The Software Toolworks*

14478 GLORIETTA DRIVE, SHERMAN OAKS, CALIFORNIA 91423 (818) 986-4885

C/NIX Version 1.56
User's Manual
January 1985

S. Tucker Taft
C/Craft
22 Downing Road
Lexington, MA 02173

QONTENTS

Intrﬁuctlm m mx PO 00 000 OO0 OO0 00 008000060 SSENOSISIOES
Hw mGet Startﬁ 90 00000 000000 GCCOINSGSOINOSIOIBSIOGIEOSOEOSONOEOSIOEOEPOTEOITS
Organization of this Manual .cccececececcccccscccscss
mlere tOBegin Reﬁir‘g 0 0000 0GCOS LSOO OSOSOCEOIOSIEOEOPIOIEOSIOPIOSPTOTOITOSDS
PrOblalB ald Ca'l‘mts 0000 0000000000000 00000C00000CCE

General Information Chapter (info) ..eececccccccccscscss
intro - Intrductim to C/NIX Features .ccecccececccse
mking B&k@ Distrimtim Disks 000G O0COOOGOINOSINOSIECESOINOIDS
mim C/NIX (m QLIiCk Way) 9000000000000 c00000se
II‘smlling C/NIX ® 0 0 00O OO H SO OOG P0G BSOOOSIOSIBSEOSESISOS
Advanced Installation NOteS .ceececccecccccccccnae
er First U& Of C/NIX 0 000G OO OO S OO OSSOSO BNSEINDSIOIBNPOES
m mm‘time 0 0000 POV OB OISO OOOPIOSIBSTOIOEOSINCSES
mtes for @m Users 000 0GOS P OB OPOPISOOEOTOIOGOEBSOIOGOIEOSEBSTONTOSE
Hierarchical Directories ccceecececcccscccccss

I/O Rﬁirwtim al'ﬂPipeS v vecscs0vecs0cscvs e

. m kst 0 O GO0 OO0 OT SISO IOOOSOROSISIOSIOSIOSEOIOGEOSEISTIOSTTPOCSEOS
ioredir - Input/Output Redirection and Logging
patdles - PatCheS to the C/NIX System eecvcccccccccee
pathname - Hierarchical Directory Pathname Syntax ..
pims - C/NIX Pipes e 0000000 svsnererrcneccnccsccse
quoting - Quoting and Escape CharacterS c.eececceccsee
trOuble - Trouble Slmtlng on C/NIX esvecrecsvreccce
wildcard - Filename Wildcards '?' and "*' .eceeecee.

N
SRNPR8&6

C/NIX Commands Chapter (Cmnd) eccececcccccccscscccssee 25
comands = Sumary of C/NIX ComnandS cceececccccsccecs 25
cat-matenatea TypeFileS es00s0cscccscccccsere 26
chdir - Changing/Printing Current Working Directory 27
chmod - Change File Mode FlagsS ecccccccccccscccccsss 28
@‘CowaFileOIFiles 000000000000 0CGCOIOOIOGRORIOEONIOES 29
CSh"MC/NIX(m) Sl’Ell 080000000000 OCOOCIOROIOCOISOIOIOIOITTTS 30

Camand Format and Search Path .cecececcccccesces 30

mm?iles 90 00000000 OOOOOOOOCESLOEIPOSIOSNONQGSTIOSOIOSIOSIOIOGIDS 31

mit status .Q....'..O.........0.....0......'.‘0.. 33
m-mastrim 90 9 G0 000G O0COOBPP000SSOGIOINSTBDBOSISIINPOOEDS 34
eXit"EXitC/NIXSheu 00000000 ssscsccncecrcscsrsoe 35
grep - Generalized Regular Expression Parser ..e..... 36
l'Elp-HelpFrantfﬂon-LirE Use!'s Marlual eeccssccoce 38
ls - List Dirwmry 00 0009 00OV PNV OOPOOOINSGOSIOSESISIOSDS 40
mkdil' - MakE al’ﬁ R.GIUVE Di.l'&tcries ee00s0000000000 42
mkrel - Make Page-Relccatable PrOgram .ceeeccecceccee 43
m-mveaFileorFiles 0000000000000 0000 0000000 44
m-mFileorFiles 9 0 00O 0O 0B OS GOSN OIOGSIOSIBSOEOSOPSIESDOPTDS 45
set - Set Console OQutput MOdeS ceeeccccccccccccceces 46
walk — Walk the Directory Tr€e .cecccceccccccaccccss 47

C/NIX Subroutines Chapter (SUDL) eecceccccccccccsccsscce 48
subrs -~ C Subroutines for C/NIX secececcccccceccccss 48
bdos = C Interface to BDOS CallS ceeccccccaccaccsses 49
getc - Standard Buffered Character Irlplt escsecccccae 50
fopen - Buffered File Opening and Closing <.ceccecees 51
main - Hidden Main Routine; Exit Routine .cecececeeces 52
malloc - Dynamic Memory Allocation and Release 53
pltc - Smd Buffered dmacte: Oumlt seevccccse 54
strutils - Standard String Utilities ..ecceccecccecs 55

Ifﬁex 0 000000000000 000000000 05000000005006000000s800000s 56

Software oopyright (c) 1985 C/Craft. Manual ocopyright (c) 1984
C/Craft, copyright (c) 1985 The Software Toolworks. Sale of this
software conveys a license for its use on a single computer owned and
operated by the purchaser. Copying this software or documentation by
any means whatsocever for any other purpose is strictly prohibited.
C/NIX is a trademark of C/Craft. CP/M is a registered trademark of
Digital Research. UNIX is a registered trademark of Western
Electric. C/80 is a trademark of The Software Toolworks.

-2 -

Introduction to C/NIX

HOW TO GET STARTED.

C/NIX is a software package which provides your 8-bit CP/M 2.x system with many
of the features of UNIX (and MSDOS 2.0). It is intended primarily for use with
hard disk or high capacity floppy disk systems, and requires Version 2 of CP/M
(not 1l.x or 3.X).

In order to use C/NIX, you will first have to install it on your system. Then
it will help for you to understand the new C/NIX features you will have at your
disposal.

You will not have to read very much of this manual in order to do that. 1In
fact (following an old UNIX tradition), most of this manual is not really meant
to be read at all, but simply to be referred to when you need information on a
particular command.

However, because these new features involve some complicated ooncepts like
hierarchical file directories and input/output redirection, you should be sure
to read carefully the few pages that will help you get started.

Those pages are the very next section, entitled "Introduction to C/NIX
Features". We have tried to make this part easy to read. In that section, you
will learn how to install and run C/NIX, and how to use same of the features.

The rest of this introduction tells how to find your way about the rest of the

manual, and how to report problems to us. If you are impatient to get started,
you can skip to the next section now, and return here later.

ORGANIZATION OF THIS MANUAL

This manual is organized following the long-established tradition of UNIX
manuals. It's probably different from other manuals you have seen, and it can
be very confusing if you try to use it the wrong way.

Except for the very next section, intro, this manual is organized to be
referred to, not to be read. You probably won't get very far if you try to
read it fram cover to cover. The way to use it is to go looking for specific
information. In order to do that, you need a general idea of what information
it contains, and you need to know how to find that information.

C/NIX contains three kinds of enhancements to your CP/M system. These are
features, which you can use in most CP/M commands, new cammands to perform some
new functions, and subroutines, which are only of use to C programmers.

The C/NIX User's Manual is organized into three Chapters, each dealing with one
kind of enhancement: General Information (info), which describes the features,
C/NIX Commands (cmnd), and C/NIX Subroutines (subr). In this manual, when one
of the enhancements is mentioned by name, you will usually see also the manual
chapter in which it can be found: for example, help(cmnd).

Each chapter consists of entries, called pages, each explaining one command or
feature. (A manual "page" can in fact take up several screenfuls or paper
pages, but it's still called a page.) Pages are in alphabetical order within
each chapter.

-3 -

WHERE TO BEGIN READING

You should begin by reading the remainder of this section. Then read the first
(info) page, "Introduction to C/NIX Features", and browse through the rest of
the (info) chapter to get an idea of what features are available.

In each of the other two chapters, there is a general introduction page, which
gives a bit of a "roadmap” to that chapter's highlights, followed by the
remaining pages in alphabetical order.

You should 1look over the Table of Contents and the introductory page to the
Camnands chapter to get an idea of what is available, and then read the pages
that interest you. If you are a C programmer, you will eventually want to do
the same with the Subroutines chapter.

The individual manual pages are organized to contain as much information as
possible in a small space. You may find them very terse at first, but you will
get used to the presentation, which is designed not only for the printed manual
but also for the interactive help(cmnd) facility in C/NIX.

All the manual pages follow certain layout and typography oonventions,
especially in the SYNOPSIS section which gives a campact but cryptic summary of
the command or feature being explained. The notation is explained in the
manual page for help(cmnd).

PROBLEMS AND COMMENTS

If you have problems reading your C/NIX distribution disk(s), contact The
Software Toolworks. However, due to the large number of features in C/NIX, The
Software Toolworks' technical support department may not be able to answer all
possible questions about using C/NIX.

A limited amount of telephone assistance is available from C/Craft during the
hours shown below. However, it would be appreciated if, before seeking that
assistance, you try to exhaust the information provided by the manual,
including the table of contents, index, and trouble(info) section.

C/Craft
22 Downing Road
Lexington, MA 02173

(617) 862-8177: 9-10 AM and 8-10 PM Eastern only.

Recammendations for improvements to this manual are welcame, as are all
comments on C/NIX. There is a short trouble-shooting guide in trouble(info),
which tries to anticipate problems which may came up.

If you think you have really found a bug or undocumented limitation, please
make a record of a minimal sequence of operations which illustrates the
problem. Include the version number and date displayed when you start up
C/NIX. Mail the information to C/Craft at the address above.

Please enclose a self-addressed, stamped envelope if you wish an immediate

reply. We can anly respond to problems raised by registered owners of C/NIX,
SO we encourage you to fill ocut and mail the registration form.

-4—

intro(info) Introduction to C/NIX Features intro (info)
Installing C/NIX

This section describes how to install C/NIX on your system disk. Boot up on
your system disk, and use the DIR command to make sure it contains the files
stat.com and pip.com. (These files are supplied with your CP/M operating
system.)

Find out how much free space you have by typing the command
A> stat

If you do not have at least 42K of space, you will need to delete files in
order to make that much roam before you can install C/NIX.

Place the C/NIX distribution disk in a floppy drive (but not the drive you use
for your system disk). If your C/NIX system came on more than one distribution
disk, use the one marked "Disk 1". Wwe will assume that drive is B, but if your
system uses a different drive letter then use that letter instead of B
throughout this procedure.

Type the command
A> pip a:=b:cnix*.*

The names of the three files being copied will print out. When the A> prompt
reappears, type

A> cnix

You should now see something like:

C/NIX(TM) SHELL 1.56 12-Jan-85
Copyright (C) 1985 G/Craft (M) Lexington, MA

AS — C/NIX is awaiting your command

You will now copy some of the other C/NIX files onto your system disk,
deperding on how much space you have on your system disk, and which features of
C/NIX you are likely to want to use. The files you will copy have to do with:

The grep camand is useful for searching for a word or text string in files.
The set command lets you alter some system parameters. To install them, type
the comand

AS cp /b/grep.pre /b/set.com .

(The b in this command is the drive letter for the C/NIX disk, so if your
system calls it by a different letter, use that letter instead.)

A powerful feature of C/NIX is the help or man command, which can bring up on
the screen any of the information pages contained in this manual. To install
the manual page files, you will need about 114K of free space on your system
disk. Type the cammands

A$ mkdir help
AS cp /b/*.hlp help

intro (info) Introduction to C/NIX Features intro (info)

If your C/NIX system came on more than one distribution disk, replace the disk
in drive B by the one marked "Disk 2", and again type the command

A$ cp /b/*.hlp help
If you have three distribution disks, repeat this step for "Disk 3" as well.

Advanced Installation Notes

This section describes some installation features for the more advanced
user. If this is your first time through this manual, you may want to skip
this section for now.

Many versions of CP/M allow you to install a command which is executed
autamatically on "cold boot®, when you boot up. Often the program which allows
you to specify this command is called CONFIG or CONFIGUR or something like
that; consult your CP/M user's manual for details. If your CP/M provides that
facility, you can set it to execute the CNIX command automatically so that you
always enter CNIX when you boot up.

When C/NIX begins executing, it looks for a file named cnixinit.sub. If this
file is found, it is executed as a submit file. This allows you to execute one
or more commands automatically whenever you enter C/NIX.

If you are a C programmer, you may wish to copy the C program sources and the
mkrel command from the distribution disk(s) onto your system disk for later
use. The files to copy are mkrel.com, *.c and *.h. (If there is more than one
distribution disk the files may be split among the disks.) You may want to use
mkdir (cand) to create a subdirectory for the source files. '

If space is a problem on your system, you may want to install all the C/NIX
files on a disk drive other than the one you boot up on. This will work fine,
provided you always run the CNIX command from the current logged in drive. For
example, if your C/NIX files are on drive B, make sure the prampt is B: before
running CNIX.

You can alter some of the ways C/NIX interacts with the terminal to make the
system more to your taste. The system can "page" console output or not,
request confirmation or not before overwriting files from certain commands, and
print out more details of cammand files and certain cammands as they execute.
See set(amnd) and patches(info) for more details.

Your First Use of C/NIX

Now that you have installed C/NIX, you can run any CP/M command or
program, or any of the C/NIX commands. First, you may want to see a list of
the files in the C/NIX diskette top-~level directory:

AS$ 1s -1 /b (if the C/NIX disk is in B:)
or simply: :
A$ 1s -1 (if you installed C/NIX on A:)

You should now see samething like the following, although the totals will vary
according to your disk format and C/NIX version:

intro(info) Introduction to C/NIX Features intro(info)

-rwx 28.6k cnix.com

-rw= 1.9k cnixhigh.sys
-rwx 11.0k cnixutil.pre
-rwx 10.4k grep.pre

drw- 114.0k help.sda

-rwx 3.0k set.com

— Total 139k out of 241k —

If you installed the help files on your system disk, you created a sub-
directory called help. The next few commands will let you look at files in
that sub~-directory. For an explanation of directories, filenames and
pathnames, see "Hierarchical Directories™ below.

Trytypmgls-lhelp mdyouwmgetahstzmofthecontentsof the belp
sub-directory.

You will notice that the display stops after 23 lines. To continue, type any
key on the keyboard. This "paging" of screen output is a feature of C/NIX
which prevents information from moving off the screen before you can read it.
If you don't like it, you can turn it off; see set(amd) or patches(info).
However, the help command will always page.

Type out one of the files; for example, try type help/intro.hlp. You should
see this file. Trehelpcaunardcanalsobeusedtoacoanpllshthesamething

For example, type help intro. help alone is roughly equ:.valent to 1s help; try
it.

When you are done with C/NIX, you may type bye or exit, and you will return to
CP/M. Alternatively, you may simply power off the computer. When you do turn
off the power, it is prudent to first open disk-drive doors to 1lift the
recording heads fram the medium.

The next time you boot up your operating system, you can enter C/NIX again by
typing the command

A> ONIX

How to Continue

Now that you have run C/NIX, you may want to learn more about what it
can do. The first thing to read is the "Notes for CP/M Users" section below,
which explains a number of concepts that are unique to C/NIX.

You can then continue by reading the manual sections on the C/NIX shell
(csh(cmnd) or belp csh), I/0 redirection and pipes (ioredir(info) and
pipes(info)), and hierarchical pathnames (pathname(info)). A quick summary of
all of the C/NIX comands can be found in commands(cmnd). The notation used in
the command sumary (SYNOPSIS) on most manual pages is explained in help(cmnd).

NOTES

——

The diskette from which cnix.com is run must remain on the same drive
throughout use of C/NIX. The caommand interpreter, or shell, always looks to
the top-level directory of this drive to reload itself between program
executions, as well as for the help sub-directory, and the program cxu:mt:.l.pre
which contains the commands chmod, mkdir, and rmdir. (The file cnixhigh.sys is
loaded into high memory when C/NIX first starts, and then remains resident

-9 -

intro(info) Introduction to C/NIX Features intro(info)
until C/NIX exits.)
NOTES FOR CP/M USERS

The C/NIX interface is modelled closely after UNIX. Many UNIX
features, like hierarchical directories, pipes, and I/0 redirection, are also
used in MSDOS 2.0 and higher. A understanding of either of these systems,
preferably UNIX, will help greatly in making use of C/NIX.

This section provides a quick introduction to the UNIX-like features of C/NIX.
Any of the several books on UNIX would also be a help.

Notes for CP/M Users -— Hierarchical Directories

Probably the most important UNIX-like feature of C/NIX is the
hierarchical directory system. This is especially useful in helping you
organize your files on a hard disk or other large capacity disk, where a
directory listing can go to many screenfuls.

With hierarchical directories, instead of having all of the files in a single
directory, you can create a subdirectory, and put a group of files into it, say
all the files you need for a particular project. Directories are created using
the command mkdir.

Having a subdirectory is something like using a separate disk drive to hold
just those files, except that instead of drive letters, subdirectories have
names, and the files in several subdirectories can go on the same disk. When
you do a directory listing in the main directory, all you see is the
subdirectory name, not the files it contains.

If you want to further organize the files in the subdirectory, you can create
sub~subdirectories within it, and so on. In this way, you get a tree structure
of directories on the disk, where the "top-level" directory is the trunk, and
each subdirectory is a branch.

The top level directory of a disk is always named by a slash and the disk
letter. For example, the top level directory of disk A is always called /a.
When you first run C/NIX, you are in the top level directory of the disk with
C/NIX on it, usually /a. To see that, you can type the command pwd (for "print
working directory®), which will show the current directory name.

In CP/M, if you crganize your files on different drives, you can move over to
other drives by typing, for example, B:. Similarly, you can move to different
directories. To move to the directory help, type chdir help. Chdir means
"change directory®. To see the name of the new current directory, type pwd.
This will display the name /a/help. ‘ '

/a/help is an example of a pa , which is a way to refer to files or
directories that might not be in the current directory. A pathname is just a
list of subdirectories separated by slashes. The path may start with a slash
and a disk letter, which means it starts in the top level directory of a
diskette. If it does mot start with a slash, it starts from the current
directory. For example,

' /d/sources/compiler/parser.c
might be the "full pathname" for a file named parser.c. The subdirectory
- 10 -

intro (info) Introduction to C/NIX Features- intro (info)

sources is in the top-level directory of disk D. The subdirectory compiler is
within sources, and the file parser.c is within compiler. 1If a directory
listing is requested for the (top-level) directory of disk D, only the
subdirectory sources will appear. Compiler and parser.c will only appear when
a directory 1listing is requested of their respective parent directories
(/d/sources and /d/sources/compiler).

You can‘ use full pathnames in all C/NIX commands where a filename is required.
For exanple, instead of changing directories to type the file parser.c, as in

B$ chdir /d/sources/compiler
D$ type parser.c
gss chdir /b

you could simply say
B$ type /d/sources/compiler/parser.c
Even if you are not in the top level directory, you still have access to files
and commands stored there. See "The Rest" below for more details. See also
the manual pages for pathname(info), chdir(cmnd), and mkdir(cmnd) for more
information on hierarchical directories.

The walk command lets you display all the subdirectories in any directory. It
can also perform an operation in each subdirectory. See walk(cmnd).

Notes for CP/M Users — I/0 Redirection and Pipes

Another important UNIX-like feature of C/NIX is I/O redirection.
Normally, many commands or programs simply put their output on the console.
The 1s (or dir) command is one example.

I/0 redirection lets you redirect the ocutput of a coomand or program into a
disk file. Or you can provide the input for the program from a file instead of
from the keyboard (see ioredir(info)). You can also feed, or pipe, the console
output of one program back in as the console input for another program (see
pipes(info)).

For example, suppose you want to list all the files in the current directory
gth the SYS flag set. The 1ls -1 cammand will list these files with the "rws"
ags:
-rws 13.2k clibrary.rel

for example. So you want to see just those lines in the output of the 1ls -1
camand which have the string "rws" in them.

With C/NIX, you can redirect the output of the 1ls conmand to a file. Then you
can use the grep command to show you the lines containing the string "rws".

- 171 -

intro(info) . Introduction to C/NIX Features intro(info) '

$B 1ls -1 >+ tempfile — save output in tempfile
: — but also display on console.

«es yOu see the camplete 1ls listing ...

$B grep rws tempfile - run grep to select "rws" lines.

eee yOu see just the "rws" lines.

$B era tempfile — and clean up the tempfile.
You can do this whole process even easier, in one step, using the C/NIX pipe
feature. The command character | will pipe the output of one program into the
input of the next. So the single cammand

1s -1 | grep rws

will pipe the cutput of 1ls =1 through grep rws, and you will see all the "rws"
lines fram 1s -1 in one step.

Notes for CP/M Users — The Rest

Most of the other features of C/NIX should be familiar to CP/M users.
"Submit® files can be run by just typing the file name, without the submit
command, so you can run them just like compiled programs. Submit files can
also call other submit files. (See COMMAND FILES in csh(cmnd)).

As delivered, C/NIX waits after every 23 lines of screen ocutput for you to type
any key. This is called "paging®”. If you don't like it, you can turn it off
for everything but the help command; see set(cmnd) or patches(info).

Many of the built-in cammands have been enhanced to allow a list of arguments,
instead of just a single file specification. For instance the ERA command
(also called rm — see mm(cmnd)) may be given more than one pathname or
"wildcard" pathname ("ambiguous filename” in CP/M parlance — see’
wildcard(info)) for deletion in a single request.

A simple on-line documentation mechanism, the help command, has been built into
the C/NIX shell (command processor), providing pages fram this manual on
demand. (See help(cmnd).)

If you are in a subdirectory, you still have access automatically to commands
which are in the top level directory of the current disk, disk A, or the disk
from which C/NIX was initially run. So you will want to put all your
frequently used command files in, probably, the top level directory of disk A.

Also, if a running program looks for a disk file which is not in the current
directory, it will find the file of the same name in any of these top level
directories, if the SYS attribute of the file is set (see chmod(cmnd)). So you
can keep library files and other cammon non~caommand files in one place too.

SEE ALSQO

For more information on the features of C/NIX, you can browse through
the other pages of this manual. In particular, see help(cmnd), commands(cmnd),
csh(cmnd) , ioredir (info), pathname (info), pipes(info), walk (cmrd) ,
wildcard (info) .

-12 -

ioredir (info) Input/Output Redirection and Logging ioredir (info)

NAME
ioredir — Input/Output Redirection and Logging

command paraml param2 ... > outfile

commard paraml param? ... >> outfile

command paraml param2 ... < infile

command paraml param?2 ... >+ logfile

command paraml param2 ... <+ infile

command paraml param2 ... >& out_and errorfile

command paraml param2 ... < (licit input ...)

command paraml param2 ... [>>+ | >>& | >& | >>+&] out_log err
command paraml param? ... [>! | >+ | >!1& | >1+&] out_Jog_err

C/NIX lets you redirect the console input or output of a command. That
is, what would normally appear on the screen can be saved on a file instead, or
in addition. Also, instead of taking typed input from the keyboard, the
program can be made to take it fram a file.

C/NIX also lets you save the keyboard input on the output file. Finally, it
allows C/NIX error messages (output using the BDOS "direct console output"
primitive) to be redirected with the normal cutput.

The first SYNOPSIS form (>) is the simple case of output redirection. In this
case, output which would have appeared on the terminal is instead saved in the
specified outfile. Outfile must be the name of an output device, or a new disk
file; the shell will ocomplain if it is an existing disk file (except see !
below) . '

Legal output devices are as follows:

1st: The listing device,
con: The console (ensures output goes to console
even if some enclosing redirection is in force;
bypasses console output paging if in effect),
pun: The punch device,
err: The "error" device, namely Direct Console Output,

bypassing BDOS processing,
nul: The Bit Bucket (output discarded).

The second SYNOPSIS form uses >> which means add the output to the end of the
outfile if it already exists. If the file does not exist, it will be created.

The third SYNOPSIS form (<) is simple input redirection. Instead of
reading from the terminal, the program takes its input from the specified
infile when it requests "console input."

The fourth SYNOPSIS form (>+) is used when a permanent record ("log") of a
program execution is desired in a logfile, including both the program's console
output and any console input. When input is on the terminal, any logged
program output will also appear on the terminal.

The fifth SYNOPSIS form (<+) cause console input to be redirected from a file,
but with the side effect that it is echoed on the terminal as it is read. This
is useful during debugging of a program when the input is stored in a file.

The sixth SYNOPSIS form (>&) causes redirection of both normal console output
and "error" output (defined to be anything output using the BDOS direct console

-13 -

ioredir (info) Input/Output Redirection and Logging ioredir (info)
output primitive, system call 6).

The seventh SYNOPSIS form (€ (oo ")) is useful primarily within command files.
The text within parentheses is provided when the command requests console
input. The text may be several lines, and may include nested balanced or
quoted parentheses. The final parenthesis beccmes a carriage return, followed
by an end-of-file (control/Z) when read by the command. Note that this
replaces the XSUB feature of standard CP/M (XSUB itself is not supported).

The eighth SYNOPSIS form lists additional legal combinations of input logging,
output redirection, appending, and error redirection. In all these cases, the
+ means input logging, & means error redirection, and >> means appending.

The ! flag in the final SYNOPSIS form allows overwriting of existing files by
redirection. Without the ! flag, a file specified for output
redirection/logging with a single > must NOT already exist.

If the input or output is to be redirected from or to the same file for a
sequence of commands, with the later ones picking up where the former ones
leave off, then the commands can be grouped into a command file (see csh(cmnd))
or directly with parentheses (see example below).

Although not illustrated in the SYNOPSIS, both input and output may be
redirected for a single coammand.

EXAMPLES
ddt prog.com <+ debug.txt >+ progddt.log

This example will start DDT with the given program, taking commands fram the
file debng.txt, showing them on the terminal as they are read (due to <+), and
logging both input and output in the file progddt.log (due to >+).

(type cover.txt; nroff body.nr
type backcovr.txt) > lst:

This example runs a series of commands, and sends all of their output to the
listing device.
NOTES ;

Enclosing commands in parentheses is equivalent to creating a command -
file with the enclosed text and then running it. The text may be several
lines, and the end of a line (unless quoted) is equivalent to a semi-colon.

The concept of "error" output is not defined in standard CP/M, so C/NIX has
introduced the convention that "direct" console output should be oonsidered
"error" output.

The actual physical devices associated with the output devices lst:, con:, and
pun: may be adjusted using the normal CP/M STAT command, such as stat

Even if paging of output to the console is selected (set(cmnd)), the con:
device will bypass the paging.

- 14 -

ioredir (info) Input/Output Redirection and Logging ioredir (info)

SEE ALSO ,
. csh(cmnd), intro(info), pipes(info), quoting (info)

LIMITATIONS

In some cases, output may appear double spaced when input is
redirected. This occurs when the program thinks it is reading the keyboard,
where lines are terminated with the return (CR) character, rather than a file,
which uses a CF-LF pair. The program will echo the CR as CR-LF, and the LF as
LF, giving two LFs (line feeds) at the end of each 1line. Programs compiled
using (/80 exhibit this problem, but since (/80 contains its own I/0
redirection, the problem can be avoided by using \< instead of < to bypass the
shell and use C/80's redirection instead.

The amount of text which may be provided using the parenthesis feature (< (...
)) 1is severely limited. (All commands are limited to about 250 characters
total.) This limitation can be overcome by creating a separate file with the
input for the command. :

- 18 -

patches (info) Patches to the C/NIX System patches (info)
NAME .
patches — Patches to the C/NIX System
SYNOPSIS :
Address Meaning Default Legal
(hex) Values
022a First temporary drive letter 'J' = 4A 'C'... 'M!
= 43...4D
022C Last temporary drive letter 'M' = 4D 'F;«ié"P;O
0254 Drive for pipes 0 'At...'P!
(0 = use C/NIX drive) =41,...50
0255 Camnands drive (0 = not used) 0 '‘B'...'P!
(searched for commands =42...50
instead of drive A)
0256 Help drive (for help dir.) 0 'A'...'P!
(0 = use C/NIX drive) =41...50
0257 Confirm required if overwriting 1 0 =no,
: files in cp, mv 1l = yes
0258 Verbose flag: echo commands 0 0 = quiet,
before execution in .sub file 1 = echo
0259 SYS-bit required for universal 0 1 = req'qd,
visibility of commands in 0 = not
top-level directory.
025C Page screen output. 1 1 = yes,
0=nmno
025D If paging, number of lines/page 23 dec. 15...127 dec.
025E ASCII code to warn user at bell Any ASCII
end of page (e.g., 07 = bell, char.
3F = '?', 0 = none, etc.)
0260 Maximum user number to use for 1IF OF or 1F
creating subdirectories.
DESCRIPTION

Certain aspects of the C/NIX system may be altered by patching the file
cnixhigh.sys. The following example shows how to do this. It changes three of
the drives above from their old defaults,

IMPORTANT: Since the SAVE camand does not work under C/NIX, it is
necessary to perform this procedure under CP/M, not C/NIX.

A>ddt b:cnixhigh.sys — Load cnixhigh

NEXT PC

0880 0100 — First free byte, and start
-s50254 — Replace the pipe disk

0254 00 43 - C!

0255 00 44 — Make 'D' the commands drive
0256 00 .

-S22A — Replace the first temp drive
022A 44 47 -G

022B 00 .

-g0

A>save 8 b:cnixhigh.sys — Save (8 is (0880-0100) / 100 hex)

-16 -

patches (info) Patches to the C/NIX System patches (info)

Now test it as follows

A>be

B>cnix -— Load C/NIX with patched cnixhigh
BS echo help/foobar ~ — Test minimum temp disk letter
G:foobar

B$ 1s -1 /c | cat — Test that pipes end up an /C

Zrw- 0.0k pipe0a.$$$ — Sure enough!

BS 1s -1 /b | cat — Test that they are NOT on /B

— Check that commands on D are found

B$ cp grep.pre /d/newgrep.pre — Copy "grep" to D
B$ /d/newgrep "NOTES" help/intro.hlp — Should work
B$ newgrep "NOTES" help/intro.hlp — Should also work

NOTES

The set conmand allows some of these patch locations to be changed in
memory. Modes that can be changed are verbose, confirmation, and paging. The
changes last only as long as C/NIX is not exited or rebooted.

At least four temporary drive letters should be provided. These are used as
logical disks by the shell (see pathname(info)).

When a caomnands drive is specified, it is searched after the current drive, and
before the C/NIX drive, instead of drive A. Only the top-level directory on
the commands drive is searched. '

SEE ALSO
csh(cmd), cp(cmnd), help(cmnd), mv(cmnd), pathname(info), set(cmnd)

- 17 -

pathname (info) Hierarchical Directory Pathname Syntax pathname (info) -

NAME

pathname — Hierarchical Directory Pathname Syntax
SYNOPSIS

/x/dirl/dir2/ ... /name.ext

.o/dirl/dir2/ ... /name.ext

x:dirl/dir2/ ... /name.ext

dirl/dir2/ ... /name.ext
DESCRIPTION

C/NIX supports a tree-like hierarchical directory structure. Each disk
may have sub-directories along with files, and each sub-directory may have
further sub-directories and files. This feature allows each directory to
remain smaller, containing a logically related set of programs and data.

Files and directories in various directories are referred to by pathnames. The
top-level directory of each disk has a pathname of the form /x where x is the
disk letter. Each file or sub~directory in the top-level directory has the
pathname /x/ followed by the file or directory name. For example, if the top
level directory of disk a contains a directory help, the pathname of that
directory is /a/help.

Once you have constructed the pathname of any directory, the pathname of any
file or sub~directory within it is the pathname of the directory, followed by a
slash (/), and then the name of the file or sub-directory. So the file mv.tin
in the help directory of the preceding example has the complete pathname
/a/belp/mv.tin.

CP/M already has the concept of the cuirent disk or logged-in disk. The letter
of the current disk appears in the command prompt: for example, A> on CP/M, or

AS on C/NIX. If you give a file name without a disk letter (that is, file as
opposed to b:file), the current disk is assumed.

In C/NIX, there is also a current directory on each disk. The current
directory is determined by the most recent chdir command on that disk. The
current directory on the current disk is the current working directory. The
full pathname of the current working directory may be seen with the pwd command
(see chdir (cmnd)).

If you give a file name without indicating a disk or directory, the file is
assumed to be in the current working directory. (You can also give a pathname
starting with a directory name, as in the fourth SYNOPSIS form; the path will
start fram the current working directory.)

For convenience, the parent directory of a sub-directory may be referred to by
the special name .., allowing pathnames to specify traversing both "up" and
"down" the hierarchy. This is illustrated with the second form under the
SYNOPSIS. A single dot . represents the current directory itself, and is
particularly useful for the cp(cmnd) and mv(cmnd) commands when copying/moving
a group files into the current directaory.

The walk command prints out all the sub—directories of the current dlrectory.

It can also execute a comand in each sub-directory, allcwmg an operation to
be performed on files in various directories.

- 18 -

pathname (info) Hierarchical Directory Pathname Syntax pathname (info)

NOTES ’

A sub~-directory is represented as a file in its enclosing, or ent,
directory, with a filename extension of .sd? where ? is a letter from 1 to 5 or
a to z. A total of 31 sub-directories may be created on a single disk (see
mkdir (cmnd)). When referring to a sub-directory, only the name part of the
filename is used. (I.e. never mention the .sd? extension-part).

Files in the top-level directory of a disk which have the SYS flag set (see
chmod (cmnd)) are accessible from any sub-directory. This works by having BDOS
open (function 15) automatically check the top-level directory (i.e. user 0)
whenever a requested file is not found in the current directory. File
attribute £f8 is set in the FCB so that subsequent reads and writes will
reference the correct file. This is particularly useful for executable
programs and program overlays, which are frequently referenced when working in
a sub~directory.

The C/NIX shell recognizes the hierarchical directory pathname syntax, and
converts it to a form acceptable to CP/M programs, by temporarily defining
"logical® disks with letters from j to m (see patches(info)), and replacing the
hierarchical pathname part with simply Jj:, k:, etc. Any parameter which
contains un-quoted slashes (/) is translated in this way by the shell (see
quoting (info)) .

SEE ALSO
chdir (cwnd), chmod(cmnd), cp(cnd), mkdir(cmd), mv(cand),
patches (info), quoting(info), walk (cmnd)

LIMITATIONS

For a single command, only four temporary logical disks may be defined
(3» k, 1, and m), thus limiting the number of sub-directories which can be
referred to with a single set of parameters. This may be overcome by defining
current directories of interest on the various disks with chdir, and using the
x: notation, or by patching cnixhigh.sys to allow more temporary disks (see
patches(info)).

Explicit use of the "user" feature of CP/M is not supported. There is no

"user" cammand, and use of [Gnn] in PIP or the "setuser" BDOS system call is
ignored.

- 10 o

pipes (info) C/NIX Pipes pipes (info)

NAME
plpes C/NIX Pipes
SYNOPSIS
commandl paraml ... | comand2 param2 ... | command3 ...
DESCRIPTION
Pipes allow several programs to be run in succession, with the output
fran one program being passed to the next program as its input.

Pipes are convenient when the output of a command should be sorted or
reformatted in some way, before being saved permanently in a file. Programs
designed to do this kind of sorting or reformatting are called filters.

C/NIX uses the vertical bar | to separate commands in a pipe.

EXAMPLE
asm foobar | grep "error®

This example assembles foobar, and then passes the output through the filter
grep which outputs only the lines of its input which contain the string 'error'
somewhere within them.

NOTES

Because CP/M is not a multi-tasking system, only one of the commands
actually runs at a time. All of its "console®™ output is oollected in a
temporary pipe file, and then the next command in sequence is run, with its
console input redirected to came fram this temporary file.

Normally, the pipe files are created on the C/NIX disk, but C/NIX can be
patched to use another disk; see patches(info). Because all of the output of
one command must be collected before the next can be run, the px.pe file dlsk

must be writable, and have enough room to hold the data.

The C/NIX shell names the temporary pipe files /x/pipe0?.$$$ where x is the
pipes disk, and ? is a character from 'a' to 'z'. The files are autamatically
- deleted after use.

SEE ALSO
ioredir (info), patches(info), grep(cmnd)

-20 -

quoting (info) Quoting and Escape Characters quotihg (info)

NAME
quoting — Quoting and Escape Characters
S

\x

SYNOPSI

(LN])
DESCRIPTION

Various characters have special significance in C/NIX commands. In
particular, at various times, the following characters are interpreted
specially:

2*%/; () <>]|$\ "' " <SPACE> <RETURN>

If you want to use one of these characters in a command, you may need to "slip
it past" the C/NIX shell to let the program "see" it. To do this, you must
te the character. You can quote a single character by prefixing it with the
kslash (\) character. Alternatively, a string of characters may be quoted
with matching apostrophes or double quotes.

A common problem occurs with CP/M commands which take "switches" containing the
/ character on the command line. The error message "Bad directory" may be
given. To avoid this, enclose the entire argument in quotes.

Within quotes or parentheses, same but not all of the above characters lose
their significance. In particular, within single quotes (apostrophes), all but
backslash, <RETURN>, and single quote itself lose their significance. Within
double quotes, <RETURN>, dollar sign, backslash, and double quote itself are
still significant.

Parentheses defer the processing of all but dollar sign. Thus commands within
comand files may be given (multi-line) input which depends on the parameters
to the command files.

EXAMPLES

180 foo,clibrary,foo\/n\/e
— / characters must be quoted.

ddt < (s$l

20

2 - execute ddt, substitute at address (s$l)
22 — specified as first parameter to command
o — fileo

go)

grep "and/or " thesis.txt
— Slash and space must be quoted.

NOTES

The amount of text which may be included within quotes is limited to a
single line. The amount of text which may be enclosed within matching
parentheses is limited to about 250 characters.

SEE ALSO
ioredir (info)

trouble (info) Trouble Shooting on C/NIX trouble (info)

NAME

trouble — Trouble Shooting on C/NIX

SYNOPSIS
Problem

A command containing special
characters, such as () / or \,
does not work or gives error
messages.

The shell immediately exits
after it is invoked with cnix.
C/NIX exits instead of returning
with a shell prompt.

The shell is slow in prampting
after a program finishes.

Files seem to be missing from
the directory.

A file cannot be moved or
removed.

Pipes don't work, or the disk

fills up during a piped command.

The output of a program cannot
be redirected with >.

Possible Causes

These characters have
special meaning to C/NIX.
See quoting (info).

You did not select the disk on which
cnix.com resides before
invoking it.

'You removed the C/NIX disk from the
drive it started on.

Any non-relocatable program is loaded
over the shell, and so the shell must be
re-loaded after it campletes. This
process is fastest if cnix.com is
the first file copied onto the diskette
so it is close to the directory tracks,
and contigucus.

Also, some CP/M configuration programs
allow the user to reduce the "stepping"
time. Modern drives can handle a
6 millisecond step rate.

Files with the SYS flag set are not
listed in the short form of 1s or

dir. Files in other directories are

not listed unless that directory is also
specified.

The overlays for an editor or compiler

are frequently required to be in the
current directory. C/NIX will find files in
the top directory if the SYS flag is set
(chmod +s) .

Files with the "write" flag off cannot
be moved or removed Use chmod +w to
set the write flag.

The disk is nearly full. Move consists
of a copy followed by a delete, requiring
room for two copies of the file
temporarily. .

The entire output of a piped command is
collected in a temporary pipe file.

The pipe file disk must be writeable, and
with enough free space to hold it.

The program uses direct console output
(try >&), or goes directly to

the BIOS part of the operating system or to
the hardware (hopeless).

-22 -

trouble (info) Trouble Shooting on C/NIX trouble (info)

Redirected program ocutput is This happens with same programs written
double spaced (extra blank in C/80, because they add an extra line
lines inserted). feed when writing to what they think is

the screen. Redirect with \> instead
which uses C/80's I/0 redirection.

The input of a program cannot Same causes as above.

be redirected with <.

Tabs don't line up properly on During input, when ocutput is redirected,
8-column intervals tabs may echo improperly, due to an

obscure bug in CP/M. The tabs will
expand properly when viewed later.
Try the < (...) feature instead
(see ioredir(info)).

The SAVE command doesn't work. SAVE is not supported by C/NIX.
Patching must be done under CP/M.

The XSUB command doesn't work. XSUB is not supported by C/NIX. Use
input redirection instead (ioredir (info)).

A spooler (like DESPOOL) or other These programs "poke around” in

"background" or resident program CP/M, and not all can work with

does not work. C/NIX. Those that can (like DESPOOL)
must be loaded BEFORE C/NIX is run.

Hard disk backup procedures do C/NIX uses user numbers 1 to 31. Some
not save all directories. backup procedures may not save user
numbers over 15 (directories .sdk
and above). Use cp to copy files to
disk instead, or patch C/NIX not to use
user numbers over 15 (patches(info)).

Programs intended for a specific = Certain programs (e.g., versions of Micro-

CP/M implementation will not run. soft BASIC for same Heath/Zenith machines)
refuse to run on other operating systems.
These programs may not recognize C/NIX as a
legal system. Exit from C/NIX to run the
program.

DESCRIPTION

This section attempts to suggest probable causes for anticipated
problems while running C/NIX. If after considering this list, you still cannot
solve the problem, see the trouble reporting procedure at the end of the
Introduction to the printed C/NIX manual.

SEE ALSO
patches (info)

LIMITATIONS
Some of the limitations implied in the probable causes above should be
removed fram C/NIX or CP/M.

- 2R -

wildcard (info) Filename Wildcards '?' and '*' wildcard (info)

NAME

wildcard — Filename Wildcards '?' and '*'
SYNOPSIS

? matches any single character of a filename.

* matches any number of characters at the end of the "name" part or the

"extension" part of a filename.

DESCRIPTION

Wildcards are characters (? and *) used in filenames in commands in
order to refer to a set of files with similar names, instead of a single file.
C/NIX supports almost the same wildcard conventions as CP/M.

CP/M documentation refers to a filename pattern containing ? or * as an
ambiguous file name(afn). In C/NIX, ? and * are called wildcards, and the
1lename is wildcarded.

As in CP/M, a ? takes the place of any character within the 8-character name-
part or 3-character extension-part of a filename. In addition, a * may be used
at the end of the name-part or extension-part, and it is equivalent to a string
of question marks.

If a * appears at the end of a name, and no extension is specified, all
extensions are matched. This is campatible with UNIX, but differs fram CP/M,
in which only the null extension would be matched.

EXAMPLES
ar*.c matches all files whose name starts with a, and whose extension is
oCo
cnix?b.a*
xhgttghes all files whose name matches cnix?b and extension starts
with a.

foo* matches all files whose name starts with foo, regardless of
extension. The CP/M equivalent would be foo*.* (which also works
on C/NIX). Use foo*. to match files with no extension.

At the end of the name-part or extension-part, ? matches a blank (this
is consistent with CP/M).

Unlike in UNIX, to maintain compatibility with existing CP/M programs,
wildcarded filenames are expanded ONLY for the following commands:

chmod (cnd) , op(cmnd), dir/ls(cmnd), era/rm(cmnd), grep(cmnd), mv(cmnd)
In addition, existing CP/M programs, or your own programs, may recognize the
wildcard characters. A _main startup routine is provided on the C/NIX (source)
disk for this purpose (see main(subr)).

SEE ALSO
intro(info), pathname(info), ls(cmnd), main(subr)

LIMITATIONS

The limitation that * may only appear at the end of the name-part or
the extension-part should be removed (from CP/M as well).

-24 -

commands (cmnd) Summary of C/NIX Cammands comands (cmnd)

NAME
commands — Summary of C/NIX Commands
SYNOPSIS :
bye ‘ — Leave the C/NIX shell (exit)
cat filel file2 ... > outfile - Concatenate text files
cat € (oo) — Qutput text in parens
chdir - Change to top-level directory
chdir dir — Change to a new directory

chmod [+w|-w|+s|-s] filel ... — Change "mode" of files

od — Syrmonym for chdir

cp filefrom fileto — Copy a file

cp [-f|-c|-v|-q] filel ... dir — Copy files to new directory

csh [-v|-g] cmndfile paraml ... — Invoke sub~shell on command file
dir [-1fdt] patternl pat2 ... =— List directories (1s)

dir [-1£4dt] — List current directory (ls)
echo paraml param2 ... — Echo parameters to console (csh)
. era [-f] filel file2 ... — Erase files (rm)
exit — Exit the C/NIX shell
grep "pattern" filel ... — Search files for a pattern
grep "pattern” — Search console input for a pattern
help topicl topic2 ... — Display help information
help — Display list of help topics
1s [-1fdt] — List current directory
man topicl topic2 ... — Display pages from manual (help)
man _ — Display list of manual pages (help)
mkdir dirl dir2 ... - Make directories
mkrel filelOO file200 file.pre - Make page-relocatable program
mv [-f|=-c] oldname newname — Move/rename a file
mw [-f|-c|-v|-q] filel ... dir — Move files to new directory
pwd — Print pathname of working directory (chdir)
ren oldname newname — Rename a file (mv)
ren newname=oldname — Rename a file (mv)
rmdir dirl dir2 ... — Remove directories (mkdir)
set [+|- [vcbp?]] ... — Set certain user interface parameters
submit cmndfile paraml ... — Submit cammand file (csh)
type filel file2 ... — Type text files (cat)
walk [-b] — Walk directory tree

walk [~b] command paraml ... — Walk and execute command

NOTES

Each of these commands is described within this (amnd) chapter,
generally on a page devoted to that conmand. In cases where the cammand is
-described elsewhere, the name of that manual page is given in parentheses.

Optional flags are given in brackets, with alternatives separated with vertical
bars. Ellipses (...) are used to represent a list of files, etc.

All of the above are recognized within the shell, except for grep and mkrel.
All but these two and chmod, mkdir, and rmdir, are also implemented entirely
within the shell. The commands cimod, mkdir, and rmdir are implemented by
cnixutil.pre. .

SEE ALSO
intro(info)

—_ e

cat (cmnd) Concatenate or Type Files cat (cmnd)

NAME :
cat — Concatenate or Type Files
SYNOPSIS

cat filel file2 ... > cutput

cat filel >> file2

cat < (... predefined text ...)

type filel file2 ...
DESCRIPTION i
The cat command (alias type) can be used to concatenate ASCII files,
type files, or display predefined text. It simply reads each file, and outputs
it to the console. By using ocutput redirection, the files can be effectively
concatenated.

The second form shows the use of ocutput appending (>>) to concatenate one ASCII
file onto the end of another.

If no arguments are given to cat, it simply copies its console input to the
console ocutput. The third form above shows how this can be used in a command
file to display some predefined text (or see also echo(cmnd)).

Type is a synonym for cat in C/NIX, and may be used in all of the same ways, as
well as in the more oconventional file display use illustrated in the last
SYNOPSIS form.

The filename - represents by convention the console input. A user may thus
insert some console-provided text between two files in a concatenation:

cat header.txt - tra:i.l.er.t:gt > combo. txt

After oopying header.txt, cat will wait for input fram the console, copying it
to console output until it receives the CP/M end-of-file character (control/Z).
It will then copy over trailer.txt.

NOTES

In the first SYNOPSIS form above, the file output is created before the
command actually begins, and if it is also mentioned as one of the input files,
an infinite loop will be created.

Cat looks for the CP/M ASCII end-of-file indicator (control/Z), and hence
cannot be used to concatenate binary files.

SEE ALSO
cp(cmnd) , ioredir (info), echo(cmnd)

LIMITATIONS

Cat does not properly deal with wildcarded filenames. Only the first
file matching the pattern is displayed. This limitation exists because, when
concatenating, the order presumably matters, and at the moment, the shell does
not guarantee any specific order for files which all match the same wildcarded

pattern. Alphabetical order would be consistent with UNIX, and could be
convenient.

- 26 -

chdir (cmnd) Changing/Printing Current Working Directory chdir (cmnd)

NAME

chdir — Changing/Printing Current Working Directory
SYNOPSIS

chdir dir

chdir

od dir

od

pwd
DESCRIPTION

The current working directory represents the current focus of activity
on C/NIX. It is like the current logged in disk an CP/M. Filenames without a
disk letter prefix (no x:), refer to files within this directory. Pathnames
which do not start with a slash (/) are relative to this directory (relative

thnames) . By default, the 1s command lists the files and" sub-directories

within current working directory. A pathname of simply . may be used to
refer to the current working directory (or ./; see LIMITATIONS below).

The chdir command (alias od) changes the current working directory to be some
new directory. With no parameter, the top-lewvel directory of the current disk
is selected. Otherwise, the specified directory is selected. The disk of this
new directory becames the current disk, and its letter is displayed as part of
the C/NIX prompt.

After selecting a particular directory on a disk as the current directory, it
continues to be accessible using simply the disk letter prefix (x:) instead of
its full pathname, until a new directory is selected to be current for THAT
disk. Thus at any one time, C/NIX keeps track of a current directory for every
disk. The one for the current disk is oonsidered the current working

directory.

The pwd command displays the full pathname of the current working directory,
and is handy to answer the question "Where am I!2"

LIMITATIONS

The only C/NIX commands that know about . and .. are ones such as
rm(cmnd) and cp(cmnd) which deal with directories. For other commands (e.g.,
echo(cmnd)) and non-C/NIX programs which want a drive name as argument (e.g.,
A:), it may be necessary to use ./ ard ../ as pathnames, in order to force the
shell to provide the correct equivalent. The shell recognizes only pathnames
containing the character /.

SEE ALSO
csh (cmnd) , mkdir (cmnd), pathname (info) -

chmod (cmnd) Change File Mode Flags chmod (cmnd)

NAME

chmod — Change File Mode Flags
SYNOPSIS

chmod +w filel file2 ...

chmod -w filel file2 ...

chmod +s filel file2 ...

chmod -s filel file2 ...

chmod [ws | ws | +s «w | +w =5 | ...] filel file2 ...
DESCRIPTION

The chmod command allows the user to change the file mode flags of a
file. Each C/NIX file has two mode flags, a writeable flag, and a SYS flag.

When files are created, they are by default writeable. However, this flag may
be cleared, after which the file cannot be moved or removed. Chmod 4w ... sets
the writeable flag, while chmod -w ... clears it.

The SYS flag controls whether files are visible in short form directory
listings. By default the flag is off, and the file appears in the listing.
However, when the SYS flag is set (with chmod +8 ...), the file is invisible,
and no longer appears in the short form listing. In the long form listing (1s
-1l), the SYS flag prints as an s. See ls(camnd).

Both the "writeable" and SYS flags may be turned on or off in a single chmod
command, as illustrated in the last form under SYNOPSIS above.

NOTES :
These flags correspond to CP/M flags. The C/NIX "writeable" flag is
the complement of the CP/M "read-only" flag. The C/NIX SYS flag is the same as
the CP/M SYS flag. The flags are implemented using the high order bit of the
first two characters of the filename extension, when stored in the directory.

These flags have less effect on directory files (e.g., help.sda). If the
directory file is not writeable, then the directory cannot be removed, but
components can still be added to or removed from it. The SYS flag, if set for
a directory file, will cause the directory file to be omitted from a short form
listing of its parent directory, but a short form listing of the directory
itself will be unaffected.

Camnands in the top-level directory of a drive are normally accessible from any
sub~directory. If the SYS flag of a file in the top-level directory is set,
the file is also accessible to be opened by any running program. This allows
library files, for example, to be stored in the top directory for access fram
any directory. The requirement of the SYS flag being set can be eliminated by
patching cnixhigh.sys (see patches(info)).

SEE ALSO
cp(cmnd), ls(cmnd), pathname (cmnd)

LIMITATIONS

Clearing the "writeable" flag on a directory file should perhaps
prevent adding or removing camponents from the directory.

- 28 -

cp (cmnd) Copy a File or Files cp(cmnd)

NAME
cp — Copy a File or Files
SYNOPSIS
-f | =¢ l -v | =q] filefrom fileto
-q] filel file2 file3 ... dir

.The cp command copies one file to a new one, or copies a set of files
to another directory. Cp will ask for confirmation if a file already exists
with the new name. (-f flag "forces"™ copy without asking for confirmation,
regardless of whether the target file exists.) The rm command may be used to
remove existing files before copying to them,

The first form of cp takes two filenames; it copies the f:.r:st to the secord.
This is equ:.valent to a simple use of the PIP command.

The second form of cp takes one or more filenames, and a directory name. All
the files are copied onto files with the corresponding names in the specified
directory. The filenames may contain wildcards, in which case all matching
files will be copied into the specified directory. The directory must exist,
but if it contains any files with the same names as those being oopied,
confirmation will be requested.

The -f flag "forces" copy without confirmation. This can be made the defauit
by patching cnixhigh.sys (see patches(info)), in which case -¢ overrides the
default and requests confirmation again.

The -v flag (for "verbose") causes each file name to be echoed as it is copied.
This may be made the default by patching cnixhigh.sys (see patches(info)), in
which case —q overrides the default and requests "quiet" mode again.

The source files are unaltered. To rename a file, or move it to another
directory, see mv(cmnd).

SEE ALSO
mv(cmnd), rm(cmnd), patches(info), pathname(info), wildcard (info)

- 29 -

csh (cmnd) The C/NIX(tm) Shell csh (cmnd)

NAME

csh — The C/NIX(tm) Shell — Command Formats
SYNOPSIS

B>conix

csh

csh [-v|-q] cmdfile paraml param2 param3 ...

condfile paraml param?2 param3 .

(commandl paramll paraml2 ...; comnandz param2l ...)
DESCRIPTION

The C/NIX shell is the program which displays the command prompt (for
example, A$), reads the commands you type, and executes them. It also executes
commands files (also called batch or submit files). (The CP/M equivalent is
called the CCP.)

Our discussion of the shell breaks down into two topics: how to invoke the
shell, and what features and commands the shell provides. Normally, you won't
need to invoke the shell at all, since it comes up automatically when C/NIX is
entered, or when you run a command file. So first time users may want to skip
to the next heading now.

The C/NIX shell may be initiated in several different ways, as illustrated by
the various forms under SYNOPSIS above.

The first SYNOPSIS form shows how the shell is first invoked as part of C/NIX
initialization. The disk on which cnix.com, cnixhigh.sys, cnixutil.pre, and
help.sda all reside MUST be the current disk when cnix is first invoked, or
else it will immediately exit.

The second form (csh) invokes a sub-shell. In effect, this places the current
shell aside ard drops down into a new one. Exiting the new sub-shell (see
exit(cmnd)) returns to the old shell. This is useful for wandering off
temporarily to various other directories, since exiting returns to the original
directory. This form is also useful when a list of shell commands are
constructed by same program, and then piped into the shell (see pipes(info)).

In the third form, the shell is run with the name of a command (.sub) file from
which it is to take commands to be executed. The remaining parameters in the
command replace occurrences of $1, $2, etc., in the command file. The optional
-y flag ("verbose" or "verify") causes commands from c<mndfile to be echoed
before execution. This can be made the default by patching cnixhigh.sys (see
patches(info)), in which case the —q flag may be given to request "quiet" mode
again. See "Command Files" below for more details.

Command files can also be executed simply by typing the name of the command
file and any arguments, as shown in the fourth form (cmndfile paraml ...). In
this case, the shell is invoked implicitly. This form will search multiple
directories for cmndfile (see below).

The final form ((commandl ...)) shows the grouping of commands, useful for
piping or redirecting their I/0 as a whole. This is equivalent to creating a
command file with the parenthesized text, and then runmning it. Again, the
invocation of a sub-shell to process the cammands is left implicit.

COMMAND FORMAT AND SEARCH PATH

The basic format of commands to the C/NIX shell is similar to CP/M:

- 30 -

csh (cnd) The C/NIX(tm) Shell csh (cmnd)
B$ command name paraml param? param3 ...

The prompt reminds the user of which is the current disk (B in this case). The
chdir (cmnd) command may be used to change the current disk.

If the command name does not include a filename extension, then the shell will
try .com (normal CP/M programs), .pre (page-relocatable programs, loaded above
C/NIX shell, built by mkrel(cmnd)), or .sub (C/NIX command files).

If the command name is not found in the current working directory, the shell
will look for it in certain other directories. These directories make up the
search path. This is very useful, because you don't have to keep copies of all
your commands in each directory. You can just keep one copy in a directory on
the search path, and use it fram any directory at all.

The search path ccnsists of the current working directory, the top-level
directory of the current drive, the top-level directory of drive A, and finally
the top-level directory of the drive from which C/NIX itself was loaded. A
"commands® drive may be substituted for A in this search path by patching
cnixhigh.sys (see patches(info)).

If the "SYs-bit required" flag is set in cnixhigh.sys (see patches(info)) then
only commands with the SYS bit set (see chmod(cmnd)) will be found in the top-
level directory of the current drive. This provides compatibility with CP/M
3.0. (Note that when a program tries to open a file during execution, the top-
level directory is also searched automatically, but the SYS' bit is always
required in that case.)

Certain command names are built into the C/NIX shell. These commands are
either implemented within the shell itself (for example, cp, mw, 1s), or are
implemented by a special utility program called cnixutil.pre (currently only
chaod, mkdir, and rmdir). These commands will start and finish more quickly
because they are built in to the shell, or are in a known directory, and the
shell does not have to be reloaded after they finish.

Bye and exit are two names for the built-in commmand which makes the shell
finish execution, and return to CPM if a "top-level” shell, or return to the
invoking shell if a sub-shell. End-of-file on a command file will also cause
the shell to exit. .

Several C/NIX commands may be entered on the same line by separating them with
a semi-colon (;). Alternatively, you may use several lines to type a single
coomand by typing a back-slash (\) immediately before the <RETURN> key (see
quoting (info)).

The shell also provides for input and output redirection and logging (see
J.oredn.r(mfo)), as well as the connection of two or more commands with C/NIX
pipes (see pipes(info)).

COMMAND FILES

As mentioned above, the C/NIX shell supports command files. When the
command file is run, each line from the file is read and executed by the shell,
substituting the actual parameters for $§1, $2, etc. This is just like the CP/M
SUBMIT command, but you don't have to type the word SUBMIT, just the name of
the command (or submit) file.

csh (cand) The C/NIX(tm) Shell csh (cond)

Unlike the CP/M SUBMIT command, command files in C/NIX don't display the
coomands on the screen. You can run the shell explicitly with the -v
("verbose") flag to make echoing happen:

csh -v amndfile paraml ...
or patch cnixhigh.sys to make verbose the default mode (see patches(info)).

Unless redirected, commands within command files receive their console input
and output from the same place as when the sub-shell was invoked. This allows
command files to act as normal programs, interacting with the user at the
terminal, or as a filter in a pipeline.

For convenience, when a command is to be run with predefined input, the text
may be included as part of the command flle by enclosing it in parentheses, as
follows:

command paraml ... < (... predefined input ...)

The predefined input may include references to the command file parameters
using $1, $2, as usual.

To dlsplay prompts and general commentary an the terminal while a command file
is running, an echo command is provided which simply echoes its parameters
(after doing $§1, ... substitution):

echo Please wait while I crunch on $1 and $2 ...

When this command is encountered by the shell, it will display on the console
output "Please wait while I crunch on foo.txt and bar.c ..." (for example),
presumably informing the user of a coming pause in output.

This same effect can be accomplished using:
cat < (Please wait while I crunch on $1 and $2 ...)
See above and cat(cmrd).

To include comments which are not echoed when encountered in the command file,
start the line with a semi-colon (;), or introduce them with a double-dash (—
). Comments continue to the end of the line:

; This is a full-line comment
cc $l.o=$1l.c — This is a partial-line comment

Conditional or repetitive execution can be accomplished by piping the cutput of
a program into the shell. For example, suppose you write a program called if
which evaluates its first argument, and then outputs its second or third
argument depending on whether the result is true or false. This could provide
a primitive conditional execution facility as follows:

if (S1 = <help) (

echo Usage: F«mcl:.st source.ada ocutput.lst
) (

grep -n "“function" $1 | sort > $2
) | esh

- 32 -

csh (cmnd) The C/NIX(tm) Shell csh (cmnd)

If the expression evaluates to true (i.e. the first command file parameter were
-help), then the echo command is piped to the sub-shell. Otherwise, the grep |
sort command is piped to the sub-shell.

Remember, that in such an example, a program like the hypothetical if above is
not actually executing the commands, but rather piping the text to the shell to
interpret.

EXIT STATUS

If you are writing a program, and want it to abort any command file it
is part of, you can do s0 by exiting with a negative exit status. This is done
" by calling the exit function provided in the file cmain.c (see main(subr)), or
passing the exit status directly to BDOS function 108 (ignored by normal CP/M
2.2), and then returning, or jumping to address zero (warm start). Codes -
256..-129 are user-definable fatal error codes. Codes >= O indicate success.
Codes -128..-2 are reserved for CP/M 3.0. Code -1 is used to retrieve the
current exit status (e.g., x = bdos(108, -1)).

Upon return from a program, the C/NIX shell retrieves the value using BDOS
function 108, and if it is negative, it Lgnores the rest of the current command
file or typed command line. The exit status is initialized to a positive value
S0 as to accommodate those cammands which do not set its value at all.

NOTES

If your own program has the same name as a built "in C/NIX shell
command, you can get to it by prefixing its name with its explicit disk letter,
or by explicitly specifying the .com extension, or by renaming it with mv.

SEE ALSO .
intro(info), ioredir(info), patches(info), pathname(info), pipes(info),
quoting (info), wildcard(info), cat(cmnd), exit(cmnd), grep(cmnd), mkrel (cmnd)

LIMITATIONS
In a few cases, output files may appear double spaced when input is
redirected; see ioredir(info) for details.)

The number of parameters and amount of text forming a single command "line" are
limited to about 30 parameters, and 250 characters of text. By quoting or
parenthesizing, a single command "line™ may in fact cross multiple lines.
Nevertheless, these overall limits still apply.

Direct suppoart for conditional and repetitive execution should be added to the
shell (although see if example above).

. e

echo (cmnd) Echo a string echo (cmnd)

NAME

echo — Echo a string — Display a String on the Console.
SYNOPSIS

echo [anything at all]
DESCRIPTION

The "echo"™ command displays the remainder of the command line on the
terminal, or standard output. It can be used to display a message on the
terminal during execution of a batch file.

- 34 -

exit (cmnd) Exit C/NIX Shell exit (aund)

NAME
exit — Exit C/NIX Shell — Return to CP/M or Invoking Shell.
. SYNOPSIS '
exit
bye
DESCRIPTION :
The exit command leaves the C/NIX shell, returning to CP/M if this is a
"top-level shell,” or to the invoking C/NIX shell if this is a "sub-shell.”

After exiting, the user is returned to the directory that was current at the
time the shell was invoked.

- NOTES

The bye command is synonymous with exit under C/NIX. An end of file
will also cause the shell t exit (i.e., the end of a conmand file, or
control/Z from the console).

SEE ALSO
csh (cmnd)

- /R -

grep (cmnd) Generalized Regular Expression Parser grep (cmd)

NAME

grep — Generalized Regular Expression Parser
SYNOPSIS

grep [-nvc] ‘'pattern' filel file2 ...

grep [-nwc] ‘pattern’

Patterns have the general forms:

'abCeee¥eee?eee [j=m] c oo xy2’

| Kot 1)

'abcde$!

DESCRIPTION

The grep command is based on an old favorite from UNIX systems. The
grep command searches a list of files (or the console input) for lines which
contain a text string, or which match a pattern. Normally, the matching lines
fram the file are displayed on the console, although there are other options.

A pattern can be simply a text string In this case, grep just outputs all
lines containing that string.

A more complicated, and general, search can be done using a pattern which is a
reqular expression. This is something like using wildcards (* and ?) in file
names (see wildcard(info)), but more complex. In a grep pattern:

? Matches any single character

* Matches zero or more arbitrary characters
fabc] Matches any one of characters in brackets
[a-m] Matches any character in the given range
[("qz] Matches any character but those following *
~ Matches beginning of line

$ Matches end of line

Any other character matches itself only.
The flags (n, v, or ¢) control the matching or printing process:

-n Print line numbers in front of text of line
-v Output only lines which do NOT match
-c Upper/lower case COUNTS in matches; otherwise, case is ignored.

When the -c flag is set, the characters on the command line are all taken to be
lower case. Characters which are to be upper case must be preceded by a
backslash (\). For example:

grep —c '\the' paper.txt
will only display lines with exactly "The" somewhere within them.
NOTES

The C/NIX grep command accepts a slightly different regular expression
syntax than that on UNIX systems (in particular, ? instead of ., * instead of
.*). This is more consistent with C/NIX filename wildcards.
Grep is not a built-in shell command. The program grep.pre may be placed in
any directory normally searched.

- 36 -

grep (cmnd) Generalized Regular Expression Parser grep (cmnd)

LIMITATIONS

Having to backslash upper case for the -¢ flag is a bit barogque.
Unfortunately, to be compatible with CP/M, upper/lower case distinctions must
be ignored on command lines.

-37 -

help(cmnd) Help From the On-Line User's Manual help(cmnd)

NAME

help — Help From the On-Line User's Manual
SYNOPSIS

help

help topicl topic2 ...

man

man topicl topic2 ...
DESCRIPTION _

The help command (alias man for "manual pages”) displays information
drawmn fram the C/NIX User's Manual. The available information is organized
into topics, or equivalently pages, just like the printed manual.

HBelp with no arguments shows the list of topics. Help with a list of topics
displays the information for each topic on the console, one after the other.

The information is displayed 23 lines at a time. After displaying 23 lines,
the computer waits for any key to be typed before continuing.

Each manual page is organized into the following sectims:'

NAME -— Name and descriptive title of manual page
SYNOPSIS — A short summary of how to use the feature
DESCRIPTION — A discussion of the topic, command, or subroutine
EXAMPLES — Examples as appropriate

NOTES — Interesting side issues

SEE ALSO — Other manual pages of interest

LIMITATIONS — BExisting limitations or possible enhancements

The SYNOPSIS section gives brief, possibly cryptic examples of how to use the

command or feature. Throughout the manual page, but especially in this
iection, a special notation is used to describe variations and optional command
ields.

Anything in square brackets, [like this], is optimal and may be omitted.
Example: rm [-f] file means you can type either rm file or rm -f file; the -£
is optional.

The symbol ... means any rumber of the preceding object may be used. Example:
mkdir file ... means you can have any number of file names after mkdir (but at
least one).

The symbol | means either the symbol on the left or the one on the right may be
used. Example: chmod [+w|-w|+s|-s] file ...] means you can say chmod +w file,
or chmod -w file, etc. Sometimes you can use more than one of the
alternatives; sometimes only one makes sense.

Switches are special arguments to commands. Following the UNIX convention,
switches are a minus sign followed by one or more letters. When several
letters are shown, usually any one or more can appear in one or more switches.
Example: grep -nvc ‘pattern' means you can follow grep with -n, -v, -¢, -nv -c,
- ~-v, etc.

NOTES

The display of help topics shows them with their filename extensions
.hlp. There is no need to type this extension when requesting help on a topic.
In order to save space on the distribution disk, the help file for intro(info)

- 38 -

help (cond) Help From the On-Line User's Manual help (cnd)
has been edited. The printed manual page contains more information.

You can add your own help files by making text files, giving them the
appropriate name with the .hlp extension, and putting them in the help
directory. ‘

If space is a problem, you may place the help files an a disk other than the
one containing C/NIX by patching cnixhigh.sys (see patches(info))).

SEE ALSO
intro(info), patches(info)

LIMITATIONS

The information could be more efficiently encoded on the disk, instead
of one topic per file.

- 20 .

1s (cmnd) List Directory . 1s(cmnd)

NAME
1ls — List Directory
SYNOPSIS
s [-1 | -f | =d | -t] namel pat2 name3 ...
dir [-1 | =f | -4 | -t] namel name2 pat3 ...
DESCRIPTION
The 1s command displays information on files and sub-directories within
a directory, or files which match a wildcard pattern (see wildcard(info)).

The dir command is a synonym for 1s; it is provided for compatibility with
CP/M.

The 1s command alone, with no arguments, lists the names of all files and sub~-
directories in the current working directory.

If the -1 flag ("long” format) is given, then ls displays the mode and size of
each file or sub-directory, and the total space used by all the 1listed files
and sub-directories.

The -f flag lists only files, not subdirectories. The -d flag lists only sub~
directories. Normally, both are listed. The =t flag lists only the total disk
space. See examples below.

In the long format (-1) listing, 1ls displays the "mode" of each file or sub-
directory. Modes are set by chmod(cmnd) (or the CP/M stat command), and are a
set of four flags:

1) 'd* for sub-directories
'«' for files
2) 'r' for all files and sub~directories (for

UNIX compatibility; all files are
"readable" under C/NIX)

3) 'w! for read/write files
'-!' for read/only files

4) 'x'! for "executable" files (defined to be those
with extension .com, .pre, or .sub).
's' for "system" files (will not appear in short
form 1s or dir listing)
'-! for all other files and sub-directories

For example, drw- is a typical directory mode, -r-x is the mode for a read/only
executable file.

The size of a file is given in kilo-bytes. The size of a directory is defined
to be the space (in kilobytes) occupied by all files within it, or any of its
sub-directories.

The totals given at the end of the listing include the total space occupied by
all those files and sub-directories listed, and the total for the entire disk.

EXAMPLES

1s *,c *.,asm Display all files in current directory with extension .c or
.asm.

- 40 -

- NOTES

1s({cmnd)
1s-d /d e:

1s =1f help
1s =t /a

1ls -t *.bak
1s -dt

List Directory 1s(cmnd)

Display all sub-directories in top~level directory of disk D,
and all sub-directories in current directory of disk E.

Display in long form a list of all files in help sub-directory.
Display the total space in use on drive A.
Lists the space used by all .bak files.

Lists the space used by all sub-directories of the current
directory.

The flags may be combined into a single parameter such as -1f or -td or

given separately as -1 -f or -t -d.

The -1 and -t flag of 1s, combined with chmod (cnd), largely obwiate the need
for the CP/M STAT command.

SEE ALSO

chdir (amnd) , chmod (cmnd) , pathname (info) , wildcard (info), walk (cmnd)

- Al =

mkdir (cmnd) Make and Remove Directories mkdir (cmd)

NAME

mkdir — Make and Remove Directories
SYNOPSIS

mkdir dirl dir2 ...

rmdir dirl dir2 ...
DESCRIPTION

The mkdir command creates one or more sub-directories. The name of the
directory must not have any dots (.) in it. If a pathname with slashes is
given (/), then only the last directory in the path is created. All of the
others must already exist.

The rmdir command removes one or more sub-directories. The directories must
already be empty (see rm(cmnd)). If a pathname with slashes is given, then
only the last directory in the path is remowved.

Sub-directories are represented by a file in the parent directory with the name
of the sub-directory and the extension sd?, where ? is a character in the range
1 toS5Sor atoz. The files of the sub-directory are stored under a CP/M user
number determined by this last character. 1 to 5 are user 1 to 5, a is user 6,
b is user 7, etc. up to 3l.

NOTES

A single mkdir command cannot create both a directory and a sub~
directory within it. For example, this will NOT work:

mkdir sources sources/pascal — Won't work
This on the other hand WILL work:
mkdir sources; mkdir sources/pascal — Will work

This is because the shell translates all pathnames to simple filenames before a
command is executed. In the first case the sources directory does mot yet
exist, so that sources/pascal cannot be translated to J:pascal (for example).
The second case works, because the former mkdir finishes before the shell
attempts to translate sources/pascal.

A maximum of 31 sub-directories may be created an a single disk. If any CPM
user numbers fram 1 to 31 are already in use on the disk, they can not be used
as directories, reducing the number available.

It is not meaningful to attempt to make or remove a top-level directory, like
/4.

Mkdir and rmdir are implemented by the special relocatable program cnixutil.pre
on the C/NIX disk.

SEE ALSO
rm(cnd) , pathname (info)

LIMITATIONS

_ The 31 sub-directory maximum could be a troublesome limit for some very
large disks. Unfortunately, this limitation cannot be easily removed while
remaining compatible with CP/M. (Maybe it's time to step up to that 32-bit
supermicro?)

- 42 -

mkrel (cond) Make Page-Relocatable Program mkrel (cmnd)

NAME

mkrel — Make Page-Relocatable Program
SYNOPSIS

mkrel basel00.com base200.com progm.pre
DESCRIPTION

The mkrel command creates a version of a program called a page
relocatable ram, which can be loaded and executed without removing the
C/NIX shell from memory. This makes the program run faster, and is useful for
small, frequently used commands.

Mkrel compares two .com format files to form a page relocatable program with
the extension .pre. The first file must begin at 100 (hex) and the second at
- 200 (hex). Such files are usually created by assembling the same program twice

with different ORG statements at the beginning. A page relocatable program can
be run by the C/NIX shell, and will load above the end of the shell, instead of
replacing it. -

NOTES

Because page relocatable programs are loaded above the shell, they have
significantly less memory available.

Control returns more quickly to the shell after the execution of a page
relocatable program because the shell need not be reloaded from disk.

The format produced by mkrel is based on the format produced by the PREL
rogram delivered with Heath CP/M-80 systems. Programs built with mkrel have a
gength in their second and third bytes, the code starting at the 257th byte,
and a map of relocation bits at the end. There is one relocation bit for every
byte of code. If the bit is off, the corresponding byte is to be loaded
unchanged. If the bit is on, the corresponding byte and its preceding one are
adjusted by the address where loading started.

It is normal for programs linked with certain linkers (e.g., Microsoft's L80)
to have random values in uninitialized data areas. This will cause mkrel to
complain about bytes differing by more than 1 in those sections of the files.
As long as this only occurs in uninitialized data areas, the resulting .pre
file will still load and execute properly.

SEE ALSO
csh (cnd)

LIMITATIONS
A more compact format would be possible.

- 43 -

mv (cmnd) Move a File or Files v (cmnd)

NAME

mv — Move a File or Files
SYNOPSIS

mv [-f | =c] oldname newname

m [-f| - | -v | -g] filel file2 file3 ... dir

ren oldname newname

ren newname=oldname
DESCRIPTION

The mv command moves (renames) a file to© have a new name, or moves a
set of files to another directory, keeping the same file names. Mv will .ask
for confirmation if an existing file would be replaced, unless the =-f switch is
used (see below).

The first form of mw takes two filenames, neither of which should contain
wildcards. The first file is renamed to the second name.

The second form of mwv takes cne or more filenames, and a directory name. The
filenames may contain wildcards, in which case all matching files will be moved
into the specified directory. The directory must exist, but if it contains any
files with the same names as those being moved, confirmation will be requested
unless the -f flag is used.

The -f flag "forces" the move to a new name or directory without confirmation.
This may be made the default by patching (see patches(info)), in which case, -c
overrides the default and requests confirmation again.

The =-v flag (for "verbose") causes each file name to be echoed as it is moved.
This may be made the default by patching (see patches(info)), in which case -q
overrides the default and requests "quiet" mode again.

The ren command is only legal if the file remains in the same directory. It is
equivalent to the first form of mv.

NOTES

The mv command is equivalent to cp followed by rm, except when the
source ard destination are in the same directory, .in which case it is a
straight rename.
The second form of rem is provided for compatibility with CP/M.

SEE ALSO
cp(cmnd), rm(cmnd), patches(info), pathname(info), wildcard (info)

- 44 -

rm(cmnd) Remove File or Files fm(cmd)

NAME
rm — Remove File or Files
SYNOPSIS
- era [-f] filel file2 ...

DESCRIPTION
The rm command (and its synonym era) can be used to remove disk files.
If the filenames ocontain wildcard characters (i.e. 2?2 or * — see

wildcard(info)), then mm will by default ask for a confirmation. The -f flag
will suppress this check, as will running the command non—-interactively (e.g.,
from a command file).)

- When mm asks for a confirmation, the possible responses are:

n — Do NOT remove files matching the wildcarded pattern.

y — Remove files matching the pattern.

f — Remove the files, and suppress further confirmation checks for the
duration of the command.

NOTES
The rm command should NOT be used to remove sub-directories. Use the
rmdir commnand (mkdir (cand)) instead.

SEE ALSO
mkdir (cmnd) , wildcard (info)

LIMITATIONS

It should probably be illegal to remowve a directory file (like
help.sda), because its associated sub-directory might not be empty. The error
is not catastrophic, however, because if the file is simply recreated (e.g.
echo > help.sda), the sub-directory full of files will become reaccessible.

set (cnd) Set Console Output Modes : set (cmnd)
NAME

set — Set Console Output Modes
SYNOPSIS

set [+cpbv?] [-cpbv?] ...
DESCRIPTION

'mesetconmandletsymtumofformthreemdeswhxchaffectmtmt
on your screen. The modes are verbose, paging, and confirmation. The modes
are turned on or off by the + or - flags, respectively. The letter (s)
following the + or - determine which modes are changed.

The changes made by the set command will be in effect only until C/NIX is
exited or the system is rebooted.

The v flag sets the verbose mode. If this mode is an, commands such as cp, nw,
rm, and set itself tell you what they are doing as they do it. When verbose
mode is off (the default), the commands just execute without any messages. 1In
addition, with verbose mode off, command files (submit or shell files) do not
echo the commands in the file; with verbose mode on, they do echo.

The p flag determines whether cutput to the console is paged or not. In paged
mode, whenever 23 lines are cutput without any typed input, C/NIX pauses and
waits for any character to be typed before proceeding. (This always happens in
the help command, whether paged mode is on or off.)

In paged mode, a character can be cutput to alert you to the need to type a key
to proceed. The +b switch will cause a bell to be cutput. The +? switch will
cause a '?' to be ocutput. Turning either of these switches off will cause no
character to be output.

The ¢ flag determines whether confirmation is requested by the rm, mwv and cp
commands when a problem is encountered. When confirmation mode is on (the
default), these programs will not copy over an existing file without requesting
confirmation. You can type four letters when confirmation is requested:

¥ - yes; remove the file.

n - no; don't remove the file.

f - fast; remove the file and stop asking.

X - exit; don't remove the file and quit now.

NOTES

All these modes can be set permanently by patching the system. See
patches(info). If you want to change the modes fram the default but don't want
to patch the system, you can invoke the set command in cnixinit.sub (see
intro(info)).

SEE ALSO
csh(cmnd), patches(info).

- 46 -

walk (cmnd) Walk the Directory Tree walk (cmnd)

NAME

walk — Walk the Directory Tree
SYNOPSIS

walk [=-b]

walk [-b] command argl ...

walk [-b] (conmand arg ... ; command arg e.. § s)

DESCRIPTION ’

The walk command walks the directory tree starting at the current
working directory. That 1is, it goes to the current directory and all of its
subdirectories, sub-subdirectories, etc. In each directory, it performs an
action depending on the form of the walk command used. The order in which the
directories are taken is either top-down (the default), or bottom-up (=b flag).

Walk with no arguments simply echoes the full pathnames of all'directories.

If followed by a conmand or parenthesized command 1list, after echoing the
directory pathname, walk executes the command (list). Any "“wildcard"
specifications are re-evaluated for each command (list) execution. However,
pathnames with slashes (/) in them are always interpreted relative to the
starting directory.

For example, to delete all files with the extension .bak in the current
directory and all its subdirectories, use (cautiocusly) the command g

walk rm -f *.bak
The default order of walking is top-down, which in a directory tree means the
current working directory first, the the first sub-directory, then the first
sub~directory of the first sub~directory, etc. ‘
‘l‘tie—bﬂagrequeststl'xatttaewalkbedoriebot . which means going all the
way out to a leaf sub-directory (one with no further sub-directories), and
doing a directory only after all its sub(sub)directories.

NOTES 4 '
A simple way to determine the size of each directory on a drive is:

chdir /x; walk 1ls -ft

- which will d'xange'ho the top-level directory of the specified drive, and then
display a file size total for each directory in the walk.

SEE ALSO '
pathname (info) , wildcard (info), chdir(cmnd), ls(cmnd)

subrs (subr) C Subroutines for C/NIX subrs (subr)

NAME

subrs — C Subroutines for C/NIX
SYNOPSIS
bdos (code, arg) — Call BDOS with code in C, arg in DE
fopen (fname, mode) — Open a file, return a FILE pointer (fopen)
fclose (file) — Close a given FILE pointer (fopen)
getc(file) — Get a character given a FILE pointer (getc)
getchar () - Get a character from the console (getc)
_main() — Hidden main routine, expands wildcards, etc. (main)
malloc (size) -— Dynamically allocate memory chunk (malloc)
free(ptr) — Free allocated memory chunk (malloc)
compress () — Compress dynamic allocation "heap" (malloc)
putc(c, file) ' — Put a character given a FILE pointer (putc)
putchar (c) — Put a character on the console (putc)
fflush(file) — Flush ocutput for given FILE pointer (putc)
strany (c, str) — Return non-zero if char. within str. (strutils)
stramp(strl, str2) — Return <0, =0, >0 after comparing strs. (strutils)
strcpy (to, from) — Copy string, return ptr to end of "to" (strutils)
streqgl(strl, str2) — Return non-zero if strs identical (strutils)
strlen(str) — Return length of string (strutils)

mvbytes(fram, to, num) -— Copy bytes (strutils)

DESCRIPTION
This (subr) chapter describes C subroutines written to work with C/NIX.
Most of these routines will also work with normal CP/M systems.

IMPORTIANT CAUTION: The routines have only been tested with the C/80
2.0 campiler from Software Toolworks, Sherman Oaks, California. Scme
of them replace routines included with that compiler, in a way that
is more directly compatible with the UNIX standard subroutine
libraries. Equivalents for some of these routines are included with
later C/80 versions.

Using these routines with any particular C compiler, including C/80,
may require replacing or removing parts of the I/0 1library provided
with the compiler, or renaming functions in order to remove name
conflicts. This is a job for an experienced programmer. Neither
C/Craft nor The Software Toolworks can provide advice or assistance
beyond the information in this chapter.

The routines are grouped onto manual "pages®. For each routine above, the name
of its manual page is given in parentheses after its description.

NOTES . .

These routines follow the C/80 machine language calling conventions, as
follows. Arguments are pushed onto the stack as 16 bit values, leftmost
argument first. If a function returns a value, it is in the HL register. The
calling routine is responsible for popping arguments back off the stack. No
registers are preserved.

 bdos (subr) C Interface to BDOS Calls _ bdos (subr)

NAME

bdos — C Interface to BDOS Calls
SYNOPSIS

x = bdos(code, arqg);
DESCRIPTION

This subroutine loads code into the C register, arg into the DE
register, and then calls BDOS (via low-memory jump vector at 5/6/7). The BDOS
return value comes back as the function return value. This gives the C
programmer direct access to all of the BDOS interfaces.

A complete set of C preprocessor definitions are provided in a file bdos.h on
the C/NIX (source) distribution disk. The actual code is in bdos.c, written
assuming the Software Toolworks C/80 calling conventions.

NOTES

When running with C/NIX, the jump vector at 5/6/7 has been altered to
point to the cnixhigh.sys interface module. This is transparent to the
programmer .

Bdos is provided for compatibility with C/80 2.0 and earlier. It is included
with C/80 3.0 and later.

FILES
bdos.h, bdos.c

- AQ o

getc (subr) Standard Buffered Character Input getc (subr)

NAME

getc — Standard Buffered Character Input
SYNOPSIS

FILE *filep;

c = getc(filep);

struct gc_buf rec getbuf;
getbuf.g max = sizeof(getbuf.g data);
set_gcbp (sgetbuf) ;

C = getchar () ;
DESCRIPTION

These two get routines provide standardized buffered character input.
Getc expects an opened FILE pointer (see fopen(subr)), or one of the two
standard file pointers stdin or stderr. Getc(stdin) reads from the console
using getchar (see below). Getc(stderr) reads from the console using the
"direct console I/O" BDOS call (bypassing any C/NIX input re-direction).

Getchar reads from the normal console input, which may have been re-directed
from a file by the C/NIX shell. If a previous call to set gcbp has been done,
then getchar uses the "read console buffer® BDOS call. Otherwise, it uses the
single-character "console input" BDOS call. In either case, each call returns
the next input character, returning the defined value BOF when end-of-file or
control/z is reached (see the file stdio.h).

Set gchp sets up a console buffer for getchar. The buffer must be of the form
defined in stdio.h, which is based on the console buffer required by the "read

console buffer” BDOS call. The field g max must be initialized to the 1length
of the data area, as shown in the SYNOPSIS above.

NOTES

Unless in binary mode (see fopen(subr)), none of the get routines
return the carriage return character (\r), but instead return a single C
newline (\n) to represent end-of-line. For getchar, this means interpreting a
carriage return as end-of-line, echoing a line feed, and returning \n. For
getc, this means simply ignoring carriage returns, because they appear as a
pair with newlines in disk files.

FILES
stdio.h, stdio.c, fileio.c

SEE ALSO
fopen (subr), putc(subr)

LIMITATIONS

On input to getchar, when ocutput is re-directed to a file, tabs may not
be expanded properly. This is due to an obscure CP/M bug, where it loses track
of the oolumn position unless a 1line-feed is output to the terminal via
"‘;dc?nsolie:l output,” while getchar must use "direct console I/0" to bypass output
redirection. '

Carriage returns without following line-feeds in disk files should probably not
be ignored by getc, so as to allow over-printing.

fopen (subr) - Buffered File Opening and Closing fopen (subr)

NAME

fopen — Buffered File Opening and Closing
SYNOPSIS

FILE *filep;

filep = fopen(filename, mode);

fclose (filep) ;
DESCRIPTION

The fopen subroutine attempts to open/create the file with the given
filename, for the given mode (either "r", *"w®, "a", "rb", "wb", or "ab"). 1If
successful, it returns a pointer to a dynamically allocated (see malloc(subr))
. FIIE buffer structure. If mot, it returns the defined value NULL.

The filename must be a normal mull-terminated C string, using CP/M filename
format of x:name.ext. The drive letter may be amitted if the current working
directory is desired.

The mode for the fopen is also specified by a string. The first letter of the
string specifies read-only, write-only, or append-only. The second letter, if
b, specifies a binary file, so embedded control/z (text end-of-file) characters
are ignored, and no other translations are performed.

Once opened, the returned FILE pointer can be passed to getc (if open for "r*
or "rb") or putc/fprintf (if open for “w®, "wb", "a", or “ab").

When processing is complete, the FILE pointer should be cloéed, with fclose,
thereby writing to disk any partial buffer-full, and releasmg storage reserved
for the internal FILE buffer structure.

When opening for write-only, the file is created. It must not already exist.
When opening for append-only, the file may exist, but it will be created if
necessary.

FILES
stdio.h, fileio.c, fopen.c

SEE ALSO
getc(subr), malloc(subr), putc(subr)

LIMITATIONS

It might be convenient to provide a mode which would allow overwriting
an existing file.

main(subr) Hidden Main Routine; Exit Routine main(subr)

NAME

main — Hidden Main Routine; Exit Routine
SYNOPSIS

c_main() ;

main(arge, argv)
char **argv;

exit (exit_status);
DESCRIPTION

The routines ¢ main and exit are provided in the file cmain.c. ¢ main
is where execution should actually begin for all C programs. It builds an
argument list following the UNIX conventions, and then calls the user-provided
main routine with an argument count (arge) and a pointer to an array of string
pointers (argv).

The arguments are constructed from the information in the CP/M "default buffer
area” (0x80 hex), after expansion of filename wildcards (? and *). The 2zeroth
argument (argv(0]) per UNIX convention represents the command name itself, but
will always be = because CP/M does not record the command name in the buffer
area.

The argument count (arge) includes one for the command name, and hence
argv{argc-l] is actually the last valid argument. Argv[argc] is always a null
pointer.

Besides expanding filename wildcards (see wildcard(info)), ¢ _main also removes
quotes (both ' and ") and backslashes (\), except within parentheses. Text
within parentheses is passed as is, including the parentheses themselves, as a
single argument. If same arguments contain wildcards, and no matches are found
for any of them, ¢ _main prints 'No match' and aborts. Wildcard characters
within quotes are not expanded. :

The exit routine should be called at completion of the program, with a status
value. Exit records this value for use by the C/NIX shell (see csh(cmnd)) by
calling BDOS function 108 (ignored by normal CP/M), and then jumps to zero for
a warm start. If the exit status value is negative, the shell will interpret
this as an error exit, and abort any current command file or sequence.

FILES
cmain.c
SEE ALSO
csh (cmnd) , wildcard (info)
LIMITATIONS
' When wildcarded filenames are expanded, the resulting arguments should

probably be sorted alphabetically, instead of in directory order as they are
now.

- 52 -

malloc(subr) Dynamic Memory Allocation and Release malloc(subr)

NAME

malloc - Dynamic Memory Allocation and Release
SYNOPSIS

struct my rec *ptr;

ptr..' ‘= malloc (sizeof (struct my rec));

free (ptr);

mp = compress() ;
DESCRIPTION

These routines provide for dynamic memory allocation and release for
arbitrary sized C structures or arrays. The malloc routine takes a size in
bytes, and returns a pointer to the start address of an allocated area. When
done with the area, the space can be released with free.

If malloc cannot allocate sufficient space without running into the C stack, it
will print an error message and return a NULL pointer.

The compress routine attempts to compress the "heap” from which malloc
allocates areas, and then returns a pointer to a structure describing the
*heap," allowing it to be saved en masse (see malloc.h).

NOTES

Returning an area to free which was mot allocated with malloc is
disastrous.

The area allocated is NOT initialized to zeros.

Malloc uses a word in front of each area to indicate its length, as well as
whether it is free or in use. These allow malloc to iterate through all areas,
and locate a large—-enough contigquous free chunk. It is designed to be
particularly efficient if memory is used approximately in a last-allocated,
first-freed order.

- B -

pute (subr) Standard Buffered Character Output putc (subr)

NAME '

putc — Standard Buffered Character Output
SYNOPSIS

FILE *filep;

putc(c, filep);

£flush (Filep) ;

putchar (c) ;
DESCRIPTION

The subroutines putc and putchar provide standardized means for |
character output, either buffered to a disk file, or to the console output.

The FILE pointer passed to putc must have been the result of an fopen, or be
one of the standard file pointers stdout or stderr.

Putc to a disk FILE pointer adds a character to an internal buffer, and then
actually writes it to the disk when the buffer is full. The f£flush subroutine
may be used to flush partial buffer-fulls (on CP/M or G/NIX, it can only flush
in units of the basic 128-byte sector). An fclose must be performed when done,
so that the final partial buffer-full is written, terminated by the CP/M text
end-of-file indicator (control/Z) (see fopen(subr)).

Putc(c, stdout) is equivalent to putchar(c) (see below). Putc(c, stderr) puts
the character out using the "direct console I/0" BDOS call, thereby bypassing
normal C/NIX output re-direction (but see >& in ioredir (info)).

The putchar subroutine puts out the character using the "console output® BDOS
call. If output has been re-directed, the character will actually go to a
file.

For all of the "put" routines, if the character is the C newline ('\n'), then a
carriage return ('\r') is put out first (except if the file was opened in
"binary" mode — see fopen(subr)).

FILES .
stdio.h, stdio.c, fileio.c

SEE ALSO
fopen (subr), ioredir (info)

strutils (subr) Standard String Utilities strutils(subr)

NAME

strutils — Standard String Utilities
SYNOPSIS

if (strany(c, str)) ...

if (strcmp(strl, str2) > 0) ...
cp = strcpy (to, fraom);

if (streql(strl, str2)) ...

1 = strlen(len);

mvbytes (fram, to, mum);
DESCRIPTION :

These routines provide standard means for manipulating null-terminated
strings in C. All hut mvbytes are based on the UNIX equivalents.

Strany returns mon-zero if the given character appears anywhere within the
given string.

Strcmp returns greater than zero, equal to zero, or less than zero according to
whether strl is later, the same, or earlier lexicographically than str2.
Lexicographic order means that if one is a prefix of the other, then it is
considered earlier (or less). When the strings are alphabetic only, the order
is simply conventional alphabetical order.

Strcpy copies characters, up to and including the. mull terminator, from its
second argument fram to a buffer area pointed to by its first argument to. The
buffer mast be long enough to hold the copied string. Strcpy returns a pointer
to the mull at the end of the copy, allowing a cascading series of strcpys to
do concatenation, as follows:

/* Concatenate 'first' and 'second' into 'buf' */
strcpy (strepy (buf, first), second);

Streql returns non-zero if strl and str2 are identical strings.
Strlen returns the length of str, not counting the null-terminator.

Mvbytes copies num bytes from an area from to an area to. Mvbytes does NOT
stop at null-terminators.

NOTES

The strcpy routine familiar from UNIX returns a pointer to the
BEGINNING of the copy, not the end as it does here.
The order of parameters for strcpy and mvbytes are the opposite of one another.

FILES
strutils.c

-r

Index

L] mtatim 00 8000 OOGOGQOINOGOSIINOSIOIONOIEOSNOIODITS 18
e mtatim 000600000000 0000000000 18
LN 2 mutim 900000 0O0OISOINOGOIOSIONOSIPOIDBDPOIOS 38
/mitd‘es 0000 00COOOOOOCOISTIOIOIOIOEIOSETITS 21
[mtatim 9000000000000 00000c000e 38
I mtatim 0006806000000 0000000000 38

aborting cammand file ceceecececes 33
ambiguous file NAMe .cceeecvcccees 24
argmenw' lilniw m P9 00O OGSO OGOOEOSTDOSTS 33
a‘lmstart mm 9090 0GOS OEOGOSEOPSIOSEOSIOENPEO 8

backup, problems with .c.ceeeeeees 23
bad directory message cecececsccsces 21
batdl files 2900 0SGOSOGCEIOSIOISIOOSIOSIIPIOSIOIEOTOSDS 30
m slmrmtim seetoeeeosoeo 48' 49
Win' m m 000 000800 OGOOSESESIOSIOSOSIDOS OO 4
mtm@ 0 0 00000 QOO EPOONOPOINOGONSIOIOSIOITILIES 47

mmﬁ 9000 0O0QOOEOISIOIONITPOS 9' 25' 35 '

C character output routines 54
C character read routines .ccee... 50
C file routineS .eeeeccccesccscsse 5L
Cminpr@rm 20 000000000 SOGOSINSEIOPTOGES 52
C memory allocation routines 53
c m& files".‘...D.O..Q....Q.‘O 8
C strirg fumtims ®9 08 0GOS OOSISIOIOGIOIS 55
C system Call .ceececcccccccaccces 49
C/m' exitim frm 00000 O0CGOIOGSOSIOSIOIDS 35
C/NIX, first use Of ceeeececccccese 8
C/NIX' installiﬂg (A X ENERNENENN NN 7' 8
me' startirg 20 S0 0SSO OGCSTOCOINOGSIOEOSOSOIOGSDS 6
cat m‘d 900 0000 OOOGCEOOSGIOIOSINQOIQSIESITS 25' 26
od(cnd) ccceecceecess See chdir (cmnd)
change working directory ccceeceeee 27
Chamim &falllw 0000 GOSOOSOIOSIOEOIPOPPOOSTS 16
character output routines .eeecee.. 54
character read routines .c.eececeee 50
dﬂir mﬁ 00O 0G0 OGOOPEOGIEONOSIOSEOIOSEOSTDS 25' 27
m mnarﬁ 00 o0 OGOOBPIOOLIOSOOOBROIS B' 28
cnixinit.sub file cecececececes 8, 46
cnixutil.pre file ccececececcccccss 9
mld mt 0 00 0O OPOOSSIEOOSCOIOOSIOEOINOGIOSOSIES 8
command file, aborting .ceeeeceecss 33
command fileS ceeecccecccecsess 12, 30
command files, echo in seeeeeecess 32
m format 09 000G OOGSIOSIOGSEOBTOEOSIOPOIOOIO 30
camand line, limits on ceceececeee 33
command ProCeSSOL eeccsccesssecses 30
camand search path cceeeeee.. 12, 30

m 99 8 G000 0OGOGOGOOSOISOSIOSOSEOSOOTDS 32
Cat 090009 CEOSOOBSOEOOISIOIOBOOIOOS 26
d eeeesesse See dldil‘.'(am’ﬁ)
dir 00 00O OCESSIOSEOEOSIOSOINOSSOSIOITS 40
era 00 0000 GBOOGOSIOSINOIOGSIOSSIDN 12' 45
eXit 20 9000 000N OGSOSIOSIOSIOIOSEIOSGES 9
grep 09 09SO0 OGOGCSISIOGEOSESOIBSOIOGNOIS 7
help (A EREREXRERXNNERN) 7' 9' 12
man 000 000SCSIOSIOSOOSEOSIIOIIS 7’ 38
M 00 0 0GOS COOISOSIOIOSNSINOOS 10' 27
rm 9 000090000 OSTSIOIOSNOSIOGOIOIOSOS 44
rm @0 000 B 0GOSO COSIBSESEBSOSSLS 12
rmir 0 0 0G0 0SOOSOOSEOSESIOSOIOLS 42
setv..COQCQ.....'...OOOOC 46
tm L B B N N N N) ﬁ cat(m)
2000000 QOSCPIONOEOEOSOSIOIOSOSEOITOTOITPOOS 25
commands over subdirectories 47
comands, grouping cecsecececccesse 30
mts m aumr 2900000V OOGOSISIOIOGNOSDN 4
mress s‘mrwtim 2000 OGOOQSOS 48' 53
concatenating fileS .ccececcecccces 26
COfﬂitionalS, tm m m ®eeevocvoese 32
confirm required, changing ¢.cc... 16
console Paging eceececcccccccccecse 46
mWimafile 0 GG OOBOOGOEOSOSIOISEOISIOEBDTOEODS 29
copying between directories 29
copying to existing file .cecceees 29
Cp comANd ccevccscccccscsccss 29, 29
csh command eeececcccecccsccass 25, 30
current direCtory cccecececceccesecs 18
current working directory ccececes 27
c-min slxbrwtim L K B B BX BX B BN BR BN BN BN N N N 4 52

1

LTI

é

&fa‘llw' dlangim 20000000 OCOIOOSIESDS 16
@lew a file 90000 000 OOBSPOIOOSISIIOGENIOITS 45
dewiptim 9 00 000G OPOOOSGOOIOTOOSNOIEOPINOSOSLES 38
Dm 90 000G PO SOCCOIOSONSEOINOSOSIOGSEOIPOTIOSOSETTITES 23
dir mm 00 9 SO OSOIOIOIOSESIOSIOSOSITIES 25' 40
directories, copying between 29
directories, hierarchical ...¢.e... 10
directories, implementation of ... 42
directory listing .ecececccscececss 40
directory sizes, display ececec... 40
directory structureccecccce.. 18
directory tree, walking cececececss 47
directory, changing cecececececeses 27
directory, current ...e.cececcsccss 18
directory, making eeeceeececccecess 42
directory, printing current 27
directory, top level ...cce... 10, 18

- 5 -

Index

diskettes, restrictions on changing 9
display directory SizeS ccecescese 40
displw file Sizes 000 0OOOGROGIOOSSIOSINOS 40
display working directory ceceeeces. 27
m m mtp‘t 000G OOOSOOOIOIOGES ls
drives for temp files, changing .. 16
dynamic memory allocation ..eeeeee 53

m ml’ﬂ A AR R NRENRENNXNY) 25’ 32' 34
m in m fil% P00 O0SOOOO DN 32
era commanNd cecececsssccscss 12, 25, 45
era& a file 0000 0OGSNOGONOIGSOSEBNOSIOSNOSOSTOCSOS 45
mm d‘armars [X N NN RN X NN NN NNNN] 21
exmles 0O 000G 000G OESOIONOSIOSPOEOINSTOEBDOIOITOETS 38
emltable ﬂg 2090000 00 OPOQCGOSISIOISTIS 40
QXit m‘ﬂ 000000 OGSOINSIOSS 9' 25' 35
EXit Status [(EEX NN XERENEE XXX XX 33' 52
e:it slmrwtim [X N N NN NN N NN NNNRNNNN] 52

exitimcm 0000000 COOOQCPCGISISIOOSIOSOSS 35

faster emtim 000 00O O0OOOISIOGEOOIOSOTSIS 43
fclose subroutine ccccececeseccecs 48, 51
fatures [E N NN NN NN NNNFNENNNNNENNNXNENNENN] 5
features, introduction tO .eceecce. 10
fflum mbrmtim 900000000 COO 48' 54
file ﬂqs 00 00000 CSOOOBSSISISIOSIOSTOIOSIEOCS 28
file lmes 00 0000 0QCOOOSPNOINOSOOSIESOSIOIOISTPOIOS 40
file ms’ displa}' IS OIECT I oIS 06 40
file rmtims 20090000 SONSSGEOIOSOIBSTOEOITPNTS 51
file *ardl ([EE NN EENNNNENNNNNRENNRENNY] 28
file Sizes' display [N NN N NN NN NN NNY] 40
file' mim [EE RN RN RNENN N NN NN NN] 29
file, copying to existing .ccceec.e 29
file' etasim 00 0 0000 SOSOSSONOSEOOIOGNOSES 45
file' imisible I N RN N NNNNNNRNNREMNNY) 28
fi].e’ renmm‘-m *9000OGSSIOIOGOEOIOGOIEOEOBSBOOBSITIO 44
films 900000 O0SSISGCOISOIOSIOSONOSOSIOIOSEOS 18' 24
files, batd! 90000 O0OSEOSOOGOIOGOEOSINOSNOIOTOSS 30
files, command ecceccccceccccsccss 30
files, matenadm LR I N N N N NN NN NN] 26
files' miSSirg [E R R NN N N NN N NN NNRNE XN NN 22
fi]-es, Seardlim I R N R NI NN E NNNENNENEY] 36
files, srmim 00 090 OGS OOSIOSOIOEOPINOEBSDTOSEOSOTOOITS 26
files’ smit [EEENNENENNNNENNENXNNNY] 30
filters ..OO..O.'.,...OQ.O...O.... 20
ﬁm a fﬂe [E N NN NEENENENNENNENRNNNNY) 28
first u& L N N N RN NN NN NN NN NNNN NN NNN] 8
ﬂw, reﬁ-mly 009900 COISPOEOSOIOSOSOOSITPOIS 28
ﬂ&' SYS GO 0000 SO IPISOISISTIPIOSOOIOSOOSOEOSOETSTPODS 28
flag, writeable ...ccccccceccccess 28
ﬂms, file 90 000000600 OFSSGEOIESIIOSINOIOSIEOSTISLIDS 28
fm IE A N RN ENREENENNEENENNNNENNNNNNNNEY] 51
fm SUbroutim Pe0OOGOOGOIOGOIOSOIOSES 48' 51
format of comands ccecceccccccecece 30
free subrouting cececcesceccsss 48, 53

Index

getchar subroutine .ccececeee. 48, 50
gettim startﬁ 000 0QCPOONPOIOIOOSIOOOSIOSTOES 3
grep command ccccececsccccs 7, 25, 36
grouping commands ccceccessccccces 30

help conmand .ece... 7, 9, 12, 25, 38
help drive, changing ccccecccecececs 16
hierarchical directories 10, 18
!m m min LR NN NN N NN N RN R NN NN N NN N] 4

I/o tEGireCtim I EE R R XN N XN] u' 13’ 30
I/0 redirection, problems with ... 22
input redirection cceccecccccccceses 13
installim C/NIX [IEENENRENNRENRN) 7' 8
intrmtim 00 00000 0COCOGIOGOEOSIOSOPNIOGIOIOTPOIOSEO 5
introduction to features ...c.ecc.. 10
imiSible file 0 00000 OOGIGCEOISIOSOSLOEOSNSIOTOS 28
imokim ttﬁ mu.‘..........‘..' 30
io:ﬁir RN N R RN ENNNNNNNNRENRNNNEN NN}] l3

laf 000000 cc000000000000CGCOOETTOTS 47
leaVim C/NIX eeecccccccccccccccce 35
leaViIQ Sl'ﬁll 09 0cccssccsevsescccoe 35
lmitatims e0ececccsccccsccrsvern 38
limits on command line «.cceceeeee 33
list file NAMES ccsocscscsscscccce 40
liSt file Sizes eevecscencscececccccce 40
1s command ceeececcccsccacccss 25, 40

mmmrm 00 G000 00OOCSOINOONSOISGSEOSIOSOS 52
min S‘Jbrmtim 00 0000000000000 00 48
mkim dir&wry 20 9000 0OSCOHFOISGSSIOIOLS 42
malloc subrouting ceececccecse. 48, 53
m m 2000800000 SC0OIBPOSOGS 7' 25’ 38
mn‘nl mes 900000000 COCEOSIOISTOIOIONNSNOIDS 38
manual pages, notation for 38
Mlual' M w u& 99 0009 0OOOCOOIOSISTPS 3
manual, organization Of .ccccceceees 3
manual, starting With .ccccceccccecs 4
memcry allocation routines 53
memory requirements cceccecesccccss 5
Microsoft BASIC ccececccccccsccece 23
Inissiw files 90000 O0GPO0OEONOSIOSIOIOSIOSOSOSIISTS 22

mdir m 90000080 OCSOSOSIOEOSOS 25' 42
mrel m 90900000 GOGOOSTSTOCES 25' 43
Mes' file 00 00 000 0CGBDOISGIOSIOSIOIOSNESESOPSDS 40
lmve a file 00 8000000000 QCOCOPSISIOGIOSTOQCTS 44
MV COMMANA ceccecccccescaacase 25, 44
mvbytes subroutine ...cecece... 48, 55

- 87 -

Index

names of files, display eecccecese. 40
notation for manual pages cecece.. 38
mtes 0000000000000 0OSaveeteeoO 38

organization of manual .ccececvccee 3
cutput redirection cecececececesss 13

page relocatable programs c.ecec... 43
mm 90 0 00 90 0CCSOISNOISISIOOSIOPIOEOSIOSIOSOINOITOSIOS 46
Wirg Gltp.lt eeceeesoevssccrce 9' 12
Mim' dmr‘girg 0000 OCOREOISTOIEOIISIOSIOIITS 16
mtdlirg &fauts 9080000600000 000 16
mthmm 0 00000000 COGISOIOIOIONTOSIOSITS 10' 18
pathnames, searching all .cceccee. 47
mttern mtdlim 000G QOOIOSOOSIOSIOSISOIODS 36
piws 000 00OGOCROIOGIOIOSOTOEOIOSIROSIOSOIOBSTOTOS 20' 30
piws’ prOblm With [E R RN NNNENNNXNNX] 22
m off 90 00000000000 ONOSISOIAGIOBTAOSEOSETTTOSIDS 9
pre files 20 09SSP OINSIOSOOIOOGIOSOOIOSIOIOBSIOEOSTDS 43
print working directory ecceceeceeee 27
pmlm 00 0000000000000 00000OCGOGISIIES 4
glw slbrwtim 008 e GO GOOEOSIOITS 48' 54
wtChar subrmtim LR R NE NN NN NNE] 48' 54
M m o000 GO ONOOPOOSTIPOO 10' 25' 27

qtlotim 9000800906000 08000000000000 21

read only £flag ececcscccccesss 28, 40
redirectim' I/O [AR N R XN XN ll, 13’ 30
redirection, problems with ..ecc.. 22
r%’ular e@resim 000G GQ0Q0OSINOIOSIQGEQOIOSDO 36
relocatable Programs ceceececececsss 43
remim dir&wry 00 00 000G OQGOIOSOIONISIOES 42

ren CAMANG ccceccccscccnccces 25, 44

renam a fileQ....'...‘._‘... 44
rwirenentS’ diSk 0000 SOOOIOOOIOEBSIOOSTS 5
reqliramtS' my LA N R RN NN RN SN NN] 5
restrictions on changing diskettes 9
mmm 90906000 OGOOOSIOSIOICOTS 12' E' 45
nwir mna‘d [E N RN NNNNENNNNNNNE] 25' 42

%W (lmsmtﬁ) 090G 0O POOIOIOOSIIOEEDS 23
saving program output ceeccecececcss 13
screen paging of output cceee.. 9, 12
screen paging, changing e.ccceececec.. 16
seard‘ fm files PO 00O OISOIOIOEOIOOIISIOSOOS 28
&arch mtll 0000 O0OOOOGISISTOTNOIOEOSOITDBNTTS 12' 30
searching all directories ...c.... 47
%archim files 20 000G OOOIOGCEOSIOSIOSIONOEPES 36
S& al& 9 9 000N OGOGOOESGEOSOIOSTIOOTIPOONOIOPOEOEDIOPTIE 38
%t mﬂ 900 9000000000000 RCOGINSIOISTOS 46

Index

shell, exiting fram .ceeeccceccescee 35
Smll’ imkim 9000000 OOSGOSIOSIOICROSITIEOS 30
size of files, display .ecccccecees 40

- SloW PromptS ecccceccccccccsccscses 22

m& m 00 0000 0GP CECOSESTONOISINOSNOSINOSDOLIIS 8
special charaCters eceecccecscccss 21
mlers 9000000 Q0CCOOIPINOINIOICSEOSROISIOIOSPODODS 23
swting me 20000060000 SIISTOINPOSIOSIOTS 6
startim With lmual 200000 SOGOOSIOININIDS 4
startup comand file ..ceccc..s 8, 46
status at exit 900 0O S QS OGOEOOEOIONONOSIOES 33
strany subroutine .c.ceceece... 48, 55
stramp subroutine cce.ceeeecce.s 48, 55
Strcw slmrmtim 0000 OOBSGOSEOSOSS 48' 55
streql subroutine .cccccecee.. 48, 55
suim fumtiorls 0000 OOSOIOGEOSOIOSSOSOSS 48' 55
Strlm slmroutim LA NI B N AN N] 48' 55
strutils 9000600000080 OOOSPPTORBSIOIOGEINIOIDS 55
SMirwtories [EX XN RN RNEERENXREX] 10' 18
subdirectory sizes, display .c.... 40
slmit wmﬂ P00 0D 0GOSO SOEOSOIINOOTS 25
smt files 90 0006006080000 00000 12' 30
subrs PO 0O PO OB OO D000 COSNOSIOOOITOSOSS 48
mit&/ 90 0000 0CS00COPOPCEOOOPOCEOSOESNIOIOIOS 21
mitChes @00 000G PO OSIPOISISGSOTOSLIOIBDOETLSOES 38
SYmPSis P00 0000 Q0OORICGOIOSIOSIEOSOSIOEITPSTIEPOPNOO 38
SYS M P00 8 00 PO NBSNOEOSNOGOIOINSIPOSOSINOODS 28

sys flag required, changing 16
System@ll 0 000000 SSOOSOIOIISIOSECOSEOESDS 49

taw' probla‘s with 9000000000000 23
top level directory ceeeeees.. 10, 18
LOP~AOWN ccceccoccsccscccscescsses 47
trouble .sccccccececcsccccccsscccss 22
type command cceeece.... See cat(cmnd)

UNIX-'like featutes ee0ccsscceccccne 10
user number, changing maximm 16
USEL NUMDELS ceesscossccscssccssans 42
usim mmm 9 800G LOSSOEBNLOSIPSISIDS 3

verbose flags, changing .ccecccce. 16
verbose mode, setting .cccececccess 46

walk coomando 11, 18, 25, 47
walking directory tree ..ceccccees 47
Wildcard ceccececccccccceccccscses 24
working directory eeccececceses 18, 27
write protection ..ccecceccscecsss 28
writeable £lag escceececscccccccsss 28

XSUB (not supported) .eeeeeec.. 14, 23

