ALK MR AAORHRKOR AR AR AR AR KKK KK KK RKAK KKK KKK K
AR ARAK A RANOKHORACKAKK KK A KKK KAKK KK KA KAOKN KK kK

KR
HAXK
HAK
Fokok
HAK
HAK
KRN
A
HAK
AAK
HAK
AKX
Aok
KAk
AKX
HHRK

Name:

Project: 1

Programmer: MWK

File Name: LEAP.TXT(DOC,AIL]

File Last Written:
Time: 19:15

0:32 28 Jun 1973
Date: 15 Jul 1973

Stanford University
Artificial Intelligence Project
Computer Science Department

Stanford,

California

*okok
Hokok
koK
koK
FokoK
sokk
SokK
Aok
koK
XK
KK
*okok
*okk
*okxk
KekK
*okok

PR AR AR AR AR KA KA KKK KKK AR KK KRR KKK KK
SRR AR KR AAORIKRK AR KRR IR A KKK KKK KKK MKk KKK KK KoK

15 Jul 1973 13:15 LEAP, TXT IDOC, AIL] PAGE 1-1

COMMENT & VALID B8B822 PAGES
RECORD PAGE DESCRIPTION
BeBB1 0B8B1L : :
PRREL ABRH2 Leap Implementation Documentation
nBvoG PR3 LEAP COMPILER INITIALIZATION(LEPINI)
pRBR8 BBBO4 Declarations{conpiler)
Buel4 PBRES COMPILE-TIME STACK
PO028 BRRRE COMPILE-TIME STACK
aee25 BrRBE7 Compiling calls to LEAP runtimes:
BAa3e 0OR0e Compiling calls to LEAP runtimes(cont)
Bop3L POBRY Compiling calls to LEAP(cont)
gee37 0eole Compiling FOREACH'S
gu641 80011 Compiling Foreach’s (continued)
poBLE BReL2 COMPILATION OF FOREACH SEARCHES
08047 POBL3 GLOBAL MODEL. CONSIDERATIONS (compiler)
pre4s 00014 LEAP RUNTIM INITIALTZATION (LPINI)
09849 80015
ap0L8 08016 PRINTNAMES (COMPILER)
BaRss BRa17 PRINTNAMES (RUNTIME)
PRESY BBB13 PRINTNAME DATA STRUCTURES
pRBE3 80819
PRLE7 00028 These item-printname nodes consist of two words which
paE71 0002) Printname Runtime routines, _
pEO74 80622 DEL_PNAME (item) - delete printname. Called to disassociate
PRB&3 ENOMK ' :

=Y

15 Jul 1973 19:15 LEAP, TXT[DOC, AIL] PAGE 2-1

Leap Implementation Documentation

The following will hopefully (someday?) incliude all the
important implementation information necessary for someone else
to maintain the LEAP compiler routines and the LEAP runtime
routines.

6 Jul 1973 19:15 LEAP, TXT [DOC, AIL) PAGE 3-1

LEAP COMPTLER INITIALIZATION(LEPINI)
Cvery time the compiler is started, or restarted the routine
GENINI is called to initialize the state of the world, including
zaroing out all the variables declared in ZERODATA areas.
GENINT calls LEPINI to do various initializations for LEAP.

LEFINT does the following:

Lo Initializes O-stacks (LOCST,MPSTAK, ITMSTK, MPQSTK) by either
pushing a zero argument (MPSTAK,MPQSTK) to mark the bottom
of the stack (to prevent underflow), or pushes and pops a
dummy argument onto the stack (LOCST,ITMSTK) so that
the address of the first stack entry can be kept so that
the U-stack may be used as a FIFO queus.

N

. Gets dummy semblks for NIL, PHI, and NULL_CONTEXT (see backtracking)

o)

Initializes the ITEMNO and GITEMNO cells. (Used to keep track
of how many local and global items have been declared).

4. Initializes LEAPSK to be an empty stack.

LPNAME: Thie is called from the productions to insert the predsclared items
such as MAINPI, EVTYPI etc into the symbol table. This really should
he done as part of RTRAN, but as RTRAN cannot allocate integer constant
semblks, there is really no alternative.

15 Jul 1973 13:15 LEAP. TXT [DOC, AIL] PAGE 4-1
Declarations (compifer)

. Declaration of items, itemvars.

[tems and itemvars are declared in the standard way: the
type bits are collected by TYPSET and the symbol is inserted into
the symbol table by ENTID. Whereas itemvars are normal variables
and thus will have storage associated with them, items are considered
to he constants. An integer constant is created for each item declared.
The value of the constant is determinehd by the following algorithm,

1. 1% the item is local (not global model item), which is
determined by the GLOBL bit not being on in BITS, increment
ITEMNO and use the current value of ITEMNDO for the item’s
number,

Note: to reserve space for predeclared items such as MAINPI,
EVTYPI, the routine LPINI (called before every compilation)
initializes ITEMNG to '18).

2. 11 the item were global {(GLOBL bit on in BITS) then decrement
GITEMND and use that value for the item’s number.
GITEMND is initialized to '7777

2. WHith the above number as parameter (currently in ac A) call
CREINT to get & integer constant semblk, Store the semblk
painter in the $VALZ in the semblk for the item.

There ie no actual storage allocation done for items as they are constants,
though of course the corresponding integer constants may be placed out

if refored to by other than "immediate" instructions. Itemvars are
allncated in the same manner as real or integer variables.

1. Declaration of sets, lists,

Again the declaration is pretty standard. Type bits are collected
inte DITS by TYPSET and the symbol is inserted into symbol table by
ENTID., Note that there is only a single parse token for both lists, and
sets. The type list is indicated by both the SET bit and the LSTBIT being
o in the TBITS entry. Also when stacked on the compile-time stack (LEAPSK:
se helow), lists are denoted by having both the LPSET and LPXISX bits on
in the left half of the compile-time stack entry.

Allocation at the end of procedure. Because the SAIL runtime
initialization must be ahle to find all statically allocated sets and
lists these are allocated together and a loader "LINK" is put out so that
the runtime leap initializer {(LPINI) can find all static sets and zero them
out.Ouring initialization uhen the SAIL program is initialized (by SAILOR)
these variables will be zeroed (set to NIL or PHI).

Value set parameters must be copied on entry to a procedure (SETCOP)
and must also be deallocated (SETRCL) on procedure exit, A better practice
rould seem to be ihat SETCOP be called by the calling procedure since it
can often be determined that no copying is necessary as the set is a
temporary. On exit from a recursive procedure sets must also be deallocated.
This is done from inside the block exit code (runtime routine BEXIT) or
(runtime STKUWD) used in goto's out of procedures), both routines use the

15 Jul 1973 19:15 LEAP. TXT [DOC, AIL] PAGE 4-2

procedure descriptor (also called PD) to determine where the set locals and
parameters are located on the stack,

When any LEAPish declaration or construct is seen the cell LEAPIS is made
non-zero. This will be used later to determine if LEAP will have to be
initialized at runtime,

15 Jut 1973 19:1% LEAP. TXT [DOC, AIL] PAGE 5-1
COMFILE-TIME STACK
o STITM (8TSET)

Whenever an item or itemvar (SET OR LIST) is scanned in an expression
(not the left side of an assignment) the routine STITM stacks the semblik on
an internal stack whose current top is pointed to the cell LEAPSK. QOutside
of IFOREACH’ s STITM will also generate code to stack the previous element on
LEAPSK if any. The reason ue defer generating the code that will stack the
current element is tuo-fold: one this itemvar may be a reference parameter
in which case we will not want the value of the itemvar but rather the
address; tuo, sometimes certain expressions can be compiled into more
efficient code if e wait(e.g itmvrleitmvr2 can be compiled into a MOVE,
MOVEM rather than a PUSH, POP).

Note that we must keep track of which things in LEAPSK for which code
has hecn emitted to stack them. Therefore in the left half of the LEAPSK entry
is a bit STACKED wuhich will be on if code to stack the entity has been emited
and off if no such code has heen emited, Other left half bits in the LEAPSK
entry keep track of such important information as whether this is an item
expression(LFITM) or not (LPSET, LPXISX)sif this is properly a retrieval (RETRY),
or constuction(CNSTR) expression. All expressions are possibly construction
expressions at compile time, but NEW cannot properly be part of a retrieval
expression, ANY and UNBOUND are not properly construction expressions, but this
impropriety is discovered onty at runtime,

Othaer left hand bits, are: BINDING which indicates this is a foreach
local which has not yet been bound; BOUND indicating a foreach local which has
been bound by a previous search; FIXED which is on for item constants or
contents of some non-local itemvar(it is read only in if-expr,and case-expr
its exact significance is beyond me); DUMSEM which is on if the semblk is
a dummy and is on only if the thing was a temp which has been remopped; LPDMY
on if a item from a bracketed triple of a derived set within FOREACH; LPNUL
is on only for null sets and lists. Two other bits FBIND and QBIND are not
put in by STITM hut are in the left half of the LEAPSK entry to indicate
a BIND itemvar or a ? itemvar respectively as in:

if AeBIND x = ? z then ...

Within a Foreach associative context(indicated by the LPPROG bit being
on in FF), no code is emited by STITM to stack the elements of LEAPSK. This
is to enable better code to be emitted for certain searches involving
bracketed triples, and derived sets., For example

FOREACH x | xelaeo=vl=z do
is compiled as if it were:
FOREACH x,q | [aeo=v] = gn xegszz do

He could not simply stack x, then do the bracketed triple, then stack v because
the design of the foreach interpreter at runtime does not allow anything to

he remembered on the stack(see the difficulties if x were on the stack and

then the search aeosv failed).

NOTE: Some of the runtimes return their values on the top of the stack
(as opposed to the normal convention of returning values in AC 1).
. G, COP{list). The compiler will emit the code to call the routine,

LS dul 19730 13156 LEAP, TXT [DOC, AIL] PAGE 5-2

and will push an entry onto LEAPSK with the STACKED bit on in the left half
and a zero right half where a semblk would normally appear.
(GFF BFIN and BFINA in the compiler).

15 Jul 1973 1315 LEAP, TXT [DOC, AIL] PAGE 6-1
COMPILE-TIME STACK

I1. TTHMREL ~ since STITM outside of FOREACH's causes code to be emited
Hhich will cause the previous top of the LEAPSK stack to be
stacked on the runtime stack, we often must short-circuit this
by remaving things from the LEAPSK. One such routine is [TMREL
Hhich is used in item relations such as

itmvrl= itmvr2,

ITMREL takes the top element of LEAPSK (causes code to be emited
to pop it into an ac if STACKED) and puts the semblk into the
parse stack for relational operations later.

1T, OKSTAC- often we must force the top element of LEAPSK to actually
be stacked on the runtime stack., For example:

MAKE aso=itmfn(@,1,a);
if ue did not stack "o" before starting to process the itmfn, the
o would not be stacked until the second a was seen thus the
parameters on the runtime stack would be in the order
a,8,1,0,a instead of a,0,0,1,a which is the correct order.
Calling OKSTAC causes code to be emitted to stack the last operand
on the runtime stack if necessary.

Iv. STCHK - called by the macro STAKCHECK (#of parms).
This makes sure that the #Hof parms top entries of LEAPSK are
stacked. Also makes sure collects the BOUND, BINDING bits
to be passed to the runtimes into the left half of the word
BYTES, and will return in left half of
ac Av FBIND if any of the parms had FBIND or OBIND ong
the AND of the RETRV,CNSTR bits so you can check for construction
-retrieval failure; and the AND of the LPITM,LPSET,LPXISX bits
so that you can check if all args wWere items, or sets.

This removes the top entries from LEAPSK, and updates ADEPTH since

it knous that these stack entries will go away. This updating of ADEPTH
is very important. If you have a routine which calls LEAP with

leap expressions and arithmetic expressions you must either make

sure the arithmetic expressions are calculated first, or you

must restore ADEPTH before calculating them.See PUTINL for an

exanple of the later.

STCHK is usually very simple. However certain foreaches cause
very complicated things to happen.

Mor example:
foreach x | xecop(setl)=v do

We have the situation when we call STCHK that x and v are not
stacked but coplsetl) is (SEE STITM above for reason why x was not
stacked). Therefore we must emit code that will pop "cop(setl)"
into a cortmp and then push the three arguments onto the runtime
stack,

15 Jul 1873 19:15% LEAP. TXT [DOC, AILI PAGE 6-2

V. LASCHK -called from case-expr, if-expr
As it is knoun to be called from outside an associative context
it does not have to check certain FOREACH dependant properties, but
otheruise is equivalent(except for minor ac differences) to
STAKCHECK (1}, See STCHK above.

VI. BNDITM(BNOLST) - these routines make sure the top entry of LEAPSK
is of the appropriate type ITEM (SET or LIST) and make sure the
code has gone out that will stack that entity. Then the top entry
of LEAPSK is removed. These routines are now called from the
APPLY, SPROUT and REMOVE exacs.

15 Jdut 1973 1:15 LEAP. TXT [DOC, ATL] PAGE 7-1

Compiling catis to LEAP runtimes:
Most calls to leap runtimes are made by loading ac 5 with
a uord containing some flag bits in the left half and a routine
index in the right half, followed by a PUSHJ P,LEAP. Inside the runtimes
this index will ke used in a branch table calculation.

Within the compiler there is a marvelous macro called RUNTIM
Which calculates the indices of the various runtime routines.
To generate the proper code to call a given routine, simply place
the desired 1h of the flag word into the 'h of BYTES, move the index
(RUNTIN defines a symbol uhich may be used for the index, the symbol
is "L" concatenated with the routine name) into ac A. And call either
LEAPCT or LEAPCZ. These routines will do an ALLSTO followed by generating
code which will load ac 5 with the required flag word, followed by
emitting a PUSHJ P,LEAP. LEAPCZ differs from LEAPCL in that it will add
to the index in A the contents of the right half of BYTES.

The routine STCHK described partially above, in addition to
making sure that the arguments will get stacked, calculates the BOUND,BINDING
bits for the attribute, object, and value positions of the flag word and
slores these in the left half of BYTES. A routine offset is also calculated
and placed in the rh of BYTES.Currently though, this offset is only used
for set or list searches within foreaches.

A macro to call LEAPCL or LEAPC2 exists and is called LPCALL.
LPCALL takes three parameters (the last two being optional). The first
is the routine name, the second the location of an amount to be added
to the primary routine index (see SETREL for example), and the third
if present indicates that LLEAPC2 should:.be called rather than LEAPCL.

For an example of how these routines are used let us look at the compiler's
exec routine for MAKE, ' :

STAKCHECK (3) ;MAKE HAS THREE ARGUMENTS
LPCALL (MAKE) ; GENERATE THE CALL TO LEAP
POPJ P, :

The macra STAKCHECK calls STCHK with the argument three. And LPCALL
calls LEAPCL with ac a loaded with the value LMAKE.

Other macros often seen are RETCHK and CONCHK which when
called immediately after STCHK will verify that the arguments were of
retrieval type, or constructive type {(Actually this is done merely
by chkecking the Ih of ac A).

Most of the leap runtime routines leave their result, if any on
the runtime stack P. However others , notably LENGTH of set, ISTRIPLE etc.
return their result in ac 1. A macro XPREP makes sure this register is
available. It also loads ac D with the value 1 so that a call. to the
MAIRK routine will mark the value as being in ac 1., Therefore be careful
not to destroy D or else restore it before calling MARK.

15 Jdul 1973 19:15 LEAP, TXT [DOC, AIL] PAGE 8-1
Compiling calts to LEAP runtimes(cont)

Most of the compiler execs for generating calls to the runtimes
are fairly straight forward., Let us briefly go through them.

MAK and CRAS are straight-forward, as are STIN, and ISTRIP,

1517 has to choose between tuwo different alternatives depending

on whether any of the arguments were preceded by BIND or "?" indicaed
by the presence of the FBIND bit in the left half of A following the
STAKCHECY .

STREL must first determine if the arguments are sets or items.

i f iteme ihen a call to ITMREL to move the second parm to the parse-stack
folloved by a jrst to IREL in the standard relation handler.

If the arguments are sets the LPCALL to SETREL is generated.

NELT bs straight-foraard,

SUPG0, and LIPGO mark a g-stack (LORSET) to determine if @ set or list
s heing constructed. Then cause a ZERD to bhe pushed on the runtime
ctark (this position of the stack will be used by the runtimes to
collect the set or liat).

SI0 calls either the |ist-maker (LSTMAK) or the set-maker (SIP)} depending
an the value of the top entry of the LORSET ¢g-stack.

STONT-(length of set) is straight-forward. An optimization easily added
mould be to see if the argument is really a reference set or list, and
do- the code in-line.

STUNT - (cop of set) is straight-forward,
FCVI- convert arithmetic expression to item

The of the arithmetic expression is "gotten" and then marked
as an itemvar temp. The itemvar semblk is then placed on .the LEAPSK.

FCVN- convert item to integer

If the item expression is stacked it is popped off into an ac,
and the ac is marked as an integer temp., 1f the item expression is
a constant item the integer semblk for the item is placed into the parse
stack, Otheruise code to get the item expression into an ac is emitted
and the ac is marked as an integer temp.

STLOP ~lop of set
This takes a reference set argument (hurray for deferred stacking)
and calls the routine FIRREF to emit code to load the address of the
set arguent into ac 14.0therwise it is straight-forward,

STHIN,STINT,STUNI - the set operations are rather straight-foruard.

PUTIN ~Put item into set
Uses FIRREF to get load the address of the set, otheruise it

atraight foruard,

PUTINL- put item in list before,after
" Must compute which of four routines to call depending on wWheter
last argument is an item or arithmetic expression, and whether
BEFORE or AFTER. The routine LISTGT is called to call FIRREF with
list argument which was cleverly removed from the LEAPSK by the

15 Jul 1973 18:15 LEAP. TXT [DOC, AIL] PAGE 8-2
exec routine HLOPNT,
REMXD - uses FIRREF but otheruise is straightforward.
REPLCX ~ is straightfbruard except for the fact that the list argument

nwas never placed on the LEAPSK because. of a hack in the
productions.

15 Jul

1973 19:1% LEAP, TXT [DOC, AIL] PAGE 9-1

Compiling calls to LEAP (cont)

CVLS~ convert list to set, vice-versa. Set to list merely changes

the marking of LEAPSK, list to set requires a LPCALL.

REFINF,LS5UR -are oxec routines which set up the necessary information

SELTP,

far o onto the g-stack LENSTR. REFINF is called when the

[ist or set argument is by reference so the semblk is stacked,
LSSURB, is called when the set or list has been stacked and
saves ADEPTH on the stack. A flag in the left half of the
LENSTR entry indicates which type, REFINF,LSSUB or string inf
is in use., The exec for inf will use this flag to call either
the string inf. or LINF which handles the two different inf's
for lists,

SELSBL, are straightforward except for munging ADEPTH when
dealing nith STAKCHECK (see STCHK for motivation).

LSTCAT is straight-foruard.

NEWNOT, NEWART are straight-forward except that the type code for the

ner item is stored in the left half of BYTES before the LPCALL.
The type code is calculated by the routine ITMTYP.

SELET ~ FIRST,SECOND THIRD are straightforward.

1h Jut 1973 19:16 LEAP. TXT [DOC, AIL] PAGE 18-1

Compiling FOREACH'S)
Ao an exanple to be used in the remainder of this section let us consider:

FOREACH 7 X,Y,Z SUCHTHAT XeY=A A(Y=B) aYeX=Z DO

I. Initializing the foreach.
When the FOREACH is parsed, a new block is entered (see productions)
and the exec routine EACH4 is called. EACH4 declares a local variable
named "SCB..."., This variable will be passed to the runtime leap
initializer, and is used in the block exit code (see BEXIT, STKUWD in
the runtimes) to incdicate whether a foreach must bhe exited.
EACHS causes code to be emitted which will push the address of
this variable onto the runtime stack,

1T, Collecting the locals.
The local variables to this foreach are X,Y,Z. As the ldcal list
e being scanned by the parser, ENTITY or QLOCAL followed by
ENTITY are called for each local parsed. These routines do
several things:

1. The LPFREE bit in the SBITS entry of the itemvar sembik
is turned on. This Wwill remain on until a search is
performed or a matching procedure called which will
bind this itemvar., STCHK is responsibie for turning -
it off.{Also turned off by ISUCAL for matching procedure
actual parameters within FOREACH's),

. The LPFRCH (for normal locals),FREEBD (for question locals)
bit is also turned on in the SBITS word.

3. The count of number of locals seen (LOCALCOUNT) is incremented
and the new value is the satisfier number for this local.
Note: so that the backup will work efficiently when we
are calling an associative search within a foreach we do
not pass the address of the local variable that is being
bound hut rather the satisfier number, This number will
he used as an index to a table within the runtime FOREACH
interpreter. The satisfier number is also passed to
any search following the search which bound the itemvar
as the value is not normally moved from the internal
table to the core variable (see FRPOP below).
4, A constant semblk for the satisfier number is obtained
by calling creint and its pointer is saved in the $valZ entry of the
focal’s semblk,

5, The itemvar's semblk is pushed onto a g-stack of locals
called LOCST, This will be used at the end of the foreach
gxecs to determine if searches to bind on the locals have
heen emitted,

15 Jul 1873 13:16 LEAP. TXT [DOC, AIL] PAGE 11-1

- Compiling Forcach's (continued)
11T, Emitting the call to start of FOREACH

When all the locals have been scanned and the SUCHTHAT is
seen the exec routine FRCHGO is called. This routine does
the following:
1. Turns on the LPPROG hit in the FF word.
This bit tells everyone that a FOREACH associative
context is in progress., This will effect such
things as whether the current value of a foreach
local is stacked or the satisfier number. See
BOOLEAN expressions helou,

2. Emits an instruction which will load ac 14 with
the address of the FOREACH satisfier block (below)
The fixup for this instruction is saved in SATADR.

3. Emits the call to the runtime leap initialzer

1V, The FOREACH satisfier Block
Pasced to the FOREACH interpreter at runtime is the address
af a block of data about the local itemvars.,

The first word is a JRST to the instruction following the
FORFACH (For use uhen the last search fails). A fixup

to this instruction is placed in the LOOP block to be filled
in later by the LOOP code.

A word containing the value of LOCALCOUNT is emitted (that is
the total number of locals and gquestion locals for this FOREACH),

The semblks for each local itemvar (obtained from LOCST) are
inspected and a word containing the following is emitted.

In the address portion of the word (index field and RH) the
acdress of the local is placed (This will be picked up by a
HOVED @ at runtime so the indirect hit must be off).

In lhe teft half the bits POTUNB for question locals, and
MPPARM 1 f this local is a formal question parameter to a
matching procedure (These are necessary since interpretation
will e done at runtime on these special itemvars).

e have not been totally truthful when we talked about the
address portion of the word to be emitted. Consider the following

RECURSIVE PROCEDURE FOO;
BEGIN ITEMVAR BAZ;

PROCEDURE ZORK;
BEGIN FOREACH BAZ | ...
END; :
. END;
In this case the address of BAZ is not simple to compute as a
display register is required (see up-level addressing elsewhere)
Thercfore in this case, the word we will emit will (in addition

15 Jul 1973 19:15 LEAP. TXT (DOC, AIL] PAGE 11-2

to any other LH bits) have the CDISP (calculate display) bit on.
In the right half will be the normal stack offset, and in the
INDEX field will he the difference betusen the current display
level and the display level where the itemvar was declared (in
this case 1).

16 Jul 1973 19:1% LEAP. TXT[DOC, AIL] PAGE 12-1
COMPTLATION OF FOREACH SEARCHES

15 Jul 1973 1916 LEAP, TXT [DOC, AIL] PAGE 13-1
GCLOBAL MODEL CONSIDERATIONS (compiler) ‘

15 Jul 1973 19:15 LEAP. TXT [DOC, AIL] PAGE 14-1
LEAP RUNTIM INITIALIZATION (LPINI)

15 Jul 1373 19:156 LEAP. TXT [DOC, AIL] PAGE 15-1

15 Jul 1973 19:15 LEAP. TXT [DOC, AIL] PAGE 16-1
VHlNTNANES(CUHPiLER)

Until a "REQUIRE n PNAMES" statement is scanned the compiler
scoumes that no printname initialization is required and any items
deelared will not receive initial printnames.

Uhen the require statement is encountered it calls the routine
PNAM (uithin the source_file LEAP). PNAM sets the variable PNMSW to
G, 'NHSK was originally initialized to be -1 to indicate no printnames
nere requested. From here on it will contain the number of items With
inilial printnames. The count n from the require statement is placed in
{he variable PNAING which will later be a part of the space allocation
hlock at runtime. PNAM sets up a Q-stack (a push doun list) and
Fecords the head {bottom) of this list in the variable PNBEG., The top
0f this atack will stay in the variable PNLST. This O-stack will
contain entries whose left half is the item'number and whose right
half is the semblk pointer for the string constant corresponding to the
i tems name.

From then on everytime an item declaration is scanned the following
things are done within the ENTID routine:
PNMSW ie incremented.
A string constant the same as the item name is
generated.
2. A word containing the item number in the left half and
the semblk pointer for the string constant in the right
half, is pushed onto the O-stack PNLST.

L.
)
Can

At the end of the compilation within the routine DONES the
printname initialization block is put out. First the program counter
(Which corresponds to the address of this block) is placed in PINIT
(carresponding to SPINIT in the space allocation block at runtime). Then
the number of pnames to be initialized is put out, followed by one word
per pname containing the item number in the left half and the address of
the string constant for the pname in the right half,

BUGH!! String constants may be used as comments at statement level. To keep
from keeping constanis used only as comments around in the compiler the
string comment handler will try to get rid of unused constants. Therefore
if the fixup chain of a string constant used as a string comment is empty
the semblk.will he reclaimed. This will cause problems if the string was
also used as an initial pname, as the reference to the constant is not
emitted until the end of the program, Thus we may find the semblk deleted
or used for something else. There should be some way of indicating in the
semblk that even though the fixup chain is empty the constant is still in
use. Note this problem also occurs for blocknames.

15 Jul 1973 19:15 LEAP, TXT [DOC, AIL] PAGE 17-1
PRINTNAMES ¢ RUNTITME)

A string called a printname (often refered to as a pname) may
be associated with a given item at runtime. Primitive actions on pnames
include dynanical ly associating a printname with an item (NEW_PNAME),
deleting the printname of an item (DEL_PNAME), finding the unique item
uith a given printname (CVSI), and finding the printname of a given item
("V15), NOTE: an item may have at most a single non-null printname, and
no tuo distinct items may have the same printname.

Printname initializations

[tems declared following @ REQUIRE n PNAMES compiler statement,
have initial printnames which are the same as their names. For example
if {he following declaration followed the requires

ITEM X
the printname of item X would initially be "X".

During the initialization of the SAIL runtime environment
a4 LEAP initialization routine(LPINI) is called. This routine in turn
calls the printname initialization routine INTNAM. The parameter to
INTHAM is contained in AC A and is the address of a printname
imitialization hlock., This address was obtained from the space allocation
hlock entry $PINIT. NOTE: for each separately compiled SAIL program there
is o opace allocation hlock which includes such information as how many
Ptems were "REQUIRED" , the user’s estimate of the number of pnames he
ill use, etc. Al the space allocation blocks of programs loaded together

Aare linked by neans of the LOADER link command.
The format of the printname initialization block is:

SAORARRAOR AR NORRAARRIORK

(Firat word) # number of pnames X (may be zero)
% to be initialized % {<@ if no REQUIRE statement)
HRA A AR A A AAAK KKK
% itemno, addr(str) x (one word for each pname
SRR AR AAKKAKAKAAKAKK to be initialized)

INTNAM calls NEW.PNAME for each pname to be initialized with the item
numbar from the left half and the string whose address is contained
in the right half of the printname initialization block entry,

15 Jul 1973 19:1b LEAP. TXT [DOC, AIL] PAGE 18-1
PRINTNAME DATA STRUCTURES

The strrings representing the printnames are stored in the
standard SAIL string space (thus unfortunately not allowing sharing,
by use of the global segment, of printnames between jobs). A
SAIL string variable is represented by a two word string descriptor:
fhe firet word containing the information such as the length of the
string and the string id; the second, containing a byte pointer
pointing to the first character of the actual string. For the
string garbage collector to work correctly, it must be able to access
all such tuwo-word string descriptors. We could, of course, have a list
of all the descriptors in use and have the garbage collector use it
to access the printnames. However, such a list would be relatively
nxpensive to maintain on deletion of printnames, as we would have
to search doun it to find the appropriate descriptor to delete when
me removed a printname. 1t therefore seems better to allocate one or
more string arrays from which we will allocate individual descriptors
for pnames, and simply have the address of these string arrays on the
came |ist (ARYLS) as the addresses of the string arrays which are
the datums of items.

On initialization of the pname structure, wWe allocate a string
array, the size of which is the maximum of the "n" in the "REQUIRE
n PNAMES" statements of all the separately compiled SAIL programs
uhich are being loaded together to form a single job { if that number
e less that 58, the string array’s size is 50), We form a list
of the individual string descriptors which are not in use. The link
pointing to the next available descriptor is contained in the seconde
nord of the current descriptor. These string descriptors are also
used by datums of STRING ITEMe. NOTE: because the string garbage
collector ignores all string descriptors whose first word is zero, we
do not have to worry about the garbage collector interpreting the
links as byte pointers to actual strings. The address of the first
available string descriptor is placed in the left half of the
HASHP word of the user table (GOGTAB). Thus we have a the following
slructures

15yl 13730 19:15 LEAP. TXT (DOC, AIL] PAGE 18-1

-5 ¥ | ——==]=-=<5 list of string arrays
HASHP
e e e |
- |

__..vl _____________________________
o | 8 |
|-=m=mmmm e |

——————)' — o -

|==mmmm e | |

| 4 I l

|~mmmmmmmm o | I

________________ —
l [mmmmmmm e |
I l g 1
| [====mmm - |
----- > |
| : |
| ' i
________________ 1
I B |
| | g |
l | === m e |
~~~~~ > o |

initial string array

NOTE: The links to the two-word blocks point to the second word
to conform with the SAIL convention that the address of a string
variable is the address of the second word of the two word
descriptor. '

The most common operation to be preformed on items and their printnames
is anticipated to be lookup: that is given an item find its printname and
vice-versa. To he able to perform this lookup in a reasonable time we

use a hash table (scatter storage) technique.

There are actually two hash tables: one for items; one for pnames.
[t turns out by use the halfuord instructions we can have the two tables
live in the same block of core. The item hash table is in the left half
vords of the block, and the string hash table is in the right half words
of the block. The address of this block (whose length is PHASLEN, currently
ot to 128 decimal) is contained in the right halfuord of the HASHP entry
0f the user table (recall that the address of the head of a list of
available string descriptors is in the left half of the HASHP entry).

Now suppose that we are given an item and are asked to find its
printname. First we compute the hashcode from the item (currently this
is sinply done by "AND"ing the item number and PHASLEN-1). We then
acdd this hashcode to the base of the hashtable (right half of HASHP).
This gives us the location containing the address of a conflict list



8 Jul 19730 19:1h LEAP. TXT [DOC, AILY - PAGE 13-2

of nodes of item-printname pairs whose item numbers hash to the same value,



O oJdul 1973 0 19016 LEAP, TXT IDOC, AIL] PAGE 28-1

These item-printname nodes consist of two wWords which
are logically divided into 4 different fields: the item number;
the link fto the next node in the item conflict list; the address
of the two word string descriptor for theipname; and the link
to the next node in the string conflict list,

AROKRRACHK KKK ARAKAOK A KAK KKK

*® * ®
% item no., x Ttem link %
X X X
SORAHAK KA AKAR AR A AA KKK
BN B *
* addr, strok str. link %
H * %

SRR KSR KRR AOR KA AR KKK AR

There is one of these nodes for each printname-item in existence.

et us continue with our search for a pname given an item number.
e now have the address of the first node in the item confiict list,
e check to see if the Ttem no. within the node is the one _
nhose printname is desired. 1f it is the same Wwe return the string
pointed to hy the lefthalf of the second word of the node. If not
e obtain the address of the the next node in the item conflict
list from the right half of the first word in the current node
under examination. We continue with this technique until we either
lind the node uhich corresponds to the given item number or wue

Fun out of nodes on the conflict list (this is indicated by a

zera link field, 1f ue exhaust the conflict list then we know

that there s no printname for the given item,

The search for the item with a given string name is similar. We form
o hacheode from the string. Use that code as an index into the string
hacshiable. From this ue obtain the list of nodes whose printnames
hash to the =ane value, We search doun this list until we find a

focde uith the same string as we have and return the item number or

v exhaust the list and thus know that there is no item with the
given string as its printname.



15 Jul 1973 19:15 LEAP. TXT [DOC, AIL] PAGE 21-1

Printname Runtime routines.

CVvsl (string,eflag) - Convert string to item.
Forms hashcode from string. Searches down appropriate
conflict list for & node pointing to the same string
as the paramefer string., If found it sets the variable
flag to "FALSE" and returns the appropriate item number as
found in the left half of the first word of the node. If
such a node is not found then CVSI sets the variable
flag to "TRUE" and returns a garbage result in accumutator
1. The calling sequence from the user’s program is:

PUSH SP, mordl s first word of string descriptor
PUSH SP,uord2  3jsecond word of string descriptor
PUSH P, [FLAGI] saddress of flag variable

FUSHJ P,CVSI scall routine

CVIS (item,eflag) ~ Convert item to string.
Forms hashcode from item number. Searches doun appropriate
conflict list for a node which contains the parameter item
number in the left half of its first word. If such a node
is found it sets the flag to "FALSE" and pushes the tuwo
mard string descriptor pointed to the left half of word2 of
the node, onto the string stack(SP). If not found the NULL
string is pushed onto the SP stack, and the variable FLAG
is set to "TRUE" to indicate there was no printname for the
given item.

The calling sequence isi
PUSH P, [item no.] 3item

PUSH P, TFLAG] ;address of flag variable
PUSHJ P,CVIS scall routine



Ly Jdul 1973 19:16 LEAP. TXT (DOC, AIL] PAGE 22-1

DEL. PNAME (item) - delete printname. Called to disassociate
anc item and its printname. It is a noop if the item
has no printnane. First of all, the item hashcode value
ie formed from the item number., This value is used as
an index into the hash table thus yielding the
address of the conflict list of nodes whose items hash
to the same value., This list is searched for a node whose
item entry is the same as the parameter. If no such node
is found then DEL_PNAME simply returns, [f the node is found,
the node is then deleted from the item conflict list.The
string pointed to by string entry in the node is temporarily
saved on the string stack. The first word of the
fhuo word string descriptor is zeroed so that the string
garbage collector will ignore that descriptor. The address of
the head of the list of available string descriptors ( contained
in the left half of HASHP(USER)) is placed in the right half
of the second word of the newly available string descriptor and
Lhe acddress of this descriptor is placed in the left half of
HASHF (USER) . Thus we have |inked the newly freed string descriptor
onto the list of available string descriptors.

We now must remove the node from the string conflict list
lle do this by forming the hashcode from the string which we have
temporarily placed on the top of the string stack. We then
chain doun the string conflict list thus selected until we find
the node we nish to delete. After deletion we now link the node
onto the free list of tuo-word blocks, FPZ(USER).

Calling sequence:

PUSH P, [item no.]
PUSHJ P,DEL.PNAME

NEL_PNAME (i tem, string) - give an item a new printname. First we check to
see | f printnames have been initialized. That is, if the hash
table has been allocated, If not initialized we call the routine
INITNM to do the allocate the table., Next ue call the routine CVIS
to sec if the item already has a printname, If it does then we see
if the oldname is the same as the new one in wWwhich case we simply
return,  If the names are different we issue a warning message to
the user, then call DEL.PNAME to remove the old pname. Now we know
that the item has no printname. We wmust now make sure that the new
name is not the printname of some other item. We do this by calling
CVSI, If CVSI tells us that the string is already in use as a pname
e give an error message to the user. We now know that the
printname does not already exist, We take an available string
descriptor by calling the routine SDESCR (which will allocate a
ned string array and link them up if there are no more available).
The string descriptor corresponding to the pname is placed in the
string descriptor obtained from SDESCR. We now get a two word free
to serve as a node for this pname-item binding. We place the
address of the string descriptor into the left half of the
second word and the item number in the left half of the first word.
We then hash the item number to obtain the address of the item
conflict list and tink the node onto the list as its first element.
Simitarly we link the node onto the appropriate string conflict
list, Finally we return,



15 Jul 1973 139:16 LEAP, TXT (DOC, AIL] PAGE 22-2

Calling sequence:

PUSH P, [item no.l
PUSH SP,wordl of string descriptor
PUSH SP,uord2 of string descriptor
PUSHJ P, NEW. PNAME



	00
	01-01
	02-01
	03-01
	04-01
	04-02
	05-01
	05-02
	06-01
	06-02
	07-01
	08-01
	08-02
	09-01
	10-01
	11-01
	11-02
	12-01
	13-01
	14-01
	15-01
	16-01
	17-01
	18-01
	19-01
	19-02
	20-01
	21-01
	22-01
	22-02

