
Asun® ,'f$ microsystems

C Programmer's Guide

Part Number: 800-1771-10
Revision A, of 9 May 1988

Sun Workstation® and Sun Microsystems® are registered trademarks of Sun
Microsystems, Inc.

SunView™, SunOS™, Sun386i™, and the combination of Sun with a numeric
suffix are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations.

Copyright © 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reselVed.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any fonn, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other
wise, without prior explicit written pennission from Sun Microsystems.

Contents

Chapter 1 Using The Sun C Compiler .. 3

1.1. Basics - Compiling and Running C Programs .. 3

1.2. C Compiler .. 4

1.3. cc Options ... 4

-a Option .. 4

-align _block_ Option .. 4

-c Option .. 5

-c Option .. 5

-dryrun Option ... 5

- Dname [=defJ Option .. 5

-E Option .. 5

Floating-Point Options .. 5

-g Option .. 6

-go Option ... 6

-help Option .. 6

- Ipathname Option .. 6

- J Option ... " ... ;.,;............. 6

-1 lib Option .. ~ H •••• UO ••• ;~"'.... 6

- L dir Option .. ,L ;L.; •....... ~.,•••...• ;;. 6

-M Option ... , ... :,'; ; ... ; ;.; 6

-0 outfile Option .. ;.; ; ". 6

-0 Option .. , , ... ':'.;; "........ ... 6

-p Option ... : ... ", ; ;......... 6

-pg Option ... ; .. ; .. ;.;;............... 6

- iii-

Contents - Continued

-pipe Option .. 6

-p Option .. 7

-Qoption prog opt Option .. 7

-Qpa t h pathnaJrle Option .. 7

-Qproduce sourcetype Option .. 7

-R Option .. 7

-5 Option .. 7

-temp= dir Option ... 7

-time Option .. 7

-Uname Option .. 7

-v Option .. 7

-w Option .. 7

Chapter 2 Accessing a Program's Environment ... 11

2.1. Basics - Accessing Command Line Arguments ... 11

2.2. Basics - Accessing Environment Variables .. 12

Accessing Environment Variable Using getenv () 13

Chapter 3 Processes .. 17

3.1. The system () Function ... 17

3.2. Low-Level Process Creation - execl () and execv () 17

3.3. Process Control- fork () and wait () .. 19

3.4. Pipes .. 20

Chapter 4 Signals - Interrupts and All That .. 27

Chapter 5 The Standard I/O Library .. 35

5.1. The Standard I/O Library .. 35

5.2. Using the Standard I/O Library ... 35

5.3. The 'Standard Input' and 'Standard Output' ... 37

Reading Standard Input and Writing Standard Output 38

5.4. Error Handling - stderr () and exit () ... 39

5.5. Miscellaneous I/O Functions .. 40

-iv-

Contents - Continued

Chapter 6 Accessing Files Through Standard I/O ... 43

6.1. Accessing Files ... 46

fopen () - OJ>en a File .. 46

freopen () - Reopen a File ... 47

fflush () -Flush Stream Buffer .. 47

fclose () - Close A File ... 48

setbuf () - Set Buffer for File I/O ... 48

fileno () - Obtain File Descriptor ... 49

rewind () - Rewind a Stream ... 50

Chapter 7 Character I/O ... 53

getc () Macro - Get a Character from a File 53

fgetc () Function - Get Character from File 54

getchar () Macro - Get a Character from Standard Input 55

fgets () - Read a String from a File .. 56

ungetc () -Push a Character Back ona Stream 57

putc () Macro - Put a Character to a File .. 58

fputc () Function - Put a Character to a File 59

putchar () Macro - Put a Character to Standard Output 59

fput s () - Put a String to a File .. 60

feof () - Test for End Of File .. 60

7.1. Formatted Input and Output .. 61

Formatted Output Conversions ... 61

Formatted Input Conversions ... 61

The Format Control Templates ... 62

Conversion SJ>ecifications ... 62

d - Decimal Conversion ... 63

o - Octal Conversion ... 63

x - Hexadecimal Conversion .. 63

h - Short Conversion on Input Only... 64

u - Unsigned Decimal Conversion .. 64

c - Character Conversion .. 64

s - String Conversion .. 65

-v-

Contents - Continued

e - Exponential Floating Conversion ... 65

f - Fractional Floating Conversion ... 66

g - Adaptable Floating Conversion ... 67

Literal C1Iaracter Output ... 67

Optional FOI1llat Modifiers .. 68

Left Justify Field .. 68

Minimum Field Width and Precision Specifications 68

Length Modifier ... 69

Chapter 8 String-Handling Functions ... 73

8.1. Character Classification ... 73

isalpha () - Is Character Alphabetic ... 73

isupper () - Is Character Uppercase Letter 73

islower () - Is Character Lowercase Letter 73

isdigit () - Is Character Decimal Digit .. 73

isxdigi t () - Is C1Iaracter Hexadecimal Digit 74

is alnum () - Is Character Letter or Digit ... 74

isspace () - Is Character Whitespace ... 74

ispunct () - Is Character Punctuation ... 74

isprint () - Is Character Printable ... 74

iscntrl () - Is Character Control C1Iaracter 74

isascii () - Is Character an ASCII C1Iaracter 74

isgraph () - Is Character a Visible Graphic 74

8.2. Character Conversion Macros .. 74

toupper () - Convert Lowercase to Uppercase 74

tolower () - Convert Uppercase to Lowercase 74

to as c i i () - Ensure Character is ASCII ... 74

8.3. Functions for Handling Null-TeI1llinated Strings ... 74

Null Pointers versus Null Strings .. 75

strlenO -FindLengthofString... 75

strcmp () and strncmp () - Compare Strings 75

strcpy () and strncpy () - Copy Strings 76

strcat () and strncat () - Concatenate Strings 76

-vi-

Contents - Continued

index () and r index () - Find Character in String 76

804. Byte String and Bit String Functions ... 77

bemp () - Compare Byte Strings .. 77

beopy () - Copy Byte Strings ... 77

bzero () - Clear Byte String to Zero .. 77

ffs () -Find First Bit Set .. 77

Appendix A Low-Level File I/O .. 81

A.I. File Descriptors ... 81

A.2. read () and write () ... 82

A.3. open (), ereat (), elose (), unlink () 83

A.4. Random Access - lseek () .. 85

A.5. Error Processing .. 86

Appendix B Binary I/O ... 89

fread () - Read Data from File ... 89

fwri te () - Write Data to File .. 89

Appendix C Memory Management ... 93

C.I. malloe () - Allocate Memory ... 93

C.2. free () - Free Allocated Memory .. 93

C.3. ealloe () - Allocate Memory for C Objects .. 93

CA. efree () - Free Allocated Memory ... 94

C.5. realloe () - Change Size of Allocated Block 94

C.6. memalign () - Allocate to Alignment Boundary 94

C.7. valloe () - Allocate Memory on a Page Boundary 94

C.8. alloea () - Allocate Memory on Stack ... 95

C.9. Memory Allocation Debugging .. 95

malloe _debug () - Set Debug Level .. 95

malloe _ ver ify () - Check Storage Allocation Heap 95

C.IO. Errors from Memory Management Routines ... 96

C.II. Notes on the Memory Management Routines ... 96

Appendix D Sun-2, -3, and -4 Data Representations 99

-vii-

Contents - Continued

D.I. Storage Allocation ... 99

D.2. Data Representations .. 99

Integer Representations ... 100

float and double Representation .. 100

Extreme Number Representation ... 101

Hexadecimal Representation of Selected Numbers 101

Pointer Representation ... 102

Array Storage .. 102

Arithmetic Operations on Extreme V alues .. 102

D.3. Argument Passing Mechanism ... 104

D.4. Referencing Data Objects in C ... 104

Referencing Simple Variables ... 104

Referencing With Pointers .. 104

Referencing Array Elements .. 105

Referencing Structures and Unions .. 106

Appendix E Sun386i Data Representation .. 111

E.l. Storage Allocation 111

E.2. Data Representations .. 112

Integer Representations ... 112

f 1 oa t and do ub 1 e Representation .. 112

Extreme Number Representation ... 113

Other Extreme Representations 114

Hexadecimal Representation of Selected Numbers 114

Pointer Representation ... 115

Array Storage .. 115

Arithmetic Operations on Extreme Values .. 115

E.3. Argument Passing Mechanism .. 115

EA. Referencing Data Objects in C .. 115

Referencing Simple Variables ... 115

Referencing With Pointers .. 116

Referencing Array Elements .. 116

Referencing Structures and Unions .. 117

- viii-

Contents - Continued

Index ... 119

-ix-

Tables

Table 5-1 Standard I/O Library Names Accessible to User Programs 36

Table D-l Storage Allocation for Data Types ... 99

Table D-2 Representation of short .. 100

Table D-3 Representation of int and long ... 100

Table D-4 float Representation .. 100

Table D-5 double Representation ... 100

Table D-6 Extreme Number Representation ... 101

Table D-7 Extreme Values Usage ... 102

Table D-8 Addition and Subtraction Results .. 102

Table D-9 Multiplication Results .. 103

Table D-I0 Division Results .. 103

Table D-11 Comparison Results .. 103

Table E-l Storage Allocation for Data Types .. 111

Table E-2 Representation of short ... 112

Table E-3 Representation of int .. 112

Table E-4 Representation of long ... 'H;~; ~ •.•• ,.,...... 112

Table E-5 float Representation ... ; ; ;........... 113

Table E-6 double Representation .. , ,~ ... ; .. ; ... ,........... 113

Table E-7 Extreme Number Representation ; ;;~~ ;.. 113

Table E-8 Extreme float Representations ; ;.;,., .. , .. , ;.... 114

Table E-9 Extreme do ub 1 e Representations .. ;;,; ". 114

-xi-

Figures

Figure 6-1 Example of Using fopen () .. 46

Figure 6-2 Example of Using freopen () ... 47

Figure 6-3 Example of Using setbuf () ... 49

Figure 6-4 Example of Using fileno () 49

Figure 7-1 Example of Using ... 54

Figure 7-2 Example of Using fgetc () .. 55

Figure 7-3 Example of Using getchar () ... 56

Figure 7-4 Example of Using fget s () .. 57

Figure 7-5 Example of Using ungetc () ... 58

Figure 7-6 Example of Using fputc () .. 59

Figure 7-7 Example of Using putchar () ... 60

Figure 7-8 Example of Using fputs() .. 60

Figure 7-9 Example of d Fonnat Specification ... 63

Figure 7-10 Example of 0 Fonnat Specification .. 63

Figure 7-11 Example of x Fonnat Specification .. 64

Figure 7-12 Example of u Fonnat Specification ,,, ... ,................ 64

Figure 7-13 Example of c Fonnat Specification ~~ ;;. ;,...... 65

Figure 7-14 Example of ... ;; ~.;.; ;~ 65

Figure 7-15 Example of e Fonnat Specification ;, , ... ; .. ; ~;; 66

Figure 7-16 Example of f Fonnat Specification ;~ ;; n.' ;;....... 66

Figure 7-17 Example of g Fonnat Specification ;" ,< 67

Figure 7-18 Example of Literal Character Output ; ;;................... 67

Figure 7-19 Example of Field Width Specifications ;.............. 68

- xiii-

Figures - Continued

Figure 8-1 Layout of Null-Tenninated String in Memory 75

Figure D-l Examples of Simple Variable References ... 104

Figure D-2 Examples of Pointer References ... 105

Figure D-3 Examples of Array Variable References .. 106

Figure D-4 Examples of Accessing Members of Structures 107

Figure E-l Examples of Simple Variable References ... 116

Figure E-2 Examples of Pointer References ... 116

Figure E-3 Examples of Array Variable References .. 117

Figure E-4 Examples of Accessing Members of Structures 118

-xiv-

Preface

This manual describes how to write C programs that interface with the SunOS
operating system in a nontrivial way. This includes programs that use files by
name, that use pipes, that invoke other commands as they run, or that catch inter
rupts and other signals during execution.

There is no attempt to be complete; only generally useful material is dealt with.
It is assumed that you will be programming in C, so you must be able to read C
roughly up to the level of language as described in The C Programming
Language, by Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall, 1978.
You should also be familiar with SunOS itself, at least as far as being familiar
with getting around in the SunOS Reference Manual.

-xv-

1
U sing The Sun C Compiler

Using The Sun C Compiler ... 3

1.1. Basics - Compiling and Running C Programs .. 3

1.2. C Compiler .. 4

1.3. cc Options ... 4

-a Option .. 4

-align _block_ Option .. 4

-c Option .. 5

-c Option .. 5

-dry run Option ... 5

- D name [=defJ Option .. 5

-E Option .. 5

Floating-Point Options .. 5

-g Option .. 6

-go Option ... 6

-help Option .. 6

- Ipathname Option .. 6

-J Option .. 6

-1 lib Option 6

- L dir Option .. 6

-M Option .. 6

-0 outfile Option ... 6

-0 Option .. 6

-p Option .. 6

-pg Option ... 6

-pipe Option .. 6

-p Option .. 7

-Qoption prog opt Option .. 7

-Qpa t h pathnarne Option .. 7

-Qproduce sourcetype Option .. 7

-ROption .. 7

-5 Option .. 7

-t emp= dir Option ... 7

-t ime Option .. 7

-Uname Option .. 7

-v Option .. 7

-w Option .. 7

1.1. Basics - Compiling
and Running C
Programs

1
U sing The Sun C Compiler

This chapter describes how to compile C programs on Sun Microsystems' works
tations under the SunOS version of the UNIXt operating system.

If you are already familiar with using cc, (the UNIX C compiler), either on Sun
workstations or on other UNIX systems, you can probably ignore or skim the rest
of this chapter without regretting it later.

If you need to learn about programming in C, or about SunOS programming
tools, you should refer to one or more of the introductory books available that
address the topic.

This section shows how to compile and run a minimal C program. Consider this
C program that just displays a message and exits:

Using your preferred text editor, save the text of this program in a file called
hackers. c. After you have saved the file, compile it with the cc command:

[

tutorial% cc hackers.c J
tutorial%

"---------------"

cc works silently unless there are errors in the program: In this case, there are
no errors, and c c compiles the program and saves an executable version of it in a
file named a. out.

t UNIX is a registered trademark of AT&T.

3 Revision A of May 9, 1988

4 C Programmer's Guide

1.2. C Compiler

1.3. cc Options

-a Option

-align _block_ Option

When you want to run the program, type the name of the executable file:

tutorial% a.out
Real Programmers Hack C!
tutorial%

This section describes the compiler options supported by Sun Microsystems' C
compiler. Later sections cover specific dependencies and features of Sun C
under SunOS.

(~ ____ C_C __ [_O_P_UO_~ __]_fi_l_en_a_nre ____________________________________ ~]
cc translates programs written in C into executable load modules, (or into relo
catable binary programs for later linking with ld), and optionally links (or binds)
the result with object files generated by cc or other language processors.

cc accepts a list of C source files and various object files contained in the list of
files specified by filename. ... The resulting executable is placed in the file a.out,
unless the (-0) option is specified (see below).

c c lets you compile and link any combination of the following:

o C source files (with a . c suffix)

o C preprocessed source files with a . i suffix

o SunOS system object-code files with .0 suffixes.

o Assembler source files with . s suffixes.

After successfully linking, cc places the product of linking those files in the file
a . out, or in the file specified by the -0 option.

-a directs cc to insert code to count how many times each basic block in a pro
gram is executed. This creates a . d file for every . c file compiled that accumu
lates execution data for its corresponding source file. On the Sun-2, -3, and-4
you can then run tcov(l) on the source files to generate statistics about the pro
gram.

This option directs c c to page-align the uninitialized FORTRAN common
block: This increases its size to a whole number of pages, and places its first
byte at the beginning of a page. Multiple -align options may be given.

Revision A of May 9, 1988

-c Option

-c Option

-dryrun Option

-Dname[=dej] Option

-E Option

Floating-Point Options

NOTE

NOTE

Chapter 1 - Using The Sun C Compiler 5

- c directs c c to suppress linking with 1 d and produce a . 0 file for each source
file.

You should use the -0 option to explicitly name a single object file.

-c prevents the C preprocessor, cpp, from removing comments.

-dryrun directs cc to show but not execute the commands constructed by the
compilation driver.

This option defines a symbol name to the C preprocessor cpp. This is equivalent
to a #define directive at the beginning of the source. Uyou don't use =def,
name is defined as '1'. Multiple - D options may be given.

-E runs the source file through cpp only. It sends the output to either stdout,
or to a file named with the -0 option (which must end with . i) and includes the
cpp line numbering information. (See also, the -p option.)

Sun supports several ways to perfonn floating-point calculations, both in
hardware and software. The floating-point point options provided by cc permit
you to choose the way that gives you the best perfonnance and portability for
your programs.

There are no floating point options/or the Sun-4. On the Sun386i, only the
-f single option is legal, but it has no effect.

The floating-point ~ode generation options that you use can be any of the follow
ing:

- f 68 881 This directs c c to generate in-line code for the Motorola
MC68881 floating-point coprocessor (supported only on Sun-3
systems).

-ffpa This directs cc to generate in-line code for the Sun Floating-Point
Accelerator (supported only on Sun-3 systems).

-fsky This directs cc to generate in-line code for the Sky floating-point
processor (supported only on Sun-2).

-fsoft This directs cc to generate software floating-point calls (this is
the default for all Sun-2 and Sun-3 workstations).

-fswitch This directs cc to generate runtime-switched floating-point calls.
The compiled object code is linked at runtime to routines that sup
port one of the above types of floating-point code. This option
exists mainly for compatibility with earlier releases of cc on
Sun-2's. Hoating-point-intensive programs on Sun-3's should use
either the -ffpa or -f68881 options instead.

-fsingle This directs cc to use single-precision arithmetic in computations
involving only float expressions - that is, do not convert
everything to double, which is the default. Note that floating
point parameters are still converted to double precision, and/unc
tions returning values still return double-precision values.

~~ sun Revision A of May 9, 1988
~ microsystems

6 C Programmer's Guide

-g Option

-go Option

- help Option

- Ipathname Option

-J Option

-1 lib Option

- L dir Option

-M Option

- 0 outfile Option

-0 Option

-p Option

-pg Option

-pipe Option

Although this is not standard Kernighan and Ritchie C, some pro
grams run much faster using this option. Be aware that some .
significance can be lost due to lower-precision intermediate
values.

-g produces additional symbol table information for dbx(l) and dbxtool(l) and
passes the -1 g flag to 1 d.

This option suppresses the -0 and - R options.

-go produces additional symbol table information for adb. When this option is
given, the -0 and - R options are suppressed.

-help displays information about cc.

This option adds pathname to the list of directories which are searched for
#include files with relative filenames (those not beginning with slash I).

The preprocessor first searches for #include files in the directory containing
the sourcefile, then in directories named with - I options (if any), and finally, in
/usr / include.

-J generates 32-bit offsets in switch statement branches. Not supported on
the Sun386i.

This option directs cc to link with object library lib (for ld).

This option adds dir to the list of directories containing object-library routines
(for linking with ld).

-M runs only the macro preprocessor on the named C programs, requesting that it
generate makefile dependencies and send the result to the standard output (see
make(1) for details about makefiles and dependencies).

This option names the output file outfile. outJile must have the appropriate suffix
for the type of file to be produced by the compilation. outJile cannot be the same
as sourcefile since cc will not overwrite the source file.

-0 directs cc to optimize the object code. It is ignored when either -g or -go
is used.

-p prepares the object code to collect data for profiling with pr 0 f. -p invokes
a run-time recording mechanism that produces a mon.out file at nonnal termina
tion.

-pg prepares the object code to collect data for profiling with gprof(1). It
invokes a run-time recording mechanism that produces a gmon. out file at nor
mal termination.

-pipe directs cc to use pipes, rather than intermediate files, between compila
tion stages. (Very CPU-intensive.)

Revision A of May 9, 1988

-p Option

-Qoption prog opt Option

-Qpa th pathname Option

-Qproduce sourcetype
Option

-R Option

-s Option

-temp= dir Option

-t ime Option

-Uname Option

-v Option

-w Option

Chapter 1 - Using The Sun C Compiler 7

-p runs the source file through the C preprocessor, cpp, without putting cpp
type line-number infonnation in the output. It puts the output in a file with a 0 i
suffix.

This option passes the option opt to the compiler phase prog. The option must
be appropriate to that program and may begin with a minus sign. prog can be
one of: as(l), cpp(l), inline, or Id(l).

This inserts a directory pathname into the compilation search path. This lets you
choose whether or not to use default versions of programs invoked during compi
lation.

This option produces source code of the type sourcetype. sourcetype can be one
of the following:

o c C source (from bb_count).

o i Preprocessed C source from cpp .

• 0 Object file from as.

o s Assembler source (from ccom, inline or c2).

-R directs cc to merge the data segment with the text segment for as. Data ini
tialized in the object file produced by this compilation is read-only, and (unless
linked with Id -N) is shared between processes. This option is ignored when
either -g or -go is used.

-s directs cc to produce an assembly source file but not to assemble the pro
gram.

This sets the directory for temporary files to be generated during the compilation
process to be dire

-t ime directs c c to report execution times for the various compilation passes.

This removes any initial definition of the cpp symbol name. This option is the
inverse of the -D option. Multiple -u options may be given.

-v directs cc to print the name of each program it executes.

-w directs cc to not print warnings.

Revision A of May 9,1988

2
Accessing a Program's Environment

Accessing a Program's Environment .. 11

2.1. Basics - Accessing Command Line Arguments ... 11

2.2. Basics - Accessing Environment Variables .. 12

Accessing Environment Variable Using getenv () 13

2.1. Basics - Accessing
Command Line
Arguments

2
Accessing a Program's Environment

This chapter discusses two basic topics:

o How to get the arguments from the command line used to run a program.

o How to access environment variables.

Assuming that you have written a C program, you might like to be able to get
information from the command line when the user starts up the program.
Although many SunOS system programs are run as filters - they obtain input
from the standard input and send output to the standard output - sometimes you
might like to be able to specify alternative files to operate upon, or to specify
options on the command line to control the program's behavior.

When a C program is run as a command, the arguments on the command line are
made available to the program's function main as an argument count argc and
an array argv of pointers to character strings that contain the arguments. By
convention, argv [0] is the command name itself, so argc is always greater
than O.

The following program illustrates the mechanism: it simply echoes its arguments
back to the terminal- this is essentially the echo command.

argv is a pointer to an array whose elements are pointers to arrays of characters;
each is terminated by \ 0, so they can be treated as strings. The program starts by
printing argv [1] and loops until it has printed argv [argc-l] .

11 Revision A of May 9, 1988

12 C Programmer's Guide

2.2. Basics - Accessing
Environment
Variables

tutorial% cc environ.c
tutorial% a.out
HOME=/usr/henry

The argument count and the arguments are parameters to main, SO if you want to
keep them around for other routines to use, you must copy them to external vari
ables.

The next topic is how to obtain values from a running program's environment.

You can 'tailor' your SunOS system environment by setting environment vari
ables, and these environment variables are accessible from a program.

When a C program is started, three arguments are passed to its main function.
In addition to argc and argv as described above, there is an array of pointers
- named e nvp - to the character strings that comprise the environment.

Each environment variable is a null-tenninated character string of the fonn name
= value that can be manipulated like any other character string.

Here is a short program to display all the environment variables:

If you save the above text as environ. c, you can compile and run it as fol
lows:

SHELL=/bin/csh
PATH=/usr/doctools/bin:/usr/local:.:/usr/ucb:/bin:/usr/bin
TERM=sun
USER=henry
EXINIT=set noai wrapmargin=16 para=IPLPPPQPLSLEDSDETSTEKSKEPSPEEQENLlpplpipbp
WINDOW_PARENT=/dev/winO
WINDOW_ME=/dev/winB
WINDOW_GFX=/dev/winB
tutorial%

Revision A of May 9, 1988

Accessing Environment
Variable Using getenv ()

tutorial% a.out PATH

Chapter 2 - Accessing a Program's Environment 13

While environ. c is somewhat useful, parsing the name = value pairs is rather
tedious, so there is a C library function called getenv () whose purpose is to
get values from the environment. Here is the interface definition for getenv () :

[

char *getenv(name) 1
char *name;

-------~

Now we can compose a program that displays the value of a variable supplied as
an argument on its command line:

After compiling and running this program, you can use it like this:

PATH = /usr/doctools/bin:/usr/local:.:/usr/ucb:/bin:/usr/bin
tutorial% a.out nonesuch
a.out: no variable nonesuch
tutorial% a.out
Usage: a.out name
tutorial%

Revision A of May 9, 1988

3
Processes

Processes ... 17

3.1. The system() Function ... 17

3.2. Low-Level Process Creation- execl () and execv () 17

3.3. Process Control- fork () and wait () .. 19

3.4. Pipes .. 20

3.1. The system ()
Function

3.2. Low-Level Process
Creation - execl ()
and execv ()

3
Processes

The following section describes how to execute one program from within
another. This makes it possible to use existing programs rather than always hav
ing to write new ones.

The easiest way to execute a program from another is to use the standard library
routine system (). system () takes one argument, a command string exactly
as typed at the tenninal (except for the newline at the end) and executes it - for
instance, to timestamp the output of a program:

main () {
system ("date") ;

/* rest of processing */

The in-memory fonnatting capabilities of sprintf () are useful if you must
build the command string from pieces.

If you're not using the standard library, or if you need finer control over what
happens, you will have to construct calls to other programs using the more primi
tive routines that the standard library's system () routine is based oni .

The most basic operation is to execute another program without returning, by
using the routine execl (). For example, you can display the date as the last
action of a running program:

execl("/bin/date", "date", NULL);

1 system () uses Ibinlsh (the Bourne Shell) to execute the command string, so syntax specific to the C
Shell will not work.

17 Revision A of May 9, 1988

18 C Programmer's Guide

The arguments that you pass to execl () are:

1. The filename of the command that you want executed; you have to know
where it is found in the file system.

2 The second argument is conventionally the program name (that is, the last
component of the file name), but this is seldom used except as a placeholder.

3. If the command takes arguments, they are strung out in order after the pro-
gram name (or its position).

4. Following the arguments, the end of the list is marked by a NULL argument.

The execl () call overlays the existing program with the new one, runs that,
then exits. There is no return to the original program.

More commonly, a program falls into two or more phases that communicate only
through temporary files. Here it is natural to start the second pass simply by an
exe c 1 () call from the first

The one exception to the rule that the original program never gets control back
occurs when there is an error in performing the execl () call itself, for example
if the file can't be found or is not executable. If you don't know where date ()
is located, you might try

execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'\n");

A variant of execl () called execv () is useful when you don't know in
advance how many arguments there are going to be. The call is

(execv(filename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array
must be NULL so execv () can tell where the list ends. As with execl () ,
filename is the file in which the program is found, and argp [0] is the name
of the program. (This arrangement is identical to the argv array for program
arguments.)

J

Neither of these routines provides the niceties of normal command execution.
There is no automatic search of multiple directories - you have to know pre
cisely where the command is located. Nor do you get the expansion of metachar
acters like <, > , *, ? and [] in the argument list. If you want these, use
execl () to invoke the shell sh(1), which then does all the work. Construct a
string commandline that contains the complete command as it would have
been typed at the terminal, then say

Revision A of May 9, 1988

3.3. Process Control -
fork () and wait ()

Chapter 3 - Processes 19

exeel("/bin/sh", "sh", "-e", cornmandline, NULL);

The shell is assumed to be at a fixed place, /bin/ sh. Its argument -c says to
treat the next argument as a whole command line, so it does just what you want.
The only problem is in constructing the right information in commandline.

So far what we've talked about isn't really all that useful by itself. Now we will
show how to regain control after running a program with execl () or
execv (). Since these routines simply overlay the new program on the old one,
to save the old one requires that it first be split into two copies; one of these can
be overlaid, while the other waits for the new, overlaying program to finish. The
splitting is done by a routine called for k () :

J

This call splits the program into two copies, both of which continue to run. The
only difference between the two is the value of proc _ id, the process id. In one
of these processes (the child), proc _ id is zero. In the other (the parent),
proc _ id is nonzero; it is the process number of the child. Thus the basic way
to call, and return from, another program is

if (for k () == 0)
execl("/bin/sh", "sh", "-c", cmd, NULL); /* in child */

And in fact, except for handling errors, this is sufficient. The fork () makes
two copies of the program. In the child, the value returned by fork () is zero,
so it calls execl () which does the command and then dies. In the parent,
fork () returns nonzero so it skips the execl (). If there is any error,
fork () returns-1.

More often, the parent wants to wait for the child to terminate before continuing
itself. This can be done with the function wait () :

int status;

if (fork () == O}
execl (...) ;

wait(&status);

This still doesn't handle any abnormal conditions, such as a failure of the
exec 1 () or for k () , or the possibility that there might be more than one child
running simultaneously. The wai t () returns the process id of the terminated
child, in case you want to check it against the value returned by fork () .
Finally, this fragment doesn't deal with any unusual behavior on the part of the

+!Y,.,!! Revision A of May 9,1988

20 C Programmer's Guide

3.4. Pipes

child (which is reported in stat us). Still, these three lines are the heart of the
standard library's system () routine, which we'll show in a moment.

The stat us returned by wai t () encodes in its low-order eight bits the
system's idea of the child's tennination status; it is 0 for nonnal tennination and
nonzero to indicate various kinds of problems. The next higher eight bits are
taken from the argument of the call to exit which caused a nonnal tennination
of the child process. It is good coding practice for all programs to return mean
ingful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set
up to point to the right files (see Appendix A.I), and all other possible file
descriptors are available for use. When this program calls another one, correct
etiquette suggests making sure the same conditions hold. Neither fork () nor
exec affect open files in any way. If the parent is buffering output that must
come out before output from the child, the parent must flush its buffers before the
exec 1 (). Conversely, if a caller buffers an input stream, the called program
wi11lose any infonnation that has been read by the caller.

A pipe is an I/O channel intended for use between two cooperating processes:
one process writes into the pipe, while the other process reads from the pipe. The
system looks after buffering the data and synchronizing the two processes. Most
pipes are created by the shell, as in

(tutoria1% 18 I pr
J

which connects the standard output of Is to the standard input ofpr. Some
times, however, it is most convenient for a process to set up its own plumbing; in
this section, we illustrate how the pipe connection is established and used.

The system call pipe () creates a pipe. Since a pipe is used for both reading
and writing, two file descriptors are returned; the actual usage is like this:

int fd[2];

stat = pipe (fd) ;
if (stat == -1)

/* there was an error ... */

f d is an array of two file descriptors, where f d [0] is the read side of the pipe
and f d [1] is for writing. These may be used in read, wr i t e () and
c 1 0 s e () calls just like any other file descriptors.

If a process reads a pipe which is empty, it waits until data arrives; if a process
writes into a pipe which is too full, it waits until the pipe empties somewhat. If
the write side of the pipe is closed, a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen (cmd, mode), which creates a process cmd Gust as system () does),

Revision A of May 9,1988

Chapter 3 - Processes 21

and returns a file descriptor that will either read or write that process, according
to mode. That is, the call

[fout = popen ("pr", WRITE);
J

creates a process that executes the p r command; subsequent wr it e () calls
using the file descriptor fout will send their data to that process through the
pipe.

popen () first creates the pipe with a pipe () system call; it then fork () 's to
create two copies of itself. The child decides whether it is supposed to read or
write, closes the other side of the pipe, then calls the shell (via execl (») to run
the desired process. The parent likewise closes the end of the pipe it does not
use. These closes are necessary to make end-of-file tests work. properly. For
example, if a child that intends to read fails to close the write end of the pipe, it
will never see the end of the pipe file, just because there is one writer potentially
active.

iinclude <stdio.h>

idefine READ 0
idefine WRITE 1
idefine tst(a, b) (mode == READ? (b) (a»
static int popen-pid;

popen (cmd, mode)
char *cmd;
int mode;

int p[2);

if (pipe(p) < 0)
return(NULL);

if «popen-pid = fork (» == 0) {
close (tst (p[WRITE), p[READ));
close (tst (0, 1»;
dup(tst(p[READ}, p[WRITE}»;
close(tst(p[READ], p[WRITE]»;
execl("/bin/sh", "sh", "-c", cmd, 0):
_exit(I); /* disaster has occurred if we get here */

if (popen_pid -= -1)
return(NULL);

close (tst (p[READ], p[WRITE));
return(tst(p[WRITE], p[READ]»;

The sequence of close () 's in the child is a bit tricky. Suppose that the task is
to create a child process that will read data from the parent. Then the first
c los e () closes the write side of the pipe, leaving the read side open. The lines

Revision A of May 9, 1988

22 C Programmer's Guide

close (tst (0, 1»;
dup(tst(p[READ], p[WRITE]»;

are the conventional way to associate the pipe descriptor with the standard input
of the child. The close () closes file descriptor 0, that is, the standard input.
dup () is a system call that returns a duplicate of an already open file descriptor.
File descriptors are assigned in increasing order and the first available one is
returned, so the effect of the dup () is to copy the file descriptor for the pipe
(read side) to file descriptor 0; thus the read side of the pipe becomes the standard
input2. Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed
to write to the parent instead of reading. You may find it a useful exercise to step
through that case.

The job is not quite done, for we still need a function pclose to close the pipe
created by popen (). The main reason for using a separate function rather than
close () is that it is desirable to wait for the termination of the child process.
First, the return value from pelose indicates whether the process succeeded.
Equally important when a process creates several children is that only a bounded
number ofunwaited-for children can exist, even if some of them have ter
minated; performing the wai t () lays the child to rest. Thus:

#include <signal.h>

pclose(fd)
int fd;

/* close pipe fd */

register r, (*hstat) (), (*istat) (), (*qstat) ();
int status;
extern int popen-pid;

close(fd);
istat
qstat
hstat
while
if (r

signal (SIGINT, SIG_IGN);
= signal(SIGQUIT, SIG_IGN);
= signal(SIGHUP, SIG_IGN);
«r = wait(&status» != popen-pid
== -1)

status = -1;
signal (SIGINT, istat);
signal (SIGQUIT, qstat);
signal (SIGHUP, hstat);
return(status);

&& r != -1);

The calls to signal () make sure that no interrupts, etc. interfere with the wait
ing process; this is the topic of the next section.

2 Yes, this is a bit tricky, but it's a standard idiom.

Revision A of May 9, 1988

Chapter 3 - Processes 23

The routine as written has the limitation that only one pipe may be open at once,
because of the single shared variable popen () yid; it really should be an
array indexed by file descriptor. A popen () function, with slightly different
arguments and return value is available as part of the standard I/O library dis
cussed later. As currently written, it shares the same limitation.

Revision A of May 9, 1988

4
Signals - Interrupts and All That

Signals - Interrupts and All That .. 27

4
Signals - Interrupts and All That

This chapter is concerned with how to deal gracefully with signals from the out
side world (like interrupts), and with program faults. Since there's nothing very
useful that can be done from within a C program about program faults, which
arise mainly from illegal memory references or from execution of peculiar
instructions, we'll discuss only the outside world signals: interrupt and quit,
which are generated from the keyboard, hangup, caused by hanging up the phone
on dialup lines, and terminate, generated by the kill command. When one of
these events occurs, the signal is sent to all processes which were started by the
corresponding user - the signal terminates the process unless other arrange
ments have been made. In the quit case, a core image file is written for debug
ging purposes.

signal () is the routine which alters the default action. signal () has two
arguments: the first specifies the signal to be processed, and the second argument
specifies what to do with that signal. The first argument is just a numeric code,
but the second is either a function, or a somewhat strange code that requests that
the signal either be ignored or that it be given the default action. The include file
signal. h gives names for the various arguments, and should always be
included when signals are used. Thus

#include <signal.h>

signal (SIGINT, SIG_IGN);

means that interrupts are ignored, while

(~s_i_g_n_a_l_(_S_I_G_I_N_T_' __ S_I_G ___ D_F_L_)_; ________________________________ ~]
restores the default action of process termination. In all cases, signal ()
returns the previous value of the signal. The second argument to signal ()
may instead be the name ofa function (which must be declared explicitly if the
compiler hasn't seen it already). In this case, the named routine will be called
when the signal occurs. Most commonly this facility is used so that the program
can clean up unfinished business before terminating, for example to delete a tem
porary file:

27 Revision A of May 9, 1988

28 C Programmer's Guide

Why the test and the double call to signal ()? Recall that signals, like inter
rupts, are sent to all processes started from a particular user. Accordingly, when
a program is to be run non-interactively (started with &), the shell tums off inter
rupts for it so it won't be stopped by interrupts intended for foreground
processes. If this program began by announcing that all interrupts were to be
sent to the onintr () routine regardless, that would undo the shell's effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to con
tinue to ignore interrupts if they are already being ignored. The code as written
depends on the fact that signal () returns the previous state of a particular sig
nal. If signals were already-being ignored, the process should continue to ignore
them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it
as a request to stop what it is doing and return to its own command processing
loop. Think of a text editor - interrupting a long display should not tenninate
the edit session and lose the work already done. The outline of the code for this
case may be written like this:

Revision A of May 9, 1988

Chapter 4 - Signals - Interrupts and All That 29

The include file set jmp. h declares the type jrnp _ buf - an object in which a
process's state can be saved. s jbuf is such an object. The set jrnp () routine
then saves the state. When an interrupt occurs the onintr () routine is called,
which can display a message, set flags, or whatever. longjrnp () takes as argu
ment an object set by set jump () , and restores control to the location following
the call to set jump () , so control (and the stack level) will pop back to the
place in the main routine where the signal is set up and the main loop entered.
Notice, by the way, that the signal gets set again after an interrupt occurs.

Some programs that want to detect signals simply can't be stopped at an arbitrary
point, for example in the middle of updating a linked list. If the routine called
when a signal occurs sets a flag and then returns instead of calling exi t () or
longjrnp () ,execution continues at the exact point it was interrupted. The
interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is
reading the standard input when the interrupt is sent. The specified routine is
duly called; it sets its flag and returns. If it were really true, as we said above,
that 'execution resumes at the exact point it was interrupted,' the program would
continue reading s t di n () until the user typed another line. This behavior
might well be confusing, since the user might not know that the program is read
ing; he presumably would prefer to have the signal take effect instantly. The
method chosen to resolve this difficulty is to tenninate the read when execution
resumes after the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be
prepared for 'errors' which are caused by interrupted system calls.

Revision A of May 9, 1988

30 C Programmer's Guide

The ones to watch out for are read (), wait (), and pause (). A program
whose onintr () routine just sets intflag, resets the interrupt signal, and
returns, should usually include code like the following when it reads the standard
input:

if (getchar() == EOF)
if (intflag)

/* EOF caused by interrupt */
else

/* true end-of-file */

A final subtlety to keep in mind becomes important when catching signals is
combined with executing other programs. Suppose a program catches interrupts,
and also includes a method (like'!' in ex and vi) whereby other programs can be
executed. Then the code should look something like this:

if (fork() == 0)
execl (...) ;

signal (SIGINT, SIG_IGN); /* ignore interrupts */
wait(&status); /* until the child is done */
signal (SIGINT, onintr); /* restore interrupts */

Why is this? Again, it's not obvious, but not really difficult. Suppose the pro
gram you call catches its own interrupts. If you interrupt the subprogram, it will
get the signal and return to its main loop, and probably read from stdin. But
the calling program will also pop out of its wait for the subprogram and read
from stdin. Having two processes reading the same input is very unfortunate,
since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the
child is done. This reasoning is reflected in the standard I/O library function
system:

Revision A of May 9,1988

Chapter 4 - Signals - Interrupts and All That 31

As an aside on declarations, the function void () obviously has a rather strange
second argument. It is in fact a pointer to a function, and this is also the type of
the signal routine itself. The two values SIG_IGN and SIG_DFL have the right
type, but are chosen so they coincide with no possible actual functions. For the
enthusiast, here is how they are defined for the Sun system - the definitions
should be sufficiently ugly and nonportable to encourage use of the include file.

NOTE Before SunOS release 4.0, void () was named signal () .

#define SIG DFL
#define SIG IGN

(void (*)(»O
(void (*) (» 1

Revision A of May 9, 1988

5
The Standard I/O Library

The Standard I/O Library ... 35

5.1. The StaIldard I/O Library 35

5.2. Using the Standard I/O Library ... 35

5.3. The 'StaIldard Input' and 'Standard Output' ... 37

Reading Standard Input and Writing Standard Output 38

5.4. Error Handling - stderr () and exit () ... 39

5.5. MiscellaIleous I/O Functions .. 40

5.1. The Standard I/O
Library

5.2. Using the Standard I/O
Library

5
The Standard I/O Library

Input and output are, strictly speaking, not an intrinsic part of the C programming
language. Rather, the input and output functions are supplied by a library which
comes with each implementation.

This chapter describes the Standard I/O Library available to C programmers on
Sun workstations.

The standard I/O library was designed with the following goals in mind:

1. It must be as efficient as possible, both in time and in space, so that there
will be no hesitation in using it, no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious
calls whose use mars the understandability and portability of many programs
using older packages.

3. The interface provided should be applicable on all machines, whether or not
the programs which implement it are directly portable to other systems, or to
non-Sun machines running a version of UNIX.

The stdio . h routines are in the normal C library, so no special library argu
ment must be declared in your program for linking. All names in the include file
intended only for internal use begin with an underscore _ to reduce the possibil
ity of collision with a user name. The names intended to be visible outside the
package are

o stdin ()

o stdout ()

o stderr ()

o EOF

o NULL

o FILE

o BOFSIZ

o qetc(),qetchar(),putc(),putchar(),feof(),ferror(),
and fi1eno () , are defined as macros. Their actions are described below;
they are mentioned here to point out that it is not possible to redeclare them

35 Revision A of May 9, 1988

36 C Programmer's Guide

Name

stdin()

stdout()

stderr()

EOF

NULL

FILE

Table 5-1

and that they are not actually functions; thus, for example, they may not
have breakpoints Set on them.

The routines in this package offer the convenience of automatic buffer allocation
and output flushing where appropriate. The names stdin () , stdout () ,and
stderr () are constants and may not be assigned to.

Any program which uses the Standard I/O Library must have the following line
in the program source text, before using any of the functions in the library.

(~ ____ *_i_n_C_l_U_d_e ___ <_s_t_d_iO __ .h_> ___________________________________)

Putting this include statement in your program defines some macros and vari
ables for the program.

The routines made available through the above include statement are in the
standard C run-time library, so no other special actions are needed when compil
ing and linking.

All names in the include file which are used internally to the library, start with
the underline character () to reduce the probability of conflict with user-defined
names.

Names which are intended to be visible to user programs outside the package are
as follows:

Standard //0 Library Names Accessible to User Programs

Description

The name of the standard input file. This file is automatically connected at program
startup time, and is the place from which a program reads its input.

The name of the standard output file. This file is automatically connected at program
startup time, and is the place to which a program writes its output.

The name of the standard error file. This file is automatically connected at program
startup time, and is the place to which a program writes any error or diagnostic responses
which should not clutter up the standard output.

is actually the value -1. EOF is returned by the read routines upon encountering end-of-file,
or error conditions.

is a notation for the null pointer. Functions whose values are pointers return NULL to indi-
cate an error.

is an abbreviation for the declaration: struct iob and is a useful notation when declar--
ing a pointer to a stream.

Revision A of May 9, 1988

Chapter 5 - The Standard I/O Library 37

Table 5-1 Standard 110 Library Names Accessible to User Programs-Continued

Name Description

BUFSIZ is a number of the size suitable for a user-supplied input-output buffer. BUFSIZ is usually
1024. See the setbuf () function described below.

5.3. The 'Standard Input'
and 'Standard Output'

getc () , getchar (), putc () ,putchar () , feof () , ferror () , and
fileno () are all defined as macros. Their descriptions appear later in this
chapter. They are mentioned here to indicate that they cannot be redeclared. In
addition, because they are macros and not functions, they cannot be passed as
arguments to other functions, nor can their addresses be taken.

The 'Standard I/O Library' is a collection of routines intended to provide
efficient and portable I/O services for most C programs. The standard I/O library
is available on each system that supports C, so programs that confine their system
interactions to its facilities can be transported from one system to another essen
tially without change.

This chapter describes the basics of the standard I/O library. Following chapters
contain a fuller description of the capabilities and calling conventions of the
functions in it.

You could do I/O by calling the system routines directly. However, there is a
'standard I/O package' that provides a high-level I/O access mechanism. This
and the following chapters discuss the functions available in the standard I/O
package. (An appendix discusses the raw interface to the operating system.) In
general, you can get by using the standard I/O package and never need to use the
raw system calls.

The standard I/O package provides access to files in the system through a collec
tion of file descriptors that refer to structures for managing I/O buffering. The
first part of the discussion in this chapter describes those file descriptors that are
defined automatically. Later sections describe how to get your own descrIptors
connected to files in the system.

When a SunOS program starts up, three files are connected automatically. These
files are called the standard input (stdin ()) , the standard output
(stdout ()) , and the standard error (stderr () } .

The very simplest standard I/O call for output is to use putchar (c) to put the
character c on the standard output, which is normally the user's screen.

If the user redirected the standard output by using the > syntax on the command
line, the standard output is redirected. For example, if you typed:

(tutorial% prog > outputfile

on the command line, the standard output from prog is written to outputfile and
the program is unaware that the standard output is going to a file instead of the

J

Revision A of May 9,1988

38 C Programmer's Guide

Reading Standard Input and
Writing Standard Output

keyboard. outputfile is created if it doesn't exist; if it already exists, its previous
contents are overwritten.

Similarly, you can send the standard output from a program through a pipe with
the command line:

(tutorial% prog I otherprog

and the standard output ofprog goes into the standard input of otherprog.

]

The simplest input mechanism is to read from the 'standard input,' which is gen
erally the user's keyboard. The function get char () returns the next input
character each time it is called. A file may be substituted for the keyboard by
using the < convention (input redirection): if prog uses get char () , the com
mand line

(tutorial% prog < filename

makes prog read from the file specified by filename, instead of from the key
board. prog itself need know nothing about where its input is coming from.
This is also true if the input comes from another program through the pipe
mechanism:

(tutorial% otherprog I prog

provides the standard input for prog from the standard output (see above) of
otherprog.

]

]

getchar () returns the value EOF when it encounters the end of file (or an
error) on whatever you are reading. The value of EOF is normally defined to be
-1, but it is unwise to take any advantage of that knowledge. As will become
clear shortly, this value is automatically defined for you when you compile a pro
gram, and need not be of any concern.

The function printf () , which formats output in various ways, uses the same
mechanism as putchar () does, so calls to printf () and putchar () may
be intermixed in any order; the output appears in the order of the calls.

Similarly, the function scanf () provides for fonnatted input conversion.
scanf () reads the standard input and breaks it up into strings, numbers, etc., as
desired. scanf () uses the same mechanism as getchar () , so calls to them
may also be intermixed.

Many programs read only one input and write one output; for such programs I/O
with get char () , putchar () , scanf () , and printf () may be entirely
adequate, and it is almost always enough to get started. This is particularly true
if the SunOS pipe facility is used to connect the output of one program to the

Revision A of May 9, 1988

5.4. Error Handling -
stderr () and
exit ()

Chapter 5 - The Standard IJO Library 39

of another. For example, the following program strips out all ASCn control char
acters from its input (except for newline and tab).

The line

[
*inC1Ude <stdio.h>]

,---. --------

should appear at the beginning of each source file which does I/O using the stan
dard I/O functions described in section 3(S) of the System Interface Manual
the C compiler reads a file (/usrlinclude/stdio.h) of standard routines and sym
bols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for
you:

tutorial% cat filel file2 ... I ccstrip > output

and thus avoid learning how to access files from a program. By the way, the call
to exit () at the end is not necessary to make the program work properly, but it
assures that any caller of the program will see a normal termination status (con
ventionally 0) from the program when it completes. Section 3.3 discusses return
ing status in more detail.

stderr () is assigned to a program in the same way that stdin () and
stdout () are. Output written on stderr () appears on the user's terminal
even if the standard output is redirected, unless the standard error is also
redirected. For example, the command wc writes its diagnostics on stderr ()
instead of stdout () so that if one of the files can't be accessed for some rea
son, the message finds its way to the user's terminal instead of disappearing
down a pipeline or into an output file.

The argument of exi t () is made available to whatever process called the pro
cess that is exiting (see Section 3.3), so the success or failure of the program can
be tested by another program that uses this one as a subprocess. By convention,
a return value of 0 indicates that all is well; nonzero values indicate abnormal
situations.

Revision A of May 9, 1988

40 C Programmer's Guide

5.5. Miscellaneous I/O
Functions

exit () itself calls fclose () for each open output file, to flush out any buf
fered output, then calls a routine named _ exi t (). The function _ exi t () ter
minates the program immediately without any buffer flushing; it may be called
directly if desired.

The standard I/O library provides several other I/O functions besides those illus
trated above.

Nonnally, output with putc () and such is buffered - use fflush (fp) to
force it out immediately.

f s canf () is identical to s canf () , except that its first argument is a file
pointer (as with fprintf ()) that specifies the file from which the input comes;
it returns EOF at end of file.

The functions sscanf () and sprintf () are identical to fscanf () and
fprintf () ,except that the first argument names a character string instead of a
file pointer. The conversion is done from the string for s s canf () and into it
for sprintf () , and no input or output is done.

fgets (buf, size, fp) copies the next line from stream fp, up to and
including a newline, into bu f; at most s i z e -1 characters are copied; it returns
NULL at end of file. fput s (buf, fp) writes the string in buf onto file fp.

The function ungetc (c, fp) 'pushes back' the character c onto the input
stream fp; a subsequent call to getc () , f scanf () , and so on will encounter
c. Only one character of push back is guaranteed to work.

Revision A of May 9, 1988

6
Accessing Files Through Standard I/O

Accessing Files Through Standard I/O .. 43

6.1. Accessing Files 46

fopen () - Open a File .. 46

freopen () - Reopen a File ... 47

fflush () -Flush Stream Buffer .. 47

fclose () - Close A File ... 48

setbuf () - Set Buffer for File I/O ... 48

f ileno () - Obtain File Descriptor ... 49

rewind () - Rewind a Stream ... 50

6
Accessing Files Through Standard I/O

The above programs have all read the standard input and written the standard
output, which we have assumed are magically predefined. The next step is to
write a program that accesses a file that is not already connected to the program.
One simple example is we, which counts the lines, words and characters in a set
of files. For instance, the command

[~t_u_t_o_r_i_a_l_% __ W_C __ X_._C_Y __ .C ______________________________________]

displays the number of lines, words and characters in x . c and y . c and the
totals.

The question is how to arrange for the named files to be read - that is, how to
connect the filenames to the I/O statements which actually read the data.

The rules are simple - you have to open a file by the standard library function
fopen () before it can be read from or written to. fopen () takes an external
name (like x. c or y. c) , does some housekeeping and negotiation with the
operating system, and returns an internal name which must be used in subsequent
reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which
contains information about the file, such as the location of a buffer, the current
character position in the buffer, whether the file is being read or written, and the
like. Users don't need to know the details, because part of the standard I/O
definitions obtained by including stdio . h is a structure definition called FILE.
The only declaration needed for a file pointer is exemplified by

(FILE *fp, *fopen();

This says that fp is a pointer to a FILE, and fopen () returns a pointer to a
FILE. FILE is a type name, like int, not a structure tag.

The actual call to fopen () in a program has the form:

(fp ~ fopen(name, mode);

]

J

43 Revision A of May 9, 1988

44 C Programmer's Guide

The next thing needed is a way to read or write the file once it is open. There are
several possibilities, of which get c () and put c () are the simplest. get c ()
returns the next character from a file; it needs the file pointer to tell it what file.
Thus

[_c __ = __ g_e_tc __ <f_P_> ___ J

places in c the next character from the file referred to by £p; it returns EOF when
it reaches end of file. putc () is the inverse of getc () :

[putc (c, fp)

puts the character c on the file £p and returns c as its value. getc () and
putc () return EOF on error.

J

When a program is started, three streams are opened automatically, and file
pointers are provided for them. These streams are the standard input, the stan
dard output, and the standard error output; the corresponding file pointers are
called stdin () , stdout () , and stderr (). Nonnally these are all con
nected to the terminal, but may be redirected to files or pipes as described in Sec
tion 5.3. stdin () , stdout () and stderr () are predefined in the I/O
library as the standard input, output and error files; they may be used anywhere
an object of type FILE * can be. They are constants, however, not variables, so
don't try to assign to them.

With some of the preliminaries out of the way, we can now write wc. The basic
design is one that has been found convenient for many programs: if there are
command-line arguments, they are processed in order. If there are no arguments,
the standard input is processed. This way the program can be used standalone or
as part of a larger activity.

Revision A of May 9,1988

Chapter 6 - Accessing Files Through Standard I/O 45

The function fpr intf () is identical to print f () , save that the first argu
ment is a file pointer that specifies the file to be written.

The function fclose () is the inverse of fopen (); it breaks the connection
between the file pointer and the external name that was established by fopen () ,
freeing the file pointer for another file. There is a limit on the number of files
that a program may have open simultaneously, so you should free things when
they are no longer needed. There is another reason to call fclose () on an out
put file - it flushes the buffer in which putc () collects output. fclose () is
called automatically for each open file when a program tenninates normally.

Revision A of May 9, 1988

46 C Programmer's Guide

6.1. Accessing Files

fopen () - Open a File

Several stdio routines, needed to perfonn file I/O housekeeping and access
functions are described below:

FILE *fopen(filename, type)
char *filename;
char *type;

opens the file and, if needed, allocates a buffer for it. f i l e name is a character
string specifying the name. type is a character string (not a single character)
indicating the access mode. It may be "r", "w", or "a " to indicate intent to
read, write, or append. In addition, each mode may be followed by a + sign to
open the file for reading and writing. r+ positions the stream at the beginning of
the file, w+ creates or truncates the file, and a positions the stream to the end of
the file. Both reads and writes may be used on read/write streams, with the limi
tation that an fseek, rewind () ,or reading end-of-file must be used between a
read and a write or vice versa. The value returned is a file pointer. If it is NULL
the attempt to open the file failed.

Figure 6-1 Example oj Using fopen ()

The first argument of f open () is the name of the file, as a character string. The
second argument is the mode, also as a character string, which indicates how you
intend to use the file. The allowable modes are read (r), write (w), or append (a).
In addition, each mode may be followed by a + sign to open the file for reading
and writing. "r+" positions the stream at the beginning of the file, "w+"
creates or truncates the file, and " a +" positions the stream to the end of the file.
Both reads and writes may be used on read/write streams, with the limitation that
an fseek, rewind, or reading end-of-file must be used between a read and a
write or vice versa.

If a file that you open for writing or appending does not exist, it is created (if pos
sible). Opening an existing file for writing discards the old contents. Trying to
read a file that does not exist is an error, and there may be other causes of error as
well (like trying to read a file without read pennission). If there is an error,
fopen () returns the null pointer value NULL - defined as zero in stdio. h.

~)sun
~ microsystems

Revision A of May 9,1988

freopen () - Reopen a File

Figure 6-2

fflush () - Flush Stream
Buffer

Chapter 6 - Accessing Files Through Standard I/O 47

FILE *freopen(filenarne, type, ioptr)
char *filenarne;
char *type;
FILE *ioptr;

The stream named by ioptr is closed, if necessary, and then reopened as if by
fopen (). If the attempt to open fails, NULL is returned; otherwise ioptr is
returned, which now refers to the new file. Often the reopened stream is
stdin () or stdout (). The filename and type parameters are as for
fopen ().

filename is a character string that specifies the name of the file.

type is a character string (not a single character) that specifies the access
mode of the file. t yp e can be one of:
r reopen the file for reading,
w reopen the file for writing,
a reopen the file for appending.

ioptr is a pointer to the existing stream which is to be closed.

The value of the freopen () function is a file pointer. If the value of the file
pointer is NULL, the attempt to open the file failed.

Example o/Using freopen ()

The ff lush () function flushes the stream buffer for a given file. The inter
face to fflush () is:

[fflush (ioptr)
FILE *ioptr;

Any buffered infonnation on the output stream designated by ioptr is written
out to the file.

]

+~t!! Revision A of May 9, 1988

48 C Programmer's Guide

fclose () - Close A File

s etbuf () - Set Buffer for
File I/O

Output files are nonnally buffered if they are not directed to a screen. The
stderr () file usually starts off unbuffered, and remains unbuffered unless the
setbuf () function is used, or unless the file is reopened.

The fclose () function closes an open file. The interface definition is:

[fclose (ioptr)
FILE *ioptr;

The file designated by ioptr is closed, after any buffers associated with that
file have been written out

Any buffers allocated to the file are freed.

When a C program tenninates normally (in a controlled fashion), fclose ()
requests are issued automatically.

The setbuf () function sets up a buffer for an open file. The user can desig
nate a buffer different from the one which the run-time library chooses, or the
user can select no buffer at all. The interface to setbuf () is:

setbuf(ioptr, buf)
FILE *ioptr;
char *buf;

The setbuf () function is used after a file is opened, but before any I/O
transfers have been made to that file.

If the buf parameter is NULL, the stream is unbuffered. Otherwise, the buffer
supplied is used. The buffer buf must be a sufficiently large character array.
The usual way to assure this is to declare the buffer:

(char buf[BUFSIZE];

]

]

Revision A of May 9.1988

Figure 6-3

fileno () - Obtain File
Descriptor

Figure 6-4

Chapter 6 - Accessing Files Through Standard I/O 49

Here's an example of setbuf () usage:

Example of Using setbuf ()

The fileno () function returns an integer value which is the file descriptor
associated with the file.

[

int fileno~ioPtr) J
FILE *loptr;

"--------~

Here's an example of fileno () usage:

Example of Using fileno ()

4}\sun
~~ microsystems

Revision A of May 9, 1988

50 C Programmer's Guide

rewind() -Rewinda
Stream

The rewind () function rewinds the stream designated by the ioptr param
eter.

[rewind (ioPt~)
FILE *loptr;]

rewind () is not useful for an output file, since it is still qpen for writing after
the rewind has been perfonned. If a file needs to be rewound for reading, use the
freopen () function (described above).

sun
microsystems

Revision A of May 9, 1988

7
Character I/O

Character UO ... 53

getc () Macro - Get a Character from a File 53

fgetc () Function - Get Character from File 54

getchar () Macro - Get a Character from Standard Input 55

fget s () - Read a String from a File .. 56

ungetc () -Push a Character Back on a Stream 57

putc () Macro - Put a Character to a File .. 58

fputc () Function - Put a Character to a File 59

putchar () Macro - Put a Character to Standard Output 59

fputs () - Put a String to a File .. 60

feof () - Test for End Of File .. 60

7.1. Fonnatted Input and Output .. 61

Fonnatted Output Conversions ... 61

Fonnatted Input Conversions ... 61

The Fonnat Control Templates ... 62

Conversion Specifications ... 62

d - Decimal Conversion ... 63

o - Octal Conversion ... 63

x - Hexadecimal Conversion .. 63

h - Short Conversion on Input Only ... 64

u - Unsigned Decimal Conversion .. 64

c - Character Conversion .. 64

s - String Conversion .. 65

e - Exponential Floating Conversion ... 65

f - Fractional Floating Conversion ... 66

g - Adaptable Floating Conversion ... 67

Literal Character Output ... 67

Optional Fonnat Modifiers .. 68

Left Justify Field .. 68

Minimum Field Width and Precision Specifications 68

Length Modifier ... 69

getc () Macro - Get a
Character from a File

7
Character I/O

This section describes those macros and functions which are concerned with
reading and writing characters from and to streams.

The getc () macro gets a character from a file. The definition is:

getc (ioptr) lint

FILE *ioptr;

The getc () macro obtains the next character from the stream designated by
ioptr. ioptr is a file descriptor such as is returned by the fopen () func
tion, or is a name such as stdin () .

1

When the end of file is reached, the integer EOF is returned. The character is a
valid character from getc () .

Note that getc () is a macro, not a function.

53 Revision A of May 9, 1988

54 C Programmer's Guide

Figure 7-1

fgetc () Function - Get
Character from File

Example o/Using getc ()"

The fgetc () function obtains a single character from a file. The interface
definition is:

[

int fgetc(ioptr) J
FILE *ioptr;

'------------"

£get c () obtains the next character from the stream designated by ioptr.
ioptr is a file descriptor such as is returned by the fopen () function, or is a
name such as stdin () .

When the end of file is reached, the integer EOF is returned. The character \ 0 is
a valid character from fgetc () .

fget c () is a genuine function, as opposed to the get c () macro. This means
that fgetc () can be pointed to, passed as an argument to another function, and
soon.

Revision A of May 9, 1988

Chapter 7 - Character I/O 55

Figure 7-2 Example o/Using fgetc ()

getchar () Macro - Get a
Character from Standard
Input

Remember that getc () nonnally buffers its input; tenninal I/O will not be
properly synchronized unless this buffering is defeated. For inpu4 see setbuf
in Section 5.1.

The getchar () macro obtains a single character from the standard input. The
interface to get char () is:

(int getchar() J

The getchar () macro is a shorthand notation for

(getc (stdin I
J

Note that get char () is a macro, not a function.

Revision A of May 9, 1988

56 C Programmer's Guide

Figure 7-3

f get s () - Read a String
from a File

Example o/Using getchar ()

The fgets () function reads a string from a specified file. The interface
definition is:

char *fgets(s, n, ioptr)
char *s;
int n;
FILE *ioptr;

The fgets () function reads up to n-J characters from the stream designated by
ioptr into the character array pointed to by s. The read terminates when a
newline character is read. The newline character is placed in the buffer. The last
character read is always followed by a null character in the character array.

The f get s () function returns its first argument, or NULL if an error or an end
of file was encountered.

Revision A of May 9, 1988

Figure 7-4

ungetc () - Push a
Character Back on a Stream

Chapter 7 - Character I/O 57

Example of Using fgets ()

The ungetc () function pushes a single character back onto a stream. The
interface definition is:

ungetc(c, ioptr)
char c;
FILE *ioptr;

The ungetc () function pushes the character argument c, back onto the input
stream designated by ioptr.

Only one character may be pushed back between two reads.

Revision A of May 9, 1988

58 C Programmer's Guide

Figure 7-5

putc () Macro - Put a
Character to a File

Example o/Using ungetc ()

The pu t c () macro puts a single character to a specified file. The interface
definition is:

putc (c, ioptr)
char C;
FILE *ioptr;

The pu t c () macro writes the character c onto the output stream designated by
ioptr, where ioptr is a file descriptor such as is returned by the fopen ()
function, or is a name such as stdout () or stderr () .

The character c is nonnally returned as a value from the macro, but if an error
occurs during the transfer, the value EOF is returned.

Note that putc () is a macro, not a function.

Revision A of May 9, 1988

fputc () Function - Put a
Character to a File

Figure 7-6

putchar () Macro - Put a
Character to Standard Output

Chapter 7 - Character I/O 59

Remember that putc () nonnally buffers its output; tenninall/O will not be
properly synchronized unless this buffering is defeated. For output, use
fflush.

The fputc () function outputs a single character to a specified file. The inter
face definition is:

fputc(c, ioptr)
char C;
FILE *ioptr;

The fputc () function writes the character c onto the stream designated by
ioptr, where ioptr is a file descriptor such as is returned by the f open ()
function, or is a name such as stdout () or stderr () .

The character c is nonnally returned as a value from the function, but if an error
occurs during the transfer, the value EOF is returned.

fputc () is a genuine function, as opposed to the putc () macro. This means
that fputc () can be pointed to, passed as an argument to another function, and
soon.

Example of Using fputc ()

The putchar () macro puts a single character to the standard output file. The
interface definition is:

[
putchar(Ch) J

char Chi

"'-------------'"

The putchar () macro is a shorthand notation for

(putc (stdout)]

Revision A of May 9, 1988

60 C Programmer's Guide

Note that putchar () is a macro, not a function.

Figure 7-7 Example oj Using putchar ()

fputs () - Put a String to a fputs () writes a character string to a file. The interface definition is:
File

Figure 7-8

feaf () - Test for End Of
File

fputs(s, ioptr)
char *s;
FILE *ioptr;

The fput s () function writes the null-tenninated character string s (which is a
character array) to the stream designated by iaptr.

fputs () does not append a newline to the string.

fputs () does not return a value.

Example ojUsing fputs ()

The feaf () function checks for an end of file on a specified file. The interface
definition is:

[fecf (icptr)
FILE *ioptr;]

Revision A of May 9, 1988

7.1. Formatted Input and
Output

Formatted Output
Conversions

Formatted Input Conversions

Chapter 7 - Character I/O 61

The feof () function returns a nonzero value if an end-of-file has occurred on
the stream designated by ioptr.

The C run-time library provides extensive facilities for formatted conversions of
character strings to numeric data, and for the formatted conversion of numeric
data to character strings. Conversions can be done between the standard input or
standard output, an arbitrary file, or strings in memory. The subsections to fol
low give detailed descriptions of these facilities.

There are three variations of the formatted output functions: They are all similar
in their actions, the only difference being the destination of the formatted string.

[prinf (format, arg

"

. . .)
char *format;

pr inf () writes the formatted string to the standard output.

fprinf(ioptr, format, arg
1

, .•.)

FILE *ioptr;
char *format;

fprinf() writes the formatted string to the file
designated by ioptr .

sprinf(s, format, arg1, ...)
char *s;
char *format;

sprinf () stores the formatted string into a character string (character array) in
memory.

]

The scanf (), fscanf () ,and sscanf () functions are the equivalents of the
prinf () functions described above, except that the scanf () functions per
form conversions from character strings to data in the computer memory. They
are thus used for reading formatted information instead of writing it.

There are three variations of the scanf () function:

[scanf (format, arg

"

. . .)
char *format;]

scanf () reads the formatted string from the standard input.

Revision A of May 9, 1988

62 C Programmer's Guide

The Format Control
Templates

Conversion Specifications

fscanf(ioptr, format, arg
1

, ..•)

FILE *ioptr;
char *format;

fscanf () reads the formatted string from the file designated by ioptr.

sscanf (s, format, arg
1

, . . .)

char *s;
char *format;

sscanf () ,gets the formatted string from a character string (character array) in
memory.

All six print and scan functions accept a format argument, followed by
zero or more arg arguments.

n

The format argument is a template, in the form of a character string. The
forma t character string consists of two kinds of objects:

o It can contain fixed parts which are sent to the destination unchanged (for
formatted output) or match characters in the input source (for formatted
input).

o It can also contain conversion specifications, which indicate how the follow
ing ar g are to be converted and placed into the final formatted output
string, o~ recognized in the input, and converted to internal form and placed
in the arg .

n

A conversion specification is marked by a percent sign %, and ends with a
conversion character. In between the % sign and the conversion character, there
can be modifiers. These modifiers are described after the descriptions of the
conversion characters. Any character in a format that is not part of a conversion
specification is passed or recognized as is.

Here is apr inf () call with a simple string template and no conversion
specifications:

prinf("Calling occupants of interactive space\n");

This example simply prints the quoted string on the standard output.

The following paragraphs describe the effects of the conversion characters.
There are also modifiers for the conversion specifications, and these are described
later.

Revision A of May 9, 1988

Chapter 7 - Character I/O 63

d - Decimal Conversion A conversion character of d specifies that the associated argument is converted to
(or from) decimal notation.

Figure 7-9 Example of d Format Specification

When the above program is run, it generates the result:

(~T_h_e __ v_a_l_u_e __ O_f __ d_a_t_a __ i_S_: __ -_2_5 ________________________________ ~)

o - Octal Conversion A conversion character of 0 specifies that the associated argument is converted to
(or from) unsigned octal notation. The resulting output string does not contain a
leading zero. It is the responsibility of the programmer to insert the leading zero
"manually" as part of the format string, if that is what is required.

Figure 7-10 Example of 0 Format Specification

x - Hexadecimal Conversion

When the above program is run, it generates the result:

[The value of data is: 031]
Note that the program explicitly places the digit "0" in the generated number.

A conversion character of x specifies that the associated argument is converted to
(or from) unsigned hexadecimal notation. The resulting output string does not
contain a leading "Ox". It is the responsibility of the programmer to insert the
leading "Ox" "manually", as part of the format string, if that is what is required.

Revision A of May 9, 1988

64 C Programmer's Guide

Figure 7-11

h - Short Conversion on Input
Only

u - Unsigned Decimal
Conversion

Figure 7-12

c - Character Conversion

Example of x Format Specification

When the above program is run, it generates the result:

(The value of data is: Ox19

Note that the programmer explicitly coded the "Ox" in front of the generated
number.

A conversion character of h is used only for fonnatted input, and specifies that
the associated argument is a pointer to a short int data item.

J

A conversion character of u specifies that the associated argument is converted to
(or from) unsigned decimal notation.

Example of u Format Specification

When the above program is run, it generates the result:

[~T_h_e __ v_a_l_u_e __ O_f __ d_a_t_a __ i_S_: __ 4_2_9_4_9_6_7_2_7_l ________________________ ~J

A conversion character of c specifies that the associated argument is to be con
verted to (or from) a single character.

Revision A of May 9, 1988

Chapter 7 - Character I/O 65

Figure 7-13 Example of c Format Specification

When the above program is run, it generates the result:

[parts of data are: H ! h J

s - String Conversion A conversion character of s specifies that the associated argument is a string.
Characters from the string are printed until a null character is found, or until the
number of characters indicated by the precision specification (see below) are
used up.

Figure 7-14 Example of s Fonnat Specification"

e - Exponential Floating
Conversion

When the above program is run, it generates the result:

[The value of data is: 'Hello, World!'

A conversion character of e specifies that the associated argument is assumed to
be a float or a double. It is converted to (or from) a decimal exponential
notation of the fonn

([-]m.nnnnnnnE[±]xx

J

J

where the length of the string of n's is specified by the precision. The default pre
cision is six decimal places.

Revision A of May 9, 1988

66 C Programmer's Guide

Figure 7-15 Example of e Format Specification

f - Fractional Floating
Conversion

When the above program is run, it generates the result:

(The value of data is: 1.234560e+02

A conversion character of f specifies that the associated argument is assumed to
be a float or a double. It is converted to (or from) a notationfloatingde
cimal

([-]mmm.nnnnnn

where the length of the string of n's is specified by the precision. The default
precision is six decimal places. The precision does not determine the number of
digits printed in f format, but the number of decimal places displayed.

Figure 7-16 Example of f Format Specification

When the above program is run, it generates the result:

(The value of data is: 123.456001

J

J

J

Revision A of May 9, 1988

g - Adaptable Floating
Conversion

Figure 7-17

Literal Character Output

Figure 7-18

Chapter 7 - Character I/O 67

A conversion character of g specifies that the associated argument is converted to
(or from) either e or f fonnat, depending upon which is the shorter. Non
significant zeros are not printed in g fonnat. This is similar to FORTRAN's G
fonnat conversion.

Example of g Format Specification

When the above program is run, it generates the result:

(The value of data is: 123.456

If the character which follows the % sign is not a conversion character, that char
acter is printed verbatim. Thus, to print a % sign, use a format conversion of % % •

Example of Literal Character Output

When the above program is run, it generates the result:

]

(The value of data is: y %]
The two percent signs are displayed as one, and the unknown conversion charac
ter (y) is output verbatim. The value of the data variable in the output list is sim
ply ignored, since no conversion specification in the fonnat required data.

Revision A of May 9, 1988

68 C Programmer's Guide

Optional Format Modifiers

Left Justify Field

Minimum Field Width and
Precision Specifications

Between the % sign and the fonnat conversion letters as defined above, there may
be some optional information. The characters which may appear in these posi
tions are described below.

A minus sign (-) appearing before the conversion character specifies that the
argument is to be left-justified in the output field. The minus sign is optional.

After the minus sign can appear width and precision specifications, as described
next.

The fonn of the optional field width and precision specifications are:

o a digit string, which specifies a minimum field width. The converted
number is printed in a field at least this wide, and wider if required. If the
converted argument has fewer characters than the field width, it is padded on
the left (or on the right, if a minus sign was given) with enough padding
characters to make up the specified field width. The padding character is
nonnally a space. If the field width is specified with a leading zero, it does
not mean an octal field width, rather it means that the output field is to be
padded with zeros.

o a period character, which separates the field width from the next digit string.

o a digit string, which is the precision. The precision means one of two things.
In the case ofa float or a double argument, the precision is the number
of digits to be printed to the right of the decimal point. In the case of a
string argument, the precision is the number of characters to be printed from
the string.

The examples below show the way that the justification, width, and precision
specifications apply to string values when they are output. The value to be
printed is the string "Wizard", which is six characters long. It is printed in a
variety of fonnat specifications, and there are vertical bands at either end of the
field to show the extent of the field.

Figure 7-19 Example of Field Width Specifications

Revision A of May 9, 1988

Length Modifier

Chapter 7 - Character I/O 69

When the above program is run, it generates the results:

data in %4s format is: IWizardl
data in %-4s format is: IWizardl
data in %10s format is: I Wizardl
data in %-10s format is: IWizard
data in %10.4s format is: I Wizal
data in %-10.4s format is: IWiza I
data in %.4s format is: IWizal

If the conversion specification is preceded by a lx, it means that the associated
argument is a long and If indicates a double. If no length modifier precedes
the conversion specification, the associated argument is assumed to be an into
instead of an into A lone 1 preceding the conversion specification is ignored in
Sun C because ints and longs are the same.

On s canf () , arguments are pointers. Sizes in % specifiers must be correct: % f
for floats and % 1f for doubles.

Revision A of May 9, 1988

8
String -Handling Functions

String-Handling Functions .. 73

8.1. Character Classification ... 73

isalpha () - Is Character Alphabetic ... 73

isupper () - Is Character Uppercase Letter 73

is lowe r () - Is Character Lowercase Letter 73

isdigi t () - Is Character Decimal Digit .. 73

isxdigit () -Is Character Hexadecimal Digit 74

isalnum () - Is Character Letter or Digit ... 74

is space () - Is Character Whitespace ... 74

ispunct () - Is Character Punctuation ... 74

ispr int () - Is Character Printable ... 74

iscntrl () - Is Character Control Character 74

is a sci i () - Is Character an Ascn Character 74

isgraph () - Is Character a Visible Graphic 74

8.2. Character Conversion Macros .. 74

toupper () - Convert Lowercase to Uppercase 74

tolower () - Convert Uppercase to Lowercase 74

toas cii () - Ensure Character is Ascn ... 74

8.3. Functions for Handling Null-Terminated Strings ... 74

Null Pointers versus Null Strings .. 75

strlen () -Find Length of String ... 75

strcmp () and strncmp () - Compare Strings 75

strcpy () and strncpy () - Copy Strings 76

strcat () and strncat () - Concatenate Strings 76

index () and rindex () - Find Character in String 76

8.4. Byte String and Bit String Functions ... 77

bemp () - Compare Byte Strings .. 77

bcopy () - Copy Byte Strings ... 77

bzero () - Clear Byte String to Zero .. 77

f f s () - Find First Bit Set .. 77

8.1. Character
Classification

isalpha () - Is Character
Alphabetic
isupper () - Is Character
Uppercase Letter
is lower () - Is Character
Lowercase Letter
isdigi t () - Is Character
Decimal Digit

8
String-Handling Functions

The C programming language has no language-defined facilities for manipulating
character string data. The C library does, however, provide a fairly rich set of
primitives for manipulating character string data.

This chapter contains three major areas relating to string handling:

o Macros for classifying characters (is a character, uppercase, letter, digit, and
such), plus macros for doing some minimal conversions (convert uppercase
to lowercase).

o Functions for handling null-terminated strings.

o Functions for handling bit strings and byte strings.

These macros classify ASCII -coded integer values. Each is a predicate returning
nonzero for true, zero for false. i sascii () is defined on all integer values; the
rest are defined only where isascii (c) is true and on the single non-ASCII
value EOF(see stdio(3S)).

You should have the line:

(#include <ctype.h>)
in any program unit that uses these macros.

isalpha (c) c is a letter- a thru z or A thru z.

isupper (c) c is an upper case letter - A thru z.

islower (c) c is a lower case letter - a thm z.

isdigit (c) cis a digit- 0 thru 9.

73 Revision A of May 9,1988

74 C Programmer's Guide

isxdigit () -Is Character
Hexadecimal Digit
isalnum () - Is Character
Letter or Digit
isspace () -Is Character
Whitespace
ispunct () - Is Character
Punctuation
isprint () - Is Character
Printable

iscntrl () -Is Character
Control Character

isascii () - Is Character
an AScn Character
isgraph () - Is Character a
Visible Graphic

8.2. Character Conversion
Macros

toupper () - Convert
Lowercase to Uppercase

tolower () - Convert
Uppercase to Lowercase

toascii () -Ensure
Character is ASCII

8.3. Functions for Handling
Null-Terminated
Strings

isxdigit (c) c is a hexadecimal digit- 0 thru 9, a thru f, or A thru F.

isalnum (c) c is an alphanumeric character, that is, c is a letter or a digit.

isspace (c) c is a space, tab, carriage return, newline, or fonnfeed.

ispunct (c) c is a punctuation character (neither control nor alphanumeric)

is pr in t (c) c is a printing character, such as Ascn characters Ox20 (space)
through Ox7E (tilde).

iscntrl (c) c is a delete character (Ox7F) or an ordinary control character
(less than Ox20).

isascii (c) c is an ASCn characterless than Ox80.

isgraph (c) c is a visible graphic character, and Ascn character code from
0x21 (exclamation mark) through Ox7E (tilde).

These macros perfonn simple conversions on single characters.

toupper (c) converts c to its upper-case equivalent. Note that this only works
if c is known to be a lower-case character to start with (presumably checked by
islower ()).

tolower (c) converts c to its lower-case equivalent. Note that this only works
if c is known to be an uppercase character to start with (presumably checked by
isupper).

toascii (c) masks c with the correct value so that c is guaranteed to be an
ASCII character in the range 0 thru Ox7F.

Null-tenninated strings are arrays of characters. A correctly fonned string has a
zero (ASCII NUL) byte at the end to act as a tenninator. All string handling rou
tines and I/O routines conform to these semantics. C builds in this notion when a
programmer writes a string constant - the compiler correctly adds the null byte
at the end of the string. Suppose you have this declaration in your program:

(Char greetings[] = "Hi There!";]

Revision A of May 9,1988

Figure 8-1

Null Pointers versus Null
Strings

strlen () - Find Length of
String

strcmp () and strncmp ()
- Compare Strings

Chapter 8 - String-Handling Functions 75

Such a string appears in memory as:

Layout of Null-Terminated String in Memory

Functions described in this section operate on null-tenninated strings. They do
not check for overflow of any receiving string.

You must have the line:

(#include <strings.h>

in any program unit that uses the functions described here.

On Sun workstations (and on most other machines), you cannot use a zero
pointer to indicate a null string. Dereferencing a null pointer is an error and
results in aborting the program. If you wish to indicate a null string, you must
have a pointer that points to an explicit null string.

]

Programmers using NULL to represent an empty string should be aware that such
programs work by coincidence rather than by intent and should be aware that
testing for zero pointers is inherently nonportable.

(strlen(s)
char *s;

strlen () returns the number of non-null characters in s.

strcmp(string_l, string_2)
char *string_l, *string_2;

strncmp(string_l, string_2, n)
char *string_l, *string_2;

]

st rcmp () compares its arguments and returns an integer greater than, equal to,
or less than 0, according as string_l is lexicographically greater than, equal to, or
less than string_ 2.

+m,!! Revision A of May 9, 1988

76 C Programmer's Guide

strcpy() and strncpy()
- Copy Strings

strcat() and strncat()
- Concatenate Strings

index () and r index () -
Find Character in String

strncmp () makes the same comparison but looks at at most n characters.

strcmp () uses native character comparison, which is signed on Sun worksta
tions.

char *strcpy(string_l, string_2)
char *string_l, *string_2;

char *strncpy(string_l, string_2, n)
char *string_l, *string_2;

st rcpy () copies string string_ 2 to string_l, stopping after the null character
has been moved. strncpy () copies exactly n characters, truncating or null
padding string_2; the target may not be null-terminated if the length of string_2
is n or more. Both return string_l.

char *strcat(string_l, string_2)
char *string_l, *string_2;

char *strncat(string_l, string_2, n)
char *string_l, *string_2;

s t rca t () appends a copy of string string_ 2 to the end of string string_l.

strncat () copies n characters at most. Both return a pointer to the null
terminated result.

index () returns a pointer to the first occurrence of character c in string s, or
zero if c does not occur in the string.

rindex () returns a pointer to the last occurrence of character c in string s, or
zero if c does not occur in the string.

[char *index (s, c)
char *s, c;

[char *rindex(s, c)
char *s, c;

J

J

Revision A of May 9, 1988

8.4. Byte String and Bit
String Functions

bemp () - Compare Byte
Strings

beopy () - Copy Byte
Strings

bzero () - Clear Byte
String to Zero

f f s () - Find First Bit Set

Chapter 8 - String-Handling Functions 77

Functions described in this section operate on byte strings and bit strings. They
do not recognize null-tenninated strings as do the functions described in Section
8.3 .

bcmp(bl, b2, length)
char *bl, *b2;
int length;

bemp () compares byte string bl against byte string b2, returning zero if they
are identical, nonzero otherwise. Both strings are assumed to be length bytes
long.

bcopy(bl, b2, length)
char *bl, *b2;
int length;

beopy () copies length bytes, in left-to-right order, from string bl to string b2.
Overlapping strings are handled correctly.

Note: The order of arguments is backwards from that of strepy () - that
is, beopy () copies from its first argument to its second argument,
while strepy () copies from its second argument to its first argu
ment.

bzero(b, length)
char *b;
int length;

bzero () places length 0 bytes in the string b.

[ffS(~) . J
lnt 1;

----------"

ff s () finds the first bit set in the argument passed it and returns the index of
that bit. Bits are numbered starting at 1 from the right. A return value of -1
indicates the value passed is zero.

Revision A of May 9, 1988

A
Low-Level File I/O

Low-Level File I/O ... 81

A.l. File Descriptors ... 81

A.2. read () arId write () ... 82

A.3. open (), creat (), close (), unlink () 83

AA. Random Access - lseek () .. 85

A.5. Error Processing .. 86

A.t. File Descriptors

A
Low -Level File I/O

This appendix describes the bottom level of I/O on the SunOS system. The
lowest level of I/O in SunOS provides no buffering or any other services except
moving data; it is in fact a direct entry into the operating system. You are
entirely on your own, but on the other hand, you have the most control over what
happens. And since the calls and usage are quite simple, this isn't as bad as it
sounds.

In the SunOS operating system, all input and output is done by reading or writing
files, because all peripheral devices, even the user's terminal, are files in the file
system. This means that a single, homogeneous interface handles all communi
cation between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform
the system of your intent to do so, a process called 'opening' the file. If you are
going to write on a file, it may also be necessary to create it. The system checks
your right to do so - does the file exist? Do you have permission to access it?
And, if all is well, returns a small positive integer called afile descriptor. When
ever I/O is to be done on the file, the file descriptor is used instead of the name to
identify the file. This is roughly analogous to the use of READ (5, ...) and
WRITE (6, ...) in FORTRAN. All information about an open file is main
tained by the system; the user program refers to the file only by the file descrip
tor.

File pointers are similar in spirit to file descriptors, but file descriptors are more
fundamental. A file pointer is a pointer to a structure that contains, among other
things, the file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special
arrangements exist to make this convenient. When the command interpreter (the
'shell') runs a program, it opens three files, with file descriptors 0, 1, and 2,
called standard input, standard output, and standard error output. All of these are
normally connected to the tenninal, so if a program reads file descriptor 0 and
writes file descriptors I and 2, it can do tenninall/O without opening the files.

If I/O is redirected to and from files with < and >, as in

(
tutorial% prog < infile > outfile J

'----. -----------'

81 Revision A of May 9. 1988

82 C Programmer's Guide

A.2. read () and
write ()

the shell changes the default assignments for file descriptors 0 and 1 from the ter
minal to the named files. Similar observations hold if the input or output is asso
ciated with a pipe. Normally file descriptor 2 remains attached to the terminal,
so error messages can go there. In all cases, the file assignments are changed by
the shell, not by the program. The program does not need to know where its
input comes from nor where its output goes, so long as it uses file 0 for input and
1 and 2 for output.

All input and output is done by two functions called read () and wr it e () .
The first argument for both of these functions is a file descriptor. The second
argument is a buffer in your program where the data is to come from or go to.
The third argument is the number of bytes to be transferred. The calls are

n_read = read(fd, buf, n);
n written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred.
On reading, the number of bytes returned may be less than the number asked for,
because fewer than n bytes remained to be read. When the file is a tenninal,
read () normally reads only up to the next newline, which is generally less than
what was requested. A return value of zero bytes implies end of file, and -1
indicates an error of some sort. For writing, the returned value is the number of
bytes actually written; it is generally an error if this isn't equal to the number
supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most com
mon values are 1, which means one character at a time ('unbuffered'), and 1024,
corresponding to the physical blocksize on many peripheral devices. This latter
size will be most efficient, but even character-at-a-time I/O is not inordinately
expensive.

Putting these facts together, we can write a simple program to copy its input to
its output This program will copy anything to anything, since the input and out
put can be redirected to any file or device.

Revision A of May 9, 1988

A.3. open (), creat () ,
close () ,
unlink ()

Appendix A - Low-Level File I/O 83

If the file size is not a multiple of BUFS I ZE, some read () will return a smaller
number of bytes, and the next call to read () after that will return zero.

It is instructive to see how read () and wr i te () can be used to construct
higher-level routines like get char () , putchar () ,etc. For example, here is
a version of get char () which does unbuffered input

c must be declared char, because read () requires a character pointer. The
character being returned must be masked with 0 xf f to ensure that it is positive;
otherwise sign extension may make it negative. The constant Oxff is appropri
ate for Sun workstations but not necessarily for other machines.

The second version of get char () does input in big chunks, and hands out the
characters one at a time:

Other than the default standard input, output and error files, you must explicitly
open files in order to read or write them. There are two system entry points for
this, open () and creat () .

open () is rather like the fopen () discussed in the previous section, except
that instead of returning a file pointer, it returns a file descriptor, which is just an
into

Revision A of May 9,1988

84 C Programmer's Guide

[

int fd; 1
~f_d __ = __ o_p_e_n_(_n_a_m_e_, __ r_w.m __ o_d_e_)_; ________________________________ ~

As with fopen (), the name argument is a character string corresponding to the
external file name. The access mode argument is different, however: rwmo de is
o for read, I for write, and 2 for read and write access. open () returns -1 if an
error occurs; othelWise it returns a valid file descriptor.

It is an error to try to open () a file that does not exist. The entry point
creat () is provided to create new files, or to rewrite old ones.

(fd = creat(name, pmode);

returns a file descriptor if it could create the file called name, and -1 if not. If
the file already exists, creat () will truncate it to zero length; it is not an error
to creat () a file that already exists.

]

If the file is new, creat () creates it with the protection mode specified by the
pmode argument. In the SunOS file system, there are nine bits of protection
information associated with a file, controlling read, write and execute pennission
for the owner of the file, for the owner's group, and for all others. Thus a three
digit octal number is most convenient for specifying the permissions. For exam
ple, 0755 specifies read, write and execute permission for the owner, and read
and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the SunOS utility cp, a program
which copies one file to another. The main simplification is that our version
copies only one file, and does not permit the second argument to be a directory:

Revision A of May 9,1988

A.4. Random Access -
lseek ()

Appendix A - Low-Level File I/O 85

As noted above, there is a limit (typically 64) on the number of files which a pro
gram may have open simultaneously. Accordingly, any program which intends
to process many files must be prepared to reuse file descriptors. The routine
close breaks the connection between a file descriptor and an open file, and
frees the file descriptor for use with some other file. Program termination
through exi t or return from the main program closes all files it had open.

The function unlink (filename) removes the file filename from the file
system.

File I/O is normally sequential: each read () or wr i te () takes place at a
position in the file right after the previous one. When necessary, however, a file
can be read or written in any arbitrary order. The system call1seek () provides
a way to move around in a file without actually reading or writing:

(
lseek(fd, offset, origin); J

'---. --------"

+~t!! Revision A of May 9,1988

86 C Programmer's Guide

A.S. Error Processing

forces the current position in the file whose descriptor is f d to move to position
offset, which is taken relative to the location specified by origin. Subse
quent reading or writing will begin at that position. offset is a long; fd and
origin are int's. origin can be 0,1, or2 to specify that offset is to be
measured from the beginning, from the current position, or from the end of the
file, respectively. For example, to append to a file, seek to the end before writ
ing:

(lseek(fd, OL, 2);

To get back to the beginning ('rewind'),

]

(~l_s_e_e_k __ (f_d_' __ O_L_' __ O_)_; __ ~J
Notice the OL argument; it could also be written as (long) O.

With lseek (), it is possible to treat files more or less like large arrays, at the
price of slower access. For example, the following simple function reads any
number of bytes from any arbitrary place in a file.

The routines discussed in this section, and in fact all the routines which are direct
entries into the system can incur errors. Usually they indicate an error by return
ing a value of -1. Sometimes it is nice to know what sort of error occurred; for
this purpose all these routines, when appropriate, leave an error number in the
external variable errno. The meanings of the various error numbers are listed
in intro(2) in the Sun System Interface Manual so your program can, for exam
ple, determine if an attempt to open a file failed because it did not exist or
because the user lacked permission to read it. Perhaps more commonly, you may
want to display the reason for failure. The routine perror displays a message
associated with the value of errno; more generally, sys_errno is an array of
character strings which can be indexed by errno and displayed by your pro
gram.

Revision A of May 9, 1988

B
Binary I/O

Binary I/O ... 89

fread () - Read Data from File ... 89

fwr i te () - Write Data to File .. 89

WARNING

fread () - Read Data from
File

fwrite () - Write Data to
File

B
Binary I/O

The binary I/O facilities of the C library provide for record-oriented sequential
access to files.

Using these routines may result in imcompatabilities when porting programs to
or from some other machines. See the description of Sun's External Data
Representation (XDR) standard/or creating portable code as described in Net
work Programming

The fread () function reads some number of objects into a block, from a
specified file. The interface to fread () is:

fread(pointer, sizeof *pointer, items, stream)
char *pointer;
int items;
FILE *stream;

The arguments to fread () have the following meanings:

pointer
items

stream

is a pointer to a block of objects.
is a count of the number of objects of a data type determined by the
type of whatever "pointer" points to.
is the named input stream.

The value of the fread () function is the number of objects actually read.

The fwr i te () function writes some number of objects from a block, onto a
specified file. The interface to fwr i te () is:

fwrite (pointer, sizeof *pointer, items, stream)
char *pointer;
int items;
FILE *stream;

89 Revision A of May 9, 1988

90 C Programmer's Guide

The arguments to fwr i te () have the following meanings:

pointer

items

stream

is a pointer to a block of objects.

is a count of the number of objects of a data type detennined by the
type of whatever "pointer" points to.

is the named output stream.

The value of the fwr i te () function is the number of objects actually written
to the named stream.

Revision A of May 9, 1988

c
Metnory Managetnent

Memory Management ... 93

C.1. malloc () - Allocate Memory ... 93

C.2. free () - Free Allocated Memory .. 93

C.3. calloc () - Allocate Memory for C Objects .. 93

C.4. cfree () -Free Allocated Memory ... 94

C.5. realloc () - Change Size of Allocated Block 94

C.6. memalign () - Allocate to Alignment Boundary 94

C.7. valloc () - Allocate Memory on a Page Boundary 94

C.8. alloca () - Allocate Memory on Stack ... 95

C.9. Memory Allocation Debugging .. 95

malloc _debug () - Set Debug Level.. 95

malloc _ ver ify () - Check Storage Allocation Heap 95

C.IO. Errors from Memory Management Routines ... 96

C.II. Notes on the Memory Management Routines ... 96

C.l. malloe () -
Allocate Memory

C.2. free () - Free
Allocated Memory

C.3. ealloe () -
Allocate Memory for
C Objects

c
Memory Management

These routines provide a general-purpose memory allocation package. They
maintain a table of free blocks for efficient allocation and coalescing of free
storage. When there is no suitable space already free, the allocation routines call
sbr k (see br k(2)) to get more memory from the system.

Each of the allocation routines returns a pointer to space suitably aligned for
storage of any type of object. They return a null pointer if the request cannot be
completed.

[char *~llOC(num)
unslgned nUIn;]

allocates n urn bytes. The pointer returned is aligned so as to be usable for any
purpose. NULL is returned if no space is available. The result of malloe (O) is
undefined.

[int free (ptr)
char *ptr;

free () frees up memory previously allocated by malloe (). Disorder can be
expected if the pointer was not obtained from malloe () .

char *calloc(num, size);
unsigned num;
unsigned size;

allocates space for num items, each of size size. The space is guaranteed to be
set to 0 and the pointer is aligned so as to be usable for any purpose. NULL is
returned if no space is available.

]

93 Revision A of May 9, 1988

94 C Programmer's Guide

C.4. efree () - Free
Allocated Memory

C.s. realloe () -
Change Size of
Allocated Block

C.6. memalign () -
Allocate to Alignment
Boundary

C.7. valloe () -
Allocate Memory on a
Page Boundary

(void) cfree(ptr, num, size)
char *ptr;
unsigned num;
unsigned size;

Space is returned to the pool used by ealloe (). Disorder can be expected if
the pointer was not obtained from ealloe ().

realloe () changes the size of the block referenced by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be unchanged
up to the lesser of the new and old sizes. For backwards compatibility, real-
10 e () accepts a pointer to a block freed since the most recent call to rna 1-
loe (), ealloe (), realloe (), valloe (), ormemalign (). Note that
using realloe () with a block freed before the most recent call to malloe () ,
ealloe () , realloe () , valloe () ,orrnernalign () is an error.

char *realloc(ptr, size)
char *ptr;
unsigned size;

rnernalign () allocates size bytes on a specified alignment boundary, and
returns a pointer to the allocated block. The value of the returned address is
guaranteed to be an even multiple of alignment. Note that the value of alignment
must be a power of two, and must be greater than or equal to the size of a word.

char *memalign<alignment, size)
unsigned alignment;
unsigned size;

realloe (), valloe (), and rnernalign () return NULL and set errno if
arguments are invalid, or if there is insufficient available memory, or if the heap
has been detectably corrupted, for example, by storing outside the bounds of a
block.

valloe (size) is equivalent tornernalign (getpagesize (), size).

[
Char *v~llOc(s~ze)]

, unslgned Slze; .

realloe (), valloe (), and rnernalign () return NULL and set errno if
arguments are invalid, or if there is insufficient available memory, or if the heap

Revision A of May 9,1988

C.8. alloca () -
Allocate Memory on
Stack

C.9. Memory Allocation
Debugging

malloe_debug () - Set
Debug Level

malloc_verify() -
Check Storage Allocation
Heap

Appendix C - Memory Management 95

has been detectably corrupted, for example, by storing outside the bounds of a
block.

alloca () allocates size bytes of space in the stack frame of the caller, and
returns a pointer to the allocated block. This temporary space is automatically
freed when the caller returns.

[char.*all~Ca(size)
lnt Slze;]

More detailed diagnostics can be made available to programs using the memory
management routines described in this chapter by including a special relocatable
object file at link time. This file also provides routines for control of error han
dling and diagnosis, as defined below. Note that these routines are not defined in
the standard library.

[int malloc_debug(level)
int level;]

malloe _debug () sets the level of error diagnosis and reporting during subse
quent calls to malloe () , ealloe () , realloe () , valloe () ,
memalign () , efree () , and free (). The value of level is interpreted as
follows:

o malloe(),calloc(),realloe(),valloe(),memalign(),
efree () , and free () behave the same as in the standard library.

1 malloe(),calloe(),realloe(),valloe(),memalign(),
cfree () ,and free () abort with a message to stderr if errors are detected
in arguments or in the heap. If a bad block is encountered, its address and
size are included in the message.

2 Same as levell, except that the entire heap is examined on every call to
malloc(),calloe(),realloc(),valloe(),memalign(),
cfree () ,and free () .

malloe _debug () returns the previous error diagnostic level. The default
level is 1.

(int malloc_verify()

malloc _ ver ify () attempts to detennine if the heap has been corrupted. It
scans all blocks in the heap (both free and allocated) looking for strange

J

Revision A of May 9, 1988

96 C Programmer's Guide

C.IO. Errors from Memory
Management
Routines

C.II. Notes on the Memory
Management
Routines

addresses or absurd sizes, and also checks for inconsistencies in the free space
table. malloe _ ver ify () returns 1 if all checks pass without error, and other
wise returns O. The checks can take a significant amount of time, so it should not
be used indiscriminately.

malloe(),ealloe(),realloe(),valloe(),memalign(},
efree () , and free () set errno if:

E INVAL is true - an invalid argument was given. The value of ptr given to
free () , efree (), or realloe () must be a pointer to a block
previously allocated by malloe () , ealloe () , realloe () ,
valloe (), ormemalign (). EINVAL is also true if the heap is
found to have been corrupted. More detailed infonnation may be
obtained by enabling range checks using malloe _debug () .

ENOMEM is true - size bytes of memory could not be allocated.

The file /usr/lib/debug/malloe.o contains the diagnostic versions of
malloe () , free () , etc.

alloea () is both machine- and compiler-dependent; its use is strongly
discouraged.

Revision A of May 9,1988

D
Sun-2, -3, and -4 Data Representations

Sun-2, -3, and -4 Data Representations ... 99

D.1. Storage Allocation ... 99

D.2. Data Representations .. 99

Integer Representations ... 100

float and double Representation .. 100

Extreme Number Representation ... 101

Hexadecimal Representation of Selected Numbers 101

Pointer Representation ... 102

Array Storage .. 102

Arithmetic Operations on Extreme Values .. 102

D.3. Argument Passing Mechanism ... 104

DA. Referencing Data Objects in C ... 104

Referencing Simple V ariables ... 104

Referencing With Pointers .. 104

Referencing Array Elements .. 105

Referencing Structures and Unions .. 106

D.l. Storage Allocation

Table D-l

D.2. Data Representations

D
Sun-2, -3, and -4 Data Representations

This appendix describes how Sun C represents data in storage and the mechan
isms for passing arguments to functions. This chapter is intended as a guide to
programmers who wish to write or use modules in languages other than C and
have those modules interface to C code.

This section describes how storage is allocated to variables of various types.

In general, any word value is always aligned on a two-byte boundary. Anything
larger than a word is also aligned on a two-byte boundary. Values that can fit
into a single byte are aligned on a byte boundary.

Storage Allocation for Data Types

Data Type Internal Representation

char elements a single 8-bit byte.

short integers one word (two bytes or 16 bits), aligned on a two-byte boun-
dary.

int and long ,32 bits (four bytes or two words), aligned on a two-byte boun-
dary. On a Sun-4, they are aligned on 4-byte boundaries.

float 32 bits (four bytes or two words), aligned on a two-byte boun-
dary. A float has a sign bit, 8-bit exponent and 23-bit frac-
tion. On a Sun-4, they are aligned on 4-byte boundaries.

double 64 bits (eight bytes or four words), aligned on a word boundary.
A double element has a sign bit, an II-bit exponent and a
52-bit fraction. On a Sun-4, they are aligned on 8-byte boun-
daries.

Whatever the size of the data element in question, the most significant bit of the
data element is always in the lowest numbered (leftmost) byte of however many
bytes are required to represent that object. The tables below describe the various
representations.

99 Revision A of May 9, 1988

100 C Programmer's Guide

Integer Representations

Table 0-2

Table 0-3

float and double
Representation

Table D-4

Bits Name
31 Sign

23-30 Exponent

0-22 Fraction

Table 0-5

Bits Name
63 Sign

52-62 Exponent

0-51 Fraction

There are three integer types used in Sun C: short, int, and long.

Representation of short

Bits Content
8-15 Byte 0

0-7 Byte 1

Representation of int and long

Bits Content
24-31 Byte 0

16-23 Byte 1

8-15 Byte 2

0-7 Byte 3

float and double data elements are represented according to the ANSI IEEE
754-1985 standard. The tables below describe the representation.

float Representation

Content
1 iff number is negative.

Eight-bit exponent, biased by 127. Values of all zeros, and all
ones, reserved.

23-bit fraction component of normalized significand. The "one"
bit is "hidden".

double Representation

Content
1 iff number is negative.

Eight-bit exponent, biased by 1023. Values of all zeros, and all
ones, reserved.

52-bit fraction component of normalized significand. The "one"
bit is "hidden".

Revision A of May 9, 1988

Appendix D - Sun-2, -3, and -4 Data Representations 101

Extreme Number
Representation

A float or double number is represented by the fonn:

((_l)Sigll 2(expommt-bias) 1./

where "l.f' is the significand and "f' is the bits in the significand fraction.

Table D-6 Extreme Number Representation

Number

zero (signed)

subnormal numbers

signed infinity

Not-a-Number (NaN)

Description

is represented by an exponent of zero, and a fraction of zero.

are nonzero numbers with an exponent of zero. The fonn of a
denonnalized number is:

(_l)sigll 2(exponelll-bias+l) 0./

where f is the bits in the fraction.

(that is, affine infinity) is represented by the largest value that the
exponent can assume (all ones), and a zero fraction.

is represented by the largest value that the exponent can assume
(all ones), and a non-zero fraction. The sign is usually ignored.

Nonnalized float and double numbers are said to contain a "hidden" bit,
providing for one more bit of precision than would otherwise be the case.

Hexadecimal Representation
of Selected Numbers Value float double

+0 00000000 0000000000000000
-0 80000000 8000000000000000

+1.0 3F800000 3FFOOOOOOOOOOOOO
-1.0 BF800000 BFFOOOOOOOOOOOOO

+2.0 40000000 4000000000000000
+3.0 40400000 4008000000000000

+Infinity 7F800000 7FFOOOOOOOOOOOOO
-Infinity FF800000 FFFOOOOOOOOOOOOO

NaN 7F8xxxxx 7FFxxxxxxxxxxxxx

]

Revision A of May 9, 1988

102 C Programmer's Guide

Pointer Representation

Array Storage

Arithmetic Operations on
Extreme Values

A pointer in C occupies four bytes. The NULL value pointer is equal to zero.

Arrays are stored with their elements in a specific storage order. The elements
are actually stored in a linear sequence of storage elements.

C arrays are stored in row major order, such that the last subscript in a multi
dimensional array varies fastest.

String data types are simply arrays of char elements.

This subsection describes the results derived from applying the basic arithmetic
operations to combinations of extreme and ordinary floating-point values.

No traps or any other exception actions are taken.

All inputs are assumed to be positive. Overflow, underflow, and cancellation are
assumed not to happen. In all the tables below, the abbreviations have the fol
lowing meanings:

Table D-7 Extreme Values Usage

Abbreviation Meaning
Num Subnonnal or Nonnalized Number
Inf Infinity (positive or negative)
NaN Not a Number
Uno Unordered

The tables that follow describe the types of values that result from arithmetic
operations performed with combinations of different types of operands.

Table D-8 Addition and Subtraction Results

Addition and Subtraction

Left Operand Right Operand

0 Num Inf NaN

0
0 Num Inf NaN

Num Num Num Inf NaN

Inf Inf Inf Note NaN
NaN NaN NaN NaN NaN

Note:" Inf + Inf = Inf; Inf -Inf = NaN

Revision A of May 9, 1988

Appendix D - Sun-2, -3, and -4 Data Representations 103

Table D-9 Multiplication Results

Multiplication

Left Operand Right Operand

0 Num Inf NaN

0
0 0 NaN NaN

Num
0 Num Inf NaN

Inf
NaN Inf Inf NaN

NaN NaN NaN NaN NaN

Table D-l 0 Division Results

Division

Left Operand Right Operand

0 Num Inf NaN

0
NaN 0 0 NaN

Num
Inf Num 0 NaN

Inf
Inf Inf NaN NaN

NaN NaN NaN NaN NaN

Table D-ll Comparison Results

Comparison

Left Operand Right Operand

0 Num Inf NaN

= < < Uno
0

Num > < Uno

Inf > > Uno

NaN Uno Uno Uno Uno

Note: NaN compared with NaN is Unordered, and also results in inequality.
+0 compares equal to -0.

~~ sun Revision A of May 9, 1988
... microsystems

104 C Programmer's Guide

D.3. Argument Passing
Mechanism

D.4. Referencing Data
Objects in C

Referencing Simple Variables

Figure D-l

Referencing With Pointers

This section describes how arguments are passed in Sun C.

All arguments to C functions are passed by value.

Actual arguments are pushed onto the stack in the reverse order from which they
are declared in a function declaration.

Actual arguments which are expressions are evaluated before the function refer
ence. The result of the expression is then pushed onto the stack.

Functions return their results in register DO, or in registers DO and Dl when the
result is a float or double value.

All arguments, except doubles, are passed as four-byte values; a double is
passed as an eight-byte value. All float values are passed as doubles.

Upon return from a function, it is the responsibility of the caller to pop argu
ments from the stack.

This section describes how variables of different types are actually accessed (or
referenced). The method and notations of access, of course, differ depending on
whether the object is a simple variable, an array, a structure, or a union.

A plain variable (of simple scalar type) is acessed by its identifer. Since such a
simple variable has no structure, its identifier alone is enough to reference it.

Examples of Simple Variable References

int egress;
float lightly;
char coal;

/* Declare some simple variables */

extern double sin();

egress = 10;
/* Now reference those variables */
/* Set the int to a constant */

printf ("%f", sin (lightly»; /* Pass it as argument */

putc (coal); /* Write it to the standard output */

A variable can also be declared as a pointer to another object. In this case, the
reference to the object must be done with the pointer notation. Placing an aster
isk character * in front of an identifier uses that identifier as a pointer to an
object, and the thing that is read from or written to is the object that the identifier
points to.

Revision A of May 9, 1988

Figure D-2

Referencing Array Elements

Appendix D - Sun-2, -3, and -4 Data Representations 105

Examples of Pointer References

int *egressi
float *lightlYi
char *coali

/* Declare some pointer variables */

extern double sin()i

*egress = 10i
/* Now reference those variables */
/* Set it to a constant */

printf ("%f", sin (*lightlY»i /* Pass it as argument */

putc (*coal)i /* Write it to the standard output */

When an identifier of an array type appears in an expression, the identifier is con
verted to a pointer to the first member of the array.

The subscript operation [] is interpreted such that

[_____ E_l_[E_2_] __________________________________ ~J
is equivalent to the construct

(*«El) + (E2))
J

Revision A of May 9, 1988

106 C Programmer's Guide

Figure D-3

Referencing Structures and
Unions

Examples of Array Variable References

/* Declare some array variables */
int egress[10];
float lightly [5] [5];
char coal[100];
extern double sin();

/* Now reference those variables */
for (idx = 0; idx < 10; idx++)

egress [idx] = 10; /* Set int to a constant */

for (idx = 0; idx < 5; idx++)
for (idy = 0; idy < 5; idy++)

printf ("%f", sin (lightly [idx] [idyl»~;

for (idx = 0; idx < 100;
putc (coal[idx]);

idx++)
/* Write to standard output

There are only two operations which may be done on a structure or a union:

*/

1. A member of the structure or union can be referenced by means of the. or
- > operator,

2. The address of the entire structure or union can be taken, with the & opera
tor.

3. One structure can be copied to another of the same type.

The. operator is used in contexts where the structure or union identifier is avail
able directly to the expression. The - > operator is used when the identifier for
the structure or union is a pointer to the object.

sun
microsystems

Revision A of May 9, 1988

Figure D-4

Appendix D - Sun-2, -3, and -4 Data Representations 107

Examples of Accessing Members of Structures

demo (wanted)
char *wanted;

struct
int
char
char

/* Declare a couple of structures */
/* This one is fairly simple */

level;
*cp;
pbuffer[MAXLEN];

putter;

struct vallist
char *name;
char val type;
int value;

/* This one is a linked list */

struct vallist *nextval;
*valhead, *valtail;

struct vallist *pointer;
/* Now access the members */

putter. level = 10;
for (i = 0; i < MAXLEN; i++)

putter.pbuffer [i] *putter.cp;

/* Access members through pointers */
for (pointer = valhead;

pointer != NULL;
pointer = pointer->nextval)

if (strcmp (pointer->name, wanted) == 0)
return (pointer);

/* End of the demo function */

Revision A of May 9, 1988

E
Sun386i Data Representation

Sun386i Data Representation .. 111

E.l. Storage Allocation .. 111

E.2. Data Representations .. 112

Integer Representations ... 112

float and double Representation .. 112

Extreme Number Representation ... 113

Other Extreme Representations ... 114

Hexadecimal Representation of Selected Numbers 114

Pointer Representation ... 115

Array Storage .. 115

Arithmetic Operations on Extreme Values .. 115

E.3. Argument Passing Mechanism .. 115

E.4. Referencing Data Objects in C .. 115

Referencing Simple Variables ... 115

Referencing With Pointers .. 116

Referencing Array Elements .. 116

Referencing Structures and Unions .. 117

E.I. Storage Allocation

Table E-l

E
Sun386i Data Representation

This appendix describes how Sun C represents data in storage and the mechan
isms for passing arguments to functions on the Sun386i. This chapter is intended
as a guide to programmers who wish to write or use modules in languages other
than C and have those modules interface to C code.

This section describes how storage is allocated to variables of various types.

The Sun386i C compiler aligns data on natural boundaries. This means that
bytes are aligned on byte boundaries, words (16 bits) on word boundaries, and
doublewords on doubleword boundaries. Anything larger than a doubleword (32
bits) is also aligned on a doubleword boundary. In bit fields, data are aligned
beginning at the least signigicant bit of the word.

Storage Allocation for Data Types

Dalil Type Internal Representation

char elements a single 8-bit byte.

short integers one word (two bytes or 16 bits), aligned on a two-byte boun-
dary.

intand long 32 bits (four bytes or two words), aligned on a doubleword
boundary.

float 32 bits (four bytes or two words), aligned on a doubleword
boundary. A float has a sign bit, 8-bit exponent and 23-bit
mantissa.

double 64 bits (eight bytes or four words), aligned on a doubleword
boundary. A double element has a sign bit, an ll-bit
exponent and a 52-bit mantissa.

Note that the Sun386i alignment scheme differs from the Sun-3 scheme, in which
characters are aligned on byte boundaries and everything else, regardless of size,
is aligned on word boundaries. Consequently, reading with one type of system
from a disk or over the network data created by the other type can cause errors
because of the different alignment schemes. See the Sun386i Developer's Guide
for further discussion of this topic.

111 Revision A of May 9,1988

112 C Programmer's Guide

E.2. Data Representations On the Sun386i, whatever the size of the data element in question, the least
significant bit of the data element is always the lowest numbered (rightmost) byte
of however many bytes are required to represent that object. The tables below
describe the various representations.

Integer Representations There are three integer types used in Sun C: short, int, and long.

float and double
Representation

Table E-2 Representation of short

Bits Content
8-15 n+l

0-7 n

Table E-3 Representation of int

Bits Content
24-31 n+3

16-23 n+2

8-15 n+l

0-7 n

Table E-4 Representation of long

Bits Content
16-31 n+2

0-15 n

Afloat or double number is represented by the form

[_______ ~_1_l_~n_2_(~ __ M_N_~_·_)_1_J _____________________________ J

according to the ANSI IEEE 754-1985 standard. In the tables below,

s = sign (1 bit)

e = biased exponent (11 bits)

f = fraction (23 bits)

u = unsigned

Revision A of May 9, 1988

Appendix E - Sun386i Data Representation 113

Table E-5 float Representation

Bits Name Content

31 Sign 1 iff number is negative.

23-30 Biased Exponent Eight-bit exponent, biased by 127. Values of all zeros, and all

0-22

Bits

63

55-62

32-54

0-31

Extreme Number
Representation

Number

zero (signed)

subnormal numbers

signed infinity

ones, reselVed.

Fraction 23-bit fraction component of nonnalized significand. The "one"
bit is "hidden".

Table E-6 double Representation

Address Content
n+4 Sign

n+4 Exponent

n+4 Significand fraction - msb

n Significand fraction - Isb

where "l.f' is the significand and "f' is the bits in the significand fraction.

Table E-7 Extreme Number Representation

Description

is represented by an exponent of zero, and a fraction of zero.

are nonzero numbers with an exponent of zero. The fonn of a
denonnalized number is:

(_l)Sign 2(exponent-bias+l) 0./

where f is the bits in the fraction.

(that is, affine infinity) is represented by the largest value that the
exponent can assume (all ones), and a zero fraction.

Not-a-Number (NaN) is represented by the largest value that the exponent can assume
(all ones), and a non-zero fraction. The sign is usually ignored.

Nonnalized float and double numbers are said to contain a "hidden" bit,
providing for one more bit of precision than would otherwise be the case.

Revision A of May 9, 1988

114 C Programmer's Guide

Table E-8 Extreme f loa t Representations

normalized number (O<e<255): (-llign 2(expoMnt-127) 1./

denormalized number (e=O, f!=0): (-llign 2(expoMnt-126) 1./

zero (e=O, f=O): (_l)Sign 0

signaling NaN s=u, e=255(max); f=.Ouuu-uu (at least one bit must be nonzero)
Quiet Nan s=u, e=255(max); f=.luuu-uu
Infinity s=u, e=255(max); f=.OOOO-OO (all zeroes)

Table E-9 Extreme double Representations

normalized number (O<e<204 7): (_l)Sign 2(expoMnt-1023) 1./

denormalized number (e=0, f!=0): (-llign 2(expoMnt-l022) 1./

zero (e=O, f=O): (_l)Sign 0

signaling NaN s=u, e=2047(max); f=.Ouuu-uu (at least one bit must be nonzero)
Quiet Nan s=u, e=2047(max); f=.luuu-uu
Infinity s=u, e=2047(max); f=.OOOO-OO (all zeroes)

Other Extreme Representations A signaling NaN is a value where the sign bit is undefined, the exponent is 255 or
less for float data and 1023 or less for anddoubledata, significand is of the
fonn f = .Ouuu-uu (at least one bit must be nonzero).

Hexadecimal Representation
of Selected Numbers

A quiet NaN is a value where the sign bit is undefined, the exponent is 255 or
less for float data and 1023 or less for double data, and the fractional part of
the significand is of the form f = .1 uuu-uu.

An infinity is represented by a value where the sign bit is undefined, the exponent
is 255 or less for float data and 1023 or less for double data, and the frac
tional part of the significand is of the form f = .0000-00 (all zeros).

Value float double

+0 00000000 0000000000000000
-0 80000000 8000000000000000

+1.0 3F800000 3FFOOOOOOOOOOOOO
-1.0 BF800000 BFFOOOOOOOOOOOOO

+2.0 40000000 4000000000000000
+3.0 40400000 4008000000000000

+~t!! Revision A of May 9,1988

Appendix E - Sun386i Data Representation 115

Table E-9 Extreme double RepresentatioM- Continued

Value float doubk

+Infinity 7F800000 7FFOOOOOOOOOOOOO
-Infinity FF800000 FFFOOOOOOOOOOOOO

NaN 7F8xxxxx 7FFxxxxxxxxxxxxx

Pointer Representation A pointer in C occupies four bytes. The NULL value pointer is equal to zero.

Array Storage Arrays are stored with their elements in a specific storage order. The elements
are actually stored in a linear sequence of storage elements.

Arithmetic Operations on
Extreme Values

E.3. Argument Passing
Mechanism

E.4. Referencing Data
Objects in C

Referencing Simple Variables

C arrays are stored in row major order, such that the last subscript in a multi
dimensional array varies fastest.

String data types are simply arrays of char elements.

For infonnation on arithmetic operations, see the 80387 Programmer's Refer
ence Manual from Intel. See also IEEE Standard 754.

This section describes how arguments are passed in Sun C.

All arguments to C functions are passed by value.

Actual arguments are pushed onto the stack in the reverse order from which they
are declared in a function declaration.

Actual arguments which are expressions are evaluated before the function refer
ence. The result of the expression is then pushed onto the stack.

On the Sun386i, integer functions return their results in register eax. Floating
point functions return their results on the top of the FP stack (register st (O)).

All arguments, except doubles, are passed as four-byte values; a double is
passed as an eight-byte value. All float values are passed as doubles.

Upon return from a function, it is the responsibility of the caller to pop argu
ments from the stack.

This section describes how variables of different types are actually accessed (or
referenced). The method and notations of access, of course, differ depending on
whether the object is a simple variable, an array, a structure, or a union.

A plain variable (of simple scalar type) is aces sed by its identifer. Since such a
simple variable has no structure, its identifier alone is enough to reference it.

Revision A of May 9, 1988

116 C Programmer's Guide

Figure E-l

Referencing With Pointers

Figure E-2

Referencing Array Elements

Examples of Simple Variable References

double sin{);
int egress;
float lightly;
char coal;

egress = 10;

/* Declare some simple variables */

/* Now reference those variables */
/* Set it to a constant */

printf {"%f", sin (lightly»; /* Pass it as argument */

putc (coal); /* Write it to the standard output */

A variable can also be declared as a pointer to another object. In this case, the
reference to the object must be done with the pointer notation. Placing an aster
isk character * in front of an identifier uses that identifier as a pointer to an
object, and the thing that is read from or written to is the object that the identifier
points to.

Examples of Pointer References

double sin () ;
int *egress;
float *lightly;
char *coal;

*egress = 10;

/* Declare some pointer variables */

/* Now reference those variables */
/* Set it to a constant */

printf {"%f", sin (*lightly»; /* Pass it as argument */

putc (*coal); /* Write it to the standard output */

When an identifier of an array type appears in an expression, the identifier is con
verted to a pointer to the first member of the array.

The subscript operation [] is interpreted such that

[_____ E_l_[E_2_1 ____________________________________ J

Revision A of May 9,1988

Figure B-3

Referencing Structures and
Unions

Appendix E - Sun386i Data Representation 117

is equivalent to the construct

[~ ___ *_(~ __ 1)_+_~_2_)) ____________________________ ~]

Examples of Array Variable References

/* Declare some array variables */
double sin () ;
int egress[10];
float lightly [5] [5];
char coal[100];

/* Now reference those variables */
for (idx = 0; idx < 10; idx++)

egress [idx] = 10; /* Set it to a constant */

for (idx = 0; idx < 5; idx++)
for (idy = 0; idy < 5; idy++)

printf ("%f", sin (lightly [idx] [idy]»;

for (idx = 0; idx < 100;
putc (ccal[idx]);

idx++)
/* Write to standard output

There are only three operations which may be done on a structure or a union:

*/

1. A member of the structure or union can be referenced by means of the. or
- > operator,

2. The address of the entire structure or union can be taken, with the & opera-
tor.

3. One structure may be copied to another of the same type.

The . operator is used in contexts where the structure or union identifier is avail
able directly to the expression. The -> operator is used when the identifier for
the structure or union is a pointer to the object. Structures can also be passed as
parameters, returned from functions, or assigned to variables of the same struc
ture or union type.

Revision A of May 9. 1988

118 C Programmer's Guide

Figure E-4 Examples of Accessing Members of Structures

demo (wanted)
char *wanted;

struct
/* Declare a couple of structures */

/* This one is fairly simple */
int level;
char *cp;
char pbuffer[MAXLEN];

putter;

struct vallist /* This one is a linked list */
char *name;
char val type;
int value;
struct vallist *nextval;

*valhead, valtail;

struct vallist *pointer;
/* Now access the members */

putter. level = 10;
for (i = 0; i < MAXLEN; i++)

putter.pbuffer [i] *putter.cp;

/* Access members through pointers */
for (pointer = valhead;

pointer != NULL;
pointer = pointer->nextval)

if (strcmp (pointer->name, wanted) == 0)
return (pointer);

/* End of the demo function */

Revision A of May 9, 1988

Index

A
accessing command line arguments, 11 Ihru 12
accessing environment variables, 12 thru 14
alloea (), 95
arge,11
argv,11

B
bemp (), 77
beopy (), 77
bit string functions, 77

ffs(),77
buffered I/O package

accessing files, 43 thru 50
standard input and output, 37 Ihru 39

byte string functions, 77
bemp (), 77
beopy (), 77
bzero (), 77

C
calloc () , 93
cfree (), 94
character classification, 73 thru 74

isalnum (), 74
isalpha (), 73
isaseii (), 74
iscntrl (), 74
isdigit (), 73
isgraph (), 74
islower 0, 73
isprint (), 74
i spunct 0 , 74
isspace (), 74
isupper (), 73
i sxdigi t (), 74

character conversion. 74
toaseii 0, 74
tolower 0 , 74
toupper () , 74

character I/O, 53 thru 69
check heap

maIIoc_verify(),95
child process, 19
clear byte strings

bzero 0, 77
elose (), 83

-119-

command line arguments, 11 Ihru 12
arge,11
argv,11

compare byte strings
bemp (), 77

compare strings
stremp (), 75
strnemp () , 75

compiling C programs, 3 thru 7
concatenate strings

streat (), 76
strneat () , 76

controlling processes
fork (), 19
wait (), 19

convert character
toaseii (), 74
tolower () , 74
toupper () , 74

copy byte strings
bcopy (), 77
strcpy (), 76
strncpy () , 76

ereat (), 83
creating processes

exeel (), 17
exeev (), 17

D
data representation

Sun-2, 99 thru 104
Sun-3, 99 thru 104
Sun-4, 99 thru 104
Sun386i, 111 thru 115

debugging memory management, u,·;·I.;;;. .. ·O~-:

malloe_debug (), 95
malloc_verify (), 95

descriptors, 81

E
environment variables, 121hru 14

getenv () , 13
EOF, 38, 40
error processing in low level input-output, 86
execl (), 17
execv (), 17
exit (), 20

Index - Continued

F
feof (), 60
fflush (), 47
ffs (), 77
fgetc (), 54
fgets (),56
FILE,43
file descriptors, 81
find character in string

index (), 76
rindex (), 76

fork (), 19
fprintf (), 40
fputc (), 59
fputs (), 60
free memory

cfree (), 94
free (), 93

fscanf (), 40

G
getc (), 53
getchar (), 38,55
getenv () library function, 13, 13

H
high-level I/O package

accessing files, 43 thru 50
standard input and output, 37 thru 39

I
index strings

index (), 76
rindex (), 76

index (), 76
inline.7
input stream

ungetc (), 40
input-output

error processing, 86
lseek (), 85
seek (), 85

input-output -low-level routines, 81 thru 86
close (), 83
creat (), 83
file descriptor, 81
read() , 82
unlink (), 83
write (). 82

interrupts, 27 thru 31
isalnum (), 74
isalpha () , 73
isascii () , 74
iscntrl (), 74
isdigit (), 73
isgraph () , 74
islower () , 73
isprint () , 74
ispunct () , 74
isspace (), 74

-120-

isupper (), 73
isxdigit (), 74

L
length of string

strlen (), 75
longjmp () • 29
low level input-output, 81 thru 86

close (), 83
creat (), 83
error processing, 86
file descriptor, 81
lseek (), 85
open (), 83
read (), 82
seek (), 85
unlink () • 83
write (), 82

lseek (), 85

M
main (), 11
malloc (), 93
malloc_debug(),95
malloc_verify(},95
memalign () .94
memory allocation debugging, 95 thru 96
memory management, 93 thru 96

alloca () , 95
calloc (). 93
cfree (), 94
free (), 93
malloc (), 93
malloc_debug (), 95
malloc_verify(},95
memalign (), 94
realloc () ,94
valloc () , 94

memory management debugging, 95 thru 96

N
NULL,18
null-terminated string functions, 74 thru 77
null-terminated strings

strcmp () , 75
strncmp () , 75
strcat () , 76
strncat () , 76
strcpy () , 76
strncpy () , 76
index (), 76
rindex (), 76
strlen (), 75

o
onintr (), 28
open (), 83

p
parent process, 19
pause (), 30
pipes, 20
printf (), 38
proc_id, 19
process control

fork 0,19
wait 0, 19

processes, 17 Ihru 23
exeel (), 17
exeev (), 17
pipes, 20
systemO, 17

putc (), 58
putchar (), 37,59

R
random access

lseek (), 85
seek 0,85

read (), 82
realloe (), 94
rewind (), 46
rindex () , 76

S
scanf () , 38, 40
seek (), 85
set jmp. h, 29
sh,18
SIG_DFL,31
SIG_IGN,31
signal () , 27
signal. h, 27
signals, 27 Ihru 31
sprintf (), 17,40
sseanf (), 40
standard I/O package

accessing files, 43 Ihru 50
standard input and output, 37 Ihru 39

stdin (), 29
stdio.h,35
storage allocation, 93 thru 96

alloea () , 9S
calloe (), 93
cfree (), 94
free 0, 93
malloe (), 93
malloe debug () , 95
malloe-verify(),95
merna I ign () , 94
realloe (), 94
valloc 0,94

storage management, 93 Ihru 96
storage management debugging, 95 thru 96
strcat (), 76
st rcmp () , 75
st rcpy () , 76
stream

-121-

stream, continued
ungete (), 40

string handling, 73 thru 77
string operations

streat (), 76
strepy () , 76
strnepy (), 76
index (), 76
rindex (), 76
stremp () , 75
strlen (), 75
strnemp () , 75

strlen () , 75
strneat () , 76
strnemp () , 75
strncpy () , 76
system () , 17
system-level input-output, 81 thru 86

T
toaseii () , 74
tolower () , 74
toupper () , 74

U
ungetc (), 40,57
unlink () , 83

V
valloc () , 94

Index - Continued

variables, accessing from environment, 12 thru 14
verify heap

malloc_verify(),9S
void (), 31

W
wait (), 19
write (), 82

Z
zero byte strings

bzero (), 77

Notes

Notes

Notes

Notes

Notes

Notes

Notes

