
Writing a Simulator for the SIMH System 
Revised 03-Mar-03 for V2.10-4 
 

1. Overview ................................................................................................................... 2 

2. Data Types................................................................................................................ 2 

3. VM Organization...................................................................................................... 3 

3.1 CPU Organization.................................................................................................. 4 
3.1.1 Time Base............................................................................................................................................... 4 
3.1.2 Memory Organization .......................................................................................................................... 4 
3.1.3 Interrupt Organization .......................................................................................................................... 5 
3.1.4 I/O Dispatching ..................................................................................................................................... 6 
3.1.5 Instruction Execution............................................................................................................................ 6 

3.2 Peripheral Device Organization.............................................................................. 7 
3.2.1 Device Timing ....................................................................................................................................... 8 
3.2.2 Clock Calibration .................................................................................................................................. 9 
3.2.3 Data I/O................................................................................................................................................... 9 

4. Data Structures ...................................................................................................... 10 

4.1 device Structure .................................................................................................... 11 
4.1.1 Device Flags......................................................................................................................................... 11 
4.1.2 Context .................................................................................................................................................. 12 
4.1.3 Examine and Deposit Routines......................................................................................................... 12 
4.1.4 Reset Routine....................................................................................................................................... 12 
4.1.5 Boot Routine ........................................................................................................................................ 12 
4.1.6 Attach and Detach Routines.............................................................................................................. 13 
4.1.7 Memory Size Change Routine.......................................................................................................... 13 

4.2 unit Structure ....................................................................................................... 13 
4.2.1 Unit Flags ............................................................................................................................................. 14 
4.2.2 Service Routine ................................................................................................................................... 15 

4.3 reg Structure ........................................................................................................ 15 
4.3.1 Register Flags ...................................................................................................................................... 16 

4.4 mtab Structure ..................................................................................................... 16 
4.4.1 Validation Routine.............................................................................................................................. 18 
4.4.2 Display Routine................................................................................................................................... 18 

4.5 Other Data Structures .......................................................................................... 19 

5. VM Provided Routines........................................................................................... 19 

5.1 Instruction Execution........................................................................................... 19 

5.2 Binary Load and Dump........................................................................................ 19 
5.3 Symbolic Examination and Deposit...................................................................... 19 

5.4 Optional Interfaces............................................................................................... 20 
5.4.1 Once Only Initialization Routine...................................................................................................... 20 
5.4.2 Command Input and Post-Processing.............................................................................................. 20 
5.4.3 VM-Specific Commands ................................................................................................................... 21 

6. Other SCP Facilities .............................................................................................. 21 

6.1 Multi-Terminal Support (Telnet).......................................................................... 21 



6.2 Magnetic Tape Emulation Library ....................................................................... 24 

6.3 Breakpoint Support.............................................................................................. 25 
 

1. Overview 
 
SIMH (history simulators) is a set of portable programs, written in C, which simulate various 
historically interesting computers.  This document describes how to design, write, and check out a 
new simulator for SIMH.  It is not an introduction to either the philosophy or external operation of 
SIMH, and the reader should be familiar with both of those topics before proceeding.  Nor is it a 
guide to the internal design or operation of SIMH, except insofar as those areas interact with 
simulator design.  Instead, this manual presents and explains the form, meaning, and operation of 
the interfaces between simulators and the SIMH simulator control package.  It also offers some 
suggestions for utilizing the services SIMH offers and explains the constraints that all simulators 
operating within SIMH will experience. 
 
Some terminology: Each simulator consists of a standard simulator control package (SCP and 
related libraries), which provides a control framework and utility routines for a simulator; and a 
unique virtual machine (VM), which implements the simulated processor and selected 
peripherals.  A VM consists of multiple devices, such as the CPU, paper tape reader, disk 
controller, etc.  Each controller consists of a named state space (called registers) and one or 
more units.  Each unit consists of a numbered state space (called a data set).  The host computer 
is the system on which SIMH runs; the target computer is the system being simulated. 
 
SIMH is unabashedly based on the MIMIC simulation system, designed in the late 1960’s by Len 
Fehskens, Mike McCarthy, and Bob Supnik.   This document is based on MIMIC’s published 
interface specification, “How to Write a Virtual Machine for the MIMIC Simulation System”, by Len 
Fehskens and Bob Supnik. 
 

2. Data Types 
 
SIMH is written in C.  The host system must support (at least) 32-bit data types (64-bit data types 
for the PDP-10 and other large-word target systems).  To cope with the vagaries of C data types, 
SIMH defines some unambiguous data types for its interfaces: 
 
 SIMH data type   interpretation in typical 32-bit C 
 
 int8, uint8   char, unsigned char 
 int16, uint16   short, unsigned short 
 int32, uint32   int, unsigned int 
 t_int64, t_uint64   long long, _int64 (system specific) 
 t_addr    simulated address, int32 
 t_value    simulated value, unsigned int32 or int64 
 t_svalue   simulated signed value, int32 or int64 
 t_mtrec    mag tape record length, int32 
 t_stat    status code, int 
 t_bool    true/false value, int 
 
[The inconsistency in naming t_int64 and t_uint64 is due to Microsoft VC++, which uses int64 as 
a structure name member in the master Windows definitions file.] 
 
In addition, SIMH defines structures for each of its major data elements 
 



 DEVICE   device definition structure 
 UNIT    unit definition structure 
 REG     register definition structure 
 MTAB    modifier definition structure 
 CTAB    command definition structure 
 

3. VM Organization 
 
A virtual machine (VM) is a collection of devices bound together through their internal logic.  Each 
device is named and corresponds more or less to a hunk of hardware on the real machine; for 
example: 
 
 VM device   Real machine hardware 
 
 CPU    central processor and main memory 
 PTR    paper tape reader controller and paper tape reader 
 TTI    console keyboard 
 TTO    console output 
 DKP    disk pack controller and drives 
 
There may be more than one device per physical hardware entity, as for the console; but for each 
user-accessible device there must be at least one.  One of these devices will have the pre-
eminent responsibility for directing simulated operations.  Normally, this is the CPU, but it could 
be a higher-level entity, such as a bus master. 
 
The VM actually runs as a subroutine of the simulator control package (SCP).  It provides a 
master routine for running simulated programs and other routines and data structures to 
implement SCP’s command and control functions.  The interfaces between a VM and SCP are 
relatively few: 
 
 Interface   Function 
 
 char sim_name[]  simulator name string 
 REG *sim_pc   pointer to simulated program counter 
 int32 sim_emax  maximum number of words in an instruction 
 DEVICE *sim_devices[] table of pointers to simulated devices, NULL terminated 
 char *sim_stop_messages[]  table of pointers to error messages 
 t_stat sim_load (…)  binary loader subroutine 
 t_stat sim_inst (void)  instruction execution subroutine 
 t_stat parse_sym (…)  symbolic instruction parse subroutine (optional) 
 t_stat fprint_sym (…)  symbolic instruction print subroutine (optional) 
 
In addition, there are four optional interfaces, which can be used for special situations, such as 
GUI implementations: 
 
 Interface   Function 
 
 void (*sim_vm_init) (void) pointer to once-only initialization routine for VM 
 char (*sim_vm_read) (…) pointer to command input routine 
 void (*sim_vm_post) (…) pointer to command post-processing routine 
 CTAB *sim_vm_cmd   pointer to simulator-specific command table 
 
There is no required organization for VM code.  The following convention has been used so far.  
Let name be the name of the real system (i1401 for the IBM 1401; i1620 for the IBM 1620; pdp1 



for the PDP-1; pdp18b for the other 18-bit PDP’s; pdp8 for the PDP-8; pdp11 for the PDP-11; 
nova for Nova; hp2100 for the HP 21XX; h316 for the Honeywell 315/516; gri for the GRI-909; 
pdp10 for the PDP-10; vax for the VAX; sds for the SDS-940): 
 

• name.h contains definitions for the particular simulator 
• name_sys.c contains all the SCP interfaces except the instruction simulator 
• name_cpu.c contains the instruction simulator and CPU data structures 
• name_stddev.c contains the peripherals which were standard with the real system. 
• name_lp.c contains the line printer. 
• name_mt.c contains the mag tape controller and drives, etc. 

 
The SIMH standard definitions are in sim_defs.h, the simulator control package in scp.c, and the 
operating-system dependent terminal routines in scp_tty.c.  Additional libraries include sim_tmxr.c 
(header file sim_tmxr.h) for terminal multiplexors, and sim_sock.c (header file sim_sock.h) for 
network processing. 

3.1 CPU Organization 
 
Most CPU’s perform at least the following functions: 
 

• Time keeping 
• Instruction fetching 
• Address decoding 
• Execution of non-I/O instructions 
• I/O command processing 
• Interrupt processing 

 
Instruction execution is actually the least complicated part of the design; memory and I/O 
organization should be tackled first. 

3.1.1 Time Base 
 
In order to simulate asynchronous events, such as I/O completion, the VM must define and keep 
a time base.  This can be accurate (for example, nanoseconds of execution) or arbitrary (for 
example, number of instructions executed), but it must be consistently used throughout the VM.  
All existing VM’s count time in instructions. 
 
The CPU is responsible for counting down the event counter sim_interval and calling the 
asynchronous event controller sim_process_event.  The record keeping for timing is done by 
SCP. 

3.1.2 Memory Organization 
 
The criterion for memory layout is very simple: use the SIMH data type that is as large as (or if 
necessary, larger than), the word length of the real machine.  Note that the criterion is word 
length, not addressability: the PDP-11 has byte addressable memory, but it is a 16-bit machine, 
and its memory is defined as uint16 M[].  It may seem tempting to define memory as a union of 
int8 and int16 data types, but this would make the resulting VM endian-dependent.  Instead, the 
VM should be based on the underlying word size of the real machine, and byte manipulation 
should be done explicitly.  Examples: 
 
 Simulator  memory size  memory declaration 
 
 IBM 1401  6-bit   uint8 



 PDP-8   12-bit   uint16 
 PDP-11, Nova  16-bit   uint16 
 PDP-1   18-bit   uint32 
 PDP-10   36-bit   t_uint64 

3.1.3 Interrupt Organization 
 
The design of the VM’s interrupt structure is a complex interaction between efficiency and fidelity 
to the hardware.  If the VM’s interrupt structure is too abstract, interrupt driven software may not 
run.  On the other hand, if it follows the hardware too literally, it may significantly reduce 
simulation speed.  One rule I can offer is to minimize the fetch-phase cost of interrupts, even if 
this complicates the (much less frequent) evaluation of the interrupt system following an I/O 
operation or asynchronous event.  Another is not to over-generalize; even if the real hardware 
could support 64 or 256 interrupting devices, the simulators will be running much smaller 
configurations.  I’ll start with a simple interrupt structure and then offer suggestions for 
generalization. 
 
In the simplest structure, interrupt requests correspond to device flags and are kept in an interrupt 
request variable, with one flag per bit.  The fetch-phase evaluation of interrupts consists of two 
steps: are interrupts enabled, and is there an interrupt outstanding?  If all the interrupt requests 
are kept as single-bit flags in a variable, the fetch-phase test is very fast: 
 
 if (int_enable && int_requests) { …process interrupt… } 
 
Indeed, the interrupt enable flag can be made the highest bit in the interrupt request variable, and 
the two tests combined: 
 
 if (int_requests > INT_ENABLE) { …process interrupt… } 
 
Setting or clearing device flags directly sets or clears the appropriate interrupt request flag: 
 
 set:  int_requests = int_requests | DEVICE_FLAG; 
 clear:  int_requests = int_requests & ~DEVICE_FLAG; 
 
At a slightly higher complexity, interrupt requests do not correspond directly to device flags but 
are based on masking the device flags with an enable (or disable) mask.  There are now three 
parallel variables: interrupt requests, device flags, and interrupt enable mask.  The fetch-phase 
test does not change; however, the evaluation of whether an interrupt is pending now requires an 
extra step: 
 
 enable:  int_requests = device_flags & int_enables; 
 disable:  int_requests = device_flags & ~int_disables; 
 
If required for interrupt processing, the highest priority interrupting device can be determined by 
scanning the interrupt request variable from high priority to low until a set bit is found.  The bit 
position can then be back-mapped through a table to determine the address or interrupt vector of 
the interrupting device. 
 
At yet higher complexity, the interrupt system may be too complex or too large to evaluate during 
the fetch-phase.  In this case, an interrupt pending flag is created, and it is evaluated by 
subroutine call whenever a change could occur (start of execution, I/O instruction issued, device 
time out occurs).  This makes fetch-phase evaluation simple and isolates interrupt evaluation to a 
common subroutine. 



3.1.4 I/O Dispatching 
 
I/O dispatching consists of four steps: 
 

• Identify the I/O command and analyze for the device address. 
• Locate the selected device. 
• Break down the I/O command into standard fields. 
• Call the device processor. 

 
Analyzing an I/O command is usually easy.  Most systems have one or more explicit I/O 
instructions containing an I/O command and a device address.  Memory mapped I/O is more 
complicated; the identification of a reference to I/O space becomes part of memory addressing.  
This usually requires centralizing memory reads and writes into subroutines, rather than as inline 
code. 
 
Once an I/O command has been analyzed, the CPU must locate the device subroutine.  The 
simplest way is a large switch statement with hardwired subroutine calls. More modular is to call 
through a dispatch table, with NULL entries representing non-existent devices; this also simplifies 
support for modifiable device addresses.  Before calling the device routine, the CPU usually 
breaks down the I/O command into standard fields.  This simplifies writing the peripheral 
simulator. 

3.1.5 Instruction Execution 
 
Instruction execution is the responsibility of VM subroutine sim_instr.  It is called from SCP as a 
result of a RUN, GO, CONT, or BOOT command.  It begins executing instructions at the current 
PC (sim_PC points to its register description block) and continues until halted by an error or an 
external event. 
 
When called, the CPU needs to account for any state changes that the user made.  For example, 
it may need to re-evaluate whether an interrupt is pending, or restore frequently used state to 
local register variables for efficiency.  The actual instruction fetch and execute cycle is usually 
structured as a loop controlled by an error variable, e.g., 
 
 reason = 0; 
 do { … } while (reason == 0);  or while (reason == 0) { … } 
 
Within this loop, the usual order of events is: 
 

• If the event timer sim_interval has reached zero, process any timed events.  This is 
done by SCP subroutine sim_process_event.  Because this is the polling mechanism 
for user-generated processor halts (^E), errors must be recognized immediately: 

 
if (sim_interval <= 0) { 

if (reason = sim_process_event ()) break;  } 
 

• Check for outstanding interrupts and process if required. 
 

• Check for other processor-unique events, such as wait-state outstanding or traps 
outstanding. 

 
• Check for an instruction breakpoint.  SCP has a comprehensive breakpoint facility.  It 

allows a VM to define many different kinds of breakpoints.  The VM checks for execution 
(type E) breakpoints during instruction fetch. 



 
• Fetch the next instruction, increment the PC, optionally decode the address, and dispatch 

(via a switch statement) for execution. 
 
A few guidelines for implementation: 
 

• In general, code should reflect the hardware being simulated.  This is usually simplest 
and easiest to debug. 

 
• The VM should provide some debugging aids.  The existing CPU’s all provide multiple 

instruction breakpoints, a PC change queue, and error stops on invalid instructions or 
operations. 

3.2 Peripheral Device Organization 
 
The basic elements of a VM are devices, each corresponding roughly to a real chunk of 
hardware.  A device consists of register-based state and one or more units.  Thus, a multi-drive 
disk subsystem is a single device (representing the hardware of the real controller) and one or 
more units (each representing a single disk drive).  Sometimes the device and its unit are the 
same entity as, for example, in the case of a paper tape reader.  However, a single physical 
device, such as the console, may be broken up for convenience into separate input and output 
devices. 
 
In general, units correspond to individual sources of input or output (one tape transport, one A-to-
D channel).  Units are the basic medium for both device timing and device I/O.  Except for the 
console, all I/O devices are simulated as host-resident files.  SCP allows the user to make an 
explicit association between a host-resident file and a simulated hardware entity. 
 
Both devices and units have state.  Devices operate on registers, which contain information about 
the state of the device, and indirectly, about the state of the units.  Units operate on data sets, 
which may be thought of as individual instances of input or output, such as a disk pack or a 
punched paper tape.  In a typical multi-unit device, all units are the same, and the device 
performs similar operations on all of them, depending on which one has been selected by the 
program being simulated. 
 
(Note: SIMH, like MIMIC, restricts registers to devices. Replicated registers, for example, disk 
drive current state, are handled via register arrays.) 
 
For each structural level, SIMH defines, and the VM must supply, a corresponding data structure.  
device  structures correspond to devices, reg structures to registers, and unit structures to units.  
These structures are described in detail in section 4. 
 
The primary functions of a peripheral are: 
 

• command decoding and execution 
• device timing 
• data transmission. 

 
Command decoding is fairly obvious.  At least one section of the peripheral code module will be 
devoted to processing directives issued by the CPU.  Typically, the command decoder will be 
responsible for register and flag manipulation, and for issuing or canceling I/O requests.  The 
former is easy, but the later requires a thorough understanding of device timing. 



3.2.1 Device Timing 
 
The principal problem in I/O device simulation is imitating asynchronous operations in a 
sequential simulation environment.  Fortunately, the timing characteristics of most I/O devices do 
not vary with external circumstances.  The distinction between devices whose timing is externally 
generated (e.g., console keyboard) and those whose timing is externally generated (disk, paper 
tape reader) is crucial.  With an externally timed device, there is no way to know when an in-
progress operation will begin or end; with an internally timed device, given the time when an 
operation starts, the end time can be calculated. 
 
For an internally timed device, the elapsed time between the start and conclusion of an operation 
is called the wait time.  Some typical internally timed devices and their wait times include: 
 
 PTR (300 char/sec)  3.3 msec 
 PTP (50 char/sec)  20 msec 
 CLK (line frequency)  16.6 msec 
 TTO (30 char/sec)  33 msec 
 
Mass storage devices, such as disks and tapes, do not have a fixed response time, but a start-to-
finish time can be calculated based on current versus desired position, state of motion, etc. 
 
For an externally timed device, there is no portable mechanism by which a VM can be notified of 
an external event (for example, a key stroke).  Accordingly, all current VM’s poll for keyboard 
input, thus converting the externally timed keyboard to a pseudo-internally timed device.  A more 
general restriction is that SIMH is single-threaded.  Threaded operations must be done by polling 
using the unit timing mechanism, either with real units or fake units created expressly for polling. 
 
SCP provides the supporting routines for device timing.  SCP maintains a list of devices (called 
active devices) which are in the process of timing out.  It also provides routines for querying or 
manipulating this list (called the active queue).  Lastly, it provides a routine for checking for timed-
out units and executing a VM-specified action when a time-out occurs. 
 
Device timing is done with the UNIT structure, described in section 3.  To set up a timed 
operation, the peripheral calculates a waiting period for a unit and places that unit on the active 
queue.  The CPU counts down the waiting period.  When the waiting period has expired, 
sim_process_event removes the unit from the active queue and calls a device subroutine.  A 
device may also cancel an outstanding timed operation and query the state of the queue.  The 
timing subroutines are: 
 

• t_stat sim_activate (UNIT *uptr, int32 wait).  This routine places the specified unit on the 
active queue with the specified waiting period.  A waiting period of 0 is legal; negative 
waits cause an error.  If the unit is already active, the active queue is not changed, and 
no error occurs. 

 
• t_stat sim_cancel (UNIT *uptr).  This routine removes the specified unit from the active 

queue.  If the unit is not on the queue, no error occurs. 
 

• int32 sim_is_active (UNIT *uptr).  This routine tests whether a unit is in the active queue.  
If it is, the routine returns the time (+1) remaining; if it is not, the routine returns 0. 

 
• double sim_gtime (void).  This routine returns the time elapsed since the last RUN or 

BOOT command. 
 

• uint32 sim_grtime (void).  This routine returns the low-order 32b of the time elapsed 
since the last RUN or BOOT command. 



 
• int32 sim_qcount (void).  This routine returns the number of entries on the clock queue. 

 
• t_stat sim_process_event (void).  This routine removes all timed out units from the 

active queue and calls the appropriate device subroutine to service the time-out. 
 

• int32 sim_interval.  This variable counts down the first outstanding timed event.  If there 
are no timed events outstanding, SCP counts down a “null interval” of 10,000 time units. 

3.2.2 Clock Calibration 
 
The timing mechanism described in the previous section is approximate.  Devices, such as real-
time clocks, which track wall time will be inaccurate.  SCP provides routines to synchronize a 
multiple simulated clocks (to a maximum of 8) to wall time. 
 
• int32 sim_rtcn_init (int32 clock_interval, int32 clk).  This routine initializes the clock 

calibration mechanism for simulated clock clk .  The argument is returned as the result. 
 
• int32 sim_rtcn_calb (int32 tickspersecond, int32 clk).  This routine calibrates simulated clock 

clk .  The argument is the number of clock ticks expected per second. 
 
The simulator calls sim_rtcn_init for each simulated clock in two places: in the prolog of 
sim_instr, before instruction execution starts, and whenever the real-time clock is started.  The 
simulator calls sim_rtcn_calb to calculate the actual interval delay when the real-time clock is 
serviced: 
 
 /* clock start */ 
 
 if (!sim_is_active (&clk_unit)) sim_activate (&clk_unit, sim_rtcn_init (clk_delay, clkno)); 
 etc. 
 
 /* clock service */ 
 
 sim_activate (&clk_unit, sim_rtcb_calb (clk_ticks_per_second, clkno); 
 
The real-time clock is usually simulated clock 0; other clocks are used for polling asynchronous 
multiplexors, or intervals timers. 

3.2.3 Data I/O 
 
For most devices, timing is half the battle (for clocks it is the entire war); the other half is I/O.  
Except for the console and other terminals, all I/O devices are simulated as files on the host file 
system in little-endian format.  SCP provides facilities for associating files with units (ATTACH 
command) and for reading and writing data from and to devices in a endian- and size-
independent way. 
 
For most devices, the VM designer does not have to be concerned about the formatting of 
simulated device files.  I/O occurs in 1, 2, or 4 byte quantities; SCP automatically chooses the 
correct data size and corrects for byte ordering.  Specific issues: 
 

• Line printers should write data as 7-bit ASCII, with newlines replacing carriage-
return/line-feed sequences. 

 



• Disks should be viewed as linear data sets, from sector 0 of surface 0 of cylinder 0 to the 
last sector on the disk.  This allows easy transcription of real disks to files usable by the 
simulator. 

 
• Magtapes, by convention, use a record based format.  Each record consists of a leading 

32-bit record length, the record data (padded with a byte of 0 if the record length is odd), 
and a trailing 32-bit record length.  File marks are recorded as one record length of 0. 

 
• Cards have 12 bits of data per column, but the data is most conveniently viewed as 

(ASCII) characters.  Existing card reader simulators do not support binary operation. 
 
Data I/O varies between fixed and variable capacity devices, and between buffered and non-
buffered devices.  A fixed capacity device differs from a variable capacity device in that the file 
attached to the former has a maximum size, while the file attached to the latter may expand 
indefinitely.  A buffered device differs from a non-buffered device in that the former buffers its 
data set in host memory, while the latter maintains it as a file.  Most variable capacity devices 
(such as the paper tape reader and punch) are sequential; all buffered devices are fixed capacity. 
 
3.2.3.1 Reading and Writing Data 
 
The ATTACH command creates an association between a host file and an I/O unit.  For non-
buffered devices, ATTACH stores the file pointer for the host file in the fileref field of the UNIT 
structure.  For buffered devices, ATTACH reads the entire host file into a buffer pointed to by the 
filebuf field of the UNIT structure.  If unit flag UNIT_MUSTBUF is set, the buffer is allocated 
dynamically; otherwise, it must be statically allocated. 
 
For non-buffered devices, I/O is done with standard C subroutines plus the SCP routines fxread 
and fxwrite .  fxread and fxwrite are identical in calling sequence and function to fread and fwrite, 
respectively, but will correct for endian dependencies.  For buffered devices, I/O is done by 
copying data to or from the allocated buffer.  The device code must maintain the number (+1) of 
the highest address modified in the hwmark field of the UNIT structure.  For both the non-
buffered and buffered cases, the device must perform all address calculations and positioning 
operations. 
 
The DETACH command breaks the association between a host file and an I/O unit.  For buffered 
devices, DETACH writes the allocated buffer back to the host file. 
 
3.2.3.2 Console I/O 
 
SCP provides two routines for console I/O. 
 

• t_stat sim_poll_char (void).  This routine polls for keyboard input.  If there is a character, 
it returns SCPE_KFLAG + the character.  If the user typed the interrupt character (^E), it 
returns SCPE_STOP.  If there is no input, it returns SCPE_OK. 

 
• t_stat sim_putchar (int32 char).  This routine types the specified ASCII character on the 

console.  There are no errors. 
 

4. Data Structures 
 
The devices, units, and registers which make up a VM are formally described through a set of 
data structures which interface the VM to the control portions of SCP.  The devices themselves 
are pointed to by the device list array sim_devices[].  Within a device, both units and registers 



are allocated contiguously as arrays of structures.  In addition, many devices allow the user to set 
or clear options via a modifications table. 

4.1 device Structure 
 
Devices are defined by the device  structure (typedef DEVICE): 
 

struct device { 
 char  *name;    /* name */ 
 struct unit  *units;    /* units */ 
 struct reg *registers;   /* registers */ 
 struct mtab *modifiers;   /* modifiers */ 
 int32  numunits;   /* #units */ 
 int32  aradix;    /* address radix */ 
 int32  awidth;    /* address width */ 
 int32  aincr;     /* addr increment */ 
 int32  dradix;    /* data radix */ 
 int32  dwidth;    /* data width */ 
 t_stat  (*examine)();    /* examine routine */ 
 t_stat  (*deposit)();    /* deposit routine */ 
 t_stat  (*reset)();   /* reset routine */ 
 t_stat  (*boot)();    /* boot routine */ 
 t_stat  (*attach)();    /* attach routine */ 
 t_stat  (*detach)();    /* detach routine */ 
 void  ctxt    /* context */ 
 int32  flags;    /* flags */ 
 t_stat  (*msize)();    /* memory size change */ 
}; 

 
The fields are the following: 
 

name  device name, string of all capital alphanumeric characters. 
units  pointer to array of unit structures, or NULL if none. 
registers pointer to array of reg structures, or NULL if none. 
modifiers pointer to array of mtab structures, or NULL if none. 
numunits  number of units in this device. 
aradix  radix for input and display of device addresses, 2 to 16 inclusive. 
awidth  width in bits of a device address, 1 to 31 inclusive. 
aincr increment between device addresses, normally 1; however, byte 

addressed devices with 16-bit words specify 2, with 32-bit words 4. 
dradix  radix for input and display of device data, 2 to 16 inclusive. 
dwidth  width in bits of device data, 1 to 32 inclusive. 
examine address of special device data read routine, or NULL if none is required. 
deposit  address of special device data write routine, or NULL if none is required. 
reset  address of device reset routine, or NULL if none is required. 
boot  address of device bootstrap routine, or NULL if none is required. 
attach  address of special device attach routine, or NULL if none is required. 
detach  address of special device detach routine, or NULL if none is required. 
ctxt  address of VM-specific device context table, or NULL if none is required. 
flags  device flags. 
msize  address of memory size change routine, or NULL if none is required. 

4.1.1 Device Flags 
 
The flags field contains indicators of current device status.  SIMH defines 2 flags: 



 
flag name  meaning if set 

 
 DEV_DISABLE   device can be set enabled or disabled 
 DEV_DIS   device is currently disabled 
 DEV_DYNM   device requires call on msize routine to change memory size 
 
Starting at bit position DEV_V_UF, the remaining flags are device-specific.  Device flags are 
automatically saved and restored; the device need not supply a register for these bits. 

4.1.2 Context 
 
The field contains a pointer to a VM-specific device context table, if required.  SIMH never 
accesses this field.  The context field allows VM-specific code to walk VM-specific data structures 
from the sim_devices root pointer. 

4.1.3 Examine and Deposit Routines 
 
For devices which maintain their data sets as host files, SCP implements the examine and 
deposit data functions.  However, devices which maintain their data sets as private state (for 
example, the CPU) must supply special examine and deposit routines.  The calling sequences 
are: 
 

t_stat examine_routine (t_val *eval_array, t_addr addr, UNIT *uptr, int32 switches) – 
Copy sim_emax consecutive addresses for unit uptr, starting at addr, into eval_array.  
The switch variable has bit<n> set if the n’th letter was specified as a switch to the 
examine command. 
 
t_stat deposit_routine (t_val value, t_addr addr, UNIT *uptr, int32 switches) – Store the 
specified value in the specified addr for unit uptr.  The switch variable is the same as for 
the examine routine. 

4.1.4 Reset Routine 
 
The reset routine implements the device reset function for the RESET, RUN, and BOOT 
commands.  Its calling sequence is: 
 
 t_stat reset_routine (DEVICE *dptr) – Reset the specified device to its initial state. 
 
A typical reset routine clears all device flags and cancels any outstanding timing operations. 

4.1.5 Boot Routine 
 
If a device responds to a BOOT command, the boot routine implements the bootstrapping 
function.  Its calling sequence is: 
 

t_stat boot_routine (int32 unit_num, DEVICE *dptr) – Bootstrap unit  unit_num on the 
device dptr. 

 
A typical bootstrap routine copies a bootstrap loader into main memory and sets the PC to the 
starting address of the loader.  SCP then starts simulation at the specified address. 



4.1.6 Attach and Detach Routines 
 
Normally, the ATTACH and DETACH commands are handled by SCP.  However, devices which 
need to pre- or post-process these commands must supply special attach and detach routines.  
The calling sequences are: 
 

t_stat attach_routine (UNIT *uptr, char *file) – Attach the specified file to the unit uptr. 
Sim_switches contains the command switch; bit SIM_SW_REST indicates that attach is 
being called by the RESTORE command rather than the ATTA CH command. 
 
t_stat detach_routine (UNIT *uptr) – Detach unit uptr. 

 
In practice, these routines usually invoke the standard SCP routines, attach_unit and 
detach_unit, respectively.  For example, here are special attach and detach routines to update 
line printer error state: 
 

t_stat lpt_attach (UNIT *uptr, char *cptr) { 
t_stat r; 
if ((r = attach_unit (uptr, cptr)) != SCPE_OK) return r; 
lpt_error = 0; 
return SCPE_OK; 

} 
 
t_stat lpt_detach (UNIT *uptr) { 
 lpt_error = 1; 
 return detach_unit (uptr); 
} 

 
If the attach routine does not call attach_unit, it must explicitly check to see if the unit is currently 
attached and detach it before proceeding. 
 
SCP executes a DETACH ALL command as part of simulator exit.  Normally, DETACH ALL only 
calls a unit’s detach routine if the unit’s UNIT_ATTABLE flag is set.  During simulator exit, the 
detach routine is called unconditionally.  This allows the detach routine of a non-attachable unit to 
function as a simulator-specific cleanup routine for the unit, device, or entire simulator. 

4.1.7 Memory Size Change Routine 
 
Most units instantiate any memory array at the maximum size possible.  This allows apparent 
memory size to be changed by varying the capac field in the unit structure.  For some devices 
(like the VAX CPU), instantiating the maximum memory size would impose a significant resource 
burden less memory was actually needed.  These devices must provide a routine, the memory 
size change routine, for RESTORE to use if memory size must be changed: 
 

t_stat change_mem_size (UNIT *uptr, int32 val, char *cptr, void *desc) – Change the 
capacity (memory size) of unit uptr to val.  The cptr and desc arguments are included for 
compatibility with the SET command’s validation routine calling sequence. 

4.2 unit Structure 
 
Units are allocated as contiguous array.  Each unit is defined with a unit structure (typedef UNIT): 
 

struct unit { 
 struct unit *next;    /* next active */ 
 t_stat  (*action)();   /* action routine */ 



 char  *filename;   /* open file name */ 
 FILE  *fileref;     /* file reference */ 
 void  *filebuf;    /* memory buffer */ 
 t_addr  hwmark;   /* high water mark */ 
 int32  time;    /* time out */ 
 int32  flags;    /* flags */ 
 t_addr  capac;    /* capacity */ 
 t_addr  pos;    /* file position */ 
 int32  buf;    /* buffer */ 
 int32  wait;    /* wait */ 
 int32  u3;     /* device specific */ 
 int32  u4;     /* device specific */ 
}; 

 
The fields are the following: 
 

next  pointer to next unit in active queue, NULL if none. 
action  address of unit time-out service routine. 
filename pointer to name of attached file, NULL if none. 
fileref  pointer to FILE structure of attached file, NULL if none. 
hwmark buffered devices only; highest modified address, + 1. 
time  increment until time-out beyond previous unit in active queue. 
flags  unit flags. 
capac  unit capacity, 0 if variable. 
pos  sequential devices only; next device address to be read or written. 
buf  by convention, the unit buffer, but can be used for other purposes. 
wait  by convention, the unit wait time, but can be used for other purposes. 
u3  user-defined. 
u4  user-defined. 

 
buf, wait, u3, u4, and parts of flags are all saved and restored by the SAVE and RESTORE 
commands and thus can be used for unit state which must be preserved. 
 
Macro UDATA is available to fill in the common fields of a UNIT.  It is invoked by 
 
 UDATA  (action_routine, flags, capacity) 
 
Fields after buf can be filled in manually, e.g, 
 
 UNIT lpt_unit =  

{ UDATA (&lpt_svc, UNIT_SEQ+UNIT_ATTABLE, 0), 500 }; 
 
defines the line printer as a sequential unit with a wait time of 500. 

4.2.1 Unit Flags 
 
The flags field contains indicators of current unit status.  SIMH defines 11 flags: 
 

flag name  meaning if set 
 
UNIT_ATTABLE  the unit responds to ATTACH and DETACH. 
UNIT_RO  the unit is currently read only. 
UNIX_FIX  the unit is fixed capacity. 
UNIT_SEQ  the unit is sequential. 
UNIT_ATT  the unit is currently attached to a file. 



UNIT_BINK   the unit measures “K” as 1024, rather than 1000. 
UNIT_BUFABLE  the unit buffers its data set in memory. 
UNIT_MUSTBUF the unit allocates its data buffer dynamically. 
UNIT_BUF  the unit is currently buffering its data set in memory. 
UNIT_ROABLE   the unit can be ATTACHed read only. 
UNIT_DISABLE   the unit responds to ENABLE and DISABLE. 
UNIT_DIS   the unit is currently disabled. 

 
Starting at bit position UNIT_V_UF, the remaining flags are unit-specific.  Unit-specific flags are 
set and cleared with the SET and CLEAR commands, which reference the MTAB array (see 
below).  Unit-specific flags and UNIT_DIS are automatically saved and restored; the device need 
not supply a register for these bits. 

4.2.2 Service Routine 
 
This routine is called by sim_process_event when a unit times out.  Its calling sequence is: 
 

t_stat service_routine (UNIT *uptr) 
 
The status returned by the service routine is passed by sim_process_event back to the CPU. 

4.3 reg Structure 
 
Registers are allocated as contiguous array, with a NULL register at the end.  Each register is 
defined with a reg structure (typedef REG): 
 

struct reg { 
 char  *name;    /* name */ 
 void  *loc;    /* location */ 
 int  radix;    /* radix */ 
 int  width;     /* width */ 
 int  offset;    /* starting bit */ 
 int  depth;     /* save depth */ 
 int32  flags;    /* flags */ 
 int32  qptr;     /* current queue pointer */ 
}; 

 
The fields are the following: 
 

name  device name, string of all capital alphanumeric characters. 
loc  pointer to location of the register value. 
radix  radix for input and display of data, 2 to 16 inclusive. 
width  width in bits of data, 1 to 32 inclusive. 
width  bit offset (from right end of data). 
depth  size of data array (normally 1). 
flags  flags and formatting information. 
qptr  for a circular queue, the entry number for the first entry 

 
The depth field is used with “arrayed registers”.  Arrayed registers are used to represent 
structures with multiple data values, such as the locations in a transfer buffer; or structures which 
are replicated in every unit, such as a drive status register.  The qptr field is used with “queued 
registers”.  Queued registers are arrays that are organized as circular queues, such as the PC 
change queue. 
 



Macros ORDATA, DRDATA, and HRDATA define right-justified octal, decimal, and hexidecimal 
registers, respectively.  They are invoked by: 
 
 xRDATA  (name, location, width) 
 
Macro FLDATA defines a one-bit binary flag at an arbitrary offset in a 32-bit word.  It is invoked 
by: 
 
 FLDATA  (name, location, bit_position) 
 
Macro GRDATA defines a register with arbitrary location and radix.  It is invoked by: 
 
 GRDATA  (name, location, radix, width, bit_position) 
 
Macro BRDATA defines an arrayed register whose data is kept in a standard C array.  It is 
invoked by: 
 
 BRDATA  (name, location, radix, width, depth) 
 
For all of these macros, the flag field can be filled in manually, e.g., 
 
 REG lpt_reg = { 
  { DRDATA (POS, lpt_unit.pos, 31), PV_LFT }, … } 
 
Finally, macro URDATA defines an arrayed register whose data is part of the UNIT structure.  
This macro must be used with great care.  If the fields are set up wrong, or the data is actually 
kept somewhere else, storing through this register declaration can trample over memory.  The 
macro is invoked by: 
 
 URDATA  (name, location, radix, width, offset, depth, flags) 
 
The location should be an offset in the UNIT structure for unit 0.  The flags can be any of the 
normal register flags; REG_UNIT will be OR’d in automatically.  For example, the following 
declares an arrayed register of all the UNIT position fields in a device with 4 units: 
 
 { URDATA (POS, dev_unit[0].pos, 8, 31, 0, 4, 0) } 

4.3.1 Register Flags 
 
The flags field contains indicators that control register examination and deposit. 
 

flag name  meaning if specified 
 
PV_RZRO  print register right justified with leading zeroes. 
PV_RSPC  print register right justified with leading spaces. 
PV_LEFT  print register left justified. 
REG_RO  register is read only. 
REG_HIDDEN  register is hidden (will not appear in EXAMINE STATE). 
REG_HRO  register is read only and hidden. 
REG_NZ  new register values must be non-zero. 
REG_UNIT  register resides in the UNIT structure. 
REG_CIRC  register is a circular queue. 

4.4 mtab Structure 
 



Device-specific SHOW and SET commands are processed using the modifications array, which is 
allocated as contiguous array, with a NULL at the end.  Each possible modification is defined with 
a mtab structure (synonym MTAB), which has the following fields: 
 

struct mtab { 
 int32  mask;    /* mask */ 
 int32  match;    /* match */ 
 char  *pstring;    /* print string */ 
 char  *mstring;    /* match string */ 
 t_stat  (*valid)();    /* validation routine */ 
 t_stat  (*disp)();    /* display routine */ 
 void  *desc;    /* location descriptor */ 
}; 

 
MTAB supports two different structure interpretations: regular and extended.  A regular MTAB 
entry modifies flags in the UNIT flags word; the descriptor entry is not used.  The fields are the 
following: 
 

mask   bit mask for testing the unit.flags field 
match value to be stored (SET) or compared (SHOW) 
pstring pointer to character string printed on a match (SHOW), or NULL 
mstring pointer to character string to be matched (SET), or NULL 
valid address of validation routine (SET), or NULL 
disp address of display routine (SHOW), or NULL 

 
For SET, a regular MTAB entry is interpreted as follows: 
 

1. Test to see if the mstring entry exists. 
2. Test to see if the SET parameter matches the mstring. 
3. Call the validation routine, if any. 
4. Apply the mask value to the UNIT flags word and then or in the match value.  

 
For SHOW, a regular MTAB entry is interpreted as follows: 
 

1. Test to see if the pstring entry exists. 
2. Test to see if the UNIT flags word, masked with the mask value, equals the match 

value. 
3. If a display routine exists, call it, otherwise 
4. Print the pstring. 

 
Extended MTAB entries have a different interpretation: 
 

mask   entry flags 
  MTAB_XTD extended entry 
  MTAB_VDV  valid for devices 
  MTAB_VUN valid for units 
  MTAB_VAL takes a value 
  MTAB_NMO valid only in named SHOW 
  MTAB_NC do not convert option value to upper case 
match value to be stored (SET) 
pstring pointer to character string printed on a match (SHOW), or NULL 
mstring pointer to character string to be matched (SET), or NULL 
valid address of validation routine (SET), or NULL 
disp address of display routine (SHOW), or NULL 
desc pointer to a REG structure (MTAB_VAL set) or 
 an int32 (MTAB_VAL clear) 



 
For SET, an extended MTAB entry is interpreted as follows: 
 

1. Test to see if the mstring entry exists. 
2. Test to see if the SET parameter matches the mstring. 
3. Test to see if the entry is valid for the type of SET being done (SET device or SET 

unit). 
4. If a validation routine exists, call it and return its status.  The validation routine is 

responsible for stroing the result.  
5. If desc is NULL, exit. 
6. If MTAB_VAL is set, parse the SET option for “option=n”, and store the value n in the 

register described by desc. 
7. Otherwise, store the match value in the int32 pointed to by desc. 

 
For SHOW, an extended MTAB entry is interpreted as follows: 
 

1. Test to see if the pstring entry exists. 
2. Test to see if the entry is valid for the type of SHOW being done (device or unit). 
3. If a display routine exists, call it, otherwise, 
4. If MTAB_VAL is set, print “=n”, where the value, radix, and width are taken from the 

register described by desc, otherwise, 
5. Print the pstring. 

 
SHOW {dev|unit} <modifier> is a special case.  Only two kinds of modifiers can be displayed 
individually: an extended MTAB entry that takes a value; and any MTAB entry with both a display 
routine and a pstring.  Recall that if a display routine exists, SHOW does not use the pstring 
entry.  For displaying a named modifier, pstring is used as the string match.  This allows 
implementation of complex display routines that are only invoked by name, e.g., 
 
 MTAB cpu_tab[] = { 
  { mask, value, “normal”, “NORMAL”, NULL, NULL, NULL }, 
  { MTAB_XTD|MTAB_VDV|MTAB_NMO, 0, “SPECIAL”, 

NULL, NULL, NULL, &spec_disp }, 
  { 0 } }; 
 
A SHOW CPU command will display only the modifier named NORMAL; but SHOW CPU 
SPECIAL will invoke the special display routine. 

4.4.1 Validation Routine 
 
The validation routine can be used to validate input during SET processing.  It can make other 
state changes required by the modification or initiate additional dialogs needed by the modifier.  
Its calling sequence is: 
 

t_stat validation_routine (UNIT *uptr, int32 value, char *cptr, void *desc) – test that 
uptr.flags can be set to value.  cptr points to the value portion of the parameter string 
(any characters after the = sign); if cptr is NULL, no value was given.  desc points to the 
REG or int32 used to store the parameter. 

4.4.2 Display Routine 
 
The display routine is called during SHOW processing to display device- or unit-specific state.  Its 
calling sequence is: 
 



t_stat display_routine (FILE *st, UNIT *uptr, void *desc) – output device- or unit-specific 
state for uptr to stream st. desc points to the REG or int32 used to store the parameter. 

 
When the display routine is called for a regular MTAB entry, SHOW has output the pstring 
argument but has not appended a newline.  When it is called for an extended MTAB entry, 
SHOW hasn’t output anything.  SHOW will append a newline after the display routine returns, 
except for entries with the MTAB_NMO flag set. 

4.5 Other Data Structures 
 
char sim_name[] is a character array containing the VM name. 
 
int32 sim_emax contains the maximum number of words needed to hold the largest instruction or 
data item in the VM.  Examine and deposit will process up to sim_emax words. 
 
DEVICE *sim_devices[] is an array of pointers to all the devices in the VM.  It is terminated by a 
NULL.  By convention, the CPU is always the first device in the array. 
 
REG *sim_PC points to the reg structure for the program counter.  By convention, the PC is 
always the first register in the CPU’s register array. 
 
char *sim_stop_messages[] is an array of pointers to character strings, corresponding to error 
status returns greater than zero.  If sim_instr returns status code n > 0, then 
sim_stop_message[n] is printed by SCP. 
 

5. VM Provided Routines 

5.1 Instruction Execution 
 
Instruction execution is performed by routine sim_instr.  Its calling sequence is: 
 
t_stat sim_instr (void) – Execute from current PC until error or halt. 

5.2 Binary Load and Dump 
 
If the VM responds to the LOAD (or DUMP) command, the loader (dumper) is implemented by 
routine sim_load.  Its calling sequence is: 
 

t_stat sim_load (FILE *fptr, char *buf, char *fnam, t_bool flag) - If flag = 0, load data from 
binary file fptr.  If flag = 1, dump data to binary file fptr.  For either command, buf contains 
any VM-specific arguments, and fnam contains the file name.   

 
If LOAD or DUMP is not implemented, sim_load should simply return SCPE_ARG.  The LOAD 
and DUMP commands open and close the specified file for sim_load. 

5.3 Symbolic Examination and Deposit 
 
If the VM provides symbolic examination and deposit of data, it must provide two routines, 
fprint_sym for output and parse_sym  for input.  Their calling sequences are: 
 



t_stat fprint_sym (FILE *ofile, t_addr addr, t_value *val, UNIT *uptr, int32 switch) – 
Based on the switch variable, symbolically output to stream ofile the data in array val at 
the specified addr in unit uptr. 
 
t_stat parse_sym (char *cptr, t_addr addr, UNIT *uptr, t_value *val, int32 switch) – Based 
on the switch variable, parse character string cptr for a symbolic value val at the specified 
addr in unit uptr. 

 
If symbolic processing is not implemented, or the output value or input string cannot be parsed, 
these routines should return SCPE_ARG.  If the processing was successful and consumed more 
than a single word, then these routines should return extra number of words (not bytes) 
consumed as a negative  number.  If the processing was successful and consumed a single 
word, then these routines should return SCPE_OK.  For example, PDP -11 parse_sym  would 
respond as follows to various inputs: 
 
 input     return value 
 
 XYZGH    SCPE_ARG 
 MOV R0,R1   SCPE_OK 
 MOV #4,R5   -1 
 MOV 1234,5670  -2 
 
The interpretation of switch values is arbitrary, but the following are used by existing VM’s: 
 
 switch    interpretation 
 
 -a    single character 
 -c    character string 
 -m    instruction mnemonic 
 
In addition, on input, a leading ‘ (apostrophe) is interpreted to mean a single character, and a 
leading “ (double quote) is interpreted to mean a character string. 

5.4 Optional Interfaces 
 
For greater flexibility, SCP provides some optional interfaces that can be used to extend its 
command input, command processing, and command post-processing capabilities.  These 
interfaces are strictly optional and are off by default.  Using them requires intimate knowledge of 
how SCP functions internally and is not recommended to the novice VM writer. 

5.4.1 Once Only Initialization Routine 
 
SCP defines a pointer (*sim_vm_init)(void).  This is a “weak global”; if no other module defines 
this value, it will default to NULL.  A VM requiring special initialization should fill in this pointer with 
the address of its special initialization routine: 
 
 void sim_special_init (void); 
 void (*sim_vm_init)(void) = &sim_special_init; 
 
The special initialization routine can perform any actions required by the VM.  If the other optional 
interfaces are to be used, the initialization routine must fill in the appropriate pointers. 

5.4.2 Command Input and Post-Processing 
 



SCP defines a pointer char* (sim_vm_read)(char *, int32 *, FILE *).  This is initialized to NULL.  If 
it is filled in by the VM, SCP will use the specified routine to obtain command input in place of its 
standard routine, read_line.  The calling sequence for the vm_read routine is: 
 

char sim_vm_input (char *buf, int32 *max, FILE *stream) – read the next command line 
from stream and store it in buf, up to a maximum of max characters 

 
The routine is expected to strip off leading whitespace characters and to ret urn NULL on end of 
file. 
 
SCP defines a pointer void *(sim_vm_post)(t_bool from_scp).  This is initialized to NULL.  If filled 
in by the VM, SCP will call the specified routine at the end of every command.  This allows the 
VM to update any local state, such as a GUI console display.  The calling sequence for the 
vm_post routine is: 
 

void sim_vm_postupdate  (t_bool from_scp) – if called from SCP, the argument 
from_scp is TRUE; otherwise, it is FALSE. 

5.4.3 VM-Specific Commands 
 
SCP defines a pointer CTAB *sim_vm_cmd.  This is initialized to NULL.  If filled in by the VM, 
SCP interprets it as a pointer to SCP command table.  This command table is checked if a user 
input is not found in the standard command table. 
 
A command table is allocated as a contiguous array.  Each entry is defined with a ctab structure 
(typedef CTAB): 
 

struct ctab { 
 char  *name;    /* name */ 
 t_stat  (*action)();   /* action routine */ 
 int32  arg;     /* argument */ 
 char  *help;     /* help string */ 
}; 

 
If the first word of a command line matches ctab.name, then the action routine is called with the 
following arguments: 
 

t_stat action_routine (int32 arg, char *buf) – process input string buf based on optional 
argument arg 

 
The string passed to the action routine starts at the first non-blank character past the command 
name. 

6. Other SCP Facilities 

6.1 Multi-Terminal Support (Telnet) 
 
SIMH supports the use of multiple terminals.  All terminals except the console are accessed via 
Telnet.  SIMH provides two supporting libraries for implementing multiple terminals: sim_tmxr.c 
(and its header file, sim_tmxr.h), which provide OS-independent support routines for terminal 
multiplexors; and sim_sock.c (and its header file, sim_sock.h), which provide OS-dependent 
socket routines.  Sim_sock.c is implemented under Windows, VMS, UNIX, and MacOS. 
 



Two basic data structures define the multiple terminals.  Individual lines are defined by the tmln 
structure (typedef TMLN): 
 

struct tmln { 
 SOCKET conn;     /* line conn */ 
 uint32  ipad;     /* IP address */ 
 uint32  cnms;    /* connect  time ms */ 
 int32  tsta;    /* Telnet state */ 
 int32  rcve;     /* rcv enable */ 
 int32  xmte;    /* xmt enable */ 
 int32  dstb;    /* disable Tlnt bin */ 
 int32  rxbpr;     /* rcv buf remove */ 
 int32  rxbpi;    /* rcv buf insert */ 
 int32  rxcnt;    /* rcv count */ 
 int32  txbpr;    /* xmt buf remove */ 
 int32  txbpi;    /* xmt buf insert */ 
 int32  txcnt;    /* xmt count */ 
 uint8  rxb[TMXR_MAXBUF];  /* rcv buffer */ 
 uint8  txb[TMXR_MAXBUF];  /* xmt buffer */ 
 }; 

 
The fields are the following: 
 
 conn  connection socket (0 = disconnected) 
 tsta   Telnet state 
 rcve  receive enable flag (0 = disabled) 
 xmte  transmit flow control flag (0 = transmit disabled) 
 dstb  Telnet bin mode disabled 
 rxbpr  receive buffer remove pointer 
 rxbpi  receive buffer insert pointer 
 rxcnt  receive count 
 txbpr  transmit buffer remove pointer 
 txbpi  transmit buffer insert pointer 
 txcnt  transmit count 

rxb  receive buffer 
 txb  transmit buffer 
 
The overall set of extra terminals is defined by the tmxr structure (typedef TMXR): 
 

struct tmxr { 
 int32  lines;    /* # lines */ 
 SOCKET master;    /* master socket */ 
 TMLN  *ldsc[TMXR_MAXLIN];  /* line descriptors */ 
 }; 

 
The fields are the following: 
 
 lines  number of lines (constant) 
 master  master listening socket (specified by ATTACH command) 
 ldsc  array of line descriptors 
 
Library sim_tmxr.c provides the following routines to support Telnet-based terminals: 
 

int32 tmxr_poll_conn (TMXR *mp) – poll for a new connection to the terminals 
described by mp.  If there is a new connection, the routine resets all the line descriptor 



state (including receive enable) and returns the line number (index to line descriptor) for 
the new connection.  If there isn’t a new connection, the routine returns –1. 
 
void tmxr_reset_ln (TMLN *lp) – reset the line described by lp.  The connection is closed 
and all line descriptor state is reset. 
 
int32 tmxr_getc_ln (TMLN *lp) – return the next available character from the line 
described by lp.  If a character is available, the return variable is: 
 
 (1 << TMXR_V_VALID) | character 
 
If no character is available, the return variable is 0. 
 
void tmxr_poll_rx (TMXR *mp) – poll for input available on the terminals described by 
mp.  
 
void tmxr_rqln (TMLN *lp) – return the number of characters in the receive queue of the 
line described by lp. 
 
void tmxr_putc_ln (TMLN *lp, int32 chr) – output character chr to the line described by 
lp. 
 
void tmxr_poll_tx (TMXR *mp) – poll for output complete on the terminals described by 
mp. 
 
void tmxr_tqln (TMLN *lp) – return the number of characters in the transmit queue of the 
line described by lp. 
 
t_stat tmxr_attach (TMXR *mp, UNIT *uptr, char *cptr) – attach the port contained in 
character string cptr to the terminals described by mp and unit uptr. 
 
t_stat tmxr_open_master (TMXR *mp, char *cptr) – associate the port contained in 
character string cptr to the terminals described by mp.  This routine is a subset of 
tmxr_attach. 
 
t_stat tmxr_detach (TMXR *mp, UNIT *uptr) – detach all connections for the terminals 
described by mp and unit uptr. 
 
t_stat tmxr_close_master (TMXR *mp) – close the master port for the terminals 
described by mp.  This routine is a subset of tmxr_detach. 
 
t_stat tmxr_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw) – stub examine routine, 
needed because the extra terminals are marked as attached; always returns an error. 
 
t_stat tmxr_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw) – stub deposit routine, 
needed because the extra terminals are marked as detached; always returns an error. 

 
void tmxr_msg (SOCKET sock, char *msg) – output character string msg to socket sock. 
 
void tmxr_fconns (FILE *st, TMLN *lp, int32 ln) – output connection status to stream st 
for the line described by lp.  If ln is >= 0, preface the output with the specified line 
number. 
 
void tmxr_fstats (FILE *st, TMLN *lp, int32 ln) – output connection statistics to stream st 
for the line described by lp.  If ln is >= 0, preface the output with the specified line 
number. 



 
t_stat tmxr_dscln (UNIT *uptr, int32 val, char *cptr, void *mp) – parse the string pointed 
to by cptr for a decimal line number.  If the line number is valid, disconnect the specified 
line in the terminal multiplexor described by mp.  The calling sequence allows 
tmxr_dscln to be used as an MTAB processing routine. 
 

The OS-dependent socket routines should not need to be accessed by the terminal simulators.  

6.2 Magnetic Tape Emulation Library 
 
SIMH supports the use of emulated magnetic tapes.  Magnetic tapes are emulated as disk files 
containing both data records and metadata markers; the format is fully described in the paper 
“SIMH Magtape Representation and Handling”.  SIMH provides a supporting library, sim_tape.c 
(and its header file, sim_tape.h), that abstracts handling of magnetic tapes.  This allows future 
implementation of multiple tape formats, without change to magnetic device simulators. 
 
The magtape library does not require any special data structures.  However, it does define some 
additional unit flags: 
 
 MTUF_WLK   unit is write locked 
 
If magtape simulators need to define private unit flags, those flags should begin at bit number 
MTUF_V_UF instead of UNIT_V_UF.  The magtape library maintains the current magtape 
position in the pos field of the UNIT structure. 
 
Library sim_tape.c provides the following routines to support emulated magnetic tapes: 
 

t_stat sim_tape_attach (UNIT *uptr, char *cptr) – Attach tape unit uptr to file cptr.  Tape  
Simulators should call this routine, rather than the standard attach_unit routine, to allow 
for future expansion of format support. 
 
t_stat sim_tape_detach (UNIT *uptr) – Detach tape unit uptr from its current file. 
 
t_stat sim_tape_rdrecf (UNIT *uptr, uint8 *buf, t_mtrlnt *tbc, t_mtrlnt max) – Forward 
read the next record on unit uptr into buffer buf of size max.  Return the actual record size 
in tbc. 
 
t_stat sim_tape_rdrecr (UNIT *uptr, uint8 *buf, t_mtrlnt *tbc, t_mtrlnt max) – Reverse 
read the next record on unit uptr into buffer buf of size max.  Return the actual record size 
in tbc.  Note that the record is returned in forward order, that is, byte 0 of the record is 
stored in buf[0], and so on. 
 
t_stat sim_tape_wrrecf (UNIT *uptr, uint8 buf, t_mtrlnt tbc) – Write buffer uptr of size tbc 
as the next record on unit uptr. 
 
t_stat sim_tape sprecf (UNIT *uptr, t_mtrlnt *tbc) – Space unit uptr forward one record.  
The size of the record is returned in tbc. 
 
t_stat sim_tape_sprecr (UNIT *uptr, t_mtrlnt *tbc) – Space unit uptr reverse one record.  
The size of the record is returned in tbc. 
 
t_stat sim_tape_wrtmk (UNIT *uptr) – Write a tape mark on unit uptr. 
 
t_stat sim_tape_wreom (UNIT *uptr) – Write an end-of-medium marker on unit uptr (this 
effectively erases the rest of the tape). 



 
t_stat sim_tape_rewind (UNIT *uptr) – Rewind unit uptr.  This operation succeeds 
whether or not the unit is attached to a file. 
 
t_stat sim_tape_reset (UNIT *uptr) – Reset unit uptr.  This routine should be called when 
a tape unit is reset. 
 
t_bool sim_tape_bot (UNIT *uptr) – Return TRUE if unit uptr is at beginning-of-tape. 
 
t_bool sim_tape wrp (UNIT *uptr) – Return TRUE if unit uptr is write-protected. 
 
t_bool sim_tape_eot (UNIT *uptr, t_addr cap) – Return TRUE if unit uptr has exceed the 
capacity specified by cap. 
 

Sim_tape_attach and sim_tape_detach return standard SCP status codes; the other magtape 
library routines return return private codes for success and failure.  The currently defined 
magtape status codes are: 
 
 MTSE_OK  operation successful 
 MTSE_UNATT  unit is not attached to a file 
 MTSE_FMT  unit specifies an unsupported tape file format 
 MTSE_IOERR  host operating system I/O error during operation 
 MTSE_INVRL  invalid record length (exceeds maximum allowed) 
 MTSE_RECE   record header contains error flag 
 MTSE_TMK  tape mark encountered 
 MTSE_BOT  beginning of tape encountered during reverse operation 
 MTSE_EOM  end of medium encountered 
 MTSE_WRP   write protected unit during write operation 

6.3 Breakpoint Support 
 
SCP provides underlying mechanisms to track multiple breakpoints of different types.  Most VM’s 
implement at least instruction execution breakpoints (type E); but a VM might also allow for break 
on read (type R), write (type W), and so on.  Up to 26 different breakpoint types, identified by the 
letters A through Z, are supported. 
 
The VM interface to the breakpoint package consists of three variables and one subroutine: 
 

sim_brk_types – initialized by the VM (usually in the CPU reset routine) to a mask of all 
supported breakpoints 
 

 sim_brk_dflt – initialized by the VM to the mask for the default breakpoint type 
 

sim_brk_summ – maintained by SCP, providing a bit mask summary of whether any 
breakpoints of a particular type have been defined 

 
If the VM only implements one type of breakpoint, then sim_brk_summ is non-zero if any 
breakpoints are set. 
 
To test whether a breakpoint of particular type is set for an address, the VM calls 
 

t_bool sim_brk_test (t_addr addr, int32 typ) – test to see if a breakpoint of type typ is set 
for location addr 

 



Because sim_brk_test can be a lengthy procedure, it is usually prefaced with a test of 
sim_brk_summ: 
 
 if (sim_brk_summ && sim_brk_test (PC, SWMASK (‘E’))) { 

<execution break> } 
 


