
Architectural Evolution in DEC’s 18b Computers
Bob Supnik, 22-Nov-2002

Abstract

DEC built five 18b computer systems: the PDP-1, PDP-4, PDP-7, PDP-9, and PDP-15. This paper
documents the architectural changes that occurred over the lifetime of the 18b systems and
analyses the benefits and tradeoffs of the changes made.

Introduction

From 1961 to 1975, Digital Equipment Corporation (DEC) built five 18b computer systems: the PDP-
1, PDP-4, PDP-7, PDP-9, and PDP-15 (see table below). Each system differed from its
predecessors, sometimes in major ways representing significant architectural breaks, and
sometimes in minor ways representing new features or incompatibilities. The architectural evolution
of these systems demonstrates how DEC’s ideas about architectural versus implementation
complexity, I/O structures, and system features evolved over the period of a decade.

 PDP-1 PDP-4 PDP-7 PDP-9 PDP-15
First ship Nov 1960 Jul 1962 Dec 1964 Aug 1966 May 1970
Number built 50 45 120 445 790
Memory cycle 5usec 8usec 1.75usec 1usec 0.8usec
Base price $120K $65.5K $45K $25K $19.8K

Reproduced from Computer Engineering: A DEC View Of Hardware Systems Design

The PDP-1

The PDP-1 was DEC’s first computer system. Introduced in 1960, the PDP-1 reflected ideas from
Lincoln Labs’ TX-2 project as well as the existing capabilities of DEC’s module logic family. It was
implemented in 5Mhz logic.

Arithmetic System

The PDP-1 was a 1’s complement arithmetic machine. In 1’s complement arithmetic, negative
numbers are represented by the bit-for-bit inversion of their positive counterparts:

 +1 = 000001
 -1 = 777776

 +4 = 000004
 -4 = 777773

One’s complement arithmetic has two problems. First, zero has two representations, +0 and -0:

 +0 = 000000
 -0 = 777777

Second, addition of negative numbers requires an “end around carry” from the high order position to
the low order position:

 -1 = 777776
 -1 = 777776
 -- ---------
 sum 1 777774
 |----->1
 -2 = 777775

The PDP-1 tried to solve the zero-representation problem by guaranteeing that arithmetic operations
never produced –0. To do this, it performed an extra logic step during addition, checking the result
for –0 and converting it to 0. However, the PDP-1 performed subtraction by complementing the AC,
adding the memory operand, and recomplementing the result. The recomplementation step
occurred in the same time slot as the –0 detect during add. As a result, subtract had one special
case: -0 – (+0) yielded –0.

Character Sets

The PDP-1’s first console typewriter was a Friden Flexowriter. (Production units used an IBM
Soroban B typewriter.) The console’s six bit character set was called FIODEC, which stood for
Friden Input Output for Digital Equipment Corporation. This code included both upper and lower
case letters, using shift characters to move between sets. The PDP-1’s line printer used Hollerith
(BCD) coding. FIODEC and Hollerith had common encodings for letters but not for symbols,
requiring character conversions throughout the software.

Instruction Set Architecture

The PDP-1’s visible state included the following registers and capabilities:

 AC<0:17> accumulator
 IO<0:17> I/O register
 OV overflow flag
 PC<0:11> program counter
 EPC<0:3> extended program counter (if memory > 4K)
 EXTM extend mode
 PF<1:6> program flags
 SS<1:6> sense switches
 TW<0:17> test word (front panel switches)
 IOSTA<0:17> I/O status

In addition, the PDP-1 had non-observable state in the I/O system for I/O timing (see below).

The PDP-1 had 32 opcodes and implemented six instruction formats: memory reference, skip, shift,
operate, I/O, and load immediate. The memory reference format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| op |in| address | mem reference
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

<0:4> <5> mnemonic action

 00
 02 AND AC = AC & M[MA]
 04 IOR AC = AC | M[MA]
 06 XOR AC = AC ^ M[MA]
 10 XCT M[MA] is executed as an instruction
 12 JFD change fields, PC = MA
 14
 16 0 CAL M[100] = AC, AC = PC, PC = 101
 16 1 JDA M[MA] = AC, AC = PC, PC = MA + 1
 20 LAC AC = M[MA]
 22 LIO IO = M[MA]
 24 DAC M[MA] = AC
 26 DAP M[MA]<6:17> = AC<6:17>
 30 DIP M[MA]<0:5> = AC<0:5>
 32 DIO M[MA] = IO
 34 DZM M[MA] = 0
 36
 40 ADD AC = AC + M[MA]
 42 SUB AC = AC - M[MA]
 44 IDX AC = M[MA] = M[MA] + 1
 46 ISP AC = M[MA] = M[MA] + 1, skip if AC >= 0
 50 SAD skip if AC != M[MA]
 52 SAS skip if AC == M[MA]
 54 MUL AC'IO = AC * M[MA]
 56 DIV AC, IO = AC'IO / M[MA]
 60 JMP PC = MA
 62 JSP AC = PC, PC = MA

The skip format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 0 1 0| | | | | | | | | | | | | | skip
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | | | | | | ______/ ______/
 | | | | | | | |
 | | | | | | | +---- program flags
 | | | | | | +------------- sense switches
 | | | | | +------------------- AC == 0
 | | | | +---------------------- AC >= 0
 | | | +------------------------- AC < 0
 | | +---------------------------- OV == 0
 | +------------------------------- IO >= 0
 +------------------------------------- invert skip

The shift format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 0 1 1| subopcode | encoded count | shift
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | | ___/
 | | |

 | | +------------------------------ 1=AC,2=IO,
 | | 3=both
 | +---------------------------------- rotate/shift
 +------------------------------------- right/left

The shift count was the number of 1’s in bits <9:17>.

The load immediate format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 0 0| S| immediate | LAW
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |
 +----- if S = 0, AC = IR<6:17>
 else AC = ~IR<6:17>

The I/O transfer format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 0 1| W| C| subopcode | device | I/O transfer
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

The operate format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 1 1| | | | | | | | | | | | | | operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | | | | | | | ______/
 | | | | | | | |
 | | | | | | | +---- PF select
 | | | | | | +---------- clear/set PF
 | | | | | | _________/
 | | | | | | |
 | | | | | | +------------ change field
 | | | | | +------------------- or PC
 | | | | +---------------------- clear AC
 | | | +------------------------- halt
 | | +---------------------------- CMA
 | +------------------------------- or TW
 +---------------------------------- clear IO

There are significant discrepancies in the extent PDP-1 documentation about memory expansion
options. The original 1960 User Handbook (F15) didn’t mention any. The 1961 Handbook (F15B)
described two, the Type 13 and Type 14. The 1962 and 1963 Handbooks (F15C and F15D,
respectively), and the Maintenance Manual, described only one, the Type 15. This option expanded
memory to 64K words. The address space was divided into sixteen 4K word fields. An instruction
could directly address, via its 12b address, the entire current field. If extend mode was off, indirect
addresses accessed the current field, and multi-level indirect addressing was enabled; if on, indirect
addresses could access all 64K, and indirect addressing was single level. The state of extend
mode was captured by subroutine calls and sequence breaks, and extend mode was cleared at the
start of a sequence break.

BBN built a custom memory manager for its PDP-1 timesharing system.

I/O System

The PDP-1’s I/O system offered multiple modes for I/O instructions, including synchronous waiting,
timed waiting, asynchronous, and sequence break (interrupt) driven. This multiplicity made the I/O
system complex and redundant.

I/O operations were initiated by a single instruction, Input/Output Transfer (IOT). Bits<12:17>
addressed a particular device; bits <7:11> provided additional control or opcode bits. Bits<5:6>
specified the mode for the I/O transfer:

<5:6> mode

 00 asynchronous - no wait, no device completion pulse
 01 timed wait - no wait, device completion pulse
 10 synchronous - wait for completion
 11 not used - wait, no completion pulse (hung the system if <12:17> != 0)

In synchronous wait, the CPU effectively stalled until the I/O operation completed. If synchronous
wait was not specified, three different mechanisms were available for I/O completion:

• Timed wait. Execution proceeded. Eventually, the CPU issued a wait instruction. The CPU

then stalled until the I/O operation completed and the device issued a completion pulse.
• Polled wait. Execution proceeded. The CPU monitored the device’s flag in the I/O status word

until the I/O operation completed.
• Sequence break driven. Execution proceeded. When the I/O operation completed, a sequence

break (interrupt) occurred, signaling I/O done.

The IOT wait mechanism was implemented by clearing the I/O command flag (which allowed I/O
instructions to execute), decrementing the PC, and re-executing the IOT that specified the wait. To
allow IOT’s in interrupt routines, the CPU had to remember that a wait was in progress, clear the
wait for the interrupt level IOT, and restore the wait afterwards. IOT’s in interrupt routines could not
specify waiting.

The sequence break mechanism recorded break requests in a single pulse sensitive flip flop. Thus,
like the PDP-11 but unlike the other 18b systems, break requests were independent of the device
completion flags. If the sequence break system was enabled, and a break request occurred, the
CPU automatically stored the state of the machine and initiated a new program by:

• storing AC in location 0
• storing EPC and PC, plus overflow and extend mode, in location 1
• storing IO in location 2
• clearing overflow and extend mode
• setting the PC to 3
• setting the sequence break in progress flag

The sequence break in progress flag blocked further breaks.

The end of the break was recognized when the CPU decoded a JMP I 1 (from field 0 in a multi-field
system) while the sequence break system was enabled. At that point, the CPU automatically
restored the state of the system by:

• temporarily turning on extend mode
• obtaining the new PC from location 1
• restoring the original values of overflow and extend mode
• clearing sequence-break-in-progress

A CPU option expanded the standard sequence break system from one channel to sixteen. Each
channel was a unique priority level and had a dedicated four location memory block (0 – 3 for the
highest priority channel, 4 – 7 for the next, etc.). The first three locations of the block were used to
store AC, PC, and IO when a break occurred; the PC was then set to point to the fourth location.

Software

The PDP-1 featured some notable software offerings, including an interactive editor (called
Expensive Typewriter), a macro assembler, a Lisp interpreter, and what is arguably the world’s first
computer video game, Spacewar. (Sources to Lisp and Spacewar are still available on the Internet.)

The PDP-4

The PDP-4 was intended to be substantially lower cost than the PDP-1. Part of the cost reduction
was achieved by using slower and less expensive logic (500Khz instead of 5Mhz), but part was
achieved by simplifying the system and reducing the number of gates. Thus, the PDP-4 (and its
closely related successors, the PDP-7 and PDP-9) simplified the architecture of the PDP-1 along
multiple dimensions.

Arithmetic Systems

The PDP-4 introduced two’s complement arithmetic in parallel with the PDP-1’s one’s complement
arithmetic. Two’s complement arithmetic eliminated the need for -0 detection and made
implementation of multi-precision arithmetic much easier. However, 1’s complement capability was
not dropped; indeed, it remained the predominant arithmetic system, as reflected in future
architectural extensions such as the EAE. Thus, the PDP-4 still needed end around carry
propagation, as well as 1’s complement overflow detection. The result was greater, rather than
lesser complexity, in the hardware, and loss of valuable opcode space in the architecture. Gordon
Bell commented that the retention of 1’s complement arithmetic was, simply, “a mistake”. By the
PDP-5, it had vanished from DEC’s architectures.

Character Sets

The PDP-4’s console typewriter was an ASR-28 Teletype. Its five bit character code was called
Baudot. It supported only upper case letters and required shift characters to get from letters to
figures and back again. The line printer was unchanged and continued to use Hollerith coding.

Instruction Set Architecture

The PDP-4 and its follows-ons reduced the amount of visible state in the CPU. Specifically,

 register PDP-1 PDP-4,-7,-9

 AC arithmetic register same, plus I/O register

 IO I/O register removed (MQ with EAE option)
 OV overflow indicator replaced by Link register
 PF program flags removed
 SS sense switches removed
 TW test word front panel switches
 EXTM extend mode same
 IOSTA IO flags same

The register changes simplified the logic implementation. The L was essentially the 19th bit of the
AC, rather than a special flag. The AC no longer implemented -0 detection. I/O now used the
existing access paths to the AC rather than separate paths to an IO register. The elimination of the
program flags, and the sense switches, was pure gain.

The PDP-4 halved the number of instructions, from 32 to 16, and reduced the number of instruction
formats from 6 to 4. The memory reference format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| op |in| address | mem reference
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

The I/O transfer format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 0 0 0| device | sdv |cl| pulse | I/O transfer
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

The operate format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 1 0| | | | | | | | | | | | | | operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | | | | | | | | | | | | |
 | | | | | | | | | | | | +- CMA (3)
 | | | | | | | | | | | +---- CML (3)
 | | | | | | | | | | +------- OAS (3)
 | | | | | | | | | +---------- RAL (3)
 | | | | | | | | +------------- RAR (3)
 | | | | | | | +---------------- HLT (4)
 | | | | | | +------------------- SMA (1)
 | | | | | +---------------------- SZA (1)
 | | | | +------------------------- SNL (1)
 | | | +---------------------------- inv skip (1)
 | | +------------------------------- rotate two (2)
 | +---------------------------------- CLL (2)
 +------------------------------------- CLA (2)

The immediate format was:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 1 1| immediate | LAW

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

The following table shows the reduction in instruction count between the PDP-1 and the PDP-4:

 PDP-1 instruction PDP-4 instruction

 AND AND
 IOR removed
 XOR XOR
 LAC LAC
 DAC DAC
 DZM DZM
 DIP removed
 DAP removed
 LIO removed
 DIO removed
 ADD ADD; L used in place of overflow
 SUB removed
 MUL removed
 DIV removed
 not present TAD (2’s complement add)
 IDX removed
 ISP ISZ
 XCT XCT
 SAD SAD
 SAS removed
 CAL CAL
 JDA JMS
 JSP removed
 JMP JMP
 skips OPR skips
 operate OPR operates
 shifts (EAE option)
 LAW LAW
 IOT IOT

Beyond the reduction in instruction count, the PDP-4’s instruction set required less logic to
implement.

• Instructions were encoded to minimize logic. For example, all instructions with IR<0:1> = 00

(CAL, DAC, JMS, DZM) did not read a memory operand. All instructions with IR<0:1> = 11
(JMP, EAE, IOT, OPR/LAW) were single cycle.

• ISZ (replacing IDX and ISP) did not modify the AC. By using 2’s complement arithmetic, it did
not need to detect -0.

• JMS (replacing JDA and JSP) did not modify the AC. This eliminated the transfer path from the
PC to the AC. JMS (and interrupts) saved PC and L, and in later systems, the memory extend
and memory protection flags.

• LAW did not mask or modify the address but instead copied the entire instruction to AC.
• OPR no longer guaranteed conflict-free execution of any combination of bits.

Finally, indirect addressing was simplified by the elimination of multi-level indirection. Although the
PDP-4 Handbook mentions an extended addressing option, and Gordon Bell remembers shipping
systems with extended memory, the author has been unable to find documentation on the extended
memory capability.

In all, the architectural tradeoffs in the PDP-4 substantially reduced control logic at the cost of
longer program sequences, notably for subtract and inclusive or. In particular, the lack of a
“complement and increment” operate (present in the PDP-5) made two’s complement subtract an
instruction longer. The PDP-15 finally corrected this oversight.

The PDP-4 (and the PDP-5) introduced a new feature, the concept of “auto-index” memory
locations, that is, locations which, when used as indirect addresses, incremented before use. This
feature allowed efficient traversal of linear data structures and made the IDX and DAP instructions
unnecessary.

I/O System

The I/O system was pruned even more dramatically than the CPU. Synchronous waits and timed
waits were dropped. Instead, only two mechanisms were supported: polled waits and interrupts.
Further, the two mechanisms were integrated by having the device flag for polling be the triggering
mechanism for device interrupts. Finally, polled waiting was implemented more efficiently by
allowing devices increment the PC (skip) in response to an IO instruction. The PDP-5 also used
this I/O paradigm, and it was retained throughout the life of the 12b and 18b families.

In the PDP-4, an ideal I/O device had one flag representing the state of an I/O operation. This flag
was cleared when the device initiated I/O; it was set when the device completed I/O. For example,
in the paper tape reader, the reader flag was cleared by a request to read a character or by explicit
command, and set when the character was in the I/O buffer.

Interrupts (as sequence breaks were now called) were simplified, and control was made explicit
rather than implicit.

 Function PDP-1 PDP-4

 interrupt request request flip-flop logical or of device flags
 interrupt block request in progress flop interrupts turned off
 interrupt action save AC --
 save PC + flags save PC + flags
 save IO --
 clear OV --
 clear extend mode {clear extend mode}
 set break in progress turn off interrupts
 set PC = 3 set PC = 1
 interrupt complete monitor for JMP I 1 turn on interrupts,
 one cycle delay to allow
 for JMP I 0

The PDP-4 offered a multi-level interrupt option. As in the PDP-1, each interrupt vectored to a
unique memory block. Unlike the PDP-1, the memory block was a single location, which was
executed. If the location contained a JMS, control transferred to an interrupt service routine. If the
location contained any other instruction, the instruction was executed, but control returned to the
main line program. The multi-level interrupt option replaced the real-time clock, an undesirable
tradeoff in a real-time system.

Software

Because the PDP-4 was not compatible with the PDP-1, it required new software. DEC provided an
editor, an assembler, and, most notably, a Fortran II compiler, all paper-tape based. While the
Fortran compiler was a significant advance, the assembler was actually a step backward: the PDP-
1’s assembler had supported macros, the PDP-4’s did not. But it offered some consolation by
being a one pass assembler, obviating the need to read the source paper tape twice. The
assembler assumed that unresolved references would in fact be resolved and punched unresolved
binary code as it processed the source, with a resolution dictionary at the end of the output tape.
The resulting tape was then read, upside down and backward, by the loader, which used the
resolution dictionary to “fix up” the broken references in the binary.

The PDP-4’s programs later became the basis for the PDP-7’s software offerings, which accounts
for lingering use of Baudot code on the PDP-7. However, the presence of FIODEC on the PDP-4
(and thus on the PDP-7) is a mystery, since the PDP-1 software base was not carried forward.

Early Mass Storage

The PDP-1 and PDP-4 started out as paper tape based systems. The development software was
paper tape based; magnetic tape, if used at all, was used strictly for data. This situation was
clearly unsatisfactory, and by 1963 DEC was experimenting with mass storage.

The first mass storage products were based on Vermont Research Drums. The Type 23 parallel
and Type 24 serial drums offered 131,072 words of storage with rapid access. But the drums were
big (two six-foot cabinets for the Type 23, one for the Type 24), expensive, and inflexible: storage
was tied to the computer. This didn’t fit with the typical use of the 18b computers as “personal” or
serially shared systems.

To find a solution, DEC again turned to Lincoln Labs. In 1962, Wes Clark had demonstrated the
prototype of the LINC computer. It featured LINCtape, a block-replaceable tape system with a
simple, rugged transport and small, inexpensive tape reels. The LINCtape concept offered exactly
the kind of “personal”, inexpensive storage needed to complement DEC’s computers. With some
changes in tape format, DEC offered “MicroTape” (later renamed DECtape) on the PDP-1 and PDP-
4 in 1963. The product also included a stand-alone program librarian, Microtrieve. DECtape was to
remain the dominant form of mass storage on DEC’s 12b and 18b systems into the early 1970’s,
when it was supplanted by the RK05 (2315-style) cartridge disk drive.

The PDP-7

According to the history of the 18b series in Computer Architecture, the PDP-4 was not a success.
The use of slower logic yielded a system that was 5/8 the performance of the PDP-1 at ½ the price.
What the market required was a system that was both higher performance and lower cost. That
system was the PDP-7. Implemented (primarily) in 10Mhz logic, its basic 1.75 usec cycle time
was almost three times the speed of the PDP-1, at 1/3 the cost.

The PDP-7’s basic architecture consisted of minor refinements of the PDP-4’s instruction set,
accompanied by a several major architectural extensions:

• an extended arithmetic element option, or EAE
• an extended memory option
• multi-user protection, the first in the 18b family

The PDP-7 also was the first 18b PDP to use ASCII coding.

Arithmetic Systems and Character Sets

The PDP-7’s arithmetic systems were identical to the PDP-4. The console typewriter was an ASR-
33 Teletype. Its eight-bit character set was an early version of ASCII, with the high order bit always
forced on. The character set supported both upper and lower case letters, although the console
only supported upper case. The line printer’s SIXBIT character set was derived from ASCII by
truncating codes 040 - 0137 to six bits. The rapid evolution of character sets in the 18b family was
embodied in the PDP-7’s DECtape-based operating system DECsys. DECsys stored information in
FIODEC, Baudot, and SIXBIT, depending on whether the underlying software was derived from the
PDP-4 or newly written.

Instruction Set and I/O Architecture

The PDP-7 used the same basic instruction set architecture as the PDP-4. In addition, it actually
shipped two options that were mentioned in the PDP-4 Handbook but not otherwise documented
(extended arithmetic and extended memory).

The extended arithmetic element (EAE) added a second 18b arithmetic register, the MQ, and a
shift/multiply/divide instruction. The EAE instruction was microprogrammed and could implement a
wide variety of unsigned and signed (one’s complement) operations:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 0 1| | | | | | | | | | | | | | | EAE
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | | | | | | | | | | | | | |
 | | | | | | | | | | | | | +- or SC (3)
 | | | | | | | | | | | | +---- or MQ (3)
 | | | | | | | | | | | +------- compl MQ (3)
 | | | | | | | | ______________/
 | | | | | | | | |
 | | | | | _____/ +--------- shift count
 | | | | | |
 | | | | | +---------------------- EAE cmd (3)
 | | | | +---------------------------- clear AC (2)
 | | | +------------------------------- or AC (2)
 | | +---------------------------------- load sign (1)
 | +------------------------------------- clear MQ (1)
 +-- load link (1)

The EAE architecture remained unchanged in the PDP-9 and PDP-15.

The extended memory model was essentially the same as the PDP-1’s, with 13 direct address bits
instead of 12. Addressable memory was divided into four 32K word banks. Direct addresses
always referenced the current memory bank; indirect addresses accessed either the current
memory bank or all of memory, depending on the extend mode flag. A new feature was a primitive
form of multi-user protection called trap mode. If trapping was enabled, IOT’s and HLT became
privileged instructions. If extend mode was simultaneously disabled, indirect addresses were
confined to the current bank. This allowed for simple time-sharing, with each user in a separate
memory bank. (An option, the KA70A, added a small bounds control register to protect memory
within a bank.) As on the PDP-1, subroutine calls and interrupts saved the state of extend mode
automatically; unlike the PDP-1, they had to save trap mode as well, limiting maximum memory to
32K words rather than 64K.

The PDP-7’s I/O architecture was identical to the PDP-4’s, and it used the same controllers for
major I/O devices such as DECtape, magnetic tape, and serial drum. A few new IOT’s were added,
for management of the extended memory and trap system. The PDP-7 featured DEC’s first
interprocessor link and thus its first “network”; this device set the model for the general purpose
parallel I/O options in subsequent DEC computers. Like the PDP-1 (but unlike the PDP-4), the
PDP-7 console featured a “read-in” switch, to automate system bootstrapping from paper tape. The
“read-in” function did not use the PDP-4’s RIM format but instead loaded memory sequentially from
the tape. Therefore, loading software required three steps: use the “read-in” switch to load the RIM
loader; use the RIM loader to load the binary loader; and finally use the binary loader to load the
software.

Software

The PDP-7 featured DEC’s first mass-storage operating system, the DECtape-based DECsys. (A
version of DECsys also ran on the PDP-4.) DECsys was a modest first step in operating system
development. It consisted of a simple memory-resident DECtape I/O library, a keyboard monitor, a
Fortran II compiler, an assembler, a linking loader, and a symbolic debugger. All of the components
were based on PDP-4 and PDP-7 paper-tape counterparts, with calls to the DECtape I/O library
replacing paper-tape I/O. The internals of DECsys reflect its heterogeneous origins, with directory
information stored in Baudot and source files in FIODEC.

A DECsys system tape contained the bootstrap monitor in blocks 0 and 1, and the directory in
block 2. The first word of the directory contained the directory length; the last word contained the
address of the first free block on the tape. Directory entries consisted of 5 or 6 words:

 Word 1: Type (1 for System, 2 for Working)
 Words 2-3: File name, in Baudot
 S, word 4: starting block on tape
 S, word 5: starting address in memory
 W, word 4: starting block on tape for F (Fortran) version
 W, word 5: starting block on tape for A (assembler) version
 W, word 6: starting block on tape for R (relocatable binary) version

Files were simply linked DECtape blocks, with the first word of a block pointing to the next; a
pointer of 0 signified end of file.

As far as the author can tell, all copies of DECsys have vanished. This is equally true of an even
more historic system for the PDP-7, UNIX. The PDP-7’s multi-user protection, crude as it was,
sufficed for implementation of the first version of UNIX, making the PDP-7 a significant system in the
history of computing. Unfortunately, all copies of UNIX for the PDP-7 have been lost. Some details
of the PDP-7 version can be found on Dennis Ritchie’s personal web site.

The PDP-9

The PDP-7 was considerably more successful than its predecessors, selling more than 100
systems thanks to its significant price/performance improvements. The PDP-9 was intended to
carry the line forward. The arithmetic system and character sets were unchanged, and the
instruction set and I/O architecture changed only minimally. The I/O subsystem changed from a
radial to a bus design, necessitating redesign of all peripherals. Interfaces to programmed I/O
peripherals (paper tape, console, line printer) remained basically the same as the PDP-7; however,

interfaces to mass storage peripherals (magnetic tape, DECtape) changed significantly. An entirely
new multi-level interrupt option, called the Automatic Priority Interrupt (API), was designed. The
PDP-9 carried over little of the PDP-7’s admittedly small software base.

Instruction Set and I/O Architecture

The PDP-9 introduced a more flexible form of memory management, with a bounds register
separating user (lower) memory from system (upper) memory. The PDP-7’s trap flag now became
the PDP-9’s user mode flag.

Although intended to be upward compatible with the PDP-7, the PDP-9 introduced a number of
differences:

• Auto-indexing. In the PDP-7, each bank of memory had auto-index registers. In the PDP-9,

only bank 0 had auto-index registers, and indirect references through addresses 00010-00017
were forced to reference bank 0.

• Extend mode restore. The PDP-7 used EMIR to prepare the system to restore extend mode at
the end of an interrupt. The PDP-9 introduced the more ambitious RES, which prepared the
system to restore the link, extend mode, and memory protect mode. This removed two
instructions from the end of all interrupt routines.

• Extend mode in traps. The PDP-7 set extend mode on a protection trap but cleared it on an
interrupt; the PDP-9 cleared it on both.

The PDP-9’s I/O architecture contained some modest improvements in flexibility and error
detection. Status flags were added for reader and punch errors. The line printer controller
implemented a device-specific interrupt enable/disable. The new DECtape, magnetic tape, and
fixed head disk controllers implemented better programming models than their PDP-7 counterparts,
and used up fewer device numbers in the process.

The PDP-9 also implemented an entirely new design for multi-level interrupts. Called the Automatic
Priority Interrupt (API) option, the API separated the concept of interrupt channel from priority. The
API option supported 32 channels (interrupting devices), but the channels were grouped into eight
priority levels. Four channels, on the four lowest priorities, were reserved for software interrupts.
When an API break occurred, the memory location corresponding to the channel was executed.
The location had to contain a JMS to an interrupt service routine; use of other instructions was not
supported. The API was carried over unchanged to the PDP-15.

Software

The PDP-9’s close compatibility with the PDP-7 allowed the latter’s software to be brought forward.
However, that code base, dating from the PDP-4, was considered inadequate and relegated to use
in the smallest systems. For mainstream use, a new software suite was written from scratch. The
three-step software loading process was simplified by eliminating the intermediate RIM loader. The
hodge-podge of I/O routines and libraries was replaced by a standard I/O executive that maintained
compatible interfaces from the paper-tape environment through the mass-storage based operating
systems (Advanced Monitor System and its foreground/background extension). The PDP-4/7
assembler syntax and binary formats were scrapped and replaced with a new macro assembler,
Macro 9. Fortran II was replaced by Fortran IV. The console was changed from software echoing of
input characters to hardware echoing. The intent versus the practice for PDP-9 software is
illustrated by the changes in the manual set. The examples in the Systems Reference Manual all
follow PDP-7 assembler syntax, but most surviving software is written in Macro 9.

The PDP-15

The PDP-15 introduced the most significant set of architectural changes in the 18b product line
since the transition from the PDP-1 to the PDP-4. It represented a major technology shift, from
discrete transistors to TTL integrated circuits. The PDP-15 was the fastest and most popular 18b
computer in Digital’s history. It was also the last.

Instruction Set and I/O Architecture

The PDP-15 introduced four architectural extensions:

• two new registers, an 18b index register and a 9b limit register
• extended addressing to 128K words
• memory relocation and protection
• hardware floating point option

The introduction of the index register made the PDP-15 more competitive with contemporary
machines such as the SDS 940 and DDP 516, both of which had indexing. To get an index register
select into the memory reference instructions, the directly addressable memory range was reduced
from 8K to 4K:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| op |in| x| address | mem reference
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Direct addressing beyond 4K words could be done by indirect addressing (maximum 32K words), or
by indexing (maximum 128K words). However, return addresses remained limited to 15b; thus the
maximum practical code segment size remained 32K words. Extended memory worked best with
the new memory relocation and protection option; in that environment, multiple 32K word programs
could reside in memory simultaneously.

The addition of indexing created a serious compatibility problem with the PDP-9. To ameliorate
migration issues, the PDP-15 redefined the PDP-7’s and PDP-9’s extend mode flag as PDP-9
compatibility mode, or bank mode. If bank mode was enabled, memory reference decoding was
identical to the PDP-9, without index capability. The PDP-15 did not implement the PDP-9’s extend
mode capability within bank mode, because extend mode, which was a compatibility aid for PDP-4
and PDP-7 programs, was no longer needed.

The hardware floating point unit was another new addition to the architecture. It dramatically
improved the performance of the system in scientific applications. To support indexing and floating
point, the PDP-15 introduced two new instructions, both carved out of the IOT instruction. Bits
<4:5> of the IOT instruction had been defined as sub-device selects but in practice were unused.
The PDP-15 used them to differentiate between IOT instructions (<4:5> = 00), floating point
instructions (<4:5> = 01),

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 0 0 1| subopcode | floating point
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|in| address |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

and index operate instructions (<4:5> = 1x):

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 1 0 1| subopcode | immediate | index operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

In addition to the major changes outlined above, the PDP-15 had its own set of tweaks and
incompatibilities compared to its predecessor. Two meaningless operates were redefined as IAC
(increment AC) and BSW (byte swap). The former facilitated a one-instruction 2’s complement,
thereby correcting a hole in the arithmetic system. On the PDP-9, DBR and RES were triggered by
a JMP indirect, on the PDP-15 by any indirect. The PDP-15 implemented new IOT skips for bank
mode.

From a programming viewpoint, the PDP-15’s I/O architecture was the same as the PDP-9’s, but
the implementations were quite different. The PDP-15 implemented a separate I/O processor,
providing greater expandability and flexibility, and a different I/O bus. It had more powerful
peripherals, including the RP15/RP02 disk pack and the LP15 DMA line printer. Some PDP-9
controllers, such as the TC09 DECtape controller and the RF09 fixed head disk controller, were
redesigned to connect directly to the PDP-15’s I/O bus; others were interfaced by a backwards-
compatible bus converter.

Although the PDP-15 was more successful than any prior 18b system, compared to the PDP-11 its
volume was low. This made continuing investment in new technology and options difficult. The
CPU was never re-implemented to take advantage of advances in component integration.
Investments in new peripheral types and controllers had to be limited. The PDP-15 group responded
with great ingenuity to these constraints. Unable to afford a new CPU, they expanded system
capacity by implementing multiprocessing. Unable to afford new peripherals, they provided access
to Unibus peripherals by adding a PDP-11/05 as an I/O controller (known as the Unichannel 15).
These structural innovations stretched the lifetime of the product line but could not reverse its status
as a niche rather than a volume product. By the mid 1970’s, the PDP-15’s position in DEC’s
product line was eclipsed by the success of the more flexible PDP-11 (as the position of the PDP-
10 would be by the VAX). In 1977, the PDP-15 was retired, ending the history of the 18b product
family.

Software

The PDP-15 built on the PDP-9’s software base. The Advanced Monitor System was retained and
extended to create DOS-15 and its batch extension, BOS-15. A new and more ambitious operating
system, RSX-Plus III, exploited the memory relocation hardware and multiprocessing capabilities to
provide simultaneous timesharing, batch, and real-time capabilities. Of more lasting significance
was MUMPS (MGH Utility Multi Programming System), a timesharing system developed at
Massachusetts General hospital for processing medical records. Descendents of MUMPS (now
known as the M language) continue to be used today in medical systems.

18b Systems Today

Because of the low numbers produced (< 1500), and the early retirement of the product line,
relatively few examples of the DEC 18b computers are still extent (a fate shared by the early 36b

products as well). Surviving systems are scattered and often in private collections, making an
accurate census difficult.

• PDP-1: The Computer History Center (Mountain View, Ca) has three PDP-1’s. One of these

was running as recently as 1995 and will (hopefully) be restored to operation. The other two are
from DEC’s history collection.

• PDP-4: The Computer History Center has three PDP-4’s, all from DEC’s history collection.
None are considered restorable.

• PDP-7: The Computer History Center has a PDP-7, from DEC’s history collection. Max Burnet
(Sydney, Australia) has a PDP-7 in his collection. Neither is considered restorable.

• PDP-9, 9/L: The Computer History Center has both a PDP-9 and a –9/L. Max Burnet also has
one of each, and the PDP-9/L works. The Rhode Island Computer Museum has a PDP-9,
which is being restored. There are two PDP-9’s at ACONIT (Grenoble, France); Hans Pufal and
his team have restored one to working order.

• PDP-15: Multiple examples in private hands.

Sources

The primary source for this article was DEC’s documentation archive. The author was fortunate to
have access to the archive while it was still being staffed and maintained (Compaq dismissed the
archive staff and dispersed the documents; HP is in process of donating the archive to the
Computer History Museum). Max Burnet has graciously shared his unique collection of DEC
documents and hardware. In addition, Al Kossow and Dave Gesswein have done the field of
“computer archaeology” a tremendous service by scanning, and publishing online, surviving
documents and paper-tapes from the 18b family. Among the items consulted:

PDP-1
 PDP-1 Handbook (F-15, 1960 edition) – online
 PDP-1 Handbook (F-15B, 1961 edition) – online
 PDP-1 Handbook (F-15C, 1962 edition) – Max Burnet’s collection, now online
 PDP-1 Handbook (F-15D, 1963 edition) – transcription online
 PDP-1 Maintenance Manual (F-17) – Max Burnet’s collection, now online
 PDP-1 Input-Output Systems Manual (F-25) – DEC archive, now online

PDP-4
 PDP-4 Handbook (F-45, 1962 edition) – DEC archive
 PDP-4 Maintenance Manual (F-47) – Max Burnet’s collection
 PDP-4 Technical Specification (DEC memo M-1142) – online
 PDP-4 Fortran Users’ Manual (J-4FT) – DEC library, now online

PDP-7
 PDP-7 Reference Manual (F-75, 1964 edition) – DEC archive
 PDP-7 Maintenance Manual and logic prints (F-77) – Max Burnet’s collection
 DECSYS-7 Operating Manual (7-5-S) – DEC library, now online

PDP-9
 PDP-9 User’s Handbook (F-95, 1968 edition) – online
 PDP-9 Maintenance Manual (F-97) – online
 PDP-9 logic prints – online
 KE09A Extended Arithmetic Element Instruction Manual – online

PDP-15

 PDP-15 Reference Manual (first and sixth editions) – online
 PDP-15 processor diagnostics – online

Another critical source was Computer Engineering: A DEC View Of Hardware Systems Design.
The article “The PDP-1 and Other 18-Bit Computers”, by Gordon Bell, Gerald Butler, Robert Gray,
John McNamara, Donald Vonada, and Ronald Wilson, contains unique hardware, marketing, and
technology information about the 18b family. The book, out of print for years, is now online, thanks
to the efforts of Gordon Bell.

Lastly, the author had the benefit of the recollections of people who worked on the 18b family,
including Gordon Bell, Dennis Ritchie, and Barry Rubinson, as well as access to the surviving
archive of PDP-7 software from Applied Data Research.

18b PDP Web Sites

Gordon Greene’s PDP-1 web site, http://www.dbit.com/~greeng3/pdp1/

Barry and Brian Silverman’s Java-based emulator for PDP-1 Spacewar,
http://mevard.www.media.mit.edu/groups/el/projects/spacewar/

Al Kossow’s “Minicomputer Orphanage”, including the 18b PDP’s,
http://www.spies.com/~aek/orphanage.html

Dennis Ritchie and Ken Thompson memoir of early UNIX, http://www.bell-
labs.com/history/unix/pdp7.html

Hans Pufal’s site about the restored PDP-9 at ACONIT, http://www.aconit.org/hbp/PDP9/

