Structuring aVLSI
ystem Architecture

James H. Clark, Stanford L niversaly

Few of the verv high performance integrated circuits
being produced today are nMOS circuits, On the other
hand, nMOS is almost synonymous with Very Large
Scale Integration{VLSL). This article describes a graphics
subsystem that illustrates that by employing architectures
with a very high degree of parallelism, one can get high
performance with nMOS, In fact, at the ultimate nMOS
the system’s performance improves Lo a
point that it is comparable with the fastest of super-
computer technologies.

dimensions

The system 15 designed o perform three of the very
common geometric funcions of computer graphics. A
single chip type is used in 12 slightly different conligu-

rations 1o accomplish 4x4 matrix multiplications; line,
character, and polygon clipping; and scaling of the
clipped results 1o display device coordinates, This chip is
referred 1o as the Geometry Engine,

The Geometry Engine is a four-component vector

function unit that allows simple operations on floating-
point numbers. It is composed of four identical function
units, each one of which has an 8-bit characteristic and
(presently) a 20-bit mantissa. It accomplishes the opera-

tons with a very simple structure that consists ol an
ALU, three registers, and a stack. This basic unit can do
parallel adds, subtracts, and other similar two-variable
operations on either the mantissa or the characteristic;
since one of the registers can shift down and one can
shift up, it can also do multiplies and divides at the rate
of one multiply or divide sitep per microcycle. The 12-
chip system consists of 1,344 copies of a single bit-slice
layout that s composed of these five eleme

nts. Four

pins on the chip are wired to tell its microcaode which of

the 12 functions it is to do, according to its position in
the subsystem organizaton.

Key 1o the design has been the
techniques advocated by [fntroduction fo VLSI Systerms
(Mead and Conway 1980). Since this book was the
author's first exposure o nMOS circuit design, it has
had a significant influence on the methodology used in
arriving at the architecture. The regular structures

use of design

advocated in this book are evident at several levels of

the organization, and the timing methodology advocated
by Seitz in chapter 7 is fundamental 1o the sysiem,

After briefly discussing the graphics functions accomp-
lished by the system, we will present a bit of the history

of its development, with special emphasis on the archi-
tecturefdesign considerations motivated by the use of
nMOS, Some of the reasons for choosing a self-timed
convention will also be considered. Finally we will draw
some conclusions about the feasibility of one person {or
a small number of people) doing the architecture, circuit
design, and lavout of a VLSI system,

What Does the System Do?

There are three geometric operations that almost every
praphics system must do. Figure | illustrates these three
The first one is transtormations. Typically,
“objects”, or picture subroutines, are defined wsing such

function

FIGURE |. Three basic operations performed by a graphics system:
transformation, clipping, and scaling,

Cibject, or Picture subroutine, detineed in s own bocal coordinate system.

o : :
4% 4 Matrix transformation o accomplish Botations, Scaling.
Shear and Translations in one matris eperation

Virtual Iil:l.m'mh- .‘\!J:u 0

- Completely
:I Clipped
(Maject
Fan Ii.|||{
Clipped L .
Obyect Window

All alyects are
clipped to the
boundanes of
this window,

Scaling operation 1o sccomplish perspective division
if 30 and scaling the Window 1o the Viewport ol
the destination display device

g Display Device

View peort » O

LAMBDA Second Quarter 980 25

primitives as lines, characters, or polygons. They are
usually defined in their own local frame of reference, or
coordinate svstem, since this makes their definition more
general, e, their coordinates can be entered without
regard o how they might eventually be drawn on the
destination display. Thus, the first thing that happens to
the objects on their wav from object memory to the
display is a transtormation of their coordinates, usually
mtoe an intermediate coordinate system that is conven-
ent for clipping.

A convenient way o accomplish this transformation is
with a 4x4 matrix. The motivation [or this choice is
treated very well in the excellent graphics textbook
Introduction to Computer Graphics, by Newman and
Sproull. A 4x4 matrix allows rotations, scaling, trans-
lations, and a number of other transformations to be
done with a single entity. 1t also conveniently handles
both 2- and S-dimensional objects, and two successive
transformations can be composed by a simple multipli-
cation of their transformation matrices. Four Geometry
Engines can rranstorm an incoming four-component
vector into a four-component vector expressed relative
t a coordinate svstemn that is “fixed o the observer.”
Figure 2 shows a block diagram of the subsysiem
organization; each of the four mm blocks is a separate
Geometry Engine chip that does a four-component
vector dot product. Although each multply 15 done at
the rate of one partal product per microcycle, the
matrix multipher has 16 of these products simulian-
eously active. Thus the total transformation time, which
is the bandwidih limiting operation ol the system, is
abour 12 microseconds.

After transformation, the objects are expressed
relative to a virtual drawing coordinate svstem in which
the viewing window is specified. In two dimensions, this
window is as shown in Figure 1. In three dimensions,
the window 15 a set of planes that extend outward from
the eve of the observer: these planes can be thought of
as extending through the rectangle defined by the 2-D
boundaries shown in the figure, ie, the observer sees
the planes on edge. This window represents the part of
the picture that is w be mapped onto the destination
display. Objects, that is points, lines, characters, and
polygons (sequences of lines), are “clipped” 1 the
planes, or window boundaries, one plane at a time in
pipeline fashion, as indicated Figure 2 by the i n
units.

In the clipper configuration, a Geometry Engine holds
the plane equation for both endpoints of the line in one
of its function units, while it holds the 2- or 3-D
coordinates for the endpoints in its other three units.
The sign of the plane equatnon for each poine tells
which side of the plane the point is on. By convention,
this sign is chosen w be negative if the point is on the
“out” side of the plane, meaning that it is not visible to
the observer because it is outside of the window, Thus a
line segment having both signs negative is completely
out of the viewing area, while one having both signs
positive is completely in the viewing area. The function

26 LAMBDA Second Quarter 1980

FIGURE 2. Graphics geometry-subsystem data Bow.

— munil
—mml
Ihsplay
Frovessor| | [
Armm2) ‘
mmd J

Scale #

Scale x, v

Dvisplay

[Smart Image
Memory)

FIGURE 3. Logarithmic search for inlersection point.

l:!iF:F:il'lg Boundary or plane

- I o
Line sepment 2

of the clipper is to discard segments that are completely
outside its plane, pass segments that are completely
inside to the next clipper chip, or find the point of
intersection of the segment with the plane and pass the
results on to the next clipper chip.

In the clipper configuration, the Geometry Engine
first determines if a line is to be discarded or passed on
to the next unit. Since these two cases are the most
commaon, a clipper chip typically will spend very little
time “clipping.” Thus one might say that the clipper
chip spends most of its time “sailing.” When a segment
crosses a plane, the engine finds the intersection point

by a logarithmic search for the point (Figure 3). That is,
on each microcycle each of the four units (the plane
equation unit and the three coordinate units) computes
the midpoint of its representation of the line, Choosing
one of the endpoints as a reference point, it then
determines if the midpoint is on the same side of the
plane as this point. IF so, then the reference point is
updated by moving 1t 1o the midpoint. This is repeated
until the precision of the mantissa is reached. The
algorithm is very similar to that devised by Sproull and
Sutherland (Sproull and Sutherland 1968).

The final function o be accomplished is scaling, which
is indicated in the bottom part of Figure 1. This scaling
operation scales objects remaining after clipping from
the window to a viewport, which is expressed in the
integer coordinate system of the destination display. In
three dimensions both perspective division and scaling
to destination device coordinates simultaneously take
place. In two dimensions only sealing is done. The
perspective division/scaling operation requires two func-
tion units for each coordinate; thus one geometry
engine works for two coordinates, since it has four
function units. The operation is done by using one of
the umnits 10 accomplish the division by arriving at the
successive bits of the quotient one at a time, starting
with the most significant bit. Rather than accumulating
them, however, they are instead wsed immediately to
determine whether to add the successive partial pro-
ducts of the viewport scale using the other function
unit. For example in the equation

X = (x/'wPVsx + Vex,

which is the scaling operation for the x coordinaie, one
unit computes the guotient x'w one bit at a time,
starting with the most significant bit, while the other
unit uses these successive bits o govern the
accumulation of the product of this quotient with Vsx.
In this way the perspective division and the multiplica-
tiom of the scaling operation are done simultaneously,
Moreover, since the output device typically has no more
than 12 bits of precision, this operation may stop after
12 microcycles. Then Vex is added to the accumulated
result. As in the cdipper mode of operation, the
algorithm used is very similar to that deseribed in
(Sproull and Sutherland 1968),

A Brief Design History

In July of 1979, Carver Mead of Caltech and Lynn
Conway and several other people from the LSI Systems
Area at the Xerox Palo Alto Research Center presented
an intensive, three day course on designing nMOS
circuits 1o some of the faculty and stafl of Stanford. In
search of a project, the author recalled that the
Clipping-Divider, designed and built by Ivan Sutherland
{Sproull and Sutherland 1968) in the days of small scale
integration, was a relatively high performance device
that operated with a clock cycle of approximately 200ns.
It attained its high performance by having four uniis
operate in parallel, each doing a clip operation some-
what like " that described above. Unlike the present
plane-at-a-time confliguration, however, the units were

tightly linked rogether in a configuration that simultan-
cously clipped lines wo the four window boundaries. The
plane-at-a-time notion is also due w0 Sutherland
iSutherland and Hodpman 1974). Figure 4 shows an
approximate diagram of this organization. The initial
project chosen was to implement the Clipping-Divider as
a single nMOS5 chip.

After rediscovering the details of that design, a single
bit-slice for the machine was designed and a layout was
done using an interactive graphics layout system, Thas
layour, using six micron design rules (lamhda=three
microns), was going to require a 9-mm-square chip. In
addition, it had the unappealing feature that because of
the architecture, there was quite a large amount of
mterconnect wiring within the hit slice. This wiring
consumed as much area as the functional units of the
bit-slice, making the bit-slice about twice as wide as it
might otherwise be.

In addition o this, there was the annoving problem of
transformations. A complete graphics system needs
transformations as well as clipping and scaling, and the
Clipping-Divider did only the latter functions. Another
problem was that for a good user interface, the author
felt thar the coordinates supplied o the vansformation
unit should be Aoating-point.

In a discussion of the problem with Jim Rowson of
Caltech, it was suggested that, for simplicity, the
clipping be done one plane at a time. Because of the
{unreasonable) desiré to put everything on one 1C chip,
this was initially not considered desirable. Since the
author was aware ol the Reentrant Polygon Clipper of
Sutherland and Hodgman (Sutherland and Hodgman
19741, however, it was clear that this scheme had the
advantage that it would work for polygons as well as
lines. That is, by pipelining the clipping operation,
keeping a small amount of additional information and

FIGURE 4. Rough diagram of onginal dipping diader,

Accumulator

|] Accumulator)

a* -
H H
Doy Shifter Down Shifier
Interconnections
— = Accumulator) Accumulater !
|
L :|_ e o Y

Dieswen Shifier]

LAMBDA Second Quarter 1980 27

clipping to one plane at a time, it is possible tw clip
polygons and lines. The original Clipping-Divider
algorithm worked only with hines,

There was still a desire to keep evervihing on one
chip. The next major step came with the realization that
a system like the Clipping-Divider actually does
multiplication in the scaling mode. Recall from the
dividelscale operation described in the previous section
that one of two umits accumulates the partial products
of a multiplication while the other generates bits of a
quotient. However, two of the units are required in this

mode because one is doing a division. It was suddenly
realized that by making a simple bit slice with one
register that shifts up in addition w0 the one that shifts
down in the clipper mode, one unit could do multi-
plication as well as the division implicit in the clipping
mode. Moreover, since a single plane clipper requires
four funcion unis, as described above, and since four
function units can also simultaneously multiply four
numbers, it was evident that it was possible 1o have a
single chip that could do a four-component vector dot
product as well as a single plane clipping operation.
The final step o enable a single-chip implementation
came when it was realized that both an exponent and a
mantissa would conveniently fit on either side of the
control part of the unit, te, the Programmable Logic
Array, as shown in Figure 5 With one exception, the

FIGLRE 5. Plan view of the Geometry Engine.

< :
£
g S 1 S 18 e i
él — Exponent Drivers — 1]
[ALU Decoders — |
-
AR | N —
1y I =
71 E
[Clock : Characteristic and E Mantissa PLA
TT I Comtrol Flow PLA o
AR_| 4
3 | =
o - I :
= | AL Decoders |
E [= Manussa Drivers
E . PR L 5
& [et e
1 - ——
E _| 3 S o E
&
-
L) _d.- =
| = | i | E
e |E ik
7| 3 || &
=] W 3 Y =
= 2 % L1 1E &
£ | | B
| £ B
—_ | T
The positions outlined in bold have actually been
implemented .

28 LAMBDA Second Quarter 1980

basic architecture was determined ar this time,

The exception was that no provision was made for a
matrix stack., A matrix stack allows for structured
pictures, It is used to push away a curremt transforma-
tion matrix belore going 1o a “picture subroutine,” in
much the same way that arguments are saved in going
to a recursive subroutine in a regular program, It
provides a picture hierarchy capability, It was originally
thought that the matrix stack would be oo space con-
suming to put on the chip and that it really belonged
on a separate stack chip. When the time had come o
consider the issue more seriously, however, it was
discovered that putting the stack on a separate chip
caused a lot of communication problems. Observe from
Figure 2 that the organization has a clean, pipeline flow
as shown, without an external matrix stack. To include a
matrix stack chip so that matrices can be transferred
from the mm chips on a Push command and back to the
mm chips on a Pop command interrupts this {low and
requires more complicated bus communication paths,

In puzzling over this need for a stack, it was realized
that the best place for it, to simplify communication, was
in the bit slice. Provision had alveady been made in the
bit-slice for several extra storage registers in addition 10
the three already mentioned (Accumulator{A), Up
Shifter{(Upand Down Shifter(D))). That is. because as a
polygon clipper the function units needed several save-
point registers, the bitslice at this tme had two
additional storage registers, 51 and 52, After actually
doing a layout of a variant of the stack cell given in
Mead and Conway, it was evident that about nine stack
cells took only slightly more space than the two register
cells; this was largely due to the need for fewer control
lines. Also, since the top two elements of the stack were
still useful for the temporary save-point registers, it was
clear that the stack belonged with the bit-slice. In other
words, the bit-slice became a microrepresentation of the
entire system.

The ALU in the bit-slice is very similar to the one
described in Mead and Conway (1980). Likewise, the
stack cell is like that given in the same text except that
power, ground, and control signals run the length of
the stack rather than across it. Fach of the registers,
which are in the middle of the slice, is simply a pair of
inverters with regenerative feedback on phase 1 of the
clock. The symmetric U and D registers also have a bt
of extra circuitry to communicate their value in the slice
to the appropriate adjacent slice. As in the OM2, there
is a single, precharged polysilicon bus running through
the slice to communicate information between the slice
and the InpuvOuwiput pads. The slice is “regular” since
it adjoins to another copy simply by placing them side
by side.

Figure 5 shows a plan view of the entire chip. The
parts outlined with bold lines have been implemented as
two separate projects on the multiuniversity, multiproject
chip set, MPC7Y9 {Conway, Bell and Newell 1980). The
small rectangles appearing in this figure are copies of
the principal bit-slice discussed above, The two projects

rergaml FIGURE 6. Feasibility of the Geometry Engine
design was proven with this five-bit-wide shce
of the data path,

£ Geomelry Engine
& £ 1979 James Clark
3
=
A
H
E 7 Rl
""""""" i FIGLRE 7, Self-timed clock generation chip
for the Geometry Engine.

Melgar Phatography

LAMBDA Second Guarter 1980 29

implemented are a five-bit version of the main function
unit and the pipeline cock discussed below, A
photograph of the project with the five-bit shce is shown
in Figure 6. This project worked as planned.

System Timing

Concurrent with all of these structural decisions were
decisions about how the system was to communicate
temporally, After reading the chapter in Mead and
Conway on System Timing by Seitz, it seemed clear that
a sell-timed system would be the most resilient o
changes of scale,

The timing methodology, which Seitz refers to as selt-
timed logic, was employed in the design for two reasons.
The first was to avoid the clock-skew problems associ-
ated with distributing a clock over a very large circuir.
Although clock distribution is not a problem with four-
micron dimensions, as fabrication technology moves
toward one-micron dimensions, clock skew becomes a
problem. By using a self-generated clock on each of the
12 original chips, the scaled system will have 12
separately timed subsystems. Moreover, it will
awtomatically run approximately four times as fast as a
result of the decreased scale.

The other reason for using the self-timed convention
was 1o avoid synchronization failure. By emploving a
separate clock that is tightly coupled with the control of
each chip, the clock can be synchronously stopped when
the unit is idle, waiting for input or waiting for output
to be taken, and it can be asynchronously started by the
unit on which it is waiting when the unit is ready. This
avoids synchronization failure and allows the clock cycle
to be varied according to the needs of the particular
micro-instruction. Figure 7 shows a photograph of the
clock chip. This chip also worked entirely as planned.
Only the most complicated part of the design remained:
writing the microcode for the PLA control.

Microprogramming

The Geometry Engine is a quasi general-purpose, four-
component vector function unit. [t gets its power as a
result of its architectural simplicity: almost all of its
complexity 15 in the microcode that drives it. This
microcode is a representation of the logic equations for
its finite state machine, which will be implemented in a
Programmable Logic Array (PLA). Writing this
microcode and making minor additions to the principal
bit-slice to accommodate the requirements of the micro-
code has taken approximately 50 percent of the total
design time.

The state of design tools in the VLSI design business
is still relatively crude. The experience of this project
has shown that when one has a very homogeneous
architecture so that the layout problem for the main
function unit is minimized, the most needed design tool
is a mechanism for simulating the microcode and thence
automatically generating a PLA layout from this simu-
lated code, Although this need has been recognized by
others, there has been no well-structured language
available with a suitable PLA generating postprocessor,

30 LAMBDA Second Quarter 1980

In response to this need, John Hennessey of the
Stanford Computer Systems Laboratory, has written a
Pascal-based language for this purpose, and the author
has added the PLA generation postprocessor (Hennessey
1980). This language has two modes of operation,
simulation and PLA generation. In the simulation mode,
the user defines with Pascal procedures an algorithmic
statement of the function of the “environment™ that is
being driven by the logic equations of the micro-
architecture. All PLAs are named, giving their layout
orientations and naming their input and output signals
with their polarities; for additional convenience, the
signals may be labeled as “pipelined,” thereby relieving
the microprogrammer of worries related 1o pipelining,
Then the microprogram is written in a very simple,
clean form. The microcode is translated to Pascal pro-
cedures, loaded with the environment procedures and
the result is then simulated. After satisfactory simulation
of the microcode, the user then runs the system in the
PLA generation mode and the CIF (Calech
Intermediate Form) for the PLA layout is output. This
is then merged with the layouts of the tunctions units
being driven by the microcode and they are wired

together.

Summary

High performance nMOS circuits are possible with a
very high degree of parallelism. Finding the corrvect
architecture to exploit the parallelism is of course the
difficult problem. The fexibility of structuring one's
own building blocks to implement a specially conceived
architecture is one of the key features of the design
possibilities made readily available through the excellent,
pragmatic book by Mead and Conway. This book and
courses taught from it are encouraging a rapid evolu-
tion of sharable design tools at several major universities
and corporations. As a rvesult, a time is quickly
approaching when a small number of people rather
than very large teams can design, simulate, create the
layout for, and readily implement new architectures,

Acknow

The author would like 0 thank Lynn Conway of Xerow for making
available the resources of her LSI Systems Ares, enabling the author
o learn the matenal quickly, Martin Newell was extremely helpiul as
a source of encouragement and insight,

References

Conway, LA Bell, AG; and Newell, M.E. January 1980, “MPCT9: A
Demonstration-Operation . of & prowotype Bemote-Entry Fast-
Turnarcund, VLSI Implementation System.” Paper read at the
Conference on Advanced Research in Integrated Circuits, M.LT.

Hennessey,] 1980, "Microprogram Simulaton/PLA - Compalation,”
Paper read al Stanford Computer Forum.

Mead, C.A. and Conway, LA, 1980, Introduction fo VES] Systems,
Boston: Addison Wesley.

Sproull, RF. and Sutherland. LE. 1968 "A Clipping Divider”, In
Proaceedings of the FJCC 1968, Thompson Books, Washington, D.C.

Sutherland, LE. and Hedgman, GW. Januwary 1974, “Reentrant
Polygom Clipping”, CACM, vl 17, ne. I Al

