; the old scheduler polled.

• The new scheduler does not have a separate stack-group; the old scheduler did. �

This means that you can write programs that use processes more efficiently than

in the old scheduler.

The new scheduler two new features that the old one did not have: a more effi-

cient timer-facility, and a slightly wider range of priority types (:deadline and

:background).

Event-Driven Scheduler

The old scheduler was a polling scheduler. That means that when a process gave

up the processor it provided a function (called the wait-function) for the scheduler

to test. Every time the scheduler ran, it evaluated this function for each process.

If the function for process P returned a non-null value, the scheduler ran process

P (assuming it was the highest priority runnable process).

This has the disadvantage that the scheduler spends a lot of time running these

functions. It has the advantage that you can wait for complicated events to hap-

pen, and you do not require the co-operation of the program causing these events.

The new scheduler is event-driven. This means that the new scheduler evaluates

the wait-function (called the verify-function in the new scheduler) significantly less

frequently than the old scheduler. It does not evaluate the verify function every�

time it runs. Some other process has to explicitly wakeup process P when you

want it to run again. (When an attempt is made to awaken it, the verify-function

is run to verify the wakeup, to make sure we are not making a useless stack-group

switch.) If no other process wakes up a blocked process, it will never run again A

process that waits for another process to wake it up is in the BLOCKED state. The

new scheduler also provides a polling option. Processes that wait for their verify

functions to become true, without expecting an explicit wakeup, are in the WAITING

state.

Waiting processes are treated as in the old scheduler. A process runs every so

often and polls the verify-functions of the waiting processes. This is almost, but

not exactly, indistinguishable from the old scheduler. There are two ways a process

can wait:

Page 872

• Explicitly call process:block-and-poll-wait-function, which allows you to set the

interval that you want your wait function to be polled.

• Simply call the old process-wait, which will poll it every process:*process-wait-

interval* seconds. (The new scheduler uses a default process:*process-wait-

interval* of 1/6 second)�

Waiting processes are actually polled more frequently than their interval specifies.

The interval is only used to determine the polling rate when the machine is busy.

When the machine is (relatively) idle the wait functions are polled every

process:*background-wait-function-polling-interval* seconds. Additionally, the

null process polls all wait functions for a short interval after a process starts

waiting. This is done for process:*idle-time-wait-function-polling-interval* mi-

croseconds after any process starts waiting.

The difference between waiting processes in the new scheduler and processes in

the old scheduler is that waiting processes are only polled at least every interval.

In the old scheduler they were polled every process switch. The tradeoff here is:

the less frequently you poll these processes, the less overhead the wait-function-

poller uses, but the less responsive these processes are.

Also, evaluating these verify functions consumes system resources. The fewer pro-

cesses are "waiting" (as opposed to being "blocked") the more frequently we can

poll the verify-functions. So, it is important to convert as much of the system as

possible to use block/wakeup when the new scheduler is running. If we do this, our

code will be faster, and the wait-function-poller will use up less of the system and

still be responsive.

Processes that block and are explicitly woken up are both more responsive and

more efficient.

Processes that process-wait, but are heavily involved in interprocess communica-

tion, and expect rapid response can be less responsive than in the old scheduler

when the machine has compute-bound processes.

Example of Blocking, Waiting, and Process-switching in the Old and New

Schedulers

Let’s look at an example of how wakeups can improve performance of cooperating

processes.

• Process C waits for some arbitrary condition, runs for n milliseconds and sets

the value cell of Y to t

• Process B waits for Y to be true and then runs for n milliseconds and sets X to

t.

• Process A waits for X to be true and then runs for n milliseconds.

All processes have the same priority.

Page 873

(The numbers for stack-group switch and evaluating wait-functions are not accu-

rate, but are chosen to illustrate a point.)

Let’s say n is 1 (millisecond). Here is the exact sequence of events:

In the old scheduler:

 Process C wakes up.
1 millisecond
 Process C sets Y to ’T
 Switch to scheduler stack group
500 microseconds
 evaluate wait-functions and find that B is now RUNNABLE.
8 milliseconds
 switch to B
500 microseconds
 B starts running
1 millisecond
 B sets X to ’T
 Switch to scheduler stack-group
500 microseconds
 evaluate wait-functions and find that A is RUNNABLE.
8 milliseconds
 switch to A
500 microseconds
 A starts running
1 millisecond.

Y

X

Process C

Process B

Process A

nil t

nil t

Overhead

(Scheduler evaluating wait-functions, stack-group switching)

Figure 29. Stack Group Switching in the Old Scheduler

�

�

So, elapsed time is around 21 milliseconds.

If we convert it to block and wakeup by adding a process:wakeup after setting Y

or X, though, in the new scheduler:

 Process C wakes up.
1 millisecond
 Process C sets Y to ’T
 Process C wakes up B
 Switch to B

Page 874

500 microseconds
 B starts running
1 millisecond
 B sets X to ’T
 Process B wakes up A
 switch to A
500 microseconds
 A starts running
1 millisecond.

Y

X

Process C

Process B

Process A

nil t

nil t

Dispatcher

(stack-group switching)

Figure 30. Blocking and Waking with the New Scheduler

�

�

Elapsed time is about 4 milliseconds.

So converting to the new scheduler, and converting your code to using block and

wakeup yields a significant improvement (4, rather than 21, milliseconds).

If we do not convert our code but still run in the new scheduler, this is what hap-

pens:

 Process C wakes up.
1 millisecond
 Process C sets Y to ’T
 Switch to Null Process
500 microseconds
 Null process is evaluating wait-functions since C just started waiting.
 evaluate wait-functions and find that B is now RUNNABLE.
10 milliseconds
 switch to B
500 microseconds
 B starts running
1 millisecond
 B sets X to ’T
 Switch to Null Process
500 microseconds
 Null process is evaluating wait-functions since B just started waiting.
 evaluate wait-functions and find that A is RUNNABLE.
10 milliseconds
 switch to A

Page 875

500 microseconds
 A starts running
1 millisecond.

So the elapsed time is about 25 milliseconds, which is comparable to the old

scheduler.

On the other hand, let’s look at an extreme and unrepresentative example, de-

signed to show worst-case performance of the compatibility stubs for the new

scheduler. In a case like this, you sometimes need to convert your code in order to

get performance comparable to the old scheduler.

Let’s look at the three processes again, but add a slightly more complicated condi-

tion.

• Process C waits for some arbitrary condition, runs for N milliseconds and sets

the value cell of Y to ’T, and Z to the value of the microsecond-clock.

• Process B waits for Y to be true and then runs for N milliseconds and sets X to

’T.

• Process A waits for X to be true and 20 milliseconds to have elapsed since Z

was set, and then runs for N milliseconds.

All processes have the same priority.

(The numbers for stack-group switch and evaluating wait-functions are not accu-

rate, but are chosen just for reasons of this example.)

We should examine six cases.

1. These three processes running under the old scheduler when the machine is

idle.

2. These three processes running under the old scheduler when there is a com-

pute-bound process on the machine.

3. These three processes running under the new scheduler when they are event-

driven.

4. These three processes running under the new scheduler when they are event-

driven and there is a compute-bound process on the machine.

5. These three processes running under the new scheduler without wakeups,

when the machine is basically idle, simply using the compatibility stubs.

6. These three processes running under the new scheduler without wakeups,

when there is a compute-bound process on the machine, simply using the

compatibility stubs.�

Page 876

Let’s say N is 1 (millisecond). Here is the exact sequence of events in each of the

cases:

In the old scheduler, when the machine is idle:

 Process C wakes up.
1 millisecond
 Process C sets Y to ’T
 Process C sets Z to the value of the microsecond-clock.
 Switch to scheduler stack group
500 microseconds
 evaluate wait-functions and find that B is now RUNNABLE.
8 milliseconds
 switch to B
500 microseconds
 B starts running
1 millisecond
 B sets X to ’T
 Switch to scheduler stack-group
500 microseconds
 evaluate wait-functions and find that A is not RUNNABLE. (only 18 and 1/2 milliseconds
 have passed)
8 milliseconds
 continue evaluating wait-functions until you get around to A’s again, this time
 find that it is RUNNABLE.
10 milliseconds
 switch to A
500 microseconds
 A starts running
1 millisecond.

So the elapsed time in the old scheduler case is about 31 milliseconds.

In the old scheduler, with a compute-bound process D (at a lower priority than the

other 3):

 Process C wakes up.
1 millisecond
 Process C sets Y to ’T
 Process C sets Z to the value of the microsecond-clock.
 Switch to scheduler stack group
500 microseconds
 evaluate wait-functions and find that B is now RUNNABLE, so choose it.
8 milliseconds
 switch to B
500 microseconds
 B starts running
1 millisecond
 B sets X to ’T
 Switch to scheduler stack-group
500 microseconds
 evaluate wait-functions and find that A is not RUNNABLE. (only 18 and 1/2 milliseconds
 have passed)
8 milliseconds
 continue evaluating wait-functions and find that D is runnable.
1 millisecond
 switch to D
500 microseconds
 D starts running
100 millisecond (the value of si:sequence-break-interval)
 SEQUENCE-BREAK forces a preemption
 Switch to scheduler stack-group
500 microseconds
 evaluate wait-functions and find that A is now runnable, so choose it
8 milliseconds
 switch to A
500 microseconds
 A starts running
1 millisecond.

Page 877

So the elapsed time in the compute-bound old scheduler case is about 132 millisec-

onds.

If we convert it to block and wakeup, though:

 Process C wakes up.
1 millisecond
 Process C sets Y to ’T
 Process C sets Z to the value of the microsecond-clock.
 Process C sets a timer to go off in 20 milliseconds and wakeup A
 Process C wakes up B
 Switch to B
1 millisecond
 B starts running
1 millisecond
 B sets X to ’T
 Process B wakes up A which is not runnable.
 switch to Null Process
500 microseconds
 Null Process starts running.
18 and 1/2 milliseconds
 Depending on the timer resolution, either the timer goes off, or the null-process
 evaluates A’s wait-function, and sends a wakeup to A
 Switch to A
1 millisecond
 A starts running
1 millisecond.

Elapsed time is about 24 milliseconds.

If we convert it to block and wakeup, this is what happens when there is a back-

ground computation:

 Process C wakes up.

1 millisecond
 Process C sets Y to ’T
 Process C sets Z to the value of the microsecond-clock.
 Process C sets a timer to go off in 20 milliseconds and wakeup A
 Process C wakes up B
 Switch to B
1 millisecond
 B starts running
1 millisecond
 B sets X to ’T
 Process B wakes up A which is not runnable.
 switch to D, which is runnable
500 microseconds
 D starts running.
between 8 and 24 milliseconds, depending on the timer resolution
 Sequence-break (interrupt)
 Timer goes off
 Switch to timer process
1 millisecond
 find timer and execute it
 wakeup A
 switch to A
3 milliseconds
 A starts running
1 millisecond.

Elapsed time is between 17 and 33 milliseconds, so the background computation

does not have much effect (other than in making us more sensitive to the timer

resolution).

If we just run the old scheduler code in the new scheduler, leaving it as waiting

processes rather than converting it to use block and wakeup, this is what happens:

Page 878

 Process C wakes up.
1 millisecond
 Process C sets Y to ’T
 Process C sets Z to the value of the microsecond-clock.
 Process C starts to wait.
 switch to Null Process
1 millisecond
 evaluate verify-functions and find that B is now runnable.
10 milliseconds
 switch to B
500 microseconds
 B starts running
1 millisecond
 B sets X to ’T
 Process B starts to wait.
 switch to Null Process
1 millisecond
 evaluate wait-functions and find that A is not runnable. (20 milliseconds have
 passed but we ignore that)
10 milliseconds
 evaluate verify-functions and find that A is now runnable.
10 milliseconds
 switch to A
500 microseconds
 A starts running
1 millisecond.

So the elapsed time in the new scheduler, where we naively wait, is around 36

milliseconds, which is not so bad.

However, if there are background computations, performance is much worse:

 Process C wakes up.

1 millisecond
 Process C sets Y to ’T
 Process C sets Z to the value of the microsecond-clock.
 Process C starts to wait.
 switch to Process D
1 millisecond
 Process D starts to run
70 milliseconds
 timer goes off, wait-function-poller starts to run, and determines that B is runnable
10 milliseconds
 switch to B
1 microseconds
 B starts running
1 millisecond
 B sets X to ’T
 Process B starts to wait.
 switch to D
1 millisecond
 Process D starts to run
70 milliseconds
 timer goes off, wait-function-poller starts to run, and determines that A is runnable
10 milliseconds
 switch to A
1 millisecond
 A starts running
1 millisecond.

Elapsed time was 167 milliseconds, which is much longer than 24, the elapsed time

when you convert your code.

No Scheduler Stack Group

Page 879

The process switching overhead in the old scheduler can be split into two parts:

context switching and dispatching.

The switching overhead consisted of a stack-group switch to the scheduler stack

group, and a stack group switch to the next process’s stack group. A process

switch can take anywhere from several hundred microseconds to milliseconds. Typ-

ical times were about 1/2 a millisecond for each of the two stack-group switches on

the 3600.

The dispatching overhead consisted of evaluating the wait functions of processes

until the scheduler found one that met all the criteria for running (that is, it was

runnable and no higher priority processes were runnable). This overhead varied

considerably depending on how many active processes were on your machine, and

on the wait functions they had.

The new scheduler has very little dispatcher overhead at process switch time. It

does not have any decisions to make at that point.

Additionally, getting rid of the scheduler stack group means that we can further

reduce the context-switching cost of a process switch by a factor of two.

Since there is no scheduler stack group, simple-processes must run in their own

(temporarily allocated) stack-group. (Note that one of the reasons for the existence

of simple processes in the old scheduler was performance. Since simple processes

were executed in the scheduler’s stack group only one stack group switch was nec-

essary when switching between simple and non-simple processes. No stack group

switches were necessary when switching between two simple processes. In the new

scheduler, even though we must allocate a stack-group for a simple process it still

requires only one stack group switch to switch between simple and non-simple

processes. It still requires no stack-group switches to switch between two simple

processes that have run to completion.)

This means that simple-processes are allowed to call process:process-wait,

process:block-process, and so on. This also means that they are not required to

use without-interrupts as their sole means of synchronization. (See the section

"Locks and Synchronization".)

� Creating and Enabling Processes

The value of *current-process* is the process that is currently executing, or nil

while the scheduler is running. When the scheduler calls a process’s wait-function,

it binds *current-process* to the process so that the wait-function can access its

process.

There are two ways of creating a process. The primary way is to say simply, "call

this function on these arguments in another process, and don’t bother waiting for

the result." In this case you never actually use the process as an object. The other

way is to create a "permanent" process that you instantiate and manipulate as de-

sired. In this latter case you use the process:make-process function. See the sec-

tion "Using Processes for Computations".

Page 880

Normally the function to be run should not do any input or output to the terminal.

For a discussion of the issues: See the section "Input/Output in Stack Groups".

process:process-run-function implements the first way of creating a process. It al-

lows you to call a function and have its execution happen asynchronously in anoth-

er process. This can be used either as a simple way to start up a process that will

run "forever", or as a way to make something happen without having to wait for it

to complete.

process:process-run-function name-or-kwds function &rest args Function

Creates a process, presets it so it will apply function to args, and starts it running.

name-or-kwds can be a string that becomes the process’s name, or it can be a list

of alternating keywords and values to which the corresponding process attributes

are set.

The keywords are:

:name The name of the process; it must be a string. The default

name is "Anonymous".

:restart-after-reset If this is t, the :reset message to the process restarts the pro-

cess. If this is nil, the :reset message to the process kills the

process. The default is nil.

:restart-after-boot Applies to both warm and cold booting, if the cold boot occurs

after a disk save with the process in it. If this is t, booting the

machine restarts the process. If this is nil, booting the ma-

chine kills the process. The default is nil.

:warm-boot-action If this option is provided, its value controls what happens when

the machine is warm booted. It overrides :restart-after-boot. If

it is nil or not provided, the value of the :restart-after-boot

option takes effect. For a description of the value of the warm-

boot action:

See the section "Warm Boot Actions for Processes".�

All other keywords are treated as arguments to process:make-process.

The function, process:make-process implements another way of creating a pro-

cess. process:make-process creates a permanent Lisp object that can be manipu-

lated by calling various functions.

process:make-process name &rest init-args &key (:priority process:*default-

process-priority*) :initial-function :initial-function-arguments :verify-function :verify-

function-arguments :flavor :run-reasons :area :simple-p :interrupt-handler :system-

process :flags :top-level-whostate &allow-other-keys Function

Creates and returns a process named name (a string). If the process is capable of

running (it has an :initial-function, and, if it is :simple-p, a :verify-function)

Page 881

then it is immediately RUNNABLE. You can override this default behavior by explicit-

ly providing :run-reasons nil.

The init-args are alternating keywords and values that allow you to specify things

about the process; however, no options are necessary. The following keywords are

allowed:

:initial-function The computation to be executed by the process.

:initial-function-arguments

The arguments to the :initial-function.

:simple-p States that the top-level-whostate function of the process is of

the form

(loop doing

 (apply process:block-process

 top-level-whostate verify-function verify-function-arguments)

 (apply initial-function initial-function-arguments)

�

Various optimizations are possible when a process is :simple-p.

Unlike the old scheduler, there are no restrictions on code run-

ning inside a process that is :simple-p. The :simple-p optimiza-

tion only pays off if :initial-function usually returns quickly. If

you specify :simple-p t, you can then specify the following ad-

ditional keywords:

:top-level-whostate Allows you to specify how the process is

identified in the status line.

:verify-function The verify function to be used.

:verify-function-arguments

The arguments to the verify-function.

:flavor Specifies the flavor of process to be created. The :flavor key-

word overrides the :simple-p keyword.

:stack-group The stack group the process is to use. If this option is not

specified a stack group will be created according to the rele-

vant options below.

:warm-boot-action What to do with the process when the machine is booted. See

the section "Warm Boot Actions for Processes".

:priority The priority of the process. The default is :foreground 0. See

the section "Priorities and Scheduler Policy".

:run-reasons Lets you supply an initial list of run reasons. The default is

for a process to be runnable. You can override this by explicit-

ly giving :run-reasons nil. For a regular process only :initial-

function is necessary. For a simple-process both :initial-

function and :verify-function are necessary.

Page 882

:system-process t implies that this process is used to implement part of the op-

erating system, and is not of interest to the user. See the sec-

tion "Show Processes Command".

:interrupt-handler t if this process is referenced by an interrupt handler or se-

quence break. Necessary to set things up so that a reference to

this process will not cause a transport trap or a page fault un-

der any circumstances. This keyword should be used with care.�

In addition, the options of make-stack-group are accepted. See the function make-

stack-group.

If you specify :flavor, there can be additional options implemented by that flavor.

Other functions relating to creating and enabling processes:

process:preset process function &rest args

Sets the process’s initial function to function and initial argu-

ments to args. The process is then reset so that it throws out

of any current computation and start itself up by applying

function to args. A process-preset call to a stopped process re-

turns immediately, but does not activate the process, hence the

process does not really apply function to args until it is activat-

ed later.

process:preset-simple-process simple-process initial-function initial-args predicate

predicate-args

Handles the arguments required by a simple process so that it

can be preset.

process:*default-process-priority*

The priority of a process if no priority is explicitly assigned.

process:process-p thing

Returns t if thing is a process.

process-simple-p process

Returns t if thing is a process.

process:map-over-all-processes function &rest args

Maps function over the set of all processes, including stopped

ones.

process:map-over-active-processes function &rest args

Maps function over the set of active processes.

process:process-arrest-reasons process

Returns the list of arrest reasons, which are the reasons why

this process should be inactive (forbidden to run).

process:process-run-reasons process

Returns the list of run reasons, which are the reasons why this

process should be active (allowed to run).

Page 883

process:disable process

Stops process by revoking all its run reasons. Also revokes all

its arrest reasons.

process:disable-arrest-reason process &optional (reason ’:user)

Removes reason from the process’s arrest reasons. This can ac-

tivate the process.

process:disable-run-reason process &optional (reason ’:user)

Removes reason from the process’s run reasons. This can stop

the process.

process:enable process

Activates process by revoking all its run and arrest reasons,

then giving it a run reason of :enable.

process:enable-arrest-reason process &optional (reason ’:user)

Adds reason to the process’s arrest reasons. This can stop the

process.

process:enable-run-reason process &optional (reason ’:user)

Adds reason to the process’s run reasons. This can activate the

process.

For a discussion of choosing priority levels, see the section "Choosing Process Pri-

ority Levels".

Warm Boot Actions for Processes

The :warm-boot-action keyword to process:make-process sets the warm boot ac-

tion for a process. It can also be set by the setf method for process-warm-boot-

action of a process:process.

Whenever the system is booted, the warm-boot-action for each process is applied to

the process. (Contrary to its name, the warm-boot-action applies to both cold or

warm booting.) A warm boot action must either be a function or nil. If nil,

process:flush is used, in which case the process will remain "flushed" until it is

reset.

The default is process:process-warm-boot-delayed-restart which resets the pro-

cess after initializations have been completed, causing it to start over at its initial

function. You can also use process:process-warm-boot-reset which throws out of

the process’s computation and kills the process.

If you choose to write a function of your own, use the following guidelines:

• You must either reset or kill the process. The state of a stack group is indeter-

minate after a warm boot, and all processes must clear out their computations.

• If you intend to restart the process, you should wait until after initializations

are complete. You do this by calling process:process-warm-boot-delayed-restart

after performing whatever actions you want. process:process-warm-boot-

delayed-restart sets up the process to be reset after initializations are complete.�

Page 884

process:process-warm-boot-delayed-restart process

Resets the process after initializations have been completed,

causing it to start over at its initial function.

process:process-warm-boot-reset process

Throws out of the process’s computation and kills the process.

process:process-warm-boot-restart process

Resets the process, causing it to start over at its initial func-

tion.

To find out the warm-boot-action of a process, use process-warm-boot-action.

process-warm-boot-action process

Returns process’s warm-boot-action, which controls what hap-

pens to this process if the machine is booted. (Note: Contrary

to the name, this applies to both cold and warm booting.)

� Getting Information About a Process

These functions return information about a process:

process:active-p process

Returns t if process is active.

process:runnable-p process

Returns t if process is runnable.

process:process-p thing

Returns t if thing is a process.

process-simple-p process

Returns t if thing is a process.

process-name process

Returns the name of process, which was the first argument to

process:make-process or process:process-run-function when

the process was created.

process-initial-form process

Returns the initial "form" of process. To change the initial

form, call the process:preset function.

process-warm-boot-action process

Returns process’s warm-boot-action, which controls what hap-

pens to this process if the machine is booted. (Note: Contrary

to the name, this applies to both cold and warm booting.)

process:process-run-reasons process

Returns the list of run reasons, which are the reasons why this

process should be active (allowed to run).

Page 885

process:process-arrest-reasons process

Returns the list of arrest reasons, which are the reasons why

this process should be inactive (forbidden to run).

process:process-base-process-priority process

process:process-process-priority process

process:process-run-time process

Returns the amount of run time the process has accumulated,

in microseconds. It is accurate for the current process.

process:process-run-time-low process

Returns the low 32 bits of process:process-run-time, in mi-

croseconds. It is not up to date for the current process.

process:process-disk-wait-time process

Returns the amount of time the process has spent waiting for

the disk (that is, paging), in microseconds. It is accurate to

10E24 microseconds, quantizable.

process:process-disk-wait-time-milliseconds process

Returns the amount of time the process has spent waiting for

the disk (that is, paging), in milliseconds, accurate to 10E24

microseconds. It is quantizable.

process:process-cpu-time process

Returns the amount of cpu time the process has received, in

microseconds. It is accurate to 10E24 microseconds, quantiz-

able.

process:process-idle-time process

Returns the amount of time since the process ran last, in sixti-

eths of a second.

process:process-last-time-run process

Returns the last time the process ran, as a universal time.

process:process-page-fault-count process

Returns the number of page faults the process has taken.

process:process-runnable-time process

Returns the amount of time the process has been runnable, in

microseconds.

� Blocking, Waiting, and Waking Processes

For a discussion of the difference between blocking and waiting, see the section

"Blocking Vs. Waiting".

sleep n-seconds &key (:sleep-reason "sleep")

Waits for n-seconds and then returns.

Page 886

process:block-process whostate verify-function &rest args

Causes the process to block. This assumes that another process

(or interrupt handler) is going to wakeup the process when its

verify function becomes true.

process:block-and-poll-wait-function whostate interval verify-function &rest args

Causes the process to wait. The scheduler polls it periodically

to see if its verify function has become true.

process:allow-preemption

Allows the scheduler to recompute the internal dispatcher pri-

ority of this process. If there are processes that now have

higher priority because of this priority reduction, they will pre-

empt the current process and run. This allows preemption even

when preemption is disabled.

process:wakeup process

Evaluates the verify function of process.

process:force-wakeup process

Wakes up process.

process:wakeup-without-test process

Wakes up process without testing its verify function.

process:block-process then tests the verify function and re-

turns to its caller only if the verify function returns t. If it re-

turns nil, process goes blocked again.

process:block-with-timeout timeout whostate verify-function &rest args

Specifies a time interval (in seconds) after which the function

just returns.

process:block-and-poll-with-timeout n-seconds whostate interval function &rest ar-

guments

Specifies a time interval (in seconds) after which function just

returns.

process:process-wait whostate function &rest arguments

Waits until the application of function to arguments returns

non-nil (at which time process:process-wait returns).

process:process-wait-with-timeout whostate time function &rest args

Specifies a time period (in seconds) after which function should

just return.

process:safe-to-process-wait-p process

Returns t if it is safe to call process:process-wait on process.

process:*process-wait-interval*

The length of time to wait, in fractions of a second.

process:with-process-block-timeout (timeout &optional timer-name) &body body

Specifies a timer and a time interval (in seconds) after which

the function just returns.

Page 887

process:wait-forever &optional (whostate "wait forever")

Causes the current process to wait forever.

process:with-wait-function-polling (interval function &rest args) &body body

process::poll-simple-process simple-process &optional (interval process:*process-

wait-interval*) force

Polls a simple-process if it is not running.

� Resetting, Interrupting, and Aborting Processes

process:abort &rest args

Exits a process by signalling sys:abort, but respecting process-

es that are in the dynamic extent of a sys:without-aborts

form.

process:interrupt process function &rest args

Tells process stop its computation and to execute some function

on your behalf in its environment. If the function returns nor-

mally the interrupted computation is resumed. This should be

used with care, it can be dangerous.

process:reset process &key (:if-current-process t) (:if-without-aborts :ask) Function

Exits the entire computation of process and forces it to call its initial function

again. Resetting a process clears any waiting condition, and so if it is active it be-

comes runnable.

:if-without-aborts indicates what to do if the process is not currently resettable.

See the function sys:without-aborts. It takes the values :force, :ask, and nil.

:force Process is reset anyway.

:ask Queries the user as to whether to force the process to reset or

not.

nil Return a list of reasons why the process cannot be reset.�

process:reset-and-release-resources process &key (:if-current-process t) (:if-without-

aborts :ask)

Resets process, but does not start it up again. It releases most

resources used by the process, arrests the process, and makes

it FROZEN. If the process is re-enabled, a new set of resources

are allocated for it.

process:kill process &key (:if-current-process t) (:if-without-aborts :ask)

Resets process and releases its resources, making the process

DEAD, that is inaccessible to process:map-over-all-processes.

Reset makes the process ALIVE again. It is not recommended.

Page 888

process:flush process

Forces a process to be blocked. The state of its computation is

not changed and it continues to hold on to all of its resources.

The process will not proceed until it is reset.

� Scheduler CP Commands

Debug Process Command

Debug Process process�

Enters the Debugger to look at process.

process A process. You can press HELP for a list of all the processes

currently running in your environment. See the section "Show

Processes Command".

� Restart Process Command

Restart Process process�

Causes the process to start over in its initialized state. This is one way to get out

of stuck states when other commands do not work.

process A process. You can press HELP for a list of all the processes

currently running in your environment. See the section "Show

Processes Command".

� Start Process Command

Start Process process�

Starts a process that has been halted with Halt Process.

process A process. You can press HELP or use the Show Processes com-

mand for a list of all the processes currently running in your

environment.�

� Halt Process Command

Halt Process process�

Causes process to stop immediately. This is the same as [Arrest] in the Peek pro-

cesses menu.

Page 889

process A process. You can press HELP for a list of all the processes

currently running in your environment. (See the section "Show

Processes Command".)

� Kill Process Command

Kill Process process�

Causes process to go away completely.

process A process. You can press HELP for a list of all the processes

currently running in your environment. See the section "Show

Processes Command".

� Show Processes Command

Show Processes keywords�

Displays all the processes currently in your environment. See Figure ! .

Keywords :Active, :Idle, :More Processing, :Name, :Order, :Output Desti-

nation, :Priority Above, :Priority Below, :Recent, :State, :Sys-

tem, :Unarrested�

:Active {time-interval} Shows only processes that have been active

within time-interval. The mentioned default is "1 minute". (Ob-

solete, use :Recent.)

:Idle {time-interval} Shows only processes that have been idle for at

least time-interval. The mentioned default is "1 minute".

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Name {process-names-or-substrings} Enables you to specify an existing

process name, a process name substring, or a combination of

the two. If you specify substrings only, the processes named by

those substrings are considered for viewing (subject to the oth-

er options.) If you specify process names only, only those pro-

cesses are considered. If you specify a mix, then processes

named exactly and processes named by substrings are both

considered.

Page 890

:Order {Idle, Name, None, Percent} Sorting method for the processes

display. The default is None.

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Priority Above {integer} Shows only processes of priority higher than integer.

:Priority Below {integer} Shows only processes of priority lower than integer.

:Recent {time-interval} Shows only processes that have run within time-

interval.

:State {string} Shows only processes whose state contain string.

:System {Yes, No} Shows the system processes also. The default is No,

the mentioned default is Yes.

:Unarrested {Yes, No} Shows only processes that are not arrested. The de-

fault is No, the mentioned default is Yes.�

Figure 31. Show Processes

�

�

The priorities are:

F Foreground

Page 891

B Background

D Deadline

P Preemptive

The process names in the display are mouse sensitive. Clicking Middle on one of

them puts that process in the debugger. Clicking Right pops up a menu of opera-

tions:

� Set Process Priority Command

Set Process Priority process value�

Adjusts the priority of process.

process A process. You can press HELP or use the Show Processes com-

mand for a list of all the processes currently running in your

environment.

value {number} For Foreground processes only. The priority value to

give the process. Usually values range from -1 to 30, with most

normal processes having priority 0. The mouse and keyboard

process usually have priority 30 and some network processes

have priority 10. The garbage collector and notifications have

priority 5. Use Show Processes to see all your current process-

es with their priorities. It is the relationship among the priori-

ties that is important. The mouse and keyboard have a high

priority so that user input is recognized and handled rapidly.

Notifications should not take priority over keyboard or mouse

input, but they should happen in a timely fashion. See the sec-

tion "Choosing Process Priority Levels".

� Timers

About Timers

Page 892

The Timer Facility implements timers, a mechanism that allows arbitrary code to

execute, asynchronously, at some time in the future.

In an event-driven scheduler timers are of critical importance. In a polling sched-

uler "timers" are often implicit in the wait-function. In an event-driven scheduler a

blocked process has nothing periodically polling its wait-function, (which would just

beg the question, of course, of how we implemented the periodic polling without

timers) and therefore, if it needs to perform a time dependent action (from simply

timing out, to executing arbitrary code) some external timer facility needs to wake

it up.

The timer facility manages the external timer(s).

If a timer is waiting to go off, it is considered pending. When it goes off it is exe-

cuting. Each timer executes in its own process at the priority of the timer.

Each pending timer has a function, a priority, and an expiration time.

You can create, reset (set the expiration time), and clear timers.

The principal function for dealing with timers is process:reset-timer-relative,

which takes its arguments in seconds. process:reset-timer-relative-timer-units

takes its arguments in process:*timer-units*, which is generally microseconds.

Timers are accurate to within process:*timer-resolution*. This means that if you

request a timer to go off at time N, you can expect it to go off at any time within

plus or minus process:*timer-resolution* process:*timer-units* of N.

This resolution is not a guarantee, but a statement of probability. You can change

process:*timer-resolution* by using the :timer-resolution keyword to process:set-

scheduler-parameters. You cannot set process:*timer-resolution* to be less than

the value of process:*minimum-timer-resolution* on any given machine architec-

ture.

The third unit that timers take are universal times. If you set a timer to go off at

an absolute time by process:reset-timer-absolute, or if you expect it to survive a

warm-boot, you must specify the time in universal time. Relative times cannot be

expected to be meaningful across boots.

Creating Timers

There are two functions for creating timers.

process:create-timer-call function args &key (:name "timer") (:priority

process:*default-timer-entry-priority*)

process:create-timer-wakeup &optional (process *current-process*) &key (:name

"timer wakeup") :force-p

A common use of process:create-timer-call is to wake up a process, using

process:wakeup. The timer facility can optimize this case if you use

process::create-timer-wakup.

Page 893

� Setting and Clearing Timers

process:clear-timer timer

Clears a timer, so that it does not go off. If it has not gone off

yet, process:timer-expired-p continues to return nil.

process:reset-timer-relative timer delta-t

Resets the timer relative to its initial setting, using seconds.

process:reset-timer-relative-timer-units timer delta-t

Resets the timer relative to its initial setting, using timer-

units.

process:reset-timer-absolute timer universal-time

Resets timer to an absolute time, using universal-time.

process:reset-timer-absolute-timer-units timer clock-time

Resets the timer to an absolute time.

� Getting Information About Timers

process:timer-expiration-time timer

Returns the time the timer should expire.

process:timer-function timer

process:timer-name timer

Returns the name of the timer as a string.

process:timer-priority timer

process:timer-universal-time timer

process:timer-universal-time-of-expiration timer

process:*timer-resolution*

Determines the accuracy of timers.

process:*minimum-timer-resolution*

process:*timer-units*

The number of seconds per timer unit.

� Timer Predicates

process:timer-expired-p timer

Returns t if the timer has actually fired and has not been re-

set.

process:timer-expires-by timer relative-time

Returns the amount of time until the timer expires, in seconds.

Page 894

process:timer-expires-by-relative-timer-units timer relative-time

Returns the amount of time until the timer expires, in timer

units.

process:timer-pending-p timer

Returns t if the timer is still set to go off, but has not done so

yet.

process:timer-should-have-expired-p timer

Returns t if the timer should have expired, regardless of its

state. process:clear-timer has no effect on this predicate.

When you are simply using a timer as an argument to a pred-

icate, and not as a trigger for some asynchronous action, the

correct predicate to use is process:timer-should-have-

expired-p.�

� Timer Warm Boot Actions

process:set-timer-warm-boot-action timer warm-boot-action

process:timer-warm-boot-action timer

Locks and Synchronization

When two or more processes share a data structure some form of synchronization

is necessary.

The general topic of synchronization is covered in many books on operating sys-

tems, and is beyond the scope of this documentation.

There are four main synchronization mechanisms provided by Genera: atomic op-

erations, locks, disabling preemption, and, on Ivory based systems only, raising the

trap mode.

Atomic Operations

Genera provides a set of Lisp operations that are atomic with respect to multiple

processes and interrupts. These functions are all built out of the more primitive

operator, store-conditional.

store-conditional pointer old new

Checks to see whether the cell contains old, and, if so, it

stores new into the cell. The test and the set are done as a

single atomic operation.

These operations are all atomic and therefore guaranteed race free. Even with

many processes performing the same operations, no operation is lost or duplicated.

Page 895

process:atomic-incf reference &optional (delta 1)

Atomically increments (incf) reference by delta, side effecting

reference, and returning the new value of reference. This works

in the presence of multiple processes all trying to increment

and decrement reference.

process:atomic-decf reference &optional (delta 1)

Atomically decrements (decf) reference by delta, side effecting

reference, and returning the new value of reference. This works

in the presence of multiple processes all trying to increment

and decrement reference.

process:atomic-push item reference &key :area

Atomically pushs item onto reference. This operation works in

the presence of multiple processes all trying to do push and

pop of values on and off reference.

process:atomic-pop reference

Atomically pops the first item off of reference, side-effecting

reference and returning the new value. This operation works in

the presence of multiple processes all trying to do push and

pop of values on and off reference.

process:atomic-replacef reference new-value

Atomically sets reference to new-value. This works in the pres-

ence of multiple processes all trying to modify reference.

process:atomic-updatef variable function

Atomically updates variable by the combinational function func-

tion. This works in the presence of multiple processes all try-

ing to modify variable. This guarantees that the transition of

variable from value to (funcall function value) is atomic.

� Locking

A lock is a software construct used for synchronization of two processes. On Sym-

bolics computers, the software construct for a lock is a Lisp object. A lock protects

some resource or data structure so that only one process at a time can use it. A

lock is either held by some process, or is free. When a process tries to seize a

lock, it waits until the lock is free, and then it becomes the process holding the

lock. When it is finished, it unlocks the lock, allowing some other process to seize

it. If a process, P1, holds a lock, and another process, P2, tries to acquire that

lock, then P2 promotes P1. This means that if P2’s priority is higher than P1’s, P1

has its priority boosted to that of P2. See the section "Promotion".

Creating Locks

Locks are created with the function process:make-lock.

Page 896

process:make-lock name &key (:type :simple) :recursive :area :flavor Function

Creates a lock.

:name A string, the name of the lock.

:type The kind of lock. The possibilities are :simple (the default),

:multiple-reader-single-writer, and :null.

:recursive If :recursive is t, then the lock can be locked recursively by

the process holding the lock. The default is nil.

:area The area in which to put the lock object. This is primarily use-

ful if you are concerned with keeping your working set small.

The value specifies the area. It should be either an area num-

ber (an integer), or nil to mean the default area. This argu-

ment defaults to nil.

:flavor The flavor of lock to create. Normally, the value is computed

automatically. This keyword is needed only if you want to use

some special flavor.

There are three types of locks, :simple, :multiple-reader-single-writer, and :null.

A :simple lock is a mutual exclusion lock; only one process can hold it at a time

and all other processes must wait until it is released. A :multiple-reader-single-

writer permits any number of processes to access its resource as readers but only

one process can hold the lock for writing. When a process attempts to seize a

:multiple-reader-single-writer lock, it must specify if it wants to be a reader or a

writer. A :null lock is one that does not actually lock anything, it is intended pri-

marily for debugging. Any of these can be :recursive, meaning that the holder of

the lock can relock it any number of times. The default lock created by

process:make-lock is a simple, non-recursive lock.

(process:make-lock "my-lock")

#<PROCESS::SIMPLE-NONRECURSIVE-NORMAL-LOCK my-lock 47107526>

�

process:reset-lock lock Function

Takes a lock object and resets the lock to its initial state.

� Locking and Unlocking Locks

The usual way to use a lock is with process:with-lock.

process:with-lock (lock &key :mode &allow-other-keys) &body body Macro

Seizes lock and executes body while it holds the lock.

:mode is only used for reader-writer locks. It can be :read, :write, or :exclusive-

read. :exclusive-read is for :multiple-reader-single-writer locks and locks the lock

for a read but does not allow any other readers.

Page 897

process:with-lock uses the lock and the :mode argument to construct a call to

process:make-lock-argument, then calls process:lock with the lock argument,

runs body, and finally calls process:unlock to release the lock.

If you need greater control over the execution of body, you can call process:make-

lock-argument, process:lock, and process:unlock explicitly.

process:make-lock-argument lock &rest keys

Constructs an argument list for process:lock and

process:unlock, including the lock object to seize and the

mode.

process:lock lock lock-argument

Locks a lock.

process:unlock lock lock-argument

Releases a lock.

If you need to do something explicitly without a lock, while you are holding a lock,

you can use process:without-lock.

process:without-lock (lock) &body body Macro

Unlocks any lockings that were done by the current process, runs body, and then

relocks the lock.

Getting Information About a Lock

process:lock-idle-p lock

Returns t if no one is holding lock in any way.

process:lock-lockable-p lock &rest keys

Returns t if the current process could lock the lock in the

specified mode without waiting.

process:lock-name lock

Takes a lock object and returns the name of the lock as a

string.

process:lockp lock Returns t if its argument is a lock object.

� Locks on 3600-Family Computers

The material in this section is obsolete and is retained only for compatibility. New

code should use process:make-lock and process:with-lock.

On 3600-family machines, a lock is a locative pointer to a cell. If the lock is free,

the cell contains nil; otherwise it contains the process that holds the lock. The

process-lock and process-unlock functions are written in such a way as to guar-

antee that two processes can never both think that they hold a certain lock; only

one process can ever hold a lock at a time.

Page 898

process-lock locative-pointer &optional lock-value (whostate "Lock") interlock-

function Function

This function is obsolete, use process:lock in new code.

Seizes the lock to which locative-pointer points. If necessary, process-lock waits

until the lock becomes free. When process-lock returns, the lock has been seized.

lock-value is the object to store into the cell specified by locative-pointer, and

whostate is passed on to process-wait if the process must wait. If lock-value is nil

or unsupplied, the value of sys:current-process is used.

The argument interlock-function must be nil or a function of zero arguments.

process-lock guarantees to call interlock-function if the lock is successfully

changed to be locked, and not otherwise. It can therefore be used to implement

atomic unwind-protect of locking.

This is atomic and protected from unlocking locks held at a higher level. In this

case, "atomic" means that the operation cannot be decomposed into smaller opera-

tions. If an operation is atomic, then c-ABORT and other interrupts cannot occur in

the middle of it.

Here is an example.

 (let ((locked nil))

 (unwind-protect

 (progn

 (process-lock lock si:current-process "Lock"

 #’(lambda () (setq locked t)))

 ... body of locked code ...

)

(when locked (process-unlock lock si:current-process))))�

Note that this example protects against aborting while your process waits for the

lock.

In the example, a program is designed to lock a lock. It wants to use unwind-

protect, when it exits, if and only if the lock was locked. Therefore, the program

needs to maintain a flag that indicates if the lock has indeed been locked. Chang-

ing the state of the lock and the flag must happen together. If they occur asyn-

chronously, errors ensue. Thus the sequence of changing the lock and setting the

flag must be atomic.

For simple sets of operations, without-interrupts gives atomicity. However, you

cannot call process-wait while in a without-interrupts, and locking a lock calls

process-wait. This is why process-lock supplies this argument and guarantees

that calling the function and setting the lock to be locked will be atomic.

process-unlock locative-pointer &optional lock-value error-p Function

This function is obsolete. Use process:unlock in new code.

Unlocks the lock to which locative-pointer points. If the lock is free or was locked

by some other process, an error is signalled if error-p is t. Otherwise the lock is

Page 899

unlocked. If lock-value is nil or unsupplied, the value of sys:current-process is

used.

It is a good idea to use unwind-protect to make sure that you unlock any lock

that you seize. For example, if you write:

(unwind-protect

 (progn (process-lock lock-3)

 (function-1)

 (function-2))

 (process-unlock lock-3))�

then even if function-1 or function-2 does a throw, lock-3 is unlocked correctly.

Note that if you use this example, your system enters the debugger when the

cleanup handler attempts to unlock the lock, claiming it is not locked. Particular

programs that use locks often define special forms that package up this unwind-

protect into a convenient stylistic device.

process-lock and process-unlock are written in terms of a subprimitive function

called store-conditional, which is sometimes useful in its own right.

You can also use si:make-process-queue and related functions to set up a queue

for processes waiting to seize a lock. Each process on the queue is given a chance

to seize the lock in the order in which it requests the lock.

si:make-process-queue name size Function

Makes and returns a queue for processes requesting a lock. name is an external

name for the queue and is used only in printing the queue. size is the size of the

queue. This is the maximum number of processes that will be guaranteed to lock

the queue in exact requesting order.

si:process-enqueue queue &optional queue-value (whostate "Lock") Function

Locks queue. queue-value is an object to enter on the queue; if queue-value is nil or

unsupplied, the object is the current process. If queue is empty, si:process-

enqueue seizes the lock immediately by inserting queue-value on the queue and

returning. If queue is not full but other processes are on the queue waiting for the

lock to be free, it inserts queue-value at the end of the queue, waits for the lock to

be free, and then seizes the lock by returning. If queue is full, it waits until queue

is not full and tries again to seize the lock. whostate is displayed in the status line

while waiting to seize the lock. si:process-enqueue signals an error if queue-value

has already seized the lock.

si:process-dequeue queue &optional queue-value (error-p t) Function

Unlocks queue. queue-value is an object on the queue. If queue-value is nil or un-

supplied, it is the current process; if not nil, it should be the same as the queue-

value given to the matching call to si:process-enqueue. If queue-value has the

lock, unlocks the lock by removing queue-value from queue and giving the next pro-

Page 900

cess on the queue a chance to seize the lock. If queue-value does not have the lock

and error-p is not nil, signals an error.

si:process-queue-locker queue Function

Returns the queue-value for the process that holds the lock on queue, or nil if the

lock is free.

si:reset-process-queue queue Function

Unlocks queue and removes all processes on the queue.

� Disabling Preemption

One way of synchronizing a data structure that is accessed by multiple-processes is

to inhibit scheduling when you manipulate that structure.

This has the advantage that readers (clients that do not modify the data structure)

do not have to pay any price for synchronization, since all the work is done by the

writers. It is also simpler there are no deadlocks.

The disadvantage is that it shuts out all other processes. Usually it is a more

drastic measure than is necessary. Disabling preemption is discouraged as a tech-

nique for synchronizing data structures. Use an alternative method if possible.

See the section "Atomic Operations". See the section "Locking".

However, there will still occasionally be some need for inhibiting preemption, or

stopping other processes from running. Also, for compatibility, we support old code

that still uses without-interrupts.

The name without-interrupts is misleading, since interrupts are not disabled within

the body of that form. It might be more accurately called without-preemption, since

interrupts occur, scheduling is legal (if you voluntarily yield the processor), and

only preemption is inhibited.

Because of these problems with the name, and because we wish to encourage con-

version of old code that used without-interrupts to use locks or atomic operations,

without-interrupts will be declared obsolete in a future release, and generate style

warnings.

without-interrupts &body forms

Evaluates forms with sys:inhibit-scheduling-flag bound to t. In

other words, the body is an atomic operation with respect to

process scheduling.

If it is inappropriate to convert to locks or atomic operations, four forms are pro-

vided that disable preemption in subtly different ways.

process:with-no-other-processes &body body

Evaluates its body forms without being preempted by any other

Page 901

processes. On a multiprocessor, all processes running on any

other processors are stopped.

process:with-preemption-disabled &body forms

Evaluates its body forms without being preempted by any other

processes. On a multiprocessor, all processes running on any

other processors continue running, but they cannot yield the

processor or be preempted.

process:without-preemption &body forms

Evaluates its body forms without being preempted by any other

processes. On a multiprocessor this has no effect on any pro-

cessor other than the processor it is executed on.

It is easiest to describe these in the context of a multiprocessor, since some primi-

tives behave identically on a single processor, yet have different intents. Behav-

ioral differences show up only in the multiprocessor case, so we use the multiple

processor case to illustrate the differences.

without-interrupts assumes that no other processes will run anywhere in shared

memory. This restriction includes processes currently running on other processors

that reference our memory. process:with-no-other-processes has this meaning and

should be used instead of without-interrupts. Explicitly calling the scheduler (with

process:block-process or process:process-allow-preemption, for example) is not

allowed. It is important to note that this does not disable interrupts (sequence-

breaks).

process:with-preemption-disabled does not allow preemption on any processor. It

allows processes that are currently running to continue running, but, if they try to

enter the scheduler, they must wait until preemption is enabled again. If the pro-

cess on the machine that entered the process:with-preemption-disabled enters the

scheduler, it does switch processes, and after the switch is over the new current-

process can re-enable preemption. You can wakeup processes during a

process:with-preemption-disabled, as long as the scheduler data-structures are

not locked.

process:with-preemption-disabled is useful, for example, when you are holding a

lock on a data structure, and you wake up a higher priority process that is waiting

for the same lock. You want to atomically wake up this process, and simultaneous-

ly release the lock. If you just wake it up, without preemption disabled, it pre-

empts you, and goes blocked again. Or, if you release the lock, and then wake up

the process, another process can sneak in, in between.

process:without-preemption is mainly a performance optimization. It means "no

preemption is allowed on this processor". It has no effect on the scheduler or pro-

cesses on other processors. It just locks the current-process down to its current-

processor.

Trap Mode and Synchronization

For Ivory-based systems only:

Page 902

Preemption only occurs in emulator mode. Therefore, no extra synchronization is

needed between code running in trap mode greater than emulator and code that

might execute in other processes.

Please see the documentation on trap-mode.

Promotion Protocol

If a process, p1, is forced to wait for another process, p2 (perhaps because p2 holds

a resource that is critical to p1), p1 might want to promote p2’s priority. This pro-

motion is done so that p1 can retrieve the resource from p2 in a timely fashion.

The locking facility provided by Genera automatically does promotion.

A process can promote another process by following the promotion protocol. This

facility is rarely necessary and should be used with caution.

process:add-promotion p1 uid1 p2 uid2

Promotes the priority of a process. Process p1 with uid1 is promoting process p2�

with uid2. When p2 finishes uid2, or p1 quits uid1, this promotion is removed (by

process:finish-promotions or process:remove-promotions respectively.)

If p2 had a lower priority than p1, and p2 were not promoted, a compute-bound

process (named, say, p3) with a priority between that of p1 and that of p2 could

conceivably starve out p1. Therefore it is appropriate that p2 adopt the priority of

p1 until it allows p1 to proceed.

Even if p1 has a lower priority than p2 it must call process:add-promotion.

Priorities change. For example, if p1 is itself promoted, we would want the promo-

tion to recurse to p2.

process:promotion-block scheduler-queue whostate verify-function &rest args

process:remove-promotions p1 uid1

Notes that p1 has finished, or quit, the activity identified by

uid1. Removes all promotions done for p1 at uid1.

process:finish-promotions p2 uid2

Notes that p2 has finished the activity identified by uid2. Re-

moves all promotions done to p2 at uid2.

Priorities and Scheduler Policy

There are three classes of scheduler priorities used by the dispatcher:

DEADLINE The earliest deadline in microseconds is the highest priority.

FOREGROUND A strict ordering by positive numbers. Highest number is

highest priority.

BACKGROUND Round robin.�

Page 903

DEADLINE are higher priority than foreground priorities, which, in turn, are higher

than background.

If there are no runnable processes, the dispatcher switches to the NULL process.

Priorities are created by process:make-process-priority.

process:make-process-priority class priority &rest extra-args Function

Creates a process priority. The priority argument depends on class.

Class Priority

:deadline A relative deadline in microseconds. It is the deadline by which

the process must exit the most deeply nested process:with-

process-priority.

:foreground An integer. The higher the integer, the higher the priority.

:background Priority is ignored. �

Both :deadline and :foreground priorities take an extra-arg of :preemptive

A programmer can specify priorities for a process by using process:set-process-

priority, or process:with-process-priority.

process:with-process-priorities (priority &rest priorities) &body body Function

Defines a priority region body will be executed with priority new-priority. Since

the extent of new-priority is bounded, scheduler policy is often more lenient with

priority regions than with simply setting the priority. The policy is controlled by

the policy hook process:*policy-hook-region-priority*. See the section "Extensible

Scheduler".

Additionally, process:with-process-priorities takes a sequence of time priority pairs

that define how the priority of the process will change over time while executing

this form.

The times are expressed in seconds, and are relative to the last time priority pair.

If it were important to execute a certain form within 1 second, but you didn’t want

to otherwise interfere with other processes, you could write code like this:

(process:with-process-priorities

 ((process:make-process-priority :foreground -2)

 .5 (process:make-process-priority :foreground -1)

 .1 (process:make-process-priority :foreground 0)

 .1 (process:make-process-priority :foreground 1)

 .1 (process:make-process-priority :foreground 2)

 .1 (process:make-process-priority :deadline 100000.))

 form)

�

Page 904

This says: start executing at priority -2. If, after half a second has elapsed, you

haven’t completed executing form then raise your priority to -1. If, after .6 seconds

you still haven’t completed executing form then raise your priority to 0. Continue

to do this until .9 seconds have elapsed, and then panic and use a deadline.

Or, alternatively, if there were a form that you expect to be very quick, you might

want to play a different game with the priorities. At first, it is reasonable to give

it a high priority. If it takes too long to complete, you don’t want to degrade the

performance of the reset of the machine, so you gradually decrease its priority.

(process:with-process-priorities

 ((process:make-process-priority :deadline 1000000.)

 .1 (process:make-process-priority :foreground 2)

 .1 (process:make-process-priority :foreground 0))

 form)

�

For the first 10th of a second the form has a deadline of 1 second. If we haven’t

finished by a 10th of a second, we are tying up the machine and responsiveness

isn’t as important as we thought at first, so we lower our priority to 2. If after

two tenths of a second we haven’t finished, chalk this execution up as a loss, and

let it complete computing at normal priority, so we don’t selfishly use up most of

the machine.

This is the mechanism that si:with-process-non-interactive-priority uses to allow

short functions to execute at interactive priority, but longer ones to revert to the

default compute-bound priority.

Page 905

(defun test-process-priority-changes (time)

 (let ((end-time (sys:%32-bit-plus

 (sys:%microsecond-clock) time))

(priority

 (process:process-process-priority *current-process*))

(results nil))

 (flet ((record-priority ()

 (push (cons (sys:%microsecond-clock) priority) results)))

 (record-priority)

 (process:with-process-priorities

((process:make-process-priority :foreground 2)

 .166666 (process:make-process-priority :foreground 3)

 .333333 (process:make-process-priority :foreground 5)

 .500000 (process:make-process-priority :deadline 500000.))

(loop while (time-lessp (sys:%microsecond-clock) end-time) do

 (let ((new-priority

 (process:process-process-priority *current-process*)))

 (when (neq priority new-priority)

 (setf priority new-priority)

 (record-priority)))))

 (setf priority

 (process:process-process-priority *current-process*))

 (record-priority))

 results))

Page 906

�

(defun show-delayed-priorities (results)

 (let* ((results (reverse results))

 (initial-time (caar results)))

 (flet

 ((print-priority (s class priority)

 (select class

 (process:*process-priority-class-idle-time*

 (format s "NA"))

 (process::*process-priority-class-background*

 (format s "Background"))

 ((process:*process-priority-class-interactive*

 process:*process-priority-class-foreground*)

 (format s "~A:~D"

 (if

 (eql class process:*process-priority-class-interactive*)

 "I" "F")

 (process::back-convert-foreground-priority priority)))

 (process::*process-priority-class-deadline*

 (format s "D:~D" priority))

 (otherwise

 (format s "~D:~D" class priority)))))

 (loop for (time . priority) in results do

(format t "~&~6D: Priority: "

(sys:%32-bit-difference time initial-time))

(print-priority *standard-output*

(process:scheduler-priority-class priority)

(process:scheduler-priority-priority priority))))))

�

Command: (test-process-priority-changes 2000000.)

((-989859200 . -822083584) (-990850110 . -2146983648) (-991367439 . -832569344)

 (-991700866 . -828375040) (-991891470 . -826277888) (-991892886 . -824180736))

Command: (show-delayed-priorities *)

 0: Priority: F:1

 1416: Priority: F:2

192020: Priority: F:3

525447: Priority: F:5

1042776: Priority: D:500000

2033686: Priority: F:0

NIL

�

process:get-instantaneous-priority translates between the programmer priorities

set up by process:set-process-priority and process:with-process-priority and the

priorities the dispatcher uses.

process:set-process-priority process new-priority

Page 907

process:set-process-base-priority process new-priority

The Priority manager is a process that periodically re-orders the scheduler priori-

ties of all processes whose programmer priorities translate into scheduler priorities

of class :foreground.

The Priority manager must arrange this order so that, when viewed over a suffi-

ciently long interval, the processes behave as specified by their programmer prior-

ity.

Other priority functions:

process:set-scheduler-parameters &key (:wakeup process::*scheduler-wakeup-

interval*) (:record process::*scheduler-record-interval*) (:hys-

teresis process::*scheduler-hysteresis-interval*) (:peek

process::*scheduler-peek-interval*) (:resolution

process::*scheduler-resolution*) (:spread process::*scheduler-

spread*) (:boost process::*scheduler-boost*) (:timer-resolution

process:*timer-resolution*)

process:show-scheduler-parameters &optional (stream *standard-output*)

process:process-process-priority process

process:set-process-base-priority process new-priority

process:process-base-process-priority process

process:process-priority-lessp proc1 proc2

Returns t if the dispatcher/instantaneous priority of proc1 is

higher than the priority of proc2.

process:scheduler-priority-lessp pri1 pri2

Returns t if pri1 is higher priority than pri2.

process:with-delayed-process-priorities (priority &rest priorities) &body body

Like process:with-process-priority except the priority does not

start until the indicated time interval has passed. The delay is

in seconds.

process:with-delayed-process-priorities-in-timer-units (priority &rest priorities)

&body body

Like process:with-delayed-process-priorities but the units are

timer units, not seconds.�

si:with-process-non-interactive-priority (&key (:quantum-boost si:*process-

command-initial-quantum*)) &body body Function

:quantum-boost Instead of immediately lowering the priority of this process,

the high priority is extended for the length of quantum-boost.

Quantum is measured in units of 60ths of a second. The de-

sired effect of :quantum-boost is to allow this process to contin-

ue to have high priority for a short period of time after you

Page 908

using non-interactive priority. This allows short commands to

execute quickly and makes the machine feel more responsive.

The default is si:*process-command-initial-quantum*�

In order to allow you to type without interference while other processes are com-

puting in the background, Genera raises the priority of your process when you are

typing. This is called interactive priority. Often, you can see a process executing

(or waiting) with an interactive priority by looking at the Processes display in

Peek. A priority of 0+1 (base priority of 0, current priority of 1) almost always

means that the process is currently interactive.

The process only executes with interactive priority while you edit (for example,

when you edit text, or when you use the input editor). When you execute code,

Genera lowers the priority to non-interactive priority, or the normal priority of the

process.

The system uses interactive priority to allow your keystrokes to be processed in

preference to computations this makes typing seem smoother and more respon-

sive. This also speeds up the response of mouse-sensitivity highlighting as you

move the mouse. The system lowers your priority to non-interactive priority when

executing commands or forms so that the computation does not interfere with oth-

er computations (or with your typing to another window), so that, in principle,

each activity gets a fair portion of the machine.

The system assumes that any input editor command that has an input-editor accel-

erator will be used to edit text, and therefore, executes it at the interactive priori-

ty. The system makes the same assumption about presentation actions.

This can be a problem if you have a command that will execute for a long time,

and will be executed at interactive-priority. It can use up a lot of the machine and

interfere with other processes.

To solve this problem, you need to wrap a si:with-process-non-interactive-priority

form around the body of your form.

(si:with-process-non-interactive-priority () body)

Extensible Scheduler

The scheduler is extensible in the following senses:

1. The representation of, and operations on, programmer or process priorities

can be changed, although changing them might involve a change to the ex-

ported interface of the scheduler. This is the sort of thing that should only be

changed across major releases.

2. The meaning of the programmer priority can be changed at any time by

changing a small number of procedures and/or parameters.

3. The module(s) that determine what effect the process priority has on the in-

stantaneous priority are replaceable. This collection of modules represents the

scheduler policy.�

Page 909

Higher-Level Functions

Not all control of processes falls under the heading of scheduler policy. There is

certain behavior that a programmer might want, independent of policy. For exam-

ple, a timer driven process. Primitives to control this kind of behavior should exist,

independent of which policy the scheduler is currently using.

process:process-run-function is an example of an already implemented primitive.

Events and Periodic-Actions are examples of primitives that might be implemented

in the future.

process:process-run-function allows you to call a function and have its execution

happen asynchronously in another process. This can be used either as a simple

way to start up a process that will run "forever", or as a way to make something

happen without having to wait for it to complete.

It is sometimes syntactically more convenient than process:make-process. It also

provides a keyword, :restart-after-reset, which can allow all process:resets to kill

the process. This is often useful behavior for temporary, anonymous, computations.

These are the only two reasons to use process:process-run-function in place of

process:make-process.

See the section "Using Processes for Computations".

process:process-run-function name-or-kwds function &rest args Function

Creates a process, presets it so it will apply function to args, and starts it running.

name-or-kwds can be a string that becomes the process’s name, or it can be a list

of alternating keywords and values to which the corresponding process attributes

are set.

The keywords are:

:name The name of the process; it must be a string. The default

name is "Anonymous".

:restart-after-reset If this is t, the :reset message to the process restarts the pro-

cess. If this is nil, the :reset message to the process kills the

process. The default is nil.

:restart-after-boot Applies to both warm and cold booting, if the cold boot occurs

after a disk save with the process in it. If this is t, booting the

machine restarts the process. If this is nil, booting the ma-

chine kills the process. The default is nil.

:warm-boot-action If this option is provided, its value controls what happens when

the machine is warm booted. It overrides :restart-after-boot. If

it is nil or not provided, the value of the :restart-after-boot

option takes effect. For a description of the value of the warm-

boot action:

Page 910

See the section "Warm Boot Actions for Processes".�

All other keywords are treated as arguments to process:make-process.

The Scheduler Compatibility Package

Introduction to Processes

Symbolics computers support multiprocessing; several computations can be executed

"concurrently" by placing each in a separate process. A process is like a processor,

simulated by software. Each process has its own "program counter", its own stack

of function calls and its own special-variable binding environment in which to exe-

cute its computation. (This is implemented with stack groups: See the section

"Stack Groups".) A process is a Lisp object, an instance of one of several flavors of

process. See the section "Process Flavors".)

If all the processes are simply trying to compute, the machine time-slices among

them. This is not a particularly efficient mode of operation, since dividing the

finite memory and processor power of the machine among several processes cer-

tainly cannot increase the available power and in fact wastes some of it in over-

head. The way processes are normally used is different: there can be several ongo-

ing computations, but at a given moment only one or two processes are trying to

run. The rest are either waiting for some event to occur, or stopped, that is, not

allowed to compete for resources.

A process waits for an event by means of the process-wait primitive, which is

given a predicate function that defines the event being waited for. A module of the

system called the process scheduler periodically calls that function. If it returns nil

the process continues to wait; if it returns t the process is made runnable and its

call to process-wait returns, allowing the computation to proceed.

A process can be active or stopped. Stopped processes are never allowed to run;

they are not considered by the scheduler, and so never become the current process

until they are made active again. The scheduler continually tests the waiting func-

tions of all the active processes, and those that return non-nil values are allowed

to run. When you first create a process with make-process, it is stopped.

A process has two sets of Lisp objects associated with it, called its run reasons and

its arrest reasons. These sets are implemented as lists. Any kind of object can be

in these sets; typically, keyword symbols and active objects such as windows and

other processes are found. A process is considered active when it has at least one

run reason and no arrest reasons. A process that is not active is stopped, is not

referenced by the process scheduler, and does not compete for machine resources.

To start a computation in another process, you must first create a process, and

then specify the computation you want to occur in that process. The computation

to be executed by a process is specified as an initial function for the process and a

list of arguments to the initial function. When the process starts up it applies the

function to the arguments. In some cases the initial function is written so that it

Page 911

never returns, while in other cases it performs a certain computation and then re-

turns, which stops the process.

To reset a process means to "throw out" of its entire computation, then force it to

call its initial function again. (See the special form throw.) Resetting a process

clears its waiting condition, and so if it is active it becomes runnable. To preset a

process is to set up its initial function (and arguments), and then reset it. This is

one way to start up a computation in a process.

All processes in a Symbolics computer run in the same virtual address space, shar-

ing the same set of Lisp objects. Unlike other systems, which have special restrict-

ed mechanisms for interprocess communication, Symbolics computers allow process-

es to communicate in arbitrary ways through shared Lisp objects. One process can

inform another of an event simply by changing the value of a global variable.

Buffers containing messages from one process to another can be implemented as

lists or arrays. The usual mechanisms of atomic operations, critical sections, and

interlocks are provided. For more information:

See the function store-conditional.

See the special form without-interrupts.

See the function process-lock.�

Obsolete Process Functions

The functions in this section are obsolete and form part of the Scheduler Compati-

bility Package. Their documentation is retained to assist in reading old code. New

code should use the new functions in the process package.

Process Attribute Functions

These functions let you find out the attributes of a process.

process-name process Function

Returns the name of process, which was the first argument to process:make-

process or process:process-run-function when the process was created. The name

is a string that appears in the printed representation of the process, stands for the

process in the status line and the Peek display, and so on.

process-stack-group process Function

Returns the stack group currently executing on behalf of process. This can be dif-

ferent from the initial-stack-group if the process contains several stack groups that

coroutine among themselves. If the process is simple, or it has released its re-

sources, then it might not have a stack group. In that case process-stack-group

returns nil.

Page 912

process-initial-stack-group process Function

Returns the stack group the initial-function is called in when process starts up or

is reset.

Note that the initial stack group of a simple process is not a stack group at all,

but a list.

process-initial-form process Function

Returns the initial "form" of process. This is not really a Lisp form; it is a cons

whose car is the initial-function and whose cdr is the list of arguments to which

that function is applied when the process starts up or is reset.

To change the initial form, call the process:preset function.

process-wait-function process Function

Returns process’s current wait-function, which is the predicate used by the sched-

uler to determine if the process is runnable. This is #’true if the process is run-

ning, and #’false if the process has no current computation (just created, initial

function has returned, or "flushed").

process-wait-argument-list process Function

Returns the arguments to process’s current wait-function. This is frequently the

&rest argument to process-wait in the process’s stack, rather than a true list.

The system always uses it in a safe manner, that is, it forgets about it before

process-wait returns.

process-whostate process Function

Returns a string that is the state of the process to go in the status line at the

bottom of the screen. This is the value of process::*process-run-whostate* (de-

faulting to "Run") if the process is running or trying to run, otherwise the reason

why the process is waiting. If the process is stopped, then this whostate string is

ignored and the status line displays "Arrested" if the process is arrested or

"Stopped" if the process has no run reasons.

si:default-quantum Variable

The number of 60ths of a second a process is allowed to run without waiting be-

fore rescheduling. It is used when a new process is created. The default is 6 (0.1

seconds).

process-quantum process Function

Page 913

Returns the number of 60ths of a second process is allowed to run without waiting

before the scheduler runs something else. The quantum default is governed by the

variable si:default-quantum. zl:setf can be used to change its value.

process-quantum-remaining process Function

Returns the amount of time remaining for process to run before rescheduling, in

60ths of a second.

process-priority process Function

Returns the priority of process. Use zl:setf to change its value. The default priority

is 0.

process-priority converts the processes priority into values that are compatible

with the old scheduler. zl:setf of process-priority takes old scheduler priorities as

arguments, and process-priority returns old scheduler priorities as values.

You can convert between old and new scheduler priorities by using the functions

process::process-priority-to-old-priority and process:make-process-priority with

a class of :foreground.

process-warm-boot-action process Function

Returns process’s warm-boot-action, which controls what happens to this process if

the machine is booted. Use zl:setf to change its value. (Note: Contrary to the

name, this applies to both cold and warm booting.) This can be a function to call

or nil, which means to "flush" the process. The default is process:process-warm-

boot-delayed-restart, which resets the process after initializations have been com-

pleted, causing it to start over at its initial function. You can also use

process:process-warm-boot-reset, which throws out of the process’s computation

and kills the process.

process-simple-p process Function

Returns t for a simple process, nil for a normal process.

Run and Arrest Reason Functions

This section describes the functions used to specify the run reasons and arrest

reasons for processes.

si:process-run-reasons process Function

Returns the list of run reasons, which are the reasons why this process should be

active (allowed to run).

Page 914

si:process-arrest-reasons process Function

Returns the list of arrest reasons, which are the reasons why this process should

be inactive (forbidden to run).

process-enable process Function

Activates process by revoking all its run and arrest reasons, then giving it a run

reason of :enable.

process-disable process Function

Stops process by revoking all its run reasons. Also revokes all its arrest reasons.

process-enable-run-reason process &optional (reason :user) Function

Adds reason to the process’s run reasons. This can activate the process.

process-disable-run-reason process &optional (reason :user) Function

Removes reason from the process’s run reasons. This can stop the process.

process-enable-arrest-reason process &optional (reason :user) Function

Adds reason to the process’s arrest reasons. This can stop the process.

process-disable-arrest-reason process &optional (reason :user) Function

Removes reason from the process’s arrest reasons. This can activate the process.

process-active-p Function

Returns t if the process is active, that is, it can run if its wait-function allows. Re-

turns nil if the process is stopped.

Functions for Starting and Stopping Processes

This section describes the functions used to start and stop processes.

process-preset process function &rest args Function

Sets the process’s initial function to function and initial arguments to args. The

process is then reset so that it throws out of any current computation and starts

itself up by applying function to args. A process-preset call to a stopped process

returns immediately, but does not activate the process, hence the process does not

really apply function to args until it is activated later.

Page 915

process-reset process &optional unwind-option kill (without-aborts :ask)�

Function

Forces process to reset, that is, to throw out of its present computation and apply

its initial function to its initial arguments, when it next runs. The throwing out is

skipped if the process has no present computation (for example, it was just creat-

ed), or if :unwind-option option so specifies. The possible values for :unwind-

option are:

:unless-current or nil

Unwind unless the stack group to be unwound is the one we

are currently executing in, or belongs to the current process.

:always Unwind in all cases. This can cause the process-reset to throw

through its caller instead of returning.

t Never unwind.�

If :kill is t, the process is to be killed after unwinding it. This is for internal use

by the process-kill function only.

:without-aborts indicates what to do if the process is not currently resettable. See

the function sys:without-aborts. It takes the values :force, :ask, and nil.

:force Process is reset anyway.

:ask Queries the user as to whether to force the process to reset or

not.

nil Return a list of reasons why the process cannot be reset.�

If the process is arrested, and is inside a process::without-aborts or a unwind-

protect cleanup, in the old scheduler process-reset would behave as if :without-

aborts had been nil. In the new scheduler (even with the old scheduler entry-

points) :without-aborts continues to be respected. In particular, if :without-aborts

has the default value, :ask, the user is prompted even if the process is arrested.

A process-reset call to a stopped process returns immediately, but does not acti-

vate the process, hence the process does not really get reset until it is activated

later.

process-reset-and-enable process Function

Resets process, then enables it.

process-abort process &key message all (query t) (time-out si:*default-process-

abort-timeout*) stream Function

Used by the ABORT key. It aborts process but respects processes that are executing

code in or are called in the body of a sys:without-aborts macro (see the function

sys:without-aborts). sys:without-aborts notifies users when they attempt to abort

Page 916

a process that is executing code in or is called in the body of the macro. Most

code that currently uses the form (signal ’abort) should instead use (process-

abort *current-process*).

process-abort waits until the process is abortable or asks the user what to do if it

is not abortable. It returns t if it successfully aborts the process or nil on a fail-

ure to abort. When queried, the user can force the process to abort, examine it

with the Debugger, wait longer for it to become abortable, or abandon the attempt

to abort it. Each time the user forces a process to abort, an entry is made in the

variable si:*processes-forcibly-aborted*.

process-abort takes several keyword parameters.

:all Default: t, aborts all the way (reset the process). If it is nil,

aborts to the innermost command level (signal an "abort" con-

dition).

:message String or nil. The string is printed on the process’s terminal-

io. If :message is nil, nothing is printed there.

:stream Overrides the default destination for :message.

:time-out How long to wait (in 60ths of a second) when the process is

not abortable.

:query nil to give up after an interval of :time-out, t to query the

user what to do, :cold to query the user via the cold-load

stream, or :pop-up to query the user via a pop-up menu. :pop-

up is the default.�

The variable si:*default-process-abort-timeout* is the number of 60ths of a sec-

ond to wait before consulting the user, when a process is to be reset or aborted

but it is not abortable. The default value is 300 (5 seconds).

process-flush process Function

Forces process to wait forever. A process cannot flush itself. Flushing a process is

different from stopping (killing) it, in that it is still active; thus, if it is reset or

preset, it starts running again.

process-kill process &optional (without-aborts :ask)�

Function

Terminates process. The process is reset, stopped, and removed from sys:all-

processes.

without-aborts indicates what to do if the process is not currently abortable. It

takes the values :force, :ask, and nil.

:force The process is aborted anyway.

Page 917

:ask Queries the user as to whether to force the process to abort or

not.

nil Return a list of reasons why the process cannot be aborted and

do not kill the process.�

process-interrupt process function &rest args�

Function

Forces the process to apply function to args. When function returns, the process

continues the interrupted computation. If the process is waiting, it wakes up, calls

function, then waits again when function returns.

If the process is stopped it does not apply function to args immediately, but later

when it is activated. Normally the process-interrupt function returns immediately,

but if the process’s stack group is in an unusual internal state, process-interrupt

might have to wait for the process to exit that state.

If function does a throw and process is not abortable, it could be subverted by hav-

ing its computation aborted unexpectedly. In some cases process-abort should be

used instead of process-interrupt. If function returns normally, this is not a prob-

lem.

Obsolete Scheduler Functions

make-process name &rest init-args &key :initial-form :wait-function :wait-

argument-list :run-reasons (:priority 0) :simple-p :flavor &allow-other-keys name

&rest init-args Function

This function is obsolete and retained only for compatibility. process:make-process

should be used in new code.

Creates and returns a process named name (a string). The process will not be ca-

pable of running until it has been reset or preset in order to initialize the state of

its computation.

The init-args are alternating keywords and values that allow you to specify things

about the process; however, no options are necessary if you are not doing anything

unusual. The following init-args are allowed:

:simple-p Specifying t here gives you a simple process. See the section

"Process Flavors".

:flavor Specifies the flavor of process to be created. For a list of all

the flavors of process supplied by the system: See the section

"Process Flavors".

:stack-group The stack group the process is to use. If this option is not

specified a stack group will be created according to the rele-

vant options below.

Page 918

:warm-boot-action What to do with the process when the machine is booted. See

the method (flavor:method :warm-boot-action

process:process).

:quantum The number of seconds the process is allowed to be run with-

out waiting before the scheduler runs another process. The val-

ue should be a fixnum in units of 60ths of a second. The de-

fault is 6 (0.1 second). See the method (flavor:method

:quantum process:process).

:priority The priority of the process. The default is 0. See the method

(flavor:method :priority process:process).

:run-reasons Lets you supply an initial list of run reasons. The default is

nil. Note: Do not use the :run-reasons init-option to start a pro-

cess. The only way to start a process created with make-process

is to preset it and explicitly specify the run-reason with the�

process-enable-run-reason function.

:arrest-reasons Lets you supply an initial list of arrest reasons. The default is

nil.�

In addition, the options of make-stack-group are accepted. See the function make-

stack-group.

If you specify :flavor, there can be additional options implemented by that flavor.

process-run-function name-or-kwds function &rest args Function

Creates a process, presets it so it will apply function to args, and starts it running.

name-or-kwds can be a string that becomes the process’s name, or it can be a list

of alternating keywords and values to which the corresponding process attributes

are set.

The keywords are:

:name The name of the process; it must be a string. The default

name is "Anonymous".

:restart-after-reset If this is t, the :reset message to the process restarts the pro-

cess. If this is nil, the :reset message to the process kills the

process. The default is nil.

:restart-after-boot Applies to both warm and cold booting, if the cold boot occurs

after a disk save with the process in it. If this is t, booting the

machine restarts the process. If this is nil, booting the ma-

chine kills the process. The default is nil.

:warm-boot-action If this option is provided, its value controls what happens when

the machine is warm booted. It overrides :restart-after-boot. If

it is nil or not provided, the value of the :restart-after-boot

option takes effect. For a description of the value of the warm-

boot action: See the section "Warm Boot Actions for

Processes".

Page 919

:priority The priority of the process. This priority is a :foreground pri-

ority, expressed as an old scheduler priority. The default is 0.

Process Messages

This section describes the messages that can be sent to any flavor of process. Cer-

tain process flavors can define additional messages. Not all possible messages are

listed here, only those of interest to most users.

This message documentation is provided for compatibility with existing programs

written using messages. New programs should not use these messages. Rather,

they should use the functions with similar names, but with process- prepended to

them. See the section "Obsolete Process Functions".

Process Attribute Messages

(flavor:method :name process:process) Method

This message should not be used. It is identical to the function process-name. See

the function process-name.

(flavor:method :stack-group process:process) Method

This message should not be used. It is identical to the function process-stack-

group.

See the section "Process Stack Groups".

(flavor:method :initial-stack-group process:process) Method

This message should not be used. It is identical to the function process-initial-

stack-group.

See the function process-initial-stack-group.

(flavor:method :initial-form process:process) Method

This message should not be used. It is identical to the function process-initial-

form.

See the function process-initial-form.

(flavor:method :wait-function process:process) Method

This message should not be used. It is identical to the function process-wait-

function.

Page 920

See the function process-wait-function.

(flavor:method :wait-argument-list process:process) Method

This message should not be used. It is identical to the function process-wait-

argument-list.

See the function process-wait-argument-list.

(flavor:method :whostate process:process) Method

This message should not be used. It is identical to the function process-whostate.

See the function process-whostate.

(flavor:method :quantum process:process) Method

This method is obsolete.

(flavor:method :set-quantum process:process) 60ths Method

This method is obsolete. It is included in the system for compatibility, but it has

no effect.

si:default-quantum Variable

The number of 60ths of a second a process is allowed to run without waiting be-

fore rescheduling. It is used when a new process is created. The default is 6 (0.1

seconds).

(flavor:method :quantum-remaining process:process) Method

This method is obsolete.

(flavor:method :priority process:process) Method

This message should not be used. It is identical to the function process-priority.

See the function process-priority.

(flavor:method :set-priority process:process) priority-number Method

This message should not be used. It is identical to zl:setf of the function process-

priority.

See the function process-priority.

Page 921

(flavor:method :warm-boot-action process:process) Method

This message should not be used. It is identical to the function process-warm-

boot-action.

See the function process-warm-boot-action.

(flavor:method :set-warm-boot-action process:process) action Method

This message should not be used. It is idential to zl:setf of the function process-

warm-boot-action.

See the function process-warm-boot-action.

(flavor:method :simple-p process:process) Method

This message should not be used. It is identical to the function process-simple-p.

See the function process-simple-p.

Run and Arrest Reason Messages

(flavor:method :run-reasons process:process) Method

This message should not be used. It is identical to the function si:process-run-

reasons. See the function si:process-run-reasons.

(flavor:method :run-reason process:process) object Method

This message should not be used. It is identical to the function process-enable-

run-reason. See the function process-enable-run-reason.

(flavor:method :revoke-run-reason process:process) object Method

This message should not be used. It is identical to the function process-disable-

run-reason. See the function process-disable-run-reason.

(flavor:method :arrest-reasons process:process) Method

This message should not be used. It is identical to the function si:process-arrest-

reasons. See the function si:process-arrest-reasons.

(flavor:method :arrest-reason process:process) object Method

This message should not be used. It is identical to the function process-enable-

arrest-reason. See the function process-enable-arrest-reason.

Page 922

(flavor:method :revoke-arrest-reason process:process) object Method

This message should not be used. It is identical to the function process-disable-

arrest-reason. See the function process-disable-arrest-reason.

(flavor:method :active-p process:process) Method

This message should not be used. It is identical to the function process-active-p.

See the function process-active-p.

(flavor:method :runnable-p process:process) Method

This message should not be used. It is identical to the function process-active-p.

See the function process-active-p.

Messages for Stopping the Process

(flavor:method :preset process:process) function &rest args Method

This message should not be used. It is identical to the function process-preset.

See the function process-preset.

(flavor:method :reset process:process) &optional unwind-option kill without-aborts�

Method

This message should not be used. It is identical to the function process-reset. See

the function process-reset.

(flavor:method :flush process:process) Method

This message should not be used. It is identical to the function process-flush. See

the function process-flush.

(flavor:method :kill process:process) &optional without-aborts Method

This message should not be used. It is identical to the function process-kill. See

the function process-kill.

(flavor:method :interrupt process:process) function &rest args Method

This message should not be used. It is identical to the function process-interrupt.

See the function process-interrupt.

Process Flavors

Page 923

There is one flavor of process provided by the system. It is possible for users to

define additional flavors of their own.

process:process Flavor

This is the standard default flavor of process. See its instance variables, initializa-

tions, and methods by using the Flavor Examiner, SELECT-X.

Old Scheduler Version of simple-process

A simple process is not a process in the conventional sense. It has no stack group

of its own; instead of having a stack group that gets resumed when it is time for

the process to run, it has a function that gets called when it is time for the pro-

cess to run. When the wait-function of a simple process becomes true, and the

scheduler notices it, the simple process’s function is called, in the scheduler’s own

stack group. Since a simple process does not have any stack group of its own, it

cannot save "control" state in between calls; any state that it saves must be saved

in data structure.

The only advantage of simple processes over normal processes is that they use up

less system overhead, since they can be scheduled without the cost of resuming

stack groups. They are intended as a special, efficient mechanism for certain pur-

poses. For example, packets received from the Chaosnet are examined and dis-

tributed to the proper receiver by a simple process that wakes up whenever there

are any packets in the input buffer. However, they are harder to use, because you

cannot save state information across scheduling. That is, when the simple process

is ready to wait again, it must return; it cannot call process-wait and continue to

do something else later. In fact, it is an error to call process-wait from inside a

simple process. Another drawback to simple processes is that if the function sig-

nals an error, the scheduler itself will be broken, and multiprocessing will stop;

this situation can be hard to repair. Also, while a simple process is running, no

other process is scheduled; simple processes should never run for a long time with-

out returning, so that other processes can run.

Asking for the stack group of a simple process does not signal an error, but re-

turns the process’s function instead.

Since a simple process cannot call process-wait, it needs some other way to speci-

fy its wait-function. To set the wait-function of a simple process, use set-process-

wait. So, when a simple process wants to wait for a condition, it should call set-

process-wait to specify the condition, setf its process-whostate to a string that

defines what it’s waiting for and then return.

set-process-wait simple-process wait-function wait-argument-list Function

Sets the wait-function and wait-argument-list of simple-process. For more informa-

tion: See the section "Old Scheduler Version of simple-process".

Page 924

Process Priority Levels in the Old Scheduler

Normal processes run with a default priority of 0 when computing and 1 when

they are interacting with a user. If the priority number is higher, the process re-

ceives higher priority. You should avoid using priority values higher than 9, since

some critical system processes use priorities of 10 to 30; setting up competing pro-

cesses could lead to degraded performance or system failure. You can also use neg-

ative values to get processes to run in the background. Values of -5 or -10 for

background processes and 2 or 5 for urgent processes are reasonable.

Use the Command Processor command Show Processes to see the priorities used

by existing processes.

Only the relative values of these numbers are important. (You could use floating-

point numbers to squeeze in more intermediate levels, though there should never

be any need to do so.)

Once these relative priority values are set, be advised that the process priorities

are interpreted consistently. If a priority 1 process runs forever without calling

process-wait, no lower-priority process will ever run.

Timer Queues

Periodically a system process wakes up and selects an item off the timer priority

queue or timer queue. The timer queue is a list of items in time order. You can di-

rectly add functions to the timer queue or remove them. This mechanism enables

you to perform a periodic action without the overhead of process waits and time-

outs.

The timer queue list shows up in the Peek display. See the section "The Peek Pro-

gram".

Timer queues are obsolete. They should be replaced by Timers and Periodic Ac-

tions in new code. See the section "Timers".

si:add-timer-queue-entry time repeat name function &rest args Function

Adds an entry to the timer queue. function is called with args when the timer

fires. time can be in the form

(:absolute universal-time)

(or just universal-time) or

(:relative n-secs)

repeat is of the form :once, (:forever n-secs), or (n-times n-secs). name is a string

that names the timer queue entry.

si:add-timer-queue-entry returns the id of the entry. To effect a "repeat function,"

the called function can (conditionally) add another timer queue entry.

si:remove-timer-queue-entry timer-id Function

Page 925

Removes the entry which has timer-id as its id. Note: the timer-id is returned by

si:add-timer-queue-entry. See the function si:add-timer-queue-entry.

si:print-timer-queue &optional stream Function

Prints the contents of the timer queue. Optionally the stream to which the queue

is printed can be specified.

Initializations

Introduction to Initializations

A number of Genera programs and facilities require that "initialization routines"

be run when the facility is first loaded, or when the system is booted, or both.

These initialization routines can set up data structures, start processes running,

open network connections, and so on.

An initialization that needs to be done once, when a file is loaded, can be done

simply by putting the Lisp forms to do it in that file; when the file is loaded the

forms are evaluated. However, some initializations need to be done each time the

system is booted, and some initializations depend on several files having been load-

ed before they can work. Also, some initializations should be done once and only

once, regardless of any particular file being reloaded.

The system provides a consistent scheme for managing these initializations. Rather

than having a magic function that runs when the system is started and knows ev-

erything that needs to be initialized, each thing that needs initialization contains

its own initialization routine. The system keeps track of all the initializations

through a set of functions and conventions, and executes all the initialization rou-

tines when necessary. The system also avoids reexecuting initializations if a pro-

gram file is loaded again after it has already been loaded and initialized.

An initialization list is a symbol whose value is an ordered list of initializations.

Each initialization has a name, a form to be evaluated, a flag saying whether the

form has yet been evaluated, and the source file of the initialization, if any. When

the time comes, initializations are evaluated in the order that they were added to

the list. The name is a string and lies in the car of an initialization; thus assoc

can be used on initialization lists. All initialization lists also have a

si:initialization-list property of t. This is mainly for internal use.

add-initialization name form &optional keywords list-name Function

Adds an initialization called name (a string) with the form form to the initializa-

tion list specified either by list-name or by keywords. If the initialization list al-

ready contains an initialization called name, it is removed and the new one is

added.

Page 926

list-name, if specified, is a symbol that has as its value the initialization list. If it

is unbound, it is initialized to nil, and is given an si:initialization-list property of

t. If the keywords specify an initialization list, list-name is ignored and should not

be specified.

Two kinds of keywords are allowed. The first kind specifies which initialization list

to use. This is the which keyword. All the which keywords are shown here:

:cold Use the standard cold-boot list.

:warm Use the standard warm-boot list. This is the default.

:before-cold Use the standard before-disk-save list.

:once Use the once-only list.

:system Use the system list.

:login Use the login list.

:logout Use the logout list.

:site Use the site list. (The form is evaluated immediately by default,

as well as each time a site initialization is performed.)

:enable-services Use the enable-services list.

:disable-servicesUse the disable-services list.

:window Use the window list.

:full-gc Use the full-gc list.

:after-full-gc Use the after-full-gc list.�

For more information on these lists: See the section "System Initialization Lists".

The second kind of keyword specifies when to evaluate form. This is the when

keyword, of which there are four:

:normal Only place the form on the list. Do not evaluate it until the time comes

to do this kind of initialization. This is the default unless :system, :site,

or :once is specified.

:now Evaluate the form now as well as adding it to the list. (This is the de-

fault for :site.)

:first Evaluate the form now if it is not flagged as having been evaluated be-

fore. This is the default if :system or :once is specified.

:redo Do not evaluate the form now, but set the flag to nil even if the initial-

ization is already in the list and flagged t.�

Actually, the keywords are compared with string-equal and can be in any package.

If both kinds of keywords are used, the which keyword should come before the

when keyword in keywords; otherwise the which keyword can override the when

keyword.

Page 927

The add-initialization function keeps each list ordered so that initializations added

first are at the front of the list. Therefore, by controlling the order of execution of

the additions, explicit dependencies on order of initialization can be controlled.

Typically, the order of additions is controlled by the loading order of files. The

:system list is the most critically ordered of the predefined lists. See the section

"System Initialization Lists".

delete-initialization name &optional keywords list-name Function

Removes the specified initialization from the specified initialization list. Keywords

can be any of the list options allowed by add-initialization.

initializations list-name &optional redo-flag (flag t) Function

Performs the initializations in the specified list. redo-flag controls whether initial-

izations that have already been performed are re-performed; nil means no, non-nil

is yes, and the default is nil. flag is the value to be stored into the flag slot of an

entry when the initialization form is run. If it is unspecified, it defaults to t,

meaning that the system should remember that the initialization has been done.

There is no convenient way for you to specify one of the specially-known-about

lists because you should not be calling initializations on them.

reset-initializations list-name Function

Sets the flag of all entries in the specified list to nil, thereby causing them to be

rerun the next time the function initializations is called on the initialization list.

If you want to add new keywords that can be understood by add-initialization and

the other initialization functions, you can do so by pushing a new element onto the

following variable:

si:initialization-keywords Variable

Each element on this list defines the name of one initialization list. Each element

is a list of two or three elements. The first is the keyword symbol that names the

initialization list. The second is a special variable, whose value is the initialization

list itself. The third, if present, is a symbol defining the default time at which ini-

tializations added to this list should be evaluated; it should be si:normal, si:now,

si:first, or si:redo. The third element is the default; if the list of keywords passed

to add-initialization contains one of the keywords normal, now, first, or redo, it

overrides this default. If the third element is not present, si:normal is assumed.

Note that the keywords used in add-initialization need not be keyword-package

symbols (you are allowed to use first as well as :first), because zl:string-equal is

used to recognize the symbols.

System Initialization Lists

Page 928

The special initialization lists that are known about by the initialization functions

allow you to have your subsystems initialized at various critical times without

modifying any system code to know about your particular subsystems. This also al-

lows only a subset of all possible subsystems to be loaded without necessitating ei-

ther modifying system code (such as sys:lisp-reinitialize) or such awkward meth-

ods as using fboundp to check whether or not something is loaded.

The :once initialization list is used for initializations that need to be done only

once when the subsystem is loaded and must never be done again. For example,

some databases need to be initialized the first time the subsystem is loaded, but

they should not be reinitialized every time a new version of the software is loaded

into a currently running system. This list is for that purpose. The initializations

function is never run over it; its "when" keyword defaults to :first and so the form

is normally evaluated only at load-time, and only if it has not been evaluated be-

fore. The :once initialization list serves a similar purpose to the defvar special

form, which sets a variable only if it is unbound.

The :system initialization list is for things that need to be done before other ini-

tializations stand any chance of working. Initializing the process and window sys-

tems, the file system, and the Chaosnet NCP falls in this category. The initializa-

tions on this list are run every time the machine is cold- or warm-booted, as well

as when the subsystem is loaded unless explicitly overridden by a :normal option

in the keywords list. In general, the system list should not be touched by user

subsystems, though there can be cases when it is necessary to do so.

The :cold initialization list is used for things that must be run once at cold-boot

time. The initializations on this list are run after the ones on :system but before

the ones on the :warm list. They are run only once, but are reset by zl:disk-save,

thus giving the appearance of being run only at cold-boot time.

The :warm initialization list is used for things that must be run every time the

machine is booted, including warm boots. The function that prints the greeting, for

example, is on this list. Unlike the :cold list, the :warm list initializations are run

regardless of their flags.

The :before-cold initialization list is a variant of the :cold list. These initializa-

tions are run before the world is saved out by zl:disk-save. Thus they happen es-

sentially at cold-boot time, but only once when the world is saved, not each time it

is started up.

The :login and :logout lists are run by the zl:login and zl:logout functions, re-

spectively. Note that zl:disk-save calls zl:logout. Also note that often people do

not call zl:logout; they just cold boot the machine.

The forms on :enable-services are run by sys:enable-services. In addition, they

are run automatically by sys:lisp-reinitialize when a nonserver Symbolics comput-

er is warm- or cold-booted.

The forms on :disable-services are run by sys:disable-services. In addition, they

are run automatically by :before-cold when you use zl:disk-save.

The :window initialization list is run when the Genera window system comes up,

after the screen has been created but before the initial activity (usually the initial

Page 929

Lisp Listener) has been displayed. In native systems such as the 3600 and XL400,

the :window initializations run before the :cold and :warm initializations. In em-

bedded systems such as the MacIvory and UX-family machines, the :window ini-

tializations run after the :warm initializations, and do not run at all if the host

window system is being used instead of the Genera window system.

The forms on :full-gc are run by si:full-gc before running the garbage collector.

The forms on :after-full-gc are run by si:full-gc after it collects all the garbage.

User programs are free to create their own initialization lists to be run at their

own times. Some system programs, such as the editor, have their own initialization

list for their own purposes.

Storage Management

Overview of Storage Management

The Genera virtual memory system offers users and programmers the ability to

run extremely large programs in a virtual memory which, depending on available

disk space, can be on the order of 1 billion bytes.

Genera also has facilities for both automatic and manual (program-controlled) man-

agement of virtual storage. Simply stated, storage management is a strategy for al-

locating pieces of memory as they are needed by a program and then freeing the

memory for reuse when it is no longer needed for the same purpose.

Automatic Storage Management

Some virtual memory systems concentrate exclusively (in the automatic case) on

managing the stack, because they are optimized for programming languages that

allocate most temporary storage on the stack.

In Lisp, however, management of the stack would in no way be sufficient, since

programs nearly always allocate large structures and lists in "ordinary" virtual

memory. Automatic storage management is nevertheless an extremely important

aspect of Lisp programming, because deciding in an application program whether

storage can be freed safely is such a difficult problem, difficult enough that pro-

grammers should not be faced with it routinely. Automatic storage management in

Genera is performed by a suite of programs collectively called the garbage collec-

tor. See the section "The Garbage Collector Facilities".

Areas are also provided, which help you improve the locality of reference in pro-

grams without giving up the ease of automatic storage management. See the sec-

tion "Areas".

See the section "How Garbage Collection Improves Locality of Reference".

Manual Storage Management

Page 930

"Manual" storage management means that the allocation and freeing of virtual

memory is controlled by your application program. It should be regarded as a spe-

cial purpose technique, but it is nevertheless a necessity in some cases.

One of the primary manual storage management facilities is the resource. See the

section "Resources".

See the section "Consing Lists on the Control Stack".

Manual storage management includes the use of the technique of wiring parts of

memory. To wire a piece of memory means to lock its contents in main (semicon-

ductor) memory and not allow it to be paged to disk. See the section "Wiring

Memory". This technique is useful for critical applications in which a program can-

not wait for certain information to be paged in when needed.

Areas

Storage in the Symbolics system is divided into areas. Each area contains related

objects, of any type. Areas are intended to give you control over the paging behav-

ior of your program, among other things. By putting related data together, locality

of reference can be greatly increased.

Locality of reference is a desirable property of programs that run in a virtual

memory environment like Genera. It means, essentially, that objects and their ref-

erences (or more generally, any pieces of related information), are located near

each other, that is, located at nearby addresses in virtual memory. When this is

true, the paging system can avoid thrashing: swapping many pages in and out of

main memory in order to access relatively few data.

The use of areas is a programming technique available in Genera that improves lo-

cality of reference in programs that allocate virtual memory in large amounts and

for specific purposes. Areas are especially useful when the objects allocated are

static, since the objects will then be left completely alone by most kinds of garbage

collection.

Whenever you create a new object you can also specify the area it uses. For exam-

ple, instead of using cons you can use cons-in-area. Object-creating functions that

take keyword arguments generally accept a :area argument. You can also control

which area is used by binding sys:default-cons-area; most functions that allocate

storage use the value of this variable, by default, to specify the area to use. The

default value of sys:default-cons-area is working-storage-area.

Specifying the area as an argument is usually preferred over binding the variable

because it gives you more control and avoids accidentally getting other objects into

your area.

Areas also give you a handle to control the garbage collector. Some areas can be

declared to be static, which means that they change slowly and the garbage collec-

tor should not attempt to reclaim any space in them. This can eliminate a lot of

useless copying.

Page 931

Each area can potentially have a different storage discipline and a different paging

algorithm. Each area has a name and a number. The name is a symbol whose val-

ue is the number. The number is an index into various internal tables. Normally

the name is treated as a special variable, so the number is what is given as an ar-

gument to a function that takes an area as an argument. Thus, areas are not Lisp

objects; you cannot pass an area itself as an argument to a function, you just pass

its number. There is a maximum number of areas (set at cold-load generation

time); you can only have that many areas before the various internal tables over-

flow. Currently the limit is 128 areas, of which about 30 already exist in a cold-

booted system.

The area mechanism can be overused. If you put two objects into different areas,

it is guaranteed that they will never be near each other in virtual memory. If you

put each type of object in your program in a different area, you might cause per-

formance degradations. For maximum benefit, objects in different areas should be

completely unrelated or used at different times.

Regions Within Areas

The storage of an area consists of one or more regions. Each region is a contigu-

ous section of address space with certain homogeneous properties. One of these is

the data representation type. A given region can only store one type. The two types

are list and structure. A list is anything made out of conses (a closure, for in-

stance). A structure is anything made out of a block of memory with a header at

the front: symbols, strings, arrays, instances, bignums, compiled functions, and so

on. Since lists and structures cannot be stored in the same region, they cannot be

on the same page. It is necessary to know about this when using areas to increase

locality of reference.

When you create an area, no regions are created initially. When you create an ob-

ject in some area, the system tries to find a region that has the right data repre-

sentation type to hold it, and that has enough room for it to fit. If no such region

exists, it makes a new one or, if possible, extends an existing one (or signals an

error; see the :size option to make-area). The size of the new region is an at-

tribute of the area (controllable by the :region-size option to make-area).

If regions are too large, memory can get taken up by a region and never used. If

regions are too small, the system can run out of regions because regions, like

areas, are defined by internal tables that have a fixed size (set at cold-load genera-

tion time). The limit is sys:number-of-regions regions, of which about 90 already

exist when you start in a cold-booted system. The system will grow or shrink re-

gions as required so these limitations are usually not a problem.

Area Functions and Variables

default-cons-area Variable

Page 932

The value of this variable is the number of the area in which objects are created

by default. It is initially the number of sys:working-storage-area. Giving nil

where an area is required uses the value of *default-cons-area*. Note that to put

objects into an area other than sys:working-storage-area you can either bind this

variable or use functions such as cons-in-area that take the area as an explicit

argument. The latter technique is usually preferred since it avoids accidentally

getting other objects into your area. (It is not wise to bind this variable to the

number corresponding to a temporary area.)

sys:default-cons-area Variable

In your new programs, we recommend that you use *default-cons-area* which is

the Symbolics Common Lisp equivalent of sys:default-cons-area.

The value of this variable is the number of the area in which objects are created

by default. It is initially the number of sys:working-storage-area. Giving nil

where an area is required uses the value of sys:default-cons-area. Note that to

put objects into an area other than sys:working-storage-area you can either bind

this variable or use functions such as cons-in-area that take the area as an explic-

it argument. The latter technique is usually preferred since it avoids accidentally

getting other objects into your area. (It is not wise to bind this variable to the

number corresponding to a temporary area.)

make-area &key :name :size :region-size :representation :gc :read-only :swap-

recommendations (:n-levels 2) (:capacity 200000) (:capacity-ratio 0.5) :room :fixed-size

sys:%%region-level sys:%%region-space-type (sys:%%region-scavenge-enable 1) (:n-extra-

levels 0) Function

Creates a new area, whose name and attributes are specified by the keywords; it

can also be used to change the characteristics of an existing area. You must speci-

fy a symbol as a name. The symbol is setqed to the area-number of the new area,

and that number is also returned, so that you can use make-area as the initializa-

tion of a defvar. The keywords beginning with % are similar to subprimitives;

their meanings are system-dependent, and they should not be used in user pro-

grams.

The following keywords exist:

:name A symbol that will be the name of the area. This item is required. If it

names an existing area, the effect is to change the characteristics of that

area.

:size The maximum allowed size of the area, in words. Defaults to infinite. If the

number of words allocated to the area reaches this size, attempting to cons

an object in the area signals an error.

:gc The type of garbage collection to be employed. The choices are :dynamic

(which is the default), :ephemeral, :static, :safeguarded, and :temporary.

Page 933

:dynamic means that the area is subject to ordinary incremental garbage

collection.

:ephemeral means that objects created in this area (while the ephemeral-

object garbage collector is operating) are likely to become garbage soon af-

ter their creation; the ephemeral-object garbage collector will concentrate

on this area.

:static means that the area will not be copied by the garbage collector, and

nothing in the area or pointed to by the area will ever be reclaimed unless

a garbage collection of this area is manually requested.

:safeguarded is similar to :static but prohibits the garbage collector from

ever flipping the area, even by user request. This has limited use for device

drivers and similar low-level applications which require that buffer address-

es never change.

:temporary, a rarely used and risky option, is for manual storage manage-

ment, wherein you clear the area by an explicit, programmed action instead

of having the area garbage-collected automatically. See the section "The

sys:reset-temporary-area Feature".

:n-levels

A fixnum (default 2) specifying the number of levels for ephemeral objects;

this keyword is valid only for ephemeral areas. That is, the area must ei-

ther be ephemeral already, or the call including this option must also in-

clude :gc :ephemeral.

:capacity

An integer specifying the capacity of the first level or a list of integers

specifying the capacity of each level in words (default 200000 decimal).

This keyword is valid only for ephemeral areas. That is, the area must ei-

ther be ephemeral already, or the call including this option must also in-

clude :gc :ephemeral. If the list is too short, the last element is multiplied

by the ratio, in same way as when a single number is supplied.

:capacity-ratio

A number (default 0.5) specifying the ratio of capacities in adjacent

ephemeral levels. That is, :capacity gives the capacity of the first ephemer-

al level, which is multiplied by the ratio to give the second level’s capacity,

and so on. This keyword is valid only for ephemeral areas; that is, the area

must either be ephemeral already, or the call including this option must al-

so include :gc :ephemeral. :capacity-ratio applies after the :capacity list

runs out.

:room With an argument of t, adds this area to the list of areas that are dis-

played by default by the zl:room function. The default is nil.

:read-only

With an argument of t, causes the area to be made read-only. Defaults to

nil. If an area is read-only, any attempt to change anything in it (altering a

data object in the area or creating a new object in the area) signals an er-

ror.

Page 934

:swap-recommendations

Sets the number of extra pages to be read in from disk after a page from

this area is brought in due to demand paging.

:fixed-size

If you set this to t then the system will never make your regions smaller,

even if they contain unused space and address space is running out. :fixed-

size does not prevent your regions from expanding if you fill them up and

free address space is available after the end of the region. The default is

nil.

:region-size

The approximate size, in words, for regions within this area. The default is

the area size if a :size argument was given, otherwise the default size is

chosen in a system-dependent fashion to optimize virtual memory allocation.

It is usually not necessary to create a larger region than the default size.

Note that if you specify :size and not :region-size, the area will have exact-

ly one region.

:representation

The type of object to be contained in the area’s initial region. The argu-

ment to this keyword can be :list, :structure, or a numeric code. If this op-

tion is specified, an initial region is created. Otherwise, no region is creat-

ed until you cons something.�

Examples of make-area:

(make-area :name ’*foo-area*

 :gc ’:dynamic)

�

(defvar *bar-area*

(make-area :name ’*bar-area*

 :gc ’:ephemeral

 :capacity 100000

 :capacity-ratio 0.75

 :n-levels 3))�

describe-area area Function

area can be the name or the number of an area. Various attributes of the area are

printed.

sys:area-list Variable

The value of sys:area-list is a list of the names of all existing areas. This list

shares storage with the internal area name table, so you should not change it.

sys:%area-number address Function

Page 935

Returns the number of the area of address, or nil if it is not within any known

area. address is either an object whose memory address is used, or an integer used

directly.

sys:%region-number address Function

Returns the number of the region of address, or nil if it is not within any known

region. address is either an object whose memory address is used, or an integer

used directly. (This information is generally not very interesting to users; it is im-

portant only inside the system.)

sys:area-name area Function

Given an area number, returns the name. This "function" is actually an array.

See the function cons-in-area. See the function list-in-area. See the function

room.

Interesting Areas

This section lists the names of some interesting areas and explains their use in

the system. Many other less interesting areas exist. To see all the existing areas

in your system, select the [Areas] option to Peek.

sys:working-storage-area Variable

This is the normal value of sys:default-cons-area. Most working data are consed

in this area.

sys:permanent-storage-area Variable

This area is to be used for "permanent" data, that (almost) never becomes garbage.

Unlike working-storage-area, the contents of this area are not continually copied

by the garbage collector; it is a static area.

sys:pname-area Variable

Print-names of symbols are stored in this area.

sys:symbol-area Variable

This area contains most of the interned symbols in the Lisp world.

si:pkg-area Variable

Page 936

This area contains packages, principally the hash tables with which zl:intern keeps

track of symbols.

sys:compiled-function-area Variable

Compiled functions are put here by the compiler.

sys:property-list-area Variable

This area holds the property lists of symbols.

sys:stack-area Variable

This area contains the control, binding, and data stacks of stack groups. Each pro-

cess uses a portion of this area.

The sys:reset-temporary-area Feature

Some programs use the dangerous sys:reset-temporary-area feature to deallocate

all Lisp objects stored in a given area. Use of this technique is not recommended,

since gross system failure can result if any outstanding references to objects in

the area exist.

Those programs that use the feature must declare any areas that are to be mis-

treated this way. When you create a temporary area with make-area, you must

give the :gc keyword and supply the value :temporary. (This also marks the area

as :static; all temporary areas are considered static by the garbage collector.)

sys:reset-temporary-area signals an error if its argument has not been declared

temporary.

Memory Mapping Tools

Several functions are provided to allow you to apply an operation to entire regions

or areas, to objects within these, and so on.

The general philosophy is that a mapping routine is called, possibly with one or

more predicates, a function to apply, and additional arguments to that function.

The function (not the mapping routine) is called with some arguments based on

the mapping routine’s contract, followed by any additional arguments supplied for

it. This is similar to the :map-hash and :modify-hash philosophy of hash tables.

(Lexical scoping removes most needs for the additional-arguments feature.)

Predicates control what areas and/or regions the mapping routine considers. The

defined names start with si:area-predicate- and si:region-predicate-. If nil is sup-

plied in lieu of the predicate, then the default predicate is used. You are free to

define your own routines that select specific qualities of areas or regions.

Page 937

Area and Region Predicates

These predicates identify qualities of specific areas or regions within areas.

si:area-predicate-all-areas area Function

This predicate returns non-nil for all areas. This is not the default predicate.

si:area-predicate-areas-with-objects area Function

This function returns non-nil for areas that contain objects. It is the default area

predicate. There is at least one area (sys:page-table-area) that does not contain

objects and is therefore not of interest to users.

si:region-predicate-all-regions region Function

This predicate returns non-nil for all regions. It is the default region predicate.

si:region-predicate-structure region Function

This predicate returns non-nil for regions that contain structures (as opposed to

lists).

si:region-predicate-list region Function

This predicate returns non-nil for regions that contain lists (as opposed to struc-

tures).

si:region-predicate-not-stack-list region Function

This predicate returns non-nil for all regions (list and structure) except those of

type "stack list" (for example, control stacks).

si:region-predicate-copyspace region Function

This predicate returns non-nil only for regions in copyspace. It might be useful for

determining what is (or was) transported to copyspace.

Mapping Routines

These are the routines that apply a designated function to designated areas or re-

gions. In these routines, if other-function-args are supplied, they are passed along

to the supplied function as additional arguments.

si:map-over-areas area-predicate function &rest other-function-args Function

Page 938

For each area that satisfies area-predicate, function is called with the area number

followed by other-function-args.

For example, the following form invokes describe-area on all areas:

(si:map-over-areas #’si:area-predicate-all-areas #’describe-area)�

si:map-over-regions-of-area area region-predicate function &rest other-function-args�

Function

For each region in area (an area number) that satisfies region-predicate, function is

called with the region number followed by other-function-args.

For example, the following form prints the names of all compiled functions in

sys:compiled-function-area:

(defun print-compiled-function-names ()

 (si:map-over-regions-of-area

 sys:compiled-function-area

 #’si:region-predicate-structure

 #’(lambda (region-number)

 (let* ((origin (sys:region-origin region-number))

 (free (+ origin (sys:region-free-pointer region-number))))

 (si:scanning-through-memory scan1 (origin free)

 (loop for address = origin then (+ address object-size)

 while (< address free)

 do (si:check-memory-scan scan1 address)

 as object = (%find-structure-header address)

 as object-size = (%structure-total-size object)

 when (typep object ’compiled-function)

 do (print (si:compiled-function-name object))))))))�

A better way to do it, since si:map-over-objects-in-area takes care of the memory

scanning, is as follows:

(defun print-compiled-function-names-2 ()

 (si:map-over-objects-in-area

 sys:compiled-function-area #’si:region-predicate-structure

 #’(lambda (ignore ignore header ignore ignore)

 (when (typep header compiled-function)

 (print (si:compiled-function-name header))))))�

si:map-over-regions area-predicate region-predicate function &rest other-function-

args Function

For each region that satisfies region-predicate and is in an area that satisfies area-

predicate, function is called with the area number and region number followed by

other-function-args.

For example, the following form prints all region numbers, with the name of the

area:

Page 939

(si:map-over-regions

 nil nil

 #’(lambda (area-number region-number)

(print (list (area-name area-number) region-number))))�

There is a similar set of mapping functions that map over objects (structures and

lists). In addition to possible area and region arguments, the supplied functions are

passed four other arguments:

address A fixnum giving the virtual memory address where the system

started scanning to find the extent of the object.

header The object itself, for example, an array, compiled function, list,

or closure.

leader A locative to the base of the structure. Under most circum-

stances, the address portion of the leader is the same as the

address. The header and leader do not necessarily point to the

same location; the header sometimes points to the middle of an

object, as with compiled functions.

size The size of the object in words.�

Most applications are only interested in the header (object) and, possibly, the size.

The address and leader are usually ignored. Area number and region number, for

those mapping routines that supply them, are usually ignored as well.

si:map-over-objects-in-region region-number function &rest other-function-args

Function

For each object in region-number, function is called with the address, the header,

the leader, and the size, followed by other-function-args.

si:map-over-objects-in-area area-number region-predicate function &rest other-

function-args Function

For each object in each region in area-number, where the region satisfies region-

predicate, function is called with the region number, the address, the header, the

leader, and the size, followed by other-function-args. For an example: See the func-

tion si:map-over-regions-of-area.

si:map-over-objects area-predicate region-predicate function &rest other-function-

args Function

For each object in each region that satisfies region-predicate, in an area that satis-

fies area-predicate, function is called with the area number, the region-number, the

address, the header, the leader, and the size, followed by other-function-args.

Additionally, there is a technique for interacting with the paging system to avoid

excessive page faults while scanning forward through a known section of virtual

Page 940

memory. The object-scanning routines use this technique, which nearly eliminates

page faults on the objects (but not necessarily on data pointed to by the objects).

si:scanning-through-memory identifier-symbol (starting-address limit-address &op-

tional (pages-per-whack 16)) &body body Function

The body is executed normally. The starting-address is the address where scanning

begins. The limit-address is the (exclusive) address where scanning ends.

The argument pages-per-whack, default 16, is the number of pages to page out and

in when prefetching needs to be done. The slower the rate at which memory is

scanned (for example, when looking at many words or spending a lot of time work-

ing on each section), the smaller pages-per-whack can be, because the disk will be

able to keep up. The faster the scanning rate (for example, when counting the

number of objects), the larger pages-per-whack can be, to avoid taking page faults

on pages not quite paged in. pages-per-whack should not be greater than about 32,

or else the program will spend time waiting for the disk queue to empty before it

can queue all the page transfers.

identifier-symbol identifies this set of parameters. This allows correct nesting of

si:scanning-through-memory macros. identifier-symbol is not evaluated, so it must

not be quoted.

si:check-memory-scan identifier-symbol current-address Function

The identifier-symbol, an unevaluated symbol, matches the identifier symbol of a

lexically visible si:scanning-through-memory. The current-address is the next ad-

dress the code is about to use. Each time the address advances by pages-per-whack,

the paging system pages out previous addresses and pages in future addresses.

(See the function si:scanning-through-memory.)

The Garbage Collector Facilities

Principles of Garbage Collection

It is fundamental to the nature of Lisp that programs and systems allocate memo-

ry dynamically and in large amounts. (The allocation of memory for a basic list el-

ement, or cons, or for any other purpose, is called consing for the purpose of this

discussion and in most other writings on Lisp.) Even with the large amount of vir-

tual memory on a Symbolics computer, it is possible for a program to use it all up.

At this point the machine halts and must be rebooted. This event can always be

delayed, almost indefinitely, if the underlying system can reclaim memory that is

unused.

Objects that are no longer in use, with no references from other objects, are

termed garbage. Garbage is distinguished from good objects or good data by the

fact that it no longer serves any purpose in the current Lisp world. For example,

if the car of a cons is changed from object A to object B, and there are no other

Page 941

references to A, then A is garbage. Objects in the Genera environment can be said

to have a lifetime, which means how long the object remains "good". Three lifes-

pans are distinguishable:

Static Object will probably never become garbage. Example: standard

system functions.

Dynamic Object will probably become garbage eventually. Example: lines

in editor buffers.

Ephemeral Object will probably become garbage very quickly. Example: in-

termediate structure generated by the compiler.�

You can control the garbage collection status of your own areas with the make-

area function.

Garbage collection (GC) involves these three steps:

• Scavenging virtual memory, that is, periodically sifting through areas of memo-

ry, separating good objects from the garbage

• Transporting good objects to a safe place

• Reclaiming the memory occupied by garbage�

Several strategies for garbage collection exist. Some allow you to continue doing

other work and some do a more complete job but require additional machine re-

sources for some period of time.

Garbage collection need not be used at all. However, it cleans up after computa-

tions and allows you to run for longer periods of time between cold boots. It

should be used either when you are running a program that allocates large

amounts of virtual memory (where the total allocated might exceed the amount of

free memory in a cold-booted system) or when the total allocations of many pro-

grams might, over a relatively long period of time, exceed the capacity. In either

case, garbage collection is a strategy aimed primarily at preserving the state of an

operating Lisp world as long as possible and avoiding a cold boot.

There are three basic modes of garbage collection, each with some variations pos-

sible:

• Incremental garbage collection works in parallel with other processes in the sys-

tem, allowing you to continue working while it is in progress. This mode is

based on incremental copying, so called because objects are copied one at a time

and there is relatively little effect on the user’s interaction with the system. Dy-

namic-object garbage collection incrementally collects garbage in all nonstatic

areas of memory. Ephemeral-object garbage collection incrementally collects

garbage, concentrating on specific parts of memory that are known to contain

short-lived objects. Both kinds of incremental operation ignore static areas of

memory that change slowly and so are unlikely to contain garbage. For an ex-

planation of static memory, see the section "Theory of Operation of the GC Fa-

cilities".

Page 942

• Nonincremental, or immediate, garbage collection takes less free memory and less

total processor time to work successfully than does the incremental mode. Non-

incremental garbage collection is normally done with the Start GC :Immediately

command or with the gc-immediately function, although those directives still

ignore static areas. These directives allow no other work to be done by the pro-

cess running it, although other processes are still scheduled. In most cases,

though, immediate garbage collection places a heavy enough burden on the ma-

chine that other processes are not useful while it is operating. The immediate

garbage collection invoked by the function si:full-gc deals with static areas.

• In-Place garbage collection is similar to immediate (nonincremental) garbage col-

lection, but uses a fundamentally different algorithm for storage reclamation.

Because of this, the virtual memory (paging space) required for GC is reduced.�

However, In-Place Garbage Collection is much slower, completely non-

interruptable, and results in less optimal paging behavior than normal Immedi-

ate Garbage Collection. In-Place Garbage Collection is typically used only for dy-

namic objects, but it may be used to reclaim static objects as well.

Note: Areas of memory can be specified as being static with the function make-

area.

Invoking the Garbage Collection Facilities

This section explains how to invoke the various garbage collection facilities. For

more information on garbage collection in Genera, see the section "Theory of Op-

eration of the GC Facilities".

Running with No GC

Maximum program speed is usually achieved by running with no garbage collection

at all, although the machine will run out of virtual memory much faster. Running

with no GC turned on is not recommended, since many system facilities assume

that at least the Ephemeral GC is turned on. When your address space becomes

low, GC notifications will be sent informing you that you are in danger of running

out of memory space. Should your memory space be exhausted, your only recourse

is to cold boot or add a new paging file. See the section "Add Paging File FEP

Command".

Turning on the Ephemeral GC

If you would like to preserve the state of your machine much longer, with the

least effect on performance, you should run with the ephemeral-object garbage col-

lector (ephemeral GC) turned on. Some programs run better with the ephemeral

GC turned on than with no GC turned on, because there is less paging. (See the

section "Ephemeral-Object Garbage Collection".) The ephemeral GC is turned on by

default. You can also turn it on with the Start GC :Ephemeral or Set GC Options

commands. Another way of invoking the function (for example, from your init file)

is to use sys:gc-on or zl:choose-gc-parameters.

Page 943

Turning on the Dynamic GC

To preserve the virtual memory of your machine as long as possible, you should

run with both the ephemeral and dynamic garbage collectors turned on. When a

certain limit is passed, the dynamic GC is invoked. The dynamic GC slows perfor-

mance of other programs for a period of usually 20 to 30 minutes. The dynamic

GC requires more virtual memory for its own use than does the ephemeral GC.

The dynamic GC is turned off by default, but it can be turned on by the command

Start GC :Dynamic or by evaluating sys:gc-on with no arguments.

GC Needs Sufficient Space in Order to Run

All the garbage collection facilities require some additional virtual memory for

their own use. Until the scavenging process is complete, running with a garbage

collector can require up to twice as much space as running without a garbage col-

lector (depending on how much of old space was garbage, compared to how much

had to be copied). If you have been running without the garbage collector for a

long time, you might not have enough room to successfully run the garbage collec-

tor and collect all the garbage. If the garbage collector is not operating, the sys-

tem sends notifications as you run out of free memory space. See the section "Stor-

age Requirements for Garbage Collection".

One solution is to turn on the garbage collector sooner, so it is left with enough

space to operate. Another is to use gc-immediately. Another is to increase the size

of the paging space on your local disk. See the section "Increasing Available Pag-

ing (Swap) Space".

Garbage collection can be optimized for particular applications by manipulating

areas and their attributes. See the section "Areas". The [Areas] option of the Peek

utility can be used to examine the garbage-collection attributes of particular areas;

try it, and then click Left on sys:working-storage-area, for example.

The rest of this section is a listing of the functions and associated Command Pro-

cessor commands for invoking the various garbage collection facilities.

Controlling GC from the Command Processor

In a Dynamic Lisp Listener window, you can use the Command Processor to con-

trol the operation of the GC facilities. The primary commands are Set GC Options

and Start GC.

Set GC Options invokes a menu with which you can set 30 parameters dealing

with garbage collection. See the section "Set GC Options Command".

Start GC invokes up to three types of garbage collection. The keyword arguments

are :Immediately, :Ephemeral, and :Dynamic. See the section "Start GC Command".

GC Cleanups

GC Cleanups are functions that you can request to run to make garbage collec-

tions more successful. A typical GC cleanup releases pointers to objects that are

Page 944

not strictly necessary for continued operation of an application, only convenient.

Once the pointers are released, a subsequent GC can reclaim those objects. It is

not appropriate for GC cleanups to delete useful information, such as mail or edi-

tor buffers.

Predefined GC cleanups exist that remove most pointers from the Lisp System to

user objects. For example, the output histories of dynamic interactor windows are

cleared. (These keep pointers to objects for mouse sensitivity.)

GC Cleanups are run using the "Start GC Command" with the keyword :Cleanup.

:Start GC (keywords) :Cleanup (Yes, No, or Ask [default Yes]) Yes

GC Cleanups are defined using si:define-gc-cleanup.

Garbage Collection Functions and Variables

zl:choose-gc-parameters Function

Activates a menu that you can use to control the operation of the garbage collec-

tor. Most of its features, including the ability to turn garbage collection on or off,

are available elsewhere, but this is a single and more convenient interface. The

variable si:*gc-parameters* is a list that defines the variables controlled by this

function.

Another way to invoke this function is to type Set GC Options to the Command

Processor. See the section "Set GC Options Command".

� si:define-gc-cleanup name (&rest fquery-args) &body body Function

Defines a GC Cleanup with the specified name. fquery-args are never evaluated,

and are used to implement the Start GC :Cleanup Ask option.

Example:

(defvar *big-database* nil)

�

(defun lookup-in-big-database (object)

 (unless *big-database*

 (setq *big-database* (recompute-big-database)))

 (lookup-object object *big-database*))

�

(si:define-gc-cleanup clear-big-database-for-gc ("Clear *BIG-DATABASE*")

 (setq *big-database* nil))

See the section "GC Cleanups".

� sys:gc-on &rest options &key (:ephemeral (cl:getf gc-on :ephemeral)) (:dynamic

(cl:getf gc-on :dynamic)) (:query-p t) Function

Turns on ephemeral and dynamic garbage collection facilities. The dynamic GC is

off by default. The keywords :ephemeral and :dynamic select the type(s) of

Page 945

garbage collection employed; the defaults are :ephemeral t and :dynamic t if no

options are specified. If either option is specified, the other defaults to nil; this al-

lows you to turn on one form of garbage collection and leave the other one off.

If you do not explicitly specify one of the keyword options, this function leaves that

option in its previous state. For example:

(sys:gc-on :ephemeral t) �

turns on the ephemeral GC and leaves dynamic GC in its previous state, either on

or off. The function returns a list of four values which constitute the current state

of the gc:

(:ephemeral ephemeral-is-on :dynamic dynamic-is-on)�

where ephemeral-is-on and dynamic-is-on are either t or nil.

Note: the Command Processor command Set GC Options provides a more compre-

hensive facility for specifying many parameters of garbage collection. See the sec-

tion "Set GC Options Command".

sys:gc-off Function

Turns ephemeral and dynamic garbage collection off.

sys:gc-on Variable

The value of this variable is a list specifying the status of the ephemeral and dy-

namic GCs. Here is an example:

(:ephemeral t :dynamic nil)�

This indicates that the ephemeral GC in on and the dynamic GC is off. sys:gc-on

is useful in finding out whether the garbage collector has turned itself off (as it

does when not enough free space remains to be able to complete a copying garbage

collection).

� si:enable-gc-progress-notes &key :dynamic :ephemeral Function

Controls whether progress notes are displayed for garbage collection, and what

their priorities are in relation to other progress notes. It takes two keyword argu-

ments, :dynamic and :ephemeral, allowing you to control the display of progress

notes for each type of garbage collection independently. The default for both dy-

namic and ephemeral GC is that progress notes are displayed when the current

process is waiting for the GC to complete (:foreground). Omitting an argument

leaves its value unchanged. Each argument can have one of the following values:

nil Progress notes are never displayed for GC.

:foreground Progress notes are displayed only when the current process is

waiting for GC to complete. This is the default for both

ephemeral and dynamic GC.

Page 946

:background Progress notes are displayed for GC regardless of the GC’s ef-

fect on the current process.

:override Like :background, but causes GC progress notes to override

all other progress notes in the status line display. In

:foreground and :background modes, any other progress note

overrides a GC progress note.

GC progress notes show the current internal state of garbage collection, and give

little indication of the Garbage Collector’s effect on the current process.

See also tv:*show-system-internal-progress-notes* , which controls progress notes

for other internal processes.

Examples:

To suppress the display of progress notes for the ephemeral GC, and allow the dy-

namic GC to display progress notes when it is affecting the current process (the

default state), you evaluate the following:

(si:enable-gc-progress-notes :ephemeral nil)

The following form suppresses the display of all progress notes for the GC:

(si:enable-gc-progress-notes :ephemeral nil :dynamic nil)

gc-immediately &optional no-query Function

Invokes nonincremental, immediate garbage collection. Nonincremental GC effec-

tively takes over the system while it runs, not allowing user input. As a result, it

takes less space and less total time than an incremental GC. The main advantage

of nonincremental, immediate GC compared to incremental GC is that it requires

less free space and hence can succeed where an incremental GC would fail because

virtual memory was too full.

If no-query is not nil, gc-immediately commences garbage collection without ask-

ing any questions, regardless of how much space is available. If it is nil, and if an

immediate garbage collection might require more space than the amount of free

space, you are asked whether you want to proceed.

Another way to invoke this function is via the Start GC :Immediately command.

See the section "Start GC Command".

You should usually call gc-immediately rather than si:full-gc. The difference is

that gc-immediately does not lock out other processes, does not run various

si:full-gc initializations, and does not affect static areas of virtual memory.

Suppose garbage collection has already started and that the flip has occurred but

not all good data have been copied out of old space. gc-immediately then copies

the rest of the good data but does not flip again.

si:gc-in-place &key :static (:query-p si:*gc-in-place-default-query-p*) Function

Page 947

Invokes the In-Place Garbage Collector. In-Place Garbage Collection requires less

virtual memory (paging space) than Immediate Garbage Collection, but runs much

more slowly, is completely non-interruptable, and results in a less optimal object

ordering.

Normally, si:gc-in-place only collects garbage in dynamic areas. If the static argu-

ment is not nil, then all static and dynamic areas are subject to garbage collection.

Note that this is different from si:full-gc, because it performs none of the opti-

mizations of si:full-gc which typically release internal system references to static

objects. Therefore, there is typically little gain in collecting static objects in this

fashion.

If query-p is not nil, then the user is queried before commencing garbage collec-

tion. (If there is insufficient memory to execute an In-Place Garbage Collection, a

warning and query is issued unconditionally.) The default for the query-p argument

is the value of si:*gc-in-place-default-query-p*, which is normally t. This variable

may be set or bound as a user option to change the default querying behavior of

In-Place Garbage Collection.

si:gc-in-place also accepts a keyword :background that, if set to t, inhibits some

of the messages and warnings printed out by the command, and limits the length

of those that it does print. :background defaults to nil.

Another way to invoke this function is via the Start GC :Immediately In-Place

command. See the section "Start GC Command".

si:full-gc &key system-release Function

Garbage-collects the entire Genera virtual memory environment, including some

static areas. However, because static areas change slowly and are not likely to con-

tain much garbage, use gc-immediately or the command Start GC :Immediately

instead. See the section "Start GC Command". si:full-gc leaves the garbage-

collector facilities in the state that it originally finds them, that is, with the same

dynamic and ephemeral option settings.

If you use si:full-gc, call it with no arguments. The option :system-release is re-

served for use by Symbolics. si:full-gc does an immediate, complete, nonincremen-

tal garbage collection as a preparation for immediately saving a world.

si:full-gc performs these operations:

• Resets temporary areas.

• Sets up the static areas to be cleaned up.

• Flips.

• Scavenges and flushes oldspace.

• Makes static areas static again.�

Page 948

It is not useful to perform an Incremental Disk Save (IDS) after running si:full-gc.

Perform a complete disk save, instead.

Note: The Command Processor command Optimize World is the preferred high-

level interface to the functions si:full-gc, si:reorder-memory, and si:optimize-

compiled-functions. See the section "Optimize World Command".

Using the Initialization Lists invoked by si:full-gc

Two initialization lists, accessed through the full-gc and after-full-gc keywords to

add-initialization, are run by si:full-gc. See the section "Introduction to Initializa-

tions".

si:full-gc runs the forms on the full-gc initialization list and then garbage-collects

without multiprocessing (inside a without-interrupts form). The machine essential-

ly "freezes" and does nothing but garbage collection for the duration. This opera-

tion takes 20 minutes or more, depending on the size of the world. After the

garbage collection is completed, and before it reenables scheduling and returns,

si:full-gc runs the forms on the after-full-gc initialization list.

full-gc is a system initialization list. You can add forms to it by using the :full-gc

keyword in the list of keywords that is the third argument of add-initialization.

The full-gc initialization list is run just before a full garbage collection is per-

formed by si:full-gc. All forms are executed without multiprocessing, so the evalua-

tion of these forms must not require any use of multiprocessing: they should not

go to sleep or do input/output operations that might wait for something.

Typical forms on this initialization list reset the temporary area of subsystems and

make sure that what is logically garbage has no more pointers to it.

Theory of Operation of the GC Facilities

This section describes the theory and terminology of garbage collection (GC) on

Symbolics computers.

Dynamic and Static Spaces

The garbage collector treats the machine’s virtual memory as if it were divided in-

to three spaces: static, dynamic, and free space.

Static space The parts of memory in which relatively permanent objects are

allocated. Objects allocated in static space are not likely to be-

come garbage; examples are the standard system functions and

other objects that are likely to be referenced throughout the

lifetime of a particular program or application. Static areas are

ignored by all forms of garbage collection except si:full-gc.

Dynamic space The parts of memory in which user programs and other pro-

grams allocate most of their objects are collectively called dy-

namic space. Objects allocated in dynamic space are likely to

Page 949

become garbage at some point, and all versions of garbage col-

lection except si:full-gc pay exclusive attention to dynamic

space. Dynamic space is further subdivided by the garbage col-

lector into old, new, and copy spaces. (In addition, ephemeral

levels are part of dynamic space; see the section "Ephemeral-

Object Garbage Collection".)

Free space The unused space in paging files on the disk.�

This diagram shows what the Genera virtual memory space looks like before the

first garbage collection. This chapter contains a number of similar diagrams that

show the division of Genera’s virtual memory space into subspaces. In all these di-

agrams, keep in mind that these subspaces are not physically contiguous, but are

rather scattered around in virtual memory. We show them as contiguous in order

to simplify the visual presentation. In addition, the proportions of the spaces in the

diagram are not necessarily true to scale.

When a machine has been cold-booted and used only slightly such that no garbage

collection has yet started, virtual memory is divided into three spaces. Static space

contains system functions and other long-lived objects. Dynamic space contains on-

ly newly-created objects and is therefore called new space. In a pristine system, all

objects are allocated in new space. Free space is unused space in paging files on

disk. The first diagram shows virtual memory space before the first garbage col-

lection.

Before the first garbage collection:

�

 Static | Dynamic | Free |

 space ---------->| space ->| space -------------------->|

| | | |

| | | |

| | New | |

| | space | |

| | | |

| | | |

 Virtual memory --->|�

Note that these spaces do not correspond directly to areas. All spaces can exist

within a given area, but the area specifies the space in which its newly created ob-

jects reside. See the section "Areas".

Flipping

When the first garbage collection starts, two more subspaces are created within

dynamic space: old space and copy space.

• Old space is the portion of dynamic space that previously was new and copy

spaces and can still contain valid objects. The scavenger is looking for good ob-

Page 950

jects here by perusing references in the current static and copy spaces. When

the scavenger is finished, everything remaining in old space is garbage, so it is

released to become free space.

• Copy space

Copy space is the portion of dynamic space to which the transporter moves good

objects found in old space. �

Thus, when garbage collection starts, virtual memory looks like this:

At the start of garbage collection:

�

 Static | Dynamic | Free |

 space --->| space ----------------------------->| space --->|

| | | | | |

| | | | | |

| | Old | Copy | New | |

| | space | space | space | |

| | | | | |

| | | | | |

 Virtual memory --->|

 �

Three agents are involved in garbage collection.

• A user program that creates new objects and so changes the contents of memo-

ry. This program is called the mutator for the purpose of this discussion.

• A scavenger program that reads through memory looking for references to ob-

jects that are in old space. It finds all accessible objects by starting at a root set

of static objects, such as the hash table of all interned symbols, and recursively

traces through the objects in the root set and the objects they reference. (The

root set is a collection of data that is known to contain direct or indirect refer-

ences to all valid data.) The scavenger runs during consing, during idle time,

and (in the case of nonincremental garbage collection) in the user or garbage

collector process.

• A transporter program invoked when either the mutator or the scavenger refers

to an object in old space. If the object actually is still in old space, it evacuates

the object (moves it to copy space). If the object has already been moved, the

program locates its incarnation in copy space by following a forwarding pointer

from old space. (Note that objects are copied only once.) The transporter redi-

rects its client objects to copy space in either case.�

In subsequent garbage collections, the spaces are flipped. When a flip occurs, these

three steps are taken by the system:

Page 951

1. New space and copy space are lumped together to form a new version of old

space. (This old space is then scavenged.)

2. A fresh new space is created; new objects will be allocated here while

garbage collection of old space is in progress.

3. A fresh copy space is created; this space will receive copies of objects evacu-

ated from old space. When an object is evacuated from old space, its incarna-

tion there is replaced by a forwarding pointer that addresses the object’s in-

carnation in copy space.�

A GC causes the spaces to flip:

�

 Static | Dynamic | Free |

 space --> | space ----------------------------------->| space |

--

| | (current) | | | |

| | Old space | (fresh) | (fresh) | |

| | made out of the | New | Copy | |

| | past new and copy | space | space | |

| | spaces | | | |

| | | | | |

--

 Virtual memory -->|

 �

Once all good objects have been evacuated from old space to copy space, old space

contains only garbage. Old space’s memory is then reclaimed by the garbage col-

lector, turns into free space, and becomes available for assignment to new space.

Another flip can occur any time after old space has been reclaimed.

After garbage collection the spaces look like this:

�

After garbage collection:

�

 Static | Dynamic | Free |

 space --->| space ---------------->| space ---------------->|

| | | | |

| | | | |

| | Copy | New | |

| | space | space | |

| | | | |

| | | | |

| | | | |

 Virtual memory --->|

 �

Page 952

The dynamic GC flips when it estimates that a large portion of the remaining free

virtual memory will be needed for its own use.

A nonincremental garbage collection requires less virtual memory than an incre-

mental one because the mutator is prevented from allocating new storage (consing)

while the garbage collector is operating. See the section "Storage Requirements for

Garbage Collection".

Ephemeral-Object Garbage Collection

Ephemeral-object garbage collection is a unique hardware-assisted incremental

garbage collection method in which scavenger agents can pay special attention to

short-lived (ephemeral) objects. A typical example of an ephemeral object is the in-

termediate structure generated by the compiler.

The ephemeral GC is effective on any area having the :gc :ephemeral characteris-

tic as specified by make-area. Your sys:working-storage-area has the ephemeral

characteristic by default. Since working storage is the initial value of *default-

cons-area*, objects created with no area specification are subject to ephemeral-

object garbage collection while it is turned on.

The overall effects of the ephemeral GC are as follows:

• All objects created in ephemeral areas while the ephemeral collector is operating

are considered ephemeral objects.

• The ephemeral-object garbage collector has means of tracking ephemeral objects,

to avoid having to scan all of virtual memory for possible references to them.

• Garbage collection tends to increase the locality of objects and their references,

so that ephemeral objects and their references are likely to be concentrated on

relatively few pages.

• The above factors combine to dramatically reduce the amount of paging the

garbage collector must do to find and process garbage, compared with dynamic

GC, which operates on all of dynamic space rather than just the ephemeral por-

tion of it. See the section "Dynamic and Static Spaces".

• When the dynamic (nonephemeral) objects are eventually garbage-collected, dy-

namic space contains less garbage than would otherwise be the case.�

Ephemeral Levels

The ephemeral-object GC introduces the concept of ephemeral levels, which are

subdivisions of a particular area of memory. The advantage of having several lev-

els of ephemeral GC is that the garbage collector spends most of its time dealing

with only a small fraction of the total number of objects and total storage in the

system, namely, with the ephemeral levels. This greatly decreases paging, total

time to complete a garbage collection, and the amount of virtual memory that has

to be committed to the garbage collector’s use.

Page 953

Each ephemeral level contains its own old, new, and copy space. The diagram be-

low is a schematic representation of two ephemeral levels in dynamic space, along

with a non-ephemeral part of dynamic space. Level 1 of ephemeral space contains

the shortest-lived objects in dynamic space.

For convenience in the diagram, we show the old, new, and copy spaces vertically

in each ephemeral level and in dynamic space. Again, this diagram does not repre-

sent the actual physical allocation of these spaces in virtual memory.

�

|Long-lived objects-------------->Short-lived objects | |

|---| Free |

|Static | Dynamic | space |

|space ---->| space -------------------------------->| |

| | Non-ephemeral | Ephemeral | Ephemeral | |

| | objects | level 2 | level 1 | |

| | Old space | Old space | Old space | |

| | | | | |

| | New space | New space | New space | |

| | | | | |

| | Copy space | Copy space | Copy space | |

 Virtual memory --->|

 �

Consider, for example, the following, abbreviated output of (describe-area working-

storage-area):

Area #4: WORKING-STORAGE-AREA has 15 regions,

max size 2000000000, region size 340000 (octal):

 First ephemeral level: 2 regions, capacity 196K, 416K allocated, 122K used.

 Second ephemeral level: 3 regions, capacity 98K, 336K allocated, 148K used.

 Last (dynamic) level: 10 regions, 2448K allocated, 2216K used.

.

.

.�

The "first" ephemeral level is the one in which all new objects in this area are

created. It, like other ephemeral levels, has a capacity in words. When the capacity

of the first level is reached, the ephemeral level is flipped, and any objects that

are not proven to be garbage are evacuated to the next level by the usual incre-

mental garbage collection methods.

The levels after the first are flipped only when the first level is flipped. (You can

see, in this example, that the second level has exceeded its capacity, because it is

waiting for the first level to flip.)

When the last (dynamic) level has received enough objects from the ephemeral

levels, it is flipped and garbage collected by the dynamic GC as usual for dynamic

areas. It has no capacity in the sense of an ephemeral level because the decision

Page 954

to flip in the dynamic GC is based on different principles. See the section "Storage

Requirements for Garbage Collection".

The output of the function zl:gc-status or the command Show GC Status includes

one line for each ephemeral level that exists.

By default, sys:gc-on or the Start GC command enables the ephemeral collector

along with dynamic-object garbage collection. The area sys:working-storage-area

has the ephemeral characteristic and two ephemeral levels by default, so the

ephemeral feature is effective even if you do not explicitly manipulate areas.

You can get additional insight into the concept of levels by experimenting with the

following features:

• Using the function zl:choose-gc-parameters or the Command Processor com-

mand Set GC Options, select the options for reporting the activity of the

ephemeral GC.

• Using the [Areas] option of the Peek utility, examine the GC characteristics of

particular areas, such as, for a start, sys:working-storage-area. (Point at this

area and click left to see the details.) The describe-area function can be used

for the same purpose.

• Using the :capacity, :capacity-ratio, and :n-levels options of the make-area

function, you can define the number of ephemeral levels for specific areas. With

programs that create mostly ephemeral objects, it can be possible to extend the

length of a session considerably, by adding additional ephemeral levels.�

How Garbage Collection Improves Locality of Reference

Locality of reference means that objects and their references (or more generally,

any pieces of related information), are located near each other, that is, located at

nearby addresses in virtual memory. When this is true, the paging system can

avoid thrashing: swapping many pages in and out of main memory in order to ac-

cess relatively few data.

One way to improve locality of reference is to use areas. See the section "Areas".

This technique can greatly improve locality of reference in programs that allocate

virtual memory in large amounts and for specific purposes. Areas are especially

useful when the objects allocated are static. In this case, the objects are left com-

pletely alone by most kinds of garbage collection.

Another way to improve locality of reference in Genera is to use the garbage col-

lection facilities. This improves locality of reference through dynamic memory

space, including the sys:working-storage-area. How does GC improve locality of

reference?

• First, the operation of copying good objects to a separate space (copy space)

compacts objects on virtual memory pages. Good objects are not interleaved with

garbage.

Page 955

• Second, the use of separate new and copy spaces improves locality further, be-

cause new objects are likely to be "less related" to older ones, and the two are

not interleaved.

• Finally, the garbage collector uses a technique called approximately depth-first

copying, which improves locality in typical programs. �

Approximately depth-first copying works as follows:

1. The scavenger concentrates on the most recent, partially filled page in copy

space, looking for references to old space (that is, looking for objects that

might have to be evacuated from old space).

2. If no such objects are found, or if the last page in copy space is full already,

the scavenger looks at the first (lowest-addressed) page in copy space that has

not yet been scavenged. It proceeds from this page forward, page by page,

looking for old-space references.

3. As soon as an object is transported from old space to copy space, the scav-

enger returns its attention to the last page in copy space and considers the

objects referenced by the newly transported object.�

The effect is that object references and the corresponding objects tend to fall on

the same page in virtual memory.

In-Place Garbage Collection

In-Place garbage collection is similar to immediate (nonincremental) garbage col-

lection, but uses a fundamentally different algorithm for storage reclamation. As

its name implies, In-Place garbage collection does not copy referenced objects into

copy space and then dispose of oldspace memory. Instead, a modified mark-sweep

algorithm is used to mark referenced objects and reclaim intervening storage by

compacting good objects to the bottom of each region. Since there are never two

copies of an object during the garbage collection, the virtual memory (paging

space) required for GC is reduced.

Comparing In-Place garbage collection to Immediate garbage collection:

• In-Place Garbage Collection requires less memory. Because objects are not copied,

some of the memory requirements of garbage collection are alleviated. However,

In-Place garbage collection does require some memory for its own internal

tables, and its execution can cause otherwise unmodified pages to be modified,

moving them from the world load file into newly allocated storage in the paging

file.

• In-Place Garbage Collection is much slower. Mark-sweep algorithms do not per-

form well in demand-paged environments compared to copying algorithms. Con-

sequently, In-Place garbage collection takes 3 to 10 times longer than Immedi-

age garbage collection.

Page 956

• In-Place Garbage Collection is non-interruptible. Mark-sweep algorithms are not

incremental, so the scheduler and all I/O are disabled during garbage collection.

Additionally, storage is usually inconsistent during garbage collection, so the

machine cannot be warm-booted. You can, however, add paging files from the

FEP and continue if you run out of virtual memory during the GC.

• In-Place Garbage Collection results in less optimal object ordering. Copying algo-

rithms allow lisp objects to be ordered more optimally for paging performance.

Since In-Place garbage collection does not change the order of objects in memo-

ry, the older, less desirable object orderings are preserved.�

Symbolics recommends In-Place garbage collection only for situations where execu-

tion speed and interaction are not important, for example when there is insuffi-

cient disk space for normal garbage collection, and the garbage collection can be

performed overnight. Where possible, normal garbage collection or selective

garbage collection is recommended.

In-Place garbage collection runs in four phases, as shown in Figure !:

1. Mark. Starting with the root set, referenced objects are marked and those ob-

jects referenced by referenced objects are marked, until transitive closure

over all objects referenced by the root set is achieved.

2. Build Relocation Tables in unused storage. Tables for relocation of the point-

ers and referenced objects are constructed in unused storage.

3. Relocate pointer references to new addresses. Pointer references are relocated

to reflect the new locations of the objects.

4. Shift objects downward to new addresses. The objects are shifted to their new

locations.�

Storage Requirements for Garbage Collection

Interpreting the Output of Show GC Status

Besides showing the state of the ephemeral GC levels, the output of the Show GC

Status command (or zl:gc-status function) shows the storage requirement for dy-

namic garbage collection, in the form of a committed guess. For example, suppose

the command reports the following information:

Page 957

Object 4

Object 1

Object 3

Object 2

Object 1 Object 1

Object 2 Object 2

Object 3 Object 3

Object 4 Object 4

Object 4

Object 3

Object 2

Object 1

Initial

Storage

After

Marking

After

Pointer Relocation

After

Shift

Figure 32. How In-Place Garbage Collection Works

�

�

Status of the dynamic garbage collector: Off

Dynamic (new+copy) space 11,849,700. Old space 0. Static space 18,311,838.

Free space 31,741,440. Committed guess 29,795,586, leaving 1,683,710 to use before

your last chance to do Start GC :Dynamic without risking running out of space.

There are 9,683,726 words available before Start GC :Immediately might run out of space.

Doing Start GC :Immediately now would take roughly 54 minutes.

There are 31,342,736 words remaining before Start GC :Immediately In-Place

might run out of space. (The current estimate of its

memory requirements is 398,704 words.)

Minimum scavenging remaining 70,178, maximum possible 70,178.

Free space 31,741,440 (of which 0 might be needed for copying).

�

Garbage collector process state: Await ephemeral full

Scavenging during cons: On, Scavenging when machine idle: On

The GC generation count is 414 (1 full GC, 4 dynamic GC’s, and 409 ephemeral GC’s).

Since cold boot 26,504,876 words have been consed, 19,023,571 words of garbage have

been reclaimed, and 29,823,957 words of non-garbage have been transported.

The total "scavenger work" required to accomplish this was 124,712,353 units.

Use Set GC Options to examine or modify the GC parameters.�

The free space (or free paging space) is the total amount of unused space (in words,

not bytes) allocated to paging on the local disk(s). If garbage collection is turned

off, free space is the amount available for new objects. The free space minus the

committed guess, minus a relatively small amount, should equal the amount left

before flipping.

The committed guess is the garbage collector’s estimate of the amount of free

storage it will need for copying and for new consing. It is accurate for compute-

bound programs, on which most of the underlying assumptions are based. For in-

Page 958

teractive programs, it is conservative because the garbage collector runs during

idle time and so finishes more quickly.

�

 Static | Dynamic | Free |

 space | space ----------->| space -------------->|

--

| | | | | |

| | | | | |

| | Copy | New | Committed | * |

| | space | space | guess | |

| | | | | |

| | | | | |

| | | | | |

--

 Virtual memory ------------------------------------>|

�

* Indicates available free space before a flip.�

The computation goes as follows, assuming that si:gc-flip-ratio = 1:

Dynamic (new+copy) space 184,000. Old space 0. Static space 7,500,000.

Free space 17,000,000. Committed guess 11,677,500, leaving 5,322,500 to

 use before flipping.�

If you cons 5.32 megawords of dynamic space, in addition to the space you already

have, and then the flip occurs, then at the instant the garbage collector completes

(after it has copied all of old space but before old space is reclaimed), old space

and copy space will each be 5.5 megawords. That accounts for 11 megawords; all

but .184 megawords of that has to come out of your 17 megawords of free space.

To complete the garbage collection, the scavenger has to do 5.5 MWU (million

work units) to copy 5.5 megawords from old space to copy space, plus 5.5 MWU to

scan through that copy space looking for references to old space, plus 7.5 MWU to

scan through static space looking for references to copy space, plus x MWU to

scan through the x words of additional objects you might cons in static space dur-

ing the garbage collection. (It has no way to distinguish these from objects that

existed in static space before the garbage collection, so it can’t take advantage of

knowledge that objects created after the flip cannot contain references to old

space; it does take advantage of this invariant for dynamic space, but not for static

space). The total scavenger work to be done is therefore 18.5+x MWU. The rate at

which the scavenger works is pegged to the rate of consing; the scavenger does 4

"work units" for each word consed. Thus the total consing during the garbage col-

lection is (18.5+x)/4 megawords. In the worst case, all this consing will be in static

space, hence 4x = 18.5+x or x = 6.17.

Thus you cons 5.32 megawords before the garbage collection and 6.17 megawords

during the garbage collection.

The primary reason that nonincremental garbage collection (such as invoked by gc-

immediately or Start GC :Immediately) requires less memory is that consing is

prohibited in the invoking process (the mutator cannot run).

Page 959

To check the computation: at the instant the garbage collection completes, the to-

tal space occupied will be 5.5 megawords of old space, 5.5 megawords of copy

space, 7.5 megawords of old static space and 6.17 megawords of new static space;

total = 24.67. The total you have right now is .184 megawords of dynamic space,

7.5 megawords of static space, and 17 megawords of free space; total = 24.68. So,

you can see that you have just enough free space to be able to cons 5.322 mega-

words, flip, cons 6.17 megawords more during the garbage collection, and reclaim

old space, creating more free space, just as you exhaust the last bit of free space.

This is what the committed guess is all about.

Of course, this is all based on worst-case assumptions. If some of dynamic space is

garbage, so copy space is smaller than 5.5 megawords, or some of your consing be-

fore the flip is in static space (making old space smaller than 5.5 megawords), or

some of your consing after the flip is in dynamic space (making the scavenger not

have to work as hard), the garbage collection will complete with some free space

left over. Also, scavenging during idle time makes the garbage collection complete

sooner.

The GC includes some safety factors. The committed guess is increased by the

constant 256 Kwords and the amount you can cons before the flip is decreased by

an additional 256 Kwords (value of si:gc-delta). So, you lose about .5 megawords of

consing.

Dynamic (new+copy) space 184,000. Old space 0. Static space 7,500,000.

Free space 17,000,000. Committed guess 11,939,644, leaving 4,798,212 to

 use before flipping.�

If you cons 4.8 megawords of dynamic space, in addition to the space you already

have, and then the flip occurs, old space and copy space will each be 4.98 mega-

words at the instant the garbage collection completes. That accounts for 10 mega-

words; all but .184 megawords comes out of your 17 megawords of free space.

The scavenger has to do 4.98 MWU to copy 4.98 megawords from old space to

copy space, plus 4.98 MWU to scan through that copy space looking for references

to old space, plus 7.5 MWU to scan through static space looking for references to

copy space, plus x MWU to scan through the x words of additional objects you

might cons in static space during the garbage collection. The total scavenger work

to be done is therefore 17.46+x MWU. Thus the total consing during the garbage

collection is (17.46+x)/4 megawords. In the worst case, all this consing will be in

static space, hence 4x = 17.46+x or x = 5.82. At the time the garbage collection

completes, the total space occupied will be 4.98 megawords of old space, 4.98

megawords of copy space, 7.5 megawords of old static space and 5.82 megawords of

new static space; total = 23.23. You will have 1.4 megawords of free space left

over. This provides a cushion against the effects of storage fragmentation caused

by the use of multiple areas.

Swap Migration and Garbage Collection

When the Garbage Collection facilities estimate the amount of memory required,

they do not take into account a phenomenon called swap migration. Because of

this, in certain situations the actual memory required for a garbage collection can

Page 960

be much higher then estimated, and running the garbage collector may cause your

machine to run out of memory. This estimation error can only happen when

• you are about to run a dynamic or In-Place garbage collection,

• you have booted a world from your local machine, and

• you have not yet run a dynamic or In-Place garbage collection since you cold-

booted.�

There are two simple work-arounds for this problem:

1. Netboot your worlds.

2. Run one dynamic or In-Place garbage collection immediately or shortly after

booting your world, while ample space remains.�

The Causes of Swap Migration

All objects take up memory locations. In virtual-memory architectures such as on

Symbolics computers, these objects are stored on disk when they are not actively

in use, and copied into fast memory when they are actively in use. The amount of

memory available is the amount of unallocated memory in paging files on your

disk.

When you first boot a world on your local disk, the paging files are initially empty;

that is, all the memory in the paging files is unallocated. When you create an ob-

ject, memory is reserved in the paging file for that object. If an object is garbage

collected, the memory is then freed and available for other objects.

If you reference an object which was saved in the world, then it is read from the

world file, not the paging file. This works as long as the object is unmodified.

However, if an object is modified, the object must be migrated into the paging file.

(If it were stored back into the world file, then the change would be apparent the

next time the world was booted, which would not be desirable.) This phenomenon

is called swap migration. In brief, swap migration is the phenomenon where modi-

fying an object will cause it to use up more memory.

The garbage collector can modify objects in two ways. First, it can copy or move

an object subject to GC. Second, as a result of moving the object, it modifies all

referencing objects to reference the new address of the object. Therefore, if a dy-

namic object or any referencing object is in the world file, a garbage collection

will cause the object to be migrated to the paging file, where it will reduce the

amount of free space available.

Swap Migration can occur even when objects are not modified, if you enable Load

to Paging migration in the FEP. When FEP Load to Paging migration is enabled,

objects are copied into the paging file whenever they are read from the world file,

regardless of whether they have been modified. See the section "Enable Load to

Paging Migration FEP Command" and also see the section "Disable Load to Paging

Migration FEP Command".

Page 961

Note that if you netboot, there is no local world file (other than the netboot core),

so all objects exist in the paging file. Even if you boot locally, if you have already

performed a dynamic or In-Place garbage collection, all world-load objects which

could be modified by the garbage collector will have already been modified the

first time. So in either of these cases, swap migration is not a concern.

Note that the effect of swap migration on ephemeral garbage collection is negligi-

ble, since most ephemeral objects become dynamic before a world is saved.

Why the Garbage Collector Estimates Do Not Take Swap Migration Into Ac-

count

Determining swap migration is tedious at best. Although the worlds distributed by

Symbolics will show very little swap migration, applications vary widely in their

use of static and dynamic objects. Scanning the entire world for all references to

dynamic objects can take from ten minutes to over an hour. Even then, the esti-

mate would not be accurate, since there are indeterminacies in the storage alloca-

tion process which are nearly impossible to predict.

Estimating swap migration may be possible in a future release of Genera. In Gen-

era 8.0, a warning is printed by "Show GC Status" and "Start GC :Immediately In-

Place" if swap migration could be a problem.

Controlling Garbage Collection

zl:gc-status Function

Prints statistics about the garbage collector. It prints different information depend-

ing on whether the scavenger is running or finished and how full virtual memory

is.

Another way to invoke this function is via the Show GC Status command. See the

section "Show GC Status Command".

(gc-status)

Status of the ephemeral garbage collector: On

First level of METERING:METERING-CONS-AREA: capacity 196K, 0K allocated, 0K

 used.

Second level of METERING:METERING-CONS-AREA: capacity 98K, 0K allocated, 0K

 used.

First level of DW::*EQL-DISPATCH-AREA*: capacity 98K, 256K allocated, 56K used.

Second level of DW::*EQL-DISPATCH-AREA*: capacity 49K, 0K allocated, 0K used.

First level of WORKING-STORAGE-AREA: capacity 196K, 448K allocated, 29K used.

Second level of WORKING-STORAGE-AREA: capacity 98K, 2048K allocated, 47K used.

Status of the dynamic garbage collector: On

Page 962

Dynamic (new+copy) space 6,490,761. Old space 0. Static space 12,479,751.

Free space 26,574,848. Committed guess 22,488,118, leaving 3,824,586 to use

 before flipping.

There are 9,779,900 words available before Start GC :Immediately might run out

 of space.

Doing Start GC :Immediately now would take roughly 33 minutes.

There are 26,574,848 words available if you elect not to garbage collect.

Garbage collector process state: Await ephemeral or dynamic full

Scavenging during cons: On, Scavenging when machine idle: On

The GC generation count is 328 (1 full GC, 2 dynamic GC’s, and 325 ephemeral

 GC’s).

Since cold boot 53,043,930 words have been consed, 45,867,153 words of garbage

 have

been reclaimed, and 11,658,295 words of non-garbage have been transported.

The total "scavenger work" required to accomplish this was 121,864,225 units.

Use Set GC Options to examine or modify the GC parameters.�

In the zl:gc-status report, the free space figure minus the committed guess figure

is approximately equal to the amount of memory available before flipping. (If the

garbage collector were currently off, this field would show the amount of memory

available before incremental garbage collection must be turned on, to avoid the

risk of running out of space.)

Notice that a nonincremental garbage collection (gc-immediately) requires less

memory, although it will run exclusively, in the invoking process, for a long time.

An estimate of the time, which depends on the size of the world, is printed.

As shown here, when the garbage collector is on, the scavenger operates during

consing and when the processor is idle (when no process wants to run). The opera-

tion of the scavenger is also signalled by the garbage collector’s run bar; the left

half of this bar, which appears under the package name on the machine’s status

line, blinks to indicate scavenging. The right half of the bar blinks when the

transporter moves objects out of old space.

You could also turn off garbage collection at this point (with the Halt GC com-

mand or sys:gc-off function) and still have over 26 million words available before

you ran out of virtual memory.

The "garbage collector process state" is the state of the process that starts a

garbage collection when it is time (by flipping) and generally supervises the

garbage collector.

si:print-gc-meters Function

Displays a history of garbage collection work done in the current world, including

the number of times the transporter and scavenger were invoked, the time they

consumed, their paging activity, and so on. It also shows statistics on the refer-

ences handled by the garbage collector page table (GCPT) and the ephemeral

space reference table (ESRT); these are, respectively, the ephemeral-object garbage

Page 963

collector’s tables of swapped-in and swapped-out pages that contain ephemeral ob-

jects.

si:inhibit-gc-flips body ... Macro

Prevents the ephemeral and dynamic garbage collectors from flipping within the

body of the macro.

si:with-ephemeral-migration-mode mode &body body Macro

Controls what happens when ephemeral space is garbage collected and also deter-

mines the space in which new copies of ephemeral objects that survive garbage

collection are created. Permissable modes include the following.

:dynamic Put the copies in dynamic space.

:normal Put the copies in the next ephemeral level or dynamic space if

this is the last ephemeral level�

si:ephemeral-gc-flip-area area &key :all-levels (:mode si:*ephemeral-migration-

mode*) Function

Immediately performs an ephemeral garbage collection of the specified area.

The :all-levels keyword controls which levels to collect. t means all levels of the

area should be collected. nil means just the first level. nil is the default.

The :mode keyword allows the user to specify the migration mode. Possible values

are :normal, :dynamic, :keep, :collect, and :extra. The default is the current dy-

namic value of si:*ephemeral-migration-mode*.

The following variables control various aspects of the garbage collector’s operation;

all are accessible via the Command Processor command Set GC Options or the

zl:choose-gc-parameters function.

si:gc-report-stream Variable

Specifies where to put output messages from the garbage collector.

Value Meaning

t Notifies you (default)

nil Discards the output

stream Sends output to the stream�

si:gc-area-reclaim-report Variable

Page 964

Controls reporting of reclaimed areas. If it is any of the values other than nil,

each reclaimed area is reported individually.

Value Meaning

nil Does not report anything (default).

:dynamic Reports only after dynamic garbage collection.

:ephemeral Reports only after ephemeral-object garbage collection.

t Reports after any kind of garbage collection. �

si:gc-warning-threshold Variable

Controls the warnings to turn on the garbage collector. This warning-threshold in-

dicates (when it is warning you for the first time) how close you are to the last

safe point (in words of memory). After you have passed the last safe point, you

cannot turn on the GC without probably running out of memory. The last safe

point is arrived at by comparison to the amount of uncommitted free space.

When the storage manager notices that the amount of free space remaining has

reached the threshold, it notifies you that you need to turn on the garbage collec-

tor before it is too late to do so. The default value is 1000000 (words). It is usually

not necessary to change this value from the default.

si:gc-warning-ratio Variable

Controls how often (after the si:gc-warning-threshold has been passed) you see

warnings that you need to turn on the garbage collector. Basically, this ratio is

multiplied by the previous warning threshold to give a new warning threshold. For

example, the default si:gc-warning-ratio is 0.75. With the default values for si:gc-

warning-threshold and si:gc-warning-ratio, you would see warnings with 1000000,

750000, 562500, and 421875 words remaining, and so on. This variable has no ef-

fect if si:gc-warning-interval is set to nil, which is the default.

si:gc-warning-interval Variable

Contains the interval in 60ths of a second between repetitions of the same garbage

collector warning; it applies only to reports that use the notification system. The

rationale for this variable is that you can control how often you want to be both-

ered by such messages.

The default value is nil, which shuts off repetitious warnings. Each warning is

given only once.

si:gc-flip-ratio Variable

Page 965

Specifies when a flip takes place. When this number times the amount of commit-

ted free space (the "committed guess" reported by Show GC Status) is greater than

the amount of free space, a flip occurs. The default value is 1.

The number can be less than 1. This would cause the garbage collector to wait

longer before flipping at the risk of exhausting virtual memory if a larger fraction

of dynamic space contains good objects than you expected. Rather than setting the

ratio to a number less than 1, we recommend turning on the ephemeral-object

garbage collector.

For a discussion of finer control over the onset of garbage collection: See the vari-

able si:gc-flip-minimum-ratio.

si:gc-flip-minimum-ratio Variable

Contains a number that specifies when to turn the garbage collector off because

memory is too full to allow copying anything. The default value is nil, which speci-

fies that this ratio has the same value as si:gc-flip-ratio. Otherwise it should be a

number less than si:gc-flip-ratio.

Putting 0.25 in si:gc-flip-minimum-ratio and 0.5 in si:gc-flip-ratio means that you

believe that fewer than 25 per cent of the dynamic-space objects consed are good

data and will need to be copied by the garbage collection. In spite of this, you

want to flip when there is enough space to copy 50 per cent (half) of the objects.

Thus, the flip ratio controls how often the garbage collector flips; the minimum

ratio controls when it should get desperate.

The minimum ratio is most useful if you turn on si:gc-reclaim-immediately-if-

necessary, to make the garbage collector do something useful when it is desper-

ate. Even without that, it is useful if you would rather risk doing a garbage collec-

tion when there might not be enough memory left in preference to turning the

garbage collector off, for example, when the machine is operating unattended and

turning off the garbage collector would be guaranteed to make it exhaust memory.

Choosing good values for this variable is a matter of guesswork and experience

with the particular application.

si:gc-reclaim-immediately Variable

When the value is nil (the default), the incremental (dynamic) garbage collector is

not affected. When the value is not nil, then, in effect, an immediate garbage col-

lection is performed as soon as the flip occurs.

si:gc-reclaim-ephemeral-immediately Variable

When the value is nil (the default), the ephemeral-object garbage collector is not

affected. When the value is not nil, then, in effect, an ephemeral GC is performed

as soon as the capacity of the first ephemeral level is exceeded.

Page 966

si:gc-reclaim-immediately-if-necessary Variable

Controls whether the garbage collector starts nonincremental garbage collection or

shuts down when space is running too low for incremental garbage collection. This

variable is irrelevant when si:gc-reclaim-immediately is set because then the

garbage collector always reclaims immediately, even if it does not need to.

The variable controls what happens when not enough free space remains to copy

everything. When the value is nil (the default), it notifies you and turns itself off.

For other values, it tries nonincremental garbage collection and shuts itself off on-

ly when it determines that nonincremental garbage collection is not guaranteed to

work.

It is possible for so little space to remain that even a nonincremental garbage col-

lection would exhaust virtual memory. The decisions about what would exhaust vir-

tual memory depend on your prediction of the fraction of dynamic space that con-

tains good (nongarbage) objects. (This is the value of si:gc-flip-minimum-ratio.)

si:gc-process-immediate-reclaim-priority Variable

Supplies the process priority at which nonincremental (immediate) garbage collec-

tion operates. Its default value is 5, which locks out other, computational process-

es. It is also accessible via the function zl:choose-gc-parameters and the command

Set GC options. Note: This variable is not related to the gc-immediately function

nor to the :Immediately option of the Start GC command.

si:gc-process-foreground-priority Variable

Sets process priority for the garbage collector while it is waiting to flip and in the

process of flipping. Its default value is 5.

si:gc-process-background-priority Variable

This variable provides the priority (default 0) of the garbage collector process

while it is reclaiming old space.

si:gc-flip-inhibit-time-until-warning Variable

Sets the reasonable time window for flipping. If flipping does not occur successful-

ly during this time, the garbage collector notifies you about the problem. The time

is expressed in 60ths of a second. The default is 1800 (30 seconds). Flipping can-

not occur when some program (such as maphash) is running in an si:inhibit-gc-

flips special form.

Strategy for Unattended Operation with the Garbage Collector

It is risky to leave very large compilations that do a lot of consing running unat-

tended. You can set the following variables in order to control the assumptions

Page 967

that the system makes about the amount of space needed or available. See the sec-

tion "Controlling Garbage Collection".

si:gc-flip-minimum-ratio

si:gc-flip-ratio

si:gc-reclaim-immediately-if-necessary�

More background information is available, to help you use these variables appro-

priately. See the section "Theory of Operation of the GC Facilities".

See the section "Principles of Garbage Collection".

Setting up GC Before Loading a Large System

Some people find it necessary to have garbage collection working in order to load

large systems. Here are several recommended strategies.

• Before loading the system, turn on ephemeral-object garbage collection with the

command Start GC :Ephemeral or with the form (sys:gc-on :ephemeral t).

• After loading the system, do an immediate garbage collection with the with the

command Start GC :Immediately or with the function gc-immediately.

• Do both the above.

• After loading the system, do a full garbage collection by calling si:full-gc with

no arguments. Note, though, that si:full-gc does a lot of unnecessary work and

disables multiprocessing, thus causing network connections to be lost. Then exe-

cute the command Optimize World in order to move things around in virtual

memory so as to improve locality of reference and decrease paging.�

Reporting the Use of Memory

The room function and variable allow you to examine the current use of physical

and virtual memory in the machine. The current use of memory areas can also be

examined with the Areas option of the Peek utility.

room &rest args Function

In CLOE, zl:room displays information concerning memory allocation and usage.

In Genera, zl:room displays the amount of physical memory in the machine, the

amount of available virtual memory not yet filled with data (that is, the portion of

the available virtual memory that has not yet been allocated to any region of any

area), and the amount of "wired" physical memory (that is, memory not available

for paging). Then it tells you how much room is left in some areas. For each area

it tells you about, it prints out the name of the area, the number of regions that

currently make up the area, the current size of the area in kilowords, and the

Page 968

amount of the area that has been allocated, also in kilowords. If the area cannot

grow, the percentage that is free is displayed.

(room) tells you about those areas that are in the list that is the value of the

variable room. These are the most interesting ones.

(room area1 area2...) tells you about those areas, which can be either the names or

the numbers (applies to Genera only).

(room t) tells you about all the areas.

(room nil) In Genera, it does not tell you about any areas; it only prints the

header. This is useful if you just want to know how much memory is on the ma-

chine or how much virtual memory is available.

In CLOE Runtime, it prints information on allocated storage for each data type

that is listed, including the number of storage areas, number of bytes allocated,

number of bytes used, and percentage used. If the number used reaches the num-

ber allocated, the next cons will cause a garbage collection if automatic GC is en-

abled. If automatic GC is disabled, or fails to free up enough storage of the given

type, a new area will be allocated and added to the free storage for that data type.

room Variable

The value of room is a list of area names and/or area numbers, denoting the areas

that the function room will describe if given no arguments. Its initial value is:

(working-storage-area compiled-function-area)

Resources

Introduction to Resources

Storage allocation is handled differently by various computer systems. With many

languages, you must spend a lot of time thinking about when variables and storage

units are allocated and deallocated. With Genera, freeing of allocated storage is

normally done automatically by the Lisp system. When an object is no longer ac-

cessible to the Lisp environment, it is garbage collected. This relieves you of a

great burden, and makes writing programs much easier.

Automatic freeing of storage incurs an expense: more computer resources must be

devoted to the garbage collector. If your program uses a great deal of temporary

storage that must be garbage collected, this expense can be high. In some cases,

you might decide that it is worth putting up with the inconvenience of having to

free storage under program control, rather than letting the system do it automati-

cally. In this way you can eliminate a great deal of overhead from the garbage

collector.

It is usually not worth worrying about the freeing of storage when the units of

storage are very small things such as conses or small arrays. Numbers are not a

Page 969

problem, either; fixnums and single-precision floating point numbers do not occupy

storage. But when a program allocates and then gives up very large objects at a

high rate (or large objects at a very high rate), it can be very worthwhile to keep

track of that one kind of object manually. Several programs in Genera are exam-

ples of this case. For example, the Chaosnet software allocates and frees moderate-

ly large packets at a very high rate. The window system allocates and frees cer-

tain kinds of windows (such as menus), which are very large, moderately often.

Both of these programs manage their objects by themselves, keeping track of when

the the objects are no longer used.

When we say that a program frees storage, it does not really mean that the stor-

age is freed in the same sense that the garbage collector frees storage. Instead, a

list of unused objects is kept. When a new object is desired, the program first

looks on the list to see if one already exists, and if so, uses it. Only if the list is

empty does it actually allocate a new one. When the program is finished with the

object, it returns it to this list.

The functions and special forms described in this section perform these tasks. The

set of objects forming each such list is called a resource. For example, a Chaosnet

packet could be specified as a resource. defresource defines a new resource;

allocate-resource allocates one of the objects; deallocate-resource frees one of the

objects (putting it back on the list); and using-resource temporarily allocates an

object and then frees it.

Resources are not the only facility for manual storage management. See the sec-

tion "Consing Lists on the Control Stack".

See the section "The Data Stack".

defresource name parameters &rest options Function

A special form that defines a new resource.

name should be a symbol; it is the name of the resource and gets a defresource

property of the internal data structure representing the resource.

parameters is a lambda-list giving names and default values (if &optional is used)

of parameters to an object of this type. For example, if you had a resource of two-

dimensional arrays to be used as temporary storage in a calculation, the resource

would typically have two parameters, the number of rows and the number of

columns. In the simplest case parameters is ().

The keyword options control how the objects of the resource are made and kept

track of. The syntax of each option is a keyword followed by a value. The following

keywords are allowed:

:constructor

The value is either a form or the name of a function. It is responsible for

making an object, and is used when someone tries to allocate an object

from the resource and no suitable free objects exist. If the value is a form,

it can access the parameters as variables. If it is a function, it is given the

internal data structure for the resource and any supplied parameters as its

Page 970

arguments; it needs to default any unsupplied optional parameters. This

keyword is required, unless the :finder keyword is specified. :constructor is

meaningless if :finder is provided, because :finder is expected to construct

and manage its own objects.

:initial-copies

The value is a number (or nil, which means 0). This many objects are

made as part of the evaluation of the defresource; this is useful to set up

a pool of free objects during loading of a program. The default is to make

no initial copies.

If initial copies are made and there are parameters, all the parameters must

be &optional and the initial copies have the default values of the parame-

ters.

:finderThe value is a form or a function as with :constructor and sees the same

arguments. If this option is specified, the resource system does not keep

track of the objects. Instead, the finder must do so. It is called inside a

without-interrupts and must find a usable object somehow and return it.

:matcher

The value is a form or a function as with :constructor. In addition to the

parameters, a form here can access the variable object (in the current

package). A function gets the object as its second argument, after the data

structure and before the parameters. The job of the matcher is to make

sure that the object matches the specified parameters. If no matcher is

supplied, the system remembers the values of the parameters (including op-

tional ones that defaulted) that were used to construct the object, and as-

sumes that it matches those particular values for all time. The comparison

is done with zl:equal (not eq). The matcher is called inside a without-

interrupts. The matcher returns t if there is a match, nil if not.

:checker

The value is a form or a function, as above. In addition to the parameters,

a form here can access the variables object and in-use-p (in the current

package). A function receives these as its second and third arguments, after

the data structure and before the parameters. The job of the checker is to

determine whether the object is safe to allocate. The checker returns (not

in-use-p). If no checker is supplied, the default checker looks only at in-

use-p; if the object has been allocated and not freed it is not safe to allo-

cate, otherwise it is. The checker is called inside a without-interrupts.

:initializer

The value is either a form or the name of a function. If the value is a

form, it can access the parameters as variables. In addition to the parame-

ters, a form here can access the variable object (in the current package). If

it is a function, it is given the internal data structure for the resource, the

object, and any supplied parameters as its arguments; it needs to default

any unsupplied optional parameters. If the initializer is supplied, it is called

by the resource allocator after an object has been allocated.

Page 971

It sees object and its parameters as arguments when object is about to be

allocated, whether it is being reused or was just created; it can initialize

the object.

:deinitializer

The value is either a form or the name of a function. If it is a form, it can

access the variable object (in the current package). If it is the name of a

function, the function will be called with two arguments: the internal data

structure for the resource, and the object.

If the deinitializer is supplied, it is called when the object is deallocated. If

both :finder and :deinitializer are specified, the deinitializer is called when

the object is deallocated even though the resource mechanism is not keep-

ing track of the objects. deallocate-whole-resource calls the deinitializer

for objects marked as in use. clear-resource does not.

:deinitializer should be used when an object being controlled via resources

refers to other objects that have a chance to be reclaimed by the garbage

collector. The deinitializer should clear references to such objects.

:free-list-size

The value is a number, with nil meaning the default value of 20 (decimal).

:free-list-size is the initial size of the array that the resource uses to re-

member the objects it allocates and deallocates. The array expands if nec-

essary.�

Any function supplied to defresource for :matcher, :checker, or :initializer must

supply defaults for any unsupplied optional arguments.

If these options are used with forms (rather than functions), the forms get com-

piled into functions as part of the expansion of defresource.

Most of the options are not used in typical cases. Here is an example:

(defresource two-dimensional-array (rows columns)

:constructor (make-array (list rows columns)))�

Suppose the array were usually going to be 100 by 100, and you wanted to preallo-

cate one during loading of the program so that the first time you needed an array

you would not have to spend the time to create one. You might simply put:

(using-resource (foo two-dimensional-array 100 100)

)�

after your defresource, which would allocate a 100 by 100 array and then immedi-

ately free it. Alternatively, you could do this:

(defresource two-dimensional-array

(&optional (rows 100) (columns 100))

:constructor (make-array (list rows columns))

:initial-copies 1)�

Here is an example of how you might use the :matcher option. Suppose you want-

ed to have a resource of two-dimensional arrays, as above, except that when you

allocate one you do not care about the exact size, as long as it is big enough. Fur-

Page 972

thermore, you realize that you are going to have a lot of different sizes and if you

always allocated one of exactly the right size, you would allocate a lot of different

arrays and would not reuse a preexisting array very often. So you might do the

following in Symbolics Common Lisp:

(defresource sloppy-two-dimensional-array (rows columns)

 :constructor (make-array (list rows columns))

 :matcher (and (≥ (array-dimension object 0) rows)
 (≥ (array-dimension object 1) columns)))�

Here, an array is filled with nil when it is initially allocated and when it is deal-

located:

(defresource array-of-temporaries ()

 :constructor (make-array 100.)

 :initializer (fill object nil)

 :deinitializer (fill object nil))�

allocate-resource resource-name &rest parameters Function

Allocates an object from the resource specified by resource-name. The various

forms and/or functions given as options to defresource, together with any parame-

ters given to allocate-resource, control how a suitable object is found and whether

a new one has to be constructed or an old one can be reused.

Returns a resource and a descriptor. The descriptor is an object that points directly

to this resource in the resource table. Using the descriptor with deallocate-

resource speeds up deallocation.

Note that the using-resource special form is usually what you want to use, rather

than allocate-resource itself.

Resources remember their parameters, so you can use c-sh-A with a resource to

see its parameters.

deallocate-resource resource-name object &optional descriptor Function

Frees the object resource-name, returning it to the free-object list of the resource

specified by object. Descriptor is an object that points to the resource table. A de-

scriptor is the second object returned by allocate-resource. If descriptor is used

with deallocate-resource, deallocation is faster.

deallocate-whole-resource resource-name Function

Deallocates all allocated objects of the resource specified by resource-name, return-

ing them to the free-object list of the resource. You should use this function with

caution. It marks all allocated objects as free, even if they are still in use. If you

call deallocate-whole-resource when objects are still in use, future calls to

allocate-resource might allocate those same objects for another purpose.

Page 973

clear-resource resource-name Function

Forgets all the objects being remembered by the resource specified by resource-

name. Future calls to allocate-resource create new objects. This function is useful

if something about the resource has been changed incompatibly, such that the old

objects are no longer usable. If an object of the resource is in use when clear-

resource is called, an error is signalled when that object is deallocated.

map-resource resource-name function &rest args Function

Calls function once for every object in the resource specified by resource-name.

function is called with the following arguments:

• The object

• t if the object is in use, or nil if it is free

• resource-name

• Any additional arguments specified by args

using-resource (variable resource parameters...) body... Function

The body forms are evaluated sequentially with variable bound to an object allocat-

ed from the resource named resource, using the given parameters. The parameters

(if any) are evaluated, but resource is not.

using-resource is often more convenient than calling allocate-resource and

deallocate-resource. Furthermore, it is careful to free the object when the body is

exited, whether it returns normally or via throw. This is done by using unwind-

protect.

Here is an example of using-resource:

(defresource huge-16b-array (&optional (size 1000))

 :constructor (make-array size :element-type ’(unsigned-byte 16)))

�

(defun do-complex-computation (x y)

 (using-resource (temp-array huge-16b-array)

 ... ;Within the body, the array can be used

 (set (aref temp-array i) 5)

 ...)) ;The array is returned at the end�

using-resource also works with more than one resource, as in this example:

(using-resource ((r1 foo-array-resource foo-parameters)

 (r2 bar-array-resource bar-parameters))

<body>)�

This example allocates several resources for the duration of <body>.

Resources remember their parameters, so you can use c-sh-A with a resource to

see its parameters.

Page 974

si:describe-resource resource-name Function

Describes the internal data structure for managing the resource named resource-

name. It also tells how many objects have been created in the resource and, for

each object, prints the object, the parameters, and whether or not the object is in

use.

si:repair-resource resource-name Function

If you believe that a resource has become inconsistent due to typing c-ABORT while

an allocation was in progress, this function will reclaim objects that the resource

believes to be busy. It only reclaims objects that can safely be reclaimed. si:repair-

resource does useful work only when there is no :checker or :finder supplied to

defresource. Presumably the :checker would be able to repair similar damage on

its own.

If a resource is aborted during an allocation or a deallocation with the resource

locked, then the only damage that happens is that there is a possibility that the

object being dealt with might never be allocated.

Device Interfaces

SCSI Interface

You can attach devices with SCSI interfaces to the XL400, UX-family, and

MacIvory machines. Once the device is physically connected, you use functions and

macros to communicate with the device. The SCSI software interface is the same

for the XL400 and MacIvory.

Introduction to the SCSI Interface

The XL400 and MacIvory systems contain a SCSI (Small Computer Standard In-

terface) interface for controlling peripherals such as tape drives, optical disks,

printers, etc. Symbolics does not support using SCSI disks on the XL400 for sys-

tem use, such as for paging, FEPFS, LMFS, Statice, and so on.

SCSI is an ANSI standard I/O bus with well-specified mechanical and electrical

characteristics and bus protocols, and the XL400 and MacIvory fully meets these

specifications. See the document "Small Computer System Interface (SCSI)", pub-

lished by the American National Standard for Information systems.

The XL400 system has two cable ports, one internal and one external, connected to

a single SCSI bus. The internal cable is used for SCSI devices mounted in the sys-

tem cabinet, such as the cartridge tape drive. The external connector is for any

other peripherals; up to seven may be attached.

The SCSI bus includes a channel for high-bandwidth data transfer, and control sig-

nals and protocols for sharing that channel among up to eight devices. Usually the

attached devices are classified as either initiators or targets; initiators are capable

Page 975

of initiating an I/O operation, and targets are passive peripherals. The XL400 itself

is a SCSI initiator, and will not respond as a SCSI target.

All SCSI device operations are specified by a high-level command protocol. For ex-

ample, reading a given block of data is accomplished by issuing a single command

to read that block, and that command is exactly the same regardless of the type or

manufacturer of the target device. For most usage, a small set of core commands

such as READ and WRITE will suffice, but there are often more specific com-

mands available for a particular class of peripherals. The XL400 SCSI implementa-

tion allows all valid SCSI commands to be issued. For information on the SCSI

commands, see the ANSI specification on SCSI.

Underlying the high-level SCSI command protocol are protocols for arbitrating be-

tween multiple initiators on the bus, connecting an initiator with a desired target,

exchanging command and status information, and supervising data flow between an

initiator and target. These protocols are handled transparently by the XL400 SCSI

implementation, and user access to the underlying SCSI ‘message’ system is not

provided. The XL400 fully supports the SCSI disconnect/reconnect protocol, for op-

timal bus sharing.

The XL400 SCSI hardware resides on the I/O board, and consists of an integrated

SCSI host adaptor, an 8Kx32 buffer memory, and the internal and external cable

ports. Data transfers are performed by hardware DMA between the host adaptor

and the buffer memory, and the XL400 processor copies data between its virtual

memory and the hardware buffer memory. This system supports peak data transfer

rates of approximately 1.5 megabytes/second using the asynchronous protocol, and 4

megabytes/second using the synchronous protocol. Note, however, that the syn-

chronous transfer option is not yet supported by the XL400 SCSI software.

Attaching a SCSI Device

The XL400 hardware and software enable you to communicate with SCSI devices

attached to the machine. Any SCSI disk, tape drive, printer, or other kind of de-

vice can be connected. Up to seven peripheral SCSI devices may be connected.

Attaching a new SCSI device requires these steps:

1. Assigning the device a SCSI device number

Each SCSI device must have a unique SCSI device number identifying it so

that the XL400 can communicate with it. The XL400 can support seven pe-

ripheral SCSI devices, numbered 0 through 6. If you have an internal car-

tridge tape drive, it has a SCSI number assigned to it. When you connect a

new device, you must assign it one of the unused SCSI device numbers. To

find out which SCSI numbers are already assigned, use the Show Machine

Configuration command. For information on how to assign a number to a de-

vice, refer to the vendor’s documentation for that device.

2. Deciding whether to install the device internally or externally

Page 976

There are two ways to add a SCSI device: internally (within the XL400 box

itself), or externally. An internal device connects to the internal SCSI cable

while an external device connects to the external SCSI bulkhead of the

XL400. (Some XL400 machines are shipped with an internal cartridge tape

drive, which is an example of an internal device.)

The internal connection should be reserved for a Symbolics-supplied or ap-

proved device. Symbolics must approve the device to ensure that there is suf-

ficient power, cabling, and space for it.

Note: any device installed internally must have its terminator removed and

must not supply termination power.

3. Controlling termination power (optional)

By default, the I/O board on the XL400 supplies termination power of 5 volts

to the SCSI bus. (Note that the bottom light on the I/O board is turned on if

the I/O board is supplying termination power, and is turned off otherwise.) If

you are adding a SCSI device yourself, you must ensure that the device is not

supplying termination power.

Note that termination power can come from one of two sources: the XL400

I/O board, or an external SCSI device. Note that an internal SCSI device must

not supply termination power. It is your choice whether the I/O board or an

external SCSI device supplies termination power. If you prefer that an exter-

nal SCSI device supplies termination power, you must contact your Symbolics

Customer Service representative, who will configure the machine for you.

4. Connecting the device and ending terminator properly

When connecting SCSI devices, it is necessary that there are exactly two ter-

minators in the SCSI chain. One terminator should be placed at the beginning

of the chain, and the other at the end of the chain.

If the terminators are not installed properly, then damage to your hard-

ware can result. If more than two terminators are installed, damage to your

hardware can result due to excessive drive currents being required from the

SCSI bus drivers. If there are less than two terminators, or the terminators

are not at either end of the SCSI bus, then SCSI data and control signal re-

flections may cause intermittent problems in the SCSI operation.

When you receive your XL400, the XL400 boardset is the first SCSI device in

the chain, and the first terminator is correctly installed at the beginning of

the chain. (This is inside the machine, and you won’t see it, or have any need

to change it.) The second terminator is placed on the external SCSI bulkhead

of the XL400, at the other end of the XL400’s SCSI bus.

Page 977

Some SCSI devices come with internal terminators. Terminators are usually

resistor packs that must be physically removed if you do not wish to termi-

nate at the device. You should find out whether your device has an internal

terminator. Remember, there cannot be more than two terminators in the SC-

SI chain; one terminator should be at each end.

To connect a device internally, verify that the device does not supply bus ter-

mination power. Next, remove any terminator in that device. You can termi-

nate the chain with the terminator at the external SCSI bulkhead of the

XL400.

XL400 machines are shipped with a cable that is routed into the internal

drive area and then goes to the external SCSI bulkhead of the XL400. This

means that internal devices must be placed in the top drive slot. An internal

SCSI tape drive must be in the top drive slot. Place the device inside the

XL400 machine and connect it to the power supply.

To connect a new SCSI device externally, verify that the device does not sup-

ply bus termination power (if you prefer that the device does supply termina-

tion power, you must contact your Symbolics Customer Service representative,

who will configure your XL400 such that the I/O board does not supply termi-

nation power). Next, remove the terminator from the end of the chain. Con-

nect the new device to the location where the ending terminator was. Finally,

you need to terminate the end of the chain. You can do this either by ensur-

ing that the device has an internal terminator, or by placing the Symbolics-

supplied terminator at the new end of the chain. In either case, the new end

of the chain is on the last SCSI device.

Examples of Using the SCSI Interface

Standard SCSI commands (usually called "Command Descriptor Blocks") have three

basic representations: six, ten, or twelve bytes long. All of these representations

include an 8-bit opcode as their first byte. These commands are represented in the

XL400 SCSI system as vectors of element type (unsigned-byte 8). The data repre-

sentation in these commands is byte-swapped from that used by the Ivory proces-

sor; that and the complexity of SCSI command encodings makes it laborious to

build these commands manually. The Octet Structure facility, particularly the

rpc:define-octet-structure macro, can help with this task. See the section "Defin-

ing Octet Structures for SCSI Commands".

The files SYS:SYS;SCSI-DEFINTIIONS.LISP and SYS:SYS;SCSI-TOOLS.LISP contain definitions of

some standard SCSI command and response formats, including the structures used

in these examples.

SCSI Read Example

This example uses the SCSI Read command to read a block of data from a device.

Page 978

�

;;; Define the accessors for a SCSI Read command descriptor

;;; block.

(rpc:define-octet-structure (scsi-direct-read-command :access-type

 :byte-swapped-8)

 operation-code

 (+ ((logical-unit-number (load-byte (unsigned-byte 24) 21 3)))

 ((logical-block-address (load-byte (unsigned-byte 24) 0 21))))

 transfer-length

 *)

�

;;; Read a single block of data from the specified SCSI port

;;; into the given array.

(defun read-block (port block array)

 (stack-let ((command (make-scsi-read-command

 :operation-code %scsi-command-read

 :logical-block-address block

 :transfer-length 1)))

 (scsi:scsi-port-check-status port

 (scsi:scsi-port-execute-read-command port command array))

 array))

�

;;; Calling sequence: use READ-BLOCK to read block 100 of device 0

;;; into an array.

(scsi:with-scsi-port (port 0)

 (read-block port 100 (make-array 512 :element-type ’(unsigned-byte 8))))

�

SCSI Inquiry Example

This example uses the SCSI Inquiry command to determine the vendor and model

of the device assigned a particular ID on the SCSI bus. The Octet Structure facili-

ty is used to specify the Inquiry command format, and also to interpret the device

response. See the section "Defining Octet Structures for SCSI Commands".

;;; Define the accessors for a SCSI Inquiry command descriptor

;;; block.

(rpc:define-octet-structure (scsi-inquiry-command :access-type

 :byte-swapped-8)

 operation-code

 (logical-unit-number (load-byte (unsigned-byte 8) 5 3))

 *

 *

 allocation-length

 *)

Page 979

�

;;; Define the accessors for the response to a SCSI Inquiry command.

(rpc:define-octet-structure (scsi-inquiry-data :access-type

 :byte-swapped-8)

 device-type

 (+ ((device-type-qualifier (load-byte (unsigned-byte 8) 0 7)))

 ((removable-medium (rpc::boolean-bit (unsigned-byte 8) 7))))

 (+ ((ansi-version (load-byte (unsigned-byte 8) 0 3)))

 ((ecma-version (load-byte (unsigned-byte 8) 3 3))))

 (respond-data-format (load-byte (unsigned-byte 8) 0 4))

 additional-length

 vu

 *

 *

 (vendor-name (vector rpc:character-8 8))

 (product-name (vector rpc:character-8 16))

 (revision-level (vector rpc:character-8 4)))

�

;;; Determine the vendor and model of the device associated with

;;; the specified port.

(defun scsi-port-vendor-and-model (port)

 (stack-let ((command (make-scsi-inquiry-command

 :operation-code %scsi-command-inquiry

 ;; The Inquiry response is 36 octets long.

 :allocation-length 36))

 (response (make-array 36 :element-type ’(unsigned-byte 8))))

 (scsi:scsi-port-check-status port

 (scsi:scsi-port-execute-read-command port command response))

 (values (scsi-inquiry-data-vendor-name response 0)

 (scsi-inquiry-data-product-name response 0))))

�

;;; Calling sequence: use scsi-port-vendor-and-model to probe

;;; device 0.

(scsi:with-scsi-port (port 0)

 (scsi-port-vendor-and-model port))

�

Defining Octet Structures for SCSI Commands

The Octet Structure facility enables you to conveniently define octet structures for

any purpose, including defining SCSI commands and defining octet structures for

interfacing to the Macintosh from Lisp. This section describes the mechanisms

most useful for defining SCSI commands. For examples:

See the section "SCSI Read Example".

See the section "SCSI Inquiry Example".�

Page 980

For details on how to use the Octet Structure facility to interface to the Macin-

tosh, see the section "Defining Octet Structures".

rpc:define-octet-structure name-and-options &body fields Macro

Defines an octet structure.

name-and-options The name of the octet structure or the list containing the

name of the structure and some number of keyword value

pairs. �

This macro takes the keyword arguments :conc-name, :constructor, :default-

pointer, and :include, which behave in a way similar to the corresponding key-

words for defstruct. See the section "Options for defstruct" for further informa-

tion. In addition, rpc:define-octet-structure takes the following keyword argu-

ments:

:access-type Specifies how references are made by default as one of :octet,

:unsigned-8, or :byte-swapped-8. To define octet structures to

represent Macintosh structures, for use by the Toolbox remote

entries, always use :byte-swapped-8. The default is :octet.

:alignment Controls the automatic insertion of padding. This is useful

when defining structures that you want to correspond directly

to structures defined in another language or on a different ar-

chitecture or both. :alignment takes an integer value as an

argument. Specifying an alignment of n means that all struc-

ture fields of size greater than or equal to n should be aligned

with the next offset evenly divisible by n. Where the field is a

vector it will be aligned based on the element size of the vec-

tor.

For example, when defining octet-structures in Lisp to repre-

sent C structs as defined by THINK C on the Macintosh, you

will want to specify an alignment of 2. This will align all

structure fields of 2 or more bytes to an even byte boundary,

and make sure that the Lisp accessors defined by rpc:define-

octet-structure correspond precisely to where the data is

stored by C. In any situation where you are using octet-

structures to represent data that is created by one

machine/language and manipulated by another, it is essential

that you take into account the storage conventions of the other

implementation.

:define-accessors Inhibits definition of macros.

:export As for defstruct, takes a list of keywords from the set (:struc-

ture-name :accessors :constructor).

:default-type An integer type. :integer-8 is the default.

Page 981

:default-index Makes the second argument to each accessor optional, default-

ing it to the value you supply with this argument. �

Elements of fields can be a symbol for single unsigned byte fields, or a list of field

name and type. * used for a name allocates space, but doesn’t define accessors. *

used as a type defines subfields that overlap, such as bit fields. + used as a name

defines unions.

Predefined Octet Structure Field Data Types

Atomic field types�

When defining octet-structures it is often useful to define a new field type in

terms of some conversion routine, or some expansion, of a previously defined type.

Although most of the MacOS types are already defined as octet-structure field

types, the following is a short list of the basic field types: those which are most

useful when defining your own octet structures and octet-structure field types.

unsigned-byte (&optional (size 8))

signed-byte (size &)

integer-32 Equivalent to (signed-byte 32).

cardinal-32 Equivalent to (unsigned-byte 32).

integer-16 Equivalent to (signed-byte 16).

cardinal-16 Equivalent to (unsigned-byte 16).

integer-8 Equivalent to (signed-byte 8).

cardinal-8 Equivalent to (unsigned-byte 8).

padding (base-type &optional (repeat 1))

Just occupies space; the field cannot be accessed. base-type can

be any field type.

vector (type length) length

Can be a form that references earlier structure elements (such

as repeat byte count). Referencing returns a vector of the ele-

ments, or you can use the octet-structure-field-elements loop

iteration path.

load-byte (base-type position size)

Accesses a subfield of base-type access. Useful with *.

bit (base-type bit-number)

Equivalent to (load-byte base-type bit-number 1).

boolean (base-type) Equivalent to base-type with not-temp test.

Page 982

boolean-bit (base-type bit-number)

Equivalent to (boolean (bit base-type bit-number)).

member (base-type set)

set is a form to evaluate to a sequence indexed by field.

subset (base-type keywords)

One bit for each position to indicate the presence of corre-

sponding element.

character-8 () Equivalent to unsigned-8 with code-char input and char-code

output.

ascii-character-8 ()Equivalent to unsigned-8 with ASCII-char input and char-ASCII

output.

Dictionary of SCSI Functions

scsi:*scsi-minimum-maximum-buffer-size* Constant

The maximum buffer size (in octets) that may be used in a call to data transfer

operations (scsi:scsi-port-execute-write-command and scsi:scsi-port-execute-read-

command) depends on the system. For embedded systems, this value may be de-

pendent on the host’s available memory and, in fact, may be dynamic. All systems,

however, guarantee that all data transfer operations will accept any buffer whose

size is no more than scsi:*scsi-minimum-maximum-buffer-size* octets.

scsi:map-over-scsi-ports function Function

Calls the given function (which must accept one argument) for each possible SCSI

port on the system.

scsi:scsi-port-address port Function

Returns three values: the controller, the bus address, and the logical unit (always

0).

scsi:scsi-port-check-status port status Function

A default function for handling SCSI errors. The status argument is the status

code returned by the most recently executed SCSI command, and the port argu-

ment is the relevant port. If the status argument indicates that the command com-

pleted successfully, then this function does nothing. Otherwise, it queries the de-

vice (using the SCSI request sense command) to get more information about its

status, and signals an error if appropriate.

Page 983

scsi:scsi-port-execute-control-command scsi-port command Function

Executes a SCSI command that transfers no data. Returns the status of the com-

mand, which is either a SCSI status code (if it is less than 256) or a special code

to indicate a SCSI bus failure.

scsi-port is the port over which the SCSI command should be given. command is of

type (vector (unsigned-byte 8)) and contains the command bytes.

scsi:scsi-port-execute-read-command scsi-port command buffer &key (:start 0) (:end

(length scsi::buffer)) (:block-size 4) (:stream-size 0) Function

Executes a SCSI command that reads data from the device into the buffer.

scsi-port is the port over which the SCSI command should be given. buffer is of

type (vector (unsigned-byte 8)) and receives the data. start and end indicate the

portion of buffer to be used.

block-size allows the caller to indicate that the device will transfer data in units of

that number of octets (units of eight bits). stream-size can be used to limit the

amount of data allowed in the hardware I/O buffer. These two arguments can be

used to improve the performance of the driver when the bus is heavily used. For

example, if you know that your SCSI device always writes only 5000 bytes, then

supply :stream-size 5000; the system will then read no more than 5000 bytes from

the buffer. If you know that your device always writes data in chunks of 1000

bytes, then supply :block-size 1000, and the system will read data in multiples of

1000 bytes.

This function returns two values. The first value is the status of the command,

which is either a SCSI status code (if it is less than 256) or a special code to indi-

cate a SCSI bus failure. The second value is the number of octets transferred.

scsi:scsi-port-execute-write-command scsi-port command buffer &key (:start 0)

(:end (length scsi::buffer)) (:block-size 4) (:stream-size 0) Function

Executes a SCSI command that writes data from the buffer to the SCSI device.

scsi-port is the port over which the SCSI command should be given. buffer is of

type (vector (unsigned-byte 8)) and supplies the data. start and end indicate the

portion of buffer to be used.

block-size allows the caller to indicate that the device will transfer data in units of

that number of octets. stream-size can be used to limit the amount of data allowed

in the hardware I/O buffer. These two arguments can be used to improve the per-

formance of the driver when the bus is heavily used. For example, if you know

that your SCSI device always asks for 5000 bytes, then supply :stream-size 5000;

the system will then put no more than 5000 bytes into the buffer. If you know

that your device always accepts data in chunks of 1000 bytes, then supply :block-

size 1000, and the system will write data in multiples of 1000 bytes.

This function returns two values. The first value is the status of the command,

which is either a SCSI status code (if it is less than 256) or a special code to indi-

cate a SCSI bus failure. The second value is the number of octets transferred.

Page 984

scsi:scsi-port-maximum-buffer-size scsi-port Function

Returns the largest buffer size (in octets) that may be used in a call to data trans-

fer operations (scsi:scsi-port-execute-write-command and scsi:scsi-port-execute-

read-command). For embedded systems, this value may be dependent on the host’s

available memory and, in fact, may be dynamic. All systems, however, guarantee

that all data transfer operations will accept any buffer whose size is no more than

scsi:*scsi-minimum-maximum-buffer-size* octets.

scsi-port is the port whose maximum buffer size is desired.

scsi:scsi-port-open unit &key (:if-locked :error) :controller Function

Attaches a SCSI device, and returns a SCSI port object which is used to refer to

the device to all other entrypoints.

unit is an integer between 0 and 7, representing the SCSI bus address of the de-

vice to be used. Note that on an XL400, unit 7 is assigned to the XL400 itself.

The keyword :if-locked can be either :error to signal an error if the device is al-

ready in use, or nil to return nil.

The keyword :controller can be nil to indicate the default controller, or 0 and 1 to

indicate which I/O board.

Generally, scsi:with-scsi-port should be used instead of scsi:scsi-port-open and

scsi:scsi-port-close.

scsi:scsi-port-close port &key :abort Function

Undoes the effects of scsi:scsi-port-open.

The abort keyword indicates whether the closing is normal (a nil value) or abnor-

mal (a true value). Supply :abort t for an abnormal termination. The default is

nil.

Generally, scsi:with-scsi-port should be used instead of scsi:scsi-port-open and

scsi:scsi-port-close.

scsi:with-scsi-port (port unit &key (:if-locked :error)) :controller &body body Macro

Attaches a SCSI device, and keeps it open for the duration of body. This macro

should generally be used instead of using the scsi:scsi-port-open and scsi:scsi-

port-close functions.

port is a variable which is bound to the SCSI port object; this is used to refer to

the device in all other entrypoints within the body.

unit is an integer between 0 and 7, representing the SCSI bus address of the de-

vice to be used. Note that on an XL400, unit 7 is assigned to the XL400 itself.

The keyword :if-locked may be :error to signal an error if the device is already in

use, or nil to return nil. The default is :error.

Page 985

The keyword :controller can be nil to indicate the default controller, or 0 and 1 to

indicate which I/O board.

VMEbus Interface

Introduction to the XL-Family VMEbus Interface

The XL-family system is based on a 7-slot, 9U form factor VMEbus backplane and

card cage. The VMEbus is a versatile, standard 32-bit bus which provides power

and clock distribution, asynchronous data transfer, and interrupt delivery and ac-

knowledgment. Although the performance requirements of modern proces-

sor/memory interconnects have exceeded the design range of the VMEbus, it re-

mains popular as a peripheral I/O bus, and is often used in tandem with a sepa-

rate high-speed memory bus. This is the strategy used in the XL: a private 48-bit

bus connects the processor with its memory and I/O board, and the VMEbus inter-

face is used to communicate with optional I/O peripherals and other 32-bit wide

devices.

The XL processor is a VMEbus master, meaning that it can issue requests to read

and write locations in other VMEbus cards, and can deliver interrupts. The inter-

face provides a flexible polled access facility with which nearly all possible data

transfer operations may be performed. It also provides a direct-access facility with

which a portion of the VMEbus address space may be mapped into the XL’s physi-

cal address space, for high-speed access to 32-bit slaves.

The XL processor is also a VMEbus slave, meaning that other bus masters can is-

sue requests to read and write locations in it, and that it can receive interrupts is-

sued by other bus masters. However, other bus masters may not directly access

the XL processor’s main memory; they may access only a dedicated memory in the

XL VMEbus interface called the slave buffer. This design eliminates the hardware

complication of arbitration deadlock between the VMEbus and the XL private bus,

and eliminates the software complication of negotiating with the Genera virtual

memory system to reserve contiguous portions of main memory.

The VMEbus is a flexible bus with many options and modes. In the design of the

XL VMEbus interface, particular attention was paid to optimizing both the master

and slave for high speed 32-bit data transfer, but the interface supports nearly all

possible modes and can accommodate virtually any VMEbus device. The interface

hardware includes the following features:

• On the XL400, the slave appears on the VMEbus as a 32K by 32-bit memory.

On the XL1200, the slave is one megabyte in size.

• The master can transparently map up to 267 megawords of VMEbus address

space into the Ivory physical address space (for 32-bit transfers only).

• Both the master and slave implement 8, 16, 24, and 32-bit data transfers, includ-

ing transfers not aligned on an address boundary.

Page 986

• Both the master and slave may specify that data be shuffled to compensate for

differences in system bit, nibble, or byte ordering.

• Both the master and slave may request that data returned to Ivory be tagged as

either integers or IEEE 32-bit floating-point numbers on the XL400. (On the

XL1200, data returned can only be tagged as integers.)

• The master may specify an arbitrary address modifier for a data transfer.

• The arbitration parameters (arbitration level, bus release behavior) of the mas-

ter are programmable.

• The interface can issue and receive all seven interrupt levels, and supports 8-bit

interrupters.

• The slave implements the VMEbus block transfer protocol.

• The interface includes a system controller (containing VMEbus arbiter, clock

drivers, and so on), which may be disabled by a jumper.�

The interface hardware does not support the following features:

• The master does not implement the VMEbus block transfer protocol, but uses

address pipelining to achieve equivalent performance.

• The master cannot issue ADDRESS-ONLY data transfer requests.

• The master cannot issue READ-MODIFY-WRITE data transfer requests, but

atomic operations are supported by inhibiting bus release.

Software provided with Genera supports efficient access to all interface features,

while shielding the client software from irrelevant hardware details. Data transfers

may be performed in isolation via function calls that read or write specified bus

locations, or by obtaining a physical address that the interface will map to a range

of VMEbus addresses, or by using a Lisp indirect array which may be manipulated

by normal array operations and facilities such as BITBLT. Full support for deliver-

ing and handling interrupts is provided.

For more information about the VMEbus hardware specification, see "The VMEbus

Specification", Revision C.1, published by Printex. For more information about the

electrical and mechanical characteristics of the XL VMEbus card cage, contact

your Symbolics sales representative.

VMEbus Data Transfers

There are four basic techniques for performing VMEbus data transfers:

Page 987

• Isolated transfers may be performed by calling the functions sys:bus-read and

sys:bus-write, specifying the desired VMEbus address (and perhaps data) and

any optional parameters. This technique is the most flexible, since it uses the

polled access hardware in the interface which supports non-32-bit transfers.

However, it incurs some overhead programming the hardware and is therefore

not very efficient.

• The function sys:make-bus-address may be called to map a portion of the

VMEbus into the Ivory address space, and return a physical address pointing to

it. That address may be manipulated using subprimitives such as sys:%pointer-

plus, sys:%p-ldb, sys:%p-dpb, sys:%block-read, and sys:%block-write. This

technique is very efficient, but is rather cumbersome. It also works for 32-bit

slaves only.

• The function sys:make-bus-array may be called to map a portion of the VME-

bus into the Ivory address space, and return an indirect array pointing to it.

This allows high-level, bounds-checked access to array elements of any type, and

the array may also be passed to Lisp facilities such as bitblt. This technique al-

so works for 32-bit slaves only.

• Atomic operations may be performed by calling sys:bus-store-conditional, which

works for VMEbus locations the same way store-conditional works for virtual

memory locations.�

All these techniques provide some way to configure the interface hardware to en-

able options such as bit shuffling, nonstandard address modifiers, and arbitration

parameters. For polled transfers (via sys:bus-read and sys:bus-write), the options

are specified as simple keyword arguments. For direct transfers (via sys:make-

bus-address and sys:make-bus-array), most of the options are specified by the

sys:with-bus-mode macro, which must surround any use of VMEbus addresses.

See the section "Summary of VMEbus Transfer Options" for a description of the

available options.

In general, clients should use polled transfers to refer to isolated registers on the

VMEbus, and direct transfers to map memories, frame buffers, large register

banks, etc., into the Ivory physical address space. See the section "VMEbus Direct

Data Transfers".

VMEbus Direct Data Transfers

The VMEbus master can perform direct data transfers, in which a portion (called

a window) of the VMEbus address space is mapped into the Ivory physical address

space, and accessed as though it were (32-bit wide) Ivory memory. For direct

transfers, some of the data transfer options, such as the arbitration parameters,

are controlled by hardware registers that must be set up prior to the data trans-

fer. Others, such as data shuffling, are controlled by fields within the Ivory physi-

cal address decoded by the VMEbus interface. sys:with-bus-mode and the address-

generating functions sys:make-bus-address and sys:make-bus-array conspire to

keep the hardware parameters consistent with the client’s intent.

Page 988

sys:with-bus-mode establishes a context within which VMEbus addresses may be

generated and used; it is illegal to use a VMEbus address returned by sys:make-

bus-address or sys:make-bus-array outside the dynamic scope of the sys:with-

bus-mode in which it was created. sys:with-bus-mode programs the VMEbus in-

terface according to the specified options, and guarantees that those parameters

will be maintained throughout the dynamic extent of the macro, even if some other

process is trying to use the VMEbus simultaneously in a completely different

manner.

The first time an address is generated (that is, sys:make-bus-address or

sys:make-bus-array is called) within a given sys:with-bus-mode, the direct access

window in the VMEbus interface is programmed to encompass the specified ad-

dresses. A subsequent attempt to generate an address that doesn’t lie within the

same 267-megaword window will signal an error. If this restriction causes prob-

lems, they can often be resolved by using polled transfers to refer to some of the

disparate locations.

Note that sys:bus-read, sys:bus-write, and sys:bus-store-conditional are polled

transfers and are therefore not affected by sys:with-bus-mode; they may be used

at any time.

Summary of VMEbus Transfer Options

The following options may be specified to sys:bus-read, sys:bus-write, sys:make-

bus-address, sys:make-bus-array, and sys:with-bus-mode:

:shuffle

One of :none, :byte, :nibble, or :bit, this specifies the permutation to

be applied to the data words received or transmitted by Ivory. :bit

shuffling reverses the order of all 32 bits. :byte shuffling reverses the

order of the four 8-bit bytes in a word, but preserves the order within

each byte. :nibble does the same for 4-bit groups. The default is

:none.

:data-type

One of :fixnum or :single-float, this specifies the tag to be appended

to data received by Ivory. :fixnum is the default, :single-float might

be useful when communicating with an array processor or similar de-

vice. This is meaningful only for the XL400.

The following options may be specified to sys:bus-read, sys:bus-write, and

sys:with-bus-mode:

:address-modifier

The 6-bit numeric VMEbus address modifier code to be driven onto

the bus during a data transfer cycle. The default is #x09, indicating

that the address is 32 bits wide, for a data cycle.

:ownership

One of :release-when-done, :release-on-request, or :bus-hog, this

Page 989

specifies the condition under which the VMEbus interface will relin-

quish ownership of the bus once it has control. The default is :re-

lease-on-request.

:arbitration-priority

An integer from 0 to 3, indicating the priority the VMEbus interface

will assert when requesting access to the bus. The default is 3.

The following options may be specified to sys:bus-read and sys:bus-write:

:byte-size

One of 1, 2, 3, or 4, this specifies the number of bytes of VMEbus da-

ta. The VMEbus interface will issue an 8, 16, 24, or 32 bit operation

as necessary to perform the transfer.

:byte-offset

One of 0, 1, 2, or 3, this specifies the first significant byte of the

VMEbus data.�

When using the :byte-size and :byte-offset options, note that all the specified

bytes must be contained within an aligned 32-bit word. That is, the size plus the

offset must be greater than zero and less than five.

VMEbus Interrupts

Interrupts may be posted on the VMEbus using the function sys:post-bus-

interrupt, which issues an interrupt at a specified level, waits for the receiver to

acknowledge, then delivers the specified status byte to the interrupt handler. Note

that the VMEbus interface cannot deliver an interrupt to itself.

The VMEbus interface will interrupt the Ivory processor upon receipt of any VME-

bus interrupt for an enabled level. Which levels are enabled is controlled by a

mask in the interface hardware, which may be examined and altered using

sys:logior-bus-interrupt-mask and sys:logand-bus-interrupt-mask. The mask con-

tains a 1 in each bit for which an interrupt is enabled; for example, if the mask

were #b00001010, interrupts at levels 1 and 3 would be received, and all others

would be ignored. Upon receipt of an interrupt request, the VME software issues

an interrupt acknowledge cycle to retrieve the status byte, and calls the appropri-

ate client interrupt handler in a Genera simple process.

You can also use sys:enable-bus-interrupt and sys:disable-bus-interrupt to enable

interrupts. Both functions take a level as an argument.

Client software may supply a handler function for a specific status/ID using

sys:install-bus-interrupt-handler. An interrupt handler function is a normal Lisp

function that takes one argument: the status/id byte received during the interrupt

acknowledge cycle. The interrupt level is not disabled when the interrupt is re-

ceived; the programmer must manage this.

VMEbus Slave Interface

Page 990

The VMEbus interface for the XL400 and Symbolics UX-family contains a 32K by

32 bit memory that appears on the VMEbus as a slave device. The slave supports

A24 and A32 address modes, and D08(EO), D16, and D32 data transfers.

The VMEbus interface for the XL1200 has a 256K by 32 bit buffer that supports

the same modes.

The XL slave buffer responds to the following VMEbus address modifiers:

Modifier Description

#x39 Standard normal data access

#x3A Standard normal program access

#x3B Standard normal block transfer

#x3D Standard supervisor data access

#x3E Standard supervisor program access

#x3F Standard supervisor block transfer

#x09 Extended normal data access

#x0A Extended normal program access

#x0B Extended normal block transfer

#x0D Extended supervisor data access

#x0E Extended supervisor program access

#x0F Extended supervisor block transfer�

The XL400 slave buffer responds to VMEbus address #xFADC0000 (extended) and

#xDC0000 (standard). The XL1200 slave buffer responds to VMEbus address

#xFAC00000 (extended) and #xC00000 (standard).

The UX-family machine slave buffer responds to the following VMEbus addresses:

UX400S Board Extended Address

0 #xFADC0000

1 #xFAEC0000

2 #xFAF40000

3 #xFAF80000

4 #xFABC0000

5 #xFA9C0000

6 #xFAAC0000

7 #xFAB40000

8 #xFAB80000�

UX1200S Board Extended Address

1 #xFD000000

2 #xFD200000

3 #xFD400000

Page 991

4 #xFD600000

5 #xFD800000

6 #xFDA00000

7 #xFDC00000

8 #xFDE00000�

The slave buffer may be accessed from Ivory using sys:make-bus-address or

sys:make-bus-array, simply by specifying a VMEbus address that falls within the

range of the slave buffer. Note that data transfers to such an address don’t actual-

ly incur any VMEbus traffic; internal data paths are used. The :shuffle and :data-

type options are supported for slave buffer transfers, and work just as they do for

normal VMEbus transfers. See the section "Summary of VMEbus Transfer

Options".

• The slave buffer address on XL1200 boards can be set via jumpers on the pro-

cessor board. They are set at the factory to #xFAC00000.

• The mailbox address for each board is at #x100000 beyond the slave-buffer. For

example, for UX1200S #1, (+ #xFD000000 #x100000) → #xFD100000

• Lisp keeps track of the location of the slave buffer in the variables sys:*vme-

slave-buffer-base* and sys:*vme-slave-buffer-end*. These addresses are in

words, so use (lsh sys:*vme-slave-buffer-base* 2) to get the VME address of

the slave buffer. �

If a different VME address is used for the slave buffer, you can inform Lisp of the

change by using the keyword :Slave Buffer Address to the Set Boot Options FEP

command.

Note: Sections of slave buffer memory are reserved for use by Symbolics for

certain hardware configurations. For more information, see the function

sys:allocate-slave-buffer-memory.

Resetting the XL-Family and Symbolics UX400S VMEbus

The VMEbus SYSreset signal is asserted on the XL backplane shortly after initial

powerup, and whenever the RESET button on the front panel is pressed. The XL

processor board responds to SYSreset by initializing the Ivory processor and the

I/O board, and cold-booting the FEP. The contents of the XL main memory are

preserved, and the FEP software should be able to warm boot Genera if it was

running prior to the SYSreset.

The XL400 does not generate or respond to the VMEbus SYSfail signal; the

XL1200 does generate SYSfail.

Sun systems also assert SYSreset on powerup. The UX-family machine’s processor

board responds to SYSreset by initializing the Ivory processor and sending a signal

to the machine’s life support. When the UX-family machine’s life support becomes

available, it will cooperate with the UX-family machine’s processor board in cold-

Page 992

booting the FEP. The contents of UX-family machine’s main memory are pre-

served, and the FEP software should be able to warm boot Genera if it was run-

ning prior to SYSreset.

You can initiate SYSreset on an XL1200 by using the function cli::merlin-ii-

sysreset. This is equivalent to pressing the RESET button on the front panel.

Examples of Using the VMEbus Interface

This section shows several different ways to perform a simple VMEbus data trans-

fer operation in which the goal is to copy a contiguous block of 32-bit words from

one VMEbus address to another, reversing the 4 8-bit bytes with each word.

;;; Given an A32 D32 slave, use polled transfers to copy each

;;; word. The bytes are shuffled by the interface hardware as

;;; each word is read from the source. Simple but slow.

(defun copy-VME-memory-shuffling (source-bus-address

 destination-bus-address words)

 (loop repeat words

for s from source-bus-address

for d from destination-bus-address

do

 (sys:bus-write d (sys:bus-read s :shuffle :byte))))

�

;;; Given an A32 D16 slave, use polled transfers to copy each

;;; 32-bit word in two halves. The bytes within each 16-bit word

;;; are shuffled by the interface hardware as each word is read

;;; from the source, but we have to manually interchange the two

;;; halves of each 32-bit word.

(defun copy-VME-memory-shuffling (source-bus-address

 destination-bus-address words)

 (loop repeat words

for s from source-bus-address

for d from destination-bus-address

do

 (let ((v (sys:bus-read s :shuffle :byte :byte-size 2

 :byte-offset 0)))

 (sys:bus-write d v :byte-size 2 :byte-offset 2))

 (let ((v (sys:bus-read s :shuffle :byte :byte-size 2

 :byte-offset 2)))

 (sys:bus-write d v :byte-size 2 :byte-offset 0))))

Page 993

�

;;; Given an A16 D8 slave, use polled transfers to copy each

;;; 32-bit word in four separate bytes. We have to do the byte

;;; swapping manually. We have to use the :address-modifier

;;; option to specify short (A16) addresses.

(defun copy-VME-memory-shuffling (source-bus-address

 destination-bus-address words)

 ;; This with-bus-mode isn’t actually required, we could instead

 ;; specify an :address-modifier option to every bus-read and

 ;; bus-write. But the options for those operations take their

 ;; defaults from the ambient with-bus-mode, so this is

 ;; syntactically cleaner.

 (sys:with-bus-mode (:address-modifier #x29)

 (loop repeat words

 for s from source-bus-address

 for d from destination-bus-address

 do

 (let ((v (sys:bus-read s :byte-size 1 :byte-offset 0)))

(sys:bus-write d v :byte-size 1 :byte-offset 3))

 (let ((v (sys:bus-read s :byte-size 1 :byte-offset 1)))

(sys:bus-write d v :byte-size 1 :byte-offset 2))

 (let ((v (sys:bus-read s :byte-size 1 :byte-offset 2)))

(sys:bus-write d v :byte-size 1 :byte-offset 1))

 (let ((v (sys:bus-read s :byte-size 1 :byte-offset 3)))

(sys:bus-write d v :byte-size 1 :byte-offset 0)))))

�

The remaining examples use direct transfers to perform this same operation, and

therefore work for D32 slaves only.

;;; Map the VMEbus addresses into Lisp arrays, then use a Common

;;; Lisp sequence operator to do the copying. The bytes are

;;; shuffled by the interface hardware as each word is read from

;;; the source. Simple and reasonably efficient for large

;;; transfers, although the setup overhead is fairly high.

�

(defun copy-VME-memory-shuffling (source-bus-address

 destination-bus-address words)

 ;; with-bus-mode must be wrapped around all uses of

 ;; direct-transfer addresses.

 (sys:with-bus-mode ()

 (stack-let ((s (sys:make-bus-array source-bus-address words

 :shuffle :byte))

(d (sys:make-bus-array destination-bus-address words)))

 (replace d s))))

Page 994

�

;;; Map the VMEbus addresses into physical addresses and use

;;; simple memory subprimitives to do the copying. Efficient for

;;; short transfers because of the low setup overhead, but low

;;; level and error prone.

(defun copy-VME-memory-shuffling (source-bus-address

 destination-bus-address words)

 ;; with-bus-mode must be wrapped around all uses of

 ;; direct-transfer addresses.

 (sys:with-bus-mode ()

 (loop repeat words

 for s first (sys:make-bus-address source-bus-address words

 :shuffle :byte)

then (sys:%pointer-plus s 1)

 for d first (sys:make-bus-address destination-bus-address words)

then (sys:%pointer-plus d 1)

 do

 (sys:%memory-write d (sys:%memory-read s)))))

�

;;; Map the VMEbus addresses into physical addresses and use

;;; block memory operations to do the copying. This is the most

;;; efficient way to do bulk transfers.

(defun copy-VME-memory-shuffling (source-bus-address

 destination-bus-address words)

 ;; with-bus-mode must be wrapped around all uses of

 ;; direct-transfer addresses. Direct transfers will work for

 ;; A24 and A16 slaves, using the :address-modifier option to

 ;; with-bus-modes as follows. If we’re really trying to be fast

 ;; and don’t mind being nasty, we can do the entire transfer

 ;; without ever relinquishing the bus to another master, using

 ;; the :ownership option.

 (sys:with-bus-mode (:address-modifier #x39 :ownership :bus-hog)

 ;; with-block-registers must be wrapped around all uses of

 ;; block registers.

 (sys:with-block-registers (1 2)

 ;; Use block register 1 to address the source

 (setf (sys:%block-register 1)

 (sys:make-bus-address source-bus-address words

 :shuffle :byte))

 ;; Use block register 2 to address the destination

 (setf (sys:%block-register 2)

 (sys:make-bus-address destination-bus-address words))

 ;; Use an unrolled loop to copy the words, which makes the

 ;; memory pipeline operate most efficiently.

 (sys:unroll-block-forms (words 4)

(sys:%block-write 2 (sys:%block-read 1))))))

�

Page 995

Dictionary of VMEbus Functions

sys:allocate-slave-buffer-memory name words &key :from-end Function

Returns a starting and ending address in words. There is no enforcement, but this

a simple check-out scheme for slave buffer memory so you do not accidentally use

memory allocated by the system (as on the UX-family machine or by another appli-

cation (like FrameThrower). Specific allocations can be added to an initialization

list. System allocations take place on the system initialization list.

sys:bus-error Flavor

This condition is signalled if there is a VMEbus error such as a request timeout.

Errors are signalled only on read operations; the XL400 processor stores errors

that occur on write operations to be signalled by a future read operation.

sys:bus-read bus-address &rest options Function

Reads the location specified by bus-address using a polled transfer. All options de-

fault to those specified by the ambient bus mode.

See the section "Summary of VMEbus Transfer Options" for a description of the

applicable bus options.

sys:bus-store-conditional bus-address old new &rest options Function

Checks to see whether the specified bus location contains old, and, if so, stores

new in that location. The test and set are done as a single atomic operation; no

other bus operations are allowed between the two. Both the read and the write are

performed using the specified bus options, if any, which default to those specified

by the ambient bus mode, if any. sys:bus-store-conditional returns t if the test

succeeded and nil if the test failed. See the function store-conditional.

See the section "Summary of VMEbus Transfer Options" for a description of the

applicable bus options.

sys:bus-write bus-address value &rest options Function

Stores the specified value into the location specified by bus-address using a polled

transfer. All options default to those specified by the ambient bus mode.

See the section "Summary of VMEbus Transfer Options" for a description of the

applicable bus options.

sys:deallocate-slave-buffer-memory name Function

name represents the portion of the slave buffer that was allocated by sys:allocate-

slave-buffer-memory.

Page 996

sys:disable-bus-interrupt level Function

Disables VMEbus interrupts at level. level can be between 1 and 7.

sys:enable-bus-interrupt level Function

Enables VMEbus interrupts at level. level can be between 1 and 7.

sys:install-bus-interrupt-handler function status-id Function

Installs function as the interrupt handler for interrupts within the specified status-

id. When an interrupt is detected at that interrupt level, and that interrupt level

is enabled in the interrupt mask, function will be called with one argument, the

status/id byte supplied by the interrupter. The handler will be called in a simple

process, and therefore must not depend on the dynamic environment (special vari-

able bindings, catch tags, and so on.

Note that if function is redefined, the handler must be installed again for the new

definition to take effect.

sys:logand-bus-interrupt-mask mask Function

Atomically reads the VMEbus interrupt enable mask register, logands it with the

mask argument, and stores the result back in the register. This function is useful

for disabling particular interrupts. It returns the new value, so the current state

of the interrupt mask can be read as follows:

(sys:logand-bus-interrupt-mask -1) �

sys:logior-bus-interrupt-mask mask Function

Atomically reads the VMEbus interrupt enable mask register, logiors it with the

mask argument, and stores the result back in the register. This function is useful

for enabling particular interrupts. It returns the new value, so the current state of

the interrupt mask can be read as follows:

(sys:logior-bus-interrupt-mask 0) �

sys:make-bus-address bus-address size &rest options Function

Returns an Ivory physical address usable to access the specified location on the

VMEbus. This address is usable within only the ambient sys:with-bus-mode. All

options default to those specified by the ambient bus mode. An error is signalled if

there are any conflicts between the specified options and the hardware configura-

tion specified by the ambient bus mode, or if the desired address range is not sup-

ported by the hardware. The first call to sys:make-bus-address or sys:make-bus-

array within a sys:with-bus-mode will set up any necessary address window; if a

subsequent call specifies an address range outside that window an error will be

signalled.

Page 997

See the section "Summary of VMEbus Transfer Options" for a description of the

applicable bus options.

sys:make-bus-array bus-address dimensions &rest options Function

Returns an indirect array pointing to the specified VMEbus address, using the di-

rect transfer facility. This array is usable only within the ambient sys:with-bus-

mode. The options include all the make-array options, but note that the array

cannot contain arbitrary Lisp objects, only integers and single-precision floating

point numbers; see the section "Keyword Options for make-array". The options

may also include any applicable bus options, which default to those specified by the

ambient bus mode. An error is signalled if there are any conflicts between the

specified options and the hardware configuration specified by the ambient bus

mode, or if the desired address range is not supported by the hardware. The first

call to sys:make-bus-address or sys:make-bus-array within a sys:with-bus-mode

will set up any necessary address window; if a subsequent call specifies an address

range outside that window an error will be signalled.

See the section "Summary of VMEbus Transfer Options" for a description of the

applicable bus options.

sys:post-bus-interrupt &optional (level 0) (status 0) Function

Issues an interrupt request for the specified level on the bus, waits for the inter-

rupt acknowledge cycle, then transmits the specified status/id byte to the interrupt

handler.

sys:*vme-slave-buffer-base* Variable

The starting address for the slave buffer, in words.

sys:*vme-slave-buffer-end* Variable

The ending address for the slave buffer, in words.

sys:with-bus-mode (&rest options) &body body Macro

Establishes a context within which VMEbus addresses may be generated and used;

it is illegal to use a VMEbus address returned by sys:make-bus-address or

sys:make-bus-array outside the dynamic scope of the sys:with-bus-mode in which

it was created. sys:with-bus-mode programs the VMEbus interface according to

the specified options, and guarantees that those parameters will be maintained

throughout the dynamic extent of the macro, even if some other process is trying

to use the VMEbus simultaneously in a completely different manner.

See the section "Summary of VMEbus Transfer Options" for a description of the

applicable bus options.

Page 998

Disk System User Interface

This chapter describes the portions of the disk system that are available to the

user. The discussion is organized as follows:

Three sections introduce some basic definitions and concepts. For a discussion of

the terms used throughout this chapter: See the section "Disk System Definitions

and Constants".

For descriptions of the disk array and disk event data structures that are the basic

buffers for data and synchronization information: See the section "Disk Arrays".

See the section "Disk Events".

Three sections describe disk transfers in detail. For a description of the low-level

user disk transfer mechanism that is the basis for more sophisticated interfaces,

such as the FEP file system: See the section "Disk Transfers".

To learn about the error-handling mechanism: See the section "Disk Error Han-

dling".

For a discussion of the FEP file system and disk streams: See the section "FEP

File System and Disk Streams".

For a discussion of disk performance, along with some basic approaches for achiev-

ing high performance: See the section "Disk Performance".

For examples that illustrate concepts introduced in all the sections mentioned

above: See the section "Examples of High Disk Performance".

For a description of the disk utilities such as the FEP file system verifier, and of

routines to mount disk units: See the section "Disk and FEP File System Utilities".

Definitions and Constants

The Genera disk system is capable of transferring data in either user mode, in

which data are packed 32 bits per memory word, as fixnums, or system mode, in

which data are packed 36 bits (3600 family) or 40 bits (Ivory family) per memory

word. These modes only affect how the data are represented in memory; the data

are stored as a stream of bits on the disk in either case. This section does not de-

scribe system mode, which is used only by the virtual memory system.

Data are stored on a disk pack. To access the disk pack, you must use a disk

drive. The 3600 family can address multiple disk drives, but only one disk pack at

a time can be mounted per disk drive. Most of the disk drives available on 3600

and Ivory family systems have nonremovable disk packs.

Each disk drive is assigned a unique small nonnegative number, called the unit

number, that identifies the drive. A unit number ranges from 0 up to, but exclud-

ing, 32 decimal. However, the disk drive hardware can restrict the maximum to a

smaller value, such as 8. The term disk unit refers to the combination of the disk

drive and a mounted disk pack.

The space available on a disk unit is divided into equal-sized blocks called disk

blocks or disk pages. A disk block is the smallest unit that can be transferred be-

Page 999

tween the disk and virtual memory. On 3600 family systems, each disk block con-

tains 9,216 bits of data, which are viewed as 288 fixnums in user mode or 256

tagged words in system mode. On Ivory family systems, each disk block contains

10,240 bits of data, which are viewed as 320 fixnums in user mode or 256 tagged

words in system mode. The symbolic constant si:disk-sector-data-size32 indicates

the number of fixnums that fit into a disk block for the running system.

A disk address is a unique identifier for a disk block residing on a mounted disk

pack. A disk address, also called a disk page number (DPN), is composed of a unit

number and a block number relative to that unit. Note that sys:%logdpb should

be used when constructing DPNs from their constituents; a DPN must always be a

fixnum.

sys:%%dpn-unit Variable

A byte specifier for accessing the unit number field in a disk address.

sys:%%dpn-page-num Variable

A byte specifier for accessing the block number field in a disk address. Block num-

bers are relative to a disk unit, where zero addresses the first disk block, and suc-

cessive integers address consecutive blocks.

si:disk-sector-data-size32 Variable

The number of user-mode data words (as fixnums) available in a disk block.

si:disk-block-length-in-bytes Variable

The number of bytes available in a disk block.

Disk Arrays

Disk arrays are arrays that buffer disk transfers and are specially allocated to sat-

isfy page alignment constraints imposed by the disk system. The data contained in

consecutive disk blocks are stored in the array elements of a disk array; each ele-

ment of a disk array contains a 32-bit datum from a disk block.

Disk arrays are resource objects, and so must be allocated and deallocated explicit-

ly by the allocate-resource and deallocate-resource functions, or by the using-

resource special form. (For more information about resources: See the section "Re-

sources".)

sys:disk-array &optional length &rest make-array-options Resource

The set of all disk arrays currently known by the system. The length resource pa-

rameter specifies the minimum number of elements the disk array should contain;

Page 1000

its default value is si:disk-sector-data-size32. The length of the disk array actual-

ly allocated can be greater. make-array-options is a list of keywords and values to

pass to zl:make-array. Only the following keywords are permitted in make-array-

options:

:area The area the array should be allocated in. The area’s :gc at-

tribute must be :static. The default area is si:disk-array-area.

:type The type of the array to be allocated. Only fixnums should be

stored in the disk array. The default type is sys:art-fixnum.

:initial-value The initial value to fill the array with, which must be a

fixnum. The default value is zero.�

The sys:disk-array resource allocator returns a disk array object at least length el-

ements long and with matching :area and :type values, filled with the value of

:initial-value. If a matching disk array object cannot be found, a new one is creat-

ed.

si:disk-array-area Variable

The default area to allocate disk arrays in.

storage:disk-array-block-count disk-array Function

Accesses the slot in disk-array describing the number of disk blocks that the disk

array can contain.

Disk Events

Disk events are structures used for synchronizing disk transfers and for storing

disk error information. Disk events are resource objects, and so must be allocated

and deallocated explicitly by the allocate-resource and deallocate-resource func-

tions, or by the using-resource special form. (For more information about re-

sources: See the section "Resources".)

Synchronization is accomplished through the use of disk event tasks. A disk event

task is a disk command that is enqueued into the disk queue in the same way that

disk reads and disk writes are enqueued. When the disk system dequeues the task,

the task is flagged as being completed. si:disk-event-task-done-p is a predicate

that examines this flag, returning true when the task is completed. For example, if

the disk queue contains a disk read, then a disk event task, and finally a disk

write, the disk event task is flagged as completed after the disk finishes reading

but before the disk starts writing.

Disk event tasks are identified by a task number that must be explicitly allocated

and deallocated by the si:disk-event-enq-task and si:return-disk-event-task func-

tions, or by the si:with-disk-event-task special form.

Page 1001

Synchronization may also be accomplished simply by waiting for all the pending

disk transfers associated with a given disk event to complete, using storage:wait-

for-disk-event

In addition to synchronizing disk transfers, disk events are also associated with

disk transfers in case of a disk error. (For a detailed description of disk error

handling: See the section "Disk Error Handling".) You associate a disk event with

a disk transfer via the sys:disk-read and sys:disk-write functions.

sys:disk-event Resource

The set of disk event objects currently known by the system. The resource alloca-

tor returns a disk event object, creating a new one if all the current disk events

are already in use.

Synchronization Functions

The following functions manipulate disk event tasks for synchronizing disk trans-

fers:

si:with-disk-event-task (task-var disk-event) &body body variable disk-event &body

body Function

Allocates and enqueues a task in disk-event and binds the task number to variable.

The task is deallocated on exit or if the body is aborted.

si:disk-event-enq-task disk-event Function

Allocates a free task in disk-event, and enqueues it in the disk queue. The return

value is the task number.

si:return-disk-event-task disk-event task-id disk-event task-number Function

Deallocates the task-number task in disk-event.

si:disk-event-task-done-p disk-event task-id disk-event task-number Function

Returns t if the task-number task in disk-event has completed, nil if it has not

completed.

si:wait-for-disk-event-task disk-event task-id disk-event task-number Function

Waits for the task-number task in disk-event to complete.

storage:wait-for-disk-event disk-event Function

Page 1002

Waits for all outstanding disk transfers associated with disk-event to complete.

storage:wait-for-disk-done Function

Waits for all outstanding disk transfers to complete, regardless of which disk event

the transfer is associated with, or whether the transfer is in user or system mode.

Disk Event Accessor Functions

The following accessor functions refer to the error information and task counters

stored in a disk event. Most of the error information is meaningless if an error

has not occurred yet. The si:disk-event-error-type accessor function is the correct

predicate to use to determine if an error has occurred for a disk transfer associat-

ed with the disk event.

si:disk-event-size disk-event Function

Accesses the slot in disk-event containing the number of disk event tasks that can

be concurrently allocated.

si:disk-event-count disk-event Function

Accesses the slot in disk-event containing the number of disk event tasks currently

allocated.

si:disk-event-error-type disk-event Function

Accesses the slot in disk-event containing a disk error code or nil if no disk trans-

fer associated with disk-event has generated an error. A disk error code is a num-

ber indicating the type of disk error, as described elsewhere: See the section "Disk

Error Codes". This accessor function is the predicate for determining if an error

has occurred for a disk transfer associated with disk-event.

si:disk-event-suppress-error-recovery disk-event Function

Accesses the slot in disk-event that indicates if the automatic error recovery for

specific error codes is suppressed for transfers associated with disk-event. All other

transfers are unaffected. The bits in the mask correspond to the disk error code

numbers. If the bit is set (a value of one) the corresponding error is not automati-

cally recovered from and instead is signalled immediately. If the bit is clear (a val-

ue of zero) an error causes the disk system to attempt to recover from the error,

signalling an error only if it cannot recover from the disk error. See the section

"Disk Error Codes".

Setting the disk event’s si:disk-event-suppress-error-recovery mask immediately

affects any pending disk transfers that are associated with the disk event in addi-

tion to any subsequently associated transfers. The error recovery remains sup-

pressed until the corresponding bit in the mask is cleared.

Page 1003

For example, to turn off the automatic recovery of ECC errors so that an error

would be signalled on any ECC error in a transfer associated with a given disk

event, even if the ECC error is correctable, use the form:

(setf (ldb (byte 1 sys:%disk-error-ecc)

 (si:disk-event-suppress-error-recovery disk-event))

 1)�

The following form returns a value of 1 if the disk event’s ECC error recovery is

suppressed, or 0 if it is not.

(ldb (byte 1 sys:%disk-error-ecc) ; Make a PPSS byte specifier

 (si:disk-event-suppress-error-recovery disk-event))�

Disk Transfers

This section describes the low-level interface for initiating disk read and write

transfers. The FEP file system provides a higher-level interface built upon these

functions and is the standard way to access the disk. For details on the FEP file

system: See the section "FEP File Systems".

Disk transfers can be either disk reads or disk writes. A disk read copies data

from the disk into disk arrays. A disk write copies data from disk arrays to the

disk. The data transferred must always be a multiple of a disk block, due to con-

straints imposed by the disk system.

Transfers are always performed in the order they are enqueued. This permits a se-

quence of transfers that must be performed in a particular order to be enqueued

without having to wait for completion between each transfer.

For example, when the FEP file system creates a new file, it first enqueues the

writes of the modified blocks in its free page data structure. It then enqueues a

write of the file’s page table, followed by a write of the directory entry pointing to

the file’s page table, without waiting for the individual writes to complete before

enqueuing the next. These data structures must be written in this particular order

to ensure that the copy of the file system on the disk is always consistent. When

the FEP file system enqueues the writes it specifies a hang-p argument of nil to

sys:disk-write, and uses the same disk event for all the transfers in the sequence.

Since all the transfers are associated with the same disk event, if one transfer

fails and is aborted, all subsequent transfers are also aborted. (For more details on

error handling: See the section "Disk Error Handling".) Thus, if the write of the

file’s page table fails and is aborted, the write of the directory page is also auto-

matically aborted.

All the disk arrays and the disk event must be wired for the duration of the disk

transfer. (Wiring a structure locks it in memory until it is explicitly unwired, per-

mitting the disk system to use physical memory addresses for the data transfers.)

Disk arrays are wired with the storage:wire-disk-array and storage:with-wired-

disk-array functions, while disk events are wired with the storage:wire-structure

and storage:with-wired-structure functions.

Page 1004

If the hang-p argument to the disk transfer function is true, the function wires

and unwires the disk arrays and disk event itself. Otherwise these must be wired

by the caller and unwired only after the disk transfer has completed. See the sec-

tion "Synchronization Functions". The functions described there can be used to de-

termine when the disk transfer has completed.

sys:disk-read disk-arrays disk-event dpn &optional n-blocks (hang-p t) (block-offset

0) Function

Causes the disk to start reading the consecutive disk blocks beginning with the

block at disk address dpn, storing the data from the disk into the arrays in disk-

arrays. disk-arrays can be a disk array or a list of disk arrays. n-blocks is the num-

ber of disk blocks to read, and defaults to the number of blocks disk-arrays can

contain. When n-blocks is greater than one, each disk array is completely filled be-

fore using the next disk array in disk-arrays. Unused disk arrays or portions of

disk arrays remain unmodified.

When hang-p is t (its default value), sys:disk-read waits for all the reads to com-

plete before returning. If hang-p is false, sys:disk-read returns immediately upon

enqueuing the disk reads without waiting for completion. When hang-p is false, all

the disk-arrays and the disk-event must be wired before calling sys:disk-read, and

must remain wired until the disk reads complete.

disk-event must be the disk-event to associate with all the disk reads.

block-offset is an offset into disk-arrays. Use it when you wish to transfer the data

to a starting position other than the beginning of the first array.

sys:disk-write disk-arrays disk-event dpn &optional n-blocks (hang-p t) (block-offset

0) Function

Causes the disk to start writing the consecutive disk blocks beginning with the

block at disk address dpn with the data stored in the disk arrays in disk-arrays.

The arguments to sys:disk-write are identical to those of sys:disk-read.

storage:with-wired-disk-array (disk-array) &body body Function

Before the body is entered, disk-array is made permanently resident in main mem-

ory. When control leaves the body, either normally or abnormally (via a throw,

such as by an error which was not handled within the body), the array is made eli-

gible for replacement by the memory system.

storage:wire-disk-array disk-array Function

Makes disk-array be permanently resident in main memory until storage:unwire-

disk-array is called. Disk arrays must be wired for the duration of a disk transfer.

The transfer functions automatically wire disk arrays if they also wait for the

transfer to complete; otherwise the programmer must explicitly wire and unwire

the disk arrays.

Page 1005

It is preferable to use storage:with-wired-disk-array rather than explicit calls to

storage:wire-disk-array and storage:unwire-disk-array.

storage:unwire-disk-array disk-array Function

Makes disk-array eligible for replacement by the virtual memory system. There

must be a matching storage:unwire-disk-array for every storage:wire-disk-array.

storage:unwire-disk-array is usually called as a cleanup handler in an unwind-

protect form.

storage:with-wired-disk-event (disk-event) &body body Macro

Makes disk-event permanently resident in main memory for the duration of the ex-

ecution of the body. When control leaves the body, either normally or abnormally

(via a throw, such as by an error which was not handled within the body), the

event is made eligible for replacement by the memory system.

storage:wire-disk-event event Function

Makes disk-event permanently resident in main memory until storage:unwire-disk-

event is called. Disk events must be wired for the duration of a disk transfer. The

transfer functions automatically wire disk arrays if they also wait for the transfer

to complete; otherwise the programmer must explicitly wire and unwire the disk

events.

It is preferable to use storage:with-wired-disk-event rather than explicit calls to

storage:wire-disk-event and storage:unwire-disk-event.

storage:unwire-disk-event event Function

Makes disk-event eligible for replacement by the virtual memory system. There

must be a matching storage:unwire-disk-event for every storage:wire-disk-event.

storage:unwire-disk-event is usually called as a cleanup handler in an unwind-

protect form.

Disk Error Handling

The disk system automatically attempts to recover from a disk error by resetting

the relevant disk state and retrying the failed disk transfer. (The associated disk

event’s si:disk-event-suppress-error-recovery slot can be used to selectively sup-

press the automatic error recovery for a set of disk error types.) After the number

of retry attempts fail, the error is considered to be unrecoverable and the failed

transfer is aborted.

The disk system permits related disk transfers to be grouped together by associat-

ing them with the same disk event. If one of the transfers fails, the remaining

transfers in its group are aborted. This makes it possible to enqueue transfers that

Page 1006

must be performed in a particular order without having to wait for each transfer

to complete. Aborting the remaining transfers in a group does not interfere with

transfers in other groups.

Disk errors are signalled after they actually occur because they are detected at a

low level in the system, asynchronous to the execution of the responsible process.

In order to make condition handling of disk errors possible, the error is signalled

when a process waits for the disk transfers to finish.

The disk system performs the following sequence of events when an error is de-

tected:

1. It suspends processing of the disk queue at the failed disk transfer.

2. It resets the relevant hardware and retries the failed disk transfer, depending

on the type of error. If the retry succeeds, no error is signalled and process-

ing of the disk queue resumes.

3. If the disk error recovery logic cannot automatically recover from the error,

or if error recovery is being suppressed, the error becomes unrecoverable and

the disk system aborts the failed disk transfer.

4. If the failed disk transfer does not have an associated disk event, the unrecov-

erable error becomes fatal and the disk system halts the machine. (Most sys-

tem mode disk transfers do not have an associated disk event.) Otherwise, it

stores the information describing the error in the disk event.

5. The disk system removes from the disk queue any remaining pending trans-

fers that are associated with the same disk event as the failed transfer. The

si:disk-event-error-flushed-transfer-count slot in the disk event contains the

number of transfers that were removed from the disk queue, including the

failed transfer.

6. The disk system resumes processing of the remaining transfers that are not

associated with the failed transfer’s disk event.

7. It discards any subsequent attempts to initiate a disk transfer associated with

the failed transfer’s disk event, incrementing the disk event’s flushed transfer

counter.

8. When storage:wait-for-disk-event or si:wait-for-disk-event-task waits for a

task in the failed transfer’s disk event, an si:disk-error-event condition

(which is built upon the sys:disk-error condition) is signalled. These synchro-

nization functions are also used by the transfer functions when their hang-p

argument is true.�

The si:disk-event-error-type slot of a disk event can also be explicitly checked to

determine if an error has occurred.

Page 1007

Disk Error Conditions

si:disk-error-event Flavor

Signalled while waiting for a task in a disk event that is associated with a disk

transfer that generated a disk error. si:disk-error-event is based upon the

sys:disk-error condition; condition handlers should use the sys:disk-error condi-

tion.

(flavor:method :disk-event si:disk-error-event) Method

Returns the disk event associated with the failed transfer. This is especially useful

when transfers associated with multiple disk events can be handled by the same

condition handler.

(flavor:method :error-type si:disk-error-event) Method

Returns the error type code number. For a list of the possible disk error code

numbers, see the section "Disk Error Codes".

(flavor:method :flushed-transfer-count si:disk-error-event) Method

Returns the number of disk transfers that were not performed because of the er-

ror, including the failed transfer.

Disk Error Codes

A disk error code is a number indicating the type of the disk error. System con-

stants containing the disk error code numbers exist so the codes can be referred to

mnemonically.

sys:*disk-error-codes* Variable

A list of symbols corresponding to the disk error code numbers. You can convert a

disk error code number into the symbol of its corresponding constant as follows:

(nth disk-error-code-number sys:*disk-error-codes*)�

The following list shows the disk error constants and describes the corresponding

error causes.

sys:%disk-error-drive-fault Variable

The selected disk drive signaled some fault condition. This usually means that ei-

ther the drive was not ready (was not spinning at its rated speed) or that a write

was issued to a write-protected drive. It can also indicate a malfunction in the

drive.

Page 1008

sys:%disk-error-controller-fault Variable

Usually indicates a malfunction in the disk controller.

sys:%disk-error-select Variable

The disk unit could not be selected. For a disk unit to be selectable the drive must

be properly connected to the machine and a unique disk unit number set in the

drive’s unit address switches. The error recovery logic tries to reselect the unit be-

fore failing with an unrecoverable select error.

sys:%disk-error-not-ready Variable

The disk unit was selected, but was not ready. A disk unit is ready when the drive

is spinning at its rated speed. Some drives are not ready when they are in a de-

vice fault. When a disk is started, the unit is not ready for a short period (10 to

50 seconds for most drives) while the disk is spinning up. This error is specific to

3600-Family machines.

sys:%disk-error-device-check Variable

The disk unit is in a device fault, also called a device check, state. Device faults in-

dicate a write to a write-protected drive or a malfunction in the disk system. If the

fault was caused by a write to a write-protected drive, an error is signalled. This

error is specific to 3600-Family machines.

sys:%disk-error-seek Variable

An error was detected during a seek. This can occur if an invalid disk address is

specified in the transfer request, or if the disk system malfunctions. Most disk

drive specifications allow for a small percentage of errors generated by seeks.

sys:%disk-error-search Variable

The disk block addressed by a disk transfer could not be found. This can occur if

the addressed track on the disk is improperly formatted, if the disk address is in-

valid, or if the disk selected the wrong track.

sys:%disk-error-overrun Variable

The disk attempted to transfer data faster than the machine could accommodate.

This error is expected to occur occasionally, due to conflicts when multiple I/O de-

vices attempt to access memory simultaneously.

sys:%disk-error-ecc Variable

Page 1009

The data read from the disk has at least one invalid bit. The disk error recovery

logic first attempts to correct the data. If the correction fails, it retries the trans-

fer several times before signalling an unrecoverable ECC error. The disk array

contains the incorrect data that was read from the disk for the block generating

the ECC error.

sys:%disk-error-data Variable

The disk controller detected some form of data corruption other than a disk ECC

error, such as a checksum error or a datapath parity error.

Disk Error Meters

These meters are updated when the disk system detects an error, including errors

from which it automatically recovers. Meters that are primarily affected by system

mode transfers are not included here. Most of these meters can be inspected with

the Peek utility; press SELECT P and click Left on [Meters].

The value of the following meters is the number of:

si:*count-total-disk-errors* Variable

All types of disk errors.

si:*count-disk-select-errors* Variable

sys:%disk-error-select errors.

si:*count-disk-search-errors* Variable

sys:%disk-error-search errors.

si:*count-disk-overruns* Variable

sys:%disk-error-overrun errors.

si:*count-disk-ecc-errors* Variable

sys:%disk-error-ecc errors.

si:*count-disk-seek-errors* Variable

sys:%disk-error-seek errors.

FEP File System and Disk Streams

Page 1010

Disks on Symbolics computers contain a file system called the FEP file system. The

entire disk is divided up into FEP files (that is, files of the FEP file system). FEP

files have names syntactically similar to those of the files in the Symbolics com-

puter’s own local file system. However, the FEP file system and the Lisp Machine

File System (LMFS) are completely distinct.

The FEP file system was designed to contain a small number of files that do not

get created or deleted very often. It is not intended to contain active files. The

FEP file system manages the disk space available on a disk pack, grouping sets of

data into names structures called FEP files. A single FEP file system cannot ex-

tend beyond a single disk pack; each disk pack has its own separate FEP file sys-

tem.

FEP file systems support multiple file versions, soft deletion, and expunging. They

also use hierarchical directories.

Although the FEP is the front-end processor, the FEP file system is managed by

the main Lisp processor. It is called the FEP file system because the FEP can

read files stored in the FEP file system. For example, the FEP uses the FEP file

system for booting the machine and running diagnostics.

The need to allow the FEP to access FEP files while at the same time, allow-

ing the rest of the system to use them imposes these constraints on the design

of FEP file systems:

• The internal data structure of files within FEP file systems must be simple

enough to permit the FEP to read them.

• A small amount of concurrent access by both the FEP and Lisp must be al-

lowed.

• A FEP file’s data blocks need a high degree of locality on the disk, to minimize

access time.

• FEP file systems must be reliable; the FEP needs to use them for basic opera-

tions, such as the running of diagnostics, and the booting of each machine.

Symbolics computers can have more than one local disk, and each machine’s FEP

can access all of them. Currently, hardware limits the maximum number of any

one 3600-family machine’s disks to eight. MacIvory machines have a maximum pe-

ripheral device limit of seven.

The form FEP: refers to the disk (by default) from which the current world was

booted. Disk 0 is usually the default, so typing FEP: is usually equivalent to typing

FEP0: . Besides using the default, you can specify disks explicitly, using forms

such as FEP1: or FEP7: .

FEP File Systems on 3600-Series and XL400 Systems

Page 1011

Each 3600-family or XL400 disk must have a FEP file system on it that describes

the disk space available on it.

Each disk unit is presumed to contain one FEP file system. FEP file systems are

named FEPn (where n is the disk unit number on which the FEP file system re-

sides).

This scheme allows gaps in the sequence of FEP file system names. For example,

a machine with disk unit 0 and disk unit 2 (but no disk unit 1) has FEP file sys-

tems named FEP0 and FEP2 (but none named FEP1).

FEP File Systems on MacIvory Systems

MacIvory systems share disk space (swap space) between the Ivory and Macintosh

processors. In order for the Ivory processor to access a Macintosh’s disk to find a

world load, for example, that disk must have at least one Ivory partition on it.

(Symbolics recommends that you limit the number of Ivory partitions on each disk

to one.)

Ivory partitions represent disk space to which the Macintosh processor does not

have access. Each Ivory partition must contain a FEP file system that describes

the disk space available in it.

Each time you power up or boot a MacIvory, the system checks the disk from

which you booted. Next, it checks the remaining disks, according to their respec-

tive Small Computer Serial Interface (SCSI) bus priorities.

The first Ivory partition that the system finds is presumed to contain the FEP file

system named FEP0. Any remaining Ivory partitions are presumed to contain the

FEP file systems named FEP1, FEP2, and so on. This scheme does not allow gaps

in the sequence of MacIvory FEP file system names.

FEP File Systems on Symbolics UX-Family Systems

UX-family systems share disk space (swap space) between the Ivory and Sun pro-

cessors. In order for the Ivory processor to access a Sun’s disk, to find a world

load for example, that disk must have at least one partition on it.

Ivory partitions are represented as large UNIX files in the Sun file system, known

as FEP partition files. Each FEP partition file must contain a FEP file system

that describes the disk space available in it.

Each time you start UX-family life support (usually as part of the UNIX startup

process), it reads a configuration file that describes the resources available to

Ivory. This configuration file includes the names of the FEP partition files avail-

able to each UX-family machine. The first FEP partition file specified is presumed

to contain the FEP file system named FEP0. Any remaining FEP partition files

are presumed to contain FEP file systems named FEP1, FEP2, and so on. This

scheme does not allow gaps in the sequence of UX-family machine FEP file system

names.

Page 1012

FEP Pathnames

FEP pathnames can include references to a host, disk-unit, directory, filename, file

type, and version. Separate the host-name from the rest of a file pathname by us-

ing a vertical bar (you can see this in the example that follows).

Delimit FEP pathnames like this:

Picasso|FEP0:>directory-name>filename.type.version�

Pathname components are:

Host Specifies which machine’s FEP file system you are referencing.

The default is the local machine.

Disk-unit Specifies the disk unit number on which the local host’s FEP

file system resides. The initial default is FEP0. Later, the de-

fault becomes the local disk unit from which the world was

booted. Netbooting doesn’t change the default. Symbolics sug-

gests that you specify the disk-unit number explicitly, since the

default may be different for different worlds.

Directory Indicates the name of the FEP file system directory (directory

names cannot exceed 32 characters). There is no limit on the

total length of a hierarchical directory specification.

Filename Indicates the name of the FEP file (filenames cannot exceed 32

characters).

File type Indicates the type of the FEP file (file types cannot exceed 4

characters).

Version Indicates the version number of the FEP file (this must be a

positive integer or the word "newest").�

Note: Although you can access FEP files on other hosts from Genera, the FEP has

access only to the local host.

For information about Ivory-based machines and the host pathname syntax for

them, see the section "Accessing the Macintosh File System".

FEP File Types

By convention, the FEP file system uses the following extensions to deliniate file

types:

boot Files with the .boot extension contain commands that can be

read and executed by the FEP.

load Files with the .load extension contain a world load image,

(sometimes called a band) for Symbolics 3600-family machines.

Files with the .load extension can only be copied between

Symbolics 3600-family machines.

Page 1013

ilod Files with the .ilod extension contain a world load image,

(sometimes called a band) for Ivory machines. Files with the

.ilod extension can only be copied between MacIvory, XL400,

and Symbolics UX-family machines.

mic Files with the .mic extension contain a microcode image, plus

the contents of other internal high-speed memories that are

initialized when Symbolics 3600-family machines are booted.

For example, >3640-mic.mic.428 contains version 428 of the mi-

crocode for 3640 and 3670 machines.

fspt In order to use the local Lisp Machine File System (LMFS),

Lisp must have access to the File System Partition Table

(FSPT). The File System Partition Table is contained within a

FEP file named fspt.fspt that lists the LMFS partitions.

file Files with the .file extension are Lisp Machine File System

(LMFS) partitions.

page Files with the .page extension are used exclusively as virtual

memory swap space during the current boot session.

flod Files with the .flod extension are FEP overlay (flod) files. Such

files contain binary code (FEP software).

fep Files with the .fep extension are FEP-specific; they contain in-

formation about the organization of fep files on the disk.

Note: Since FEP-specific files are system files, not user files,

they should not be written to by user programs.

>free-pages.fep This file describes which blocks on the disk

are free.

>bad-blocks.fep This file lists all of the blocks that contain

media defects.

>sequence-number.fep

This file contains the highest sequence

number in use. The FEP file system uses

sequence numbers to uniquely identify files.

(These help to rebuild the file system,

should a catastrophic disk failure occur.)

>disk-label.fep This file contains the disk pack’s physical

disk label. The label is used to identify the

pack, and to describe its characteristics.

>kernel.fep This file exists only on Ivory-based ma-

chines. It contains the FEP software which,

on Symbolics 3600-family machines, resides

in EPROM.

Page 1014

>reserve.fep This file is reserved for use by Symbolics

software.

>unique-id.fep This file is reserved for use by Symbolics

software.�

dir Files with the .dir extension are FEP subdirectories. Use the

Show Directory FEP command or the Command Processor (CP)

Show Directory Command to see the contents of FEP subdirec-

tories. For more information about these commands,

• See the section "Show Directory FEP Command".

• See the section "Show Directory Command".

Note: Since the directory >root-directory.dir is a system file,

not a user file, it should not be written to by user programs.�

Disk Streams

Disk streams are I/O streams that, when opened, provide read and/or write access

to FEP files. For more information about streams, see the section "Types of

Streams". Also see the section "Stream Operations". Disk streams are opened by

the open function. When disk streams are opened with a :direction keyword of

:input or :output, they read or write bytes, buffering the data internally as re-

quired.

When disk streams are opened with a :direction keyword of :block, they can read

and/or write specified disk blocks. Block mode disk streams address blocks with

block numbers relative to the beginning of a file, starting at file block zero.

The open function also recognizes these keywords:

:if-locked Specifies the action to be taken if a file is locked. This key-

word is ignored for files on remote hosts. The :if-locked key-

word itself recognizes two keywords:

:error Signals an error. This is the default.

:share Opens the specified file even if it is al-

ready locked, incrementing the file’s lock

count. This mode permits multiple process-

es to write to the same file concurrently.

(For more information about FEP file

locks, see the section "FEP File Locks".)�

:number-of-disk-blocks

The number of disk blocks to buffer internally if the :direction

keyword is :input or :output. The default is two. This keyword

Page 1015

is ignored for other values of :direction and for files on re-

mote hosts.�

� Disk Stream Messages

All disk streams handle the messages described within this section.

For information about the additional messages that input and output disk streams

can handle, see the section "Input and Output Disk Streams".

For information about the additional messages that block disk streams can handle,

see the section "Block Disk Streams".

For more information about disk stream operations in general, see the section

"File Stream Operations". Also see the section "General-Purpose Stream

Operations".

:grow &optional n-blocks &key :map-area :zero-p Message

Allocates n-blocks of free disk blocks and appends them to the FEP file. The value

of n-blocks defaults to one. If :zero-p is true the new blocks are filled with zeros;

otherwise, they are not modified. The return value of :grow is the file’s data map.

The format of the data map is provided within the description of :create-data-map�

(in this section). The value of :map-area is the area to allocate the data map in,

which defaults to default-cons-area.

� :allocate n-blocks &key :map-area :zero-p Message

Ensures that the FEP file is at least n-blocks long, allocating additional free blocks

as required. Returns the file’s data map. The format of the data map is provided

within the description of :create-data-map (in this section). :map-area specifies

the area to create the data map in, and defaults to default-cons-area. The newly

allocated blocks are filled with zeros if :zero-p is true. :zero-p defaults to nil.

� :file-access-path Message

Returns the disk stream’s file access path. You can find out on what unit number

a FEP file resides, like this:

(send (send stream :file-access-path) :unit)�

� :map-block-no block-number grow-p Message

Translates the relative file block-number into a disk address, and returns two val-

ues: the first value is the disk address, and the second is the total number of disk

blocks, starting with block-number, that are in consecutive disk addresses. grow-p

specifies whether the file should be extended if block-number addresses a block

that does not exist. When grow-p is true, free disk blocks are allocated and ap-

Page 1016

pended to the FEP file to extend it to include block-number. Otherwise, if grow-p

is false, nil is returned if block-number addresses a block that does not exist.

� :create-data-map &optional area Message

Returns a copy of the FEP file’s data map allocated in area area, which defaults to

default-cons-area. A FEP file data map is a one-dimensional art-q array. Each en-

try in the file data map describes a number of contiguous disk blocks, and requires

two array elements. The first element is the number of disk blocks described by

the entry. The second element is the disk address for the first block described by

the entry. The array’s fill-pointer contains the number of active elements in the

data map times two.

� :write-data-map new-data-map disk-event Message

Replaces the file’s data map with new-data-map. disk-event is the disk event to as-

sociate with the disk writes when the disk copy of the file’s data map is updated.

This message overwrites the file’s contents and should be used with caution.

Input and Output Disk Streams

Input and output disk streams read and write bytes of data (respectively), starting

at the current byte position in the FEP file and updating byte position as the data

is read.

Bytes of data are stored in buffers internal to the stream. The :number-of-disk-

blocks keyword to the open function controls how many disk blocks the internal

buffers can hold.

When the current pointer moves beyond a disk block boundary, the buffered disk

block is written to the file for an output stream, or the next unbuffered block is

read from the file for an input stream. Output streams also write out all buffered

disk blocks when the stream is sent a :close message without an :abort option.

See the section "Disk Stream Messages". In addition to the messages described in

that section, input and output disk streams support standard stream protocols for

input and output. For more information about standard stream protocols, see the

section "General-Purpose Stream Operations".

Block Disk Streams

Block disk streams can both read and write disk blocks at specified file block

numbers. A file block number is the relative block offset into the file. The first

block in the file is at file block number zero, the second is at file block number

one, and so on.

Block disk streams do not buffer any blocks internally and can be used only on the

local FEP file system. See the section "Disk Stream Messages". In addition to the

messages described in that section, block disk streams support the following mes-

sages:

Page 1017

:block-length Message

Returns the length of the FEP file in disk blocks.

:block-in block-number n-blocks disk-arrays &key :hang-p :disk-event Message

Causes the disk to start reading data from the disk into the disk-arrays, starting

with the file at block-number, and continuing for n-blocks. Disk-arrays is a list con-

taining one or more disk arrays. The value of n-blocks is the number of disk blocks

to read. When n-blocks is greater than one, each disk array is completely filled be-

fore using the next one.

Disk array checkwords are reserved for use by the FEP file system. Unused disk

arrays (or portions of them) remain unmodified.

See the section "Disk System Definitions and Constants".

When the value of :hang-p is true, which it is by default, :block-in waits for all

the reads to complete before returning. If the value of :hang-p is false, :block-in

returns immediately upon enqueuing the disk reads without waiting for completion.

In this case, all disk-arrays and the disk-event must be wired before sending the

:block-in message, and must remain wired until the disk reads complete.

If the :disk-event keyword is supplied, its value is the disk event to associate with

the disk reads. Otherwise the :block-in message allocates a disk event for its du-

ration. A :disk-event must be supplied when :hang-p is false.

:block-out block-number n-blocks disk-arrays &key :hang-p :disk-event Message

Causes the disk to start writing the data in the disk arrays in disk-arrays onto the

disk, starting with the file block number block-number, and continuing for n-blocks.

The arguments to the :block-out message are identical to those of the :block-in

message.

FEP File Properties

FEP file properties store information about FEP files (such as when they were last

written, and whether they can be deleted).

File properties are read by the fs:file-properties function, and modified by the

fs:change-file-properties function. The function fs:directory-list returns the file

properties of several files at once.

The following file properties can be both read and modified:

:creation-date The universal time at which a file was last written. (See the

section "Dates and Times".)

:author The user-ID of the last writer to a file: a string.

:length-in-bytes The length of a file, expressed as an integer.

Page 1018

:deleted When t, a file is marked as deleted. Disk space is not re-

claimed until you expunge the directory in which a deleted file

resides.

:dont-delete When t, attempting to delete or overwrite a file signals an er-

ror. When nil, indicates that a file can be written to or delet-

ed.

:comment Written comments displayed in brackets: a string.�

These file properties are returned by the :properties message. They cannot, how-

ever, be modified by :change-properties:

:byte-size The number of bits in a byte. The value of this property is al-

ways eight.

:length-in-blocks The block length of a file expressed as an integer.

:directory When t, the file is a directory, otherwise nil.

FEP File Locks

A FEP file is locked from the time it is opened for reading or writing until it is

closed. If the :direction keyword is :input, the file is read-locked; if the :direction

keyword is :output or :block, the file is write-locked.

When the :if-locked keyword is :error (the default), a file that is read-locked can

still be opened for reading but signals an error if opened for writing. This permits

multiple readers to access (read) a file concurrently, while prohibiting writes to it.

When the :if-locked keyword is :share, a read or write operation succeeds in open-

ing the file even if the file is already read- or write-locked.

An expunge operation on an open file that is either read- or write-locked will fail.

If expunging a directory fails to expunge a deleted file, close the file, and expunge

the directory again.

Disk Performance

You can improve the disk performance of a program by overlapping the disk trans-

fers with computation and by reducing the disk latency by grouping contiguous

transfers together.

The disk latency is the amount of time required by the disk unit to transfer a

number of disk blocks. The minimum disk latency is the absolute lower bound on

the time required to transfer a number of blocks; if shorter transfer times are re-

quired, a higher blocking factor or a faster disk unit is required. The software

overhead can be determined by subtracting the minimum disk latency from the to-

tal time to transfer a number of blocks.

You overlap transfers with computation by specifying that a transfer request

should not wait for the transfers to actually complete before returning. Computa-

Page 1019

tions can then continue while the disk is transferring the data. When your pro-

gram actually requires data, the process can wait for the disk transfer to complete.

For example, if data is to be read from one block on the disk and then written to

another block, the read request can be immediately followed by the write request

without waiting for the read to actually finish, since disk transfers are always per-

formed in the order in which they were enqueued. The time required to read and

write the data is reduced since the write transfer can be enqueued while the disk

is performing the read, so by the time the read completes the disk can immediate-

ly start writing the block.

Disk latency can be reduced by enqueuing multiple disk transfers to consecutive

disk addresses without waiting for completion between transfers. This permits the

disk to perform multiple transfers on the same disk revolution, or at least with a

minimum of seeking.

The equation below yields the approximate minimum disk latency for transferring

N contiguous disk blocks.

Equation 1:

Tn = Ta + Tr/2 + NTr/S + Ts6((A mod HS)+N-1)/HS7�

Where:

Tn Minimum time to transfer N blocks.

Ta Average seek time.

Tr Rotation time.

N Number of blocks to transfer.

S Number of blocks per track.

Ts Average single cylinder seek time.

A The disk block number. The sys:%%dpn-page-num field of the

disk address.

H Number of data heads, excluding any servo heads.

6x7 Floor of x. The truncated integer value of x.�

The terms in Equation 1 account for the various phases of a disk transfer, where:

• The first term accounts for the average seek time to position the heads to the

cylinder the first block resides on.

• The second term accounts for an average initial delay of half a rotation for the

first block to be positioned under the disk heads.

• The third term yields the time to actually transfer N blocks of data.

• The last term yields the time spent seeking to adjacent cylinders.�

Page 1020

The time required to switch heads is insignificant, since head switching time is

small enough not to affect the disk latency. Enough space is provided on the disk,

between the last and first blocks on a track, for the head switch to complete after

the last block has been transferred but before the first block of the next track

passes under the heads. No extra rotation delays are incurred.

The values of the constants used in Equation 1 can be found in Table 1 for some

of the available disk drives. To find the values for drives that are not listed, check

the disk specifications supplied in the manual shipped along with the disk drive.

Table 1: Selected Disk Specifications

M2284 M2351 T-306 D2257

H 10 20 19 8

S 16 22 16 16

Ta 27ms 18ms 30ms 20ms

Tr 20.24ms 15.15ms 17.5ms 17.09ms

Ts 6ms 5ms 7.5ms 5ms�

If N single block transfers are requested to consecutive disk blocks, Equation 1

becomes:

Equation 2:

Tn = Ta + NTr/2 + NTr/S + Ts6((A mod HS)+N-1)/HS7�

Equation 2 shows that, in addition to the cost of not performing computations con-

currently with disk transfers, the minimum disk latency is increased by an average

of a half rotation per disk transfer when single block disk transfers are made to

consecutive blocks, waiting for each transfer to complete. However, Equation 2 is

true only if the position of the disk is random with respect to the disk block being

accessed. For example, if single transfer requests are made to consecutive disk

blocks without a delay between transfer requests, the minimum disk latency would

be increased by a full rotation per transfer.

Examples of High Disk Performance

Initializing a FEP File

The following function is an example of how you can achieve high disk perfor-

mance. It writes zeroes over an entire FEP file.

Page 1021

(defun zero-fep-file (file)

 ;; FILE should be an open block disk stream.

 ;; Allocate a disk array and disk event

 (using-resource (disk-array si:disk-array)

 (using-resource (disk-event si:disk-event)

 ;; Wire both the disk array and disk event into memory for the

 ;; duration of all the transfers. This is required when

 ;; HANG-P is NIL.

 (si:with-wired-disk-array (disk-array)

(si:with-wired-structure disk-event

 ;; Iterate over all blocks in the file enqueuing a

 ;; write without waiting for the write to complete.

 (loop for block-number below (send file :block-length)

doing (send file :block-out block-number 1 disk-array

 :disk-event disk-event

 :hang-p nil))

 ;; Finally, wait for all the writes to complete before

 ;; unwiring and returning the disk array and disk event.

 (si:wait-for-disk-event disk-event))))))�

The zero-fep-file function writes the same disk array over all the blocks in the file

without waiting for each write to finish before enqueuing the next write. This

minimizes the time required to zero the FEP file since the write transfers are en-

queued concurrent with the disk actually writing the data, and the transfers are

enqueued in ascending file block number order. The FEP file system attempts to

make FEP files as contiguous as possible with the disk addresses ascending in file

block number order, so zero-fep-file writes as many blocks as can fit on a sector

in one disk rotation.

Copying FEP Files

The next examples show alternative algorithms for copying a FEP file, starting out

with a slow but simple example and developing it into a much faster version.

The following function shows a simple way to copy a FEP file. To simplify the ex-

ample, the source-file and dest-file must be complete file specifications, and file

properties, including the byte length, are not copied.

(Note that none of these functions copies any of the file’s properties, not even the

length-in-bytes. In a real file-copying application, you might want to copy some of

the properties.)

Page 1022

(defun slow-copy (source-file dest-file)

 (with-open-file (source source-file

 :direction :block

 :if-exists :overwrite)

 (with-open-file (dest dest-file

 :direction :block

 :if-exists :overwrite

 :if-does-not-exist :create)

 ;; First preallocate the same number of disk blocks for the

 ;; destination file as is required by the source file.

 ;; Allocating many blocks at once is much faster than implicitly

 ;; allocating a block at a time, and results in better locality

 ;; on the disk.

 (send dest :allocate (send source :block-length))

 ;; Allocate a disk array to buffer the data and a disk event

 (using-resource (disk-array si:disk-array)

(using-resource (disk-event si:disk-event)

 ;; Now iterate over all blocks in the source file, copying

 ;; the block to the destination file.

 (loop for block-number below (send source :block-length)

do

(send source :block-in block-number 1 disk-array

 :disk-event disk-event)

(send dest :block-out block-number 1 disk-array

 :disk-event disk-event)))))))�

While the slow-copy function is simple, it is also very slow. The reason for this is

that the :block-in message waits for the disk read to complete before the :block-

out message can be enqueued. This function can be sped up by over a factor of

two and a half by supplying a :hang-p keyword with a value of nil, allowing the

:block-in and :block-out messages not to wait for completion. For example:

Page 1023

(defun quick-copy (source-file dest-file)

 (with-open-file (source source-file

 :direction :block

 :if-exists :overwrite)

 (with-open-file (dest dest-file

 :direction :block

 :if-exists :overwrite

 :if-does-not-exist :create)

 ;; First preallocate the same number of disk blocks for the

 ;; destination file as is required by the source file.

 (send dest :allocate (send source :block-length))

 ;; Allocate a disk array to buffer the data and a disk event

 (using-resource (disk-array si:disk-array)

(using-resource (disk-event si:disk-event)

 ;; The disk array and disk event must be wired for the

 ;; duration of all the transfers. When HANG-P is true, the

 ;; transfer functions automatically wire and unwire the disk

 ;; event and disk arrays. But since this function specifies a

 ;; HANG-P of NIL for speed, it must do the wiring itself.

 (si:with-wired-disk-array (disk-array)

 (si:with-wired-structure disk-event

 ;; Iterate over all the blocks in the source file,

 ;; enqueuing reads and then enqueuing writes

 ;; to the destination file.

 (loop for block-number below (send source :block-length)

 do

 ;; Enqueue the source read without waiting for the

 ;; transfer to actually complete.

 (send source :block-in block-number 1 disk-array

 :disk-event disk-event :hang-p nil)

 ;; Enqueue the destination write while the

 ;; source read is still in progress. This does not

 ;; have to wait for the read to complete since

 ;; disk transfers are always performed in the

 ;; order they were enqueued.

 (send dest :block-out block-number 1 disk-array

 :disk-event disk-event :hang-p nil))

 ;; Wait for all pending transfers to complete.

 (si:wait-for-disk-event disk-event))))))))�

quick-copy has increased speed by overlapping disk requests with computation.

This keeps the disk queue full, so that the disk is continually copying the file

without having to stop and wait for the next disk transfer to be enqueued. But the

disk is still reading a block, then seeking to the destination block, then writing a

block, and seeking back to the next source block. Performance can be further en-

hanced by reducing the disk latency if both the source and destination files reside

on the same disk unit.

Page 1024

The disk latency can be reduced by reading multiple source blocks, then seeking to

the destination file and writing multiple destination blocks, eliminating disk seeks.

Thus, the following function combines minimized disk latency (achieved by using a

large blocking factor between seeks) with overlapped computations and disk trans-

fers. The resulting speed is about three times faster than quick-copy, and seven

times faster than slow-copy.

Page 1025

(defun fast-copy (source-file dest-file &optional (blocking-factor 20.))

 (with-open-file (source source-file

 :direction :block

 :if-exists :overwrite)

 (with-open-file (dest dest-file

 :direction :block

 :if-exists :overwrite

 :if-does-not-exist :create)

 ;; First preallocate the same number of disk blocks for the

 ;; destination file as is required by the source file.

 (send dest :allocate (send source :block-length))

 (let ((disk-arrays (make-array blocking-factor)))

;; Allocate a disk event.

(using-resource (disk-event si:disk-event)

 ;; The disk event must be wired for the duration of all the

 ;; transfers.

 (si:with-wired-structure disk-event

 (unwind-protect

 (progn

;; Allocate and wire the disk arrays. The disk arrays

;; must be wired for the duration of the disk transfer.

(dotimes (i blocking-factor)

 (let ((disk-array (allocate-resource ’si:disk-array)))

 (si:wire-disk-array disk-array)

 (setf (aref disk-arrays i) disk-array))

(loop

 with blk-length = (send source :block-length)

 for start-blkn from 0 by blocking-factor below blk-length

 do

 ;; Enqueue the source reads without waiting for the

 ;; transfers to actually complete.

 (loop for blkn from start-blkn below blk-length

for array being the array-elements of disk-arrays

do

(send source :block-in blkn 1 array

 :disk-event disk-event :hang-p nil))

 ;; Enqueue the destination writes while the

 ;; source reads are still in progress. This does not

 ;; have to wait for the reads to complete since

 ;; disk transfers are always performed in the

 ;; order they were enqueued.

 (loop for blkn from start-blkn below blk-length

for array being the array-elements of disk-arrays

do

(send dest :block-out blkn 1 array

 :disk-event disk-event :hang-p nil))))

 ;; Wait for all pending transfers to complete.

 (si:wait-for-disk-event disk-event)

Page 1026

 ;; Finally, return the disk arrays.

 (loop

for disk-array being the array-elements of disk-arrays

when disk-array

do

(when (si:structure-wired-p disk-array)

 (si:unwire-disk-array disk-array))

(deallocate-resource ’si:disk-array disk-array)))))))))�

This example still does not include some functionality that would make it com-

plete. However, it does illustrate how to use disk-events effectively. To make it a

reasonable function, other features, such as preserving file properties, offering

pathname defaulting and merging, and using unwind-protects, should be included.

Disk and FEP File System Utilities

Initializing a Disk Unit

Before a disk unit can be used, it must be formatted and have a valid disk label.

Disks are formatted by the FEP, which can also write the label and initialize the

FEP file system from cartridge tape. See the section "The Front-End Processor".

In addition, the following functions are available:

si:write-fep-label unit Function

Writes the disk label for unit number unit, interactively asking for any necessary

information. After the label is written the disk unit is left mounted.

si:edit-fep-label &optional (unit 0) &optional unit Function

Permits the disk label of the disk unit unit to be edited by exposing a choose vari-

able values window. unit defaults to disk unit 0.

si:read-fep-label unit label-array disk-event Function

Reads the disk label for unit unit into the disk array in label-array, associating the

read transfers with disk-event in case of an error.

Mounting a Disk Unit

Disk units can be mounted either by the FEP or by Lisp. See the section "The

Front-End Processor". When a disk unit is mounted, its disk label is read and the

system’s disk unit tables are updated. A disk unit must be mounted before it is

available for disk transfers.

Page 1027

storage:mount-disk-unit unit Function

Makes the disk unit available to the Lisp system by reading its label and updating

the system’s disk unit tables. unit is the unit number to mount, and must be the

address of an online disk unit.

Verifying a FEP File System

The following function checks for and fixes inconsistencies in the FEP file system.

si:verify-fep-filesystem &optional (unit 0) &key (fix-checkwords ’:ask) Function

Checks the FEP file system on disk unit unit, which defaults to zero, reporting

any detected inconsistencies and offering to correct certain types of failures. If

:fix-checkwords is :ask (the default), you are prompted if anything has to be

fixed; the other options are :yes (always fix), :no (never fix), :silently (always fix

without a message), and :inform-only (send messages only, do not fix, do not ask).

si:print-fep-filesystem &optional (unit 0) Function

Outputs a textual description of the FEP file system on disk unit unit. The default

value of unit is 0.

si:resequence-fep-filesystem &optional (unit 0) Function

Resequences all the FEP files in the FEP file system on unit unit. The value of

unit defaults to zero. The files are resequenced by iterating over all files in the

FEP file system and assigning each a unique sequence number, starting with zero.

Sequence numbers are used by the FEP file system to check for consistency and

identify pages in the file system. They can be used to rebuild the FEP file system

or find missing files in case of a catastrophic failure.

The Serial I/O Facility

Introduction to Serial I/O

Symbolics computers have a serial input/output facility, which uses the EIA RS-232

protocol to receive and transmit serial data. Many computer peripherals can com-

municate using the RS-232 protocol, and so can be connected to a Symbolics com-

puter through this facility. This chapter explains the capabilities of the facility,

gives a brief description of the hardware performing the serial I/O and how to in-

terface to it, and describes the software driving that hardware.

Before reading this chapter, you should be familiar with the basic concepts of seri-

al data communication, including the RS-232 standard. You should also be familiar

with Symbolics Common Lisp, which is the systems programming language for

Page 1028

Symbolics computers. In particular, you should understand what streams are. See

the section "Streams".

The Serial I/O Facility was rewritten for Genera 7.4 Ivory. It now works as docu-

mented.

You should note the following minor changes:

• The uss package has been removed. Users should not have been using symbols

in this package. However, if you are using any of these symbols, such as

uss::*serial-interfaces* and uss::serial-port-lock-holder, you should change your

code to use the documented interfaces.

• It used to be possible to create your own flavor of serial stream and supply all

the options to si:make-serial-stream in the :default-init-plist option to

defflavor. Now you can supply stream-specific options only to :default-init-plist;

others must be supplied with :after methods. See the section "Creating Your

Own Flavor of Serial Stream".

• It should be noted that the serial chip used by the XL400 has a slightly differ-

ent behavior with respect to parity checking than the chips used in earlier Sym-

bolics machines. The 68562 chip checks parity before checking for XON/XOFF

characters, the older chip checked after. This means that you have to be more

careful about parity settings than previously. If the parity is wrong, XON/XOFF

flow-control does not work.

Hardware Description for Serial I/O

This section gives a brief description of the hardware that performs serial I/O on

Symbolics computers. You do not have to understand everything in this section to

use the serial I/O facility.

Overview of Serial I/O Hardware

Symbolics computers have different numbers of serial ports. Here is a list of ma-

chine models and the number of serial ports each supports. 3600-family and XL400

machine serial ports have integer names starting with 0.

3600 Supports four serial I/O ports. Three ports are located on the

bulkhead at the back of the processor. The fourth port is locat-

ed in the rear of the console.

3650 Supports three serial I/O ports. Two ports are located on the

bulkhead at the back of the processor. The third port is located

in the rear of the console.

3620 This machine model is delivered with only one bulkhead port;

others can be ordered from Symbolics.

Page 1029

3610AE This machine model does not come standard with any bulkhead

ports; one can be ordered from Symbolics.

XL400 This machine comes with one bulkhead port. You can add I/O

boards to get additional ports. Since the XL400 has a VME

bus, there also the possibility of having a VME board with one

or more additional serial ports.

UX400S This machine uses the serial ports on the SUN in which it is

embedded. The ports are referenced by their UNIX names, for

example, :unit "/dev/ttyA".

MacIvory This machine has two serial ports: the printer port, which is

unreliable for incoming data at speeds above 300 baud, and the

modem port. They are referenced as 1 and 2.

The external data communication signals appear on RS-232 25-pin D-type connec-

tors. In the 3600 machine model, all serial I/O communication is controlled by the

computer’s FEP. In the 3610AE, 3620, and 3650 machine models, serial I/O com-

munication is through the console SLB (a small board behind the FEP) and the

Z8530 (a serial chip). This speeds up serial I/O communication.

The RS-232 protocol provides for communication between Data Circuit Terminating

Equipment (DCEs, also known as "data sets"; for example, modems), and Data Ter-

minal Equipment (DTEs, also known as "data terminals"; for example, computer

terminals, computers, or most devices that use serial lines).

The single console port is configured differently from ports on the bulkhead:

On the 3600 machine model, each of the three ports on the bulkheads is a DTE.

You can connect a bulkhead serial port directly to a DCE, but if you want to con-

nect the serial port to a DTE, you must supply a null modem.

In contrast, the console port is a DCE. You can connect the console serial port di-

rectly to a DTE, but if you want to connect the serial line to a DCE, you must

supply a null terminal.

For example, a Kanji tablet is configured as a DCE. You can connect a Kanji

tablet directly to a bulkhead port (a DTE), but you must supply a null terminal to

connect a Kanji tablet to the console port (a DCE).

Console Serial I/O Port

The external data communication signals appear on one female RS-232 25-pin

D-type connector in the rear of the console of Symbolics 3600-family computers.

The console serial I/O port is labelled "RS-232".

The correspondence between connector pins and RS-232 signals is given in Table 1.

Note: The cable for modems is not symmetrical. If it doesn’t seem to work, swap

ends and try again.

Page 1030

Console

connector pin RS-232 signal

2 Transmitted Data [Input]

3 Received Data [Output]

4 RTS (Request To Send) [Input]

5 CTS (Clear To Send) [Output]

6 DSR (Data Set Ready) [Output]

8 DCD (Data Carrier Detect) [Output]

20 DTR (Data Terminal Ready) [Input]

1 Chassis Ground

7 Signal Ground

Table 7. Assignment of RS-232 Signals to Pins�

To build a cable that includes a null terminal for asynchronous communications,

follow the wiring instructions in Table 2. Both ends of the cable should be male

25-pin RS-232 connectors.

Pin at back of the console (DCE) Pin at remote end (DTE)

2 Transmit data (to DCE) 3 Transmit data (from DTE)

3 Receive data (from DCE) 2 Receive data (to DTE)

4 Request to send (to DCE) 5 Clear to send (to DTE)

5 Clear to send (from DCE) 4 Request to send (from DTE)

7 Signal ground 7 Signal ground

8 Carrier detect (from DCE) 20 Data Terminal ready (from DTE)

18 Special DTE-DSR input 6 Data set ready (to DTE)

19 Special DTE-RI input 22 Ring Indicator (to DTE)

20 Data terminal ready (to DCE) 8 Carrier detect (to DTE)

Table 8. Assignment of RS-232 Signals to Pins in Asynchronous Null Terminals�

Note: The console serial I/O port has architectural limitations that currently pre-

vent the console processor from reporting errors during transmission. For this

reason, Symbolics cannot recommend use of this port for applications that require

a completely reliable data stream.

The console serial I/O port handles graphics and kanji tablets with no difficulty.

(However, leaving the tablet puck or stylus on the pad makes the tablet send a

continuous stream of coordinates when connected to any serial port. Therefore,

users should keep the puck or stylus off the tablet when not actually using it.)

Any user protocol that performs its own end-to-end reliability checking, such as

Kermit or XModem, is also acceptable.

Page 1031

In its own operations, Symbolics uses LGP2 printers connected to the console seri-

al I/O port with no difficulty, but some customers have had problems doing the

same thing.

There is no guarantee that every Print Spooler request is correctly handled.

Screen dumps are faster when the printer is connected to the bulkhead port than

to the console port.

Bulkhead Serial I/O Ports

The external data communication signals appear on three RS-232 25-pin D-type

connectors on the rear bulkhead (in the back of the processor).

The gender and labeling of these connectors varies with the processor model:

• The 3600 I/O bulkhead presents 3 female connectors labelled "EIA 1", "EIA 2",

and "EIA 3". (The male connector labelled "EIA 4" is not a serial port at all, but

the connection to an inboard Vadic VA3450 modem, if present.

• The 3670 I/O bulkhead presents 3 male connectors labelled "EIA 1", "EIA 2",

and "EIA 3".

• The 3640 I/O bulkhead presents 3 male connectors labelled "SERIAL 1", "SERI-

AL 2", and "SERIAL 3".�

The correspondence between connector pins on the rear bulkhead and RS-232 sig-

nals is given in Table 1.

Rear bulkhead

connector pin RS-232 signal

2 Transmitted Data [Output]

3 Received Data [Input]

4 RTS (Request To Send) [Output]

5 CTS (Clear To Send) [Input]

6 DSR (Data Set Ready) [Input]

8 DCD (Data Carrier Detect) [Input]

20 DTR (Data Terminal Ready) [Output]

1 Chassis Ground

7 Signal Ground

Table 9. Assignment of RS-232 Signals to Pins

�

�

Page 1032

To build a cable that includes a null modem for asynchronous communications, fol-

low the wiring instructions in Table 2.

One Other

side side RS-232 signal

3 2 Data Out (from data set to terminal)

2 3 Data In (from terminal to data set)

5 4 RTS (Request To Send)

4 5 CTS (Clear To Send)

20 6 DSR (Data Set Ready)

20 8 DCD (Data Carrier Detect)

6 20 DTR (Data Terminal Ready)

8 20 DTR (Data Terminal Ready)

1 1 Chassis Ground

7 7 Signal Ground

Table 10. Assignment of RS-232 Signals to Pins in Asynchronous Null Modems

�

�

Note that this null modem is suitable only for asynchronous communications; a

synchronous null modem is considerably more complex.

When using the 3600-family computer with a device that does not supply RS-232

modem control signals, it is necessary to supply Clear To Send and Data Carrier

Detect inputs to the 3600-family computer, for example by jumpering pin 4 to pin

5, and pins 6, 8, and 20 together. This should be done in the cable or in the de-

vice connector, not in the 3600-family computer’s connector or inside the 3600-

family computer. See tables 9 and 10.

The Serial I/O Stream

The function of the serial I/O facility is to receive and transmit data over a serial

communications channel. The unit of communication is the character; each charac-

ter is represented as a binary number. The facility has two independent parts: a

receiver, which receives a sequence of characters from the external device, and a

transmitter, which transmits a sequence of characters to the external device.

A Symbolics Common Lisp program uses the facility through an I/O stream. The

output operations, such as :tyo, send characters to the transmitter and from there

to the external device; the input operations, such as :tyi, read characters from the

receiver, which gets them from the external device. In addition to regular I/O op-

erations, the serial I/O stream also supports special operations that examine and

alter parameters of the serial I/O facility. To perform serial I/O, a program should

first get the serial I/O stream by calling the function si:make-serial-stream, set-

Page 1033

ting up the parameters of the serial I/O facility as it needs them; then it can use

normal stream operations to read and write characters. When the program is done

with the serial I/O stream, it should close it; programs that use the serial I/O

stream should include an unwind-protect form whose cleanup handler closes the

stream. The with-open-stream special form is a good way to do this when the en-

tire lifetime of the stream is to be enclosed in the body of one Symbolics Common

Lisp form. Closing the stream frees up a buffer in main memory, frees up use of

the port, and disables interrupts.

The serial I/O stream is different from most streams in that the characters you

send to it and get from it are probably not interpreted as being in the Symbolics

character set. Of course, the interpretation of the characters depends completely

on the external device, but most devices that are likely to use serial communica-

tions use the standard ASCII character set. You can tell the stream whether or not

to convert between ASCII characters and Symbolics characters.

The serial I/O stream is also different from some streams in being buffered on the

output side. If you send characters to the serial stream using, for example, :tyo or

:string-out, the characters are placed into a buffer for eventual transmission over

the serial line. They are not actually transmitted until the buffer fills up, the seri-

al stream is closed, or a :force-output operation is done on the stream. The

:force-output option to si:make-serial-stream causes characters to be transmitted

immediately; this makes the serial stream easier to use but degrades its perfor-

mance.

The serial I/O stream has several parameters. Each parameter is denoted by a key-

word symbol. These keywords are passed to the si:make-serial-stream function

and to the :get and :put operations to specify which parameter the caller is inter-

ested in. (Some parameters make sense only when creating a stream, or affect the

flavor of the stream; these parameters are not valid for :get and :put.) For de-

scriptions of the parameters:

See the section "Parameters for Serial I/O".

si:make-serial-stream &rest options Function

Initializes the serial I/O facility and returns the serial I/O stream.

options are alternating keyword symbols, naming parameters, and initial values for

those parameters. They let you initialize parameters when you start using the seri-

al I/O stream. You can change most of them later with the :put operation.

si:make-serial-stream, which accesses a serial line, causes the accessing process

to wait if the port unit requested is in use. The command c-m-SUSPEND allows you

to invoke a restart handler to close a line that you believe has been left open by

mistake.

For documentation of parameters for serial I/O: See the section "Parameters for

Serial I/O".

Obsolete Parameters for si:make-serial-stream

Page 1034

Note: The following parameters for si:make-serial-stream are now obsolete but

are still supported; use the generic function indicated instead of the parameter:

:clear-to-send

Use the clear-to-send generic function instead.

See the method :clear-to-send.

:request-to-send Defaults to t. If you want to change this to nil, use the setf-

request-to-send generic function to do so. See the method

:setf-request-to-send.

:data-terminal-ready

Defaults to t. If you want to change this to nil, use the setf-

data-terminal-ready generic function to do so. See the method

:setf-data-terminal-ready.

The serial I/O stream supports all standard stream operations. Of the optional in-

put operations, it supports :listen and :clear-input; the latter is relevant because

input from the serial port is buffered. There is also a :reset operation, which re-

sets the state of the hardware. The :tyi-no-hang special-purpose operation is sup-

ported as well. The :force-output and :finish optional output operations are sup-

ported, since output is buffered.

The serial I/O stream also supports two nonstandard operations: :put and :get.

These operations examine and alter various properties of the serial I/O facility.

(flavor:method :get si:serial-stream) parameter Method

parameter should be one of the symbols that name parameters of the serial I/O fa-

cility. This message returns the value of that parameter. See the section "Parame-

ters for Serial I/O".

� (flavor:method :put si:serial-stream) parameter value Method

parameter should be one of the symbols that name parameters of the serial I/O fa-

cility. The value of that parameter is set to value. See the section "Parameters for

Serial I/O".

If you are using serial I/O streams, you might also be interested in the remote lo-

gin facilities:

See the section "Using the Remote Login Facilities for ASCII Terminals".

See the function neti:enable-serial-terminal.�

You can also use the following generic functions to manipulate the serial I/O

stream:

send-break

Sends a message to the device to stop the output stream. When using this generic

function, make sure that there is no output buffered in the stream by sending a

:force-output message.

Page 1035

carrier-detect

Returns t if a carrier detect is asserted at the port. Otherwise, it returns nil.

setf-data-terminal-ready

If the value of this parameter is t, assert the DTR ("data terminal ready") signal;

otherwise do not. The default is nil.

clear-to-send

Returns t if the external device is asserting the CTS ("clear to send") signal; oth-

erwise it is not.

setf-request-to-send

Asserts a request RTS ("request to send") signal. The default is to send a stream

from the port if value is non-nil.

data-set-ready

Returns t if asserted at the port. Otherwise, it returns nil.

ring-indicator

Returns t if asserted at the port. Otherwise, it returns nil.

Parameters for Serial I/O

This section lists all parameters of the serial I/O facility. For each parameter, it

lists the keyword symbol, the meaning of the parameter, and the default value. A

few parameters can be examined but not altered; they are so marked in their de-

scriptions. Parameters whose functions are similar are grouped together.

Parameters from the following group are used only when the stream is being cre-

ated, as arguments to si:make-serial-stream. You cannot use the :put operation

with them, and you can use the :get operation only with :unit.

:unit This parameter says which of the serial ports to create a

stream to. Its value can be an 1, 2, or 3 to indicate one of the

three bulkhead ports (each of which is a DTE); or 0 to indicate

the serial I/O port located at the back of the console (a DCE).

On UX400 machines, it is the name of the port in UNIX, for

example "/dev/ttyA". The default is 2. For more information on

the serial I/O ports: See the section "Overview of Serial I/O

Hardware".

:ascii-characters If the value of this parameter is t, the serial stream is a Zetal-

isp character stream. The characters are translated from ASCII

to the Symbolics internal character set on input, and to ASCII

on output. If the value of this parameter is nil, the serial

stream is a binary stream. Binary streams do not support :line-

out, :fresh-line, and similar messages. The default is nil.

:flavor The value of this parameter is the flavor of stream to create.

Normally, the value is computed automatically, based on the

values of the :ascii-characters and :force-output parameters;

this parameter is needed only if you want to use some special

flavor that includes the serial stream flavors and other mixins.

Page 1036

:force-output If the value of this is t, a :force-output stream operation is

done after every :tyo and every :string-out. If the value of this

is nil output is not transmitted until the output buffer fills up,

a :force-output is done explicitly, or the stream is closed (and

the close mode is not :abort). The nonforcing mode is usually

more efficient, although efficiency depends on the application.

The default is nil.

The following group of parameters controls the format of the transmitted charac-

ters. It is important to set the parameters to be compatible with the external de-

vice, or else proper communication is impossible. These parameters apply to both

the transmitter and the receiver.

:baud The data transmission rate, in bits per second. This an integer

(in decimal): 300, 600, 1200, 1800, 2000, 2400, 3600, 4800,

7200, 9600, 19200 for 3600 family machines. The maximum is

9600 for 3600-family machines. Valid baud rates for XL ma-

chines are 50, 75, 110, 134.5, 150, 200, 300, 600, 1050, 1200,

2000, 2400, 4800, 9600, 19200 and 38400. Note that 38400 is

the maximum for XL machines. For embedded Ivory machines,

it is the speed of the embedding host.

:number-of-data-bits

The number of bits in each character. This should be one of

the following fixnums: 5, 6, 7, or 8. The default is 7 for 3600-

family and XL400 machines. For embedded Ivory machines, it

is the same as the embedding host.

:parity The kind of parity bit that should be sent. If the value of this

parameter is nil, no parity bit is sent. If it is :even, even pari-

ty is transmitted. If it is :odd, odd parity is transmitted. The

default is :even. This parameter also controls what kind of

parity checking is done on received characters. The XL400

checks parity before checking for XON/XOFF flow control

characters. For embedded Ivory machines, parity is the same

as the embedding host.

:number-of-stop-bits

The number of "stop" bits transmitted after each character. It

should be one of the following numbers: 1, 1.5, or 2. The de-

fault is 1.

The following parameters control error checking in the receiver. After a character

is read by an input stream operation, the stream checks for error conditions de-

tected by the receiver when the character arrived. If any of the enabled error con-

ditions occurred, the stream signals an error. For embedded Ivory systems where

the embedding host does not support all of these parameters, the serial I/O facility

tries to map the parameters it receives to those the system supports. Any unsup-

ported parameters are ignored.

Page 1037

:check-parity-errors

If the value of this parameter is nil, parity errors are ignored;

if it is t, when a character with an error is read, and there is

pending input, the parity error is buffered along with the in-

coming characters. After the pending input is read, the parity

error is signalled. The default is nil. A parity error occurs

when the parity of the data bits disagrees with the value of

the received parity bit. This never happens if parity checking

is not being used, that is, if the :parity option is nil. The

XL400 checks parity before checking for XON/XOFF flow con-

trol characters.

:input-error-character

The value is a character to be substituted for any input char-

acter in which a parity error is detected. This is independent

of the :check-parity-errors flag. If the value is nil (the de-

fault), the character is left alone.

:check-overrun-errors

If the value of this parameter is nil, over-run errors (low level

errors) are ignored; if it is t, when a character with an error

is read, and there is pending input, the over-run error is

buffered along with the incoming characters. After the pending

input is read, an over-run error is signalled. The default is nil.

An over-run error occurs if input arrives faster than it can be

read.

:check-framing-errors

If the value of this parameter is nil, framing errors are ig-

nored; if it is t, when a character with an error is read, and

there is pending input, the framing error is buffered along

with the incoming characters. After the pending input is read,

a framing error is signalled. The default is nil. The framing

error occurs when the "stop" bit (the bit after all the data bits,

and after the parity bit if parity is being checked) is not 1.

This indicates a line error, a baud rate mismatch between the

external device and the receiver, or the sending of a "break".

:check-break When the value of this is t, if a break is detected in the input

stream and there is pending input, the break is buffered along

with incoming characters. After the pending input is read, the

check break is signalled. The default is nil.

:check-overflow-errors

When the value of this is t, if a Lisp buffer overflow is detect-

ed in the input stream, when a character with an error is

read, and there is pending input, the overflow error is buffered

along with the incoming characters. After the pending input is

read, an overflow error is signalled. The default is t.

Page 1038

:want-unsolicited-input-exceptions

When the value of this parameter is t, if there is input while

the process is waiting for output in the Lisp buffer to com-

plete, this causes an error to be signalled when the character

is received while waiting for output to complete. The default is

nil.

:timeout When the value of this parameter is t, specifies the amount of

time, in 60th of a second, to wait before timing out while wait-

ing for output to finish. This causes an error to be signalled in

the Lisp buffer when the timeout expires. The default is nil.

The following parameters control the use of the XON/XOFF protocol. For embed-

ded Ivory systems where the embedding host does not support all of these parame-

ters, the serial I/O facility tries to map the parameters it receives to those the sys-

tem supports. Any unsupported parameters are ignored.

:xon-xoff-protocol If this is t, output to the serial stream is flow-controlled using

the ASCII XON/XOFF (Control-S/Control-Q) protocol. While the

stream is transmitting characters, it checks the receiver to see

if any characters have arrived. If an ASCII XOFF or Control-S

character (octal 23, decimal 19) has arrived, transmission is

stopped. Then the stream reads characters from the receiver

until an ASCII XON or Control-Q character (octal 21, decimal

17) arrives, and then proceeds with the transmission.

This feature allows the external device to limit the rate at

which characters are transmitted to it by the serial I/O facility.

The default is nil (XON/XOFF feature not enabled).

Note: You can modify the Control-S/Control-Q characters with

the parameters :input-xoff-character and

:input-xon-character.

Interpretation of incoming XON/XOFF signals is done at inter-

rupt level in the FEP, and is therefore quite fast. After an

XOFF is received, the 3600-family computer ceases transmis-

sion after two or three characters (buffered in the multiproto-

col chip).

You should note that the XL400 checks for parity before check-

ing for XON/XOFF characters.

:generate-xon-xoff If the value of this parameter is t, then the serial port gener-

ates XON and XOFF controls itself. This can be used to accept

input at high speed from devices that understand the

XON/XOFF protocol. The default is t.

The XON and XOFF characters are transmitted directly by the

FEP, so the response time is excellent. After the FEP trans-

mits an XOFF, the device is required to cease transmission af-

ter no more than about 100 characters, so the device is not re-

quired to act very quickly.

Page 1039

On machine models 3610AE, 3620, and 3650, the microcde re-

ceive task wake-ups (interrupts) generate the XON and XOFF

controls. This is slightly slower than the serial port generation,

but it is still very fast. After the machine transmits the

:output-xoff-character, the device is required to cease trans-

mission after no more than 50 characters.�

:rts-cts-protocol

When the value is t, specifies to use the hardware RTS/CTS

protocol for transmitting to the device. The default is nil.

:generate-dtr When the value is t, specifies to use a hardware DTR/CTS

protocol. The default is nil.

:input-xoff-character

The value is a character that is used to control flow of data

from the external device to the Symbolics computer. It is sent

by the Symbolics computer to suspend the flow of data when

the :generate-xon-xoff flag is set. ASCII Control-S is 19, and

ASCII Control-Q is 17. The default is 19.

:input-xon-character

The value is a character that is used to control flow of data

from the external device to the Symbolics computer. It is sent

by the Symbolics computer to resume the flow of data when

the :generate-xon-xoff flag is set. ASCII Control-S is 19, and

ASCII Control-Q is 17. The default is 17.

:output-xoff-character

The value is a character that is used to control flow of data

from the Symbolics computer to the external device. It is used

to suspend the flow of data when the :xon-xoff-protocol pa-

rameter is set. ASCII Control-S is 19, and ASCII Control-Q is

17. The default is 19.

:output-xon-character

The value is a character that is used to control flow of data

from the Symbolics computer to the external device. It is used

to resume the flow of data when the :xon-xoff-protocol param-

eter is set. :xon-xoff-protocol parameter is set. ASCII

Control-S is 19, and ASCII Control-Q is 17. The default is 17.

Creating Your Own Flavor of Serial Stream

You can define your own flavor of serial stream with defflavor. However, you

should be aware that you cannot give default values to system stream options us-

ing the :default-init-plist option to defflavor.

For example:

Page 1040

(defflavor my-serial-stream

 (my-option)

 (serial:serial-binary-stream)

 :default-init-plist :my-option t)�

You can put your own options on the default-init-plist, but not the options to

si:make-serial-stream. The list of options that are not allowed is:

:mode :flavor

:force-output :ascii-characters

:baud :unit

:xon-xoff-protocol :generate-xon-xoff

:input-xon-character :input-xoff-character

:output-xon-character :output-xoff-character

:number-of-data-bits :number-of-stop-bits

:parity :rts-cts-protocol

:check-breaks :check-parity-errors

:check-framing-errors :check-overrun-errors �

You can use :after methods to give default values to these options.

Simple Examples: Serial I/O

The following two examples illustrate the use of the serial I/O facility. For further

information on the function si:make-serial-stream and its parameters:

See the section "The Serial I/O Stream".

See the section "Parameters for Serial I/O".�

Both examples below assume that the serial I/O port numbered 1 is hooked to an

ASCII computer terminal operating on a normal RS-232 asynchronous connection

at 300 baud, with one stop bit and odd parity. It types the characters "Hello

there." on the terminal. A null modem is used between the serial port and the ter-

minal, because both ends are acting as DTEs.

The first example illustrates creating a serial stream, saving the result in a vari-

able, sending output to the stream, and closing the stream:

(setq ss (si:make-serial-stream

 :unit 1

 :baud 300

 :ascii-characters t

 :number-of-stop-bits 1

 :parity :odd

 :force-output t))

(send ss :string-out "Hello there.")

(close ss)�

The second example uses :with-open-stream, thereby enclosing the entire lifetime

of the serial stream in the body of one Symbolics Common Lisp form:

Page 1041

(defun type-greeting-message ()

 (with-open-stream (stream (si:make-serial-stream

 :unit 1

 :baud 300

 :ascii-characters t

 :number-of-stop-bits 1

 :parity :odd))

 (send stream :string-out "Hello there.")))

�

You can also use the function neti:enable-serial-terminal to enable a terminal to

communicate with a Symbolics computer: See the function neti:enable-serial-

terminal.

Troubleshooting: Serial I/O

If you have trouble making your device communicate with the 3600-family comput-

er through a serial port, there are several things to try:

• Make sure that the baud rate, the number of data bits, the parity checking, and

the number of stop bits are set the same way on the device as they are in your

serial stream parameters.

• Make sure that the device is connected to the proper serial port. The bulkhead

serial ports are labelled "EIA1" (or on 3640s, "SERIAL 1"), "EIA2" ("SERIAL 2"),

and "EIA3" ("SERIAL 3"). The console serial port is labelled "RS-232". You must

use the port corresponding to the value of the :unit keyword to si:make-serial-

stream. The default value is 2, so if you do not specify anything, the "EIA2"

("SERIAL 2") connector is the appropriate one.

• If you are using any one of the three bulkhead serial ports (units 1, 2, or 3, you

can connect the port directly to a DCE device. However, if the device is a DTE,

make sure that there is a null modem between your device and the serial con-

nectors. Since most devices are DTEs, the null modem is probably necessary.

• If you are using the console serial port (unit 0) you can connect the port direct-

ly to a DTE device. However, if the device is a DCE, make sure that there is a

null terminal between your device and the serial connectors.

• Try using a different port. Remember both to plug your device into a different

connector, and to change the program to specify a different value for the :unit

keyword.

Notes on Serial I/O

The receiver is implemented using the Symbolics computer’s general front end pro-

cessor (FEP) "channel" facility. When a character arrives at the serial port, the

FEP buffers it and transfers it to the Symbolics computer over a "channel".

Page 1042

Therefore, it is not necessary for the program doing input from the stream to read

in characters as quickly as they arrive from the external device. The :clear-input

operation to the serial stream resets this buffer (including the buffers in Symbolics

Common Lisp, and the buffers in the FEP). The buffering capacity is about 500

characters. If the buffer is full and another character arrives, an over-run error

occurs; if the :check-overrun-errors parameter is used, this is reflected by the

signalling of an error.

A useful debugging technique is to create a serial stream with the desired parame-

ters and set a variable (say, s) to it, and do:

(stream-copy-until-eof s standard-output)�

This prints received characters on the screen until you type c-ABORT. This tech-

nique works only with the :number-of-data-bits parameter set to 7, so that the

Symbolics computer does not see the ASCII parity bit. Unless character set trans-

lation is enabled (via the :ascii-characters parameter), ASCII control characters,

including carriage return and line feed, are displayed as special symbols, such as

circle-cross or delta, because of the differences between the Symbolics character

set and ASCII. See the section "The Character Set".

Using the Terminal Program with Hosts Connected to the Serial Line

You can connect a Symbolics machine to another host via the serial line. Specifi-

cally, you can use the terminal program to communicate with another host when

the Symbolics computer’s serial line is connected to a terminal port on the other

host.

The network system treats the set of hosts connected to the serial lines of a Sym-

bolics computer as a special network, a pseudonet. Before you can use the terminal

program to talk to another host over the serial line, you must use the Edit Name-

space Object command to create this network object and assign an address on that

network to the Symbolics computer. You might want to create or modify the re-

mote host object as well.

1. Create the network. Give it a name attribute associated with the Symbolics

computer and a type attribute of serial-pseudonet.

In the following example, Merrimack is the name of the Symbolics computer:

NETWORK MERRIMACK-SERIAL

TYPE SERIAL-PSEUDONET�

2. Add an entry to the address attribute of the Symbolics computer to specify

that the Symbolics computer is connected to the new network. Each address

entry is usually a pair of the form (network address). By convention, the Sym-

bolics computer is assigned address 0 on a serial pseudonet. Following is an

example of a new address entry for the Symbolics computer Merrimack:

ADDRESS MERRIMACK-SERIAL 0�

Page 1043

3. If the line rate of the serial line is other than 9600 baud, supply a peripheral

entry for the Symbolics computer giving the correct baud rate. The peripheral

type is serial-pseudonet, and the unit attribute is the unit number of the se-

rial line. Following is an example of a peripheral entry for the Symbolics

computer:

PERIPHERAL SERIAL-PSEUDONET UNIT 2 BAUD 4800�

4. You can specify the NUMBER-OF-STOP-BITS, NUMBER-OF-DATA-BITS, and

the PARITY for serial-pseudonet peripherals.

5. If you want the terminal program to start out simulating one of the support-

ed terminal types, add a terminal-type attribute to the peripheral. Currently

supported terminal types are the VT100 and Ann Arbor Ambassador. For ex-

ample, to make the terminal program simulate an Ambassador, add to the

Symbolics computer a peripheral entry of this form (note that the entry must

actually be on one line):

PERIPHERAL SERIAL-PSEUDONET UNIT 2 BAUD 9600

TERMINAL-TYPE Ambassador�

You can now use the terminal program to connect to the remote host. At the "Con-

nect to host:" prompt, you must supply an address of the form MERRIMACK-SERIAL|2.

If you want to type a name or nickname of the remote host instead, add address

and service entries for the remote host’s namespace object. If the remote host

does not exist in the network database, use the Edit Namespace Object command

or the function tv:edit-namespace-object to create it.

For the address entry, specify the serial pseudonet and an address that corre-

sponds to the unit number of the serial line to which the host is connected. The

service entry is a triple of the form (service medium protocol). For the regular

host login server, service is login, medium is serial-pseudonet, and protocol is tty-

login. Following is an example of address and service entries for the remote host

Blue connected to the Symbolics computer Merrimack:

HOST BLUE

SYSTEM-TYPE TENEX

ADDRESS MERRIMACK-SERIAL 2

SERVICE LOGIN SERIAL-PSEUDONET TTY-LOGIN�

You can also use the serial line to connect to servers other than normal login on a

remote host. You must add a service entry for the remote host to specify the kind

of service, the serial-pseudonet medium, and the protocol that the remote host

uses. You must also add an address entry on the serial pseudonet for the remote

host. In the address entry, specify the address in the form protocol=unit instead of

just unit. Following are examples of address and service entries for a file server

using protocol myftp on remote host Blue:

Page 1044

HOST BLUE

SYSTEM-TYPE TENEX

ADDRESS MERRIMACK-SERIAL MYFTP=2

SERVICE FILE SERIAL-PSEUDONET MYFTP�

For information on the Terminal program: See the section "Using the Terminal

Program".

For information on network and host attributes: See the section "Setting Up and

Maintaining the Namespace Database".

For information on services, media, and protocols: See the section "Symbolics

Generic Network System".

For information on the valid parameters: See the section "Parameters for Serial

I/O".

Hardcopy Streams

The functions in this chapter are provided so that you can write an interface be-

tween an applications program and a supported printer. That is, they handle the

process of getting the thing to be hardcopied to the printer. They assume that you

have one of the printers supported by Symbolics; documentation is not provided to

write the support for a different type of printer.

Supported Hardcopy Devices

Symbolics currently supports the following hardcopy devices: LGP2, LGP3, ASCII,

and DMP1.

The Symbolics LGP3 Laser Graphics Printer is a table-top laser-beam printer

based on the Apple LaserWriter, extended with proprietary Symbolics software.

The Symbolics DMP1 Dot-Matrix Printer is a compact, heavy-duty, impact dot-

matrix printer with 24-wire print head.

The Hardcopy Stream Model

The interface between Genera and a particular printing device is implemented us-

ing a hardcopy stream. A hardcopy stream is an output stream. (See the section

"Types of Streams".) It handles the usual output operations, such as :tyo, :line-out,

and :string-out. In addition it handles operations such as :set-cursorpos and

:allocate-margins. (See the section "Using Hardcopy Streams".) It can handle page

breaks and formatting information that you specify when the stream is created.

The various hardcopy menus and commands accept a pathname as an argument.

hardcopy:hardcopy-text-file or press:hardcopy-press-file is then called, depend-

ing on the type of file, as determined from the file-type extension in the pathname

or as specified by the user. hardcopy:hardcopy-text-file and press:hardcopy-

press-file are the front end functions that make sure the appropriate file type and

format keywords are included with the file. These functions call

Page 1045

hardcopy:hardcopy-file, which opens the file and then calls the appropriate for-

matting function, hardcopy:hardcopy-from-stream or press:hardcopy-press-

stream, to handle the creation of a hardcopy stream and the actual sending of es-

cape codes to a printer object. A diagram of the hardcopy stream model appears in

!.

Pathname

hardcopy-text-file hardcopy-press-file

hardcopy-file

hardcopy-from-stream hardcopy-press-stream

Hardcopy Stream

Device

Figure 33. The Hardcopy Stream Model

�

Making Hardcopy Streams

The functions that create and manipulate hardcopy streams live in the package

hardcopy, with the exception of those functions that handle press format files,

which live in the package press.

The basic function to create a hardcopy stream is hardcopy:make-hardcopy-

stream:

Page 1046

hardcopy:make-hardcopy-stream device &rest options Function

Returns a hardcopy stream to the given device. options can be any of the hardcopy

option keywords. See the section "Hardcopy Options". hardcopy:make-hardcopy-

stream creates a stream built on hardcopy:basic-hardcopy-stream with charac-

teristics determined by the keyword options you specify. This stream accepts the

normal output stream messages, such as :tyo, :string-out, and some specific hard-

copy messages.

For example:

(with-open-stream

 (stream (hardcopy:make-hardcopy-stream hardcopy:*default-text-printer*))

 (send stream :string-out "this is a test

of the hardcopy system."))�

hardcopy:get-hardcopy-device device &optional (error-p t) Function

Returns a software object named by device that can send data to a hardcopy de-

vice. Typical hardcopy devices are printers, files, and windows.

(with-open-stream

(stream (hardcopy:make-hardcopy-stream

 (hardcopy:get-hardcopy-device device)))

(send stream :string-out "this is a test."))�

device can be:

• A string treated as the name of a printer. For example: "Tattler".

• A form that evaluates to a printer. For example: hardcopy:*default-text-

printer*.

• A list of ’(:window window) representing a particular window to which to send

the output. For example:

’(:window (make-window tv:window :expose-p t))�

See the section "Getting a Window to Use".

• A list of ’(:file pathname &optional canonical-type) that sends bytes to pathname

in the appropriate format. For example, the following creates a file suitable for

printing on an LGP2:

’(:file "q:>kjones>my-output.text" :lgp2)

• :debug, which means print a description of each message sent to the hardcopy

stream to terminal-io. For example:

(with-open-stream

(stream (hardcopy:make-hardcopy-stream

 (hardcopy:get-hardcopy-device :debug)))

(send stream :string-out "this is a test."))�

Page 1047

produces:

Set font 0 (#).

Set cursorpos X=0. micas, Y= 26940 micas.

this is a test.

Eject page (eof).

NIL�

• :window, which means create a special window to accept the output.�

Using Hardcopy Streams

hardcopy:basic-hardcopy-stream Flavor

The basic flavor upon which all hardcopy streams are built. Any hardcopy stream

handles the operations defined by the methods of hardcopy:basic-hardcopy-

stream. A diagram illustrating an instance of a hardcopy stream appears in!.

Application basic-hardcopy-stream

External

Hardcopy

Protocol

Internal

Hardcopy

Protocol

Device-specific

Protocol

Escape Codes

LGP3

Figure 34. An Instance of a Hardcopy Stream

�

Messages to hardcopy streams often take a units argument. This argument tells

the stream how other arguments connoting size and distance should be interpreted.

There are several types of units, but by and large they can be grouped into device-

specific units and device-independent units. Two common device-specific units are

the pixel and the device unit.

A pixel is the smallest dot the device can image; a typical laser printer like the

LGP3 has a resolution of 300 pixels to the inch. A device unit expreses the unit

distance of the coordinate system supported by the device; for the LGP3, this is

1/72 of an inch. Device-dependent distances are expressed in device units.

The most common device-independent unit is the mica, defined as 10 microns.

There are 2540 micas to the inch. Micas are used to express absolute distances in

a way that is independent of any particular device.

Page 1048

The operations handled by hardcopy streams are:

(flavor:method :show-rectangle hardcopy:basic-hardcopy-stream) width height

Method

Draws a filled-in rectangle on the page with the lower left corner at the current

cursor position of size width by height. If you are not sure of the current cursor

position, use :set-cursorpos before :show-rectangle. You should not depend on the

cursor position after using :show-rectangle. If you need the cursor position, do a

:set-cursorpos after this operation.

width and height are always in device-dependent units. Use :convert-to-device-

units to convert from other units.

(flavor:method :show-line hardcopy:basic-hardcopy-stream) to-x to-y Method

Draws a line on the page from the current position to the position designated by

to-x, to-y. You should not depend on the cursor position after using :show-line. If

you need the cursor position, do a :set-cursorpos after this operation.

The coordinates given to this message are absolute coordinates. If you have coordi-

nates relative to the page margins, for instance arguments to :set-cursorpos, use

:un-relative-coordinates to convert.

(flavor:method :read-cursorpos hardcopy:basic-hardcopy-stream) &optional

(units ’:device) Method

Returns the current position of the cursor in units, either :micas or :device. The

default is :device, meaning the units are device dependent.

(flavor:method :set-cursorpos hardcopy:basic-hardcopy-stream) x y &optional

(units ’:device) Method

Moves the place where printing occurs on the page to a new position. Unlike the

Symbolics console display, the 0,0 point of hardcopy streams is in the lower left

corner, the first (x) coordinate increasing toward the right of the page, the second

(y) coordinate increasing toward the top of the page. The coordinates are relative

to the margins of the page. If you need absolute coordinates, use :un-relative-

coordinates to convert.

units specifies the format of x and y. :device means that the interpretation is de-

vice dependent. :micas means x and y are in micas.

A value of nil for a coordinate means do not set that coordinate. For example,

(send stream :set-cursorpos nil 10)�

sets the cursor position 10 device units above the bottom of the page and leaves its

horizontal position unchanged.

Page 1049

(flavor:method :increment-cursorpos hardcopy:basic-hardcopy-stream) dx dy

&optional units Method

Changes the point on the page where printing occurs with respect to the current

position. Unlike the Symbolics console display, the 0,0 point of hardcopy streams is

in the lower left corner, the first (x) coordinate increasing toward the right of the

page, the second (y) coordinate increasing toward the top of the page.

units specifies the format of x and y. The default is :device.

A value of 0 for a coordinate means do not change that coordinate. For example,

(send stream :increment-cursorpos 0 10)�

raises the cursor position 10 device units above where it was and leaves its hori-

zontal position unchanged.

(flavor:method :un-relative-coordinates hardcopy:basic-hardcopy-stream) x y

&optional (units ’:device) Method

Converts the point x,y given to messages like :set-cursorpos that take coordinates

relative to the page margins to absolute coordinates for use with messages like

:show-line.

(flavor:method :convert-to-device-units hardcopy:basic-hardcopy-stream) quanti-

ty units direction Method

Converts quantity in units into the corresponding quantity in device-dependent

units. units can be :micas or :pixel. direction is either :horizontal or :vertical.

(flavor:method :convert-from-device-units hardcopy:basic-hardcopy-stream)

quantity units direction Method

Converts quantity from device units into units. direction is either :horizontal or

:vertical.

(flavor:method :home-cursor hardcopy:basic-hardcopy-stream) Method

Positions the cursor at the upper left hand corner of the page.

(flavor:method :size hardcopy:basic-hardcopy-stream) &optional (units ’:device)

Method

Returns width and height, the size of the paper in units. units can be :micas,

:pixel, or :device. :device (device-dependent units) is the default.

(flavor:method :inside-size hardcopy:basic-hardcopy-stream) &optional (units

’:device) Method

Page 1050

Returns the size of the area on the paper (the box) within which printing can oc-

cur, in units. :device means the units are device dependent.

(flavor:method :allocate-margin hardcopy:basic-hardcopy-stream) size margin

&optional (units ’:device) Method

Adds the amount of space specified by size to the margin specified by margin in

units. :device means the units are device dependent. Use of :allocate-margin in-

creases the margin, making :inside-size smaller.

(flavor:method :string-length hardcopy:basic-hardcopy-stream) string &optional

(start 0) end Method

Returns the length of string, which is the horizontal distance the cursor would

have to move to print string, in device units.

Example of a hardcopy stream

;;; -*- Mode: LISP; Syntax: Zetalisp; Package: USER; Base: 10 -*-

�

;;; Print characters in the character set,

;;; alternating roman and some other font.

�

(defun font-catalog-page (font &optional

 (printer hardcopy:*default-text-printer*))

 (setq printer (hardcopy:get-hardcopy-device printer))

 (with-open-stream (stream (hardcopy:make-hardcopy-stream

 printer))�

 (let ((fix-font (send stream :maybe-add-font "FIX9"))

 (catalog-font (send stream :maybe-add-font font)))

 (flet ((send-to-stream-in-font (new-font message &rest args)

 (send stream :set-font new-font)

 (lexpr-send stream message args))

 (draw-line (from-x from-y to-x to-y)

 (send stream :set-cursorpos from-x from-y)

 (multiple-value-bind (x y)

 ;; Note: :SHOW-LINE takes outside coordinates while

 ;; :SET-CURSORPOS takes inside coordinates.

 (send stream :un-relative-coordinates to-x to-y)

Page 1051

 (send stream :show-line x y))))�

(multiple-value-bind (x-size y-size) (send stream :inside-size)

 (decf x-size) (decf y-size) ;Leave room for drawing box

 (let* ((line-height-0 (send stream :convert-to-device-units

 1 :character :vertical))

 (line-height-both (* 2 line-height-0))

 (x 10)

 (y (- y-size (* 1.3 line-height-both)))

 (max-x x)

 (device-units-rounded?

 ;;If the device units are bigger than 0.01 inch, assume they

 ;;are flonums

 (> (send stream :convert-to-device-units 2540. :micas :vertical)

 100.0)))�

 (labels

 ((round-device-units (y)

 (if device-units-rounded? (round y) y))

 (draw-box ()

 (decf y line-height-0)

 (draw-line 0 y 0 y-size)

 (draw-line 0 y max-x y)

 (draw-line max-x y max-x y-size)

 (draw-line 0 y-size max-x y-size)

 (send stream :set-cursorpos 0 (- y line-height-both))

 (send-to-stream-in-font

 fix-font

 :string-out (format nil "Font ~A catalog" font)))

 (new-page ()

 (send stream :new-page)

 (setq x 10 y (- y-size line-height-both)

 max-x x))�

 (new-line ()

 (setq y (round-device-units

 (- y (* 1.3 line-height-both))))

 (setq max-x (max x max-x))

 (setq x 10)

 (when (< y line-height-both)

 (draw-box)

Page 1052

 (new-page)))�

 (new-character (character)

 (send stream :set-cursorpos x y)

 (send-to-stream-in-font fix-font :tyo character)

 (send stream :set-cursorpos x (+ y line-height-0))

 (send-to-stream-in-font catalog-font :tyo character)

 (incf x

 (+ (max (send-to-stream-in-font fix-font

 :character-width character)

 (send-to-stream-in-font catalog-font

 :character-width character))

 10))

 (when (> x (- x-size 10)) (new-line))))

 (setq y (round-device-units y))�

 (loop for char from 32 below 127

 and character = (code-char char)

 do

(new-character character)

 when (= 15 (mod char 16))

 do (new-line))

 (draw-box))))))))�

(zl-user:font-catalog-page "centuryschoolbook105")�

Output:

• ↓ α β ∧ ¬ ε π λ γ δ ↑ ± ⊕ ∞ ∂
• ↓ α β ∧ ¬ ε π λ γ δ ↑ ± ⊕ ∞ ∂

⊂ ⊃ ∩ ∪ ∀ ∃ ⊗ ↔ ← → ≠ ◊ ≤ ≥ ≡ ∨
⊂ ⊃ ∩ ∪ ∀ ∃ ⊗ ↔ ← → ≠ ◊ ≤ ≥ ≡ ∨

 ! " # $ % & ’ () * + , - . /
 ! " # $ % & ’ () * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ?
0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O
@ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^ _
P Q R S T U V W X Y Z [\] ^ _

‘ a b c d e f g h i j k l m n o
‘ a b c d e f g h i j k l m n o

p q r s t u v w x y z { | } ~ ∫
p q r s t u v w x y z { | } ~ ∫�

The code for this example can be found in SYS:EXAMPLES;HARDCOPY-STREAM-

EXAMPLE.LISP.

Hardcopy Streams Reference Information

Hardcopy Front End and Formatting Functions

Page 1053

hardcopy:hardcopy-text-file file-name device &rest options Function

Called by the various hardcopy commands when the file to be hardcopied is just

text (as opposed to press format or other format produced by a text formatting

program) or is in an unspecified format.

For a discussion of the options this command takes, see the section "Hardcopy Op-

tions".

hardcopy:hardcopy-text-file calls hardcopy:hardcopy-file and

hardcopy:hardcopy-from-stream to do its work.

press:hardcopy-press-file filename device &rest options Function

Called by the various hardcopy commands when the file to be hardcopied is in

press format.

For a discussion of the options this command takes, see the section "Hardcopy Op-

tions".

hardcopy:hardcopy-file file-name device &rest options &key title format formatter

file-open-options &allow-other-keys Function

Determines the format of the input file, opens it, and passes the input stream to

the appropriate formatter function, hardcopy:hardcopy-from-stream or

press:hardcopy-press-stream.

hardcopy:hardcopy-file takes the following keywords that indicate the format of

the file:

:ascii Straight ASCII text files, which cannot contain character

styles, to be printed on an ASCII printer.

:text Text files, which can contain character styles.

:lgp2, :lgp3, :press Binary files that are recorded output streams, that is, bits to

be sent verbatim to a printer of the proper type.

:postscript Character files containing programs to be interpreted by a

PostScript printer.

The variable hci:*hardcopy-formats* holds the list of valid hardcopy formats.

For a discussion of the formatting and spooling options this command takes, see

the section "Hardcopy Options".

hardcopy:hardcopy-from-stream format stream device &rest options &key (page-

headings t) starting-page ending-page &allow-other-keys Function

The formatting function for text files. It recognizes character styles in files writ-

ten by Zmacs. If the file has a -*- Default Character Style ... attribute, that

style is used as the base for character style merging.

Page 1054

For a discussion of the options this command takes, see the section "Hardcopy Op-

tions".

press:hardcopy-press-stream format stream device &rest options &key starting-

page ending-page copies &allow-other-keys Function

The formatting function for press files. It recognizes press format, that is, a de-

scription of formatted text, and generates the appropriate escape codes for the

printing device specified.

For a discussion of the options this command takes, see the section "Hardcopy Op-

tions".

Hardcopy Options

The functions hardcopy:hardcopy-text-file, hardcopy:hardcopy-file,

hardcopy:hardcopy-from-stream, and hardcopy:make-hardcopy-stream that do

the actual work of hardcopying files, creating hardcopy streams and sending char-

acters to those streams, share a number of keyword options. Each function handles

some keywords and passes the remainder along to the function that it calls. Some

of the keyword options determine formatter options, some are handled directly by

the hardcopy stream, and others are passed along to the spooler.

Keyword Options for Formatting

Keyword Explanation

:margins A list of left margin, top margin, right margin, and bottom

margin in micas.

:page-headings Whether to put headings on each page. The default is t, which

puts headings on each page.

:page-heading The heading to put on the top of each page. The default is the

value of :title.

:page-heading-dateThe date to put in the heading. The default is the value of

:data-creation-date.

:output-stream The destination of bytes for the output device. The formatting

function creates an output stream by looking at the options it

is given.

:keep-output-stream-open-p

Whether to suppress closing the output stream.

:landscape-p How to orient the output. Landscape means with the long axis

of the paper horizontal. Portrait means with the long axis of

the paper vertical. :landscape-p defaults to nil, meaning por-

trait.

Page 1055

:new-page-hook A function to call at the start of each page. It receives two ar-

guments, the hardcopy stream and the page number. It can be

used to print page headings, for example.

:starting-page The first physical page to print. The default is the first page

of the file. A page is defined by the presence of a Page charac-

ter or form feed in the file. Thus plain text files containing no

page markers are single-page files. It is important to remem-

ber for both :starting-page and :ending-page that this is a

physical page and does not use the page number, if any, sup-

plied by a text formatting program.

:ending-page The last physical page to print. The default is the last page of

the file.

:page-number The number to start with when printing numbers on paper.

The default is 1. This is a hardcopy stream option. The value

is determined by :starting-page and :ending-page.

Keyword Options for Formatting and Spooling

Keyword Explanation

:body-character-style

The character style to use in printing the main text of the file.

:heading-character-style

The character style to use in printing page headings.

:copies How many times the request should be printed.

:data-creation-dateThe creation date of the data (file or buffer) to print on the

cover page and in page headings, in universal time format.

:title A string describing the data being printed. It appears in print-

er status messages and on any cover page. The default is "Un-

named Request".�

Keyword Options for the Spooler

Keyword Explanation

:print-cover-pages Whether or not to print a cover page. If it is t (the default), a

cover page is printed. If it is set to nil, then no cover page is

printed.

:requestor-user-id The user name of the requestor (zl:user-id).

:requestor-host The machine from which the request is issued (net:*local-

host*).

Page 1056

:recipient The person for whom the hardcopy output is being printed. It

defaults to the personal name of the requestor.

Writing Programs that Use Magnetic Tape

tape:make-stream Function

Creates streams that read or write magnetic tape. It handles both cartridge and

industry-compatible tape. With tape:make-stream, you can access tape on the local

machine, or on any machine with a tape server.

tape:make-stream creates a stream. with-open-stream and other standard tools

for managing streams should be used to ensure proper closing of a stream made

with tape:make-stream.

Tape streams accept (for output) and return (as input) 8-bit characters. Normal

stream messages can be used to tape streams. See the section "Streams".

There are a few other messages: See the section "Messages to Tape Streams".

tape:make-stream takes a large number of optional keyword arguments:

:host The host on which the tape drive to be used is located. This

can be a string or a host object. The keyword :local is also ac-

cepted for the local host. If this argument is not provided,

tape:make-stream prompts for the name of the host.

The host must already be registered in the network database

for supporting TAPE service.

:unit The identifier of the tape drive on the selected host that is to

be used. Hosts having only one tape drive generally do not re-

quire this information. The value of this argument is generally

a character string. "" or nil specifies "don’t care", which is the

usual value.

:reel The name of the tape reel to be mounted. This information is

needed by tape servers that have operators, who need to know

the name of a tape in order to mount it. It is also needed by

servers who have tape access control systems. Currently (Re-

lease 5.0) no such servers are supported. "" or nil, the usual

default, means "don’t care".

:direction Specifies whether reading, writing, or intermixed reading and

writing are to be performed. The valid values of this argument

are thus :input, :output, and :bidirectional, respectively.

:input-stream-mode

This argument, which is only valid if the :direction argument

is :input or :bidirectional, controls whether record boundaries,

on input, are reflected to you. The default is t, meaning that

Page 1057

they are not. It is not meaningful for cartridge tapes: record

boundaries are never visible to the user of cartridge tape.

In input stream mode (a value of t), input bytes are transferred

from the tape records to you until a file mark (tape mark,

EOF) is encountered, at which time you see an end-of-file in

your stream.

In input record mode (a value of nil), input bytes are trans-

ferred from the tape records to you until a record boundary, at

which time you see an end-of-file in your stream. To progress

beyond the record boundary, the message :discard-current-

record must be sent to the stream.

:record-length Controls the maximum length, in bytes, of tape records. This is

ignored for cartridge tape. For reading, it must provide for the

largest record to be read. Not all input records need be this

long, although in some cases the server decides whether to al-

low records of other than this size. See also the keywords

:minimum-record-length and :minimum-record-length-

granularity. The default is 4096.

:density Density of the tape in bits per inch. This is ignored for car-

tridge tape. The default is 1600 for servers that have the capa-

bility of multiple densities.

:pad-char A number that is the single character with which to pad

records when short records are padded. (This is ignored for

cartridge tape.) The default pad character is 0. For compatibili-

ty with previous releases, supplying this argument and not sup-

plying a value for either :minimum-record-length or

:minimum-record-length-granularity implies a value of :full

for :minimum-record-length.

:minimum-record-length

A number that is the minimum record length, in bytes, to

which all output records will be padded. (This is ignored for

cartridge tape.) This ability is present because many tape con-

trollers cannot read records shorter than some minimum. Argu-

ments to this keyword can be:

not supplied If this argument is not supplied, a value of

64 is assumed.

integer Some number smaller than the value of the

:record-length argument. Short records are

padded with 0, or the value of the :pad-

char argument, if that is supplied.

:full All records are padded to their maximum

length, namely, the value of the :record-

length argument. Short records are padded

Page 1058

with 0, or the value of the :pad-char ar-

gument, if that is supplied.

nil Genera does not enforce any minimum

record length. The tape server and/or the

tape hardware on that server might enforce

some minimum of its own.

:minimum-record-length-granularity

An integer, or nil, establishing a granularity, or enforced inte-

gral divisor, for the length of all tape records written. If

non-nil, all records written are padded (with 0, or the value of

the :pad-char argument, if that is supplied) to be multiples of

this number in length. This value is ignored for cartridge tape.

It is also ignored if short records are not to be written, that is,

:minimum-record-length is given as :full or the same as

:record-length.

All Genera tape applications (LMFS and distribution dumpers

and carry tape) enforce a granularity of 4.

:prompt This is an optional string that is formatted into tape:make-

stream’s prompt for a host name, if one is issued. It should

describe the tape to be mounted in terms of the application

program running. For instance, if this string is supplied as

"billing master", tape:make-stream might prompt

Type name of tape host for billing master:�

:no-bot-prompt Normally, tape:make-stream notices if the tape is offline, or

not at BOT (beginning-of-tape) when it is called. If the tape is

offline, tape:make-stream queries you to wait for it to become

ready. If the tape is not at BOT, tape:make-stream queries

you about rewinding it. Supplying a non-nil value for :no-bot-

prompt suppresses these checks, allowing you to handle these

exigencies in any way you choose. The message :bot-p can be

sent to a tape stream to determine if it is at BOT, and :check-

ready to wait for a tape to become ready.

:norewind Normally, tape:make-stream rewinds the tape at the time the

stream is closed. Supplying a non-nil value for :norewind sup-

presses this behavior.

:lock-reason Another optional string describing the application. This string

is used in error messages sent to other users who try to access

the tape drive you are using. For instance, if it is supplied as

"daily billing run", another user might see a message like:

Cannot mount tape:

Drive 0 in use by daily billing run.�

Page 1059

Messages to Tape Streams

The following messages to tape streams are important. Tape streams, of course, al-

so support standard stream messages appropriate to input or output streams. See

the section "Streams".

These are the messages relevant to any kind of tape stream:

:close (&optional (abort-p nil))

Closes the stream. Normally, causes a rewind, and all the oper-

ations associated with :rewind (see the description of :rewind)

to take place. The :norewind argument suppresses this rewind,

although, for an output stream, buffered output is written,

along with two EOFs. The tape is left positioned between the

two EOFs, for industry-compatible tape, or after them, for car-

tridge tape.

:rewind Rewinds the tape. For input streams, buffered input is discard-

ed before the rewind. For output streams, buffered output is

written out, possibly padded, according to the current padding

parameters, and then two EOFs written, before the rewind. No

read-ahead is performed. This message does not wait for the

rewind to complete.

:await-rewind Waits for a previously started rewind to complete.

:set-offline A :rewind is done, and the tape is set offline, or unloaded, as

befits the controller and drive. The setting of the tape offline

does not wait for the rewind to complete.

:clear-error If a tape error occurs, and is handled by you, you must send

this message before attempting to continue using the stream.

Otherwise, it remains in the error state, where it can only be

closed.

:skip-file (&optional (n 1))

Skips to, and past, a file mark (EOF). n is how many to skip,

and can be negative, indicating backward motion. For input

streams, all buffered input is discarded before the motion. For

output streams, this operation is not valid unless the last thing

written was an EOF, not a data record. Cartridge tape cannot

skip backward. Forward motion is not allowed immediately af-

ter output.

:host-name The name of the host on which the tape is mounted.

:bot-p Returns t if the tape is at BOT (beginning of tape), and nil if

not.

:check-ready Checks to make sure the tape drive is ready, and informs you,

waiting interactively, if not.

Page 1060

These are the messages specifically relevant to tape input streams. Most of them

are relevant only to input record mode, which is the mode requested by a value of

nil for :input-stream-mode. See the description of the :input-stream-mode argu-

ment to the function tape:make-stream.

:clear-eof This clears the EOF state that results from reading an EOF

mark. When an EOF is encountered, all character-reading oper-

ations encounter an end-of-file indication until :clear-eof is

sent. This is needed in input stream mode as well as input

record mode.

:discard-current-record

This discards the remainder of the current record, when in in-

put record mode, and allows reading the next record. This mes-

sage must be issued to progress past a record boundary in in-

put record mode, even if all of the bytes in the record have

been read. This is meaningless for cartridge tape.

:record-status (&optional (error-p t))

This is only valid in input record mode, and meaningless for

cartridge tape. This call is only valid at the beginning of a

record, that is, if no bytes have been read from the current

record. It describes, via its return value, the record that is

about to be read by the user. Here are the possible values:

an error object The next record cannot be read, due to er-

ror. An error object is returned. If error-p

is t, which is the default, an error is sig-

nalled in this case, instead of an error ob-

ject being returned.

integer The length of a good record, in bytes.

:eof The next record is not a record at all, but

an EOF (a file mark).�

These are the messages relevant to tape output streams:

:write-eof Writes an EOF (a file mark). If a record is being built, it is

written out. Whether or not it is padded depends upon the val-

ues of the arguments :minimum-record-length and :minimum-

record-length-granularity.

:force-output Writes out any record being buffered. Whether or not it is

padded depends upon the values of the arguments :minimum-

record-length and :minimum-record-length-granularity. This

is the normal way to end a record when record boundaries are

significant, or short records are written. Otherwise, records are

written when they are full.

:write-error-status (&optional error-p)

Verifies that all records have been written correctly. Tape

Page 1061

streams often buffer many records ahead. :write-error-status

waits for all buffered I/O to complete. If there was no error,

nil is returned. If there was an error, an error object is re-

turned describing the error. If error-p is non-nil, an error is

signalled instead. If the error is end of tape, however, and

error-p is nil, :end-of-tape is returned.

Tape Error Flavors

tape:tape-error Flavor

This set includes all tape errors. This flavor is built on error.

tape:mount-error Flavor

A set of errors signalled because a tape could not be mounted. This includes prob-

lems such as "no ring" and "drive not ready". Normally, tape:make-stream handles

these errors, and manages mount retry. This flavor is built on tape:tape-error.

tape:tape-device-error Flavor

A hardware data error, such as a parity error, controller error, or interface error,

occurred. This flavor has tape:tape-error as a :required-flavor.

tape:end-of-tape Flavor

The end of the tape was encountered. When this happens on writing, the tape usu-

ally has a few more feet left, in which the program is expected to finish up and

write two end-of-file marks. Normally, closing the stream does this automatically.

Whether or not this error is ever seen on input depends on the tape controller.

Most systems do not see the end of tape on reading, and rely on the software that

wrote the tape to have cleanly terminated its data, with EOFs.

This flavor is built on tape:tape-device-error and tape:tape-error.

Stack Groups and Subprimitives

Subprimitives for 3600-family and Ivory Based Machines

Subprimitives are functions that are not intended to be used by the average pro-

gram, only by "system programs". They allow you to manipulate the environment

at a level lower than normal Lisp. Subprimitives usually have names that start

with a % character. The "primitives" described elsewhere typically use subprimi-

tives to accomplish their work. The subprimitives take the place of machine lan-

guage in other systems, to some extent. In most cases, subprimitive operations

have been hand-coded in microcode by Symbolics.

Page 1062

Subprimitives, by their very nature, cannot do full checking. Improper use of sub-

primitives can destroy the environment. Subprimitives come in varying degrees of

dangerousness. Those without a % sign in their name cannot destroy the environ-

ment, but are dependent on "internal" details of the Lisp implementation. The ones

whose names start with a % sign can violate system conventions if used improper-

ly. Note that this chapter does not document all the things you need to know in

order to use them. Still other subprimitives are not documented here because they

are very specialized. Most of these are never used explicitly by a programmer; the

compiler inserts them into the program to perform operations that are expressed

differently in the source code.

The most common problem you can cause using subprimitives, though by no means

the only one, is to create invalid pointers: pointers that, because of one storage

convention or another, are not allowed to exist. The storage conventions are not

documented; as we said, you have to be an expert to correctly use a lot of the

functions in this chapter. If you create such an invalid pointer, it probably will not

be detected immediately, but later on parts of the system might see it, notice that

it is invalid, and (probably) halt the machine.

In a certain sense car, cdr, rplaca, and rplacd are subprimitives. If these are

given a locative instead of a list, they access or modify the cell addressed by the

locative without regard to what object the cell is inside. Subprimitives can be used

to create locatives to strange places.

Many subprimitives that are used only for effect also return values. A few look

like functions but are really macros; they do not evaluate their arguments in left-

to-right order.

Names of subprimitives are currently in a variety of packages, but all of them are

exported by the system package. The best way to reference a subprimitive is to

use a system: prefix, which can be abbreviated sys:. You can also make your own

package use the system package.

Additional information can be found in the Symbolics Supplemental Sources pack-

age.

SYS: L-SYS; SYSDEF.LISPData structure definitions

SYS: L-SYS; SYSDF1.LISPCommunication areas, escape routines

SYS: L-SYS; OPDEF.LISP Instruction set definition�

For Ivory based machines, the corresponding files are:

SYS: I-SYS; SYSDEF.LISP Data structure definitions

SYS: I-SYS; SYSDF1.LISP Communication areas, escape routines

SYS: I-SYS; OPDEF.LISP Instruction set definition�

Data Type Subprimitives

Page 1063

sys:data-type x Function

Returns a symbol that is the name for the internal data type of the "pointer" that

represents x. Note that some types as seen by the user are not distinguished from

each other at this level, and some user types can be represented by more than one

internal type. For example, on 3600-family machines, sys:dtp-extended-number is

the symbol that sys:data-type would return for a double-precision floating-point

number, a bignum, a complex number, or a rational number even though those

types are quite different. The type-of function is a higher-level primitive that is

more useful in most cases; normal programs should always use type-of rather than

sys:data-type.

Some of these type codes are internal tag fields that are never used in pointers

that represent Lisp objects at all, but they are listed here anyway.

sys:dtp-symbol The object is a symbol.

sys:dtp-nil nil has a data type of dtp-nil, rather than sys:dtp-

symbol, and does not have a pointer field of zero.

symbolp of nil is true, and the address field points to

the same storage representation as all other symbols.

sys:dtp-fix The object is a fixnum; the numeric value is contained in

the address field of the pointer.

sys:dtp-float The object is a single-precision floating-point number.

sys:dtp-extended-number

The object is a double-precision floating-point, rational,

or complex number, or a bignum. This value will also be

used for future numeric types.

sys:dtp-list The object is a cons.

sys:dtp-locative The object is a locative pointer.

sys:dtp-array The object is an array.

sys:dtp-compiled-function

The object is a compiled function.

sys:dtp-closure The object is a dynamic closure. See the section "Dynam-

ic Closures".

sys:dtp-lexical-closure The object is a lexical closure. See the section "Lexical

Scoping".

sys:dtp-instance The object is an instance of a flavor, that is, an "active

object". See the section "Flavors".

sys:dtp-generic-function The object is a generic function. See the section "Generic

Functions".

sys:dtp-character The object is a character. See the section "Characters".

sys:dtp-null Nothing to do with nil. This is used in unbound value

and function cells.

Page 1064

sys:dtp-external-value-cell-pointer

An invisible pointer used for external value cells, which

are part of the closure mechanism. See the section "Dy-

namic Closures".

sys:dtp-header-forward An invisible pointer used to indicate that the structure

containing it has been moved elsewhere. The "header

word" of the structure is replaced by one of these invisi-

ble pointers.

sys:dtp-element-forward An invisible pointer used to indicate that the structure

containing it has been moved elsewhere. This points to

the new location of the word containing it.

sys:dtp-one-q-forward An invisible pointer used to indicate that the single cell

containing it has been moved elsewhere.

sys:dtp-logic-variable An invisible pointer used by Symbolics Prolog.

sys:dtp-monitor-forward An invisible pointer used by the debugging facilities such

as the Command Processor command Monitor Variable.

See the section "Debugger".

sys:dtp-gc-forward This is used by the garbage collector to flag the obsolete

copy of an object; it points to the new copy.

sys:dtp-odd-pc, sys:dtp-even-pc

The object is a program counter and points to macroin-

structions.

sys:dtp-header-i, sys:dtp-header-p

Internal markers in storage, found at the base of the

storage of structures.�

sys:*data-types* Variable

A list of all of the symbolic names for data types described above under sys:data-

type. These are the symbols whose print names begin with dtp-. The values of

these symbols are the internal numeric data-type codes for the various types.

si:data-types type-code Function

Given the internal numeric data-type code, returns the corresponding symbolic

name.

sys:%instance-flavor

instance Function

Gets the flavor structure of instance.

Page 1065

sys:%change-list-to-cons

list Function

Changes the two-element cdr-coded list to a dotted pair by altering the cdr codes.

sys:%flonum

number Function

Sets the data type field to convert a fixnum to a flonum. It is not the function

zl:float, but instead provides direct access to the internal bit representation of sin-

gle-precision floating-point numbers.

sys:%fixnum

number Function

Sets the data type field to convert a flonum to a fixnum. It is not the function

zl:fix, but instead provides direct access to the internal bit representation of sin-

gle-precision floating-point numbers.

Forwarding Words in Memory

An invisible pointer is a kind of pointer that does not represent a Lisp object, but

just resides in memory. There are several kinds of invisible pointers and various

rules about where they can appear. The basic property of an invisible pointer is

that if the machine reads a word of memory and finds an invisible pointer there,

instead of seeing the invisible pointer as the result of the read, it does a second

read, at the location addressed by the invisible pointer, and returns that as the re-

sult instead. Writing behaves in a similar fashion. When the machine writes a

word of memory it first checks to see if that word contains an invisible pointer; if

so it goes to the location pointed to by the invisible pointer and tries to write

there instead. Many subprimitives that read and write memory do not do this

checking.

The simplest kind of invisible pointer has the data type code sys:dtp-one-q-

forward. It is used to forward a single word of memory to another location. The

invisible pointers with data types sys:dtp-header-forward and sys:dtp-element-

forward are used for moving whole Lisp objects (such as cons cells or arrays) an-

other location. The sys:dtp-external-value-cell-pointer is very similar to the

sys:dtp-one-q-forward; the difference is that it is not "invisible" to the operation

of binding. If the (internal) value cell of a symbol contains a sys:dtp-external-

value-cell-pointer that points to some other word (the external value cell), then

symbol-value or set operations on the symbol consider the pointer to be invisible

and use the external value cell, but binding the symbol saves away the sys:dtp-

external-value-cell-pointer itself, and stores the new value into the internal value

cell of the symbol. This is how dynamic closures are implemented.

Page 1066

sys:dtp-gc-forward is not an invisible pointer at all; it only appears in old space

and is never seen by any program other than the garbage collector. When an ob-

ject is found not to be garbage, and the garbage collector moves it from old space

to copy space, a sys:dtp-gc-forward is left behind to point to the new copy of the

object. This ensures that other references to the same object get the same new

copy.

structure-forward old new &optional (old-header-size 1) (new-header-size 1)

Function

Causes references to old to reference new, by storing invisible pointers in old. It

returns old.

An example of the use of structure-forward is zl:adjust-array-size. If the array is

being made bigger and cannot be expanded in place, a new array is allocated, the

contents are copied, and the old array is structure-forwarded to the new one. This

forwarding ensures that pointers to the old array, or to cells within it, continue to

work. When the garbage collector goes to copy the old array, it notices the for-

warding and uses the new array as the copy; thus the overhead of forwarding dis-

appears eventually if garbage collection is in use.

follow-structure-forwarding structure Function

Normally returns object, but if object has been structure-forwarded, returns the

object at the end of the chain of forwardings. If object is not exactly an object, but

a locative to a cell in the middle of an object, a locative to the corresponding cell

in the latest copy of the object is returned.

forward-value-cell

from-symbol to-symbol Function

Alters from-symbol so that it has the same value as to-symbol, by sharing its value

cell. A sys:dtp-one-q-forward invisible pointer is stored into from-symbol’s value

cell. forward-value-cell is careful to never move a cell that is already forwarded.

To forward one arbitrary cell to another (rather than specifically one value cell to

another), given two locatives, do:

(sys:%p-store-tag-and-pointer locative1

sys:dtp-one-q-forward locative2)�

follow-cell-forwarding loc evcp-p Function

Normally returns loc, a locative to a cell, but if the cell has been forwarded, this

follows the chain of forwardings and returns a locative to the final cell. If the cell

is part of a structure that has been forwarded, the chain of structure forwardings

is followed, too. If evcp-p is t, external value cell pointers are followed; if it is nil

they are not.

Page 1067

Pointer Manipulation

It should be emphasized that improper use of these functions can damage or de-

stroy the Lisp environment. It is possible to create pointers with illegal data type,

to create pointers to nonexistent objects, and to completely confuse the garbage

collector.

sys:%pointerp object Function

Returns t when object has an address (as opposed to being an immediate object).

sys:%pointer-type-p data-type-number Function

Returns t if the argument is a data type code that has an associated address

(rather than an associated immediate field). The argument comes from sys:%data-

type or sys:%p-data-type.

For example:

(sys:%pointer-type-p (sys:%data-type ’symbol))�

sys:%pointer-lessp p1 p2 Function

Compares two addresses. Returns t if p1 has a pointer field lower in the address

space than p2’s pointer field; returns nil otherwise.

sys:%data-type x Function

Returns the data-type field of x, as a fixnum.

sys:%pointer x Function

Returns the pointer field of x, as a fixnum. For most types, this is dangerous since

the garbage collector can copy the object and change its address.

sys:%make-pointer data-type pointer Function

Makes up a pointer, with data-type in the data-type field and the pointer field of

pointer in the pointer field, and returns it.

data-type should be an internal numeric data-type code; these are the values of the

symbols that start with dtp-.

pointer can be any object; its pointer field is used. This is most commonly used for

changing the type of a pointer. Do not use this to make pointers that are not al-

lowed to be in the machine, such as sys:dtp-null or invisible pointers.

sys:%make-pointer-offset new-dtp pointer offset Function

Page 1068

Returns a pointer with new-dtp in the data-type field, and pointer plus offset in the

pointer field. The new-dtp and pointer arguments are like those of sys:%make-

pointer; offset can be any object but is usually a fixnum. The types of the argu-

ments are not checked; their pointer fields are simply added together. This is use-

ful for constructing locative pointers into the middle of an object, although

sys:%p-structure-offset can be more appropriate.

sys:%pointer-difference pointer-1 pointer-2 Function

Returns a fixnum that is pointer-1’s pointer field minus pointer-2’s pointer field. No

type checks are made. For the result to be meaningful, the two pointers must

point into the same object, so that their difference cannot change as a result of

garbage collection.

Analyzing Structures

sys:%find-structure-header pointer Function

Finds the structure into which pointer points, by searching backward for a header.

It is a basic low-level function used by such things as the garbage collector. point-

er is normally a locative, but its data-type is ignored.

In structure space, the "containing structure" of a pointer is well-defined by sys-

tem storage conventions. In list space, it is considered to be the contiguous, cdr-

coded segment of list surrounding the location pointed to. If a cons of the list has

been copied out by rplacd, the contiguous list includes that pair and ends at that

point.

sys:%find-structure-leader pointer Function

Always returns the lowest address in the structure (as a locative).

sys:%structure-total-size pointer Function

Returns the total number of words occupied by the representation of the indicated

object.

sys:%find-structure-extent pointer Function

Roughly a combination of sys:%find-structure-header, sys:%find-structure-leader,

and sys:%structure-total-size. It returns three values:

1. The structure into which pointer points.

2. A locative to the base of the structure. This is almost the same as sys:%find-

structure-leader, but sys:%find-structure-extent always returns a locative.

Page 1069

3. The total number of words occupied by the object (the same thing

sys:%structure-total-size returns).�

Example:

(defun page-in-structure (obj &optional

 (hang-p *default-page-in-hang-p*)

 (normalize-p *default-page-in-normalize-p*))

 (setq obj (follow-structure-forwarding obj))

 (multiple-value-bind (nil leader size)

 (sys:%find-structure-extent obj)

 (page-in-words leader size

 hang-p normalize-p)))�

Basic Locking Subprimitive

store-conditional pointer old new Function

Takes three arguments: pointer (a locative which addresses some cell), old (any

Lisp object), and new (any Lisp object). It checks to see whether the cell contains

old, and, if so, it stores new into the cell. The test and the set are done as a sin-

gle atomic operation. store-conditional returns t if the test succeeded and nil if

the test failed. It behaves like sys:%p-store-contents in that it leaves the cdr code

of the location that is being stored into undisturbed. You can use store-

conditional to do arbitrary atomic operations to variables that are shared between

processes. For example, to atomically add 3 into a variable x:

(do ((old))

 ((store-conditional (locf x) (setq old x) (+ old 3))))�

The first argument is a locative so that you can atomically affect any cell in

memory; for example, you could atomically add 3 to an element of an array or

structure.

store-conditional locks out microtasks but cannot lock out the FEP or external-

DMA devices. Protocols for communicating with such devices must use locking

methods that do not depend on atomic read-modify-write, such as those based on

cells that are only written by one party and only read by the other party.

The old name for this function, sys:%store-conditional, is still accepted, but

should not be used in new programs.

Storage Layout Definitions

The following special variables have values that define the most important at-

tributes of the way Lisp data structures are laid out in storage. In addition to the

variables documented here, there are many others that are more specialized. They

are not documented here since they are in the system package rather than the

global package. The variables whose names start with %% are byte specifiers, in-

Page 1070

tended to be used with subprimitives such as sys:%p-ldb. If you change the value

of any of these variables, you will probably bring the machine to a crashing halt.

The byte specifiers sys:%%q-fixnum and sys:%%q-high-type reflect the fact that

the number of bits in a fixnum does not equal the number of bits in a pointer.

For details about byte specifiers, field values, and accessor macros for the internal

data structures, see the files SYS:L-SYS;SYSDEF.LISP (for 3600-family machines) or

SYS:I-SYS;SYSDEF.LISP (for Ivory-based machines). This file is part of the Supplemen-

tal Source package available from Symbolics.

sys:%%q-cdr-code Variable

The field of a memory word that contains the cdr-code. See the section "Cdr-

Coding".

sys:%%q-data-type Variable

The field of a memory word that contains the data type code. See the section "Da-

ta Types".

sys:%%q-pointer Variable

The field of a memory that contains the pointer address, or immediate data.

sys:%%q-pointer-within-page Variable

The field of a memory word that contains the part of the address that lies within

a single page.

sys:%%q-typed-pointer Variable

The concatenation of the sys:%%q-data-type and sys:%%q-pointer fields.

sys:%%q-all-but-typed-pointer Variable

The field of a memory word that contains the tag field sys:%%q-cdr-code.

sys:%%q-all-but-pointer Variable

The concatenation of all fields of a memory word except for sys:%%q-pointer.

sys:%%q-all-but-cdr-code Variable

The concatenation of all fields of a memory word except for sys:%%q-cdr-code.

Page 1071

sys:cdr-normal Variable

One of the numeric values that go in the cdr-code field of a memory word. This

value means that the cdr is stored in the next location. See the section "Cdr-

Coding".

sys:cdr-next Variable

One of the numeric values that go in the cdr-code field of a memory word. This

value means that the cdr is the next location. See the section "Cdr-Coding".

sys:cdr-nil Variable

One of the numeric values that go in the cdr-code field of a memory word. The

cdr is nil. See the section "Cdr-Coding".

Special Memory Referencing

These subprimitives reference and manipulate memory contents. There is no sub-

primitive called %p-contents, since the function location-contents performs that

operation.

sys:%p-structure-offset x offset Function

Does follow-structure-forwarding on x, then sys:%make-pointer-offset sys:dtp-

locative of that and offset. This operation captures the inherent primitive underly-

ing sys:%p-ldb-offset and the like.

sys:%p-contents-offset pointer offset Function

Checks the cell pointed to by pointer for a forwarding pointer. Having followed for-

warding pointers to the real structure pointed to, it adds offset to the resulting

forwarded pointer and returns the contents of that location.

sys:%p-contents-as-locative x Function

Returns the contents of the location as a sys:dtp-locative, given a pointer to a

memory location containing a pointer that is not allowed to be "in the machine"

(typically an invisible pointer). It changes the disallowed data type to sys:dtp-

locative so that you can safely look at it and see what it points to. You must be

sure that the location really contains a pointer data type.

sys:%p-contents-as-locative-offset pointer offset Function

Checks the cell pointed to by pointer for a forwarding pointer. Having followed for-

warding pointers to the real structure pointed to, it adds offset to the resulting

Page 1072

forwarded pointer, fetches the contents of that location, and returns it with the da-

ta type changed to sys:dtp-locative in case it was a type that is not allowed to be

"in the machine" (typically an invisible pointer).

sys:%p-store-contents pointer x Function

x is stored into the data-type and pointer fields of the location addressed by

pointer. The cdr-code field remains unchanged. x is returned.

sys:%p-store-contents-offset value pointer offset Function

Checks the cell pointed to by pointer for a forwarding pointer. Having followed for-

warding pointers to the real structure pointed to, it adds offset to the resulting

forwarded pointer, and stores value into the data-type and pointer fields of that lo-

cation. The cdr-code field remains unchanged. value is returned.

sys:%p-store-type-and-pointer pointer type-field pointer-field Function

The location addressed by pointer is written, without following invisible pointers,

such that the type field of the location contains type-field and the pointer field con-

tains pointer-field. The cdr-field of pointer is preserved. This is a good way to store

a forwarding pointer from one cell to another.

sys:%p-store-tag-and-pointer pointer tag-fields pointer-field Function

The location addressed by pointer is written, without following invisible pointers,

such that the tag fields of the location contain tag-fields and the pointer field con-

tains pointer-field. sys:%p-store-tag-and-pointer will overwrite the cdr-code field of

pointer with that in type-fields, and may not be suitable for storing a forwarding

pointer from one cell to another. To preserve the cdr-code, see the function

sys:%p-store-type-and-pointer. Also, see the function sys:%p-store-cdr-type-and-

pointer.

sys:%p-store-cdr-and-contents pointer x cdr Function

Stores cdr and the object x into a memory location identified by pointer, without

reading the previous contents of that location or following invisible pointers. Use

this subprimitive to store fixnums and single-precision floating-point numbers;

sys:%p-store-tag-and-pointer cannot do so, because the tag overlaps the value.

This function can be used to write to hardware registers in Symbolics machines.

sys:%p-store-cdr-type-and-pointer pointer cdr-field type-field pointer-field Function

A more general form of sys:%p-store-tag-and-pointer.

Page 1073

sys:%p-ldb bytespec pointer Function

A read operation like ldb ("load byte"), but it fetches a byte specified by bytespec

from the location addressed by pointer. Note that you can load bytes out of the da-

ta type, not just the pointer field, and that the source word need not be a fixnum.

It always returns a fixnum.

The size of bytespec must be 32 or less, and the sum of the size and position must

be less than or equal to 36 on 3600-family machines, 40 on Ivory based-machines.

This function can be used for reading hardware registers.

sys:%p-ldb-offset ppss pointer offset Function

Checks the cell pointed to by pointer for a forwarding pointer. Having followed for-

warding pointers to the real structure pointed to, the byte specified by ppss is

loaded from the contents of the location addressed by the forwarded pointer plus

offset, and returned as a fixnum.

The size of ppss must be 32 or less, and the sum of the size and position must be

less than or equal to 36 on 3600-family machines, 40 on Ivory based-machines.

sys:%p-dpb newbyte bytespec pointer Function

value, a fixnum, is stored into the byte selected by bytespec in the word addressed

by pointer. nil is returned. You can use this to alter data types, cdr codes, and so

on.

The size of bytespec must be 32 or less, and the sum of the size and position must

be less than or equal to 36 on 3600-family machines, 40 on Ivory-based machines.

sys:%p-dpb-offset value ppss pointer offset Function

Checks the cell pointed to by pointer for a forwarding pointer. Having followed for-

warding pointers to the real structure pointed to, value is stored into the byte

specified by ppss in the location addressed by the forwarded pointer plus offset. nil

is returned. The size of ppss must be 32 or less, and the sum of the size and posi-

tion must be less than or equal to 36 on 3600-family machines, 40 on Ivory based-

machines.

sys:%p-pointer pointer Function

Extracts the pointer field of the contents of the location addressed by pointer and

returns it as a fixnum.

sys:%p-data-type pointer Function

Extracts the data-type field of the contents of the location addressed by pointer and

returns it as a fixnum.

Page 1074

sys:%p-cdr-code pointer Function

Extracts the cdr-code field of the contents of the location addressed by pointer and

returns it as a fixnum.

sys:%p-store-pointer pointer value Function

Replaces the pointer field of the location addressed by pointer with value, and re-

turns value.

sys:%p-store-data-type pointer value Function

Replaces the data-type field of the location addressed by pointer with value, and re-

turns value.

sys:%p-store-cdr-code pointer value Function

Replaces the cdr-code field of the location addressed by pointer with value, and re-

turns value.

sys:%stack-frame-pointer Function

Returns a locative pointer to its caller’s stack frame. This function is not defined

in the interpreted Lisp environment; it works only in compiled code.

sys:%block-store-cdr-and-contents address count cdr contents increment Function

The contiguous region of memory specified by the beginning address and count of

words is efficiently filled with the object contents and the cdr-code (cdr). The ad-

dresses to be initialized must not be mapped to A memory. The increment to con-

tents is typically 0. The increment is added to the address field (sys:%%q-pointer)

of contents. If increment is nonzero, it must not be used to increment a pointer

across the boundaries of a garbage collector "space"; otherwise, the garbage collec-

tor tags will be set incorrectly.

sys:%block-store-tag-and-pointer address count tag pointer increment Function

The contiguous region of memory specified by the beginning address and count of

words is efficiently filled with a word assembled from the tag and pointer fields, al-

lowing the construction of invisible pointers. The addresses to be initialized must

not be mapped to A memory. The increment to contents is usually 0. If increment is

nonzero, it must not be used to increment a pointer across the boundaries of a

garbage collector "space"; otherwise, the garbage collector tags will be set incor-

rectly.

sys:%block-search-eq object address count Function

Page 1075

The contiguous region of memory specified by the beginning address and count of

words is searched for the specified object. The comparison uses the eq function. If

it does not find anything it returns nil; otherwise, it returns the address of the

word it found.

sys:%unsynchronized-device-read address Function

Reads registers from the revision 2 I/O board on 3600-family machines. It allows

data that are not properly synchronized to the Lbus clock to be read without caus-

ing a parity error.

Special Variable Binding Subprimitive

sys:%bind-location pointer value locative value Function

Binds the cell pointed to by locative to value, in the caller’s environment. This

function is not defined in the interpreted Lisp environment; it works only from

compiled code. Since it turns into an instruction, the "caller’s environment" really

means "the binding block for the stack frame that executed the sys:%bind-location

instruction". The preferred higher-level primitives that turn into this are let-if,

zl:progv, progw, and letf.

Function-Calling Subprimitives

Except for sys:%push and sys:%pop, the subprimitives for calling with a run-time-

variable number of arguments, without consing a list, are the sys:%start-function-

call and sys:%finish-function-call special forms.

sys:%start-function-call function destination n-arguments lexpr Function

Calls a function with a variable number of arguments at run time, without consing

a list. See the section "Function-Calling Subprimitives".

sys:%finish-function-call function destination n-arguments lexpr Function

Finishes a call to a function with a variable number of arguments at run time,

without consing a list. See the section "Function-Calling Subprimitives".

sys:%start-function-call and sys:%finish-function-call each take the same four

subforms. The subforms are:

function A form evaluated to yield the function to be called.

destination The disposition of its results. Not evaluated. It takes these

values:

Page 1076

Value Meaning

nil Call for effect.

t Receive one value on the stack. You must

use sys:%pop to fetch the value off the

stack. You should not use the value of the

"call" to sys:%finish-function-call.

return Return all values from the function in

which it is being used.

There is no provision for receiving multiple values.

n-arguments A form evaluated to yield the number of times sys:%push has

to be done.

lexpr True if the last sys:%push is a list of arguments rather than

a single argument; false in the normal case. Not evaluated.

Follow these steps:

1. Do a sys:%start-function-call.

2. Do a sys:%push on each argument.

3. Do a sys:%finish-function-call.�

The order of evaluation of the subforms is not guaranteed, and you must make

certain to pass the same subform values to the sys:%start-function-call and the

sys:%finish-function-call. Generally it is best to use variables and not do computa-

tions in these subforms.

Also, you must not allocate or deallocate any local variables between the

sys:%start-function-call and the sys:%finish-function-call, because they will get

in the way of the sys:%push subprimitives. Thus, the following will not work:

(sys:%start-function-call ...)

(dolist (x l) (sys:%push x))

(sys:%finish-function-call ...)�

Instead, write:

(let ((x l))

 (sys:%start-function-call ...)

 (do () ((null x)) (sys:%push (pop x)))

 (sys:%finish-function-call ...))�

Once you have done sys:%start-function-call, you cannot return from the function

until after you have done a sys:%finish-function-call; the return instructions do

not operate correctly until the sys:%finish-function-call.

sys:%push value Function

Pushes value onto the stack. Use this to push the arguments. See the section

"Function-Calling Subprimitives".

Page 1077

sys:%pop Function

Pops the top value off of the stack and returns it as its value. See the section

"Function-Calling Subprimitives".

The Paging System

Note that it is futile to page-in sections of virtual memory that are larger than

physical memory. Be especially wary of sys:page-in-area and sys:page-in-region.

For a table of related functions and methods for raster operations:See the section

"Operations on Rasters".

sys:page-in-structure structure &rest page-in-words-keywords obj &rest page-in-

words-keywords Function

Makes sure that the storage that represents obj is in main memory. Any pages

that have been swapped out to disk are read in, using as few disk operations as

possible. Consecutive disk pages are transferred together, taking advantage of the

full speed of the disk. If obj is large, this is much faster than bringing the pages

in one at a time on demand. The storage occupied by obj is defined by the

sys:%find-structure-extent subprimitive.

These are the keywords accepted by sys:page-in-words:

If hang-p is t, the function waits for the disk reads to finish before returning.

Otherwise, the function returns immediately after requesting the disk reads, which

might still be in progress. Thus, hang-p causes the process to hang until the

input/output is complete, that is, until all the requested pages are there. The de-

fault value, si:*default-page-in-hang-p*, is t by default.

normalize-p specifies whether the pages are "normal" (not flushable from main

memory). normalize-p causes the paged-in pages to receive the "normal" page age

rather than the "page-in" age. Its default value, si:*default-page-in-normalize-p*,

is t by default.

sys:page-in-array array &optional from to (hang-p storage::*default-page-in-hang-

p*) (normalize-p t) array &optional from to (hang-p si:*default-page-in-hang-p*)

(normalize-p t) Function

This is a version of sys:page-in-structure that can bring in a portion of an array.

from and to are lists of subscripts; if they are shorter than the dimensionality of

array, the remaining subscripts are assumed to be zero.

If hang-p is t, the function waits for the disk reads to finish before returning.

Otherwise, the function returns immediately after requesting the disk reads, which

might still be in progress. Thus, hang-p causes the process to hang until the

input/output is complete, that is, until all the requested pages are there. The de-

fault value, storage::*default-page-in-hang-p*, is t by default.

Page 1078

normalize-p specifies whether the pages are "normal" (not flushable from main

memory). normalize-p causes the paged-in pages to receive the "normal" page age

rather than the "page-in" age. Its default value, si:*default-page-in-normalize-p*,

is t by default.

sys:page-in-words address n-words &key (:type storage::*default-page-in-type*)

(:hang-p storage::*default-page-in-hang-p*) Function

Reads in any pages in the range of address space starting at address and continu-

ing for n-words that have been swapped out to disk with as few disk operations as

possible.

If hang-p is t, the function waits for the disk reads to finish before returning.

Otherwise, the function returns immediately after requesting the disk reads, which

might still be in progress. Thus, hang-p causes the process to hang until the

input/output is complete, that is, until all the requested pages are there. The de-

fault value, storage::*default-page-in-hang-p*, is t by default.

sys:page-in-area area &rest page-in-words-keywords Function

Brings into main memory all swapped-out pages of the specified area.

sys:page-in-region region &rest page-in-words-keywords Function

Brings into main memory all swapped-out pages of the specified region.

sys:page-out-structure structure &rest page-out-words-keywords Function

Similar to sys:page-in-structure, but takes pages out of main memory rather than

bringing them in. Any modified pages are written to disk, using as few disk opera-

tions as possible. The pages are then made flushable; if they are not touched again

soon, their memory is reclaimed for other pages. Use this operation when you are

done with a large object, to make the virtual memory system prefer reclaiming

that object’s memory over swapping something else out.

sys:page-out-array array &optional from to hang-p Function

Similar to sys:page-in-array, but takes pages out of main memory rather than

bringing them in. Any modified pages are written to disk, using as few disk opera-

tions as possible. The pages are then made flushable; if they are not touched again

soon their memory is reclaimed for other pages. Use this operation when you are

done with a large object, to make the virtual memory system prefer reclaiming

that object’s memory over swapping something else out.

If hang-p is t, the function waits for the disk reads to finish before returning.

Otherwise, the function returns immediately after requesting the disk reads, which

might still be in progress. Thus, hang-p causes the process to hang until the

input/output is complete, that is, until all the requested pages are there. The de-

fault value, si:*default-page-in-hang-p*, is t by default.

Page 1079

sys:page-out-words address n-words &key (:write-modified storage::*default-page-

out-write-modified*) (:reuse storage::*default-page-out-reuse*) Function

Similar to sys:page-in-words, but takes pages out of main memory rather than

bringing them in. Any modified pages are written to disk, using as few disk opera-

tions as possible. The pages are then made flushable; if they are not touched again

soon their memory is reclaimed for other pages. Use this operation when you are

done with a large object, to make the virtual memory system prefer reclaiming

that object’s memory over swapping something else out.

sys:page-out-area area &rest page-out-words-keywords Function

Similar to sys:page-in-area, but takes pages out of main memory rather than

bringing them in. Any modified pages are written to disk, using as few disk opera-

tions as possible. The pages are then made flushable; if they are not touched again

soon their memory is reclaimed for other pages. Use this operation when you are

done with a large object, to make the virtual memory system prefer reclaiming

that object’s memory over swapping something else out.

sys:page-out-region region &rest page-out-words-keywords Function

Similar to sys:page-in-region, but takes pages out of main memory rather than

bringing them in. Any modified pages are written to disk, using as few disk opera-

tions as possible. The pages are then made flushable; if they are not touched again

soon their memory is reclaimed for other pages. Use this operation when you are

done with a large object, to make the virtual memory system prefer reclaiming

that object’s memory over swapping something else out.

� sys:page-in-raster-array raster &optional from-x from-y to-x to-y (hang-p

si:*default-page-in-hang-p*) (normalize-p t)�

Function

Ensures that the storage that represents raster is in main memory. from-x and

from-y can be specified as nil, meaning the lower limit for that item. to-x and to-y

can be specified as nil, meaning the upper limit for that item.

This, rather than sys:page-in-array, should be used on rasters.

For a table of related items: See the section "Operations on Rasters".

� sys:page-out-raster-array array &optional from-x from-y to-x to-y (hang-p

si:*default-page-in-hang-p*) Function

Takes the pages that represent raster out of main memory. from-x and from-y can

be specified as nil, meaning the lower value for that item. to-x and to-y can be

specified as nil, meaning the upper limit for that item.

This, rather than sys:page-out-array, should be used on rasters.

Page 1080

For a table of related items: See the section "Operations on Rasters".

storage:page-array-calculate-bounds array to from Function

Calculates the bounds of a page-in or page-out array. from and to are either

fixnums or a list of subscripts. If they are fixnums then they are the flattened (co-

erced to one dimensional) array indices. If they are lists and the lists are shorter

than the number of dimensions, zero is used for each missing element of from and

the maximum index for the corresponding dimension is used for each missing ele-

ment of to. (Therefore, nil for from means the start of the array and nil for to

means the end of the array.) In all cases, from is inclusive and to is exclusive.

If the array is eventually displaced to an absolute address then nil is returned.

Otherwise three values are returned: the array (after chasing indirect pointers),

the starting address of data, and the number of words of data. Indirect arrays and

indirect arrays with the element size changing are both supported.

Note: sys:%find-structure-header and sys:%structure-total-size are used to find

the virtual memory location and extent of whole arrays or other structures to be

wired. storage:page-array-calculate-bounds can be used to calculate the virtual

memory location and extent of portions of an array that are to be be wired, when

storage:wire-words or storage:wire-consecutive-words is used. sys:%pointer-

difference can also be used to determine the length of the extent, in words, be-

tween two addresses obtained via these primitives or the zl:aloc function or the

locf macro.

Wiring Memory

It is possible to wire objects in memory, in other words, lock them into physical

memory. Wiring prevents them from being paged out or moved by the Genera sys-

tem. This can greatly improve the response time of certain time-critical operations

and references.

storage:wire-words address number-of-words Function

Wires at least number-of-words starting at the specified address. storage:wire-

words wires any extent of virtual memory into physical memory, although the

page frames into which successive pages are wired might not be contiguous.

storage:wire-consecutive-words address number-of-words Function

Wires at least number-of-words consecutively starting at the specified virtual mem-

ory address (address). storage:wire-consecutive-words wires any extent of virtual

memory into physical memory. Successive pages are guaranteed to be stored in

successive page frames in physical memory.

storage:unwire-words address number-of-words Function

Page 1081

Unwires at least number-of-words starting at the specific address. The first or last

page of the range can stay wired if its wired-count does not go to zero because

other words on that page are wired.

storage:with-wired-structure structure &body body Macro

Evaluates the body with the specified object wired in main memory. storage:with-

wired-structure wires an entire structure (a convenience device to avoid having to

calculate the location and extent of the virtual memory occupied by a structure).

storage:wire-structure object Function

Wires the object in main memory, in the manner of storage:wire-words. The pre-

ferred way to do this is with storage:with-wired-structure

storage:unwire-structure object Function

Unwires the structure object.

Ivory-Only Subprimitives

This section describes subprimitives available on all Ivory-based processors, such

as the XL400, UX-family, and MacIvory machines. These subprimitives are not

available on 3600-family machines. Use these subprimitives in inner loops of mem-

ory-intensive programs where maximizing efficiency is more important than ma-

chine independence.

Ivory Memory and Processor Architecture

Overview of Ivory Memory and Processor Architecture

The performance of modern microprocessor-based computers is often bounded not

by the speed of the processor, but rather by the speed of its memory system. Typi-

cally, a large memory array will have an access time several times longer than the

cycle time of the accompanying processor, because the power, space and cost re-

quirements of the system necessitate the use of denser, slower memory technolo-

gies. The processor incurs a certain amount of memory traffic just to fetch the in-

structions in a given program, and executing those instructions incurs further

traffic, depending on the details of the program. Without an architectural or tech-

nological solution to the processor/memory performance imbalance, the processor

may spend a considerable fraction of its time idly waiting for its memory system.

A popular technological solution to the processor/memory performance mismatch is

simply to use a faster memory array. Often, increasing the speed of the entire

memory array is infeasible due to power, space, or cost limitations, but some of

the advantages of this approach can be realized by using a cache memory. A cache

Page 1082

memory is a small, fast memory inserted in between the processor and its primary

memory; locations in the slow primary memory are temporarily relocated to the

fast cache memory whenever they are referenced, and subsequent references to

that location may be processed at speeds comparable to that of the processor cycle

time.

In a cache-based system, the cache memory is by definition substantially smaller

than the primary memory, so only a small set of memory locations may reside in

the cache simultaneously. While small, well-localized programs may reside entirely

in the cache and benefit greatly from it, large programs that manipulate lots of

data will waste some time migrating data between the cache and the memory, and

therefore benefit less. In addition, the programmer, the language compiler, and the

processor architecture all attempt to eliminate redundant memory references by

caching information on chip (in the processor’s register file or stack cache, for

example); this obviously improves performance, but reduces the value of a cache

which is optimizing the same thing. And finally, some memory traffic patterns de-

rive no benefit at all from a cache; for example, graphics, image processing, and

vector algorithms that require reading and writing large portions of memory.

An architectural solution to the processor/memory performance mismatch is to in-

crease parallelism in the memory system. If, for example, a memory system is four

times slower than a processor, then connecting four such memory systems to a sin-

gle processor ought to balance things out some. This technique is called memory

interleaving, and can only succeed if in fact the processor can effectively use all

four memory systems at the same time. One means of doing this is to use pipelin-

ing, in which the processor/memory interface is partitioned into several stages

which operate independently, so the interface can be working on several requests

in different stages simultaneously. This is conceptually similar to, but not the

same as, pipelining instruction execution, as is common in most modern micropro-

cessors.

The Symbolics Ivory processor contains a pipelined memory interface that can

track up to four simultaneous outstanding requests, and when supported with an

interleaved memory system, can achieve sustained transfer rates of one memory

word per processor cycle. The Ivory processor uses this memory interface to great

advantage internally for fetching instructions, filling its map cache, filling and

emptying its stack cache, looking up methods for a generic function, and operating

on Lisp lists. The Genera system software uses this memory interface to great ad-

vantage in bitblt and other graphics operations, garbage collection and other ob-

ject maintenance, process switching, and throughout the I/O system.

User programs may take direct advantage of the Ivory memory interface by using

the documented subprimitives to optimize any inner loops containing sequential

memory traffic. Subprimitives are available for:

• Reading or writing consecutive words between memory and the stack cache at

maximum memory bandwidth (for example, the contents of an array may be

copied to another at speeds asymptotically approaching two cycles per element)

Page 1083

• Reading consecutive words from memory at maximum memory bandwidth, simul-

taneously performing an arbitrary ALU operation on each word (for example,

the sum of an array of integers may be computed at speeds asymptotically ap-

proaching one element per processor cycle)

• Reading consecutive words from memory at maximum memory bandwidth, simul-

taneously performing an arbitrary ALU operation on each word and evaluating a

simple condition on the result, branching to specified code if the condition is

true (for example, an array may be searched for a given element at speeds

asymptotically approaching one element per processor cycle)

• Reading consecutive words from memory at maximum memory bandwidth, shift-

ing them by a prespecified number of bits (this is useful for graphics opera-

tions)

Note that all these operators are subprimitives, meaning they operate below the

level of the Lisp virtual machine, and can damage the Lisp environment if mis-

used. Often the system cannot provide its normal consistency checks, such as ar-

ray-bounds checking, when using these operations. If Genera’s storage conventions

are violated, system failure or unexpected behavior may ensue; quite often the

garbage collector will find the inconsistency later and halt the system for debug-

ging. Therefore, the recommended approach is to first use conventional Lisp opera-

tions such as car and aref when accessing memory. If the performance of the re-

sulting code is insufficient, then careful use of the Ivory subprimitives can dramat-

ically improve the speed of inner loops.

Correcting Memory Errors: the ECC Scrubber

There is a memory error scrubber process for memory error correction on Ivory

machines. It runs in the background, consuming less than 0.1% of CPU looking for

soft errors in memory that can be repaired by reading the corrected data and re-

writing it so that there are no further errors. (A soft error that goes uncorrected

would otherwise risk becoming a hard error by a second bit degrading.)

The scrubber can also discover uncorrectable errors in memory, before you get bit-

ten by them. It sends a notification every time it hits an uncorrectable error, on

the assumption you do not really want to be running with broken memory.

If some memory errors put you into the debugger while some uncorrectable errors

put you into the FEP, you only go to the FEP if the uncorrectable error happens

at a "bad time." If you are in the debugger, it provides the usual resume options.

In this case, you should save your work and cold boot in order to reset your world.

You can run memory tests in the FEP to determine whether or not the memory is

actually broken, or that the error is just a temporary glitch.

See the section "FEP Commands for Systems Experts".

There is a CP command to display the error corrections, see the section "Show

Memory Error Corrections Command".

Page 1084

Ivory Memory Addresses

The Ivory processor supports 32-bit virtual addresses and 32-bit physical addresses.

The Genera operating system provides a demand-paged virtual memory of up to 4

gigawords, using as little as 1/2 megaword of main memory to page in. Although

the Ivory processor supports a physical address space of 4 gigawords, it is not in-

tended to support main memories that large. Rather, the large physical address

space is used to accommodate large memory-mapped I/O devices such as high reso-

lution color frame buffers and interfaces to other peripheral busses such as the

VMEbus.

The Ivory processor operates on three different kinds of addresses: mapped virtual

addresses, unmapped virtual addresses, and physical addresses. Normal Lisp objects

always reside in virtual memory and their object references use mapped virtual

addresses. Unmapped virtual addresses are untranslated virtual addresses used

throughout the FEP, the Genera virtual memory software, and the Genera I/O

software.

Physical addresses are Lisp object references with a special data type identifying

them; when printed, they look like #<DTP-PHYSICAL-ADDRESS 760020220>. They

can be created with sys:%make-physical-address, and identified using the type

sys:physical-address. (Note that a physical address has the data type of DTP-

PHYSICAL-ADDRESS, and it has the type sys:physical-address.) Although techni-

cally physical addresses are Lisp objects, they cannot be operated on using normal

Lisp functions such as car. They may only be referenced using subprimitives such

as sys:%p-dpb, sys:%p-ldb, sys:%memory-read and related functions, and

sys:%block-read and related functions. However, arrays may be displaced to physi-

cal addresses, and all the normal array operators will work.

The subprimitives that reference memory do not do any kind of type checking on

their address argument. When that address is presented to the Ivory memory map-

ping hardware, if the data type is sys:dtp-physical-address, then the address is

passed through untranslated. Otherwise, the address is treated as a virtual address

(note that although fixnums will be interpreted as virtual addresses, locatives

should be used instead, so that if the garbage collector moves the object it points

to the reference will be updated). If the byte field sys:%%vma-equals-pma indi-

cates that the virtual address is in the high 1/32nd of the address space, then it is

an unmapped address which is translated directly to the low 1/32nd of the physical

address space as shown in Figure ! .

Page 1085

Virtual
Addresses

high 1/32 of

address space
vma-pma

Physical
Addresses

low 1/32 of

address space�

Figure 35. Mapping of Virtual to Physical Addresses

�

�

Ivory Subprimitives for Handling Memory Addresses

This section documents Ivory subprimitives that deal with physical and virtual

memory addresses.

sys:%%vma-equals-pma Constant

A byte specifier for the byte in a virtual address which is used to determine if the

address is mapped or unmapped. See the constant sys:%vma-equals-pma.

sys:%%vma-pma Constant

A byte specifier for the byte in an unmapped virtual address which corresponds to

the physical address.

sys:%make-physical-address pma Macro

pma must be a fixnum. Returns a physical address.

sys:%vma-equals-pma Constant

The value of the sys:%%vma-equals-pma field in a virtual address when the ad-

dress is unmapped.

Page 1086

storage:%vma-to-pma vma Function

vma is a virtual address (a pointer to an object, of any type). storage:%vma-to-

pma determines whether that virtual address is resident in main memory. If so, it

returns the corresponding physical address (a pointer with data type dtp-physical-

address); if not, it returns nil. Note that the address translation is valid only at

the instant it is made, because the virtual memory system may swap that page out

immediately upon return. storage:%vma-to-wired-pma is generally more useful.

storage:%vma-to-wired-pma vma Function

vma is a virtual address (a pointer to an object, of any type). storage:%vma-to-

wired-pma determines whether that virtual address is resident and wired in main

memory. If so, it returns the corresponding physical address (a pointer with data

type dtp-physical-address); if not, it returns nil. The address translation is valid

until the address in question is unwired.

sys:physical-address Type Specifier

sys:physical-address is the type specifier for a physical address.

Ivory Memory Operations

The Ivory processor implements a number of subprimitive instructions to read and

write memory. There are operations to read and write individual memory locations

(sys:%memory-read and sys:%memory-write), follow forwarding pointers

(sys:%memory-read-address), and operations for more efficiently reading and writ-

ing blocks of consecutive memory locations (sys:%block-read and related func-

tions). These operations are useful for implementing and circumventing the high-

level Lisp data model (for example, Genera uses them to create, initialize, and

garbage-collect Lisp objects such as lists and arrays), for I/O operations that in-

volve memory locations outside Lisp virtual memory, and for improving perfor-

mance in critical inner loops.

The subprimitive memory operations may be used on any memory addressible by

Ivory, including virtual, unmapped, and physical addresses. See the section "Ivory

Memory Addresses". Most of them have options to control the data type checking,

invisible pointer following, and garbage-collection features of Ivory’s memory in-

terface. The following options are common to all the subprimitives for reading

memory locations:

:cycle-type

Controls the datatype checking and invisible-pointer following per-

formed on the contents of the memory location. The default is to use

the same kind of memory cycle that car uses, which should be suit-

able for most usage.

:fixnum-only

When :fixnum-only is true, an error trap occurs if the data read is

Page 1087

not a fixnum. This is a useful defensive measure when operating on

bit arrays or I/O devices, for example.

:set-cdr-next

When true, the cdr-code of the data read is set to cdr-next, otherwise

it is preserved. The Ivory function calling architecture requires that

passed arguments always have cdr-next cdr-codes, so the default is to

do that.

See the section "Forwarding Words in Memory" for more information about invisi-

ble pointers. See the section "Memory Cycle Types" for more information about the

:cycle-type option.

The subprimitive memory operations work only in compiled code, not in interpreted

code.

Ivory Subprimitives for Memory Operations

sys:%memory-read address &key (:cycle-type sys:%memory-data-read) :fixnum-only

(:set-cdr-next t) Macro

Reads and returns the word at address with the specified cycle-type. If fixnum-only�

is t, an error is signaled if the word is not a fixnum. If set-cdr-next is t, the cdr-

code of the result will be cdr-next.

In most cases where address is a locative, location-contents is preferable.

sys:%memory-read-address address &key (:cycle-type sys:%memory-data-read)

:fixnum-only (:set-cdr-next t) Macro

Reads the word at address with the specified cycle-type. If fixnum-only is t, an er-

ror is signaled if the word is not a fixnum. If set-cdr-next is t, the cdr-code of the

result will be cdr-next.

This macro returns the resulting address with the same data type as its argument.

If the cycle-type follows invisible pointers, then the result of sys:%memory-read-

address is the address reached after any invisible pointers are followed. If there

are no invisible pointers, then the result is address.

This subprimitive supports the higher-level functions follow-cell-forwarding and

follow-structure-forwarding. See the function follow-cell-forwarding. See the

function follow-structure-forwarding.

sys:%memory-write address data Macro

Writes data into the memory address specified by address. This operation does not

follow invisible pointers, and does not preserve the cdr code in memory at address.

Page 1088

Ivory Block Memory Operations

The Ivory processor implements a number of subprimitive instructions for effi-

ciently reading and writing blocks of consecutive memory locations, with variants

that can shift, test, and/or perform ALU operations on the result. These operations

use the pipelined Ivory memory interface to achieve very high data transfer band-

widths, and when carefully applied can significantly improve the performance of al-

gorithms that operate on blocks of memory. See the section "Overview of Ivory

Memory and Processor Architecture" for an explanation of the Ivory memory sys-

tem.

Each block memory instruction may use one of four block address registers to indi-

cate the address to operate on. See the section "Ivory Block Address Registers".

The operation of the sys:%block-write instruction is fairly straightforward: it

writes a value into the location indicated by the specified block address register,

then increments that register. The block instructions that read memory

(sys:%block-read, sys:%block-read-alu, sys:%block-read-shift, and sys:%block-

read-test) are more complex; their basic behavior is to:

• Read the memory location indicated by the specified block address register.

• Perform the specified data type and invisible pointer checking on the result.

• For sys:%block-read-alu or sys:%block-read-shift, operate on or shift the re-

sult.

• For sys:%block-read-test, test the result for a specified condition and possibly

branch out of a loop.

• Push the result on the stack.

• Optionally increment the specified block address register.�

In addition, the block read instructions do some behind-the-scenes negotiating with

the Ivory memory interface to prefetch subsequent memory words so that they will

be ready for consumption at the exact cycle in which they are needed. After an

initial transient, the memory pipeline and instruction pipeline synchronize, and all

the above operations take place in a single processor cycle.

To achieve optimal performance using block operations, care must be taken to or-

der the instructions properly, to avoid stalling the memory pipeline. We recom-

mend that a sequence of several (four to eight) block read instructions be executed

consecutively, although this is not absolutely necessary and other strategies will

provide good performance. In particular, when using block read and block write in-

structions together, it is best to read a number of words, write those out, read

some more, write those out, and so on, instead of simply reading and writing a

single word at a time. The sys:unroll-block-forms macro can help structure block

memory loops. See the section "Loop Unrolling Technique".

Page 1089

The block read operations take the same :cycle-type, :fixnum-only, and :set-cdr-

next options that the memory subprimitives do. They also take a :no-increment

option to inhibit the post-increment of the block address register, which is useful

when you want to read a word, modify it, then write it back to the same location.

The block read operations also take a :prefetch option that is useful when you

know you won’t be reading further words; you would supply nil when reading the

last word of a block. This is an optimization to reduce memory interface con-

tention.

Note that the MacIvory processor does not fully implement pipelined memory op-

erations, due to the limitations of the Macintosh Nubus. The documented block op-

erations work, but may not provide substantial performance improvement.

Also note that the block memory operations work only in compiled code, not in in-

terpreted code.

Ivory Subprimitives for Block Memory Operations

Many of the block operations work in conjunction with the ALU-CONTROL and

ROTATE-LATCH registers. For information on those registers, see the section

"Ivory ALU-CONTROL and ROTATE-LATCH Registers".

sys:with-block-registers (&rest registers) &body body Macro

Any use of a block register should occur within the body of a sys:with-block-

registers form. This Ivory subprimitive implements the correct protocol for

saving/restoring the contents of the block register. The registers are integers: 1 in-

dicates BAR-1; 2 indicates BAR-2; 3 indicates BAR-3.

For information on the calling conventions of the three block registers, see the

section "Ivory Block Address Registers".

For examples, see the section "Examples of Using Ivory Subprimitives".

sys:%block-register n Macro

Returns the contents of the block register numbered n. Use setf to set a block

register.

sys:%block-write bar value Macro

Writes the value into the memory location that the bar points at, and then incre-

ments the bar to point at the next word in memory. This macro does not follow in-

visible pointers, and does not preserve the cdr code in memory.

This is a block operation that can increase performance when you are writing data

at consecutive memory locations. If you are only writing data at one address, then

you should use sys:%memory-write, which does not require setting up and using a

block register.

Page 1090

sys:%block-read bar &key (:cycle-type sys:%memory-data-read) :fixnum-only (:set-

cdr-next t) (:prefetch t) :no-increment Macro

Reads the word from memory that the bar points at, and then increments the bar

to point at the next word in memory.

This is a block operation that can increase performance when you are reading data

at consecutive memory locations. If you are only reading data from one address,

then you should use sys:%memory-read, which does not require setting up and us-

ing a block register.

:cycle-type cycle-type

Controls the datatype checking and invisible-pointer following

performed on the contents of the memory location. The default

is to use the same kind of memory cycle that car uses, which

should be suitable for most usage. Cycle-type is one of the fol-

lowing fixnum constants:

sys:%memory-data-read

sys:%memory-data-write

sys:%memory-raw

sys:%memory-header

sys:%memory-scavenge�

For information on the semantics of the memory cycle types,

see the section "Memory Cycle Types".

:fixnum-only boolean

When :fixnum-only is true, then an error trap occurs whenev-

er the data read is not a fixnum. This is a useful defensive

measure when operating on bit arrays or I/O devices, for ex-

ample. The condition signaled is sys:bad-data-type-in-memory,

or sometimes one of its more specialized flavors such as

sys:unbound-function.

:set-cdr-next boolean

When true, the cdr-code of the data read is set to cdr-next,

otherwise it is preserved. The Ivory function calling architec-

ture requires that passed arguments always have cdr-next cdr-

codes, so the default is to do that.

:prefetch boolean A value of nil can be supplied if you know you won’t be read-

ing further words; you would supply nil when reading the last

word of a block. This is an optimization to reduce memory in-

terface contention. The default is t. This option affects perfor-

mance only, so if you request no prefetching and then proceed

to read the next word, the word will be read without a prob-

lem. Similarly, there is no problem if a word is prefetched and

then not needed. If you use sys:unroll-block-forms, the

prefetching is taken care of automatically.

Page 1091

:no-increment boolean

A true value prevents the block register from being increment-

ed to point at the next word in memory. This can be useful

when you want to read a word from memory, modify it, then

write it back to the same location. You would supply a true

value for :no-increment for the block read operation.

 �

sys:%block-read-alu bar arg Macro

Performs an ALU operation on two operands. OP1 is the word addressed by bar,

which is 1, 2, or 3. OP2 is arg. The ALU-CONTROL register determines the oper-

ation that will be performed. The result is placed in arg, which must be a local

lexical variable.

The cdr code of the operand is set to the cdr code from memory. The specified bar

is incremented. This instruction always uses a memory cycle type of

sys:%memory-data-read. This instruction traps if either operand is not a fixnum,

or if arithmetic overflow occurs in an ALU function that checks for overflow.

sys:%block-read-shift bar &key (:cycle-type sys:%memory-data-read) :fixnum-only

(:set-cdr-next t) (:prefetch t) :no-increment Macro

Reads the word addressed by the block register specified by bar (an integer 1, 2 or

3) and rotates it left by the amount specified in the byte-r field of the ALU-

CONTROL register.

The top (byte-s + 1) bits come from this rotated word, and the bottom bits come

from the ROTATE-LATCH register, and this value is pushed onto the stack. The

ROTATE-LATCH register is then loaded from the rotated memory word. The ef-

fect of this operation is to perform a dpb (deposit-byte) of the word from memory

into the ROTATE-LATCH register, and to push the result on the stack. The speci-

fied bar is incremented.

For information on the keyword options, see the macro sys:%block-read.

sys:%block-read-test bar &key (:cycle-type sys:%memory-data-read) :fixnum-only

(:set-cdr-next t) (:prefetch t) :no-increment :require-tos-valid Macro

Performs a test on two operands: OP1 is the word read from memory, and OP2 is

specified by sys:%block-read-test-tagbody. The test should be a predicate that re-

turns true or false.

The operation specified by the ALU-CONTROL register is performed, and the con-

dition is tested according to the condition sense in the ALU-CONTROL register. If

successful, the bar is not incremented and a branch is taken to the tag specified

by sys:%block-read-test-tagbody. If the test is not successful, it is as if a

sys:%block-read had been performed (although no value is returned). This instruc-

Page 1092

tion should normally only be used with the sys:%block-read-test-tagbody special

form.

This instruction is typically used for searching tables and bitmaps, and by the

garbage collector.

:require-tos-valid is a boolean. It should be t if the test depends on OP2.

For information on the other keyword options, see the macro sys:%block-read.

sys:%block-read-test-tagbody (success-tag &key operand-2) &body body Macro

Like tagbody, except that it prepares for uses of sys:%block-read-test. success-tag

should be a tag to be branched to if sys:%block-read-test succeeds. When the con-

dition requires a second operand, operand-2 is that operand.

The PC corresponding to success-tag will be pushed on the stack, followed by

operand-2 (or nil if operand-2 is not supplied). When a sys:%block-read-test is ex-

ecuted, there must be no additional objects on the stack at the time.

Legal example:

(let ((count n))

 (sys:%block-read-test-tagbody (success :operand-2 x)

 loop

 (when (= count 0)

 (go ran-out))

 (sys:%block-read-test 1)

 (decf count)

 (go loop)

 success

 ...

 ran-out

 ...))�

Illegal example:

(sys:%block-read-test-tagbody (success :operand-2 x)

 (loop repeat n doing

 (sys:%block-read-test 1))

 ...

 success

 ...)�

This is illegal because loop will generate a temporary variable which will be locat-

ed on the stack above what is pushed by sys:%block-read-test-tagbody.

Ivory Hardware Registers

Ivory has a number of hardware registers which control its operation. Most of

these registers are only of interest to Ivory or very low levels of the system, and

should not be used by users. However, a few are useful in performance-critical ap-

Page 1093

plications. These registers are virtual, that is, each stack group maintains its own

set of values. The debugger, the scheduler, interrupt handlers, and trap handlers

all ensure that they do not disturb the state of these registers.

This section describes the Block Address Registers, or BARs (see the section "Ivory

Block Address Registers"), and the ALU-CONTROL and ROTATE-LATCH registers

(see the section "Ivory ALU-CONTROL and ROTATE-LATCH Registers").

When using hardware registers, certain conventions must be followed to preserve

their contents. One convention is "callee saves". This means that if a function

modifies a register, it is required to restore the original value of the register. An-

other convention is "caller saves". This means that if you are using a register and

call something which is "outside" of your code’s dominion, then you should expect

that that register will have a different value when that call has completed. "Call-

ing" means calling a function; instructions will not change the value of a hardware

register unless they are documented to do so. For information on which instruc-

tions change Ivory registers,

see the section "Instructions That Change Ivory Registers".

Ivory Block Address Registers

Ivory makes all memory references through one of four Block Address Registers

(BARs). A BAR contains a memory address at which an operation is to be per-

formed. Associated with each BAR is a memory data register which receives mem-

ory data when reading memory. All memory references from Ivory use one of these

four BARs.

User programs may take advantage of the Ivory memory interface by using the

block operations (which operate with BARs) to optimize any inner loops containing

sequential memory traffic. The goal is to group the memory traffic into longer se-

quences so the memory pipeline can operate efficiently. For a general description

of memory pipelining, see the section "Overview of Ivory Memory and Processor

Architecture".

The BARs are numbered from 0 to 3 inclusive. BAR-0 is used by the processor for

instruction fetches, by many instructions (such as car and aref) and by asyn-

chronous exception handlers. It is not generally useful to software. BAR-1, BAR-2

and BAR-3 are used by a few instructions and by some system software, and can

be used by application software as long as certain conventions are obeyed.

BAR-2 and BAR-3 are "callee saves", and BAR-1 is "caller saves". The form

sys:with-block-registers should be used around any code which uses any of the

BARs. You can use sys:%block-register to get the contents of a block register, and

use setf with it to set a block register. These subprimitives are documented else-

where; See the section "Ivory Subprimitives for Block Memory Operations".

For examples of using block registers, see the section "Examples of Using Ivory

Subprimitives".

Ivory ALU-CONTROL and ROTATE-LATCH Registers

Page 1094

Ivory machines offer two special registers which can be used with the block regis-

ters: the ALU-CONTROL register and the ROTATE-LATCH register. Both of these

registers are "caller saves". Caution: if you use these registers, you should see the

section "Instructions That Change Ivory Registers".

The ALU-CONTROL register is used by these Ivory subprimitives:

sys:%alu

sys:%block-read-alu

sys:%block-read-test

sys:%block-read-shift�

These operations optionally use the ROTATE-LATCH register as well. These oper-

ations use byte-fields in the ALU-CONTROL register to route data through the

Ivory chip.

The ALU-CONTROL register has the following fields:

Function

Byte-R

Byte-S

Condition

Condition-Sense�

Before using the ALU-CONTROL register, you must prepare the register for use

by calling sys:set-alu-and-rotate-control. This macro sets the various fields of the

register.

Ivory Subprimitives for Using the ALU-CONTROL and ROTATE-LATCH Reg-

isters

This section documents the macro that sets up the ALU-CONTROL and ROTATE-

LATCH registers, and one macro that works with the ALU-CONTROL register.

Most operations that use these registers are block operations. For background in-

formation on block registers, see the section "Ivory Block Address Registers".

For reference documentation on the block operations, see the section "Ivory Sub-

primitives for Block Memory Operations".

sys:set-alu-and-rotate-control &key :byte-r :byte-s :function :condition :condition-

sense Macro

Prepares the ALU-CONTROL register for use. The keyword arguments are:

:byte-r bits

Specifies the value for the BYTE-R field of the ALU-CONTROL register. See

below for details.

:byte-s bits

Specifies the value for the BYTE-S field of the ALU-CONTROL register.

Page 1095

A complete byte field is specified by the BYTE-R and BYTE-S fields of the

ALU-CONTROL register. This byte field is similar to (BYTE (+ BYTE-S 1)

BYTE-R), except that it can wraparound to the low-order bits. For example,

in the following table, the shaded bits (indicated by #) are in the specified

fields:

 S R | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

 | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

--

 5 3 # # # # # #

10 28 # # # # # # # # # # #�

OP2 is rotated left by R bits. In the ldb case, the low S+1 bits of the result

come from the rotated OP2, and the remaining bits come from background.

In the dpb case, the specified field comes from the rotated OP2, and the re-

mainder comes from background. If the ROTATE-LATCH is set, it is set to

the rotated OP2.

:function operation

Specifies the operation to be performed. It can take on the following values:

BOOLE operations

If the :function argument is an integer from 0 through 15, then (boole

op op1 op2) will be performed. The integer specifies the op, just as it

does in the boole function. See the function boole.

(sys:%alu-function-ldb background rotate-latch)

Specifies that an ldb operation should be performed.

background is one of:

sys:%alu-byte-background-op1

sys:%alu-byte-background-rotate-latch

sys:%alu-byte-background-zero�

rotate-latch is one of:

sys:%alu-byte-hold-rotate-latch

sys:%alu-byte-set-rotate-latch�

For information on the semantics of background and rotate-latch, see the

description of the :byte-s option.

(sys:%alu-function-dpb background rotate-latch)

Specifies that a dpb operation should be performed. background and ro-

tate-latch can take on the values documented in the ldb case. For infor-

mation on the semantics of background and rotate-latch, see the descrip-

tion of the :byte-s option.

(sys:%alu-function-add 2nd-input-source 2nd-input-invert carry-in)

The adder is a 32-bit adder with some additional logic useful for per-

forming a number of comparison operations (see ALU conditions). The

32-bit adder takes one input from OP1. The other input can be 0, -1,

Page 1096

OP2, or (LOGNOT OP2). This is specified with the following argument

values:

2nd-input-source 2nd-input-invert 2nd input value

sys:%alu-add-op-2 0 OP2

sys:%alu-add-op-2 1 (LOGNOT OP2)

sys:%alu-add-zero 0 0

sys:%alu-add-zero 1 -1

The result will be the 32-bit sum of the two inputs and carry-in (which

must be 0 or 1).

2nd-input-invert does not affect carry-in, so when using sys:%alu-

function-add for subtraction, carry-in should be 1 if there is no borrow

and 0 if there is a borrow.

Examples:

(sys:set-alu-and-rotate-control

 (:function

 ;Adds OP1 and OP2

 (sys:%alu-function-add sys:%alu-add-op-2 0 0)))

�

(sys:set-alu-and-rotate-control

 (:function

 ;Adds 1 to OP1

 (sys:%alu-function-add sys:%alu-add-zero 0 1)))

�

(sys:set-alu-and-rotate-control

 (:function

 ;Subtracts OP2 from OP1

 (sys:%alu-function-add sys:%alu-add-op-2 1 1)))

�

(sys:set-alu-and-rotate-control

 (:function

 ;Subtracts 1 from OP1

 (sys:%alu-function-add sys:%alu-add-zero 1 1)))�

:condition condition

Sets the condition field. The condition field is used only by the sys:%block-

read-test instruction. condition can be one of the named conditions below.

The arithmetic condition descriptors refer to the following signals:

Invert The value of 2nd-input-invert in sys:%alu-function-add

Sign1 Bit 31 of input 1

Sign2 Bit 31 of input 2

Zero Bits 31:0 of the result are 0

Page 1097

Cout The carry from the 32-bit adder

Sign Bit 31 of the result

XSign Cout XOR Sign1 XOR Sign2

Overflow XSign XOR Sign�

sys:%alu-condition-signed-less-than-or-equal

This condition is true if the possibly overflowing operation on twos comple-

ment fixnum inputs was less than or equal to 0, that is. if the two inputs

are sign-extended to 33 bits, this condition is true if the twos complement

33 bit result is less than or equal to 0.

Zero OR XSign=1.

sys:%alu-condition-signed-less-than

This condition is true if the possibly overflowing operation on twos comple-

ment fixnum inputs was less than 0, that is. if the two inputs are sign-

extended to 33 bits, this condition is true if the twos complement 33 bit re-

sult is less than 0.

XSign=1.

sys:%alu-condition-negative

This condition is true if the two’s complement result is negative.

Sign=1.

sys:%alu-condition-signed-overflow

This condition is true if the operation on the two’s complement inputs over-

flowed.

Overflow.

sys:%alu-condition-unsigned-less-than-or-equal

This condition is true if the inputs are 32-bit unsigned integers, a subtract

was performed, and the result was less than or equal to 0.

Zero OR (NOT(Invert) XOR Cout).

sys:%alu-condition-unsigned-less-than

This condition is true if the inputs are 32-bit unsigned integers, a subtract

was performed, and the result was less than 0.

NOT(Invert) XOR Cout.

sys:%alu-condition-zero

The condition will be true when the low 32 bits of the result are 0.

Zero.

sys:%alu-condition-eq

Page 1098

The condition will be true when the result is 0 and the data types of OP1

and OP2 are the same. The following example shows how to write an eq

test:

(sys:set-alu-and-rotate-control

 :condition %alu-condition-eq

 :condition-sense %alu-condition-sense-true

 :function cl:boole-xor)�

sys:%alu-condition-false

The condition is always false.

sys:%alu-condition-result-cdr-low

The condition will be true if the cdr-code of OP1 is either CDR-NIL or 3.

Note that :set-cdr-next must be nil in sys:%block-read-test for this to

work.

:condition-sense condition-sense

Sets the condition sense field, which is used only by the sys:%block-read-

test instruction. condition-sense can be:

sys:%alu-condition-sense-true

Causes sys:%block-read-test to branch if the condition is true.

sys:%alu-condition-sense-false

Causes sys:%block-read-test to branch if the condition is false.�

 �

sys:%alu op1 op2 Macro

Performs the operation specified by the ALU-CONTROL register on the operands

op1 and op2, and returns the result.

Instructions That Change Ivory Registers

The following table shows which instructions change the BAR, ALU-CONTROL,

and ROTATE-LATCH registers. In general, BAR-2 and BAR-3 are not changed by

instructions; however, each one can be changed by a Joshua instruction. Care must

be taken if you program both with block registers and with Joshua.

Page 1099

Instruction BAR ALU-CONTROL ROTATE-LATCH

%allocate-list-block 1

%lshc-bignum-step * *

aref-1 *

aset-1 *

ash *

assoc 1

bind-locative 1

bind-locative-to-value 1

fast-aref-1 *

fast-aset-1 *

lsh *

push-global-logic-variable 2

rot *

unify 3

Memory Cycle Types

When reading from memory, it is often desirable to specify the expected format of

the data being read. The processor can then check for this format in parallel with

instruction execution, and trap appropriately if the data does not match the expect-

ed format. This relieves software from explicitly checking memory data, and from

interlocking with other memory references. The ability to have hardware perform

data-type checks in parallel with memory operations is one of the major advantages

of Lisp processors.

For example, suppose we wanted to read the value cell of a symbol, and return its

value to an application. The symbol could be unbound, in which case we should

signal an error. We therefore issue the memory request such that unbound-

memory-location markers are detected by the hardware. On the other hand, we

may want to read the value cell of a symbol simply to check if it is bound. In that

case, we don’t want the hardware to trap on unbound-memory-location markers.

The memory cycle type controls:

• Invisible pointer following

• GC transporting of references to oldspace

• Invalid data type trapping (unbound variable, malformed memory)

• Location monitoring �

On read operations, the parallel data-type checking hardware is controlled via the

:cycle-type and :fixnum-only options to sys:%memory-read, sys:%memory-read-

address, sys:%block-read, sys:%block-read-shift, and sys:%block-read-test.

The memory cycle types are:

Page 1100

sys:%memory-data-read Constant

This is the default memory cycle type, and it is usually the most appropriate one

to use for block register read operations. This is used for most operations that

read ordinary data from memory, such as car and aref. This memory cycle type

reads the word located at the requested memory address. If an invisible pointer is

obtained, then that invisible pointer is followed to its end. Block operations when

invisible pointers are present are confusing and not recommended. The block regis-

ter is reset to wherever the invisible pointer points to.

Note that using sys:%memory-read and sys:%memory-read-address should not be

confusing when invisible pointers are present.

This memory cycle type traps on the usual situations, including on unbound vari-

ables and monitor.

sys:%memory-data-write Constant

This memory cycle type is used with read operations when the goal is to read a

word, then write that word. Invisible pointers are followed, so the next write oper-

ation writes to the correct location.

sys:%memory-raw Constant

This memory cycle type reads anything. A raw memory reference has all the indi-

rection (invisible pointer following), trapping, and transporting possibilities dis-

abled. Using this memory cycle type can be dangerous because the GC transporter

is turned off; if you store the value somewhere, you can subvert the garbage col-

lector.

sys:%memory-header Constant

This memory cycle type is used by the system when referencing headers of some

data structures, including arrays and instances. It doesn’t follow any forwarding

pointers, but enables transporting of objects condemned by the garbage collector.

sys:%memory-scavenge Constant

This memory cycle type is used by the garbage collector. This is primarily an in-

ternal operation, and not generally useful to application programs.

Ivory Array Registers

An Ivory array register is a decoded form of an array, consisting of four consecu-

tive words on the stack which cache the information in an array’s header. They

permit faster access because no reference to the header is required.

Page 1101

On Ivory machines, you can use the subprimitives underlying the array registers.

The higher-level array register facility is documented elsewhere: See the section

"Array Registers".

For examples of using the subprimitives underlying array registers, see the section

"Examples of Filling Arrays Using Block Registers".

Reasons for Using Array Registers

When you use a block register, you need to know the address, actual length, and

byte-packing of the data. If your data are in an array, you can use the Ivory sub-

primitives for dealing with array registers to obtain this information efficiently for

an arbitrary array. Note that if you know this information about arrays used in

your application, it is not necessary to use array registers.

The following situations show how the suprimitives can be useful:

• When there is more than one array element per word, the elements are stored

from the low bytes to the high bytes:

0 0

1

123

7 6 5 4

DataOffset

�

• If the array is displaced with an index offset, then the array elements may be

shifted in the words.

23 14

0

DataOffset

1

0

�

• If an array A is displaced to B, the actual number of usable elements in A may

be shorter than the length of A because B may be shorter than the length of A

plus the index offset:

(setq b (make-array 50.))

(setq a (make-array 100. :displaced-to b

 :displaced-index-offset 10.))�

The array A really can use only 40 of its elements.

• If your array is not an object array, locf cannot be used to find the address of

the first element.�

Page 1102

By using the array register subprimitives, your application does not depend upon

the current Symbolics implementation of arrays on Ivory (note, however, that array

registers are different on 3600-family machines). The array register subprimitives

enable you to conveniently determine the address of the first array element, the

offset of the first element in that word, the number of elements per word, and the

usable length of the array (in array elements). In addition, an event count is main-

tained which can be used to tell if the array register values may need to be updat-

ed (you need be concerned about this only if the array may have been adjusted

since you got the array register values). For an example of getting this informa-

tion about an array, see the section "Decoding an Array with Array Register Sub-

primitives".

Components of an Ivory Array Register

The four components of an array register are:

Array A reference to the array object itself.

Control word

A fixnum containing the following fields:

sys:array-register-element-type

Describes the element type of the array. The possible values are:

sys:array-element-type-fixnum

sys:array-element-type-character

sys:array-element-type-boolean

sys:array-element-type-object �

sys:array-register-byte-packing

This is Log2(elements per word).

sys:array-register-byte-offset

The number of unused elements preceding the array in the first

word. This is a number to be added to the specified index in

sys:fast-aref-1 and sys:fast-aset-1. It is non-zero only for displaced

arrays, and always represents an offset less than one word.

sys:array-register-event-count

A snapshot of a count which is incremented whenever an event

which might have invalidated the cached array information has oc-

curred. If this value differs from the value returned by

(sys:%read-internal-register sys:%register-event-count) then it is

possible that the array register is stale (due to an array being ad-

justed, for example, but not due to garbage collection). If you know

that your array has not been adjusted since you set up the array

register, you do not need to worry about this.�

Base address

The address of the first element in the array. If the array is displaced, it

does not necessarily include all the bits in the word at this address.

Page 1103

Array length

The number of elements in the array. In the case of a displaced array,

this may be smaller than the value returned by array-total-size since

each indirection imposes its own length restrictions.

Creating an Ivory Array Register

To create an Ivory array register, use one of the following:

sys:setup-1d-array array

Creates an array register describing array, which must be a

one-dimensional array.

sys:setup-force-1d-array array

Creates an array register describing array, which can be any

array. This function causes multidimensional arrays to be ac-

cessed as if they were one-dimensional arrays, with the order

of elements in row-major order.

These return four values, which are the components of the array register. For in-

formation on these components, see the section "Components of an Ivory Array

Register".

Note that the values returned must be kept in the order in which they are re-

turned; that is, there must be four consecutive words on the stack containing an

array, a control word, a base address, and a length.

When you create an array register using one of these subprimitives, you cannot

use the normal Lisp array functions to manipulate it. To read or write an element

of the array, use sys:fast-aref-1 or sys:fast-aset-1.

Decoding an Array with Array Register Subprimitives

This function illustrates how to "decode" an array register; that is, to get informa-

tion about the array, such as its:

• Base address

• Element type

• Byte packing

• Byte offset�

Page 1104

(defun quick-describe-array (array)

 (multiple-value-bind (array control base-address length)

 (sys:setup-1d-array array)

 (declare (ignore array))

 (format t "~&The first element of the array is at location ~s"

 base-address)

 (format t "~&The array elements are ~a"

 (select (ldb sys:array-register-element-type control)

 (sys:array-element-type-fixnum "fixnums")

(sys:array-element-type-character "characters")

(sys:array-element-type-boolean "boolean")

(sys:array-element-type-object "objects")))

 (let ((byte-packing (ldb sys:array-register-byte-packing control)))

 (format t "~&The byte-packing is ~s, so there are ~s elements per word"

 byte-packing

 (rot 1 byte-packing)))

 (format t "~&Array element 0 is ~s elements into the first word"

 (ldb sys:array-register-byte-offset control))

 (format t "~&There are ~s usable elements in the array" length)))

�

This function uses Ivory subprimitives for dealing with array registers. For infor-

mation on the subprimitives, see the section "Ivory Subprimitives for Handling Ar-

ray Registers".

Caveats Regarding Ivory Array Registers

When you use the higher-level interface for array registers (the sys:array-register

declaration), the system ensures that the array register is valid as it is being used.

That is, if the array is adjusted, the array register re-encaches the new state of

the array.

The subprimitives sys:fast-aref-1 and sys:fast-aset-1 also re-encache the state of

the array if it changes. However, if you copy values out of the array register (such

as its length), these values will not be updated if the array is adjusted.

When you use the Ivory subprimitives for array registers, you have two choices of

how to deal with this potential problem. In some situations, you know that the ar-

ray will not be adjusted, so the problem should not occur. If, however, you antici-

pate that the array might be adjusted, then you will have to establish a protocol

such as locking to protect the integrity of the array.

For example, the window system locks a lock whenever it draws on a window, and

whenever it adjusts a screen array, so that these two operations cannot interfere

with each other.

Ivory Subprimitives for Handling Array Registers

Page 1105

sys:array-register-byte-offset Constant

This constant is a byte specifier for the sys:array-register-byte-offset field in the

control word of an array register. See the section "Components of an Ivory Array

Register".

sys:array-register-byte-packing Constant

This constant is a byte specifier for the sys:array-register-byte-packing field in

the control word of an array register. See the section "Components of an Ivory Ar-

ray Register".

sys:array-register-element-type Constant

This constant is a byte specifier for the sys:array-register-element-type field in

the control word of an array register. See the section "Components of an Ivory Ar-

ray Register".

sys:array-register-event-count Constant

This constant is a byte specifier for the sys:array-register-event-count field in

the control word of an array register. See the section "Components of an Ivory Ar-

ray Register".

sys:array-element-type-boolean Constant

Indicates that the elements of the array described by a given array register are

boolean values (t or nil). The words in memory are of type dtp:fixnum. Each bit is

0 for nil or 1 for t.

This constant is one of four possible values to be returned by the sys:array-

register-element-type macro, and one of four possible values for the sys:array-

register-element-type field in the control-word component of an array register. See

the section "Components of an Ivory Array Register".

sys:array-element-type-character Constant

Indicates that the elements of the array described by a given array register are

characters. The words in memory are of type dtp:fixnum.

This constant is one of four possible values to be returned by the sys:array-

register-element-type macro, and one of four possible values for the sys:array-

register-element-type field in the control-word component of an array register. See

the section "Components of an Ivory Array Register".

sys:array-element-type-fixnum Constant

Page 1106

Indicates that the elements of the array described by a given array register are

fixnums. The words in memory are of type dtp:fixnum.

This constant is one of four possible values to be returned by the sys:array-

register-element-type macro, and one of four possible values for the sys:array-

register-element-type field in the control-word component of an array register. See

the section "Components of an Ivory Array Register".

sys:array-element-type-object Constant

Indicates that the elements of the array described by a given array register can be

any kind of Lisp object. The words in memory can be of any type.

This constant is one of four possible values to be returned by the sys:array-

register-element-type macro, and one of four possible values for the sys:array-

register-element-type field in the control-word component of an array register. See

the section "Components of an Ivory Array Register".

sys:array-event-count object Macro

Returns the current event count for array registers. See the section "Components

of an Ivory Array Register".

sys:fast-aref-1 index array-register-control-word Macro

Like sys:%1d-aref, but intended for use with an array register. Note that the con-

trol word (array-register-control-word), not the array, is used to specify the array

register. This ensures that the array register is not stale; if it is, the array regis-

ter will be updated.

index specifies which element in the array to return.

sys:fast-aset-1 value index array-register-control-word Macro

Like sys:%1d-aset, only the array register is used and no value is returned. Note

that the control word (array-register-control-word), not the array, is used to specify

the array register. This ensures that the array register is not stale; if it is, the ar-

ray register will be updated.

index specifies which element in the array to set. value is the value to which it

should be set.

sys:setup-1d-array array Macro

Creates an array register describing array, which must be a one-dimensional array.

Returns four values, which are the components of the array register. These compo-

nents are the array, control word, base address, and array length. For detailed in-

Page 1107

formation on these components, see the section "Components of an Ivory Array

Register".

Note that this is an Ivory subprimitive. There is a function of the same name de-

fined on 3600-family machines, but it is incompatible with the Ivory subprimitives,

and not documented for use.

sys:setup-force-1d-array array Macro

Creates an array register describing array, which can be any array. This function

causes multidimensional arrays to be accessed as if they were one-dimensional ar-

rays, with the order of elements in row-major order.

Returns four values, which are the components of the array register. These compo-

nents are the array, control word, base address, and array length. For detailed in-

formation on these components, see the section "Components of an Ivory Array

Register".

Note that this is an Ivory subprimitive. There is a function of the same name de-

fined on 3600-family machines, but it is incompatible with the Ivory subprimitives,

and not documented for use.

Examples of Using Ivory Subprimitives

Loop Unrolling Technique

Many loops in programs are characterized by a small body which is performed a

large number of times. Loops that add or do bitblt are examples. The overhead of

such a loop is more time-consuming than the body, for a single iteration. Such

loops can be optimized by a technique known as loop unrolling; you reconstruct the

code to have a larger body with fewer iterations. The goal is not to have a larger

body per se, but rather to perform more than one iteration step on each trip

through the body.

When using block registers, you can do loop unrolling by hand or by using

sys:unroll-block-forms (documented later in this section). For examples of loop

unrolling by hand, see the section "Examples of Vector Addition Using Block Reg-

isters". For examples of using sys:unroll-block-forms, see the section "Examples

of Filling Arrays Using Block Registers".

When using block operations, the goal is to regularize the memory traffic into

longer sequences so the memory pipeline can operate efficiently. We recommend

structuring code to do a set of reads followed by a set of writes, instead of inter-

leaving block read and write operations. Interleaving reads and writes introduces

substantial slowdowns.

Recommended pattern of block operations:

read read read / write write write�

Less efficient pattern:

Page 1108

read/write read/write read/write�

On a MacIvory, when data is in the cache, the MacIvory implements the memory

pipeline. However, when you access the NuBus because of a cache miss, or because

of using an uncached physical address such as one might use to access a frame

buffer, there can be only one cycle outstanding at a time. In this case, the memory

pipelining does no good, and the right way and the wrong way to write memory

processing loops perform the same.

sys:unroll-block-forms (n blocking) &body body Macro

Used for "loop unrolling", reconstructing Lisp code that uses a loop to have a larg-

er body of the loop which requires fewer iterations; this is done to increase per-

formance.

n is the number of times to perform the loop. blocking must be a power of 2 no

greater than 128. body is the body of the loops.

Using this macro is equivalent to:

(loop repeat n doing ,@body)�

except that the loop is unrolled. If n is not a multiple of blocking, then the body is

optionally executed in groups of 1, 2, 4, ... times (up to blocking/2). It is then exe-

cuted in a group of blocking, (floor n block-size) times, something like:

(when (ldb-test (byte 1 0) ,n)

 ,@body)

(when (ldb-test (byte 1 1) ,n)

 ,@body

 ,@body)

...

(loop repeat (floor n ,block-size) doing

 ,@body

 ,@body

 ...

 ,@body)�

However, since sys:%block-reads from a particular BAR are considerably faster

when they occur consecutively, the macro rearranges the code to try to make the

reads consecutive. The body should be kept relatively simple, because the macro

does not do real flow-analysis on it.

Examples of Vector Addition Using Block Registers

In this example, we start with a function written in high-level Lisp, using aref.

The function does vector addition: setting the elements of array3 to the sum of

each corresponding element in array1 and array2.

Page 1109

(defun vector-add (array1 array2 array3 n-elements)

 (loop for i below n-elements do

 (setf (aref array3 i)

 (+ (aref array1 i)

 (aref array2 i)))))�

If we know that the performance of this function has a great impact on the pro-

gram as a whole, then we might try to optimize it by using block registers. (Actu-

ally, before trying block registers, we would use sys:array-register declarations.

For further information, see the section "Array Registers".)

In the examples that follow, we gradually add techniques that increase perfor-

mance.

First, we modify the function to perform the bounds checking outside the inner

loop, and to abstract out the memory operation. Note that this version works only

for unpacked arrays (where the :element-type is either t or fixnum).

;; Abstraction of the memory operation

(defun vector-add (array1 array2 array3 n-elements)

 (unless (and (< n-elements (length array1))

 (< n-elements (length array2))

 (< n-elements (length array3)))

 (error "Array out of bounds."))

 (%block-add (locf (aref array1 0))

 (locf (aref array2 0))

 (locf (aref array3 0))

 n-elements))�

We now define %block-add to use block register operations:

;; Example of first cut inner loop.

(defun %block-add (source-1 source-2 destination n-elements)

 (sys:with-block-registers (1 2 3)

 (setf (sys:%block-register 1) source-1)

 (setf (sys:%block-register 2) source-2)

 (setf (sys:%block-register 3) destination)�

 ;; Do most of it in blocks of eight.

 (dotimes (ignore (floor n-elements 8))

 (let* ((a1 (sys:%block-read 1))

 (a2 (sys:%block-read 1))

 (a3 (sys:%block-read 1))

 (a4 (sys:%block-read 1))

 (a5 (sys:%block-read 1))

 (a6 (sys:%block-read 1))

 (a7 (sys:%block-read 1))

Page 1110

 (a8 (sys:%block-read 1 :prefetch nil))�

 (b1 (sys:%block-read 2))

 (b2 (sys:%block-read 2))

 (b3 (sys:%block-read 2))

 (b4 (sys:%block-read 2))

 (b5 (sys:%block-read 2))

 (b6 (sys:%block-read 2))

 (b7 (sys:%block-read 2))

 (b8 (sys:%block-read 2 :prefetch nil)))�

(sys:%block-write 3 (+ a1 b1))

(sys:%block-write 3 (+ a2 b2))

(sys:%block-write 3 (+ a3 b3))

(sys:%block-write 3 (+ a4 b4))

(sys:%block-write 3 (+ a5 b5))

(sys:%block-write 3 (+ a6 b6))

(sys:%block-write 3 (+ a7 b7))

(sys:%block-write 3 (+ a8 b8))))�

 ;; Do the last few words inefficiently.

 (dotimes (ignore (mod n-elements 8))

 (sys:%block-write 3

(+ (sys:%block-read 1 :prefetch nil)

 (sys:%block-read 2 :prefetch nil))))))�

Each time we make a change, we disassemble the code and examine it. In this

case, a portion of the disassembled code suggested another optimization, to remove

eight PUSH instructions:

 43 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A1

 44 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A2

 45 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A3

 46 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A4

 47 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A5

 50 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A6

 51 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A7

 52 %BLOCK-1-READ DATA-READ SET-CDR-NEXT INHIBIT-PREFETCH ;Creating A8

 53 %BLOCK-2-READ DATA-READ SET-CDR-NEXT ;Creating B1

 54 %BLOCK-2-READ DATA-READ SET-CDR-NEXT ;Creating B2

 55 %BLOCK-2-READ DATA-READ SET-CDR-NEXT ;Creating B3

 56 %BLOCK-2-READ DATA-READ SET-CDR-NEXT ;Creating B4

 57 %BLOCK-2-READ DATA-READ SET-CDR-NEXT ;Creating B5

 60 %BLOCK-2-READ DATA-READ SET-CDR-NEXT ;Creating B6

 61 %BLOCK-2-READ DATA-READ SET-CDR-NEXT ;Creating B7

 62 %BLOCK-2-READ DATA-READ SET-CDR-NEXT INHIBIT-PREFETCH ;Creating B8

 63 PUSH FP|14 ;A1

 64 ADD FP|22 ;B1

 65 %BLOCK-3-WRITE SP|POP

 66 PUSH FP|15 ;A2

 67 ADD FP|23 ;B2

 70 %BLOCK-3-WRITE SP|POP

Page 1111

 71 PUSH FP|16 ;A3

 72 ADD FP|24 ;B3

 73 %BLOCK-3-WRITE SP|POP

 74 PUSH FP|17 ;A4

 75 ADD FP|25 ;B4

 76 %BLOCK-3-WRITE SP|POP

 77 PUSH FP|18 ;A5

100 ADD FP|26 ;B5

101 %BLOCK-3-WRITE SP|POP

102 PUSH FP|19 ;A6

103 ADD FP|27 ;B6

104 %BLOCK-3-WRITE SP|POP

105 PUSH FP|20 ;A7

106 ADD FP|28 ;B7

107 %BLOCK-3-WRITE SP|POP

110 PUSH FP|21 ;A8

111 ADD FP|29 ;B8

112 %BLOCK-3-WRITE SP|POP

�

The following example removes the eight PUSH instructions:

(defun %block-add (source-1 source-2 destination n-elements)

 (sys:with-block-registers (1 2 3)

 (setf (sys:%block-register 1) source-1)

 (setf (sys:%block-register 2) source-2)

 (setf (sys:%block-register 3) destination)�

 ;; Do most of it in blocks of eight.

 (dotimes (ignore (floor n-elements 8))

 (let* ((a1 (sys:%block-read 1))

 (a2 (sys:%block-read 1))

 (a3 (sys:%block-read 1))

 (a4 (sys:%block-read 1))

 (a5 (sys:%block-read 1))

 (a6 (sys:%block-read 1))

 (a7 (sys:%block-read 1))

 (a8 (sys:%block-read 1 :prefetch nil))�

 (b1 (+ (sys:%block-read 2) a1))

 (b2 (+ (sys:%block-read 2) a2))

 (b3 (+ (sys:%block-read 2) a3))

 (b4 (+ (sys:%block-read 2) a4))

 (b5 (+ (sys:%block-read 2) a5))

 (b6 (+ (sys:%block-read 2) a6))

 (b7 (+ (sys:%block-read 2) a7))

Page 1112

 (b8 (+ (sys:%block-read 2 :prefetch nil) a8)))�

(sys:%block-write 3 b1)

(sys:%block-write 3 b2)

(sys:%block-write 3 b3)

(sys:%block-write 3 b4)

(sys:%block-write 3 b5)

(sys:%block-write 3 b6)

(sys:%block-write 3 b7)

(sys:%block-write 3 b8)))�

 ;; Do the last few words inefficiently.

 (dotimes (ignore (mod n-elements 8))

 (sys:%block-write 3

(+ (sys:%block-read 1 :prefetch nil)

 (sys:%block-read 2 :prefetch nil))))))�

The corresponding portion of disassembled code now is:

�

 43 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A1

 44 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A2

 45 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A3

 46 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A4

 47 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A5

 50 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A6

 51 %BLOCK-1-READ DATA-READ SET-CDR-NEXT ;Creating A7

 52 %BLOCK-1-READ DATA-READ SET-CDR-NEXT INHIBIT-PREFETCH ;Creating A8

 53 %BLOCK-2-READ DATA-READ SET-CDR-NEXT

 54 ADD FP|14 ;A1 Creating B1

 55 %BLOCK-2-READ DATA-READ SET-CDR-NEXT

 56 ADD FP|15 ;A2 Creating B2

 57 %BLOCK-2-READ DATA-READ SET-CDR-NEXT

 60 ADD FP|16 ;A3 Creating B3

 61 %BLOCK-2-READ DATA-READ SET-CDR-NEXT

 62 ADD FP|17 ;A4 Creating B4

 63 %BLOCK-2-READ DATA-READ SET-CDR-NEXT

 64 ADD FP|18 ;A5 Creating B5

 65 %BLOCK-2-READ DATA-READ SET-CDR-NEXT

 66 ADD FP|19 ;A6 Creating B6

 67 %BLOCK-2-READ DATA-READ SET-CDR-NEXT

 70 ADD FP|20 ;A7 Creating B7

 71 %BLOCK-2-READ DATA-READ SET-CDR-NEXT INHIBIT-PREFETCH

 72 ADD FP|21 ;A8 Creating B8

 73 %BLOCK-3-WRITE FP|22 ;B1

 74 %BLOCK-3-WRITE FP|23 ;B2

 75 %BLOCK-3-WRITE FP|24 ;B3

 76 %BLOCK-3-WRITE FP|25 ;B4

 77 %BLOCK-3-WRITE FP|26 ;B5

100 %BLOCK-3-WRITE FP|27 ;B6

101 %BLOCK-3-WRITE FP|28 ;B7

102 %BLOCK-3-WRITE FP|29 ;B8 �

Page 1113

In the following example, we restrict the arguments and results to be fixnums, and

we illustrate the use of %block-read-alu:

;; Using %BLOCK-READ-ALU

(defun %block-add (source-1 source-2 destination n-elements)

 (sys:with-block-registers (1 2 3)

 (setf (sys:%block-register 1) source-1)

 (setf (sys:%block-register 2) source-2)

 (setf (sys:%block-register 3) destination)

 (sys:set-alu-and-rotate-control

 :function (sys:%alu-function-add sys:%alu-add-op2 0 0))

 ;; Do most of it in blocks of eight.

 (dotimes (ignore (floor n-elements 8))

 (let* ((a1 (sys:%block-read 1 :fixnum-only t))

 (a2 (sys:%block-read 1 :fixnum-only t))

 (a3 (sys:%block-read 1 :fixnum-only t))

 (a4 (sys:%block-read 1 :fixnum-only t))

 (a5 (sys:%block-read 1 :fixnum-only t))

 (a6 (sys:%block-read 1 :fixnum-only t))

 (a7 (sys:%block-read 1 :fixnum-only t))

 (a8 (sys:%block-read 1 :fixnum-only t :prefetch nil)))

(sys:%block-read-alu 2 a1)

(sys:%block-read-alu 2 a2)

(sys:%block-read-alu 2 a3)

(sys:%block-read-alu 2 a4)

(sys:%block-read-alu 2 a5)

(sys:%block-read-alu 2 a6)

(sys:%block-read-alu 2 a7)

(sys:%block-read-alu 2 a8)

(sys:%block-write 3 a1)

(sys:%block-write 3 a2)

(sys:%block-write 3 a3)

(sys:%block-write 3 a4)

(sys:%block-write 3 a5)

(sys:%block-write 3 a6)

(sys:%block-write 3 a7)

(sys:%block-write 3 a8)))

 ;; Do the last few words inefficiently.

 (dotimes (ignore (mod n-elements 8))

 (let ((a (sys:%block-read 1 :fixnum-only t :prefetch nil)))

(sys:%block-read-alu 2 a)

(sys:%block-write 3 a)))))�

Examples of Filling Arrays Using Block Registers

;;; Filling an array with constant values (the array must have

;;; one element per word).

Page 1114

(defun simple-fill-array (array value)

 (multiple-value-bind (array control base-address length)

 (sys:setup-1d-array array)

 (declare (ignore array))

 ;; Make sure the array contains one element per word by checking

 ;; the byte-packing, which is Log2 the elements per word.

 (unless (= (ldb sys:array-register-byte-packing control) 0)

 (error "Attempt to use SIMPLE-FILL-ARRAY on a non-32-bit array"))

�

 ;; The word which gets stored in the array is not necessarily the

 ;; value, so get the appropriate word for the initial value.

 ;; In other words, the value might be a character but

 ;; array-initial-word returns fixnum with the same bit pattern.

 (let ((initial-word (si:array-initial-word control value)))

 (sys:with-block-registers (1)

(setf (sys:%block-register 1) base-address)

;; Write LENGTH words, doing 4 at a time

(sys:unroll-block-forms (length 4)

 (sys:%block-write 1 initial-word))))))�

;;; Filling a possibly displaced array with arbitrary byte-size.

;;; This does not worry about conformal arrays or ART-Q-LIST arrays.

(defun general-fill-array (array value)

 (multiple-value-bind (array control base-address length)

 (sys:setup-force-1d-array array)

 (declare (ignore array))

 ;; The word which gets stored in the array is not necessarily the

 ;; value, so get the appropriate word for the initial value.

 (let ((initial-word (si:array-initial-word control value)))

 (sys:with-block-registers (1)

(setf (sys:%block-register 1) base-address)

(let* ((byte-packing (ldb sys:array-register-byte-packing control))

 (offset (ldb sys:array-register-byte-offset control))

 (final (+ length offset))

 (final-word-offset (lsh final (- byte-packing))))

 (when (= length 0)

 (return-from general-fill-array nil))�

 ;; BYTE-PACKING is the number of array elements per word. If

 ;; ARRAY is displaced to another array and the total offset in

 ;; all the indirections between ARRAY and the actual storage

 ;; is not an integral number of words, then OFFSET is the

 ;; number of array elements units in the word at BASE-ADDRESS

 ;; which precede the part of the word where ARRAY begins. To

 ;; make things simpler, we will think of ARRAY as being

 ;; displaced to an array with the same element size which

 ;; begins at the beginning of BASE-ADDRESS, i.e. the

 ;; displaced-index-offset is OFFSET. Then FINAL is length of

 ;; this array, and FINAL-WORD-OFFSET is the first word

Page 1115

 ;; containing elements after ARRAY.�

 (cond ((≠ offset 0)
 (let ((bit-offset (rot offset (- 5 byte-packing))))

 ;; We have to read the first word, and deposit our word

 ;; into the portion used by our array. This starts at

 ;; bit BIT-OFFSET and is some portion of the

 ;; higher-order bits above BIT-OFFSET, depending upon

 ;; the length of ARRAY. Note that BYTE-S is one less

 ;; than the size. The function class specifies a DPB

 ;; into OP1, ignoring the rotate-latch.�

 (cond ((= final-word-offset 0)

 ;; array is only one word long, and there may

 ;; be unused elements after it in this word

 (sys:set-alu-and-rotate-control

 :byte-r bit-offset

 :byte-s (1- (rot length byte-packing))

 :function (sys:%alu-function-dpb

 sys:%alu-byte-background-op1

 sys:%alu-byte-hold-rotate-latch))

 (sys:%block-write

 1 (sys:%alu (sys:%block-read 1 :no-increment t)

initial-word))

 (return-from general-fill-array))�

 (t ;; array uses all the rest of this word

 (sys:set-alu-and-rotate-control

 :byte-r bit-offset

 :byte-s (- 31. bit-offset)

 :function (sys:%alu-function-dpb

 sys:%alu-byte-background-op1

 sys:%alu-byte-hold-rotate-latch))

 (sys:%block-write

 1 (sys:%alu (sys:%block-read 1 :no-increment t)

initial-word))))))

((> final-word-offset 0) ;; array uses all of first word

 (sys:%block-write 1 initial-word)))�

 ;; fill the fully-occupied words in the middle of the array

 (sys:unroll-block-forms ((1- final-word-offset) 4)�

 (sys:%block-write 1 initial-word))

 (let ((final-bit-offset (- final

 (lsh final-word-offset byte-packing))))

 (unless (zerop final-bit-offset)

 ;; We only have part of the last word. Similar to the

 ;; treatment of the first word.

 (sys:set-alu-and-rotate-control

:byte-r 0

:byte-s (1- final-bit-offset)

 :function (sys:%alu-function-dpb

 sys:%alu-byte-background-op1

Page 1116

 sys:%alu-byte-hold-rotate-latch))

 (sys:%block-write 1 (sys:%alu (sys:%block-read 1 :no-increment t)

 initial-word)))))))))�

Example of Testing Array Elements Using Block Registers

;;; Locative should point to a list of ordered fixnums, and N should

;;; be the number of fixnums. Starting at LOCATIVE, this compares KEY

;;; with the value at that location. If KEY ≥ VALUE, then the
;;; location and its contents are returned. If no value in the first

;;; N locations satisfies this condition, NIL is returned.�

(defun %block-search-≤ (key locative n)
 (sys:with-block-registers (1)

 ;; Set up the ALU-CONTROL register

 ;;

 ;; The ALU Function is a subtract: OP1 is the value read from

 ;; memory, and OP2 is one more than the ones complement (i.e. the

 ;; twos complement) of KEY. Test for KEY not less than the word

 ;; read.

 (sys:set-alu-and-rotate-control

 :condition sys:%alu-condition-signed-less-than

 :condition-sense sys:%alu-condition-sense-false

 :function

 (sys:%alu-function-add sys:%alu-add-op2 1 1))�

 (setf (sys:%block-register 1) locative)

 (let ((bound (sys:%pointer-plus locative (1- n))))

 ;; BOUND is the last word in the block of data. This is careful

 ;; not to create a pointer past the block of data.

 (sys:%block-read-test-tagbody (success :operand-2 key)�

 ;; If the test passes, a branch to SUCCESS will be

 ;; taken; otherwise SYS:%BLOCK-READ-TEST will fall

 ;; through to the next instruction.

 ;; If n is not a multiple of 8, first take care of

 ;; the extras, then handle blocks of 8.

 (case (ldb (byte 3. 0.) n)

 (0 (go do-0))

 (1 (go do-1))

 (2 (go do-2))

 (3 (go do-3))

 (4 (go do-4))

 (5 (go do-5))

 (6 (go do-6))

 (otherwise (go do-7)))�

 do-8 (sys:%block-read-test 1 :fixnum-only t)�

 do-7 (sys:%block-read-test 1 :fixnum-only t)�

 do-6 (sys:%block-read-test 1 :fixnum-only t)�

 do-5 (sys:%block-read-test 1 :fixnum-only t)�

Page 1117

 do-4 (sys:%block-read-test 1 :fixnum-only t)�

 do-3 (sys:%block-read-test 1 :fixnum-only t)�

 do-2 (sys:%block-read-test 1 :fixnum-only t)�

 do-1 (sys:%block-read-test 1 :fixnum-only t)�

 do-0 (if (sys:%pointer-lessp (sys:%block-register 1) bound)

 (go do-8) ;; not finished, do 8 more words

 (return-from %block-search-≤ nil)) ;; search failed�

 ;; %block-read-test jumps here when the test is satisfied

 success

 (return-from %block-search-≤
 (values (sys:%block-register 1)

 ;; re-read the matching location

 (sys:%block-read 1

 :no-increment t

 :fixnum-only t

 :prefetch nil)))))))�

Stack Groups

A stack group (abbreviated "SG") is a type of Lisp object useful for implementation

of certain advanced control structures such as coroutines and generators. Process-

es, which are a kind of coroutine, are built on top of stack groups. (See the section

"Using Processes for Computations".) A stack group represents a computation and

its internal state, including the Lisp stack.

At any time, the computation being performed by a Symbolics computer is associat-

ed with one stack group, called the current or running stack group. The operation

of making some stack group be the current stack group is called a resumption or a

stack group switch; the previously running stack group is said to have resumed the

new stack group. The resume operation has two parts: first, the state of the run-

ning computation is saved away inside the current stack group, and secondly the

state saved in the new stack group is restored, and the new stack group is made

current. Then the computation of the new stack group resumes its course.

The stack group itself holds a great deal of state information. It contains the con-

trol stack. The control stack is what you are shown by the Debugger’s backtracing

commands (c-B, m-B, and c-m-B); it remembers the function that is running, its

caller, its caller’s caller, and so on, and the point of execution of each function

(the "return addresses" of each function). A stack group contains the binding (en-

vironment) stack. This contains all of the values saved by binding of special vari-

ables. A stack group also contains structures allocated on the data stack by such

operations as sys:make-stack-array. See the special form sys:make-stack-array.

The name "stack group" derives from the existence of these stacks. Finally, the

stack group contains various internal state information (contents of machine regis-

ters and so on).

When the state of the current stack group is saved away, all of its bindings are

undone, and when the state is restored, the bindings are put back. Note that al-

though bindings are temporarily undone, unwind-protect handlers are not run by a

stack-group switch.

Page 1118

Each stack group is a separate environment for purposes of function calling,

throwing, dynamic variable binding, and condition signalling. All stack groups run

in the same address space, thus they share the same Lisp data and the same glob-

al (not bound) variables.

When a new stack group is created, it is empty: it doesn’t contain the state of any

computation, so it cannot be resumed. In order to get things going, the stack

group must be set to an initial state. This is done by presetting the stack group.

To preset a stack group, you supply a function and a set of arguments. The stack

group is placed in such a state that when it is first resumed, this function calls

those arguments. The function is called the initial function of the stack group.

Resuming of Stack Groups

Stack groups resume each other. When one stack group resumes a second stack

group, the current state of Lisp execution is saved away in the first stack group,

and is restored from the second stack group. Resuming is also called switching

stack groups.

At any time, there is one stack group associated with the current computation; it

is called the current stack group. The computations associated with other stack

groups have their states saved away in memory, and they are not computing. So

the only stack group that can do anything at all, in particular resuming other

stack groups, is the current one.

You can look at things from the point of view of one computation. Suppose it is

running along, and it resumes some stack group. Its state is saved away in the

current stack group, and the computation associated with the one it called starts

up. The original computation lies dormant in the original stack group, while other

computations go around resuming each other, until finally the original stack group

is resumed by someone. Then the computation is restored from the stack group

and runs again.

There are several ways that the current stack group can resume other stack

groups. This section describes all of them.

Associated with each stack group is a resumer. The resumer is nil or another stack

group. Some forms of resuming examine and alter the resumer of some stack

groups.

Resuming has another ability: it can transmit a Lisp object from the old stack

group to the new stack group. Each stack group specifies a value to transmit

whenever it resumes another stack group; whenever a stack group is resumed, it

receives a value.

In the descriptions below, let c stand for the current stack group, s stand for some

other stack group, and x stand for any arbitrary Lisp object.

Stack groups can be used as functions. They accept one argument. If c calls s as a

function with one argument x, then s is resumed, and the object transmitted is x.

When c is resumed (usually but not necessarily by s), the object transmitted

by that resumption is returned as the value of the call to s. This is one of the

Page 1119

simple ways to resume a stack group: call it as a function. The value you transmit

is the argument to the function, and the value you receive is the value returned

from the function. Furthermore, this form of resuming sets s’s resumer to be c.

Another way to resume a stack group is to use stack-group-return. Rather than

allowing you to specify which stack group to resume, this function always resumes

the resumer of the current stack group. Thus, this is a good way to resume who-

ever it was who resumed you, assuming it was done by function-calling. Note that

you cannot use stack-group-return if the current stack group was resumed with

stack-group-resume. stack-group-return takes one argument, which is the object

to transmit. It returns when someone resumes the current stack group, and re-

turns one value, the object that was transmitted by that resumption. stack-group-

return does not affect the resumer of any stack group.

The most fundamental way to do resuming is with stack-group-resume, which

takes two arguments: the stack group, and a value to transmit. It returns when

someone resumes the current stack group, returning the value that was transmit-

ted by that resumption, and does not affect any stack group’s resumer.

If the initial function of c attempts to return a value x, the regular kind of Lisp

function return cannot take place, since the function did not have any caller (it

got there when the stack group was initialized). So instead of normal function re-

turning, a "stack group return" happens. c’s resumer is resumed, and the value

transmitted is x. c is left in a state ("exhausted") from which it cannot be resumed

again; any attempt to resume it signals an error. Presetting it makes it work

again.

Those are the "voluntary" forms of stack group switch; a resumption happens be-

cause the computation said it should. There are also two "involuntary" forms, in

which another stack group is resumed without the explicit request of the running

program.

When certain events occur, such as a 1/60th of a second clock tick, a sequence

break occurs. Sequence breaks are handled by system code, operating below the

level of stack groups. After a certain amount of time has elapsed (typically 1/10th

of a second), a sequence break causes the occurrence of a preemption. A preemp-

tion forces the current stack group to resume a special stack group called the

scheduler. (See the section "The Scheduler".) The scheduler implements processes

by resuming, one after another, the stack group of each process that is ready to

run.

Stack Group Functions

make-stack-group name &rest options &key (:sg-area sys:safeguarded-objects-

area) (:regular-pdl-area sys:stack-area) (:special-pdl-area sys:stack-area) (:regular-

pdl-size 12288) (:special-pdl-size 2048) :absolute-control-stack-limit :absolute-binding-

stack-limit (:safe 1) :allow-unknown-keywords &allow-other-keys Function

Page 1120

Creates and returns a new stack group. name can be any symbol or string; it is

used in the stack group’s printed representation. options is a list of alternating

keywords and values. The options are not too useful; most calls to make-stack-

group do not need any options at all. The useful options are:

:regular-pdl-size

How big to make the stack group’s control stack. The default is large

enough for most purposes.

:special-pdl-size

How big to make the stack group’s special binding pdl. The default is large

enough for most purposes.

:safe If this flag is 1 (the default), a strict call-return discipline among stack

groups is enforced. If 0, no restriction on stack-group switching is imposed.�

stack-group-preset sg function &rest args Function

Sets up sg so that when it is resumed, function is applied to args within the stack

group. Both stacks are made empty; all saved state in the stack group is destroyed.

stack-group-preset is typically used to initialize a stack group just after it is

made, but it can be done to any stack group at any time. Doing this to a stack

group that is not exhausted destroys its present state without properly cleaning up

by running unwind-protects.

stack-group-resume sg value Function

Resumes sg, transmitting the value value. No stack group’s resumer is affected.

stack-group-return value Function

Resumes the current stack group’s resumer, transmitting the value value. No stack

group’s resumer is affected.

sys:sg-previous-stack-group

stack-group Function

Returns the resumer of stack-group.

symbol-value-in-stack-group

sym sg &optional frame as-if-current Function

Evaluates the variable sym in the binding environment of sg. If sg is the current

stack group, this is just symbol-value. Otherwise it looks inside sg to see if sym is

bound there; if so, the binding is returned; if not, the global value is returned. If

frame is specified, the value visible in that frame is returned. If as-if-current is

Page 1121

non-nil, a location is returned indicating where the value would be if the specified

stack group were running. The value, though, is the current one, not the one

stored in that location.

zl:symeval-in-stack-group

sym sg &optional frame as-if-current Function

In your new programs, we recommend that you use the function symbol-value-in-

stack-group, which is the Symbolics Common Lisp equivalent of the function

zl:symeval-in-stack-group.

Evaluates the variable sym in the binding environment of sg. If sg is the current

stack group, this is just zl:symeval. Otherwise this function is the same as

symbol-value-in-stack-group.

A large number of functions in the sys: and dbg: packages exist for manipulating

the internal details of stack groups. These are not documented here as they are

not necessary for most users or even system programmers to know about.

Input/Output in Stack Groups

Because each stack group has its own set of dynamic bindings, a stack group does

not inherit its creator’s value of *terminal-io*, nor its caller’s, unless you make

special provision for this. See the variable *terminal-io*. The *terminal-io* a

stack group gets by default is a "background" stream that does not normally expect

to be used. If it is used, it turns into a "background window" that requests the

user’s attention. Usually this is because an error printout is trying to be printed

on the stream.

If you write a program that uses multiple stack groups, and you want them all to

do input and output to the terminal, you should pass the value of *terminal-io* to

the top-level function of each stack group as part of the stack-group-preset, and

that function should bind the variable *terminal-io*.

Another technique is to use a dynamic closure as the top-level function of a stack

group. This closure can bind *terminal-io* and any other variables that are de-

sired to be shared between the stack group and its creator. Note that a dynamic

enclosure must be used, not a lexical enclosure. Lexical closures do not close over

special variables. See the function make-dynamic-closure. See the special form

special.

An Example of Stack Groups

The canonical coroutine example is the so-called samefringe problem: Given two

trees, determine whether they contain the same atoms in the same order, ignoring

parenthesis structure. In other words, given two binary trees built out of conses,

determine whether the sequence of atoms on the fringes of the trees is the same,

ignoring differences in the arrangement of the internal skeletons of the two trees.

Following the usual rule for trees, nil in the cdr of a cons is to be ignored.

Page 1122

One way of solving this problem is to use generator coroutines. We make a genera-

tor for each tree. Each time the generator is called it returns the next element of

the fringe of its tree. After the generator has examined the entire tree, it returns

a special "exhausted" flag. The generator is most naturally written as a recursive

function. The use of coroutines, that is, stack groups, allows the two generators to

recurse separately on two different control stacks without having to coordinate

with each other.

The program is very simple. Constructing it in the usual bottom-up style, we first

write a recursive function that takes a tree and stack-group-returns each element

of its fringe. The stack-group-return is how the generator coroutine delivers its

output. We could easily test this function by replacing stack-group-return with

print and trying it on some examples.

(defun fringe (tree)

 (cond ((atom tree) (stack-group-return tree))

(t (fringe (car tree))

 (if (not (null (cdr tree)))

 (fringe (cdr tree))))))�

Now we package this function inside another, which takes care of returning the

special "exhausted" flag.

(defun fringe1 (tree exhausted)

 (fringe tree)

 exhausted)�

The samefringe function takes the two trees as arguments and returns t or nil. It

creates two stack groups to act as the two generator coroutines, presets them to

run the fringe1 function, then goes into a loop comparing the two fringes. The

value is nil if a difference is discovered, or t if they are still the same when the

end is reached.

(defun samefringe (tree1 tree2)

 (let ((sg1 (make-stack-group "samefringe1"))

(sg2 (make-stack-group "samefringe2"))

(exhausted (ncons nil))) ;unique item

 (stack-group-preset sg1 #’fringe1 tree1 exhausted)

 (stack-group-preset sg2 #’fringe1 tree2 exhausted)

 (do ((v1) (v2)) (nil)

 (setq v1 (funcall sg1 nil)

 v2 (funcall sg2 nil))

 (cond ((neq v1 v2) (return nil))

 ((eq v1 exhausted) (return t))))))�

Now we test it on a couple of examples.

(samefringe ’(a b c) ’(a (b c))) => t

(samefringe ’(a b c) ’(a b c d)) => nil�

The problem with this is that a stack group is quite a large object, and we make

two of them every time we compare two fringes. This is a lot of unnecessary over-

head. It can easily be eliminated with a modest amount of explicit storage alloca-

tion, using the resource facility. See the function defresource. While we’re at it,

Page 1123

we can avoid making the exhausted flag fresh each time; its only important prop-

erty is that it not be an atom.

(defvar *exhausted-flag* (ncons nil))

�

(defresource samefringe-coroutine ()

 :constructor (make-stack-group "for-samefringe"))

�

(defun samefringe (tree1 tree2)

 (using-resource (sg1 samefringe-coroutine)

 (using-resource (sg2 samefringe-coroutine)

 (stack-group-preset sg1 #’fringe1 tree1 *exhausted-flag*)

 (stack-group-preset sg2 #’fringe1 tree2 *exhausted-flag*)

 (do ((v1) (v2)) (nil)

(setq v1 (funcall sg1 nil)

 v2 (funcall sg2 nil))

(cond ((neq v1 v2) (return nil))

 ((eq v1 *exhausted-flag*) (return t)))))))�

Now we can compare the fringes of two trees with no allocation of memory what-

soever.

Allocation on the Stack

Consing Lists on the Control Stack

with-stack-list and with-stack-list* cons lists on the control stack so that when

you are finished, the lists are popped off without leaving any physical garbage.

This is essentially giving you access to the mechanism that &rest arguments use.

Because these are on the control stack, you cannot return the lists that are made,

use rplacd with them, or place references to them in permanent data structures.

The special form sys:with-stack-array is similar, but it makes arrays on the data

stack instead of lists.

The macros stack-let and stack-let* provide an alternative to with-stack-list and

with-stack-list* for consing lists on the control stack. They are especially useful

for building nested list structures on the stack.

with-stack-list (var &rest elements) &body body Function

Binds a variable to a list and evaluates some forms in the context of that binding.

It is like let (in that it binds a variable), except that it conses the list on the

stack.

(scl:with-stack-list (var element1 element2...elementn)

 body)

�

is like

Page 1124

�

(let ((var (list element1 element2...elementn)))

 body)�

If you want these values to be returned, or to be made part of permanent storage,

then it is necessary to copy them with the sys:copy-if-necessary function. This

function checks whether an object is in temporary storage or on a stack, and

moves it to permanent storage if it is. See the function sys:copy-if-necessary.

with-stack-list* (var &rest elements) &body body Function

Binds a variable to a list and evaluates some forms in the context of that binding.

It is like let (in that it binds a variable), except that with-stack-list* conses the

list on the stack. with-stack-list* simulates list* instead of list. (See the function

list*.)

(scl:with-stack-list* (var element1 element2...elementn)

 body)

�

is like

�

(let ((var (list* element1 element2...elementn)))

 body)�

stack-let bindings &body body Function

Provides an alternative syntax for constructing lists on the control stack. It uses

the same syntax (and very similar semantics) as let. For example, the form:

(stack-let ((a (list x y z))) body)�

expands into:

(scl:with-stack-list (a x y z) body)�

This syntax is convenient for complex expressions involving nested lists, such as:

(stack-let ((a ‘((:foo ,foo) (:bar ,bar)))) body)�

which expands into three nested with-stack-list forms. If an expression in a stack-

let clause is of the form:

(list (reverse (list ...)))�

only the outermost list is constructed on the stack. No codewalking is performed.

It also works for arrays and instances. If the form is not recognized, it just allo-

cates data the ordinary way.

The form

(stack-let ((a (list x y z))) body)�

is similar to

Page 1125

((lambda (&rest a)

 (declare (sys:downward-rest-argument))

 body) x y z)�

stack-let* bindings &body body Function

Provides an alternative syntax for constructing lists on the control stack. It is sim-

ilar to stack-let, but it uses the same syntax and similar semantics as let*.

The Data Stack

sys:with-stack-array (var length &key :type :element-type :initial-element :initial-

contents :displaced-to :displaced-index-offset :displaced-conformally :leader-list :leader-

length :named-structure-symbol :initial-value :fill-pointer) &body body�

Special Form

Like with-stack-list, but makes an array. The array has a dynamic lifetime and

becomes "conceptual garbage" when the form is exited, just as with

with-stack-list. ("Conceptual garbage" means objects that are no longer in use by

the program and are thus fair game for the garbage collector. "Physical garbage,"

in contrast, is storage that is occupied by conceptual garbage and has not yet been

reclaimed for productive use.) If you have an array that becomes conceptual

garbage when control exits a form, that array is a candidate for implementation by

sys:with-stack-array so that there will not be any physical garbage.

The array is created on the data stack, which is part of a stack group. Only arrays

can be allocated on the data stack.

The keyword options to sys:make-stack-array include options that are accepted by

make-array and zl:make-array. For information on these options: See the section

"Keyword Options for make-array".

This recognizes various special case combinations of make-array keywords and

calls fast specialized runtime routines. It works especially well with one-

dimensional indirect arrays.

Here is an example of the use of sys:with-stack-array.

(sys:with-stack-array (a n :element-type ’cl:string-char

 :initial-element #\space) ...)�

More information is available about stack arrays and the data stack. See the spe-

cial form sys:make-stack-array. See the function sys:with-data-stack.

For rasters, use sys:with-raster-stack-array instead: See the function sys:with-

raster-stack-array.

sys:with-raster-stack-array (var width height &key :type :element-type :initial-

element :initial-contents :displaced-to :displaced-index-offset :displaced-conformally

Page 1126

:leader-list :leader-length :named-structure-symbol :initial-value :fill-pointer) &body

body Function

Provides the same functionality as does sys:with-stack-array, but it is used for

rasters. Note that sys:with-raster-stack-array has width and height arguments in-

stead of the length argument of sys:with-stack-array.

See the special form sys:with-stack-array.

The keyword options to sys:make-stack-array include options that are accepted by

make-array and zl:make-array. For information on these options: See the section

"Keyword Options for make-array".

In the following example, note that in the Genera row-major implementation the

height is the first dimension and width is the second:

(scl:make-raster-array 2 7 :element-type ’boolean)

=> #<ART-BOOLEAN-7-2 61047172>

�

(sys:with-raster-stack-array (array 2 7 :element-type ’boolean)

 (print array)

 nil)

 => #<ART-BOOLEAN-7-2 21400001>

 NIL�

sys:with-data-stack &body body Function

Cleans up the data stack when the body is exited. You sometimes want to optimize

for extra speed by putting a sys:with-data-stack primitive special form around a

piece of code that calls sys:make-stack-array multiple times, perhaps even inside

a loop that is known not to be executed more than a few times. This can be more

efficient than doing sys:with-stack-array multiple times.

sys:make-stack-array dimensions &rest keywords Special Form

A special version of make-array and zl:make-array that allocates on the data

stack. You should call this only when dynamically inside a sys:with-data-stack.

This is actually a macro that expands into a call to an appropriate routine, to allo-

cate the desired kind of array on the data stack.

The keyword options to sys:make-stack-array include all options that are accepted

by make-array and zl:make-array. For information on these options: See the sec-

tion "Keyword Options for make-array".

For rasters, use sys:with-raster-stack-array instead: See the function sys:with-

raster-stack-array.

Currently, you cannot make anything but arrays and rasters on the data stack.

sys:make-raster-stack-array width height &key keywords Function

Page 1127

Provides the same functionality as sys:make-stack-array, but it is used for

rasters. Note that sys:with-raster-stack-array has width and height arguments in-

stead of the dimensions argument of sys:make-stack-array.

See the special form sys:make-stack-array.

The keyword options to sys:make-raster-stack-array include all options that are

accepted by make-array and zl:make-array. For information on these options: See

the section "Keyword Options for make-array".

In the following example, note that in the Genera row-major implementation the

height is the first dimension and width is the second:

(sys:with-data-stack

 (let ((array (sys:make-raster-stack-array

 3 5 :element-type ’character)))

 (print array))

 nil)

 => #<ART-FAT-STRING-5-3 21400001>

�

