
:DEL, 02/06/69 1010:58 .JFR ; .nSN=l; .LSP=O; .SeR=1; .DPR=O; ['=] ANI)
NOT SP ; ['1]; dual transmission?
Abstract. .

The Decode-Encode Language (DEL) is a machine independent language
tai 10red to t,vo specific computer network tasks:

accepting input codes frOM interactive consoles, giving iJm11ediate
feedback, and packing the resulting information into nessage
packets for net\vork transmission.
and accepting message packets' from another cOMputer, unpacking
them, building trees of display infomation, and sending other
information to the user at his interactive station.

TIlis is a \vorking noctlPlent for the evolution of the DEL 1angauge.
Comments shou1 d be made through Jeff Ru1ifson at SRI.

Forelvord.
The initial ARPA network working group met at SRI on October 25-26,
1968.

It was generally agreed beforehand that the nlnning of interactive
programs across the net''lork was the first problem that would be
faced.
This group, already in aggrernent about the underlaying notions of
a DEL-like approach, set dmm some teminology, expectations for
DEL programs, and lists of proposed semantic capahilj,ty.
At the meeting 'vere Andrews, Barny, Carr, Crocker, Rulifson, ann
Stoughton.

A second round of Meetings \Vas then held in a pieceMeal \-/ay.
Crocker meet "lith Rulifson at SRI on NoveMber 18, 1968. This
resul ted in the incorporation of formal co-routj.nes.
and Stoughton meet ''lith Rulifson at SRI on Decemher 12, 1968. It
",as deceided to meet again, as a group, prohahly at lJTAH, in late
Janurary, 1969.

The first public release of this paper was at the BBN NET meeting in
Cambridge on February 13, 1969.

NET Standard Translators.
NST The NST library is the set of progrClJiis necessary to r.lesh
efficiently ''lith the code compiled at the user sites fror.l the DEL
programs it receives. The NST -DEL approach to NET interactive system
communication is intended to operate over a broad spectrllf!l.

TIle lmvest level of NST-DEL useage is direct transmission to the
server-host, infomation in the sarle forma.t that user programs
liould receive at the user-host.

In this Mode, the NST defaults to inaction. The nEL program
does not receive universal hardlVare representation input but
input in the normal fashion for for the user-hos t.
And the DEL program heCOMes Merely a message builder ann
sender.

A more intermediate use of NST-DEL is to have echo tables for a
TTY at the user-host.

In this mode, the DEL progrM would rlID a full duplex TTY fir
the user.
It would echo characters, trans late theM to the character set
of the server-host, pack the translated characters in messages,
and on appropiate break characters send the messages.
When messages come frOM the server-host, the DEL progRJ"fl would

1

translate them to the user-host character set and print them on
his TrY.

A more ambitous task for nEL is the operation of large,
display-oriented systems from remote consoles over the NET.

Large interactive systems usually offer a lot of feedback to
the llser. The unusual nature of the feedback Plake it
impossible to model ''lith echo table, and thus a user program
must be activated in a TSS each time a button state is changerl.

This puts an unnecessarily large load on a TSS, and if the
system is hegin run through the NET it could easily load two
systems.
To avoid this doub le overloading of TSS, a DEL progrCWl wil]'
rlm on the user-host. It will handel all the immediate
feedback, much like a complicated echo table. At appropiate
button pushes, message liil1 he sent to the server-host and
display updates received in return.

One of the more difficUlt, and often neglected, problems is the
effective simulation of one non-standard console on another
non-standard console.

We attempt to offer a Means of solving this prob lem through
the co-routine structure of DEI.. prograMs. For the
complicated interactive systems, part of the DEL programs
'vill be constructed by the server-host programmers.
Interfaces betl'leen this program and the input stream may
easily be inserted by prograrmners at the user-host site.

Universal HardHare Representation
To minimize the number of translators needed to filap any facility's
user codes to any other facility, there is fl universal hardware
representation.
This is simply a \vay of talking, in general tenng, about all the
hardware devices at all the interactive display stations in the
initial newtork.
For example, a display is thought of as being a square, the
mid-point has coordinates (0,0), the range is -1 to 1 on both
axes. A point may now he specified to any accuracy, regardless of
the particular nlt1i1her or density of rastor points on a display.
The representation is discussed in the semantic explanitfltiong
accompaning the formal description of DEL.

Introduction to the Nett10rk Standard Trans latore (NST).
Suppose that a user at a remote site, say Utah, is entered in the
AHI system and \vants to run NLS.
The first step is to enter NLS in the normal way. At that time
the Utah system \vill request a symbolic program frOM NLS.

REP This program is \11"i tten tn DEL. It is called the NLS
Remote Encode Program (REP).
The program accepts input in the Universal Hardvlare
Representation and translates it to a form usahle hy NLS.
It may pack characters in a huffer, also do sone local
feedback.

When the program is first received at Utah it is compiled and
loaded to be run in conjunction ''lith a standard library.
All input from the Utah console first goes to the NLS NEP. It is
processed" parsed, b locken, trans lated, etc. lilien NEP rocei ves a

2

character appropriate to its state it Nay finally initiate
transfers to the f>40. The hits transferred ar.e in a fom
acceptab Ie to the 940, and Maybe in a standard form so that the
NLS need not differentiate between Utah and other NET users.

Advantages of NST
After eacll node has implemented the lihrary part of the NST, it
need only lvri te one program for each subsystem, namely the
symbolic file it sends to each user that Tflnps the NET hardl'lnre
represenataion into its mm special bit fomats.

This is the minimum programming that can he expected if each
console is used to its fullest extent.
Since the NST which runs the encode translation is coded at the
user site, it can take advantage of hardware at its consoles to
the fullest extent. It can also add or remove hardlV'nre
features l'lithout requiring new or different translation tables
from the host.
Local users are also kept up to date on any changes in the
system offered at the host site. As new features are added,
the host programmers change the symbolic encode program. tnlen
this ne\v program is compiled and used at the user site, the neN
features are automatically included.

The advantages of having the encode translation programs
transferred symbolically should be obvious.

Each site can translate any way it sees fit. Thus machine code
for each site can he produced to fit that site; faster run
times and greater code density will be the result.
Moreover, extra symbolic programs, coded at the user site, may
be easily interfaced between the user's Tfloni tor system and the
DEL program from the host machine. This should ease the
problem of console extension (e.g. accmonating tmusllal keys ann
buttons) without loss of the flexability needed for man-Machine
interaction.

It is expected that when there is M.atching hard",are, the symbolic
programs lvill take this into account and avoid any unnecessary
computing. This is iromediaely possible through the code
translation constructs of nEL. It may someday be possible through
program composition (when Crocker tells us ho"..,??).

AHI NLS - User Console Communication - An Example.
Block Diagram

The right side of the picture represents functions done at the
user's main computer; the left side represents those done at the
host computer.

Each label in the picture corresponds to a statement with the
same name.
There are four trails associated with this picture. The first
links (in a forward direction) the labels which are concel~ed
only with net"'Iork infomation. The second links the tot al
infonnation £10\'1 (again in a forward direction). The last two
are equivalent to the first two hut in a backward direction.
They may be set \vith pointers tl through t4 respect5.vely.
[">tif"] OR [">nif"]; ["(tift'] OR ["(nift'];

User-to-Host Transmission

keyboard is the set of input devices at the user's console.
Input bits from stations, after drifting through levels of Jiloni tor
and interrupt handlers, eventually CONe to the encode translator.
[>nif(encode)]
encode maps the semi-raw input hi ts into an input stream in a.
forn suited to the serVing-host subsystem \1hich ".,rill process the
input. [>nif(hrt) <nif(keyboard)]

The Encode program was supplied by the server-hos t subsystel'l
'vhen the subsystem 'vas first requested. It is sent to the user
machine in symbolic form and is compiled at the user machine
into code particularly suited to that machine.
It may pack to break characters, rtlap m'lll tiple characters to
single characters and vice versa, do character translation, ann
give imMediate feedback to the user.

ldm Immediate feedback from the encode translator first goes to
local display management, ,,,here it is Mapped from the NET standard
to the local display harc-h-.,rare.

A 'vide range of echo output May corne from the encode
translator. Simple character echoes ,,,,rould he a minimum, while
command and machine-state feedback will be common.
It is reasonable to expect control and feedback functions not
even done at the server-host user stations to be done in local
display control. For example, people \'-lith hiRh-speed displays
May ".,rant to selectively clear curves on a Culler display, a
function which is impossible on a storage tube.

Output from the encode translator for the server-host goes to the
invisible IHP, is broken into appropriate sizes and labeled by the
encode translator, and then ;oes to the NET-to-host translator.

Output from the user Play he more than on-line input. It may be
larger items such as computer-generated elata, or files
generaterl and used exclusively at the server-host site but
stored at the user-host site.
Infomation of this kind may avoid translation, if it is
already in server-host format, or it may undergo yet another
kind of translation if it is a block of data.

hrp It finally gets to the host, and r:tl1st then go through the
host reception program. 'This maps and reorders the standard
transmission-style packets of bits sent by the encode programs
into messages acceptable to the host This program may \vell be
part of the monitor of the host Jilachine. [>tif(net
mode) <nif(encode)]

Host-to-User Transmission
decode Output from the server-host initially goes through decode,
a translation mnp similar to, and. perhaps !Yl.ore cO!Yl.plicated than,
the encode map. [>nif(urt))tif(imp ctrl) <tif(net Plode)]

This map at least formats display output into a simplified
logical-enti ty output strearl, of 'vhie'" meaningful pieces May be
dealt lVith in various "vays at the user site.

The Decode program was sent to the host machine at the same
time that the Encode program ''las sent to the user machine.
TIle program is initially in symbolic fOrPl and is compiled
for efficient running at the host machine.
Lines of characters should be logically identified so that

4

different line vddths can he hand.led at the user site.
Some fom of logical line identification Jlll1St also me made.
For example, if a straight line is to be drawn across the
display this fact should be transrni tted, rather than a
series of 500 short vectors.
As things firm up, more and More cOMplicated structural
display information (in the Manner of LEAP) should he sent
and accolYlodated at user sites so that the responsibili ty for.
real-time display manipulation may shift closer to the user.

imp ctrl The server-host may also lvant to send control
information to IHPs. Formatting of this infomation is done by
the host decoder. [>tif.(urt) <tif(decode)]
The other control information supplied by the host decoder is
message break up and identification so that proper assemhly and
sorting can be done at the user site.

From the host decoder, information goes to the invisihle IHP, and
directly to the NET-to-user translator. The only operation done
on the messages is that they May he shuffled.
urt The user reception translator accepts messages from the
user-site D·/iF and fixes them up for user-site display. [>nif(d
ctrl»tif(prgm ctrl)<tif(imp ctrl)<nif(decode)]

The minimal action is a reordering of the message pieces.
dctrl For display output, however, More needs he done. The
NET logical display information must he put in the format of
the user site. Dispay control does this j oh. Since it
coordinates bet"leen (encode) and (decode) it is ahle to offe:r.
features of display manageMent local to the 11ser
site. [>nif(display)<nif(urt)]
prgmctrl Another action may he the selective translation and
routing of infonnation to particular user-site subsys terns.
[>tif(d ctrl)<tif(urt)]

For exrunple, h locks of floating-point information may he
converted to user-style words and sent, in block form, to a
subsystem for processing or storage.
The styles and translation of this information may ,,,ell be a
compact binary format suitable for quick translation, rather
than a print-image-oriented format.

(display) is the output to the 'User. [<nif(d ctrl)]
User-to-Host Indirect Transtrlission

(net mode) This is the mode where a remote user can link to a node
indirectly through another node. [>tif(decode) <tif(hrt)]

DEL Syntax.
Notes for NLS Users.

All statements in this branch which are not part of the cOtrlpiler
mus t end with a period.
To compile the DEL compiler:

Set this pattern for the content aalyzer (1'1' 1 SE (P 1) < _ t • ;) •

The pointer "del" is on the first character of pattern •
... TlUllp to the first statement of the compiler. The pointer "c"
is on this statement.,
And output the compiler to file(t lA-DEL'). The pointer "f"
is on the naJ'l1e of the file for the compiler output •

Programs.

5

Syntax •
• meta file (k= 100 ,m=300 ,n=20 ,s=~)OO)
file = mesdecl $rleclaration $procedure "FINISH";
procedure =

procname (
(

type "FUNCTION" /
"PROCEDURE") .id (type .id / .empty)) /

"CO-ROUTINE") '; /
$declaration labeledst $ (laheledst ';) "andp.";

labeledst = (+.id ': / .empty) state~ent;
type = "INTEGER" / "REAL"
procnrune = • id;

Functions are differentiated frol!l procedures to aid cOMpilers in
better code production and run time checks.

Functions return values.
Procedures do not return values.

Co-routines do not have names or arguments. Their ini tinl
envocation points are given the pipe declaration.
It is not clear just hm'/ global rleclarations are to be??

Declarations.
Syntax.

declaration = numhertype / structuredtype / label / lcl2uhr /
uhr2rmt / pipetype;
numbertype = ("REAL" / "INTEGER") ("CONSTANT" conlist /
varlist) ;
conlist =

.id '+ constant
$(', .id '+ constant);

varlist =
.id ('+ constant / .empty)
$(', .id ('+ constant / .empty));

. dl· • 1 <1' (, • d) ~ J.s t = .le, ,,1) ,.]. ;

structuredtype = ("tree" / "pointer" / "buffer") idlist;
label = "LABEL" idlist;
pipetype = "PIPE" pairedids ~~ (', pairedids);
pairedids = .id .id;
procname = .id;
integerv = .id;
pipename = .id;
labelv = .id;

Variables \'lhich are declared to he constant, May he put in
read-only memory at run time.
The label declaration is to declare cells \'lhich may contain the
machine addresses of labels in the program as their values. This
is not the B5500 label declaration.
In the pipe declaration the first • ID of each pair is the name of
the pipe, the second is the initial starting point for the pipe.

Ari thma ti c.
Syntax.

exp = "IF" conjunct "THEN" exp "ELSE" exp;
sum = term (.

'+ sum /

6

'- S\.1T1l I
• empty) ;

tann = factor (
'* term I
'I term I
'1' term I
• empty) ;

factor = '- factor / bitop;
bitop = compliment (

"I bitop I
'I' bitop I
'& bitop /
.empty);

compliment = "--" primary / primary;
t means mod, and I JYleans exclusive or.
Notice that the uniary minus is allO\.,rable, and parsed
\vri te x*-y.

so you can

Since there is no standard convention ''lith hi twise operators, they
all have the same precedence, and parentheses Plust be used for
grouping.
CO!l1pliment is the l's cOPlpilment.
It is assumed that all arithmetic and bit operations take place in
the mode and s tyIe of the Machine running the code. Anyone who
takes arlvantage of Hord lengths, tHO'S compliment arithmetic, etc.
\vill eventually have prohlel11s.

Primary.
Syntax.

primary =
constant /
builtin /
variable I
block I
t (exp ');

variable = • id (
'+ exp /
, (block ') I
.empty);

constant = integer I real I string;
builtin =

mesinfo I
cortnin I
("MIN" I "i\1AX") exp $ (t, exp) , . ,

parenthesised expressions may he a series of expressions. The
value of a series is the value of the last one executed at run
time.
Subroutines may have one call by nane arguement.
Expressions nay he mixed. Strings are a hig prob 1em?? Rulifson
also l.,rants to get rid of real numbers 1'1'

Conjunctive Expression.
Syntax.

conjunct = c1isjtmct ("AND" conjunct I .empty);
disjunct = negation ("OR" negation I .empty);
negation = "NOT" relation I relation;

7

relation =
'(conjunct ') /
sum (

"<=" StU'll /

">=" Sur:l /
,< stun /
,> Sllm /

'= StUll /

'# SUM /

.empty);
The conjunct construct is rigged in such a \lTa)' that a conjlIDct
which is not a sum need not have a value, and may he evaluated
using jumps in the code. Reference to the conjunct is made only
in places \'lhere n logical decision is called for (e.g. if and
Hhile stateMents).
We hope that]'!lost compilers \vill he S111art enough to skip
unnecessary evaluations at run ti]'!le. I.e. a conjunct in which the
left part is false or a disjunct Hi th the left par.t true need not
have the corresponding right part evaluated.

Arithmetic Expression.
Syntax.

statement = condi tional / unconditional;
tmconditional = loopst / casest / controlst / iost / treest /
block / null / exp;
conditional = "IF" conjunct "THEN" unconditional (

"ELSE" conditional /
• empty) ;

block = "begin" exp $ ('; exp) "end";
An expressions 111ay be a state]'!lent. In condi tional statements the
else part is optional while in expressions is is manditory. TIlis
is a side effect of the way the left part of the syntax rules are
ordered.

Semi--Tree Manipulation and Testing.
Syntax.

treest = setpntr / insertpntr / deletepntr;
setpntr = "set" "pointer" pntrnarne "to" pntrexp;
pntrexp = direct5.on pntrexp / pntrnrune;
insertpntr = "insert" pntrexp "as"

(("left" / "right") "brother") /
(("first" / "last") "daughter") "of" pntrexp;

direction =
"up" /
"down" /
"fon~ard" /
"b ack"lard" /
"head" /
"tail";

planttree = "plant" tree "in" treenaJlle;
replacepntr = "replace" pntrnaJ11e "with" pntrexp;
deletepntr = "delete" pntrname;
tree = '(treel ') ;
tree! = nodename $nodename ;
nodename = terminal / 'e treel ')

8

terminal = treename / huffername / pOintername;
treename = .i<-ii
treedecl = "pointer" .id / "tree" .id;

Extra parentheses in tree building results
subcategorization, just as in LISP.

Flow and Control.
controlst = gost / subst / loopst / casest;
f,o To Statements.

gost = "GO" "TO" Clahelv / .id);
assignlabel = "ASSIGN" • id "TO" labelv;

Subroutines.
subst = callst / returnst / cortnout;

callst = "CALL" procname (exp / .empty);
returnst = "RETURN" (exp / .empty);
cortnout = "STUFF" exp "IN" pipennMe;

cortnin = "FETCH" pipename;

in linear

FETCH is a builtin function \vhose value is computed by envoking
the naned co-routine.

Loop Statements.
Syntax.

loopst = \.,rhilest / untilst / forst;
""hilest = "WHILE" conjtmct "DO" statement;
untilst = "UNTIL" conjunct "no" stateNent;
forst = "FOR" integerv '+- exp ("BY" exp / .empty) "TO" exp
"DO" statement;

The value of \'Ihile and until statements is defined to be false
and tnle (or 0 and non-zero) respectively.
For statements evaluate their initial exp, by part, and to part
once, at initialization time. The running index of for
statements is not available for change Ni thin the loop, it may
only he read. If sorle cOl"lpilers can take advantage of this
(say put it in a reg:lster) all the better. The increment and
the to hound will both he rOlmded to integers during the
initialization.

Case statements.
Syntax.

casest = ithcasest / condeasest;
ithcasest = "I1HCASE" exp "OF" "RE(;IN" statement $(';
statement) "END";
condeasest = "CASE" exp "OF" "BEGIN" condes $ ('; condcs)
"OTHERl'IISE" statement "END";
condcs = conjunct ': statement;

TIle value of a case statement i.s the value of the last case
executed.

Extra statements.
null = "NULL";

I/O Statements.
iost = messagest / dspyst ;
Bessages.

Synta."'{.
messagest = buildMes / demand;

buildmes = startmes / appendmes / sendmes;
startmes = "start" "message";

appendmes = "append" "rlessage" "byte" exp ;
sendmes = "send" "message";

demandl'Yles = "demand" "message";
mesinfo =

"get" "message" "hyte"
"message" "length" /
"message" "el'Ylpty" '? ;

mesdecl = "message" "bytes" "are" .nllrn "hits" "long" ';
Display Buffers.

Syntax.
dspyst = startbuffer / bufappenrl / estah;
s tartbuffer = Its tart" "buffer";
bufappend = "append" bufs tuff $ ('& hufs tuff) ;
hufstuff =

"paraJlleters" dspyparm $ (', dspyparro) /
"character" exp /
"string" string /
"vector" ("from" exp ': exp / .empty) "to" exp " exp /
"posi tion" (onoff / • eMpty) "beaM" "to" exp t: exp/
"curve" ;

dspypam =
"intensity" "to" exp /
"character." "l"idth" "to" exp /
"h link" onoff /
"i talics" onoff;

onoff = "on" / "off";
estab = "es tab lish" buffername;

Logical Screen.
The screen is taken to be a square. The coordinates are
normalized fror~ -1 to +1 on both axes.
Associated Hith the screen is a position register, called
PREG. The register is a triple <x,y ,1'), lv-here x and y
specify a point on the screen and r is a rotation in
radians, counter clockl'lise, from the x-axis.
The intensity, called INTENSITY, is a real 111.lM.her in the
range from 0 to 1. 0 is hlack, 1 is as light as your
display can go, and nUI"lbers in between specify the relative
log of the intensity difference.
Character frane size.
Blink hit.

Buffer Building.
The terminal nodes of seMi-trees are ei ther semi-tree names
or display huffers. A display huffers is a series of
logical entities, called bufstuff.
When the buffer is initilized, it is empty. If no
parameters are ini tially appended, those in effect at the
end of the display of the last node in the serti-tree "'tIl be
in effect for the display of this node.
As the buffer is huilt, the logical entites are added to it.
1Vhen it is established as a buffername, the huffer is
closed, and furthur appends are prohihited. It is. only a
huffername has heen es tab lished that it may he used in a
tree huilding statement.

10

Logical Input Devices.
Wand.
,Joy Stick.
Keyboard.
Buttons.
Light Pens.
Hice.

Andio Output Devices •
• end

Sample Prograrlls
Program to rtm display and keyhoarn ru; tty.
to run NLS.

input part
display part

DEHAND HESSAGEi
While LENGTII # 0 DO

ITHCASE GETRYTE OF Regin
IHTCASE GETBYTE OF %file area update9" BEGIN

96li teral area9"
%message area%
%name area90

%hug%
%sequence specs%
9"fil ter specs%
96fo:rTIlat specs9,s

%command feedhack 1ine%
~file area%
%clate time%
%echo register%

BEGIN %DEL control%
Distribution List

Steve Carr
nepartment of COMputer Science
University of Utah
Salt Lake City, Utah 84112
Phone 301-322-7211 X8224

Steve Crocker
Boelter Hall
University of California
Los Angeles, California 90024
Phone 213-825-4864

Jeff Rulifson
Stanford Research Institute
333 Ravens\vood
Henlo Park, California fl4305
Phone 415-326-6200 X4116

Ron Stoughton
Computer Research Laboratory
lmiversity of California
Santa Barbara, California 93106
Phone 805-961-3221

Mehmet Baray
Corey Hall

11

