

multi-mpha-machiae

ABS TRACT

This working cocument de scribes a method of extending the AHI-NLS facialty on ite SDS 940 from 12 to 32 consoles.

Purpase
Thas memo ciscusses the usefulness of small computers as spacial-purpose hardware device controllers and as complex, progr ammed teedback mechanisms.

Thain gs ano simulations indicate that the current level of SDS 940 response lard display-ioriented feedback can be maintained, and aaybei improved. while the number of consoles is tripled.

The ciertralization of the display ouffers ano the use of small computers as display controllers allows experimentation with ring-structuring techniques for inter-console collaboration.

Similarly, the use of small computers as input device controllers contr ituc es to collap oration by providing an elegant means for lankins an arbitrary iccllection of input devices to any console.

Finally, the small machines can quickly react to mosi of the single-icharacter NLS iinteractions. reducing the frequency of 940 computation per user and thus reducing swapping.

Histmry
This menor is the result of discussions held in late december 1968 anc early January 1969.

The main confributors have deen Roger Bates in hardware and Don Andrews. Bill Paxton, and Jeff Rulifson in software.

GOALS

The daitial study of: $940-$ NLS operating characteristics centered around the goal of operating 12 work stations with response equivalent to the 6 currently operating.

Byetlienecks in the 940 system are connected with core space and swapping.

Currertly, displays are stored in 940 core. : Each user has his own buffers, and al new 940 core page is frozen as each user enters the system. For 5 or 6 users this is not toobad. but for more than 7 or 8 it is totally unreasonable.
see(LCADS.Conclusions)
The immedide feedback that NLS gives to each user is significantly more complicated than that which can be offered through conventional echo tables.

Consequently, each NLS user must be immeoiately activated : for each character or butt on push.

Statistics on NLS usage indicate that if the display buffers are removed from 940 memory, approximately 10 to 12 work stations can be serviced before the swapping reaches a critical point, and response significantly declines. see(LOADS,C onclusions)
 bulk core for display buffers. This approach has already been discussec in a current proposal to RADC for system expansion.

Dur stat istical observations indicate that the 940 could serve approximately 32 NLS users, if users interacted iwitr the 940 on a work-reqluest basis instead of a single-character basis. see (Ldads, Usage)

When more than 12 wor k stations are considered, the siagle-character interaction with the time-shaning system and user progr ams completely overloads the system.

The f irst criterion for any expansion is that it be extendable to the iifits of the 940 .

The second is that the system closely resemble ore that may be expardäle to even larger service, say 100 consoles.

If such expansion is flexible and modular in its design and hardware coupling, then alternative programming, scheduling, and gqeueing techniques may be tried. The problems of much larger systems may be incisively studied and the solutions tested through iaplementation.

It has becone apparent that collaboration, in its many forms, must be implanentedin NLS.

Taree possible modes are:

Display-frame sharifg, where different logical parts of a us er's current display picture may be viewed by a set of users

Input-ldevice flexibility, where many people may sit around table e each with his own handset and mouse; or users remote from each ot her can drive one another's displays

Audio icmmunication, which takes two forms:

Complete voice switching, so that any number of "conference calls" could be established between the work-station users

Compleer-generated sound, used as feedback to a single user or a group of users in collaboration.

Many sof these features can eventually be implemented totally eni ir ely within t he framework of the 940 . However, the current har dwarelsoftware approach imposes severe limitations in two ways.

The MONITGR in the 940 time-sharing system is cramped for space. This means that the extensive tables necessary for input-device interchangeability will not fit, and limited. costly schemes would have to be implemented.

The acodition of hardware devices is governed by the aviailability of special-purpose controller and poliing devices.

Eachof these operates a fixed number of each kind of : cevice.
he would prefer a scheme that allows new devices to be added and interchanged freely and in small increments.

Other Deivices

What about the pr inter?
We might want to move our printer to a small machine. What sabout micro-film cutput?

We might want to drive a microfilm machine from a small machine.

What acout Model 37 TTYs?
What about the NET?
The icea is that the big core might serve as a buffer for
aessages from the IMP.
Holmever, we will wait until more is known about the IMp before we co any planning.

What atout the NIC?

The idea here is that small machine could hande many NIC users if fhey ran a dedicated information-retrieval/editing system. The small machines could be a single user on the 940 , again reducing the swappilng effort while maintaining high-sped responise.

Wisat about stor age tubes?
What acout an on-line Dura?

General Icea
There is a big core of 16 -bit words. Most of it is used to store the ring of all the display buffers. Some is used to store queves oú tasks, tables for associating users and input devices, and reentrant interpretive code.

Connected to the core. is a bank of small machines ($4 \mathrm{~K} \quad 16$-bit words, 4 usec instruction times). They are used as input-device comiriollers. Interpretive code executers for complex feedback. and comanel or ivers: for the display channels.

Gross View

The small computers more than meet the minimal time requirements.
Each small machine has its own small core memory. If it is operating on the ring structure and determining feedback actions, II contains an interpreter for reentrant code which resides in the ofs core.

This code is close to the code which is compiled from the Special-Purpose Languages (SPLs) for the current NLS.

The code is not algorithmi cally complicated. Each input character involves only a few logical decision and table changes.

The decisons, however, may involve reference to the user's ring of: cisplay buffers, and the few hundred words necessary to deffina his current status.

It is this large amount of information that causes the swapping overload in the 940.

By having all of this information immediately accessible in core rather than on drum), a small slow machine is more than adequate.

Many small machines were chosen over fewer faster ones because Laey could be manipulated and added in smallincrements.

Input devices, along with the controlling processors, can be adicd a Eew at a lime as different experiments arise.

Since, the logic for the feedoack is in the big core, it may be expanded to two or even four time the orginal estimate. Thus the small machines will not be cramped for space.

The structure of the display rings can be madified as information is gained on the nature of display collaboration. This would never be possible if the display controlder were buill lirto fixed hardware.

If many machines are prepared to perform the same task some simple queuing and access methods result in better machine utilization and small changes in system performarce as users are adced.

The queves are all in the big core. There are two basic kinds:
As icharacters come in to the dedicatedinput-controller machines, Hey are as sociated with logical users and oeposiled on input queues.

When they are free, the feedback machines poll these quewes.

When characters are found they are processed.
Sometimes the 940 must be requested to intercede and complete a task. When this is so the logical user is putin a state of limbo as far as the feedback processors are concerneds and the task is queved for the 940 .

A simple implementation of the "Dijkstra Flag" keeps two processcrs from simultaneously modifying a data structure.

All the small machines share a single: access line to the big core. Thus only one can be doing a read or write on a single cycle.

- Theire are, however, three modes of memory access= read. wite and Dijkstra read. In the latter a word is read from memory and sent to the small machine. During the writemack
, in the big core, however, the cop bit is cleared.

Suppose that a word in the big core is a pcinter to a queue anc that if the top bit is on, the queue is free; otherwise a processor is working on the quque.

If a processor Dijkstra-reads the pointer and the queve is free, it then has control of the quece as well as the pointer to it.

If the queue is in use, however, the processor is informed of this.

The 940 must have two kinds of control over the small machines. There is a two-way interrupt line.

This permits the small machine to notify the 940 that there is something on a queue.

It $:$ also permits the 940 to interrupt the small machine and request. from a small resident programy sufficient information to run a real-time debugging package.

Itt is also necessary for the 940 to exercise complete control al certaintimes le.g. system startup or a looping small machine). To do this the 940 must be able to operate the console suitches. and read most of the consdle lignts.

There are two allernative methods of driving the displays on the system.

A small machine could drive the display directly. This would requite the machine to output a word to the display every 15 usec. 00ly the fastest (and most expensive) of the small computers are capablle of doing this. Even then they barely make it, and cutting it this close seems inadvisable.

The oither approach is to have a data channel iwhich can be loaded and activated by the small machine. In this way the small machine stally interprets the ring structure and thus maintains the flexibility there. Using channels, the small machine can be redatively slow and still drive the displays at full capacity.

Two auxilary: ideas are necessary to make this clear.
A channel normally contains an address register and a word count. These channels also contain an address-register buffer and a word-count buffer.

As the channel is driving the display from the working registers, the small machine can be lacing the buffer registers.

When the channel is done, it issues an interrupt to the small machine. As soon as the machine has figured out
iwhere the interrupt came from. it can pulse the channel. The channel can then transfer the buffer registers to the working register and begin driving the displays again.

This cuts the time between buffers from 60 usec to under 20 usec.

The small machine can still have problems keeping up with the display channel if the buffers are displayed faster than the ring can be searched in the big core.

To overcome this, the small machine only searches a ring when it is changed. As it searches a isimple list of inecessary buffers in made it the small fachine local memory. Thus the next channel address and word count are readily available within the immediate addressing struct ure of the small machine.

These machines can keep close watch over their time allocation. Single overloading of a display causes flicker only on that console; an extensive ring structure affects only the consoles displaying fircm it: and in generall, bad side effects which now propagate from console to console are confined.

Inpus Devices
Special Input Devices
Each device will be read as a source of 16 -bit code. However. the full 16 bits will not be used. Each device will look the same to the input machine: its existence and type will be defined through tables which can be set up anc modified by the 940 .

The devices planned for are:
A keypoard which produces an 8-bit code
Lp to 16 pushbuttons, although we will start with only 8
The mouse. which requires two $10-b i t$ numbers as coordinates, and will thus take two words (one coordinate in each).

Each group of 24 input devices will have a special polling mechan ism which works in the following way.

The polling may be started and stopped by the small machine.
When the polling is in operation. it operates continuousily at its own rate. This will probably be set so that each cevice is sampled at least once every 5 to 15 ms .

As each device is sampled its contents are read into a core

Location in the small machine.

If the device is a keyboard, howevery the core location is changed only if the strobe is on.

The input machine may then inspect the llist in coreat a slower rate, say every 30 ms , and notice any changes.

Tae following are the maximum input rates for each device. While it is undikely that all devices will operate at maximum rate for a exitencec period of time (e.g. one second). we must plan for at leastl ralf-second periods of maximum transfer rates.

When a mouse is in motion it is usually sufficient to update the tracking display buffer every 30 ms . The coordinates must De observed at this rate, but they can be compared in the imput machine and if the mouse has not changed position the coondinates are not associated with a logical user nor are the display buffers changed.

The maximum rate fior a keyboard is slightly under 100 ms per character. The keyboards are polled as fast as the mouse. Holucyer, the character in the core of the small machine is changed only. When the strobe is on. Thus the small machine has at: Least 50 ms . tol notice and process any character. Every character must be associated with a logical user and deposited on the appropriate queue in the big core, along with the time and the mouse position.

The pustbuttons are polled just like the mouse. Every 30 ms; the contents must be observed by the input machine. When any change is noted, extra action is required.

If itfe buttons are on the mouse, the up or down action must te associated with a user and deposited on queue in big core along with the time and the mouse position.

If the buttons are on the handset, changes are ORed together until all switches return to the UP status. The chord is then associated with the user and put on ithe queve along with the time and the mouse position.

Dutpur Dievices

There will be only two high-speed output devices.
Each cisplay channel is loaded from a small machine and Hr ansfers words from the big core to 6 displays. Eden channel has a 20-bit address register, a 16 -bit word count and an initerrupt line back to the small machine. The interrupt is raised when the word count goes to zero.

The audio switching system is viewed as a big switching matrix fr on the small machine.

- Tha inputs are sall the voice lines and all the tone goneators. Each tone is fed in as three separate lines of ampilitudes 1,2 and 4.
- The outputs from the matrix go directly to the speakers or
- eariphones.
- The audio system is used at a ms rate when the tones are in a decay state (making them much more pleasant to listen tol.

The sollowing are the maximum rates for the two devices. These raies may be common, and plenty of leeway must be allowed.

When tine display channels are rumning they do not ef fect the small machines. Thus the times which concern the small macrines are the length of time it takes to load a channel and the average length of time to process buffer once the channel has be en start ed.

We expect the displays to write a character in 7 usec, so the channels will transfer a word from big core to the : cisplays every 14 usec.

Bufifers $c a n$ be a minimum of 1 word long, and thus be processed in 14 usec. Normally, howevero they are no shorter khan 4 words. which takes 56 usec.

To keep the displays runring wide open, the small machines - should make every effort to minimize the time to load a : Wufifer. Us ing the scheme discussed earilier. this time can 1 te cut to less ithan 20 usec.

If the displays are storage tubes, the buffers will be the - character strokes, and these will be stored in the big core.
in this case the small machine will have to look at the buffer generated by the 940 , take it apart character by icharacter, and drive the display withithe individual character buffers.

Since the storage tubes take about 100 usec to write a full character, this will not overloac the small machine, although it will occupy almost all of its time.

Voice switching may be a slow process. Tone decay, however. must be rapid.

Extra l/odpavices
Local. Dura?
Sadrage Tubes?
Powter Printer?:

Model 37 TTYs?
Marorifin Output??
Steps for Total Input/feedback Service
The following is an outline of the steps an input machine will go trough as it getscharacters from the input devices and puts them inko athe approprisate queues in the big core., This outline was used to estimat e the total processing capacity necessary in the input machinas.

Cneck queue for transfers to big coré.
Get character firom internal queue.
Make correspondence between hardware device and logical user.

Get queue control for logical user.
Put character on logical user in big core.
. Nake up appropriate, internal audio queue from dogical user 1 information in big core.

Give up queue control for logical user.
Get clock interrupt.
Co :down input character buffer.
If same as last interrupt do nothing.
Otherisise
If keyboard, note time and mouse position, put on queue to go to big core.

If pushbuttons. decide which=
If mouse, note time and position. put on queue to go to big core.

1f. handset. then
If :all are upy this is a character end so note time and position and despoit on queue for big core.

Dtherwise, build up chord by DRing in new down buttons.

Do appropriate amplitude switching fon computer-generated iscund decay remove processed entries from queue.

Dutefine Queues

Some sof fine small machine will devote almost all of their time to searching the ring structures and driving the display channels.

Get dispiay channel interrupt.
Use local 1 ist with update when ring changes. as discussed aboye.

Have all the entries in local memory, just put it up.
Changes are flagged, and require a block:transfer of new pointers.

The rest of the small rachines will be devoting all of their time so procesising the input queues prepared by the input machines. wisdating display buffers, and preparing queues for the 940. The foulowing outhine of their duties was used to estimate the processing capacity necessary for the job.

Chieck for work to ide.

Locate non-empty logical-user task quewe.

Get IfMcontrol for logical user.

Mnput icharacter for processing.
Get user state.

Begin execution of interpretive code.
Get character from queue.

Get input-queue control for logical user.

Get character off gueue.

Cive up input-queue control.
Step thr ough main control.
Update appropriate display buffers.

How is this done if we nave long buffers? Is there a displey Dijkstra flag?

There is also the problem of writing in the mouse coordinates while they are being changed.
Contimue until either
Queue is empty:Put dim to sleep.
Or 940 is needed:
Put him on 940 queve.
Set flas for 940 interrupt.
Up date date and time
Give up IGM control for logical user
Initerrupt the 940 if necessary

PROPOSED HARDWARE

```
Dase -10w
Intersupt limes
fogbu Put-Cet Box
    (adr) Adcless register. 20 bits
    (0)\ Transfer register. 16 bits
    [c} Function code
        Re:ao
        Wr.fe
        Dijksira pest.
        Autonatic increment
(ch) Shannel
    (a)dr b) Chamel address-register buffer. 20 bits
    (cucb) Channel word-count buffer. 16 bits
    (addr) Address register. 20 bits
    (cuc) word count. 16 bits
(cc) Eore controller
    Two-asay chanmel
(cs) Console suitches using the NOVA as an example
    Tw, l6 bit NOVA readout registers--data and PC
    Skgemen bils of input switches
    Readoud of extra minor-cycle console lights?
    Sumgle carry bit
    Engntieen functions to select
```


PROGRAMMING TECHNIQUE

The 50 plays an important role in both the progranning and the runnatag tof the small machines.

From a programing point of view everything can be dome on the 2\%.

The interpreter for the small machine can be coupled uith good DD. $\begin{aligned} \text { to give debugging aids far bey ond those that could be }\end{aligned}$ proviced by the small machine itself.

Not only can checkout begin before the hardware is ready. bsat programs can be changed and debugged while the hardmare is in. use.

Morcover, the file system of the 940 is available to the 940 inle arpireter and DDT; so no new file system has to be created.

The 940 also has the ability to operate the console switches of each small machine. This will be used in at least three ways=

During initial startup the 940 c an bootstrap-load the machines.
While ithe machines are running, they can be idebugged from the 940. At any time the 5 mall machine can be stopped examined. and restarted on a usec basis. The 9.40 can then take the information and using symbol tables from assemblies and compiliations proyide a monitor and debugging service.

Accurate statistics may be gathered about the operation of the machine. With control of the consoles. the 940 could even gather samplings of the instruction-counter contents. something which is normally quite difficult.

All the programing for the small machine will be done in a Machine Driented Language similiar to the one in use on the 940 (MOL940). The compiler will be written in Tree Meta, and should present no special idificultiines.

The winkerperer and DDT for the small machines will be written in MOL 960 and operate on the 940 . Since the DDT is executing through an inampreter many fancy features can be added. such as operand fetch br eakpointso memory reference breakpoints. automatic timing stactsticsp eetc. There will be two modes of operation for the DDI.

One is the normal mode of executing the code iwith the interpreder.
The oithen is the SYSdebug modeo where a live, running machine is debugeng. In this case many of the fancy features may not work GWke itemory reference breakpoint while in run model.

OTHER APPROACHES

```
Only big
    sajgle character interaction problem
Sing- large external machine
    strficiently large core comes only with big cpu"s. it fact toof
    0:%
    no fail safe features
fewer Faster mini-machines
    grouth comes in too large increments
    hakfing the speed does not seem to double ihe capacity
All aachines using single core
    poor acdressing structure of small machines for huge memory
        consicered memory map it tradition of ATLAS--too many core
        mycues
        simple relabeling cause trouble in display rings
    reguires itoo many memory ports to keep small machine running
    efuicucontly
```

