SKR KKK KRR KRR AR KR KKK RRAKORRIOKHOR AR KKK
K HORHSFOK KKK KKK KA AKAKAKAK KA KA HRAHRAKAORKAK KKK KK

HOKR
HOKOR
HHOK
HKK
KK
KACK
koK
KKK
XK
HAK
KK
FKK
KKK
KKK
kK
HORK

Name:

Project: 1

Programmer: MWK

File Name: REWRIT.DOCIL7@,TES]

File Last Written:

Times 18:45

9:19 208 Feb 1973
Date: 15 Jul 1373

Stanford University
Artificial Intelligence Project
Computer Science Department

Stanford,

California

XHK
KoKk
kK
XKK
XKk
kK
HokK
oKk
oKk
oKX
KKK
HokoK
KKK
KKK
¥k
*okk

RSRACORRR R R AR KRR AR KKK AR KK KAKAOK AR HKHAKKK KA K
SKSROKOR KKK R A SOR KKK KKK KRR KKK RO AR A KA AR AR AR KK

THE LISP78 PATTERN MATCHING SYSTEM

Laurence G. Tesler
Horace J. Enea
David C. Smith

Stanford University

February, 13973

ABSTRACT

LISP78 is a descendant of LISP which emphasizes pattern-directed
computation and extensibility, A function can be defined by a set of
pallern reurite rules as well as by the normal LAMBDA method.. New
reurite rules can be added to a previously defined function; thus
LISP78 functions are said to be "extensible". It is possible to have
the new rules merged into the function automatically so that special
cases are checked before general cases. Some of the facilities of
lhe reurite system are described and a variety of applications are
demonstrated,

NOTICE

Thic is a limited circulation draft of a paper to be submitted
to a conference or journal. No right to publicize its contents is
granted.

1 Tesler, Enea, and Smith

BACKGROUND

During the past decade, LISP [16] has been a principal
programming language for artificial intelligence and other frontier
applications of computers. Like other widely used languages, it has
spatined many variants, each attempting to make one or more
improvements. Among the aspects that have received particular
attention are notation [1,18,14,211, control
structure [4,11,17,131, data base management [12,17,221, interactive

editing and debugging [24], and execution efficiency.

A need for a successor to LISP has heen recognized [31, and
several efforts in this direction are under way. The approach being
taken vith TENEX-LISP is to begin with an excellent debugging
system [23] and to add on flexible control structure (2] and Algol-
like notation. The approach taken by LISP78 and by the LISP-related
FCL (261 is to hegin With an extensible kernel language which users

can tailor and tune to their own needs.

"Tailoring" a language means defining facilities which assist in
the solution of particular kinds of problems which may have been
unanticipated by the designers of the kernel. "Tuning" a language
means cpecifying wore efficient impleﬁentations for statements which

are executed freguently in particular programs.

il

2 Tesler, Enea, and Smith

A language that can be used on only one computer is not of
universal utility; the ability to transfer programs between computers
increases its value. However, a language that is extensible both
uprard and doundard ie difficult to transport if downward extensions
mantion machine-cdependent features [7,81. LISP78 generates code
for an "ideal LISP machine" called "ML" and only the translation from
ML to object machine language is machine-dependent. Thus, downward
oxtensions can be factored into a machine-independent and a machine-
dependent papt, and during program transfer, the machine-dependent

recoding (if any) is clearly isolated.

Among the improvements LISP78 makes to LISP are backtrack
control structure [191, streaming [15], pattern-directed computation,

and extensible functions.

The subjects to be covered in the present paper are pattern-

directed computation and extensible functions.

3 Tesler, Enea, and Smith

PATTERN-DIRECTED COMPUTATION

Many of the data tranformations performed in LISP applications
are more easily described by pattern matching rules fhan by
algorithms [12,17,22,251. In addition, pattern matching rules are
appropriate for the description of input-output conversion, parsing,
and compiling (281, LISP78 places great emphasis on "pattern reurite
rules" [5,6,13,271 as an alternative and adjunct to algorithms as a

means of defining functions,

A brief explanation of rewrite rule syntax and semantics will be
presented with some examples to demonstrate the clarity of the

notation,

Fach rule e of the form DEC-REC. The DEC (decomposer) is
matched against the "input stream". [f it matches, then the REC

(recomposer) generates the "output stream".

A titeral in a pgttern is represented by itself if it is an
identifier or number, or preceded by a quote (')} if it is a special
character.

RULES OF SQUARE =
2 = 4,

5 - 25,
12 » 144

4 Tesler, Enea, and Smith

A private variable of the rule is represented by an identifier
prefixed by a colon (:); it may be bound to only one value during
operation of the rule.

RULES OF EQUAL =
X X - T,
(X sY = NIL 3

A list is represented by a pair of parentheses surrounding the
representations of its elements. A segment of zero or more elements
is represented by an ellipsis symbol (v.).

RULES OF CAR =
(X o) = X

RULES OF COR =
(sX o) » (o)

RULES OF CONS =
X)) = X aa)

RULES OF ATOM =
(:x cl.). - NIL,
X =T
RULLES OF APPEND =
(RS T (U DS (R B

[f a segment needs a name, it is represented by an identifier

profixed by a double—cb|on (13},
RULES OF ASSOC =
X (e GX oY) L) s (X oY),
X {...) » NIL ;
A function F can be called in a pattern, passing it a single
arqument ARG, by the construct: ARGeF (there are also ways of. passing

ceveral arguments to a functionl),

[sai

RULES OF LENGTH =
{)
(:X o)

-
-5

8
(

Tesier, Enea, and Smith

’

«v+) eLENGTH eADDL ;

G Tesler, Enea, and Smith

LIST STRUCTURE TRANSFORMATIONS

The following set of rules defines a function MOVE_BLOCK of
three arguments: a block to be moved, a location to which it should
be moved, and a representation of the current world, The function
moves hlock B from its current location in the world to location
: T, and the transformed rebreeentatién of the World is returned.

RULES OF MOVE_BLOCK =

000)

B :TO oy GTO o0 s .
: N S

'—)(ooo (:TD DR

B 2T0 Goy Gow 2B usy) s GTO wew) 0ld)
> (o G vod) e GTO L. 5B) L),

(B 270 oy Gouw 2B uud) L)
- (e G ced) o GTO :B)Y,

(B :70 (.))
» (BLOCK :B NOT IN (...)) eERROR ;

In the first case, the block is already where it belongs, so the

wor ld does not change; in the second, the block is moved to the
rights in the third, to the left; in the fourth, the location :T0
does not exist yet and is created; in the last case, :B is not in the

wor ld and the ERROR routine is called.

Functions such as MOVE_BLOCK have been used in a simple planning

program uritten by one of the authors. Imagine writing MOVE_BLOCK as

7 Tesler, Enea, and Smith

an algorithmy it would require the use of auxiliary functions or of a
FROG with state variables and loops., Bugs would be more likely in

the algorithm because its operation would not be so transparent.

Tesler, Enea, and Smith

[8e]

REPLACEMENT

[f F is any function, then the construct <F> occurring in a DEC
pattern signifies "replacement". This means that F is invoked to
translate a substream of the input stream, and that substream is
replaced by its translation. The altered input stream can then

continue to he matched by the pattern to the right of <F»>,

The following example is from the MLISP compiler, which calls
itaelf recursively to translate the condition and arms of an IF-
statement to LISP:

RULES OF MLISP =

[F <MLISP>:X THEN <MLISP>:Y ELSE <MLISP>:Z
» (COND (:X :Y) (T :2)),

IF <MLISP>sX THEN <MLISP»>:Y
» (COND (:«X :Y) (T NIL)},

IF <MLISP>:X :
» (MISSING THEN) eERROR,

IF > (ILLEGAL EXPRESSION AFTER IF) eERROR ;

Here is another example. The predicate PALINDROME is true iff
the input stream is a mirror image of itself, i.e., if the left and

right ends are equal and the middle is itself a palindrome,

of

fesler, Enea, and Smith

RULES OF PALINDROME = :X - T,
(X X > T,
X <PALINDROME>T :X - T,

. - NIL ;

The replacement facility provides both the non-terminal symbols

syntactic parsing and the "actors" of PLANNER [12].

19 Tesler, Enea, and Smith

EXTENSIBLE FUNCTIONS

New rrules may bhe added to an existing set of rewrite rules under
program control; thus, any compiler tablé or any other system of
Fonrite rules can he extended by the user., For this reason, a set of
rewrite rules is said to be an "extensible function". The "ALSOD"
clause is used to add cases to an extensible function: |

RULES OF MLISP ALSO =

IF <MLISP>:X THEN <MLISP>:Y ELSE
» (MISSING EXPRESSION AFTER ELSE) eERROR,

IF <MLISP>:X THEN
5 (MISSING EXPRESSION AFTER THEN) eERROR

Fxtensions can be made effective throughout the program or only

in the current block, as the user wishes.

A regular LAMBDA function can also he extended. [ts bound
variables are considered analogous to a DEC and its body analogous to
a REC. Accordingly, the compiler converts it to an equivalent

Feurite function of one rule hefore extending it

11 Tesler, Enea, and Smith

THE EXTENSIBLE COMPILER

To make an extensible compiler practical, the casual user must
he able to understand how it works in order to change it. To
demonstrate that it is not inordinately difficult to understand the
[.ISP70 compiler, those rules which get involved in translating a
particular statement from MLISP to LAP/PDP-18 are shown below. A
simplified LISF70 (typeless and unhierarchical) is used in the
examples, but the real thing is not much more complicated. The
skatement to be translated is:

IF A < B THEN C ELSE D
The rules invoked in the MLISP-to-LISP translator are:
RULES OF MLISP =

IF <MLISP>:X THEN <MLISP>:Y ELSE MLISP>:Z
- (COND (X &Y} (T :2)),

X T Y - (LESSP X :Y),
: VAR - VAR

The | 1SP-to-IL compiler below utilizes the following feature: if
4 colon variable occurs in the REC but it did not occur in the DEC,
an "existential value" (Which is something like a generated symbol)
is bound to it. Here, the existential value is used as a compiler-

generated label,

17 Tesler, Enea, and Smith

RULES OF COMPILER =

(COND (T :E))
’ 5> :E eCOMPILER,

(COND (:B :E) ...)

» :B eCOMPILER
(BRANCH_FALSE :ELSE)
:E eCOMPILER
(BRANCH :0UT)
(LABEL :ELSE)
(COND ...) eCOMPILER
(LABEL :0UT),

(LESSP :A :B)
> A eCOMPILER
(PUSH_DOWN)
:B eCOMPILER
(COMPARE LESS),

Y » (LOAD :V)

The ML-to-LAP translator below assumes that the value register
“of the ideal machine is represented on the PDP-18 by a register named
"VAL", that there is a single stack based on register "P", and that

variables can be accessed from fixed locations in memory.

RULES OF ML =

(BRANCH_FALSE :LBL)
» (JUMPE VAL :LBL),

(BRANCH :LBL)
» (JRST :LBL),

(LABEL :LBL)
- 1LBL,

(PUSH_DOWN)
» (PUSH P VAL},

(COMPARE LESS)
» (CAMGE VAL 8 P)
(TDZA VAL VAL)
(MOVET VAL 1)
(POP P},

(LOAD V)
» (MOVE VAL :V) ;

The code generated is thus:

(MOVE VAL A)
(PUSH P VAL)
(MOVE VAL B)
(CAMGE VAL 8 P)
(TOZA VAL VAL)
(MOVELD VAL 1)
{(POP P)
(JUMPE VAL EBB01)
{MOVE VAL C)
(JURST EBBO2)
EQLBL (MOVE VAL D)
Eopo2

Tesler, Enea, and Smith

Meephole optimization guided by another rewrite function can reduce

this to six instructions,

14 Tesler, Enea, and Smith

AUTOMATIC ORDERING OF REWRITE RULES

In most pattern matchers, bandidate patterns to match an input
strean are tried either in order of appearance on a list or in an
escential ly random order not obvious to the programmer. LISP78 tries
matches in an order specified by an "ordering function" associated

with each set of reurite rules,

One common ordering is "BY APPEARANCE", which is appropriate
uhen the programmer wants conscious control of the ordering. Another
Ps "RY SPECIFICITY”; which is useful in left-to-right parsers and
other applications where the compiler can be trusted to order the
Fules so that more specific cases are tried before more general ones.
lhen neilher of these standard functions is appropriate, the
programmer can define and use specialized ordering functions, or can

extend SPECIFICITY to meet the special requirements.

Automatic ordering is a great convenience for a user who is
extencding & compiler, a natural language parser, or an inference
aysiem. It can eliminate the need to study the existing rules simply
to determine wvhere to position a new rule. Ordering functions can
also be designed to detect inconsistencies and ambiguities and to

.

discover opportunities for generalization of similar rules.

15 ' Tesler, Enea, and Smith

As an example, take the LISP-TO-ML transiator "COMPILER", which
includes the following rute for the intrinsic function PLUS (slightly
simplified for presentation):

RULES OF COMPILER =
(PLUS :X 1Y)
- XeCOMPILER
(PUSH_DOWN)
: YeCOMPILER
(ARITHMETIC ADD)

To add special cases to the compiler forvsums including the
constant zero, the user could include the following declaration in a
pragrams

RULES OF COMPILER ALSO =
{PLUS :X 8) - :XeCOMPILER,

(PLUS 8 :X) - :XeCOMPILER ;

The compiler is ordered by SPECIFICITY, which knows that the
Literal 8 0o more apecific than the.variable +X or Y, Therefore,
bhoillh of the new rules would be ordered before the original PLUS rule.
Suppose the added rules were placed after the general rule; then the
original rule would get first crack at every input stream, and sums

tith zero would not be processed as special cases,

16 Tesler, Enea, and Smith

AN ORDERING FUNCTION

The complete definition of the ordering function SPECIFICITY is
hoyond the scope of this paper. 1t works roughly as follows.
Comparing DEC patterns by a left-to-right scan, it considers literals
more specific than variables, a colon variable at‘its second

occurrence more specific than one at its first occurrence, and a

function call with an "e" more specific than a variable but less
specific than a literal., The specificity of a replacement <F> is

that of the most general rule in the function F.

A DEC with an ellipsis is considered to expand to multiple rules
in which the ellipsis is replaced by 8, 1, 2, 3, ... ® consecutive
variables, The aﬁecificitg of each expanded rule is considered
ceparately. Observe that betueen two expansions of an elliptic rule
some other rewurite rule of intermediate specificity may lie.’
Example:

RULES OF SILL
A
A

B...C 4 10

Y - 2

ILLY =
B X e
Tuo of the expansions of the first rule are:

AB XC - 1,
A:ZBC - 1,

‘and the second rule of SILLY comes between these in specificity.

17 Tesler, Enea, and Smith

SPECIFICITY is itself defined by a system of rewrite rules. To
aive a flavor of hou this is done, a very simplified SPECIFICITY will
he defined. 1t takes tuo arguments (DEC patterns translated to LISP
notation) and returns them in the proper order.

RULES OF SPECIFICITY =

(COLON :V) (LITERAL :L)
» (ORDER (LITERAL :L) (COLON :V)),

(LITERAL :L) (COLON :V)
» (ORDER (LITERAL :L) (COLON :V)) 3

18 Tesler, Enea, and Smith

OTHER FACILITIES AND APPLICATIONS

Other facilities of the rewrite system include side-conditions,
conjunctive match, disjunctive match, non-match, repetition,
ovaluation of LISP and MLISP expressions, look-ahead, |ook-behind,

and reversible rules.

Out of reurite functions, it is easy to define systems of
inference rules, assertions, and beliefs. LISP78 has facilities for
retrieving cither all or the first of the assertions in a set of

rules that match a given pattern,

Rewrite rules are a great help in natural language
underslanding, whether the methods used are based on phrase structure
qrammar, features, keyuords, or word patterns. A use of LISP70 with

the: latter wethod is described in a companion paper [81.

19 Tesler, Enea, and Smith

CONCLUSTONS

Many of the design decisions of LISP78 are contrary to trends
seen in other "successors to LISP". The goals of these languages are

similar, but their means are often quite diverse,

Concern wWith good notation does not have to compromise the
development of pouwerful facilities; indeed, good notation can make

those facilities more convenient to use.

Emphasis on pattern-directed computation does not overly
constrain the programmer accustomed to uriting algorithms. Rewurites
and algorithms can be mixed, and the most appropriate means of

defining a given function can be selected.

LISP78 does not limit the use of pattern reurite rules to a feuw
facifities |ike goal-achievement and assertion-retrieval. A set of
rules can be applied to arguments |ike any other function, and can

ctream data from any type of structure or process to any other.

“. Automatic ordering does not prevent the programmer from seizing
control, but allous him to relinguish control to a procedure of his
choosing 1o save him tedious study of an existing program when making

oxtensions.

e Tealer, Enea, and Smith

The LISP78 kernel is being debugged on a POP-18 at the time of
thic writing February, 1973}, The language has already been used
successful ly in programs for question-answering and planning. After
the kernel can reliably compile itself, extensions are planned to
improve its control structure, editing, and debugging capabilities,

and versions may be bootstrapped to other computers.

21

(2]

(3]

[4]

171

(&1

4]

Tesler, Enea, and Smith

REFERENCES

Abrahams, P. W, et al, "The LISP 2 Programming Language and
System", Proc. AFIPS FJCC 29 (1866), 661-676

Bobrow, 0. G. and Wegbreit, B., "A Model and Stack Implementation
of Multiple Environments", Report No. 2334 (March 1972), Bolt,
Beranek, and Newmnan

Bobrow, U, G., "Requirements for Advanced Programming Systems for
List Processing", Comm. ACM 15, 7 (July 1972), 618-627

Burstall, R.M., Collins, J.5. and Popplestone, R.J., Programming
in Pop-2, University Press, Edinburg, Scotland (1971}, 273-282

Coalby, K. M. and Enea, H., "Heuristic Methods for Computer
Understanding of Natural Language in Context Restricted On-Line
Nialogues", Math. Bilosciences 1 (1967), 1-25 ’

Colby, K. M., Watt, J., and Gilbert, J. P., "A Computer Method of
Peycholherapy", J. of Nervous and Mental Disease 142 (1966),
148157

Dickman, B. N., "ETC: An Extensible Macro Based Compiler",
Proc, AFIPS SJCC 38 (1971), 529-538

Nuby, J. J., "Extensible Languages: A Potential User’s Point ‘of
Vieu", in (181, pp.137-148

Enea, H., Colby, K. M., and Moravec, H., "ldiolectic Language-
Analysis for Understanding Doctor-Patient Dialogues", (submitted
to TJCAT)

Ernea, H., "MLISP (IBM 368/67)", Computer Science Technical
Report CS 92 (1968), Stanford University

Hewitt, C., PLANNER: A Language for Manipulating Models and
Proving Theorems in a Rohot, Ph.D. Thesis (Feb 1371), MIT

Hewitt, C., "Procedural Embedding of Knowledge in PLANNER",
Proc. IJCAL 2 (1971), 167-182

Kay, A., "FLEX, A Flexible Extendible Language", CS Tech. Report
(1968), U, of Utah

~J
N

(14]

[15]

[16]

[17]

{1s

(19

[20]

(211

(221

[231.

(241

(26]

Tesler, Enea, and Smith

Landin, P. J., "The Next 788 Programming Languages", CACM 3, 3
(March 1966), 157-166

Leavenuorth, B. M., "Definition of Quasi-Parallel Control
Functions in a High-Level Language", Proc. Int'l. Comp. Sump.
(Bonn, 1978)

McCarthy, J., "Pecursive Functions of Symbolic Expressions and
their Computation by Machine, Part 1", Comm. ACM 3, 4
(April 1960), 184-195

Rulifson, J. F., Waldinger, R. J., and Derksen, J. A., QA4, A
Lanquage for. Writing Problem-Solving Programs, Proc. IEIP
(1968), TA-2, 111-115

Scthuman, S., ed., "Proceedings of the International Symposium on
Fxtensihle Languages", ACM SIGPLAN Notices 8, 12 (Dec. 1871)

Smith, D. and Enea, H., "Backtracking in MLISP-2", (submitted to
1JCAT)

Smith, D. and Enea, H., "MLISP2 -- A Programming Language for
Writing and Debugying Translators", (forthcoming)

Swith, ., "MLISP (POP-10)", Artificial Intelligence Memo No.
135, Stanford University, Oct. 1979

Suseman, 6. J. and McDermott, 0. V., "Why Conniving is Better
than Planning", Proc. AFIPS FJCC 41 (1972), 1171-1188

Teitelman, W. et al, BBN-LISP Reference Manual, (July 1371),
Bolt, Beranek, and Newman

Teitelman, W., "Toward a Programming Laboratory", Proc. IJCA[1
(1969}, 1-8

Teitelman, W., Design and Implementation of FLIP, a LISP Format
Dirccted List Processor, Scientific Report No. 18 (July 1967),
Bott, Beranek, and Newman

Weghreit, B., "The ECL Programming System", Proc. AFIPS EJCC 33
(1971), 253-262

Weizenbaum, Jo, "ELIZA -- A computer Program for the Study of
Nalural Communication Between Man and Machine", Comm. ACM 3, 1
(Jan., 196G}, 36-45",

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22

